A

Approaches to reusability

. Follow the lead of hardware desigrt is not right that every new
development should start from scratdihere should be catalogs of software
modules as there are catalogs of VLSI devicehen we build a new system

we should be ordering components from these catalogs and combining them
rather than reinventing the wheel every tirée would write less software

and perhaps do a better job at that which we do get to wh\teuldn’t then
some of the problems that everybody complains about — the high tbests
overrung the lack of reliability — just go aw&why is it not s&’

You have probably heard remarks of this kind; perhaps you have uttered them yourself. /
early as 1968, at the now famous NATO conference on software engineering, Dou
Mcllroy was advocatingrhass-produced software componé&nBeusability, as a dream,

is not new.

It would be absurd to deny that some reuse occurs in software development. In fa
one of the most impressive developments in the industry since the first edition of this boo
was published in 1988 has been the gradual emergence of reusable components, of
modest individually but regularly gaining ground; they range from small modules meant
to work with Microsoft's Visual Basic (VBX) and OLE 2 (OCX, now ActiveX) to full
libraries, also known as “frameworks”, for object-oriented environments.

Another exciting development is the growth of the Internet: the advent of a wired
society has eased or in some cases removed some of the logistic obstacles to reuse wh
only a few years ago, might have appeared almost insurmountable.

But this is only a beginning. We are far from Mcllroy's vision of turning software
development into a component-based industry. The techniques of object-oriente
software construction make it possible for the first time to envision a state of the
discipline, in the not too distant future, in which this vision will have become the reality,
for the greatest benefit not just of software developers but, more importantly, of those wh
need their products — quickly, and at a high level of quality.

In this chapter we will explore some of the issues that must be addressed fc
reusability to succeed on such a large scale. The resulting concepts will guide th
discussion of object-oriented techniques throughout the rest of this book.

68 APPROACHES TO REUSABILITY§4.1

4.1 THE GOALS OF REUSABILITY

We should first understand why it is so important to improve software reusability. No need

here for “motherhood and apple pie” arguments: as we will see, the most commonly touted
benefits are not necessarily the most significant; by going beyond the obvious we can
make sure that our quest for reuse will pursue the right targets, avoid mirages, and yield
the highest return on our investment.

Expected benefits

From more reusable software you may expect improvements on the following frontsThis section is
. based on the more
» Timeliness (in the sense defined in the discussion of software quality factors: Sfextensive discus-

of bringing projects to completion and products to market). By relying on existsion of manage-

components we havess software to develop and hence can build it faster. ment aspects of
reuse in the book

“Object Success”

» Decreased maintenance effo. If someone else is responsible for the software, tr[M 1995]

someone is also responsible for its future evolutions. This avoidcompetent
developer’'s paradc the more you work, the more work you create for yourself as
users of your products start asking you for new functionalities, ports to new
platforms etc. (Other than relying on someone else to do the job, or retiring, the only
solution to the competent software developer’s paradox is to becoincompetent
developer so that no one is interested in your products any more — not a solution
promoted by this book.)

* Reliability. By relying on components from a reputed source, you have the
guarantee, or at least the expectation, that their authors will have applied all the
required care, including extensive testing and other validation techniques; not to
mention the expectation, in most cases, that many other application developers will
have had the opportunity to try these components before you, and to come across any
remaining bugs. The assumption here is not necessarily that the component
developers are any smarter than you are; simply that the components they build —
be they graphics modules, database interfaces, sorting algol... — aretheir
official assignment, whereas for you they might just be a necessary but secondary
chore for the attainment «our official goal of building an application system in
your own area of development.

 Efficiency. The same factors that favor reusability incite the component developers
to use the best possible algorithms and data structures known in their field of
specialization, whereas in a large application project you can hardly expect to have
an expert on board fcevern field touched on by the development. (Most people,
when they think of the connection between reusability and efficiency, tend to see the
reverse effect: the loss of fine-tuned optimizations that results from using general
solutions. But this is a narrow view of efficiency: in a large project, you cannot
realistically perform such optimizations on every piece of the development. You can,
however, aim at the best possible solutions in your group’s areas of excellence, and
for the rest rely on someone else’s expertise.)

8§84.1 THE GOALS OF REUSABILITY 69

« Consistency. There is no good library without a strict emphasis on regular, coherer
design. If you start using such a library — in particular some of the best curre
object-oriented libraries — its style will start to influence, through a natural proces
of osmosis, the style of the software that you develop. This is a great boost to t
quality of the software produced by an application group.

* Investmeni. Making software reusable is a way to preserve the know-how an
inventions of the best developers; to turn a fragile resource into a permanent ass

Many people, when they accept reusability as desirable, think only of the fir:
argument on this list, improving productivity. But it is not necessarily the most importar
contribution of a reuse-based software process. The reliability benefit, for example, is jt
as significant. Itis extremely difficult to build guaranteeably reusable software if every ne
development must independently validate every single piece of a possibly hu
construction. By relying on components produced, in each area, by the best experts arot
we can at last hope to build systems that we trust, because instead of redoing w
thousands have done before us — and, most likely, running again into the mistakes
they made — we will concentrate on enforcing the reliability of our truly new contributions

This argument does not just apply to reliability. The comment on efficiency wa
based on the same reasoning. In this respect we can see reusability as standing apart
the other quality factors studied in chapl: by enhancing it you have the potential of
enhancincalmost all of the other qualities. The reason is economic: if, instead of beint
developed for just one project, a software element has the potential of serving again
again for many projects, it becomes economically attractive to submit it to the be
possible quality-enhancing technigues — such as formal verification, usually tc
demanding to be cost-effective for most projects but the most mission-critical ones,
extensive optimization, which in ordinary circumstances can often be dismissed as unt
perfectionism. For reusable components, the reasoning changes dramatically; impr
just one element, and thousands of developments may benefit.

This reasoning is of course not completely new; it is in part the transposition |
software of ideas that have fundamentally affected other disciplines when they turn
from individual craftsmanship to mass-production industry. A VLSI chip is more
expensive to build than a run-of-the-mill special-purpose circuit, but if well done it wil
show up in countless systems and benefit their quality because of all the design work t
went into it once and for all.

Reuse consumers, reuse producers

If you examined carefully the preceding list of arguments for reusability, you may hax
noted that it involves benefits of two kinds. The first four are benefits you will derive fron
basing your application developments on existing reusable components; the last one, fi
making yourown software reusable. The next-to-last (consistency) is a little of both.

This distinction reflects the two aspects of reusability:consumer viev, enjoyed
by application developers who can rely on components; arproducer view, available
to groups that build reusability into their own developments.

70 APPROACHES TO REUSABILITY 84.2

In discussing reusability and reusability policies you should always make sure which
one of these two views you have in mind. In particular, if your organization is new to
reuse, remember that it is essentially impossible to start as a reuse producer. One often
meets managers who think they can make development reusable overnight, and decree
that no development shall henceforth be specific. (Often the injunction is to start
developing “business objects” capturing the company’s application expertise, and ignore
general-purpose components — algorithms, data structures, graphics, windowing and the
like — since they are considered too “low-level” to yield the real benefits of reuse.) This
is absurd: developing reusable components is a challenging discipline; the only known
way to learn is to start by using, studying and imitating good existing components. Such
an approach will yield immediate benefits as your developments will take advantage of
these components, and it will start you, should you persist in your decision to become a
producer too, on the right learning path.

Reuse Path principle Here 100 "Object
uccess explores
Be areuse consumer before you try to be a reuse producer. ;Eehpollcy Issues
rther.

4.2 WHAT SHOULD WE REUSE?

Convincing ourselves that Reusability Is Good was the easy part (although we needed to
clarify whatis really good about it). Now for the real challenge: how in the world are we
going to get it?

The first question to ask is what exactly we should expect to reuse among the various
levels that have been proposed and applied: reuse of personnel, of specifications, of
designs, of “patterns”, of source code, of specified components, of abstracted modules.

Reuse of personnel

The most common source of reusability is the developers themselves. This form of reuse
is widely practiced in the industry: by transferring software engineers from project to
project, companies avoid losing know-how and ensure that previous experience benefits
new developments.

This non-technical approach to reusability is obviously limited in scope, if only
because of the high turnover in the software profession.

Reuse of designs and specifications

Occasionally you will encounter the argument that we should be reusing designs rather

than actual software. The idea is that an organization should accumulate a repository of

blueprints describing accepted design structures for the most common applications it

develops. For example, a company that produces aircraft guidance systems will have a set
of model designs summarizing its experience in this area; such documents describe

module templates rather than actual modules.

§4.2 WHAT SHOULD WE REUSE? 71

Chapter21 discuss-
es the undoing pat-
tern.

[Gamma 1995 see
also[Pree 1994]

This approach is essentially a more organized version of the previous one — rel
of know-how and experience. As the discussion of documentation has already sugges
the very notion of a design as an independent software product, having its own |
separate from that of the corresponding implementation, seems dubious, since itis har
guarantee that the design and the implementation will remain compatible throughout 1
evolution of a software system. So if you only reuse the design you run the risk of reusi
incorrect or obsolete elements.

These comments are also applicable to a related form of reuse: reuse of specificatic

To a certain extent, one can view the progress of reusability in recent years, aided
progress in the spread of object technology and aiding it in return, as resulting in part fr
the downfall of the old idea, long popular in software engineering circles, that the on
reuse worthy of interest is reuse of design and specification. A narrow form of that id
was the most effective obstacle to progress, since it meant that all attempts to build ac
components could be dismissed as only addressing trivial needs and not touching the t
difficult aspects. It used to be the dominant view; then a combination of theoretic
arguments (the arguments of object technology) and practical achievements (1
appearance of successful reusable components) essentially managed to defeat it.

