
Preface
y an
itable
e as a
ave is

ing
 term
own
logical
.

earted
k it is
d I
 the
ght in
s the
 stay.
e of my

tation.

ject-
 — of
ction
erest in
 and
, they
ticing
object
they
Born in the ice-blue waters of the festooned Norwegian coast; amplified (b
aberration of world currents, for which marine geographers have yet to find a su
explanation) along the much grayer range of the Californian Pacific; viewed by som
typhoon, by some as a tsunami, and by some as a storm in a teacup — a tidal w
hitting the shores of the computing world.

“Object-oriented” is the latest in term, complementing and in many cases replac
“structured” as the high-tech version of “good”. As is inevitable in such a case, the
is used by different people with different meanings; just as inevitable is the well-kn
three-step sequence of reactions that meets the introduction of a new methodo
principle: (1) “it’s trivial”; (2) “it cannot work”; (3) “that’s how I did it all along anyway”
(The order may vary.)

Let us have this clear right away, lest the reader think the author takes a half-h
approach to his topic: I do not see the object-oriented method as a mere fad; I thin
not trivial (although I shall strive to make it as limpid as I can); I know it works; an
believe it is not only different from but even, to a certain extent, incompatible with
techniques that most people still use today — including some of the principles tau
many software engineering textbooks. I further believe that object technology hold
potential for fundamental changes in the software industry, and that it is here to
Finally, I hope that as the reader progresses through these pages, he will share som
excitement about this promising avenue to software analysis, design and implemen

“Avenue to software analysis, design and implementation”. To present the ob
oriented method, this books resolutely takes the viewpoint of software engineering
the methods, tools and techniques for developing quality software in produ
environments. This is not the only possible perspective, as there has also been int
applying object-oriented principles to such areas as exploratory programming
artificial intelligence. Although the presentation does not exclude these applications
are not its main emphasis. Our principal goal in this discussion is to study how prac
software developers, in industrial as well as academic environments, can use
technology to improve (in some cases dramatically) the quality of the software
produce.

PREFACEvi

od, a

are
sable
s. The

dular

re
tion of

 the
hat we

e

ome
ept of
ion
 using
es not
ts or
ow of

ic
sing
bject-

y raise
grams
t
nalities
oftware

s for
amic
and

Abstract data types
are discussed in
chapter 6, which
also addresses some
of the related episte-
mological issues.
Structure, reliability, epistemology and classification

Object technology is at its core the combination of four ideas: a structuring meth
reliability discipline, an epistemological principle and a classification technique.

The structuring method applies to software decomposition and reuse. Softw
systems perform certain actions on objects of certain types; to obtain flexible and reu
systems, it is better to base their structure on the object types than on the action
resulting concept is a remarkably powerful and versatile mechanism called the class,
which in object-oriented software construction serves as the basis for both the mo
structure and the type system.

The reliability discipline is a radical approach to the problem of building softwa
that does what it is supposed to do. The idea is to treat any system as a collec
components which collaborate the way successful businesses do: by adhering to contracts
defining explicitly the obligations and benefits incumbent on each party.

The epistemological principle addresses the question of how we should describe
classes. In object technology, the objects described by a class are only defined by w
can do with them: operations (also known as features) and formal properties of thes
operations (the contracts). This idea is formally expressed by the theory of abstract data
types, covered in detail in a chapter of this book. It has far-reaching implications, s
going beyond software, and explains why we must not stop at the naïve conc
“object” borrowed from the ordinary meaning of that word. The tradition of informat
systems modeling usually assumes an “external reality” that predates any program
it; for the object-oriented developer, such a notion is meaningless, as the reality do
exist independently of what you want to do with it. (More precisely whether it exis
not is an irrelevant question, as we only know what we can use, and what we kn
something is defined entirely by how we can use it.)

The classification technique follows from the observation that systemat
intellectual work in general and scientific reasoning in particular require devi
taxonomies for the domains being studied. Software is no exception, and the o
oriented method relies heavily on a classification discipline known as inheritance.

Simple but powerful

The four concepts of class, contract, abstract data type and inheritance immediatel
a number of questions. How do we find and describe classes? How should our pro
manipulate classes and the corresponding objects (the instances of these classes)? Wha
are the possible relations between classes? How can we capitalize on the commo
that may exist between various classes? How do these ideas relate to such key s
engineering concerns as extendibility, ease of use and efficiency?

