
29
Teaching the method
cipal
est to

e of
of a
ining,
 — in

 either
onals

logy
, and
rity if

effect,
his
ously

ainer:
arn a

lan:
Ending our study of methodological issues, we turn our attention to one of the prin
questions facing companies and universities that adopt object technology: how b
educate those who will have to apply it. This chapter presents teaching principles and
points to common errors.

The first part of the discussion takes the view of someone who is in charg
organizing a training program in a company; the following parts take the view
university or high school professor. All emphasize the pedagogical issues of O-O tra
and so they should be relevant to you even if you are in neither of these positions
particular if you are a trainee rather than a trainer.

29.1 INDUSTRIAL TRAINING

Let us start with a few general observations about how to teach object technology —
in public seminars or as part of an in-company training plan — to software professi
previously trained in other approaches.

Paradoxically, the trainer’s task may be harder now than when object techno
started to attract wide interest in the mid-eighties. It was new then to most people
had an aura of heresy which made the audience listen. Today, no one will call secu
one of the cocktail guests declares object-oriented tastes. This is the buzzword
which has been dubbed mOOzak: the omnipresence, in the computer press, of O-O t
and O-O that, causing a general dilution of the concepts. The words flow so continu
from the loudspeakers — object, class, polymorphism… — as to seem familiar, but are
the concepts widely understood? Often not. This puts a new burden on the tr
convincing the trainees that they do not yet know everything, since no one can le
subject who thinks he already knows it.

The only strategy guaranteed to overcome this problem applies the following p

Initial training: the “hit them twice” strategy
T1 • Take the initial training courses.

T2 • Try your hand at O-O development.

T3 • Take the initial training courses.

TEACHING THE METHOD §29.1936

inees
o their
to sell

rst is
se of

n they
on —

n
, the

tween
rial —

,

lysis.
alysis
is, you
iding,

 of
em to

aken
ith the
f O-O
tion.
T3 is not a typo: after having tried to apply O-O ideas to real development, tra
take the class again. O-O training companies sometimes suggest this strategy t
customers, not always with success since it suspiciously looks like a marketing ploy
the same thing twice. But that is not the case.

The second iteration is what really gets the concepts through. Although the fi
necessary to provide the right background, it may not be fully effective; partly becau
the mOOzak effect, your students may not quite internalize the concepts. Only whe
have grappled with the day-to-day challenges of object-oriented software constructi
Is a new class necessary for this concept? Is this a proper use of inheritance? Do these two
features justify introducing a new node in the inheritance structure? Is this design pattern
from the course relevant here? — will they have the necessary preparation to liste
properly. The second session will not, of course, be identical to the first (if anything
audience’s questions will be more interesting), and might straddle the border be
training and consulting; but it is really a second presentation of the same basic mate
not merely an advanced course following an elementary one.

In practice only the more enlightened companies are ready to accept the “teach it once
then teach it again” strategy. Others will dismiss the idea as a waste of resources. In my
experience, however, the result is well worth the extra effort. The strategy is the best I
know to train developers who truly understand object technology and can apply it
effectively to serve the company’s needs.

The next principle addresses what should be taught:

Some people assume that the curriculum should start with object-oriented ana
This is a grave mistake. A beginner in object technology cannot understand O-O an
(except in the mOOzak sense of recognizing the buzzwords). To master O-O analys
must have learned the fundamental concepts — class, contracts, information h
inheritance, polymorphism, dynamic binding and the like — at the level
implementation, where they are immediately applicable, and you must have used th
build a few O-O systems, initially small and then growing in size; you must have t
these projects all the way to completion. Only after such a hands-on encounter w
operational use of the method will you be equipped to understand the concepts o
analysis and their role in the seamless process of object-oriented software construc

Two more principles. First, do not limit yourselves to introductory courses:

Finally, do not consider developers alone:

Training Topics principle
Especially in initial training, focus on implementation and design.

Advanced Curriculum principle
At least 50% of a training budget should be reserved for non-introductory
courses.

