@ PRACTICAL GUIDE
T0 TESTING
OBJECT-ORIENTED
SOFTWARE

JOHN D. l\[l G

DAVID \ @E (’J@W‘L

i q
;C‘NLJE

\W\V/e
/ ; JACOBSON
g RUMBAUGH

e BERIES EDATORE

Copyright
Preface
Chapter 1. Introduction
Who Should Read This Book?
What Software Testing Is—and Isn't

What Is Different about Testing Object-Oriented
Software?

Overview of Our Testing Approach
The Testing Perspective
Organization of This Book
Conventions Used in This Book

A Continuing Example—Brickles

Exercises

Chapter 2. The Testing Perspective
Testing Perspective
Object-Oriented Concepts
Development Products
Summary

Exercises

Chapter 3. Planning for Testing
A Development Process Overview
A Testing Process Overview

Risk Analysis—A Tool for Testing

A Testing Process

Roles in the Testing Process

A Detailed Set of Test Activities
Planning Activities

Summary

Exercises

Chapter 4. Testing Analysis and Design Models
An Overview
Place in the Development Process
The Basics of Guided Inspection
Organization of the Guided Inspection Activity
Preparing for the Inspection
Testing Specific Types of Models
Testing Models for Additional Qualities
Summary
Exercises

Addendum: A Process Definition for Guided Inspection

Chapter 5. Class Testing Basics
Class Testing
Constructing Test Cases
Constructing a Test Driver
Summary

Exercises

Chapter 6. Testing Interactions
Object Interactions
Testing Object Interactions
Sampling Test Cases
Testing Off-the-Shelf Components
Protocol Testing
Test Patterns
Testing Exceptions
Summary

Exercises

Chapter 7. Testing Class Hierarchies
Inheritance in Object-Oriented Development
Subclass Test Requirements
Organizing Testing Software
Testing Abstract Classes
Summary

Exercises

Chapter 8. Testing Distributed Objects
Basic Concepts
Computational Models
Basic Differences
Threads

Path Testing in Distributed Systems

Life-Cycle Testing

Models of Distribution

A Generic Distributed-Component Model
Specifying Distributed Objects

Temporal Logic

A Test Environment

Test Cases

The Ultimate Distributed System—The Internet
Summary

Exercises

Chapter 9. Testing Systems
Defining the System Test Plan
Complementary Strategies for Selecting Test Cases
Use Cases as Sources of Test Cases
Testing Incremental Projects
Testing Multiple Representations
What Needs to Be Tested?
Types of Testing
Testing Different Types of Systems
Measuring Test Coverage
Summary

Exercises

Chapter 10. Components, Frameworks, and Product Lines
Component Models
Frameworks
Product Lines
Summary

Exercises

Chapter 11. Conclusion
Suggestions
Brickles

Finally

Bibliography

Index

Copyright

Many of the designations used by manufacturers and sellersto distinguish their
products are claimed as trademarks. Where those designations appear in this book
and we were aware of atrademark claim, the designations have been printed in
initid capital letters or Al capitals.

The authors and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for
errors or omissions. No liability is assumed for incidental or consequential

damages in connection with or arising out of the use of the information or

programs contained herein.

Copyright © 2001 by Addison-Wedey

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior consent of
the publisher. Printed in the United States of America. Published smultaneoudly in
Canada.

The publisher offers discounts on this book when ordered in quantity for specid
sales. For more information, please contact:

Pearson Education Corporate Sales Division

One Lake Street

Upper Saddle River, NJ 07458

(800) 382-3419

corpsal es@pearsontechgroup.com

Vidgt us on the Web at www.awl.com/cseng/

Library of Congress Cataloging-in-Publication Data

McGregor, John D.

A practical guide to testing object-oriented software / John D. McGregor, David A.
Sykes.

p. cm. -- (Addison-Wedley object technology series)
Includes bibliographical references and index.
ISBN 0-201-32564-0

1. Computer software--Testing. 2. Object-oriented programming (Computer
science) I. Sykes, David A. Il. Series.

QA76.T48 M47 2001

005.1'17--dc21 00-066513

Text printed on recycled paper.
12345678910—CRS—0504 030201

First printing, March 2001

Preface

Testing software is a very important and challenging activity. Thisis abook for
people who test software during its development. Our focus is on object-oriented
and component-based software, but you can apply many of the techniques
discussed in this book regardiess of the development paradigm. We assume our
reader is familiar with testing procedura software—that is, software written in the
procedural paradigm using languages such as C, Ada, Fortran, or COBOL. We dso
assume our reader is familiar and somewhat experienced in developing software
using object-oriented and component-based technologies. Our focusis on
describing what to test in object-oriented development efforts aswell as on
describing techniques for how to test object-oriented software, and how testing
software built with these newer technol ogies differs from testing procedura
software.

What is software testing? To us, testing is the evaluation of the work products
created during a software development effort. Thisis more general than just
checking part or al of a software system to seeif it meets its specifications.
Testing software is adifficult process, in general, and sufficient resources are
seldom available for testing. From our standpoint, testing is done throughout a
development effort and is not just an activity tacked on at the end of a devel opment
phase to see how well the developers did. We see testing as part of the process that
puts quality into a software system. As aresult, we address the testing of all
development products (models) even before any code is written.

We do not necessarily believe that you will apply everything we describe in this
book. There are seldom enough resources available to a development effort to do
al the levels and kinds of testing we would like. We hope you will find a number
of approaches and techniques that will prove useful to and affordable for your
project.

In this book we describe a set of testing techniques. All of the techniques we
describe have been applied in practice. Many of these techniques have been used in
awide variety of industries and on projects of vastly different sizes. In Chapter 3,
we will consder the impact of some of these variables on the types of testing that
are routingly performed.

To describe these technigues, we rely in many cases on one or more examples to
Illustrate their application. We hope from these examples and from our
explanations that you can apply the same techniques to your project softwarein a

straightforward manner. The complete code for these examples, test code, and
other resources can be obtained from
http://cseng.aw.com/book/0.3828.0201325640.00.html.

In order to make this book as useful as possible, we will provide two major
organizationa threads. The physical layout of the book will follow the usual
sequence of events as they happen on a project. Model testing will be addressed
earlier than component or code testing, for example. We will also include a set of
guestions that a tester might ask when he or she is faced with specific testing tasks
on a project. Thistesting FAQ will be tied into the main body of the text with
citations.

We have included alternative techniques and ways of adapting techniques for
varying the amount of testing. Testing life-critical or mission-critical software
requires more effort than testing an arcade game. The summary sections of each
chapter should make these choices clear.

This book is the result of many years of research, teaching, and consulting both in
the university and in companies. We would like to thank the sponsors of our
research, including COMSOFT, IBM, and AT&T for their support of our academic
research. Thanks to the students who assisted in the research and those who sat
through many hours of class and provided valuable feedback on early versions of
the text. The consultants working for Korson-McGregor, formerly Software
Architects, made many suggestions and worked with early versions of the
techniques while still satisfying client needs. The employees of numerous
consulting clients helped us perfect the techniques by providing rea problems to
be solved and valuable feedback. A specia thanksto Melissa L. Russ (formerly
Major) who helped teach severa tutorials and made her usua insghtful comments
to improve the materidl.

Mogt of all, we wish to thank our families for enduring our mental and physical
absences and for the necessary time to produce this work: Gayle and Mary Frances
McGregor; Susan, Aaron, Perry, and Nolan Sykes.

JDM
DAS

10

Chapter 1. Introduction

Tedting software well has aways been challenging, but the processis fairly well
understood. Some combination of unit testing, integration testing, system testing,
regression testing, and acceptance testing will help to deliver usable systems.

We wanted to write this book because most people seem to believe that testing
object-oriented software is not much different from testing procedural software.
While many of the genera gpproaches and techniques for testing are the same or
can be adapted from traditional testing approaches and techniques, our experience
and our research has demonstrated that some things are different and present new
challenges. At the same time, well-designed object-oriented software developed as
part of an incremental process provides opportunities for improvements over
traditional testing processes.

Object-oriented programming language features of inheritance and polymorphism
present new technical challenges to testers. We describe solutions for many of
these challenges. In this book, we describe processes and techniques for testing
obj ect-oriented software effectively during dl phases of a development effort. Our
approach to testing software is quite comprehensive and one that we believe
software development organizations should undertake. At the same time, we
realize that resources available for testing are limited and that there are many
effective ways to develop software, so we think it is reasonable to pick and choose
among the techniques we present in this book.

The adoption of object-oriented technologies brings changes not only in the
programming languages we use but in most aspects of software development.

We use incremental development processes, refocus and use new notations for
analysis and design, and utilize new programming language features. The changes
promise to make software more maintainable, reusable, flexible, and so on. We
have written this book because changes in the way we develop software produces
changes in the way we test software, from both managerial and technica
perspectives. The following changes provide opportunities for improving the
testing process:

We have an opportunity to change attitudes toward testing. In many
environments, managers and developers view testing as a hecessary evil.
Testing that needs to be done by the devel opers themselves interrupts code
production. Reviews, code inspections, and writing unit test drivers take

11

time and money. Testing processes imposed on the developers for the most
part just get in the way of coding. However, if we can make everyone
appreciate that testing contributes to developing the right software from the
start, and that it can actually be used to measure progress and keep
development on track, then we can build even better software.

We have an opportunity to change where testing fits into a development
process. Almost everyone recognizes that the sooner problems are found, the
cheaper they are to fix. Unit testing and integration testing uncover

problems, but don't usualy start until coding has started. System testing is
typically done near the end of a development effort or perhaps at certain
planned milestones. System testing is treated as a way to see how well the
developers did in meeting requirements. Of course, thisis awrong approach.
Decisions about how much testing is adequate, when it should be performed,
and who should do it should be made only in the context of awell-
considered testing strategy that works with the project's software
development process. We will show how testing activities can begin early.
We will show how testing and devel opment activities can be intertwined and
how each can contribute to a successful outcome of the other.

We have an opportunity to use new technology to do the testing. Just as

obj ect-oriented technol ogies have benefits for production software, they also
can realize benefits in test software. We will show how you can test object-
oriented analysis and design models, and how you can use object-oriented
programming techniques to devel op unit test drivers and reduce the coding
necessary to test software components.

Who Should Read This Book?
We have written this book for

Programmers who aready work in testing software, but want to know more
about testing object-oriented software.

Managers who are responsible for software devel opment and who would
like to know how and where testing fits into a plan.

Devel opers who are responsible for testing the software they produce and
who should take testing issues into consideration during the analysis, design,
and coding activities.

With such awide audience, we struggled with the level of detail we needed to
include about object-oriented development and testing—the basic concepts
associated with software testing, object-oriented programming, and the Unified

12

Modeling Language (UML) to express analysis and design results. We decided to
provide brief overviews of these topic areas—what we consider the minimum a
reader needs to know to make sense of what we have to say. When we need to
resort to code, we use C++ and Java. The approaches and techniques we present
apply to all object-oriented programs, not just to those written in C++ and Java.

We have assumed the following software-devel opment scenario, which we
consider to be idedl:

The process must be incremental, with iterations that occur within each
Increment.

The models expressed in UML must be available.

The software design must be in accordance with good design principles with
respect to the use of inheritance, data hiding, abstraction, low coupling, and
high cohesion.

However, we redlize that most organizations have their own processes and
notations. Consequently, our focusis primarily on principles and techniques.

What Software Testing Is—and Isn't

Informally, software testing (or just "testing” in the context of this book) isthe
process of uncovering evidence of defects in software systems. A defect can be
introduced during any phase of development or maintenance and results from one
or more "bugs'—mistakes, misunderstandings, omissions, or even misguided
intent on the part of the developers. Testing comprises the efforts to find defects.
Testing does not include efforts associated with tracking down bugs and fixing
them. In other words, testing does not include the debugging or repair of bugs.™

\We recognize that some people who test software are also
responsible for debugging that software. This is particularly true
during unit testing and integration testing. However, we
distinguish between the two activities. Testing is the process of
finding failures. Debugging is the process of tracking down the
source of failures—bugs—and making repairs. There can be
overlap in the sense that testing can sometimes be structured
to help locate bugs. However, testing and debugging are two
separate activities.

Testing isimportant because it substantially contributes to ensuring that a software
application does everything it is supposed to do. Some testing efforts extend the

13

focus to ensure an application does nothing more than it is supposed to do.’ In any
case, testing makes a significant contribution to guarding users against software
fallures that can result in aloss of time, property, customers, or life.

? Certainly this is important in systems in which
"enhancements"” threaten life or property. However, testing for
additional functionality is hard to do without reading code, which
few testers ever do. Without reading code, a tester has to
anticipate mistakes and enhancements that a developer might
make and then develop tests to detect them. Consider, for
example, the challenge of detecting Easter eggs hidden in
software.

What is softwar e? We define software as the instruction codes and data necessary
to accomplish some task on a computer. We also include all representations of
those instructions and data. In particular, representations include not only program
source code and datafiles, but models created during analysis and design activities.
Software can and should be tested in all its representations. Just as architects and
builders can examine blueprints for a new building to spot problems even before
ground is broken, so we can examine analysis and design models for software
before the first line of program source code is written. We will show how you can
test these models using a form of "execution."”

Testing helps ensure that a product meets requirements, but testing is not quality
assurance. Some people mistakenly equate testing and quality assurance. |n many
organizations, QA istypically responsible for developing test plans and performing
system testing. QA might monitor testing during development and keep statistics.
Testing is a necessary but insufficient part of any quality assurance process.
Quality assurance addresses activities designed to prevent defects as well asto
remove those defects that do creep into the product. A project's quality assurance
group sets standards that project members should follow in order to build better
software. This includes defining the types of documents that should be created to
capture design decisions, the processes that guide project activities, and the
measures that quantify the results of decisions.

No amount of testing will improve the quality of a computer program. Testing
helpsin identifying failures so that developers can find bugs and remove them. The
more testing we do of a system, the more convinced we might be of its correctness.
Y et testing cannot in general prove a system works 100% correctly. Thus, testing's
primary contribution to quality isto identify problems that we wish we could have

14

prevented in the first place. The mission of QA isto prevent problemsin the first
place. That requires processes beyond testing.

Testing can contribute to improved quality by helping to identify problems early in
the development process. Fortunately, you can do some testing quite early in the
development process—even before code is written. We describe useful techniques
In this book, but these techniques require that testers work more closdly with
developers and that developers work more closely with testers.

What Is Different about Testing Object-Oriented Software?

Obj ect-oriented programming features in programming languages obvioudy

impact some aspects of testing. Features such as class inheritance and interfaces
support polymorphism in which code manipulates objects without their exact class
being known. Testers must ensure the code works no matter what the exact class of
such objects might be. Language features that support and enforce data hiding can
complicate testing because operations must sometimes be added to a class interface
just to support testing. On the other hand, the availability of these features can
contribute to better and reusable testing software.

Not only do changes in programming languages affect testing, but so do changesin
the development process and changes in the focus of analysis and design. Many
obj ect-oriented software-testing activities have counterparts in traditional

processes. We still have a use for unit testing athough the meaning of unit has
changed. We till do integration testing to make sure various subsystems can work
correctly in concert. We still need system testing to verify that software meets
requirements. We ill do regression testing to make sure the latest round of
changes to the software hasn't adversely affected what it could do before.

The differences between "old" and "new" ways of developing and testing software
are much deeper than afocus on objects instead of on functions that transform
Inputs to outputs. The most significant difference isin the way object-oriented
software is designed as a set of objects that essentially model a problem and then
collaborate to effect a solution. Underlying this approach is the concept that while
a solution to a problem might need to change over time, the structure and
components of the problem itself do not change as much or as frequently.
Consequently, a program whose design is structured from the problem (and not on
an immediately required solution) will be more adaptable to changes later. A
programmer familiar with the problem and its components can recognize them in
the software, thereby making the program more maintainable. Furthermore,

15

because components are derived from the problem, they can often be reused in the
development of other programsto solve similar or related problems, thereby
improving the reusability of software components.

A big benefit of this approach to design is that analysis models map
straightforwardly to design models that, in turn, map to code. Thus, we can start
testing during analysis and refine the tests done in analysis to tests for design. Tests
for design, in turn, can be refined to tests of implementation. This meansthat a
testing process can be interwoven with the development process. We see three
significant advantages to testing analysis and design models:

1. Test cases can beidentified earlier in the process, even as requirements are
being determined. Early testing helps analysts and designers to better
understand and express requirements and to ensure that specified
requirements are "testable."

2. Bugs can be detected early in the devel opment process, saving time, money,
and effort. It iswidely acknowledged that the sooner problems are detected,
the easier and cheaper they areto fix.

3. Test cases can be reviewed for correctness early in a project. The correctness
of test cases—in particular, system test cases—is dways an issue. If test
cases are identified early and applied to models early in a project, then any
misunderstandings of requirements on the part of the testers can be corrected
early. In other words, model testing helps to ensure that testers and
developers have a consistent understanding of system requirements.

Although testing models is very beneficidl, it isimportant to not let testing them
become the sole focus of testing efforts. Code testing is still an important part of
the process.

Another difference between traditional projects and projects using object-oriented
technol ogies concerns objectives for software. Consider, for example, that an
Important new goal in many companies is to produce reusable software, extensible
designs, or even object-oriented frameworks that represent reusable designs.
Testing can (and should) be done to uncover failures in meeting these objectives.
Traditional testing approaches and techniques do not address such objectives.

Overview of Our Testing Approach

Our goal isto test software as thoroughly as possible, while recognizing that time
and money constraints are real concerns. Our approach to testing object-oriented
software is based on academic research as well as experience we have gained in

16

working with clients in avariety of industries, such as telecommunications and
finance.

Under our approach, testing is not an afterthought. Testing is a process separate
from the development process, but intimately related to it. We have amotto: Test
early. Test often. Test enough. We favor the following iterative devel opment
process:

Andyze alittle.
Desgn alittle.
Code alittle,

Test what you can.

Testing what you can includes both what you can do technically and what you can
do under time and resource constraints. A surprising amount of beneficial testing
can be done within an iteration. Regular testing can detect failures early and save
reworking in subsequent iterations. System testing and acceptance testing follow
the last iteration. However, if you can develop a software system incrementally,
then you can perform system testing at the end of each increment.

What kinds of testing do we promote for object-oriented software?

Moddl testing

Class testing, which replaces unit testing

Interaction testing, which replaces integration testing
System (and subsystem) testing

Acceptance testing

Deployment/self-testing

Each of these is covered in this book. Our testing process will define testing
activities for every development activity.

We do not believe that you will—or even should—apply everything we describe in
this book. There are sddom enough resources available to a development effort to
do all the levels and kinds of testing we describe. We hope you will find a number

of approaches and techniques that will prove applicable, useful, and affordable for
your project.

We now provide arationale for our motto of, "Test early. Test often. Test enough.”

Test Early

17

Instead of engaging system testers toward the end of a project, start them testing at
reasonable points during the analysis and design phases of a project. Testing
analysis and design models not only can help to uncover problems early in the
development process (where they are fixed more easily and more cheaply), but it
can also help to scope the size of the effort needed to perform adequate system
testing by determining what needs to be tested.

Testing early and often implies that the representations of the software are abstract
or incompl ete.

Test Often

We firmly believe that an iterative, incrementa—sometimes also referred to as

iter ative enhancement—devel opment process is best suited to the vast mgority of
projects. Asiterations are completed on analysis, design, and implementation
phases, the products should be tested. After completion of the first increment, some
testing takes the form of regression testing.

Test Enough

Complete testing of every aspect of a software system is infeasible. Resources
spent on testing should be directed where they provide the best payback. We favor
techniques that are based on risk analysis, the reuse of test cases, and the statistical
sampling of inputs for test cases.

The Testing Perspective

Good testers—ypeople who are responsible for testing software—need a special set
of skills. In many ways, being a good tester is harder than being a good devel oper
because testing requires not only avery good understanding of the devel opment
process and its products, but it also demands an ability to anticipate likely faults
and errors. As assmple example, consider how a developer might need to find an
agorithm to bounce an image around in arectangular area of a computer screen. A
tester must be able to anticipate likely errors and faults a devel oper might make

and then devel op effective ways to detect failures resulting from likely bugs. For
example, atester might want to test that the image hitting exactly in the corner of
the rectangle doesn't move completely out of it. The tester has a tough job.

A tester must approach software with an attitude that questions everything about
that software. We refer to that approach as the testing perspective. It is the subject
of Chapter 2. To be effective, atester must adopt that perspective. The techniques

18

and processes described in this book have been developed and are presented from
the testing perspective.

Organization of This Book

Thisbook contains eleven chapters. The first three chapters are concerned
primarily with testing concepts and the testing process. Chapters 4 through 10
detail techniques for various kinds of testing that can be done. Chapter 11 isa
summary. Each chapter ends with a summary and a set of exercises. You are
encouraged to read through the exercises and work on the ones that interest you or
are relevant to your job as atester. For most of the exercises, there are no correct
answers, athough for most of them some answers are better than others. We hope
the exercises will be useful in helping you apply our techniques to your own

proj ect.

Chapter 1 (this chapter) provides an introduction to this book. We have presented
an overview of testing concepts, a synopsis of how testing object-oriented software
is different from testing other kinds of software, and a brief overview of our
approach.

Chapter 2 describes the testing perspective. We adopt that perspective to address
various aspects of the testing process, to review various products of the
development process, and to examine the basic concepts of object-orientation.

Chapter 3 describes the testing process and how it relates to the devel opment
process. We view testing as being separate from development because in a sense
they have competing goals. However, the two processes are intertwined.

Chapter 4 describes how to test models. A key element of successful development
Isto test early and test often. We favor testing analysis and design models since
they are representations of the software. While this testing adds to the total project
effort, the work done in the testing of models can be reused, refined, and extended
to test code when it is devel oped.

Chapter 5 discusses testing classes that have fairly smple interfaces and
implementations. Its primary focus is on the basic e ements of testing classes.
Class testing in an object-oriented context corresponds roughly to unit testing in a
traditional context. The chapter's mgor emphasisis on identifying what must be
tested in aclass and how to test it. We present some ways to implement test
drivers.

19

Chapter 6 expands the techniques developed in Chapter 5to test classes whose
specification and/or implementation requires interactions with other classes and/or
objects. (This corresponds roughly to traditional integration testing in an object-
oriented context.) Testing such classes can be quite challenging, especidly in the
presence of dynamic binding. We present techniques for managing the large
number of test cases that could be devel oped.

Chapter 7 describes ways of testing classes in an inheritance hierarchy. The focus
of our techniquesis to reuse test driver code and reuse test cases to the extent
possible. We provide an agorithm for determining the minimum amount of testing
needed for subclasses that have already been tested. We a so describe techniques
for testing abstract classes.

Chapter 8 discusses testing concurrency. Concurrency is being used in the
implementation of more and more systems through the use of threads and/or
distributed computing.

Chapter 9 discusses the testing of systems. Testing a system developed using an
object-oriented programming language is for the most part the same astesting a
system developed using any other paradigm because system testing is normally
based on a system's specification rather than its implementation. However, we have
some advice and approaches in terms of adequacy.

Chapter 10 discusses various topics regarding testing components, frameworks,
and product lines.

Chapter 11 briefly reviews the mgjor pointsin earlier chapters and addresses the
question, "Where do we go from here?’

Conventions Used in This Book

Technica terms gppearing for the first time are in boldface.

The source code examples in this book are presented using acode f ont . This
font is also used for source code fragments that appear within running text. Most of
the code in this book is expressed using C++. The techniques we describe are in no
way limited to C++. We have chosen C++ because it is used widely and in some
ways presents the most challenges for testers. From time to time, we will present
tips on testing features specific to Java.

Class names appear in running text in a sans sexif font.

20

Occasionally you will find ablock of text set off in a box. These boxes are
intended to add detail to or ancillary information about the subject under

discussion. There are different types of these blocks, each of which is described

here.

Tip

A tip isapiece of advice that we want to pass aong that will make testing
easier or more effective. Sometimes atip is directed at testing C++ or Java
code. Sometimes atip is a genera technique that we consider to be useful.

F.
Do the same questions come up over and over again?

Y es, they do. In these boxes we will answer frequently asked questions.

Related Topics

Sometimes more detail about a concept is discussed in a sidebar like this.
Some-times well use a sidebar like this to discuss something off the main
topic, but it is relevant to the discussion and is something we think you
should know aboui.

A Continuing Example—Brickles

We will use an example throughout the book to illustrate various testing

approaches and techniques. This will alow us to focus on the testing techniques

rather than taking space to set up a variety of examples. In this section wewill

introduce the game of Brickles, an interactive computer game. Thisgameis very
smilar to Breakout, one of the first commercia video games and a popular game

played on Apple || computers.

This example has its origins in a course we devel oped to teach object-oriented
design concepts and C++ programming. Our goal was to find an application whose
design was smple enough to understand and complete in aweek of training, while
at the same time it was both conducive to enhancements and interesting to
programmers whose backgrounds range over a variety of application domains and
environments. Our goal for this example, both in that course and in this book, is
solely to illustrate concepts about the design and testing of object-oriented
programs.

Basic Brickles Components

Brickles is an arcade game whose starting configuration is shown in Figure 1.1.
The play field is rectangular, bounded by two walls, a celling, and a floor. The play
field contains an array of bricks referred to as the "brick pile." A player's objective
isto break dl the bricksin the brick pile by hitting each brick with a puck that can
be struck by a paddle under the player's control. When the puck hits a brick, the
brick breaks. A puck bounces off walls, the celling, bricks (as they break), and the
paddle. At the start of play, a player is given three pucks with which to destroy the
bricks. A player wins a game when al bricks have been broken. A player loses if
the supply of pucks is exhausted before all of the bricks are broken.

Figure 1.1. The Brickles start-up configuration

Brick pile

B - - - Puck
F'Iﬂ}r.ﬁeld
- -+ Paddle

When play starts, a puck placed in the center of the play field beginsto movein a
downward direction. The paddle is controlled by the player with a mouse attached
to the computer. The player must move the paddle so that the puck hits the paddie
and not the floor. When the puck hits the paddle, it bounces upward. Whenever the
puck hits a brick, the brick is destroyed. If the puck misses the paddie and hits the

22

floor, it is removed from play and one of the remaining pucksis put into play. If al

pucks are lost to the floor, play ends and the player loses.

Brickles Physics

As the puck moves through the play field, it encounters various components of the

play field. The interactions between them are as follows (see dso Figure 1.2,

Figure 1.3, and Figure 1.4).

Figure 1.2. Interactions between puck and boundaries

angleof « .” * « angle of
incidence - 4, reflection

Figure 1.3. Puck interactions with bricks

23

Figure 1.4. Puck interactions with the paddle

4
54 0. O+e S i
=3 =] &= "
"Hl @1es 7@ ! ¥ 0
aE @ o ‘T
Near third : Middle ; Far third

Celling and walls The puck bounces off the celling and walls in accordance with

the laws of physics, neglecting friction and gravity—that is, the angle of reflection
equals the angle of incidence.

Floor The floor absorbs pucks. A puck that hits the floor does not rebound, but is
removed from play.

Bricks The puck bounces off a brick such that the angle of reflection equals the
angle of incidence. Upon being struck, a brick is destroyed. Note that bricks can be

24

hit by a puck from above as well as from below. They aso have sufficient
thickness that they can be hit from the side. For the sake of smplicity, itis
acceptable to assume that bricks are treated as though they have no thickness.
Thus, it is only the vertical component of the puck's direction that is changed when
the puck hits the brick.

Paddle The player uses a paddie to control the direction of the puck. The puck
bounces off the paddle based on both the direction of the puck asit hits the paddle
and the part of the paddle that's hit. Divide the paddle into thirds and define the
near third as being the left third of the paddle if the puck is coming in from the

left, and the right third if the puck is coming in from the right. Define the far third
smilarly, and the middle third as the remaining third. The rules of reflection are as
follows:

If the puck hits the paddie on its near third, then the puck returnsin the exact
opposite direction from which it came.

If the puck hits the paddle on the middle third, then the angle of reflection is
alittle steeper than the angle of incidence. The puck's movement is
constrained such that it must never be completdy vertical.

If the puck hits the paddle on the far third, then the angle of reflection isa
little shallower than the angle of incidence. The puck's movement is
constrained such that it must never be completely horizontal.

Puck The player is given afixed number of pucks at the beginning of the game,
but only oneisin play at any given time. Once one puck hits the floor, the next is
brought into play (assuming another is available). The puck has a current direction
and speed and moves according to an automatic timer. Collisons may change the
direction of the puck, but not the speed.

Game Environment

Thefirgt implementation of Brickles runs as an application within a Microsoft
Windows environment and behaves as follows:

The game shdl start when the program is launched.

A player can "exit" the game at any time before it iswon or logt.

A player can "pause’ the game at any time until play ends.

A player can "resume" a paused game.

A congratulatory message shall be displayed in the case of a player winning
the game. Similarly, a consolation message shall be displayed in the case of
aplayer losng the game.

25

Exercises

1-1. Consider an application that will be used to schedule conference roomsin an
office. The application has a graphical user interface that allows a user to indicate a
date, atime of day, and a duration (in fifteen-minute increments). It then shows a
list of conference rooms available at that time and allows a room to be reserved.
The system aso alows a user to cancel aroom reservation. The project isto be
developed incrementally—that is, in increasing amounts of functionality. Consider
the following two plans. Which is more likely to succeed? What testing can be
done at the end of each increment?

Plan A Plan B

Increment 1. Develop user interface |Increment 1. Develop capability to enter date,

time, and duration, and show room availability
Increment 2: Develop data storage

subsystem Increment 2: Develop capability to reserve a
room

Increment 3: Develop application
subsystem (reservation handling) |Increment 3: Develop capability to cancel a
reservation

1-2. Make aligt of the features in the object-oriented programming language(s)
your company is using that have no counterparts in alanguage used previously.
Next to each feature, jot down how you might approach testing software that's
using your specific language.

1-3. If you are currently working on a project, identify increments or major
milestones. Some of them might be informal. Think about the testing activities that
you can do during each increment and what you can test at the end of each.

26

Chapter 2. The Testing Perspective

Want to explorethetesting role? See Testing Per spective
Don't under stand object concepts? See Obj ect-Oriented Concepts
Need an overview of UML models? See Development Products

Testing Perspective

The testing per spective isaway of looking at any development product and
guestioning its validity. The person examining work products from this perspective
utilizes a thorough investigation of the software and all its representations to
identify faults. The search for faults is guided by both systematic thinking and
intuitive ingghts. It is a perspective that makes reviews and inspections just as
powerful atool as execution-based testing. A review will amost never find
something that is missing—that is, areview typicaly only seeksto validate what
exists and does not systematically search to determineif dl thingsthat should bein
the software actually arein it. The testing perspective requires that a piece of
software demonstrate that it not only performs according to its specification, but
performs only to that specification. Thus, a product istested to determine that it
will do what it is supposed to do, and it is also tested to ensure that it does not do
what it is not supposed to do.

Inspections, Reviews, and Test Executions

Software testing is typically accomplished by a combination of
Ingpections, reviews, and test executions. The purpose of these activitiesis
to observe fallures.

Aninspection is an examination of software based on a checklist of
typical problems. Most items on a checklist are based on programming
language semantics and/or coding conventions—for example, ensuring
that each program variable isinitialized before its first use and that

pointers or references have been set to reasonable values before they are
used. Modern compilers for object-oriented programming languages can
detect many of the problems called out on traditional inspection checklists.

A review is an examination of software with the purpose of finding errors
and faults even before the software is executed. Reviews are made in the

27

context of the system being devel oped and have a deeper interest in the
software than do inspections. A review delves into the meaning of each
part of a program and whether it is appropriate for meeting some or al of
the gpplication's requirements. A review isintended to uncover errors such
as missed or misunderstood requirements or faults in a program's logic.
Some reviews examine programming details such as whether variable
names are well chosen and whether algorithms are as efficient as they
could be.

Test execution is testing software in the context of a running program.
Through executing the software, atester tries to determine whether it has
the required behavior by giving the program some input and verifying that
the resulting output is correct. Among the challenges to testers are
identifying suitable inputs, determining correct outputs, and determining
how to observe the outputs.

Testing using program execution (versus inspection and review) isthe
primary focus of this book, although we extend the idea of execution to
include not only execution of the software under testing, but a special kind
of review that uses the symbolic execution of nonexecutable
representations of the system. Recall how we defined software as code and
al its representations.

The testing perspective may be adopted by the same person who developed a
product undergoing testing or by another person who brings an independent view
of the specification and the product. Anyone assigned to test specific work
products and every person assigned to a project a one time or another should adopt
the testing perspective. We will refer to anyone who adopts this perspective by the
titletester. A developer testing his or her own work is atester, and so is the person
who applies the testing perspective full time.

The testing perspective is as follows:
Skeptical: Wants proof of quality.
Obj ective: Makes no assumptions.
Thorough: Doesn't miss important areas.

Systematic: Searches are reproducible.

28

In this chapter we discuss aspects of object-oriented technologies using thistesting
perspective. First, we will review central concepts of object-oriented programming.
What features of these concepts affect the testing of software that was devel oped
using them? We will aso delineate some assumptions we make in regard to using
obj ect-oriented technologies properly. Then we will look at various products of the
devel opment process and discuss the potential causes of failuresin the software
they represent.

Object-Oriented Concepts
Obj ect-oriented programming is centered around six basic concepts:

object
message
interface

class
inheritance
polymorphism

oSOk wWwNPE

People seem to have attached a wide range of meanings to these concepts, most of
which are quite serviceable. We define some of these concepts perhaps alittle
more tightly than most people do because precision facilitates a better
understanding of testing the concepts and eliminates some potential confusion
about what needs to be tested. For example, while a distinction between operations
and methods (or member functions) is not significant for most programmers, the
distinction is significant to testers because the approach to testing an operation,
which is part of a class specification and a way to manipulate an object, is
somewhat different from testing a method, which is a piece of code that
implements an operation. The distinction helps to differentiate the concerns of
specification-based testing from the concerns of implementation-based testing.

We will review each of the basic object-oriented programming concepts and offer
observations about them from a testing perspective. While we know that object-
oriented programming languages support a variety of object-oriented programming
models, we use the concepts as they are formulated for languages such as C++ and
Java. Some of the variations between languages will affect the types of faults that
are possible and the kinds of testing that are required. We try to note such
differences throughout this book.

29

Object

An object is an operationa entity that encapsulates both specific data values and
the code that manipulates those values. For example, the data about a specific bank
account and the operations needed to manipulate that data form an object. Objects
are the basic computationa entities in an object-oriented program, which we
characterize as a community of objects that collaborate to solve some problem. As
aprogram executes, objects are created, modified, accessed, and/or destroyed as a
result of collaborations. Within the context of a good object-oriented design, an
object in a program is a representation of some specific entity in the problem or in
its solution. The objects within the program have relationships that reflect the
relationships of their counterparts in the problem domain. Within the context of
Brickles, many objects can be identified, including a paddle, pucks, abrick pile
containing bricks, the play field, the play field boundaries (walls, celling, and

floor), and even aplayer. A puck object will encapsulate a variety of attributes,
such asits size, shape, location on aplay fied (if it isin play), and current velocity.
It also supports operations for movement and for the puck'’s disappearance after it
hits the floor. In the program that implements Brickles, we would expect to find an
object for each of the pucks—for example, at the start of a Brickles match, we see
the puck in play and any that are in reserve. When in play, a puck object will
collaborate with other objects—the play field, paddie, and brick pile—to
implement Brickles physics, which are described in the game description (see page
11).

Objects are the direct target of the testing process during software devel opment.
Whether an object behaves according to its specification and whether it interacts
appropriately with collaborating objects in an executing program are the two major
focuses of testing object-oriented software.

An object can be characterized by itslife cycle. Thelife cycle for an object begins
when it is created, proceeds through a series of states, and ends when the object is
destroyed.

Definitional versus Operational Semantics of Objects

Thereisabhit of confusion among many of our clients and students with
respect to the distinction between those aspects of object-oriented
programming that are concerned with the definition of classes and
interface and those that are concerned with the use of objects. We refer to
these as the definitional and oper ational aspects of object-oriented

30

programming.

Definitiona: The class definition provides what might, at first glance
appear to be the extreme point on the definitional end of the continuum;
however, in some languages such as CLOS, the structure and content of
this definition is defined by a metaclass. The metaclass approach may
theoretically extend the continuum indefinitely in the definitional direction
sinceit is possible to have a metaclass for any class, including
metaclasses. The dynamic dimension represents the possibility in some
languages, such as Java, to define classes during program execution.

Operationa: The operationa end of this continuum corresponds to the
concept that an object is the basis of the actions taken in the system. An
object provides the mechanisms needed to receive messages, dispatch
methods, and return results. It also associates instance attributes with
methods. This information may be on the static end of that dimension (as
in a C++ object), or it may be more dynamic in the case of a CLOS object
that contains arbitrary dots.

Definitional Dynamic

\- Interface/Class

Definitions
Bound at

/ runtime
Bound at

compile time

Object

Bound at
analysis time

Static Operational

We make the following observations about objects from a testing perspective.

An object encapsulates. This makes the complete definition of the object
easy to identify, easy to pass around in the system, and easy to manipulate.

An object hides information. This sometimes makes changes to the object
hard to observe, thereby making the checking of test results difficult.

An object has a state that persists for the life of the object. This state can
become inconsistent and can be the source of incorrect behavior.

An object has a lifetime. The object can be examined at various pointsin
that lifetime to determine whether it is in the appropriate state based on its
lifetime. Construction of an object too late or destruction of it too early isa
common source of failures.

In Chapter 6 we will describe avariety of techniques for testing the interactions
among objects. We will address other aspects of testing objects in Chapter 5 and

Chapter 7.
Message

A message™!! is arequest that an operation be performed by some object. In
addition to the name of an operation, a message can include values—actual

par ameter s—that will be used to perform that operation. A receiver can return a
vaue to the sender.

™' In C++ terminology, a message is referred to as a member
function call. Java programmers and Smalltalk programmers
refer to messages as method invocations. We will use these
terms in discussions of C++ and Java code, but we will use the
more generic term message in language-independent
discussions. Keep in mind that a member function call is distinct
from a member function. A method invocation is distinct from a
method.

An object-oriented program is a community of objects that collaborate to solve a
problem. This collaboration is achieved by sending messages to one another. We
call the object originating a message the sender and the object receiving the
message the receiver. Some messages result in some form of reply such asa
return value or an exception being sent from the receiver to the sender.

The execution of an object-oriented program typically begins with the instantiation
of some objects, and then a message being sent to one of the objects. The receiver
of that message will send messages to other objects—or possibly even to itself—to
perform computations. In some event-driven environments, the environment will
repeatedly send messages and wait for replies in response to external events such
as mouse clicks and key presses.

32

We make the following observations about messages from a testing perspective.

A message has a sender. The sender determines when to send the message
and may make an incorrect decision.

A message has areceiver. The receiver may not be ready for the specific
message that it recelves. The recelver may not take the correct action when
recelving an unexpected message.

A message may include actual parameters. These parameters will be used
and/or updated by the receiver while processing the message. Objects passed
as parameters must be in correct states before (and after) the messageis
processed, and they must implement the interfaces expected by the receiver.

These issues are the primary focus of interaction testing in Chapter 6.
Interface

Aninterface is an aggregation of behavioral declarations. Behaviors are grouped
together because they define actions related by a single concept. For example, an
interface might describe a set of behaviors related to being a moving object (see

Figure 2.7).

Figure 2.1. A Java declaration for a Movabl e interface

public interface Movablef
public Paint getPosition();
public Velocity getVelocity();
public void setVelocityiVelocity newWelocity);
public wvoid ticki);,
public vaid movel);
public woid collideWith(ArcadeCameFiece afiece Point aPoint);
public wvaid callideWithPaddle(Paddle aPaddle, Paint aPaint);
public wvoid collideWithPuck(Puck aPuck,Point aPoint);
public wvoid reversel):
public woid reverseX();

i

An interface isabuilding block for specifications. A specification defines the total
set of public behaviors for a class (we will define this next). Java contains a

syntactic construct i nt er f ace that provides this capability and does not allow
the declaration of any state variables. Y ou can produce the same result in C++ by
declaring an abstract base class with only public, pure virtua methods.

We make the following observations about interfaces from a testing perspective.

An interface encapsul ates operation specifications. These specifications
incrementally build the specifications of larger groupings such as classes. If

33

the interface contains behaviors that do not belong with the other behaviors,
then implementations of the interface will have unsatisfactory designs.

An interface has relationships with other interfaces and classes. An interface
may be specified as the parameter type for a behavior to alow any
Implementer of that interface to be passed as a parameter.

We will use the term inter face to describe a set of behavior declarations whether
or not you use the interface syntax.

Class

A classis aset of objects that share a common conceptua basis. Many people
characterize a class as a template—a "cookie cutter"—for creating objects. While
we understand that characterization makes apparent the role of classesin writing
object-oriented programs, we prefer to think of a class as a set. The class definition
then is actually a definition of what members of the set look like. Thisis aso better
than definitions that define a class as a type since some object-oriented languages
don't use the concept of atype.

Objects form the basic elements for executing object-oriented programs, while
classes are the basic elements for defining object-oriented programs. Any concept
to be represented in a program must be done by first defining a class and then
creating objects defined by that class. The process of creating the objectsis
referred to asinstantiation and the result is referred to as an instance. We will use
instance and object interchangeably.

The conceptua basis common to all the objectsin aclassis expressed in terms of
two parts:

A class specification is the declaration of what each of the objectsin the
class can do.

A classimplementation is the definition of how each of the objectsin the
class do what they can do.

Consider a C++ definition for aclass PuckSuppl y from Brickles. Figure 2.2
shows a C++ header file and Figure 2.3 shows a source file for such aclass. The
use of a header file and one or more source filesis atypical way to structure a C++
class definition.’ In the context of C++, a header file contains the class
specification as a set of operations declared in the public area of aclass
declaration. Unfortunately, as part of the implementation, the private (and

protected) data attributes, must also be defined in the header file.

? Java prescribes that specification and implementation
physically be in the same file. Nonetheless, there is a logical
separation between what an object does and how it does it.

Figure 2.2. A C++ header file for the class PuckSuppl y

#ifndef PUCKSUPPLY_H
#define PUCKSUPPLY_H
class PuckSupply {
public:
PuckSupply();
~PuckSupply(};

Puck® get()
int size() const;

private:

static constint N = 3;
int _count;

Puck® _store[N];

5
#endif

Figure 2.3. A C++ source file for the class PuckSuppl y

#include “PuckSupply.h”
PuckSupply::PuckSupply() : _count{N) {
int i;
for (i=0;i<N;++i){
_store[i] = new Puck;
b
}

PuckSupply::~PuckSupply() {
int i;
for(i=0;i<_count;++i){

delete _store[i];

h

}

Puck* PuckSupply::get(} {
return (_count > 0 7 _store[--_count] : 0);

}

int PuckSupply::size() const {
return _count;

J

35

To create or manipulate an object from another class, a segment of code only needs
access to the specification for the class of that object. In C++, thisistypicaly
accomplished by using an i ncl ude directive naming the header file for the
object's class:

#i ncl ude " PuckSupply. h"

This, of course, gives accessto all the information needed to compile the code, but
it provides more information than is necessary to design the interactions between
classes. In Chapter 4 we will discuss problems that can arise from designers having
aview into possible implementations of a class and how to detect these problems
during reviews.

Classes as Objects

Object-oriented programming languages typicaly support, either explicitly
or implicitly within the semantics of the language, the notion that aclassis
itself an object, and as such can have operations and attributes defined for
it. In both C++ and Java, operations and data values associated with a class
are identified syntactically by the keyword static. We will refer to such
operations as static oper ations. The presence of public static operationsin
a class specification implies that the classitsdlf is an object that can be
messaged. From a testing perspective, we must treat such a class as an
object and create atest suite for the class aswell asitsinstances. From a
testing perspective, we should always be skeptical of nonconstant, static
data associated with a class because such data can affect the behavior of
Instances.

Class Specification

A specification for a class describes what the class represents and what an instance
of the class can do. A class specification includes a specification for each of the
operations that can be performed by each of itsinstances. An operationisan
action that can be applied to an object to obtain a certain effect. Operations fal into
two categories:

Accessor (or inspector) operations provide information about an object—
for example, the value of some attribute or general state information. This
kind of operation does not change the object on which the operation is being

36

requested. In C++, accessor operations can and should be declared as
const.

Modifier (or mutator) oper ations change the state of an object by setting
one or more attributes to have new values.

We make this classification because testing accessors is different from testing
modifiers. Within a class sgecificati on, some operations might both provide
information and change it.2! Some modifier operations might not make changes
under al circumstances. In elther case, we classify these operations as modifier
operations.

1t is good object-oriented design practice for an operation to
be one or the other, but not both.

There are two kinds of operations that deserve special attention:

A constructor is a class object operation used to create a new object,
including the initidization of the new instance when it comes into existence.

A destructor is an instance object operation used to perform any processing
needed just prior to the end of an object's lifetime.

Constructors and destructors are different from accessors and modifiersin that they
are invoked implicitly as aresult of the birth and death of objects. Some of these
objects are visible in the program and some are not. The statement

x=a+b+c

inwhich a, b, ¢, and x are all objects from the same class, invokes the constructor
of that class at least twice to create objects that hold intermediate results and die by
the end of the statement, as follows:

tmp; =a+ b;

tmpy = tmp; + C;

37

X = tmpa,

A class represents a concept, either in the problem being solved by a software
application or in the solution to that problem. We expect a description of what a
class represents to be a part of a class specification. Consider, for example, that the

class PuckSuppl y declared in Figure 2.2 probably does not have much meaning
without an explanation that it represents the collection of pucks that a player has at
the start of a Brickles match. Asthe player loses pucks to the floor during play, the
program will replace it with another puck from a puck supply until that supply is
exhausted, at which time the match ends with aloss for the player.

We also expect some meaning and constraints to be associated with each of the
operations defined in a class specification—for example, do the operations

si ze() andget () for the class PuckSuppl y have any inherent meaning to
you? Consequently, each operation should have a specification that describes what

It does. A specification for PuckSuppl y isgivenin Figure 2.4.

Figure 2.4. A specification for the PuckSuppl y class based on
contracts

A puck supply is a set of pucks not in play that can be retrieved one at a
time. The pucks are created by a puck supply when it is created.

« Class invariant: The count associated with a puck supply is always an
integer in the range zero through three, inclusive.

« The size() operation can be applied at any time. It returns (replies
with) the number of pucks left in the receiver and has no effect on the
receiver,

« The get() operation can only be applied if the receiver has at least one
puck—that is, its size aftribute is greater than zero. The resull of the
operation is 1o relurn a puck and to reduce the number of pucks by
ane,

» The construcier has no preconditions. The result of the constructoris a
puck supply containing three pucks—that is, the size afttribute has a
value of three.

« The destructor has no preconditions. The destruclor deletes any pucks
that remain in the object being deleted.

Thesi ze() operation can be applied at any time (no preconditions) and
returns the number of pucksin the receiver.

Theget () operation can only be applied if at least one puck isleft in the

receiver—that is, si ze() > 0. Theresult of the operation isto return a
puck and to reduce the number of pucks by one.

38

Well-specified operation semantics are critical to both development and testing
efforts and definitely worth the time and effort needed to express them well. You
can use any form of notation to specify the semantics provided it iswell-
understood by all who must use it. We will specify semantics at several different
points:

Preconditions for an operation prescribe conditions that must hold before
the operation can be performed. Preconditions are usualy stated in terms of
attributes of the object containing the operation and/or attributes of any
actual parameters included in the message requesting that the operation be
performed.

Postconditions for an operation prescribe conditions that must hold after the
operation is performed. Postconditions are usually stated in terms of (1) the
attributes of the object containing the operation; (2) the attributes of any
actua parametersincluded in the message that is requesting that the
operation be performed; (3) in terms of the value of any reply; and/or (4) in
terms of the exceptions that might be raised.

I nvariants prescribe conditions that must aways hold within the lifetime of
the object. A classinvariant describes a set of operating boundaries for an
instance of aclass. It is aso possible to define interface invariants as well as
operationa invariants for segments of code. A class invariant can be treated
as an implied postcondition for each operation. They must hold whenever an
operation completes, athough a method for an operation is allowed to
violate invariants during its execution. Invariants are usually stated in terms
of the attributes or states of an object.

The aggregate of the specifications of all of the operationsin a class provides part
of the description of the behavior of its instances. Behavior can be difficult to infer
from operation specifications alone, so behavior istypically designed and
represented at a higher form of abstraction using states and transitions (See State
Diagrams on page 49). Behavior is characterized by defining a set of states for an
instance and then describing how various operations effect transitions from state to
state. The states associated with a puck supply in Brickles define whether it is
empty or not empty. Being empty is determined by the size attribute of a puck
supply. If the sizeis zero, then it is empty, otherwise it is not empty. Y ou can
remove a puck from a supply only if that supply is not empty—that is, if itssizeis
not zero.

When you write a specification for an operation, you can use one of two basic
approaches to define the interface between the recelver and the sender. Each

39

approach has a set of rules about how to define the constraints and responsibilities
of the sender and the receiver when an operation is to be performed. A contract
approach is embedded in the specification in Figure 2.4. A defensive
programming approach underlies the specification in Figure 2.5. The contract
approach emphasizes preconditions, but has ssimpler postconditions, while the
defensive programming approach is just the reverse.

Figure 2.5. A specification for the class PuckSuppl y based on
defensive programming

A puck supply is a set of pucks not in play that can be retrieved one at a
time. The pucks are created by a puck supply when it is created. Mote: Even-
tually a way to increase the number of pucks in a supply might be added.

« Class invariant: The count associated with a puck supply is always an
integer in the range zero through hree, inclusive.

+ The size() operation can be applied at any time.

It returns (replies with) the number of pucks left in the receiver and has
no effect on the receiver.

« The get(} operation can be applied at any time.

If the receiver has at least one puck—that is, if its count attribute is
greater than zero, then the result of the operation is a pointer’s refurn
o a puck. which reduces the number of pucks by one. Otherwise, a
null pointer value is returned and the count atiribute remains at zero.

« The constructor has no preconditions.

The result of the constructor is a puck supply containing three pucks—
that is, the count attribute has a value of three.

* The destructor has no preconditions.
The destructor deletes any pucks that remain.

Under the contract approach, which is a design technique developed by Bertrand
Meyer [Meyed], an interface is defined in terms of the obligations of the sender
and the receiver involved in an interaction. An operation is defined in terms of the
obligations of each party. Typicaly, these are set forth in preconditions and
postconditions for an operation and a set of invariant conditions that must hold
across al operations, thereby acting as postconditions required of all operations.
The preconditions prescribe the obligation of the sender—that is, before the sender
can make arequest for arecelver to perform an operation, the sender must ensure
that al preconditions are met. If preconditions have been met, then the receiver is
obligated to meet the requirements set forth in the postconditions as well as those
in any class invariant. Under the contract approach, care must be taken in the
design of aclass interface to ensure that preconditions are sufficient to allow a
receiver to meet postconditions (if not, you should add additional preconditions)
and to ensure that a sender can determine whether al preconditions are met before
sending amessage. Typically, a set of accessor methods allow for checking

40

specified conditions. Furthermore, care must be taken to ensure that postconditions
address all possible outcomes of an operation, assuming preconditions are met.

Under the defensive programming approach, an interface is defined primarily in
terms of the receiver, and any assumptions it makes on its own state and the values
of any inputs (arguments or global data values) at the time of the request. Under
this approach, an operation typicaly returns some indication concerning the status
of the result of the request—success or failure for a particular reason, such as a bad
input value. Thisindication istraditionally in the form of a return code that
associates a value with each possible outcome. However, areceiver can provide to
a sender an object that encapsulates the status of the request. Furthermore,
exceptions are being used more frequently because many object-oriented
programming languages now support them. Some operations are defined so that no
statusis returned in case of failure, but instead, execution is terminated when a
request cannot be met. Certainly this action cannot be tolerated in most software
systems.

The primary goa of defensive programming isto identify "garbage in" and hence
eliminate "garbage out." A member function checks for improper values coming in
and then reports the status of processing the request to a sender. The approach
tends to increase the complexity of software because each sender must follow a
request for an operation with code to check the processing status and then, for each
possible outcome, provide code to take an appropriate recovery action. The
approach tends to increase both the size of code and to increase execution time
because inputs are checked on every call, even though the sender may have already
checked them.™

!t is curious that code we have seen that was written using a
defensive programming approach rarely checks to ensure the
receiver actually performed the requested operation—that is,
the mistrust is only on the part of a receiver. Perhaps this
practice arises from the fact that the code for the receiver has
usually been tested and is considered trustworthy enough to
work correctly. Misuse can come only on the sender's side; we'll
address this in Chapter 5.

The contract and defensive programming approaches represent two opposite views
of software specification. As the name implies, defensive programming reflects a
lack of trust of a sender on the part of areceiver. By contrast, a contract reflects a
mutual responsibility shared by both a sender and areceiver. A receiver processes

41

arequest based on inputs believed to meet stated preconditions. A sender assumes
that conditions have been met after the request has been processed. It is not
uncommon for the approaches to be mixed in specifying the operations within a
single class because they each have advantages and disadvantages.

Interface design based on contracts eliminates the need for arecelver to verify
preconditions on each call.™ It makes for better software engineering and better
program (and programmer) efficiency. However, it introduces one important
guestion: "In the context of an executing program, how are contracts enforced?"
Clearly, the contract places obligations on both sender and receiver. Nonetheless,
can areceiver truly trust every sender to meet preconditions? The consequences of
"garbage in" can be disastrous. A program'’s execution in the presence of a sender's
failure to meet a precondition would most likely result in data corruption that

would in turn have serious consequences! It iscritical that all interactions under
contracts be tested to ensure compliance with a contract.

™11t is still useful for debugging to include code to check
preconditions. This code can be "removed" from the executable
after a system is debugged, but before the final testing. Eiffel
[Meye00] has language-level support for contract checking and
compiler switches to enable and disable the checking.

From atesting perspective, the approach used in an interface determines the types
of testing that need to be done. The contract approach smplifies class testing, but
complicates interaction testing because we must ensure that any sender meets
preconditions. The defensive programming approach complicates class testing
(because test cases must address all possible outcomes) and interaction testing
(because we must ensure al possible outcomes are produced and that they are
properly handled by a sender).

Tip
Review pre- and postconditions and invariants for testability during

design. Are the constraints clearly stated? Does the specification include
means by which to check preconditions?

Class Implementation

42

A class implementation describes how an object represents its attributes and carries
out operations. It comprises several components:

A set of data values stored in data member s, which are sometimes referred
to asinstance variables or variables. The data values store some or al of
the vaues associated with the attributes of an object. There is not necessarily
a one-to-one mapping of attributes to data values. Some attributes can be
derived from others—for example, the direction a puck is moving in the
horizontal direction can be deduced from its velocity. Some redundant
representation of derivable attributes is sometimes desirable in order to
improve the performance of member functions with respect to time. In some
cases, an attribute identified for an object might not be represented at al
because the attribute is not needed in an gpplication. By removing the
attribute, we can reduce the memory space needed to hold such an object.
A set of methods, referred to as member functionsin C++ or methods in
Java, congtitutes code that will be used to implement an algorithm that
accomplishes one operation declared in the public or private class
specification. The code typically uses or sets an object's variables. It
processes any actual parameter values, checks for exceptional conditions,
and computes areturn vaue if oneis specified for the operation.

A st of congtructors to initialize a new instance (at the start of its lifetime).
A congtructor is really an operation on a class object.

A destructor that handles any processing associated with the destruction of
an instance (when it reaches the end of its lifeti m[(?.

A set of private operations in a private interface.® Private operations
provide support for the implementation of public operations.

I For simplicity, we will generally use the term private to

refer to any aspect of a class that is not public. C++
supports private and protected components of a class and

Java supports even more levels of access to components.

Class testing is an important aspect of the total testing process because classes
define the building blocks for object-oriented programs. Since aclassisan
abstraction of the commonalities among its instances, the class testing process
must ensure that a representative sample of members of the class are selected for
testing.

By viewing classes from atesting perspective, we can identify the following
potential causes of failures within their design and implementation.

43

A class specification contains operations to construct instances. These
operations may not properly initialize the attributes of new instances.

A classrelies on collaboration with other classes to define its behaviors and
attributes. For example, an instance variable might be an instance of another
class or a method might send a message to a parameter (which is an instance
of another class), to do some part of its computation. These other classes

may be implemented incorrectly and contribute to the failure of the class
using them in a definition.

Subsystems and Classes

A classisavery interesting concept in terms of systems and subsystems.
In many ways, a system or a subsystem can be specified as a class—one
associated with a complex behavior, but a class nonetheless—that has
states and transitions and an interface. Much of the focus of this book is on
class testing. Many of the techniques we discuss could be scaled up to
system and subsystem testing if the system is indeed specified as a class.
Note, however, that the complexity of such aclass far exceeds that of a
class such as Poi nt . Thisisan indication of some of the issues we must
address with respect to class testing.

A classsimplementation "satisfies' its specification, but that is no guarantee
that the specification is correct. The implementation may violate a higher
requirement, such as accepted design criteria, or it may ssimply incorrectly
model the underlying concept.

The implementation might not support all required operations or may
incorrectly perform operations.

A class specifies preconditions to each operation. The class might not
provide away for that precondition to be checked by a sender before sending
amessage.

The design approach used, contract or defensive, givesrise to different sets of
potentia problems. Under a contract approach, we only need to test Situationsin
which the preconditions are satisfied. Under a defensive programming approach,
we must test every possible input to determine that the outcome is handled
properly.

Inheritance

Inheritance is areationship between classes that allows the definition of anew
class based on the definition of an existing class™” This dependency of one class
on another alows the reuse of both the specification and the implementation of the
preexisting class. An important advantage of this approach is that the preexisting
class does not have to be modified or made aware in any way of the new class. The
new classisreferred to asa subclass or (in C++) a derived class. If aclassinherits
from another, the other classisreferred to asits superclassor (in C++) base class.
The set of classes that inherit either directly or indirectly from a given class form

an inheritance hierarchy. Within that hierarchy, we can refer to the root, which is
the class from which all othersinherit directly or indirectly. Each classin a
hierarchy, except the root, has one or more ancestor s, the class(es) from which it
inherits directly or indirectly. Each class in a hierarchy has zero or more
descendents, which are the classes that inherit from it directly or indirectly.

M In a programming language that supports multiple
inheritance, a new class can be defined in terms of one or
more existing classes. C++ supports multiple inheritance, but
most other object-oriented programming languages do not.
Most designers tend to avoid the use of multiple inheritance
because of its complexity. Sometimes multiple inheritance is
very useful, especially in modeling similarities between two
subclasses at the same level in an inheritance hierarchy. We
will focus primarily on single inheritance, but we will address
multiple inheritance in important areas of testing.

Good object-oriented design requires that inheritance be used only to implement an
isa (or isa kind of) relationship. The best use of inheritance is with respect to
specifications and not implementation. This requirement becomes evident in the
context of inclusion polymor phism (see page 34).

Viewed from the testing perspective, inheritance does the following:

Provides a mechanism by which bugs can be propagated from a classto its
descendents. Testing aclass asit is developed eliminates faults early before
they are passed on to other classes.

Provides a mechanism by which we can reuse test cases. Because a subclass
inherits part of its specification and implementation from its superclass, we
can potentially reuse test cases for the superclass in testing the subclass.
Modelsan is a kind of relationship. Use of inheritance solely for code reuse
will probably lead to maintenance difficulties. Thisis chiefly adesign

45

quality issue, but we argue that it is such a common mistake in object-
oriented development that testers can make a significant contribution to a
project's success by checking that inheritance is used properly. Besides,
proper use of inheritance in design leads to benefits in execution testing of

classes (see Chapter 7).

Polymorphism

Polymor phism is the ability to treat an object as belonging to more than one type.
The typing system in a programming language can be defined to support a number

of different type-conformance policies. An exact match policy may be the safest

policy, but a polymorphic typing system supports designs that are flexible and easy

to mantain.

Substitution Principle

Inheritance should be used only to model theisa (or isa kind of)
relationship. That is, if D is a subclass of C, then it should be understood
that D isa kind of C. Based on the substitution principle [LiWi94], an
instance of a subclass D can be used whenever an instance of theclassC is
expected. In other words, if aprogram is designed to work with an
instance of the class C in some context, then an instance of the class D
could be substituted in that same context and the program still could work.
In order for that to happen, the behavior associated with D must somehow
conform to that which is associated with C.

One way to enforce "substitutability” is to constrain behavior changes
from class to subclass. The behavior associated with a class can be defined
in terms of the observable states of an instance and the semantics
associated with the various operations defined for an instance of that class.
The behavior associated with a subclass can be defined in terms of
incremental changes to the observable states and operations defined by its
base class.

Under the substitution principle, only the following changes are dlowed in
defining the behavior associated with a new subclass;

The preconditions for each operation must be the same or weaker—
that is, less constraining from the perspective of aclient.
The postconditions for each operation must be the same or

46

stronger—that is, must do at least as much as defined by the
superclass.

The classinvariant must be the same or stronger—that is, add more
constraints.

These constraints on behavior changes must be enforced by the
developers. Viewed from the perspective of observable states, we can
show that

The observable states and al transitions between them associated
with the base class must be preserved by the subclass.

The subclass may add transitions between these states.

The subclass may add observable states as long as each is either
concurrent or a substate of an existing state.

Inclusion Polymorphism

Inclusion polymor phism is the occurrence of different formsin the same class.
Object-oriented programming language support for inclusion polymorphism®
gives programmers the ability to substitute an object whose specification matches
another object's specification for the latter object in arequest for an operation. In
other words, a sender in an object-oriented program can use an object asa
parameter based on its implementation of an interface rather than its full class.