Answers to these questions rely on a small but powerful array of technique
producing reusable, extendible and reliable software: polymorphism and dyn
binding; a new view of types and type checking; genericity, constrained

PREFACE vii

rbage
rmit

 tight
e also
king it
 these
t are

nted

sue
nical
the

 to
s is on
tem
sis for

tically
tation
O-O

nical
emory

ptions;
 their

sign.

operly,
f the
ith a
d a

rver
iented
es.

Chapters 1 to 2.

Chapters 3 to 6.

Chapters 7 to 18.

Chapters 19 to 29.

Chapters 30 to 32.
unconstrained; information hiding; assertions; safe exception handling; automatic ga
collection. Efficient implementation techniques have been developed which pe
applying these ideas successfully to both small and large projects under the
constraints of commercial software development. Object-oriented techniques hav
had a considerable impact on user interfaces and development environments, ma
possible to produce much better interactive systems than was possible before. All
important ideas will be studied in detail, so as to equip the reader with tools tha
immediately applicable to a wide range of problems.

Organization of the text

In the pages that follow we will review the methods and techniques of object-orie
software construction. The presentation has been divided into six parts.

Part A is an introduction and overview. It starts by exploring the fundamental is
of software quality and continues with a brief survey of the method’s main tech
characteristics. This part is almost a little book by itself, providing a first view of
object-oriented approach for hurried readers.

Part B is not hurried. Entitled “The road to object orientation”, it takes the time
describe the methodological concerns that lead to the central O-O concepts. Its focu
modularity: what it takes to devise satisfactory structures for “in-the-large” sys
construction. It ends with a presentation of abstract data types, the mathematical ba
object technology. The mathematics involved is elementary, and less mathema
inclined readers may content themselves with the basic ideas, but the presen
provides the theoretical background that you will need for a full understanding of
principles and issues.

Part C is the technical core of the book. It presents, one by one, the central tech
components of the method: classes; objects and the associated run-time model; m
management issues; genericity and typing; design by contract, assertions, exce
inheritance, the associated concepts of polymorphism and dynamic binding, and
many exciting applications.

Part D discusses methodology, with special emphasis on analysis and de
Through several in-depth case studies, it presents some fundamental design patterns, and
covers such central questions as how to find the classes, how to use inheritance pr
and how to design reusable libraries. It starts with a meta-level discussion o
intellectual requirements on methodologists and other advice-givers; it concludes w
review of the software process (the lifecycle model) for O-O development an
discussion of how best to teach the method in both industry and universities.

Part E explores advanced topics: concurrency, distribution, client-se
development and the Internet; persistence, schema evolution and object-or
databases; the design of interactive systems with modern (“GUI”) graphical interfac

PREFACEviii

lated,
major
5 and
in such

ions

sable
tware.

gh their
er paid

itted,
ath he
h the

sumes
ited

 if not
eled
plot’s
as for
o intake

essive
es, a
odel
hich at
 may

els like

mostly
object-
other
 make

es a
nces

Chapters 33 to 35.

Chapter 36.

Appendix A.

See “About the
accompanying CD-
ROM”, page xiv.
Part F is a review of how the ideas can be implemented, or in some cases emu
in various languages and environments. This includes in particular a discussion of
object-oriented languages, focusing on Simula, Smalltalk, Objective-C, C++, Ada 9
Java, and an assessment of how to obtain some of the benefits of object orientation
non-O-O languages as Fortran, Cobol, Pascal, C and Ada.

Part G (doing it right) describes an environment which goes beyond these solut
and provides an integrated set of tools to support the ideas of the book.

As complementary reference material, an appendix shows some important reu
library classes discussed in the text, providing a model for the design of reusable sof

A Book-Wide Web

It can be amusing to see authors taking pains to describe recommended paths throu
books, sometimes with the help of sophisticated traversal charts — as if readers ev
any attention, and were not smart enough to map their own course. An author is perm
however, to say in what spirit he has scheduled the different chapters, and what p
had in mind for what Umberto Eco calls the Model Reader — not to be confused wit
real reader, also known as “you”, made of flesh, blood and tastes.

