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PREFACE
[The Art of Combinations℄ has a relationto almost every speies of useful knowledgethat the mind of man an be employed upon.| JAMES BERNOULLI, Ars Conjetandi (1713)

This booklet ontains draft material that I'm irulating to experts in the�eld, in hopes that they an help remove its most egregious errors before toomany other people see it. I am also, however, posting it on the Internet forourageous and/or random readers who don't mind the risk of reading a fewpages that have not yet reahed a very mature state. Beware: This material hasnot yet been proofread as thoroughly as the manusripts of Volumes 1, 2, and 3were at the time of their �rst printings. And those arefully-heked volumes,alas, were subsequently found to ontain thousands of mistakes.Given this aveat, I hope that my errors this time will not be so numerousand/or obtrusive that you will be disouraged from reading the material arefully.I did try to make it both interesting and authoritative, as far as it goes. But the�eld is so vast, I annot hope to have surrounded it enough to orral it ompletely.Therefore I beg you to let me know about any de�ienies you disover.To put the material in ontext, this is Setion 7.2.1.3 of a long, long hapteron ombinatorial algorithms. Chapter 7 will eventually �ll three volumes (namelyVolumes 4A, 4B, and 4C), assuming that I'm able to remain healthy. It willbegin with a short review of graph theory, with emphasis on some highlightsof signi�ant graphs in The Stanford GraphBase, from whih I will be drawingmany examples. Then omes Setion 7.1, whih deals with the topi of bitwisemanipulations. (I drafted about 60 pages about that subjet in 1977, but thosepages need extensive revision; meanwhile I've deided to work for awhile onthe material that follows it, so that I an get a better feel for how muh tout.) Setion 7.2 is about generating all possibilities, and it begins with Setion7.2.1: Generating Basi Combinatorial Patterns|whih, in turn, begins withSetion 7.2.1.1, \Generating all n-tuples," and Setion 7.2.1.2, \Generating allpermutations." (Readers of the present booklet should have already looked atthose setions, drafts of whih are available as Pre-Fasiles 2A and 2B.) Thestage is now set for the main ontents of this booklet, Setion 7.2.1.3: \Gener-ating all ombinations." Then will ome Setion 7.2.1.4 (about partitions), et.Setion 7.2.2 will deal with baktraking in general. And so it will go on, if allgoes well; an outline of the entire Chapter 7 as urrently envisaged appears onthe taop webpage that is ited on page ii.iii
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iv PREFACEEven the apparently lowly topi of ombination generation turns out to besurprisingly rih, with ties to Setions 1.2.1, 1.2.4, 1.2.6, 2.3.2, 2.3.4.2, 3.4.2,4.3.2, 4.6.1, 4.6.2, 5.1.2, 5.4.1, 5.4.2, 6.1, and 6.3 of the �rst three volumes.I strongly believe in building up a �rm foundation, so I have disussed this topimuh more thoroughly than I will be able to do with material that is newer orless basi. To my surprise, I ame up with 110 exerises, even though|believeit or not| I had to eliminate quite a bit of the interesting material that appearsin my �les.Some of the things presented are new, to the best of my knowledge, althoughI will not be at all surprised to learn that my own little \disoveries" have beendisovered before. Please look, for example, at the exerises that I've lassed asresearh problems (rated with diÆulty level 46 or higher), namely exerises 53,56, 67, and 83; I've also impliitly posed additional unsolved questions in theanswers to exerises 59, 63, 101, 105, and 109. Are those problems still open?Please let me know if you know of a solution to any of these intriguing questions.And of ourse if no solution is known today but you do make progress on any ofthem in the future, I hope you'll let me know.I urgently need your help also with respet to some exerises that I madeup as I was preparing this material. I ertainly don't like to get redit for thingsthat have already been published by others, and most of these results are quitenatural \fruits" that were just waiting to be \pluked." Therefore please tellme if you know who I should have redited, with respet to the ideas found inexerises 9, 18, 19, 20, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 41, 42, 43, 44,45, 48, 51, 59, 62, 63, 64, 65, 66, 69, 79, 82(b{f), 85, 86, 87, 93, and/or 110.I shall happily pay a �nder's fee of $2.56 for eah error in this draft when it is�rst reported to me, whether that error be typographial, tehnial, or historial.The same reward holds for items that I forgot to put in the index. And valuablesuggestions for improvements to the text are worth 32/ eah. (Furthermore, ifyou �nd a better solution to an exerise, I'll atually reward you with immortalglory instead of mere money, by publishing your name in the eventual book:�)Cross referenes to yet-unwritten material sometimes appear as `00'; thisimpossible value is a plaeholder for the atual numbers to be supplied later.Happy reading!Stanford, California D. E. K.13 June 2002
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7.2.1.3 GENERATING ALL COMBINATIONS 1

7.2.1.3. Generating all ombinations. Combinatorial mathematis is oftendesribed as \the study of permutations, ombinations, et.," so we turn ourattention now to ombinations. A ombination of n things, taken t at a time,often alled simply a t-ombination of n things, is a way to selet a subset of size tfrom a given set of size n. We know from Eq. 1.2.6{(2) that there are exatly �nt�ways to do this; and we learned in Setion 3.4.2 how to hoose t-ombinationsat random.Seleting t of n objets is equivalent to hoosing the n � t elements notseleted. We will emphasize this symmetry by lettingn = s + t (1)throughout our disussion, and we will often refer to a t-ombination of n thingsas an \(s; t)-ombination." Thus, an (s; t)-ombination is a way to subdivides+ t objets into two olletions of sizes s and t.If I ask how many ombinations of 21 an be taken out of 25,I do in e�et ask how many ombinations of 4 may be taken.For there are just as many ways of taking 21 as there are of leaving 4.| AUGUSTUS DE MORGAN, An Essay on Probabilities (1838)There are two main ways to represent (s; t)-ombinations: We an list theelements t : : : 21 that have been seleted, or we an work with binary stringsan�1 : : : a1a0 for whih an�1 + � � �+ a1 + a0 = t: (2)The latter representation has s 0s and t 1s, orresponding to elements that areunseleted or seleted. The list representation t : : : 21 tends to work out bestif we let the elements be members of the set f0; 1; : : : ; n� 1g and if we list themin dereasing order: n > t > � � � > 2 > 1 � 0: (3)Binary notation onnets these two representations niely, beause the item listt : : : 21 orresponds to the sum2t + � � �+ 22 + 21 = n�1Xk=0 ak2k = (an�1 : : : a1a0)2: (4)
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2 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3Of ourse we ould also list the positions bs : : : b2b1 of the 0s in an�1 : : : a1a0,where n > bs > � � � > b2 > b1 � 0: (5)Combinations are important not only beause subsets are omnipresent inmathematis but also beause they are equivalent to many other on�gurations.For example, every (s; t)-ombination orresponds to a ombination of s + 1things taken t at a time with repetitions permitted, also alled amultiombination,namely a sequene of integers dt : : : d2d1 withs � dt � � � � � d2 � d1 � 0: (6)One reason is that dt : : : d2d1 solves (6) if and only if t : : : 21 solves (3), wheret = dt + t� 1; : : : ; 2 = d2 + 1; 1 = d1 (7)(see exerise 1.2.6{60). And there is another useful way to relate ombinationswith repetition to ordinary ombinations, suggested by Solomon Golomb [AMM75 (1968), 530{531℄, namely to de�neej = � j ; if j � s;ej�s; if j > s. (8)In this form the numbers et : : : e1 don't neessarily appear in desending or-der, but the multiset fe1; e2; : : : ; etg is equal to f1; 2; : : : ; tg if and only iffe1; e2; : : : ; etg is a set. (See Table 1 and exerise 1.)An (s; t)-ombination is also equivalent to a omposition of n+ 1 into t+ 1parts, namely an ordered sumn+ 1 = pt + � � �+ p1 + p0; where pt; : : : ; p1; p0 � 1. (9)The onnetion with (3) is nowpt = n� t; pt�1 = t � t�1; : : : ; p1 = 2 � 1; p0 = 1 + 1: (10)Equivalently, if qj = pj � 1, we haves = qt + � � �+ q1 + q0; where qt; : : : ; q1; q0 � 0, (11)a omposition of s into t+ 1 nonnegative parts, related to (6) by settingqt = s� dt; qt�1 = dt � dt�1; : : : ; q1 = d2 � d1; q0 = d1: (12)Furthermore it is easy to see that an (s; t)-ombination is equivalent to apath of length s + t from orner to orner of an s � t grid, beause suh apath ontains s vertial steps and t horizontal steps. Thus, ombinations anbe studied in at least eight di�erent guises. Table 1 illustrates all �63� = 20possibilities in the ase s = t = 3.These ousins of ombinations might seem rather bewildering at �rst glane,but most of them an be understood diretly from the binary representationan�1 : : : a1a0. Consider, for example, the \random" bit stringa23 : : : a1a0 = 011001001000011111101101; (13)
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7.2.1.3 GENERATING ALL COMBINATIONS 3Table 1THE (3; 3)-COMBINATIONS AND THEIR EQUIVALENTSa5a4a3a2a1a0 b3b2b1 321 d3d2d1 e3e2e1 p3p2p1p0 q3q2q1q0 path000111 543 210 000 210 4111 3000001011 542 310 100 310 3211 2100001101 541 320 110 320 3121 2010001110 540 321 111 321 3112 2001010011 532 410 200 010 2311 1200010101 531 420 210 020 2221 1110010110 530 421 211 121 2212 1101011001 521 430 220 030 2131 1020011010 520 431 221 131 2122 1011011100 510 432 222 232 2113 1002100011 432 510 300 110 1411 0300100101 431 520 310 220 1321 0210100110 430 521 311 221 1312 0201101001 421 530 320 330 1231 0120101010 420 531 321 331 1222 0111101100 410 532 322 332 1213 0102110001 321 540 330 000 1141 0030110010 320 541 331 111 1132 0021110100 310 542 332 222 1123 0012111000 210 543 333 333 1114 0003whih has s = 11 zeros and t = 13 ones, hene n = 24. The dual ombinationbs : : : b1 lists the positions of the zeros, namely23 20 19 17 16 14 13 12 11 4 1;beause the leftmost position is n � 1 and the rightmost is 0. The primalombination t : : : 1 lists the positions of the ones, namely22 21 18 15 10 9 8 7 6 5 3 2 0:The orresponding multiombination dt : : : d1 lists the number of 0s to the rightof eah 1: 10 10 8 6 2 2 2 2 2 2 1 1 0:The omposition pt : : : p0 lists the distanes between onseutive 1s, if we imagineadditional 1s at the left and the right:2 1 3 3 5 1 1 1 1 1 2 1 2 1:And the nonnegative omposition qt : : : q0 ounts how many 0s appear between\feneposts" represented by 1s:1 0 2 2 4 0 0 0 0 0 1 0 1 0;thus we have an�1 : : : a1a0 = 0qt10qt�11 : : : 10q110q0 : (14)The paths in Table 1 also have a simple interpretation (see exerise 2).
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4 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3Lexiographi generation. Table 1 shows ombinations an�1 : : : a1a0 andt : : : 1 in lexiographi order, whih is also the lexiographi order of dt : : : d1.Notie that the dual ombinations bs : : : b1 and the orresponding ompositionspt : : : p0, qt : : : q0 then appear in reverse lexiographi order.Lexiographi order usually suggests the most onvenient way to generateombinatorial on�gurations. Indeed, Algorithm 7.2.1.2L already solves theproblem for ombinations in the form an�1 : : : a1a0, sine (s; t)-ombinationsin bitstring form are the same as permutations of the multiset fs � 0; t � 1g. Thatgeneral-purpose algorithm an be streamlined in obvious ways when it is appliedto this speial ase. (See also exerise 7.1{00, whih presents a remarkablesequene of seven bitwise operations that will onvert any given binary number(an�1 : : : a1a0)2 to the lexiographially next t-ombination, assuming that ndoes not exeed the omputer's word length.)Let's fous, however, on generating ombinations in the other prinipal formt : : : 21, whih is more diretly relevant to the ways in whih ombinations areoften needed, and whih is more ompat than the bit strings when t is smallompared to n. In the �rst plae we should keep in mind that a simple sequeneof nested loops will do the job niely when t is very small. For example, whent = 3 the following instrutions suÆe:For 3 = 2, 3, : : : , n� 1 (in this order) do the following:For 2 = 1, 2, : : : , 3 � 1 (in this order) do the following:For 1 = 0, 1, : : : , 2 � 1 (in this order) do the following:Visit the ombination 321. (15)
(See the analogous situation in 7.2.1.1{(3).)On the other hand when t is variable or not so small, we an generateombinations lexiographially by following the general reipe disussed afterAlgorithm 7.2.1.2L, namely to �nd the rightmost element j that an be inreasedand then to set the subsequent elements j�1 : : : 1 to their smallest possiblevalues:Algorithm L (Lexiographi ombinations). This algorithm generates all t-ombinations t : : : 21 of the n numbers f0; 1; : : : ; n � 1g, given n � t � 0.Additional variables t+1 and t+2 are used as sentinels.L1. [Initialize.℄ Set j  j � 1 for 1 � j � t; also set t+1  n and t+2  0.L2. [Visit.℄ Visit the ombination t : : : 21.L3. [Find j.℄ Set j  1. Then, while j+1 = j+1, set j  j�1 and j  j+1;repeat until j + 1 6= j+1.L4. [Done?℄ Terminate the algorithm if j > t.L5. [Inrease j .℄ Set j  j + 1 and return to L2.The running time of this algorithm is not diÆult to analyze. Step L3 setsj  j � 1 just after visiting a ombination for whih j+1 = 1 + j, and thenumber of suh ombinations is the number of solutions to the inequalitiesn > t > � � � > j+1 � j; (16)
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7.2.1.3 GENERATING ALL COMBINATIONS 5but this formula is equivalent to a (t � j)-ombination of the n � j objetsfn�1; : : : ; jg, so the assignment j  j�1 ours exatly �n�jt�j� times. Summingfor 1 � j � t tells us that the loop in step L3 is performed�n�1t�1 �+�n�2t�2 �+� � �+�n�t0 � = �n�1s �+�n�2s �+� � �+�ss� = � ns+1� (17)times altogether, or an average of� ns+ 1�.�nt � = n!(s+ 1)! (t� 1)! . n!s! t! = ts+ 1 (18)times per visit. This ratio is less than 1 when t � s, so Algorithm L is quiteeÆient in suh ases.But the quantity t=(s + 1) an be embarrassingly large when t is near nand s is small. Indeed, Algorithm L oasionally sets j  j � 1 needlessly, attimes when j already equals j � 1. Further srutiny reveals that we need notalways searh for the index j that is needed in steps L4 and L5, sine the orretvalue of j an often be predited from the ations just taken. For example,after we have inreased 4 and reset 321 to their starting values 210, the nextombination will inevitably inrease 3. These observations lead to a tuned-upversion of the algorithm:Algorithm T (Lexiographi ombinations). This algorithm is like Algorithm L,but faster. It also assumes, for onveniene, that t < n.T1. [Initialize.℄ Set j  j � 1 for 1 � j � t; then set t+1  n, t+2  0, andj  t.T2. [Visit.℄ (At this point j is the smallest index suh that j+1 > j.) Visit theombination t : : : 21. Then, if j > 0, set x j and go to step T6.T3. [Easy ase?℄ If 1 +1 < 2, set 1  1 +1 and return to T2. Otherwise setj  2.T4. [Find j.℄ Set j�1  j � 2 and x  j + 1. If x = j+1, set j  j + 1 andrepeat this step until x 6= j+1.T5. [Done?℄ Terminate the algorithm if j > t.T6. [Inrease j .℄ Set j  x, j  j � 1, and return to T2.Now j = 0 in step T2 if and only if 1 > 0, so the assignments in step T4 arenever redundant. Exerise 6 arries out a omplete analysis of Algorithm T.Notie that the parameter n appears only in the initialization steps L1and T1, not in the prinipal parts of Algorithms L and T. Thus we an thinkof the proess as generating the �rst �nt� ombinations of an in�nite list, whihdepends only on t. This simpli�ation arises beause the list of t-ombinationsfor n+1 things begins with the list for n things, under our onventions; we havebeen using lexiographi order on the dereasing sequenes t : : : 1 for this veryreason, instead of working with the inreasing sequenes 1 : : : t.Derrik Lehmer notied another pleasant property of Algorithms L and T[Applied Combinatorial Mathematis, edited by E. F. Bekenbah (1964), 27{30℄:
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6 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3Theorem L. The ombination t : : : 21 is visited after exatly�tt �+ � � �+ �22 �+ �11 � (19)other ombinations have been visited.Proof. There are �kk � ombinations 0t : : : 0201 with 0j = j for t � j > k and0k < k, namely t : : : k+1 followed by the k-ombinations of f0; : : : ; k � 1g.When t = 3, for example, the numbers�23�+�12�+�01�; �33�+�12�+�01�; �33�+�22�+�01�; : : : ; �53�+�42�+�31�that orrespond to the ombinations 321 in Table 1 simply run through thesequene 0, 1, 2, : : : , 19. Theorem L gives us a nie way to understand theombinatorial number system of degree t, whih represents every nonnegativeinteger N uniquely in the formN = �ntt �+ � � �+ �n22 �+ �n11 �; nt > � � � > n2 > n1 � 0: (20)[See Ernesto Pasal, Giornale di Matematihe 25 (1887), 45{49.℄Binomial trees. The family of trees Tn de�ned by
T0 = ; Tn = T0 T1 Tn�1: : :0 1 n� 1 for n > 0; (21)

arises in several important ontexts and sheds further light on ombinationgeneration. For example, T4 is0 0 0 00 0 0 0
1 1 1 1

2 23
; (22)