“Defeat” is perhaps too strong a term because, as often happens in such disputes
result takes a little from both sides. The idea of reusing designs becomes much m
interesting with an approach (such as the view of object technology developed in tl
book) which removes much of the gap between design and implementation. Then |
difference between a module and a design for a module is one of degree, not of natur
module design is simply a module of which some parts are not fully implemented; anc
fully implemented module can also serve, thanks to abstraction tools, as a module des
With this approach the distinction between reusing modules (as discussed below) «
reusing designs tends to fade away.

Design patterns

In the mid-nineteen-nineties the ideadesign patterr started to attract considerable
attention in object-oriented circles. Design patterns are architectural ideas applical
across a broad range of application domains; each pattern makes it possible to buil
solution to a certain design issue.

Here is a typical example, discussed in detail in a later chapteiissue how to
provide an interactive system with a mechanism enabling its users to undo a previou
executed command if they decide it was not appropriate, and to reexecute an und
command if they change their mind again. "patterr: use a clasCOMMANL with a
precise structure (which we will study) and an associated “history list”. We will encounte
many other design patterns.

One of the reasons for the success of the design pattern idea is that it was more |
an idea: the book that introduced the concept, and others that have followed, came wi
catalog of directly applicable patterns which readers could learn and apply.

Design patterns have already made an important contribution to the development
object technology, and as new ones continue to be published they will help developer:

72 APPROACHES TO REUSABILITY 84.2

benefit from the experience of their elders and peers. How can the general idea contribute
to reuse? Design patterns should not encourage a throwback tall that counts is

design reus” attitude mentioned earlier. A pattern thailonly a book pattern, however
elegant and general, is a pedagogical tool, not a reuse tool; after all, computing science
students have for three decades been learning from their textbooks about relational query
optimization, Gouraud shading, AVL trees, Hoare’s Quicksort and Dijkstra’s shortest path
algorithm without anyone claiming that these techniques were breakthroughs in
reusability. In a sense, the patterns developed in the past few years are only incremental
additions to the software professional’s bag of standard tricks. In this view the new
contribution is the patterns themselves, not the idea of pattern.

As most people who have looked carefully at the pattern work have recognized,see"Programs
a view is too limited. There seems to be in the very notion of pattern a truly with holes”, page
contribution, even if it has not been fully understood yet. To go beyond their r°%
pedagogical value, patterns must go further. A successful pattern cannot just be a vouk
description: it must be software componen, or a set of components. This goal may
seem remote at first because many of the patterns are so general and abstract as to seem
impossible to capture in actual software modules; but here the object-oriented method
provides a radical contribution. Unlike earlier approaches, it will enable us to build
reusable modules that still have replaceable, not completely frozen elements: modules that
serve as general schempattern:is indeed the appropriate word) and can be adapted to
various specific situations. This is the notiorbehavior clas (a more picturesque term
is programs with hole); it is based on O-O techniques that we will study in later chapters,
in particular the notion of deferred class. Combine this with the idea of groups of
components intended to work together — often knowframework: or more simply as
libraries — and you get a remarkable way of reconciling reusability with adaptability.
These techniques hold, for the pattern movement, the promise of exerting, beyond the
new-bag-of-important-tricks effect, an in-depth influence on reusability practices.

Reusability through the source code

Personnel, design and specification forms of reuse, useful as they may be, ignore a key
goal of reusability. If we are to come up with the software equivalent of the reusable parts
of older engineering disciplines, what we need to reuse is the actual stuff of which our
products are made: executable software. None of the targets of reuse seen so far — people,
designs, specifications — can qualify as the off-the-shelf components ready to be included
in a new software product under development.

If what we need to reuse is software, in what form should we reuse it? The most
natural answer is to use the software in its original form: source text. This approach has
worked very well in some cases. Much of the Unix culture, for example, originally spread
in universities and laboratories thanks to the on-line availability of the source code,

enabling users to study, imitate and extend the system. This is also true of the Lisp world.
))])] ~ Seeals¢’Formats
The economic and psychological impediments to source code dissemination for reusable compo-

the effect that this form of reuse can have in more traditional industrial environmentsnent d;sgit?mion’l
a more serious limitation comes from two technical obstacles: page f-helow.

§4.2 WHAT SHOULD WE REUSE? 73

More on distribu-
tion formats below.

« Identifying reusable software with reusable source removes information hiding. Y
no large-scale reuse is possible without a systematic effort to protect reusers fr
having to know the myriad details of reused elements.

* Developers of software distributed in source form may be tempted to violat
modularity rules. Some parts may depend on others in a non-obvious way, violati
the careful limitations which the discussion of modularity in the previous chapte
imposed on inter-module communication. This often makes it difficult to reuse somn
elements of a complex system without having to reuse everything else.

A satisfactory form of reuse must remove these obstacles by supporting abstract
and providing a finer grain of reuse.

Reuse of abstracted modules

All the preceding approaches, although of limited applicability, highlight importan
aspects of the reusability problem:

< Personnel reusability is necessary if not sufficient. The best reusable components
useless without well-trained developers, who have acquired sufficient experience
recognize a situation in which existing components may provide help.

» Design reusability emphasizes the need for reusable components to be of sufficier
high conceptual level and generality — not just ready-made solutions to speci
problems. The classes which we will encounter in object technology may be view
as design modules as well as implementation modules.

» Source code reusability serves as a reminder that software is in the end defined
program texts. A successful reusability policy must produce reusable program elemer

The discussion of source code reusability also helps narrow down our search for
proper units of reuse. A basic reusable component should be a software element. (F
there we can of course go collection: of software elements.) That element should be a
moduleof reasonable size, satisfying the modularity requirements of the previous chapt
in particular, its relations to other software, if any, should be severely limited to facilita
independent reuse. The information describing the module’s capabilities, and serving
primary documentation for reusers or prospective reusers, shoabstrac: rather than
describing all the details of the module (as with source code), it should, in accordance w
the principle of Information Hiding, highlight the properties relevant to clients.

The termabstracted module will serve as a name for such units of reuse, consisting
of directly usable software, available to the outside world through a description whic
contains only a subset of each unit's properties.

The rest of parB of this book is devoted to devising the precise form of such
abstracted modules; peC will then explore their properties.

The emphasis on abstraction, and the rejection of source code as the vehicle for reuse, do
not necessarily prohibdistributingc modules in source form. The contradiction is only
apparent: what is at stake in the present discussion is not how we will deliver modules to
their reusers, but what they will use as the primary source of information about them. It
may be acceptable for a module to be distributed in source form but reused on the basis
of an abstract interface description.

74 APPROACHES TO REUSABILITY 84.3

4.3 REPETITION IN SOFTWARE DEVELOPMENT

To progress in our search for the ideal abstracted module, we should take a closer look at
the nature of software construction, to understand what in software is most subject to reuse.

Anyone who observes software development cannot but be impressed by its
repetitive nature. Over and again, programmers weave a number of basic patterns: sorting,
searching, reading, writing, comparing, traversing, allocating, synchro...zing
Experienced developers know this feelincdéja vi, so characteristic of their trade.

A good way to assess this situation (assuming you develop software, or direct people
who do) is to answer the following question:

How many times over the past six months di¢, or people working for yc,u
write some program fragment for table searctdng

Table searching is defined here as the problem of finding out whether a certain element
x appears in a tabt of similar elements. The problem has many variants, depending on
the element types, the data structure representatiort, the choice of searching
algorithm.

Chances are you or your colleagues will indeed have tackled this problem one or
more times. But what is truly remarkable is that — if you are like others in the profession
— the program fragment handling the search operation will have been written at the
lowest reasonable level of abstraction: by writing code in some programming language,
rather than calling existing routines.

To an observer from outside our field, however, table searching would seeisee bibliographic
obvious target for widely available reusable components. It is one of the most resecereferences on
areas of computing science, the subject of hundreds of articles, and many books sP29€9¢
with volume 3 of Knuth’s famous treatise. The undergraduate curriculum of all computing
science departments covers the most important algorithms and data structures. Certainly
not a mysterious topic. In addition:

It is hardly possible, as noted, to write a useful software system which does not
include one or (usually) several cases of table searching. The investment needed to
produce reusable modules is not hard to justify.

* As will be seen in more detail below, most searching algorithms follow a common
pattern, providing what would seem to be an ideal basis for a reusable solution.

4.4 NON-TECHNICAL OBSTACLES

Why then is reuse not more common?

Most of the serious impediments to reuse are technical; removing them will be the
subject of the following sections of this chapter (and of much of the rest of this book). But
of course there are also some organizational, economical and political obstacles.

8§4.4 NON-TECHNICAL OBSTACLES 75

See[M 1995].

The NIH syndrome

An often quoted psychological obstacle to reuse is the famous Not Invented Here (“NIH
syndrome. Software developers, it is said, are individualists, who prefer to redo everythi
by themselves rather than rely on someone else’s work.