§29.2 INTRODUCTORY COURSES 937

 any
 depth
sed of
ycle,
 and,

s.

d

s

emic
g).

h, the
cepts,
ool.

ctual
nging
ware
rendy,

ch an
t-
st.
It is unrealistic, for a company or group that is adopting object technology on
scale, to hope to succeed by training developers only. Managers, regardless of the
of their technical background, must be introduced to the basic O-O ideas and appri
their repercussions on distribution of tasks, team organization, project lifec
economics of software development. The lifecycle discussion of the next chapter
more exhaustively, management-oriented books such as [Goldberg 1995], [Baudoin 1996]
and [M 1995], are typical of the material to be covered in such (usually short) course

Here is an example of what manager education must include to avoid potential trouble,
allow effective development and benefit the bottom line. The industry’s measures of
productivity are still largely based, deep-down, on ratios of produced code to production
effort. In a reuse-conscious software process, you may spend some time improving
software elements that already work well to increase their potential for reuse in future
projects. This is the generalization task, an important step of the lifecycle model
presented in the next chapter. Often, such efforts will remove code, for example because
you have given a common ancestor to two originally unrelated classes, moving
commonality to that ancestor. In the productivity ratio, the numerator decreases (less
code) and the denominator increases (more effort)! Managers must be warned that the ol
measures do not tell the whole story, and that the extra effort actually improves the
software assets of the company. Without such preparation, serious misunderstanding
may develop, jeopardizing the success of the best planned technical strategies.

29.2 INTRODUCTORY COURSES

Let us turn our attention now to the teaching of object technology in an acad
environment (although many observations will also be applicable to industrial trainin

As the software community recognizes the value of the object-oriented approac
question increasingly arises of when, where and how to include object-oriented con
languages and tools in a software curriculum – university, college or even high sch

Phylogeny and ontogeny

When should we start?

The earlier the better. The object-oriented method provides an excellent intelle
discipline; if you agree with its goals and techniques, there is no reason to delay bri
it to your students; you should in fact teach it as the first approach to soft
development. Beginning students react favorably to O-O teaching, not because it is t
but because the method is clear and effective.

This strategy is preferable to a more conservative one whereby you would tea
older method first, then unteach it in order to introduce O-O thinking. If you think objec
oriented development is the right way to go, there is no reason to make a detour fir

Manager Training principle
A training curriculum should include courses for managers as well as
software developers.

TEACHING THE METHOD §29.2938

ology:
es); a
ig etc.
t on to
gh the
cation
uced
what

ness)
eneral,
 and

 your
rtran,
bject-

y.

more
tware
 The
in my
sound,
ion of
ation

s does
 had
 with
e time

u can
re not
ed on
, since
acher

r have
iques

h will
dents
Teachers may unconsciously tend to apply an idea that was once popular in bi
that ontogeny (the story of the individual) repeats phylogeny (the story of the speci
human embryo, at various stages of its development, vaguely looks like a frog, a p
Transposed to our subject, it means that a teacher who first learned Algol, then wen
structured design and finally discovered objects may want to take his students throu
same path. There is little justification for such an approach, which in elementary edu
would make students first learn to count in Roman numerals, only later to be introd
to more advanced “methodologies” such as Arabic numerals. If you think you know
the right approach is, teach it first.

Paving the way for other approaches

One of the reasons for recommending (without fear of fanaticism or narrow-minded
the use of object technology right from the start is that, because the method is so g
it prepares students for the later introduction of other paradigms such as logic
functional programming – which should be part of any software engineer’s culture. If
curriculum calls for the teaching of traditional programming languages such as Fo
Cobol or Pascal, it is also preferable to introduce these later, as knowledge of the o
oriented method will enable students to use them in a safer and more reasoned wa

O-O teaching is also good preparation for a topic which will become an ever
prevalent part of software education programs: formal approaches to sof
specification, construction and verification, rooted in mathematics and formal logic.
use of assertions and more generally of the Design by Contract approach is,
experience, an effective way to raise the students’ awareness of the need for a
systematic, implementation-independent and at least partially formal characterizat
software elements. Premature exposure to the full machinery of a formal specific
method such as Z or VDM may overwhelm students and cause rejection; even if thi
not occur, students are unlikely to appreciate the merits of formality until they have
significant software development experience. Object-oriented software construction
Design by Contract enables students to start producing real software and at the sam
to gain a gentle, progressive exposure to formal techniques.

Language choice

Using the object-oriented method for introductory courses only makes sense if yo
rely on a language and an environment that fully support the paradigm, and a
encumbered by ghosts of the past. Note in particular that “hybrid” approaches, bas
object-oriented extensions of older languages, are unsuitable for beginning students
they mix O-O concepts with unrelated remnants from other methods, forcing the te
to spend much of the time on excuses rather than concepts.