81 Some people refer to this support as dynamic binding.
Dynamic binding is an association at runtime between the
operation specified in a message and a method to process the
requested operation. However, dynamic binding is the
mechanism by which inclusion polymorphism is implemented
by runtime environments. In C++, dynamic binding must be
requested by the keyword vi rt ual in a member function
declaration.

In C++, inclusion polymorphism arises from the inheritance relationship. A
derived class inherits the public interface of its base class™ and thus instances of
the derived class can respond to the same messages as the base class.*¥ A sender
can manipulate an instance of either class with avalue that is either areference or a
pointer whose target type is the base class. A member function call can be made
through that value.

a7

®T\we assume public inheritance is used. We believe
protected and private inheritance should be used only under
rare circumstances.

1% nstances of the derived class can potentially respond to
additional messages because the derived class defines
additional operations in its public interface.

In Java, inclusion polymorphism is supported both through inheritance between
classes and an implementation relationship between interfaces and classes. A

sender can manipulate objects with a reference declared for either aclassor an
interface. If areference is associated with a class, then the reference can be bound
to an instance of that class or any of its descendents. If areference is associated
with an interface, then the reference can be bound to an instance of any classthat is
declared to implement that interface.

Our definition of a class as a set of objects that share acommon conceptual basis
(see page 22) isinfluenced primarily by the association of inheritance and

inclusion polymorphism. The class at the root of a hierarchy establishes a common
conceptual basis for al objects in the set. A descendent of that root class refines
the behavior established by that root class and any of its other ancestors. The
objects in the descendent class are till contained in the set that is the root class.
Thus, a descendent class defines a subset of each of the sets that are its ancestors.
Suppose that the Brickles specification is extended to incorporate additional kinds
of bricks—say, some that are hard and have to be hit twice with a puck before they
disappear, and some that break with a considerable force that increases the speed
of any puck that hitsit. The Har dBr i ck and Power Br i ck classes could each be
defined asa subclass of Br i ck. The relationship between the sets areillustrated in
Figure 2.6. Note how in a polymorphic sense, the class Br i ck contains 24
elements—10 "plain" bricks, 8 hard bricks, and 6 power bricks. Hard bricks and
power bricks have special properties, but they aso respond to the same messages
as"plain” bricks, although probably in different ways.

Figure 2.6. A set diagram for aBri ck inheritance hierarchy

48

Briak = -\1

HardBrick PawerBrick
L BE] . & @
B CO=E e W e
O B

Sets representing classes can be considered from two perspectives:

1. From aclass's perspective, each set contains al instances. Conceptually, the
size of the set could be infinite, as is the case with bricks since, in theory, we
can cregte bricks for any number of Brickles matches or even for any other
arcade games because the Br i ck classis not necessarily tied to Brickles.
Infinite sets are most easily represented using Venn diagrams.

2. From an executing program's perspective, each set is drawn with one
element per instance in existence. The setsin Figure 2.6 are drawn from this
perspective.

Both perspectives are useful during testing. When a classis to be tested outside the
context of any application program (see Chapter 5 and Chapter 6), we will test it

by selecting arbitrary instances using the first perspective. When the use of a class
IS to be tested in the context of an executing application program or in the context
of object persistence, then we can utilize the second perspective to ensure that the
size of the set is correct and that elements correspond to appropriate objectsin the
problem or in its solution.

Inclusion polymorphism provides a powerful capability. You can perform all
design and programming to interfaces, without regard to the exact class of the
object that is sent a message to perform an operation. Inclusion polymorphism
takes design and programming to a higher level of abstraction. In fact, it is useful

to define classes for which no instances exist, but for which its subclasses do have
instances. An abstract classis a class whose purpose is primarily to define an
interface that is supported by al of its descendents™ In terms of the example
extending the kinds of bricksin Brickles, an aternate formulation is to define an
abstract class called Br i ck and define three subclassesfor it: Pl ai nBri ck,

Har dBr i ck, and Power Bri ck (see Figure 2.7).

11 An abstract class might also define portions of the
iImplementation for its descendents. Both C++ and Java provide

49

syntax for the definition of abstract classes and ensure that
instances of them cannot be created in a running program.

Figure 2.7. A set diagram for aBri ck class inheritance hierarchy

Brick PlainBrick 1\
=
HardBrick PowarBnck
O /. C e o o
g 1= e o @
|
8 &y

Among the abstract classes that we used in the design of Brickles arethe
following:

Spr i t e to represent the things that can appear on a play field.

Movabl eSpri t e, whichisasubclass of Spri t e, to represent sprites that
can movein aplay field.

StationarySprite,whichisasubclassof Sprit e, to represent sprites
that cannot move in aplay fied.

Puck and Padd| e are concrete subclasses of Movabl eSpri t e,whileBri ck
Isasubclassof St at i onar ySpri t e. The use of abstractions allows
polymorphism to be exploited during design. For example, we can design at the
level of aplay field containing sprites without detailed knowledge of all the
various kinds of sprites. We can design at the level of movable spritesmoving in a
play field and colliding with other sprites—both movable and stationary. If the
game specification were extended to incorporate hard bricks and power bricks,
most parts of the program would not need to be changed because, after al, hard
bricks and power bricks are just stationary sprites. The parts of the program that
are affected should be limited to those that construct the actual instances of the
classes.

Subclassing and Subtyping

Consider adesign solution that involves inclusion polymorphism. In the
diagram below, classes C and D inherit from class B. Instances of class A
think they are sending messages to en instance of class B (the type of

50

formal parameter B). The polymorphic attribute of the typing system
allowsinstances of C and D in place of the instance of B. Each classhas a
different implementation of the dol t () method.

A B

trylt(B b), doltd { ... }
[

tryle(B b) { b c]
bdalt(y;

} dolt(}{ ... } doltd { ... |

Designing software well, within the context of inheritance and inclusion
polymorphism, requires a disciplined use of inheritance (and interfacesin
Java). It isimportant that behavior is preserved as classes are added to
extend a class hierarchy. If, for example, bricks can move, then they are
not really classifiable as stationary sprites. Good design requires that each
subclass be a subtype—that is, the specification for the subclass must
fully meet all specifications of its direct ancestor. Thisis an enforceable
design requirement when the following rules are applied with respect to
pre- and postconditions for each inherited operation:

Thetrylt () method of A iswritten to satisfy the preconditions of
thedol t () operation of B beforeit calsdol t () . If aninstance
of C or D isto be substituted, the preconditions for C:dol t () or
D::dol t () must not add any new conditions to those for

B: : dol t () or wewould have to modify A to accommodate C and
D

Thetrylt () method of A iswritten to satisfy the preconditions of
thedol t () operation of B beforeit calsdol t () . If aninstance
of C or D isto be substituted, the preconditionsfor C. : dol t () or
D: : dol t () must not add any new conditions to those for

B: : dol t () or wewould have to modify A to accommodate C and
D

The invariant defined for B must still be true in instances of C and

ol

D. Additional invariants may be added.

These requirements are easy to understand in the context of a software
contract (see page 27). Preconditions set forth the obligations of any
sender and the postconditions and class invariants set forth the obligations
of areceiver in any interaction. The requirement for same or weaker (less
strict) preconditions means that in meeting its obligations in terms of the
contract for A, a sender still meets its obligations for B, which is not as
congtraining. The requirement for the same or stronger (more strict)
postconditions and invariants means that a receiver still can meet a
sender's expectations in terms of the contract for A, even though that
receiver might do more than the sender expects.

A polymorphic reference hides the actual class of areferent. All referents are
manipulated through their common interface. C++ and Java provide support for
determining the actual class of areferent at runtime. Good object-oriented design
requires that such runtime type inspections should be held to a minimum, primarily
because they create a maintenance point since the extension of a class hierarchy
introduces more types to be inspected. However, situations arise in which such
Ingpections can be justified.

The following are the functions of inclusion polymorphism viewed from atesting
perspective:

Inclusion polymorphism allows systems to be extended incrementally by
adding classes rather than modifying existing ones. Unanticipated
Interactions can occur in the extensions.

Inclusion polymorphism allows any operation to have one or more
parameters of a polymorphic reference. This increases the number of
possible kinds of actual parameters that should be tested.

Inclusion polymorphism alows an operation to specify replies that are
polymorphic references. The actual class of the referent could be incorrect or
unanticipated by the sender.

This dynamic nature of object-oriented languages places more importance on
testing a representative sample of runtime configurations. Static analyses can
provide the potential interactions that might occur, but only the runtime
configuration can illustrate what actually happens. In Chapter 6 we consider a
satistical technique that assists in determining which configurations will expose
the most faults for the least cost of resources.

52

Parametric Polymorphism

Parametric polymor phism is the capability to define atype in terms of one or
more parameters.

Templates in C++ provide a compile-time ability to instantiate a"new" class. It is
new in the sense that an actua parameter is provided for the formal parameter in
the definition. Instances of the new class can then aso be created. This capability
has been used extensively in the C++ Standard Template Library. The interface of
asmplelist class template is shown in Figure 2.8.

Figure 2.8. A C++ Li st class template

template<class ItemType, class Key>
class List{
public:
void add(ltemType® item);
ltemType* retrieve(Key searchValue);

}

From atesting perspective, parametric polymorphism supports a different type of
relationship from inheritance. If the template works for one instantiation, there is
no guarantee it will work for another because the template code might assume the
correct implementations of operations such as making (deep) copies and
destructors. This should be checked during inspection. It is possible to write
templated drivers for testing many parts of templates.

Abstraction

We have referred to the concept of abstraction throughout this chapter.
Abstraction is the process of removing detail from a representation.
Abstraction alows usto look at a problem or its solution in various levels
of detail, thereby letting us leave out any considerations that are irrelevant
to the current level of interest. Object-oriented technol ogies make
extensive use of abstraction—for example, the root class in an inheritance
hierarchy models a concept more abstract than its descendents. In the next
section we will see a number of system models that are developed in order
of increasing detai. MORE TO COME We need to talk about abstraction
and testing at various levels at some point. This chapter?

Viewed from the testing perspective, layers of abstraction in the
development products are paraleled by layers of test analysis. That is, by

53

beginning with the highest levels of abstraction, we can provide a more
thorough examination of the development product and, therefore, a more
effective and accurate set of tests.

Development Products
Good documentation is critical for successful development and successful testing.

A development process will generate a collection of work products that represent
the system under development and/or the requirements for it. The form and content
of those products will be determined by many factors, including the corporate
policies, the skills and expertise of developers, and the schedule constraints. These
products are written in a variety of notations. In this book we use the Unified
Modeling L anguage (UML) [RIB98] as the conceptual modeling language and
C++ as the programming language.

The end products of any software development effort are code and the
documentation for that code, including user manuals and maintenance
documentation. Other development work products are typically produced,
including analysis and design models, architectural models, and requirements that
influence the quality of the system being produced. These products have alifetime
longer than the current project and may be reused on other development efforts.

In this section, we describe a set of products that we think are essentia to the
successful development of object-oriented software. We use the UML in our
examples2 Y our products might be written in another notation, but the models
should in some way capture the same information that we describe in this section.
Since these products are models that represent the software, we will discuss them
from atesting perspective.

12l UML Distilled: A Brief Guide to the Standard Object
Modeling Language [FoSb99] provides a good, concise
overview of UML.

In UML, amode is acollection of diagrams. Each model captures the system at a
specific level of abstraction. We present these models because in Chapter 4, we
will talk about how to conduct a"system” test with models rather than code. The
kinds of UML diagrams we use for system modeling are listed in Figure 2.9.

Figure 2.9. UML diagrams used in this book

Use case diagram Represents the actors and uses of the system and
relationships between the uses.

Class diagram Represents the individual class definitions and the
relationships between classes.

Package diagram Fresents conceptual groupings of classes wilh
dependencies between groups.

Sequence diagram Records the sequences of messages that represent
an algorithm.

State diagram Presents different configurations of data-attribute
values and the messages thal transform lhe data
from one configuration to another,

Activity diagram Aggregates all possible paths through the logic of a
method.

Analysis Models

Anaysis comprises the activities in a software development process whose
purpose is to define the problem to be solved and to determine requirements for a
solution to that problem. In our development process, two levels of analysis—
domain and application—are performed:

Domain analysis focuses on an understanding of the problem domain—that
IS, the general area of interest (or universe of discourse) in which the

problem of immediate interest lies. With respect to Brickles, domain analysis
might focus on the domain of arcade games, which would include games
that have similar components such as Asteroidsor PacMan, or of computer
games, which would include card games or board games such as Solitaire or
Monopoly. Domain analysis is concerned primarily with abstract concepts.
In the domain of arcade games, abstractions include players, sprites, and
play fields.

Domain analysisis particularly useful if smilar problems in the same

domain are to be solved in the future or if the requirements are not well
defined. The products of the one domain analysis provide a starting point for
the analysis of each particular application.

Application analysis focuses on a specific problem and the requirements for
a solution. With respect to Brickles, application analysis focuses on the game
itself. Application analysisis concerned primarily with concrete concepts. In
Brickles, these include pucks, a paddle, and bricks.

55

Commonalities among concrete classes might be reflected by the use of interfaces
or abstract classes, such as Br i ck in Figure 2.7. These commonalities might be
identified as abstractions during domain analysis or might be synthesized based on
the features common to two or more concrete classes identified during application
anayss.

In terms of testing the representations of software generated during analysis, we do
not need to distinguish between the products of domain analysis and application
analysis. The difference will be reflected by the scope of the model (domain
models are very broad) and by the level of completeness at which testing is
performed (domain analysis models contain less detail).

Object-oriented analysis centers on what the system does from the perspective of
the kinds of objects involved and how the objects are related to one another.
Analysis encompasses classifying objects in the problem, including the
identification of relevant attributes and operations, the identification of

rel ationships between classes and instances of various classes, and the
characterization of the behavior of the various kinds of objects. These are
represented in amodel comprising different kinds of diagrams.

* Do products of analysis represent software if the
focus of analysisis the problem (or problem domain)
and requirements for a solution, but not an actual
solution?

Y es. The design of an object-oriented program should
construct a representation of the problem by creating
appropriate objects to represent entitiesin the
problem, and then establishing appropriate
relationships among those objects to reflect the

rel ationships between objectsin the problem. A
solution is effected by empowering the software
objects to collaborate toward a solution. Since a good
solution is based on problem structure and that
structure is reflected in analysis models, then anaysis
models are representations of the software.

56

An analysis model represents a system from the perspective of what it is supposed
to do. The purpose of an analysis model isto provide developers, their clients, and
other stakeholders with an understanding of the problem and the requirements for a
solution. Typically, analysis efforts will produce a restatement of the requirements
specification written first, from a devel opment perspective as opposed to a
marketing perspective and second, from amodel of the problem to be solved
described in terms of objects. A variety of diagramsis used to present the system
from different views. Viewed from the testing perspective, the various diagrams
that comprise the representation might contain incorrect information or might not
represent the same information consistently in all diagrams; or, the model might

not completely capture al of the necessary information. In Chapter 4 wewill
address testing these representations. We now describe some of these diagrams,
which will serve as the basis for both devel opment and testing.

Use Case Diagram

In object-oriented development, requirements are captured quite effectively by a
collection of use cases and supporting diagrams. The description of Bricklesin
Chapter 1 expresses the components and rules of the game in natural language and
pictures. This description is a reasonably good definition of the required software,
although it leaves some requirements open for interpretation such as the size of the
play field, the tone of a consolation message, whether a player can "exit" if the
gameis paused, the size and speed of a puck, and how sensitive paddle movement
IS to mouse movement.

A use case describes a use of the system by an actor to perform sometask. Actors
really represent the various roles users? play with respect to the system—that is,
one person can use a system in severd different roles. There is one actor in
Brickles as it was described in Chapter 1—namely, the player, who isinvolved in
the actual play of the game. We could postulate another actor for Brickleswho is
responsible for establishing some parameters for the game asit isingalled on
different computers—for example, the speed of the puck; the size of the initial

puck supply; and the colors of the bricks, puck, paddle, and play field. The
specification does not identify such an actor, but a good analyst would consider the
need for an administrative user of the system. Of course, the person who installs
Brickles on a system can aso be a player. (See [FoSh99] or [JCJO92] for a
discussion of use cases.)

131 An actor does not have to be a person. It could be, for
example, another software system.

57

Use cases can be expressed in various levels of abstraction. Consider, for example,
some high-level uses of Brickles by a player shown in Figure 2.10.

Figure 2.10. Domain-level use cases for arcade games

MName Description
Start A player starts a match.
Pause A player pauses a match.

Resume A player resumes playing a match.

Stop A player stops a match.

None of these use cases states how a player starts, pauses, resumes, or stops a
match. In fact, none of them even mention Brickles explicitly. They can apply to
many arcade games. They all have the same actor (a player) and are concerned
with manipulating a match, which is an object (or class) we identified to represent
an arcade game for which play is in progress 2! As such, we might consider them
domain-level use cases. These domain-level use cases can be refined for Brickles
asshownin Figure 2.11.

141n common usage, the term game is used both to denote an
activity governed by certain rules, such as football, and a single
instance of such activity as in, "We won the first game of the
new season." In our analysis, we make a distinction between
these two ideas and represent the former concept by a class
Gane and the latter by a class Mat ch. One could argue against
this by treating the class Gane itself as an object and letting
each instance be what we have termed a match.

Figure 2.11. Application-level use cases for Brickles

58

Mame Description

Start Brickles A player starls playing Brickies by starting the
application program under Windows.

FPause Brickles A player pauses a frick/es malch by pressing
the mouse button.

Resurme Brickles A player resumes a Brickles malch by releasing
the mouse button.

Stop Brickles A player stops a Brickles match by selecting
Quit from the File menu.

Maove Paddle A player moves the mouse left or right to move
the paddle left or right.

Use cases do not necessarily capture every requirement. The use cases are usually
accompanied by additional text or diagrams that capture details (such as
performance requirements) that are not immediately obvious to users and
Interfacing requirements for subsystems that are hidden from the user.

Use cases are organized hierarchically using two relationships. uses and extends.

Y ou can refine some use cases into a set of more specific use cases. The first four
use casesin Figure 2.11 are extended from the use casesin Figure 2.10. This
structure helps to organize what can be a large number of cases. Locating a specific
use case is accomplished by finding the high-level use case that coversthe
conceptua area of the specific case. The high-level use case then points to
successively more specialized cases.

Behavior common between two use cases can be grouped into a single "functional”
use case. Each of the origina use cases now has a uses relation with the common
use case. In Brickles, theuse casesof Breaking a BrickandH tting a
VWl | would each have a uses relation with the Move Paddl| e use case. This
simplifies maintenance by encapsulating details of common behavior.

Use cases do not represent software. They represent requirements that software
must meet. Consequently, you cannot test use cases; however, you can review
them. Requirements play an important role in testing because they serve asthe
source of test cases—in particular, system requirements give rise to test cases for
system testing. In Chapter 4 we will show how to start with use cases to test the
analysis and design models that represent the system. The test cases identified for
testing models can be refined for execution-based testing of arunning system, as
we describe in Chapter 8.

59

Y ou can define one or more scenarios within the context of ause case. A scenario
shows a particular application or instantiation of a use case. For example, the

Move Paddl e use case can give rise to scenarios:

Move the paddle left so that a collision with the puck, which is moving from
|eft to right, involves the middle third of the paddle.

Move the paddle |eft so that a collision with the puck, which is moving from
left to right, involves the far third of the paddle.

Move the paddle |eft so that a collision with the puck, which is moving from
left to right, involves the near third of the paddle.

These scenarios involve objects that have values for relevant attributes, such as
defining which third of the paddie hits a puck [see Brickles Physics on page 11]
and which general direction the puck is moving. By contrast, use cases involve
objects without regard for values of attributes.

Use cases are typically expressed using natural language, but use case diagrams
can be used to depict al of a system's uses graphically. The diagram for the use

casesin Figure 2.11 isshown in Figure 2.12.

Figure 2.12. Use cases for Brickles

cogEndss
Play Brickles — Break Brick

Vi Ssenlendss>>

1
\ccextendses
Stop Brickles

It

Lese Paddie
\ s<extends=>
1

| cemdends >

A class diagram presents a static view of a set of classes and the relationships
between the classes. The diagram can show operations and attributes for each class
as well as constraints on relationships between objects. Figure 2.13 illustrates an
analyss model for Brickles usng UML.

Class Diagrams

Figure 2.13. An application analysis class diagram for Brickles

60

game player
Brickies " game Players
] player
play field | matchas | + | malch
— PlayFisdd o Maich
Slart])
pausa() s
4 | boundaries resurme()
win(}
makch | losa()
[£ | spriles
_— e}
Sprite
. ————
collides | feldPosition
inPlay)
Fuy
collider ’ !
MovableSprile Stationany Sorta
wlocity
|":'|.
mowve()
i}
paddie | | :
Paddie Puck Brick
0.3 |pucks w - bricks
PuckSupply BrickPile
Siga LSl

Y ou might expect to see a Mbuse class in the diagram. We chose to omit it
because the mouse is the mechanism by which a paddle can be moved. However,
you could use any input pointing device, or even the arrow keys on a keyboard. We
chose to make those considerations in design.

Within thisdesign, Spri t e, Movabl eSprite,and Stati onarySprite ae
abstract classesindicated in the diagram by italicized names. A spriteisagraphical
component of an arcade game.*> A movable spriteis a sprite that can move around
in aplay field while a stationary sprite cannot move. A movable sprite can interact
with other sprites—for example, in Brickles a paddle hits a puck or a puck hits
some bricks. These abstract classes originated from a domain analysis of arcade
games and were incorporated into this model. When we started, we considered a
possibility of implementing Similar arcade games, so we took the time to identify
abstractions. Even if we had not started with domain anaysis, we likely would
have noticed similar operations and attributes associated with pucks and paddles
and bricks and ended up introducing these abstract classes anyway, even though
we may not have used the term sprite, which iswidely used by game
implementers.

61

™3I The name dates to the Atari era of video games.

In practice, class diagrams can become quite large. Groups of classes can be
represented as packages. Java has adirect package syntax while C++ uses a
nanmespace syntax. Some people use UML package diagrams to identify
packages and the dependencies among them. In Figure 2.14, the Brickles package
diagram contains three packages. The domain classes arein the gane. donai n
package so that they can easily be reused with another game in the future. The
dashed arrow indicates that the Brickles specific-classes are dependent on the
domain classes. The domain classes are also dependent on the container classes

grouped into gane. cont ai ner s.

Figure 2.14. Brickles package diagram

1 E==E.

game.domain game.Brickles

£
¥

game. containers

Diagrams such as class diagrams that describe classes, their features, and
relationships play a central role in modeling. They reflect the structure of software
and are a central focus of model testing (see Chapter 4). Testing associations can
be challenging, especialy in the presence of polymorphism, as in the association in
Figure 2.13 between Pl ayFi el d and Sprit e or Movabl eSprit e and

Spri t e. The most challenging aspects of associations are the topic of Chapter 6.

UML Class Diagrams—Elementary Components

A class box hasthree divisions. A specific diagram may not use all three if
the resulting diagram is more clear. Abstract classes and operations are
denoted by italics.

62

ClassName

dataatributes

operation signatures

The connections between class boxes are relationships. There are three
basic relationships, each represented by a different end on the line.

Concept Symbol
Association—peer-to-peer visibility 1.n 1
Aggregation—one is a part of the other —_—
Inheritance—one definition used as the basis >
for the other.

Numbers, letters, and symbols indicate the number of instances of each
classthat will be involved in the relationshnip. The previous association
states that one instance of the class on the left end is related to one or more
instances of the class on the right end. The visbility of attributesis
indicated by a prefix:

Prefix Visibility

+ public— Visble to al associated objects

protected— visible only to methods in classes related by
inheritance

- private— Visble only within the current class

State Diagrams

A state diagram describes the behavior of the objectsin aclass in terms of its
observable states and how an object changes states as a result of events that affect
the object. Two sample diagrams are shown in Figure 2.19. A state isa particular
configuration of the values of data attributes. What is observable about the state is
adifference in behavior from one state to another. That is, if the same message is
sent to the object twice, it may behave differently depending on the state of the

63

object when the message is recelved. A transition, or change, from one state to
another istriggered by an event, whichistypically amessage arrival. A guard isa
condition that must hold before the transition can be made. Guards are useful for
representing transitions to various states based on asingle event. An action
specifies processing to be done while atransition isin progress. Each state may
specify an activity to perform while an object isin that state.

Figure 2.19. A state diagram for the class Ti nmer

@ iscnabied) limit() size()
"8 Timing k:
notify() /
attach(TimerObserver) observers>forAll(notify())
V(D
'\,Iemble{}
Disabled =1 Enabled
Jf‘ disable() \ _
notify())
delete() detach(TimerObserver)
\ Y,
W
®

A Puck instanceiseither in play or not in play. If aninstanceisin play, thenitis
either moving or not moving. The observable state | N Pl ay of a puck has
substates of Movi ng and Not Movi ng. | n Pl ay isasuperstate; Movi ng and

Not Mbovi ng areitssubstates. A substate inherits dl the transitions entering and
leaving its superstate.

A concurrent state diagram can show groups of states that reflect the behavior of
an object from the perspective of two or more independent ways. We will discuss
the concurrent states in the Java implementation of Brickles later. Such diagrams
can be treated from a testing perspective as a nonconcurrent state diagram by first
defining states that are defined from all the combinations of the states from the
various concurrent parts, and then defining the appropriate transitions.

Class Specifications

Class diagrams define classes and show attributes and operations associated with
thelr instances. State diagrams illustrate the behavior of an instance of a class.
However, neither diagram details the semantics associated with each operation. We
use the Object Congtraint Language (OCL) [WK99] for such specifications. OCL
constraints are expressed in the context of a class diagram. Constraints involve
attributes, operations, and associations that are defined in the diagram.

Asillugtrated in the example shown in Figure 2.15, OCL expresses semantics of
operations in terms of preconditions and post conditions. Invariant conditions can
be prescribed for a class or interface and must hold at the time any operation is
requested both in a message and upon the compl etion of the processing of the
requested operation. (A method for an operation is allowed to temporarily violate
an invariant during execution.) OCL conditions are Boolean-valued expressions
and are tied to a class diagram. The congtraintsin Figure 2.15 usethe si ze
attribute of a puck supply and the zero-to-three navigable association of pucks
shown in the design class diagram (see Figure 2.18). The pucks- > symbol in the
constraint for the get () operation means to follow the pucks link to the set of
associated objects. The use of the si ze attribute in a constraint in no way requires
the implementation of the class to use avariable named si ze. It just means that
the implementation will in some way need to represent that attribute, either asa
variable or as an agorithm that computes the value based on other attributes.
Specifications for operations should rarely ever prescribe an implementation. The
syntax of OCL istoo detailed for a summary box (see [WK99] for the language
details).

Figure 2.15. OCL for the operations of PuckSuppl y

PuckSupply
§ize >= 0 AND size <= 3

PuckSupply::PuckSupply()
pre: - none
post; size = 3 AND pucks->forall{ puck: Puck | not puck.inPlay()

PuckSupply::~FuckSupply(
pre: - none
post: Puck-»size) = Puck@pre->size() - size@pre

void PuckSupply:isizel) const
Pre. - none
post: result = size

Puck * PuckSupply::get{)
pre: count>0
post: result = pucks->asSequence-=first AND size = size@pre - |

65

Figure 2.18. A design class diagram for Brickles

CMainFrame [or—— Timer
W
CDocument |e=>| CView
« |, observers
‘? TimerObserver
BricklesDoc = l CView notify()
T I
Match O— PlayField [<—= Sprite "
position
start() 0.1 inFlay
pause() " .| CPaint position ()
win{) boundaries | 4 0.1y
lose() Bounda CPaint
& i collider
i [1
Hint MovableSprite StationarySprite
; velocity
Velocity |= move(}
Paddie Puck Brick
break()
il ¥ x
i 0.3 Fpucks | bricks
Mouse PuckSupply BrickPile
count() count
&
get()

State Diagrams—A UML Summary

In adtate diagram, a state is represented by an oval and atransition as an
arc from one state to another. Each arc has a label with three parts, each of

which is optiond:

66

event [guard] / action
Concept Symbol
State—configuration of data values

Transition—permitted next state
Substate/superstate

31

=44

Concurrent states ey
A

S

Y ou might prefer amore informal notation, such as the onein Figure 2.5. Some

sort of good specification for each operation is needed for testing. If the developers
have not generated such specifications, then we think testers should take the task
upon themselves. It is virtually impossible to test code whose purpose is vague or
ambiguous. It is virtualy impossible to use code whose purpose is vague or
ambiguous. Thus, not only will the existence of such specifications make testing
easer, but their existence will improve the quality of the software and perhaps

even promote the subsequent reuse of classes.

Sequence Diagrams

An agorithm can be described as an interaction among objects. A sequence
diagram captures the messaging between objects, object creation, and replies from
messages.*® In analysis, sequence diagrams illustrate process in the domain—how
common tasks are usually carried out through the interaction of various objectsin a
scenario. A sample sequence diagram is shown in Figure 2.16. Within a sequence
diagram, an object is represented by a box and itslifeline is represented by a
dashed line that extends downward. The passing of time s reflected down the
page. Objects drawn at the top of the diagram exist at the start of processing.
Objects drawn farther down are created at that point. A message is represented by
an arrow with afilled-in arrowhead. A reply vaue is represented by an arrow with
an open arrowhead. A widening of alifeline reflects an activation in which one of
the object's operationsis involved in the current sequence.

18I UML defines collaboration diagrams, which convey similar
information but emphasize structure of associations over
sequence. We use sequence diagrams in this book, but
collaboration diagrams are useful, especially when you want to
show the relationships among objects explicitly.

67

Figure 2.16. A sequence diagram for Brickles

aCBrickles aCBrckles aPuck

Doc iew aTimar aPaddle Supply aPuck ahlause aFlayFisld
OnMewDocument() | | [| 1] |

1 1
new Paddle|kaMouse) : :

1 1
i i
wrtm e Fucif) !

SaPuck

attach|&aPuck)
™ new PlayFiaki{}

1
1
1
1
1
1
1
1
I

L

anable)
L
TRUE
o

A sequence diagram may be created at any level of abstraction. A scenario for a
use case can be represented by a sequence diagram. The algorithm for asingle
method in a class may aso be represented using this notation. Figure 2.16 shows a
seguence diagram for winning a match in Brickles.

Sequence diagrams can al so represent concurrency. An asynchronous message is
indicated by a haf arrowhead (—-). Asynchronous messages can be used to create
anew object, create a new thread, or communicate with a running thread.

Tip
Define accessor operations that provide the observable state of areceiver.

The OCL specification in Figure 2.15 conveys the same state information

asthe diagram for Puck Suppl y below. The OCL specification is more
complete, but the state diagram is easier to understand for most people.

Some of the preconditions for operators are implicit in the state diagram,
while state definitions are implicit in the OCL specification. For example,
within the context of the state diagram, the get () operation is permitted
only when a puck supply object isina Not Enpt y state since no
trangtion from the Enpt y stateislabeled withaget () event. This
precondition is expressed in the OCL specification as a constraint on the
count attribute associated with a Puck Suppl y, with no mention of a
Not Enpty date.

68

We prefer to design classes so that states are represented explicitly in a
classsinterface. This makes the specification more intuitive, thereby
making the checking of preconditions by sendersalittle easier and more
reliable, thus making testing a little easier. For Puck Suppl y, we would
add the Boolean-valued query operation i sEnpt y() to the interface and
express preconditions in terms of this state-querying operation. A revised
OCL specification for PuckSuppl vy is

PuckSupply
count ==0

PuckSupply::PuckSupply();

pre: -- none

post: count = 3 AND pucks-»asSet-»size = 3 AND
pucks->forall{ puck: Puck |not puck.inPlay()

PuckSupply::~PuckSupply(); Ve ° ™~

pre: -- none Y

post: pucks@pre->isEmpty

void PuckSupply::size() const; |_:’ Mot Empty — &

pre; . -none lcount = 1 : isEmpty()

post: result = count ge“’_} [E'DUHI = 1]

bool PuckSupply::isEmpty() const; y gt

pre: - none size()
ost; result = { count=0)

p (Empty _-_]

Puck * PuckSupply::get(); N)

pre: not self.isEmpty()

post: result = pucks->asSequence->first AND

count = count@pre - |

Of course, the state diagram must be updated to reflect the new operation.

Accessor operations that return state information make testing allittle
easer (see Chapter 5) and can aso make checking preconditions possible.
The inclusion of such operations in a class interface is an example of
designing for testing.

Sequence Diagrams in Testing

Sequence diagrams and collaboration diagrams are useful in analysis and
especidly in design. We use them quite extensvely in testing models to
capture results of test case "execution.” The diagram reflects the objects
and their states for atest case input and shows the sequence of messages

69

that produce a correct outpui.

Activity Diagrams

Sequence diagrams capture single traces through a set of object interactions. It is
difficult if not impossible to represent iteration and concurrency. The activity
diagram provides a more comprehensive representation that uses a combination of
flowchart and petri net notations. The activity diagram in Figure 2.17 is from the
nove() methodin Puck.

Figure 2.17. Activity diagram for the nove() method in Puck

Puck ‘BrickPile ‘Paddle

=: collideWithPuck())

gameWonCialog >

Activity Diagrams—A UML Summary

In an activity diagram, the vertical lines form swim lanes. Each laneisthe
space for the object named at the top of the lane. In this case, each object
Is anonymous as indicated by the colon in front of the class name. The
horizontal bar is a synchronization point at which two threads must meet.
The signal throw and catch boxes show t r y and cat ch exceptions. The
diamond box is a decision in the code.

70

Tie Tae Toe

:HumanPlayer

:Tie Tae Tee Board

i,

vetoableChange()

seiPosiionState()

——
5
Concept Symbol
Decision box
PI’OCESSIng l| properyChange()

Synchronization point

Termination of thread

O)

Signal throw
Signal catch >

Initiation of thread

Design Models

A design model represents how the software meets requirements. A mgjor strength
of the object-oriented development paradigm is that design models are refinements

and extensions of the analysis models. That is good news from atesting

perspective because it means that we can reuse and extend test cases developed for

analysis models. Many of the same kinds of diagrams are used in design, but with
an emphasis on the solution rather than the problem. Consequently, the diagrams

reflect solution-level objects as well as problem-level objects. Since the notation is

71

the same as we have aready described, we will focus on the meaning of the design
Information represented.

Class Diagrams

Class diagrams are used in design to depict the kinds of objects that will be created
by the software. Each class has a name, attributes, and operations as well as
relationships with other classes shown on a diagram. In adesign-class diagram, we
expect to see most of the classes and relationships in the analysis class diagram as
well as classes whose instances will help solve the problem. Some analysis classes
will disappear because they have no role in a solution. Others will most likely have
additional attributes and relationships introduced for them with solution-level
classes and objects. The crux of good object-oriented design is reflected in a class
diagram that maintains most of the structure of the problem (as reflected in the
analysis class diagram), and then augments the software versions of the objectsin
the problem to collaborate to bring about a solution.

A class diagram for the design of Bricklesisshown in Figure 2.18. Note the
introduction of implementation-level classes such as Mouse, which represents a
mouse attached to the computer, and H nt , which represents an object needed to
track events during an execution that results in a need to repair the contents of the
screen. This diagram also shows some of the classes in the Microsoft Foundation
Classes (MFC) [MEC], such as Cvai nFr ane, CVi ew, and CDocunent , which
invoke Brickles in a Windows environment as set forth in the requirements. The
open arrowheads on some of the associations indicate navigability—that is, the
directions in which associations are actually to be implemented. An association can
be bidirectional or unidirectional. Arrows indicate which objects know about a
certain relationship. We seldom indicate navigability in an analyss class diagram,
but find them most useful in design class diagrams. In sequence diagrams,
messaging between objects can occur only in the direction of anavigable
association.

State Diagrams

The state diagrams used in design are the same as those in analysis. The mgjor
difference would be state diagrams for new classes in the design class diagram and,
potentialy, new substates that might aid implementation. Design diagrams might
aso incorporate more actions associated with transitions and more activities
associated with states. In Brickles, some mechanism is needed to control the
movement of the puck and the paddle. We chose to use timer events provided by

72

Windows with MFC to make the execution independent of the processor speed.
Consequently, we introduced a design class, Ti ner (see Figure 2.18), which
processes timer events and manipul ates appropriate spritesin amatch. A state
diagram for the class Ti ner isshownin Figure 2.19. A timer maintainsalist of
observers—that is, the objects interested in being notified each time atimer event
arrives. When atimer is enabled, it notifies each of its attached observersthat a
timer event has occurred withanot i f y() message. Ti mer Coser ver isan
abstract class (see Figure 2.18) that represents observers. Inclusion polymorphism
allows an instance of any subclassof Ti ner Coser ver to be attached and, hence,
notified. This part of the implementation is based on the Observer design pattern

[GHNV9A].

From atesting perspective, we will want to ensure the test cases for a class that
adequately tests transitions between states and provides for the proper processing
of messages within each state. We might also want to check that the Observer
pattern is correctly incorporated into the design of Ti ner and Ti nmer Coser ver .
It might even be possible to reuse some test cases and test drivers that were
developed for testing other classes whose design is based on the same pattern.

Sequence Diagrams

Sequence diagrams are used in design to describe algorithms—that is, what objects
are involved in the processing of some aspect of the solution and how those objects
Interact to affect that processing. The main distinction from thelr usein analysisis
the presence of solution-level objectsin the design diagrams. A sequence diagram
for the start-up processing associated with Brickles is shown in Figure 2.20. This
represents an algorithm for creating the objects needed to get a match underway.
From atesting perspective, possible errors include violation of contracts, failure to
create objects of the correct class, and sending of messages for which no
navigability is indicated between sender and receiver on the class diagram.

Figure 2.20. A sequence diagram for the start-up of aBrickles match

73

alnchis | [aBnckes
Doz Wi
1

CnbreDooument
R e e
N
L

Source Code

Source code and source code documentation are the final representations of the
software. A trandator (a compiler or interpreter) makes source code executable.

The source code is expected to be an accurate trandation of the detailed design
models into a programming language, although we certainly must test for that. For
object-oriented systems, the code contains class definitions and a segment that
creates instances of some class(es) and gets processing started—for example, the
mai n() functionin C++ or ast at i ¢ method nai n() in Java. Each class uses
instances of other classesto provide parts of its implementation. These instances,
along with the parameters to messages, make up most of the relationships among
objects.

Testing actual code has been the principal concern of most traditional testing

efforts and is the focus of most chapters in this book. Source code can be tested as
it is developed, component by component, or as a completed product at the end of
development. The mgjor issues to be addressed are;

Who tests. Testing can be done by developers, who adopt a testing
perspective toward their own code. Each test suite must be reviewed by
someone for completeness and adequacy.

74

What istested. Each class can be tested separately beforeit is used in parts
of a system. However, some classes are so complex in their implementations
that constructing test drivers for testing them outside the system context is
very expensive,

When testing is done. Testing can be done at many times during
development. Earlier isusually better, but testing in the presence of
changing specifications could prove inefficient and even demoralizing. Early
testing could increase the amount of regression testing needed, which
consumes resources. In Chapter 4 we consider how to test analysis and
design models before code is available.

How testing is done. In Chapter 1, we reviewed function-based and
specification-based testing. Both approaches need to be applied to test well.
How much testing is done. Exhaustive testing of each software component
and of awhole system is seldom practical or possible. Conditions of
adequate testing must be determined and then applied. Adequacy is often
based on code coverage or specification coverage.

f" Does programming language affect testing?

The programming language used for implementation
will impact testing. Some languages will enable
certain kinds of errors and eliminate other kinds. For
example, C++ is strongly typed and can reduce the
number of interface errors that might occur since a
C++ compiler will ensure type conformity between
actual and formal parameters. Java has strong typing,
but is more dynamic than C++ so compilers are less
effective at catching problems involving reflective
code, for example. Smalltalk is not strongly typed, so
more effort will be needed to ensure that a design and
an implementation do not harbor interface errors—
namely, the wrong types of actual parameters. On the
other hand, C++—in the tradition of C—harborsthe
potentia for a program to contain errors involving
pointers—for example, dangling references and
garbage. Languages such as Smalltak and Java,
which use garbage collection, diminate these pointer
errors.

C++ supports friends that allow data hiding to be

75

circumvented by certain parts of a program.
Executable test code could be declared afriend of a
class under test, thereby allowing the test code to
access the implementation and potentially make the
test code shorter, although this can create a problem
because testing becomes tightly coupled with the
implementation.

Java supports interfaces. Do they need to be tested?
Assuming a class implements an interface, then
testing should be done to adequately ensure that the
full semantics of each of the interface's operations are
supported by the class. Testers will have to know
whether the interface requires exact semantics or
whether a class can meet its obligations if it weakens
preconditions and/or strengthens postconditions.
Remember, class invariants are implied pre- and
postconditions (see Subclassing and Subtyping, on

page 37).

These will be addressed in detail in association with planning for testing in Chapter
3.

” We note that some CASE tools—for example, Rational
Rose—can generate code fromdesign models. What is
the impact on testing?

Assuming the code-generation facilities of the tool
work correctly, we see two major impacts.

1. Most testing is required within the context of
the design mode.

2. Applying an implementation-based approach,
perhaps in connection with determining the
adequacy of testing, requires that a tester
understand the structure of the code produced.
Code-profiling tools can help, but someone till
must be able to read the generated code.

76

If programmers are alowed to manually change
generated source code, then testing—and
mai ntenance—becomes harder.

Summary

We have reviewed the basic concepts of object-oriented programming. We have
examined some of the kinds of documentation that is produced during development
and that plays arole in testing. We have considered these things from atesting
perspective—that is, in terms of what failures would likely result from the use of
various object-oriented programming concepts.

In the next chapter we will examine the testing process.

Exercises

2-1. ldentify some object-oriented software that you can use to try the various
techniques and issues we have discussed. Idedlly the software will comprise a
complete application, but you could select a few classes that work together. Collect
analysis and design documents that relate to the software. If specifications exist for
each class, then make sure they are well written—that is, that they contain

complete and unambiguous descriptions of every operation. If specifications do not
dready exist, create them. We recommend using OCL (see [WK99] for a
description).

2-2. Review the various diagrams in this chapter for Brickles and make sure you
understand them.

77

2-3. Think about how you would approach testing the class Puck Suppl vy as
specified in this chapter. Does testing this class depend on the correctness of the
class Puck?Would Puck haveto be tested first?

78

Chapter 3. Planning for Testing

Want to plan atest processthat complements your development
process? See A Testing Process.

Want to analyze therisks associated with verifying the required
functionality? See Risk Analysis-A Tool for Testing.

Need to develop test plansfor the different levels and types of testing
required for the comprehensive test process? See Planning Activities.

Testing requires considerable resources. Effective utilization of those resources
requires good planning and good management. In this chapter we will focus on the
technical aspects of planning and scheduling testing activities. We will look at
determining what must be done on atechnical level, who can do it, and when it
should be done. We will suggest ways of constructing estimates, but we will not
consider scheduling details.

Planning at the technicd level is guided by templates that are "instantiated” as
needed by developers. We will describe a hierarchy of test plans and relate them to
standard templates using the |EEE test plan standard as an example. We will aso
discuss the incorporation of risk analysis into the test planning process.

Our basic testing process can be summed up asfollows: Test early, test often, test
enough. We will define amore detailed process in which there is atesting step for
each development step. (Analyze. Test. Design. Test. Code. Test.) We will dso
explain a generic set of stepsin which we define the basic tasks that are carried out
at each of these development steps. We will aso discuss testing from a
management/allocation of resources perspective, describe the different dimensions
of testing, and relate how we balance the trade-offs along these dimensions.

A Development Process Overview

A process is acontinuous series of activities that convey you to an end. Most
software engineering textbooks and software developers list four main activitiesin
a software development process (subsequent to the completion of systems
engineering and prior to the first deployment):

analysis— which focuses on understanding the problem and defining the
requirements for the software portions of a system
design— which focuses on solving the problem in software

79

Implementation— which focuses on trandating the design into executable
code

testing— which focuses on ensuring that inputs produce the desired results
as specified by the requirements

Maintenance begins after deployment with afocus on bug repairs and
enhancements. Maintenance usually involves further analysis, design,
implementation, and testing. Among the testing activities during maintenance is
regression testing, which ensures that successful test results after changes are the
same as those before changes.

These activities can be refined into more specific tasks. Analysis sometimesis
decomposed into domain analysis, whose focus is in understanding the problemin
amore genera context, and application analysis, whose focusisin understanding
the specific problem to be solved in design. Design encompasses architectural
design, subsystem and package design, class design, and algorithm design.
Implementation includes class implementation and integration. Testing includes
checking the basic units, integrated units, subsystems, and systems.

Many software development projects follow an evolutionary process model—an
incremental model, aspiral model, or concurrent engineering. We will focus on an
incremental process model.

Under an incrementa devel opment process, a system is devel oped as a sequence of
increments. An increment is a deliverable, including models, documentation, and
code, which provides some of the functionality required for the system. The
products developed in one increment feed into the devel opment of the next
increment. Successive increments add (and sometimes change) system
functionality. The final increment delivers a deployable system that meets all
requirements. Increments can be developed in sequence or one or more can be
developed concurrently.

To build each increment, devel opers analyze, design, code, and test as needed.
They typically have to perform these activities repeatedly in building an increment
because they find errors in previous work. As development progresses, they gain
new insights into the problem and the solution. \We prefer to acknowledge this
iterative aspect of incremental development and make it part of the process. We
refer to thisas an incremental, iterative process. In planning each increment, we
include explicit steps for repeating various activities. Among these are steps for
systematically reviewing current models, identifying errors based on experiences

80

in later tasks, and modifying the models (or code) that have aready been
produced—not just those that will be produced in the future. Figure 3.1 illustrates
the process when the increments are planned sequentialy.

Figure 3.1. A simplified sequential, incremental, iterative development
process

Increment 1 Increment 2 Increment A

!
1 Analysis

Analysis /Analysis
v ! A i v
Design + Design ¢ Design
\ ! \ \
ImmemTHHMn :hnmem?ﬁNMn :ImwemﬂﬂHMn
I
Testing ; Testing |/ Testing

v

Object-oriented development is particularly well suited to evolutionary
development because object-oriented analysis, design, and implementation entall
the successive refinement of asingle model. Thisis the case both within an
increment and among increments. In object-oriented analysis, we understand a
problem by modeling it in terms of objects and classes of objects, their
relationships and responsibilities. In object-oriented design, we solve the problem
by manipulating those same objects and relationships identified in analysis and
introducing solution-specific classes, objects, relationships, and responsibilities.
Implementation is straightforward from a well-specified set of design products.
Thus, the entire development process involves a refinement of amodel. Design
products are primarily an extension of analysis products and implementation
products are coded expressions of design products. The products of one increment
are extended and refined in the next increment. Thisis also a strength of the
paradigm with respect to testing because we can utilize refinements of the same
test cases in testing refined models.

The incremental development of products requires the incremental testing of those
products. Products can change from increment to increment in both planned and
unplanned ways. Test suites must change in concert. Regression tests must be run
between increments and within iterations to ensure that changes do not adversely
affect correctly working code. A process in which work on one increment overlaps

81

work on another adds to the complexity of development and testing. Coordination
IS required to sequence the development of interacting increments so that objects
that are associated with, but assigned to different increments, can be tested in a
timely fashion.

The development of Brickles followed a plan based on an incrementdl, iterative
development process. Our initia planisoutlined in Figure 3.2. When we started,
we understood the requirements quite well, but we had no experience devel oping
applications with the Microsoft Foundation Classes (MFC), nor did we have any
experience devel oping arcade games. We recognized those as the biggest risks to
success and planned to address those issues first. We also planned to test as much
as we could as work progressed, which means we tested products within and/or at
the end of each iteration. Thisis not shown in the figure.

Figure 3.2. Outline of our incremental, iterative development plan for

Brickles.
Increment iteration
1. Present user interface showing 1.A. Domain Analysis: Construct class
puck bounCing in window diagram

1.B. Application Analysis: Construct class dia-
gram and slale diagrams.

1.C. Design: Study MFC and animation.

1.0 Implament: Code Hello World using MFC.
Include Quit on File menu,

2.A. Design: Complete class diagram for puck
bowncing in window,

2B, Implementaticn: Code puck bouncing in

window,
2. Move paddie in window and 1.4, Application Analysis: Add details of paddie
detect collisions. control and collisions io class diagram,

other diagrams.,

1.B. Design: Design Paddle and Coliision
classes.

1.C. Implementation: Code paddle class incne-
mentally from MovableSprite and collision
class from Excepbon

3. Display brick pile and detect 1.A, Application Analysis: Add collections of
collisions. spritas lo class diagram.
1.E. Design: Design collision detection
algorithm.

1.C Impdermentation: Code Brickpile class by
aggregaling collection class.
4. Add supply of pucks and datect 1.A. Design: End of maich algarithm 12 use
end of match, exceptons to detect endOfiatch,

1.B. Implementation: PuckSupply class

There were significantly more informal iterations than those listed in Figure 3.2
Thiswas particularly true during design, where we found that a number of
decisions about scope and behavior had not been made during analysis.

82

A Testing Process Overview

Testing isusudly listed last as an activity in virtualy every software development
process after implementation. This activity refersto the type of testing that
attempts to determine whether the product as awhole functions as it should. From
our view, testing is a type points during development, not just at the end and not
just to code. We define a process separate from, but intimately related to, the
development process because the god of testing is really different from the goa of
development. Consequently, we prefer to consider development and testing as two
separate, but intimately connected, processes.

Development and testing processes are distinct primarily because they have
different goals and different measures of success. Development strivesto build a
product that meets a need. Testing strives to answer questions about the product,
including whether the product meets the need that it is intended to meet. Consider,
for example, the number of defects identified after testing some devel oped
software. The lower the defect rate (ratio of test casesthat fail to the total number
used), the more successful the development is considered to be. On the other hand,
the higher the defect rate, the more successful the testing is considered to be.

The roles of developing and testing functionality are assigned to different people,
thereby reinforcing the idea that the processes are distinct. Using different people
for development and testing activities is particularly productive from a system test
perspective. The testers write test cases independently from those who will develop
the code to ensure that the resulting system does what the requirements actually
intend rather than what the devel opers interpreted the requirements to mean.

The sameistrue at all levels of testing. In most shops developers are responsible
for some testing—such as, what has been traditionally called unit and integration
testing. However, to be successful, any person who takes on the role of both
developer and tester must ensure that the proper goal is pursued with equal vigor.
To achieve this, we use buddy testing in which one developer is assigned to unit
test the code of another developer. In thisway, at least a developer is responsible
for one goal and one set of functionality, and the other is responsible for another
goa and another set of functiondity.

Even though the two processes are distinct, they are intimately related. Their
activities even overlap when test cases have to be designed, coded, and executed.
Together they encompass the activities necessary to produce a useful product.
Defects can be introduced during each phase of the development process.

83

Consequently, each devel opment activity has an associated testing activity. The
relationship between the two processes is such that when something is devel oped,
it istested using products of the testing process to determine that it appropriately
meets a set of requirements.

The testing and devel opment processes are in afeedback loop (see Figure 3.3). The
testing process feeds identified failures back into the development process.™
Failure reports provide a set of symptoms that a developer uses to identify the
exact location of afault or error. The development process feeds new and revised
designs and implementations into the testing process. Testing of devel opment
products will help identify defective test cases when testers determine that

"failures' result from problems with test cases themselves or the drivers that
execute them, and not the software under test.?

' The purpose of testing is to identify failures and not to identify
the error or the fault that gave rise to a failure. The developers
are responsible for finding the source of a failure.

I An interesting aspect of test case development is determining
who checks the test cases. Most cases are reviewed, but most
processes involve very little formal testing of test cases.

Figure 3.3. The testing and development processes form a feedback
loop

Development process
Test Development
results products
Testing process

In the context of this feedback 1oop, the form and content of development products
affect the testing process. When devel opers select methods and tools, they establish
constraints on the testing process. Consider, for example, how the degree of
formality of class specifications affects the ease with which test cases can be
identified for testing a class. The testing perspective must be considered, preferably
by the presence of professional testers, when development methods and tools are
selected.

Testability

One of the pieces of information that is fed back to the developersis an
evauation of how amenable the software isto being tested. Testability is
related to how easily you can evaluate the results of the tests. In Chapter 7
we will show how our testing architecture, PACT, improves testability by
overcoming information hiding. Testability is also an appropriate context
to examine the question about when to test. As layers of software are
added on top of layers, the visibility to the stored values becomes more
cloudy. The lower the level a which apieceis tested, the more easily
visble areitsinternals for the verification of test results and, by definition,
the more testable it is.

The form and quality of arequirements specification also affects the process.

Product requirements comprise the source of test cases in system and acceptance

testing. System testers should participate in the gathering and vaidation of the

requirements in order to have a sufficient understanding of them to assess risks and

testaility.

Test Cases and Test Suites

The basic component of testing is atest case. In its most general form, a
test caseisapair (input, expected result), in which input is a description
of an input to the software under test and expected result is a description of
the output that the software should exhibit for the associated input. Inputs
and expected results are not necessarily ssimple data values, such as strings
or integer values, but they can be arbitrarily complex. Inputs often
Incorporate system state information as well as user commands and data
values to be processed. Expected result includes not only perceivable
things, such as printed reports, audible sounds, or changesin a display
screen, but changes to the software system itself—for example, an update
to adatabase or a change in a system state that affects processing of
subsequent inputs. A test case execution isarunning of the software that
provides the inputs specified in the test case and observes the results and
compares them to those specified by the test case. If the actua result varies
from the expected result, then afailure has been detected and we say the
software under test "fails the test case. If the actua result is the expected
result for atest case, then we say the software "passes the test case.”

Test cases are organized into a test suite. Most test suites have some sort
of organization based on the kinds of test cases. For example, atest suite
might have one part containing test cases that are concerned with testing

85

system capacities and another part containing test cases concerned with
testing typical uses of the system well within any specified capacities. If
software passes dl the test cases in atest suite, then we say that the
software " passes the test suite.”

One of the greatest challenges in testing is developing and organizing a
test suite. The main issues in test suite development are correctness,
observability of results, and adequacy.

The STEP testing technique developed by William Hetzel [Hetz84] provides a
three-step approach for each type of testing performed on a project.

1. Analysis— The product to be tested is examined to identify any special
features that must receive particular attention and to determine the test cases
that should be constructed. We will present a number of analysis techniques.
Some can be automated, such as branch testing, but many require the tester
to manually determine what to test.

2. Congtruction— In this phase the artifacts that are needed for testing are
created. The test cases identified during analysis are trandated into
programming languages and scripting languages, or they are entered ina
tool-specific language. Thereis aso often the need for data sets, which may
require an extensive effort to build a sufficiently large set.

3. Execution and Evaluation— Thisis the most visible and often the only
recognized part of the test effort; however, it isaso typicaly the quickest
part of the test effort. The test cases that were identified during analysis and
then constructed are executed. The results are examined to determine
whether the software passed the test suite or failed it. Often many of these
activities can be automated. Thisis particularly useful in an iterative
environment since the same tests will be applied repeatedly over time.

Test suites are maintained. As requirements change, so must the test suite. You
must correct test cases that are found to be in error. As problems are found by
users, test cases will be added to catch those problems in future releases before
deployment.

A testing processiis iterative and incremental and must be planned in connection
with the planning of its associated development.

86

' What do testers want devel opers to specify about the

#

l\”\

system?

The template for the use case that we have presented
provides most of the information that a person needs
to develop system-level tests. In particular the pre-
and postconditions are important in terms of
sequencing tests and communicating information
about hidden dependencies. A structured use case
model can assist the person writing the tests with
information about the possible reuse of test scripts
and data. A series of state models related to
subsystems and the system itself also helps
communicate information about sequencing of actions
and expected responses.

When are testers needed on a project?

The culture in some companies specifies that testing
personnel are not assigned to a project until it iswell
underway. The linkages described here between the
devel opment and testing processes are evidence that
early project decisions require input from personnel
who are knowledgeable about testing. This may be
one of the testers who is assigned to the project very
early, or adeveloper with testing experience.

Risk Analysis—A Tool for Testing

Risk analysisis apart of planning any development effort. It aso can be critical in

determining what to test in development and how much. In this section we will
describe some basic concepts in risk analysis. Then we will apply those concepts to
testing. We will aso compare using risk-based testing to basing test case selection

on the functionality's frequency of use.

Risks

87

In generd, arisk is anything that threatens the successful achievement of a
project's goas. Specifically, arisk is an event that has some probability of
happening and, if it occurs, there will be some loss. The loss may be down time,
financid loss, or even injury depending on the type of system. Every project has a
set of risks; some risks are rated "higher" than others. This ordering takes into
account both the likelihood the loss will occur and how serious the loss will bein
terms of itsimpact. In the context of risk-based testing, a fundamenta principleis
to test most heavily those portions of the system that pose the highest risk to the
project to ensure that the most harmful faults are identified.

Risks are divided into three general types. project, business, and technical risks.

Project risks include manageria and environmenta risks (such as an insufficient
supply of qualified personnel) that cannot directly be affected by the testing
process.

Businessrisks are associated with domain-related concepts. For example, changes
In IRS reporting regulations would be arisk to the stability of the requirements for
an accounting system because the system's functionality must be altered to comply
with new regulations. This type of risk is related to the functionality of the program
and therefore to system-level testing. When a system under test addresses a volatile
domain, the system test suite should investigate the extensibility and modifiability
attributes of the system's architecture.

Technical risksinclude some implementation concepts. For example, the quality
of code generated by the compiler or the stability of software componentsisa
technical risk. Thistype of risk is related to the implementation of the program and
hence is associated primarily with testing at the code leve.

Risk Analysis

Risk analysis is aprocedure for identifying risks and for identifying ways to
prevent potentia problems from becoming real. The output of risk andysisisalist
of identified risks in the order of the level of risk that can be used to allocate

limited resources and to prioritize decisions. The definition of risk varies from one
project to another and even over time within the same project because priorities

and development strategies change. Typicd risks on object-oriented projects are
specific and unique to the architectural features, the areas of complex interactions
among objects, the complex behaviors associated with a class specification, and the
changing or evolving project requirements. A class being developed for inclusion

in alibrary needs much more testing than one that's being developed for usein a

88

prototype. Other definitions of risk might be the complexity of the class as
measured by the size of its specification, or the number of relationshipsit has with
other classes.

Sources of Risk

For system testing, the various uses of the system are prioritized based on the
importance to the user and the proper operation of the system. Risk may aso be
evaluated based on the complexities of the concepts that must be implemented in
different subsystems, the volatility of the requirementsin a particular subsystem, or
the maturity of domain knowledge within a particular subsystem.

Risks are also associated with the programming language and development tools
that are being used to implement the software. Programming languages permit
certain classes of errors and inhibit others—for example, the strong typing in C++
and Java ensures that every message sent (member function called) in a program
execution can be understood by its receiver. By contrast, the lack of strong typing
in Smalltalk means "message not understood” exceptions can occur during
program execution. Strong typing can make identifying test cases much easier
because some kinds of inputs are eliminated as possibilities by the programming
language itsdlf.

Conducting the Analysis

Our approach to risk analysis identifies the risk that each use case posesto the
successful completion of the project. Other definitions are possible for risk, but this
definition fits our purpose of planning atesting effort.

The risk analysis technique includes three tasks:

1. Identify the risk(s) each use case poses to the development effort.
2. Quantify the risk.
3. Produce aranked list of use cases.

The use case writer can assign arisk rating to an individual use case by considering
how the risks identified at the project level apply to the specific use case. For
example, those requirements that are rated most likely to change are high risks;
those requirements that are outside the expertise of the development team are even
higher risks; and those requirements that rely on new technology such as hardware
being developed in paralld to the software are high risksaswell. Infact it is
usualy harder to find low-risk use cases than high-risk ones.

89

The exact set of values used in the ranking scale can vary from one project to
another. It should have sufficient levels to separate the use cases into reasonably
sized groupings, but it should not have so many categories so that some categories
have no members. We usudly start with three rankings. low, medium, high. Ina
project with 100 use cases, this might result in approximately 40 in the high
category. Thisis probably more than we have time to give specia attention.
Adding a very high category and reclassifying the uses might result in 25 high and
15 very high cases. Those fifteen will receive the most intense examination.

The assigned risks result in an ordering of the use cases. The ordering is used for a
couple of project activities. First, managers can use it to assign use cases to
Increments (not our problem!). Second, the ordering can be used to determine the
amount of testing applied to each item. Risk-based testing is used when the risks
are very high, such asin life-critical systems. In our examplesin the text, we will
consider both risk-based and use profile approaches to test case selection.

Let us consider a couple of examples. First, we will gpply risk anadysisto the
Brickles game. Since thisis avery smple system, we will then present amore
Illustrative example.

For a game such as Brickles, the biggest risks are things that affect the player's
satisfaction. In Figure 3.4, the analysis information for the two basic use casesis
summarized. The "winning the game" use caseis rated as more critica than the
"losing the game" use case. Imagine winning the game but the software refuses to
acknowledge it! The frequency of winning is rated as lower than the frequency of
losing. There are n! sequences in which the bricks can be broken, in which n isthe
number of bricksin the pile. There are many more sequences when the variability
of wall and ceiling bounces are included. There are (n-1)+(n-2)+.. +2+ 1 waysto
lose the game with a given puck, but there are many more possibilities when
misses are considered. There are many more ways to lose than ways to win. Since
winning and losing are accomplished by the same code, there is the same amount
of risk in implementing each use case so the risk is rated the same. If we combine
the frequency and criticaity values using the scheme shown in Technique
Summary-Creating Test Cases from Use Cases, on page 127, the two uses are both
rated as medium. The program should be tested with roughly the same number of
winning results aslosing.