This contention (commonly heard in managerial circles) is not borne out b
experience. Software developers do not like useless work more than anyone else. Wh
good, well-publicized and easily accessible reusable solution is available, it gets reuse

Consider the typical case of lexical and syntactic analysis. Using parser generat
such as the Lex-Yacc combination, it is much easier to produce a parser for a comm
language or a simple programming language than if you must program it from scratch. T
result is clear: where such tools are available, competent software developers routir
reuse them. Writing your own tailor-made parser still makes sense in some cases, Si
the tools mentioned have their limitations. But the developers’ reaction is usually to go
default to one of these tools; it is when you want to use a solution not based on the reus.
mechanisms that you have to argue for it. This may in fact cause a new syndrome,
reverse of NIH, which we may call HIN (Habit Inhibiting Novelty): a useful but limited
reusable solution, so entrenched that it narrows the developers’ outlook and stif
innovation, becomes counter-productive. Try to convince some Unix developers to us
parser generator other than Yacc, and you may encounter HIN first-hand.

Something which may externally look like NIH does exist, but often it is simply the
developers’ understandably cautious reaction to new and unknown components. Tl
may fear that bugs or other problems will be more difficult to correct than with a solutic
over which they have full control. Often such fears are justified by unfortunate earlie
attempts at reusing components, especially if they followed from a management mand
to reuse at all costs, not accompanied by proper quality checks. If the new components
of good quality and provide a real service, fears will soon disappear.

What this means for the producer of reusable components is that quality is even m
important here than for more ordinary forms of software. If the cost of a non-reusable, ot
of-a-kind solution isN, the cosR of a solution relying on reusable components is never
zero: there is a learning cost, at least the first time; developers may have to bend tt
software to accommodate the components; and they must write some interfacing softw:

however small, to call them. So even if the reusability savings

R
r = --

and other benefits of reuse are potentially great, you must also convince the candic
reusers that the reusable solution’s quality is good enough to justify relinquishing contr

This explains why it is a mistake to target a company’s reusability policy to the potential
reusers (thconsumer, that is to say the application developers). Instead you should put
the heat on thproducer, including people in charge of acquiring external components,
to ensure the quality and usefulness of their offering. Preaching reuse to application

76 APPROACHES TO REUSABILITY§4.4

developers, as some companies do by way of reusability policy, is futile: because
application developers are ultimately judged by how effectively they produce their
applications, they should and will reuse not because you tell them to but because you have
done a good enough job with the reusable components (developed or acquired) thatit will
beprofitable for their applications to rely on these components.

The economics of procurement

A potential obstacle to reuse comes from the procurement policy of many |“GENERALIZA-
corporations and government organizations, which tends to impede reusability efforTION", 28.5, page
focusing on short-term costs. US regulations, for example, make it hard for a govern

agency to pay a contractor for work that was not explicitly commissioned (nhormally as

part of a Request For Proposals). Such rules come from a legitimate concern to protect
taxpayers or shareholders, but can also discourage software builders from applying the

crucial effort ofgeneralizatior to transform good software into reusable components.

On closer examination this obstacle does not look so insurmountable. As the concern
for reusability spreads, there is nothing to prevent the commissioning agency from
including in the RFP itself the requirement that the solution must be general-purpose and
reusable, and the description of how candidate solutions will be evaluated against these
criteria. Then the software developers can devote the proper attention to the generalization
task and be paid for it.

Software companies and their strategies

Even if customers play their part in removing obstacles to reuse, a potential problem
remains on the side of the contractors themselves. For a software company, there is a
constant temptation to provide solutions that are purpcnoi reusable, for fear of not
getting the next job from the customer — because if the result of the current job is too
widely applicable the customer may not need a next job!

| once heard a remarkably candid exposé of this view after giving a talk on reuse and
object technology. A high-level executive from a major software house came to tell me
that, although intellectually he admired the ideas, he would never implement them in his
own company, because that would be killing the goose that laid the golden egg: more than
90% of the company’s business derived from renting manpower — providing analysts and
programmers on assignment to customers — and the management’s objective was to bring
the figure to 100%. With such an outlook on software engineering, one is not likely to
greet with enthusiasm the prospect of widely available libraries of reusable components.

The comment was notable for its frankness, but it triggered the obvious retort: if it is
at all possible to build reusable components to replace some of the expensive services of
a software house’s consultants, sooner or later someone will build them. At that time a
company that has refused to take this route, and is left with nothing to sell but its
consultants’ services, may feel sorry for having kept its head buried in the sand.

8§4.4 NON-TECHNICAL OBSTACLES 77

It is hard not to think here of the many engineering disciplines that used to be heav
labor-intensive but became industrialized, that is to say tool-based — with painfi
economic consequences for companies and countries that did not understand early enc
what was happening. To a certain extent, object technology is bringinglarshange
to the software trade. The choice between people and tools need not, however, be
exclusive one. The engineering part of software engineering is not identical to that
mass-production industries; humans will likely continue to play the key role in th
software construction process. The aim of reuse is not to replace humans by tools (wt
is often, in spite of all claims, what has happened in other disciplines) but to change
distribution of what we entrust to humans and to tools. So the news is not all bad fol
software company that has made its name through its consultants. In particular:

« In many cases developers using sophisticated reusable components may still ber
from the help of experts, who can advise them on how best to use the componel
This leaves a meaningful role for software houses and their consultants.

« As will be discussed below, reusability is inseparable from extendibility: gooc
reusable components will still be open for adaptation to specific cases. Consultal
from a company that developed a library are in an ideal position to perform su
tuning for individual customers. So selling components and selling services are r
necessarily exclusive activities; a components business can serve as a basis f
service business.

* More generally, a good reusable library can play a strategic role in the policy of
successful software company, even if the company sells specific solutions ratt
than the library itself, and uses the library for internal purposes only. If the librar
covers the most common needs and provides an extendible basis for the m
advanced cases, it can enable the company to gain a competitive edge in cer
application areas by developing tailored solutions to customers’ needs, faster anc
lower cost than competitors who cannot rely on such a ready-made basis.

Accessing components

Another argument used to justify skepticism about reuse is the difficulty of the compone
management task: progress in the production of reusable software, it is said, would re
in developers being swamped by so many components as to make their life worse tha
the components were not available.

Cast in a more positive style, this comment should be understood as a warning
developers of reusable software that the best reusable components in the world are ust
if nobody knows they exist, or if it takes too much time and effort to obtain them. Th
practical success of reusability techniques requires the development of adequate datak
of components, which interested developers may search by appropriate keywords to f
out quickly whether some existing component satisfies a particular need. Netwo
services must also be available, allowing electronic ordering and immediate downloadi
of selected components.

78 APPROACHES TO REUSABILITY§4.4

These goals do raise technical and organizational problems. But we must keep things
in proportion. Indexing, retrieving and delivering reusable components are engineering
issues, to which we can apply known tools, in particular database technology; there is no
reason why software components should be more difficult to manage than customer
records, flight information or library books.

Reusability discussions used to delve forever into the grave question “how in the
world are we going to make the components available to developers?”. After the advances
in networking of the past few years, such debates no longer appear so momentous. With
the World-Wide Web, in particular, have appeared powerful search tools (AltaVista,
Yahoc...) which have made it far easier to locate useful information, either on the Internet
or on a company’s Intranet. Even more advanced solutions (produced, one may expect,
with the help of object technology) will undoubtedly follow. All this makes it increasingly
clear that the really hard part of progress in reusability lies not in organizing reusable
components, but in building the wretched things in the first place.

A note about component indexing

On the matter of indexing and retrieving components, a question presents itself, at the
borderline between technical and organizational issues: how should we associate indexing
information, such as keywords, with software components?

The Self-Documentation principle suggests that, as much as possible, inform«self-Documenta-
about a module — indexing information as well as other forms of module documentdion”, page 5-.
— should appear in the module itself rather than externally. This leads to an impa
requirement on the notation that will be developed in C of this book to write software
components, called classes. Regardless of the exact form of these classes, we must equip
ourselves with a mechanism to attach indexing information to each component.

The syntax is straightforward. At the beginning of a module text, you will be invited
to write anindexing clauseof the form

indexing More details ir“In-
index_word: valug, value, value... dexing clauses”,
. - page 891
index_word: value, value, value...

... Normal module definition (see part ...

Eachindex_worc is an identifier; eaclvalue is a constant (integer, real etc.), an
identifier, or some other basic lexical element.

There is no particular constraint on index words and values, but an industry, a
standards group, an organization or a project may wish to define their own conventions.
Indexing and retrieval tools can then extract this information to help software developers
find components satisfying certain criteria.

As we saw in the discussion of Self-Documentation, storing such information in the
module itself — rather than in an outside document or database — decreases the
likelihood of including wrong information, and in particular of forgetting to update the

8§4.4 NON-TECHNICAL OBSTACLES 79

“Using assertions
for documentation:
the short form of a
class”, page 39)

T. B. Stee: “A First
Versionof UNCO”,
Joint Computer
Conf, vol. 1¢, Win-
ter 1967, pages
371-378

ISE’s compilers use
both C generation
and bytecode gen-
eratior.

information when updating the module (or conversely). Indexing clauses, modest as tt
may seem, play a major role in helping developers keep their software organized &
register its properties so that others can find out about it.

Formats for reusable component distribution

Another question straddling the technical-organizational line is the form under which w
should distribute reusable components: source or binary? This is a touchy issue, so we
limit ourselves to examining a few of the arguments on both sides.

For a professional, for-profit software developer, it often seems desirable to provi
buyers of reusable components with an interface descriptioishort forn discussed in
a later chapter) and the binary code for their platform of choice, but not the source for
This protects the developer’s investment and trade secrets.

Binary is indeed the preferred form of distribution for commercial application
programs, operating systems and other tools, including compilers, interpreters a
development environments for object-oriented languages. In spite of recurring attacks
the very idea, emanating in particular from an advocacy group called the League
Programming Freedom, this mode of commercial software distribution is unlikely t
recede much in the near future. But the present discussion is not about ordinary tool:
application programs: it is about libraries of reusable software components. In that c:
one can also find some arguments in favor of source distribution.