and T5, rendered more artistially, appears as the frontispiee to Volume 1 ofthis series of books.Notie that Tn is like Tn�1, exept for an additional opy of Tn�1; thereforeTn has 2n nodes altogether. Furthermore, the number of nodes on level t is thebinomial oeÆient �nt�; this fat aounts for the name \binomial tree." Indeed,the sequene of labels enountered on the path from the root to eah node onlevel t de�nes a ombination t : : : 1, and all ombinations our in lexiographiorder from left to right. Thus, Algorithms L and T an be regarded as proeduresto traverse the nodes on level t of the binomial tree Tn.
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7.2.1.3 GENERATING ALL COMBINATIONS 7The in�nite binomial tree T1 is obtained by letting n!1 in (21). The rootof this tree has in�nitely many branhes, but every node exept for the overallroot at level 0 is the root of a �nite binomial subtree. All possible t-ombinationsappear in lexiographi order on level t of T1.Let's get more familiar with binomial trees by onsidering all possible waysto pak a ruksak. More preisely, suppose we have n items that take uprespetively wn�1, : : : , w1, w0 units of apaity, wherewn�1 � � � � � w1 � w0; (23)we want to generate all binary vetors an�1 : : : a1a0 suh thata � w = an�1wn�1 + � � �+ a1w1 + a0w0 � N; (24)where N is the total apaity of a ruksak. Equivalently, we want to �nd allsubsets C of f0; 1; : : : ; n� 1g suh that w(C) =P2C w � N ; suh subsets willbe alled feasible. We will write a feasible subset as 1 : : : t, where 1 > � � � >t � 0, numbering the subsripts di�erently from the onvention of (3) abovebeause t is variable in this problem.Every feasible subset orresponds to a node of Tn, and our goal is to visiteah feasible node. Clearly the parent of every feasible node is feasible, and so isthe left sibling, if any; therefore a simple tree exploration proedure works well:Algorithm F (Filling a ruksak). This algorithm generates all feasible ways1 : : : t to �ll a ruksak, given wn�1, : : : , w1, w0, and N . We let Æj = wj�wj�1for 1 � j < n.F1. [Initialize.℄ Set t 0, 0  n, and r  N .F2. [Visit.℄ Visit the ombination 1 : : : t, whih uses N � r units of apaity.F3. [Try to add w0.℄ If t > 0 and r � w0, set t  t + 1, t  0, r  r � w0,and return to F2.F4. [Try to inrease t.℄ Terminate if t = 0. Otherwise, if t�1 > t + 1 andr � Æt+1, set t  t + 1, r  r � Æt , and return to F2.F5. [Remove t.℄ Set r  r + wt , t t� 1, and return to F4.Notie that the algorithm impliitly visits nodes of Tn in preorder, skipping overunfeasible subtrees. An element  > 0 is plaed in the ruksak, if it �ts, justafter the proedure has explored all possibilities using element � 1 in its plae.The running time is proportional to the number of feasible ombinations visited(see exerise 20).Inidentally, the lassial \knapsak problem" of operations researh is dif-ferent: It asks for a feasible subset C suh that v(C) =P2C v() is maximum,where eah item  has been assigned a value v(). Algorithm F is not a partiu-larly good way to solve that problem, beause it often onsiders ases that ouldbe ruled out. For example, if C and C 0 are subsets of f1; : : : ; n�1g with w(C) �w(C 0) � N �w0 and v(C) � v(C 0), Algorithm F will examine both C [f0g andC 0[f0g, but the latter subset will never improve the maximum. We will onsidermethods for the lassial knapsak problem later; Algorithm F is intended onlyfor situations when all of the feasible possibilities are potentially relevant.
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8 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3Gray odes for ombinations. Instead of merely generating all ombinations,we often prefer to visit them in suh a way that eah one is obtained by makingonly a small hange to its predeessor.For example, we an ask for what Nijenhuis andWilf have alled a \revolving door algorithm": Imaginetwo rooms that ontain respetively s and t people, witha revolving door between them. Whenever a persongoes into the opposite room, somebody else omes out. Can we devise a sequeneof moves so that eah (s; t)-ombination ours exatly one?The answer is yes, and in fat a huge number of suh patterns exist. Forexample, it turns out that if we examine all n-bit strings an�1 : : : a1a0 in thewell-known order of Gray binary ode (Setion 7.2.1.1), but selet only thosethat have exatly s 0s and t 1s, the resulting strings form a revolving-door ode.Here's the proof: Gray binary ode is de�ned by the reurrene �n = 0�n�1,1�Rn�1 of 7.2.1.1{(5), so its (s; t) subsequene satis�es the reurrene�st = 0�(s�1)t; 1�Rs(t�1) (25)when st > 0. We also have �s0 = 0s and �0t = 1t. Therefore it is lear byindution that �st begins with 0s1t and ends with 10s1t�1 when st > 0. Thetransition at the omma in (25) is from the last element of 0�(s�1)t to thelast element of 1�s(t�1), namely from 010s�11t�1 = 010s�111t�2 to 110s1t�2 =110s�101t�2 when t � 2, and this satis�es the revolving-door onstraint. Thease t = 1 also heks out. For example, �33 is given by the olumns of000111 011010 110001 101010001101 011100 110010 101100001110 010101 110100 100101001011 010110 111000 100110011001 010011 101001 100011 (26)
and �23 an be found in the �rst two olumns of this array. One more turnof the door takes the last element into the �rst. [These properties of �st weredisovered by D. T. Tang and C. N. Liu, IEEE Trans. C-22 (1973), 176{180;a loopless implementation was presented by J. R. Bitner, G. Ehrlih, and E. M.Reingold, CACM 19 (1976), 517{521.℄When we onvert the bit strings a5a4a3a2a1a0 in (26) to the orrespondingindex-list forms 321, a striking pattern beomes evident:210 431 540 531320 432 541 532321 420 542 520310 421 543 521430 410 530 510 (27)
The �rst omponents 3 our in inreasing order; but for eah �xed value of 3,the values of 2 our in dereasing order. And for �xed 32, the values of 1are again inreasing. The same is true in general: All ombinations t : : : 21
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7.2.1.3 GENERATING ALL COMBINATIONS 9appear in lexiographi order of(t; �t�1; t�2; : : : ; (�1)t�11) (28)in the revolving-door Gray ode �st. This property follows by indution, beause(25) beomes �st = �(s�1)t; (s+t�1)�Rs(t�1) (29)for st > 0 when we use index-list notation instead of bitstring notation. Conse-quently the sequene an be generated eÆiently by the following algorithm dueto W. H. Payne [see ACM Trans. Math. Software 5 (1979), 163{172℄:Algorithm R (Revolving-door ombinations). This algorithm generates all t-ombinations t : : : 21 of f0; 1; : : : ; n � 1g in lexiographi order of the alter-nating sequene (28), assuming that n > t > 1. Step R3 has two variants,depending on whether t is even or odd.R1. [Initialize.℄ Set j  j � 1 for t � j � 1, and t+1  n.R2. [Visit.℄ Visit the ombination t : : : 21.R3. [Easy ase?℄ If t is odd: If 1 + 1 < 2, inrease 1 by 1 and return to R2,otherwise set j  2 and go to R4. If t is even: If 1 > 0, derease 1 by 1and return to R2, otherwise set j  2 and go to R5.R4. [Try to derease j .℄ (At this point j = j�1 + 1.) If j � j, set j  j�1,j�1  j � 2, and return to R2. Otherwise inrease j by 1.R5. [Try to inrease j .℄ (At this point j�1 = j � 2.) If j + 1 < j+1, setj�1  j , j  j + 1, and return to R2. Otherwise inrease j by 1, andgo to R4 if j � t.Exerises 21{25 explore further properties of this interesting sequene. One ofthem is a nie ompanion to Theorem L: The ombination tt�1 : : : 21 is visitedby Algorithm R after exatlyN = �t+1t ���t�1+1t�1 �+ � � �+(�1)t�2+12 �� (�1)t�1+11 �� [t odd℄ (30)other ombinations have been visited. We may all this the representation of Nin the \alternating ombinatorial number system" of degree t; one onsequene,for example, is that every positive integer has a unique representation of theform N = �a3�� �b2�+ �1� with a > b >  > 0. Algorithm R tells us how to add 1to N in this system.Although the strings of (26) and (27) are not in lexiographi order, theyare examples of a more general onept alled genlex order, a name oined byTimothy Walsh. A sequene of strings �1, : : : , �N is said to be in genlex orderwhen all strings with a ommon pre�x our onseutively. For example, all3-ombinations that begin with 53 appear together in (27).Genlex order means that the strings an be arranged in a trie struture, asin Fig. 31 of Setion 6.3, but with the hildren of eah node ordered arbitrarily.When a trie is traversed in any order suh that eah node is visited just before orjust after its desendants, all nodes with a ommon pre�x|that is, all nodes of
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10 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3a subtrie|appear onseutively. This priniple makes genlex order onvenient,beause it orresponds to reursive generation shemes. Many of the algorithmswe have seen for generating n-tuples have therefore produed their results in someversion of genlex order; similarly, the method of \plain hanges" (Algorithm7.2.1.2P) visits permutations in a genlex order of the orresponding inversiontables.The revolving-door method of Algorithm R is a genlex routine that hangesonly one element of the ombination at eah step. But it isn't totally satisfatory,beause it frequently must hange two of the indies j simultaneously, in orderto preserve the ondition t > � � � > 2 > 1. For example, Algorithm R hanges210 into 320, and (27) inludes nine suh \rossing" moves.The soure of this defet an be traed to our proof that (25) satis�es therevolving-door property: We observed that the string 010s�111t�2 is followedby 110s�101t�2 when t � 2. Hene the reursive onstrution �st involvestransitions of the form 110a0 $ 010a1, when a substring like 11000 is hangedto 01001 or vie versa; the two 1s ross eah other.A Gray path for ombinations is said to be homogeneous if it hanges onlyone of the indies j at eah step. A homogeneous sheme is haraterizedin bitstring form by having only transitions of the forms 10a $ 0a1 withinstrings, for a � 1, when we pass from one stringto the next. With a homogeneous sheme we an,for example, play all t-note hords on an n-notekeyboard by moving only one �nger at a time.A slight modi�ation of (25) yields a genlexsheme for (s; t)-ombinations that is pleasantlyhomogeneous. The basi idea is to onstrut asequene that begins with 0s1t and ends with 1t0s, and the following reursionsuggests itself almost immediately: Let Ks0 = 0s, K0t = 1t, Ks(�1) = ;, andKst = 0K(s�1)t; 10KR(s�1)(t�1); 11Ks(t�2) for st > 0: (31)At the ommas of this sequene we have 01t0s�1 followed by 101t�10s�1, and10s1t�1 followed by 110s1t�2; both of these transitions are homogeneous, al-though the seond one requires the 1 to jump aross s 0s. The ombinations K33for s = t = 3 are 000111 010101 101100 100011001011 010011 101001 110001001101 011001 101010 110010001110 011010 100110 110100010110 011100 100101 111000 (32)
in bitstring form, and the orresponding \�nger patterns" are210 420 532 510310 410 530 540320 430 531 541321 431 521 542421 432 520 543. (33)
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7.2.1.3 GENERATING ALL COMBINATIONS 11When a homogeneous sheme for ordinary ombinations t : : : 1 is onvertedto the orresponding sheme (6) for ombinations with repetitions dt : : : d1, itretains the property that only one of the indies dj hanges at eah step. Andwhen it is onverted to the orresponding shemes (9) or (11) for ompositionspt : : : p0 or qt : : : q0, only two (adjaent) parts hange when j hanges.Near-perfet shemes. But we an do even better! All (s; t)-ombinationsan be generated by a sequene of strongly homogeneous transitions that areeither 01$ 10 or 001$ 100. In other words, we an insist that eah step ausesa single index j to hange by at most 2. Let's all suh generation shemesnear-perfet.Imposing suh strong onditions atually makes it fairly easy to disovernear-perfet shemes, beause omparatively few hoies are available. Indeed,if we restrit ourselves to genlex methods that are near-perfet on n-bit strings,T. A. Jenkyns and D. MCarthy observed that all suh methods an be easilyharaterized [Ars Combinatoria 40 (1995), 153{159℄:Theorem N. If st > 0, there are exatly 2s near-perfet ways to list all (s; t)-ombinations in a genlex order. In fat, when 1 � a � s, there is exatly onesuh listing, Nsta, that begins with 1t0s and ends with 0a1t0s�a; the other spossibilities are the reverse lists, NRsta.Proof. The result ertainly holds when s = t = 1; otherwise we use indution ons+t. The listing Nsta, if it exists, must have the form 1Xs(t�1), 0Y(s�1)t for somenear-perfet genlex listings Xs(t�1) and Y(s�1)t. If t = 1, Xs(t�1) is the singlestring 0s; hene Y(s�1)t must be N(s�1)1(a�1) if a > 1, and it must be NR(s�1)11if a = 1. On the other hand if t > 1, the near-perfet ondition implies that thelast string of Xs(t�1) annot begin with 1; hene Xs(t�1) = Ns(t�1)b for some b.If a > 1, Y(s�1)t must be N(s�1)t(a�1), hene b must be 1; similarly, b must be 1if s = 1. Otherwise we have a = 1 < s, and this fores Y(s�1)t = NR(s�1)t forsome . The transition from 10b1t�10s�b to 0+11t0s�1� is near-perfet only if = 1 and b = 2.The proof of Theorem N yields the following reursive formulas when st > 0:
Nsta = 8><>: 1Ns(t�1)1; 0N(s�1)t(a�1); if 1 < a � s;1Ns(t�1)2; 0NR(s�1)t1; if 1 = a < s;1N1(t�1)1; 01t; if 1 = a = s. (34)

Also, of ourse, Ns0a = 0s.Let us set Ast = Nst1 and Bst = Nst2. These near-perfet listings, disoveredby Phillip J. Chase in 1976, have the net e�et of shifting a leftmost blok of 1sto the right by one or two positions, respetively, and they satisfy the followingmutual reursions:Ast = 1Bs(t�1); 0AR(s�1)t; Bst = 1As(t�1); 0A(s�1)t: (35)\To take one step forward, take two steps forward, then one step bakward; totake two steps forward, take one step forward, then another." These equations
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12 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3Table 2CHASE'S SEQUENCES FOR (3; 3)-COMBINATIONSA33 = bCR33543 531 321 420541 530 320 421540 510 310 431542 520 210 430532 521 410 432
B33 = C33543 520 432 410542 510 430 210540 530 431 310541 531 421 320521 532 420 321hold for all integer values of s and t, if we de�ne Ast and Bst to be ; when s ort is negative, exept that A00 = B00 = � (the empty string). Thus Ast atuallytakes min(s; 1) forward steps, and Bst atually takes min(s; 2). For example,Table 2 shows the relevant listings for s = t = 3, using an equivalent index-listform 321 instead of the bit strings a5a4a3a2a1a0.Chase notied that a omputer implementation of these sequenes beomessimpler if we de�neCst = �Ast; if s+ t is odd;Bst; if s+ t is even; bCst = �ARst; if s+ t is even;BRst; if s+ t is odd. (36)[See Congressus Numerantium 69 (1989), 215{242.℄ Then we haveCst = ( 1Cs(t�1); 0 bC(s�1)t; if s+ t is odd;1Cs(t�1); 0C(s�1)t; if s+ t is even; (37)

bCst = ( 0C(s�1)t; 1 bCs(t�1); if s+ t is even;0 bC(s�1)t; 1 bCs(t�1); if s+ t is odd. (38)When bit aj is ready to hange, we an tell where we are in the reursion bytesting whether j is even or odd.Indeed, the sequene Cst an be generated by a surprisingly simple algo-rithm, based on general ideas that apply to any genlex sheme. Let us say thatbit aj is ative in a genlex algorithm if it is supposed to hange before anything toits left is altered. (The node for an ative bit in the orresponding trie is not therightmost hild of its parent.) Suppose we have an auxiliary table wn : : : w1w0,where wj = 1 if and only if either aj is ative or j < r, where r is the leastsubsript suh that ar 6= a0; we also let wn = 1. Then the following method will�nd the suessor of an�1 : : : a1a0:Set j  r. If wj = 0, set wj  1, j  j + 1, and repeat untilwj = 1. Terminate if j = n; otherwise set wj  0. Change ajto 1� aj , and make any other hanges to aj�1 : : : a0 and r thatapply to the partiular genlex sheme being used. (39)
The beauty of this approah omes from the fat that the loop is guaranteed tobe eÆient: We an prove that the operation j  j + 1 will be performed lessthan one per generation step, on the average (see exerise 36).
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7.2.1.3 GENERATING ALL COMBINATIONS 13By analyzing the transitions that our when bits hange in (37) and (38),we an readily esh out the remaining details:Algorithm C (Chase's sequene). This algorithm visits all (s; t)-ombinationsan�1 : : : a1a0, where n = s+ t, in the near-perfet order of Chase's sequene Cst.C1. [Initialize.℄ Set aj  0 for 0 � j < s, aj  1 for s � j < n, and wj  1for 0 � j � n. If s > 0, set r  s; otherwise set r  t.C2. [Visit.℄ Visit the ombination an�1 : : : a1a0.C3. [Find j and branh.℄ Set j  r. If wj = 0, set wj  1, j  j + 1, andrepeat until wj = 1. Terminate if j = n; otherwise set wj  0 and make afour-way branh: Go to C4 if j is odd and aj 6= 0, to C5 if j is even andaj 6= 0, to C6 if j is even and aj = 0, to C7 if j is odd and aj = 0.C4. [Move right one.℄ Set aj�1  1, aj  0. If r = j > 1, set r  j � 1;otherwise if r = j � 1 set r  j. Return to C2.C5. [Move right two.℄ If aj�2 6= 0, go to C4. Otherwise set aj�2  1, aj  0.If r = j, set r  max(j� 2; 1); otherwise if r = j� 2, set r  j� 1. Returnto C2.C6. [Move left one.℄ Set aj  1, aj�1  0. If r = j > 1, set r  j�1; otherwiseif r = j � 1 set r  j. Return to C2.C7. [Move left two.℄ If aj�1 6= 0, go to C6. Otherwise set aj  1, aj�2  0. Ifr = j� 2, set r  j; otherwise if r = j� 1, set r  j� 2. Return to C2.*Analysis of Chase's sequene. The magial properties of Algorithm C ryout for further exploration, and a loser look turns out to be quite instrutive.Given a bit string an�1 : : : a1a0, let us de�ne an = 1, un = nmod 2, anduj = (1� uj+1)aj+1; vj = (uj + j) mod 2; wj = (vj + aj) mod 2; (40)for n > j � 0. For example, we might have n = 26 anda25 : : : a1a0 = 11001001000011111101101010;u25 : : : u1u0 = 10100100100001010100100101;v25 : : : v1v0 = 00001110001011111110001111;w25 : : : w1w0 = 11000111001000000011100101: (41)
With these de�nitions we an prove by indution that vj = 0 if and only if bitaj is being \ontrolled" by C rather than by bC in the reursions (37){(38) thatgenerate an�1 : : : a1a0, exept when aj is part of the �nal run of 0s or 1s at theright end. Therefore wj agrees with the value omputed by Algorithm C at themoment when an�1 : : : a1a0 is visited, for r � j < n. These formulas an be usedto determine exatly where a given ombination appears in Chase's sequene (seeexerise 39).If we want to work with the index-list form t : : : 21 instead of the bitstrings an�1 : : : a1a0, it is onvenient to hange the notation slightly, writing

13



14 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3Ct(n) for Cst and bCt(n) for bCst when s + t = n. Then C0(n) = bC0(n) = �, andthe reursions for t � 0 take the formCt+1(n+ 1) = (nCt(n); bCt+1(n); if n is even;nCt(n); Ct+1(n); if n is odd; (42)
bCt+1(n+ 1) = (Ct+1(n); n bCt(n); if n is odd;bCt+1(n); n bCt(n); if n is even. (43)These new equations an be expanded to tell us, for example, thatCt+1(9) = 8Ct(8); 6Ct(6); 4Ct(4); : : : ; 3 bCt(3); 5 bCt(5); 7 bCt(7);Ct+1(8) = 7Ct(7); 6Ct(6); 4Ct(4); : : : ; 3 bCt(3); 5 bCt(5);bCt+1(9) = 6Ct(6); 4Ct(4); : : : ; 3 bCt(3); 5 bCt(5); 7 bCt(7); 8 bCt(8);bCt+1(8) = 6Ct(6); 4Ct(4); : : : ; 3 bCt(3); 5 bCt(5); 7 bCt(7); (44)

notie that the same pattern predominates in all four sequenes. The meaning of\: : :" in the middle depends on the value of t: We simply omit all terms nCt(n)and n bCt(n) where n < t.Exept for edge e�ets at the very beginning or end, all of the expansionsin (44) are based on the in�nite progression: : : ; 10; 8; 6; 4; 2; 0; 1; 3; 5; 7; 9; : : : ; (45)whih is a natural way to arrange the nonnegative integers into a doubly in�nitesequene. If we omit all terms of (45) that are < t, given any integer t � 0,the remaining terms retain the property that adjaent elements di�er by either1 or 2. Rihard Stanley has suggested the name endo-order for this sequene,beause we an remember it by thinking \even numbers dereasing, odd : : : ".(Notie that if we retain only the terms less than N and omplement with respetto N , endo-order beomes organ-pipe order; see exerise 6.1{18.)We ould program the reursions of (42) and (43) diretly, but it is interest-ing to unwind them using (44), thus obtaining an iterative algorithm analogousto Algorithm C. The result needs only O(t) memory loations, and it is espeiallyeÆient when t is relatively small ompared to n. Exerise 45 ontains the details.*Near-perfet multiset permutations. Chase's sequenes lead in a naturalway to an algorithm that will generate permutations of any desired multisetfs0 � 0; s1 � 1; : : : ; sd � dg in a near-perfet manner, meaning thati) every transition is either aj+1aj $ ajaj+1 or aj+1ajaj�1 $ aj�1ajaj+1;ii) transitions of the seond kind have aj = min(aj�1; aj+1).Algorithm C tells us how to do this when d = 1, and we an extend it to largervalues of d by the following reursive onstrution [CACM 13 (1970), 368{369,376℄: Suppose �0; �1; : : : ; �N�1
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7.2.1.3 GENERATING ALL COMBINATIONS 15is any near-perfet listing of the permutations of fs1 � 1; : : : ; sd � dg. Then Algo-rithm C, with s = s0 and t = s1 + � � �+ sd, tells us how to generate a listing�j = �j0s; : : : ; 0a�j0s�a (46)in whih all transitions are 0x$ x0 or 00x$ x00; the �nal entry has a = 1 or 2leading zeros, depending on s and t. Therefore all transitions of the sequene�0; �R1 ; �2; : : : ; (�N�1 or �RN�1) (47)are near-perfet; and this list learly ontains all the permutations.For example, the permutations of f0; 0; 0; 1; 1; 2g generated in this way are211000, 210100, 210001, 210010, 200110, 200101, 200011, 201001, 201010, 201100,021100, 021001, 021010, 020110, 020101, 020011, 000211, 002011, 002101, 002110,001120, 001102, 001012, 000112, 010012, 010102, 010120, 011020, 011002, 011200,101200, 101020, 101002, 100012, 100102, 100120, 110020, 110002, 110200, 112000,121000, 120100, 120001, 120010, 100210, 100201, 100021, 102001, 102010, 102100,012100, 012001, 012010, 010210, 010201, 010021, 000121, 001021, 001201, 001210.*Perfet shemes. Why should we settle for a near-perfet generator like Cst,instead of insisting that all transitions have the simplest possible form 01$ 10?One reason is that perfet shemes don't always exist. For example, weobserved in 7.2.1.2{(2) that there is no way to generate all six permutations off1; 1; 2; 2g with adjaent interhanges; thus there is no perfet sheme for (2; 2)-ombinations. In fat, our hanes of ahieving perfetion are only about 1 in 4:Theorem P. The generation of all (s; t)-ombinations as+t�1 : : : a1a0 by adja-ent interhanges 01$ 10 is possible if and only if s � 1 or t � 1 or st is odd.Proof. Consider all permutations of the multiset fs � 0; t � 1g. We learned inexerise 5.1.2{16 that the number mk of suh permutations having k inversionsis the oeÆient of zk in the z-nomial oeÆient�s+ tt �z = s+tYk=s+1(1 + z + � � �+ zk�1). tYk=1(1 + z + � � �+ zk�1): (48)Every adjaent interhange hanges the number of inversions by �1, so a perfetgeneration sheme is possible only if approximately half of all the permutationshave an odd number of inversions. More preisely, the value of �s+tt ��1 =m0 �m1 +m2 � � � � must be 0 or �1. But exerise 49 shows that�s+ tt ��1 = �b(s+ t)=2bt=2 �[st is even℄; (49)and this quantity exeeds 1 unless s � 1 or t � 1 or st is odd.Conversely, perfet shemes are easy with s � 1 or t � 1, and they turnout to be possible also whenever st is odd. The �rst nontrivial ase oursfor s = t = 3, when there are four essentially di�erent solutions; the mostsymmetrial of these is210���310���410���510���520���521���531���532���432���431���421���321���320���420���430���530���540���541���542���543 (50)
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16 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3(see exerise 51). Several authors have onstruted Hamiltonian paths in therelevant graph for arbitrary odd numbers s and t; for example, the methodof Eades, Hikey, and Read [JACM 31 (1984), 19{29℄ makes an interestingexerise in programming with reursive oroutines. Unfortunately, however, noneof the known onstrutions are suÆiently simple to desribe in a short spae,or to implement with reasonable eÆieny. Perfet ombination generators havetherefore not yet proved to be of pratial importane.In summary, then, we have seen that the study of (s; t)-ombinations leadsto many fasinating patterns, some of whih are of great pratial importaneand some of whih are merely elegant and/or beautiful. Figure 26 illustrates theprinipal options that are available in the ase s = t = 5, when �105 � = 252 ombi-nations arise. Lexiographi order (Algorithm L), the revolving-door Gray ode(Algorithm R), the homogeneous sheme K55 of (31), and Chase's near-perfetsheme (Algorithm C) are shown in parts (a), (b), (), and (d) of the illustration.Part (e) shows the near-perfet sheme that is as lose to perfetion as possiblewhile still being in genlex order of the  array (see exerise 34), while part (f) isthe perfet sheme of Eades, Hikey, and Read. Finally, Figs. 26(g) and 26(h)are listings that proeed by rotating ajaj�1 : : : a0  aj�1 : : : a0aj or by swappingaj $ a0, akin to Algorithms 7.2.1.2C and 7.2.1.2E (see exerises 55 and 56).*Combinations of a multiset. If multisets an have permutations, they anhave ombinations too. For example, onsider the multiset fb; b; b; b; g; g; g; r; r; r;w; wg, representing a sak that ontains four blue balls and three that are green,three red, two white. There are 37 ways to hoose �ve balls from this sak; inlexiographi order (but desending in eah ombination) they aregbbbb; ggbbb; gggbb; rbbbb; rgbbb; rggbb; rgggb; rrbbb; rrgbb; rrggb;rrggg; rrrbb; rrrgb; rrrgg; wbbbb; wgbbb; wggbb; wgggb; wrbbb; wrgbb;wrggb; wrggg; wrrbb; wrrgb; wrrgg; wrrrb; wrrrg; wwbbb; wwgbb; wwggb;wwggg; wwrbb; wwrgb; wwrgg; wwrrb; wwrrg; wwrrr: (51)This fat might seem frivolous and/or esoteri, yet we will see in Theorem Wbelow that the lexiographi generation of multiset ombinations yields optimalsolutions to signi�ant ombinatorial problems.James Bernoulli observed in his Ars Conjetandi (1713), 119{123, that wean enumerate suh ombinations by looking at the oeÆient of z5 in theprodut (1+z+z2)(1+z+z2+z3)2(1+z+z2+z3+z4). Indeed, his observationis easy to understand, beause we get all possible seletions from the sak if wemultiply out the polynomials(1 + w + ww)(1 + r + rr + rrr)(1 + g + gg + ggg)(1 + b+ bb+ bbb+ bbbb):Multiset ombinations are also equivalent to bounded ompositions, namelyto ompositions in whih the individual parts are bounded. For example, the 37multiombinations listed in (51) orrespond to 37 solutions of5 = r3 + r2 + r1 + r0; 0 � r3 � 2; 0 � r2; r1 � 3; 0 � r0 � 4;namely 5 = 0+0+1+4 = 0+0+2+3 = 0+0+3+2 = 0+1+0+4 = � � � = 2+3+0+0.