Figure 3.4. Two Brickles use cases

90

Use Risk Level Frequency Criticality Scenario
Wins Medium Low High Player wins game

Loses Medium High Low Flayer loses game

Consider another example for an gpplication in which personnel records are being

modified, saved, and possibly deleted. The use cases are summarized in Figure 3.5.

The use cases address a record update that changes an employee's name, thereby
committing that update and deleting a record. An anaysis of the use cases
identifies domain objects of name, personnel, and security.

Figure 3.5. Three use cases for a personnel management system

Uze Risk Frequency Criticality Scenario

Modify Name Low Medium Low The user modifies the name
field of an existing perscnnel
record 1o which they have the
appropriate security authori-
zation.

Save Record Mediom High High The user saves a record that
has been newly crealed or
madified.

Delete Record High Medium Medium The user deletes an existing

recard for which they have the
appropriate authorization.

The risk information indicates that deleting arecord isahigh risk. Being able to
saveis highly critical. The usua approach isto schedule high-risk uses for early
delivery because then those uses can take longer than estimated without delaying

the completion of the project. The criticality and frequency of uses are combined to

determine which should be tested more heavily. Obvioudy we would want to test
most of the uses that are the most critical and frequent. But sometimes a critical

operation is not very frequent in comparison to other uses. For example, logging on

to your Internet Service Provider is critical, but it is only done once per session
whereas you might check email many times during asingle login. So the vaues of
the frequency and criticdity attributes are combined to determine the relative
amount of testing.

The technique for combining these values varies from one project to another, but
there are a couple of genera strategies. A conservative strategy combines the two
values by sdlecting the higher of the two values. For example, the "Modify name"
use case would have a combined value of medium using a conservative strategy.
Likewise, an averaging strategy would choose a value between the two values. In
this case there is none unless we invent a new category such as medium high. Thi

S

91

should only be doneif there is alarge number of cases being categorized in one
cell and there is a need for better discrimination.

By applying the selected strategy, you can make an ordered list of uses. For the
three uses noted, using a conservative strategy, the list in order of increasing rank
is Edit name, Delete record, and Save record. Thus, Save record would be tested
more heavily than Delete record, which in turn would be tested more heavily than
Edit name. Exactly how many test cases would be used will be discussed later as
we consider techniques for selecting test cases.

A Testing Process

Given an incremental, iterative devel opment process model, we can now sketch out
aprocess for testing. We will defer many of the details to later chapters because
basicaly al theinformation in this book belongsin the process. First, we will
outline a series of issues that must be addressed to give a basic shape to the test
process. Then we will consider how each development product is tested.

Planning Issues

Testing is traditionally incorporated into a devel opment process at the point where
executable code is available. Common practice is to perform a unit test on
individual modules as they are developed, an integration test on subsystems as they
are assembled from units and/or other subsystems, and a system test as the system
becomes avallable. If an iterative, incrementa process is used, then, at a minimum,
system testing is performed after each increment is completed. Class testing and
interaction testing are performed during or after each iteration for an increment.
Regression testing is performed on any software whose implementation changed
but whose specification did not. If both have changed, the test suites are revised
and then reapplied.

In our approach, testing is conducted even before code is written. Models, being
representations of the system just as code is a representation of the system, can be
tested. In particular, design models lend themselves to testing by aform of
execution that we describe in Chapter 4. Using analysis models, we can test a
system in the sense of validation testing, thus ensuring that the right system is
being specified. Thislast type of testing does not change much from traditional
approaches, and so it is only a periphera focus to this book.

92

Dimensions of Software Testing

Testing embraces many activities that must be performed. All these activities
comprise testing. With respect to these activities, we identify five dimensions of
testing that describe the answers to the following five questions™":

B A sixth dimension concerning where testing will be performed

Is important from an organizational perspective, but it is not of
concern to us in the context of this book.

1. Who performs the testing? Will the software's developers test it, will there
be an independent group of people to test the software, or will there be some
combination of the two?

2. Which pieces will be tested? Will every component of the software be tested
or just the ones associated with higher risks?

3. When will testing be performed? Will testing be an ongoing process, an
activity done at specia milestones, or an activity performed at the end of
development?

4. How will testing be performed? Will the testing be based solely on what the
software is supposed to do or based also on how it isimplemented?

5. How much testing is adequate? How will it be decided that enough testing
has been done or where limited resources are best allocated for testing?

These are dimensionsin the sense that each one represents an important
consideration over a continuum of possible levels of effort or approaches, but each
Is independent of all the others. Each dimension must be considered when
designing atesting effort, and a decison must be made about where on a
continuum the project wishes to place itself. A decision made for one dimension
will have no impact on decisions made for any of the other dimensions. All
decisions together will determine the resources needed, the methods used, and the
quality of the results of the total testing effort.

We will now take alook at each of these dimensions in more detail. These
dimensions will aso be considered in various discussions throughout the book. We
represent each dimension with a continuum. A continuum is a sequence of

possible levels for which it is difficult to delineate where one level ends and a
subsequent one begins. In the physical world, the visible spectrum of lightisa
continuum, ranging from red to indigo. Orange is in the spectrum, but there is no
widespread agreement exactly where orange begins and ends. That does not,

93

however, prevent us from using orange or discussing its merits for athletic-team
colors.

Just asthereis no color that is better than another, so there is no "best" choice on
each dimension. However, certain colors are more appropriate in certain situations
and certain choices on atesting dimension are better than othersin agiven
situation. In this chapter, our focus is on describing the five dimensions. We will
address implications of each dimension on tota testing efforts in the next chapters
when we discuss individual techniques. Along the way, we hope to give you some
view of how various combinations of positions relate to levels of qudity in the
software product.

Who Performs Testing?

A project includes both devel oper and tester roles. Developer isarole
characterized by performing activities that generate a product—for example,
analysis, design, programming, debugging, or documenting. Tester isarole
characterized by performing activities to detect failuresin a product. This includes
selecting tests for a specific purpose, constructing the tests, and executing and
evaluating the results. A given project member could assume both roles of
developer and tester. Giving programmers responsibility for unit testing their own
code is a common practice, although we strongly recommend a buddy testing
scheme. System testing is commonly assigned to independent tester s—people
assuming the role of tester, but not of developer.

Figure 3.6 illustrates a continuum ranging from the situation in which the
developers are responsible for all testing to the situation in which the independent
tester isresponsible for al testing. In the latter case, each end of the continuum is
not encountered in practice as often as the middle. In particular, it istypica only in
small projects for developers to have responsibility for the final system testing of
the implementation against the system requirements. Projects that involve life-
critical functionality are typically the ones in which each component is unit tested
by an independent tester. Some government regul ations make this the expected
choice. In between these two extremes are two popular choices. In one case,
developers are totally responsible for class testing, but pairs of developers
exchange code and test each other's code, hence the previously mentioned buddy
testing. In the other case, an independent tester is given responsibility for
specifying test cases while the developer is responsible for the construction and
execution of the tests.

94

Figure 3.6. Continuum for assignments of roles in class testing

Developers Developers and independent Independent
responsible testers share responsibilities testers responsible

In this book, we discuss testing processes and techniques and usually do not
identify just who is performing them. That decision must be based on the effective
use of resources at various points along the whole effort. The decision adso is
influenced by government and industry regulations. Actual test plans for a project
should call out who is responsible for various testing activities to be performed.
There are many ways to assign roles to project team members, and we have not yet
discovered a"best" way.

Which Pieces Are Tested?

Which parts of a system should be tested? Options vary from testing nothing to
testing every single component (or line of code) that goes into the final software
product. The continuum is represented in Figure 3.7.

Figure 3.7. Continuum for which parts of the software to test

Test nothing Test a sample Test everything

A software system comprises many components. In object-oriented programming,
the most basic component is a class. At one end of this continuum is the position
"we will test every classthat isincluded in this system." At the other end is the
position "we will not test any piece." Faults are found as a result of random
operation of the system or through providing "evaluation copies’ on the Web and
letting users report errors.

The middle ground is to have a systematic approach, perhaps statistical methods,
for selecting a subset of the total set of components to be tested. The classes being
reused from other projects or taken from class libraries may not need to be tested.
Some of the classes will not be easy to test individually because testing them
requires complex drivers to provide input or examine output. The drivers
themsalves will require considerable effort to write and might need considerable
testing and debugging. Part of choosing where to be on this continuum is based on

95

balancing the yield (defects found per hour of effort) of testing with the effort
needed to build the test infrastructure.

If testing all classesis not feasible, what strategy can you use to select the test
cases to develop? One strategy is to generate test cases at random. Of course, this
IS not avery good strategy since it might not test commonly used functions of the
software. Another strategy might focus on probable uses of the system, thereby
putting primary emphasis on tests that use the more common inputs to the
software. Still another strategy might emphasize pathological cases—obscure uses
of the system—under the (probably incorrect) assumption that if the developers
paid attention to more obscure or obtuse requirements, then they must have
understood all the requirements.™

“ Testing solely using pathological cases is not a good
strategy.

When Is Testing Performed?

Components can be tested as they are developed, or testing can be delayed until all
components are integrated into a single executable, as shown in Figure 3.8. The
further into development we wait, the more disruptive it will be to make changes
based on test results.

Figure 3.8. Continuum for when software can be tested

Test every day Test components Test all components
as they are developed together at the end

When should testing be done? Sometimes testing is done only at the end of the
development process—that is, system testing and/or acceptance testing is the only
formal testing done on software. This gpproach might work well when there are
relatively few developers working from awell-understood set of requirements, but
it iswishful thinking for most development efforts. It is widely recognized that the
sooner a problem can be identified, the easier and cheaper it isto fix. Therefore, at
the other end of the continuum is the decision to test every day. Between the
extremes is testing each software component asit is produced. Thiswill slow down
the early progress of a development effort; however, it can pay off by greatly
reducing the problems encountered later in a project as these pieces are composed
into the larger system.

96

Also between the extremesistesting at the end of each increment. Rather than
assembling individually tested pieces into the deliverable for the increment, this
approach takes untested pieces, integrates them, and then tests the complete set of
code as a monolithic whole. Thisisintended to reduce the cost of testing each
individual piece asit iswritten. Success depends upon how complex each pieceis
and how experienced the development staff is. In very smple functiondity, there
may be sufficiently few defects that can be found by testing from the "outside." For
more complex functionality, the defects may be buried so deeply in the code that it
may be difficult to validate specific attribute values from outside the assembled
increment. This approach is useful for components for which implementing a test
driver isa sgnificant effort.

One important issue in testing development productsis the level of detail each
represents. Consider, for example, an analysis model that is under refinement.

What are the inputs to such a model? In other words, how detailed can we bein
defining atest case for something that itsaf is not very well defined? We will
address thisissue in Chapter 4. The goal of this processis to provide feedback that
can assist developers in making correct decisions.

How Is Testing Performed?

How will testing be performed? The basic approaches to testing software are based
on the specification and the implementation, Figure 3.9.

Figure 3.9. Continuum for how software is tested

Knowledge of knowledge of
specification only specification and

implermentation

The specification for a software entity states what that entity is supposed to do—
that is, it describes the valid set of inputs to the entities, including the constraints
on how multiple inputs might be related to one another, and what outputs
correspond to the various inputs. The implementation for a software entity isan
expression of an agorithm that produces the outputs for various inputs so that the
specifications are obeyed. In short, a specification tells what a software entity does
and an implementation tells how that software entity does what it does.
Exhaustively covering specification information assures us that the software does
what it is supposed to do. Exhaustively covering implementation information
assures us that the software does not do anything that it is not supposed to do.

97

Specifications play asgnificant rolein testing. We will need to have a
specification written for many components of the software to be developed and
tested, including specifications for systems, subsystems, and classes. It seems
reasonabl e that we can generate test cases for a component based solely on its
specification. However, for some components, implementation-based testing will
be important to make certain the test suite is as thorough as it can be. For high-risk
components, for example, we will want to make certain every bit of the code has
been executed.

Besides testing individua components, we will also want to test the interactions
between various components. Thisis traditionally referred to asintegration
testing, which occurs when components are integrated to create larger systems.
The purpose of integration testing is to detect faults that arise because of interface
errors or invalid assumptions about interfaces. Integration testing is particularly
important in object-oriented systems because of the presence of inclusion
polymorphism (see page 32), which isimplemented using dynamic binding.

In an iterative, incremental process, integration testing will occur on a continuing
basis. It will start with primitive objects being aggregated into more complex
objects and move to complex objects that represent subsystems that are being
integrated. In Chapter 6 we will provide some techniques for building effective test
cases for interactions.

Adequacy of Test Cases

From practical and economic perspectives, testing software completely is
usually just not possible. A reasonable goal for testing is to develop
enough test cases to ensure that the software exhibits no failluresin typical
uses or in life-critical Situations. This captures the idea of adequacy of
testing a software product. Test it enough to be reasonably sure the
software works as it is supposed to.

Adegquacy can be measured based on the concept of coverage. Coverage
can be measured in at least two ways. One way isin terms of how many of
the requirements called out in the specification are tested. Of course, some
requirements will require many test cases. Another way isin terms of how
much of the software itself was executed as a result of running the test
suite. A test suite might be adequate if some proportion of the lines of
source code—or possible execution paths through the source code—was
executed at least one time during test suite execution. These measures

98

reflect two basic approaches to testing. One is based on what the software
IS supposed to do. The other is based on how the software actually works.
Both approaches must be adopted to perform adequate testing.

In functional testing, which is aso referred to as specification-based or
black box testing, test cases are constructed based solely on the software's
gpecification and not on how the software is implemented. This approach
isuseful for dl levels of testing because it has the advantage that test cases
can be developed even before coding begins. However, the effectiveness
of functiona testing depends greatly on the quality of the specification and
the ability of the test suite developersto interpret it correctly.

In structural testing, which is also referred to asimplementation-based
or white box testing, test cases are constructed based on the code that
implements the software. The output of each test case must be determined
by the software's specification, but the inputs can be determined from
analyzing the code itself to determine various values that cause various
execution paths to be taken. The main advantage of this approach is
improved coverage. The main disadvantage is that if the programmer did
not implement the full specification, then that part of the functionality will
not be tested.

To adequately test software, some combination of both approachesis
usualy most effective. Function-based is the stronger approach, but
structural testing improves confidence in case the software does not do
something it should not do.

How Much Testing Is Adequate?

This question isimpossible to answer in general and it is not an easy question to

answer even for a specific piece of software.™ There are many aspects to consider

when addressing this question. The expected lifetime of the software is one

consideration. Applications that will transform data from an old application to a
new one seldom require extensive testing. Another consideration is whether the
application containing the software is life-critical, which obvioudy requires very

extensive testing. Note this is a decision about how thoroughly to test an individual

piece chosen for testing.

BI'Do not confuse this with the earlier continuum in which we
considered which pieces to test.

99

One ad hoc view of adequacy is that testing continues as long as the costs of
uncovering faults are balanced by the increased quality of the product. Another
view consders the prevailing standards within the domain in which the software
application is Situated. Testing is designed to conform to those standards—for
example, there are obvious differencesin quality standards between drug
manufacturing and furniture manufacturing.

The differing levels of adequate testing can be viewed on a continuum, shown in
Figure 3.10, from no testing at al, to minimal coverage in which we select afew
tests to perform, and on to exhaustive testing in which every possible test caseis
run. Companies—and sometimes even individual projects—set testing policies
based on a position along the continuum where they are comfortable.

Figure 3.10. Continuum for how much testing can be done

Mo testing Exhaustive testing

The amount of testing required should be determined relative to the long-term and
short-term goals of the project, and relative to the software being developed. We
frequently speak of "coverage" with respect to adequacy. Cover age isameasure of
how completely atest suite exercises the capabilities of a piece of software.
Different measures are used by different people—for example, one measure might
be based on whether every line of code is executed at least once when atest suiteis
run while another measure might be based on the number of requirements that are
checked by the test suite. Consequently, coverage is expressed in phrases such as
"75% of the code was executed by thistest suite,” or "One test case was
constructed from each specified requirement.”

We bdlieve test coverage measures should be formulated primarily in terms of
requirements and can vary depending on the priorities and objectives of the project.
If, for example, requirements are specified by use cases, coverage will be measured
by how many of the use cases are used and how many scenarios are created for
each use case. Coverage measured in terms of implementation is useful in
measuring the completeness of the specification-based test suite. If some codeis
not executed, then testers should work with developers to determine what test cases
are missing or whether the software implements unspecified functionality.

We apply risk analysis in the testing process to determine the level of detail and
amount of time to dedicate to testing a component—for example, more time will

100

be spent testing classes that are identified as reusable assets than those that are
intended for use in a prototype. A reasonable scale of increasing risk for
components is as follows:

Prototype components
Production components
Library components
Framework components

The result of recognizing differing levels of risk is the acceptance of differing
levels of adequate test coverage. We will present testing algorithms that guide the
testing of specific products. These agorithms will include what we term a r heostat
effect, which produces differing levels of test coverage from the same agorithm.
For example, in Orthogonal Array Testing on page 228 we will talk about testing
different numbers of combinations of attribute values.

Roles in the Testing Process

We have identified several important roles related to testing in a project. Each role
Is essentia to the success of the testing aspect of the project. The test plan should
schedule the testing responsibilities of each of these roles.

The people in each of these roles must plan the amount of time and effort that they
will expend in testing. They must schedule their time relative to testing and any
other obligations they must meet. The development schedule will drive much of

the test scheduling. In this environment, testing will often be shortchanged if there
Isnot a clear specification of levels of adequate test coverage and a commitment to
quality. Our experience shows that the more active the integration test and system
test people are in the total project the more likely it is that testing will be given
appropriate resources,

We now describe each of the roles. One or more people can assume each role. One
person can assume multiple roles, but you must be careful to keep the roles
Separate.

Class Tester

A classtester hasthe responsbility to test individual classes as they are produced.
Part of the planning process is to coordinate the efforts of all of these individuals.

101

The development community, through the project test plan, must agree on who will
assume thisrole, the levels of coverage that will be considered adequate, and how
these tests will be scheduled. Scheduling is particularly important given the
relatively large number of artifacts to be tested and the need for a quick
turnaround. If thisrole is taken by developers, asis often the case, then specific
amounts of time must be allocated to the activity. This seems like an obvious
statement, but many managers smply ignore this step when scheduling.

Integration Tester

Anintegration tester isresponsible for testing a set of objects that are being
brought together from different devel opment sources, such as two development
teams. They have the responsibility to test sufficient functionality to be certain that
the various components from different development teams and/or outside vendors
will work together correctly. Thisroleis particularly important in a project that is
using large frameworks that are still immature. People in this role should have both
developer and testing skills.

System Tester

A system tester has domain knowledge and is responsible for independently
verifying that the completed application satisfies the system requirements. System
testers represent a user's perspective on the project. Thisis a valuable perspective
to have even in the early planning phases of the project. One or more system
testers should participate in use case modeling efforts and begin test case
Identification and construction during requirements definition.

Test Manager

A test manager is responsible for managing the test process. This may be a part-
time role for one manager, or arole for a number of people who are dedicated to
managing just the testing portion of the process. The role of the test manager is
similar to that of any manager. The person is responsible for requesting,
coordinating, and making effective use of the resources alocated to testing. Often
this person will be assigned "matrix" authority over a set of developers. That is, the
developers will report to the development manager and to the test manager as well.
Deveopersin thisrole will assist in the construction of atest infrastructure.

A Detailed Set of Test Activities

102

Figure 3.11 provides a synopsis of the test activities for each of the phases we have
defined for our development process. These will be elaborated as we discuss the
techniques in later chapters.

Figure 3.11. Synopsis of testing activities

Product Components (Sub)Systems
Implemneriation: Implamaiation:
Ehoa-tased based oo e bamed
Doman || Chack thal objects can Chack thal all objocts
daigmodel || be creabed from the required (o defing the
chagsos in tho modal | subsystom ang aviil-
and that netalionships able and coms
can b ostabisheg.
2 Deman || Chisci That all s1abes of | Chaeck that all £lases of
£ ayraenic mocel (| gha abgeel can ba | tha subsysiem can ba
E roached and that pee- reached and that pee-
conditigns can ba | conditions can be
g checked. checked.
a8 Deman || Check thal an axpart Chack for consstoncy
egaremects || ugar cannot find any #cross this complote
¥ | used mot p i tha sl ol uSh casod;
el 180 | ol | ehack lor complete-
- | ness against the
e user.
Bppication || Chack thal obyecls can _cmmum
clasmode! || by creabed iom tha | required [0 dafing the
claksns in the model | Subsyssom ade avail-
and that netaticnships | aible and come.
- can be astablizhed.
= Bgpication || Chack that all stales | Check that all sia%es of
g dmamcmodel || ean ba neachod and the subsysiem can be
! thal precondiions can reachod and thal pro-
§ be chacked, conditions can be
5 ehickid.
5 Appicason || Check thal an expert | Check for consistoncy
rqremeets || uger cannot find any | across the complete
tpscicaton—4e || inas ot peesant in the sl of USe cases;
R 0 || reial, | ehack bor complata-
b ness against the
| oo ugor.

103

[Bub}Systoms

Architeciural Design

Chack Ihat objects can
b croated from the
niew classes in the
imodel and that rola-
tiorships can be

Chack the comect
application of dedign
partlismg.

Chack that all slabes
an b reached and
thal precondmns can
b checiond.

Chock that each mes-
A roceived by &

Check Bhal requing-
masnts can ba mol jo
capiuring the resulls in
Inemction diagrams.

Chick thal b sub-
sysiem can suppon its
spacifcation.

104

Proguct | Compononts {Sub)Systems

| temrarcatae | mpmrern
Vi s Birte] Nt bl By

;Ch{:ck indapandant of

| Kl appication.
= Check independant of
L] tha appiication
g Check Struciure
E agains] archileciun
5 Chack oparasion
] againg! interaction
digrams.
Corrpinti Chassi Chistk th
S ErEhE - anbErac-
g 1ation lions
3 against the Delweden
& class’s classes
g speciica- wsing test
2 tion cases
f based on
" nelafteon:
5 ships froem
A Ciass
diagram
c Comgietod | Chedk
£ Epicaten EmgHemen-
= \ation usng
: tos cases
L] draicpad
E from use
- CASAE
E
2
i
§

Planning Activities

Now we want to discuss the process of planning for testing. We will present a set
of planning documents that are useful in organizing information such as specific
test cases. We will relate these documents to how and when testing activities are
scheduled.

These planning documents are working documents. After each increment, and
sometimes after a specific iteration, these documents are reviewed and revised.
Risks are updated as are priorities and schedules.

Scheduling Testing Activities

Class tests are scheduled at the discretion of a developer as they become useful or
necessary. A classtest is useful during coding when the developer wishes to
identify missing features or verify the correctness of part of an implementation. A
class test becomes necessary when a component is to be added to the code base.
The class may not be completely devel oped, but the behaviors that it does provide
should be complete and correct.

105

Integration tests are typicaly scheduled at specific intervals, usualy at the end of
major iterations that signal the completion of an increment and/or just prior to
releases. Alternatively, integration may be an ongoing, highly iterative process that
occurs each evening. Integration test cycles can aso be scheduled to coincide with
ddiveries from major outside vendors, such as anew version of a base framework.

System tests will be performed on magjor deliverables at specified intervals
throughout the project. This schedule is usualy specified in the project plan since
there is often a need to coordinate with a separate organization that may be
providing testing services to numerous projects s multaneoudly.

Estimation

Part of scheduling is estimating the resources—cost, time, and personnel—that will
be needed to support the plans being made. Thisis not easy and we have no magic
formulas. In this section we will discuss the factors—Ilevels of coverage, domain
type, equipment required, organization model, and testing effort—that should be
considered.

Levels of Coverage

The more comprehensive the level of coverage, the more resources that will be
required. Estimates of the amount of code written to support testing vary. Beizer
estimates from 2% to 80% of the application size [Beiz90]. Other estimates are
even higher. We have had success in considering each system use case as a unit
measure. By estimating the amount of effort for one use case (perhaps through a
prototyping effort), you can construct the estimate for the complete system. Some
use cases are much broader in scope or more abstract in level. Choose a set of use
cases that are at approximately the same level of detail in the model and use those
for estimating. If two use cases extend another more genera case, then use either
the two specific or the one more general use case, but not both.

Domain Type

Often more technically oriented software embodies much of its complexity in the
programming logic, while the program inputs are fairly smple. On the other hand,
systemsthat are data intensive often have relatively smple logic, but the test cases
require large amounts of effort to construct. The amount of effort required to
construct a complete test case including complete inputs and correct outputs can
vary considerably. A smple program that queries alarge database requires much

106

time to build the data set and much time to verify that the answer produced is
correct.

Equipment Required

System testing should be conducted in an environment as close as possible to the
deployment environment. Even some aspects of class testing may require either
gpecid hardware environments or a hardware ssmulator. The cost of installing and
maintaining the equipment or constructing the simulator must be included in any
estimate.

Organization Model

We have discussed a couple of schemes that are commonly used to staff the testing
process. Our experience has shown that the more independent the testers are from
the development organization, the more thorough the tests are. However, this
independence requires alonger learning curve and thus more expense. Common
estimates are that one independent tester can only handle the output of two to three
developers.

Conversdly, tying the testers to the development organization (or using personnel
from the devel opment team to test) reduces the time required to learn the system.
Specifications are seldom completely written down or up-to-date. If atester isa
person who also participates in discussions about the solution, then that tester can
understand the implicit assumptions in a specification more completely. However,

it may be more difficult for testers to be as rigorous or objective if they become too
closaly tied to the development effort.

Consider using a buddy approach to class testing. It provides much of the
objectivity that makes testing most effective. Rather than have devel opers test their
own classes, form buddy groups. Two devel opers swap code with each other and
test. The advantage is more thorough testing. Since the tester is another devel oper
who is aso developing closely related code, this person can be productive much
more quickly than a person from the independent test team who must first learn
about the context.

Testing Effort Estimate

Estimation techniques amost dways rely on historical data to make projections.
We will not take the space here to discuss these techniques. Figure 3.12 provides a
very smple form to use in accounting for al of the hours required for the various

107

testing activities. As we proceed through the book, we will provide more detailed
guidance for completing the various sections of the form.

Figure 3.12. A testing effort estimation form

Testing Effort Estimation Form

Developer-level person-hours required for class test planning
Developer-level person-hours required for PACT class construction
Staff person-hours required for test environment

Tester person-hours for system test planning

Tester person-hours for PAST class conslruction

Total Tester person-hours

For now we can summarize much of this by using historical datato determine the

cost of producing asingle class. From thelist in Figure 3.12 we can identify the
classes that will have to be constructed:

Construct one PACT™ class per classin the application that will be tested in
isolation.

TPACT is Parallel Architecture for Component Testing.
We will discuss this in Chapter 7.

Construct one PASTX class per use case.

"TPAST is Parallel Architecture for System Testing. This
will be discussed in Chapter 9.

Estimate the number of classes needed for the infrastructure.

The total number of classes times the effort per class gives the effort for al testing
classes. Planning is addressed in Planning Effort on page 105.

A Process for Testing Brickles

In this section we will illustrate the following five dimensions by applying each of
them to our case studly.

1. Who performs the testing? The testing duties will be divided between the
two authors. Sykesis doing most of the implementation, so he will do the
class and integration testing. McGregor wrote the use cases and constructed
much of the high-level design. He will create test cases from the use cases

108

and execute these when the system's implementation is available. Sykes will
moderate the model testing.

. Which pieces will be tested? The basic primitive classes will be tested.
Higher-level classes that are composed from the primitive ones have so
many interrelationships that they will be tested as a cluster. The fina system
will be tested as a completed application.

. When will testing be performed? The class testing will be performed
repeatedly during the development iterations. The cluster tests of the high-
level classes will also be repeated during iterations, but these tests will not
start until the second increment after the primitive classes have been
completed in the first increment. System testing will be initiated after an
initial version of the system becomes available at the end of the firgt
Increment.

. How will testing be performed? Test cases will be constructed as methodsin
aclass. There will be one test class for each production class. Use case
testing will be conducted by a person using the system rather than by using
any automation. This will require the game to be played many times.

. How much testing is adequate for an individual piece? The classeswill be
tested to the level that every public method has been invoked at least once.
We will not attempt to test every possible combination of values for the
parameters. The test cases derived from the use cases will cover al possible
fina results.

Document Templates

We will discuss a project test plan, a component test plan, an integration test plan,
ause case test plan, and a system test plan. The relationships among these plans are
illustrated in Figure 3.13. Each arrow in the figure indicates that the pointed-to
document isincluded by the reference in the document that originates the arrow.

Figure 3.13. Relationships among test plans

109

Project test plan

_—
A i Classicomponent
: \'_\ test plan (one per
_— T “important” class)
Integration test -"‘“-,,_____H_
plan {one per e
b \ increment) o
\ — e | ———
W ——
e ﬁ@ﬁ —_
L1 gt —
*ﬁ%
—— L

Use case test plan
{one per use case)

System test plan

¥

We will present these in template format. Thisis a useful approach for several
reasons. Except for the system test plan, there will be multiple instances of these
documents. A template ensures consistency of form and content among these
independent, but related, documents. The more of the document that can be
incorporated into the template, the less effort a developer will need to expend in
producing the multiple instances. The template approach will aso smplify the
Ingpection process since each document will follow the same style, this specific
content can be located quickly.

The |IEEE test plan outlinein Figure 3.14 lists the basic sections for a test plan
regardless of level. We want to address those that are most important in an
incremental, iterative object-oriented software development environment. In the
following test plans we will not name the sections exactly according to the outline,
but we will include the basic required information. The following test plan items
are particularly important:

Features Not Tested— For class-level testing. This section reports the results
of the HIT analysis (see Chapter 7). This information includes features that
have aready been tested and that do not need to be retested, and features that
are not scheduled for development until later iterations or alater increment.
Test-Suspension Criteria and Resumption Requirements— Testing is
suspended when the yield reaches an unacceptable level, that is, when the
number of faults being found per hour of effort drops below the criteria set

110

In this section, and then no further testing is conducted. This section is

particularly important for a project using iterative development. We usualy

define one set of criteriafor early iterations and a second set for the later
iterations. For an iterative project, the resumption criteriais smply the
progression in the development cycle back to the test point.

Risks and Contingencies— A risk, in this context, identifies potential
problems with conducting the tests. These include possible errors about

correct answers in large data sets and the possibility that different platforms

will produce different results, but that only some will be tested.

Figure 3.14. The IEEE 829 Standard Test Plan outline

1.0
2.0
3.0
4.0
5.0

6.0
7.0
8.0
8.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0

Project Test Plan

The purpose of this document is to summarize the testing strategy that is to be

Introduction

Test items

Tested Features

Features Mot Tested (per cycle)

Testing Strategy and Approach

51 Syntax

5.2 Description of Functionality

5.2 Arguments for Tests

54 Expected Output

55 Specific Exclusions

56 Dependencies

57 Test Case Success/Failure Criteria

PassfFail Criteria for the Complete Test Cycle
Entrance Criteria/Exit Criteria

Test-Suspension Criteria and Resumption Requirements
Test Deliverables/Status Communications Viehicles
Testing Tasks

Hardware and Software Reguirements

Problem Determination and Carrection Responsibilities
Staffing and Training Needs/Assignments

Test Schedules

Risks and Contingencies

Approvals

employed for the project. It should define the steps in the devel opment process at

111

which testing will occur, the frequency with which the testing should occur, and
who is responsible for the activity.

The project test plan may be an independent document or it may be included in
either the overal project plan or the project's quality assurance plan. Because its
format is so variable and its content quite flexible, we will only provide a couple of
tables below that summarize the information usually included.

Thetable in Figure 3.15 summarizes the activities that are required, the frequency
with which each activity will be employed, and the entity that is responsible for
this phase of testing. More specific information about each of theseisincluded in
the detailed plan for that level.

Figure 3.15. Project test plan template—Part 1

Project Test Plan Template—Part 1
Project:

Responsible Party: ____ .

Level of Frequency Responsible

Testing Activities of Testing Party

Compenent | Select test As components Companent
cases are ready developer
Write PACT Component
classes tester

Integration | Selecttest cases | Priorto release of | Integration

an incrament team
System Selecttest cases | Prior o any Quality
from use cases release to an assurance
extarnal client department

Construct PAST
classes

A second table, in Figure 3.16, associates each of the phases with a specific
strategy for that phase. We will describe severd testing strategiesin the

appropriate chapters and you can pick your favorite. This table also records project
standards for adequate testing for each risk level within the three phases.

Figure 3.16. Project test plan template—Part 2

112

Project Test Plan Template—Part 2

Level of Test Use Profile Coverage
Testing Strategy Level Criteria
Component high

medium

low
Integration high

medium

low
System high

medium

low

Component Test Plan

The purpose of a component test plan is to define the overal strategy and specific
test cases that will be used to test a certain component. One test plan will be
completed on each component that is sufficiently significant to require isolated
testing. We present here atemplate that we have used successfully. Two types of
guiding information are included in the template: project criteria and project
procedures. These are included to serve as handy reminders and to avoid the need
to produce a component test plan that summarizes dl of the component-testing
information for the project. Project criteria are standards that have been agreed
upon as to how thoroughly each component will be tested. For example, project
criteria might call for 100% of the postconditions on modifier methods to be tested.
These criteria should be providing more detail on the coverage criteriadefined in
the project test plan. Project procedures identify techniques that have been agreed
upon as the best way to handle a particular task. For example, constructing a PACT
class (see Chapter 7) for each component that will be tested is a project procedure.
These procedures will provide the details of the test strategies that were identified
In the project test plan.

We will give a brief comment on each section of the template. Figure 3.17 shows
the template. We will not comment on sections that smply record information such
as the name of the component. Italicized portions will represent actual entriesin

the template.

Figure 3.17. A component test plan template

113

Component Test Plan Template
Component Mame: _
Rasponsible Parly: _
Developer Mama: _
Objectives for the Class
Project Procedure: Test cases are inlended 1o test a component based on ils staled objectives.
Guided Inspection Requirements

Project Criteria: 100% of the products associated with crilical components will Be ins pacted
T55% of the products associated with noncritical components will ba inspected, Library com-
ponants will ba subjact to additional quality checks. Chadk one of the following:

Critical application component

Moncritical applcation component
Library companen]

Project Criteria: A risk analysis is to be used W priofilize the portions of the class with
re'speﬂ 3] iﬂﬁpﬁﬁbﬂl‘lﬁ and lEﬁtiﬁg

Building and Retaining Test Suites

Projact Procedura: The HIT algonthm will be used to daterming which lest cases actually
need 1o be execuled for a given component.

Project Procedure: It is a responsibility of the developer 1o prepare the test suites in the
siructure required by the project.

p“'ﬂj&ﬂ ciiterds: For each component thene i3 a lesl driver class that contains the lest cases
for the component.

Project erileria; For each method there are test harness methods that represent functional
structural, and intaraction lest cases.

Functional Test Cases

Project criteria; Execute test cases for gach postconditon of every method, Also check the
class invariant as parl of aach test case.

Project criteria: Execute lest cases based on possible significant values for each of the
paramalers.

Structural Test Cases

Project criteria: Execute test cases that cover every Ene of code in each method,

Criteria for risk analysis on the component: _____
State-based Test Cases

Projecl criteria: Execula lest cases thal cover avery ransilion in the slate reprasentaticn,
Interaction Test Cases

Project Procedure: Execute test cases based on each contract between components, Use
OATS to select the cases to be executed.

Objectivesfor the Class. The developer will replace this paragraph with a
prioritized list of objectives for the component. For example, this component is an
element of the basic framework for the gpplication and is intended as a high-leve
abstraction from which the more specific variants are derived.

Guided I nspection Requirements. Project Criteria 100% of the products
associated with critical components will be inspected. 75% of the products
associated with noncritical components will be inspected. Library components will
be subject to additional quality checks. Project Procedure: Risk analysisis used to
prioritize the portions of the class with respect to inspections and testing.

Building and Retaining Test Suites. The developer will replace this paragraph
with information about

114

the results of applying HIT and details of the use of the PACT process for
creating test driver classes (see Chapter 7).

the scheduled deadline for the delivery of test cases.

the specification of the test driver.

the relative number of test cases in each category and the priorities among
the three.

Functional Test Cases. The developer will replace this paragraph with
information about

the test cases developed from the specification.

the class invariant method.

how many different "types’ of objects are being tested. The types are based
on theinitid state of the object.

Structural Test Cases. The developer will replace this paragraph with information
about

the test cases developed for code coverage and about the code-review
process.
how to use the required test-coverage tool.

State-Based Test Cases. The developer will replace this paragraph with
information about the state representation for the class. Refer to the state diagram
if available.

Interaction Test Cases. The developer will replace this paragraph with
information about which messages will be tested based on the OATS selection

process (see Chapter 6).
Use Case Test Plan

The purpose of this plan is to describe the system-level tests to be derived from a
single use case. These plans are incorporated by reference into both the integration
and system test plans. Figures 3.18, 3.19, and 3.20 show portions of the use case
test plan template. Other parts will be shown in Chapter 9.

Figure 3.18. Use case test plan template—Part 1

115

Use Case Test Plan Template—Part 1

Use Case Name:
Responsibility: The developer who cwns the component is responsible for class testing.

Developer Name:

Part 1—Appearance and Layout {Repeat for each screenfreport)

1.1 All required data fields are present.

1.2 ltems appear in the comect order.

1.3 Mo unspecified fields are present.

1.4 Initial system defaulls are correct.

1.5 (Screen only) Tab traversal is in correct order,

1.6 (Screen only) Shorlculs work corracily,

1.7 (Screen only) Fields may be accessed in random order.

1.8 (Screen only) Menus are in the correct order,

1.9 {Screen only) Appropriate menu choices are active.

1.10 (Screen only) Objects acted appropriately (double-click events, etc.).
Test Case Standards

1. For every “required” field there will be test cases in which the value for that field is
missing.,

2. For every boundary value there will be test cases that use that specific value. There
should also be test cases that use values from each equivalence class between the
boundaries.

3. For every field of an enumeration data type, unless a checkbox is used, there will be test
casas for invalid and blank values.

4. For every field of a date data type there will be test cases for invalid and blank values.
However, unless there is an explicit constraint in the use case, there will be no checks of
boundary values. Dates may be invalid because of the format or because of the violation
of business rules.

5, Far any scenario in which there is to be a retrieval, there should be a test case in which
all fields are blank except for cne field in which an enlry is made. There should be one
such test case for every field that the user can edit, For fields that accept types input,
such as a name field, there should be two test cases. For example, a full name and a
partial name are both tested,

< < % € € <=
& &2 2 2 2 2 2 2 2 2

Part 3—Security/Integrity
The test script indicates the security level of the user and tests for each level ¥ N
Each field accurately detects incorrect data types and their processing, Y N
The system presents the correct error and warning message in unusual
situations. ¥ N
Output data are successiully replicated to all servers. ¥ N

1. Related lests that must be passed prior o execuling these scripls:
2. Related tests that should be run if these scripts fail:
3. Related tests that should be run upon successiul completion of these tests:

Figure 3.19. Use case test plan template—Part 2

116

Use Case Test Plan Template—Part 2

Use Case Name:

Responsibility; The developer who owns the component is responsible for the class testing.

Developer Name:
Part 4—Test Scripts

This section provides the tester with a detailed outline for performing each test. The outline
comes from the “The system responds by. . " section of each use case scenario and from
the tables created in Section 2 of the use case template which is omitted from Figure 3.18

for reasons of space but is shown in Figure 2.7,

Script #
Establish preconditions for test
User type: Any
The user has the specified autharity required to perfarm the operation, Y
The system enforces the appropriate access control, Y
The required error message appearad when unauthorized access was
attempted. Y
The system resisted repeated attempts at unauthorized access, Y
Environmental needs
Meaded lest databases and tables are in place, Y

Execute the following scenario:

Evaluate test results
General test results:

The expected output occurmed,
Any related fields were correcily computed,
An out-of-synch set of related fields results in an error message.
The required error message(s) appeared,
The message accurately and clearly described the problem,
The system recovered appropriately after the error message.
It was not possible to save until any errors were corrected.
The program mel performance standards.

= = = = = = = =

Figure 3.20. Use case test plan template—Part 3

2 Z 2 Z L Z

117

Use Case Test Plan Template—Part 3

Use Case Mame:

Responsibility: The developer who owns the compenent is responsible for the class testing.
Developer Mame:;

Part 5—Use Case Test Summary
Summary of test activities (personnel responsible, location, atc.);

Description of hardwara used for test execution (printer model, network connection type,
etc.).

Unspecified behavior that occurmed;

Variances from specified test proceduras:

Retasting is required. ¥ N

Approved;

The test plans can be constructed in a modular fashion following the same pattern
as the dependencies between the "partid" use cases. Use case models can be
structured in the same way class diagrams are. The includes and extends reations
provide the means for decomposing the use cases into "partia” use cases as
described in Chapter 2. The partia use cases are combined using the relationships
to form what we refer to as "end-toed" use cases.

We identify three levels of use cases high-levd, end-to-end system, and functional
sub-use cases. The high-level use cases are abstract use cases that are the basis for
being extended to end-to-end use cases. The functiona sub-use cases are
aggregated into end-to-end system-leve use cases. We have built actua test
scripts, in the scripting language of test tools, that use the
generdization/specidization relationship between the high-level and end-to-end

use cases. These test scripts also aggregate fragments of test scripts from the
functional sub-use cases. By having these three levels, our projects are more
manageable and our test scripts are more modular.

The project for which this was the template also identified two different "types’ of
use cases. functionality and report use cases. Functionality use cases modified the
data maintained by the system in some way. Report use cases accessed information
in the system, summarized it, and formatted it for presentation to the user. These

118

differences led to different numbers of tests for security and persistence. Y ou may
Identify other groupings of the use cases that are useful to your project.

Integration Test Plan

The integration test plan is particularly important in an iterative devel opment
environment. Specific sets of functionality will be delivered before others. Out of
these increments the full system dowly emerges. One implication from this style of
development is that the integration test plan changes character over the life of the
project more than the component or the system test plans. The components that are
integrated in early increments may not directly support any end-user functionality
and hence none of the use cases can be used to provide test cases. At this stage the
best source is the component test plans for the aggregated components. These are
used to complete the component test plan for the component that integrates these
objects. After anumber of increments have been ddlivered, the functionality of the
integrated software begins to correspond to system-level behavior. At that time the
best source of test casesis the use case test plans.

In both cases, the test cases are selected based on the degree to which the test case
requires behavior across all of the parts that are being integrated. Small, localized
behavior should have already been tested. This means that the tests should be more
complex and more comprehensive than the typical component tests. In a properly
integrated object-oriented system, there will be certain objects that span a number
of other objects in the build. Choosing tests from the test plans for those
components will often be sufficient for good integration test cases.

Because of this dependence on other test cases, we do not provide a separate
template for the integration test plan. Its format will follow that of the system test
plan in that it will be a mapping of which individual test plans are combined to
form the integration test plan for a specific increment.

System Test Plan

The system test plan is a document that summarizes the individual use case test
plans and provides information on additiona types of testing that will be
conducted at the system level. In each of the techniques chapters, we will describe
life-cycle testing as one technique that can be applied at the system level and aso
at the individual component level.

For our purposes here, we will provide a chart, see Figure 3.21, that maps the use-
case test plans to specific system tests. Most of the information required by the

119

|EEE test plan format will have already been provided by the individual use case
test plans.

Figure 3.21. System test plan

System Test Plan

Use Case Number Test Case Number Reason for Selecting
Iteration in Planning

The iterations in the devel opment process affect how planning is carried out.
Changes in product or increment requirements at least require that test plans be
reviewed. In many cases they will also need to be modified. We keep traceability
matrices to assst with thisiterative modification.

If the development organization receives requirements in atraditiona form, we
build a requirements-to-use-case mapping matrix. Thisis often just a spreadsheet
with requirement IDs in the vertica axis and use case I Ds on the horizontal axis.
An entry in acell indicates that the use case provides functiondlity related to or
constrained by the requirement.

We adso maintain a second matrix in which we relate each use case to a set of
packages of classes. An entry in a cell indicates that the package provides classes
that are used to realize the use case. When a use case is changed, the owners of
packages are informed. They check the functionality they are providing and make
the necessary changes to their code. Thistriggers changesin severd levels of test
cases and perhaps test plans as well.

Planning Effort
The effort expended in planning depends on afew things:

the amount of reuse that exists among the templates
the effort required to complete each plan from the template
the effort to modify an existing plan

Each of these values will require the establishment of a baseline on which to base
estimates.

Test Metrics

120

Test metrics include measures that provide information for evaluating the
effectiveness of individual testing techniques and the compl ete testing process.
Metrics are aso used to provide planning information such as estimates of the
effort required for testing. To create these final measures we need measures of
coverage and complexity to form the basis of effectiveness and efficiency metrics.

Coverage is atesting term that indicates which items have been touched by test
cases. We will discuss a number of different coverage measures during the
presentation of the testing techniques discussed in the book. Examples include the
following:

Code cover age— which lines of code have been executed.

Postcondition cover age— which method postconditions have been reached.
M odel-element cover age— which classes and relationships in amodel have
been used in test cases.

Coverage metrics are stated in terms of the product being tested rather than the
process we are using to test it. This gives us a basis by which we can describe how
"thoroughly" a product has been tested. For example, consider the Situation in
which one developer uses every logica clause from every postcondition as a
source for test cases, while a second developer only uses the "sunny-day" clauses™
from the postconditions as the source for tests. The second developer is not testing
as thoroughly as the first as evidenced by what fraction of the postcondition
clauses are being covered.

Bl A sunny-day clause is an expected result, ignoring error
conditions that might throw an exception or return an error
code.

Coverage can be combined with complexity to give an accurate basis for
estimating the effort needed to test a product. That is, as the software becomes
more complex, it will be much more difficult to achieve a specified level of
coverage. Severa measures of complexity are available:

number and complexity of methods in the class
number of lines of code
amount of dynamic binding

By collecting performance data over time, a project or company can develop a
baseline from which projections can be made for planning a new project.

121

The testing process is effective if it isfinding faults. It is efficient if it isfinding
them with as few resources as possible. We will discuss a couple of measures that
give information about both of these. The number of defects/developer-hour
metric determines the yield of the process while the developer hour snumber of
defects metric provides a measure of the cost of the process. These numbers are
dependent on the tools that are used to construct tests as well as the levels of
coverage sought, so each company will need to baseline their process and collect
actual performance data before using these numbers for planning purposes.

The effectiveness of the testing process is evaluated by collecting data over the
complete development life cycle. Consider afault that isinjected into an
application during design. The sooner that defect is detected, the more effective is
the testing process. The efficiency of the testing process is measured by
considering the intervals between the development phase in which the defect is
injected and the phase in which it is detected for al defects. The perfectly effective
testing process finds every defect in the same development phase in which it was
injected. If defects injected at design time are not being detected until code testing,
the testing technique used during the design of the system should be modified to
search specificaly for the types of faults that are not being detected in atimely
manner.

Summary

In the competitive world in which complex software sdlls for $99.95 and
companies pay a bounty to any employee finding a new software engineer,
planning is an essentia activity. The challenge isto baance time spent planning
and documenting the plan, with the time available to produce software.

We have shown a series of templates that reduce the time required to complete the
planning process. These documents are hierarchical where possible to further
reduce the volume of documentation required to do an adequate job. The planning
process will be a success if the devel opers who drive the process see benefit from
it. It will be perfunctory at best if the attitude becomes one of "just get it done.”

Exercises

122

3-1. Identify the documents and models that are available for a system you want to
test. For those pieces that are missing, determine how you might provide the
required information.

3-2. Prioritize the objectives for your project and product.

3-3. Continue the development of your test plan by building a chart that lists dl of
the "products’ that will be available for testing. A second column could be used to
list the testing techniques that will be applied to test the product. 1t will be left
blank for now. Isyour project iterative? Isit incrementa? If it isiterative, there
should be a column that summarizes the results of applying each technique during
each iteration. If it isincremental, there should be a separate table for each
increment of the system since they will be devel oped independently.

3-4. What risk level would you assigntothe Spri t e, PuckSuppl y, Puck, and
Vel oci ty classesfor Brickles?

123

Chapter 4. Testing Analysis and Design Models

Want to learn how to inspect the semantics of UML models? See The
Basics of Guided I nspection.

Need to set up an inspection session? See Organization of the Guided
| ngpection Activity.

Need atechnique for testing a model for extensibility? See Testing
Models for Additional Qualities.

Developers model the software they are constructing because it assistsin
understanding the problem they are solving and because it helps manage the
complexity of the system being developed. The models of analysis and design
information will eventualy be used to guide the implementation activities of the
project. If the models are of high quality, they make a valuable contribution to the
project, but if they contain faults, they are equally detrimental. In this chapter we
present guided inspection, an enhanced inspection technique for verifying the
models as they are created and for validating the completed models against project
requirements. The principa shortcoming of standard review techniques is that they
focus primarily on what is there (in the modd) rather than what should be there.
Reviews do not provide a means for systematically searching for omissions from
products. Even Fagan inspections [Faga86], which use checklists to make the
process more detailed, do not provide a means for determining what is missing
from amodd.

Guided inspection applies the testing perspective very early in the devel opment
process. Traditionally, testing has begun at the unit implementation level and has
continued as code segments are integrated into larger pieces until the entire system
Is available to be tested. In this chapter, we will begin "system testing" when the
"system" is still represented only as analysis or design information. A new version
of the traditional "V" testing model, shownin Figure 4.1, relates the repeated
applications of guided inspections to the various levels of testing.

Figure 4.1. The new V model

124

System Systemn
implementation

Subsystemn

integration @Pa
Component ____ Component é‘_ﬁﬁ
: Af
models implementaticns &

Guided inspection requires valuable resources, and the time and attention of
project personnel. So is it worthwhile? Studies have reported widdly varying
savings ratios for finding and repairing faults early in the development process as
opposed to during the compilation or system test phases. For example, repairing a
fault found at system test time may cost as much as one hundred times the cost of
repairing the same fault during analysis. So even a moderate effort at testing the
models can result in big savings.

An Overview

Let'slook at aquick example of using the guided inspection technique. To set the
stage, we are in the initial stages of developing Brickles. The team has produced
the design-level class diagram shown in Figure 2.18 and other diagrams such as the
state diagram shown in Figure 2.19 and the sequence diagram shown in Figure
2.20. We are about to begin coding but want to validate the design model before
spending extensive time coding the wrong definitions.

We begin by assigning the inspection team. The team includes the two of us who
developed the model, a system tester from our company and our company's process
person who will be the moderator. The tester will develop a set of test cases from
the use case diagram. We developers will show how the classes in the design

model handle each test case. The moderator will define the inspection boundaries,
schedul e the guided inspection session, distribute materials, keep the session
moving forward, and then complete the final report.

In preparation for the session, the moderator defines the boundaries of the
Inspection by identifying the scope and depth of the information to be inspected.
The scope is defined by a set of use cases. In our case, the scope covers al the use
cases and thus the complete application. The depth is defined by identifying levels

125

of containment in the composition hierarchies. In the case of Brickles, we will not

Inspect the objects that are aggregated withinthe Br i ckl esVi ewobject. We will
focus instead on those that represent the state of the match at any giventimein a

Bri ckl esDoc object.

The tester writes test cases using the use cases found in Figure 2.11. We will focus
on onetest case, shown in Figure 4.2. Before the meeting, the developers complete
the Design Modd checklist shown in Figure 4.3. This exercise is completed
individually by each developer. It requires that the developer compare the class
diagram from the analysis mode, shown in Figure 2.13, with the class diagram in
the design model. Finally, the moderator sends out notice of the meeting along

with either paper copies of the modd or a URL to the Web version.

Figure 4.2. Test case #1

The use case: A player stops a Brickics match by selecting Quit from the File menu.

Preconditions: The player has started the Brickies game, has moved the paddle,
and has broken some bricks,

Test input: The player selecis Quit.
Expected output: All game action freezes and the game window disappears.

126

Figure 4.3. Example design phase checklist

UML Detailed Design Checklist Questionnaire Yes No

Analysis-to-design model transformation issues. Are all v
classes in the analysis model that are not in the design model
outside the scope of the application?

Are all the states in the analysis-model statecharts also states v
in the statechart diagrams in the design model?

Are the sequences of messages in all design-level sequence v
diagrams the same, even though additional messages may
have been inserted between the analysis-level messages?

Internal design model issues. Are all associations shown with v
no navigation information that is truly bidirectional?

Are all compaosition relationships shown as unidirectional?

Is every sequence diagram a subset of some activity diagram?

Does every message sent in an interaction diagram appear as
a method in the public interface of the class of the receiving
object?

Does every message sent in an interaction diagram go to the
logically appropriate object?

Are the transitions out of a state diagram mutually exclusive?

Do all state machines, except for perpetual objects, contain
initial and final states?

Are all public mﬂd_ii:ler methods represented as transitions on
each state even if they only result in staying in the same state?

Is there a sequence diagram for each postcondition clause of
each method that corresponds to use cases that meet the fre-
quency/criticality threshold?

Are all messages shown correctly as synchronous or
asynchronous?

Do the number of forks and joins balance in every activity
diagram?

The test report from the guided inspection section notes the problems found during
the symbolic execution of the test cases. With regards to the test case being
considered here, the design is considered to have failed the test. The test report
would reflect that it was not possible to determine how to complete the symbolic
execution a this point in the algorithm. We do not want to confuse testing and
debugging, but since we know exactly where execution terminated, it should be
reported. The test report aso includes the sequence diagram used to record the test
execution, as shown in Figure 4.4.

127

Figure 4.4. Partial sequence diagram for test case #1

(CErickles] [CBrickies-| -Puck-

Dos Ti P uppl Puc 7 FlayF
ki amanii] : Wi i addle Supply [uck | | ouse | [! il |

L3 I 1 1 I 1 I
new Paddle(SaMovse)]
.. | gm

new PuckSupply(4) 1 : 1 1
-

Quit

A Portion of a Session Transcript

Melissa (moderator): OK, let's get started. Everyone has had a chance to
look at the model and Dave and John have completed the checklists. Let
me remind everyone that we are focusing on the locally designed classes
and will ignore the standard user-interface classes such as menus. So let's
begin with the first test case, Jason.

Jason (tester): Here isthefirst case [he hands out the first test case]. With
John's help, I've laid out the beginnings of a sequence diagram for this test
case based on the test case preconditions [see Figure 4.4]. So, the player
selects Quit from the menu and...

John (developer): My :BricklesView would receive the Quit message. And
my object would send the Quit message to Dave's aBricklesDoc. [He
draws these onto the sequence diagram.]

Dave (developer): When :BricklesDoc gets the Quit message it will send
the Stop message to alimer. [He begins to draw this on the sequence
diagram.]

Jason: Wait aminute! As| read the class diagram there is no association
between those two classes.

128

Dave: John, where is that Stop message supposed to go? | thought you said
you were going to implement that method.

John: [Busy shuffling between the sequence diagram and the class diagram
with a confused look on his face.] Defect!

Melissas Sounds like we are ready for the next test case.

Place in the Development Process

The last activity in each phase in the devel opment process should be a verification
that the work produced in the phase possesses the qualities we desire. That work is
in the form of either a UML model or code in a programming language. (See A
Development Process Overview on page 66.) The processis structured so that each
devel opment phase moves the product a step toward the final system, which results
in a sequence of models in which the model produced in one development phaseis
more specific and more complete than the model from the previous phase. For
example, during the application analysis phase, amodd is created by filtering the
information in the domain analysis model and the requirements modd to eiminate
information that is not specificaly relevant to the application under devel opment.
Two of the differences between the succeeding models are the scope of the content
and the leve of abstraction. The requirements modd filters the domain model so
that any information not required for the immediate application is not included in
the application analysis moddl. Asthe information in each succeeding model level
becomes more specific, the inspection of each model can also become more
specific and narrowly focused. This sequence of models described in Figure 4.5—
actudly it isjust one modd that is being transformed incrementally—provides an
opportunity to establish achain of quality” in which each model is verified before
moving to the next phase.

Figure 4.5. Models and phases

129

Phase/Model Content Transformed from...

Domain Analysis Domain concepts, standard The minds of the domain
algorithms experts

Application Analysis Concepts needed to explain - The domain analysis model
the specific problem; stan- and the reguirements model
dard algorithms

Architectural Design Basic structure of interfaces Standard architectural pat-

and their interactions terns and creativity of design-
ars
Detailed Design Each interface in the archi- Architectural design model
tecture is implemented by and standard design patterns
one or more components and algorithms

The Basics of Guided Inspection

The guided inspection technique provides a means of objectively and
systematically searching awork product for faults by using explicit test cases. This
testing perspective means that reviews are treated as a test session. The basic
testing steps are as follows:

1. Define the test space.

2. Select values from the test space using a specific strategy.

3. Apply the test values to the product being tested.

4. Evauate the results and the percentage of the model covered by the tests
(based on some criteria).

These steps are speciaized to the following steps (we will elaborate on each of
these in this chapter):

1. Specify the scope and depth of the inspection. The scope will be defined by
describing a body of material or a specific set of use cases. For small
projects, the scope may always be the entire model. The depth will be
defined by describing the level of detail to be covered. It may also be
defined by specifying the levels in aggregation hierarchies on certain UML
diagrams in the model under test (MUT).

2. ldentify the basis from which the MUT was created. The basis for al but the
initial model is the set of models from the previous devel opment phase. For
example, the application anaysis model is based on the domain analysis
model and the use case moddl. Initidl models are based on the knowledgein
the heads of select groups of people.

3. Develop test cases for each of the evaluation criteria to be applied using the
contents of the basis model as input (see Selecting Test Cases for the

130

| nspection on page 123). The scenarios from the use case model are a good
starting point for test cases for many models.

4. Establish criteriafor measuring test coverage. For example, aclass diagram
might be well covered if every classis touched by some test case.

5. Perform the static analysis using the appropriate checklist. The MUT is
compared to the basis model to determine consistency between the two
diagrams.

6. "Execute’ the test cases. We will describe the actual test session in detall
later in this chapter.

7. Evauate the effectiveness of the tests using the coverage measurement.
Calculate the coverage percentage. For example, If 12 of the classes from a
class diagram containing 18 classes have been "touched" by the test cases,
the test coverage is 75%. The testing of analysis or design modelsis so high-
level that 100% coverage is necessary to achieve good results.

8. If the coverageisinsufficient, expand the test suite and apply the additional
tests, otherwise terminate the testing. Usually the additional test cases cannot
be written during the inspection session. The testers identify where the
coverage is lacking and work with a developer to identify potential test cases
that would touch the uncovered model elements. The tester then creates the
full test cases and another inspection session is held.

Coverage in Models

In the UML modes we use, the model elements are the usua object-
oriented concepts: classes, relationships, objects, and messages. A test
case "covers' one of these elementsiif it uses that element as part of atest
case. Of course, asingle test case using a particular element probably does
not exhaust all possible values of the attributes of that element. For
example, using an object from a class to receive a single message does not
test the other methods in the same class.

As we move deeper into the development life cycle, the detail of the model
increases and the detall at which coverage matters increases as well. For a
domain analysis model, smply creating a single object from a class will be
sufficient to consider that we have covered the class. Coverage for this
level of model can be stated as a percentage of classes and relationships
covered. At the design level, we would typically like to use every method
in an interface before saying that a classis covered. Coverage for this level
ismore likdly to be stated by counting al of the methods in the mode!

131

rather than al of the classes.

The more abstract the classes, the higher the level of coverage that should
be required. To omit a single abstract class from the coverage in testing
overlooks the defects that could potentially be found in al of the concrete
classes that eventually are derived from the abstract class. When testing at
a concrete-class level, omitting a class during testing only overlooks the
defectsin that one class.

The higher the level of abstraction of the model, the higher the level of
coverage that is required.

Reviews usually involve adiscussion of the role of each piece of amodel from a
high level. The relationships between pieces are also explained in terms of the
specified interfaces at the formal parameter level. The test cases created using this
technique allow these same pieces and relationships to be examined at a much

more concrete level that assigns specific values to the attributes of the objects. The
test cases should be written at alevel that is sufficiently specific to support tracing
exact paths of execution through the logic of the algorithms, but not so specific that
the code must be written first.

-~

Should test cases be available to developers prior to
the inspection session?

There has to be a balance between alowing
developers to program to the tests and having the
developers duplicate the effort of the testers by
coming up with thelr own use scenarios. If the testers
were going to develop all possible scenarios then
giving those to the devel opers and sampling from
them for mode! testing would be acceptable. Since the
testers usually only create a small percentage of the
possible scenarios, it is doubtful that they are
duplicating the work of the developers who
independently will (we hope) identify other scenarios.
So, our genera approach is to not let the developers
have the scenarios prior to the inspection session.

132

Many object-oriented software devel opment methods discuss using one or more
diagrams within a model to evaluate the other diagrams. For example, a sequence
diagram traces a path through the class diagram in which the messaging arrows in
the sequence diagram are supposed to correspond to associations found in the class
diagram. However, these development methods do not ensure a systematic
coverage of the model. One step in guided inspection checks the internal

consistency and completeness of the diagrams using the diagrams created during
test execution.

f' Should testers only use test cases for the current
Increment in an inspection session?

B No. Running atest scenario from a previous
increment as a regression check on the model isa
useful idea. The regression scenarios should be
chosen to include those that failed in the previous
increment and those that cover areas most likely to
have been changed to incorporate the functionality of
the current increment.

