Preface

Born in the ice-blue waters of the festooned Norwegian coast; amplified (by an
aberration of world currents, for which marine geographers have yet to find a suitabls
explanation) along the much grayer range of the Californian Pacific; viewed by some as
typhoon, by some as a tsunami, and by some as a storm in a teacup — a tidal wave
hitting the shores of the computing world.

“Object-oriented” is the latest term, complementing and in many cases replacing
“structured” as the high-tech version of “good”. As is inevitable in such a case, the tern
is used by different people with different meanings; just as inevitable is the well-known
three-step sequence of reactions that meets the introduction of a new methodologic
principle: (1) “it's trivial”; (2) “it cannot work”; (3) “that’s how I did it all along anyway”.
(The order may vary.)

Let us have this clear right away, lest the reader think the author takes a half-hearte
approach to his topic: | do not see the object-oriented method as a mere fad; | think it
not trivial (although | shall strive to make it as limpid as | can); | know it works; and |
believe it is not only different from but even, to a certain extent, incompatible with the
techniques that most people still use today — including some of the principles taught i
many software engineering textbooks. | further believe that object technology holds th
potential for fundamental changes in the software industry, and that it is here to sta
Finally, | hope that as the reader progresses through these pages, he will share some of
excitement about this promising avenue to software analysis, design and implementatiot

“Avenue to software analysis, design and implementation”. To present the object
oriented method, this books resolutely takes the viewpoint of software engineering — o
the methods, tools and technigues for developing quality software in production
environments. This is not the only possible perspective, as there has also been interesit
applying object-oriented principles to such areas as exploratory programming an
artificial intelligence. Although the presentation does not exclude these applications, the
are not its main emphasis. Our principal goal in this discussion is to study how practicin
software developers, in industrial as well as academic environments, can use obje
technology to improve (in some cases dramatically) the quality of the software they
produce.

Vi PREFACE

Structure, reliability, epistemology and classification

Object technology is at its core the combination of four ideas: a structuring method, a
reliability discipline, an epistemological principle and a classification technique.

The structuring metho applies to software decomposition and reuse. Software
systems perform certain actions on objects of certain types; to obtain flexible and reusable
systems, it is better to base their structure on the object types than on the actions. The
resulting concept is a remarkably powerful and versatile mechanism calleclass2
which in object-oriented software construction serves as the basis for both the modular
structure and the type system.

Thereliability discipline is a radical approach to the problem of building software
that does what it is supposed to do. The idea is to treat any system as a collection of
components which collaborate the way successful businesses do: by adhcontracts
defining explicitly the obligations and benefits incumbent on each party.

Theepistemological principl addresses the question of how we should describeAbstract data types

classes. In object technology, the objects described by a class are only defined by ware discussed in
. . . chapter6, which

can do with them: operations (also knownfeature:) and formal properties of these_ . . iiresses some
operations (the contracts). This idea is formally expressed by the theabstract data ofthe related episte-
types, covered in detail in a chapter of this book. It has far-reaching implications, smological issues.
going beyond software, and explains why we must not stop at the naive conce
“object” borrowed from the ordinary meaning of that word. The tradition of information
systems modeling usually assumes an “external reality” that predates any program using
it; for the object-oriented developer, such a notion is meaningless, as the reality does not
exist independently of what you want to do with it. (More precisely whether it exists or
not is an irrelevant question, as we only know what we can use, and what we know of
something is defined entirely by how we can use it.)

The classification techniquefollows from the observation that systematic
intellectual work in general and scientific reasoning in particular require devising
taxonomies for the domains being studied. Software is no exception, and the object-
oriented method relies heavily on a classification discipline knovinheritance.

Simple but powerful

The four concepts of class, contract, abstract data type and inheritance immediately raise
a number of questions. How do we find and describe classes? How should our programs
manipulate classes and the corresponding objectsinstance of these classes)? What

are the possible relations between classes? How can we capitalize on the commonalities
that may exist between various classes? How do these ideas relate to such key software
engineering concerns as extendibility, ease of use and efficiency?