The answer here is the simplest possible one. This book tells a story, and as
that the Model Reader will follow that story from beginning to end, being however inv
to avoid the more specialized sections marked as “skippable on first reading” and,
mathematically inclined, to ignore a few mathematical developments also lab
explicitly. The real reader, of course, may want to discover in advance some of the
later developments, or to confine his attention to just a few subplots; every chapter h
that reason been made as self-contained as possible, so that you should be able t
the material at the exact dosage which suits you best.

Because the story presents a coherent view of software development, its succ
topics are tightly intertwined. The margin notes offer a subtext of cross referenc
Book-Wide Web linking the various sections back and forth. My advice to the M
Reader is to ignore them on first reading, except as a reassurance that questions w
some stage are left partially open will be fully closed later on. The real reader, who
not want any advice, might use the cross references as unofficial guides when he fe
cheating on the prearranged order of topics.

Both the Model Reader and the real reader should find the cross references
useful in subsequent readings, to make sure that they have mastered a certain
oriented concept in depth, and understood its connections with the method’s
components. Like the hyperlinks of a WWW document, the cross references should
it possible to follow such associations quickly and effectively.

The CD-ROM that accompanies this book and contains all of its text provid
convenient way to follow cross references: just click on them. All the cross refere
have been preserved.

PREFACE ix

losely
on for
sign,

 “the
or. In
ll be

e you
 I hope
s the
ed

rs and
 my
lace in
nted

; the
 itself.

irect
s “no
th the
ion on
ming
atible
. Of

The
 issues.
ts. If

ming
g the
stify it
ection
 were
t the
, and

uld, I
tware
The notation

In software perhaps even more than elsewhere, thought and language are c
connected. As we progress through these pages, we will carefully develop a notati
expressing object-oriented concepts at all levels: modeling, analysis, de
implementation, maintenance.

Here and everywhere else in this book, the pronoun “we” does not mean
author”: as in ordinary language, “we” means you and I — the reader and the auth
other words I would like you to expect that, as we develop the notation, you wi
involved in the process.

This assumption is not really true, of course, since the notation existed befor
started reading these pages. But it is not completely preposterous either, because
that as we explore the object-oriented method and carefully examine its implication
supporting notation will dawn on you with a kind of inevitability, so that you will inde
feel that you helped design it.

This explains why although the notation has been around for more than ten yea
is in fact supported by several commercial implementations, including one from
company (ISE), I have downplayed it as a language. (Its name does appear in one p
the text, and several times in the bibliography.) This book is about the object-orie
method for reusing, analyzing, designing, implementing and maintaining software
language is an important and I hope natural consequence of that method, not an aim in

In addition, the language is straightforward and includes very little else than d
support for the method. First-year students using it have commented that it wa
language at all” — meaning that the notation is in one-to-one correspondence wi
method: to learn one is to learn the other, and there is scant extra linguistic decorat
top of the concepts. The notation indeed shows few of the peculiarities (often stem
from historical circumstances, machine constraints or the requirement to be comp
with older formalisms) that characterize most of today’s programming languages
course you may disagree with the choice of keywords (why do rather than begin or
perhaps faire?), or would like to add semicolon terminators after each instruction. (
syntax has been designed so as to make semicolons optional.) But these are side
What counts is the simplicity of the notation and how directly it maps to the concep
you understand object technology, you almost know it already.

Most software books take the language for granted, whether it is a program
language or a notation for analysis or design. Here the approach is different; involvin
reader in the design means that one must not only explain the language but also ju
and discuss the alternatives. Most of the chapters of part C include a “discussion” s
explaining the issues encountered during the design of the notation, and how they
resolved. I often wished, when reading descriptions of well-known languages, tha
designers had told me not only what solutions they chose, but why they chose them
what alternatives they rejected. The candid discussions included in this book sho
hope, provide you with insights not only about language design but also about sof
construction, as the two tasks are so strikingly similar.

PREFACEx

e, as
wever
t a gap

d the

sizing
 levels
ant

eant

iples,

 and

 (and
r than

ch. In
to be
cover
tation

. The

. Once
. For
bject-

e the
 many
d for
at the
ct, as
s, O-

“SEAMLESSNESS
AND REVERSIBIL-
ITY”, 28.6, page 930.