Evaluation Criteria
We are essentidly trying to answer three questions as we inspect the MUT:

Is the model correct?
Is the model a complete representation of the information?
Is the model internally consistent and consistent with its basis model ?

Correctness isameasure of the accuracy of the model. At the analysislevd, itis
the accuracy of the problem description. At the design levdl, it is how accurately
the model represents the solution to the problem. At both levels, the model must
aso accurately use the notation. The degree of accuracy is judged with respect to a
standard that is assumed to be infallible (referred to as "the oracle"), athough it
seldom is. The oracle often is a human expert whose persona knowledge is
considered sufficient to be used as a standard. The human expert determines the
expected results for each test case.

133

Testing determines that a model is correct with respect to atest case if the result of
the execution is the result that was expected. (It is very important that each test

case have an expected result explicitly stated before the test case writer becomes
biased by the results of the inspection.) The model is correct with respect to a set of
test casesif every test case produces the expected resullt.

In the real world, we must assume that the oracle can be incorrect on occasion. We
often separate the domain experts on a project into two teams who represent
different perspectives or approaches within the company. One team constructs the
model and at the same time, the second team devel ops the test cases. This check
and balance doesn't guarantee correct evaluations, but it does raise the probability.
The sameistrue for every test case. Any of them could specify an incorrect,
expected result. The testers and developers must work together to determine when
thisis the case.

Completeness is a measure of the inclusiveness of the model. Are any necessary,
or at least useful, elements missing from the model ? Testing determines whether
there are test cases that pose scenarios that the elementsin the model cannot
represent. In an iterative incremental process, completeness is considered relative
to how mature the current increment is expected to be. This criteria becomes more
rigorous as the increment matures over successive iterations.

One factor directly affecting the effectiveness of the completeness criteriais the
quality of the test coverage. The model isjudged complete if the results of
executing the test cases can be adequately represented using only the contents of
the model. For example, a sequence diagram might be constructed to represent a
scenario. All of the objects needed for the sequence diagram must come from
classes in the class diagram or it will be judged incomplete. However, if only afew
test cases are run, the fact that some classes are missing may escape detection. For
the early modéls, this inspection is sufficiently high level that a coverage of 100%
of all use casesis necessary.

Consistency is a measure of whether there are contradictions within the model or
between the current model and the model upon which it is based. Testing identifies
inconsistencies by finding different representations within the modd for smilar

test cases. Inconsistencies may aso be identified during the execution of atest case
when the current MUT is compared to its basis model or when two diagramsin the
same model are compared. In an incremental approach, consistency is judged
localy until the current increment is integrated with the larger system. The

134

integration process must ensure that the new piece does not introduce
Incons stencies into the integrated mode.

Consistency checking can determine whether there are any contradictions or
conflicts present either internal to a single diagram or between two diagrams. For
example, a sequence diagram might require a relationship between two classes
while the class diagram shows none. Inconsstencies will often initialy appear as
incorrect results in the context of one of the two diagrams and correct results in the
other. Inconsistencies are identified by careful examination of the diagramsin a
model during the simulated execution.

Additional qualities—defines a number of system attributes that the development
team might wish to verify. For example, architectura models usualy have
performance goals to meet. The guided inspection test cases can be used as the
scenarios for testing performance. Structural models used to compute performance
can be applied to these scenarios, which are selected based on the use profile to
estimate total performance and to identify potential bottlenecks.

If the architecture has an objective of facilitating change, test cases based on the
change cases should be used to evaluate the degree of success in achieving this
objective (see Testing Models for Additional Qualities on page 151).

Organization of the Guided Inspection Activity

Basic Roles

In the guided ingpection activity there are three key roles that must be assumed by
the available personnd.

1. Domain expert— The people in this role are the source of truth (or at least
expected results). They define the expected system response for a specific
Input scenario. In many domains, the experienced developers are expertsin
their domain. They can provide afirst line of validation. However, an
additional, outside source of expertise is usually essential to the ingpection
process.

2. Tester— The peoplein thisrole conduct the analysis necessary to select
effective test cases. Testers are often the creators of the basis model. When
the scope of the inspection is at a system-wide level, the test case writers are
often the system test team. They construct the input scenario specialized

135

from the preconditions of a use case, the test actions as taken from the
scenario, aternate paths, or exceptions sections of the use case, and the
expected result as defined by the domain expert.

3. Developer— The creators of the MUT perform the role of "devel oper.”
They provide information that is not captured in the model. Except for those
projects that generate code directly from amodel, most devel opers leave
many details out of the models, thus the necessary information is only
available from the devel opers. The development staff walks the inspectors
through the model, tracing actions on diagrams, showing the relationships
between diagrams, and providing the actual system response & alevel
appropriate to the current maturity of the development.

Individual Inspection

Guided inspection begins with a desk check like traditional ingpection techniques.
Each tester completes a checklist specific to the type of model being inspected.
Certain incompleteness and inconsistency faults can easily be found during this
task. This aso turns out to be the easiest task to automate. A number of tools offer
some limited amount of static checks, which are basically syntactic. We have had
success in expanding that capability with the scripting languages in some of the
design environments. We won't name names since the landscape changes almost
daily, but check out this feature as part of your next tool purchase evaluation.

Preparing for the Inspection
Specifying the Inspection

When a guided inspection is planned, the scope and depth of the materia to be
ingpected should be specified. The earliest models, such as requirements and
domain models, may be inspected in their entirety at a Single session. Later models
will usualy be too large to dlow this. In Redlistic Models (below), we talk about
ways of creating modular diagrams that can be grouped into different-sized pieces.
Having modular models facilitates limiting an inspection to the work of asingle
group or even to a specific class hierarchy.

The scope of an inspection is defined by specifying a set of use cases, a set of
packages, or abstract classes/interfaces. The scope determines starting points for
scenarios, but other classes are pulled into scope as they are needed to support the
scenarios.

136

The depth of the inspection is defined by specifying layers in aggregation
hierarchies under which messages are not sent. The bottom layer classes smply
return values with no indication of how the value was computed.

Realistic Models

It isusudly not possible, or desirable to capture al of the details of an industrial-
strength program in afew comprehensive diagrams in a single model. Therewill
need to be multiple class diagrams, state diagrams, and, of course, multitudes of
sequence diagrams. In preparation for the guided inspection, the developers should
organize the modd to facilitate the review by creating additional diagrams that link
existing ones or by revising diagrams to conform to the scope of the ingpection.

One basic technique that makes the model more understandable isto layer the
diagrams. Thisresults in more individua diagrams, but each diagram is
sufficiently modular to fit within the scope of a specific inspection. The diagrams
are easier to create because they follow a pattern.

Figure 4.6 illustrates one type of layering for class diagramsin which classes are
grouped into packages and those packages may be enclosed in another package.
Additionally, we often show all of the specializations from an abstract class as one
diagram (see Figure 4.7) and dl of the aggregation relationships for aclassin
another diagram.

Figure 4.6. Class diagram layered into packages

137

Figure 4.7. Separating relationships

I

Figure 4.8 shows a technique for linking class diagrams. The work of one team
uses the work of other teams. This can be shown by placing a class box from the
other team on the edge of the team's diagram and showing the relationships
between the classes. An inspection would be limited to the classes in the team's
diagram. Messages to objects from the "boundary classes' would not be traced
further. The return value, if any, would smply be noted.

Figure 4.8. Links between class diagrams

138

Figure 4.9 illustrates a layering for sequence diagrams. At one levd, the diagram
terminates at an interface or abstract class. A sequence diagram is then constructed
for each class that implements the interface or specializes the abstract class.

Figure 4.9. Sequence diagram per interface implementation

i+ k " '
Tirrer | TimerGbserver Puck BrickPile Brick

1| ==interfaoge> | |
: igHit? =
: isHit?
: e
1 = N

dl - -

i ’ L

: . 5 Padate PlayF iald Wiall
1 =

E

Selecting Test Cases for the Inspection

There are usually many possible test cases that can be developed from any specific
use case. Traditional testing techniques use techniques such as equivalence classes

139

and logical paths through the program as ways to select effective test cases. Test
cases can be selected to ensure that specific types of coverage are achieved or to
find specific types of defects. We use Orthogonal Defect Classification to help
select test cases that are most likely to identify defects by covering the different
categories of system actions that trigger defects. We use a use profile to select test
cases that give confidence in the reliability of the product by identifying which

parts of the program are used the most.

Orthogonal Defect Classification as a Test Case Selector

Orthogona Defect Classification (ODC) [Chill92] is a scheme developed at IBM
based on an analysis of alarge amount of data. The activities that caused a defect
to be detected are classified as "triggers.” These are divided into groups based on
when the triggers occurred, such as during reviews and inspections. Figure 4.10 is
alist of attributes that trigger defects during reviews and inspections. The guided
Ingpection technique uses severa of these triggers as a guide to selecting test cases.
We will delineate several of these triggers as we proceed, but we will address a

few of these now.

1. Design conformance is addressed by comparing the basis model to the MUT
as well as comparing the MUT to the requirements. This comparisonisa
direct result of the test case execution.

2. Concurrency isatrigger that will be visible in the design modd and
scenarios can be generated that explicitly explore thread interactions. The
UML activity diagram will be the primary source for symbolic execution.

3. Lateral compatibility is activated by the trace of scenarios between objects
on sequence diagrams.

Figure 4.10. ODC review and inspection triggers

Design conformance—comparison of basis and current model.

Operational semantics—tracing the logic.

Concurrency—examining the synchronization between threads/processes.
Backward compatibility—comparison to previous products.

Lateral compatibilify—comparison with interfaces that use this one.

Rare situation—examining unspecified system behavior.

Side effects—examining behavior outside the scope of the current product.
Document consistency/completeness—examine for consistency/completeness.
Language dependencies—examining for language-specific details.

140

By structuring the guided inspection process so that as many of these triggers as
possible are encountered, you ensure that the tests that guide the inspection are
more likely to "trigger” as many failures as possible.

Use Profiles as a Test Case Selector

A use profile (see Use Profiles on page 130) for a system is an ordering of the
individual use cases based on a combination of the frequency and criticality values
for the individua use cases. The traditiona operationa profile used for procedural
systems is based strictly on frequency-of-use information. Combining the
frequency and criticality ratings to order the use cases provides a more meaningful
criteriafor ensuring quality. For example, we might paint alogo in the lower right-
hand corner of each window. Thiswould be arelatively frequent event, but should
it fail, the system will till be able to provide important functionality to the user.
Likewise, attaching to the local database server would happen very seldom but the
success of that operation is critical to the success of numerous other functions. The
number of test cases per use case is adjusted based on the position of the use case
in the ranking.

Risk as a Test Case Selector

Some testing methods use risk as the basis for determining how much to test. This
Is useful during development when we are actively searching for defects. It is not
appropriate after development when we are trying to achieve some measure of
reliability. At that time, the use profile technique supports testing the application in
the way that it will be used.

Our use case template captures the information needed for each of the techniques
so that they can be used throughout the complete life cycle. We use the
frequency/criticality information instead of the risk information for guided
Inspection because we are trying to capture the same perspective as the testing of
the system after development. For Situations in which the inspection is only
covering a portion of the design, using the risk information may be equally
relevant.

Techniqgue Summary—Creating Test Cases from Use Cases

A test case consists of a set of preconditions, a stimulus (inputs), and the
expected response. A use case contains a series of scenarios: the normal
case, extensions, and exceptional cases. Each scenario includes the action

141

taken by an actor and the required response from the system that
corresponds to the basic parts of atest case. To construct atest case from
the scenario, each part of the scenario is made more specific by giving
exact values to al attributes and objects. This requires coordination
between the use case diagram and the other diagrams. The "things®
mentioned in the scenario should trandate into some object or objects
from the class diagram. Each of these objects should be in specific states
defined in the state diagrams for those classes. The actions in the use case
will correspond to messages to the objects.

Each scenario can result in multiple test cases by selecting different values
(that is, states) for the objects used in the use case. The expected result part
of the test case is derived from the scenario portion of the use case and the
specific values provided in the input scenario. The following is a use case
scenario and the corresponding test case.

Subsystem use case: A novabl ePi ece receives atick() message.
It must then check to determine whether it collided with a

stati onaryPi ece.

Test precondition: The puck is located within less than atick of a
brick and is headed for that brick.

Test case: Input—The puck receives atick message.

Expected result: The puck has changed direction and the brick has
changed its state from active to kaput, indicating that it has broken,
and disappears.

Creating Test Cases

Test cases for a guided inspection are scenarios that should be represented in the
MUT. Before the requirements model is verified, the scenarios come from ateam
of domain experts who are not producing the requirements. Later, we will see how
thisis done. For now we will focus on test cases that are based on the system
requirements.

The use case template that we use (see an abbreviated version in Figure 4.11) has
three sources of scenarios. The Use Scenario is the "sunny-day" scenario that is
most often the path taken. The Alternative Paths section may list several scenarios
that differ from the use scenario in avariety of ways, but still represent valid

142

executions. The Exceptional Paths section provides scenarios that result in error
conditions.

Figure 4.11. An example of ause case

Use Case # 1
Actor: Player

Use Scenario: The user selects the Play option from the menu. The system
responds by starting a match.

Alternative Paths: If a match is already in progress, the selection is ignored.

Exceptional Cases: If the match cannot open the display, an error message is
displayed and the program aboris.

Frequency: Low
Criticality: High
Risk: Medium

Completing Checklists

Prior to the interactive inspection session, the inspectors examine the models for
certain syntactic information that can be evaluated just from the information
contained in the model. This portion of the technique is not concerned with the
content but only the form of the model. Figure 4.12 shows the checklist used
during the design phase. The checklist is divided into two parts. One part addresses
comparisons between the analysis model and the MUT. For example, the checklist
reminds the inspector to check whether classes that have been deleted should have
been deleted because of the differences between analysis and design information.
The second part coversissues within the MUT. The checklist guides the inspector
to consider whether the use of syntax correctly cgptures the information. For
example, it guides the inspector to consider the navigability of the associations and
whether they are correctly represented.

Figure 4.12. Design phase checklist

143

UML Detailed Design Checklist Question Yes No

Analysis-to-design model transformation issues. Are all
classes in the analysis model that are not in the design model
outside the scope of the application?

Are all the states in the analysis model statecharts also states
in the statechart diagrams in the design model?

Are the sequences of messages in all design-level sequence
diagrams the same, even though additional messages may
have been inserted between the analysis-level messages?

Internal design model issues. Are all associations shown with
no navigation information truly bidirectional?

Are all composition relationships shown as unidirectional?

Is every sequence diagram a subset of some activity diagram?

Does every message sent in an interaction diagram appear as
a method in the public interface of the class of the receiving
object?

Does every message sent in an interaction diagram go to the
logically appropriate object?

Are the transitions out of a state diagram mutually exclusive?

Do all state machines, except for perpetual objects, contain
initial and final states?

Are all public modifier methods represented as transitions on
each state even if they only result in staying in the same state?

Is there a sequence diagram for each postcondition clause of
each method that corresponds to use cases that meet the fre-
quency/criticality threshold?

Are all messages shown correctly as synchronous or
asynchronous?

Do the number of forks and joins balance in every activity
diagram?

The Interactive Inspection Session

The testing portion of the guided inspection session is organized in one of two
way's depending upon whether the model has been automated or not. If a prototype
or other working model has been created, the session does not vary much from a
typical codetesting session. The test cases provided by the testers are
implemented, usually in some scripting language, and executed using the

simulation facilities of the prototype of the model. These test cases must be more
rigorously specified than the test cases that will be used in an interactive session

144

with symbolic execution. The results of the execution are evauated and the team
determines whether the model passed the test or not.

If the model has not been prototyped, the testing session is an interactive session
involving testers and developers. The developers cooperate to perform a symbolic
execution that smulates the processing that will occur when actua codeis
available. That is, they walk the testers through the scenarios provided by the test
cases.

The following additional roles are assigned to individuas in an interactive testing
session. A person may take on the following roles smultaneoudly.

Moderator— The moderator controls the session and advances the execution
through the scenario. The session is not intended to debug, which the
developers will want to do, nor to expand the requirements, which the
domain experts will want to do. The moderator keeps the session moving
over the intended material.

Recorder— This person, usually atester, makes annotations on the reference
models as the team agrees that afault has been found. The recorder makes
certain that these faults are taken into consideration in the latter parts of the
scenario so that time is not wasted on redundant identification of the same
fault. The recorder also maintains alist of issues that are not resolved during
the testing session. These may not be faults. Information may need to come
from ateam in another part of the project or ateam member who is absent
during the inspection.

Drawer— This person constructs a sequence diagram as a scenario is
executed. A drawer concentrates on capturing all of the appropriate details
such as returns from messages and state changes. The drawer may also
annotate the sequence diagram with information between the message arrow
and the return arrow.

Use Profiles

One technique for allocating testing resources determines which parts of
the application will be utilized the most and then tests those parts the most.
The principle here is "test the most used, most critical parts of the program
over awider range of inputs than the lesser used, least critical portions to
ensure the greatest user satisfaction." A use profileis aranking of the use
cases based on the combined frequency/criticality values. This can be
viewed as a double sort of the use cases based on the number of times that

145

an end-user function (interface method) is used, or is anticipated to be
used, in the actual operation of the program and the criticality of each of
these uses. The criticality is a vaue assigned by the domain experts and
recorded in each use case. The frequency information can be obtained in a
couple of ways.

First, data can be collected from actual use perhaps during usability testing
or during the actual operation if we will be testing a future version of the
product. This resultsin araw count profile. The count for each behavior is
divided by the total number of invocations to produce a percentage. A
second approach is to reason about the meanings and responsibilities of
the system interface and then estimate the relative number of times each
method will be used. The result is an ordering of the end-user methods
rather than a precise frequency count. The estimated number of
invocations for each behavior is divided by the total number of invocations
to provide a percentage. The percentage computed for each use determines
the percentage of the test suite that should be devoted to that use.

Asan example, the Exi t function for Brickles will be successfully
completed exactly once per invocation of the program but the NewGane
method may be used numerous times. It is conceivable that the Hel p
function might not be used at al during a use of the system. This resultsin
aprofile that indicates an ordering of NewGane, Exit, and Hel p. We
can assign weights that reflect the relative frequency that we expect. If on
average we would estimate that a player would play 10 games prior to

EXI Ting the system, the weights would be 10, 1, 1. The NewGane
function should be exercised in 82.5% (10 out of 12) of the test cases

whilethe Hel p function and Exi t should each constitute 8.5%.

The guided inspection session can easily dip into an interactive design session.
The participants, particularly the developers, will typically want to change the
model during the testing session as problems are encountered. Resist this urge.
Thisisthe classic confusion between testing and debugging and diverts attention
from other defects that are found. The recorder captures the faults found by the
Inspection so that they can be addressed later. This keeps attention focused on the
search for faults and prevents a "rush to judgment” about the precise cause of the
defect. If aggnificant number of problems are found, end the session and let the
developers work on the mode.

146

Testing Specific Types of Models

The basic guided inspection technique does not change from one devel opment
phase to another, but some characteristics of the model content and some aspects
of the team do change.

The levd of detail in the model becomes greater as development proceeds.
The amount of information also increases as development proceeds.

The exact interpretation of the evaluation criteria can be made more specific
for a specific mode.

The membership of the inspection team changes for different models.

We will now discuss moddls a several pointsin the life cycle.
Requirements Model

The requirements for an application are summarized by creating a model of the
uses of the system. The UML construct used for this modél is the use case
developed by Jacobson [JCJO92], which is discussed in Chapter 2. Figure 4.13is
an abbreviated version of the text format used for a use case. Figure 4.14 shows the
UML use case diagram for the Brickles example, and Figure 4.16 through Figure
4.21 show the use-case text descriptions. The use case diagram captures

rel ationships between the use cases. Individual use cases are broken into "sub-use
cases' using the uses and extends relationships. Later, in Chapter 9, we will use
these relationships to structure the system test cases. The text descriptions capture
the mgjority of the information for each use case. While the relationships are used
to structure tests, the text descriptions are used to provide most of the information
for atest case.

Figure 4.13. An example of ause case

147

Use Case #5

Actor: Player

Use Scenario: The user pauses the match by pressing the mouse button. The sys-
termn responds by pausing the puck and not responding to mouse movement.

Alternative Paths:

Exceptional Cases: If the match is not in progress the mouse key press is ignored.

Frequency: Low
Criticality: Low
Risk: Medium

Figure 4.15. Criteria for requirements inspection

Criteria Interpretation for Requirements

Completeness The use cases represent all of the functionality needed for a
satisfactory product. No use case is included that is not required
functionality.

Correctness Each use case accurately represents a requirement,

Consistency

Figure 4.14. Brickles use case model

Plaver o

<EUSAS>>
Player Wins game
AT
Player pauses game
Player loses game

<<gxtends>>
F1ayer pauses game with About box PLayar pﬁ?ﬂ'—f:: 3;::?‘ with laft

SusSas>>
Puck hils paddle, Bricks, Wall

LLUSALE>

=<gxlends>>

where it is described.

Figure 4.16. An example of use case #1

Any system functionality is specified in the same manner every-

148

Use Case #1
Actor: Player

Use Scenario: The player starts the Brickles executable, plays a match and then
selects the Exit option on the File menu.

Alternative Paths:
Exceptional Cases:
Frequency: Low
Criticality: High
Risk: Low

Acceptance testing often finds faults that result from problems with the
requirements. The typica problems include missing requirements (an incomplete
requirements model), requirements that contradict each other (an inconsistent
mode!), and scenarios in which the system does not behave as the client intended
(an incorrect model). Many of these problems can be identified much earlier than
the acceptance test phase using guided inspection.

The criteriafor evaluating the models is interpreted specificaly for the
requirements model in Figure 4.15. Completenessis atypical requirements
problem for which the iterative, incrementa process model is a partia solution.
Guided inspection can offer further help by requiring a detailed examination by an
independent group of domain experts and product definition people. This
examination will identify many missing requirements much earlier than the typica
process.

The detailed examination will also search for correctness faults. The act of writing
the test cases for the guided inspection will identify many requirements that are not
sufficiently precise to alow atest case to be written. Running the test cases will
provide an opportunity for the independent group to identify discrepancies between
the expected results in the test cases and the actual content of the requirements
modd.

The larger the system, the more problem there is with the consistency of the
requirements. In addition to contradictions, there is often the need to identify

places where one use case supersedes another. For example, one use case calls for
an action to happen at least within ten seconds while another expects the same
action to occur within seven seconds. The use of the end-to-end scenariosthat trace
a complete action will help locate these inconsistencies.

149

One feature of the requirements model that affects how the inspection is organized
Is that thereisno UML mode on which the requirements are based. So
comparisons to the basis model refer to documents produced by marketing, system
engineering, or client organizations. Since this is a notorious source of defects, we
will expend extra effort in verifying the requirements modd.

Theroles for thisinspection are assigned as shown in Figure 4.22. Y ou will want
to adapt these to your situation. The domain expert provides the "correct” answers
for test cases. In this case that means agreeing or disagreeing that a use case
adequately represents the required functionality. Using the system testersin the
tester role provides the system testers with an early look at the source of
information for the system test cases and an opportunity to have input into
improving the use cases. We aso use a second group of domain experts and
product definition people to work with the system testers. This provides a source of
scenarios that is independent of the people who wrote the requirements. Some
organizations will have the use cases written by devel opers rather than a separate
organization of system engineers, and these developers will be the ones to execute
test cases.

Figure 4.17. An example of use case #2

Use Case #2
Actor: Player

Use Scenario: The player starts the Brickles executable, plays a match, breaks all of
the bricks, and wins,

Alternative Paths:
Exceptional Cases:
Frequency: Medium
Criticality: High
Risk: Medium

Figure 4.18. An example of use case #6

150

Use Case #3
Actor: Player

Use Scenario: The player starts the Brickles executable, plays a match, loses all of
the pucks, and loses the game.

Alternative Paths:
Exceptional Cases:
Frequency: Medium
Criticality: High
Risk: Medium

Figure 4.19. An example of use case #4

Use Case #4
Actor: Player

Use Scenario: The puck bounces against the paddle, breaks some bricks, hits a
wall,

Alternative Paths:
Exceptional Cases:
Frequency: High
Criticality: High
Risk: Medium

Figure 4.20. An example of use case #5

Use Case #5
Actor: Player
Use Scenario: The player pauses play by holding down the left mouse button.
Alternative Paths:
Exceptional Cases:
Frequency: Low
Criticality: Low
Risk: Medium

Figure 4.21. An example of use case #6

151

Use Case #6
Actor: Player
Use Scenario: The player pauses play by selecting the About menu entry.
Alternative Paths:
Exceptional Cases:
Frequency: Low
Criticality: Low
Risk: Medium

Figure 4.22. Roles in requirements inspection

Domain Expert Domain expert, marketing representative, client,
product-definition personnel

Tester System tester, domain expert

Developer System engineer

Tip

When dividing the domain experts into two groups, don't divide based on
ideology. That just precipitates theoretical debates. Divide the experts so
that each team has representation from as many "camps' as possible.

The basic outline of "testing” the requirements model is given in the following list
along with an example using Brickles. The exampleis given initdics.

1. Develop the ranking of use cases by computing the combined frequency and
criticality information for the use cases. Figure 4.23 gives the ranking for
Brickles.

Figure 4.23. Brickles use cases

152

Combined Number of

Use Frequency Criticality Value Rank Test Cases
Start Brickles Medium High High 1 3
Pause Brickles Low Low Low 3 1
Stop Brickies Medium Low Medium 2 2
Break brick High High High 1 3
Wins Medium High High 1 3
Loses Medium Low Medium 2 2

2. Determine the total number of test cases that can be constructed given the
amount of resources available. It should be possible to estimate this number
from historical data. We will assume we have time for 15 test cases.

3. Ration the tests based on the ranking. Note how in Figure 4.23 only 14 of the
15 are assigned since it is impossible to evenly split the number of tests. The
15th test would be allocated to the category showing the most failuresin the
initial round of testing.

4. Write scenarios based only on the knowledge of those in the domain expert's
role. The number of scenarios is determined by the values computed in Step
3. The player starts the game, moves the paddle, and has broken several
bricks by the time he loses the puck. The system responds by providing a new
puck.

5. Inameeting of the producers of the requirements and the test scenario
writers, the writer presents each scenario and the requirements modelers
identify the use case that contains the test scenario as either a main scenario,
extension, exception, or aternative path that represents the scenario. If no
match isfound, it is listed as an incompleteness defect. If the scenario could
be represented by two or more use cases (on the same level of abstraction),
an inconsistency defect has occurred. In both of these cases, the first
guestion asked is whether there is an incorrectness defect in the statement of
ause case that, if corrected, would handle the scenario accurately. In the
scenario provided in Sep 4 there is no mention of the limited number of
pucks. The system may not be able to provide a puck if the supply is
exhausted. The requirement should be explicit about a fixed number of
pucks.

Much of this effort will be reused in the testing of other models. Both the ranking
of use cases and construction of test cases will produce reusable assets. The

153

requirements model will serve as the basis for testing several other models, and
therefore, these test cases can be reused.

Analysis Models

We will be concerned with two types of anaysis models. domain analysis and
application analysis models. The two types model existing knowledge. One models
the knowledge in a domain while the other models knowledge about the product.

Domain Analysis Model

The domain analysis model represents information about a domain of knowledge
that pertains to the application about to be constructed. As such, it is derived from
the literature and knowledge about the domain as opposed to another UML mode.
Although many projects are satisfied with creating a domain model that isonly a
simple class diagram, most domains encompass standard a gorithms and many
refer to states that are characteristic of the concepts being represented. Figure 4.24
shows the interpretation of the evaluation criteriafor adomain model.

Figure 4.24. Criteria for domain model inspection

Criteria Interpretation for Domain Modeling

Completeness The concepts are sufficient to cover the scope of the content
specified, Sufficient detail is given to describe concepts to the
required depth.

Correctness The descriptions of domain concepts are accurate; the algo-
rithms will produce the expected results.

Consistency Model elements should be consistent with the company's defini-
tions and meanings.

The domain modél is a representation of the knowledge in a domain as seen
through the eyes of a s of domain experts. Asisto be expected, there can be
differences of opinion between experts. For this reason, we have found it useful to
divide the available set of expertsinto two groups. One group, the larger, creates
the domain model while the second group serves as the testers of that model. In
Figure 4.25, group oneis referred to as the devel opers and group two is referred to
as both testers and domain experts. This check and balance between the groups
provides a thorough examination of the mode.

Figure 4.25. Roles in domain model inspection

154

Role in Model Inspection Role in Project

Domain Expert Domain expert
Tester System tester, domain expert
Developer Domain expert

Figure 4.26 relates portions of the class diagram from the domain models for
Bricklesto its application anaysis model. Note that there are two domains
represented, Interactive Graphics and Games. The test cases for this mode will
come from the second group of domain experts. They consider how these concepts
are used in the typical applications in which they have had experience. The test
cases will be written by ateam composed of a system tester who knows how to
write test cases, and the second group of domain experts. A test case only states
details down to the level of the domain concepts. Any actions are domain
algorithms.

Figure 4.26. Mapping domain models onto application analysis
models

MouseEvant

BricklesMatch

Brickles

Application Analysis Model

Games Domain

A test case for the Interactive Graphics domain model would look like the
following:

Assume that a canvas has been created and asked to display a shape.
How will the canvas know where to |ocate the shape? It is expected

that a nouseEvent would provide the coordinates to which a
system user points.

155

Application Analysis Model

There will usualy be multiple domain models for alarge project. All of these
contribute to the single application analysis model. Some parts of each domain
model will be thrown away because they are outside the scope of this particular
project. Some pieces of domain models will be merged to provide a single element
in the application model. This makes judging completeness during the inspection
more difficult since there is not a direct mapping from one model to ancther.
Criteriaand roles are shown in Figures 4.27 and 4.28.

Figure 4.27. Criteria for application analysis model inspection

Criteria Interpretation for the Application Analysis Model

Completeness The ideas expressed in each use case can be represented by
the concepts and algorithms in the model. No design information
is included in the model,

Correctness Experts agree wilh the atlributes and behaviors assigned o
each concept, on the steps in each algorithm; major states for
each conceptual entity.

Consistency Where there are multiple ways to represent a concept of action,
those ways are equivalent.

Figure 4.28. Roles in application analysis model inspection

Role in Inspection Role in Project

Domain Expert Domain expert; system engineer
Tester System tester

Developer Application developer

An analysis model can be too complete. That is, it can contain design information
that the project team has erroneously made part of the requirements. This leads to
an overly constrained design that may not be as flexible as possible. Asthe
Ingpection team measures the test coverage of the mode, they examine pieces that
are not covered to determine whether they should be removed from the mode!.

Figure 2.13 shows the class diagram for the application analysis model for Brickles
A test case for the application analysis model would look like the following:

Assume that a match has been started and the playfield has been
constructed. How will a paddle prevent a puck from striking the floor

156

boundary? It is expected that the paddle will move into the trajectory
of the puck and collide with it. The collision will cause the puck to
change direction by reflecting off the middle third of the paddie at the
same angle from the point of impact.

Design Models

There are three levels of design in an object-oriented project: architectura,
mechanistic, and detailed. We will focus on two basic design models that
encompass those three levels: the architectural design model and the detailed class
design model. The architectural model provides the basic structure of the
application by defining how a set of interfaces are related. It also specifiesthe
exact content of each interface. The detailed class model provides the precise
semantics of each class and identifies the architectura interface to which the class
corresponds.

Architectural Model

The architectural model is the skeleton of the entire application. It is arguably the
most important model for the application so we will go into afair amount of detail
in this section. Thisisthe model in which the nonfunctional requirements are
blended with the functiona requirements. This provides the opportunity to use the
scenarios as a basis for modeling performance and other important architectural
constraints.

An architectural design test case would look like the following:

Assume that the Br i ckl esDoc and Br i ckl esVi ewobjects have
been constructed. A tick message is sent to every Movabl ePi ece.
How doesthe Br i ckl esVi ewreceve the information necessary to
update the bitmaps on the screen? It is expected that the

Bri ckl esDoc object will calculate the new position of each bitmap
beforeit notifiesthe Br i ckl esVi ewthat a change has occurred.
The Bri ckl esVi ewobject will call methods on the

Bri ckl esDoc object to obtain all of the information that it needs to
update the display.

We will use the architecture of our game framework to illustrate the variety of
techniques considered in this section. We first implemented the framework in C++
using the Microsoft Foundation Classes (MFC), which imposes an architecture

157

known as Document/View and is a variant of the canonical Model/View/Controller
(MVC) architecture [Gold89]. The framework was then implemented in Javausing
the java.awt package, which supports a dightly different form of MV C. In each of
these efforts the user interface classes present the state of the game to the user. To
achieve this, the user interface has to maintain some state itself. A typica fault for
these systems would be for the state in the user interface to be different from the
state maintained in the classes implementing the mode.

A software architecture is the basic structure that defines the system in terms of
computational components and interactions among those components [ShGa96].
We will use the terms component and connector to describe the pieces of an
architecture. In the UML notation, components of the architecture are represented
as classes with interfaces. If the connectors between components do not have any
explicit behavior, they can be represented by simple relationships between classes.
If the connectors do have state and/or meaningful behavior then they are
represented by objects.

Representations for Architectures

There are three types of information that are widely used to represent an
architecture: relationships, states, and algorithms. The basic UML modeling
language has the advantage that it can be used for al three design models as well
as the analysis models. Using the same notation for all three levels of models
eliminates the need to learn multiple notations. Notations such asthe UML are
sufficiently smplein that no specid tools are required, although for large models,
tool support quickly becomes a necessity. Tools such as Rational Rose perform a
variety of consistency checks on the static-relationship model. With this type of
representation, the test cases are manually executed using the technique discussed
previoudy. However, UML does not have specific syntax for describing
architectures so the concept/token mapping between the architecture and UML
symbolsis ad hoc.

Tools such as ObjectTime [Sdic94] and BetterState [Better State00] provide
facilities for "animating" design diagrams and provide automatic checking of some
aspects of the model. In particular, they support a simulation mechanism that can
be used to execute scenarios. The diagrams are annotated with detailed scenario
information as well as special smulation information. The devel oper can "play"
scenarios and watch for a variety of faults to be reveaed. This approach makes the
creation of new scenarios (and test cases) easier by providing a generalized
template. One advantage of this approach is the combination of easy model

158

creation with powerful smulation facilities. Usualy however, these tools have a
limited set of diagram types. BetterState, for example, focuses on building a state
model as the specification for the system. This leaves incomplete those static
portions of the system that do not affect the state. The obvious benefit is that the
scenarios are executed automatically. This makesit easier to run awide range of
scenarios at the price of more time needed to create the modd initialy. This
approach is best suited to small, reactive systems or those systems whose
requirements change very little during development.

Often these tools will assit in finding some types of faults as the model is entered
into the tool. Consistency checks will prevent certain types of connections from
being established. Scenarios are represented in some appropriate format such asa
sequential file of input values that are read at appropriate times. The actions of the
simulation are often represented by events. Event handlers can be used to "catch”
and "generate” events at a high level without the need to write detailed algorithms.
Thislevel of execution is sufficient for verifying that required interfaces are
provided. It obvioudy is not sufficient for determining whether the functionality is
correctly implemented.

Finally, architectura description languages provide the capability to represent a
system at a high level of abstraction. Languages such as Rapide [Luckham95],
which has developed at Stanford University, allow the modelers to be as specific as
they would like to be. The flow of computation is modeled by events that flow
between components. One advantage of this approach is the control that this
approach provides to the modeler. The language is sufficiently descriptive to
support any level of detail that the modeler wishes to use, unlike the tools
previously discussed, which have afixed leve of representation. The disadvantage
Is that these models are programs with al of the problems associated with that

level of detail.

When the model and test cases are represented in a programming language, the test
execution can be performed automatically. The representation language may be a
general purpose programming language used to implement a high-level prototype
or aspecial purpose architectural description language such as Rapide, whichis
used to build a standard model. The level of detail represented in the prototype will
determine how specific the testing can be.

Testing the Architecture

159

The Software Architecture Testing (SAT) [McGr96] technique is a specid type of
guided inspection that requires the following usual steps in testing any product: (1)
test cases are constructed; (2) the tests are conducted on the product; and (3) the
results of the test are evaluated for correctness. This techniqueis a "testing"
technique because there are very specific test cases, and there is the concept of an
execution even if the execution is sometimes manual. The team that is assigned to
drive this activity is divided as shown in Figure 4.29. We will provide additional
detail on each of the steps.

Figure 4.29. Roles in the architectural design model inspection

Role in Inspection Role in Project

Domain Expert Domain expert; system engineer
Tester System tester

Developer Architect

Constructing Test Cases

Test cases for the architecture are constructed from the use cases as described
previoudy. Each use case describes afamily of scenarios that specifies the
different types of results that can occur during a specific use of the system. The test
cases for the architecture are defined at a higher level than the more detailed design
models. The results are used to evauate the criteria shown in Figure 4.30.

Figure 4.30. Criteria for the architectural design model inspection

Criteria Interpretation for the Architectural Design Model

Completeness A sufficient set of interfaces are defined to provide all of the ser-
vices needed for the application's functionality. The relationship
between the interfaces allows for the flow of control and data
necessary to realize all of the uses described in the use case
diagram.

Correctness The architecture satisfies its constraints; uses the appropriate
architectural patterns; represents the interactions between the
interfaces.

Consistency Each use of the system can be handled only in one set of
interfaces.

The test cases are essentially defined at alevel that exercises the interfaces
between subsystems. For example, for the game framework, the essentia interface

160

Is between amodel and aview. The model is divided among the Puck, Paddl e,
and Bri ckPi | e classes. The view is concentrated inthe Bri ckl esVi ewclass.

The Modd/View architecture cals for most of the interaction to befrom the view

but with the mode notifying the view when a change has occurred to the moddl.
Since Brickles requires animation, we modified the architecture so that when the
Bri ckl esVi ewobject is created it is sent a series of messages that provide it
with handles to the pieces of the mode.

The basic architectural modd is given in Figure 4.31. With the analysis out of the

waly, the test cases can be selected. The two basic operations are (1) setup of the

system and (2) repainting the screen after a move has occurred. Unlike many
systems built on Model/View, thereis no need to consider the ability to add

additional views. We could define atest case for each operation; however, asingle
grand tour™ case can be defined in this case. Usually grand tours are too large and

give little information if they fail, but in this case the second operation cannot be

realized without the first so it isa natural conjunction.

1A grand tour is a test case that combines a number of

separate test cases into one run.

Figure 4.31. An architectural model for Brickles

view

model

mouse

setPaddle

setPuck

setBrick

getPaddlePosition
getPaddleBitmap

GetPuckPosition
getPuckBitmap

getBrickAt
getBrickBitmap

PlayField

‘I currentMatch

Test Execution

The tests are executed as described for each specific type of representation. We

have used the UML notation so this will be an interactive session.

161

We execute the test case by constructing a message-sequence diagram. The
diagram reflects preconditions for atest case. The Bri ckl esVi ewobject is
created followed by a Br i ckl esGane object. Asthe Bri ckl esGane object is
created, it createsa Pl ayFi el d object that in turn creates Puck, Paddl e, and

Bri ckPi | e objects. The messages across the architectural boundaries are shown
in bold italicsin Figure 4.32.

Figure 4.32. Test case execution

EricklesView Match PlayField Puck Paddle BrickPile

create
- create

= create
- create ¢
setPuck I— crean
o — - — - — - —

setPaddle
setBrickPile
B st rodrir et il

Verification of Results

Usualy for architectures, this step is fairly smple, even though for the detailed
functionality of the fina application it can be very difficult. When the output from
the test isin the form of diagrams, the resulting diagrams must be verified after
each test execution by domain experts. When the output is the result of an
execution, the test results can be verified by having those domain experts construct
event sequences that would be produced by an architecture that performs correctly.
The interpretation of the evaluation criteriais given in Figure 4.29.

An Additional Example

The architecture of Bricklesis obvioudy very smple so let's consider the typical
three-layer architecture. Although the diagram in Figure 4.33 is greatly smplified,
we can consider the types of test cases that would be effective. The client is
intended to interact with a user, do computations needed to format presentations,
and interact with the business model residing on the application server. The
application server isintended to be the primary computationa engine, and it also
handles interactions with the client and database components. Finaly, the database
component provides persistence for the business objects from the application
serve.

Figure 4.33. Three-tiered architecture

162

Client Application Database
Server

A

The most important scenarios for this type of architecture include multiple
client/single server and multiple client/multiple server scenarios. The discussionin
the next section provides atechnique for structuring these tests so that they are
repeatable and representative. Useful coverage of this architecture includes
exercising various combinations of threads. Since these systems are usually
distributed, we will defer further discussion until Chapter 8.

Evaluating Performance and Scalability

The architecture of a system should be evaluated beyond correctness,
completeness, and consistency. Most architectures will have a specified set of
quality attributes and these should also be evaluated. A system that presents
animation, as does Brickles, must meet performance goals. The scenarios used as
test cases for the basic inspection can aso be used to analyze the expected
performance for the architecture. The SAAM [Kazman94] approach uses afree-
form anaysis technique for analyzing performance. Software Architecture Testing
(SAT) [McGr96] uses the testing perspective to ensure that the important features
of the architecture are investigated.

The test cases are symbolically executed and the message-sequence diagrams can
be analyzed from a performance perspective. For the analysis, each connection
between components in the architecture is assigned a"cost" that reflects the type of
communication used by the connection. The number of messages in each scenario
gives an indication of the relative performance athough by itself the technique
gives an order of magnitude to quantified vaue rather than a specific quantity. A
more exact value can be computed by the following string:

tinme to conpute = n,Cc; + NyC, +... + NCh

163

in which the c's are the connection types and the subscripts represent the number of
each connection type in the scenario. If a use profile (see Use Profiles on page 130)
IS used to select arepresentative set of test cases, an accurate approximation to a
typical user session can be computed. Worst and best case approximations can also
be constructed.

Design aternatives can be evauated by comparing the message sequence diagrams
and the relative quantities of messages. By using the same set of test cases,
selected based on the use profile, afair and realistic comparison can be made as to
how the system will perform if constructed using each aternative.

The performance of distributed systems can aso be analyzed in this manner by
annotating those messages that will be interprocess and interprocessor. The test
case approach using a use profile produces a representative performance measure.

The sequence diagrams can a so be used to evaluate the scalability of the
architecture. The following use profile indicates several types of users and
different frequencies of operations in each:

user Type = piSi, PzSz; ..., PnSn
useProfile = quut,, Quut,, ..., Quutn,

in which the p's and d's are the probability that a particular scenario and user type,
respectively, will be selected.

A scalability test case is a hypothetical mix of actors that is different from the
current use profile, that is, a set of valuesfor the g'sinthe usePr of i | e equation.
Usualy, the different types of users will remain constant, but the relative number
changes. The computation given previoudly is used for each scenario and for each
user type. Then the number of each user type is used to aggregate further. The
resulting values can identify the intensity of use for specific messages.

Detailed Class Design Model

The detailed class design model populates the architectural model with classes that
will implement the interfaces defined in the architecture. This modd typicaly
includes a set of class diagrams, the OCL pre- and postconditions for every method
of every class, activity diagrams of significant algorithms, and state diagrams for
each class. The detailed design model for Bricklesis shown in Figure 2.18, and
additiona detail isshown in Figure 2.15 for one specific class.

164

The modd evaluation criteria are specidized in Figure 4.34. The focusis on
compliance with the architecture. This reinforces the idea that the architectureis

the keystone of the product. Thisis aso the place where components will be reused
and inserted into the system. The specification of the component should be
included in the execution trace to ensure there is no need for an adapter between

the component and the application.

Figure 4.34. Criteria for the class design model inspection

Criteria Interpretation for Class Design Model

Completeness Classes are defined for each interface in the architecture. The
preconditions for each method specify sufficient information so
that the user can safely use the method. The postconditions for a
method show error conditions as well as the normally expected
result.

Correctness Each class accurately implements the semantics of an interface.
For those classes that correspond to interfaces in the architec-
ture, the class's specification must correspond to the interface
specified by the architecture.

Consistency The behaviors in the interface of each class provides either a
single way to accomplish a task or, if there are multiple ways,
they provide the same behavior bul with different preconditions.

Theroles are assigned in Figure 4.35. Notice that the architects have arolein
testing the class diagram. The architects responsibility to a project isto "enforce"
the architecture. That is, the architect makes certain that developers do not violate
the constraints imposed by the architecture. By selecting test cases and evaluating
the results, the architects can gain detailed knowledge about the developers
implementation.

Figure 4.35. Roles in class design model inspection

Role in Inspection Role in Project

Domain Expert Domain expert; system engineer
Tester Application developer; architect
Developer Application developer

A detailed class design test case would look like this:

Assume that a puck is moving to the left and up, but will hit the left
wall before hitting a brick. How will the puck's direction and speed be

165

changed when it hits the wall? It is expected that when the puck is
found against the left wall, the wall will create a Col | i si on object
that will be passed to the puck. The puck will modify its velocity and
begin to move to theright and up. It will be moving at the same speed.

The test cases at thislevel are very much like the final system test cases. Thereis
so much detail available at this level that the testers have to be careful to record all
the model elements that are touched by test cases. Figure 4.34 shows the diagram
elements that must be coordinated during the guided inspection session. As the test
progresses, the executors select methods that will be invoked, the state moddl of
the recelver is checked to be certain that the target object can recelve the message.
The messages are then added to the sequence diagram and the state models are
updated to reflect changes in state. When a state in adiagram is shaded, thereis
additiona detail to the state but that information is not needed to evaluate the
current test. Sequence diagrams will aso have "dead-end" objects in which the
testers will not attempt to examine the logic beyond that object.

Figure 4.36. A test environment

EricklasViaw BrickPibe:
Point puckLocation; List rsI:DfE-rll;l-cE
Pre: F-‘re nme
SelPuck{Point x)woid crgalaimd n, ind m)oeeid
past:puckLocation == x; post: |nsbanc.e- exists
s ™
Bricklesyiew Malch PlayField Puck Paddia BrickPile
creats | crite

— craate
setPuck w| create

_ setPaddle
seiBrickPile
| Famncirie

show
' imvisible |- —-_\; cmplx_,r Uﬂﬂm
*
e i txt:ks
hida M rpman.

Thisisthe last step prior to implementation and code-based testing. Devel opers
doing buddy testing of each other's code will benefit from coming back to the test
cases created at thislevel of testing and trandating these into class-level code tests.

166

Testing Again

We are assuming that you are using an iterative development process as we do.
That means that these tests must be repeatable. We have tried to accomplish this by
writing down formal test cases as opposed to simply thinking up scenarios during
the ingpection session.

On the second and succeeding iterations, we usually choose to reapply all those
tests that were failed the last time and some of those that were passed. Tests may
be added to cover the new features added. If any problems were discovered after
the ingpection was conducted, tests should be added to check for that problem as
wall.

Tip

Use guided inspection to transfer knowledge about the model under te<t.
On arecent project, when the developer responsible for a specific piece of
the design was leaving, we used a series of inspection sessions to bring
other developers up to speed on their individua piece. A presentation by
the developer, as opposed to an inspection, would have addressed the
design in the way he knew it best, not in the way the other developers
were viewing it.

Testing Models for Additional Qualities

Increasingly, projects are chartered to achieve more aggressive objectives such as
the development of extensible designs, the design of reusable frameworks, or
highly portable systems. The products of the analysis and design phases of these
projects are most critical for achieving these types of objectives. In particular, the
architecture is key to the success. Guided inspection can be used to ask metalevel
guestions about the system. In this mode, the test scenarios are developer actions
on the system and not user actions. Instead of asking how the objects in the system
would interact, the question is, "How must the classes of the system be changed to
provide the newly required behavior?"

The changes to the design or the revisions needed to produce a framework from an
existing application can be captured as change cases [EcDeJ6]. A change caseisa
use case that is not a requirement of the system, but it is an anticipated change to
the system. Guided inspection applies correctness, completeness, and consistency
criteriato the current analysis and design models with the change cases as the
source of test scenarios.

167

For example, if the project is to build a framework upon which future devel opment
will be based, it is not sufficient to test against the current uses for the system.
Consider the change case shown in Figure 4.37. Test cases can give insight into the
effort required to extend the framework by testing how complete the existing

model is relative to the new requirements. The second change case, as shown in
Figure 4.38, could be used to test the architecture. It would be used to determine
how completely the existing architecture covers the new requirement.

Figure 4.37. A change case for Brickles

Change Case #1
Actor: Player

Use Scenario: The player bounces the puck off several bricks. Some of the bricks
break and disappear, but only two of the bricks crack.

Alternative Paths:
Exceptional Cases:
Frequency: Low
Criticality: Low
Risk: Medium

Figure 4.38. A second change case

Change Case #2
Actor: Player

Use Scenario: The player directs the puck against a set of nonmoving, nonbreak-
able barriers, The player must move the paddle more quickly in order to catch the
puck as it bounces off the closer obstacles,

Alternative Paths:
Exceptional Cases:
Frequency: Low
Criticality: Low
Risk: Medium

The technique for testing these objectives can be viewed as a series of steps. Each
of the steps is described and accompanied by an example.

Explicitly state the objective that the change case will address.

The design will be easily extensible to accommodate new games.

168

Congtruct a "change case" including a specific scenario that illustrates the
objective.

The framework is to be used to implement pinball games that are user
configurable. The obstacles to be available include posts, flippers, and
bumpers.

Create test cases by sampling from the range permitted by the change case.

Apinball gameisto be created. Figure 4.39 illustrates two new states that
might be added to the Brickles state machine.

Figure 4.39. A state diagram for a pinball game

’fﬂricmawmhau .\\ N
(in Progress ~ ™
L LeftButtonDown
S T
n play paused
b
B “Continue” butlon
T pressed

\-_ L + -l‘}
1. OulDfBricks
(game won}
OulOfPucks Ended
(oame lost) “End” button
Mew Bast = pressed
Score ““*
s in [} “quit”
it e [Mo New \’Q
Score

Enumerate the work needed to achieve the objective by specifying the
differences in state and behavior required for the new objective. This can be
accomplished by identifying the new subclasses that must be defined.

=

b

The St ati onarySpri t e classwill be subclassed to provide the new
obstacles. ABal | classwill extend Movabl eSpri t e and

Col I'i deWt hBal | methods would be required for all sprites. Attributes
will be added to give a specific point value to each obstacle. The Pi nBal |
subclass of Ar cadeGane would add a Scor e attribute.

Evaluate the current design relative to the design required to achieve the
objective. Answer the following questions. "Are there fundamental concepts

169

missing that would have to be added?' and "Are there contradictions
between what exists and what would be added?’

The necessary base classes and methods are present. The needed attributes
can be added without conflict with existing attributes. However, the

Sprit e class must be modified.

Repeat with additional test scenarios until all proposed changes are
examined.

The output of this processis a set of potential changes needed to achieve the
desired system quality, such as extensibility. The inspection searches for missing
concepts and contradictions between what exists in the model currently and what
would need to be added to the model in order to achieve the new objective. This
technique can provide early feedback to the devel opment team about fundamental
weaknesses in the design.

Summary

The techniques presented in this chapter are sometimes people intensive and
scenarios should be systematically selected for maximum effectiveness. In
particular choosing use cases that are less well understood or that represent high-
risk stuations is recommended. This maximizes the likelihood of finding errors
and omissions that will have maximum impact on the quality of the system.

Figure 4.40 illustrates much of what we want you to get out of this chapter. The
UML diagrams have been developed so that they are mutually supportive. The test
cases developed in this chapter provide guidance for making a systematic search of
the models for potentia defects.

Figure 4.40. Consistency between diagrams (SD = sequence diagram)

170

Message on S0 must malch a
redatesnghip on aobject modal

Are thera scenarics thal cover

possible cardinalities? '/—’ a
I

-
- Every slate
transition
- corresponds to
= I a relationship,
| s"ﬁ_—"'/ :I ~
St /,\ ; ? ™
\ _._',-'
.fl"\ .-;
Match stale boxes on the SD '_é '
fo trangitions in the stale model, St]

Compare the sequence of
messages m the S50 o the
aliowable sequence af
transitions,

Why is this technique in a book on testing? First, it uses a testing perspective to

focus the examination of the models. Second, much of this testing uses a system-
wide scope and thusiit is a natural role for the system testers. They can participate
in the development process from the earliest phases if they have responsibility for

developing test cases from the use cases. In this chapter, we have presented an
approach that will identify defects early in the development process and will

support the early involvement of the test community, and the class integration and

system testers in the development project.

The checklist in Figure 4.41 summarizes the tasks described in this chapter.

Figure 4.41. A guided inspection process checklist

Guided Inspection Process Checklist Step

Decide how completenass, consistency and correcinass will
b judged for the particular use in the model under test (MUT).

Datermine which scenarios to sample from the use case
model to use as test cases,

Create test cases by supplementing the scenarios with
specific data.

Select the model/notation that will record the resulls of each
execulion.

Conduct tests.

Evaluate the results of the test executions to determine which
lests the model passed and which il failed.

Record the results for use in guiding the repair and testing
procasses in the next iteration.

171

Model-Testing Checklist

The stepsin this checklist are intended to ensure that al of the required activitiesin
the guided inspection process are completed. A detailed process is defined in the
addendum to this chapter.

Exercises

4-1. Using the use cases of your project as a starting point, you add the Frequency
and Ciriticality fields to them. Perform the risk analysis for the use cases and fill in
that field for each use case. Develop an ordering of uses that reflects how intensely
each should be tested. Write test cases for the use cases in the model. Write one
test case for the least important use case. Write additional test cases for each of the
use cases.

4-2. Conduct aguided ingpection session for the initial analysis model for your
project. Generate a report that lists the discrepancies between the models.

4-3. Develop three scenarios from the use cases given in this chapter. Then, using
the models given in Chapter 2 and Chapter 4, identify examples of incompleteness,
Inconsistency, and incorrectness.

4-4. Select the phase in your software devel opment process in which, in your
estimation, more defects are created than any other. Design a guided inspection
checklist that will lead devel opers to finding the types of defects created in that
phase.

Addendum: A Process Definition for Guided Inspection

172

Goal: To identify defects in artifacts created during the analysis and
design phases of software construction.

Steps in the Process

1. Define the scope and depth of the guided inspection.

2. |dentify the basis model(s) from which the materia being inspected was
Created.

Assemble the guided ingpection team.

Define a sampling plan and coverage criteria.

Create test cases from the bases.

Apply the tests to the materid.

Gather and analyze test results.

Report and feedback.

ONO AW

Detailed Step Descriptions
1. Define the scope and depth of the guided inspection.
Inputs:
The project's position in the life cycle.

The materials produced by the project (UML models, plans, use
Cases).

Outputs:

A specific set of diagrams and documents that will be the basis
for the evauation.

Method:

Define the scope of the guided inspection to be the set of
deliverables from a phase of the devel opment process. Use the
development process information to identify the deliverables
that will be produced by the phase of interest.

Example:

173

The project has just completed the domain analysis phase. The
development process defines the deliverable from this phase as
aUML mode containing domain level use cases, static
information such as class diagrams, and dynamic information
such as sequence and state diagrams. The guided inspection
will evauate this modd!.

2. ldentify the basis model(s) from which the material being inspected was
created.

I nputs:
The scope of the guided inspection.
The project's position in the life cycle.
Outputs:

The materia from which the test cases will be constructed (the
model under tes—MUT).

Method:

Review the development process description to determine the
Inputs to the current phase. The basis model(s) should be listed
as inputs to the current phase.

Example:

The inputs to the domain analysis phase is the "knowledge of
experts familiar with the domain." These mental models are the
basis models for this guided inspection.

3. Assemble the guided inspection team.
Inputs:
The scope of the guided inspection.
Available personnd.

Outputs:

174

A set of participants and their roles.
Method:

Assign persons to fill one of three categories of roles:
Administrative, Participant in creating the model to be tested,
Objective observer of the model to be tested. Choose the
objective observers from the customers of the model to be
tested and the participants during the creation of the basis
modd.

Example:

Since the modé to be tested is a domain analysis model and the
basis mode is the mental models of the domain experts, the
objective observers can be selected from other domain experts
and/or from application anaysts. The creation participants are
members of the domain modeling team. The administrative
personnel can perhaps come from other interested parties or an
office that provides support for the conduct of guided
Ingpections.

4. Define asampling plan and coverage criteria

I nput:

The project's quality plan.
Outputs:

A plan for how test cases will be selected.

A description of what parts of the MUT will be covered.
M ethod:

Identify important elements of this MUT. Estimate the effort
required to involve all of these in the guided inspection. If there
are too many to cover, use information such as the RISK
section of the use cases or the judgment of expertsto prioritize
the elements.

175

Example:

In adomain mode there are static and dynamic models as well
as use cases. At least one test case should be created for each
use case. There should be sufficient test cases to take every
"maor" entity through al of its visible states.

5. Create test cases from the bases.
I nputs:
The sampling plan.
MUT.
Output:
A set of test cases.
M ethod:

Obtain a scenario from the basis modd. Determine the
preconditions and inputs that are required to place the system in
the correct state and to begin the test. Present the scenario to the
"oracle" to determine the results expected from the test

scenario. Complete atest case description for each test case.

Example:

A different domain expert than the one who supported the
model creation would be asked to supply scenarios that
correspond to uses of the system. The experts also provide what
they would consider an acceptable response.

6. Apply the tests to the material.
Inputs:
Set of test cases.

MUT

176

Output:
Set of test results.
M ethod:

Apply the test cases to the MUT using the most specific
technique available. For UML modelsin a static environment,
such as Rationa Rose, an interactive smulation session in
which the Creators play the roles of the model elementsis the
best approach. If the MUT is represented by an executable
prototype then the test cases are mapped onto this system and
executed.

Example:

The domain analysis modd is a static UML modd. A

simulation session is conducted with the Observers feeding test
cases to the Creators. The Creators provide details of how the
test scenario would be processed through the model. Sequence
diagrams document the execution of each test case. Use agreed-
upon symbols or colorsto mark each element that is touched by
atest case.

. Gather and analyze test results.
Inputs:

Test resultsin the form of sequence diagrams and pass/fail
decisions. The marked-up moddl.

Outputs:

Statistics on percentage pass/fail.

Categorization of the results.

Defect catalogs and defect reports.

A judgment of the quality of the MUT and the tests.
M ethod:

177

Begin by counting the number of test cases that passed and how
many have failed. Compare this ratio to other guided
ingpections that have been conducted in the organization.
Compute the percentage of each type of element that has been
used in executing the test cases. Use the marked-up model as
the source of this data. Update the defect inventory with
information about the failures from this test session. Categorize
the failed test cases. This can often be combined with the
previous two tasks by marking paper copies of the model.
Follow the sequence diagram for each failed test case and mark
each message, class, and attribute touched by afailed test case.

Example:

For the domain analysis model we should be able to report that
every use case was the source of at least one test case, and that
every classin the class diagram was used at |east once.
Typicaly, on the first pass, some significant states will be
missed. This should be noted in the coverage analysis.

8. Report and feedback.

Inputs:
Test results.
Coverage information.

Outputs:
Information on what new tests snould be created.
Test report.

M ethod:

Follow the standard format for atest report in your organization
to document the test results and the analyses of those results. If
the stated coverage goals are met then the process is complete.
If not, use that report to return to Step 5 and proceed through
the steps to improve the coverage levd.

178

Example:

For the domain analysis tests, some elements were found to be
missing from the modd. The failing tests might be executed
again after the model has been modified.

Roles in the Process

Administrator

The adminidrative tasks include running the guided inspection
sessions, collecting and disseminating the results, and aggregating
metrics to measure the quality of the review. In our example, the
administrative work could be done by personnel from a central office.

Creator

The persons who created the MUT. Depending on the form that the
model takes, these people may "execute" the symbolic model on the
test cases or they may assist in trandating the test casesinto aform
that can be executed with whatever representation of the moddl is
available. In our example the modelers who created the domain model
would be the "creators."

Observer

Persons in this role create the test cases that are used in the guided
Inspection. In our example they would be domain experts and
preferably experts who were not the source of the information that
was used to create the modd initialy.

179

Chapter 5. Class Testing Basics

Want to know what to consider when testing a class? SeeClass Testing.
Want to know how to identify test cases for testing a class? See
Constructing Test Cases.

Want to know a good way to implement atest driver for a class? See
Constructing a Test Driver.

In this chapter we describe how to test a single class. The techniques we describe
in this chapter will be applied in later chapters when we discuss testing object
Interactions and testing classes in an inheritance hierarchy. For this discussion, we
assume the code for a class has been written and needs to be tested. Our primary
focusis on classes whose instances do not collaborate extensively with any other
instance. We will usethe Vel oci ty and PuckSuppl y classes from Brickles to
illustrate. We will address the testing of more complex classes in the next two
chapters.

Class Testing

The fundamental unit of an object-oriented program is a class. Classtesting
comprises those activities associated with verifying that the implementation of a
class corresponds exactly with the specification for that class. If an implementation
Is correct, then each of the class's instances should behave properly.

Class testing is roughly analogous to unit testing in traditiona testing processes
and has many of the same problems that must be addressed (see sidebar). Class
testing must also address some aspects of integration testing since each object
defines aleve of scope in which many methods interact around a set of instance
attributes. Some of the most critical issues will be discussed in the context of
concurrent issues in Chapter 8. The focus of this chapter is execution-based testing
of classes. Our primary objective is to describe basic elements and strategies of
testing classes, and we will focus on relatively simple classes. The testing of more
complex classes will be addressed in the next two chapters.