Answers to these questions rely on a small but powerful array of techniques for
producing reusable, extendible and reliable software: polymorphism and dynamic
binding; a new view of types and type checking; genericity, constrained and

PREFACE

vii

Chapterslto2.

Chapters3to 6.

Chapters7 to 18.

Chaptersl¢to29.

Chapters3C to 32.

unconstrained; information hiding; assertions; safe exception handling; automatic garb:
collection. Efficient implementation techniques have been developed which pern
applying these ideas successfully to both small and large projects under the ti
constraints of commercial software development. Object-oriented techniques have &
had a considerable impact on user interfaces and development environments, makir
possible to produce much better interactive systems than was possible before. All th
important ideas will be studied in detail, so as to equip the reader with tools that «
immediately applicable to a wide range of problems.

Organization of the text

In the pages that follow we will review the methods and techniques of object-orient
software construction. The presentation has been divided into six parts.

PartA is an introduction and overview. It starts by exploring the fundamental issu
of software quality and continues with a brief survey of the method’s main technic
characteristics. This part is almost a little book by itself, providing a first view of thi
object-oriented approach for hurried readers.

PartB is not hurried. Entitled “The road to object orientation”, it takes the time tc
describe the methodological concerns that lead to the central O-O concepts. Its focus i
modularity: what it takes to devise satisfactory structures for “in-the-large” systel
construction. It ends with a presentation of abstract data types, the mathematical basis
object technology. The mathematics involved is elementary, and less mathematice
inclined readers may content themselves with the basic ideas, but the presenta
provides the theoretical background that you will need for a full understanding of O-
principles and issues.

PartC is the technical core of the book. It presents, one by one, the central techni
components of the method: classes; objects and the associated run-time model; men
management issues; genericity and typing; design by contract, assertions, excepti
inheritance, the associated concepts of polymorphism and dynamic binding, and tt
many exciting applications.

Part D discusses methodology, with special emphasis on analysis and desi
Through several in-depth case studies, it presents some fundadesign patterr, and
covers such central questions as how to find the classes, how to use inheritance prop
and how to design reusable libraries. It starts with a meta-level discussion of t
intellectual requirements on methodologists and other advice-givers; it concludes witl
review of the software process (the lifecycle model) for O-O development and
discussion of how best to teach the method in both industry and universities.

Part E explores advanced topics: concurrency, distribution, client-serve
development and the Internet; persistence, schema evolution and object-orien
databases; the design of interactive systems with modern (“GUI”) graphical interfaces

viii PREFACE

PartF is a review of how the ideas can be implemented, or in some cases eMUChapters33 to 3.
in various languages and environments. This includes in particular a discussion of
object-oriented languages, focusing on Simula, Smalltalk, Objective-C, C++, Ada 95 and
Java, and an assessment of how to obtain some of the benefits of object orientation in such
non-0-0 languages as Fortran, Cobol, Pascal, C and Ada.

PartG (doing it righf) describes an environment which goes beyond these solutchapterss.
and provides an integrated set of tools to support the ideas of the book.

As complementary reference material, an appendix shows some important retappendixa.
library classes discussed in the text, providing a model for the design of reusable soft

A Book-Wide Web

It can be amusing to see authors taking pains to describe recommended paths through their
books, sometimes with the help of sophisticated traversal charts — as if readers ever paid
any attention, and were not smart enough to map their own course. An author is permitted,
however, to say in what spirit he has scheduled the different chapters, and what path he
had in mind for what Umberto Eco calls the Model Reader — not to be confused with the
real reader, also known as “you”, made of flesh, blood and tastes.

The answer here is the simplest possible one. This book tells a story, and assumes
that the Model Reader will follow that story from beginning to end, being however invited
to avoid the more specialized sections marked as “skippable on first reading” and, if not
mathematically inclined, to ignore a few mathematical developments also labeled
explicitly. The real reader, of course, may want to discover in advance some of the plot's
later developments, or to confine his attention to just a few subplots; every chapter has for
that reason been made as self-contained as possible, so that you should be able to intake
the material at the exact dosage which suits you best.