The last chapter, 36,
summarizes the
environment.
Analysis, design and implementation

It is always risky to use a notation that externally looks like a programming languag
this may suggest that it only covers the implementation phase. This impression, ho
wrong, is hard to correct, so frequently have managers and developers been told tha
of metaphysical proportions exists between the ether of analysis-design an
underworld of implementation.

Well-understood object technology reduces the gap considerably by empha
the essential unity of software development over the inevitable differences between
of abstraction. This seamless approach to software construction is one of the import
contributions of the method and is reflected by the language of this book, which is m
for analysis and design as well as for implementation.

Unfortunately some of the recent evolution of the field goes against these princ
through two equally regrettable phenomena:

• Object-oriented implementation languages which are unfit for analysis, for design
in general for high-level reasoning.

• Object-oriented analysis or design methods which do not cover implementation
are advertized as “language-independent” as if this were a badge of honor rathe
an admission of failure).

Such approaches threaten to cancel much of the potential benefit of the approa
contrast, both the method and the notation developed in this book are meant
applicable throughout the software construction process. A number of chapters
high-level design issues; one is devoted to analysis; others explore implemen
techniques and the method’s implications on performance.

The environment

Software construction relies on a basic tetralogy: method, language, tools, libraries
method is at the center of this book; the language question has just been mentioned
in a while we will need to see what support they may require from tools and libraries
obvious reasons of convenience, such discussions will occasionally refer to ISE’s o
oriented environment, with its set of tools and associated libraries.

The environment is used only as an example of what can be done to mak
concepts practically usable by software developers. Be sure to note that there are
other object-oriented environments available, both for the notation of this book an
other O-O analysis, design and implementation methods and notations; and th
descriptions given refer to the state of the environment at the time of writing, subje
anything else in our industry, to change quickly — for the better. Other environment
O and non O-O, are also cited throughout the text.

PREFACE xi

kept
hen at
rowed
 omit
uch.

s not
a daily
 their
 for
ook)
s: the
tails
 of a
oming
ctive
ll, Paul
and
ourses
nce. I

Short
di di
dred
ering

s of
s are

e; the
irth-
ation
l (late
 of B,
ular

nd
f them
 an

A few notes in the
margin or in chap-
ter-end biblio-
graphic sections give
credit for some spe-
cific ideas, often
unpublished.
Acknowledgments (quasi-absence thereof)

The first edition of this book contained an already long list of thanks. For a while I
writing down the names of people who contributed comments or suggestions, and t
some stage I lost track. The roster of colleagues from whom I have had help or bor
ideas has now grown so long that it would run over many pages, and would inevitably
some important people. Better then offend everyone a little than offend a few very m

So these acknowledgments will for the most part remain collective, which doe
make my gratitude less deep. My colleagues at ISE and SOL have for years been
source of invaluable help. The users of our tools have generously provided us with
advice. The readers of the first edition provided thousands of suggestions
improvement. In the preparation of this new edition (I should really say of this new b
I have sent hundreds of e-mail messages asking for help of many different kind
clarification of a fine point, a bibliographical reference, a permission to quote, the de
of an attribution, the origin of an idea, the specifics of a notation, the official address
Web page; the answers have invariably been positive. As draft chapters were bec
ready they were circulated through various means, prompting many constru
comments (and here I must cite by name the referees commissioned by Prentice Ha
Dubois, James McKim and Richard Wiener, who provided invaluable advice
corrections). In the past few years I have given countless seminars, lectures and c
about the topics of this book, and in every case I learned something from the audie
enjoyed the wit of fellow panelists at conferences and benefited from their wisdom.
sabbaticals at the University of Technology, Sydney and the Università degli Stu
Milano provided me with a influx of new ideas — and in the first case with three hun
first-year students on whom to validate some of my ideas about how software engine
should be taught.

The large bibliography shows clearly enough how the ideas and realization
others have contributed to this book. Among the most important conscious influence
the Algol line of languages, with its emphasis on syntactic and semantic eleganc
seminal work on structured programming, in the serious (Dijkstra-Hoare-Parnas-W
Mills-Gries) sense of the term, and systematic program construction; formal specific
techniques, in particular the inexhaustible lessons of Jean-Raymond Abrial’s origina
nineteen-seventies) version of the Z specification language, his more recent design
and Cliff Jones’s work on VDM; the languages of the modular generation (in partic
Ichbiah’s Ada, Liskov’s CLU, Shaw’s Alphard, Bert’s LPG and Wirth’s Modula); a
Simula 67, which introduced most of the concepts many years ago and had most o
right, bringing to mind Tony Hoare’s comment about Algol 60: that it was such
improvement over most of its successors.