16



7.2.1.3 GENERATING ALL COMBINATIONS 17

Fig. 26. Examplesof (5; 5)-ombinations:a) lexiographi;b) revolving-door;) homogeneous;d) near-perfet;e) nearer-perfet;f) perfet;g) suÆx-rotated;h) right-swapped. (a) (b) () (d) (e) (f) (g) (h)
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18 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3Bounded ompositions, in turn, are speial ases of ontingeny tables, whihare of great importane in statistis. And all of these ombinatorial on�gura-tions an be generated with Gray-like odes as well as in lexiographi order.Exerises 60{63 explore some of the basi ideas involved.*Shadows. Sets of ombinations appear frequently in mathematis. For example,a set of 2-ombinations (namely a set of pairs) is essentially a graph, and a set oft-ombinations for general t is alled a uniform hypergraph. If the verties of aonvex polyhedron are perturbed slightly, so that no three are ollinear, no fourlie in a plane, and in general no t + 1 lie in a (t � 1)-dimensional hyperplane,the resulting (t� 1)-dimensional faes are \simplexes" whose verties have greatsigni�ane in omputer appliations. Researhers have learned that suh setsof ombinations have important properties related to lexiographi generation.If � is any t-ombination t : : : 21, its shadow �� is the set of all its(t � 1)-element subsets t�1 : : : 21, : : : , t : : : 31, t : : : 32. For example,�5310 = f310; 510; 530; 531g. We an also represent a t-ombination as a bitstring an�1 : : : a1a0, in whih ase �� is the set of all strings obtained by hang-ing a 1 to a 0: �101011 = f001011; 100011; 101001; 101010g. If A is any set oft-ombinations, we de�ne its shadow�A = Sf �� j � 2 A g (52)to be the set of all (t � 1)-ombinations in the shadows of its members. Forexample, ��5310 = f10; 30; 31; 50; 51; 53g.These de�nitions apply also to ombinations with repetitions, namely tomultiombinations: �5330 = f330; 530; 533g and ��5330 = f30; 33; 50; 53g. Ingeneral, when A is a set of t-element multisets, �A is a set of (t � 1)-elementmultisets. Notie, however, that �A never has repeated elements itself.The upper shadow �� with respet to a universe U is de�ned similarly, butit goes from t-ombinations to (t+ 1)-ombinations:�� = f� � U j � 2 �� g; for � 2 U ; (53)�A = Sf �� j � 2 A g; for A � U: (54)If, for example, U = f0; 1; 2; 3; 4; 5; 6g, we have �5310 = f53210; 54310; 65310g;on the other hand, if U = f1�0;1�1; : : : ;1�6g, we have �5310 = f53100; 53110;53210; 53310; 54310; 55310; 65310g.The following fundamental theorems, whih have many appliations in var-ious branhes of mathematis and omputer siene, tell us how small a set'sshadows an be:Theorem K. If A is a set of N t-ombinations ontained in U = f0; 1; : : : ; n�1g,then j�Aj � j�PNtj and j �Aj � j �QNntj; (55)where PNt denotes the �rst N ombinations generated by Algorithm L, namelythe N lexiographially smallest ombinations t : : : 21 that satisfy (3), andQNnt denotes the N lexiographially largest.
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7.2.1.3 GENERATING ALL COMBINATIONS 19Theorem M. If A is a set of N t-multiombinations ontained in the multisetU = f1 � 0;1 � 1; : : : ;1 � sg, thenj�Aj � j� bPNtj and j �Aj � j �bQNstj; (56)where bPNt denotes theN lexiographially smallest multiombinations dt : : : d2d1that satisfy (6), and bQNst denotes the N lexiographially largest.Both of these theorems are onsequenes of a stronger result that we shallprove later. Theorem K is generally alled the Kruskal{Katona theorem, beauseit was disovered by J. B. Kruskal [Math. Optimization Tehniques, edited byR. Bellman (1963), 251{278℄ and redisovered by G. Katona [Theory of Graphs,Tihany 1966, edited by Erd}os and Katona (Aademi Press, 1968), 187{207℄;M. P. Sh�utzenberger had previously stated it in a less-well-known publiation,with inomplete proof [RLE Quarterly Progress Report 55 (1959), 117{118℄.Theorem M goes bak to F. S. Maaulay, many years earlier [Pro. LondonMath. So. (2) 26 (1927), 531{555℄.Before proving (55) and (56), let's take a loser look at what those formulasmean. We know from Theorem L that the �rst N of all t-ombinations visitedby Algorithm L are those that preede nt : : : n2n1, whereN = �ntt �+ � � �+ �n22 �+ �n11 �; nt > � � � > n2 > n1 � 0is the degree-t ombinatorial representation of N . Sometimes this representationhas fewer than t nonzero terms, beause nj an be equal to j � 1; let's suppressthe zeros, and writeN = �ntt �+ �nt�1t� 1�+ � � �+ �nvv �; nt > nt�1 > � � � > nv � v � 1: (57)Now the �rst �ntt � ombinations t : : : 1 are the t-ombinations of f0; : : : ; nt�1g;the next �nt�1t�1 � are those in whih t = nt and t�1 : : : 1 is a (t�1)-ombinationof f0; : : : ; nt�1�1g; and so on. For example, if t = 5 and N = �95�+�74�+�43�, the�rst N ombinations arePN5 = f43210; : : : ; 87654g [ f93210; : : : ; 96543g [ f97210; : : : ; 97321g: (58)The shadow of this set PN5 is, fortunately, easy to understand: It is�PN5 = f3210; : : : ; 8765g [ f9210; : : : ; 9654g [ f9710; : : : ; 9732g; (59)namely the �rst �94�+ �73�+ �42� ombinations in lexiographi order when t = 4.In other words, if we de�ne Kruskal's funtion �t by the formula�tN = � ntt� 1�+ �nt�1t� 2�+ � � �+ � nvv � 1� (60)when N has the unique representation (57), we have�PNt = P(�tN)(t�1) : (61)
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20 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3Theorem K tells us, for example, that a graph with a million edges anontain at most �14143 �+ �10092 � = 470;700;300triangles, that is, at most 470,700,300 sets of verties fu; v; wg with u��� v���w���u. The reason is that 1000000 = �14142 �+�10091 � by exerise 17, and the edgesP(1000000)2 do support �14143 �+�10092 � triangles; but if there were more, the graphwould neessarily have at least �3470700301 = �14142 � + �10091 � + �10� = 1000001edges in their shadow.Kruskal de�ned the ompanion funtion�tN = � ntt+ 1�+ �nt�1t �+ � � �+ � nvv + 1� (62)to deal with questions suh as this. The � and � funtions are related by aninteresting law proved in exerise 72:M +N = �s+ tt � implies �sM + �tN = �s+ tt+ 1�; if st > 0. (63)Turning to Theorem M, the sizes of � bPNt and �bQNst turn out to bej� bPNtj = �tN and j �bQNstj = N + �sN (64)(see exerise 81), where the funtion �t satis�es�tN = �nt � 1t� 1 �+ �nt�1 � 1t� 2 �+ � � �+ �nv � 1v � 1 � (65)when N has the ombinatorial representation (57).Table 3 shows how these funtions �tN , �tN , and �tN behave for smallvalues of t and N . When t and N are large, they an be well approximatedin terms of a remarkable funtion �(x) introdued by Teiji Takagi in 1903; seeFig. 27 and exerises 82{85.Theorems K and M are orollaries of a muh more general theorem of disretegeometry, disovered by Da-Lun Wang and Ping Wang [SIAM J. Applied Math.33 (1977), 55{59℄, whih we shall now proeed to investigate. Consider thedisrete n-dimensional torus T (m1; : : : ;mn) whose elements are integer vetorsx = (x1; : : : ; xn) with 0 � x1 < m1, : : : , 0 � xn < mn. We de�ne the sum anddi�erene of two suh vetors x and y as in Eqs. 4.3.2{(2) and 4.3.2{(3):x+ y = �(x1 + y1) modm1; : : : ; (xn + yn) modmn�; (66)x� y = �(x1 � y1) modm1; : : : ; (xn � yn) modmn�: (67)We also de�ne the so-alled ross order on suh vetors by saying that x � y ifand only if �x < �y or (�x = �y and x � y lexiographially); (68)here, as usual, �(x1; : : : ; xn) = x1 + � � �+ xn. For example, when m1 = m2 = 2and m3 = 3, the 12 vetors x1x2x3 in ross order are000; 100; 010; 001; 110; 101; 011; 002; 111; 102; 012; 112; (69)
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7.2.1.3 GENERATING ALL COMBINATIONS 21Table 3EXAMPLES OF THE KRUSKAL{MACAULAY FUNCTIONS �, �, AND �N = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20�1N = 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1�2N = 0 2 3 3 4 4 4 5 5 5 5 6 6 6 6 6 7 7 7 7 7�3N = 0 3 5 6 6 8 9 9 10 10 10 12 13 13 14 14 14 15 15 15 15�4N = 0 4 7 9 10 10 13 15 16 16 18 19 19 20 20 20 23 25 26 26 28�5N = 0 5 9 12 14 15 15 19 22 24 25 25 28 30 31 31 33 34 34 35 35�1N = 0 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105120136153171190�2N = 0 0 0 1 1 2 4 4 5 7 10 10 11 13 16 20 20 21 23 26 30�3N = 0 0 0 0 1 1 1 2 2 3 5 5 5 6 6 7 9 9 10 12 15�4N = 0 0 0 0 0 1 1 1 1 2 2 2 3 3 4 6 6 6 6 7 7�5N = 0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5�1N = 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1�2N = 0 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6�3N = 0 1 2 3 3 4 5 5 6 6 6 7 8 8 9 9 9 10 10 10 10�4N = 0 1 2 3 4 4 5 6 7 7 8 9 9 10 10 10 11 12 13 13 14�5N = 0 1 2 3 4 5 5 6 7 8 9 9 10 11 12 12 13 14 14 15 15
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22147 0 �75� �85�

�5N�N

�85�+�74� �95� 0
2/31/21/4

0 1/4 1/2

�(x)

3/4 1Fig. 27. Approximating a Kruskal funtion with the Takagi funtion. (Thesmooth urve in the left-hand graph is the lower bound �5N�N of exerise 80.)omitting parentheses and ommas for onveniene. The omplement of a vetorin T (m1; : : : ;mn) is x = (m1 � 1� x1; : : : ;mn � 1� xn): (70)Notie that x � y holds if and only if x � y. Therefore we haverank(x) + rank(x) = T � 1; where T = m1 : : :mn, (71)if rank(x) denotes the number of vetors that preede x in ross order.We will �nd it onvenient to all the vetors \points" and to name the pointse0, e1, : : : , eT�1 in inreasing ross order. Thus we have e7 = 002 in (69), ander = eT�1�r in general. Notie thate1 = 100 : : : 00; e2 = 010 : : : 00; : : : ; en = 000 : : : 01; (72)
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22 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3these are the so-alled unit vetors. The setSN = fe0; e1; : : : ; eN�1g (73)onsisting of the smallest N points is alled a standard set, and in the speialase N = n+ 1 we writeE = fe0; e1; : : : ; eng = f000 : : : 00; 100 : : : 00; 010 : : : 00; : : : ; 000 : : : 01g: (74)Any set of points X has a spread X+, a ore XÆ, and a dual X�, de�nedby the rulesX+ = fx 2 ST j x 2 X or x� e1 2 X or � � � or x� en 2 X g; (75)XÆ = fx 2 ST j x 2 X and x+ e1 2 X and � � � and x+ en 2 X g; (76)X� = fx 2 ST j x =2 X g: (77)We an also de�ne the spread of X algebraially, writingX+ = X + E; (78)where X + Y denotes fx+ y j x 2 X and y 2 Y g. ClearlyX+ � Y if and only if X � Y Æ: (79)These notions an be illustrated in the two-dimensional ase m1 = 4, m2 = 6, bythe more-or-less random toroidal arrangement X = f00; 12; 13; 14; 15; 21; 22; 25gfor whih we have, pitorially,
� �� ���
� �

� ����
� �Æ+ ++ ++++ +

� �� � �� � �� �� � �� � �
� ���
� �� �

ÆÆ ÆÆ ÆÆÆÆ
+ +++++ + ; (80)

X XÆ and X+ X� X�Æ and X�+here X in the �rst two diagrams onsists of points marked � or Æ, XÆ omprisesjust the Æs, and X+ onsists of +s plus �s plus Æs. Notie that if we rotate thediagram for X�Æ and X�+ by 180Æ, we obtain the diagram for XÆ and X+, butwith (�; Æ; +; ) respetively hanged to (+; ; �; Æ); and in fat the identitiesXÆ = X�+�; X+ = X�Æ� (81)hold in general (see exerise 86).Now we are ready to state the theorem of Wang and Wang:TheoremW. LetX be any set of N points in the disrete torus T (m1; : : : ;mn),where m1 � � � � � mn. Then jX+j � jS+N j and jXÆj � jSÆN j.In other words, the standard sets SN have the smallest spread and largest ore,among all N -point sets. We will prove this result by following a general approah�rst used by F. W. J. Whipple to prove Theorem M [Pro. London Math. So.(2) 28 (1928), 431{437℄. The �rst step is to prove that the spread and the oreof standard sets are standard:
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7.2.1.3 GENERATING ALL COMBINATIONS 23Lemma S. There are funtions � and � suh that S+N = S�N and SÆN = S�N .Proof. We may assume that N > 0. Let r be maximum with er 2 S+N , and let�N = r + 1; we must prove that eq 2 S+N for 0 � q < r. Suppose eq = x =(x1; : : : ; xn) and er = y = (y1; : : : ; yn), and let k be the largest subsript withxk > 0. Sine y 2 S+N , there is a subsript j suh that y� ej 2 SN . It suÆes toprove that x� ek � y � ej , and exerise 88 does this.The seond part follows from (81), with �N = T � �(T � N), beauseS�N = ST�N .Theorem W is obviously true when n = 1, so we assume by indution thatit has been proved in n� 1 dimensions. The next step is to ompress the givenset X in the kth oordinate position, by partitioning it into disjoint setsXk(a) = fx 2 X j xk = a g (82)for 0 � a < mk and replaing eah Xk(a) byX 0k(a) = f (s1; : : : ; sk�1; a; sk; : : : ; sn�1) j (s1; : : : ; sn�1) 2 SjXk(a)j g; (83)a set with the same number of elements. The sets S used in (83) are standard inthe (n � 1)-dimensional torus T (m1; : : : ;mk�1;mk+1; : : : ;mn). Notie that wehave (x1; : : : ; xk�1; a; xk+1; : : : ; xn) � (y1; : : : ; yk�1; a; yk+1; : : : ; yn) if and onlyif (x1; : : : ; xk�1; xk+1; : : : ; xn) � (y1; : : : ; yk�1; yk+1; : : : ; yn); therefore X 0k(a) =Xk(a) if and only if the (n� 1)-dimensional points (x1; : : : ; xk�1; xk+1; : : : ; xn)with (x1; : : : ; xk�1; a; xk+1; : : : ; xn) 2 X are as small as possible when projetedonto the (n� 1)-dimensional torus. We letCkX = X 0k(0) [X 0k(1) [ � � � [X 0k(mk � 1) (84)be the ompression of X in position k. Exerise 90 proves the basi fat thatompression does not inrease the size of the spread:jX+j � j(CkX)+j; for 1 � k � n: (85)Furthermore, if ompression hanges X, it replaes some of the elements by otherelements of lower rank. Therefore we need to prove Theorem W only for sets Xthat are totally ompressed, having X = CkX for all k.Consider, for example, the ase n = 2. A totally ompressed set in twodimensions has all points moved to the left of their rows and the bottom of theirolumns, as in the eleven-point sets
� � � �� � ����� ++ ++++ or � � � �� � �� ��� +++++ or � � � �� � �� �� � ++++ + or � � � �� � �� � �� +++ ++ or � � � �� � � �� �� + +++ ;