Because the story presents a coherent view of software development, its successive
topics are tightly intertwined. The margin notes offer a subtext of cross references, a
Book-Wide Web linking the various sections back and forth. My advice to the Model
Reader is to ignore them on first reading, except as a reassurance that questions which at
some stage are left partially open will be fully closed later on. The real reader, who may
not want any advice, might use the cross references as unofficial guides when he feels like
cheating on the prearranged order of topics.

Both the Model Reader and the real reader should find the cross references mostly
useful in subsequent readings, to make sure that they have mastered a certain object-
oriented concept in depth, and understood its connections with the method’s other
components. Like the hyperlinks of a WWW document, the cross references should make
it possible to follow such associations quickly and effectively.

The CD-ROM that accompanies this book and contains all of its text providsee:about the
convenient way to follow cross references: just click on them. All the cross refereaccompanying CD-
have been preserved. ROM?”, page xi\.

PREFACE

The notation

In software perhaps even more than elsewhere, thought and language are clo
connected. As we progress through these pages, we will carefully develop a notation
expressing object-oriented concepts at all levels: modeling, analysis, desic
implementation, maintenance.

Here and everywhere else in this book, the pronoun “we” does not mean “il
author”: as in ordinary language, “we” means you and | — the reader and the author.
other words | would like you to expect that, as we develop the notation, you will k
involved in the process.

This assumption is not really true, of course, since the notation existed before y
started reading these pages. But it is not completely preposterous either, because 1 |
that as we explore the object-oriented method and carefully examine its implications
supporting notation will dawn on you with a kind of inevitability, so that you will indeed
feel that you helped design it.

This explains why although the notation has been around for more than ten years:
is in fact supported by several commercial implementations, including one from n
company (ISE), | have downplayed it as a language. (Its name does appear in one pla
the text, and several times in the bibliography.) This book is about the object-orient
method for reusing, analyzing, designing, implementing and maintaining software; tl
language is an important and | hope natural consequence of that method, notan aiminit:

In addition, the language is straightforward and includes very little else than dire
support for the method. First-year students using it have commented that it was *
language at all’ — meaning that the notation is in one-to-one correspondence with
method: to learn one is to learn the other, and there is scant extra linguistic decoratior
top of the concepts. The notation indeed shows few of the peculiarities (often stemm
from historical circumstances, machine constraints or the requirement to be compati
with older formalisms) that characterize most of today’'s programming languages. |
course you may disagree with the choice of keywords (dc rather thanbegir or
perhapsfaire?), or would like to add semicolon terminators after each instruction. (Th
syntax has been designed so as to make semicolons optional.) But these are side is
What counts is the simplicity of the notation and how directly it maps to the concepts.
you understand object technology, you almost know it already.

Most software books take the language for granted, whether it is a programmi
language or a notation for analysis or design. Here the approach is different; involving
reader in the design means that one must not only explain the language but also justi
and discuss the alternatives. Most of the chapters of part C include a “discussion” sec
explaining the issues encountered during the design of the notation, and how they w
resolved. | often wished, when reading descriptions of well-known languages, that t
designers had told me not only what solutions they chose, but why they chose them,
what alternatives they rejected. The candid discussions included in this book shoule
hope, provide you with insights not only about language design but also about softw
construction, as the two tasks are so strikingly similar.

X PREFACE

Analysis, design and implementation

It is always risky to use a notation that externally looks like a programming language, as
this may suggest that it only covers the implementation phase. This impression, however
wrong, is hard to correct, so frequently have managers and developers been told that a gap
of metaphysical proportions exists between the ether of analysis-design and the
underworld of implementation.

Well-understood object technology reduces the gap considerably by empha«“SEAMLESSNESS
the essential unity of software development over the inevitable differences between AND REVERSIBIL-
of abstraction. Thisseamles approach to software construction is one of the import"TY"' 28.6, page 939
contributions of the method and is reflected by the language of this book, which is meant
for analysis and design as well as for implementation.