In C-based languages, for example, just explaining why an array and a pointe
to be treated as the same notion — a property having its roots in optimization techn
for older hardware architectures — would consume precious time and energy, whic
not be available for teaching the concepts of software design. More generally, stu

§29.2 INTRODUCTORY COURSES 939

 low-
spend
rious
ter.

clear,
iples,
 spend

n the

and
, static
+ and

hould
ing to

and

h the
d

Examples from the
basic book on Java,
[Arnold 1996].

Exceprts from post-
ing of 15 October
1996.
would be encouraged, at the very beginning of their training, to reason in terms of
level mechanisms – addresses, pointers, memory, signals. They would inevitably
much of their time, if they eventually produce a compilable program, chasing va
bugs. The approach would leave the students perplexed and might end up in disas

An introductory course must do the reverse: present the students with a
coherent set of practical principles. The notation must directly support these princ
ensuring a one-to-one correspondence between method and language. Any time you
explaining the language per se is time lost. With a good language, you explai
concepts, and use the notation as the natural way to apply them.

Although the main quality of an introductory language is its structural simplicity
its support of O-O ideas such as class-based modularization, design by contract
typing and inheritance, you should not underestimate the role of syntactic clarity. C+
Java texts are replete with lines such as

public static void main(String[] args {
if (this–>fd == –1 && !open_fd(this))
if ((xfrm = (char ∗)malloc(xfrm_len + 1)) == NULL) {

showing cryptic and confusing syntax relying on many special operators. Beginners s
not be subjected to such contortions, justified only by historical considerations; learn
program well is hard enough without the interposed obstacle of a hostile notation.

David Clark from the University of Canberra went through this experience
posted some of his conclusions on Usenet:

Last semester I taught the second half of a first year programming [course] using
Java… My experience has been that students do not find Java easy to learn. Time and
again the language gets in the way of what I want to teach. Here are some examples:

• The first thing they see is public static void main (String [] args) throws IOException
There are about 6 different concepts in that one line which students are not yet ready
to learn…

• You get output for “free”, but have to jump through several hoops to input anything.
(import, declare, initialize.). The only way to read a number from the keyboard is to
read a string and parse it. Again, this is something that crops up in the first lecture.

• Java treats the primitive data types (int, char, boolean, float, long,…) differently from
other objects. There are Object-type equivalents (Integer, Boolean, Character etc.).
There is no relation between int and Integer.

• The String class is a special case. (Again, for efficiency.) It is only used for strings
that don't change. There is a StringBuffer class for strings that do change. Fair
enough. but there is no relationship between String and StringBuffer. There are few
features in common.

• The lack of generics means that you are forever casting if you want to use a collection
of elements such as Stack or Hashtable. [These things] are hurdles for beginning
students, and distract them from the main learning outcomes of the course.

Prof. Clark goes on to compare this experience with his practice of teaching wit
notation of this book, for which, he writes, “I do virtually no language teaching beyon
giving some examples of code”.

TEACHING THE METHOD §29.3940

ust
. Even
ching,
 basis,
ourse

later,
puting

 service
odern
tream
sumés.
ht the

hich

ssures.

ings
heard
dow
ust

aches
ncepts
r than
e.

ience
ustry
stry, if
rtran,
nical
logy
teach
while

stages
The initial notations taught to students, so important to their future vision, m
always be simple and clear, to allow in-depth understanding of the basic concepts
Pascal, the traditional choice of computing science departments for introductory tea
is preferable in this respect to a hybrid language since it provides a solid, consistent
from which students can later move to another solid, consistent approach. It is of c
even better, as noted, if the basis can be solid, consistent and O-O.

Some hybrid languages are industrially important; but they should be taught
when students have mastered the basic concepts. This is not a new idea: when com
science departments adopted Pascal in the nineteen-seventies, they also included
courses to teach Fortran, Cobol or PL/I as requested by industry then. Similarly, a m
object-based curriculum may include a C++ or Java service course to satisfy downs
requirements and enable the students to include the required buzzwords on their ré
Students will understand C++ and Java better anyway after having been taug
principles of object technology using a pure O-O language. Introductory courses, w
shape a student’s mind forever, must use the best technical approach.