We assume that a class to be tested has a complete and correct specification, and
that it has been tested within the context of the models™ We assume the
specification is expressed in a specification language such as the Object Constraint
Language (OCL) [WK99] or anatura language, and/or as a state transition

180

diagram. If more than one form of specification is used for a class, we assume all
forms are consistent and that information may be taken from whichever formis
most useful as the basis for developing test cases for the class. We prefer to use the
most formal specification for generating test cases.

™ Consistency is primarily a design consideration. When class
testing is underway, design for the class should be finished—at
least as far as the current development iteration is concerned.

Ways to Test a Class

The code for a class can be tested effectively by review or by executing test cases.
Review isaviable aternative to execution-based testing in some cases, but has two
disadvantages over execution-based testing:

Reviews are subject to human error.
Reviews require considerably more effort with respect to regression testing,
often requiring amost as many resources as the original testing.

While execution-based testing overcomes these disadvantages, considerable effort
can be required for the identification of test cases and the development of test
drivers. In some cases, the effort needed to construct a test driver for a class can
exceed the effort of developing that class by severa orders of magnitude. In that
case, the costs and benefits of testing the class "outside" the system in which it will
be used should be evaluated. This situation is not peculiar to object-oriented
programming. The same Situation arisesin traditional procedura development with
respect to many of the subprograms invoked at upper levelsin a structure chart.

Traditional Unit Testing

The purpose of unit testing is to ensure that each unit meetsits
gpecification. If each unit meets its specification, then any bugs that appear
when units are integrated together are more likely caused by incorrect
interfacing of units than by incorrect implementations of the units.
Debugging efforts can then be concentrated on the interfaces, not on the
units themselves.

Unit testing is done as units are devel oped. In the procedura paradigm, a
unit is a procedure (or function) or sometimes a group of procedures that
implement an abstract data type. Units are typically tested by a
combination of code inspections and execution testing, with most

181

emphasis being placed on the latter. A smple unit test plan can be
developed that identifies the test cases needed, and then atest driver can
be constructed in a straightforward manner.

Thisal sounds good in theory, but in practice a number of stumbling
blocks can arise. Typicaly, only the simplest of units—those that appear
as termina nodes in a structure chart—can be tested without significant
effort. Test cases for such units tend to be easy to identify, and test drivers
tend to be easy to construct if parameters do not have much structure to
them.

Even units that have parameters with significant structure can sometimes
be unit tested without significant effort if the driver can initiaize the actua
parameters with arelatively few assgnment or read operations. Note,
however, that this increases the amount of coupling between the unit and
its test driver, which can increase maintenance codts if the structure
changes over time.

While units at the lower levelsin a structure chart can be unit tested in a
straightforward way, at some point—perhaps two or three levels from the
bottom—the interactions between units become so interwoven that unit
testing becomes impractical. The effort required to produce a test driver
can be greater than testing the unit in the context of testing a larger
assembly. In some cases, the code for atest driver can be significantly
larger than the code in the unit under test. This introduces an issue of unit
testing the test driver itsdlf.

Once we have identified executable test cases for a class, we must implement a test
driver to run each of the test cases and report the results of each test case run. The
test driver creates one or more instances of a classto run atest case. It isimportant
to keep in mind that classes are tested by creating instances and testing the

behavior of those instances (see Definitional versus Operational Semantics of
Objects on page 19). The test driver can take a number of forms that we will
describe later in this chapter. We favor the form of a separate "tester” class over the
others because it offers a convenient organization for managing drivers and
inheritance, and can be used to capture commonaity among them. More benefits
arise in testing class hierarchies, as we show in Chapter 7.

Dimensions of Class Testing

182

For each class, we must decide whether to test it independently as a unit or in some
way as a component of alarger part of the system. We base that decision on the
following factors:

Therole of the class in the system, especially the degree of risk associated
with it.

The complexity of the class measured in terms of the number of states,
operations, and associations with other classes.

The amount of effort associated with developing atest driver for the class.

If aclassisto be part of aclasslibrary, extensive classtesting is appropriate even
though the cost of developing atest driver might be high because its correct
operation is essential. In the context of Brickles, we associate high risk with some
of the most basic classes, such as Vel oci ty and PuckSuppl y. If they are not
implemented correctly, the game program will not work. Writing code to test these
classes is straightforward because in the system design, they do not have to
collaborate with other Brickles classes. We associate high risk with other classes,
such as Puck, but we recognize these might not be easy to write atest driver for.
They have associations in the design with many other classes, primarily because
much of Puck's behavior is graphical. Puck associateswith Pl ayFi el d and any
of the kinds of spritesin a playfield. We can foresee a significant effort in writing a
test driver for Puck because al test cases will require an instance of a

Pl ayFi el d and some that are used for testing collision processing will require
instancesof Bri ck, Bri ckPi |l e, andPaddl e. Testing Puck, therefore,
relies on an assumption that all these other classes work correctly. (We will
examine this further in Chapter 6.) We might decide to test someor dl of Puck in
the context of cluster testing since we need instances of other classesto build
environments around pucks suitable for testing them.

Let us now consider the five dimensions of testing in the context of testing a class.
Who

Classes are usually tested by its developer, just as subprograms traditionaly are
unit tested by their developer. Having a class developer also play the role of aclass
tester minimizes the number of people that have to understand a class's
specification. It also facilitates implementation-based testing since the tester is
intimately familiar with the code. Finally, the test driver can be used by the
developer to debug the code asiit is written.2

183

2l A goal of testing is to find bugs, not to fix bugs. However, a
useful component of class testing is in helping to isolate errors
in the code.

The main disadvantage of test drivers and code being devel oped by the same
person is that any misunderstandings of the specifications by the developer will be
propagated to the test suite and test drivers. These potentia problems are headed
off by formal reviews of the code, and/or by requiring a test plan to be written by
another class developer, and by alowing the code to be reviewed independently.

It is not unusua for independent testers to discover problems with the
gpecifications for a class, so time should be alowed during testing to resolve them.

What

We primarily want to ensure that the code for a class exactly meets the
requirements set forth in its specification. The amount of attention given to testing
aclassto ensure it does nothing more than what it is specified for depends on the
risk associated with the class supplying extra behaviors. Incomplete coverage of
code after awide range of test cases have been run against the class could be an
indication that the class contains extra, undocumented behaviors. Or it could
merely suggest that the implementation must be tested using more test cases.

When

A test plan—or at least some form of identification of test cases—should be
developed soon after aclassisfully specified and ready for coding. Thisis
particularly true when a class's developer is aso responsible for its testing because
early identification of test cases will help a developer to understand the
specification and, as we mentioned, get feedback from an independent review.
Take care when aclass's developer is aso responsible for itstesting. A class
developer who identifies incorrect or insufficient test cases will produce an
Implementation that passes all test cases, but that causes significant problems when
the classisintegrated into a larger part of a system.

Class testing can be done at various points in its development. In an incremental,
iterative development process, the specification and/or the implementation for a
class might need to be changed over the course of a project. Class testing should be
performed prior to the use of the class in other portions of the software. Regression
class testing should be performed whenever the implementation for a class has
changed. If the changes resulted from the discovery of bugs in the code for the

184

class, then areview of the test plan must be performed and test cases must be
added or changed to detect those bugs during future testing.

How

Classes are usually tested by developing atest driver that creates instances of the
class and sets up a suitable environment around those instances to run atest case.
The driver sends one or more messages to an instance as specified by atest case,
then checks the outcome of those messages based on areply value, changes to the
instance, and/or one or more of the parameters to the message. The test driver
usualy has responsbility for deleting any instances it creates if the language, such
as C++, has programmer-managed storage allocation.

If aclass has static data members and/or operations, then testing of thoseis
required. These data members and methods belong to the class itself rather than to
each instance of the class. The class can be treated as an object—for example, in
Java an instance of the class C ass—and tested according to what we describe in
this chapter.

If the behavior of the instances of a class is based on the values of class-levd
attributes, then test cases for testing these class-leve attributes must be considered
as an extension of the state of the instances.

How Much

Adequacy can be measured in terms of how much of the specification and how
much of the implementation has been tested. For class testing, we usually want to
consider both. We want to test operations and state transitions in all sorts of
combinations. Recall that objects maintain state and typicaly that State affectsthe
meaning of operations. However, you need to consider whether exhaustive testing
Isfeasible or even necessary. If not, then selective pair-wise combinations can be
effective, especialy when done in conjunction with risk analysis so that the most
Important test cases can be used and less important test cases can be sampled.

Constructing Test Cases

185

Let usinvestigate how to identify and construct test cases for a class. First, we will
look at how to identify test cases from a class specification expressed in OCL.
Then we will look at test case construction from a state transition diagram.

Test cases are usualy identified from the class specification, which can be
expressed in avariety of ways. These include OCL, natural language, and/or state
trangition diagrams. Test cases can be identified from a class implementation, but
using only that approach will propagate errors the class devel oper has made in
Interpreting the specification during implementation to the test software. We prefer
to develop test casesinitialy from the specification and then augment them with
additional cases as needed to test boundaries introduced by the implementation. If
a specification does not exist for a class to be tested, then we "reverse engineer"
one and have it reviewed by the developers before we start testing.

Most of the examples in this chapter will be based on testing the Vel oci ty and
PuckSuppl y classes from Brickles. A puck supply is acollection of pucks that
have not yet been put into play. A velocity represents the movement of a movable
sprite on a playfield based on attributes of a speed (expressed in playfield units per
unit time) and a direction (expressed as an angle in degrees, with O designating
east or right, 90 designating north or up, and so on) (see Figure 5.1). The speed
attribute is broken into two components: speed,—speed in the x direction (left-
right)—and speed,—speed in the y direction (up-down). While the speed attribute
Is always a non-negative value, the components of a velocity's speed can be
negative. The vaue of speed, is negative if avelocity's direction is heading |eft.
The value of speed, is negative if the direction is down. Spoeed and Direction are
abstract types ultimately defined as integer values.

Figure 5.1. A velocity is a vector characterized by a speed and a
direction Q

speed,

A classmodel for Vel oci ty isshownin Figure 5.2. Its OCL specification is
shown in Figure 5.3. The invariant for the class constrains the value for direction

186

and speed as well as the relationships between the values of those attributes,

including the speed,, and speed, components. Because these attributes are integer-

valued, the invariant relaxes the ideal relationship described by the Pythagorean

theorem.

Figure 5.2. The Vel oci ty class as specified in the UML model

Velocity

speed : Speed
direction : Direction

Velocity()
Velocity(speed : Speed, direction : Direction)

getSpeed() : Speed
getSpeedX() : Speed
getSpeedY() : Speed
getDirection() : Direction

setSpeed(speed : Speed);
setDirection(direction : Direction);
reverse();

reverseY();

reverseX();

Figure 5.3. OCL specification for the Vel oci ty class

187

Velocity::Velocity
0 == direction and direction < 360 and speed >=0 and

speedX = ((2 * Pl * direction / 360.0).cos * speed).floor and
speedY = ((2 * PI * direction / 360.0).sin * speed).floor and
speedX"speedX + speedY speedY <= speed’speed

Velocity::Velocity():

pre: frue

post: self.speed = 0 and self direction = 0

Velocity: Melocity{speed : Speed, direction : Direclion);

pre: speed »= 0 and (0 <= direction and direction < 360)

post: self.speed = speed and self direction = direction

Velocity:.getSpeed() : Speed

pre: true

post: result = self.speed
Velocity::getSpeedX() : Speed
pre. true

post: result = speedx
Velocity::getSpeedY() : Speed
pre. true

posl: result = speedy
—— e)

pre: lrue

post: result = direction

Velocity::setSpeed(speed : Speed)

pre: speed == ()

post: self.speed = speed and direction = direction@pre

Velocity::setDirection(dir : Direction)

pre: 0 <= dir and dir < 360

post: direction = dir and speed = speed@pre

Velocity::reverse()

pre: frue

post: self.speed = speed@pre and speedX = -speedX@pre and speedY =
-speedY@pre

Velocity::r Y

pre: true

post: self.speed = speed®@pre and speedY = -speedY@pre and
direction = (360 - direction@ pre). mod(360)

Velocity::reverseX()
pre: true

post: speed = speed@pre and direction =
if direction@pre <= 180 then (180 - direction@pre)
else (540 - direction@pre).mod(360)

188

Thedesign of Vel oci ty includesthe set Speed() andset Di recti on()
modifiers to improve runtime efficiency by eliminating the need to create a new
instance every time one or both attribute values change.

Test Case Construction from Pre- and Postconditions

The general idea for identifying test cases from preconditions and postconditions
for an operation is to identify requirements for test cases for al possible
combinations of situations in which a precondition can hold and postconditions can
be achieved. Then create test cases to address these requirements. From the
requirements, create test cases with specific input values, including typical vaues
and boundary values, and determine the correct outputs. Finally, add test cases to
address what happens when a precondition is violated (see sidebar).

To identify genera test case requirements from pre- and postconditions, we can
anayze each of the logical connectivesin an OCL condition and list the test cases
that result from the structure of that condition. Figure 5.4 and Figure 5.5list the
requirements for test cases that result from various forms of logical expressionsin
preconditions and postconditions, respectively. Figure 5.4 identifies additiona test
cases that result from an implicit use of defensive programming. Notice the
significant increase in the number of test case requirements over the contract
approach.

Figure 5.4. Contribution to the test suite by preconditions

189

Logical Expression

Contribution

true

@

not (1)

1) and (2)

@Dor@

@) xor @

(1) implies (2

if (1) then (@)
else (3) endif

Motes

1. (1), @), and (3 represent components in an OCL expression.

(true, Posi

(@. Post)

(not (@), Exception)
(not (1), Post)

(M), Exception)

(@) and @). Post)

(not (1) and (&), Exception)
(D and not &), Exception)
(not (T and not (2, Exception)

(1 and @). Post)
(not (1) and not (), Exception)
(

() and not @), Post)

(not () and (@), Post)

(D and @), Exception)

(not (T and not @), Exception)
(

not (1), Post)

(@, Post)

(not (1) and @), Post)

(@ and not @), Exception)

(D and (2. Post)

(not (1) and @), Post)

(D and not (&), Exception)
(not (1) and not (3), Exception)

|G @« @

£

Ll

&w

2. If defensive programming is implicit in a specification, then the test cases

marked by 3 must also be addressed. If defensive programming is explicit

in the specification, then the test cases will be identified.

Figure 5.5. Contribution to the test suite by postconditions

190

Postcondition Contribution

o e ©
@ and B (Pre. @) and &)
:n_'l" “'
000 e @
(Pre, @ and @)
(Fre @ and not @)
n‘xﬂl‘g (Pra ”L““EII'.I’! E:
@ implies @ (Pre. not @ or @)
if @ then @ ::t-’ G g_. _
else € endif (Pre and not €. @)

Notes
1. ©. @, and @ reprasent componants in an OCL expression.

2. For postcondition if @ then @ else € endif, if expression) does not
depend on the effect of the test case, then @ = @ clse © is a condition that
will make) true al the time the postcondition applies.

Use these two figures to find requirements for the minimum number of test cases™
needed to test an operation specified using all combinations of preconditions and
postconditions. Follow these steps:

BIMinimum because they typically do not account for cases in
equivalence classes of values.

1. Identify alist of precondition contributions specified in the entry in Figure
5.4 that matches the form of the precondition.

2. ldentify alist of postcondition contributions specified in the entry in Figure
5.5 that matches the form of the postcondition.

3. Form test case requirements by making all possible combinations of entries
from the contributions lists. One way is to substitute each input constraint
from the first list for each occurrence of Pre in the second list.

4. Eliminate any conditions generated by the table that are not meaningful. For
example, a precondition of, say, (color = red) or (color = blue) will generate
atest case in which (color = red) and (color = blue), which cannot
satisfied.

“I'It could be argued that a more accurate precondition is
(color = red) xor (color = blue), which states that one or
the other, but not both, must be true. In this case, a tester
might suggest such a change to the developers to
improve the specification.

191

Test Cases for Failed Preconditions

Our discussion of class specification in Chapter 2 described defensive
programming and contracts. Under defensive programming, a class
implementation includes code in each method to verify the associated
precondition holds. Under the contract approach, no such code is included
because any client requesting an operation is assumed to have ensured that
the precondition holds for that request.

In many cases, the defensive programming approach isimplicit in a
specification—that is, the class specification is written using the same
preconditions, postconditions, and invariants as would be used for a
contract approach. There is an understanding that each violated
precondition results in some standard action, such as abnormally
terminating program execution, throwing a standard exception, or

displaying amessage in an error log.

Testers must be aware of any implicit handling of violated conditions. If
implicit handling is part of a class specification, testers should generate
test cases to verify the correct processing of that implicit part of the
specifications. Intesting Vel ocity: :set Direction(), for
example, we would need to add additional test cases for the operation to
cover the possibilities that a direction is negative or greater than 359. If the
designers take a contract programming perspective on a class, the
implementers still might include code for debugging purposes to perform
runtime checking of preconditions and/or postconditions. If test cases are
needed to check this debugging code, take care to identify such test cases
In the test driver so that they can be disabled when the debugging code is
disabled.

If a precondition or a postcondition has a more complex form than is shown in the
table—for example, involving three diguncts—then the processes described in
Steps 1 and 2 will have to be applied recursively—that is, broken into smaller
pieces with the rules applied to the pieces, and then applied together as the pieces
are recombined with operators. Fortunately, widely accepted object-oriented
design principles keep most preconditions and postconditions simple.

Figure 5.6 and Figure 5.7 show examples of how to use these tables for two of the
operationsinthe Vel oci t y class.

192

Figure 5.6. Identifying test cases for Vel ocity: :setD rection()

Velocity::setDirection(dir : Direction)
pre: 0 == dir and dir < 360
post: direction = dir and speed = speed@pre

In setDirection(), (1) represents 0 <= dir, (Z) represents dir < 360, @ represents
direction = dir, and @ represents speed = speed@pre. The table entries for
precondition of the form (1) and (2) and postcondition of the form @) and @
combine to yield requirements for test cases.

(1) and @), @ and @) (0 <= dir and dir < 360,

direction = dir and speed = speed@pre)
(not (T) and (@), Exception) % (not (0 <= dir) and dir < 360, Exception) &
(1) and not (2), Exception) # (0 <= dir and not (dir < 360), Exception) %
(not (1) and not (2), Exception) % {net{0=<=dir}-and-not{dir<360)-Exception)

We eliminated the last case because no value for dir can be both less than zero
and greater than or equal to 360. We keep the second and third cases because
for example, the implementers are checking preconditions with assertions dur-
ing development and we want to test that those assertions work correctly.

We can now satisfy these test case requirements by providing values for dir,
direction, and speed@pre. From a testing perspective, we can see how a pro-
grammer might try to use memoizing and/or trigonometric identities to speed
the computation of sine and cosines used in computing component speeds.
Consequently, we decide to do exhaustive lesling because a change in direc-
tion affects both the component speeds. We use a speed of 1000 for all direc-
tions between 0 and 359, inclusive. Even though a puck in Brickfes is not likely
to have that velocity, 1000 gives us three digits of accuracy when computing
sines and cosines as integer values, improving our ability to check the imple-
mentation. For the second test case, we use speed 1000 and direction -1. For
the third test case, we use 360 (a boundary value) and 540, an arbitrary value
above 360. With exhaustive testing, we have 363 test cases for the setDirec-
tion() operation.

Vhile boundary values can also be associated with speed, we associate low
risk with them and do not generate test cases using a speed of zero or a speed
of the largest positive integer value. From a testing perspective, if the code
works correctly with a speed of 1000, it will most likely work correctly with any
value. We can analyze coverage of code for the method to confirm our position.
If every code statement is executed at least once over runs of all these test
cases, and the lesl cases all pass, then we can be almosl certain the code is
correct.

Figure 5.7. Identifying test cases for Vel ocity: : reverseX()

193

Velocity::reverseX()

pre: true

post: speed = speed@pre and direction =
if direction@pre <= 180 then (180 - direction@pre)
else (540 - direction@pre).mod(360)

Because the postcondition involves both and and if-then-else operators, we
need to apply the table expansions recursively. At the first level, @ represents
speed = speed@pre and @ represents if direction@pre <= 180 then (180 -
direction@pre) else (540 - direction@pre).mod(360). At the second level, @
represents direction@pre <= 180, @ represents (180 - direction@pre), and €3
represents (540 - direction@pre).mod(360). We will use subscripts to show the
levels. The table entries for precondition of the form true and postcondition of
the form @; and @, applies first, yielding

(Pre, @7 and @) (true, speed = speed@pre and @)

Using the table to expand if' @ then @ else @ endifand combining with
what we have above yields requirements for test cases

(Pre and @ 2,85 (true and direction@pre <= 180,
speed = speed@pre and (180 - direc-
tion@pre)
(Pre and not @5, @5) (true and not (direction@pre <= 180),

speed = speed@pre and
(540 - direction@pre).mod(380))

Note Pre = true and %, = direction@pre <= 180 since that condition involves
only a constant value and an attribute value @pre.

We can now satisfy these test case requirements by providing values for direc-
fion@pre and speed@pre. Because we have decided to test setDirection()
exhausltively, we decide lo test reverseX() with boundary values and some in-
between values. For this operation, boundaries lie at directions 0 (right), 90
(up), 180 (left}), and 270 (down). We pick one value between boundaries at, say,
30, 135, 188, and 275. The speed can be chosen arbitrarily. We will choose 10
for each test case. The first general test case, then, produces test cases invalv-
ing speed 10 and directions 0, 30, 90, 135, and 180. The second general test
case produces test cases involving speed 10 and directions 188, 270, and 275,

Test Case Construction from State Transition Diagrams

State trangition diagrams show the behavior associated with instances of a class

graphically. These diagrams can supplement written specifications or comprise the
entire specification. A state transition diagram for the Puck Suppl y classisgiven

in Figure 5.8. A puck supply holds the pucks that have not yet been put into play

during a Brickles match. OCL for the classis also shown in the figure so you can

compare the forms of specification.

194

Figure 5.8. The PuckSuppl y class's state transition diagram and OCL
specification

isEmpty() size()
]
v R [
(" | PuckSupply get() [size > 1] R
get() [size = 1]
Empty Mot Empty
- é Y
PuckSupply
size == 0
PuckSupply::PuckSupply();
pre: true

post: size = 3 and Puck-=size() = Puck@pre-=size() + 3 and
pucks->forAll{ puck: Puck | not puck.inPlay())

PuckSupply::~PuckSupply();
pre: true
post: Puck->size() = Puck{@pre->size() - size[@pre

void PuckSupply::size() const;

pre: true
post: result = size

pre: not self.isEmpty()
post: result = pucks-=asSequence->first and size = size@pre - 1

pre: true

result=(size=0)

Describing Test Cases

Whileit is easy to define atest case as a pair (input, output), it isnot so
easy to describe in a succinct way what input and output are for a specific
test case. Aninput involves an object under test (OUT) in agiven state
with values specified for al attributes; for zero or more objectsin

specified states that are in associations with the OUT (perhaps helping to

195

define that object's state); for a sequence of one or more messages (or
other events) to be sent to the OUT; and for zero or more objects (and
values) that serve as parameters to messages. An output involves the
resulting state of the OUT, the resulting state of any objects in association
with the OUT, aresult returned from the last message sent as input, and
the resulting state of any objects passed as parameters to messages. Note
that the class of an OUT can be one of the objects associated with it.

We use atext-based notation for describing test cases. We use atable
having a column for inputs and one for outputs. Each column is
subdivided as shown. The text in each column except for Eventsisan
adaptation of OCL. The Events column uses programming language
notation. Events include messages and object creation.

Input Output
Exceptions
State Events State Thrown
none OUT = new Velocity; | OUT.speed =0 none
and OUT.direction
=0 and

OUT.speedX =0
and OUT.speedY

=0
OUT:Velocity| OUT.setDirection(45)|OUT.speed=1000, none
[speed=100, OUT.direction=45,
direction=90] OUT.speedX=707,

OUT.speedY=707

Thefirst test case listed is for the default constructor. The second is for
setDirection(). By convention, we use the name OUT to refer to
the object under test. The notation OUT: Vel oci t y[speed=100,

di recti on=90] denotesthat OUT isan instance of Vel oci t y with
attribute values as specified in the brackets. If attribute values are
unspecified, then they are irrdlevant for the test case.

We can generate code for atest case in a straightforward way. For each
test case, write code to achieve the input state, then write code to generate
the events, and then write code to check the resuilt.

196

We can use the same general approach to generating test cases that we described
for using pre- and postconditions. Each transition on the diagram represents a
requirement for one or more test cases. The diagram in Figure 5.8 has six
trangitions between states, one transition representing construction, and two
representing destruction—nine transitions total .™>! Thus, we have nine requirements
for test cases. We satisfy these requirements by selecting representative values and
boundary values on each side of atrangtion. If atransition is guarded, then you
should select boundary vaues for the guard condition, too.

A transition on the superstate PuckSuppl y distributes to
each of the two substates, yielding two transitions.

Boundary values for states are determined based on the range of attribute values
associated with a state. Each state is defined in terms of attribute values. In
PuckSuppl y, the Empty state is associated with a Size attribute vaue of zero.
The Not Empty state is associated with a nonzero size attribute value. We want to
be sure to include atest case to check that a Puck Suppl y instance does not
behave as though it is empty when itssSizeis one.

For most of us, generating test cases from state transition diagrams is more
Intuitive than generating them from pre- and postconditions. The behavior
associated with a class is more evident from the diagrams, and it is easy to identify
the requirements for test cases since they come directly from the transitions.
However, we must be careful to understand completely the way states are defined
in terms of attribute values, and how events affect specific values within agiven
state. Consider, for example, the Not Empty statein Puck Suppl y. From the
diagram alone, we are left to guess that each time a puck is removed, the size
decreases by one. Thisis explicit in the OCL specification. At the extreme,
consider Vel oci ty, whichhasonly one state and twelve trangitions. It is
difficult to identify al test cases from that smple diagram aone. When testing
based on state transition diagrams, make sure you investigate the boundaries and
results of each transition as you generate test cases.

Adequacy of Test Suites for a Class

Ideally, we could exhaustively test every class, that is, test with al possible values
to ensure each class meets its specification. In practice, exhaustive testing is either
impossible or requires considerable effort. Nonetheless, it is wise to exhaustively

test certain classes. Consider, for example, the Vel oci ty classin Brickles. If it
does not operate correctly, the system has no chance of operating correctly. The

197

benefits of exhaustive testing in this case outweigh the cost of writing atest driver
to run more test cases.

Exhaustive testing is usually infeasible or impractical under time and resource
constraints, so we need to test a class enough. Without exhaustive testing, we
cannot be sure every aspect of a class meets its specification, but we can apply
some measure of adequacy to give us a high level of confidence in the quality of
the test suite. Three commonly used measures of adequacy are state-based
coverage, constraint-based coverage, and code-based coverage. Meeting these
measures minimally will result in different test suites. Using dl three measures for
atest suite will improve the level of confidence in testing adequately.

State-Based Coverage

State-based coverage is based on how many of the trangtionsin a state transition
diagram are covered by the test suite. If one or more transitions is not covered, then
the class has not been tested adequately and more test cases should be generated to
cover those transitions. If test cases are generated from a state transition diagram as
we described, then the test cases achieve this measure. If test cases were generated
from pre- and postconditions, then analyzing the test casesin terms of which
trangtions they cover is quite useful for finding missed test cases.

Boundary Conditions

In testing a component, it is often the case that a small change in input
value results in a significant change in the response of the software. The
input value at which alarge change occursis referred to as a boundary.
Boundaries must be identified when test cases are identified. Test cases
must be generated to check input values close to each boundary. The
response of the system to inputs occurring between two adjacent
boundariesis generdly equivaent. A relatively small number of test case
Inputs can be taken from that set for adequate testing, but a test case must
be generated for each side of and (possibly) for each boundary.

Some boundaries are easy to identify from a state transition diagram from
the guards placed on state transitions—a test case for the true condition
and one for the false condition. Other boundaries are not so obvious from a
state transition diagram because they do not effect a state change, but do
affect aresponse. Consider, for example, a method to compute a Julian
date. Clearly, the value associated with March 1 depends on whether the

198

year isaleap year.

Some boundaries can only be identified from code itself because they are
derived from an algorithm used to implement a specification and not from
the specification itself. A standard example is afunction to sort an array of
integer values in nondecreasing (ascending) order. With respect to the size
of an array to be sorted, boundary conditions are as follows:

an array containing no elements

an array containing exactly one ement

an array containing exactly two e ements—the smallest array that
can actually be sorted

an array of alarge number of elements

With respect to the ordering of elementsin an array to be sorted, they can
be arranged as follows:

In arandom order

as the same value

in a sorted order

In reverse of their sorted order

Finally, we can consider the aspect of the actual valuesin an array to be
sorted, which can be unique, the same, or partly unique and partly the
same.

The values can range from the smallest boundary value to the largest.
These three aspects generate a fairly large number of test cases.

Evenif al transitions are covered once, adequate testing is doubtful because states
usualy embrace arange of values for various object attributes. We need to test
values over those ranges. Testing is needed for typical values and boundary values.

We must aso be concerned about how operations interact with respect to
trangtions. If there are two transitions T, and T, into a state and one transition T,
out of a state, then the test cases for T; might pass when the input state is set up
using T,, but not when T, is used. We can address this problem using a measure of
adequacy based on coverage of all pairs of transitions in the state transition
diagram. In our example, we would test the combinations of T,-T; and T,-Ts.

Constraint-Based Coverage

199

Parallel to adequacy based on state transitions, we can express adequacy in terms
of how many pairs of pre- and postconditions have been covered. If for example,
the preconditions for an operation are pre; or pre, and the postconditions are post;
or post,, then we make sure the test suite contains cases for al the vaid
combinations—pre,=true, pre,=fase, post;=true, post,=fase; pre,=fase,
pre,=true, post;=true, post,=false, and so on.

Recadll the steps we described earlier for finding test case requirements when
generating test cases from pre- and postconditions. If one test case is generated to
satisfy each requirement, then the test suite meets this measure of adequacy.

In away smilar to what we described for using pair-wise sequences of transitions
in state-based coverage, we can use sequences of operations based on analysis of
preconditions and postconditions. For each operation op that is not an accessor,
identify the operators op,, op,, and so on, for which the preconditions are met
when the postconditions for op hold. Then execute the test cases for op-op,, op-
op2, and so on.

Code-Based Coverage

A third measure of adequacy can be based on how much of the code that
Implements the class is executed across al test cases in the suite. It isagood idea
to determine that every line of (or path through) the code implementing a class was
executed at |east once when al test cases have completed execution. Tools for
making such measurements are available commercidly. If certain lines of code (or
paths) have not been reached, then the test suite needs to be expanded with test
cases that do reach those lines (paths)—or the code needs to be corrected to
remove unreachable lines.

Even with full code coverage, the test suite for a class might not be adequate
because it might not exercise interactions between methods as we described in
state-based and constraint-based coverage. Use of one of those other metricsto
determine adequacy is important. However, measuring in terms of code coverageis
also important (see sidebar). One implementation-level technique for determining
the adequacy of atest suite is measuring code coverage for sequences of
operations. If all statements (paths) are not executed, generate more test cases to
reach them.

A Need for Implementation-Based Testing

200

In testing a function to sort an array (see Boundary Conditions on page
180), we might want to use a sampling of test casesin order to reduce the
testing effort. (Pair-wise sampling is discussed in the next chapter.) The
following test case inputs provide a good cross section of the possibilities:

an array of zero elements

an array of exactly one element

an array containing exactly two elements that are out of order

an array of 100 eements that contain 100 different values, some
negative and some positive, arranged in a random order

an array of 101 elements that al contain the same value

an array of 50 eements that contain values that are already sorted
an array of 72 elementsthat contain values that are in exactly the
reverse of their sorted order

The choices of sizes 101, 100, 50, and 72 are arbitrary. An array of any
reasonable size would seem to suffice. We decided to use different sizes
just to get a better sampling. Some inputs are ordered randomly, aready
ordered, and reverse ordered. These cases seem to cover the specification
reasonably well. If the function can pass these test cases, then we can be
reasonably confident that it can sort any array. Of course, exhaustive
testing would make us more confident.

However, we cannot ever be fully confident a component meets its
specification based purely on test cases derived from a specification.
Consider a scenario in which this sort function has been implemented so
that all arrays of a size under 1024 are sorted using a bubble-sort
agorithm, and al larger arrays are sorted using a quicksort agorithm.
Then, by using these test cases, the code for this function would not be
tested adequately. A size of 1024 comprises a boundary imposed by the
implementation that is not identifiable from the specification. Thus, more
test cases that use arrays containing 1024 and more elements are needed.

Constructing a Test Driver

A test driver is aprogram that runs test cases and collects the results. We describe
three general approaches to writing test drivers. There are probably others and

201

certainly there are many variations on what we present. \We recommend one
approach over the others and will develop it in detail .

TIf the behavior of the class calls for program termination as a
postcondition—for example, when an implementation based on
a defensive programming approach uses the assert () library
function to check preconditions—then multiple test drivers
might be needed or the test driver needs to support some way
of running individual test cases.

Consider three ways to implement atest driver for the Vel oci t y class. Wewill
use C++ to illustrate the structure of the test driver design.

1. Implement afunction mai n() that can be compiled conditionaly (with
#def i ne TEST) when compiling the member function definitions (in the
Velocity.cpp file) and then executed (see Figure 5.9).

Figure 5.9. A conditionally compiled test driver for theVel ocity
class embedded in the source file

// File: Velocity.h [/ File: Velocity.cpp
#ifndef VELOCITY_H #include "Velocity.h"
#define VELOCITY_H
Velocity::Velocity()
#include "direction.h” ;_speed(D), _direction(0), ... { }
#include “speed.h”
Velocity::Velocity(Speed speed,

class Velocity { Direction dir)
public: : speedispeed), _directioni(dir), ... { }
Velacityi);
Velacity(Speed speed,
Direction dir); #ifdef TEST
J{ Test driver code
private: int main() {
Speed _speed; S run and report test cases
Direction _direction; P
}
5 #endif

2. Implement ast at i ¢ member function within the class that can be invoked
to exe[c_]ute and collect the results for each of the test cases (see Figure
5.10)."

202

MIn Java, this could be a class method named mai n(),
thereby making execution of the test driver as simple as
running a class file on the Java virtual machine.

Figure 5.10. A test driver embedded as a class operation for
Vel ocity

// File: Velocity. h
#ifndef VELOCITY_H
#define VELOCITY_H

#include "direction.h”
#include "speed.h”

class Velocity {
pubilic:
Welocity();
Velocity(Speed speed, Direction dir);

private;
Speed _speed;
Direction _direction;
o -

H

// File: Velocity.cpp
#include "Velacity. k™

Velocity::Velocity()
: _speed(0), _direction((),
ol

Velocity::Velocity{Speed speed, Direction dir)
: _speedispeed), _direction{dir), ...{ }

int Velecity::main() {
Jf run and report test cases.
e

t

3. Implement a separate class whose responsibility isto execute and collect the
results for each test case (see Figure 5.11). A mai n() function instantiates
this class and sends it a message to run all test cases. Note: in Java, mai n()
can be a static method of the Vel oci t yTest er class.

Figure 5.11. A test driver for the Vel oci ty class implemented as
a separate "tester" class

S/ File: VelocityTester. b
#ifndefl VELOCITYTESTER_H
#define VELOCITYTESTER_H
#Finclude “Velocity.h”
class VelocityTaster |
public:

VelacityTester();

wvoid runTestSultedy;

private:

H

// File: VelocityTester.cpp

#include "VelocityTester h”

VelocityTester: VelocityTester()
] |

void VelocityTester::runTestSultedy |
S/ code to run and report test cases.

.

/f File; velocityTesterMain.cpp
#include "VelocityTester.h”
int main
VelocityTester tester;
tester.runTestSuite();

b

203

All three designs are equivaent with respect to their support for running the same
test cases and reporting the results. Some of the strengths and weaknesses of each

are summarized in Figure 5.12.

Figure 5.12. Strengths and weaknesses of the test driver designs

Method

Strengths

Weaknesses

1. Conditionally com-
piled driver.

2. Static mathod serves
as test driver.

3. Separate “tester”
class.

Driver code maintained
closely with (in the
same file as) class
code.

Driver code maintained
closely with class code.

Easy to reuse code for
driver (by inheritance) to
lest a subclass.

Easy to reuse code for

driver to test a subclass.

Production code is as
small as possible,

Production code is as
fast as possible.

Hard lo reuse code for
driver to lest a subclass
withoul cloning.

Requires support for
conditional compilation,

Care must be taken to
strip driver code from
delivered software.

Mew class must be
created.

Care must be taken to
reflact changes in the
class in the tests,

The second and third designs are attractive because they can be implemented using
standard features of most object-oriented programming languages. We prefer the
third design.’®! Although it separates test code from production code, the
relationship between a class and a driver for testing it is easy to remember—each
classChasatester classcaled CTest er. The use of a separate classis not
necessarily a disadvantage. The proximity of a driver's code to the code for a class
it tests is advantageous if the code for both is being developed by the same person.
Otherwise it is adisadvantage. This tester class design allows some flexibility

since in most programming languages two classes can be defined in the samefile

or in different files.

1|t has even more strengths in association with testing
inheritance hierarchies, as we will describe in Chapter 7.

We will concentrate on the tester class design, although most aspects of
development of such adriver can be adapted in a straightforward manner to the

other designs.

Test Driver Requirements

204

Before looking at tester classes in more detail, consider the requirements for a test
driver for execution-based testing of a class.

The main purpose of atest driver isto run executable test cases and to report the
results of running them. A test driver should have ardatively smple design
because we seldom have time or resources to do execution-based testing of driver
software. We rely primarily on code reviews to check driver code. In support of
reviews and to facilitate maintenance, we should be able to readily trace the testing
requirements in atest plan to the code in adriver. A test driver must be easy to
maintain and adapt in response to changes in the incrementa specification for the
classit tests. Ideally, we should be able to reuse code from the test drivers for
existing classes in creating new drivers.

Figure 5.13 shows amodel for a class Tester that satisfies these requirements. The
public interface provides operations to run various test suites—or al of them. The
test cases are organized into suites based on their origin—functional if they were
identified from the specification, structural if they were identified from the code,
and interaction if they test the correct operation of sequences of events on an
object, such as pairs of input/output transitions. We identify these categories to
facilitate maintenance of tests. The lines between these categories are sometimes
hard to draw, but the genera criterion for putting atest case in a category concerns
how the test case was initialy identified and what impact changes to a class have
on atest case. Interaction test cases are usualy generated to augment other test
cases to achieve some level of coverage. |mplementation-based test cases are
generated to test some behavior of the code that arises from the implementation
rather than the specification. If the implementation for a class changes, but not the
specification, then we should be able to update the driver code just by modifying
code to run implementation-based test cases. We refer to the set of test casesina
particular category as a test suite for that category. Thus, we identify a functional
(specification-based) test suite, a structural (implementation-based) test suite,
and an inter action test suite.

Figure 5.13. A class model for requirements of a Test er class

205

Tester

; object under test
#enum Result {Fail, TBD, Pass} [Object

+Tester(logFileName : String)
+=Tester()

+runAllSuites()
+runFunctionalSuite()
+runStructuralSuite()
+runinteractionSuite()

class under test
+total Tally() : int 4 Class
+passTally() : int
+ailTally() : int

+TBDTally() : int

#irunBaselineSuite(): Boolean
#CUTinvariantHolds(): Boolean

#logTestCaseStart(lestiD : String)
#logTestCaseResult{resull : Result)
#ogComment{comment : String)

Thet al | y operations on atester can be used to check how many test cases have
passed so far. A driver keeps alog of test case execution and the resultsin afile
whose name is specified at the timeit is instantiated. The protected

| ogTest CaseStart (), | ogTest CaseResult (), andl ogComment ()
operations place information in the log file. The protected

runBasel i neSui t e() operation verifies the correctness of methods in the
class under test (CUT) that are used by the test driver in checking the results of test
cases. Accessor and modifier methods are usually tested as part of the basdline test
suite for aclass. The CUTi nvar i ant Hol ds() operation evauatesthe invariant
of the CUT using the state of the current object under test (OUT).

The Test er classisabstract. Code for the class can provide default
implementations for operations common to all (concrete) testers. These include
operations for logging test case results and performing other functions common to
all classtest drivers, such as measuring heap allocation and providing support for
timing execution of individua test cases. The methods to run the test suites and to
check aclass invariant must be implemented for each specific CUT.

We now look at the typical design for aconcrete Test er class. A design for
Vel oci t yTest er isshown in Figure 5.14. The figure shows a little more detail

206

about the Test er classthan isshown in Figure 5.13, including some operations
to manipulate an OUT and some factory methods for creating instances of the
CUT. We will describe these in the next section. A concrete Test er classis
responsible primarily for implementing methods for test cases and running them as
part of asuite.

Figure 5.14. Class model for a Vel oci t yTest er class

Tester Velocity Tester
#enum Result {Fail, TBD, Pass} +VelocityTester(logFileMame : String)
#out : Object +~ValocityTester()

+Tester{logFileMame : String)

+~=Tester() +runAllSuites()

: L }—— +runFunctionalSuite()
trn/liuites) +runStructuralSuite()

+runFunctionalSuite() +runinteractionSuite()
+runStructuralSuite()

+runinteractionSuite()

+lotalTally() ;.llnt #runBaselineSuite(): Boolean
+passTally() : int #CUTinvariantHolds() : Boolean
+ailTally() : int
+TBDTally() : int +newCUT() : Object
. _ +newCUT(s : Speed , d : Direction) : Velocity

#runBaselineSuite(): Boolean +newCUT(obj : Object) : Object
#CUTinvariantHolds(): Boolean

_ #runTestCase1|)
+getout() : Object BrunTestCase2()
+newCUT{obj : Object) : Object
+disposeQUT() #runTestCaseN()

fflogTestCaseStart(testlD : String)
#logTestCaseResult{result : Result)
HlogComment(comment : String)

Tester Class Design

Sincethe Test er class provides operations to help report test case results, the
primary responsibility of aconcrete Test er class, suchasVel oci tyTester,
ISto run test cases and report results. The main components of the class interface
are operations to set up test cases, to analyze the results of test cases, to execute
test cases, and to create instances of the CUT to be used in running test cases. Our
design has proven both flexible and maintainable. It has proven quite useful when
instances of a class are needed to test another class, as we will show in the next
chapter.

207

Within a concrete tester class, we define one method for each of the test cases. We
refer to these astest case methods. These provide traceability to the test plan—
one method per test case or group of closely related test cases. The purpose of a
test case method is to execute atest case by creating the input state, generating a
sequence of events, and checking the output state.

Test Case Methods

InaTest er class, each test case is represented by a single method. The name of
the method should reflect the test case in some way. For small numbers of test
cases, we can sequentially number the test cases identified in the test plan and

name the operationsr unTest Case01(), runTest Case02(), and so on.
Sequential numbering is sSimple, but can result in problemsiif test casesin aplan

are ordered in some way and test cases are inserted or deleted. Usually a naming
convention can be developed based on the derivation of the test cases (see sidebar).

The responsibility of atest case method is to construct the input state for atest
case—for example, by instantiating an OUT and any objects to be passed as
parameters, and then by generating the events specified by the test case. A test case
method reports the status of the result—pass, fail, or TBD™ to indicate some action
Is needed to determine the result. A test case method verifies that the CUT's
invariant holds for the OUT.

®'To be determined. Some results require human reaction,
such as verifying generation of a sound or a change in what is
displayed on a monitor screen. For example, testing an
overloaded stream insertion operator for a class in C++ might
require a tester to open a file and verify that the data is printed
correctly. For such test cases, we like to include directions as
comments in the log.

In our code, atest case method has a general structure shown in pseudocode in
Figure 5.15.

Figure 5.15. Pseudocode for a typical test case method

208

void te_testCaselD{ {
report start of test case;

create a new instance | of the CUT using a factory method;
put | inta the correct input state;
setOUT(N

generate the prescribed sequence of events on the OUT,

check post-conditions and ¢lass invariant against OUT;
report results;
disposeQUT()

Tip

Implement atest script method for each test case when creating a T ester
classfor classesin which there are many interaction test cases. A test
script method is responsible for creating the OUT for use by atest case
method, invoking the test case method, and then checking postconditions
and the class invariant. It also reports the results. The test case method
handles only the event sequence on the OUT. An interaction test case can
then be coded as a single test script method that invokes a sequence of test
case methods and then checks and reports the results.

OUT Factory Methods

Classes are tested by creating instances and checking their behaviors against a set
of test cases. We have referred to an instance to which atest case is being applied
asthe object under test (OUT). The main requirement with respect to the OUT is
that attributes be specified for the inputs to the test case so that preconditions
associated with atest case to be applied are met. The Test er classincludes

set QUT() and get QUT() operations that are used by test case methods to
access the current OUT (see Figure 5.14). A di sposeQUT() isavailableto end
an association of the OUT with its current instance.

Naming Test Cases

Naming test cases well is an interesting problem. We would like the names
to somehow reflect what is being tested. In an environment in which
paragraph numbers are associated with each piece of a specification, the
name of atest case can include some encoded reference to that paragraph
that givesriseto the test case. Thisis desirable because it gives traceability

209

to the test case and is commonly used to name system test cases. However,
paragraph numbers are not associated with OCL specifications or state
trangition diagrams, which are used to specify classes.

For naming specification-based test cases, a naming scheme can be based
on an operation name and pre- and postcondition numbering. Assume an
operation is specified with the following pre- and postconditions:

pre: Dor @

Based on agoa of testing each combination of precondition and
postcondition, then the combinations in the following table are possible:

@ @ o @ Test Case Name
F T T F OplF2T1T2F
T F T F Opl1T2F1T2F
T T T F oplT2T1T2F
F T F T Op1F2T1F2T
T F F T Op1T2F1F2T
T T F T Op1T2TI1F2T
F T T T Op1F2T1T2T
T F T T Opl1T2F1T2T
T T T T oplT2TAT2T

The test case name is derived by numbering the digunctsin the
precondition and the postcondition, and incorporating those numbersin the
name followed immediately by a"T" or an"F" to indicate the truth value
associated with that test case. If several equivalence classes, as determined
by boundary values, exist for a particular test case, then a suffix can be
added to the namefor example, op1lF2T1T2Fa, oplF2T1T2Fb, and so on.
An explanation of these test cases should be included in documentation for
the code or the test plan.

This scheme works for naming test cases that address a single operation.

Test cases involving interactions can be named based on concatenating

210

names for each of the operations in a sequence comprising an interaction.

Checking Postconditions and Invariants

Postconditions and invariants can be checked in a straightforward manner,
assuming the CUT defines public operations for accessing state and/or
attribute values.

We have identified two genera gpproaches to writing code to check
postconditions and invariants. One is to write code to compute attribute
values in the tester code when they are needed. The other isto use a
database of some form—including as afile or array in memory—from
which values can be retrieved when needed. Consider checking the values
of speedX and speedY atributesin theinvariant for Vel oci ty. The
condition involves sines and cosines of angles. We can compute these
values as test cases execute using the si n() and cos() functionsina
standard library, assuming we are using reliable functions. Alternatively,
we can precompute values of the attribute for various values of direction
and speed used in test cases, and then retrieve that information when it is
needed. We have used spreadsheet programs to perform such
computations.

A tricky part of checking postconditionsisin coding expressions that use
@pre, meaning the vaue at the start of the method execution. The method
must store such valuesin alocal "temp" whose value is used once the test
case output is available for checking. Use the factory method in the

Test er classthat corresponds to a copy constructor to facilitate @pre
checking. For example, in checking the postcondition for
setDirection(D rection dir), use

Velocity *QUTat Pre = newCUT(*getQUT()); //
renenber state

|f(QUT. get Speed() == QUTat Pre. get Speed() &&
QUT.getDirection() == dir)

If postconditions relate to the state of the OUT, then invoke operations to
check the state. If no such operations are defined by the CUT, then define
them in the tester class as protected member functions. Note well: If the

test case method is relying on operations defined in the CUT, then make

211

sure tests for those operations are included in the baseline suite.

OCL dlows state names to be used as Boolean-valued attributesin
specifications [WK99]. A class need not define an operation to explicitly
return the state of an instance. We believe classes should aways include
some way of observing the current state of an object based on state names,
not just ranges of attribute values—for example, in the Puck Suppl y
classwe defined the i sEnpt y() operation. If the CUT does not
completely support in its interface the operations needed to test
postconditions and invariants in terms of states, approach the developersto
add them to the CUT rather than coding methods in the Test er class.
After dl, aclient (inthis case the Test er class) should be able to observe
all the behavior of an object if that behavior is referenced by the
specification. Certainly a class must have in its public interface al the
operations necessary for aclient to check the preconditions for any public
operation.

A tester interface includes a set of operations to construct instances of the CUT.
These operations include newCUT((bj ect), which isafactory method used to
create an instance of the CUT that is a copy of the object passed as its argument—a
factory method resembling a copy constructor in C++. A concrete Test er class
should implement a factory method corresponding to each constructor defined in
the CUT. Test case methods use these factory methods to create an OUT instead of
constructors for the CUT. Test case methods use get OUT() to access a current
OUT. Inthe caseof Vel oci t yTest er, we define operation newCUT() to
create an instance of Vel oci t y constructed with the default constructor and

set QUT() to make that instance the current OUT. We also define the

newCUT(s: Speed, d: Direction) operation to create anew instance
usngtheVel ocity: : Vel ocity(s: Speed, d: D rection)

constructor. The test case methods must use these factory methods to create new
instances of the CUT for reasons that will be apparent when we look at testing

class hierarchiesin Chapter 7.2%

1% Here is a preview. For any subclass (of the CUT) designed
In accordance with the substitution principle, test cases for the
CUT still apply to that subclass. We will create a tester for the
subclass that is a subclass of the tester for the CUT. Since the
test case methods in the tester for CUT rely on factory
methods, we can just override those same methods in the

212

subclass's tester to create instances of the subclass. As we
mentioned at the start of the book, object-oriented technologies
improve testing as well as development.

It is not uncommon for a Test er classto define additional factory methods for
the convenience of test cases that need to create an OUT in some specific state. For
example, the PuckSuppl yTest er class might provide a

newPuckSuppl yOF One() operation to construct a Puck Suppl y instance
containing a single puck. Such factory methods should be public since they are
very useful when instances of the CUT are needed to test another class. The test
case methods for the other class can use an instance of this Test er classasa
helper to create the instances in the necessary states. |n implementing such
methods, however, take care to use the other factory methodsin the Test er and
not the constructors for the CUT.

Objects under test should be allocated from the heap because the use of asingle
object shared by all test cases will not work in the general case. It isaso easier to
understand test driver code that is written so that each test case method creates its
own OUT and then disposesit. Sharing such objects between test case methods
increases coupling. Keep test driver code as smple as possible, even at the expense
of some time and/or space inefficiency. One of the most frustrating aspects of
developing test driversistesting and debugging them. The more straightforward

the code, the better the driver.

In using alanguage such as C++ in which a programmer must manage the heap,
make each test case method responsible for deleting objectsit allocates. The
di sposeQUT() method can delete the current OUT.

Baseline Testing

Test case methods contain code to establish an OUT, which might require a series
of modification requests to be sent to an instance of the CUT. Test case methods
use accessor operations in the process of checking postconditions. If the
constructors, modifier methods, and accessor methods for the CUT are incorrect,
then the results reported by atester are unreliable. The first thing atester must do is
check that such constructors and methods are themselves correct b{]executi ng test
cases for them. We call this set of test cases a basdline test suite™*

" Thorough testing of the most basic operations needed to
check test results is critical. We once worked on a compiler for

213

which the programs in the test suite always checked for failure
of each test case—that is, of the form set up test case input;
execute test case input; if (some condition not true) then report
failure. A compiler could pass the executable test suite if it
generated code so that all conditions evaluate to true so that no
failure would be reported. This is clearly a weakness of the
testing approach. We needed a baseline test suite that checked
for correct evaluation of conditional expressions in if

Statements.

A basdline test suite is a set of test cases that tests the operations of the CUT that
are needed for the other test cases to verify their outcomes. This suite includes
testing constructors and accessors. Most likely, al the test cases in the baseline test
suite will be replicated in the functiona test suite.

We have identified two basic approaches to baseline testing, one that's
specification-based and one that's implementation-based:

1. Check that all the constructors and accessors are self-consistent. Create atest
case for each constructor and verify that all attributes are correct by invoking
accessors.

2. Check that al the constructors and accessors use the variables in an object
correctly. Thisrequires atester to know how attributes are implemented in a
CUT. Itsimplementation relies on visbility features of programming
languages that allow atester class to have access to the implementation of
the classit tests. These features include friendsin C++ and package
vighility in Java

Base your approach on how closely you want to couple the code for a tester to the
code for the class it tests. We have found the second approach to produce more
reliable results, although it requires more programming effort and tightly couples
the code between the two classes—for example, in C++ the CUT must declare its
Test er classafriend. The second approach usually requires fewer test casesin
the basdline suite than does the first approach.

Assertion Checking in a Class Under Test

While the primary mechanism for execution-based testing is implementing
atest driver, bugs can also be found by inserting assertion checksin code
for aclass asit is developed. This can include assertions to check

214

preconditions, postconditions, and invariants. An implementer can identify
an implementation-oriented set of invariants in addition to the invariants
specified for a class. Consider, for example, the Spri t e classin Brickles.
For efficiency reasons, each instance maintainsin itslocal state both the
bounding rectangle (as a corner point, a width, and a height) and the points
that form the upper left and lower right points of the bounding rectangle.
This redundancy is a potential source of bugs because the values can
become inconsistent. This design introduces an implementation-level class
Invariant constraining the point at the lower right corner of the bounding
rectangle to be the lower right point stored in an instance. A

SpriteTest er classcannot contain code to check such
implementation-level invariants unless it has access to the implementation

of Sprite. Tofacilitate testing, an implementer should include an
assertion to check this implementation-level classinvariant in every

member function that modifies the bounding rectangle of an instance. This
facilitates debugging and testing without increasing the coupling between

atester class and its CUT.

Tip

Implement a protected method ina Test er classto check postcondition
clauses. The same postcondition often gppears in the specification of more

than one operation defined for a class. Invoke these protected methods

rather than coding the same postcondition checks in each test case method.

Similarly, define afactory method to return an OUT in a state required for
atest case. It is not uncommon for a number of test cases to specify the
same preconditions for an OUT and to have a convenient method to create

an instance and reduce the amount of code in atest driver.

If test script methods are being used to facilitate interaction testing in a

class, write each test case method so that it verifies the input state for the

test case before generating events on the OUT. Since tester classes are

seldom formally tested themselves (by Test er classes), alittle defensive

programming can help in debugging them.

Running Test Suites

215

The abstract Test er classincludesin its protocol some operationsto run all test
cases or selected suites. These methods for these operations are straightforward to
implement. Each calls a sequence of test case methods. Take care to ensure that the
baseline test suite is executed before any of these other suites are executed. A
possible design calls for executing the baseline test suite when a concrete tester
classisingtantiated—that is, as part of itsinitiaization.

If the CUT contains static member functions and/or data members, then the

Test er class should to incorporate code that ensures that code has already been
tested and works correctly or at least warns that the classitself might need testing
before its instances can be tested. Thisis not critical since the god of testing a
classisto uncover bugs, not diagnose the source of those bugs. However, such a
reminder can serve to ensure that atest driver iswritten for those static members.

f" Isit possible to design a class to make testing easier?

Y es. Ensure that the public interface includes

B operations that endble al conditions within
preconditions, postconditions, and class invariants to
be checked by clients. Furthermore, enable the current
observable state to be observed without a client
having to determine that state based on current
attribute values. If aclassis not designed with such
methods, approach the class designer about adding
them to the interface.

Providing a public operation in a class to check the
classinvariant isuseful toa Test er classand to
developers for debugging. Be wary, however, of
relying on that code to check postconditionsin test
case methods. We prefer to code up an independent
CUTI nvar i ant Hol ds() method in each Test er
class we implement.

Tip

Be sure to rerun al test cases after debugging code is removed from the
code for a class. Sometimes developers add code to help in debugging a

216

class—for example, assertion checks and statements that write trace
information to streams. In many shops, debugging code is removed before
software is deployed. (To support this, for example, C++'sassert ()
macro (library header file assert.h) checks assertions only if NDEBUGIs
not defined.) Under some circumstances, code that includes debugging
information can have behaviors different from the same code without the
debugging support. Consequently, take care to run test cases in both
debugging and nondebugging modes.

Reporting Test Results

A test case method determines the success of atest case. In our design, test case
methods report results to the tester instance itself, which tallies test suite run
statistics. It is useful for each test case method to identify itself as part of its report.
A string denoting the script name or purpose is useful.

Keep in mind that the purpose of testing is not to debug a class, but to seeiif it
meets its specification. Since a classs tester is usualy its developer, writing code
in adriver that attempts to diagnose problems with the CUT is very appealing.
Extensive effort put into diagnostic code is almost always misplaced. Symbolic
debuggers and other tools are better for such activities. Such debugging can, of
course, be done in the context of the test driver.

Example of Test Driver Code

Weillustrate the design of a Test er class by showing the representative parts2

of Vel oci t yTest er writtenin C++ and in Java. Features and restrictions in the
two languages result in different designs. A test plan for Vel oci t y isshownin
Figure 5.16. A set of test case descriptionsis shown in Figure 5.17. Some test cases
are determined by combinations of values for attributes over arange of values.

121 The code is quite lengthy. The sections omitted follow the
pattern set forth by the code shown in the example.

Figure 5.16. A component test plan for the Vel oci ty class

217

Component Test Plan

{Eomptmmt Name yioc iy

IDwdupar{!l David Sykes
Objectives for This Component

This class plays a central role in implementing sprites thal move in Brickles—or any

other arcade game. It is more generally useful in representing anything that moves in a

plane represented as a grid of coordinates having integer values.

| rl'mcklﬂﬂ Number :rpi0za95 |

| |T'“"lsl Dawvid Sykas I

Guided Inspection Requirements
A5 this is a critical component, 100% of its code shall be inspected.

A risk analysis has shown that all operations in the interface are likely used by other
componerts of the sysiem and consegquently all must be lested.

Building and Retaining Test Suites
The test suites shall be prepared in accordance with project standards. Thus, the test
drivier shall take the form of a VelocityTester class and shall include operations 1o exe-
cute functional, structural, and interaction test cases.
Reporting of results shall conform Lo project standards as sed forth in the documenta-

tion for the abstract Tester class

Specification-Based Test Cases
Test cases for each operation shall address the equivalence classes of speed {(zero,

slow, moderate, and fas and direction (east, northeast, north, northwest, west, south-
west south, and sowtheash. Pairwise combinations shall be usad.

Implementation-Based Test Cases
Executle lest cases needed to cover any code nol execuled by test cases in the speci

fication-based suite.

interaction Test Cases
Execute test cases that test the interactions of the reverse(). reverseX(). and reverseY()

operauons

State-Based Test Cases
Execule lest cases that cover every transition in the state representation.

Figure 5.17. Test case descriptions for some of the Vel ocity
operations

218

Description Input Output
Setup Eventi(s) Result State Exceptions
i o 4 - nens QUT = new OUT.speed=-0 and ngne
test defaull constructor Valoeily; QOUT drection=0
tesl constructor {spd = | none OUT = new OUTspeed = spdand | none
&, 12, 1000 dir - Velocity(spd, | OUT.direction = dir
0..358) a1y
T o T g OUTVeloc- OUT.setlh OUT.dwection = cirand | none
;'&“ﬁ‘ﬁr('g{;;fq?_’x;' itylspeed=1000, rectionidir+ 1) | OUT.speed = spd
' S direction=dir
test seiSpeed (spd = 0, | OUTVeloc- OUT.sel- OUT dwection = dirand | none
1,510, 71000; dir= 0, | iy[speeds=100, Speadispd); | OUTspeed = spd
30, 90, 135, 180, 182, | direction=dii
270, 335)
QUTVelocity[speed = | OUTreverse() | OUTspead = 10 and none
10, direction = 0] O diwection = 180
QUTVelecity|speed = | OUT.wverse() | OUT spead = 10 and o
10, direction = 30] OUT dwection = 210
QUTVelocity[speed OUTreverse() | OUT.speed - 10 and none
10, direction = 90] OUT direction = 270
QUTVelccity[speed = | OUTreverse() | OUTspead = 10 and nong
(st reverse() 10, direction = 135] OUT.dwection = 315
e OUTVeiocity(speed = | QUTreverse() | OUT speed = 10 and none
10, direction = 180] DU dwection = 0
QUTVelocity[speed = | OUTreverse() | OUT speed = 10 and niane
10, direction = 182] OUT.dwection = 2
QUTVelocity[speed = | OUTreverse() | OUT speead = 10 and none
10, direction = 270] OUT dwection = 90
OUTVelocity[speed = | OUT.reverse() | OUT.speed = 10 and none
10, direction = 335) OUT dwection = 155
QUTVelecity[speed = | OUTreversel) | OUT spead = 10 and nona
10, direction = 0] QUT.drection = 180
OUTVelocity[speed = | OUTreverse(] | OUT spead = 10 and none
10, diracton = 30 QUL dwection = 150
QUTMVelocity[speed = | OUTreverse() | OUT speed - 10 and none
10, direction = 9] OUT.direxction = 20
OUTVeleciyy[speed = | OUTreverse() | OUT.spead = 10 and nonea
) 10, direction - 135] OUT.dwection - 45
reverseX|) =
QUTVelecity[speed = | GUT reverse(] | OUT.spead = 10 and none
10, direction = 180} OUT diresctiaon = 0
QUTMVelccity[speed = | OUTreverse{) | OUT spead = 10 and none
10, direction = 182] ORI direction = 358
OUTVelecity|speed = | OUTreverse() | OUTspead = 10 and noneg
10, diraciion = 270] OUT.dwection = 270
QUTVelocity[speed OUTreversel) | OUTspeed - 10 and none
10, dhirgction = 335] OUT direction = 205
reversey{)

C++ codefor the Test er and Vel oci t yTest er isshown first, followed by
the Java code. First, we will make some observations about the code.