the rightmost of these is standard, and has the smallest spread. Exerise 91ompletes the proof of Theorem W in two dimensions.
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24 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3When n > 2, suppose x = (x1; : : : ; xn) 2 X and xj > 0. The onditionCkX = X implies that, if 0 � i < j and i 6= k 6= j, we have x + ei � ej 2 X.Applying this fat for three values of k tells us that x + ei � ej 2 X whenever0 � i < j. ConsequentlyXn(a) + En(0) � Xn(a� 1) + en for 0 < a < m; (86)where m = mn and En(0) is a lever abbreviation for the set fe0; : : : ; en�1g.Let Xn(a) have Na elements, so that N = jXj = N0+N1+ � � �+Nm�1, andlet Y = X+. ThenYn(a) = �Xn�(a� 1) modm�+ en� [ �Xn(a) + En(0)�is standard in n� 1 dimensions, and (86) tells us thatNm�1 � �Nm�2 � Nm�2 � � � � � N1 � �N0 � N0 � �N0;where � and � refer to oordinates 1 through n� 1. ThereforejY j = jYn(0)j+ jYn(1)j+ jYn(2)j+ � � �+ jYn(m� 1)j= �N0 +N0 +N1 + � � �+Nm�2 = �N0 +N �Nm�1:The proof of Theorem W now has a beautiful onlusion. Let Z = SN , andsuppose jZn(a)j =Ma. We want to prove that jX+j � jZ+j, namely that�N0 +N �Nm�1 � �M0 +N �Mm�1; (87)beause the arguments of the previous paragraph apply to Z as well as to X.We will prove (87) by showing that Nm�1 �Mm�1 and N0 �M0.Using the (n� 1)-dimensional � and � funtions, let us de�neN 0m�1 = Nm�1; N 0m�2 = �N 0m�1; : : : ; N 01 = �N 02; N 00 = �N 01; (88)N 000 = N0; N 001 = �N 000 ; N 002 = �N 001 ; : : : ; N 00m�1 = �N 00m�2: (89)Then we have N 0a � Na � N 00a for 0 � a < m, and it follows thatN 0 = N 00 +N 01 + � � �+N 0m�1 � N � N 00 = N 000 +N 001 + � � �+N 00m�1: (90)Exerise 92 proves that the standard set Z 0 = SN 0 has exatly N 0a elements withnth oordinate equal to a, for eah a; and by the duality between � and �, thestandard set Z 00 = SN 00 likewise has exatly N 00a elements with nth oordinate a.Finally, therefore,Mm�1 = jZn(m� 1)j � jZ 0n(m� 1)j = Nm�1;M0 = jZn(0)j � jZ 00n(0)j = N0;beause Z 0 � Z � Z 00 by (90). By (81) we also have jXÆj � jZÆj.Now we are ready to prove Theorems K and M, whih are in fat speialases of a substantially more general theorem of Clements and Lindstr�om thatapplies to arbitrary multisets [J. Combinatorial Theory 7 (1969), 230{238℄:
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7.2.1.3 GENERATING ALL COMBINATIONS 25Corollary C. If A is a set of N t-multiombinations ontained in the multisetU = fs0 � 0; s1 � 1; : : : ; sd � dg, where s0 � s1 � � � � � sd, thenj�Aj � j�PNtj and j �Aj � j �QNtj; (91)where PNt denotes theN lexiographially smallest multiombinations dt : : : d2d1of U , and QNt denotes the N lexiographially largest.Proof. Multiombinations of U an be represented as points x1 : : : xn of the torusT (m1; : : : ;mn), where n = d + 1 and mj = sn�j + 1; we let xj be the numberof ourrenes of n� j. This orrespondene preserves lexiographi order. Forexample, if U = f0; 0; 0; 1; 1; 2; 3g, its 3-multiombinations are000; 100; 110; 200; 210; 211; 300; 310; 311; 320; 321; (92)in lexiographi order, and the orresponding points x1x2x3x4 are0003; 0012; 0021; 0102; 0111; 0120; 1002; 1011; 1020; 1101; 1110: (93)Let Tw be the points of the torus that have weight x1+ � � �+ xn = w. Thenevery allowable set A of t-multiombinations is a subset of Tt. Furthermore|and this is the main point| the spread of T0 [ T1 [ � � � [ Tt�1 [A is(T0 [ T1 [ � � � [ Tt�1 [A)+ = T+0 [ T+1 [ � � � [ T+t�1 [A+= T0 [ T1 [ � � � [ Tt [ �A: (94)Thus the upper shadow �A is simply (T0 [ T1 [ � � � [ Tt�1 [ A)+ \ Tt+1, andTheorem W tells us in essene that jAj = N implies j �Aj � j �(SM+N \ Tt)j,where M = jT0 [ � � � [ Tt�1j. Hene, by the de�nition of ross order, SM+N \ Ttonsists of the lexiographially largest N t-multiombinations, namely QNt.The proof that j�Aj � j�PNtj now follows by omplementation (see exer-ise 94).EXERCISES1. [M23 ℄ Explain why Golomb's rule (8) makes all sets f1; : : : ; tg � f0; : : : ; n� 1gorrespond uniquely to multisets fe1; : : : ; etg � f1 � 0; : : : ;1 � n� tg.2. [16 ℄ What path in an 11� 13 grid orresponds to the bit string (13)?x 3. [21 ℄ (R. R. Fenihel, 1968.) Show that the ompositions qt+ � � �+q1+q0 of s intot + 1 nonnegative parts an be generated in lexiographi order by a simple looplessalgorithm.4. [16 ℄ Show that every omposition qt : : : q0 of s into t+1 nonnegative parts orre-sponds to a omposition rs : : : r0 of t into s+ 1 nonnegative parts. What ompositionorresponds to 10224000001010 under this orrespondene?x 5. [20 ℄ What is a good way to generate all of the integer solutions to the followingsystems of inequalities?a) n > xt � xt�1 > xt�2 � xt�3 > � � � > x1 � 0, when t is odd.b) n� xt � xt�1 � � � � � x2 � x1 � 0, where a� b means a � b+ 2.6. [M22 ℄ How often is eah step of Algorithm T performed?
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26 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.37. [22 ℄ Design an algorithm that runs through the \dual" ombinations bs : : : b2b1 indereasing lexiographi order (see (5) and Table 1). Like Algorithm T, your algorithmshould avoid redundant assignments and unneessary searhing.8. [M23 ℄ Design an algorithm that generates all (s; t)-ombinations an�1 : : : a1a0lexiographially in bitstring form. The total running time should be O(�nt�), assumingthat st > 0.9. [M26 ℄ When all (s; t)-ombinations an�1 : : : a1a0 are listed in lexiographi order,let 2Ast be the total number of bit hanges between adjaent strings. For example,A33 = 25 beause there are respetively2 + 2 + 2 + 4 + 2 + 2 + 4 + 2 + 2 + 6 + 2 + 2 + 4 + 2 + 2 + 4 + 2 + 2 + 2 = 50bit hanges between the 20 strings in Table 1.a) Show that Ast = min(s; t) +A(s�1)t + As(t�1) when st > 0; Ast = 0 when st = 0.b) Prove that Ast < 2�s+tt �.x 10. [21 ℄ The \World Series" of baseball is traditionally a ompetition in whih theAmerian League hampion (A) plays the National League hampion (N) until one ofthem has beaten the other four times. What is a good way to list all possible senariosAAAA, AAANA, AAANNA, : : : , NNNN? What is a simple way to assign onseutiveintegers to those senarios?11. [19 ℄ Whih of the senarios in exerise 10 ourred most often during the 1900s?Whih of them never ourred? [Hint: World Series sores are easily found on theInternet.℄12. [HM32 ℄ A set V of n-bit vetors that is losed under addition modulo 2 is alleda binary vetor spae.a) Prove that every suh V ontains 2t elements, for some integer t, and an berepresented as the set fx1�1 � � � � � xt�t j 0 � x1; : : : ; xt � 1g where the vetors�1, : : : , �t form a \anonial basis" with the following property: There is a t-ombination t : : : 21 of f0; 1; : : : ; n � 1g suh that, if �k is the binary vetorak(n�1) : : : ak1ak0, we haveakj = [j= k ℄ for 1 � j; k � t; akl = 0 for 0 � l < k, 1 � k � t:For example, the anonial bases with n = 9, t = 4, and 4321 = 7641 have thegeneral form �1 = � 0 0 � 0 � � 1 0;�2 = � 0 0 � 1 0 0 0 0;�3 = � 0 1 0 0 0 0 0 0;�4 = � 1 0 0 0 0 0 0 0;there are 28 ways to replae the eight asterisks by 0s and/or 1s, and eah of thesede�nes a anonial basis. We all t the dimension of V .b) How many t-dimensional spaes are possible with n-bit vetors?) Design an algorithm to generate all anonial bases (�1; : : : ; �t) of dimension t.Hint: Let the assoiated ombinations t : : : 1 inrease lexiographially as inAlgorithm L.d) What is the 1000000th basis visited by your algorithm when n = 9 and t = 4?13. [25 ℄ A one-dimensional Ising on�guration of length n, weight t, and energy r,is a binary string an�1 : : : a0 suh that Pn�1j=0 aj = t and Pn�1j=1 bj = r, where bj =
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7.2.1.3 GENERATING ALL COMBINATIONS 27aj � aj�1. For example, a12 : : : a0 = 1100100100011 has weight 6 and energy 6, sineb12 : : : b1 = 010110110010.Design an algorithm to generate all suh on�gurations, given n, t, and r.14. [26 ℄ When the binary strings an�1 : : : a1a0 of (s; t)-ombinations are generatedin lexiographi order, we sometimes need to hange 2min(s; t) bits to get from oneombination to the next. For example, 011100 is followed by 100011 in Table 1.Therefore we apparently annot hope to generate all ombinations with a looplessalgorithm unless we visit them in some other order.Show, however, that there atually is a way to ompute the lexiographi suessorof a given ombination in O(1) steps, if eah ombination is represented indiretly in adoubly linked list as follows: There are arrays l[0℄, : : : , l[n℄ and r[0℄, : : : , r[n℄ suh thatl[r[j℄℄ = j for 0 � j � n. If x0 = l[0℄ and xj = l[xj�1℄ for 0 < j < n, then aj = [xj >s℄for 0 � j < n.15. [M22 ℄ Use the fat that dual ombinations bs : : : b2b1 our in reverse lexio-graphi order to prove that the sum �bss � + � � � + �b22 � + �b11 � has a simple relationto the sum �tt �+ � � �+ �22 �+ �11 �.16. [M21 ℄ What is the millionth ombination generated by Algorithm L when t is(a) 2? (b) 3? () 4? (d) 5? (e) 1000000?17. [HM25 ℄ Given N and t, what is a good way to ompute the ombinatorial repre-sentation (20)?x 18. [20 ℄ What binary tree do we get when the binomial tree Tn is represented by\right hild" and \left sibling" pointers as in exerise 2.3.2{5?19. [21 ℄ Instead of labeling the branhes of the binomial tree T4 as shown in (22), weould label eah node with the bit string of its orresponding ombination:00000001 00100011 01000101 01100111
10001001 10101011 11001101 11101111If T1 has been labeled in this way, suppressing leading zeros, preorder is the same asthe ordinary inreasing order of binary notation; so the millionth node turns out to be11110100001000111111. But what is the millionth node of T1 in postorder?20. [M20 ℄ Find generating funtions g and h suh that Algorithm F �nds exatly[zN ℄ g(z) feasible ombinations and sets t t+ 1 exatly [zN ℄h(z) times.21. [M22 ℄ Prove the alternating ombination law (30).22. [M23 ℄ What is the millionth revolving-door ombination visited by Algorithm Rwhen t is (a) 2? (b) 3? () 4? (d) 5? (e) 1000000?23. [M23 ℄ Suppose we augment Algorithm R by setting j  t + 1 in step R1, andj  1 if R3 goes diretly to R2. Find the probability distribution of j, and its averagevalue. What does this imply about the running time of the algorithm?
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28 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3x 24. [M25 ℄ (W. H. Payne, 1974.) Continuing the previous exerise, let jk be the valueof j on the kth visit by Algorithm R. Show that jjk+1 � jkj � 2, and explain how tomake the algorithm loopless by exploiting this property.25. [M35 ℄ Let t : : : 21 and 0t : : : 0201 be the Nth and N 0th ombinations generatedby the revolving-door method, Algorithm R. If the set C = ft; : : : ; 2; 1g has melements not in C 0 = f0t; : : : ; 02; 01g, prove that jN �N 0j >Pm�1k=1 � 2kk�1�.26. [26 ℄ Do elements of the ternary reeted Gray ode have properties similar to therevolving-door Gray ode �st, if we extrat only the n-tuples an�1 : : : a1a0 suh that(a) an�1 + � � �+ a1 + a0 = t? (b) fan�1; : : : ; a1; a0g = fr � 0; s � 1; t � 2g?x 27. [25 ℄ Show that there is a simple way to generate all ombinations of at most telements of f0; 1; : : : ; n� 1g, using only Gray-ode-like transitions 0$ 1 and 01$ 10.(In other words, eah step should either insert a new element, delete an element, orshift an element by �1.) For example,0000; 0001; 0011; 0010; 0110; 0101; 0100; 1100; 1010; 1001; 1000is one suh sequene when n = 4 and t = 2. Hint: Think of Chinese rings.28. [M21 ℄ True or false: A listing of (s; t)-ombinations an�1 : : : a1a0 in bitstringform is in genlex order if and only if the orresponding index-form listings bs : : : b2b1(for the 0s) and t : : : 21 (for the 1s) are both in genlex order.x 29. [M28 ℄ (P. J. Chase.) Given a string on the symbols +, -, and 0, say that anR-blok is a substring of the form -k+1 that is preeded by 0 and not followed by -; anL-blok is a substring of the form +-k that is followed by 0; in both ases k � 0. Forexample, the string +00++-+++-000- has two L-bloks and one R-blok, shown in gray.Notie that bloks annot overlap.We form the suessor of suh a string as follows, whenever at least one blok ispresent: Replae the rightmost 0-k+1 by -+k0, if the rightmost blok is an R-blok;otherwise replae the rightmost +-k0 by 0+k+1. Also negate the �rst sign, if any, thatappears to the right of the blok that has been hanged. For example,-+00++-! -0+0-+-! -0+-0--! -0+--+0! -0+--0+! -00+++-;where the notation �! � means that � is the suessor of �.a) What strings have no bloks (and therefore no suessor)?b) Can there be a yle of strings with �0 ! �1 ! � � � ! �k�1 ! �0?) Prove that if � ! � then �� ! ��, where \�" means \negate all the signs."(Therefore every string has at most one predeessor.)d) Show that if �0 ! �1 ! � � � ! �k and k > 0, the strings �0 and �k do not haveall their 0s in the same positions. (Therefore, if �0 has s signs and t zeros, k mustbe less than �s+tt �.)e) Prove that every string � with s signs and t zeros belongs to exatly one hain�0 ! �1 ! � � � ! �(s+tt )�1.30. [M32 ℄ The previous exerise de�nes 2s ways to generate all ombinations of s 0sand t 1s, via the mapping + 7! 0, - 7! 0, and 0 7! 1. Show that eah of these waysis a homogeneous genlex sequene, de�nable by an appropriate reurrene. Is Chase'ssequene (37) a speial ase of this general onstrution?31. [M23 ℄ How many genlex listings of (s; t)-ombinations are possible in (a) bitstringform an�1 : : : a1a0? (b) index-list form t : : : 21?
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7.2.1.3 GENERATING ALL COMBINATIONS 29x 32. [M32 ℄ How many of the genlex listings of (s; t)-ombination strings an�1 : : : a1a0(a) have the revolving-door property? (b) are homogeneous?33. [HM33 ℄ How many of the genlex listings in exerise 31(b) are near-perfet?34. [M32 ℄ Continuing exerise 33, explain how to �nd suh shemes that are as nearas possible to perfetion, in the sense that the number of \imperfet" transitions j  j � 2 is minimized, when s and t are not too large.35. [M26 ℄ How many steps of Chase's sequene Cst use an imperfet transition?x 36. [M21 ℄ Prove that method (39) performs the operation j  j+1 a total of exatly�s+tt � � 1 times as it generates all (s; t)-ombinations an�1 : : : a1a0, given any genlexsheme for ombinations in bitstring form.x 37. [27 ℄ What algorithm results when the general genlex method (39) is used toprodue (s; t)-ombinations an�1 : : : a1a0 in (a) lexiographi order? (b) the revolving-door order of Algorithm R? () the homogeneous order of (31)?38. [26 ℄ Design a genlex algorithm like Algorithm C for the reverse sequene CRst.39. [M21 ℄ When s = 12 and t = 14, how many ombinations preede the bit string11001001000011111101101010 in Chase's sequene Cst? (See (41).)40. [M22 ℄ What is the millionth ombination in Chase's sequene Cst, when s = 12and t = 14?41. [M27 ℄ Show that there is a permutation (0), (1), (2), : : : of the nonnegativeintegers suh that the elements of Chase's sequene Cst are obtained by omplementingthe least signi�ant s + t bits of the elements (k) for 0 � k < 2s+t that have weight�((k)) = s. (Thus the sequene �(0), : : : , �(2n � 1) ontains, as subsequenes, all ofthe Cst for whih s+ t = n, just as Gray binary ode g(0), : : : , g(2n � 1) ontains allthe revolving-door sequenes �st.) Explain how to ompute the binary representation(k) = ( : : : a2a1a0)2 from the binary representation k = ( : : : b2b1b0)2.42. [HM34 ℄ Use generating funtions of the formPs;t gstwszt to analyze eah step ofAlgorithm C.43. [20 ℄ Prove or disprove: If s(x) and p(x) denote respetively the suessor andpredeessor of x in endo-order, then s(x+ 1) = p(x) + 1.x 44. [M21 ℄ Let Ct(n) � 1 denote the sequene obtained from Ct(n) by striking outall ombinations with 1 = 0, then replaing t : : : 1 by (t � 1) : : : (1 � 1) in theombinations that remain. Show that Ct(n)� 1 is near-perfet.45. [32 ℄ Exploit endo-order and the expansions skethed in (44) to generate theombinations t : : : 21 of Chase's sequene Ct(n) with a nonreursive proedure.x 46. [33 ℄ Construt a nonreursive algorithm for the dual ombinations bs : : : b2b1 ofChase's sequene Cst, namely for the positions of the zeros in an�1 : : : a1a0.47. [26 ℄ Implement the near-perfet multiset permutation method of (46) and (47).48. [M21 ℄ Suppose �0, �1, : : : , �N�1 is any listing of the permutations of the multisetfs1 � 1; : : : ; sd � dg, where �k di�ers from �k+1 by the interhange of two elements. Let�0, : : : , �M�1 be any revolving-door listing for (s; t)-ombinations, where s = s0, t =s1+� � �+sd, andM = �s+tt �. Then let �j be the list ofM elements obtained by startingwith �j " �0 and applying the revolving-door exhanges; here � " � denotes the stringobtained by substituting the elements of � for the 1s in �, preserving left-right order.For example, if �0, : : : , �M�1 is 0110, 0101, 1100, 1001, 0011, 1010, and if �j = 12,
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30 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3then �j is 0120, 0102, 1200, 1002, 0012, 1020. (The revolving-door listing need not behomogeneous.)Prove that the list (47) ontains all permutations of fs0 � 0; s1 � 1; : : : ; sd � dg, andthat adjaent permutations di�er from eah other by the interhange of two elements.49. [HM23 ℄ If q is a primitive mth root of unity, suh as e2�i=m, show that�nk�q = � bn=mbk=m��nmodmkmodm�q:x 50. [HM25 ℄ Extend the formula of the previous exerise to q-multinomial oeÆients�n1 + � � �+ ntn1; : : : ; nt �q:51. [25 ℄ Find all Hamiltonian paths in the graph whose verties are permutations off0; 0; 0; 1; 1; 1g related by adjaent transposition. Whih of those paths are equivalentunder the operations of interhanging 0s with 1s and/or left-right reetion?52. [M37 ℄ Generalizing Theorem P, �nd a neessary and suÆient ondition that allpermutations of the multiset fs0 � 0; : : : ; sd � dg an be generated by adjaent transpo-sitions ajaj�1 $ aj�1aj .53. [M46 ℄ (D. H. Lehmer, 1965.) Suppose the N permutations of fs0 � 0; : : : ; sd � dgannot be generated by a perfet sheme, beause (N + x)=2 of them have an evennumber of inversions, where x � 2. Is it possible to generate them all with a sequeneof N + x � 2 adjaent interhanges aÆk $ aÆk�1 for 1 � k < N + x � 1, wherex � 1 ases are \spurs" with Æk = Æk�1 that take us bak to the permutation we'vejust seen? For example, a suitable sequene Æ1 : : : Æ94 for the 90 permutations off0; 0; 1; 1; 2; 2g, where x = �2+2+22;2;2 ��1 = 6, is 234535432523451�42�R51�42�R51�4,where � = 45352542345355, if we start with a5a4a3a2a1a0 = 221100.54. [M40 ℄ For what values of s and t an all (s; t)-ombinations be generated if weallow end-around swaps an�1 $ a0 in addition to adjaent interhanges aj $ aj�1?x 55. [30 ℄ (Frank Ruskey, 2004.) Show that all (s; t)-ombinations as+t�1 : : : a1a0 anbe generated eÆiently by doing suessive rotations ajaj�1 : : : a0  aj�1 : : : a0aj .56. [M49 ℄ (Buk and Wiedemann, 1984.) Can all (t; t)-ombinations a2t�1 : : : a1a0be generated by repeatedly swapping a0 with some other element?x 57. [22 ℄ (Frank Ruskey.) Can a piano player run through all possible 4-note hordsthat span at most one otave, hanging only one �nger at a time? This is the problem ofgenerating all ombinations t : : : 1 suh that n > t > � � � > 1 � 0 and t � 1 < m,where t = 4 and (a) m = 8, n = 52 if we onsider only the white notes of a pianokeyboard; (b) m = 13, n = 88 if we onsider also the blak notes.58. [20 ℄ Consider the piano player's problem of exerise 57 with the additional on-dition that the hords don't involve adjaent notes. (In other words, j+1 > j + 1 fort > j � 1. Suh hords tend to be more harmonious.)59. [M25 ℄ Is there a perfet solution to the 4-note piano player's problem, in whiheah step moves a �nger to an adjaent key?60. [23 ℄ Design an algorithm to generate all bounded ompositionst = rs + � � �+ r1 + r0; where 0 � rj � mj for s � j � 0.61. [32 ℄ Show that all bounded ompositions an be generated by hanging only twoof the parts at eah step.