Unfortunately some of the recent evolution of the field goes against these principles,
through two equally regrettable phenomena:

* Object-oriented implementation languages which are unfit for analysis, for design and
in general for high-level reasoning.

» Object-oriented analysis or design methods which do not cover implementation (and
are advertized as “language-independent” as if this were a badge of honor rather than
an admission of failure).

Such approaches threaten to cancel much of the potential benefit of the approach. In
contrast, both the method and the notation developed in this book are meant to be
applicable throughout the software construction process. A number of chapters cover
high-level design issues; one is devoted to analysis; others explore implementation
techniques and the method’s implications on performance.

The environment

Software construction relies on a basic tetralogy: method, language, tools, libraries. The
method is at the center of this book; the language question has just been mentioned. Once
in a while we will need to see what support they may require from tools and libraries. For
obvious reasons of convenience, such discussions will occasionally refer to ISE’s object-
oriented environment, with its set of tools and associated libraries.

The environment is used only as an example of what can be done to makThe last chapter3€,
concepts practically usable by software developers. Be sure to note that there aresummarizes the
other object-oriented environments available, both for the notation of this book an®nvironment.
other O-O analysis, design and implementation methods and notations; and that the
descriptions given refer to the state of the environment at the time of writing, subject, as
anything else in our industry, to change quickly — for the better. Other environments, O-

O and non O-0, are also cited throughout the text.

PREFACE

xi

A few notes in the
margin or in chap-
ter-end biblio-
graphicsectionsgive
credit for some spe-
cific ideas, often
unpublished.

Acknowledgments (quasi-absence thereof)

The first edition of this book contained an already long list of thanks. For a while | ke
writing down the names of people who contributed comments or suggestions, and the
some stage | lost track. The roster of colleagues from whom | have had help or borrov
ideas has now grown so long that it would run over many pages, and would inevitably ol
some important people. Better then offend everyone a little than offend a few very mut

So these acknowledgments will for the most part remain collective, which does n
make my gratitude less deep. My colleagues at ISE and SOL have for years been a ¢
source of invaluable help. The users of our tools have generously provided us with tf
advice. The readers of the first edition provided thousands of suggestions f
improvement. In the preparation of this new edition (I should really say of this new boo
| have sent hundreds of e-mail messages asking for help of many different kinds:
clarification of a fine point, a bibliographical reference, a permission to quote, the deta
of an attribution, the origin of an idea, the specifics of a notation, the official address o
Web page; the answers have invariably been positive. As draft chapters were becon
ready they were circulated through various means, prompting many constructi
comments (and here | must cite by name the referees commissioned by Prentice Hall, |
Dubois, James McKim and Richard Wiener, who provided invaluable advice ar
corrections). In the past few years | have given countless seminars, lectures and cou
about the topics of this book, and in every case | learned something from the audienc
enjoyed the wit of fellow panelists at conferences and benefited from their wisdom. Shi
sabbaticals at the University of Technology, Sydney and the Universita degli Studi
Milano provided me with a influx of new ideas — and in the first case with three hundre
first-year students on whom to validate some of my ideas about how software engineel
should be taught.

The large bibliography shows clearly enough how the ideas and realizations
others have contributed to this book. Among the most important conscious influences
the Algol line of languages, with its emphasis on syntactic and semantic elegance;
seminal work on structured programming, in the serious (Dijkstra-Hoare-Parnas-Wirt
Mills-Gries) sense of the term, and systematic program construction; formal specificati
techniques, in particular the inexhaustible lessons of Jean-Raymond Abrial’s original (I
nineteen-seventies) version of the Z specification language, his more recent design o
and Cliff Jones’s work on VDM,; the languages of the modular generation (in particul:
Ichbiah’s Ada, Liskov’s CLU, Shaw’s Alphard, Bert's LPG and Wirth’'s Modula); and
Simula 67, which introduced most of the concepts many years ago and had most of tt
right, bringing to mind Tony Hoare’s comment about Algol 60: that it was such a
improvement over most of its successors.