Some teachers are tempted to use C hybrids because of perceived industry pre
But this is inappropriate for several reasons:

• Industry demands are notoriously volatile. A few years ago, ads were all for th
like RPG and Cobol. In late 1996 they were all for Java, but in 1995 no one had
of Java. What will they list in 2010 or 2020? We do not know, but we must en
our students with capabilities that will still be marketable then. For this we m
emphasize long-term design skills and intellectual principles.

• Starting with these skills and principles does not exclude teaching specific appro
later. In fact it helps, as already noted. A student who has been taught O-O co
in depth, using an appropriate notation, will be a better C++ or Java programme
one whose first encounter with programming involved fighting with the languag

• The historical precedent of Pascal around 1975 shows that computing sc
teachers can succeed with their own choices. At that time, no one in ind
requested Pascal; in fact, almost no one in industry had heard of Pascal. Indu
anything, would have requested one of the Three Tenors of the moment: Fo
Cobol and PL/I. The computing scientists chose to go with the best tech
solution, corresponding to the state of the art in programming methodo
(structured programming). The result proved them right, as they were able to
students the abstract concepts and techniques of software development
preparing them for learning new languages and tools.

29.3 OTHER COURSES

Beyond introductory courses, the object-oriented method can play a role at many
of a software curriculum. Let us review the corresponding uses.

§29.3 OTHER COURSES 941

any
e the

s” in
s

nd

 term
EA,

al role,
urses.
riented

t are
 with
. In
ign it
ed
ation

work
are
ment
s and
s (in

n by
n to

ating
passing

on to
Terminology

The organization of higher education differs widely among countries. To avoid
confusion we must first decide on a reasonably universal terminology to denot
various levels of study. Here is some attempt at common ground:

• High school (US), lycée, Gymnasium, called secondary education below.

• First few years of university or equivalent: this is called “undergraduate studie
the US and other Anglo-Saxon countries (Gakubu in Japan). In France and countrie
influenced by its system it corresponds to either the combination of classes
préparatoires with the first two years of engineering schools, or to the first a
second cycles of universities. In the German system it is the Grundstudium. The term
“undergraduate” will be retained below.

• Finally for the later years, leading to advanced degrees, we can use the US
“graduate”. (The rough equivalents are “postgraduate” in the UK; third cycle, D
DESS, options of engineering schools in France; Hauptstudium in Germany;
Daigakuin in Japan.)

Secondary and undergraduate studies

At the secondary or undergraduate level the object-oriented method can play a centr
as noted, in an introductory programming course. It can also help for many other co
We may distinguish here between courses that can be entirely taught in an object-o
way, and those which will benefit from some partial use of object-oriented ideas.

Here are some of the standard courses that can be taught in a fully O-O way:

• Data structures and algorithms. Here the techniques of Design by Contrac
fundamental: characterizing routines by assertions, specifying data structures
class invariants, associating loop variants and invariants with algorithms
addition, an innovative and powerful way to organize such a course is to des
around an existing library of software components from an existing object-orient
environment. Then instead of starting from scratch students can learn by imit
and improvement. (More on this topic below.)

• Software engineering. The object-oriented method provides an excellent frame
to introduce students to the challenges of industrial, multi-person softw
development, and to evaluate the benefits and limitations of project manage
techniques, software metrics, software economics, development environment
the other techniques which the software engineering literature discusse
complement to object orientation) as answers to this challenge.

• Analysis and design. Clearly this can be taught in a fully O-O way; again Desig
Contract is central. Courses should emphasize the seamless transitio
implementation and maintenance.

• Introduction to graphics; introduction to simulation; etc.

Courses that may benefit from heavier or lighter object doses include: oper
systems (where the method helps understand the notion of process, the message
paradigm, and the importance of information hiding, clearly defined interfaces and limited
communication channels in the design of proper system architectures); introducti

TEACHING THE METHOD §29.4942

e the
ence
which
ussion

ideas,
e topic

 more
formal
ment,

nse to
ome
vince

opics;

 still
hing
 in

mean
n the
while
st of
, you

 around

ctory
esting
formal methods (as noted above); functional programming; logic programming (wher
connection with assertions should be emphasized); introduction to artificial intellig
(where inheritance is a key concept for knowledge representation); databases (
should reserve a central place for the notion of abstract data type, and include a disc
of object-oriented databases).