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7.2.1.3 GENERATING ALL COMBINATIONS 31x 62. [M27 ℄ A ontingeny table is an m�n matrix of nonnegative integers (aij) havinggiven row sums ri =Pnj=1 aij and olumn sums j =Pmi=1 aij , where r1 + � � �+ rm =1 + � � �+ n.a) Show that 2� n ontingeny tables are equivalent to bounded ompositions.b) What is the lexiographially largest ontingeny table for (r1; : : : ; rm; 1; : : : ; n),when matrix entries are read row-wise from left to right and top to bottom, namelyin the order (a11; a12; : : : ; a1n; a21; : : : ; amn)?) What is the lexiographially largest ontingeny table for (r1; : : : ; rm; 1; : : : ; n),when matrix entries are read olumn-wise from top to bottom and left to right,namely in the order (a11; a21; : : : ; am1; a12; : : : ; amn)?d) What is the lexiographially smallest ontingeny table for (r1; : : : ; rm; 1; : : : ; n),in the row-wise and olumn-wise senses?e) Explain how to generate all ontingeny tables for (r1; : : : ; rm; 1; : : : ; n) in lex-iographi order.63. [M41 ℄ Show that all ontingeny tables for (r1; : : : ; rm; 1; : : : ; n) an be gener-ated by hanging exatly four entries of the matrix at eah step.x 64. [M30 ℄ Construt a genlex Gray yle for all of the 2s�s+tt � sububes that haves digits and t asterisks, using only the transformations �0 $ 0�, �1 $ 1�, 0 $ 1.For example, one suh yle when s = t = 2 is(00��; 01��; 0�1�; 0��1; 0��0; 0�0�; �00�; �01�; �0�1; �0�0; ��00; ��01;��11; ��10; �1�0; �1�1; �11�; �10�; 1�0�; 1��0; 1��1; 1�1�; 11��; 10��):65. [M40 ℄ Enumerate the total number of genlex Gray paths on sububes that useonly the transformations allowed in exerise 64. How many of those paths are yles?x 66. [22 ℄ Given n � t � 0, show that there is a Gray path through all of the anonialbases (�1; : : : ; �t) of exerise 12, hanging just one bit at eah step. For example, onesuh path when n = 3 and t = 2 is001010 ; 101010 ; 101110 ; 001110 ; 001100 ; 011100 ; 010100 :67. [46 ℄ Consider the Ising on�gurations of exerise 13 for whih a0 = 0. Given n,t, and r, is there a Gray yle for these on�gurations in whih all transitions have theforms 0k1$ 10k or 01k $ 1k0? For example, in the ase n = 9, t = 5, r = 6, there isa unique yle(010101110; 010110110; 011010110; 011011010; 011101010; 010111010):68. [M01 ℄ If � is a t-ombination, what is (a) �t�? (b) �t+1�?x 69. [M22 ℄ How large is the smallest set A of t-ombinations for whih j�Aj < jAj?70. [M25 ℄ What is the maximum value of �tN �N , for N � 0?71. [M20 ℄ How many t-liques an a million-edge graph have?x 72. [M22 ℄ Show that if N has the degree-t ombinatorial representation (57), thereis an easy way to �nd the degree-s ombinatorial representation of the omplementarynumber M = �s+tt ��N , whenever N < �s+tt �. Derive (63) as a onsequene.73. [M23 ℄ (A. J. W. Hilton, 1976.) Let A be a set of s-ombinations and B a set oft-ombinations, both ontained in U = f0; : : : ; n� 1g where n � s+ t. Show that if Aand B are ross-interseting, in the sense that �\ � 6= ; for all � 2 A and � 2 B, thenso are the sets QMns and QNnt de�ned in Theorem K, where M = jAj and N = jBj.
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32 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.374. [M21 ℄ What are j �PNtj and j �QNntj in Theorem K?75. [M20 ℄ The right-hand side of (60) is not always the degree-(t � 1) ombinatorialrepresentation of �tN , beause v � 1 might be zero. Show, however, that a positiveinteger N has at most two representations if we allow v = 0 in (57), and both of themyield the same value �tN aording to (60). Therefore�k�k+1 : : : �tN = � ntk � 1�+ � nt�1k � 2�+ � � �+ � nvk � 1 + v � t� for 1 � k � t.76. [M20 ℄ Find a simple formula for �t(N + 1)� �tN .x 77. [M26 ℄ Prove the following properties of the � funtions by manipulating binomialoeÆients, without assuming Theorem K:a) �t(M +N) � �tM + �tN .b) �t(M +N) � max(�tM;N) + �t�1N .Hint: �mtt � + � � � + �m11 � + �ntt � + � � � + �n11 � is equal to �mt_ntt � + � � � + �m1_n11 � +�mt^ntt �+ � � �+ �m1^n11 �, where _ and ^ denote max and min.78. [M22 ℄ Show that Theorem K follows easily from inequality (b) in the previousexerise. Conversely, both inequalities are simple onsequenes of Theorem K. Hint:Any set A of t-ombinations an be written A = A1+A00, where A1 = f� 2 A j 0 =2 �g.79. [M23 ℄ Prove that if t � 2, we have M � �tN if and only if M + �t�1M � N .80. [HM26 ℄ (L. Lov�asz, 1979.) The funtion �xt� inreases monotonially from 0 to1as x inreases from t� 1 to 1; hene we an de�ne�tN = � xt� 1�; if N = �xt � and x � t� 1.Prove that �tN � �tN for all integers t � 1 and N � 0. Hint: Equality holds when xis an integer.x 81. [M27 ℄ Show that the minimum shadow sizes in Theorem M are given by (64).82. [HM31 ℄ The Takagi funtion of Fig. 27 is de�ned for 0 � x � 1 by the formula�(x) = 1Xk=1 Z x0 rk(t) dt;where rk(t) = (�1)b2kt is the Rademaher funtion of Eq. 7.2.1.1{(16).a) Prove that �(x) is ontinuous in the interval [0 : : 1℄, but its derivative does notexist at any point.b) Show that �(x) is the only ontinuous funtion that satis�es�( 12x) = �(1� 12x) = 12x+ 12�(x) for 0 � x � 1:) What is the asymptoti value of �(�) when � is small?d) Prove that �(x) is rational when x is rational.e) Find all roots of the equation �(x) = 1=2.f) Find all roots of the equation �(x) = max0�x�1 �(x).83. [HM46 ℄ Determine the set R of all rational numbers r suh that the equation�(x) = r has unountably many solutions. If �(x) is rational and x is irrational, is ittrue that �(x) 2 R? (Warning: This problem an be additive.)
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7.2.1.3 GENERATING ALL COMBINATIONS 3384. [HM27 ℄ If T = �2t�1t �, prove the asymptoti formula�tN �N = Tt ���NT �+O� (log t)3t �� for 0 � N � T :85. [HM21 ℄ Relate the funtions �tN and �tN to the Takagi funtion �(x).86. [M20 ℄ Prove the law of spread/ore duality, X�+ = XÆ�.87. [M21 ℄ True or false: (a) X � Y Æ if and only if Y � � X�Æ; (b) XÆ+Æ = XÆ;() �M � N if and only if M � �N .88. [M20 ℄ Explain why ross order is useful, by ompleting the proof of Lemma S.89. [16 ℄ Compute the � and � funtions for the 2� 2� 3 torus (69).90. [M22 ℄ Prove the basi ompression lemma, (85).91. [M24 ℄ Prove Theorem W for two-dimensional toruses T (l;m), l � m.92. [M28 ℄ Let x = x1 : : : xn�1 be the Nth element of the torus T (m1; : : : ;mn�1), andlet S be the set of all elements of T (m1; : : : ;mn�1;m) that are � x1 : : : xn�1(m�1)in ross order. If Na elements of S have �nal omponent a, for 0 � a < m, provethat Nm�1 = N and Na�1 = �Na for 1 � a < m, where � is the spread funtion forstandard sets in T (m1; : : : ;mn�1).93. [M25 ℄ (a) Find an N for whih the onlusion of Theorem W is false when theparameters m1, m2, : : : , mn have not been sorted into nondereasing order. (b) Wheredoes the proof of that theorem use the hypothesis that m1 � m2 � � � � � mn?94. [M20 ℄ Show that the � half of Corollary C follows from the �half. Hint: Theomplements of the multiombinations (92) with respet to U are 3211, 3210, 3200,3110, 3100, 3000, 2110, 2100, 2000, 1100, 1000.95. [17 ℄ Explain why Theorems K and M follow from Corollary C.x 96. [M22 ℄ If S is an in�nite sequene (s0; s1; s2; : : : ) of positive integers, let�S(n)k � = [zk℄ n�1Yj=0(1 + z + � � �+ zsj );thus �S(n)k � is the ordinary binomial oeÆient �nk� if s0 = s1 = s2 = � � � = 1.Generalizing the ombinatorial number system, show that every nonnegative inte-ger N has a unique representationN = �S(nt)t �+ �S(nt�1)t� 1 �+ � � �+ �S(n1)1 �
where nt � nt�1 � � � � � n1 � 0 and fnt; nt�1; : : : ; n1g � fs0 � 0; s1 � 1; s2 � 2; : : : g. Usethis representation to give a simple formula for the numbers j�PNtj in Corollary C.x 97. [M26 ℄ The text remarked that the verties of a onvex polyhedron an be per-turbed slightly so that all of its faes are simplexes. In general, any set of ombinationsthat ontains the shadows of all its elements is alled a simpliial omplex ; thus C is asimpliial omplex if and only if � � � and � 2 C implies that � 2 C, if and only ifC is an order ideal with respet to set inlusion.The size vetor of a simpliial omplex C on n verties is (N0; N1; : : : ; Nn) whenC ontains exatly Nt ombinations of size t.a) What are the size vetors of the �ve regular solids (the tetrahedron, ube, ota-hedron, dodeahedron, and iosahedron), when their verties are slightly tweaked?
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34 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3b) Construt a simpliial omplex with size vetor (1; 4; 5; 2; 0).) Find a neessary and suÆient ondition that a given size vetor (N0; N1; : : : ; Nn)is feasible.d) Prove that (N0; : : : ; Nn) is feasible if and only its \dual" vetor (N0; : : : ; Nn) isfeasible, where we de�ne N t = �nt��Nn�t.e) List all feasible size vetors (N0; N1; N2; N3; N4) and their duals. Whih of themare self-dual?98. [30 ℄ Continuing exerise 97, �nd an eÆient way to ount the feasible size vetors(N0; N1; : : : ; Nn) when n � 100.99. [M25 ℄ A lutter is a set C of ombinations that are inomparable, in the sensethat � � � and �; � 2 C implies � = �. The size vetor of a lutter is de�ned as inexerise 97.a) Find a neessary and suÆient ondition that (M0;M1; : : : ;Mn) is the size vetorof a lutter.b) List all suh size vetors in the ase n = 4.x 100. [M30 ℄ (Clements and Lindstr�om.) Let A be a \simpliial multiomplex," a setof submultisets of the multiset U in Corollary C with the property that �A � A. Howlarge an the total weight �A =Pfj�j j � 2 Ag be when jAj = N?101. [M25 ℄ If f(x1; : : : ; xn) is a Boolean formula, let F (p) be the probability thatf(x1; : : : ; xn) = 1 when eah variable xj independently is 1 with probability p.a) CalulateG(p) andH(p) for the Boolean formulas g(w; x; y; z) = wxz_wyz_xy�z,h(w; x; y; z) = �wyz _ xyz.b) Show that there is a monotone Boolean funtion f(w; x; y; z) suh that F (p) =G(p), but there is no suh funtion with F (p) = H(p). Explain how to test thisondition in general.102. [HM35 ℄ (F. S. Maaulay, 1927.) A polynomial ideal I in the variables fx1 : : : ; xsgis a set of polynomials losed under the operations of addition, multipliation by aonstant, and multipliation by any of the variables. It is alled homogeneous if itonsists of all linear ombinations of a set of homogeneous polynomials, namely ofpolynomials like xy+z2 whose terms all have the same degree. Let Nt be the maximumnumber of linearly independent elements of degree t in I. For example, if s = 2,the set of all �(x0; x1; x2)(x0x21 � 2x1x22) + �(x0; x1; x2)x0x1x22, where � and � runthrough all possible polynomials in fx0; x1; x2g, is a homogeneous polynomial idealwith N0 = N1 = N2 = 0, N3 = 1, N4 = 4, N5 = 9, N6 = 15, : : : .a) Prove that for any suh ideal I there is another ideal I 0 in whih all homogeneouspolynomials of degree t are linear ombinations of Nt independent monomials.(A monomial is a produt of variables, like x31x2x45.)b) Use Theorem M and (64) to prove that Nt+1 � Nt + �sNt for all t � 0.) Show that Nt+1 > Nt + �sNt ours for only �nitely many t. (This statementis equivalent to \Hilbert's basis theorem," proved by David Hilbert in G�ottingerNahrihten (1888), 450{457; Math. Annalen 36 (1890), 473{534.)x 103. [M38 ℄ The shadow of a subube a1 : : : an, where eah aj is either 0 or 1 or �, isobtained by replaing some � by 0 or 1. For example,�0�11�0 = f0011�0; 0111�0; 0�1100; 0�1110g:Find a set PNst suh that, if A is any set of N sububes a1 : : : an having s digits andt asterisks, j�Aj � jPNstj.
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7.2.1.3 GENERATING ALL COMBINATIONS 35104. [M41 ℄ The shadow of a binary string a1 : : : an is obtained by deleting one of itsbits. For example,�110010010 = f10010010; 11010010; 11000010; 11001000; 11001001g:Find a set PNn suh that, if A is any set of N binary strings a1 : : : an, j�Aj � jPNnj.105. [M20 ℄ A universal yle of t-ombinations for f0; 1; : : : ; n � 1g is a yle of�nt� numbers whose bloks of t onseutive elements run through every t-ombinationf1; : : : ; tg. For example,(02145061320516243152630425364103546)is a universal yle when t = 3 and n = 7.Prove that no suh yle is possible unless �nt� is a multiple of n.106. [M21 ℄ (L. Poinsot, 1809.) Find a \nie" universal yle of 2-ombinations forf0; 1; : : : ; 2mg. Hint: Consider the di�erenes of onseutive elements, mod (2m+ 1).107. [22 ℄ (O. Terquem, 1849.) Poinsot's theorem implies that all 28 dominoes of atraditional \double-six" set an be arranged in a yle so that the spots of adjaentdominoes math eah other:<0>0<0>1<1>3<3>6<6>6<6>0<0>2<2>5<5>5<5>6<6>1<1>4<4>44̂v50̂v4<4>2<2>1<1>1<1>5<5>3<3>2<2>2<2>6<6>4<4>3<3>3<3>0<0>5How many suh yles are possible?108. [M31 ℄ Find universal yles of 3-ombinations for the sets f0; : : : ; n � 1g whennmod 3 6= 0.109. [M31 ℄ Find universal yles of 3-multiombinations for f0; 1; : : : ; n � 1g whennmod 3 6= 0 (namely for ombinations d1d2d3 with repetitions permitted). For exam-ple, (00012241112330222344133340024440113)is suh a yle when n = 5.x 110. [26 ℄ Cribbage is a game played with 52 ards, where eah ard has a suit (|, },~, or �) and a fae value (A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, or K). One feature of thegame is to ompute the sore of a 5-ard ombination C = f1; 2; 3; 4; 5g, where oneard k is alled the starter. The sore is the sum of points omputed as follows, foreah subset S of C and eah hoie of k: Let jSj = s.i) Fifteens: If Pfv() j  2 Sg = 15, where (v(A); v(2); v(3); : : : ; v(9); v(10); v(J);v(Q); v(K)) = (1; 2; 3; : : : ; 9; 10; 10; 10; 10), sore two points.ii) Pairs: If s = 2 and both ards have the same fae value, sore two points.iii) Runs: If s � 3 and the fae values are onseutive, and if C does not ontain arun of length s+ 1, sore s points.iv) Flushes: If s = 4 and all ards of S have the same suit, and if k =2 S, sore4 + [k has the same suit as the others℄.v) Nobs: If s = 1 and k =2 S, sore 1 if the ard is J of the same suit as k.For example, if you hold fJ|; 5|; 5}; 6~g and if 4| is the starter, you sore 4� 2 for�fteens, 2 for a pair, 2� 3 for runs, plus 1 for nobs, totalling 17.Exatly how many ombinations and starter hoies lead to a sore of x points,for x = 0, 1, 2, : : : ?
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36 ANSWERS TO EXERCISES 7.2.1.3SECTION 7.2.1.31. Given a multiset, form the sequene et : : : e2e1 from right to left by listing thedistint elements �rst, then those that appear twie, then those that appear thrie,et. Let us set e�j  s� j for 0 � j � s = n� t, so that every element ej for 1 � j � tis equal to some element to its right in the sequene et : : : e1e0 : : : e�s. If the �rst suhelement is ej�s, we obtain a solution to (3). Conversely, every solution to (3) yields aunique multiset fe1; : : : ; etg, beause j < s+ j for 1 � j � t.[A similar orrespondene was proposed by E. Catalan: If 0 � e1 � � � � � et � s, letf1; : : : ; tg = fe1; : : : ; etg [ fs+ j j 1 � j < t and ej = ej+1g:See M�emoires de la So. roy. des Sienes de Li�ege (2) 12 (1885), M�elanges Math., 3.℄2. Start at the bottom left orner; then go up for eah 0, go right for eah 1. Theresult is .3. In this algorithm, variable r is the least positive index suh that qr > 0.F1. [Initialize.℄ Set qj  0 for 1 � j � t, and q0  s. (We assume that st > 0.)F2. [Visit.℄ Visit the omposition qt : : : q0. Go to F4 if q0 = 0.F3. [Easy ase.℄ Set q0  q0 � 1, r  1, and go to F5.F4. [Triky ase.℄ Terminate if r = t. Otherwise set q0  qr�1, qr  0, r  r+1.F5. [Inrease qr.℄ Set qr  qr + 1 and return to F2.[See CACM 11 (1968), 430; 12 (1969), 187. The task of generating suh ompositionsin dereasing lexiographi order is more diÆult.℄4. We an reverse the roles of 0 and 1 in (14), so that 0qt10qt�11 : : : 10q110q0 =1rs01rs�10 : : : 01r101r0 . This gives 01100102102104100100100100100101100101100 =10012010011010011010010010016012011. Lexiographi order of an�1 : : : a1a0 orre-sponds to lexiographi order of rs : : : r1r0.Inidentally, there's also a multiset onnetion: fdt; : : : ; d1g = frs � s; : : : ; r0 � 0g.For example, f10; 10; 8; 6; 2; 2; 2; 2; 2; 2; 1; 1; 0g = f0 � 11; 2 � 10; 0 � 9; 1 � 8; 0 � 7; 1 � 6; 0 � 5;0 � 4; 0 � 3; 6 � 2; 2 � 1; 1 � 0g.5. (a) Set xj = j�b(j�1)=2 in eah t-ombination of n+bt=2. (b) Set xj = j+j+1in eah t-ombination of n� t� 2.(A similar approah �nds all solutions (xt; : : : ; x1) to the inequalities xj+1 � xj+Æjfor 0 � j � t, given the values of xt+1, (Æt; : : : ; Æ1), and x0.)6. Assume that t > 0. We get to T3 when 1 > 0; to T5 when 2 = 1+1 > 1; to T4for 2 � j � t+1 when j = 1+j�1 � j. So the ounts are: T1, 1; T2, �nt�; T3, �n�1t �;T4, �n�2t�1�+ �n�2t�2�+ � � �+ �n�t�10 � = �n�1t�1�; T5, �n�2t�1�; T6, �n�1t�1�+ �n�2t�1�� 1.7. A proedure slightly simpler than Algorithm T suÆes: Assume that s < n.S1. [Initialize.℄ Set bj  j + n� s� 1 for 1 � j � s; then set j  1.S2. [Visit.℄ Visit the ombination bs : : : b2b1. Terminate if j > s.S3. [Derease bj .℄ Set bj  bj � 1. If bj < j, set j  j + 1 and return to S2.S4. [Reset bj�1 : : : b1.℄ While j > 1, set bj�1  bj � 1, j  j� 1, and repeat untilj = 1. Go to S2.
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7.2.1.3 ANSWERS TO EXERCISES 37(See S. Dvo�r�ak, Comp. J. 33 (1990), 188. Notie that if xk = n � bk for 1 � k � s,this algorithm runs through all ombinations xs : : : x2x1 of f1; 2; : : : ; ng with 1 � xs <� � � < x2 < x1 � n, in inreasing lexiographi order.)8. A1. [Initialize.℄ Set an : : : a0  0s+11t, q  t, r  0. (We assume that 0 < t < n.)A2. [Visit.℄ Visit the ombination an�1 : : : a1a0. Go to A4 if q = 0.A3. [Replae : : : 01q by : : : 101q�1.℄ Set aq  1, aq�1  0, q  q � 1; then ifq = 0, set r  1. Return to A2.A4. [Shift blok of 1s.℄ Set ar  0 and r  r + 1. Then if ar = 1, set aq  1,q  q + 1, and repeat step A4.A5. [Carry to left.℄ Terminate if r = n; otherwise set ar  1.A6. [Odd?℄ If q > 0, set r  0. Return to A2.In step A2, q and r point respetively to the rightmost 0 and 1 in an�1 : : : a0. StepsA1, : : : , A6 are exeuted with frequeny 1, �nt�, �n�1t�1�, �nt�� 1, �n�1t �, �n�1t �� 1.9. (a) The �rst �n�1t � strings begin with 0 and have 2A(s�1)t bit hanges; the other�n�1t�1� begin with 1 and have 2As(t�1). And �(01t0s�1 � 10s1t�1) = 2min(s; t).(b) Solution 1 (diret): Let Bst = Ast +min(s; t) + 1. ThenBst = B(s�1)t +Bs(t�1) + [s= t℄ when st > 0; Bst = 1 when st = 0:Consequently Bst = Pmin(s;t)k=0 �s+t�2ks�k �. If s � t this is � Psk=0 �s+t�ks�k � = �s+t+1s � =�s+ts � s+t+1t+1 < 2�s+tt �.Solution 2 (indiret): The algorithm in answer 8 makes 2(x+ y) bit hanges whensteps (A3;A4) are exeuted (x; y) times. Thus Ast � �n�1t�1�+ �nt�� 1 < 2�nt�.[The omment in answer 7.2.1.1{3 therefore applies to ombinations as well.℄10. Eah senario orresponds to a (4; 4)-ombination b4b3b2b1 or 4321 in whihA wins games f8�b4; 8�b3; 8�b2; 8�b1g and N wins games f8�4; 8�3; 8�2; 8�1g,beause we an assume that the losing team wins the remaining games in a series of 8.(Equivalently, we an generate all permutations of fA;A;A;A;N;N;N;Ng and omitthe trailing run of As or Ns.) The Amerian League wins if and only if b1 6= 0, if andonly if 1 = 0. The formula �44 � + �33 � + �22 � + �11 � assigns a unique integer between0 and 69 to eah senario.For example, ANANAA () a7 : : : a1a0 = 01010011 () b4b3b2b1 = 7532 ()4321 = 6410, and this is the senario of rank �64� + �43� + �12� + �01� = 19 inlexiographi order. (Notie that the term �jj � will be zero if and only if it orrespondsto a trailing N.)11. AAAA (9 times), NNNN (8), and ANAAA (7) were most ommon. Exatly 27of the 70 failed to our, inluding all four beginning with NNNA. (We disregard thegames that were tied beause of darkness, in 1907, 1912, and 1922. The ase ANNAAAshould perhaps be exluded too, beause it ourred only in 1920 as part of ANNAAAAin a best-of-nine series. The senario NNAAANN ourred for the �rst time in 2001.)12. (a) Let Vj be the subspae fan�1 : : : a0 2 V j ak = 0 for 0 � k < jg, so thatf0 : : : 0g = Vn � Vn�1 � � � � � V0 = V . Then f1; : : : ; tg = f j V 6= V+1g, and �k isthe unique element an�1 : : : a0 of V with aj = [j= k ℄ for 1 � j � t.Inidentally, the t � n matrix orresponding to a anonial basis is said to be inredued row-ehelon form. It an be found by a standard \triangulation" algorithm(see exerise 4.6.1{19 and Algorithm 4.6.2N).