Foreword to the second edition

M any events have happened in the object-oriented world since the first edition o
OO0S((as the book came to be known) was published in 1988. The explosion of interes
alluded to in the Preface to the first edition, reproduced in the preceding pages in a slight
expanded form, was nothing then as compared to what we have seen since. Many journ
and conferences now cover object technology; Prentice Hall has an entire book seri
devoted to the subject; breakthroughs have occurred in such areas as user interfac
concurrency and databases; entire new topics have emerged, such as O-O analysis :
formal specification; distributed computing, once a specialized topic, is becoming
relevant to more and more developments, thanks in part to the growth of the Internet; ar
the Web is affecting everyone’s daily work.

This is not the only exciting news. It is gratifying to see how much progress is
occurring in the software field — thanks in part to the incomplete but undeniable spreas
of object technology. Too many books and articles on software engineering still start witt
the obligatory lament about the “software crisis” and the pitiful state of our industry as
compared tdrue engineering disciplines (which, as we all know, never mess things up).
There is no reason for such doom. Oh, we still have a long, long way to go, as anyone wi
uses software products knows all too well. But given the challenges that we face we hay
no reason to be ashamed of ourselves as a profession; and we are getting better all the ti
Itis the ambition of this book, as it was of its predecessor, to help in this process.

This second edition is not an update but the result of a thorough reworking. Not ¢
paragraph of the original version has been left untouched. (Hardly a single line, actually
Countless new topics have been added, including a whole chapter on concurrenc
distribution, client-server computing and Internet programming; another on persistenci
and databases; one on user interfaces; one on the software lifecycle; many design patte
and implementation techniques; an in-depth exploration of a methodological issue o
which little is available in the literature, how to use inheritance well and avoid misusing
it; discussions of many other topics of object-oriented methodology; an extensive
presentation of the theory of abstract data types — the mathematical basis for our subje
indispensable to a complete understanding of object technology yet seldom covered
detail by textbooks and tutorials; a presentation of O-O analysis; hundreds of nev
bibliographic and Web site references; the description of a complete object-oriente
development environment (also included on the accompanying CD-ROM for the reader’
enjoyment) and of the underlying concepts; and scores of new ideas, principles, cavea
explanations, figures, examples, comparisons, citations, classes, routines.

The reactions tOOS(-1 have been so rewarding that | know readers have high
expectations. | hope they will firOOS(-2 challenging, useful, and up to their standards.

Santa Barbara B.M.
January 1997

Xiv

PREFACE

About the accompanying CD-ROM

The CD-ROM that comes with this book containsentire hyperlinked text in Adobe
Acrobat format. It also includes Adobe’s Acrobat Reader software, enabling you t
that format; the versions provided cover major industry platforms. If you do not al
have Acrobat Reader on your computer, you can install it by following the instrug
The author and the publisher make no representations as to any property of Acrg
associated tools; the Acrobat Reader is simply provided as a service to readers
book, and any Acrobat questions should be directed to Adobe. You may also che

Adobe about any versions of the Reader that may have appeared after the book.

To get started with the CD-ROM, open the Acrobat README.pdiin the OOSC-2
directory, which will direct you to the table of contents and the index. You can
open that file under Acrobat Reader; if the Reader has not been installed o
computer, examine instead the plain-text version in thereadme.tx in the top-level
directory.

The presence of an electronic version will be particularly useful to readers who v
take advantage of the thousands of cross-references present in this b¢‘A Book-
Wide Web”, page vi). Although for a first sequential reading you will probably pre
to follow the paper version, having the electronic form available on a computer 1
the book alllows you to follow a link once in a while without having to turn pages
and forth. The electronic form is particularly convenient for a later reading during
you may wish to explore links more systematically.