Even computer architecture courses are not immune from the influence of O-O
as concepts of modularity, information hiding and assertions can serve to present th
in a clear and convincing manner.

Graduate courses

At the graduate level, many O-O courses and seminars are possible, covering
advanced topics: concurrency, distributed systems, persistence, databases,
specifications, advanced analysis and design methods, configuration manage
distributed project management, program verification.

A complete curriculum

This incomplete list shows the method as being so ubiquitous that it would make se
design an entire software curriculum around it. A few institutions have made s
progress in that direction. No doubt in the years to come someone will jump and con
the management of some university to go all the way.

29.4 TOWARDS A NEW SOFTWARE PEDAGOGY

Not only does object technology affect what can be taught to students of software t
the method also suggests new pedagogical techniques, which we will now explore.

An important note: the strategies described in the rest of this chapter are
somewhat futuristic. I believe that they must and will become prevalent for teac
software, but their full application will require an infrastructure which is not yet fully
place, in particular new textbooks and different administrative policies.

If you or your institution are not ready to apply such strategies, this does not
that you should remove objects from your teaching. You can still, as described i
preceding sections, instill variable doses of object technology in your courses
retaining compatibility with your current way of teaching. And you should read the re
this chapter anyway since, even if you do not follow its more radical suggestions
might find an idea or two immediately applicable in a more conventional context.

The consumer-to-producer strategy

An O-O course on data structures and algorithms can, as noted above, be organized
a library. This idea actually has much broader applications.

A frustrating aspect of many courses is that teachers can only give introdu
examples and exercises, so that students do not get to work on really inter

§29.4 TOWARDS A NEW SOFTWARE PEDAGOGY 943

nacci
rcises

ntly,
raries
 library
proper
 the
early:
ms. In
ftware
uctory

ssive
 just
ised

r other

tle,
ns

lum,
).

s” or,
 be an

ng a
it. The
their
rstood
applications. One can only get so much excitement out of computing the first 25 Fibo
numbers, or replacing all occurrences of a word by another in a text, two typical exe
of elementary programming courses.

With the object-oriented method, a good O-O environment and, most importa
good libraries, a different strategy is possible if you give students access to the lib
early in the process. In this capacity students are just reuse consumers, and use the
components as black boxes in the sense defined above; this assumes that
techniques are available for describing component usage without showing
components’ internals. Then students can start building meaningful applications
their task is merely to combine existing components and assemble them into syste
many respects this is a better introduction to the challenges and rewards of so
development than the toy examples which have been the mainstay of most introd
courses.

Almost on day one of the course, the students will be able to produce impre
applications by reusing existing software. Their first assignment may involve writing
a few lines — enough to call a pre-built application, and yielding striking results (dev
by someone else!). It is desirable, by the way, to use libraries that include graphics o
multimedia components, so as to make the outcome truly dazzling.

Later, students will be invited to go further. First they will be shown, little by lit
the internals of some of the components. Then they will be asked to make some extensio
and modifications, either in the classes themselves or in new descendants. Finally they
will write their own classes (the step that would have come first in a traditional curricu
but should not occur until they have had ample exposure to the work of their elders

This learning process may be called “progressive opening of the black boxe
using a shorter name, the consumer-to-producer strategy. (“Outside-in” would also
appropriate name.)

If you like automotive comparisons, think of someone who first learns to drive, then is
invited to lift the hood and study, little by little, how the engine works, then will do repairs
— and, much later, design his own cars.

For this process to work, good abstraction facilities must be present, allowi
consumer to understand the essentials of a component without understanding all of
notion of short form of a class supports this idea by listing the exported features with
assertions, but hiding implementation properties. After students have seen and unde

Consumer-to-producer strategy
S1 • Learn to use library classes, solely through their abstract specifications.

S2 • Learn to understand the internals of selected classes.

S3 • Learn to extend selected classes.

S4 • Learn to modify selected classes.

S5 • Learn to add your own classes.

TEACHING THE METHOD §29.4944

er the

lude
nced
ies of

 it as
ming
rt. So
y will
ed to
vice.

tegy,
l and
uld be
 own
igh-
 the

faces,
loping

orting
tion of

time-
vious
rstood
n-one
asters

ching
bject
roject

 The
 large
n so,
, code
the short form, they may selectively explore the internals of the class – again und
guidance of the instructor.