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38 ANSWERS TO EXERCISES 7.2.1.3(b) The 2-nomial oeÆient �nt�2 = 2t�n�1t �2 + �n�1t�1�2 of exerise 1.2.6{58 has theright properties, beause 2t�n�1t �2 binary vetor spaes have t < n�1 and �n�1t�1�2 havet = n� 1. [In general the number of anonial bases with r asterisks is the number ofpartitions of r into at most t parts, with no part exeeding n � t, and this is [zr℄ �nt�zby Eq. 7.2.1.4{(51). See D. E. Knuth, J. Combinatorial Theory 10 (1971), 178{180.℄() The following algorithm assumes that n > t > 0 and that a(t+1)j = 0 fort � j � n.V1. [Initialize.℄ Set akj  [j= k � 1℄ for 1 � k � t and 0 � j < n. Also set q  t,r  0.V2. [Visit.℄ (At this point we have ak(k�1) = 1 for 1 � k � q, a(q+1)q = 0, anda1r = 1.) Visit the anonial basis (a1(n�1) : : : a11a10; : : : ; at(n�1) : : : at1at0).Go to V4 if q > 0.V3. [Find blok of 1s.℄ Set q  1, 2, : : : , until a(q+1)(q+r) = 0. Terminate ifq + r = n.V4. [Add 1 to olumn q+r.℄ Set k  1. If ak(q+r) = 1, set ak(q+r)  0, k  k+1,and repeat until ak(q+r) = 0. Then if k � q, set ak(q+r)  1; otherwise setaq(q+r)  1, aq(q+r�1)  0, q  q � 1.V5. [Shift blok right.℄ If q = 0, set r  r+1. Otherwise, if r > 0, set ak(k�1)  1and ak(r+k�1)  0 for 1 � k � q, then set r  0. Go to V2.Step V2 �nds q > 0 with probability 1 � (2n�t � 1)=(2n � 1) � 1 � 2�t, so we ouldsave time by treating this ase separately.(d) Sine 999999 = 4�84�2+16�74�2+5�63�2+5�53�2+8�43�2+0�32�2+4�22�2+1�11�2+2�01�2, the millionth output has binary olumns 4, 16/2, 5, 5, 8/2, 0, 4/2, 1, 2/2, namely�1 = 0 0 1 1 0 0 0 1 1;�2 = 0 0 0 0 0 0 1 0 0;�3 = 1 0 1 1 1 0 0 0 0;�4 = 0 1 0 0 0 0 0 0 0:[Referene: E. Calabi and H. S. Wilf, J. Combinatorial Theory A22 (1977), 107{109.℄13. Let n = s + t. There are � s�1d(r�1)=2e�� t�1b(r�1)=2� on�gurations beginning with 0and � s�1b(r�1)=2�� t�1d(r�1)=2e� beginning with 1, beause an Ising on�guration that beginswith 0 orresponds to a omposition of s 0s into d(r+1)=2e parts and a omposition oft 1s into b(r + 1)=2 parts. We an generate all suh pairs of ompositions and weavethem into on�gurations. [See E. Ising, Zeitshrift f�ur Physik 31 (1925), 253{258;J. M. S. Sim~oes Pereira, CACM 12 (1969), 562.℄14. Start with l[j℄ j � 1 and r[j � 1℄ j for 1 � j � n; l[0℄ n, r[n℄ 0. To getthe next ombination, assuming that t > 0, set p s if l[0℄ > s, otherwise p r[n℄�1.Terminate if p � 0; otherwise set q  r[p℄, l[q℄ l[p℄, and r[l[p℄℄ q. Then if r[q℄ > sand p < s, set r[p℄  r[n℄, l[r[n℄℄  p, r[s℄  r[q℄, l[r[q℄℄  s, r[n℄  0, l[0℄  n;otherwise set r[p℄ r[q℄, l[r[q℄℄ p. Finally set r[q℄ p and l[p℄ q.[See Korsh and Lipshutz, J. Algorithms 25 (1997), 321{335, where the idea isextended to a loopless algorithm for multiset permutations. Caution: This exerise,like exerise 7.2.1.1{16, is more aademi than pratial, beause the routine that visitsthe linked list might need a loop that nulli�es any advantage of loopless generation.℄
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7.2.1.3 ANSWERS TO EXERCISES 3915. (The stated fat is true beause lexiographi order of t : : : 1 orresponds tolexiographi order of an�1 : : : a0, whih is reverse lexiographi order of the omple-mentary sequene 1 : : : 1 � an�1 : : : a0.) By Theorem L, the ombination t : : : 1 isvisited before exatly �bss �+ � � �+�b22 �+�b11 � others have been visited, and we must have� bss �+ � � �+ � b11 �+ � tt �+ � � �+ � 11 � = �s+ tt �� 1:This general identity an be writtenn�1Xj=0 xj� jx0 + � � �+ xj �+ n�1Xj=0 �xj� j�x0 + � � �+ �xj � = � nx0 + � � �+ xn�1�� 1when eah xj is 0 or 1, and �xj = 1� xj ; it follows also from the equationxn� nx0 + � � �+ xn�+ �xn� n�x0 + � � �+ �xn� = � n+ 1x0 + � � �+ xn�� � nx0 + � � �+ xn�1�:16. Sine 999999 = �14142 �+ �10081 � = �1823 �+ �1532 �+ �1111 � = �714 �+ �563 �+ �362 �+ �141 � =�435 � + �324 � + �213 � + �152 � + �61�, the answers are (a) 1414 1008; (b) 182 153 111; () 7156 36 14; (d) 43 32 21 15 6; (e) 1000000 999999 : : : 2 0.17. By Theorem L, nt is the largest integer suh that N � �ntt �; the remaining termsare the degree-(t � 1) representation of N � �ntt �.A simple sequential method for t > 1 starts with x = 1,  = t, and sets  + 1,x  x=( � t) zero or more times until x > N ; then we omplete the �rst phase bysetting x  x( � t)=,    � 1, at whih point we have x = �t� � N < �+1t �. Setnt  , N  N�x; terminate with n1  N if t = 2; otherwise set x xt=, t t�1,   � 1; while x > N set x  x( � t)=,    � 1; repeat. This method requiresO(n) arithmeti operations if N < �nt�, so it is suitable unless t is small and N is large.When t = 2, exerise 1.2.4{41 tells us that n2 = bp2N + 2 + 12 . In general,nt is bx where x is the largest root of xt = t!N ; this root an be approximatedby reverting the series y = (xt)1=t = x � 12 (t � 1) + 124 (t2 � 1)x�1 + � � � to get x =y+ 12 (t� 1)+ 124 (t2� 1)=y+O(y�3). Setting y = (t!N)1=t in this formula gives a goodapproximation, after whih we an hek that �bxt � � N < �bx+1t � or make a �naladjustment. [See A. S. Fraenkel and M. Mor, Comp. J. 26 (1983), 336{343.℄18. A omplete binary tree of 2n � 1 nodes is obtained, with an extra node at thetop, like the \tree of losers" in replaement seletion sorting (Fig. 63 in Setion 5.4.1).Therefore expliit links aren't neessary; the right hild of node k is node 2k + 1, andthe left sibling is node 2k, for 1 � k < 2n�1.This representation of a binomial tree has the urious property that node k =(0a1�)2 orresponds to the ombination whose binary string is 0a1�R.19. It is post(1000000), where post(n) = 2k + post(n� 2k + 1) if 2k � n < 2k+1, andpost(0) = 0. So it is 11110100001001000100.20. f(z) = (1 + zwn�1) : : : (1 + zw1)=(1� z), g(z) = (1 + zw0)f(z), h(z) = zw0f(z).21. The rank of t : : : 21 is �t+1t ��1 minus the rank of t�1 : : : 21. [See H. L�uneburg,Abh. Math. Sem. Hamburg 52 (1982), 208{227.℄22. Sine 999999 = �14152 � � �4061 � = �1833 � � �982 � + �211 � = �724 � � �573 � + �322 � � �271 � =�445 � � �404 � + �333 � � �132 � + �31�, the answers are (a) 1414 405; (b) 182 97 21; () 71 5631 26; (d) 43 39 32 12 3; (e) 1000000 999999 999998 999996 : : : 0.
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40 ANSWERS TO EXERCISES 7.2.1.323. There are �n�rt�r� ombinations with j > r, for r = 1, 2, : : : , t. (If r = 1 we have2 = 1+1; if r = 2 we have 1 = 0, 2 = 1; if r = 3 we have 1 = 0, 2 = 1, 4 = 3+1;et.) Thus the mean is (�nt�+�n�1t�1�+� � �+�n�t0 �)/�nt� = �n+1t �/�nt� = (n+1)=(n+1�t).The average running time per step is approximately proportional to this quantity; thusthe algorithm is quite fast when t is small, but slow if t is near n.24. In fat jk � 2 � jk+1 � jk + 1 when jk � t (modulo 2) and jk � 1 � jk+1 � jk + 2when jk 6� t, beause R5 is performed only when i = i� 1 for 1 � i < j.Thus we ould say, \If j � 4, set j  j�1�[j odd℄ and go to R5" at the end of R2,if t is odd; \If j � 3, set j  j � 1� [j even℄ and go to R5" if t is even. The algorithmwill then be loopless, sine R4 and R5 will be performed at most twie per visit.25. Assume that N > N 0 and N � N 0 is minimum; furthermore let t and t beminimum, subjet to those assumptions. Then t > 0t.If there is an element x =2 C [ C 0 with 0 � x < t, map eah t-ombination ofC [C 0 by hanging j 7! j�1 for j > x; or, if there is an element x 2 C \C 0, map eaht-ombination that ontains x into a (t � 1)-ombination by omitting x and hangingj 7! x � j for j < x. In either ase the mapping preserves alternating lexiographiorder; hene N � N 0 must exeed the number of ombinations between the imagesof C and C 0. But t is minimum, so no suh x an exist. Consequently t = m andt = 2m� 1.Now if 0m < m � 1, we ould derease N �N 0 by inreasing 0m. Therefore 0m =2m�2, and the problem has been redued to �nding themaximum of rank(m�1 : : : 1)�rank(0m�1 : : : 01), where rank is alulated as in (30).Let f(s; t) = max(rank(bs : : : b1)� rank(t : : : 1)) over all fbs; : : : ; b1; t : : : ; 1g =f0; : : : ; s+ t� 1g. Then f(s; t) satis�es the urious reurrenef(s; 0) = f(0; t) = 0; f(1; t) = t;f(s; t) = �s+t�1s �+max(f(t� 1; s� 1); f(s� 2; t)) if st > 0 and s > 1:When s+ t = 2u+ 2 the solution turns out to bef(s; t) = �2u+ 1t� 1 �+ u�rXj=1�2u+ 1� 2jr �+ r�1Xj=0�2j + 1j �; r = min(s� 2; t� 1);with the maximum ourring at f(t�1; s�1) when s � t and at f(s�2; t) when s � t+2.Therefore the minimum N �N 0 ours forC = f2m� 1g [ f2m� 2� x j 1 � x � 2m� 2; xmod 4 � 1g;C 0 = f2m� 2g [ f2m� 2� x j 1 � x � 2m� 2; xmod 4 � 2g;and it equals �2m�1m�1 ��Pm�2k=0 �2k+1k � = 1 +Pm�1k=1 � 2kk�1�. [See A. J. van Zanten, IEEETrans. IT-37 (1991), 1229{1233.℄26. (a) Yes: The �rst is 0n�dt=2e1tmod 22bt=2 and the last is 2bt=21tmod 20n�dt=2e;transitions are substrings of the forms 02a1 $ 12a0, 02a2 $ 12a1, 10a1 $ 20a0,10a2$ 20a1.(b) No: If s = 0 there is a big jump from 02t0r�1 to 20r2t�1.27. The following proedure extrats all ombinations 1 : : : k of �n that have weight� t: Begin with k  0 and 0  n. Visit 1 : : : k. If k is even and k = 0, setk  k � 1; if k is even and k > 0, set k  k � 1 if k = t, otherwise k  k + 1and k  0. On the other hand if k is odd and k + 1 = k�1, set k  k � 1 and
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7.2.1.3 ANSWERS TO EXERCISES 41k  k+1 (but terminate if k = 0); if k is odd and k + 1 < k�1, set k  k + 1 ifk = t, otherwise k  k + 1, k  k�1, k�1  k + 1. Repeat.(This loopless algorithm redues to that of exerise 7.2.1.1{12(b) when t = n, withslight hanges of notation.)28. True. Bit strings an�1 : : : a0 = �� and a0n�1 : : : a00 = ��0 orrespond to index lists(bs : : : b1 = ��, t : : : 1 = � ) and (b0s : : : b01 = ��0, 0t : : : 01 = � 0) suh that everythingbetween �� and ��0 begins with � if and only if everything between �� and ��0 beginswith � and everything between � and � 0 begins with �. For example, if n = 10, thepre�x � = 01101 orresponds to pre�xes � = 96 and � = 875.(But just having t : : : 1 in genlex order is a muh weaker ondition. For example,every suh sequene is genlex when t = 1.)29. (a) -k0l+1 or -k0l+1+�m or �k, for k; l;m � 0.(b) No; the suessor is always smaller in balaned ternary notation.() For all � and all k; l;m � 0 we have �0-k+10l+�m ! �-+k0l+1-�m and�+-k0l+1+�m ! �0+k+10l-�m; also �0-k+10l ! �-+k0l+1 and �+-k0l+1 ! �0+k+10l.(d) Let the jth sign of �i be (�1)aij , and let it be in position bij . Then we have(�1)aij+bi(j�1) = (�1)a(i+1)j+b(i+1)(j�1) for 0 � i < k and 1 � j � t, if we let bi0 = 0.(e) By parts (a), (b), and (), � belongs to some hain �0 ! � � � ! �k, where �kis �nal (has no suessor) and �0 is initial (has no predeessor). By part (d), everysuh hain has at most �s+tt � elements. But there are 2s �nal strings, by (a), and thereare 2s�s+tt � strings with s signs and t zeros; so k must be �s+tt �� 1.Referene: SICOMP 2 (1973), 128{133.30. Assume that t > 0. Initial strings are the negatives of �nal strings. Let �j be theinitial string 0t-�j for 0 � j < 2s�1, where the kth harater of �j for 1 � k < s is thesign of (�1)ak when j is the binary number (as�1 : : : a1)2; thus �0 = 0t-++ : : : +, �1 =0t--+ : : : +, : : : , �2s�1�1 = 0t--- : : : -. Let �j be the �nal string obtained by inserting-0t after the �rst (possibly empty) run of minus signs in �j ; thus �0 = -0t++ : : : +,�1 = --0t+ : : : +, : : : , �2s�1�1 = -- : : : -0t. We also let �2s�1 = �0 and �2s�1 = �0.Then we an prove by indution that the hain beginning with �j ends with �j when tis even, with �j�1 when t is odd, for 1 � j � 2s�1. Therefore the hain beginning with��j ends with ��j or ��j+1.Let Aj(s; t) be the sequene of (s; t)-ombinations derived by mapping the hainthat starts with �j , and let Bj(s; t) be the analogous sequene derived from ��j . Then,for 1 � j � 2s�1, the reverse sequene Aj(s; t)R is Bj(s; t) when t is even, Bj�1(s; t)when t is odd. The orresponding reurrenes when st > 0 areAj(s; t) = ( 1Aj(s; t� 1); 0Ab(2s�1�1�j)=2(s� 1; t)R; if j + t is even;1Aj(s; t� 1); 0Abj=2(s� 1; t); if j + t is odd;and when st > 0 all 2s�1 of these sequenes are distint.Chase's sequene Cst is Ab2s=3(s; t), and bCst is Ab2s�1=3(s; t). Inidentally, thehomogeneous sequene Kst of (31) is A2s�1�[t even℄(s; t)R.31. (a) 2(s+tt )�1 solves the reurrene f(s; t) = 2f(s � 1; t)f(s; t � 1) when f(s; 0) =f(0; t) = 1. (b) Now f(s; t) = (s+ 1)!f(s; t� 1) : : : f(0; t� 1) has the solution(s+ 1)!ts!(t2)(s� 1)!(t+13 ) : : : 2!(s+t�2s ) = sYr=1(r + 1)!(s+t�1�rt�2 )+[r=s℄:
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42 ANSWERS TO EXERCISES 7.2.1.332. (a) No simple formula seems to exist, but the listings an be ounted for small sand t by systematially omputing the number of genlex paths that run through allweight-t strings from a given starting point to a given ending point via revolving-doormoves. The totals for s+ t � 6 are 11 11 2 11 4 4 11 8 20 8 11 16 160 160 16 11 32 2264 17152 2264 32 1and f(4; 4) = 95;304;112;865;280; f(5; 5) � 5:92646� 1048. [This lass of ombinationgenerators was �rst studied by G. Ehrlih, JACM 20 (1973), 500{513, but he did notattempt to enumerate them.℄(b) By extending the proof of Theorem N, one an show that all suh listings ortheir reversals must run from 1t0s to 0a1t0s�a for some a, 1 � a � s. Moreover, thenumber nsta of possibilities, given s, t, and a with st > 0, satis�es n1t1 = 1 andnsta = �ns(t�1)1n(s�1)t(a�1); if a > 1;ns(t�1)2n(s�1)t1 + � � �+ ns(t�1)sn(s�1)t(s�1); if a = 1 < s.This reurrene has the remarkable solution nsta = 2m(s;t;a), wherem(s; t; a) = (�s+t�3t �+ �s+t�5t�2 �+ � � �+ �s�12 �; if t is even;�s+t�3t �+ �s+t�5t�2 �+ � � �+ �s3�+ s� a� [a< s℄; if t is odd.33. Consider �rst the ase t = 1: The number of near-perfet paths from i to j > i isf(j� i� [i> 0℄� [j <n� 1℄), wherePj f(j)zj = 1=(1� z� z3). (By oinidene, thesame sequene f(j) arises in Caron's polyphase merge on 6 tapes, Table 5.4.2{2.) Thesum over 0 � i < j < n is 3f(n) + f(n�1)+ f(n�2)+ 2� n; and we must double this,to over ases with j > i.When t > 1 we an onstrut �nt���nt� matries that tell how many genlex listingsbegin and end with partiular ombinations. The entries of these matries are sums ofproduts of matries for the ase t � 1, summed over all paths of the type onsideredfor t = 1. The totals for s+ t � 6 turn out to be11 11 2 11 6 2 11 12 10 2 11 20 44 10 2 11 34 238 68 10 2 1
11 11 2 11 2 0 11 2 2 0 11 2 0 0 0 11 2 6 0 0 0 1where the right-hand triangle shows the number of yles, g(s; t). Further values inludef(4; 4) = 17736; f(5; 5) = 9;900;888;879;984; g(4; 4) = 96; g(5; 5) = 30;961;456;320.There are exatly 10 suh shemes when s = 2 and n � 4. For example, whenn = 7 they run from 43210 to 65431 or 65432, or from 54321 to 65420 or 65430 or65432, or the reverse.
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7.2.1.3 ANSWERS TO EXERCISES 4334. The minimum an be omputed as in the previous answer, but using min-plusmatrix multipliation ij = mink(aik + bkj) instead of ordinary matrix multipliationij =Pk aikbkj . (When s = t = 5, the genlex path in Fig. 26(e) with only 49 imperfettransitions is essentially unique. There is a genlex yle for s = t = 5 that has only 55imperfetions.)35. From the reurrenes (35) we have ast = bs(t�1) + [s> 1℄[t> 0℄ + a(s�1)t, bst =as(t�1) + a(s�1)t; onsequently ast = bst + [s> 1℄[t odd℄ and ast = as(t�1) + a(s�1)t +[s> 1℄[t odd℄. The solution isast = t=2Xk=0�s+ t� 2� 2ks� 2 �� [s> 1℄[t even℄;this sum is approximately s=(s+ 2t) times �s+tt �.36. Consider the binary tree with root node (s; t) and with reursively de�ned subtreesrooted at (s�1; t) and (s; t�1) whenever st > 0; the node (s; t) is a leaf if st = 0. Thenthe subtree rooted at (s; t) has �s+tt � leaves, orresponding to all (s; t)-ombinationsan�1 : : : a1a0. Nodes on level l orrespond to pre�xes an�1 : : : an�l, and leaves onlevel l are ombinations with r = n� l.Any genlex algorithm for ombinations an�1 : : : a1a0 orresponds to preorder tra-versal of suh a tree, after the hildren of the �s+tt � � 1 branh nodes have beenordered in any desired way; that, in fat, is why there are 2(s+tt )�1 suh genlex shemes(exerise 31(a)). And the operation j  j + 1 is performed exatly one per branhnode, namely after both hildren have been proessed.Inidentally, exerise 7.2.1.2{6(a) implies that the average value of r is s=(t+1)+t=(s+1), whih an be 
(n); thus the extra time needed to keep trak of r is worthwhile.37. (a) In the lexiographi ase we needn't maintain the wj table, sine aj is ativefor j � r if and only if aj = 0. After setting aj  1 and aj�1  0 there are two asesto onsider if j > 1: If r = j, set r  j � 1; otherwise set aj�2 : : : a0  0r1j�1�r andr  j � 1� r (or r  j if r was j � 1).(b) Now the transitions to be handled when j > 1 are to hange aj : : : a0 as follows:01r ! 1101r�2, 010r ! 10r+1, 010a1r ! 110a+11r�1, 10r ! 010r�1, 110r ! 010r�11,10a1r ! 0a1r+1; these six ases are easily distinguished. The value of r should hangeappropriately.() Again the ase j = 1 is trivial. Otherwise 01a0r ! 101a�10r; 0a1r ! 10a1r�1;101a0r ! 01a+10r; 10a1r ! 0a1r+1; and there is also an ambiguous ase, whih anour only if an�1 : : : aj+1 ontains at least one 0: Let k > j be minimal with ak = 0.Then 10r ! 010r�1 if k is odd, 10r ! 0r1 if k is even.38. The same algorithm works, exept that (i) step C1 sets an�1 : : : a0  01t0s�1 ifn is odd or s = 1, an�1 : : : a0  001t0s�2 if n is even and s > 1, with an appropriatevalue of r; (ii) step C3 interhanges the roles of even and odd; (iii) step C5 goes to C4also if j = 1.39. In general, start with r  0, j  s + t � 1, and repeat the following steps untilst = 0:r  r + [wj =0℄� js� aj �; s s� [aj =0℄; t t� [aj =1℄; j  j � 1:Then r is the rank of an�1 : : : a1a0. So the rank of 11001001000011111101101010 is�2312�+�2211�+�219 �+�178 �+�167 �+�145 �+�133 �+�123 �+�113 �+�103 �+�93�+�83�+�43�+�31�+�10� =2390131.
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44 ANSWERS TO EXERCISES 7.2.1.340. We start with N  999999, v  0, and repeat the following steps until st = 0: Ifv = 0, set t  t � 1 and as+t  1 if N < �s+t�1s �, otherwise set N  N � �s+t�1s �,v  (s + t) mod 2, s  s � 1, as+t  0. If v = 1, set v  (s + t) mod 2, s  s � 1,and as+t  0 if N < �s+t�1t �, otherwise set N  N � �s+t�1t �, t  t � 1, as+t  1.Finally if s = 0, set at�1 : : : a0  1t; if t = 0, set as�1 : : : a0  0s. The answer isa25 : : : a0 = 11101001111110101001000001.41. Let (0), : : : , (2n � 1) = Cn where C2n = 0C2n�1, 1C2n�1; C2n+1 = 0C2n,1 bC2n; bC2n = 1C2n�1, 0 bC2n�1; bC2n+1 = 1 bC2n, 0 bC2n; C0 = bC0 = �. Then aj � bj =bj+1^(bj+2_(bj+3^(bj+4_� � � ))) if j is even, bj+1_(bj+2^(bj+3_(bj+4^� � � ))) if j is odd.Curiously we also have the inverse relation (( : : : a4�a3a2�a1a0)2) = ( : : : b4�b3b2�b1b0)2.42. Equation (40) shows that the left ontext an�1 : : : al+1 does not a�et the behaviorof the algorithm on al�1 : : : a0 if al = 0 and l > r. Therefore we an analyzeAlgorithm C by ounting ombinations that end with ertain bit patterns, and itfollows that the number of times eah operation is performed an be represented as[wszt℄ p(w; z)=(1� w2)2(1� z2)2(1� w � z) for an appropriate polynomial p(w; z).For example, the algorithm goes from C5 to C4 one for eah ombination that endswith 012a+1012b+1 or has the form 1a+1012b+1, for integers a; b � 0; the orrespondinggenerating funtions are w2z2=(1� z2)2(1� w � z) and w(z2 + z3)=(1� z2)2.Here are the polynomials p(w; z) for key operations. Let W = 1�w2, Z = 1� z2.C3! C4: wzW (1+wz)(1�w�z2);C3! C5: wzW (w+z)(1�wz�z2);C3! C6: w2z2W (w+z);C3! C7: w2zW (1+wz);C4(j = 1): wzW 2Z(1�w�z2);C4(r j�1): w3zWZ(1�w�z2);C4(r j): wz2W 2(1+z�2wz�z2�z3);C5! C4: wz2W 2(1�wz�z2);C5(r j�2): w4zWZ(1�wz�z2);