For the component producer, an advantage of source distribution is that it ea:
porting efforts. You stay away from the tedious and unrewarding task of adapting softwz
to the many incompatible platforms that exist in today’s computer world, relying instez
on the developers of object-oriented compilers and environments to do the job for yc¢
(For theconsume this is of course a counter-argument, as installation from source wil
require more work and may cause unforeseen errors.)

Some compilers for object-oriented languages may let you retain some of the portability
benefit without committing to full source availability: if the compiler uses C as
intermediate generated code, as is often the case today, you can usually substitute
portable C code for binary code. It is then not difficult to devise a tool that obscures the
C form, making it almost as difficult to reverse-engineer as a binary form.

Also note that at various stages in the history of software, dating back to UNCOL
(UNiversal COmputing Language) in the late fifties, people have been defining low-level
instruction formats that could be interpreted on any platform, and hence could provide a
portable target for compilers. The ACE consortium of hardware and software companies
was formed in 1988 for that purpose. Together with the Java language has come the
notion of Java bytecode, for which interpreters are being developed on a number of
platforms. But for the component producer such efforts at first represent more work, not
less: until you have the double guarantee that the new format is available on every
platform of interesanc that it executes target code as fast as platform-specific solutions,
you cannot forsake the old technology, and must simply add the new target code format
to those you already support. So a solution that is advertized as an end-all to all portability
problems actually creates, in the short term, more portability problems.

80 APPROACHES TO REUSABILITY§4.4

Perhaps more significant, as an argument for source code distribution, is the
observation that attempts to protect invention and trade secrets by removing the source
form of the implementation may be of limited benefit anyway. Much of the hard work in
the construction of a good reusable library lies not in the implementation but in the design
of the components’ interfaces; and that is the part that you are bound to release anyway.
This is particularly clear in the world of data structures and algorithms, where most of the
necessary techniques are available in the computing science literature. To design a
successful library, you must embed these techniques in modules whose interface will
make them useful to the developers of many different applications. This interface design
is part of what you must release to the world.

Also note that, in the case of object-oriented modules, there are two forms of
component reuse: as a client or, as studied in later chapters, through inheritance. The
second form combines reuse with adaptation. Interface descriptions (short forms) are
sufficient for client reuse, but not always for inheritance reuse.

Finally, the educational side: distributing the source of library modules is a goodThe chapter on
to provide models of the producer’s best engineering, useful to encourage consuni?ﬁzg‘lgg‘;bfec\}el_
develop their own software in a consistent style. We saw earlier that the resiyyg this point in
standardization is one of the benefits of reusability. Some of it will remain even if c“Apprenticeship”,

developers only have access to the interfaces; but nothing beats having the full texiPage 94}

Be sure to note that even if source is available it should not serve as the primary
documentation tool: for that role, we continue to use the module interface.

This discussion has touched on some delicate economic issues, which condition in
part the advent of an industry of software components and, more generally, the progress
of the software field. How do we provide developers with a fair reward for their efforts
and an acceptable degree of protection for their inventions, without hampering the
legitimate interests of users? Here are two opposite views:

* At one end of the spectrum you will find the positions of the League See the biblio-
Programming Freedom: all software should be free and available in source fordraphical notes

» At the other end you have the ideasuperdistributiol, advocated by Brad Cox in
several articles and a book. Superdistribution would allow users to duplicate
software freely, charging them not for the purchase but instead for each use. Imagine
a little counter attached to each software component, which rings up a few pennies
every time you make use of the component, and sends you a bill at the end of the
month. This seems to preclude distribution in source form, since it would be too easy
to remove the counting instructions. Although JEIDA, a Japanese consortium of
electronics companies, is said to be working on hardware and software mechanisms
to support the concept, and although Cox has recently been emphasizing
enforcement mechanisms built on regulations (like copyright) rather than
technological devices, superdistribution still raises many technical, logistic,
economic and psychological questions.

8§45 THE TECHNICAL PROBLEM 81

An assessment

Any comprehensive approach to reusability must, along with the technical aspects, d
with the organizational and economical issues: making reusability part of the softwa
development culture, finding the right cost structure and the right format for compone
distribution, providing the appropriate tools for indexing and retrieving components. N¢
surprisingly, these issues have been the focus of some of the main reusability initiatiy
from governments and large corporations\, such as the STARS program USthe
Department of DefenstSoftware Technology for Adapta, Reliable Syster) and the
“software factories” installed by some large Japanese companies.

Important as these questions are in the long term, they should not detract ¢
attention from the main roadblocks, which are still technicatc8sis in reuse requires the
right modular structures and the construction of quality libraries containing the tens
thousands of components that the industry needs.

The rest of this chapter concentrates on the first of these questions; it examines v
common notions of module are not appropriate for large-scale reusability, and defines
requirements that a better solution — developed in the following chapters — must satis

4.5 THE TECHNICAL PROBLEM

What should a reusable module look like?

Change and constancy

Software development, it was mentioned above, involves much repetition. To understz
the technical difficulties of reusability we must understand the nature of that repetition.

Such an analysis reveals that although programmers do tend to do the same kind
things time and time again, these areexactlythe same things. If they were, the solution
would be easy, at least on paper; but in practice so many details may change as to de
any simple-minded attempt at capturing the commonality.

Atelling analogy is provided by the works of the Norwegian painter Edvard Munch, the
majority of which may be seen in the museum dedicated to him in Oslo, the birthplace of
Simula. Munch was obsessed with a small number of profound, essential themes: love,
anguish, jealousy, dance, de.... He drew and painted them endlessly, using the same
pattern each time, but continually changing the technical medium, the colors, the
emphasis, the size, the light, the mood.

Such is the software engineer’s plight: time and again composing a new variati
that elaborates on the same basic themes.

Take the example mentioned at the beginning of this chetable searching. True,
the general form of a table searching algorithm is going to look sigalar time: start at
some position in the tabt; then begin exploring the table from that position, each time
checking whether the element found at the current position is the one being sought, &
if not, moving to another position. The process terminates when it has either found t

82 APPROACHES TO REUSABILITY84.5

element or probed all the candidate positions unsuccessfully. Such a general pattern is
applicable to many possible cases of data representation and algorithms for table
searching, including arrays (sorted or not), linked lists (sorted or not), sequential files,
binary trees, B-trees and hash tables of various kinds.

It is not difficult to turn this informal description into an incompletely refined
routine:

has(t: TABLE, x: ELEMENT): BOOLEANis
-- |Is there an occurrence xin t?

local
pos: POSITION
do
from
pos:= INITIAL_POSITION(x, t)
until
EXHAUSTEL(pos, t) or else FOUND (pos, x, t)
loop
pos:= NEXT(pos, X, t)
end
Result:= not EXHAUSTEL(pos, t)
end
(A few clarifications on the notatiorfrom ... until ... loop ... end describes a loop, or els¢ is explained

initialized in the from clause, executing thloop clause zero or more times, anin “Non-strictbool-
terminating as soon as the condition in until clause is satisfiecResul denotes the Sggé’zgrf‘tors '
value to be returned by the function. If you are not familiar wittor else operator, just

accept it as if it were a booleor.)

Although the above text describes (through its lower-case elements) a general
pattern of algorithmic behavior, it is not a directly executable routine since it contains (in
upper case) some incompletely refined parts, corresponding to aspects of the table
searching problem that depend on the implementation chosen: the type of table elements
(ELEMENT), what position to examine firsINITIAL_POSITION, how to go from a
candidate position to the nesNEXT), how to test for the presence of an element at a
certain position FOUND), how to determine that all interesting positions have been
examined EXHAUSTEL).

Rather than a routine, then, the above text is a routine pattern, which you can only
turn into an actual routine by supplying refinements for the upper-case parts.

The reuse-redo dilemma

All this variation highlights the problems raised by any attempt to come up with general-
purpose modules in a given application area: how can we take advantage of the common
pattern while accommodating the need for so much variation? This is not just an

§4.6 FIVE REQUIREMENTS ON MODULE STRUCTURES 83

“The Open-Closed
principle”, page 57/

implementation problem: it is almost as harspecifthe module so that client modules
can rely on it without knowing its implementation.

These observations point to the central problem of software reusability, whic
dooms simplistic approaches. Because of the titgaf software — its very softness —
candidate reusable modules will not suffice if they are inflexible.

A frozen module forces you into ttreuse or redc dilemma: reuse the module
exactly as it is, or redo the job completely. This is often too limiting. In a typical situatior
you discover a module that may provide you with a solution for some part of your curre
job, but not necessarily the exact solution. Your specific needs may require sor
adaptation of the module’s original behavior. So what you will want to do in such a ca
is to reuseand redo: reuse some, redo some — or, you hope, reuse a lot and redo a lit
Without this ability to combine reuse and adaptation, reusability techniques cann
provide a solution that satisfies the realities of practical software development.

So it is not by accident that almost every discussion of reusability in this book al:
considers extendibility (leading to the definition of the term “modularity”, which covers
both notions and provided the topic of the previous chapter). Whenever you start looki
for answers to one of these quality requirements, you quickly encounter the other.

This duality between reuse and adaptation was also present in the earlier discus:
of the Open-Closed principle, which pointed out that a successful software compone
must be usable as it stands (closed) while still adaptable (open).

The search for the right notion of module, which occupies the rest of this chapter a
the next few, may be characterized as a constant attempt to reconcile reusability -
extendibility, closure and openness, constancy and change, satisfying today’s needs
trying to guess what tomorrow holds in store.