Abstraction

Most good introductory programming textbooks preach abstraction. Many in fact inc
the word “abstraction” in their titles. This is because the authors, being experie
software professionals and teachers, know that one cannot overcome the difficult
large-scale software development without making constant efforts at abstraction.

Often, unfortunately, such preaching is lost on the students, who simply see
another exhortation to “be good”. You can indeed handle the small program
exercises favored by traditional teaching methods without too much abstraction effo
why pay attention to the teacher’s musings about the importance of abstraction? The
not, or so it seems, improve your Grade Point Average. Only when they have mov
larger developments would the students be in a position to benefit fully from this ad

To preach is not the best way to teach. With the consumer-to-producer stra
based on libraries, abstraction is not something to pontificate on: it is a practica
indispensable tool. Without abstraction, one cannot use libraries; the alternative wo
to go into the source code, which is overwhelming (you would never get to do your
application) and may not be available anyway. Only through the short form with its h
level information and assertions — the library module in its abstract form — can
students take advantage of a library class.

Having become used, right from the start, to view classes through abstract inter
the students will much more easily apply the same principles when they start deve
their own classes.

Note once again that these results are only possible in an environment supp
short forms, appropriate documentation and browsing tools, assertions, and distribu
libraries without the source.

Apprenticeship

The consumer-to-producer strategy is the application to software teaching of a
honored technique: apprenticeship. As an apprentice you learn from the pre
generation of master practitioners of your chosen craft, and once you have unde
their techniques you try to do better if you can. For lack of available masters, one-o
apprenticeship is necessarily of limited applicability; but here we do not need the m
themselves, just the results of their work, made available as reusable components.

This approach is the continuation of a trend that had already influenced the tea
of some topics in software education, such as compiler construction, before o
technology became popular. In the seventies and early eighties, the typical term p
for a compiler course was the writing of a compiler (or interpreter) from scratch.
front-end tasks of compiler construction, lexical analysis and parsing, require such a
effort that in practice the compiler could only be for a very small toy language. Eve
few students ever got past parsing to the really interesting parts: semantic analysis

§29.4 TOWARDS A NEW SOFTWARE PEDAGOGY 945

 and
nt-end

trical

ntrol
oach

eating
 and

nveil

ation-
tificial
lan.

t and
 year

class
y the
tic way.
ng the
ndible
e will
here
 long

ld try
ring”
y the
cause

When
generation, optimization. Then tools for lexical analysis and parsing, such as Lex
Yacc, became widely available, enabling students to spend less time on these fro
tasks. The producer-consumer strategy generalizes this change.

The inverted curriculum

The consumer-to-producer strategy has an interesting counterpart in elec
engineering, where Bernard Cohen has suggested an “inverted curriculum”. Criticizing
the classical progression (field theory, then circuit theory, power, device physics, co
theory, digital systems, VLSI design) as “reductionist”, the proponents of this appr
suggest a more systems-oriented progression, which would successively cover:

• Digital systems, using VLSI and CAD.

• Feedback, concurrency, verification.

• Linear systems and control.

• Power supply and transmission, impedance matching requirements.

• Device physics and technologies, using simulation and CAD techniques.

The software education strategy suggested above is similar: rather than rep
phylogeny, start by giving students a user’s view of the highest-level concepts
techniques that are actually applied in industrial environments, then, little by little, u
the underlying principles.

A long-term policy

The consumer-to-producer strategy has an interesting variant applicable, for applic
oriented courses such as operating systems, graphics, compiler construction or ar
intelligence, by professors who are in a position to define a multi-year educational p

The idea is to let students build a system by successive enhancemen
generalization, each year’s class taking over the collective product of the previous
and trying to build on it. This method has some obvious drawbacks for the first
(which collectively serves as advanceman for future generations, and will not enjo
same reuse benefits), and I must confess I have not yet seen it applied in a systema
But on paper at least it is attractive. There hardly seems to be a better way of letti
students weigh the advantages and difficulties of reuse, the need for building exte
software and the challenge of improving on someone else’s work. The experienc
prepare them for the reality of software development in their future company, w
chances are they will be asked to perform maintenance work on an existing system
before they are asked to develop a brand new system of their own.