C5(r 1): w2zW 2Z(1�wz�z2);C5(r j�1): w2z3W 2(1�wz�z2);C6(j = 1): w2zW 2Z;C6(r j�1): w2z3W 2;C6(r j): w3z2WZ;C7! C6: w2zW 2;C7(r j): w4zWZ;C7(r j�2): w3z2W 2:The asymptoti value is �s+tt �(p(1 � x; x)=(2x � x2)2(1 � x2)2 + O(n�1)), for �xed0 < x < 1, if t = xn + O(1) as n ! 1. Thus we �nd, for example, that the four-waybranhing in step C3 takes plae with relative frequenies x+x2�x3 : 1 : x : 1+x�x2.Inidentally, the number of ases with j odd exeeds the number of ases withj even by Xk;l�1�s+ t� 2k � 2ls� 2k �[2k + 2l� s+ t℄ + [s odd℄[t odd℄;in any genlex sheme that uses (39). This quantity has the interesting generatingfuntion wz=(1 + w)(1 + z)(1� w � z).43. The identity is true for all nonnegative integers x, exept when x = 1.44. In fat, Ct(n)� 1 = bCt(n� 1)R, and bCt(n)� 1 = Ct(n� 1)R. (Hene Ct(n)� 2 =Ct(n� 2), et.)45. In the following algorithm, r is the least subsript with r � r.CC1. [Initialize.℄ Set j  n � t � 1 + j and zj  0 for 1 � j � t + 1. Also setr  1. (We assume that 0 < t < n.)CC2. [Visit.℄ Visit the ombination t : : : 21. Then set j  r.CC3. [Branh.℄ Go to CC5 if zj 6= 0.
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7.2.1.3 ANSWERS TO EXERCISES 45CC4. [Try to derease j .℄ Set x  j + (j mod 2) � 2. If x � j, set j  x,r  1; otherwise if j = j, set j  j � 1, zj  j+1 � ((j+1 + 1) mod 2),r  j; otherwise if j < j, set j  j, zj  j+1 � ((j+1 + 1) mod 2),r  max(1; j � 1); otherwise set j  x, r  j. Return to CC2.CC5. [Try to inrease j .℄ Set x  j + 2. If x < zj , set j  x; otherwise ifx = zj and zj+1 6= 0, set j  x � (j+1 mod 2); otherwise set zj  0,j  j + 1, and go to CC3 (but terminate if j > t). If 1 > 0, set r  1;otherwise set r  j � 1. Return to CC2.46. Equation (40) implies that uk = (bj+k+1) mod 2 when j is minimal with bj > k.Then (37) and (38) yield the following algorithm, where we assume for onvenienethat 3 � s < n.CB1. [Initialize.℄ Set bj  j � 1 for 1 � j � s; also set z  s+1, bz  1. (Whensubsequent steps examine the value of z, it is the smallest index suh thatbz 6= z � 1.)CB2. [Visit.℄ Visit the dual ombination bs : : : b2b1.CB3. [Branh.℄ If b2 is odd: Go to CB4 if b2 6= b1+1, otherwise to CB5 if b1 > 0,otherwise to CB6 if bz is odd. Go to CB9 if b2 is even and b1 > 0. Otherwisego to CB8 if bz+1 = bz + 1, otherwise to CB7.CB4. [Inrease b1.℄ Set b1  b1 + 1 and return to CB2.CB5. [Slide b1 and b2.℄ If b3 is odd, set b1  b1 + 1 and b2  b2 + 1; otherwiseset b1  b1 � 1, b2  b2 � 1, z  3. Go to CB2.CB6. [Slide left.℄ If z is odd, set z  z � 2, bz+1  z + 1, bz  z; otherwise setz  z � 1, bz  z. Go to CB2.CB7. [Slide bz.℄ If bz+1 is odd, set bz  bz +1 and terminate if bz � n; otherwiseset bz  bz � 1, then if bz < z set z  z + 1. To CB2.CB8. [Slide bz and bz+1.℄ If bz+2 is odd, set bz  bz+1, bz+1  bz + 1, andterminate if bz+1 � n. Otherwise set bz+1  bz, bz  bz � 1, then if bz < zset z  z + 2. To CB2.CB9. [Derease b1.℄ Set b1  b1 � 1, z  2, and return to CB2.Notie that this algorithm is loopless. Chase gave a similar proedure for the sequenebCRst in Cong. Num. 69 (1989), 233{237. It is truly amazing that this algorithm de�nespreisely the omplements of the indies t : : : 1 produed by the algorithm in theprevious exerise.47. We an, for example, use Algorithm C and its reverse (exerise 38), with wjreplaed by a d-bit number whose bits represent ativity at di�erent levels of thereursion. Separate pointers r0, r1, : : : , rd�1 are needed to keep trak of the r-valueson eah level. (Many other solutions are possible.)48. There are permutations �1, : : : , �M suh that the kth element of �j is �k�j"�k�1.And �k�j runs through all permutations of fs1 �1; : : : ; sd �dg as j varies from 0 to N�1.Historial note: The �rst publiation of a homogeneous revolving-door shemefor (s; t)-ombinations was by �Eva T�or�ok, Matematikai Lapok 19 (1968), 143{146,who was motivated by the generation of multiset permutations. Many authors havesubsequently relied on the homogeneity ondition for similar onstrutions, but thisexerise shows that homogeneity is not neessary.
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46 ANSWERS TO EXERCISES 7.2.1.349. We have limz!q(zkm+r � 1)=(zlm+r � 1) = 1 when 0 < r < m, and the limitis limz!q(kmzkm�1)=(lmzlm�1) = k=l when r = 0. So we an pair up fators of thenumerator Qn�k<a�n(za � 1) with fators of the denominator Q0<b�k(zb � 1) whena � b (modulo m).Notes: This formula was disovered by G. Olive, AMM 72 (1965), 619. In thespeial ase m = 2, q = �1, the seond fator vanishes only when n is even and k isodd. The formula �nk�q = � nn�k�q holds for all n � 0, but �bn=mbk=m� is not always equalto � bn=mb(n�k)=m�. We do, however, have bk=m+ b(n� k)=m = bn=m in the ase whennmodm � kmodm; otherwise the seond fator is zero.50. The stated oeÆient is zero when n1 modm+ � � �+ nt modm � m. Otherwise itequals � b(n1 + � � �+ nt)=mbn1=m; : : : ; bnt=m�� (n1 + � � �+ nt) modmn1 modm; : : : ; nt modm�q;by Eq. 1.2.6{(43); here eah upper index is the sum of the lower indies.51. All paths learly run between 000111 and 111000, sine those verties have de-gree 1. Fourteen total paths redue to four under the stated equivalenes. The pathin (50), whih is equivalent to itself under reetion-and-reversal, an be desribedby the delta sequene A = 3452132523414354123; the other three lasses are B =3452541453414512543, C = 3452541453252154123, D = 3452134145341432543. D. H.Lehmer found path C [AMM 72 (1965), Part II, 36{46℄; D is essentially the pathonstruted by Eades, Hikey, and Read.(Inidentally, perfet shemes aren't really rare, although they seem to be diÆultto onstrut systematially. The ase (s; t) = (3; 5) has 4,050,046 of them.)52. We may assume that eah sj is nonzero and that d > 1. Then the di�erenebetween permutations with an even and odd number of inversions is �b(s0+���+sd)=2bs0=2;:::;bsd=2� �2, by exerise 50, unless at least two of the multipliities sj are odd.Conversely, if at least two multipliities are odd, a general onstrution by G. Sta-howiak [SIAM J. Disrete Math. 5 (1992), 199{206℄ shows that a perfet shemeexists. Indeed, his onstrution applies to a variety of topologial sorting problems; inthe speial ase of multisets it gives a Hamiltonian yle in all ases with d > 1 ands0s1 odd, exept when d = 2, s0 = s1 = 1, and s2 is even.53. See AMM 72 (1965), Part II, 36{46.54. Assuming that st 6= 0, a Hamiltonian path exists if and only if s and t are notboth even; a Hamiltonian yle exists if and only if, in addition, (s 6= 2 and t 6= 2) orn = 5. [T. C. Enns, Disrete Math. 122 (1993), 153{165.℄55. [Solution by Aaron Williams.℄ The sequene 0s1t, Wst has the orret properties ifWst = 0W(s�1)t; 1Ws(t�1); 10s1t�1; for st > 0; W0t =Ws0 = ;:And there is an amazingly eÆient, loopless implementation: Assume that t > 0.W1. [Initialize.℄ Set n  s + t, aj  1 for 0 � j < t, and aj  0 for t � i � n.Also set j  k  t� 1. (This is triky, but it works.)W2. [Visit.℄ Visit the (s; t)-ombination an�1 : : : a1a0.W3. [Zero out aj .℄ Set aj  0 and j  j + 1.W4. [Easy ase?℄ If aj = 1, set ak  1, k  k + 1, and return to W2.W5. [Wrap around.℄ Terminate if j = n. Otherwise set aj  1. Then if k > 0,set ak  1, a0  0, j  1, and k  0. Return to W2.
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7.2.1.3 ANSWERS TO EXERCISES 47After the seond visit, j is the smallest index with ajaj�1 = 10, and k is smallest withak = 0. The easy ase ours exatly �s+t�1s ��1 times; and the ondition k = 0 oursin step W5 exatly �s+t�2t �+ Æt1 times. [To appear.℄56. [Disrete Math. 48 (1984), 163{171.℄ This problem is equivalent to the \middlelevels onjeture," whih states that there is a Gray path through all binary stringsof length 2t � 1 and weights ft � 1; tg. In fat, suh strings an almost ertainly begenerated by a delta sequene of the speial form �0�1 : : : �2t�2 where the elements of�k are those of �0 shifted by k, modulo 2t� 1. For example, when t = 3 we an startwith a5a4a3a2a1a0 = 000111 and repeatedly swap a0 $ aÆ , where Æ runs through theyle (4134 5245 1351 2412 3523). The middle levels onjeture is known to be true fort � 15 [see I. Shields and C. D. Savage, Cong. Num. 140 (1999), 161{178℄.57. Yes; there is a near-perfet genlex solution for all m, n, and t when n � m > t.One suh sheme, in bitstring notation, is 1A(m�t)(t�1)0n�m, 01A(m�t)(t�1)0n�m�1,: : : , 0n�m1A(m�t)(t�1), 0n�m+11A(m�1�t)(t�1), : : : , 0n�t1A0(t�1), using the sequenesAst of (35).58. Solve the previous problem with m and n redued by t � 1, then add j � 1 toeah j . (Case (a), whih is partiularly simple, was probably known to Czerny.)59. The generating funtion Gmnt(z) = P gmntkzk for the number gmntk of hordsreahable in k steps from 0n�t1t satis�esGmmt(z) = �mt �z andGm(n+1)t(z) = Gmnt(z)+ztn�(t�1)m�m�1t�1 �z , beause the latter term aounts for ases with t = n and 1 >n �m. A perfet sheme is possible only if jGmnt(�1)j � 1. But if n � m > t � 2,this ondition holds only when m = t + 1 or (n � t)t is odd, by (49). So there is noperfet solution when t = 4 and m > 5. (Many hords have only two neighbors whenn = t + 2, so one an easily rule out that ase. All ases with n � m > 5 and t = 3apparently do have perfet paths when n is even.)60. The following solution uses lexiographi order, taking are to ensure that the aver-age amount of omputation per visit is bounded. We may assume that stms : : :m0 6= 0and t � ms + � � �+m1 +m0.Q1. [Initialize.℄ Set qj  0 for s � j � 1, and x = t.Q2. [Distribute.℄ Set j  0. Then while x > mj , set qj  mj , x  x � mj ,j  j + 1, and repeat until x � mj . Finally set qj  x.Q3. [Visit.℄ Visit the bounded omposition qs + � � �+ q1 + q0.Q4. [Pik up the rightmost units.℄ If j = 0, set x  q0 � 1, j  1. Otherwise ifq0 = 0, set x qj � 1, qj  0, and j  j + 1. Otherwise go to Q7.Q5. [Full?℄ Terminate if j > s. Otherwise if qj = mj , set x  x +mj , qj  0,j  j + 1, and repeat this step.Q6. [Inrease qj .℄ Set qj  qj + 1. Then if x = 0, set q0  0 and return to Q3.(In that ase qj�1 = � � � = q0 = 0.) Otherwise go to Q2.Q7. [Inrease and derease.℄ (Now qi = mi for j > i � 0.) While qj = mj , setj  j + 1 and repeat until qj < mj (but terminate if j > s). Then setqj  qj + 1, j  j � 1, qj  qj � 1. If q0 = 0, set j  1. Return to Q3.For example, ifms = � � � = m0 = 9, the suessors of the omposition 3+9+9+7+0+0are 4+0+0+6+9+9, 4+0+0+7+8+9, 4+0+0+7+9+8, 4+0+0+8+7+9, : : : .61. Let Fs(t) = ; if t < 0 or t > ms + � � �+m0; otherwise let F0(t) = t, andFs(t) = 0+Fs�1(t); 1+Fs�1(t� 1)R; 2+Fs�1(t� 2); : : : ; ms+Fs�1(t�ms)Rms
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48 ANSWERS TO EXERCISES 7.2.1.3when s > 0. This sequene an be shown to have the required properties; it is, infat, equivalent to the ompositions de�ned by the homogeneous sequene Kst of (31)under the orrespondene of exerise 4, when restrited to the subsequene de�ned bythe bounds ms, : : : , m0. [See T. Walsh, J. Combinatorial Math. and CombinatorialComputing 33 (2000), 323{345, who has implemented it looplessly.℄62. (a) A 2� n ontingeny table with row sums r and 1 + � � �+ n � r is equivalentto solving r = a1 + � � �+ an with 0 � a1 � 1, : : : , 0 � an � n.(b) We an ompute it sequentially by setting aij  min(ri � ai1 � � � � � ai(j�1);j � a1j � � � � � a(i�1)j) for j = 1, : : : , n, for i = 1, : : : , m. Alternatively, if r1 � 1, seta11  r1, a12  � � �  a1n  0, and do the remaining rows with 1 dereased by r1; ifr1 > 1, set a11  1, a21  � � �  am1  0, and do the remaining olumns with r1dereased by 1. The seond approah shows that at most m+ n� 1 of the entries arenonzero. We an also write down the expliit formulaaij = max(0;min(ri; j ; r1 + � � �+ ri � 1 � � � � � j�1; 1 + � � �+ j � r1 � � � � � ri�1)):() The same matrix is obtained as in (b).(d) Reverse left and right in (b) and (); in both ases the answer isaij = max(0;min(ri; j ; ri+1 + � � �+ rm � 1 � � � � � j�1; 1 + � � �+ j � ri � � � � � rm)).(e) Here we hoose, say, row-wise order: Generate the �rst row just as for boundedompositions of r1, with bounds (1; : : : ; n); and for eah row (a11; : : : ; a1n), gen-erate the remaining rows reursively in the same way, but with the olumn sums(1 � a11; : : : ; n � a1n). Most of the ation takes plae on the bottom two rows,but when a hange is made to an earlier row the later rows must be re-initialized.63. If aij and akl are positive, we obtain another ontingeny table by setting aij  aij � 1, ail  ail+1, akj  akj +1, akl  akl� 1. We want to show that the graph Gwhose verties are the ontingeny tables for (r1; : : : ; rm; 1; : : : ; n), adjaent if theyan be obtained from eah other by suh a transformation, has a Hamiltonian path.When m = n = 2, G is a simple path. When m = 2 and n = 3, G has a two-dimensional struture from whih we an see that every vertex is the starting point of atleast two Hamiltonian paths, having distint endpoints. When m = 2 and n � 4 we anshow, indutively, that G atually has Hamiltonian paths from any vertex to any other.When m � 3 and n � 3, we an redue the problem from m to m� 1 as in answer62(e), if we are areful not to \paint ourselves into a orner." Namely, we must avoidreahing a state where the nonzero entries of the bottom two rows have the form ( 10 ab 0 )for some a, b,  > 0 and a hange to row m � 2 fores this to beome ( 00 ab 1 ). Theprevious round of hanges to rows m� 1 and m an avoid suh a trap unless  = 1 andit begins with ( 01 a+1b�1 01) or ( 10 a�1b+1 10 ). But that situation an be avoided too.(A genlex method based on exerise 61 would be onsiderably simpler, and italmost always would make only four hanges per step. But it would oasionally needto update 2min(m;n) entries at a time.)64. When x1 : : : xs is a binary string and A is a list of sububes, let A � x1 : : : xsdenote replaing the digits (a1; : : : ; as) in eah subube of A by (a1 � x1; : : : ; as � xs),from left to right. For example, 0�1��10� 1010 = 1�1��00. Then the following mutualreursions de�ne a Gray yle, beause Ast gives a Gray path from 0s�t to 10s�1�t andBst gives a Gray path from 0s�t to �01s�1�t�1, when st > 0:Ast = 0B(s�1)t; �As(t�1) � 001s�2; 1BR(s�1)t;
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7.2.1.3 ANSWERS TO EXERCISES 49Bst = 0A(s�1)t; 1B(s�1)t � 010s�2; �As(t�1) � 1s:The strings 001s�2 and 010s�2 are simply 0s when s < 2; As0 is Gray binary ode;A0t = B0t = �t. (Inidentally, the somewhat simpler onstrutionGst = �Gs(t�1); atG(s�1)t; at�1GR(s�1)t; at = tmod 2;de�nes a pleasant Gray path from �t0s to at�1�t0s�1.)65. If a path P is onsidered equivalent to PR and to P � x1 : : : xs, the total numberan be omputed systematially as in exerise 33, with the following results for s+t � 6:paths11 11 2 11 3 3 11 5 10 4 11 6 36 35 5 11 9 310 4630 218 6 1