4.6 FIVE REQUIREMENTS ON MODULE STRUCTURES

How do we find module structures that will yield directly reusable components whil
preserving the possibility of adaptation?

The table searching issue and hasroutine pattern obtained for it on the previous
page illustrate the stringent requirements that any solution will have to meet. We can |
this example to analyze what it takes to go from a relatively vague recognition
commonality between software variants to an actual set of reusable modules. Such a si
will reveal five general issues:

« Type Variation.
* Routine Grouping.
* Implementation Variation.

* Representation Independence.

Factoring Out Common Behaviors.

84 APPROACHES TO REUSABILITY 84.6

Type Variation

The hasroutine pattern assumes a table containing objects of aELEMENT. A
particular refinement might use a specific type, SUCINTEGEF or BANK_ACCOUN/
to apply the pattern to a table of integers or bank accounts.

But this is not satisfactory. A reusable searching module should be applicat‘Genericity”, page
many different types of element, without requiring reusers to perform manual chanc9¢
the software text. In other words, we need a facility for describing type-paramete
modules, also known more concisely generic modules. Genericity (the ability for
modules to be generic) will turn out to be an important part of the object-oriented method;
an overview of the idea appears later in this chapter.

Routine Grouping

Even if it had been completely refined and parameterized by typehasroutine pattern

would not be quite satisfactory as a reusable component. How you search a table depends
on how it was created, how elements are inserted, how they are deleted. So a searching
routine is not enough by itself as a unit or reuse. A self-sufficient reusable module would
need to include a set of routines, one for each of the operations cited — creation, insertion,
deletion, searching.

This idea forms the basis for a form of module, the “package”, found in what may be
called the encapsulation languages: Ada, Modula-2 and relatives. More on this below.

Implementation Variation

The haspattern is very general; there is in practice, as we have seen, a wide variety of
applicable data structures and algorithms. Such variety indeed that we cannot expect a
single module to take care of all possibilities; it would be enormous. We will need a family
of modules to cover all the different implementations.

A general technique for producing and using reusable modules will have to support
this notion of module family.

Representation Independence

A general form of reusable module should enable clients to specify an operation without
knowing how it is implemented. This requirement is called Representation Independence.

Assume that a client modulC from a certain application system — an asset
management program, a compiler, a geographical information s... — needs to
determine whether a certain elemix appears in a certain takt (of investments, of
language keywords, of cities). Representation independence means here the alClity for
to obtain this information through a call such as

present:= has(t, x)

§4.6 FIVE REQUIREMENTS ON MODULE STRUCTURES 85

“Information Hid-

ing”, page 5..

“Single Choice”,
page 6...

“DYNAMIC BIND-

ING”, 14.4, page
48C.

without knowing what kind of tab t is at the time of the caC’s author should only need

to know thatt is a table of elements of a certain type, and x denotes an object of that
type. Whethet is a binary search tree, a hash table or a linked list is irrelevant for him; f
should be able to limit his concerns to asset management, compilation or geograp
Selecting the appropriate search algorithm baset's implementation is the business of
the table management module, and of no one else.

This requirement does not preclude letting clients choose a specific implementati
when they create a data structure. But only one client will have to make this initial choic
after that, none of the clients that perform searchet should ever have to ask what exact
kind of table it is. In particular, the clieC containing the above call may have received
t from one of its own clients (as an argument to a routine call); th¢«C the namet is just
an abstract handle on a data structure whose details it may not be able to access.

You may view Representation Independence as an extension of the rule
Information Hiding, essential for smooth development of large systems: implementatic
decisions will often change, and clients should be protected. But Representati
Independence goes further. Taken to its full consequences, it means protecting a modt
clients against changes not only during project lifecyclebut alsoduring executio —

a much smaller time frame! In the example, we whas to adapt itself automatically to
the run-time form of tablt, even if that form has changed since the last call.

Satisfying Representation Independence will also help us towards a related princij
encountered in the discussion of modularity: Single Choice, which directed us to st
away from multi-branch control structures that discriminate among many variants, as i

if “tis an array managed by open hash then
“Apply open hashing search algorithm”
elseil“t is a binary search trethen
“Apply binary search tree traversal”
elseif
(etc.)
end

It would be equally unpleasant to have such a decision structure in the module its
(we cannot reasonably expect a table management module to know about all present
future variants) as to replicate it in every client. The solution is to hide the multi-branc
choice completely from software developers, and have it performed automatically by t
underlying run-time system. This will be the roledynamic binding, a key component
of the object-oriented approach, to be studied in the discussion of inheritance.

Factoring Out Common Behaviors

If Representation Independence reflects the client’s view of reusability — the ability t
ignore internal implementation details and variants —, the last requirement, Factoring C
Common Behaviors, reflects the view of the supplier and, more generally, the view
developers of reusable classes. Their goal will be to take advantage of any commone
that may exist within a family or sub-family of implementations.

86 APPROACHES TO REUSABILITY 84.6

The variety of implementations available in certain problem areas will usually
demand, as noted, a solution based on a family of modules. Often the family is so large
that it is natural to look for sub-families. In the table searching case a first attempt at
classification might yield three broad sub-families:

e Tables managed by some form of hash-coding scheme.
e Tables organized as trees of some kind.
e Tables managed sequentially.

Each of these categories covers many variants, but it is usually possible to find
significant commonality between these variants. Consider for example the family of
sequential implementations — those in which items are kept and searched in the order of
their original insertion.

Some possible
table
implementations

LINKED \ "
TABLE

Possible representations for a sequential table include an array, a linked list “ACTIVE DATA
file. But regardless of these differences, clients should be able, for any sequerSTRUCTURES’,

managed table, to examine the elements in sequence by moving a (fictcursor giﬁc’)feaggt;r's‘”g;"the
indicating the position of the currently examined element. In this approach we may recyrsor technique

the searching routine for sequential tables as:

has(t: SEQUENTIAL_TABL; x: ELEMENT): BOOLEANMis
-- Is there an occurrence x in t?
do
from startuntil
afteror else found(x)
loop
forth
end
Result:= not after
end

§4.6 FIVE REQUIREMENTS ON MODULE STRUCTURES 87

Sequential
structure with
cursor

The general routine
pattern was on
page82.

Array
representation
of sequential
table with
cursor

This form relies on four routines which any sequential table implementation will b
able to provide:

 start, a command to move the cursor to the first element if any.

 forth, a command to advance the cursor by one position. (Suppcforth is of
course one of the prime characteristics of a sequential table implementation.)

 after, a boolean-valued query to determine if the cursor has moved past the I
element; this will be true afterstart if the table was empty.

« found(x), a boolean-valued query to determine if the element at cursor position h

value x.
vl v2 v3 v4 v5
1 index count
_>
forth

At first sight, the routine text fchas at the bottom of the preceding page resembles
the general routine pattern used at the beginning of this discussion, which covel
searching in any table (not just sequential). But the new form is not a routine pattern &
more; it is a true routine, expressed in a directly executable notation (the notation use
illustrate object-oriented concepts in paC of this book). Given appropriate
implementations for the four operatiostart, forth, after andfounc which it calls, you can
compile and execute the latest formhas.

For each possible sequential table representation you will need a representation
the cursor. Three example representations are by an array, a linked list and a file.

The first uses an array icapacity items, the table occupying positions lcoun.
Then you may represent the cursor simply as an ininde» ranging from 1 tccount + 1.
(The last value is needed to represent a cursor that has rrafter” the last item.)

vl V2 v3 v4 v5

1 index=3 count capacity

The second representation uses a linked list, where the first cell is accessible thro
a referenciirst_celland each cell is linked to the next one through a referight. Then
you may represent the cursor as a refercursol.

88 APPROACHES TO REUSABILITY 84.6

vil| _Lright vyl |right_|ygl |right_[y4(|right_ fygl | Linked list
Void representation
of sequential
Tfirst_cell ﬁ cursor table with
cursor

The third representation uses a sequential file, in which the cursor simply represents
the current reading position.

Sequential file
vli |v2 | v3 | v4 | V5 \ representation
of a sequential

table with
cursor

File reading position

The implementation of the four low-level operatistar, forth, afterandfounc will
be different for each variant. The following table gives the implementation in each case.
(The notatio t @ | denotes thi-th element of arrat, which would be writtert [i] in
Pascal or CVoid denotes a void reference; the Pascal noti.1, for a filef, denotes the
element at the current file reading position.)

Inthis tablendexis

start forth after found(x) abbreviated as
Array =1 i=i+1 |i>count |t@ i=x andcursorasc.
Linked list c:=first_ c:=c.right | c=Void c.item=x
cell
File rewind read end_of file | f1 =x

The challenge of reusability here is to avoid unneeded duplication of software by
taking advantage of the commonality between variants. If identical or near-identical
fragments appear in different modules, it will be difficult to guarantee their integrity and
to ensure that changes or corrections get propagated to all the needed places; once again,
configuration management problems may follow.

All sequential table variants share tlhas function, differing only by their
implementation of the four lower-level operations. A satisfactory solution to the
reusability problem must include the texthas in only one place, somehow associated
with the general notion of sequential table independently of any choice of representation.
To describe a new variant, you should not have to worry ¢has any more; all you will
need to do is to provide the appropriae versiorstari, forth, after andfounc.