Foreword to the second edition
n of
terest
lightly
ournals
series
rfaces,
sis and
ing

t; and

s is
read

t with
y as
up).
e who
 have

he time.

ot a
ally.)

rency,
tence
atterns
e on
sing
sive

ubject,
red in
 new
ented
der’s
veats,

igh
s.
M any events have happened in the object-oriented world since the first editio
OOSC (as the book came to be known) was published in 1988. The explosion of in
alluded to in the Preface to the first edition, reproduced in the preceding pages in a s
expanded form, was nothing then as compared to what we have seen since. Many j
and conferences now cover object technology; Prentice Hall has an entire book
devoted to the subject; breakthroughs have occurred in such areas as user inte
concurrency and databases; entire new topics have emerged, such as O-O analy
formal specification; distributed computing, once a specialized topic, is becom
relevant to more and more developments, thanks in part to the growth of the Interne
the Web is affecting everyone’s daily work.

This is not the only exciting news. It is gratifying to see how much progres
occurring in the software field — thanks in part to the incomplete but undeniable sp
of object technology. Too many books and articles on software engineering still star
the obligatory lament about the “software crisis” and the pitiful state of our industr
compared to true engineering disciplines (which, as we all know, never mess things
There is no reason for such doom. Oh, we still have a long, long way to go, as anyon
uses software products knows all too well. But given the challenges that we face we
no reason to be ashamed of ourselves as a profession; and we are getting better all t
It is the ambition of this book, as it was of its predecessor, to help in this process.

This second edition is not an update but the result of a thorough reworking. N
paragraph of the original version has been left untouched. (Hardly a single line, actu
Countless new topics have been added, including a whole chapter on concur
distribution, client-server computing and Internet programming; another on persis
and databases; one on user interfaces; one on the software lifecycle; many design p
and implementation techniques; an in-depth exploration of a methodological issu
which little is available in the literature, how to use inheritance well and avoid misu
it; discussions of many other topics of object-oriented methodology; an exten
presentation of the theory of abstract data types — the mathematical basis for our s
indispensable to a complete understanding of object technology yet seldom cove
detail by textbooks and tutorials; a presentation of O-O analysis; hundreds of
bibliographic and Web site references; the description of a complete object-ori
development environment (also included on the accompanying CD-ROM for the rea
enjoyment) and of the underlying concepts; and scores of new ideas, principles, ca
explanations, figures, examples, comparisons, citations, classes, routines.

The reactions to OOSC-1 have been so rewarding that I know readers have h
expectations. I hope they will find OOSC-2 challenging, useful, and up to their standard

Santa Barbara B.M.
January 1997

PREFACExiv

read
ady
ns.
t and
f this
 with

nly
your

nt to

r
xt to
ck
ich

rt.
The
trol-

 the

ng

ped
and
About the accompanying CD-ROM

The CD-ROM that comes with this book contains the entire hyperlinked text in Adobe
Acrobat format. It also includes Adobe’s Acrobat Reader software, enabling you to
that format; the versions provided cover major industry platforms. If you do not alre
have Acrobat Reader on your computer, you can install it by following the instructio
The author and the publisher make no representations as to any property of Acroba
associated tools; the Acrobat Reader is simply provided as a service to readers o
book, and any Acrobat questions should be directed to Adobe. You may also check
Adobe about any versions of the Reader that may have appeared after the book.

To get started with the CD-ROM, open the Acrobat file README.pdf in the OOSC-2
directory, which will direct you to the table of contents and the index. You can o
open that file under Acrobat Reader; if the Reader has not been installed on
computer, examine instead the plain-text version in the file readme.txt in the top-level
directory.