Even if the context does not permit such a multi-year strategy, instructors shou
to avoid a standard pitfall. Many undergraduate curricula include a “software enginee
course, which often devotes a key role to a software project to be carried out b
students, often in groups. Such project work is necessary, but often disappointing be
of the time limitations due to its inclusion in a one-trimester or one-semester course.

TEACHING THE METHOD §29.5946

ntire
cts, in
r result
at will
ering

 issues
of a
um

gestion
 more
mpass
tions

s or
uces
ation,
ry and
n the

 focus
eady
to
raries.
raries
ms of

 entire
gnal
d for

rsity

early.
 are
an it
able
ention.

le to
rs and
administratively possible, it is by far preferable to run such a project over an e
schoolyear, even if the total amount of allocated work is the same. Trimester proje
particular, border on the absurd; they either stop at the analysis or design stage, o
over the last few weeks in a rush to code at any cost and using any technique th
produce a running program — often defeating the very purpose of software engine
education. You need more time, if only to let the students appreciate the depth of the
involved in building serious software. A year-long project, whether or not it is part
longer-term policy, favors this process. It is more difficult to fit into the typical curricul
than the standard course, but worth the fight.

29.5 AN OBJECT-ORIENTED PLAN

The idea of a long-term teaching strategy based on reuse, as well as the earlier sug
of organizing an entire curriculum around object-oriented concepts, may lead to a
ambitious concept which goes beyond the scope of software education to enco
research and development. Although this concept will be appealing to certain institu
only, it deserves a little more thought.

Assume a university department (computing science, information system
equivalent) in search of a long-term unifying project — the kind of project that prod
better teaching, development of new courses, faculty research, sources of public
Ph. D. theses, Master’s theses, undergraduate projects, collaborations with indust
government grants. Many a now well-respected department originally “put itself o
map” through such a collective multi-year effort.

The object-oriented method provides a natural basis for such an endeavor. The
of the work will not be compilers, interpreters and development tools (which may alr
be available from companies) but libraries . What object technology needs most
progress today is application-oriented reusable components, also called domain lib
A good O-O environment will already provide, as noted, a set of general-purpose lib
covering such universal needs as the fundamental data structures and algorith
computing science, graphics, user interface design, parsing. This leaves open
application domains, from Web browsing to multimedia, from financial software to si
analysis, from computer-aided design to document processing, in which the nee
quality software components is crying.

The choice of such a library development project as a unifying effort for a unive
department presents several advantages:

• Even though this is a long-term pursuit, partial results can start to appear
Compilers and other tools tend to be of the all-or-nothing category: until they
reasonably complete, distributing them may damage your reputation more th
helps it. With libraries, this is not the case: just a dozen or two quality reus
classes can render tremendous services to their users, and attract favorable att

• Because an ambitious library is a large project, there is room for many peop
contribute, from advanced undergraduates to Ph. D. candidates, researche

§29.6 KEY CONCEPTS STUDIED IN THIS CHAPTER 947

 of the
f the

t is a
pects

tific
s and
t the
ficult
 but
ibrary
at
nces

 step
nown

with

ny
s, one
ic
s
 same

vides

area

s, and
ct-
heir
IT’s

 time

pers.

See “APPENDIX:
A HISTORY OF
TAXONOMY”,
24.15, page 864.
professors. This assumes of course that the application domain and the breadth
library’s coverage have been chosen judiciously so as to match the size o
available resources in people, equipment and funds.

• Talking about resources, the project may start with relatively limited means bu
prime candidate to attract the attention of funding agencies. It also offers pros
of industry funding if the application domain is of direct interest to companies.

• Building good libraries is a technically exciting task, which raises new scien
challenges, so that the output of a successful project may include these
publications, not just software. The intellectual challenges are of two kinds. Firs
construction of reusable components is one of the most interesting and dif
problems of software engineering, for which the method brings some help
certainly does not answer all questions. Second, any successful application l
must rest on a taxonomy of the application domain, requiring a long-term effort
classifying the known concepts in that area. As is well known in the natural scie
(remember the discussion of the history of taxonomy), classification is the first
towards understanding. Developed for a new application area, such an effort, k
as domain analysis, raises new and interesting problems.

• The last comment suggests the possibility of inter-disciplinary cooperation
researchers in various application domains, usually non-software.