8§4.7 TRADITIONAL MODULAR STRUCTURES 89

4.7 TRADITIONAL MODULAR STRUCTURES

Together with the modularity requirements of the previous chapter, the five requiremer
of Type Variation, Routine Grouping, Implementation Variation, Representatior
Independence and Factoring Out Common Behaviors define what we may expect from
reusable components — abstracted modules.

Let us study the pre-O-O solutions to understand why they are not sufficient — b
also what we should learn and keep from them in the object-oriented world.

Routines

The classical approach to reusability is to build libraries of routines. Here throutine
denotes a software unit that other units may call to execute a certain algorithm, us
certain inputs, producing certain outputs and possibly modifying some other da
elements. A calling unit will pass its inputs (and sometimes outputs and modifie
elements) in the form cactual argument. A routine may also return output in the form
of aresul; in this case it is known asfunctior.

The termssubroutint, subprograr andprocedurt are also used instead routine. The

first two will not appear in this book except in the discussion of specific languages (the

Ada literature talks about subprograms, and the Fortran literature about subroutines.)
“Procedure” will be used in the sense of a routine which does not return a result, so that
we have two disjoint categories of routine: procedures and functions. (In discussions of
the C language the term “function” itself is sometimes used for the general notion of

routine, but here it will always denote a routine that returns a result.)

Routine libraries have been successful in several application domains, in particu
numerical computation, where excellent libraries have created some of the earliest suct
stories of reusability. Decomposition of systems into routines is also what one obtai
through the method of top-down, functional decomposition. The routine library approa
indeed seems to work well when you can identify a (possibly large) set of individu
problems, subject to the following limitations:

R1 e« Each problem admits a simple specification. More precisely, it is possible t
characterize every problem instance by a small set of input and output argument:

R2 « The problems are clearly distinct from each other, as the routine approach does
allow putting to good use any significant commonality that might exist — except b
reusing some of the design.

R3 ¢« No complex data structures are involved: you would have to distribute them amo!
the routines using them, losing the conceptual autonomy of each module.

The table searching problem provides a good example of the limitations
subroutines. We saw earlier that a searching routine by itself does not have enough con
to serve as a stand-alone reusable module. Even if we dismissed this objection, howe
we would be faced with two equally unpleasant solutions:

» A single searching routine, which would try to cover so many different cases that
would require a long argument list and would be very complex internally.

90 APPROACHES TO REUSABILITY 84.7

« A large number of searching routines, each covering a specific case and differing
from some others by only a few details in violation of the Factoring Out Common
Behaviors requirement; candidate reusers could easily lose their way in such a maze.

More generally, routines are not flexible enough to satisfy the needs of reuse. We
have seen the intimate connection between reusability and extendibility. A reusable
module should be open to adaptation, but with a routine the only means of adaptation is to
pass different arguments. This makes you a prisoner of the Reuse or Redo dilemma: either
you like the routine as it is, or you write your own.

Packages

In the nineteen-seventies, with the progress of ideas on information hiding and This approach is
abstraction, a need emerged for a form of module more advanced than the routinetudied in deta,
result may be found in several design and programming languages of the period; ththrough the Ada no-
known are CLU, Modula-2 and Ada. They all offer a similar form of module, knownﬂﬁgp?fe%a;ﬁgt’em
Ada as the package. (CLU calls its variant the cluster, and Modula the module. again that'byde-

discussion will retain the Ada term.) fault “Ada” means
Ada 83.(Ada 95 re-

Packages are units of software decomposition with the following properties: tains packages with
a few additiony).

P1 e+ In accordance with the Linguistic Modular Units principle, “package” is a constr
of the language, so that every package has a name and a clear syntactic scope.

P2« Each package definition contains a number of declarations of related elements, such
as routines and variables, hereafter callecfeatures of the package.

P3 e+ Every package can specify precise access rights governing the use of its features by
other packages. In other words, the package mechanism supports information hiding.

P4+ In a compilable language (one that can be used for implementation, not just
specification and design) it is possible to compile packages separately.

Thanks toPZ, packages deserve to be seen as abstracted modules. Their major
contribution isPz, answering the Routine Grouping requirement. A package may contain
any number of related operations, such as table creation, insertion, searching and deletion.
It is indeed not hard to see how a package solution would work for our example problem.
Here — in a notation adapted from the one used in the rest of this book for object-oriented
software — is the sketch of a packaNTEGER TABLE HANDLIN describing a
particular implementation of tables of integers, through binary trees:

packageINTEGER_TABLE_HANDLIN feature
type INTBINTREEis
record
-- Description of representation of a binary tree, for example:
info: INTEGER
left, right: INTBINTREE
end

8§4.7 TRADITIONAL MODULAR STRUCTURES 91

new: INTBINTREEis
-- Return a nevINTBINTREE, properly initialized.
do... end
has(t: INTBINTREE x: INTEGEF): BOOLEANIs
-- Doesx appear irt?
do ... Implementation of searching operati... end

put (t: INTBINTREE x: INTEGEF) is
-- Insertx intot.
do...end

remove(t: INTBINTREE x: INTEGEF) is
-- Removex fromt.
do... end

end -- packag INTEGER_TABLE_HANDLIN 3

This package includes the declaration of a tyiINTBINTREE), and a number of
routines representing operations on objects of that type. In this case there is no neec
variable declarations in the package (although the routines may have local variables).

Client packages will now be able to manipulate tables by using the various featur
of INTEGER_TABLE_HANDLIN. This assumes a syntactic convention allowing a client
to use featurf from packagP; letus borrow the CLU notatioP$f. Typical extracts from
a client ofINTEGER_TABLE_HANDLIN may be of the form:

-- Auxiliary declarations:
x: INTEGEF,; b: BOOLEAN

-- Declaration oft using a type defined INTEGER_TABLE_HANDLIN:3
t: INTEGER_TABLE_HANDLINSINTBINTREE

-- Initialize t as a new table, created by functnew of the package:
t: = INTEGER_TABLE_HANDLINSnew

-- Insert value ox into table, using proceduput from the package:
INTEGER_TABLE_HANDLINS$put (t, x)

-- AssignTrue or False to b, depending on whether or rx appears it
-- for the search, use functithas from the package:
b:= INTEGER_TABLE_HANDLINS$has(t, x)

Note the need to invent two related names: one for the moduleINTEGER _
TABLE_HANDLING and one for its main data type, hiINTBINTREL One of the key
steps towards object orientation will be to merge the two notions. But let us not anticipa

A less important problem is the tediousness of having to write the package name (here
INTEGER_TABLE_HANDLIN) repeatedly. Languages supporting packages solve this
problem by providing various syntactic shortcuts, such as the following Ada-like form:

with INTEGER_TABLE_HANDLINthen
... Here hasmean INTEGER_TABLE_HANDLIN$has, etc....
end

92 APPROACHES TO REUSABILITY 84.7

Another obvious limitation of packages of the above form is their failure to deal with
the Type Variation issue: the module as given is only useful for tables of integers. We will
shortly see, however, how to correct this deficiency by making packages generic.

The package mechanism provides information hiding by limiting clients’ rights*Supplier” is the in-
features. The client shown on the preceding page was able to declare one of it‘éegrs:tﬁ‘;ugﬂggl}éris
variables using the tygINTBINTREE from its supplier, and to call routines declared |\TecER
that supplier; but it has access neither to the internals of the type declaratirecord? TABLE_HAN-
structure defining the implementation of tables) nor to the routine bodies daeiPLNG.
clauses). In addition, you can hide some features of the package (variables,

routines) from clients, making them usable only within the text of the package.

Languages supporting the package notion differ somewhat in the details of their
information hiding mechanism. In Ada, for example, the internal properties of a type such
asINTBINTREE will be accessible to clients unless you declare the typrivate.

Often, to enforce information hiding, encapsulation languages will invite yoiSee*Using asser-
declare a package in two parts, interface and implementation, relegating such :'aot?osnfot:]gosch“o”;te”'
elements as the details of a type declaration or the body of a routine to the implemersom of a class”,
part. Such a policy, however, results in extra work for the authors of supplier modpage 39 and
forcing them to duplicate feature header declarations. With a better understandi Showing the inter-

. L : . face” 805
Information Hiding we do not need any of this. More in later chapters. ace’, page &>

Packages: an assessment

Compared to routines, the package mechanism brings a significant improvement to the
modularization of software systems into abstracted modules. The possibility of gathering
a number of features under one roof is useful for both supplier and client authors:

* The author of a supplier module can keep in one place and compile together all the
software elements relating to a given concept. This facilitates debugging and change.
In contrast, with separate subroutines there is always a risk of forgetting to update
some of the routines when you make a design or implementation change; you might
for example updatnew, put andhas but forgetremove.

e For client authors, it is obviously easier to find and use a set of related facilities if
they are all in one place.

The advantage of packages over routines is particularly clear in cases such as our table
example, where a package groups all the operations applying to a certain data structure.

But packages still do not provide a full solution to the issues of reusability. As noted,
they address the Routine Grouping requirement; but they leave the others unanswered. In
particular they offer no provision for factoring out commonality. You will have noted that
INTEGER_TABLE_HANDLIN, as sketched, relies on one specific choice of
implementation, binary search trees. True, clients do not need to be concerned with this
choice, thanks to information hiding. But a library of reusable components will need to
provide modules for many different implementations. The resulting situation is easy to
foresee: a typical package library will offer dozens of similar but never identical modules

§4.8 OVERLOADING AND GENERICITY 93

The notatio, compat-
ible withthe one in the
rest of this bog, is
Ada-like rather than
exact Ad. TheREAL
typeis calle(FLOAT
in Ada; semicolons
have been removed.

in a given area such as table management, with no way to take advantage of
commonality. To provide reusability to the clients, this technique sacrifices reusability c
the suppliers’ side.