In the C++ version, we have used a template parameterized by the CUT to
generatethe Test er abdtract class. By using atemplate, we can produce a
class at the root of the tester hierarchy for each CUT. Consequently, for
example, operations such as get QUT() return a pointer to an instance of
the CUT and not a pointer of type voi d * or of a pointer to some abstract
o) ect class.

219

In the Java version, we defined Test er as an abstract class and used
(bj ect to represent the class of the OUT. This requires each test case
method to dynamically cast areference to the OUT to areference to the
CUT.

The Test er classin both implementations have the same functionality.

This includes code to tally and report test resultsto alog file. This design
could be enhanced significantly to maintain a database of test results and do
more elaborate reporting.

Notice how the factory methodsin Vel oci t yTest er return an instance

of the Vel oci t y class. A tester should always declare such factory
methods to return a pointer or areference to the CUT.

The basdline test suite implemented in Test Vel oci ty isminimd. It

merely checks that the attribute values returned by accessors are correct for a
single object. More extensive testing of accessorsis part of the functional

test suite.

The CUTI nvari ant Hol ds() methodin Vel oci t yTest er relieson
the math library functionssi n() and cos(). Wetrust those functionsto
return the correct value. In the C++ version, we use the arc cosine of -1 to
compute avaue for Pl. Java provides Vat h. Pl to use.

To save space, we have not included all test case methods. The test case
methodt ¢ Vel oci ty() teststhe default constructor. The

tcs_ Vel ocitySpeedDi rection() andtcs_setDi rection()
methods run the sets of test cases described in Figure 5.17 for the nondefault
constructor and set Di rect i on() operation.

C++ codefor the Test er class. This code was compiled using Metrowerks
CodeWarrior Pro 5.

#i ncl ude <fstreanp
#i ncl ude <i omani p>
#i ncl ude <cti ne>
usi ng nanmespace std;

enum TestResult {Fail, TBD, Pass};
t enpl at e<cl ass CUT>

cl ass Tester {
public:

220

Test er <CUT>(string CUTnane, string | ogFil eNane)
_CQUTnane(CUTnane), _logStrean(l ogFileNane.c str()),
_QUTPtr(0), _passTally(0), _failTally(0),

_TBDTal l y(0) {
tine t systine = tine(0);
_logStream << ctine(&systine) << endl;

}

virtual ~Tester<CUT>() { // Summarize results in |og
_logStream << endl << "Summary of results:" << endl
<< "\t' << totalTally() << " test cases
run" << endl
<< fixed << showpoi nt << setprecision(2)
<< "\t' << setwW7) << "Pass:" << setw5)
<<passTal l y() << endl
<< "\t' << setwW(7) << "Fail:" << setw(5)
<< failTally() << endl
<< "\t' << setw7) << "TBD :" << setw5)
<< TBDTally() << endl;
_logStream cl ose();

}

virtual void runAll Suites() {
runFuncti onal Suite();
runStructural Suite();
runl nteractionSuite();

}

virtual void runFunctional Suite() 0;
virtual void runStructural Suite() 0;
virtual void runlnteractionSuite() = 0;

I nt passTally() const { return passTally; }
int failTally() const { return failTally; }
int TBDTally() const { return TBDTally; }
int total Tally() const {

return passTally + failTally + TBDTally;

}

221

virtual CUT *getQUT() { return QUTPtr; } // Current
QuT
virtual void disposeQUJT() { // Finish use of current
QuT
if (! _QUTPtr) {
delete QUTPtr;
_QUTPtr = 0O;
}

}
virtual CUT *newCUT(const CUT &object) = O;

pr ot ect ed:
virtual bool runBaselineSuite() = O;
virtual bool CUTinvariantHol ds() = O;

void setQUT(CUT *outbPtr) { QUTPtr = outPtr; }
/'l used by factory nethods

voi d | ogTest CaseStart(string testlD) {
_logStream<< "Start test case " << testlD << endl;

}

voi d | ogSubTest CaseStart (i nt caseNunber) {
_logStream << "Start sub test case " << caseNunber

<< endl ;

}

voi d | ogTest CaseResul t (Test Result result) {
_logStream << "RESULT: ";
switch (result) {

case Fail: ++ failTally;
_logStream << "FAIL";
br eak;

case TBD: ++ _TBDTal | y;
_logStream << "To be determ ned";
br eak;
case Pass: ++ _passTally;
1l ogStream << "Pass";
br eak;
def aul t:

222

_logStream << "BAD result (" <<
int(result) << ')’

}

_logStream << endl ;

}

voi d | ogConmrent (string coment) {
_logStream << "\t* " << comment << endl;

}

Test Result passO Fail (bool condition) {
[l Wility for a result that cannot be TBD.
/'l This checks the invariant, too.
If (condition &% CUTi nvari ant Hol ds())
return Pass,;
el se
return Fail;
}

private:
string CUTnane; // nane of the class under test
of stream |logStream// |og stream

<< endl ;

Cur * QUTPtr; /1l pointer to current object under
t?i: _passTal ly; /'l nunber of test cases passing so
f?Lt _fail Tal ly; /'l nunber of test cases failing so
f?Lt _TBDTal | y; /'l nunber of test cases
provi sional ly

/| passing so far
b
C++ codefor the Vel oci t yTest er class.
/'l VelocityTester.h
#i nclude "Tester.h"
#include "Velocity. h"

class VelocityTester : public Tester<Vel ocity> {

223

public:
Vel ocityTester(string | ogFi | eNane)
Tester<Vel ocity>("Vel ocity", |ogFileNane) {
runBasel i neSuite();

}

virtual void runFunctional Suite() {
tc Velocity();
tcs_ Vel ocitySpeedDi rection();
tcs _setDrection();
}
virtual void runStructural Suite() { }
virtual void runlnteractionSuite() { }

virtual Velocity *newCUT() { return new Velocity(); }
virtual Velocity *newCUT(const Velocity &) {

return new Vel ocity(v);
}
virtual Velocity *newCUT(const Speed speed, const
Direction dir)
{

return new Vel ocity(speed, dir);

}

pr ot ect ed:
virtual bool runBaselineSuite() {

/1l Verify that the accessor operations are
consi st ent

| ogCommrent (" Runni ng baseline test suite.");

Vel ocity v(1000, 321);

If (v.getSpeed() == 1000 && v.getDrection() == 321

&&
v. get SpeedX() == 777 && v.get SpeedY() == -629
) |
| ogConmment (" Basel i ne suite passed");
return true;
}
el se {

| ogConmrent (" Basel i ne suite FAILED');
return fal se;

224

}
}

virtual bool CUTi nvariant Hol ds() {
const Velocity &UT = *get QUT();
const Direction direction = QUT.getDi rection();
const Speed speed = QUT. get Speed();
const Speed speedX = QUT. get SpeedX() ;
const Speed speedY = QUT. get SpeedY();
static const double Pl = 3.14159265;
const double radians = 2.0 * Pl * direction / 360.0;

bool result =
O <= direction & direction < 360 &% speed >= 0 &&
speedX == int(cos(radi ans) * doubl e(speed)) &&
speedY == int(sin(radians) * doubl e(speed)) &&
(speedX*speedX + speedY*speedY) <= speed*speed;

if (! result) {
| ogComment ("I nvari ant does not hol d");

}

return result;

}

void tc Velocity() { // test default constructor
| ogTest CaseStart("Velocity()");
set QUT(newCUT()) ;
Vel ocity &OUT = *get QUT();

| ogTest CaseResul t (passO Fai | (QUT. get Speed() == 0 &&
QUT.getDrection() == 0));
di sposeQUT() ;
}

void tcs_ Vel oci tySpeedDirection() {
/1l test Velocity(Speed, D rection)
/1 This runs 360 test cases
| ogTest CaseStart (" Vel ocity(Speed, Drection)");
const Speed fi xedSpeed = 1000;

for (Drection dir =0 ; dir <360 ; ++dir) {

225

| ogSubTest CaseStart (dir);

set QUT(newCUT(fi xedSpeed, dir));
Vel ocity &OUT = *get QUT();

| ogTest CaseResul t (passO Fai | (QUT. getDirection() ==
dir &&
QUT. get Speed() == fi xedSpeed));
di sposeQUT();
}
}

void tcs _setDirection() {
| ogTest CaseStart ("setDirection");
const Speed fi xedSpeed = 1000;

set QUT(newCUT(fi xedSpeed, 359)); // any dir value !=
Vel ocity &OUT = *get QUT();

for (Direction dir =0 ; dir < 360 ; ++dir) {
| ogSubTest CaseStart (dir);

QUT.setDirection(dir);

| ogTest CaseResul t (passO Fai | (QUT.getDirection() ==
dir &&

}

di sposeQUT();
}
1

The main program creates an instance of the Test er classand runsal the suites.
Results are logged to the VelocityTestResults.txt file.

QUT. get Speed() == fi xedSpeed));

#i ncl ude <i ostreanr
usi ng nanmespace std; //introduces nanespace std
#i ncl ude "Vel ocityTester. h"

226

int main (void)

{
Vel ocityTester vt("VelocityTestResults.txt");

vi.runAl | Suites();
return O;

}

Java code for the Tester class. Wedefinea Test Resul t classto represent
three possible outcomes of atest case.

| nport java.io.*;
I mport java.util.?*;

/**

A class that defines three possible test case
out cones:
Fail - failure
TBD - unknown ("To be determ ned"), usually because
result requires further analysis or
observati on
Pass - success
@ee Tester
*/
public class TestResult {
public TestResult(String value) { _value = value; }
public String toString() { return _value; }

private String _val ue;

static public final TestResult Fail = new
TestResul t("Fail");

static public final TestResult TBD = new
Test Resul t ("TBD") ;

static public final TestResult Pass = new

Test Resul t (" Pass");
}

/**

An abstract class that represents a class tester. The

227

responsibilities of a tester for a class C include:
1. running test suites,
2. creating instances of the class it tests
3. logging test results
*/
abstract class Tester {

/**

Constructs a new i nst ance.

@ar am CUTnane the nane of the class under test
@aram | ogFi | eNane the nane of the file into which
results
are | ogged
*/
public Tester(String CUTnane, String | ogFil eNane) ({
_CUTnane = CUTnane;
try {
_log = new FileWiter(logFil eNane);
}
catch (1 CException e) {
Systemerr.println("Could not open file " +
| ogFi | eNan®e) ;
}
_AJT = nul I ;
_passTal ly
_failTally
_TBDTally = 0;
try {
String line = new Date().toString()+ \n';
log.wite(line);
}
catch (1 OCException e) {
Systemerr.println("Error witing to log file");
e. printStackTrace();

}
}

public void dispose() { // Summarize results in | og

try {
int total = total Tally();

0;
0;

228

log.wite("\n");
_log.wite("Summary of results:\n");
log.wite("\t" + total + " test cases run\n");

_log.wite("\t" + "Pass:" + " "
;IOQ'MWite("\t" + "Fail:" +" "

_log.wite("\t" + "TBD :" + " "

_log.close();

catch (1 CException e) {
Systemerr.println("Error witing to log file");
e. printStackTrace();

}
}

public abstract Cbject newCUT((hject object);

obj ect

public void runAl |l Suites() {
runFuncti onal Suite();
runStructural Suite();
runl nteractionSuite();

}

publ i
publ i
publ i

publ i
publ i
publ i
publ i

OO0

O o0 o0

C

abstract void runFunctional Suite();
abstract void runStructural Suite();
abstract void runlnteractionSuite();

int passTally() { return _passTally; }
int failTally() { return failTally; }
int TBDTally() { return _TBDTally; }
int total Tally() {

return passTally + failTally + TBDTally;

}

public Cbject getQUT() { return _QUT; }
public void disposeQUT() { OQJT = null; }

+ passTal ly() +
+ failTally() +

+ TBDTal ly() +

/ | copy

229

protected abstract bool ean runBasel i neSuite();
protected abstract bool ean CUTi nvari ant Hol ds();

protected void setQUT(Cbject outPtr) { QUT = outPtr;
}

protected void | ogTest CaseStart(String testlD {

try {
_log.wite("Start test case " + testID + '"\n");
_log.flush();

}

catch (1 CException e) {
Systemerr.println("Error witing to log file");
e. printStackTrace();

}
}

protected void | ogSubTest CaseStart (i nt caseNunber) {

try {

_log.wite("Start sub test case " + caseNunber +
"\n");
_log.flush();

catch (1 CException e) {

Systemerr.println("Error witing to log file");
e. printStackTrace();

}
}

protected void | ogTest CaseResult (Test Result result) {
If (result == TestResult.Fail) {
++ failTally;
try {
log.wite("\tQUT: " + getQUT().toString() +

"\n");
_log.flush();
}
catch (1 CException e) {

Systemerr.printIn("Error witing to log file");
e. printStackTrace();

230

}

}
else if (result == TestResult.TBD) {
++ TBDTal | y;
else if (result == TestResult.Pass) {
++ passTally;
}
try {
log.wite("RESULT: " + result.toString() + '\n');
_log.flush();
}

catch (1 CException e) {
Systemerr.printin("Error witing to log file");
e.printStackTrace();

}
}

protected void | ogConment (String comment) {

try {
log.wite("\t* " + coiment + '\n');
_log.flush();

}

catch (1 CException e) {
Systemerr.println("Error witing to log file");
e. printStackTrace();

}
}

protected TestResult passO Fail (bool ean condition) {
/1 Wility for a result that cannot be TBD.
/1l This checks the invariant, too.
If (condition &% CUTi nvari ant Hol ds())
return Test Resul t. Pass;
el se
return TestResult. Fail;
}

private String CUTnane; // nane of the class under
t est

231

private FileWiter log; // log stream

private (bject _QUT, /]l pointer to current object
under test

private int _passTally; /'l nunber of test cases
passing so far

private int _failTally; /'l nunber of test cases
failing so far

private int _TBDTally; /'l nunber of test cases
provisionally

/| passing so far

i
Javacodefor the Vel oci t yTest er class.

[linmport java.util.*;
| mport Tester;
| nport Vel ocity;
/**
A class to test class Velocity.
*/
class Vel ocityTester extends Tester {

public static void main(String args[]) {
Vel ocityTester vt = new Vel ocityTester (" Vel Test - -
Java.txt");
vt.runAl | Suites();
vt . di spose();

}

public VelocityTester(String | ogFileNane) {
super ("Vel ocity", | ogFileNane);
runBasel i neSuite();
}

public void runFunctional Suite() {
tc Velocity();
tcs_ Vel ocitySpeedDi rection();
tcs_setDirection();

}

public void runStructural Suite() { }

232

public void runinteractionSuite() { }

/] Factory nmethods for creating an instance of CUT
public Qbject newCUT((oject object) {

Vel ocity v = (Vel ocity)object;

return new Vel ocity(v. get Speed(), v.getDrection());

}

public Velocity newCUT() {
return new Vel ocity();

}

public Velocity newCUT(int speed, int dir) {
return new Vel ocity(speed, dir);

}

pr ot ect ed bool ean runBasel i neSuite() {
/1l Verify that the accessor operations are
consi st ent
| ogComment (" Runni ng baseline test suite.");
Vel ocity v = new Vel ocity(1000, 321);
If (v.getSpeed() == 1000 && v.getDrection() == 321

&&
V. get SpeedX() == 777 && v. get SpeedY() == -629
) |
| ogComment (" Basel i ne suite passed");
return true;
}
el se {
| ogConmrent (" Basel i ne suite FAILED');
return fal se;
}
}

prot ect ed bool ean CUTi nvari ant Hol ds() {
Velocity OQUT = (Velocity) (getQUT());

int direction = QUT.getD rection();

I nt speed = QUT. get Speed();

I nt speedX = QUT. get SpeedX() ;

I nt speedY = QUT. get SpeedY();

final double radians = Math.toRadi ans(direction);

233

If (direction > 90) {
doubl e dx = Math. cos(radi ans) * (doubl e)(speed);
dx = Math. fl oor (dx);
I nt expect edSpeedX = (int)dx;
I nt expect edSpeedY =
(int)Math.floor(Math.sin(radi ans) *
(doubl e) (speed)) ;
bool ean rest =
(speedX*speedX + speedY*speedY) <= speed*speed,
rest = rest;

}

bool ean result =

O <= direction & direction < 360 &% speed >= 0 &&

speedX == (int)(Math.cos(radi ans) *
(doubl e) (speed)) &&
speedY == (int)(Math.sin(radi ans) *
(doubl e) (speed)) &&
(speedX*speedX + speedY*speedY) <= speed*speed,;
if (! result) {
| ogComment ("1 nvari ant does not hol d");

}

return result;

}

protected void tc_setDrection001() {
| ogTest CaseStart ("setD recti on001");

set QUT(newCUT(1000, 0));
Vel ocity QUT = (Velocity)(get QUT());

QUT.setDirection(01);

| ogTest CaseResul t (passO Fai | (QUT. getDirection() ==
01));
di sposeQUT() ;
}

void tc_Velocity() { [// test default constructor
| ogTest CaseStart ("Velocity()");

234

set QUT(newCUT()) ;
Vel ocity QUT = (Vel ocity)get QUT();

| ogTest CaseResul t (passO Fai | (QUT. get Speed() == 0 &&
QUT.getDrection() == 0));
di sposeQUT() ;
}

void tcs_Vel oci tySpeedDirection() {
/1l test Velocity(Speed, D rection)
| ogTest CaseStart (" Vel ocity(Speed, Drection)");
final int speedvValue[] ={ 6, 12, 1000 };

for (int i =0; i <3 ; ++) {
I nt speed = speedVal ue[i];
for (int dir =0 ; dir <360 ; ++dir) {
| ogSubTest CaseStart (dir);

set QUT(newCUT(speed, dir));
Vel ocity QUT = (Vel ocity)get QUT();

| ogTest CaseResul t (passOrFai |l (QUT. getDirection()
== dir &&
QUT. get Speed() == speed));
di sposeQUT() ;
}
}
}

void tcs_setDirection() {
| ogTest CaseStart("setDrection");
final int fixedSpeed = 1000;
set QUT(newCUT(fi xedSpeed, 359)); // any dir value !=
Vel ocity QUT = (Vel ocity)get QUT();

for (int dir =0 ; dir <360 ; ++dir) {
| ogSubTest CaseStart (dir);

235

QUT.setDirection(dir);

| ogTest CaseResul t (passO Fai | (QUT. getDirection() ==
dir &&

}
di sposeQUT() ;

QUT. get Speed() == fi xedSpeed));

Summary

Class testing corresponds to unit testing in atraditional testing process. Execution-
based class testing requires the identification of test cases, the development of a
test driver to apply the test cases against instances of the CUT, and the execution
of the test driver. So far we have described testing of fairly simple classes—those
whose instances do not interact significantly with other instances.

Test cases are identified and generated from the class specification and
implementation. We have shown how to identify test case requirements from
preconditions and postconditions as well as from state transition diagrams. Adding
interaction test cases improves code coverage.

We have presented a design for atest driver based on the implementation of a
tester class for each class to be tested. We have described in detail a design based
on Test er classes that we have used successfully. Benefits of our design include
aclean organization using an abstract Test er class to capture behavior and code
common to al class test drivers, and support for different people working on
testing and development. Aswe will show in Chapter 7, the use of tester classes
provides an additional benefit in the context of testing classes related by
inheritance.

Exercises

236

5-1. Identify test requirements for the constructors and reverse() operators for the
Vel oci ty class (see Figure 5.3). Consder the difference in requirements
between the contract and defensive programming approaches. Construct the test
cases for the requirements you identify.

5-2. Do the same for an elementary class that you have.

5-3. Write atest driver to implement the test cases you constructed in either of the
previous exercises. If you are implementing in C++ or Java, you can start with the
Tester abstract classes described at the end of this chapter.

5-4. Write a specification for an abstract Tester class that would be useful in your
organization.

5-5. Consider the dilemma of baseline testing. In a specification-based approach,
the Tester class must make judgments based solely on the apparent consistency of
all attributes of an object when it isin some given state. On the other hand, an
implementation-based approach strongly couples the code between a Test er and
its CUT so that a Test er 'simplementation cannot be completed until the CUT's
code is mostly completed. Under what circumstances would you support testing
based solely on specification? Under what circumstances would you insist on using
both approaches?

237

Chapter 6. Testing Interactions

Want to under stand different types of interactions? See Object

| nter actions.

Only have timeto run some of the test cases you can think of? See
Sampling Test Cases.

Want to reuse the design of your test software? See Test Patterns.
Need to know how tostest code that thr ows exceptions? See Testing

Exceptions.

An object-oriented program comprises a collection of objects that collaborate to
solve some problem. The ways in which those objects collaborate determine what a
program does and, consequently, the correctness of a program's execution. An
Instance of atrusted primitive class, for example, may contain no faults, but if the
services of that instance are not used correctly by other program components, then
the program contains faults. Thus, the correct collaboration—or interaction—of
objectsin aprogram is critical to the correctness of the program.

Most classes have collaborators—that is, the methods in the class interact with
instances of other classes. In Chapter 5, we addressed finding faults within the
implementation of an individual class that had no such interactions. In Chapter 7,
we address interactions between the definition of a subclass and the definition of
its superclass. In this chapter we will expand our scope and address testing classes
that do have interactions with other classes. The interactions being tested are
between objects at runtime—for example, when one object is passed to another as
a parameter or when an object maintains a reference to another object as part of its
state. Interactions always involve unidirectional messaging. Some interactions
involve bidirectional messaging between the objects. In this chapter we will

assume that the interactions are sequential. In Chapter 8, we will consider more
complex relationships such as concurrent interactions among distributed objects
that use concurrent interactions.

The focus of interaction testing is ensuring that messaging occurs correctly with
objects whose classes have already been tested separately. Interaction testing can
be performed with the interacting objects embedded in an application program or
by interacting the objects in an environment provided by a separate test harness,
suchasa Test er class. We will examine both approaches in this chapter.

First, we will present details about what object interactions are and how
interactions are identified in a class interface. Then we will look at testing

238

Interactions outside the context of a particular application program. Findly, we
will consider some of the difficult issues that arise in testing interactions within the
context of an application program and how these issues can be addressed.

Object Interactions

An object interaction issmply arequest by one object (the sender) to another
(the receiver) to perform one of the receiver's operations and al of the processing
performed by the receiver to complete the request.’! In most object-oriented
languages, this covers the vast mgority of activity in a program. It includes
messages between an object and its components and between an object and other
objects with which it is associated. We assume these other objects are instances of
classes that have already been tested in isolation to the extent that the classs
implementation is complete.

T\we assume a class interface is defined solely using
operations and not data. If data is accessible by collaborators,
then approach the testing of that access as if operations existed
to set and get the value of the data.

Since multiple object interactions can occur during the processing of any single
method invocation on a receiving object, we want to consider the impact of these
interactions both on the interna state of the receiving object and on those objects
with which it has an association. These effects can range from "no change” to
changes in certain attribute values in one or more of the objects involved to state
changes in one or more of the objects, including the creation of new objects and
the deletion of existing objects.

Partial Class Testing

In an iterative, incrementa development approach, a classis often
developed in stages. Only the functionality needed to satisfy the
requirements of the current increment are specified and/or implemented.
The relationships between classes often are such that it is not possible to
sequence the development of a class so that all the classes it needs to
interact with are totally developed and tested. Furthermore, a project's
schedule is usually based on delivery of end-user functionaity that

239

corresponds to portions of the functionality of individual domain classes,
but seldom requires the complete functionality of any of them. Lower
level—that is, more primitive implementation—classes are more likely to
be completely developed at one time and tested as a complete unit. Other
classes are therefore developed and tested incrementally.

Classes are tested to the extent that they are developed. Evolve tester
classes toward completeness just as the production software does. |dentify
the test cases you can and then implement a Test er classto implement
those test cases. Keep arecord, by test case naming conventions or other
documentation, of the origin of each test case so that for the next round of
testing you can identify the effect changes in specification and
Implementation of a class under test has on the test casesand its Test er
class.

Basing interaction testing solely on specifications of public operationsis
considerably more straightforward than basing it on implementations. We will

limit interaction testing to just associated, peer-to-peer objects and take a public
Interface approach. Thisis reasonable because we assume the associated classes
have dready been adequately tested. However, this approach does not remove the
obligation to look behind the specification to verify that a method completed all of
the computation required. That means verifying the values of the recaiver's internal
sate attributes, including any aggregated attributes—that is, attributes that are
themselves objects. Our focus will be to select tests based on the specification of
each operation in aclasss public interface.

Identifying Interactions

Interactions are implied by a class specification in which references are made to
other objects. In Chapter 5, we discussed the testing of primitive classes. A
primitive class can be instantiated and the instance used without any need to
create any other instance of any other class, including the primitive class itself.
Such objects represent the smplest components of a system and certainly play an
important role in any program execution. However, there are relatively few
primitive classes in an object-oriented program that truly model the objectsin a
problem and al the relationships between those objects. Nonprimitive classes are
common in and indeed essentia to well-designed object-oriented programs.

Nonprimitive classes support—or perhaps require—the use of other objectsin
some or al of their operations. Identify the classes of these other objects based on

240

association (including aggregation and composition) relationships in the class
diagram. These associations trandate into class interfaces and the way a class
interacts with other classes? in one or more of the following ways:

?I The proper way to state this concept is that an instance of a
nonprimitive class collaborates with one or more instances of
other classes. Since the specification and implementation for a
class determine the full behavior of any instance, we will use
the more prevalent expression of this relationship in terms of
classes. However, keep in mind that collaboration is an object
relationship, not a class relationship.

1. A public operation names one or more classes as the type of aformal
parameter. The message establishes an association between the receiver and
the parameter that allows the recelver to collaborate with that parameter
object. Theatt ach() and det ach() operationsinthe Ti ner class
shown in Figure 6.1 illustrate this kind of reationship. A Ti ner instance
can recelve arequest to attach a Ti mer Coser ver instance. The
noti fy() methodin Ti mer will send a message to the attached
TimerObserver instances to invoke a method—in thiscase, t i ck() . In this
example, arecelver saves the association as part of its state and messages
these other objects in subsequent operations. Another scenario isfor the
recelver to message the parameter, directly or indirectly, as part of the
processing of a message.

Figure 6.1. Parameter interaction

241

Timer
detach(TimerObserver obs) C:
notify() o tick()
: A
' I
for all o in observers{ > PlayField Sprite
o tick(); s : position
} 0.1 inPlay
—_|position{) : CPoint|
| collidee tick()
yay 0.7¢
CPaint
collider | ——y
MovableSprite StationarySprite
velocity
Velocity |« - tick{)
move()

2. A public operation names one or more classes as the type of areturn vaue.
Theposi tion() operation of class Spri t e shownin Figure6.1isan
example of thistype of interaction. The specifying class may be responsible
for creating the returned object or may be passing back a modified
parameter. In an environment such as C++ in which heap storage
management is programmed explicitly, the specification should detail
whether the recelver retains responsibility for any storage management of a
returned object or delegates that to the sender. Test er class methods
should observe such responsibilities.

3. The method for a class creates an instance of another class as part of its
implementation. In Figure 6.1, Movabl eSpri t e has a method to process a
collision with another sprite. The code for this method needs to create some
instances of CPoi nt and other classes to use as temporaries to determine
what happens in a particular collision. Objects such as Pl ayFi el d to
which Movabl eSpri t e has a peer-to-peer relationship are not alowed to
know about these other objects. Remember, we will not analyze any further
down a composition hierarchy. However, when executing tests, there may be
afailurein the instance of some class C within a subobject, such asa
CPoi nt ingtance. Vaidating the results of the test will include checking the
state of C.

242

4. The method for a class refersto a global instance of some class. Of course,
good design principles reduce the use of globalsto aminimum. If aclass's
implementation references some global object, treat it as an implicit
parameter to the methods that referenceit.

These interactions can be implemented in a variety of ways in programming
languages. Collaborators may be addressed directly—for example, using avariable
name—or they may be addressed by a pointer or areference. If a pointer or a
reference is used, the dynamic type of the object may be different from the static
type associated with the pointer or reference. In other words, pointers and
references are polymorphic, thus they are bound to an instance of any number of
classes. In the context of Figure 6.1, a C++ implementation for Ti mer most likely
stores pointers to instances of any of the subclasses of Ti ner Coser ver . A Java
implementation stores references to instances of any class that is a subclass of

Ti mer Cbser ver orimplementsa Ti mer Goser ver interface. Polymorphism
increases the number of the kinds of objects that could interact with a class under
test.

The pre- and postconditions for operations in the public interface of a class
typically refer to states and/or specific attribute values of any collaborating objects.
We can categorize a nonprimitive class based on properties of interaction—that is,
based on a degree of interaction with other instances. Some classes maintain
associations with instances of other classes, but never actually interact with those
instances. We refer to such aclass as a collection class. We refer to a class with
more extensive interactions as a collabor ating class. A much smaller number of
classes will "collect" other objects. Next, we will describe how to test these
collection objects, and then we will discuss testing collaborating classes.

Collection Classes

Some classes use objects in their specifications, but never actually collaborate with
any of them—that is, they never request any services from them. Instead, they do
one or more of the following:

store references (or pointers) to these objects, typically representing one-to-
many relationships between objects in a program

create instances of these objects

delete instances of these objects

243

Collection classes can be identified by a specification that refers to other objects,
but that does not refer to values computed based on the state or attribute value of
those objects. Within the design of Brickles, the Puck Suppl y class (see Figure
6.2) isacollection class. A PuckSuppl y object, as part of its construction,
instantiates an appropriate number of Puck instances and returns a pointer to one
of those instances upon request. A PuckSuppl y instance never uses operations
associated with a Puck except for constructors. By contrast, for example, the

Ti mer class stores references (pointers) to implementers of the

Ti mer Qoser ver interface, such asa Puck, when they are attached. A Ti ner

sendsati ck() request to each attached observer whenever a Ti ner event
occurs during execution.

Figure 6.2. The PuckSuppl y class

J/ PuckSupply.h

I!'*.':

A puck supply is a set of pucks that can be retrieved one at a time.
These pucks are created by a supply using a default constructor.
When a puck supply is deleted, any pucks remaining in it are deleted.

Eventually a way to increase a supply might be added.
r

class PuckSupply {

public:
PuckSupplv();
~PuckSupply();

Puck® get(),
int count() const;

private:
int _count;
Puck® _store[N];
5

Class libraries that accompany compilers and development environments usually
include a set of container classes. C++ has the standard template library (STL) and
Java has a set of collection classes. The classes in these libraries include lists,
stacks, queues, and maps (dictionaries). These collection classes hold the objects
they are handed and return them in specific orders or find them based on specific
criteria

244

Collaborating Classes

Nonprimitive classes that are not collection classes are collaborating classes. Such
classes use other objects in one or more of their operations and as part of their
implementation. When a postcondition of an operation in a classsinterface refers
to the state of an instance of an object and/or specifies that some attribute of that
object is used or modified, then that classis a collaborating class.

TheBri ckPi | e classin Brickles (see Figure 6.3) is a collaborating class. This
class models the rectangular arrangement of bricksin the game and is responsible
for identifying, but not processing, any collisions between the puck in play and a
brick. It serves as a container for bricks, but collaborates with a playfield, ahint (in
which all changesto the brick pile are recorded so the image of the brick pile can
be rendered efficiently on the display), and sprites—particularly a puck that moves
into the brick pile. When a brick pileis constructed, it is positioned at a point in
some playfield. The classes with which Br i ckPi | e collaborates are as follows:

Pl ayFi el d. A brick pile occupies part of aplay field.

H nt . A brick pile records broken bricksin ahint.

CPoi nt . A brick pile'slocation in a playfield is specified by a point that
determines the upper left corner of the brick pile.

Bri ck. A brick pile creates bricks as part of its own construction and tracks
which bricks are broken and which are unbroken.

Movabl eSpri t e. A brick pile recognizes collisions between its bricks and
a puck, which is akind of movable sprite.

Figure 6.3. The Bri ckPi | e class header file

245

class PlayField;
class Hint;
#include "Brick.h"

const int ROWS = 6;
const int COLS = 10;

class BrickPile {

public:

BrickPile(PlayField* playField_p, const CPoint& position,
Hint& hint);

~BrickPile();

void broken(Brick* brick_p);

int unbrokenCount() const;

Brick* overlaps(Sprite* sprite_p);

protected:
static const BrickColor evenBrickColor;
static const BrickColor oddBrickColor;

PlayField* _playField_p;
Brick* _pile[ROWS][COLS];
int _count;
CPoint _origin;
CRect _boundingRect;

}

Testing basic interactions between two objects is only the beginning. The number
of potential collaborations can become impossibly large quickly. Often the bugs
that are most serious do not arise from the interaction of two objects, but from the
Interactions between a complete set of objects. A Bri ckPi | e object may work
perfectly well when tested with a Pl ayFi el d object, but failure can result when

Bri ckPi | e interactswith H nt to record the breaking of abrick. The question
that arises then is whether to test each interaction individually or as a group.

Choosing the correct "chunk" size for testing depends on the following three
factors:

246

1. We distinguish between those objects that have a composition relationship

with an object under test and those that are merely associated with that
object. During a class test, the interaction of the composing object with its
composed attributes is tested. The interaction between an object and its
associated objects are tested as successive layers of aggregation are
integrated.

. The number of layers of aggregations created between interaction testsis
closaly related to the visihility of defects. If too large a chunk is chosen,
there may be intermediate results that are incorrect, but they are never seen
at the level of test-result verification. This may not be a problem for the
chosen test parameters. However, a dight change in test parameters would
result in afailure. More layers of aggregation introduces more possible test
parameters.

. The more complex the objects, the fewer that should be integrated prior to a
round of testing. This complexity is seen in the number of parameters for
each method, the number of methods and the number of state attributesin
each object. Aswith the layers of aggregations, trying to test achunk that is
too complex often results in defects that successfully hide from the tests.

Specifying Interactions

In the discussion in the next section on testing interactions, we will assume that

operations defined by a class are specified by preconditions, postconditions, and

classinvariants. We will use the Object Congtraint Language (OCL). From a

testing perspective, it isimportant to know whether defensive design or design by
contract has been used in creating the specification of the particular interface to be

tested. These approaches change the way senders and receivers interact. We will

make a Ssmplifying assumption that for any given class, dl of the operationsin the

interface have been specified using only one of these approaches. If a class you

want to test mixes the approaches, then you can mix the techniques we describe in

a straightforward way.

Implications of Defensive and Contract Designs for Testing

Defensive design assumes that little or no checking of parameter
boundaries occurs prior to a message being sent. This reduces the number
of clausesin preconditions, requires checks internaly for violations of
attribute constraints, and increases the number of clausesin
postconditions. A larger number of postcondition clauses results from a
larger number of exceptions that arise to identify the different constraint

247

violations. This trandates into more interaction test cases oriented toward
checking boundaries around inputs that produce exceptions.

Design by contract assumes that appropriate preconditions are checked
prior to a message being sent and that the message is not sent if any of the
parameters are outside acceptable limits. This increases the number of
clausesin preconditions, requires no checking internally for violations of
attribute constraints, and reduces the number of clausesin the
postcondition clause. This means more test cases are needed to try to get
an object under test to send a message for which preconditions are
violated. Alternatively, we use code reviews to prove to ourselves that
preconditions indeed cannot be violated, thereby eliminating the need for
more test cases at the cost of amanual review.

Testing Object Interactions

Testing Collection Classes

Collection classes are tested using techniques for primitive classes (see Chapter 5).
A test driver will create instances™ that are passed as parameters in messages to a
collection being tested. Test cases center primarily around ensuring that those
instances are correctly incorporated into and removed from the collection. Some
test cases address any limitations placed on the capacity of the collection. The
precise class of each of the objects used in testing a collection classis insignificant
in determining the correct operation of the collection class since there is no
Interaction between a collection instance and the objectsin a collection. If forty or
fifty items might be added to a collection during actual use, then generate test cases
that add at least fifty items. If no estimate on atypical upper bound is possible,
then test with a very large number of objects in the collection.

B The factory methods for creating an object under test (see
OUT Factory Methods on page 189.) are useful in creating
Instances used in interaction tests.

The behavior of a collection object under circumstances in which it cannot allocate
memory to add the new item to itself shoud be tested. Structures such as growable
arrays often allocate the space for several items at one time. Tools are available to
help the tester to limit the amount of memory available during the execution of test

248

cases that check the alocation of a larger-than-available block of memory. An
object under test should return the appropriate exception to the requestor of the
action. We will address thisissue in the Testing Exceptions section on page 245.

If the defensive design approach has been used, negative tests should be a part of
the test suite. Some collections have afinite capacity specified, and all collections
have some practical limit such as available memory that should be tested with tests
that exceed the specified limits. If a collection class uses an array as its storage,
then the usual test cases for filling the array and then attempting to add one more
item should be included. The appropriate exception should be generated by the
object under test and caught by the object that sent the message. If a contract
approach has been used, such tests are meaningless.

An important aspect of testing collection classes—and testing collaborator classes
as well—is testing sequences of operations—that is, the way modifier operations
on asingle object interact with one another. The techniques associated with state-
based testing (see Chapter 5) can be applied to testing this aspect of collections.

Testing Collaborator Classes

The complexity of testing acollaborating classis greater than that of testing a
collection class or a primitive class. Consider the classBr i ckPi | e inthe
Brickles application. A brick pileis an aggregation of bricks arranged in a
rectangular fashion. The Bri ckPi | e classis smilar to a collection class, but the
Bri ckPi | e sends semantically meaningful messagesto the individua

Br i cks—for example, to determine a brick's position on a playfield or to break a
brick. It isimpossible to test Bri ckPi | e without using instances of Br i ck. It
will be hard to identify faultsin Bri ckPi | e if certain types of faultsexist in

Bri ck. A brick pileisresponsble for detecting collisions between the bricks it
contains and movable sprites (namely pucks), but it is not responsible for
processing those collisions. It is also responsible for recording hints associated
with breaking bricks so that the screen can be updated efficiently by the Brickles
view object.”!

“I A hint is directed at the system components that draw the
playfield, thus it provides information about the damaged parts
of the playfield.

In order to test class Br i ckPi | e, we must use one or more instances of each of
these classes. In fact, an instance of Bri ckPi | e cannot be constructed without an

249

instance of a Pl ayFi el d,aCPoi nt,andaH nt because these must be passed
as parameters to a constructor (see Figure 6.3). Of course, it will need to use
instances of Br i ck to create abrick pile.

H nt, CPoi nt, and Bri ck areal primitive classes and can betested using the
techniques presented in Chapter 5. The CPoi nt classused in Bricklesis one of
the Microsoft Foundation Classes (MFC) and is consequently "trusted,” meaning
that wewon'ttestita al. Pl ayFi el d and Bri ckPi | e are not primitive and
must be tested in the context of their interactions with the code in other classes
using techniques discussed in this chapter.

Friend Functions

Ordinarily, a class interface comprises al the operations—and, heaven
forbid, data—declared public. However, when using alanguage such as
C++ that also supports friend functions, which are nonmember functions
that can access the hidden parts of a class, we include any such functions
in the interface. For example, many classes have defined an associated
Insertion operator (oper at or <<) that alows an instance's state to be
streamed, that is, written outside the current program to afile or some
other sequentia structure. Treat such functions as operations in the public
interface for aclass. Thisis also the perspective taken by a programmer
using the class.

The Interaction between Testing and Design Approach

The differences between contract and defense design techniques (see Implications
of Defensive and Contract Designs for Testing, on page 221) extend to testing.
Contract design places more responsibility on the human designer than on error-
checking code. This reduces the amount of class-level testing since there are fewer
paths due to a smaller amount of error-checking code. However, at the interaction
level, there is more testing required for contract-designed code in order to be
certain that the human designer has complied with the client side of the contract
using precondition constraints.

A focus of interaction testing for contract design is whether the preconditions of
methods in areceiving object are being met by the sending object. It is not
legitimate to build test cases that violate these preconditions. It is usualy
legitimate to set the receiving object into a certain state and then begin a scenario
with the sending object, which requires the receiving object to be in another State.

250

The intention is to determine that the sending object checks the preconditions of
the recelving object before sending the message inappropriately. The test should
also check whether the sending object aborts correctly, probably by throwing an
appropriate exception.

For example, consider the following specification for the br oken() method from
Bri ckPi | einwhichabri ck pileinteracts with Brick objects (see Figure 6.4).
If adesign by contract approach is being used, atest caseinwhich brick _pisO

(null) is meaningless. A test casein which bri ck_p pointsto a specific brick
Instance should be used and the test case should clearly verify that the
postcondition has been satisfied.

Figure 6.4. An OCL specification for the Bri ckPi | e class

BrickPile::BrickPile(PlayField* playField p, const CPoint& position, Hint& hint);
pre: playField_p <= 0 and playField_p->boundingRect().contains(position)
post: self.boundingRect TopLeft() = position
BrickPile::~BrickPile(};
pre: rue
post: bricks-=isEmpty
void BrickPile::broken(Brick* brick p);
pre: brick_p <> 0 and not brick_p->isBroken()
post: brick_p->isBroken() and
self.unbrokenCount() = self@pre unbrokenCount + 1 and
bricks = bricks@pre- >excluding(*brick_p)

int BrickPile::unbrokenCount{) const;

pre: true

post: result =(bricks->select(b : not isBroken(b))).size

Brick* BrickPile::overlaps({Sprite* sprite_p):

pre:; sprite_p <=0

post: result =
if (bricks->collect({ b : b.boundingRectLintersect(sprite_p-=
boundingRect()))->isEmpty) then 0
else bricks->collect(b : b.boundingRecLintersect(sprite_p-=
boundingRect()))- >asSequence- >first

Intesting Br i ckPi | e, we need test cases that exercise interactions with a

Pl ayFi el d. In this context, there should be atest casein which Pl ayFi el d is
told to "break" a specific brick that is aready broken. The test case is checking to
be certain that Pl ayFi el d ischecking and will not send the br oken() message
toaBri ckPi | e instance in violation of the precondition.

251

Sampling Test Cases

Exhaustive testing—that is, running every possible test case covering every
combination of values—is obvioudly areliable testing approach. However, in
many Situations the number of test casesis too large to handle reasonably. If there
are more possible test cases than there is time to construct and execute them, a
systematic technique is needed for determining which onesto actualy use. If we
have a choice then we would prefer to select the ones that will find the faultsin
which we are most interested. |If we have no prior information, then arandom
selection is probably as good as we can do. In this section we will consider the
genera concept of sampling, and then we will apply it to interaction testing.

With any testing approach we are interested in ways that the level of coverage can
be increased systematically. If atester Ssmply creates test cases without sufficient
analysis, then creating more cases later often repeats some of the functionality
dready tested. With the techniques presented here, there is a well-defined set of
cases and a well-defined technique for increasing coverage.

There are anumber of possibilities for determining which test casesto select. The
technique we will discuss first uses a smple selection process based on a
probability distribution. A probability distribution defines, for each data value in
apopulation, aset of allowable vaues, and the probability that value will be
selected. Under a uniform probability distribution, each value in the population
Is assigned the same selection probability.

We define the population of interest to be all possible test cases that could be
executed. Thisincludes al preconditions and al possible combinations of input
values. A sample isasubset of a population that has been selected based on some
probability distribution. One approach is to base the probability distribution on the
user profile. If the uses of the system are ranked by frequency, the ranks can be
transformed into probabilities. The higher the frequency of use, the larger the
probability of sdection. But more about thislater (see Use Profile on page 313).

We can sdlect a stratified sample in which tests are selected from a series of
categories. A sratified sample is a set of samplesin which each sample represents
a specific subpopul ation—for example, we might select test cases that we are
certain exercise each component of the architecture. A population of testsis
divided into subsets so that a subset contains al of the tests that exercise a specific
component. Sampling occurs on each subset independent of the others.

252

An approach that works well is to use the actors from the use case model asthe
basis for stratifying the test cases. That is, we select a sample of test cases from the
uses of each actor. Each actor uses some subset of the possible uses with some
frequency (see Use Prafiles, on page 130). Stratifying the test case samples by each
actor provides an effective means of increasing the reliability of the system.
Running the selected tests uses the system the way that it will be used in typical
situations and finds those defects that are most likely to be found in typical use.
Removing these defects produces the largest possible increases in reliability with
the smallest effort.

The sampling technique provides an algorithm for selecting atest suite from a set

of possible test cases. This does not mandate how the population of test casesis
determined in the first place. The test process is intended to define the population
of testsin which we are interested—for example, functiona test cases—and then to
define a technique for selecting which of these test cases will be constructed and
executed.

A test suite for a component may be constructed using a combination of
techniques. Consider the Vel oci t y classwe used in Chapter 5in which we did
an exhaudtive test of direction values, but only afew speed values. We can reduce
the number of tests by first using the specification as a source of test cases, and
then applying a sampling technique to supplement those tests.

The specification of Vel oci t y includes amodifier operation called
setDirection(const D rection &ewD rection) whose
precondition requires newDi r ect i on to bein the range O through 359, inclusive.
The postcondition specifies that the receiver's direction has been modified to the
vaueof newDi r ect i on. Wefirst generate test data for this method using the
specification as abasis. First, notethat Di r ect i onisat ypedef fori nt sowe
are selecting from the set of integers rather than a set of objects. Rather than
sample for every test case (0 through 359), we first select values based on
boundary values. So we can have three tests around the boundary of zero, perhaps-
1, 0, and 1. If thiswere a"design by contract" project, the -1 value would not be a
legitimate test case. There should be asmilar set of values around the other
boundary, so perhaps 358, 359, and 360. Again, 360 is not legitimate in a contract
context. There should be tests in the intervals between 1 and 358 and here is where
sampling plays a useful role. The values in the two intervals could be sampled

using something likei nt (randon() * 360) andint(-1 * randon() *
360) . Ther andon() function generates a pseudo random value between 0.0 and

253

1.0 in accordance with a uniform distribution, so each value is within the interval
and each value has an equal chance of being selected.

The advantage of using the random value generator in the test case is that over
iterations and regpplications of test cases, many vauesin the intervals will be
tested rather than the same ones over time. The disadvantage is that now the test
cases are not being reproduced since a different value is used every time. By
having the test driver record the generated values as part of the test log, we can re-
create any failed test case. Any randomly chosen value that causes afailureis
explicitly added to the test suite and is used to test the repaired software. After the
fault has been repaired, those values can be used to validate the repair. The
regression suite consists mainly of those tests that originally produced failures but
were ultimately passed by the software.

Now let us consider the interaction between two classes. Sprit e and

Moveabl eSpriteinthecol | i del nt o() operation (see Figure 6.5). Both
SpriteandMveabl eSpri t e classes are abstract, so we have an opportunity
to design tests that can be reused by their subclasses. The precondition places no
restriction on the parameter so we need to find some other way to determine the
population from which we will sample. There are three dimensions aong which we
can sample.

Figure 6.5. Specification for operation col | i del nt o()

void MoveableSprite::collidelnto(Sprite& sprite);
pre: none
post: sprite.collideWith(self)

First, Spri t e isthe base classin avery large class family, which isa set of
classes related by inheritance. An object from any one of the classesin the family
can be substituted for the spr i t e parameter. Therefore, we should sample from
this set for possible parameters. This is one of the problems we mentioned earlier
about testing object-oriented systems. At some time in the future, a new member of
the family can be created and passed to this routine without any recompilation of
the Moveabl eSpri t e class. Traditiona techniques for triggering regression
tests do not work in this environment. They should be controlled in the
configuration management tool or perhaps the development environment. Each
new class definition simulates a round of regression testing. Usually however only
the overridden methods will need to be tested if most of the methods are inherited.

254

Tip

Use the class diagram to identify the classes that should beinvolved in a
regression test resulting from the creation of a new class. Examine the
parent classes for this new class and identify interactions in which those
classes participate. Execute the tests that interact those parents with other
classes, but substitute the new class for the parent class in the test.

The second dimension for sampling is to consider that each member of the family
may have different states that can cause two objects from the same class to behave
differently. Obvioudy the Puck and WAl | classes probably have some interesting
differencesin their states. In the case of families of classes, the state machines are
related aong the lines of the inheritance hierarchy. Our experience and a number

of published papers have shown that as we look down the inheritance hierarchy,
there will be the same number of states or more states in the derived class as there
arein the base class. We should cover the states defined for each class with specia
emphasis on the new states added at that level in the inheritance hierarchy.

A third dimension relates to the class family associated with Moveabl eSpri t e.

Thisisasubset of the Spri t e family. Once these tests are designed, they can be
applied to any of the classes in the family, assuming the substitution principle has

been followed during design.

Given these three dimensions, we have the possibility of a combinatorial explosion
in the number of test configurations. In this scenario, atest case would have a
member of the Moveabl eSpri t e family sending a message to a member of the
Spr i t e family, which may be in any one of its states.

Orthogonal Array Testing

Orthogona arrays provide a specific sampling technique that seeks to limit the
explosion by defining pair-wise combinations of a set of interacting objects. Most
of the faults resulting from interactions are due to two-way interactions. One
specific technique for selecting a sampleis orthogonal array testing system
(OATS). An orthogonal array isan array of valuesin which each column
represents a factor, which isavariable in an experiment. In our case it will
represent a specific class family™ in the software system. Each variable can take
on acertain set of values caled levels. In our testing work, each level will be a

255

gpecific classin the family. There will also be a pardle factor and set of levels that
correspond to the states of these classes. The value entered into a particular cell in
the array is an instance of the specific class or is a specific state of an object.

BIA class family is a class and all of the classes that inherit
from that class.

Figure 6.6. Explosion of test cases

MoveableSprite collideWith{EElf}___

l% i : l

—=| Sprite

Puck Paddle StationarySprite MoveableSprite
‘
[[| I
Brick Wall Ceiling Puck Paddle
Leftwall Rightwall Floor

In an orthogonal array, the factors are combined pair-wise rather than representing
all possible combinations of the levels for the factors. For example, suppose that
we have three factors—say, A, B, and C—each with three levds—say, 1, 2, and 3.
There are 27 possible combinations of these values—3 for A timesthe 3 for B
timesthe 3 for C. If pair-wise combinations are used instead—that is, if we
consider only those combinations in which a given level appears exactly twice—
then there are only 9 combinations as shown in Figure 6.7.

Figure 6.7. Pair-wise combinations of three factors that have three
levels each

256

WO ~NOWU A WN =

WWWNNN-a Al
WN =2 WNa2 w2l
N W=W=a =Wl

OATS uses abaanced design. Every level of afactor will appear exactly the same
number of times as every other level of that factor. If we think of the rows of a
table as test cases, then 18 of the possible 27 tests are not being conducted. Thisis
a systematic way of reducing the number of test cases. If we later decide that
additional tests should be run, we will know exactly which combinations have not
been tested. Thisisaso alogical way of doing the reduction. Most of the errors
that are encountered are between pairs of objects rather than among severa
objects. In thisway, we are testing those situations that are most likely to reved
faults. To demonstrate OATS, we will work through a general example and then a
Brickles-specific example. The genera example comprises interactions between
sendersin aclassfamily A, receiversin aclassfamily C, and parametersin aclass
family P (see Figure 6.8). Each class has a state transition diagram associated with
it. The details are not important. The number of states that we are assuming each
classhasis shownin Figure 6.9.

Figure 6.8. A general example of applying OATS

Class A - Class C
®(He.yip2)} wPp1)i. ..}
fad
/;7 K
Class B Class D Class E
Class P

Figure 6.9. The number of states associated with classes in the
general OATS example

257

Number of

Class States
A 1
B 2

The mgjor activity in this technique is to map the problem of testing the interaction
of two inheritance hierarchies with respect to a parameter object. To identify test
cases using orthogonal arrays, observe the following five steps:

Step 1. Identify all factors. The sending hierarchy is one factor. The
receiving hierarchy is a second factor. There is aso afactor associated with
each parameter position in the message. There is an additional factor
associated with each class factor—namely, the states associated with
instances of the class. This experiment (see Figure 6.8) has six factors. the
class A hierarchy, the class P hierarchy, and the class C hierarchy and factors
for the states associated with each class hierarchy.

Step 2. Determine levelsfor each factor. Thelevels for each factor are
determined by considering the set of possible values.

One factor has one levd: the parameter class family only has one
member: P.

Two factors have a maximum of two levels; the sending class family
has two members. A and B; the maximum number of states for a class
inthe P family istwo.

Three factors have amaximum of three leves. the receiving family

has three members, and the maximum number of states for aclassin
the A family and in the C family isthree.

Step 3. Locate a standard orthogonal array that fits the problem. Given
our need for six factors of, at mogt, three levels, we turn to the tables of pre-
computed arrays called standard arrays [Phadkes9]. The notation 2" x 3’
for Lg (see Figure 6.16) indicates that the array addresses one factor with

two levels and seven factors with three levels. L4g is the smallest standard
array that will fit the problem. A standard array can be larger than a problem,
but not smaller.™®

258

TUse a larger array if the number of levels is likely to

change in the future—for example, if more subclasses

might be added to a receiving class family. Using a larger
array allows for future expansion of test cases when
levels are added.

Figure 6.16. The standard orthogonal array L5 (2* x 3")

Test
Case

o I = B 4 I T

L i 4
=l @ th A WM = D

18

=

ra

Astate

LT S R S S e T S % T o % B ¥]

£

L L - I L T . N . R T I o T o S L S |

Pstate

B

e 7 B L T L B % B % B N T 4 R N S

P

= W M R = WM = W oW M= =W MW = oo)

Catata

= L3 W R o= = L R R = O = O R W R = R

)

[T % R S N S % T Y R % T % T s TR S T T % P |

3

e I L B B e L o T e e 4 TR S % TRE A +

Step 4. Establish a mapping from each factor onto the integersin the

array so that the standard array can beinterpreted. Standard array
entries are integer values. We analyze each factor in the following list.

For the sender class family there are two classes, A and B, so the first

columnin L4g can be used to represent this data (Figure 6.10). We

259

adopt an encoding in which avaue of 1 in the first column of the

array correspondsto the A class and a value of 2 corresponds to the B
class.

Figure 6.10. Class Ahierarchy

Domain Value Array Value

A 1
B 2

Class A has two states and class B has three states. When thereisa
difference in the number of levels, we can use a column that matches
or exceeds the maximum. The second column in L5 has amaximum
of three, which will fit this data. The interpretation of the valuesin the
second column depends on the values in the first column. For avalue
of 2 (class B) in the first column, we are representing the states of
class B in the second column. If the value in the first column is 1, then
the second column represents the states of class A. In Figure 6.11, the
state values for class B directly correspond to the integer valuesin the
column. Since class A only has two states, how do we interpret a3in
the second column when thereisavaue of 1 (class A) inthefirst
column? We interpret it as though it were either 1 or 2. When avalue
in the column does not properly correspond to valuesin other
columns, then we interpret it as some other domain value that is
repeated. In this case, as denoted in the table, 3 in the array will
correspond to state 1. The interpretation can be arbitrary or based on
an observation that an instance of Aismorelikely to bein state"1" or
there is a higher risk associated with being in state " 1."

Figure 6.11. States for class Ahierarchy

260

Domain Value Array Value

A, state 1 1
A, state 2 2
A, state 1 3
B, state 1 1
B, state 2 2
B, state 3 3

The third column in L4g represents the parameter hierarchy that only
has one class, P. Any vaue in the third column represents P (Figure
6.12).

Figure 6.12. States for the class P hierarchy

Domain Value Array Value

P 1
P
P 3

The fourth column represents the states of P, of which there are two
(Figure 6.13). However, the column hasvaues 1, 2, and 3. An array
value of 1 corresponds to state 1, avalue of 2 corresponds to state 2 of

the P class, and avalue of 3 will repeat state 2 of class P.

Figure 6.13. States for class P hierarchy

Domain Value Array Value

P, state 1 T
P, state 2 2
P, state 3 3

The fifth column represents the class C hierarchy, which has three
members. There is adirect correspondence between classes and the
integer valuesin the array. The interpretation is shown in Figure 6.14.

261

Figure 6.14. The CClass hierarchy

Domain Value Array Value

Cc 1
D 2
E 3

The sixth column represents the states of the C, D, and E classes
(Figure 6.15). Since C has only 2 states, the array value of 3 will

correspond to avalue of 2. For classes D and E, thereisadirect
correspondence between states and array values.

Figure 6.15. States for class P hierarchy

Domain Value Array Value

C, state 1
C, state 2
C, state 2
D, state 1
D, state 2
D, state 3
E, state 1
E, state 2
E, state 3

W N = WM = W=

Note: the last two columns of L ;g are not used.

Step 5. Construct test cases based on the mapping and therowsin the
table.

Each row in the orthogonal array, Figure 6.16, specifies one specific test case. The
orthogonal array is interpreted back into test cases by decoding the level numbers
for arow in the array back to the individual lists for each factor. Thus, for example,
the 10th row of L isinterpreted astest case number 10 in which an instance of
class B in state 1 is to send the message by passing an instance of class P in state 3

262

to an instance of class E in gtate 2. The last two vauesin the row are ignored since
we did not use those factors.

Adequacy Criteria for OATS

One of the useful things about OATS is the ability to vary how completely the
software under test is covered. Here are some possible levels that can be used:

Exhaustive— All possible combinations of all factors are considered. L ots of
confidence, lots of expense.

Minimal— Only the interactions between the base classes from each
hierarchy are tested. Little confidence from few test cases.

Random— The tester haphazardly selects cases from several of the classes.
Confidence level unclear, number of test cases arbitrary. Not a statistically
random sample.

Representative— A uniform sample that ensures that every classis tested to
some level. Confidence level is the same across classes, number of test cases
IS minimized.

Weighted Representative— Adds cases to the representative approach based
on relative importance or risk associated with the class. Thisis the approach
we have illugtrated in this section. At any point where the matrix has more
levels than the actual problem does, the tester has the opportunity to generate
additional tests for priority levels of factors.

Once dl the test cases have been run, look at the results to see if failure can be
associated with one or more specific factor levels—for example, perhaps most of
the test cases associated with instances of class A, state 2 fail. Thisinformation is
useful for developersto track down bugs, and it is useful for testersto indicate that

additional test cases might be warranted.
Another Example

Now let usreturn to the Moveabl eSprite: : col | i del nt o() examplefrom
page 227. A Moveabl eSpri t e object may be passed to any Spri t e object
whenitissentthecol | i del nt o() message. In the present design, the Sprite
classfamily includes Moveabl eSprite, Stati onarySprite, Puck,

Paddl e, Brick,Val | ,Ri ghtWal | ,Left\Wal |, Fl oor,and Cei | i ng.

We make the following analysis and observations:

263

1. ClassesSprite, Moveabl eSprite,StationarySprite,and\al |
are abstract classes. We will talk about how to test abstract classesin the
next chapter, but for now, they will not be a part of the OATS scenario.

2. Only Puck and Paddl e arederived from Moveabl eSpri t e, soonly
Moveabl eSpri t e, Puck, and Paddl e canreceivethe
col I'i del nt o() message. However, al the classes derived from
Spritecanrecevethecol | i deWt h() message.

3. Each of the objects passed as a parameter is in a specific state. The objects
may behave differently in different states. An instance of
Moveabl eSpri t e may be moving or not. If it ismoving, thenitis
moving in a specific direction. From a state perspective, the directions can
be grouped into states named DueNor t h, DueSout h, DueEast ,
DueWest , Nor t hEast , Nor t hWest , Sout hEast , and Sout h\\ést .

Note that an instance of Padd| e can only move DueEast and Due\\ést .
4. Inthis case, the sender object and the parameter object are the same, so there
are only two class family columns and two state of classes columns.

The possible values for each attribute of the test case are shown in Figure 6.17.

Figure 6.17. Test attribute values

Sender Class Sender State Receiver Class Receiver State

Puck DueNorth Puck DueNorth

Paddle DueSouth Paddle DueSouth
DueEast Brick DueEast
DueWest Wall DueWest
MorthEast Rightwall MarthEast
MorthWest LeftWall MarthWest
SouthEast Ceiling SouthEast
SouthWest Floor SouthWest
NotMoving NotMoving

If we tested all possible combinations, the number of possibletestsis2x 9x 8x 9
= 1296. Some of these can be eliminated because nonmoveable sprites do not have
the direction states. The total now appearstobe2x9x2x9+2x9x6x 1, =432
test cases—dtill quite afew. By usng OATS, we can further reduce the number of

264

test cases and till be effective. For example, these are the selected combinations
from Figure 6.17:

Paddl e, DueEast , Puck, Sout hEast
Paddl| e, DueEast , Puck, Nor t hEast
Paddl e, DueEast , Puck, Nor t h\West
Paddl e, DueEast , Puck, Due\W\st
Puck, DueEast , Puck, Due\\ést

g wbNPE

OATS would allow case #4 to be eliminated because in #3 Paddl e istested while
moving DueEast ; in#5 Puck istested moving DueVést ; in#3 Paddl e is
tested calliding with Puck. The complete OATS analysis would reduce
considerably the number of tests required.

Another Application of OATS

Consider the need to test a collection class such as St ack, in which theclassis
implemented as a C++ template (see Figure 6.18).