yles11 11 1 11 1 1 11 2 1 1 11 2 3 1 1 11 3 46 4 1 1 1In general there are t+1 paths when s = 1 and �ds=2e+22 �� (smod 2) when t = 1. Theyles for s � 2 are unique. When s = t = 5 there are approximately 6:869 � 10170paths and 2:495� 1070 yles.66. Let G(n; 0) = �; G(n; t) = ; when n < t; and for 1 � t � n, let G(n; t) beĝ(0)G(n� 1; t); ĝ(1)G(n� 1; t)R; : : : ; ĝ(2t � 1)G(n� 1; t)R; ĝ(2t � 1)G(n� 1; t� 1);where ĝ(k) is a t-bit olumn ontaining the Gray binary number g(k) with its leastsigni�ant bit at the top. In this general formula we impliitly add a row of zerosbelow the bases of G(n� 1; t� 1).This remarkable rule gives ordinary Gray binary ode when t = 1, omitting 0 : : : 00.A yli Gray ode is impossible beause �nt�2 is odd.67. A Gray path for ompositions orresponding to Algorithm C implies that there isa path in whih all transitions are 0k1l $ 1l0k with min(k; l) � 2. Perhaps there is, infat, a yle with min(k; l) = 1 in eah transition.68. (a) f;g; (b) ;.69. The least N with �tN < N is �2t�1t �+ �2t�3t�1 �+ � � �+ �11�+ 1 = 12 (�2tt �+ �2t�2t�1 �+� � �+ �00�+ 1), beause � nt�1� � �nt� if and only if n � 2t� 1.70. From the identity�t(�2t�3t �+N 0)�(�2t�3t �+N 0) = �t(�2t�2t �+N 0)�(�2t�2t �+N 0) = �2t�2t � 1t�1+�t�1N 0�N 0when N 0 < �2t�3t �, we onlude that the maximum is �2t�2t � 1t + �2t�4t�1 � 1t�2 + � � �+ �22� 11 ,and it ours at 2t�1 values of N when t > 1.71. Let Ct be the t-liques. The �rst �1414t � + �1009t�1� t-ombinations visited by Al-gorithm L de�ne a graph on 1415 verties with 1000000 edges. If jCtj were larger,j�t�2Ctj would exeed 1000000. Thus the single graph de�ned by P(1000000)2 has themaximum number of t-liques for all t � 2.72. M = �mss � + � � � + �muu � for ms > � � � > mu � u � 1, where fms; : : : ;mug =fs+t�1; : : : ; nvgnfnt; : : : ; nv+1g. (Compare with exerise 15, whih gives �s+tt ��1�N .)
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50 ANSWERS TO EXERCISES 7.2.1.3If � = an�1 : : : a0 is the bit string orresponding to the ombination nt : : : n1, thenv is 1 plus the number of trailing 1s in �, and u is the length of the rightmost runof 0s. For example, when � = 1010001111 we have s = 4, t = 6, M = �84�+ �73�, u = 3,N = �96�+ �75�, v = 5.73. A and B are ross-interseting () � 6� U n � for all � 2 A and � 2 B ()A\�n�s�tB� = ;, where B� = fU n� j � 2 Bg is a set of (n� t)-ombinations. SineQ�Nnt = PN(n�t), we have j�n�s�tB�j � j�n�s�tPN(n�t)j, and �n�s�tPN(n�t) = PN0swhere N 0 = �s+1 : : : �n�tN . Thus if A and B are ross-interseting we have M +N 0 �jAj+ j�n�s�tB�j � �ns�, and QMns \ PN0s = ;.Conversely, if QMns \ PN0s 6= ; we have �ns� < M +N 0 � jAj+ j�n�s�tB�j, so Aand B annot be ross-interseting.74. j �QNntj = �n�tN (see exerise 94). Also, arguing as in (58) and (59), we �nd�PN5 = (n�1)PN5 [ � � � [ 10PN5 [ f543210; : : : ; 987654g in that partiular ase; andj �PNtj = (n+ 1� nt)N + �nt+1t+1 � in general.75. The identity �n+1k � = �nk� + �n�1k�1� + � � � + �n�k0 �, Eq. 1.2.6{(10), gives anotherrepresentation if nv > v. But (60) is una�eted, sine we have �n+1k�1� = � nk�1�+�n�1k�2�+� � �+ �n�k+10 �.76. Represent N +1 by adding �v�1v�1� to (57); then use the previous exerise to deduethat �t(N + 1)� �tN = �v�1v�2� = v � 1.77. [D. E. Daykin, Nanta Math. 8, 2 (1975), 78{83.℄ We work with extended repre-sentations M = �mtt �+ � � �+ �muu � and N = �ntt �+ � � �+ �nvv � as in exerise 75, allingthem improper if the �nal index u or v is zero. Call N exible if it has both properand improper representations, that is, if nv > v > 0.(a) Given an integer S, �nd M + N suh that M + N = S and �tM + �tN isminimum, with M as large as possible. If N = 0, we're done. Otherwise the max-minoperation preserves both M +N and �tM + �tN , so we an assume that v � u � 1 inthe proper representations of M and N . If N is inexible, �t(M + 1) + �t(N � 1) =(�tM +u� 1)+ (�tN � v) < �tM +�tN , by exerise 76; therefore N must be exible.But then we an apply the max-min operation to M and the improper representationof N , inreasing M : Contradition.This proof shows that equality holds if and only if MN = 0, a fat that was notedin 1927 by F. S. Maaulay.(b) Now we try to minimize max(�tM;N) + �t�1N when M +N = S, this timerepresenting N as �nt�1t�1 � + � � � + �nvv �. The max-min operation an still be used ifnt�1 < mt; leaving mt unhanged, it preserves M +N and �tM +�t�1N as well as therelation �tM > N . We arrive at a ontradition as in (a) if N 6= 0, so we an assumethat nt�1 � mt.If nt�1 > mt we have N > �tM and also �tN > M ; hene M +N < �tN +N =�nt�1+1t �+ � � �+ �nv+1v �, and we have �t(M +N) � �t(�tN +N) = N + �t�1N .Finally if nt�1 = mt = a, letM = �at�+M 0 andN = � at�1�+N 0. Then �t(M+N) =�a+1t�1� + �t�1(M 0 + N 0), �tM = � at�1� + �t�1M 0, and �t�1N = � at�2� + �t�2N 0; theresult follows by indution on t.78. [J. Ekho� and G. Wegner, Periodia Math. Hung. 6 (1975), 137{142; A. J. W.Hilton, Periodia Math. Hung. 10 (1979), 25{30.℄ Let M = jA1j and N = jA0j; we anassume that t > 0 and N > 0. Then j�Aj = j�A1 [ A0j+ j�A0j � max(j�A1j; jA0j)+j�A0j � max(�tM;N) + �t�1N � �t(M +N) = jP jAjtj, by indution on m+ n+ t.
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7.2.1.3 ANSWERS TO EXERCISES 51Conversely, let A1 = PMt + 1 and A0 = PN(t�1) + 1; this notation means, forexample, that f210; 320g + 1 = f321; 431g. Then �t(M + N) � j�Aj = j�A1 [ A0j +j(�A0)0j = max(�tM;N) + �t�1N , beause �A1 = P(�tM)(t�1) + 1. [Sh�utzenbergerobserved in 1959 that �t(M +N) � �tM + �t�1N if and only if �tM � N .℄For the �rst inequality, letA and B be disjoint sets of t-ombinations with jAj =M ,j�Aj = �tM , jBj = N , j�Bj = �tN . Then �t(M + N) = �tjA [ Bj � j�(A [ B)j =j�A [ �Bj = j�Aj+ j�Bj = �tM + �tN .79. In fat, �t(M + �t�1M) =M , and �tN + �t�1�tN = N + (n2 � n1)[v=1℄ whenN is given by (57).80. If N > 0 and t > 1, represent N as in (57) and let N = N0 +N1, whereN0 = �nt � 1t �+ � � �+ �nv � 1v �; N1 = �nt � 1t� 1 �+ � � �+ �nv � 1v � 1 �:Let N0 = �yt� and N1 = � zt�1�. Then, by indution on t and bx, we have �xt� =N0 + �tN0 � �yt� + � yt�1� = �y+1t �; N1 = �xt� � �yt� � �xt� � �x�1t � = �x�1t�1�; and�tN = N1 + �t�1N1 � � zt�1�+ � zt�2� = �z+1t�1� � � xt�1�.[Lov�asz atually proved a stronger result; see exerise 1.2.6{66. We have, similarly,�tN � �x�1t�1�; see Bj�orner, Frankl, and Stanley, Combinatoria 7 (1987), 27{28.℄81. For example, if the largest element of bPN5 is 66433, we havebPN5 = f00000; : : : ; 55555g[f60000; : : : ; 65555g[f66000; : : : ; 66333g[f66400; : : : ; 66433gso N = �105 �+ �94�+ �63�+ �52�. Its lower shadow is� bPN5 = f0000; : : : ; 5555g [ f6000; : : : ; 6555g [ f6600; : : : ; 6633g [ f6640; : : : ; 6643g;of size �94�+ �83�+ �52�+ �41�.If the smallest element of QN95 is 66433, we havebQN95 = f99999; : : : ; 70000g [ f66666; : : : ; 66500g [ f66444; : : : ; 66440g [ f66433gso N = (�139 �+�128 �+�117 �)+ (�86�+�75�)+ �54�+ �33�. Its upper shadow is�bQN95 = f999999; : : : ; 700000g [ f666666; : : : ; 665000g[ f664444; : : : ; 664400g [ f664333; : : : ; 664330g;of size (�149 �+�138 �+�127 �) + (�96�+�85�) + �64� + �43� = N + �9N . The size, t, of eahombination is essentially irrelevant, as long as N � �s+tt �; for example, the smallestelement of bQN98 is 99966433 in the ase we have onsidered.82. (a) The derivative would have to be Pk>0 rk(x), but that series diverges.[Informally, the graph of �(x) shows \pits" of relative magnitude 2�k at all oddmultiples of 2�k. Takagi's original publiation, in Pro. Physio-Math. So. Japan (2)1 (1903), 176{177, has been translated into English in his Colleted Papers (IwanamiShoten, 1973).℄(b) Sine rk(1�t) = (�1)d2ktewhen k > 0, we have R 1�x0 rk(t) dt = R 1x rk(1�u) du =� R 1x rk(u) du = R x0 rk(u) du. The seond equation follows from the fat that rk( 12 t) =rk�1(t). Part (d) shows that these two equations suÆe to de�ne �(x) when x isrational.() Sine �(2�ax) = a2�ax + 2�a�(x) for 0 � x � 1, we have �(�) = a� + O(�)when 2�a�1 � � � 2�a. Therefore �(�) = � lg 1� +O(�) for 0 < � � 1.
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52 ANSWERS TO EXERCISES 7.2.1.3(d) Suppose 0 � p=q � 1. If p=q � 1=2 we have �(p=q) = p=q + �(2p=q)=2;otherwise �(p=q) = (q � p)=q + �(2(q � p)=q)=2. Therefore we an assume that q isodd. When q is odd, let p0 = p=2 when p is even, p0 = (q � p)=2 when p is odd. Then�(p=q) = 2�(p0=q) � 2p0=q for 0 < p < q; this system of q � 1 equations has a uniquesolution. For example, the values for q = 3, 4, 5, 6, 7 are 2/3, 2/3; 1/2, 1/2, 1/2; 8/15,2/3, 2/3, 8/15; 1/2, 2/3, 1/2, 2/3, 1/2; 22/49, 30/49, 32/49, 32/49, 30/49, 22/49.(e) The solutions < 12 are x = 14 , 14 � 116 , 14 � 116 � 164 , 14 � 116 � 164 � 1256 , : : : , 16 .(f) The value 23 is ahieved for x = 12 � 18 � 132 � 1128 � � � � , an unountable set.83. Given any integers q > p > 0, onsider paths starting from 0 in the digraph0  1  2  3  4  5  � � �l l l l l l1 ! 2 ! 3 ! 4 ! 5 ! 6 ! � � �Compute an assoiated value v, starting with v  �p; horizontal moves hange v  2v,vertial moves from node a hange v  2(qa � v). The path stops if we reah a nodetwie with the same value v. Transitions are not allowed to upper node a if v � �q orv � qa at that node; they are not allowed to lower node a with v � 0 or v � q(a+ 1).These restritions fore most steps of the path. (Node a in the upper row means, \Solve�(x) = ax � v=q"; in the lower row it means, \Solve �(x) = v=q � ax.") Empirialtests suggest that all suh paths are �nite. The equation �(x) = p=q then has solutionsx = x0 de�ned by the sequene x0, x1, x2, : : : where xk = 12xk+1 on a horizontal stepand xk = 1� 12xk+1 on a vertial step; eventually xk = xj for some j < k. If j > 0 andif q is not a power of 2, these are all the solutions to �(x) = p=q when x > 1=2.For example, this proedure establishes that �(x) = 1=5 and x > 1=2 only whenx is 83581/87040; the only path yields x0 = 1 � 12x1, x1 = 12x2, : : : , x18 = 12x19, andx19 = x11. There are, similarly, just two values x > 1=2 with �(x) = 3=5, havingdenominator 246(256 � 1)=3.Moreover, it appears that all yles in the digraph that pass through node 0 de�nevalues of p and q suh that �(x) = p=q has unountably many solutions. Suh valuesare, for example, 2/3, 8/15, 8/21, orresponding to the yles (01), (0121), (012321).The value 32/63 orresponds to (012121) and also to (012101234545454321), as well asto two other paths that do not return to 0.84. [Frankl, Matsumoto, Ruzsa, and Tokushige, J. Combinatorial Theory A69 (1995),125{148.℄ If a � b we have�2t� 1� bt� a �.T = ta(t� 1)b�a/(2t� 1)b = 2�b(1 + f(a; b)t�1 +O(b4=t2));where f(a; b) = a(1 + b) � a2 � b(1 + b)=4 = f(a + 1; b) � b + 2a. Therefore if N hasthe ombinatorial representation (57), and if we set nj = 2t� 1� bj , we havetT ��tN �N� = bt2bt + bt�1 � 22bt�1 + bt�2 � 42bt�2 + � � �+ O(log t)3t ;the terms being negligible when bj exeeds 2 lg t. And one an show that�� lXj=0 2�ej� = lXj=0 (ej � 2j)2�ej :85. N��t�1N has the same asymptoti form as �tN�N , by (63), sine �(x) = �(1�x).
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7.2.1.3 ANSWERS TO EXERCISES 53So does 2�tN �N , up to O(T (log t)3=t2), beause �2t�1�bt�a � = 2�2t�2�bt�a �(1+O(log t)=t)when b < 2 lg t.86. x 2 XÆ� () �x =2 XÆ () �x =2 X or �x =2 X + e1 or � � � or �x =2 X + en () x 2 X�or x 2 X� � e1 or � � � or x 2 X� � en () x 2 X�+.87. All three are true, using the fat that X � Y Æ if and only if X+ � Y : (a) X � Y Æ() X� � Y Æ� = Y �+ () Y � � X�Æ. (b) X+ � X+ =) X � X+Æ; heneXÆ � XÆ+Æ. Also XÆ � XÆ =) XÆ+ � X; hene XÆ+Æ � XÆ. () �M � N ()S+M � SN () SM � SÆN () M � �N .88. If �x < �y then �(x � ek) < �(y � ej), so we an assume that �x = �y and thatx > y in lexiographi order. We must have yj > 0; otherwise �(y � ej) would exeed�(x� ek). If xi = yi for 1 � i � j, learly k > j and x� ek � y� ej . Otherwise xi > yifor some i � j; again we have x� ek � y � ej , unless x� ek = y � ej .89. From the tablej = 0 1 2 3 4 5 6 7 8 9 10 11ej + e1 = e1 e0 e4 e5 e2 e3 e8 e9 e6 e7 e11 e10ej + e2 = e2 e4 e0 e6 e1 e8 e3 e10 e5 e11 e7 e9ej + e3 = e3 e5 e6 e7 e8 e9 e10 e0 e11 e1 e2 e4we �nd (�0; �1; : : : ; �12) = (0; 4; 6; 7; 8; 9; 10; 11; 11; 12; 12; 12; 12); (�0; �1; : : : ; �12) =(0; 0; 0; 0; 1; 1; 2; 3; 4; 5; 6; 8; 12).90. Let Y = X+ and Z = CkX, and let Na = jXk(a)j for 0 � a < mk. ThenjY j = mk�1Xa=0 jYk(a)j = mk�1Xa=0 j(Xk(a� 1) + ek) [ (Xk(a) + Ek(0))j
� mk�1Xa=0 max(Na�1; �Na);where a � 1 stands for (a � 1) modmk and the � funtion omes from the (n � 1)-dimensional torus, beause jXk(a) + Ek(0)j � �Na by indution. AlsojZ+j = mk�1Xa=0 jZ+k (a)j = mk�1Xa=0 j(Zk(a� 1) + ek) [ (Zk(a) + Ek(0))j
= mk�1Xa=0 max(Na�1; �Na);beause both Zk(a� 1) + ek and Zk(a) + Ek(0) are standard in n� 1 dimensions.91. Let there be Na points in row a of a totally ompressed array, where row 0 isat the bottom; thus l = N�1 � N0 � � � � � Nm�1 � Nm = 0. We show �rstthat there is an optimum X for whih the \bad" ondition Na = Na+1 never oursexept when Na = 0 or Na = l. For if a is the smallest bad subsript, supposeNa�1 > Na = Na+1 = � � � = Na+k > Na+k+1. Then we an always derease Na+kby 1 and add 1 to some Nb for b � a without inreasing jX+j, exept in ases wherek = 1 and Na+2 = Na+1 � 1 and Nb = Na + a � b < l for 0 � b � a. Exploring suhases further, if N+1 < N = N�1 for some  > a + 1, we an set N  N � 1 andNa  Na + 1, thereby either dereasing a or inreasing N0. Otherwise we an �nda subsript d suh that N = Na+1 + a+ 1�  > 0 for a <  < d, and either Nd = 0 orNd < Nd�1 � 1. Then it is OK to derease N by 1 for a <  < d and subsequently to
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54 ANSWERS TO EXERCISES 7.2.1.3inrease Nb by 1 for 0 � b < d� a� 1. (It is important to note that if Nd = 0 we haveN0 � d� 1; hene d = m implies l = m.)Repeating suh transformations until Na > Na+1 whenever Na 6= l and Na+1 6= 0,we reah situation (86), and the proof an be ompleted as in the text.92. Let x + k denote the lexiographially smallest element of T (m1; : : : ;mn�1) thatexeeds x and has weight �x+k, if any suh element exists. For example, if m1 = m2 =m3 = 4 and x = 211, we have x+1 = 212, x+2 = 213, x+3 = 223, x+4 = 233, x+5 =333, and x+6 does not exist; in general, x+ k+1 is obtained from x+ k by inreasingthe rightmost omponent that an be inreased. If x+ k = (m1� 1; : : : ;mn�1� 1), letus set x + k + 1 = x + k. Then if S(k) is the set of all elements of T (m1; : : : ;mn�1)that are � x+ k, we have S(k+ 1) = S(k)+. Furthermore, the elements of S that endin a are those whose �rst n� 1 omponents are in S(m� 1� a).The result of this exerise an be stated more intuitively: As we generate n-dimensional standard sets S1, S2, : : : , the (n � 1)-dimensional standard sets on eahlayer beome spreads of eah other just after eah point is added to layer m � 1.Similarly, they beome ores of eah other just before eah point is added to layer 0.93. (a) Suppose the parameters are 2 � m01 � m02 � � � � � m0n when sorted properly,and let k be minimal withmk 6= m0k. Then take N = 1+rank(0; : : : ; 0;m0k�1; 0; : : : ; 0).(We must assume that min(m1; : : : ;mn) � 2, sine parameters equal to 1 an be plaedanywhere.)(b) Only in the proof for n = 2, buried inside the answer to exerise 91. Thatproof is inorporated by indution when n is larger.94. Complementation reverses lexiographi order and hanges �to �.95. For Theorem K, let d = n � 1 and s0 = � � � = sd = 1. For Theorem M, let d = sand s0 = � � � = sd = t+ 1.96. In suh a representation, N is the number of t-multiombinations of fs0 � 0; s1 � 1;s2 � 2; : : : g that preede ntnt�1 : : : n1 in lexiographi order, beause the generalizedoeÆient �S(n)t � ounts the multiombinations whose leftmost omponent is < n.If we trunate the representation by stopping at the rightmost nonzero term�S(nv)v �, we obtain a nie generalization of (60):j�PNtj = �S(nt)t� 1 �+ �S(nt�1)t� 2 �+ � � �+ �S(nv)v � 1 �:[See G. F. Clements, J. Combinatorial Theory A37 (1984), 91{97. The inequalitiess0 � s1 � � � � � sd are needed for the validity of Corollary C, but not for the alulationof j�PNtj. Some terms �S(nk)k � for t � k > v may be zero. For example, when N = 1,t = 4, s0 = 3, and s1 = 2, we have N = �S(1)4 �+ �S(1)3 � = 0 + 1.℄97. (a) The tetrahedron has four verties, six edges, four faes: (N0; : : : ; N4) =(1; 4; 6; 4; 1). The otahedron, similarly, has (N0; : : : ; N6) = (1; 6; 8; 8; 0; 0; 0), andthe iosahedron has (N0; : : : ; N12) = (1; 12; 30; 20; 0; : : : ; 0). The hexahedron, aka the3-ube, has eight verties, 12 edges, and six square faes; perturbation breaks eahsquare fae into two triangles and introdues new edges, so we have (N0; : : : ; N8) =(1; 8; 18; 12; 0; : : : ; 0). Finally, the perturbed pentagonal faes of the dodeahedron leadto (N0; : : : ; N20) = (1; 20; 54; 36; 0; : : : ; 0).(b) f210; 310g [ f10; 20; 21; 30; 31g [ f0; 1; 2; 3g [ f�g.() 0 � Nt � �nt� for 0 � t � n and Nt�1 � �tNt for 1 � t � n. The seondondition is equivalent to �t�1Nt�1 � Nt for 1 � t � n, if we de�ne �01 = 1. Theseonditions are neessary for Theorem K, and suÆient if A = SPNtt:
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7.2.1.3 ANSWERS TO EXERCISES 55(d) The omplements of the elements not in a simpliial omplex, namely the setsf f0; : : : ; n � 1g n � j � =2 C g, form a simpliial omplex. (We an also verify thatthe neessary and suÆient ondition holds: Nt�1 � �tNt () �t�1Nt�1 � Nt ()�n�t+1Nn�t+1 � Nn�t, beause �n�tNn�t+1 = �nt�� �t�1Nt�1 by exerise 94.)(e) 00000 $ 14641; 10000 $ 14640; 11000 $ 14630; 12000 $ 14620; 13000 $14610; 14000 $ 14600; 12100 $ 14520; 13100 $ 14510; 14100 $ 14500; 13200 $14410; 14200$ 14400; 13300$ 14400; and the self-dual ases 14300, 13310.98. The following proedure by S. Linusson [Combinatoria 19 (1999), 255{266℄, whoonsidered also the more general problem for multisets, is onsiderably faster than amore obvious approah. Let L(n; h; l) ount feasible vetors withNt = �nt� for 0 � t � l,Nt+1 < � nt+1�, and Nt = 0 for t > h. Then L(n; h; l) = 0 unless �1 � l � h � n;also L(n; h; h) = L(n; h;�1) = 1, and L(n;n; l) = L(n;n � 1; l) for l < n. Whenn > h � l � 0 we an ompute L(n; h; l) =Phj=l L(n� 1; h; j)L(n� 1; j � 1; l � 1), areurrene that follows from Theorem K. (Eah size vetor orresponds to the omplexSPNtt, with L(n�1; h; j) representing ombinations that do not ontain the maximumelement n� 1 and L(n� 1; j � 1; l� 1) representing those that do.) Finally the grandtotal is L(n) =Pnl=1 L(n;n; l).We have L(0), L(1), L(2), : : : = 2, 3, 5, 10, 26, 96, 553, 5461, 100709, 3718354,289725509, : : : ; L(100) � 3:2299� 101842.99. The maximal elements of a simpliial omplex form a lutter; onversely, theombinations ontained in elements of a lutter form a simpliial omplex. Thus thetwo onepts are essentially equivalent.(a) If (M0;M1; : : : ;Mn) is the size vetor of a lutter, then (N0; N1; : : : ; Nn) isthe size vetor of a simpliial omplex if Nn = Mn and Nt = Mt + �t+1Nt+1 for0 � t < n. Conversely, every suh (N0; : : : ; Nn) yields an (M0; : : : ;Mn) if we usethe lexiographially �rst Nt t-ombinations. [G. F. Clements extended this result togeneral multisets in Disrete Math. 4 (1973), 123{128.℄(b) In the order of answer 97(e) they are 00000, 00001, 10000, 00040, 01000, 00030,02000, 00120, 03000, 00310, 04000, 00600, 00100, 00020, 01100, 00210, 02100, 00500,00200, 00110, 01200, 00400, 00300, 01010, 01300, 00010. Notie that (M0; : : : ;Mn) isfeasible if and only if (Mn; : : : ;M0) is feasible, so we have a di�erent sort of duality inthis interpretation.100. Represent A as a subset of T (m1; : : : ;mn) as in the proof of Corollary C. Then themaximum value of �A is obtained when A onsists of the N lexiographially smallestpoints x1 : : : xn.The proof starts by reduing to the ase that A is ompressed, in the sense thatits t-multiombinations are PjA\Ttjt for eah t. Then if y is the largest element 2 Aand if x is the smallest element =2 A, we prove that x < y implies �x > �y, hene�(A n fyg [ fxg) > �A. For if �x = �y � k we ould �nd an element of �ky that isgreater than x, ontraditing the assumption that A is ompressed.101. (a) In general, F (p) = N0pn+N1pn�1(1�p)+� � �+Nn(1�p)n when f(x1; : : : ; xn)is satis�ed by exatly Nt binary strings x1 : : : xn of weight t. Thus we �nd G(p) =p4 + 3p3(1� p) + p2(1� p)2; H(p) = p4 + p3(1� p) + p2(1� p)2.(b) A monotone formula f is equivalent to a simpliial omplex C under the or-respondene f(x1; : : : ; xn) = 1() fj � 1 j xj = 0g 2 C. Therefore the funtions f(p)of monotone Boolean funtions are those that satisfy the ondition of exerise 97(), andwe obtain a suitable funtion by hoosing the lexiographially lastNn�t t-ombinations
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56 ANSWERS TO EXERCISES 7.2.1.3(whih are omplements of the �rst Ns s-ombinations): f3210g, f321; 320; 310g, f32ggives f(w; x; y; z) = wxyz _ xyz _ wyz _ wxz _ yz = wxz _ yz.M. P. Sh�utzenberger observed that we an �nd the parameters Nt easily fromf(p) by noting that f(1=(1 + u)) = (N0 +N1u+ � � �+Nnun)=(1 + u)n. One an showthat H(p) is not equivalent to a monotone formula in any number of variables, beause(1 + u + u2)=(1 + u)4 = (N0 + N1u + � � � + Nnun)=(1 + u)n implies that N1 = n � 3,N2 = �n�32 �+ 1, and �2N2 = n� 2.But the task of deiding this question is not so simple in general. For example,the funtion (1 + 5u + 5u2 + 5u3)=(1 + u)5 does not math any monotone formula in�ve variables, beause �35 = 7; but it equals (1 + 6u + 10u2 + 10u3 + 5u4)=(1 + u)6,whih works �ne with six.102. (a) Choose Nt linearly independent polynomials of degree t in I; order their termslexiographially, and take linear ombinations so that the lexiographially smallestterms are distint monomials. Let I 0 onsist of all multiples of those monomials.(b) Eah monomial of degree t in I 0 is essentially a t-multiombination; forexample, x31x2x45 orresponds to 55552111. If Mt is the set of independent monomialsfor degree t, the ideal property is equivalent to saying that Mt+1 � �Mt.In the given example,M3 = fx0x21g;M4 = �M3[fx0x1x22g;M5 = �M4[fx1x42g,sine x22(x0x21 � 2x1x22)� x1(x0x1x22) = �2x1x42; and Mt+1 = �Mt thereafter.() By Theorem M we an assume that Mt = bQMst. Let Nt = �ntss � + � � � +�nt22 � + �nt11 �, where s+ t � nts > � � � > nt2 > nt1 � 0; then nts = s+ t if and only ifnt(s�1) = s� 2, : : : , nt1 = 0. Furthermore we haveNt+1 � Nt + �sNt = �nts + [nts� s℄s �+ � � �+ �nt2 + [nt2� 2℄2 �+ �nt1 + [nt1� 1℄1 �:Therefore the sequene (nts�t�1[nts<s℄; : : : ; nt2�t�1[nt2< 2℄; nt1�t�1[nt1< 1℄)is lexiographially nondereasing as t inreases, where we insert `�1' in omponentsthat have ntj = j � 1. Suh a sequene annot inrease in�nitely many times withoutexeeding the maximum value (s;�1; : : : ;�1), by exerise 1.2.1{15(d).103. Let PNst be the �rst N elements of a sequene determined as follows: For eahbinary string x = xs+t�1 : : : x0, in lexiographi order, write down ��xt � sububes byhanging t of the 1s to �s in all possible ways, in lexiographi order (onsidering 1 < �).For example, if x = 0101101 and t = 2, we generate the sububes 0101�0�, 010�10�,010��01, 0�0110�, 0�01�01, 0�0�101.[See B. Lindstr�om, Arkiv f�or Mat. 8 (1971), 245{257; a generalization analogousto Corollary C appears in K. Engel, Sperner Theory (Cambridge Univ. Press, 1997),Theorem 8.1.1.℄104. The �rst N strings in ross order have the desired property. [T. N. Danh andD. E. Daykin, J. London Math. So. (2) 55 (1997), 417{426.℄Notes: Beginning with the observation that the \1-shadow" of the N lexio-graphially �rst strings of weight t (namely the strings obtained by deleting 1 bitsonly) onsists of the �rst �tN strings of weight t, R. Ahlswede and N. Cai extendedthe Danh{Daykin theorem to allow insertion, deletion, and/or transposition of bits[Combinatoria 17 (1997), 11{29; Applied Math. Letters 11, 5 (1998), 121{126℄. UweLek has proved that no total ordering of ternary strings has the analogous minimum-shadow property [Preprint 98/6 (Univ. Rostok, 1998), 6 pages℄.105. Every number must our the same number of times in the yle. Equivalently,�n�1t�1� must be a multiple of t. This neessary ondition appears to be suÆient as
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7.2.1.3 ANSWERS TO EXERCISES 57well, provided that n is not too small with respet to t; but suh a result may well betrue yet impossible to prove. [See Chung, Graham, and Diaonis, Disrete Math. 110(1992), 55{57.℄The next few exerises onsider the ases t = 2 and t = 3, for whih elegantresults are known. Similar but more ompliated results have been derived for t = 4and t = 5, and the ase t = 6 has been partially resolved. The ase (n; t) = (12; 6) isurrently the smallest for whih the existene of a universal yle is unknown.106. Let the di�erenes mod (2m+1) be 1, 2, : : : , m, 1, 2, : : : , m, : : : , repeated 2m+1times; for example, the yle for m = 3 is (013602561450346235124). This worksbeause 1 + � � �+m = �m+12 � is relatively prime to 2m+ 1. [J. �Eole Polytehnique 4,Cahier 10 (1810), 16{48.℄107. The seven doubles <0>0 , <1>1 , : : : , <6>6 an be inserted in 37 ways into anyuniversal yle of 3-ombinations for f0; 1; 2; 3; 4; 5; 6g. The number of suh universalyles is the number of Eulerian trails of the omplete graph K7, whih an be shownto be 129,976,320 if we regard (a0a1 : : : a20) as equivalent to (a1 : : : a20a0) but not tothe reverse-order yle (a20 : : : a1a0). So the answer is 284,258,211,840.[This problem was �rst solved in 1859 by M. Reiss, whose method was so om-pliated that people doubted the result; see Nouvelles Annales de Math�ematiques 8(1849), 74; 11 (1852), 115; Annali di Matematia Pura ed Appliata (2) 5 (1871{1873), 63{120. A onsiderably simpler solution, on�rming Reiss's laim, was found byP. Jolivald and G. Tarry, who also enumerated the Eulerian trails of K9; see ComptesRendus Assoiation Fran�aise pour l'Avanement des Sienes 15, part 2 (1886), 49{53; �E. Luas, R�er�eations Math�ematiques 4 (1894), 123{151. Brendan D. MKay andRobert W. Robinson found an approah that is better still, enabling them to ontinuethe enumeration through K21 by using the fat that the number of trails is(m� 1)!2m+1 [z2m0 z2m�21 : : : z2m�22m ℄ det(ajk) Y1�j<k�2m(z2j + z2k);where ajk = �1=(z2j + z2k) when j 6= k; ajj = �1=(2z2j ) +P0�k�2m 1=(z2j + z2k); seeCombinatoris, Probability, and Computing 7 (1998), 437{449.℄C. Flye Sainte-Marie, in L'Interm�ediaire des Math�ematiiens 1 (1894), 164{165,noted that the Eulerian trails of K7 inlude 2� 720 that have 7-fold symmetry underpermutation of f0; 1; : : : ; 6g (namely Poinsot's yle and its reverse), plus 32 � 1680with 3-fold symmetry, plus 25778� 5040 yles that are asymmetri.108. No solution is possible for n < 7, exept in the trivial ase n = 4. Whenn = 7 there are 12;255;208�7! universal yles, not onsidering (a0a1 : : : a34) to be thesame as (a1 : : : a34a0), inluding ases with 5-fold symmetry like the example yle inexerise 105.When n � 8 we an proeed systematially as suggested by B. Jakson in DisreteMath. 117 (1993), 141{150; see also G. Hurlbert, SIAM J. Dis. Math. 7 (1994),598{604: Put eah 3-ombination into the \standard yli order" 123 where 2 =(1 + Æ) mod n, 3 = (2 + Æ0) mod n, 0 < Æ; Æ0 < n=2, and either Æ = Æ0 or max(Æ; Æ0) <n � Æ � Æ0 6= (n � 1)=2 or (1 < Æ < n=4 and Æ0 = (n � 1)=2) or (Æ = (n � 1)=2 and1 < Æ0 < n=4). For example, when n = 8 the allowable values of (Æ; Æ0) are (1; 1),(1; 2), (1; 3), (2; 1), (2; 2), (3; 1), (3; 3); when n = 11 they are (1; 1), (1; 2), (1; 3),(1; 4), (2; 1), (2; 2), (2; 3), (2; 5), (3; 1), (3; 2), (3; 3), (4; 1), (4; 4), (5; 2), (5; 5). Thenonstrut the digraph with verties (; Æ) for 0 �  < n and 1 � Æ < n=2, and with ars(1; Æ)! (2; Æ0) for every ombination 123 in standard yli order. This digraph is
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58 ANSWERS TO EXERCISES 7.2.1.3onneted and balaned, so it has an Eulerian trail by Theorem 2.3.4.2D. (The peuliarrules about (n � 1)=2 make the digraph onneted when n is odd. The Eulerian trailan be hosen to have n-fold symmetry when n = 8, but not when n = 12.)109. When n = 1 the yle (000) is trivial; when n = 2 there is no yle; andthere are essentially only two when n = 4, namely (00011122233302021313) and(00011120203332221313). When n � 5, let the multiombination d1d2d3 be instandard yli order if d2 = (d1 + Æ � 1) mod n, d3 = (d2 + Æ0 � 1) mod n, and (Æ; Æ0)is allowable for n + 3 in the previous answer. Construt the digraph with verties(d; Æ) for 0 � d < n and 1 � Æ < (n + 3)=2, and with ars (d1; Æ) ! (d2; Æ0) for everymultiombination d1d2d3 in standard yli order; then �nd an Eulerian trail.Perhaps a universal yle of t-multiombinations exists for f0; 1; : : : ; n�1g if andonly if a universal yle of t-ombinations exists for f0; 1; : : : ; n+ t� 1g.110. A nie way to hek for runs is to ompute the numbers b(S) =Pf2p() j  2 Sgwhere (p(A); : : : ; p(K)) = (1; : : : ; 13); then set l b(S)^�b(S) and hek that b(S)+l =l � s, and also that ((l � s) _ (l � 1)) ^ a = 0, where a = 2p(1) _ � � � _ 2p(5). Thevalues of b(S) and Pfv() j  2 Sg are easily maintained as S runs through all 31nonempty subsets in Gray-ode order. The answers are (1009008, 99792, 2813796,505008, 2855676, 697508, 1800268, 751324, 1137236, 361224, 388740, 51680, 317340,19656, 90100, 9168, 58248, 11196, 2708, 0, 8068, 2496, 444, 356, 3680, 0, 0, 0, 76, 4)for x = (0; : : : ; 29); thus the mean sore is � 4:769 and the variane is � 9:768.Hands without points are sometimes faetiously alled nineteen,as that number annot be made by the ards.| G. H. DAVIDSON, Dee's Hand-Book of Cribbage (1839)Note: A four-ard ush is not allowed in the \rib." Then the distribution is a biteasier to ompute, and it turns out to be (1022208, 99792, 2839800, 508908, 2868960,703496, 1787176, 755320, 1118336, 358368, 378240, 43880, 310956, 16548, 88132, 9072,57288, 11196, 2264, 0, 7828, 2472, 444, 356, 3680, 0, 0, 0, 76, 4); the mean and varianederease to approximately 4.735 and 9.667.
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