Even on the clients’ side, the situation is not completely satisfactory. Every use of
table by a client requires a declaration such as the above:

t: INTEGER_TABLE_HANDLINSINTBINTREE

forcing the client to choose a specific implementation. This defeats the Representat
Independence requirement: client authors will have to know more about implementatic
of supplier notions than is conceptually necessary.

4.8 OVERLOADING AND GENERICITY

Two techniques, overloading and genericity, offer candidate solutions in the effort to bril
more flexibility to the mechanisms just described. Let us study what they can contribut

Syntactic overloading

Overloading is the ability to attach more than one meaning to a name appearing it
program.

The most common source of overloading is for variable names: in almost &
languages, different variables may have the same name if they belong to different modt
(or, in the Algol style of languages, different blocks within a module).

More relevant to this discussion routine overloading, also known as operator
overloading, which allows several routines to share the same name. This possibility
almost always available for arithmetic operators (hence the second name): the se
notation,a + b, denotes various forms of addition depending on the typ«a andb
(integer, single-precision real, double-precision real). But most languages do not treat
operation such ¢'+" as aroutine, and reserve it for predefined basic types — integer, re
and the like. Starting with Algol 68, which allowed overloading the basic operator:
several languages have extended the overloading facility beyond language built-ins
user-defined operations and ordinary routines.

In Ada, for example, a package may contain several routines with the same name
long as the signatures of these routines are different, where the signature of a routin
defined here by the number and types of its arguments. (The general notion of signat
also includes the type of the results, if any, but Ada resolves overloading on the basis
the arguments only.) For example, a package could contain several square functions:

square(x: INTEGEF): INTEGEFis do... end
square(x: REAL): REALisdo ... end

square(x: DOUBLE): DOUBLEisdo ... end
square(x: COMPLE)): COMPLE>is do... end

Then, in a particular call of the forsquare(y), the type oy will determine which
version of the routine you mean.

94 APPROACHES TO REUSABILITY §4.8

A package could similarly declare a number of search functions, all of the form
has(t: “SOME_TABLE_TYPE”; x: ELEMENT)is do... end

supporting various table implementations and differing by the actual type used in lieu of
“SOME_TABLE_TYPE'. The type of the first actual argument, in any client’s cehas,
suffices to determine which routine is intended.

These observations suggest a general characterization of routine overloading, which
will be useful when we later want to contrast this facility with genericity:

Role of overloading See the correspond-
. . . — - : : . ing definition of ge-
Routine overloading is a facility for clients. It makes it possible to writg the nericity on page97.

same client text when using different implementations of a certain concept.

What does routine overloading really bring to our quest for reusability? Not much. It
is a syntactic facility, relieving developers from having to invent different names for
various implementations of an operation and, in essence, placing that burden on the
compiler. But this does not solve any of the key issues of reusability. In particular,
overloading does nothing to address Representation Independence. When you write the calll

has(t, x)

you must have declaret and so (even if information hiding protects you from worrying
about the details of each variant of the search algorithm) you must know exactly what kind
of tablet is! The only contribution of overloading is that you can use the same name in all
cases. Without overloading each implementation would require a different name, as in

has_binary_tre(t, x)
has_haslk(t, x)
has_linkec(t, x)

Is the possibility of avoiding different names a benefit after all? Perhaps not. A basic
rule of software construction, object-oriented or not, isprinciple of non-deceptior:
differences in semantics should be reflected by differences in the text of the software. This
is essential to improve the understandability of software and minimize the risk of errors.
If the has routines are different, giving them the same name may mislead a reader of the
software into believing that they are the same. Better force a little more wordiness on the
client (as with the above specific names) and remove any danger of confusion.

The further one looks into this style of overloading, the more limited it appears. The
criterion used to disambiguate calls — the signature of argument lists — has no particular
merit. It works in the above examples, where the various overlossquareandhas are
all of different signatures, but it is not difficult to think of many cases where the signatures
would be the same. One of the simplest examples for overloading would seem to be, in a
graphics system, a set of functions used to create new points, for example under the form

pl:=new_poini(u, v)

§4.8 OVERLOADING AND GENERICITY

95

More on syntactic
overloading in
“Multiple creation
and overloading”,
page 23 and“O-O
development and
overloading”,
page 56.}

“DYNAMIC BIND-

ING”, 14.4, page
48C.

How remarkably
concise software
languages are in
comparisol!

There are two basic ways to specify a new point: through its cartesian coorxinate
andy (the projections on the horizontal axis), and through its polar coordip and6
(the distance to the origin, and the angle with the horizontal axis). But if we overloe
functionnew_poiniwe are in trouble, since both versions will have the signature

new_poini(p, g: REAL): POINT

This example and many similar ones show that type signature, the criterion f
disambiguating overloaded versions, is irrelevant. But no better one has been propose

The recent Java language regrettably includes the form of syntactic overloading just
described, in particular to provide alternative ways to create objects.

Semantic overloading (a preview)

The form of routine overloading described so far may be csyntactic overloadinc.

The object-oriented method will bring a much more interesting technique, dynam
binding, which addresses the goal of Representation Independence. Dynamic binding r
be calledsemantic overloadin¢. With this technique, you will be able to write the
equivalent othas(t, x), under a suitably adapted syntax, as a request to the machine tf
executes your software. The full meaning of the request is something like this:

Dear Hardware-Software Machiie

Please look at what is; | know that it must be a taf, but not what table
implementation its original creator chose — and to be honest about it I'd much
rather remain in the dai. After all, my job is not table management but
investment bankin[or compiling, or computer-aided-design €]. The chief
table manager here is someone . So find out for yourself about it a, once

you have the answlook up the proper algorithm fchas for that particular

kind of tablt. Then apply that algorithm to determine whe x appears irt,

and tell me the rest. | am eagerly waiting for your answ.er

| regret to inform you thi, beyond the information thit is a table of some kind
andx a potential eleme;, you will not get any more help from me

With my sincerest wish,2s

Your friendly application developar

Unlike syntactic overloading, such semantic overloading is a direct answer to tl
Representation Independence requirement. It still raises the specter of violating 1
principle of non-deception; the answer will be to assertions to characterize the
common semantics of a routine that has many different variants (for example, the comn
properties which characterihas under all possible table implementations).

Because semantic overloading, to work properly, requires the full baggage of obije
orientation, in particular inheritance, it is understandable that non-O-O languages suck
Ada offer syntactic overloading as a partial substitute in spite of the problems mention
above. In an object-oriented language, however, providing syntactic overloading on top

96 APPROACHES TO REUSABILITY §4.8

dynamic binding can be confusing, as is illustrated by the case of C++ and Java which both
allow a class to introduce several routines with the same name, leaving it to the compiler
and the human reader to disambiguate calls.

Genericity

Genericity is a mechanism for defining parameterized module patterns, whose parameters
represent types.

This facility is a direct answer to the Type Variation issue. It avoids the need for
many modules such as

INTEGER_TABLE_HANDLING
ELECTRON_TABLE_HANDLING
ACCOUNT_TABLE_HANDLING

by enabling you instead to write a single module pattern of the form
TABLE_HANDLINC[G]

whereG is a name meant to represent an arbitrary type and knowiformal generic
parameter. (We may later encounter the need for two or more generic parameters, but for
the present discussion we may limit ourselves to one.)

Such a parameterized module pattern is knowngeneric module, although it is
not really a module, only a blueprint for many possible modules. To obtain one of these
actual modules, you must provide a type, known aactual generic paramete, to
replaceG; the resulting (non-generic) modules are written for example

TABLE_HANDLING[INTEGEF]
TABLE_HANDLING[ELECTRON
TABLE_HANDLING[ACCOUNT]

using typesINTEGEF, ELECTRO! and ACCOUNT1 respectively as actual generic
parameters. This process of obtaining an actual module from a generic module (that is to
say, from a module pattern) by providing a type as actual generic parameter will be known
asgeneric derivation; the module itself will be said to be generically derived.

Two small points of terminology. First, generic derivation is sometimes called generic
instantiation, a generically derived module then being called a generic instance. This
terminology can cause confusion in an O-O context, since “instance” also denotes the
run-time creation of objectinstance) from the corresponding types. So for genericity
we will stick to the “derivation” terminology.

Another possible source of confusion is “parameter”. A routine may have formal
arguments, representing values which the routine’s clients will provide in each call. The
literature commonly uses the term parameter (formal, actual) as a synonym for argument
(formal, actual). There is nothing wrong in principle with either term, but if we have both
routines and genericity we need a clear convention to avoid any misunderstanding. The
convention will be to use “argument” for routines only, and “parameter” (usually in the
form “generic parameter” for further clarification) for generic modules only.

§4.8 OVERLOADING AND GENERICITY 97

To be compared
with INTEGER_

TABLE_HAN-

DLING, page90.

Chapterl0discuss-
es O-0O genericiy

See the correspond-

ing definition of
overloading on
page94.