• Cooperation should begin with people working in neighboring fields. Ma
universities have two groups pursuing teaching and research in software issue
(often “computing science”) having more of an engineering and scientif
background, the other (often “information systems”) more oriented towards busines
issues. Whether these groups are administratively separate or part of the
structure — both cases are common — the project may appeal to both, and pro
an opportunity for collaboration.

• Finally, a successful library providing components for an important application
will be widely used and bring much visibility to its originating institution.

No doubt in the years to come a number of universities will seize on these idea
that the “X University Reusable Financial Components” or “Y Polytechnic Obje
Oriented Text Processing Library” will (with better names than these) bring to t
institutions the modern equivalent of what UCSD Pascal, Waterloo Fortran and the M
X Window system achieved in earlier eras for their respective sponsors.

29.6 KEY CONCEPTS STUDIED IN THIS CHAPTER

• In object-oriented training, emphasize implementation and design.

• In initial training for professionals, do not hesitate to repeat a session, with some
in-between for actual practice.

• Training in a company should include courses for managers as well as develo

TEACHING THE METHOD §29.7948

f O-O

extent

onents.

as),
nced
xtend

ocess.

ent.

pears
ion

lude

e to
cal
my

uding
ean-
indio,
 David

um-

ased

n, for

The books were
listed in the bibli-
ography to chap-
ter 2, on page 35.
• Beginning programming courses, and many others, may take advantage o
techniques.

• For teaching, use a pure O-O language, clear and simple, supporting the full
of the technology, in particular assertions.

• Courses should, as much as possible, be based on libraries of reusable comp

• The consumer-to-producer strategy (similar to “inverted curriculum” ide
presents students with existing components, enabling them to write adva
applications right from the start, then lets students open the components, e
them, and produce new components by imitation through an apprenticeship pr

• More generally, a long-term library effort can be a unifying project for a departm

29.7 BIBLIOGRAPHICAL NOTES

The material in this chapter is derived from an article in the Journal of Object-Oriented
Programming, of which a revised version was presented at TOOLS USA 93 and ap
in the proceedings (see [M 1993c] for the two references). Further material about educat
and training issues appears in the book Object Success [M 1995], from which the term
mOOzak is taken, as well as some observations regarding industry training.

Important articles about teaching programming using O-O concepts inc
[McKim 1992] and [Heliotis 1996].

The notion of inverted curriculum for education in electrical engineering is du
Bernard Cohen [Cohen 1991]. I am grateful to Warren Yates, chairman of the Electri
Engineering Department at University of Technology, Sydney, for bringing it to
attention. This chapter also benefited from discussions with many educators, incl
Christine Mingins, James McKim, Richard Mitchell, John Potter, Robert Switzer, J
Claude Boussard, Roger Rousseau, David Riley, Richard Wiener, Fiorella De C
Brian Henderson-Sellers, Pete Thomas, Ray Weedon, John Kerstholt, Jacob Gore,
Rine, Naftaly Minsky, Peter Löhr, Robert Ogor, Robert Rannou.

An ongoing project is intended to produce an introductory programming book-c
CD applying the “consumer-to-producer strategy”, or “inverted curriculum” principle[M
199?]. But there are already a number of good introductory programming textbooks b
on O-O ideas; they were listed in an earlier chapter, but here they are agai
convenience, without further comments: [Rist 1995], [Wiener 1996], [Gore 1996],
[Wiener 1997] and [Jézéquel 1996].

	29 29 Teaching the method
	29.1 INDUSTRIAL TRAINING
	Initial training: the “hit them twice” strategy
	Training Topics principle
	Advanced Curriculum principle
	Manager Training principle

	29.2 INTRODUCTORY COURSES
	Phylogeny and ontogeny
	Paving the way for other approaches
	Language choice

	29.3 OTHER COURSES
	Terminology
	Secondary and undergraduate studies
	Graduate courses
	A complete curriculum

	29.4 TOWARDS A NEW SOFTWARE PEDAGOGY
	The consumer-to-producer strategy
	Consumer-to-producer strategy

	Abstraction
	Apprenticeship
	The inverted curriculum
	A long-term policy

	29.5 AN OBJECT-ORIENTED PLAN
	29.6 KEY CONCEPTS STUDIED IN THIS CHAPTER
	29.7 BIBLIOGRAPHICAL NOTES