Figure 6.18. A C++ class template for Stack

class Stack<class T>{
Stack<T>();
void Push(const T &object);
T Pop();
bool isEmpty();

h

The developer's intention is for template parameter T to be replaced by any class
when Stack isinstantiated. Obvioudly, we cannot test the St ack class definition
with all possible substitutions. The St ack, like any collection class, does not
Invoke any methods on the objects that it contains. Therefore, the interface
implemented by the parameter class does not matter.

To test the template code, we would select a stratified sample of classes from all of
the classes that are available including vendor libraries, language libraries, and
application code. Depending on the exact programming language used and other
factors, the categories in the stratification will include the amount of memory used
by each instance, the number of associations, and whether the objects placed in a
collection are persistent. Then we would select a subset of this set of classes each

265

time a collection class needs to be tested. This second sampling can be guided by
OATS.

For more complex templates, sets of possible substitutes for each parameter are
created. Then OATS creates tests that involve combinations of parameter
substitutions. These tests provide the maximum search for interactions among the
parameters with the minimum number of tests.

Testing Off-the-Shelf Components

Increasingly, functiondlity is added to an application by purchasing "chunks' of
software referred to as components.™ The quality of these components varies
tremendoudly from one vendor to another. Until standardized measures are adopted
or the marketplace forces improved quality, you should plan to do an acceptance
test on any newly acquired component.

"I Chapter 10 will cover topics about components, but this is a
natural place to talk about them.

An acceptance test should put the component into the context in which it will be
used. The test cases should thoroughly investigate the limits of the specification.!
Creating the specification document will not be a wasted effort because developers
will need it in order to properly use the component.

5] Create a formal specification if one does not exist.

We like to begin an acceptance test with extreme, even incorrect, values—for
example, running the mouse back and forth across the desk to generate alarge
number of mouse move events. A defective component may be overwhelmed by
the large number of events and crash. Other stress tests include holding down a
"repeat” key or making multiple menu selections before the program can respond
and gray out certain selections on amenu. Thisis as much atest of the component
manufacturer's attention to detail asit isatest of the software. If there are many
fallures here, you have to suspect that the quality isfairly poor.

If we continue beyond that set of tests, the testing of this component proceeds
along the lines of any class. Even if the component is constructed from several
classes, there is usualy amain class that presents the component to the user. The
tests are based on that class.

266

A Case Study in Component Acceptance Testing

Let's consder acommercidly available G i d user-interface component and
examine how we would test it before using it in an application. Figure 6.19

presents the test plan for the G i d component. Figure 6.20 presents a life-cycle
scenario, which is a description of one specific use of the component that can be
used to build certain types of test cases.

®T\We use an actual product, but we have changed the name to
avoid legal hassles.

Figure 6.19. A component test plan for the componentGi d

267

Component Test Plan

|campanant Name ., “Tm::klng Number 97 |

| Developer(s) Ancn. | |Tﬂﬁtﬂr[5] John D. McGregor |

Objectives for This Component
This component is intended for use in the user interface of the applications
being built in the company. Itis part of a purchased library from the NoTast
Software Company.

Guided Inspection Requirements
The product is already completed and no design documentation comes
with the library. No guided inspection is possible.

Building and Retaining Test Suites
The test suites shall be prepared in accordance with project standards. A
GridTester class shall contain the test driver. In that class, operations shall
be provided to execute functional, structural, and interaction test cases.
Reporting shall be in conformance with project standards. The test class
will be available 1o developers as interaction tests in their application,

Specification-based Test Cases
Caonstruct pre- and postconditions for each method in the documented AP
Execute test cases for every clause of each postcondition of every method
lest cases can be found in the GridTester class.

Implementation-based Test Cases
Only the binary is available. No implementation-based lesting is possible.

Interaction Test Cases
Follow the use scenarios such as the one in Figure 6,20 1o determine the
abjects in a typical application with which Grid will imteract. Build and exe-
cute tests so that Grid interacts with these objects. Tests are stored in
GridTester.

State-based Test Cases

The documentation does not provide a state diagram o use. Substitute
scenarios in which a life cycle of uses is defined, A sample scenario is
shown in Figure 6 20, These tests may be combinations of other specifica-
tion-based tests.

Figure 6.20. A life-cycle scenario

The Grid component presents a list of system atiributes. The three-column display
shows the attribute name, the current value, and the default value. The user selects
the Screen Color attribute and edits the current value. The user then selects the
Save action from the File menu to store the information in the Grid.

268

A grid JavaBean displays information in row and column format. It allows usersto
select, manipulate, and store information presented. The product we will consider
contains 4 interface definitions (implemented as abstract classes in C++) and 10
public class definitions. Additional classes are nested within these public classes.
Of the 10 public classes, two—QG 1 dMVai n and G | dBi gAdapt er —arethe
classes that devel opers use to integrate the component into their application. The
documentation comprises standard JavaDoc HTML pages. These contain
comments placed by the class devel opers, but nothing about the "component.”
Each method is presented intheform i nt conpar eTo(] ava. | ang. Qoj ect
anot her (bj ect).

Theconpar eTo() method returnsavalue of type i nt and requires one
parameter, anot her (bj ect , whichisof type Cbj ect . Thereis no information
about any constraints on anot her Gbj ect nor any indication of the range for the
return value, even though our analysis discovered that it can only take on three
different values.

The documentation does not provide a state diagram to use. Substitute scenariosin
which alife cycle of usesis defined. A sample scenario is shown in Figure 6.20.
These tests may be combinations of other specification-based tests.

G i dMai n has over one hundred methods. Many of them are ssmple accessor
methods, but alarge number are modifier methods that set specific attributes in the
object. While testing could be alarge job, a component will provide a large amount
of functionality and, therefore, conducting a thorough test a one time will save
much effort for the many devel opers whose objects will interact with the
component.

An acceptance test combines elements of a class test and an interaction test.
Therefore, we are interested in the patterns of interaction of this component with
the rest of the system as well as the specification of the individual methods on the
interface of the component. This component follows a standard Java user-interface
design pattern. It uses an Adapt er classto support the creation of the Li st ener
objects needed to capture various types of events. An interaction test of this
component should follow that pattern to achieve an effective interaction test.

Firgt, let'sanalyze. G i d is primarily acollection class. It holds and displays data
and has very little interaction with the objects that it holds. The mgjor interactions

that it has are with the event producers. The interaction that it has with its contents
Isto display them, store or retrieve them, and forward events on to them. Another

269

type of interaction is when one object requests that a grid provide the object stored
in a gpecific cel. Is the requesting object handed a clone? A reference? Does this
action prevent the grid from being garbage collected?

A few smple interactions that the grid is intended to have include the following:

1. A mouse button click occursin a certain cell of the grid.
2. A mouse button release occursin a certain cell of the grid.
3. A mouse button is double clicked in a certain cell of the grid.

A test harness should be created that consists of a specialized Adapt er that
listens for these events and at least |ogs when the event has happened and has been
handled. The tests should automatically create events for a variety of actions and
pass the events to the grid. The resulting behavior of the grid should be evaluated.

A more complete interaction test would examine the complete life cycle of agrid.
Create afew life-cycle scenarios that briefly describe typical uses of the
component under test, as shown in Figure 6.20. The test harness would instantiate
G i d with avariety of data types from the current application in the cells. The test
harness should stimulate the grid to read its contents from storage and display it.
The tester should perform a series of mouse actions. Another object should request
and hold the contents of at least one cell in the table. The test harness should
stimulate the grid to save the data and finally destroy the grid. Validating the test
requires that the tester observe the visua behavior of the grid as the events are
created, and check that the garbage collector can remove the grid while an object
holds a reference to one of the content objects.

Tip

Use the basic logic of the manufacturer's sample programs as the basis for
individual test cases. We use our standard test driver and then build test
cases by beginning with the basic code from sample programs.

Incidentally, we found several problems during our acceptance test. These were
submitted as bugs to the component company and were subsequently fixed in later
releases.

Protocol Testing

270

As an object interacts with other objects, it will receive multiple messages. These
messages must be sequenced in accordance with the specification. Protocol testing
investigates whether the implementation of a class satisfies its specification. The
various protocols that an object participates in can be inferred from the pre- and
postconditions for individual operations defined in its class. |dentifying sequences
of method invocations by combining a method whose postcondition enables the
precondition of another method defines a protocol. It is much easier to see these
sequences from the state diagram for a class than deriving them from written pre-
and postconditions.

The interaction test suite includes tests of each protocol. Thisis basicaly a specia
form of life-cycle testing. Each protocol represents a life cycle for objects from the
class under test in combination with instances of other classes. Each protocol
corresponds to a sequence of states beginning with initial states of the two objects
(as denoted on the state diagrams of the two classes), a sequence of states for each
object, and ending with the terminal states (again, denoted on the state diagrams).
A test case takes the two objects through one complete sequence of methods.

Consider the Ti ner classand its state diagram given in Figure 2.19. A protocol
can be found by tracing through that state diagram. One protocol would be to
create the object then sending one or more at t ach(. . .) messagesfollowed by
theenabl e() message, the di sabl e() message, and findly, the del et e()
message. This provides alife-cycle test case. This provides an effective test of the
object in the ways that it will interact with its client objects.

Test Patterns

Test patterns are design patterns for test software. Design patterns [GHJV 94]
capture and reuse design knowledge that has gained widespread application in the
obj ect-oriented software development community. Each pattern is a specific
configuration of interactions among a set of objects that form some cluster in the
overall design. The pattern description explains the context within which the

pattern should be considered, provides a set of forces that guide a trade-off
analysis, and explains how to construct the objects. We use the same format for the
pattern description as the design community, but we can place more specific
meaning on certain sections of the description.

271

We have been successful with the concept of relating a test pattern to a particular
design pattern. When a developer uses a specific design pattern to structure a
portion of the system, atester (who may be another developer) then knows which
test pattern to use to structure the test code.

The G i d component is based onthe Li st ener design pattern, which is related
to the more general Cbser ver design pattern to incorporate event handling into
its GUI. In the next section, we will explain the associated test pattern.

Listener Test Pattern
Intent

There is aneed to test the interactions among the Li st ener,
Acti onLi st ener, and Tar get Cbj ect objectsthat are participating in the

Li st ener design pattern (Figure 6.21). The interactions need to be examined to
ensure that:

each interaction correctly sets the state of each participating object

each interaction is complete in that al objects that should be affected are
each interaction is consistent with the specification of the participating
objects

Figure 6.21. Conceptual interactions in the Li st ener pattern

register

=
@pecializedListenej‘ b[/ ActionListener)
A

notify

Application-specific

actions TargetObject)

A Li st ener object ispassed to an object that receivesevents. A Li st ener is
only "interested” in a certain set of event objects. The Act i onLi st ener object
forwardsto aregistered Li st ener only those eventsfor whichthe Li st ener is
registered. Each Li st ener isassociated with some instance of

Tar get o] ect . Whenthe Li st ener receives an event, it performs some

272

action on its target object. That action was defined as a method in the class
Li st ener.

Context

The Li st ener design pattern has been heavily used in Java, but equivaent
event-handling patterns are used in al object-oriented languages. The pattern is
particularly used in the context of the user interface. Most Java programs contain a
large number of instances of the Li st ener pattern.Very little original codeis

writteninali st ener class. Developers usually define the original code using
the anonymous class mechanism. This makes it more difficult to test the
mechanism in isolation.

Forces
There are several forces that constrain the design of the test classes:

Modifying the production software to accommodate testing requires that
additiona tests be run after the production software is returned to its original
state. Therefore, we prefer not to modify the application in order to test it.
The test class must know when events are received by the Li st ener
object. This may be accomplished by having the test class produce the
events, or by having the test class register for the same events as the

Li st ener classbeng tested.

Participating objects have already been class tested. Therefore, the accessor
and modifier methods of the individual objects will be trusted and used
during thistest.

Thesmall szeof each Li st ener subclass and the large number of

Li st ener classes used in an application requires that the tests be easily
created and ported to anew Li st ener class.

Solution

A Test Li st ener class creates an environment in which the interactions
between objectsin the Li st ener design pattern are exercised and observed. The
Test Li st ener object instantiates the pattern. A Test Li st ener object can
generate any of the eventsfor whichaLi st ener object can register.

Thereis essentialy one type of test case. An event is generated by the
Test Li st ener object and sent to the Act i onLi st ener object. If the

273

Act i onLi st ener object isworking correctly, the event is forwarded to all of
theregistered Li st ener objects. The Li st ener s invoke specific actions on
their Tar get bj ect s. The Test Li st ener object registers with the

Act i onLi st ener sothat it recaeivesthe event at basically the same time as the
Li st ener object being tested. The Li st ener Test object then checks the
Tar get (oj ect to determine whether the expected changes have occurred there.

Design

Aninstance of the Test Li st ener class, after inheriting from the

Abstract Li st ener class, canregister with the Act i onLi st ener object. It
will then receive a notification of a specific event and will know to activate tests on

the Speci al i zedLi st ener object, Figure 6.22.

Figure 6.22. Conceptual interactions in the Li st ener pattern
extended for testing.

register

™ L
(thstractListener l

Ll‘:. }\ notify

I I T

- . . . -\-\-\--\H
ListenerTest SpecializedListener TargetEvent

B

ActionListener)

Y

application-specific
actions

Specific Example

The pattern can be applied to the Brickles Ti ner Coser ver class and those
associated classes, Figure 6.23.

Figure 6.23. An instantiation of the Li st ener pattern extended for
testing timer observers in Brickles

274

attach()

~ -
(TimeObserver | _ [Timer)
e pN

/;13 tick()

[|

(PuckTesl) (Puck l‘)
e /),

— move()

Resulting Context

The production classes participating inthe Li st ener pattern have been tested
relative to their interaction with each other. A series of test classes and test cases
have been created that can be reused, with dight modifications, for a variety of
types of events. By using the pattern approach, new events and new listeners can
be tested cheaply.

Testing Exceptions

An exception provides an aternative route for returning from a method that does
not necessarily move to the next statement after the method isinvoked. Exceptions
are powerful in two respects:

The exceptional return value is an object and can be arbitrarily complex.
The points at which an exception is thrown varies based on the depth of the
aggregation hierarchy.

Most interface designers use exceptions to handle error conditions that can arise
during processing. Exceptions provide an alternative to return codes and in some
situations can reduce the amount of code needed to process return codes. However,
exceptions are also useful for processing exceptional conditions that arise during
processing that are not really associated with errors. Our design for Brickles uses
exceptions to terminate play of the game when either the puck supply is exhausted
or the last brick is broken. Figure 6.24 shows how exceptions and return codes can
be used in C++ to handle a problem reading from an input stream.

Figure 6.24. Code structure for return code and exception methods of
error handling

275

// Return code

enum Status {OK,FILE_CLOSED,BAD_DATA};

Status readInt{int &data);
// Reads an integer value from the standard input stream,
// stores it in data, and returns OK. If an integer value
// could not be read, then an indication of the problem is
// returned.

void main() {
int count;

switch (readInt(count)) {

case OK: process(count); break;

case FILE_CLOSED:
// Take some recovery or termination action...
... break;

case BAD_DATA:
// Take some recovery or termination action...
... break;

}

// Exceptions

class ReadError {};

class FileClosedReadError: public ReadError {};
class BadDataReadError: public ReadError {};

void readlnt(int &data) throw (ReadError);
// Reads an integer value from the standard input stream
// and stores it in data. If the read fails, then one of

// the exceptions FileClosedReadError or BadDataReadError

/[is thrown.

void main() {
int count;
try {
readInt(count);
process(count);
}

catch (FileClosedReadError) {
// Take some recovery or termination action...

}
catch (BadDataReadError) {
// Take some recovery or termination action...

276

While the prototype for r eadl nt (i nt) documents that only exceptions of the
class ReadEr r or (and its derived classes) will be thrown, C++ does not require a
function (or member function) to list the types of exceptions it can throw. This
presents a problem for testing (and probably for developing as well!) in that
postconditions may not be tested completely. There is always a possibility that an
unexpected perhaps system-level exception could be thrown within the context of a
function's execution. Consequently, it is a good practice in C++ development to
use exceptions to fully specify any interface that uses exceptions.

"Testing exceptions” provides two different perspectives. First, at the class-testing
level the focus is on whether each of the methods in that class doesin fact throw
the exceptions that it claims to in the appropriate circumstance. Thiswill be
handled as anormal part of class testing since each potentia throw should be a
postcondition clause. The Puck Suppl y class would have tests that determine that
the Qut O Pucks exception is thrown when the puck supply has been exhausted.
The coverage criteria requires that a class throws every exception contained in the
specifications of the methods. There would be at least one test case per exception.

The test driver establishes the conditions in the object under test that will result in
an exceptiona event. The driver provides atry block inside which a stimulus
invokes the method that throws the specific exception. The exception is caught by
the test driver and verifies that it was the correct exception. Since exceptions are
objects and belong to classes, the catch statements can use the typing system to
verify that the exception is of the correct type.

Second, during integration, interaction testing will determine whether these
exceptions that are being thrown at the correct time are being caught at the correct
place. Thisis atest of the interaction between the originating object that initiates
the sequence of method invocations that result and catch the exception, and the
throwing object that reaches an exceptional state and throws the exception. For
example, in the Brickles game, when the Qut O Pucks exception isthrown, isit
caught? Isit caught in the correct place? The originating object is several levels of
aggregation removed from the Puck Suppl y object that actually throws the
exception.

The test driver, in this case, instantiates the originating object. The originating
object is responsble for creating those levels below it in the aggregation hierarchy.
The test driver stimulates the originating object to create all of the levels and to
place the originating object into a state in which the lower-level object will throw

277

the exception. The coverage criteriafor thislevel of testing isto be certain that
every exception thrown is caught in the correct location.

Both of these points of view can be tested very early in development. During the
guided inspection of the system-level design moddl, every user-defined exception
that isinstantiated should be traced to an object that will catch the exception using
the sequence diagram for the scenario that throws the exception.

Testing Interactions at the System Level

At some point, components become so complex that it is easier to test them in the
context of the application itself instead of in the environment provided by atest
driver. Some parts of the system might not be modeled by a single class. For
example, the user interface provided by most application programsis not asingle
instance of some class, but a community of objects that supports input and output.
The interactions that can be tested at the system level are only those that can aso
be verified at the system level. That means that we can see the direct results of the
tests, and it also means that there must be a direct relationship between the user
interface and the ability to view test results.

Summary

In an object-oriented system the interactions between objects provide the main
structure of the program. By testing specifically for problems between objects as
they are integrated into larger and more complex objects, problems involving
checking preconditions and the sufficiency of objects returned as the result of a
message are discovered early. There are many factors that influence each
interaction. Statistical sampling techniques such as OATS provide a means of
selecting an effective subset of combinations of these factors to investigate using
test cases.

The design of test software is influenced by the design of the softwareit is
intended to test. In an object-oriented software development environment, the
design of the production software is guided by a set of standard patterns. By
discovering and documenting the standard ways in which test objects interact with
each other and with the software under test, less experienced testers can benefit
from the knowledge of more experienced testers. The result is test software that is
of abetter quality and is more reusable.

278

Exercises

6-1. Design atest suite for the exceptions defined in the Brickles design
documents.

6-2. Construct test inputs for the Vel oci ty: : set Speed method.

6-3. Construct atest plan for acommerciadly available component. How would the
plan be different if the component is a domain-specific component versus a user-
interface control ?

6-4. Select adesign pattern used in a project on which you are currently working.
Find other projects on which it has been used. Examine those projects' test code.
Generdize this code to create atest pattern.

279

Chapter 7. Testing Class Hierarchies

Need to know what must beretested in code that isinherited? See
Hierarchical, |ncremental Testing.

Want to encapsulatethetest casesfor a specific classusing PACT? See
Organizing Testing Softwar e.

Want to know what testing is possible if the classis abstract? See
Testing Abstract Classes.

Inheritance is a powerful mechanism for interface and code reuse. In this chapter
we describe approaches for the execution-based testing of classesin an inheritance
hierarchy. We show how to test a subclass given that its superclass has been tested
using the techniquesin Chapter 5 and Chapter 6. We consider many aspects of
subclass testing, including adequate testing of subclasses, reuse of test casesfor a
classin testing subclasses of that class, and implementation of test drivers for
subclasses. We aso cover testing abstract classes. We provide examples of the
techniques in both C++ and Java.

We begin the chapter with a brief review of inheritance and a discussion of
assumptions we make about how inheritance should be used. Then we anayze the
Inheritance relationship from a testing perspective to identify what needsto be
tested in a subclass. We describe parallel architecture for class testing (PACT),
which isaway to organize Test er classesin an inheritance hierarchy.

Inheritance in Object-Oriented Development

Inheritance provides a mechanism for reuse. Inheritance, as a mechanism for code
reuse, was probably a significant factor in making object-oriented programming
atractive in the 1980s and early 1990s. However, good object-oriented design calls
for inheritance to be used in a very disciplined way—that is, in accordance with the
substitution principle (see Substitution Principle on page 33). Under that discipline,
inheritance is a mechanism for interface reuse instead of code reuse.™ In our
discussions in this chapter, we assume inheritance is used only in accordance with
the subgtitution principle. Under that assumption, the set of test cases identified for
aclassisvaid for asubclass of that class. Additional test cases usually apply to a
subclass. With careful analysis of the incremental changes that define a subclass in
terms of its superclass, testers can sometimes avoid execution testing of some parts

280

of a subclass because the test cases that apply to the parent just exercise the same
code that was inherited intact in the subclass.

"' In our experience, code reuse frequently falls out of interface
reuse.

During analysis and design, inheritance relationships between classes can be
recognized in the following two genera ways.

As a specialization of some class that has aready been identified
Asageneralization of one or more classes that have already been identified

Inheritance relationships can be identified at just about any time during an
iterative, incremental development effort. In particular, the speciaization
relationship can be gpplied even fairly late in an effort without a large impact on
most other program components. This flexibility is one of the big advantages to
using inheritance and one of the strengths of object-oriented technologies.

It is also a strength of the technology that code for execution-based testing of
classesin ahierarchy can be reused. We will show how test plans and test drivers
for a derived class can be derived from the tests for its base class.

Subclass Test Requirements

Implementing classes is more straightforward when done from the top of the
hierarchy down. In the same way, testing classes in an inheritance hierarchy is
generally more straightforward when approached from the top down. In testing
first at the top of a hierarchy, we can address the common interface and code and
then specialize the test driver code for each subclass. Implementing inheritance
hierarchies from the bottom up can require significant refactoring of common code
Into a new superclass. The same thing can happen to test drivers. To keep our
discussion ssimpler, we will assume that the classes in an inheritance hierarchy are
to be tested top down. First, we will focus on testing a subclass of a class that has
aready been tested.

Consider that we would like to test a class D that is a subclass of another class C.
Assume C has dready been tested adequately by the execution of test cases by a
test driver. What do we need to test in D?

Since D inherits at least part of its specification and aso part of its implementation
from C, it seems reasonable to assume that some of the test software for C can be

281

reused in testing D. That is indeed the case. Consider, for example, the degenerate
case in which Dinherits from C and makes no changes at all. Thus, Dis equivaent
to Cin its specification and implementation. Class D need not be tested at dl if we
are willing to assume that the compiler correctly processes the code. Under such an
assumption, if Cpasses all itstest cases, then so must D.

In the more genera case in which D contains incremental changes from C, the

effort needed to test D adequately can be reduced by reusing test cases and parts of
the test driver for C. We will show how we can extend the testing done for Cina
straightforward way to test D.

Refinement Possibilities

As supported by Java and C++, inheritance permits only a small number of
incremental changes in deriving a class D from a class C. We can define a new
derived class D that differsfrom Cin only four genera ways:

1. Add one or more new operationsin the interface of D and possibly a new
method in D to implement each new operation.

2 A new operation might be abstract (pure virtual in C++
terminology), deferring implementation to subclasses.

2. Change the specification or implementation of an operation declared by Cin
one or two ways.
a Changein D the specification for an operation declared in C.
b. Overridein D a method™! in C that implements an operation inherited
by D.

BI\We assume if the class is implemented in C++,
then such operations are declared virtual in the
base class. Failure to use a virtual member function
violates the substitution principle.

3. Notethat either or both of these can apply. It iscommon to override a
method in a subclass. It is also possible to change a specification for an
operation without di rectlkl changing the method that implements the
operation in a subclass.™

4. "' For example, the implementation might be based on a
Template Method pattern [GHJV94].

282

5. Add into D one or more new instance variables to implement more states
and/or attributes.
6. Changethe classinvariant in D.

While inheritance can be used for many reasons, we will assume that inheritance is
used only in accordance with the substitution principle. Thisis areasonable
assumption because many of the benefits of object-oriented programming arise
from polymorphism. The substitution principle ensures that objects bound to an
interface behave as expected, thereby resulting in more reliable and readable code.
We a so assume that the principle of information hiding is followed so that any
datain an object is not public. If datais indeed public, then we will augment our
discussion with an assumption that reads and writes to public data correspond to
implicit get and set operations,respectively.

Since D inherits part of its specification from C, then al the specification-based test
cases used in testing C can be used in testing D. The substitution principle ensures
that all the test cases still apply. We need new, additional specification-based test
cases for new operations, perhaps additional specification-based test cases for
operations whose preconditions have been weakened or postconditions have been
strengthened, and implementation-based test cases to test new methods. If the class
invariant has been refined in the subclass, then we will need to add test casesto
address the refinements,

Figure 7.1. Refinement possibilities in an inheritance relationship
between two classes

Subclass I adds a new instance variable
(newVar) and a new operation (opNew ()). I
ovemides the method for op2 () defined in C
because the operation has a new specificatior
void op1() and/or a new implementation.

void op2()

D

new\ar: Type:

void op2()
void opMNew();

Hierarchical, Incremental Testing

283

The incremental changes between class C and its derived class D can be used to
guide the identification of what needs to be tested in D. Consider the incremental
changes from atesting perspective. Since Dis a subtype of C, then dl the
specification-based test cases for C aso apply to D. Many of the implementation-
based and interaction-based test cases aso apply. We use the term inherited test
cases to refer to the test cases for a subclass that were identified for testing its base
class. We can determine which inherited test cases apply to testing asubclass
through a straightforward analysis. As part of that same analysis, we can determine
which inherited test cases do not have to be executed in testing the subclass. We
repeat here the list of incremental changes given in the previous section and
examine each from the testing perspective.

1. Add one or more new operationsin the interface of D and possibly a new
method in D to implement each new operation.

A new operation introduces new functionality and new code to test. A new
operation does not directly affect existing, inherited operations or methods.
We need to add specification-based test cases for each new operation. We
need to add implementation-based and interaction-based test casesin order

to comply with coverage criteriain the test plan if the operation is not
abstract and has an implementation.

2. Change the specification or implementation of an operation declared by Cin
one or two ways.

a Changein D the specification for an operation declared in C,

We need to add new specification-based test cases for the operation.
Additional test cases provide new inputs that meet any weakened
preconditions and check outputs for the new expected results that
result from any strengthened postconditions. The test cases for this
operation defined for C till apply, but must be re-run. In addition, we
need to add strengthened postcondition requirements to the output for
each of the test cases used to test this operation in class C.

b. Overridein Damethod in Cthat implements an operation inherited by
D.

We can reuse dl the inherited specification-based test cases for the

method. Since there is new code to test, we will need to review each
of the implementation-based test cases and interaction-based test

284

cases, revising and adding to them as needed to meet the test criteria
for coverage.

3. Add into D one or more new instance variables to implement more states
and/or attributes.

A new variable is added most likely in connection with new operations
and/or code in overriding methods, and testing will be handled in connection
with them. If anew variable is not used in any method, then we do not have
to make any changes.

4. Changetheclassinvariant in D.

Class invariants amount to additional postconditions for every test case. We
prefer to view them as implied postconditions and to write test cases without
explicit references to invariant constraints. Test case output is subject to
Invariant congtraints—that is, "and the class invariant holds" isimplicit in
every test case output. Thus, if a class invariant changes, then we need to
rerun all inherited test cases to verify that the new invariant holds.

We do not need to add specification-based test cases for operations that are
unchanged from base class to derived class. The test cases can be reused asis. We
do not need to run any of thesetest casesif the operations they test have not
changed in any way—that is, in specification or in implementation. We do,
however, need to rerun any test cases for an operation if its method has changed
indirectly because it uses an operation that itself has changed. We also might need
additiona implementation-based test cases for such methods.

We refer to applying the above analysis and its results as hier ar chical

incremental testing (HIT). We can use the analysis to determine for a subclass
what test cases need to be added, what inherited test cases need to be run, and what
inherited test cases do not need to be run. Determining which test cases do not
need to be run isabit tricky. In practice, it is usually easier and more reliable to

just rerun all test cases. However, it pays to determine which test cases can be
reused.

Figure 7.2 summarizes the analysis associated with HIT. We classify each

operation defined for a derived class D in the first column as new, refined, and
unchanged. The second column specifies whether that change affects specification-
based testing. The third column specifies whether that change affects

285

implementation-based testing. The table adds a dimension of public and private.
Private features of a class do not affect the public interface.

Figure 7.2. Summary of refinements and effects in hierarchical
incremental testing (HIT)

Incremental Affect Class
Change Specification? Affect Class Implementation?
e public Yes Maybe, if the new method
ﬁ affects, directly or indirectly,
2 inharited variables
o
E private Mo Yes
3 public Yes Maybe
2£
g E private M Yes
9
T3
E E
23
E public Yas Yas
2 (constant)*
S
E private Mex Yes
=
s public No Maybe, if the method uses,
ﬁ directly ar indirgctly, an opera-
g tion on itself that is changed
]
'E' private Mo Yes
=
1]
£
(2]
=
-

"We assume that any public variable is declared consi (final). We discour-
age using any variablas in a class interface, preferring accessor opara-

tions instead.

A No entry in the table indicates that the incrementa change (for the row
containing the entry) has no incrementa effect on the test suite—that is, the test
cases for the superclass are still valid for the subclass. A Yes entry indicates that
test cases must be added to address that incremental change. A Maybe entry
indicates that a tester must examine the code in the implementation to determine if
more test cases are needed to achieve some level of coverage. As a short example,
consider the Ti mer classin the design of Bricklesthat represents the passing of

time as a sequence of discrete "ticks." Each timer event is processed by a Ti ner
Instance that notifies other objects in the match. Those objects, in turn, process

286

another timer tick. This aspect of the design is based on the Observer pattern
[GHIVHA]. A Ti ner instance occupies the role of subject, and other objectsin a
Brickles match assume the role of observers. If we implement the design as shown
in Figure 7.3 based on existing, tested classes Subj ect and Coser ver
prescribed by the Observer pattern, then we can identify from Figure 7.2 what
needs to be tested in class Ti ner . Specificaly, the specifications of at t ach(),
detach(),andnoti fy() do not need to be tested further because their
specifications have not changed from what was defined in Subj ect . No new
implementation-based test cases are needed either because the code (not shown)
reveals that there has been no changes to the execution flow in these methods—
that is, these methods do not use any of the new codein Ti ner or thereisno new
interactions with other objects. We do need to add specification-based test cases
for the new operation t i ck() , which processes atimer event, and
implementation-based test cases for the method that implements it. With respect to
testing Ti mer Cbser ver, HIT shows we need to test the overridden updat e()
operation by adding specification-based test cases because the specification of the
operation changes in the subclass (it specifies possible state changes in a concrete
subclass). Since the operation is abstract in Cbser ver , the Maybeinthe HIT
table trandates to a need to add implementation-based test cases as well.

Figure 7.3. Class diagram for Ti mer and Ti ner Coser ver

Subject . Observer
observers

attach(Observer) = update()
detach{Observer)
notify()

Timer TimerObserver
- subject
tick() - uUpdate{) o

tick() |

- {this->tick() ﬁ

Let us now examine hierarchical incremental testing from the context of atest
plan—that is, from the perspective of identifying test cases. Then we will examine

287

it from amore detailed level. We will use as an example the inheritance hierarchy
rooted at Spri t e in Brickles (see Figure 7.4). A spriteisan abstraction that
represents any object that can appear on a playfield in anarcade game. The name
has historic significance in the domain of arcade games [Hens96]. Some attributes
associated with a sprite are a bitmap that renders avisua image, a Size that
describes the width and height of the bitmap, a location on a playfield, and a
bounding rectangle that is the smallest rectangular area of the playfield that
contains the sprite's image (if it is on a playfield™).

I Consider, for example a puck in play and a puck not yet put
into play. The former is on a playfield, the latter is not.

Figure 7.4. A class model for the Sprit e inheritance hierarchy

288

TimerObserver

iy
Sprite Brick

CSize _sire; bool _isBroken;
CBitmap® _bilmap_p: BrickPile® _brickPile_p,
CPoint _playFieldPosition; static const int bitmapl D[]
PlayFiald® _playField_p; BrickColor _color;
Spritefint resourcelld, const CSized size): woid crumble();
Spritefint resourcall, cons! CSizek size, Brick{const BrickCalor),

PlayField® playField_p, const CPoinl& pas); Brick{const BrickCaolor,
=Sprite(); BrickPile” brickPile_p);
void fick() 1
const CSize& size() const, bool overlapsiconst Sprite®
CEBitmap* bitmap() const; sprile_p) const;
const CRect& boundingRect() const; bool isBroken() const;
bool overlaps{const Sprite” sprite_p) const; void hilByPuck{Puck® puck_p),
eonst CPointé position() const, BrickColor getColor() const;
void setPosition{const CPoint& position); stalic const CSize Siza;

PlayField® playFiald() const;

1_]}.

MovableSprite

Valocity _currenfelocity; Paddie
CPoint _prevPlayField Posilion; ety
CRecl _prevBoundingRect;; stalic consi GSize size,
bool _isMoving; const Mouse® _mouse_p.

; . Faddie{Mouse™ mouse_p),
void reverse(), ;
void mrfdc:.ﬂufsmrca sprite); [void hitByPuck(Puck® puck_p).
void moved): void eoliideinto{Sprite& sprite);
Velocity getWelocityl) const;
void setVelocity{const Velocity& new\Vel);
bool slinhotion() const,
bool isHeadinglLell() const; Puck
bool isHeadingRighl{) const, <l
bool isHeadingUp() const; : R
bool isHeadingDown() const: g ;“Sz'ags'm e
vioid startMoving(); = d
void stophlov 3
o Puck(;
Speed getSpesd{) const, — i "
Direction gelDirection{) const; void hitByPuck(Puck® puck_p);
void setDirection{Direction newDirection); vond maveq),
void reversex(}

A movable sprite is a sprite that can change position in a playfield. Associated with
amovable sprite is the velocity at which it is currently moving. A velocity
represents a direction and a distance traveled (in playfield units) in a unit of time.

In our model, a puck and a paddle are both concrete kinds of movable sprites.

A stationary sprite is a sprite whose position is fixed aslong asit is on the
playfield. In our model, a brick is an example of a stationary sprite. Since we have
only one kind of stationary sprite in Brickles, we have—probably shortsightedly—

289

elected not to represent stationary sprites by an abstract class in the current
increment. Thus, class Br i ck inheritsdirectly from Spri t e in our modd.

Specifications for some of the operations in these classesin the Spr i t e hierarchy
aegivenin Figure 7.5.

Figure 7.5. An informal specification for some parts of the Sprite
class hierarchy

290

Sprite
gither an a playfield or not on any playfield

Sprite(int resourcelD, const CSize& size):
e, resourcell idantifies the bitmap and size carracily reflacts the height and
wiclth of the bitmap

post the new instance has- an ima r_;ie but is not p-usltmﬂed on any playfleld

re; resour-::eiD |dent|f'nes the t:ﬂtrnap Sizecor rect:y reﬂects the hmghl and width

of the bitmap, playField_pis not null, and pos s a valid playfield posi-
tion

past the new instance has an image and displays on the playfield at the given
position

MovableSprite

either on a playfield or not on any playfield; sither moving or not moving

MovableSprite(int resource|D, const CSizes size)

pre; resourcelD identifies the bitmap and size comectly reflects the height and
width of the bitmap

past the new instance has an image, is not positioned on any playfield, and is
not maoving

void selVelocily(const Veloclya newVel)

pre: nane

post the receiver has velocity newle

void move();

pre; none

post if not in the maoving state then do nothing else move to a position deter-
mined by the current position and the current velocity. If a collision
ocours in the process with another sprite S, collidelnta(S).

. idelnto(Sprited sprite):

pre, none

post: updates own state and that of sprite to reflect a collision in which the
receiver has collided into sprite

Puck

gither on a playfield or not on any playfield; either moving or nol moving; either in

play or not in play

void move();

pre: nong

post: if notin play or not moving then do nothing else move to a position deter-
minad by the current position and the current velocity, Il a collision
occurs in the process with another sprite S, collidelnto(S).

id collidelnto(Sprite &sprite)
pre: updates cwn state to change direction of travel and updates state of spnite
to reflect baing hit by a puck

Specification-Based Test Cases

Under hierarchical, incremental testing, changes in a subclass's specification from
the specification of its base class determine what needs to be tested. Test
requirements are summarized in the column labeled Affect Class Specification? in
Figure 7.2. While our discussion will be based on the relatively informal
gpecifications given in Figure 7.5, the techniques apply to any form of

291

specification, including Object Constraint Language (OCL) and state transition
diagrams.

Let usfocusfirst on the class Mbvabl eSpri t e, assuming test cases have been
identified and implemented for class Sprite (see Figure 7.6).2) Movabl eSprite
adds some new operations and attributes to model motion in a playfield and also
overrides some methods. Among the new operationsin class Movabl eSpri te
arenove(), which updates a movable sprite's positionin a playfield;

set Vel oci ty(const Vel ocity &), which changesthevelocity at which a
movable spriteismoving; i sMovi ng() const , which inspects whether a
movable spriteis currently in amoving state; and col | i del nto(Sprite &),
which modifies the state of a movable sprite to reflect a collision with some other
gprite in the playfield. Among the overridden methods are the constructor. Most of
the operations declared by Spr i t e are inherited unchanged.

Twe'll address the problem of testing an abstract class, such
as Sprit e, later in this chapter.

Figure 7.6. A component test plan for class Vel ocity

292

Component Test Plan

[Component Name ;.. | |'_I'ra¢:king Number = |
F&vehpar{s] [ranvis Sykes | Fﬂﬂ"{ﬂ Daver Sykes |
Objectives for This Component

This class represents the abstraction of every object that can appear in a
playfield in an arcade game. Its primary purpose is to establish a protocol
for all the various subclasseas of sprites,

Guided Inspection Requirements
As this is a critical componeant; 100% of its code shall be inspected.

[Building and Retaining Test Suites
The test suites shall be prepared in accordance wilth project standards. A
Spritelester class shall contain the test driver, In that class, operations shall
be provided lo exacute functional, structural, and interaction tast casas,
Reporting shall conform to project standards,

Specification-based Test Cases
Execute test cases for each combination of precondition and postcondition
of every method. Also check that the class invariant holds as part of each
test case. Execute test cases that cover every transition in the state repre-
sentation.

Implementation-based Test Cases
Execute test cases that cover every line of cods in each nonabstract
mathod,

Interaction Test Cases
MNons.

State-based Test Cases
Mone in addition to those cases covered in specification-based test cases.

The implementation of Movabl eSpri t e usesthe following two new variablesto
store the vel ocity attribute and indicate whether the sprite is moving:

_current Vel oci ty,whichisaninstance of class Vel oci ty used to
store the current velocity.

293

_i sMovi ng, which indicates whether the movable spriteis currently in
motion. When this variable isfalse, nove() hasno effect.

What do we need to do to adequately test Movabl eSprit e giventhat Sprite
has aready been tested? The subclass's code is based on the code tested in the
superclass. From the class model (Figure 7.4) and the specifications for the
operations shown in Figure 7.5, we can identify the following based on the HIT
information in Figure 7.2:

The changed invariant demands that all the test cases defined for Sprit e
should be run for Movabl eSpr i t e and the new invariant checked.

The new operationsin Movabl eSpr i t e need to have specification-based
test cases generated as well as implementation-based test cases generated.
We will want to check interactions among many of the new operations—for
example, setting the velocity and then moving a movable sprite afew times
to ensure it has adopted the specified velocity, or changing the velocity and
verifying that the heading (up, down, left, or right) is correct.

The operationsin Spr i t e for which methods have not been overridden in
Movabl eSpri t e need no additional test cases.

Implementation-Based Test Cases

The column labeled Affect Class Implementation? in Figure 7.2 specifies what
needs to be tested with respect to implementation. If an entry contains Maybe, then
atester must examine the code to determine whether additional test cases are

required. In the case of Movabl eSpri t e, quite afew methods have been added
to implement the operations concerned with movement. Methods for operations
associated with a position in the playfield have not been overridden. The method

tick() isoveridden so that it causes a movable sprite to change position in the
playfield based on its current velocity.

Based on the information in Figure 7.2, we can determine the following about
implementation-based testing of Movabl eSpri t e:

No new test cases are needed for si ze(), bi t map(),
boundi ngRect (), overl aps(), position(),setPosition(),
or pl ayFi el d() . After examining the code for these methods and

determining that there are no interactions among themwith t i ck() , we
conclude these test cases do not need to be rerun.

294

Implementation-based test cases are needed for all the new methods such as

reverse(), nove(),and soon.
Implementation-based test cases are needed for the implementation of the

abstract method t i ck() .

We also need interaction test cases associated with checking the correct
implementation of st art Movi ng() and st opMovi ng() and the effect of the
state change on other operationssuch asti ck() andreverse().

Organizing Testing Software

The relationship between test requirements for a subclass, such as

Movabl eSpri t e, and the test requirements for a base class supports an
inheritance relationship between Test er classesthat we described in Chapter 5.
In other words, we can develop atest driver for a subclass D by deriving its

Test er classfromthe Test er classfor C, D's superclass. Figure 7.7 shows the
structure, which we refer to as the parallel architecture for class testing (PACT)

[McGr97]. The structure determined by PACT for the Spri t e class hierarchy is
shownin Figure 7.8.

Figure 7.7. Parallel architecture for class testing (PACT)

Tester

i

tester cuT
CTester C
D

St Tuiat tester CuT

Figure 7.8. PACT structure for the Spri t e hierarchy

295

fester

T

: tester cuT _
SpriteTester —5 A Sprite

1 T

MovableSprite Test ' MovahleSprite

ovableSprite Tester o CUT p

X A

[|
PuckTester r— Puck

lastar CuT

Using PACT reduces the effort needed to test a new subclass. The organization of
test case methods and test script methods we described in the previous two
chapters facilitates the testing of subclasses by letting usinvoke themin Test er
subclasses. If an operation is refined in a subclass, then the corresponding tester
methods can be reused in the subclass and refined as necessary to reflect new
preconditions, postconditions, and/or implementation. Test case methods and test
script methods for new operations can be added in the subclass Test er . PACT
presents a clean organization and is easy to implement.

At the root of the PACT hierarchy isthe abstract class Test er that we described
in Chapter 5. Each subclass of Test er must provide implementations for the
abstract operations and could override methods for any of the other operations.
Each subclass has the same basic organization presented in Chapter 5: test case
methods, a method corresponding to each constructor to create an object under test,
and a method to create an object under test in some specified state. These classes
are straightforward to implement once the test cases have been identified.

Testing Abstract Classes

We usually expect the root class of an inheritance hierarchy—and even some of its
direct descendents—to be abstract. In this section, we discuss possible ways of
testing abstract classes, such as Spri t e and Movabl eSpr i t e. Execution-based
testing of classes requires that an instance of the class be constructed. Most object-
oriented programming languages, including C++ and Java, support syntax for
identifying abstract classes. Language semantics generally preclude instances of

296

abstract classes from being created. This presents a problem for testing because we
cannot create the instances we need. We have identified some different approaches
to testing abstract classes. Each has strengths and drawbacks. We present these
approaches in the context of testing the Spr i t e abstract class.

One approach to testing an abstract class, such as Spri t e, isshown in Figure 7.9.
Under this approach, a concrete subclass of Spri t e is defined solely for the
purpose of testing. In the figure, we name this class Concr et eSpri t e. The
implementation of Concr et eSpr i t e defines a stub for each abstract operation
of Spri t e. If one or more of the methodsin Spri t e isatemplate method using
oneof Spri t e'sabstract operations, then that abstract method must be stubbed
appropriately—so that it effectively appears to meet the postconditions for the
operation it stubs. In some instances, thisis not difficult to accomplish. For some
complex operations, writing a satisfactory stub can require substantial effort. Once
a concrete subclass has been implemented, the obj ect Under Test () factory
method of the Test er class—for example, Spri t eTest er —creates an
instance of the concrete subclass.

Figure 7.9. One approach for the execution-based testing of an
abstract class

Tester

i

SpriteTester = Sprite

R ay

-
L

ConcreteSprite

One disadvantage to this approach is that the implementation of abstract methods
cannot be propagated easily to abstract subclasses without using multiple
(repeated) inheritance. Consider, for example, what is now necessary for testing
the abstract class Movabl eSpri t e, which is a subclass of the abstract class
Spri t e illugtrated in Figure 7.10. Idedlly, the Concr et eMbvabl eSprite
class could reuse the stubs implemented in Concr et eSpri t e. However, this
reuse is not immediate unless Concr et eMovabl eSpr i t e inherits from both

297

Movabl eSprit e and Concr et eSpri t e. While multiple inheritance is
available in C++, it is not in most object-oriented programming languages nor isits
use for this purpose encouraged.

Figure 7.10. Another approach for the execution-based testing of an
abstract class

Tesler

T

SpriteTester Sprite

iy . 3 ~

ConcreteSprite

MovableSpriteTester == === === == o MovableSprite

: I

: |

1 ConcreteMovableSprite

A second approach to testing an abstract classisto test it as part of testing the first
concrete descendent. In the context of testing Spr i t e, thiswould be donein
testing, say, Puck. This approach eliminates the need to develop extra classes for
testing purposes at a cost of increased complexity in testing this concrete class. In
writing the Test er class for a concrete class such as Puck, we need to take care
to implement a Test er classfor each ancestor, thereby providing each with the
appropriate and correct test case and test script methods. Thisis straightforward to
doin practice. Careful review of the codeinthe Test er classesfor the abstract
classes can reduce the effort needed to get the concrete subclass Test er class
implemented correctly. If the concrete subclass passes all its test cases, then the
assumption is that the ancestor classes pass their test cases. This assumption is not
always vdid. For example, a concrete subclass might override a method defined in
one of the abstract classes. In that case, another concrete subclass that does no such
override must be used to test that method.

298

Neither of these approaches is completely satisfactory. We have investigated a
third approach based on the direct implementation of a concrete version of an
abstract class for testing purposes. In other words, we have tried to find away to
write source code for a class so that it can easily be compiled as an abstract or a
concrete class. However, neither an approach based on editor inheritance nor one
based on conditional compilation™” has produced good results because the resulting
code is complex and hard to read, thusiit's susceptible to error.

"l Editor inheritance refers to the cloning of code by copying
existing source code and then editing the copy to add, remove,
or change its function. In this case, we copy the code for the
abstract class to a separate file, then implement any abstract
operations to make the class concrete. Of course, the main
drawback of editor inheritance is that any change to the original
source code is not propagated automatically to the cloned
source code.

To work around this drawback, we can use conditional
compilation based on, for example, C++ preprocessor
directives #if defined(TEST) and #elif and #endif, to put the
code for abstract and concrete versions of the same class in
the same source file. Using conditional compilation makes code
very difficult to read and maintain.

A good dternative isto test an abstract class using guided inspection instead of
execution-based testing. Reviews are acceptable because a typical abstract class
provides little or no implementation for the abstract operations. In our experience,
public interfaces for abstract classes tend to stabilize fairly quickly. The concrete
operations are primarily inspectors or simple modifiers that can easily be tested by
inspection. Constructors and destructors are more complicated to test by inspection
only—for example, the constructor for the Spri t e classinvolvesfinding a

bitmap image associated with aresource ID.

We dtill prefer to do execution-based testing of concrete classes because it supports
easer regression testing. PACT offers advantages for testing families of classes, so
we still want to develop Test er classes for abstract classes. In our practice, we
prefer the second approach we discussed—that is, testing abstract classes with the
first concrete subclass to be tested. This approach is straightforward and requires
relatively little additiona coding effort for implementing testers. We still have the
advantage of easly performing regression testing.

299

Summary

It iswidely accepted that the inheritance relationship provides a powerful analysis
and design toal. It provides a very powerful testing tool as long as inheritanceis
applied during design in accordance with the subgtitution principle. An inheritance
relation holds for test suites. Test suites for subclasses can be derived from the test
suite for their parent classes. Based on an analysis of the changes, we can decide
what test cases need to be added, what test cases need to be rerun, what test cases
need to be modified, and what test cases do not need to be run at al. PACT
provides a very useful way of organizing test drivers for class testing.

Exercises

7-1. Hierarchical, incrementa testing (HIT) approaches testing with an idea that,
with alittle analyss, we can avoid retesting code that has aready been tested.
Select classes from an inheritance hierarchy on your project and perform aHIT
anaysis. Estimate the effort to implement enough test casesto fully test al classes
in the hierarchy and compare that estimate with your HIT analysis effort.

7-2. Write atest driver for an abstract class with a small number of operations.
Evauate the effort needed to test the class using the three approaches described in
the last part of this chapter.

7-3. Implement a PACT hierarchy of Test er classesfor the classesin an
inheritance hierarchy to which you have access. Modify the abstract class Test er
described in Chapter 5to be useful in your test environment. Enhancements can
include measuring memory alocation, collecting timing information, and doing
more sophisticated logging of results.

300

Chapter 8. Testing Distributed Objects

Need to define standards for specifying distributed systems? See
Specifying Distributed Objects.

Interested in a new definition of " path" especially for distributed
systems? See Path Testing in Distributed Systems.

Need to develop teststhat explorethe temporal characteristics of a
program? See Temporal L ogic.

Want to exploretesting an Internet application? See The Ultimate
Distributed System—The | nternet.

Few systems these days are designed to execute on a single processor in asingle
process. In an attempt to gain flexibility and extensibility, many systems are
designed in pieces that are sufficiently independent that can reside in a separate
process from the others. The term distributed means systems with a client/server
architecture in which the client and server pieces are designed to be in separate
processes. Today's systems are much more varied than the client/server systems of
the eighties in which the server was aways a database server and the clients smply
queried or modified the data. Appplications often begin with one component of the
application being downloaded to run on a customer's computer. Information is
streamed back to an application server, which in turn works with a database
component to fulfill atransaction.

In this chapter we will add to our repertoire of testing techniques to include tests
that are targeted at new types of defects specifically related to concurrent,
distributed software. Basically we will consider the following two types of faults.

Concurrent threads of execution must coordinate their accesses to shared
data values. Failure to synchronize these accesses can lead to incorrect data
values being present in memory even though each thread is correctly
computing its resullt.

A specific node in adistributed system can fail to perform correctly even if
every other processor isworking properly. A network link between nodes
can aso fall while the remainder of the system continues to function. This
results in a system failure.

The Brickles example, as we have been using it thus far, is not distributed and not
useful in this context. We will use examples from the Java version of Bricklesthat
Is multithreaded and that uses an applet running in a Web browser as its interface.

301

Basic Concepts

The basic unit that we will deal with in this chapter isa thread. A thread isan
Independent context of execution within an operating system process. It has its
own program counter and local data. A thread isthe smallest unit of execution that
can be scheduled. Most modern operating systems allow a single process to group
multiple threads into a related set that shares some properties and keeps certain
others private. A single thread is a sequence of computations and is the Simplest
testing situation. Techniques discussed in earlier chapters have "covered” the
various entry points into and the paths through a single thread of computation. The
techniques have accounted for aternative paths through the logic including the
dynamic substitution of one piece of code for another.

The basic complication introduced by having multiple threads arises when they
share information or access data stores that are available to more than one thread.
For concurrency to be of value, there should be as few dependencies between
threads as possible. Dependencies imply that the order in which computationsin
the two threads occur matters. Since each thread is independently scheduled by the
operating system, the developer must provide some mechanism to synchronize the
threads so that the correct order is followed.

Obj ect-oriented languages provide some natural means of synchronization by
hiding attributes behind interfaces and, in some cases, making threads correspond
to objects. This means that synchronization is visible in the object interface (such
asthe synchr oni ze keyword in Java) and that messaging isakey element in
synchronization. In this environment, class testing does not detect many, if any,
synchronization defects. It is only when a set of objects interact that the real
opportunity to detect synchronization defects occurs.

The case study that we have been using was originally written sequentialy and the
C++ version that can be downloaded from the Web is a sequentia version. The
Javaversion does introduce concurrency. Essentialy, the Movabl ePi ece objects
are autonomous from the other computations in the game. They are in the sense
that the Ti ner object maintains a separate thread and sendsthe t i ck() message
to every Movabl ePi ece object that is registered with it. The synchronization
problem that must be examined is whether it is possible for the Ti ner thread to
retain control of the processor and sendthet i ck() message to asingle object
severa times before the thread that manages the display can compute a collision,
change the location of the object that was moved, and update the display.

302

Computational Models

Sequentia processing of program statements is the "default” model of
computation. In this section we will discuss some other models and briefly talk
about the testing implications of each.

Concurrent

The concurrent model of computation introduces alogica notion of multiple things
happening at the same time. Physically it may or may not be possible for two
things to happen at the exact same time, but a design must be constructed to
assume that things are happening at the same time. The introduction of light-
weight threads into recent operating systems have made this model easy to redize.

Testing for concurrency defects should focus on those points at which two threads
interact. Methods should receive the typical testing described in Chapter 5 before
being exercised in an interaction setting. The interaction tests, which we began
talking about in Chapter 6, should provide opportunity for two or more clientsto
request the same service. But more about this later in the chapter (see Path Testing
In Distributed Systems, on page 275).

Parallel

The parallel model of computation uses a set of physical processors to achieve true
physically concurrent computing. As many computations as processors may
proceed at exactly the same time. There are various definitions of this term but a
"parallel computer” is usualy taken to be one in which these multiple processors
share a common high-speed data bus and are thought to be in the same "box." The
Nationa Oceanic and Atmospheric Administration (NOAA) uses a computer with
over two thousand processors to compute forecasts from vast quantities of
measurements from around the world. We will not discuss the issues associated
with this modd.

Networked

In this model, physical concurrency is achieved by linking together separate boxes
with communication devices that operate at a dower speed than the internal data
bus. Thisisamode we will consder because it is applicable to such heavily used
systems as the Internet. One of the testing problems associated with networked
computing is the difficulty in synchronizing the many independent machines that
comprise a networked system. This can make it difficult to determine how

303

thoroughly an implementation has been tested because the times at which events
occurred are measured in terms of each local clock. Without getting into the details
of networking and Web communication, we will discuss some techniques for
testing systems that incorporate a Web component.

Distributed

Distributed systems use multiple processes to support aflexible architecture in
which the number of participating objects can change. Although the objects of a
system can be distributed across multiple processes on the same machine, they are
usually distributed across multiple physical computers. These distributed
components must be able to locate the other components with which they must
interact. An object varioudy named the "Naming Service" or registry or some
other name is known to al the components. In some cases a configuration file lists
the machines that are authorized to participate in the system. These and other
pieces condtitute what we will refer to as the infrastructure of the distributed
system. This infrastructure may be standardized and reusable across a number of
systems with little or no modification. We will consider a number of issues related
to testing these distributed components and systems.

Basic Differences

We want to consider some of the basic differences between sequential systems and
these other models particularly from a testing perspective.

Nondeterminism

It is very difficult to exactly replicate a test run when the software contains
multiple concurrent threads. The exact ordering is determined by the scheduler of
the operating system. Changes in programs not associated with the system under
test can affect the order in which threads of the system under test are executed.
Thismeans that if afailure is encountered, the defect is isolated and repaired and
the test is repeated, we can't be certain that the defect is removed just because the
error does not reoccur during a specific run.

This leads us to use one of the following techniques:

Conduct mor e thorough testing at the class level. The design review of a
class that produces distributed objects should investigate whether there is an

304

appropriate provision for synchronization in the design for the class. The
dynamic class testing should determine whether the synchronization is
working correctly in a controlled test environment.

Execute a large number of test cases while attempting to record the
order in which events occur. This provides a higher probability that all
possible orderings have been executed. The problems we are attempting to
detect result from sequences of actions. If all possible sequences of these
actions have been executed, the defects will have to be found.

Specify a standard test environment. Begin with as clean amachine as
possible including as few connections to networks, modems, or other shared
devices as possible. |dentify those applications that must run for the platform
to be viable. Add a basic set of applications that would be running on the
typical machine. Each test case should provide a description of any
modifications made to this standard environment. This includes the order in
which processes are started. Including a debugger in the standard
environment alows the tester to verify the order in which threads are
created, executed, and deleted. The larger the environment and the more it
can be shared and networked, the more difficult it isto maintain consistency
within that environment. Wherever possible there should be atesting lab in
which machines areisolated (at least for the initia testing phases) from the
rest of the corporate net and dedicated to the test process.

Additional Infrastructure

Many of the distributed object systems rely on an infrastructure provided by a
third-party vendor. Over time, successive versions of thisinfrastructure will be
released. A regression test suite should be created that tests the compatibility
between the application and the infrastructure.

A second issue here is the reconfiguration of the system. Some infrastructures are
sdlf modifying and reconfigure themselves when the system reconfigures itself.
Essentialy a specific input data set can cause a different path to be executed
because the previous path no longer exists. An analysis of the infrastructure should
provide a set of standard configurations for the infrastructure and tests should be
executed for each different one.

Partial Failures

A distributed system can find that a portion of its code cannot execute because of
hardware or software failures on one of the machines hosting the system. An

305

gpplication running on a single machine does not experience this type of falure: it
Is either running or not. The possibility of partia failure leads us to include testsin
which failures are smulated by removing or disabling network connections or by
shutting down a node in the network. This can be implemented in the previoudy
mentioned test |ab.

Time-Outs

Networked systems avoid deadlock by setting timers when arequest is sent to
another system. If no response is received within a specified time, the request is
abandoned. The system may be deadlocked or one of the machines in the network
may smply be very busy and may be taking longer to respond than what is allowed
by the timer. The software must be able to perform the correct behavior in the case
when the request is answered and when it is not, even though that behavior may be
very different in the two situations. Tests must be run with a variety of loading
configurations on the machines in the network.

Dynamic Nature of the Structure

A distributed system is often built with the capability of changing its configuration,
for example, where specific requests are directed dynamically, depending on the
load on the various machines. Systems are also designed to allow avariable
number of machines to participate in the system. Tests need to be replicated with a
variety of configurations. If there are a set number of configurations, it may be
possible to test them all. Otherwise, a technique such as orthogonal array testing
system (OATS) can be used to select a specific set of tests and configurations.

Threads

We have aready introduced the concept of athread as a unit of computation that
can be scheduled. During design, the principal trade-off concerns the number of
threads. Increasing the number of threads can smplify certain agorithms and
techniques but increases the risk of sequencing problems. Reducing the number of
threads reduces sequencing problems but makes the software more rigid and often
more inefficient.

Synchronization

306

When two or more threads must access the same memory location, a mechanism is
needed to prevent the two threads from interfering with each other. Two threads
may try to execute a method that modifies a data vaue at the same time. Some
languages, such as Java, provide alanguage keyword that automatically adds the
mechanism to prevent this simultaneous access. Others, such as C++, require
explicit structures that each individua developer must construct.

Synchronization can be easier in an object-oriented language because the
mechanism can be localized on the modifier method for the common data attribute.
The actual datais protected from direct access by more than a single specific
method.

Specifying the Need for Synchronization

In design documents, synchronization can be specified in the guard clauses of the
UML sate diagram. In Java, the keyword synchronize is used on the signature of
amethod to specify the need for a synchronization mechanism. C++ has no
keywords for specifying synchronization; however, the synchronization
mechanisms are designed as classes. The creation of an instance of a monitor
object, for instance, indicates the location at which synchronization is needed.

Testing That the Need Is Met

Even though the language automatically provides the mechanism, the devel oper
may have misplaced the specification for synchronization. During class testing, a
test harness should create multiple thread-based test objects. Each of thesefires a
request against the object under test (OUT).

Path Testing in Distributed Systems

Path testing is awell established technique for selecting test cases. A path is a set
of logically contiguous statements that is executed when a specific input set is
used, such as the following:

Si;

i f(condl) S,
el se S

307

Therearethepaths S;, S, and S;, S;. Other control structures introduce new paths
and may result in an indeterminate number of paths or, worse still, an infinite
number of paths.

Coverage is measured by computing the percentage of paths that have been
exercised by atest case. Executing 100% of the paths in a program provides

compl ete code coverage athough it may not detect defects related to the
computation environment. Of course, thisis difficult to achieve when there are an
infinite number of paths. Alternatives include only measuring the branches out of
selection statements, or | f and case statements that have been covered. This does
not cover the combinations of a branch from one control structure to another.

Another definition for a path is to link the place where a variable is given avaue

(a def) with al those places where the variable is used (a use). Covering al def-use
pairs constitutes compl ete path coverage. Other types of significant attributes of
the code can be used to define a"path." For example, branch testing, as previoudy
mentioned, is defining paths that are based on the decision statementsin the
program.

For distributed systems, Richard Carver and K. C. Tai [CaTa98] have identified a
definition of a path that results in effective coverage. First, we provide a couple of
definitions:

SYN-event: A SYN-event is any action that involves the
synchronization of two threads. The spawning of one thread by
another is one example of a SY N-event.

SYN-sequence: SY N-sequence is a sequence of SY N-eventsthat will
occur in a specified order. Thisis one type of path through the
program code.