Internally, the declaration of the generic modTABLE HANDLINCwill resemble
that ofINTEGER_TABLE HANDLIN above, except that it usG instead oINTEGER
wherever it refers to the type of table elements. For example:

packageTABLE_HANDLINC[G] feature
type BINARY_TRElis
record
info: G
left, right: BINARY_TREE
end
has(t: BINARY_TRE; x: G): BOOLEAN
-- Doesx appear irt?
do ... end
put(t: BINARY_TRE; x: G) is
-- Inser x into t.
do... end

(Etc.)
end --packag TABLE_HANDLING

It is somewhat disturbing to see the type being declareBINARY TRE, and
tempting to make it generic as well (something IBINARY_ TREE[G]). There is no
obvious way to achieve this in a package approach. Object technology, however, v
merge the notions of module and type, so the temptation will be automatically fulfillec
We will see this when we study how to integrate genericity into the object-oriented worlc

It is interesting to define genericity in direct contrast with the definition given earlie
for overloading:

Role of genericity
Genericity is a facility for the authors of supplier modules. It makes it
possible to write the same supplier text when using the same implementation
of a certain concept, applied to different kinds of object.

What help does genericity bring us towards realizing the goals of this chapte
Unlike syntactic overloading, genericity has a real contribution to make since as not
above it solves one of the main issues, Type Variation. The presentation of obije
technology in part C of this book will indeed devote a significant role to genericity.

Basic modularity techniques: an assessment

We have obtained two main results. One is the idea of providing a single syntactic hor
such as the package construct, for a set of routines that all manipulate similar objects.
other is genericity, which yields a more flexible form of module.

All this, however, only covers two of the reusability issues, Routine Grouping an
Type Variation, and provides little help for the other three — Implementation Variatior
Representation Independence and Factoring Out Common Behaviors. Genericity,
particular, does not suffice as a solution to the Factoring issue, since making a mod

98 APPROACHES TO REUSABILITY 84.9

generic defines two levels only: generic module patterns, parameterized and hence open
to variation, but not directly usable; and individual generic derivations, usable directly but
closed to further variation. This does not allow us to capture the fine differences that may
exist between competing representations of a given general concept.

On Representation Independence, we have made almost no progress. None of the
techniques seen so far — except for the short glimpse that we had of semantic overloading
— will allow a client to use various implementations of a general notion without knowing
which implementation each case will select.

To answer these concerns, we will have to turn to the full power of object-
oriented concepts.

4.9 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

« Software development is a highly repetitive activity, involving frequent use of
common patterns. But there is considerable variation in how these patterns are used
and combined, defeating simplistic attempts to work from off-the-shelf components.

 Putting reusability into practice raises economical, psychological and organizational
problems; the last category involves in particular building mechanisms to index,
store and retrieve large numbers of reusable components. Even more important,
however, are the underlying technical problems: commonly accepted notions of
module are not adequate to support serious reusability.

* The major difficulty of reuse is the need to combine reuse with adaptation. The
“reuse or redo” dilemma is not acceptable: a good solution must make it possible to
retain some aspects of a reused module and adapt others.

e Simple approaches, such as reuse of personnel, reuse of designs, source code reuse,
and subroutine libraries, have experienced some degree of success in specific
contexts, but all fall short of providing the full potential benefits of reusability.

e The appropriate unit of reuse is some form of abstracted module, providing an
encapsulation of a certain functionality through a well-defined interface.

» Packages provide a better encapsulation technique than routines, as they gather a
data structure and the associated operations.

* Two technigues extend the flexibility of packages: routine overloading, or the reuse
of the same name for more than one operation; genericity, or the availability of
modules parameterized by types.

* Routine overloading is a syntactic facility which does not solve the important issues
of reuse, and harms the readability of software texts.

« Genericity helps, but only deals with the issue of type variation.

* What we need: techniques for capturing commonalities within groups of related data
structure implementations; and techniques for isolating clients from having to know
the choice of supplier variants.

§4.10 BIBLIOGRAPHICAL NOTES 99

Adais covered in
chapter3g; seeits
“BIBLIOGRAPHI-
CALNOTES”,
33.9, page 10¢7

4.10 BIBLIOGRAPHICAL NOTES

The first published discussion of reusability in software appears to haveMcllroy’s
1968 Mass-Produced Software Compon¢, mentioned at the beginning of this chapter.
His paper[Mcllroy 1976] was presented in 1968 at the first conference on software
engineering, convened by the NATO Science Affairs Committee. (1976 is the date of t
proceedings[Buxton 1976, whose publication was delayed by several years.) Mcllroy
advocated the development of an industry of software components. Here is an extract

Software production today appears in the scale of industrialization somewhere
below the more backward construction indust. | think its proper place is
considerably highe, and would like to investigate the prospects for mass-
production techniques in softws.. .2

When we undertake to write a comp, we begin by saying “What table
mechanism shall we bui?’. Not “What mechanism shall we (7"1...

My thesis is that the software industry is weakly four[in part because f
the absence of a software components subinc...: Such a components
industry could be immensely succes.sful

One of the important points argued in the paper was the necessity of module famili
discussed above as one of the requirements on any comprehensive solution to reuse.

The most important characteristic of a software components industry is that
it will offer families offmodule] for a given job

Rather than the word “moduleMcllroy’s text used “routine”; in light of this chapter’s
discussion, this is — with the hindsight of thirty years of further software engineering
development — too restrictive.

A special issue of the IEE[Transactions on Software Engineer edited by
Biggerstaff and Perli[Biggerstaff 1984|was influential in bringing reusability to the
attenion of the software engineering community; see in particular, from that issue
[Jones 198¢ [Horowitz 1984, [Curry 1984, [Standish 198<.and[Goguen 1984 The
same editors included all these articles (except the first mentioned) in an expanc
two-volume collection[Biggerstaff 1989. Another collection of articles on reuse is
[Tracz 1988. More recently Tracz collected a number of IEEE Compute columns
into a useful bool[Tracz 1995 emphasizing the management aspects.

One approach to reuse, based on concepts from artificial intelligence, is embodiec
the MIT Programmer’'s Apprentice project; s{Waters 1984]and [Rich 1989,
reproduced in the first and second Biggerstaff-Perlis collections respectively. Rather tf
actual reusable modules, this system uses patterns (clichés andplans) representing
common program design strategies.

Three “encapsulation languages” were cited in the discussion of packages: A
Modula-2 and CLU. Ada is discussed in a later chapter, whose bibliography section gi\
references to Modula-2, CLU, as well as Mesa and Alphard, two other encapsulati
languages of the “modular generation” of the seventies and early eighties. The equival
of a package in Alphard was called a form.

100 APPROACHES TO REUSABILITY §4.10

An influential project of the nineteen-eighties, the US Department of Defense’s
STARS, emphasized reusability with a special concern for the organizational aspects of
the problem, and using Ada as the language for software components. A number of
contributions on this approach may be found in the proceedings of the 1985 STARS DoD-
Industry conferenc[NSIA 1985].

The two best-known books on “design patterns’{Gamma 199t and[Pree 1994

[Weiser 1987]is a plea for the distribution of software in source form. That article,
however, downplays the need for abstraction; as pointed out in this chapter, it is possible
to keep the source form available if needed but use a higher-level form as the default
documentation for the users of a module. For different reasons, Richard Stallman, the
creator of the League for Programming Freedom, has been arguing that the source form
should always be available; ¢[Stallman 199Z]

[Cox 1992 describes the idea of superdistribution.

A form of overloading was present in Algol [van Wijngaarden 197; Ada (which
extended it to routines), C++ and Java, all discussed in later chapters, make extensive use
of the mechanism.

Genericity appears in Ada and CLU and in an early version of the Z specification
language€Abrial 1980]; in that version the Z syntax is close to the one used for genericity
in this book. The LPG langua(Bert 1983 was explicitly designed to explore genericity.
(The initials stand for Language for Programming Generically.)

The work cited at the beginning of this chapter as the basic reference on table
searching iKnuth 1973. Among the many algorithms and data structures textbooks
which cover the question, <[Aho 1974, [Aho 1983 or[M 1978].

Two books by the author of the present one explore further the question of
reusability.Reusable Softwa[M 1994a, entirely devoted to the topic, provides design
and implementation principles for building quality libraries, and the complete
specification of a set of fundamental librari€Object Succes{M 1995] discusses
management aspects, especially the areas in which a company interested in reuse should
exert its efforts, and areas in which efforts will probably be wasted (such as preaching
reuse to application developers, or rewarding reuse). See also a shce on th topic,
[M 1996].

	4 4 Approaches to reusability
	4.1 THE GOALS OF REUSABILITY
	Expected benefits
	Reuse consumers, reuse producers
	Reuse Path principle

	4.2 WHAT SHOULD WE REUSE?
	Reuse of personnel
	Reuse of designs and specifications
	Design patterns
	Reusability through the source code
	Reuse of abstracted modules

	4.3 REPETITION IN SOFTWARE DEVELOPMENT
	4.4 NON-TECHNICAL OBSTACLES
	The NIH syndrome
	The economics of procurement
	Software companies and their strategies
	Accessing components
	A note about component indexing
	Formats for reusable component distribution
	An assessment

	4.5 THE TECHNICAL PROBLEM
	Change and constancy
	The reuse-redo dilemma

	4.6 FIVE REQUIREMENTS ON MODULE STRUCTURES
	Type Variation
	Routine Grouping
	Implementation Variation
	Representation Independence
	Factoring Out Common Behaviors
	Some possible table implementations
	Sequential structure with cursor
	Array representation of �sequential table with cur...
	Linked list representation of sequential table wit...
	Sequential file representation of a sequential tab...

	4.7 TRADITIONAL MODULAR STRUCTURES
	Routines
	Packages
	Packages: an assessment

	4.8 OVERLOADING AND GENERICITY
	Syntactic overloading
	Role of overloading

	Semantic overloading (a preview)
	Genericity
	Role of genericity

	Basic modularity techniques: an assessment

	4.9 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	4.10 BIBLIOGRAPHICAL NOTES