The presence of an electronic version will be particularly useful to readers who wa
take advantage of the thousands of cross-references present in this book (see “A Book-
Wide Web”, page viii). Although for a first sequential reading you will probably prefe
to follow the paper version, having the electronic form available on a computer ne
the book alllows you to follow a link once in a while without having to turn pages ba
and forth. The electronic form is particularly convenient for a later reading during wh
you may wish to explore links more systematically.

All links (cross-references) appear in blue in the Acrobat form, as illustrated twice
above (but not visible in the printed version). To follow a link, just click on the blue pa
If the reference is to another chapter, the chapter will appear in a new window.
Acrobat Reader command to come back to the previous position is normally Con
minus-sign (that is, type – while holding down the CONTROL key). Consult the on-line
Acrobat Reader documentation for other useful navigational commands.

Bibliographical references also appear as links, such as [Knuth 1968], in the Acrobat
form, so that you can click on any of them to see the corresponding entry in
bibliography of appendix E.

The CD-ROM also contains:

• Library components providing extensive material for Appendix A.

• A chapter from the manual for a graphical application builder, providi
mathematical complements to the material of chapter 32.

In addition, the CD-ROM includes a time-limited version of an advanced object-
oriented development environment for Windows 95 or Windows NT, as described in
chapter 36, providing an excellent hands-on opportunity to try out the ideas develo
throughout the book. The “Readme” file directs you to the installation instructions
system requirements.

p.

Acknowledgments: The preparation of the hyperlinked text was made possible by the help of several people
at Adobe Inc., in particular Sandra Knox, Sarah Rosenbaum and the FrameMaker Customer Support Grou

PREFACE xvii

, the
t in the

, so as
.

,
s
 of a

d part

ext to
ke the
ology
y does
atic

a few
ted to
ages,

thors
alid for

case of
earch

from
aders
e the
t; the

e good
ing this

The bibliography
starts on page
1203.
On the bibliography, Internet sources and
exercises

This book relies on earlier contributions by many authors. To facilitate reading
discussion of sources appears in most cases not in the course of the discussion, bu
“Bibliographical notes” sections at chapter end. Make sure you read these sections
to understand the origin of many ideas and results and find out where to learn more

References are of the form [Name 19xx], where Name is the name of the first author
and refer to the bibliography in appendix E. This convention is for readability only and i
not intended to underrate the role of authors other than the first. The letter M in lieu
Name denotes publications by the author of this book, listed separately in the secon
of the bibliography.

Aside from the bibliography proper, some references appear in the margin, n
the paragraphs which cite them. The reason for this separate treatment is to ma
bibliography usable by itself, as a collection of important references on object techn
and related topics. Appearance as a margin reference rather than in the bibliograph
not imply any unfavorable judgment of value; the division is simply a pragm
assessment of what belongs in a core list of object-oriented references.

Although electronic references will undoubtedly be considered a matter of course
years from now, this must be one of the first technical books (other than books devo
Internet-related topics) to make extensive use of references to World-Wide-Web p
Usenet newsgroups and other Internet resources.

Electronic addresses are notoriously volatile. I have tried to obtain from the au
of the quoted sources some reassurance that the addresses given would remain v
several years. Neither they nor I, of course, can provide an absolute guarantee. In
difficulty, note that on the Net more things move than disappear: keyword-based s
tools can help.

Most chapters include exercises of various degrees of difficulty. I have refrained
providing solutions, although many exercises do contain fairly precise hints. Some re
may regret the absence of full solutions; I hope, however, that they will appreciat
three reasons that led to this decision: the fear of spoiling the reader’s enjoymen
realization that many exercises are design problems, for which there is more than on
answer; and the desire to provide a source of ready-made problems to instructors us
book as a text.

PREFACExviii

n of
ts for
For brevity and simplicity, the text follows the imperfect but long-established traditio
using words such as “he” and “his”, in reference to unspecified persons, as shortcu
“he or she” and “his or her”, with no intended connotation of gender.

A modest soul is shocked by objects of such kind

And all the nasty thoughts that they bring to one's mind.

Molière, Tartuffe, Act III.

	Preface
	Structure, reliability, epistemology and classific...
	Simple but powerful
	Organization of the text
	A Book-Wide Web
	The notation
	Analysis, design and implementation
	The environment
	Acknowledgments (quasi-absence thereof)
	Foreword to the second edition
	About the accompanying CD-ROM
	On the bibliography, Internet sources and exercise...