Theideaisto design test cases that correspond to SY N-sequences. For example,
when a program begins execution, a single thread is operating. When it spawns a
second thread, that is a SY N-event. In the smple case, each thread carries out
simple computations. Eventually, the two threads join and the program terminates.
Thisisasingle SY N-sequence since any single input data set causes both threads
to execute. The basic or "main” thread does not count in the number of paths since
It executes regardless of the data set.

Figure 8.1 illudtrates the interactions between severa objects. The
Bri ckl esVi ewobject isthe main thread of the program. It creates the second

308

thread that is devoted to the Ti nmer . The Puck and Padd| e objects are
controlled on the main thread. Thet i ck() message fromthe Ti ner object to the
Puck and Padd| e objects are points of synchronization and thus SY N-events.
The SY N-sequences of interest run from the creation of the Ti ner toits
destruction. In this case there are an infinite number of SY N-paths because the

Ti mer amply kegpssending t i ck() messages until it is destroyed. The cresate,
destroy, and start and stop messages are SY N-events. Anaysis of these events
leads to the following SY N-paths that should be executed by test cases.

1. create thetimer, it runs until the game is over, the timer is destroyed

2. create thetimer, it runsfor awhile, it is stopped, it is started, the gameis
over, the timer is destroyed

3. create thetimer, it runsfor awhile, it is stopped, the user destroys the game,
and the timer is destroyed

4. createthetimer, it runsfor awhile, it is stopped, it is started, the timer is
stopped and started three times, the game is over, the timer is destroyed

Figure 8.1. An activity diagram of multiple threads

Y

<

Our experience and research has shown that this technique of SYN-paths identifies
defects that are related mainly to synchronization defects. Use of this analysis

BricklesView theTimer currentPuck thePaddle

]]]
I I]
I]]
create t - I 1
I ol i i
I I]
] |]
I I 1 . i

V' stop I y tick | N
|l - :
I I I
I]]
I]]
]]]
start " I I
"""""""""""" I 1
]]
]]

I I Y
I]
]]
]]
I]
destroy I 1
] I
i i
]]
]]
]]

309

technique does not replace the need to use conventional path testing techniques to
find defects unrelated to synchronization errors.

Now that we have looked at an example, let's analyze the types of eventsin an
object-oriented language that might qualify as SY N-events.

Creation and destruction of an object that represents a thread.

Creation and destruction of an object that encapsulates a thread.

Sending of a message from an object on one thread to an object on another
thread.

One object controls another by putting it to Sleep or waking it up.

The tester should trace paths from one of these events to another. Even if there are
multiple paths through control statements from one SY N-event to the other, only
one path needs to be covered to give SY N-path coverage. Exactly where these
events occur depends partially on where the threads are located.

An object that has its own thread should receive thorough testing as a class (with
all of its aggregated attributes) before being interacted with other objects. In Figure
8.2, we show selected portions of the Ti ner Test er . In particular we include a
few test cases. The Ti ner instance had been working in the context of the
completed game for a short time when it was class tested. A problem was found
that allowed the timer to start but it never stopped! The pause() method set a
Boolean attribute so that no further ticks were sent out, but the thread was not
halted so it continued to use system resources. This was only found when the
absence of ticks was tested rather than their presence.

Figure 8.2. Selected Ti mer Test er code

310

public class TimerTester extends Tester implements TimeObservablef

protected boolean testScript2(}
iflnewCUT()}
boolean result = testCase2();
logTestResult{("Script2”,result && classinvariant());
((Timer)disposeOUT).pause();
disposeQUT;
return result:
lelsef
QUT=null:
return false;
}
}

protected boolean testCase2(){
Timer OUT = (Timer) getOUT();
OUT.start();
for (inti=0:i<100000; i++
for (j = 0; j < 100000; j++{}
}

return tickReceived;

Objects on Threads and Threads in Objects

There are only afew basic models for threads in object-oriented programs.
An object hasits own personal thread or it is visited by the active thread as
necessary. Usually most programs will have examples of each approach.
The Ti ner class from the Javaimplementation of Bricklesis an example
of the object owning its own thread. All of the other objects share the
"main” thread. An object that owns a thread also indicates when it can be
interrupted by other threads. In either design, there must be a mechanism
that prevents multiple threads from operating in the same modifier method
at the same time.

In the code in Figure 8.2, the test object registers with the timer to receive the
tick() message. Thisis possible becausethe Ti ner Test er classimplements
the Ti meCoser vabl e interface. A test case like this one can be easily
constructed because the test object receives the event or message directly rather
than having to create a surrogate object that receives the message and then informs
the test object.

311

Thread Models

The"motto" of Javais"Write Once Run Anywhere." The redlity is"Write Once

Run Anywhere after Testing Everywhere." A particular example is the differences

in behavior of Java threads among operating systems. The test suite of any Java
program that creates threads should include tests on multiple operating systems

chosen for its different behavior. Using a Windows version, Sun Unix and Mac OS

give a cross section; however, variants of Unix and even different models of

workstations with different options installed may give different results.

Running the applet version of Brickles on a Windows machine and a Sun

workstation results in different behaviors, some correct and some not. The thread

for the Ti mer does not necessarily release control of the processor to allow the

display to be updated.

Design for Testability #2

After our discussion about testing threads, you should notice that Ti ner
implementsthe Ti neCoser vabl e interface.

Design Rule: In Java, with single inheritance, the root of every inheritance
hierarchy should be an interface.

This alows the test harness, which must inherit from atester parent class
to also implement the interface. This is often useful asin the case for
TimerTester, which needs to register itsalf with the OUT. Thisisthe Java
equivaent of the long time C++ design rule that the base class for any
hierarchy should be abstract.

Design for Testability #3

It is not obvious from the code used in Ti ner Test er, but the Ti ner
classis very difficult to test. Thisis due to the following statement:

QUT = new Ti ner (new BricklesView));

The parameter to the constructor, BricklesView, requires most of the
classesinthe application: Bri ckl esGane, Ar cadeGanePi ece,
St ati onar y(Qbj ect , Movabl e(oj ect, Puck, Paddl e, and

Br i ck. These classes must be in the compiler's path before it can be
constructed even though the reason those classes are aggregated into

312

Bri ckl esVi ew has nothing to do with the actions of the time.

Design Rule: Wherever possible define a default constructor that can be
used during unit testing without requiring dependencies on alarge number
of other classes. The default constructor need not be public.

In some cases, creating a default constructor in the classto betested is a
good design decision. In some casesit is not. With Ti ner , this was not
possible because the Ti ner implementation assumes it has a reference to

aBri ckl esVi ewobject and aborts its main loop when that reference is
null. Since this object is a parameter to the only constructor, itisa
reasonable precondition that the reference is not null.

Life-Cycle Testing

We have discussed using life-cycle testing in Chapter 6, and we will continue the
discussion in Chapter 9, as atechnique that is gpplicable at various levels of
development. We need to first determine what life cycle to use and then develop

test cases based on it. For a distributed system, this life cycle may be measured by

the lifetime of the infrastructure components instantiated to support the system.

The test plan for the system should include a test run starting from nothing

instantiated, followed by bringing the system up, executing a series of actions, and
then bringing the system completely down. The following three important checks

should be made to determine if this system test has succeeded:

Did each of the actions carried out by the system compl ete successfully?
Were al resources allocated by the system released after the system was
terminated?

Can the system successfully be restarted? (Or has the infrastructure stored a

state that makes it impossible to restart?)

Life-Cycle Testing

A life-cycle approach to testing implies that a series of test cases will be
selected so that whatever is being tested is exercised from its creation to its
destruction. Typically, there are many paths through the complete life
cycle. The test plan should select representative paths to provide

313

maximum coverage. For a class, life-cycle testing means choosing a series
of tests that construct an instance of the class, use it through a series of
messages, and then destroy the object. An effective life-cycle test should
validate more than just correct answers. It should aso vaidate that the
item being tested interacts correctly with its environment. For a class,
checking that after destruction all acquired resources have been released is
auseful validation. Also checking that other elements with which the
tested piece interacted are in correct states is agood idea. For example,
when a server crashes, the "Naming Service" for a CORBA object request
broker (ORB) might be corrupted and revert to a default setup.

Models of Distribution

We now want to discuss testing programs that use some of the standard
infrastructures for distributed systems.

Basic Client/Server Model

The client/server mode in which multiple clients all have access to the server is

the smplest model of distribution. The server is a single process and an indefinite
number of client processes can request service from the server. Thismodel has a
single point of failure since dl of the clients interact with the same server. This
model gives abasic idea of afew of the testing issues for distributed systems, but a
few systems raise issues that are more difficult than this model.

Testing implications:

1. Canthe server deliver correct results to the correct client in the face of a
steady load of a moderate number of requests simultaneously over an
extended period of time? The server may occasionally send the answer to a
request to the incorrect client. This set of tests can be modified to reflect the
profile of expected requests in which the number fluctuates with some
business cycle.

2. Can the server correctly handle arapidly increasing load? The server may
quickly degrade as the load increases, or it may abort. The test set should
present alarge number of test cases at increasing arrival rates.

Standard Models of Distribution

314

The smple client/server model has been generalized to alow the single point of
fallure of the client/server model to be eliminated. Multiple servers can provide the
same service and a client can select which server to use. The early implementations
of these models were error prone even in the hands of highly qualified developers
because of the primitive pipe and socket structures that had to be manipul ated.
With the advent of object-oriented techniques, models were developed that
abstracted away the networking details and reduced the number of errors. We will
not go back and talk about testing the more primitive implementations. We will
remain at the object level and assume that a commercia infrastructure is available
to hide the communication details.

We will provide just a brief introduction to each of three standard models and then
discuss how each supports or facilitates testing systems written using the model.
Later, we will discuss the basic infrastructure for Internet applications.

CORBA

The Common Object Request Broker Architecture (CORBA) has been devel oped
by the Object Management Group (OMG) as a standard architecture for distributed
object systems. The central element in this architecture is an object request broker
(ORB) that one object uses to communicate with other objects in the system. The
standard infrastructure provided by a CORBA-compliant system provides services
that allow one object to find other objects based on objects being requested,
location, or load. The infrastructure also provides services needed to connect two
objects written in different languages or objects that are executing on different
types of machines. A number of vendors provide products that form the
infrastructure for this model. This "standard architecture" does not totally specify
an implementation so the software provided by different vendors have competitive
differences such as faster throughput and a smaller footprint. CORBA is
sufficiently mature so that many of these products have experienced many releases
and can be considered "trusted." The CORBA standard is based on the following
set of assumptions:

The machines being linked by the infrastructure may have different
operating systems and different memory layout.

The components that comprise the distributed system may be written in
different languages.

The infrastructure may change its configuration based on the distribution of
the objects and the types of machines in the network.

315

CORBA has the advantage in terms of flexibility. We will focus on this technology
in the following examples athough the techniques can be gpplied to the other
models with dight modifications.

Testing implications:

Does the system work correctly regardiess of the configuration of the
infrastructure? Test plans should provide test cases that result in the
expected variety of configurations of the infrastructure being tested.

Can the test cases be made more reusable by building them based on the
services of the standard infrastructure? The infrastructure design is
sufficiently mature so that the structure of the test cases should be very
stable and the implementation should be mature. The test cases should be
designed to use the infrastructure as much as possible,

Does a specific new release of the infrastructure integrate effectively with
existing applications? There should be a regression test suite and test harness
that allows new releases of the infrastructure to be tested prior to it being
integrated into products.

DCOM

The Distributed Component Object Model (DCOM) is a standard developed and
promoted by Microsoft. This infrastructure is freely distributed with the Windows
operating system, thus making its cost a clear advantage. The DCOM "standard” is
described in terms of standard interfaces containing specific methods rather than
architectural generaities. Each standard interface provides a specific set of

services. A single component may implement the services of severa interfaces or
several components may each implement the services of the same interface but in
different ways.

The DCOM infrastructure supports the initial connection between components but
not as an ongoing part of the application. This reduces the layers through which
messages must flow and increases the throughput. However, the standard is largely
limited to Intel-compatible machines. This eliminates the need for any type of
trandation or interfacing services at a cost of the types of systems that can be
included in the system. DCOM is a low-level technique that requires an
understanding of low-level details and requires the developer to make a number of
detailed decisions correctly. Some tools are emerging that automate some of the
implementation process and reduce the number of errors.

Testing implications:

316

Did the developer correctly aign the required unique identifiers at various
places in the various components? Test cases should be written to utilize all
the various components to ensure that al needed connections can be made.
Does each component implement the required interfaces? Test cases again
should utilize dl of the available components to ensure that al services are
available and perform the expected functions.

Do the implementations of the standard interfaces provide the correct
behavior? This implies there should be a set of tests defined for each
standard interface. That set of tests can be applied to each server that
implements the corresponding interface.

RMI

The Remote Method Invocation (RMI) package in Java provides a smplified
distributed environment that assumes that no matter what machines or what type of
machines are connected, they will al be running a Java virtua machine. This
homogeneous environment has a structure that is similar to CORBA but is Ssmpler
due to the less flexible assumptions. A registry object is provided and all objects
participating in the distributed system must know which port the registry listens to

for messages.

The latest version of RMI uses the Internet Inter-Orb Protocol (110P) to alow RMI
objects and CORBA objects to work together. But more about this in the following
genera modd.

Testing implications:

Which CORBA test patterns can be used in RMI -based systems? Test cases
may be structured the same as many CORBA test cases.

Comparisons and Implications

These three model s emphasize the prominent role of interfaces in object-oriented
systems in general and distributed systems in particular. Distributed objects
advertise services by listing ther interfaces with the naming service of the
infrastructure. The implication is that functional tests can be organized by
interfaces. In particular, in DCOM applications, many classes may implement the
same interface and the reuse of the tests for a specific interface will be high.

Distributed object systems are based on ardatively small number of standards.
Each model that we have discussed has a more or less forma standard, at least to

317

the extent of standard design patterns. Tests based on these standards have the
potentia to be reused many times on a single project and across projectsin a
development organization.

A Generic Distributed-Component Model

As we present testing techniques for distributed components, we will generalize
about the architecture and infrastructure for the system. Our specific examples will
come from CORBA. We have even abandoned the terms "client" and "server"
because they tend to have very rigid architectural connotations for some people. In
adistributed object system, any provider of service will almost invariably aso be
requesting service from some other object.

Basic Architecture

In Figure 8.3 we illustrate the basic architecture of a distributed system. The mgor
action occurs when the servicerequester sends amessageto the service provider.
That is certainly the intent of each test case. The request isfirst sent to the
surrogate object that islocal to the requester so the requester does not handle any
of the distribution semantics. The surrogate contacts the communication
infrastructure and passes on the request. The communication infrastructure may
actually have to instantiate the service provider, but it eventually obtains a
reference to the provider from an object locator service and passes along the
request. The request may be channeled through a requester surrogate so that the
provider is also protected from the details of distribution. The return, if any,
follows the route back.

Figure 8.3. Generic architecture

;-.-... - o IJ....... - = "

i
Service : Service :
requester I provider |
\ : 7 :
I |
: Surrogate fdr :
I provider |
I |
L :
|
|
I
|

|
|
|
|
:
rrogate for :
provider |
|
\ :

Communication and
location services

' Process A Process B |,

e i i 1 B o = e i 1 5 i R g - o i e« S | . b 18

318

At thislevel basicaly al three models are the same, athough DCOM would return
the result directly to the requester. As we discuss the components of the
architecture, remember that an object can be, and often is, both arequester and a
provider.

Requester

Therequester participates in the distributed system as a stimulus. As such, its
behaviors have been previoudy tested using the class testing techniques that we
have already discussed with one exception: timing. If the requester sends any
asynchronous messages (one-way messages in CORBA), the test cases must
investigate the effect of the length of the time it takesto receive areply. That is,
when an asynchronous message is sent, the sender immediately proceeds to other
business. The implementation of the sender may be written to expect an answer to
the message within a certain amount of computation, but the implementation may
not be properly written to wait for that answer if it is not received in the expected
time. Test cases should be written to test this interaction under various load
conditions, thereby introducing different amounts of latency (delay) in the
communication.

The requester also participates in the interaction tests once the provider has been
class tested using the specialized techniques discussed in the next section. The
focus of these tests is the protocol between the requester and providers. Remember
from Chapter 6 that the protocol describes the complete set of messages sent
between two objects to accomplish an identifiable task. This is a separate phase of
testing because there are often multiple providers of the same service. The protocol
test suite and the individual test cases can be reused every time a new provider for
agiven protocol is added to inventory. The protocol test suite provides alife-cycle
approach to testing the interactions.

Provider

The provider is the centra figure in a distributed interaction. It performs behaviors
and, in some cases, returns information to the requester. The complete interface of
the provider can be tested using the basic class testing techniques discussed
previoudly. Those behaviors that are expected to be invoked by other distributed
objectswill require specialized testing that we will describe in the next section.

The provider is registered with the infrastructure along with information about the
services that it provides. In some cases, the provider may not be an object waiting
actively in memory for arequest to be received. It isfirst instantiated, and then the

319

request is forwarded to it. This can be the source of timing differences. Any
provider that can be dynamically instantiated upon request should be exercised
using test cases starting both from instantiated and noninstantiated scenarios.

Stubs and Skeletons

A stub isthe surrogate for the provider in the requester process. A skeleton isthe
surrogate on the requester side. The stub keeps the requester from knowing about
the semantics of the infrastructure. Some implementations of these infrastructures
are intelligent enough to reconfigure themselves depending on whether the two
objects are actually in the same process, in different processes on the same
machine, or on different machines with different architectures.

Asit reconfigures itsalf, the infrastructure will add or remove stubs and skeletons
or other method calls. This changes the path through which a request must travel.
Interaction test suites should be designed to execute a set of tests over the path
corresponding to each possible configuration.

Local and Remote Interfaces

The interface of a distributed object is often divided into local and remote
interfaces. The remote interface is the specification of those services that may be
requested by an object that is outside of the process in which the provider is
located. Those behaviors specified in the loca interface can only be accessed by
objects in the same process.

The local interface can be tested using the usual class testing techniques that we
have aready discussed. The remote interface can be tested by local test harnesses
asaninitid step but additiond testing requiring a specialized environment is il
needed.

Specifying Distributed Objects
Interface Definition Language

The specification for service providers is usually written in an interface definition
language (IDL). Since they are only for specification, the IDLs are smpler than a

320

programming language. The IDL specification provides severa pieces of
information that are useful for testing purposes.

signature— The main portion of the IDL specification is the usua signature
for amethod. This includes the name of the method, the types of each of the
parameters, and the type of the return object, if any. The standard techniques
for sampling values for each of these parameters should be followed in
constructing test cases.

one-way— This designation signals an asynchronous message. Testing
messages with this attribute requires that the test be conducted over a
complete life cycle. There is the possibility that the requester will need the
requested information before the provider sendsit. Thereis adso the
possibility that the message will result in an exception being thrown by the
provider. Tests should specifically investigate whether such exceptions are
caught in the correct object.

in, out— This attribute of a parameter defines whether the requester isto
provide this information or whether it should expect the parameter to be
modified by the provider. The tests of amethod that specifies an out
parameter must locate the returned object (because most object-oriented
languages do not handle this case gracefully) and must verify that it has the
correct state.

Traditional Pre- and Postconditions and Invariants

We have dready presented techniques for building tests from traditional pre- and
postconditions, so we will not repeat them here. Distributed components should be
designed not to know their location relative to other components; however, the
components do have to know about an expanded set of possible errors. The
postconditions are expanded to include exceptions for scenarios such as a service
that isn't available from the specified provider, a provider that doesn't respond in
time, and a requester that provides an invalid address. As with any postcondition,
each clause, such as an invalid address, should be covered by a specific test case.

Implicit Tests

Any method that sends a request to invoke a method on a provider may
receive a "Provider not found" exception from the infrastructure.
Developers are seldom patient enough to write this out as a possible
postcondition of every method that causes such an exception to be
generated. It is usudly the case that there is a set of exceptions that many

321

of the methods in a class may provoke. Thisis just one example of what
we refer to asimplicit specifications. These should be matched by
implicit test cases. For a distributed system, some appropriate implicit test
cases would include the following:

Test that a requester can handle a " Provider not found" exception.
Test that arequester can handle a " Provider busy" time-out
exception.

Test that arequester can handle anull provider reference (obviousy
any null pointer is a problem, but some infrastructures invalidate a
pointer after some amount of inactivity).

Test that arequester can handle anull "out" parameter.

These test cases should be made as general as possible so that it is easy to
apply them to each method that fits the implicit specification. The tests
should be included in atest checklist for the type of class being
constructed.

For each "domain" there is a different list. User-interface objects will have
implicit specifications about events and displaying. These should be
captured in lists as part of the project test strategy and delivered to the
developers and integration testers.

Temporal Logic

Timeisone of the critical issuesin distributed systems, but it is not handled well
with most specification techniques. We have found that interval temporal logic is
useful in expressing tempora relationships. The operators of temporal logic allow
concepts of time ordering to be expressed and reasoned about. Interval temporal
logic alows concepts about time periods, as opposed to specific pointsin time, to
be expressed. For example, the bef or e(a, b) statesthat in the time period
before event b happened, condition a was true.

The time periods about which we are reasoning must be appropriate to the problem
at hand. Two digtinctly different time periods are used in computer-based systems.
Oneisred caendar time that is represented in domain objects. Thisisusualy in
the form of dates. The second type of time period is execution time. In object-

322

oriented systems, thisis often related to the lifetime of an object. Thiswill be
where we focus most of our discussion.

Temporal logic operators have been used implicitly for along time. The al ways
operator is an implicit part of every classinvariant. Remember that the class
invariant is a statement of those properties that are always true. The pre-condition

isimplicitly abef or e condition.
A few of the tempora operators that we have found useful include the following:

bef ore(a, b) aistruebefore event b occurs
until (a, b) aistrueuntil event b occurs
after(a, b) aistrueafter event b occurs

An interval tempora operator applies for some period of time. Therefore, atest
that seeks to verify that the implementation satisfies such a requirement must cover
thisinterval. So how do you test something like the invariant

always(x >=0)

We handle this by repeatedly testing the validity of the invariant statement during
al of our classtests. Al ways isinterpreted as anytime that thereis an instance

object aive. Part of the behaviora specification for Ti mer objects might state the
following:

After it is started, the Ti ner instance sendst i ck() messagesto
every registered listener until it is stopped.

Itisfairly easy to test this at the class level, but it does require specia handling. In
the case of Ti ner, the test harness should inherit from Ti neCoser vabl e so

that it can be registered with the Ti ner instance. The test harness would do the
following:

Register itsdlf withthe Ti ner instance.

Check that not i ck() messages are being received.
Sendthest art () messagetotheTi nmer instance.
Check that t i ck() messages are being received.
Sendthe st op() messageto the Ti ner ingtance.
Veify that not i ck() messages are being received.

323

This basic test case should be repeated for a variety of time intervals between the

various messages. A St opVWat chTi ner would be used to tell the test harness
when to move to the next step.

To test that atemporal constraint is not violated, you can use two approaches. The
first is to encapsulate the object on which the constraint is written. Then any access
to the state about which the constraint applies can be monitored. After the access,
the validity of the constraint is checked. The disadvantage of thisis the possibility
of atering the operation of the object by the instrumentation. We will consider this
in the next section.

The second approach, as previoudly illustrated with Ti ner objects, isto sample
over theinterva about which the constraint is written. The intervals over which we
normally sample would be the following:

an interva in which a beginning time and an ending time are specified
from instance creation until a specified time
from a specified time until object destruction

Note that when we say a"specified time," it is usually specified as the occurrence
of a specific event. The specified timeis just whenever that event occurs.

Class and Object Invariants

We would like to make a distinction here between the class and object
Invariants that parallels our earlier distinction between class objects and
instance objects. There can bea"classinvariant” that corresponds to the
class object and an "instance invariant”" that corresponds to the instance
objects. Basicaly, an invariant is any statement that should aways be true
when the subject of the invariant isin a steady state. We can also have
system invariants. For example, the Singleton design pattern requires that
there should only ever be at most one instance of the class. The class
invariant would be

nunber of instances < =1

The instance invariant would be related to the semantics of the domain.
The instance object has no idea about the number of instances that can be
created and its invariant shouldn't address that issue.

Please note that this is not accepted terminoloqy 1n the industry, but

324

hopefully it will make you think about the precise expression of invariants.

Temporal Test Patterns

In this section we will present three test patterns written in an informal style for the
sake of space.

When a postcondition or a semantic description includes constraints written using
temporal logic, new test conditions must be satisfied. In general, temporal
constraints impose time requirements on the testing process. As aresult, the
paralle architecture for component testing (PACT) objects that exercise these tests
will need to maintain their own threads of control so that they can independently
act over aninterval of time. In most cases those intervals are not based on clock
time (dthough in ared-time system they might be), but rather the interva is from
some event such as a method that has been completing until some event occurs.
The PACT object will have to spawn observer objects to monitor the OUT.

The following are three of the operators that were previoudy defined and
descriptions of how we have been successful in testing them.

Eventually(p)

Eventually, the postcondition of b. x(), p, will be true, but the temporal
constraint is part of the postcondition of a. y() . It states a condition that will
become true sometime in the future. The "future” is relative to the lifetime of
a. y() . Anything that happens after a. y() terminatesisin a's future.

Testing this condition obvioudly requires delaying the decision asto whether p is
satisfied. The test must be conducted in the future of a. y() . InthisSituation, the
PACT object for a isplaced in a context that will last aslong as the context for b.
The PACT object has a separate thread. Periodically the a PACT object wakes up
and sends messages to b to determine whether b. x() has completed execution.
When it isdetermined that b. x() has occurred, the PACT object logs the fact and

uses the results from the other portions of the postcondition of a. y() to determine
whether the entire postcondition is satisfied. It then logs that result as well.

Figure 8.4. Eventual | y(b. x())

325

a b

' a0

T

b.x()

\J \J

>

The PACT object continues to interrogate the b object until either b. x() occurs

and p can be evaluated or b isdeleted. If it is<till checking when b is deleted, the
PACT object logs afailure.

Until(p,q)

Until b.x(),bisinagaes;. Thisisstatedasuntil (s1, b.x()).To
validate that this congtraint holds, we need to test from the point that this assertion
remains active until the b. x() event occurs. The PACT object is "fired off" at the
moment the constraint becomes effective. It then periodically wakes up and checks
the condition.

Inthe case of unt 1 | , we need to determine that the condition "b isin s;" istrue
every instant in time "until" the occurrence of the specified event. With

event ual | y, we only evduate the truth value of the condition once, after the
event occurs, but with unt i | we must continuously evaluate the condition "until”
the specified event. If it evauates to true every time until the termina event, then
the constraint is satisfied.

We obvioudly can't check the truth value continuoudly or no other work would get
donein the system! If we check only at the time that the event occurs, we can't be
certain what vaue the constraint had previous to that time, and the constraint
doesn't say what should happen after the event has happened. The PACT object
tester has to check previous to the event occurring. Checking once is hardly

326

sufficient. Basically, we set the interval when the PACT object is created. The
shorter the interva, the more certain the evaluation.

Figure 8.5. Until (b. x(), s1)

l |

* 1
X

b.x()

Always (p)

The al ways tempora operator isthe most heavily used of the operators because
every classinvariant is essentially an al ways constraint. The al ways constraint
saysthat a any point in the b swimlane, the logica congraint statement p is true.

Al ways asaclassinvariant refers to atime interval that corresponds to the
lifetime of each instance of the class. Aswe stated about unt i | , we cannot test
continuoudy. We compromise by sampling periodicaly and evauating the truth
value at each time. In Chapter 5, we talked about testing for the class invariant at
the end of each test case. Thisis the sampling technique we use as a default: test
with each test method invocation. The potentia problem is that atest case may
cause several methods to be invoked. Thisis why we even call the invariant
evaluation method multiple timesin atest case method if the test case directly
iInvokes multiple methods on the OUT.

Each tempora operator imposes different testing conditions, but each time the

operator is used it follows the same basic pattern. The basic principles we have
presented here should provide a basis for you to create your own test patterns.

327

A Test Environment
Class Testing

Class testing of distributed components often requires a specia environment such
asthe oneilludtrated in Figure 8.7. The purpose of this environment isto provide a
means of trapping messages to the OUT so that issues such as the timing of
messages can be analyzed and changes of state can be logged.

Figure 8.6. The al ways temporal operator

a b
I
t‘|_ e +|
tz———+: X
| b.x()
I
t3|—— >y v
I
tg— — — >

v X<

Figure 8.7. Class testing wrapper

328

Collaborator Test driver

OUT Interface

Relay method

/

This wrapper is an object that smply encapsulates the OUT. We have used various
types of implementations to automatically extract the interface of the OUT and
copy it into the wrapper. The wrapper object can be injected into a larger system
context and behaves just asthe OUT asfar asthe larger system is concerned. The
wrapper has fairly standard implementations of each of the OUT interface

methods. Each method does whatever logging is wanted and then forwards the
message on to the rea implementation in the OUT. The return path will return
control to the wrapper. At that time, the method will validate the state in the OUT,
log the results, and return the object returned from the OUT.

Log

This approach invades the larger system and is not considered to be testing that
context. The objective is testing only the OUT.

This approach is aso useful for testing the reordering of asynchronous messages.
The wrapper object can smply receive and hold message, until message; is
received. It can then forward message, prior to forwarding message;.

One value of this approach is that it allows complex computations from other parts
of the system that would be difficult to provide from atest harness, and alows
them to be utilized in testing a class. The wrapper can be built automatically except
for the implementation of the OUT methods in the wrapper, but even these use
functionality in the wrapper class for logging, checking, and other functionality.

Interaction Testing

329

Testing the interaction between two objects that are distributed in separate
processes from each other uses a configuration such as the one shown in Figure
8.8. Aswe have previoudly discussed in Chapter 6, testing a compl ete protocol is
one important aspect of interaction testing. In a distributed system, one of the
testing questions that must be addressed is whether messages are redlly received in
that order, even if they are sent in the sequence described by the protocol.

Figure 8.8. An interaction test

Machine 1 Machine 2
f] ; ™
TestDriver TestDriver2
try{. . .} _
RN calch (Exception e){} o
P %
Object 1 Under Test Object 2 Under Test
method1(}{
throw new exception
Ny =
A J

In the testing environment shown in Figure 8.8, the presence of a distributed test
architecture alows many operations to be done locally. That is, when test driver,
initiates atedt, it informs test driver, which test has been executed. Test driver, can
then verify, on machine,, that the portion of the test running on machine, has been
successfully completed. It then informs test driver;. This greatly reduces the
amount of information that must flow from one machine to another and speeds up
the testing process.

Test Cases

Much work has been done to make distributed system infrastructures as abstract as
possible so that users have little to worry about with respect to the distribution
semantics. Each vendor works to make its product conform to the standard it is
addressing. These two factors make it possible to have a set of model-specific and
then application-specific test cases.

Model-specific Tests

330

Each standard model resultsin its own set of design patterns. Thisin turn resultsin
a set of test patterns.

Tests for the Basic Client/Server Model

We have aready described a couple of types of tests for the client/server mode;
however, the basic client/server model has a number of variations. In the following

test pattern, the design pattern under test is awidely used variant named distributed
callbacks.

Problem: The synchronous messaging between two objects is modified to be
asynchronous messaging by adding a Cal | back object. The client constructs a
Cal | back object and sendsit arequest and the address of a server. The

Cal | back object submits the request to the server synchronoudly. When an

answer isreceived, the Cal | back object forwards the answer to the C i ent
object.

Context: The code for the design under test is being used because the designer
wants to be able to do other work while this message is being answered.
Potentialy, the origina thread will complete its work before the answer is ready.

For ces: Functional tests may pass when executed once, but race conditions can
lead to inconsistent results so repeating the same tests may obtain different results.
Numerous factors affect the visibility of failures due to race conditions.

Solution: Construct test suites that execute each test case multiple times. The test
suite should adjust factors to make race conditions more visible. The system should
be set back to its origina state after each test. The tests should include the
following (see Figure 8.10):

A test in which the server returns the expected result almost immediately.
A test in which the client is deleted before the callback fires.

A test in which the server fires an exception.

A test in which the server is deleted before returning avalue.

Figure 8.9. Adding callbacks to a client/server pattern

331

Figure 8.10. Testing the distributed callback pattern

Test driver Test observer
\s s
Client Server
Callback

'

]

[

Test observer

Tests for the Generic Distribution Model

Now let's return to the generic distributed architecture and consider some tests. To
organize this we have completed test plans for the Pr ovi der and the
Request er objects, as shown in Figure 8.11 and Figure 8.12. These are not

specific to the semantics of each, but they do address the general function of each
component.

Figure 8.11. A component test plan for the provider

332

Component Test Plan

[cﬂmW"ﬂﬂt Name pqicor Hmlﬂﬂ Number g

[Dwulnpar{n] Dave Sykes] iTﬂhr{ll Jahn D. McGreger

Objectivas for This Component
This component is inended for use in a distributed system that follows a
standard model of distribution. The provider provides behaviors to other
objects in response o requests. The provider has a specified set of services
that it provides.

Guided Inspection Requirements
A guided inspection of the design madel for a distributed system should
check that the provider's set of services is complete with respect o its role
as a domain object in the analysis model. The provider's specification must
make public those services that are consistent with the needs of the
requester objects. The signatures of methods must be correct with respect
to the domain model.

[Building and Retaining Test Suites

The test suites shall be prepared in accordance with project standards. A
ProviderTester class shall contain the test driver. That class will inherit from
the GCenericModelTester class that is specific 10 the distribution model
being used. Every provider that provides a certain protocol can use the
same test cases so these should be grouped into a separate object and
aggregaled inlo the ProviderTester.

Specification-based Test Cases
Every pravider provides a set of services based on the model of distribu-
bon, Tesl cases based on these services are in the GenericModel|Tester
class. Test cases based on the application-specific services should have
est cases in ProviderTester.

Implementation-based Test Cases
The test cases should meet the usual path and code coverage criteria,

Interaction Test Cases
The provider should be interacted with a representative sample of the
requester objects that will request services. Each major protocol should be
lested wath at least one requester that parucipates in the protocol

State-based Test Cases
The provider may be in one of several slales when a requester makes its
request and may receive requests from multiple providers at the same time,
The provider should be taken through its complete life cycle using all of the
prolocols necessary,

Figure 8.12. A component test plan for the requester

333

Component Test Plan

iCurnp-nmnt MName peooecier I [1—'raching Number rg<
Ina'ﬂ!lupar[s:l [rawer Eij'kt:!': | |Tﬂ5tnr[$} John D M:;Gr(,gl;;-l
Objectives for This Component

The requester has the role. in a distributed system, of initiating actions by
requesting services from provider objects. It manages the information that is
returned from the provider in response Lo a request.

Guided Inspection Reguirements
A guided inspection of the design model for a distributed system should
check that the requester has access to the complete sel of services that it
needs. If the requester uses multiple providers, the inspection should be
certain thal the various providers provide consistent resulls for the same
service. The inspection should ensure that each requester method uses the
correct service at the correct time.

Building and Retaining Test Suites
The test suites shall be prepared in accordance with project standards. A
RequesterTester class shall contain the test driver. In that class, operations
shall be provided to execute functional, structural, and interaction test
cases. Reporting shall be in conformance with project standards. The test
class will be available to application developers as interaction tests in their
application.

Specification-based Test Cases
Construct pre- and postconditions for each method in the documented AP,
Execute test cases for every clause of each postcondition of every method.

Implementation-based Test Cases
The test cases should meel the usual coverage criteria, Use the technigues
from Chapter 5 and Chapter 6 to select and construct tests.

Interaction Test Cases
The main interaction tests will be with the providers that the requester uses.
The focus should be on complete protocols between the requester and
each of its providers. Artificial delays should be inserted to study the effects
of liming.

State-based Test Cases
Requesiers will have a sel of states related to being distributed, such as
being connected to the infrastructure and disconnecting as well. A com-
plete test suite will exercise these states as well as the states related to the
semantics of the application,

Testing Every Assumption

The different models of distribution make very different assumptions about the

type of application or the deployment environment. These should be the focus of

334

tests. Some of these should be done during the Guided Inspection phase while
others will have to wait for an executable.

Language Dependence Issues

The RMI model assumes that the part of the system for which it isbeing used is
completely written in Java. CORBA makes no assumptions about the languages of
even two interacting requesters and providers. Specific tests should be designed
where two components written in different languages interface even through the
infrastructure. The code of the infrastructure is tested and will handle the transfer
correctly; however, the application code may not be correct. Depending on the
infrastructure, the programmers have some degree of control (hence the possibility
of mistakes exists) and must manually be certain that the data types used in the two
classes are compatible. The documentation for the infrastructure may do a less than
perfect job of explaining what is possible. We recently experienced errors when
passing an array between a Java requester and a C++ provider due to incorrect
documentation. Test cases not only detected a failure, but they also provided a
pointer to the cause of the problem.

During guided inspection, the inspectors should determine that the correct
mappings are being used. CORBA, for example, uses a set of typesthat are very
compatible with most C++ types. The variation between CORBA types and Java
types is much greater. Java also does not directly provide support for "out"
parameters. The ingpection should determine that return objects are being handled

properly.
Platform Independence Issues

Basicdly, al of the models of distribution are independent of the platform on
which they run, dthough DCOM is used primarily on Intel-compatible platforms at
this time. However, the bigger issue of deployment environment remains critical.
Implicit requirements about the size of available memory or processor speed can
still cause the software to work differently on one specific machine from another.

One technigue we have found useful is to provide deployment tests with a product
release. Each user can then run these tests after installation to determine whether
the application is operating correctly. We will discuss thisin more detail in

Chapter 9.

Infrastructure Tests

335

The infrastructure delivered from a vendor is "trusted" code that will not be
subjected to detailed testing. There are situations beyond the control of the vendor
that can corrupt the infrastructure. For example, the stubs and skeletons needed in a
CORBA implementation are produced automatically by a compiler for the IDL
specification. Often developers will edit these default implementations. Thisis no
longer trusted code. There should be tests that will at |east exercise al of the
modified code.

Compatibility Tests

When a new version of the infrastructure is released, compatibility tests should be
run to determine if modifications in the application are required. Thisis usually
done by a designated group on a project. Thisis the same type of testing needed for
new versions of frameworks or even tools.

Testing the Recovery of Failures

One of the critical differencesin adistributed system is the possibility of partial
faillures of the system due to the breakdown of one of the machines hosting the
system. As a part of the deployment testing effort, the following type of test case
should be built using the distributed test harness illustrated in Figure 8.8. A system
configuration should be constructed in which thereis a"main" machine on which
the locator portion of the infrastructure is running (this may not be possible for all
types of systems), and for which a server is instantiated on a specific machine.
Once the server has registered with the infrastructure, the test driver on the
machine containing the server should display a dialog box on that machine that
requests that the tester remove the network cable from the machine. Once the user
selects OK on the dialog box, this test driver would send a message to the main test
driver. The main test driver would then initiate a sequence in which the application
would attempt to contact the server that is now unavailable. The ability to
recognize that the server is not available and to handle it gracefully is one of the
implicit requirements we discussed in Implicit Tests, on page 288. The correctness
of the implementation relies on the experience of the individual developer as
opposed to detailed specifications.

Dynamic Modification of Infrastructure

CORBA infrastructure implementations provide the means by which it can be
modified during program execution. One vendor, for example, provides the ability
to add or remove "filters' from the pathway between requester and provider during
execution. These modifications change the configuration of the system and can

336

change the timing and execution path. Since these modifications usually occur in
specific situations, tests should be constructed that exercise each possible
configuration given the dynamic components that are available.

Logic-Specific Test Cases

The types of logic defects that can occur in a distributed system are not that
different from a sequentia system with a couple of exceptions.

Different Sequences of Events

With asynchronous messages between processes, events may occur in avariety of
sequences. A requester may send severa requests in a short period of time and not
wait for any of them to complete. The order in which these requests return can vary
considerably from one execution to another. If the design assumption isthat it
makes no difference in what order the replies are received, the testing obligation is
to test as many of the combinations as possible. The statistical sampling techniques
discussed in Chapter 6 can be used to determine the minimum number of possible
tests.

Requested Object Unavailable

Many systems allow users to enter the names of providers or other resources. Users
may misspell names, omit a portion of the name, or request a resource that once
was available but no longer exists. Thisis certainly acommon occurrence with
Internet browsers. It is dightly different from the previous case in which the object
Is registered but not available due to machine fallure. In the partia failure case the
infrastructure returns a null pointer, whereas with this case the infrastructure may
throw an exception. This type of fault and the test cases to detect it only make
sense in the event that the provider's identification is acquired dynamically. The
testing objective here isto determine whether the exception is caught in an
appropriate location in the requester, and whether the application is able to abort
the operation gracefully and give the user another chance to give the address of the
provider or some other appropriate response.

Test Case Summary
Use the test suite giving the following coverages.

1. every method of each standard interface
2. every SYN-path,

337

3. every logical control path
Apply the test suite repeatedly using variations in the following factors:

1. load of gpplications running on the same systems
2. load of user input into the overall system

3. connections between machines

4. configurations of the infrastructure

The Ultimate Distributed System—The Internet

The Internet represents avery large and dynamic distributed system. Servers are
added to and removed from this network continuoudy. Applications that livein
this environment must be able to operate in the presence of partia faluresin the
form of missing systems or nonexistent addresses on machines. Some of these
systems form basic business environments for the company running the Web site.
These e-commerce systems have specific and stringent requirements for reliability
and security. In this section we will consider the issues specific to this type of
environment. It will not be a complete overview, but we will provide an outline of
how these systems should be tested.

The "Web pages' that are displayed in the browser include both data, in the form
of marked up text usng HTML or XML, and behaviors, in the form of scripted
functions using languages such as JavaScript. These pages often alow input from
the user, perform computations, and format and present output. The browser is an
extensible application that can sense when the data that it has been provided
requires an additional application in order to handle it properly. These "plug-in"
modules add functionality dynamically so that the browser is a changing execution
environment.

So what does testing a Web page mean? It means testing that the intended display
Is presented to the user; that input is accepted and forwarded to awaiting
application correctly; and that all actions are performed as intended. The display
can fail in terms of the following:

incorrect fonts being displayed
mismatch of coordinates so that afigureis not visble

338

the wrong language is used or different languages are used for different
sections of text

amismatch between the platform configuration and the browser display
attributes

There are pieces of code embedded into the display file as well as separate script
files. Browsers can directly execute code written in languages such as Java. The
Javaversion of Brickles runs as an applet in a browser. The browser and the
standard plug-ins are "trusted" code. The testing objective is the content of the
display data plus embedded and external script files. Failluresinclude the
following:

incorrect or insufficient permissions to execute code in a specific file

an inability to create afile when necessary

the usual failures associated with any function such as computing the wrong
answer

inability to locate resources during execution, such as missing bitmaps

Severd pieces of code may be added to the browser by a single page. This may
include the Acroread PDF file viewer, a RealPlayer video player, and even the
Visigenics CORBA ORB. Once loaded by a page, the code may remain loaded
while other pages are loaded and other plug-ins are added. It isimpossible to test
al possible combinations of programs for interactions. However, it is possible to
construct tests that result in different combinations of code being loaded into the
browser environment. Y ou should anayze the source listing for each of your pages
and construct paths through the pages that lead to different combinations of plug-
ins being loaded.

GUI versus API Testing

Earlier we discussed the differences between testing an application from
the GUI or from its API. The API level is chosen less often in this
situation because functions embedded in a Web page are so visually
oriented that it takes less effort to ssmply use the GUI. The display text can
be parsed and validated as syntactically correct. Then sufficient tests are
constructed that execute the script code to achieve levels of coverage
amilar to that of a programming language.

Web Servers

339

The browser and Web pages sometimes work in conjunction with an application
server, as shown in Figure 8.13, to invoke other applications. These servers are
generic software applications available from vendors; therefore, after an

acceptance test, they will be "trusted” code. The server incorporates a database that
stores both the content of the pages and the data produced by users of the system.

Figure 8.13. Web server architecture

o Browser
(Application)\
H Display
Pages

(Application <+—= WWeb Server [«

/r
(Application)‘/ A

L

Database

These systems automate certain aspects of customer service. A page might accept
Input into a customer order form, create a client record, invoke applications that
automatically generate an account number and password, and then emall the
account information to the customer.

¥

These systems are designed to be very modular. The application programs can be
changed with no modifications to the Web server and only minor changes to the
Web pages. The Web pages are changed by simply changing the data, which is
often stored in XML format.

Testing these systems involves two facets. First, do the scripts do what they are
intended to do? There have been many versions of the browsers and their scripting
languages in avery short time. As aresult, unless you are deploying browsers into
amanaged environment in which everyone runs the same version, the tests should
be run on the different combinations of the browser version and the script language
version. Frames and tables are examples of features that have varied radically from
one environment to another and have resulted in very different display results.
Many developers include aternative paths depending on whether the browser
supports frames or not. There should be test cases to cover these different
possibilities.

340

Second, is the current data correct and in the form expected by the applications and
Web pages? Testing this aspect requires scenarios in which the various data
displays of the Web site are combined with the types of data that the user would
enter. This analysis follows the same process as described in Using Scenarios to
Construct Test Cases on page 317 in Chapter 9. The data types for each entry are
analyzed, equivaence classes are defined, and vaues are sampled from each class.

Life-Cycle Testing of Internet Applications

Life-cycle testing, in this context, means testing across a set of user transactions.
These should be selected to utilize the complete set of back-end applications. The
life-cycle perspective will typically span severd different platforms including the
user's system, the Web site, and the supplier applications. For example, with an e
commerce system, we would begin with the presentation of material to the user. Is
it presented accurately? Many of the pages are constructed using XML trees of
information. It is possible for the program to incorrectly associate descriptions and
prices. After presentation comes the acceptance of a customer order. Thisinvolves
the Web page to receive and handle events and data, and it involves the database to
manipulate inventory and to record the order. The gpplication must alow the user
to modify the order by adding or deleting items. Other applications are used to
order the goods from suppliers so that they search for new orders, bundle al the
items for each supplier, and interact dectronically with the supplier applications.
The test suite should identify multiple interlocking life cycles based on the actors
for the system. The client actor has alife cycle of creating an order while the
supplier actor has alife cycle of creating a different type of order.

There are sgnificant interaction testing activities in two dimensionsin this
example. First, complete systems written by different teams must interact. The
Web site software itsalf also integrates several different technologies. The example
system probably includes HTML, JavaScript, XML, and Java technologies. There
are issues about the compatibility of data types as well as the timing of events and
limiting their effects.

One of the most important tests for a Web application is to construct test cases that
stress the Web site. There are tools that make it easy to clone Web pages and
invoke multiple operations on the server. The stress test should be designed to
accurately reproduce the expected profile of use. There should also be tests of the
server's capability to limit the number of connections in a controlled manner
(display a message) rather than in a catastrophic manner (server crashes).

341

Perhaps the most important function of a Web page is to recognize that a request it
has made has not been fulfilled. Browsers set timers to monitor every connection
that must be made to another resource such as other pages and servers. Since the
browser is"trusted” code, we are not testing whether the failure to obtain a
resource will be recognized. We are testing whether the scripts in the page handle
that failure appropriately.

What Haven't We Said?

The important areas of performance and security have not been covered. Thereisa
growing number of tools devoted to those topics because of their implications for
e-commerce. As the second major wave of e.commerce sites are deployed these
areas will be a particular focus. Research is being conducted and some
sophisticated models are being developed that described performance
characteristics. Maybe we can cover this in the next edition.

Summary

Distributed objects are first of all objects and need much of the same type of
testing as other objects. One of the principal differences between distributed and
nondistributed systems is the importance of timing. Timing is influenced by the
sequence of statements in a method, the scheduling algorithms of the operating
system, and the number of objects and their relationships. An initia question is
whether the design sufficiently expresses the timing assumptions made by the
design. The main testing question is whether the implementation is sufficiently
flexible to operate correctly in the face of al legitimate orderings of execution. We
have discussed temporal logic as a means of being expressive, and some
instrumentation that allows us to investigate the effects of various sequences.

Exercises

342

8-1. Examine the distribution infrastructure being used in your project. Determine
the conditions under which the infrastructure changes its structure, and the way the
paths of request change. Identify a set of initial test case conditions that would
cover al possible configurations.

8-2. Construct atest suite for a concurrent application by identifying the places at
which SY N-events occur and defining SY N-sequences to do test cases.

8-3. Study any software that you have devel oped using design patterns and select
one of the patterns to study or read a design pattern description. How did you or
would you test the software devel oped using the design pattern? Write the
description in the test pattern style.

8-4. Identify a Web site to be tested. Based on the application on the Web site,
describe a set of actions that represent atypica session, from start to finish, that a
visitor might participate in on the site. Include as many of the data input pages as
possible. Write test scenarios that cover al of these possibilities.

343

Chapter 9. Testing Systems

Need to write a test plan? See Defining the System Test Plan.

Want to know how to write test cases from use cases? See Use Cases as
Sources of Test Cases.

Need to know how the special features of a program affect testing? See
Testing Different Types of Systems.

Want to know how to quantify the quality of testing? See M easuring
Test Coverage.

We have reached the point in the development process in which the word testing is
used in its popular sense. But even this meaning has changed. System testing
usualy refersto the testing of a completed application to determine that it provides
all of the behaviors required of the application. We will consder a somewhat
broader definition that encompasses completed increments that provide some
degree of end-user functionality. We have aready discussed thislevel of testing in
Chapter 4 for the case when code has not yet been written. In this chapter we
assume that executable code is available.

Thisleve of testing has been seen as "throwing it over the wall" to an unrelated
group after the development is completed. However, in an incrementa
development effort, system testing usually refers to successive rounds of testing
end-user functionality with extensive feedback and interaction between the
development staff and the test team. The test plan and the development plan must
coordinate this interaction.

The words "system" and "application" are used as synonyms by some and distinct
concepts by others. When used as distinct concepts, system refers to a " complete”
environment including the program being developed, that is, the application, and
the operating environment including the operating system, virtual machines, Web
browsers, and hardware. We will not make the distinction. We will use the two
terms synonymousdly to mean the complete environment.

Originaly we said that testing was a search for defects. Well, that was the truth,
but not the whole truth. The focus for testing at this point in the devel opment
process shifts from a search for defects that lead to program failures (although
some will still be found) to a search for defects that are variances between the
actual operation of the system and the requirements for the system. Remember that
we took this same viewpoint back in Chapter 4 when we tested the system-leve
analysis and design models. At that time we investigated whether the anadysis and

design models were a complete, consistent, and correct solution to the problem
stated in the requirements. This early round of validation reduces the number of
"variance-from-requirements” defects found during the "end-of-devel opment”
round of testing.

This testing phase may be a multilevel activity. For software that will be executed

on a processor embedded within special purpose hardware, you should first test the
software on a smulator of some type before looking at the actual hardware. The
scope of the "system™ will also change as development progresses. Eventually
"system" test can be applied to the integration of several embedded applications
into a single system. For example, many modern automobiles have a number of
controllers located in assemblies such as the sunroof or the automatic windows.
These controllers communicate with each other in some cases and receive data
from sensors in places where there are no controllers.

There are severa other types of testing that occur at this point in the development
process. These are related directly or indirectly to the requirements. Performance,
security, load, and deployment testing activities are al speciality tests conducted
under certain circumstances. We will consider these activities in the context of
object-oriented systems in this chapter.

Many development contracts call for an acceptance test that is performed by the
customer prior to the development activity that's officially ending. Thistesting is
carried out in the deployment environment at the customer site. The customer
performs the test and determines whether the product is performing satisfactorily
from her point of view. Acceptance testing is a special kind of system testing.

In this chapter we will continue the work from Chapter 4, only now we will

assume that code is available. We will consider strategies for selecting the most
effective test cases, and we will consider the effect of different testing strategies on
the growth of the reliability of the system. But first we must plan.

Defining the System Test Plan

The system test plan is a more formal and more comprehensive document than the
component test plans we have been using. In many casesit will be reviewed by the
customers. In Figure 3.14 we listed the sections in the IEEE test plan format. We

are not going to discuss every section, but we will cover some of the sections and

345

we will complete some of the sections for the Brickles application. We will touch
on a couple of the items here, and then, in the following sections, we will expand
on the more important ones. In Figure 9.1 we provide an abbreviated system test
plan for Brickles using the format that we have used in previous chapters.

Figure 9.1. A system test plan for Brickles

System Test Plan
|Appﬁ_cnﬂon Name geiciips | [Tracking Number |ag |
|D-arvelnpar{3} [Sykes and 10D MoGregor | |Tester{5} D Sykes and JD MoGregor |

Objectives for This Application
The objective of this application is 10 provide a game that the user enjoys.
That means that the game must move sufficiently fast to keep the player's
interest. It must be accurate. When the puck hits a brick, it should break.
When the player moves the mouse, the paddle should move.

Guided Inspection Raquirements
The earliest inspections will inspect the game framework. The guided
inspection test cases should consider several board games and whether the
classes are capable of representing those games. Later inspections should
consider the details of how each use of the game can be accomplished.

Building and Retaining Test Suites
The guided inspection test scenarios follow the structure of the use case
model. As each use case is modified, the associated test cases are modi-
fied, Each of the test scenarios will be specialized lo produce specific lest
cases for the executable syslem test process. Changes to use cases are
propagated to the test scenarios and on to the test cases.

Specification-based Test Cases
Specification tests are the tests based on the use case model. These are
derived from the test scenarios as previeusly discussed.

Implementation-based Test Cases
Although system tests are usually considered o be requirements based,
we can construct implementation-based tests in which the paths are
between the externally visible units such as DLLS or jar files.

Interaction Test Cases
At the system level, interactions occur with the operating environment. For
the Java applet version of Brickles. one important interaction test is to
cover the applet with another window and then uncover it

State-based Test Cases
The state model for the system is shown in Figure 9.2, The machine is suffi-
ciently simple so that all paths could be covered.

346

Features Tested and Not Tested

Some amount of validation testing is performed as each increment is delivered.
Rather than having sections on which features are tested, we have a schedule that is
acopy of the project's increment plan combined with dates by which each
increment will be tested. This increment plan is usualy defined in terms of use
cases and so is the test plan.

For Brickles we created a plan that called for three increments, as shown in Figure
3.2. First we developed the basic infrastructure, the "Move Paddle" and "L ose
Puck" use cases. The second increment contained the "Break Brick" and
"Win/Losg' use cases. The third increment provided the "Pause” use case. The test
plan schedules a system validation at the end of each increment.

Figure 9.2. A Brickles state diagram
tick() @ tick()

- '

~ resume() i
(paused - =) running)
pause() . |'

@f-"/(completed)«/

Test Suspension Criteria and Resumption Requirements

Since system testers are neither debuggers nor developers, if the system being
tested contains too many defects, testing may need to be suspended before all
planned tests have been run. Typically we would begin with tests of one of the use
cases scheduled for the current increment and then move on to the next use case. If
we run atest against a use case and it fails, then we move to tests for the next use
case. Testing is suspended if there is no use case for which we can successfully
complete atest. Testing is resumed when sufficient development effort has been
expended to cause a significant percentage of the use cases to pass tests.

Complementary Strategies for Selecting Test Cases

347

There are two possible avenues for selecting test cases for the system. One
approach isto think about the types of defects that a product might contain and
write test cases to find them. A second approach is to determine how the system
will be used and build test cases that take it through its paces. In the following
sections we will describe each technique and discuss how we use them together for
an effective test strategy. Ultimately, we use the second approach to determine
how many test cases to apply to each use case and then use the first approach to
guide the selection of the test cases for maximum defect-finding power.

Use Profile

A traditional system test approach isto construct an oper ational profile. The
profileisalisting of the relative frequency with which each end-user functionin

the system is used. For example, in Brickles, the player uses the mouse and moves
it from side to side as the most frequent operation. Selecting a help feature or
pausing play by depressing a mouse button are very infrequent operations.

This approach is also used in the computation of the reliability of a piece of
software. Reliability is a measure of how long a software system operates without
fallure in a specific operationa environment. The operational profileis one
technique for specifying the operational environment. However, it is difficult to
specify the operational profile until the system has been deployed for some time.

We defined a use profile in Chapter 4 as an accurate estimate of the operationa
profile. The use profile uses the priority of an operation rather than the frequency.
It is possible to estimate the priority of ause case more accurately than it isto
estimate the frequency of specific operations that may be used by severa different
types of users. We can estimate the priority of a use case by considering estimates
of both frequency and criticality for each individua actor and then combining
these for individua use cases. The use profile is built from the actor and use case
diagrams.

OoDC

Orthogonal Defect Classification (ODC) is atechnique developed at IBM for
capturing information about the type of faults that are present in a software system
under development. This technique is useful for collecting and analyzing test
information to direct a process improvement effort; however, our intent isto use
the standard classifications developed by the creators of ODC as a basis for
selecting test cases (see Orthogonal Defect Classification as a Test Case Sdector
on page 125).

348

Figure 9.3 lists the six categories of causes of failuresidentified in the ODC
technique. Our interest is to be certain that we have built test cases that will alow
each of these triggers to occur. Some of the categories, such as Startup and Normal
Mode, are actualy hard to avoid. However, the Exception category reminds us to
cover every system-level exception just as we tried every exception at the
component level. The word Recovery in that category aso reminds us that the
expected result of catching an exception should be clearly specified. It is not
always possible to continue operations in the face of some exceptions; however,
others are routinely encountered, such as "File Not Found." Any good program
should be able to handle these.

Figure 9.3. ODC system-level failure triggers

Work Volume/Stress
Normal Mode
Recovery/Exception
Startup/Restart
Hardware Configuration

Software Configuration

The Hardware and Software Configuration categories are less obvious but very
important areas for testing. For personal computers, software memory, for
example, can be a mgjor issue because there may not be a provision for virtud
memory, or at least one that is sufficient. We have had clients who were very
proud of the up-to-date development environment that every one of their
developers had been given. Unfortunately some of their customers did not have
that same environment and the program failed because the developer never

349

encountered the situation in which insufficient memory was available to the
program. The code failed to catch and handle out-of-memory exceptions.

The system test plan should include the use of arange of machinesthat have a
variety of hardware devices. The sidebar System Configuration provides just one
example of the interactions that can happen among software and hardware drivers.
Likewise, software configurations can cause problems. Many programs have been
thwarted by the order of librariesin a search path. While thisis not a program
defect, it isadefect in the installation process or the program documentation.

System Configuration

We developed aversion of atic-tac-toe game using the CORBA object
request broker (ORB) that comes in the Java Devel oper's Kit (JDK). The
naming service that comes with the JDK runs as a separate process that
servers register with and clients query to locate the servers. We created a
release of the game and tested it. The game wasinstalled on a laptop that
contained a combination modem/networking card. The game started, but
did not appear to accept output. The process was left running while we
went away to do something else. When we returned, the game was ready
for a player to select a square. Selecting a square froze the game again.
When the laptop was plugged into the network and the game was started, it
ran at reasonable speed. Subsequent tests showed that the naming service
object changed behavior with every state of the modem/networking card
and was different on machines that had no network card at all.

There are many eements that go into the configuration of a system. Often
these seem unrelated but later defects are traced to interactions between
these elements. Different versions of the operating system, including
foreign releases that are different from the domestic ones, font and
language metrics, and even the environment variables can affect the
execution of a system. Orthogonal array test designs can be used to reduce
the number of combinations of factors that must be tested.

Use Cases as Sources of Test Cases

To test for conformance to requirements, we want to construct the test cases from
the use cases that specify requirements. As we previously noted, we need to

350

determine how many test cases to use from each use case and then build the test
cases themselves. Although we discussed thisin Chapter 4, we will provide
additiona details here.

Constructing Use Profiles

The construction of a use profile begins with the actors from the use case diagram.
The actor profile in Figure 9.4 isfor the player actor in the Brickles game. When
there isa single actor, that profile should match the frequency field in the use
cases. Theinteresting, and useful, case is when there are severd actors. Seldom
will al of these actors use the system in exactly the same way. The frequency field
in the use case is a composite of the frequency valuesin the individual actor
profiles.

Figure 9.4. An actor profile

351

Name: Player Abstract: No

Description: The Player controls the game

Skill level: Average

Actor’s Use Profile

Use Case Name Frequency
Win Medium
Lose Medium
Move Puck High
Pause Game Low

In Figure 9.5, the frequency in Use Case #1 would be some type of average of the

frequencies provided in the profiles of actors A and B. Y ou might wish to weigh

the frequency of actor A more heavily than that of actor B. The frequency field for

each of the use cases is constructed from these actor profiles.

Figure 9.5. Actor to use case mapping

352

use case #1

-
actor A use case #2
% use case #4
_:---.--_v e
actor B e

use case #3

actor C

This technique is a very useful one for systems that have never been deployed. Itis
more accurate to estimate how each actor will use the system than to guess what
the aggregate of individual useswill be. After deployment the use case frequencies
can be updated based on actual data and used for regression testing.

Using Scenarios to Construct Test Cases

A use case typically contains multiple scenarios that could be converted to test
cases. The use case section labeled The system responds by is the normal case and
Is the first source of test cases. There will be data attributes that should be anayzed
in the same way as any parameter to a method. The Boundary Conditions sdebar
on page 180 provides one type of analysis that can be used. Here we take afew
lines to give the details of atable-driven approach.

The process for identifying specific values from the variables mentioned in ause
case has four steps:

1. Identify al of the values that would be supplied by the actors contained in
the use case mode!.

2. ldentify equivalence classes of values for each input data type.

3. Construct tables that list combinations of values from the various
equivalence classes.

353

4. Construct test cases that combine a single permutation of values with the
necessary environmental constraints.

Since there are not enough inputs to our continuing example to make for an
adequate example, we will consider afew variables from the personnel system
examplefirg introduced in Chapter 3. There