All links (cross-references) appear blue in the Acrobat form, as illustrated twi
above (but not visible in the printed version). To follow a link, just click on the blue
If the reference is to another chapter, the chapter will appear in a new windoy
Acrobat Reader command to come back to the previous position is normally C
minus-sign (that is, typ— while holding down the CONTROL key). Consult the on-I
Acrobat Reader documentation for other useful navigational commands.

Bibliographical references also appear as links, suKnuth 1968, in the Acrobat
form, so that you can click on any of them to see the corresponding entry
bibliography of appendiE.
The CD-ROM also contains:

e Library components providing extensive material for AppelA.ix

*A chapter from the manual for a graphical application builder, provi
mathematical complements to the material of che32.:2r

In addition, the CD-ROM includes a time-limited version of an advarobject-
oriented development environmenfor Windows 95 or Windows NT, as described
chaptei3€, providing an excellent hands-on opportunity to try out the ideas deve|
throughout the book. The “Readme” file directs you to the installation instruction
system requirements.

o read
ready
tions.
bat and
5 of this
ck with

only
n your

ant to

fer

ext to
back
which

Le
part.
v. The
bntrol-
ne

in the

ding

in
oped
s and

Acknowledgmen: The preparation of the hyperlinked text was made possible by the help of several people
at Adobe Inc., in particular Sandra Knox, Sarah Rosenbaum and the FrameMaker Customer Support Group.

PREFACE

XVii

The bibliography
starts on page
120¢%.

On the bibliography, Internet sources and
exercises

This book relies on earlier contributions by many authors. To facilitate reading, tt
discussion of sources appears in most cases not in the course of the discussion, but i
“Bibliographical notes” sections at chapter end. Make sure you read these sections, s
to understand the origin of many ideas and results and find out where to learn more.

References are of the foifName¢ 19xx], whereName is the name of the first author,
and refer to the bibliography in appenE. This convention is for readability only and is
not intended to underrate the role of authors other than the first. The letter M in lieu o
Namedenotes publications by the author of this book, listed separately in the second
of the bibliography.

Aside from the bibliography proper, some references appear in the margin, next
the paragraphs which cite them. The reason for this separate treatment is to make
bibliography usable by itself, as a collection of important references on object technolo
and related topics. Appearance as a margin reference rather than in the bibliography c
not imply any unfavorable judgment of value; the division is simply a pragmati
assessment of what belongs in a core list of object-oriented references.

k%

Although electronic references will undoubtedly be considered a matter of course a f
years from now, this must be one of the first technical books (other than books devote
Internet-related topics) to make extensive use of references to World-Wide-Web pag
Usenet newsgroups and other Internet resources.

Electronic addresses are notoriously volatile. | have tried to obtain from the authc
of the quoted sources some reassurance that the addresses given would remain vali
several years. Neither they nor I, of course, can provide an absolute guarantee. In cas
difficulty, note that on the Net more things move than disappear: keyword-based sea
tools can help.

*kk

Most chapters include exercises of various degrees of difficulty. |1 have refrained fro
providing solutions, although many exercises do contain fairly precise hints. Some reac
may regret the absence of full solutions; | hope, however, that they will appreciate t
three reasons that led to this decision: the fear of spoiling the reader’s enjoyment;
realization that many exercises are design problems, for which there is more than one g
answer; and the desire to provide a source of ready-made problems to instructors using
book as a text.

*k*k

XViii PREFACE

For brevity and simplicity, the text follows the imperfect but long-established tradition of
using words such as “he” and “his”, in reference to unspecified persons, as shortcuts for
“he or she” and “his or her”, with no intended connotation of gender.

A modest soul is shocked by objects of such kind

And all the nasty thoughts that they bring to one's mind.

Moliere, Tartuffe, Act Ill.

	Preface
	Structure, reliability, epistemology and classific...
	Simple but powerful
	Organization of the text
	A Book-Wide Web
	The notation
	Analysis, design and implementation
	The environment
	Acknowledgments (quasi-absence thereof)
	Foreword to the second edition
	About the accompanying CD-ROM
	On the bibliography, Internet sources and exercise...

