38

The run-time structure: objects

I n the previous chapter we saw that classes may have instances, called objects. We m
now turn our attention to these objects and, more generally, to the run-time model c

object-oriented computation.

Where the previous chapters were mostly concerned with conceptual and structur:
issues, the present one will, for the first time in this book, include implementation aspect:
In particular it will describe how the execution of object-oriented software uses memory
— a discussion continued by the study of garbage collection in the next chapter. A
already noted, one of the benefits of object technology is to restore implementation issue
to their full status; so even if your interest is mostly in analysis and design topics yol
should not be afraid of this excursion into implementation territory. It is impossible to
understand the method unless you have some idea of its influence on run-time structure

The study of object structures in this chapter indeed provides a particularly gooc
example of how wrong it is to separate implementation aspects from supposedly highe
level issues. Throughout the discussion, whenever we realize the need for a new O-
technique or mechanism, initially introduced for some implementation-related purpose
the real reason will almost always turn out to be deeper: we need the facility just as muc
for purely descriptive, abstract purposes. A typical example will be the distinction
between references and expanded values, which might initially appear to be an obscu
programming technique, but in reality provides a general answer to the question of sharir
in whole-to-parts relations, an issue that figures prominently in many discussions o

object-oriented analysis.

This contribution of implementation is sometimes hard to accept for people who hav
been influenced by the view, still prevalent in the software literature, that all that counts i
analysis. But it should not be so surprising. To develop software is to develop models. ;
good implementation technique is often a good modeling technique as well; it may b
applicable, beyond software systems, to systems from various fields, natural and artificial

More than implementation in the strict sense of the term, then, the theme of thi
chapter is modeling: how to use object structures to construct realistic and useft

operational descriptions of systems of many kinds.

218 THE RUN-TIME STRUCTURE: OBJECT<8§8.1

8.1 OBJECTS

At any time during its execution, an O-O system will have created a certain number of
objects. The run-time structure is the organization of these objects and of their relations.
Let us explore its properties.

What is an object?

First we should recall what the word “object” means for this discussion. There is noThe definition

vague in this notion; a precise technical definition was given in the previous chapte@ppeared on page
16€. See also the

.. 5 Object rule, page
Definition: object 171,

An object is a run-time instance of some class.

A software system that includes a cliC may at various points of its execution
create (through creation and cloning operations, whose details appear later in this chapter)
instances oC; such an instance is a data structure built according to the pattern defined
by C; for example an instance of the cliPOINT introduced in the previous chapter is a
data structure consisting of two fields, associated with the two attrix andy declared
in the class. The instances of all possible classes constitute the set of objects.

The above definition is the official one for object-oriented software. But “object”
also has a more general meaning, coming from everyday language. Any software system
is related to some external system, which may contain “objects”: points, lines, angles,
surfaces and solids in a graphics system: employees, pay checks and salary scales in a
payroll system; and so on. Some of the objects created by the software will be in direct
correspondence with such external objects, as in a payroll system that includes a class
EMPLOYEL, whose run-time instances are computer models of employees.

This dual use of the word “object” has some good consequences, which follow “Direct Mapping”,
the power of the object-oriented method as a modeling tool. Better than any other mipage 4.
object technology highlights and supports the modeling component of soft
development. This explains in part the impression of naturalness which it exudes, the
attraction it exerts on so many people, and its early successeil ameng the most
visible — in such areas as simulation and user interfaces. The method here enjoys the
direct mappin(property which an earlier chapter described as a principal requirement of
good modular design. With software systems considered to be direct or indirect models of
real systems, it is not surprising that some classes will be models of external object types
from the problem domain, so that the software objects (the instances of these classes) are
themselves models of the corresponding external objects.

But we should not let ourselves get too carried away by the word “object”. As always
in science and technology, it is a bit risky to borrow words from everyday language and
give them technical meanings. (The only discipline which seems to succeed in this delicate
art is mathematics, which routinely hijacks such innocent words as “neighborhood”,
“variety” or “barrel” and uses them with completely unexpected meanings — perhaps the

§8.1 OBJECTS

219

See chapte2C about
the form-based sys-
temr. About the
notion of commar, 1
see chapte21.

For the text of class
POINTsee page
17€.

reason why no one seems to have any trouble.) The term “object” is so overloaded v
everyday meanings that in spite of the benefits just mentioned its use in a techni
software sense has caused its share of confusion. In particular:

< As pointed out in the discussion of direct mapping, not all classes correspond
object types of the problem domain. The classes introduced for design al
implementation have no immediate counterparts in the modeled system. They
often among the most important in practice, and the most difficult to find.

* Some concepts from the problem domain may vyield classes in the software (c
objects in the software’s execution) even though they would not necessarily |
classified as objects in the usual sense of the term if we insist on a concrete view
objects. A class such eSTATE in the discussion of the form-based interactive
system, o COMMANLE (to be studied in a later chapter in connection with undo-redc
mechanisms) fall in this category.

When the word “object” is used in this book, the context will clearly indicate whethe
the usual meaning or (more commonly) the technical software meaning is intended. Wi
there is a need to distinguish, one may aboutexternal objeci andsoftware objec!.;

Basic form

A software object is a rather simple animal once you know what class it comes from.

Let O be an object. The definition on the previous page indicates that it is an instan
of some class. More precisely, it idirect instance of just one class, seC.

Because of inheritancO will then be an instance, direct or not, of other classes, the
ancestors oC; but that is a matter for a future chapter, and for the present discussion we
only need the notion of direct instance. The word “direct” will be dropped when there is
no possible confusion.

C is called the generating class, or jgenerator, of O. C is a software texiO is a
run-time data structure, produced by one of the object creation mechanisms studied bel

Among its featuresC has a certain number of attributes. These attributes entirel
determine the form of the obje is simply a collection of components, fields, one
for each attribute.

Consider clasPOINT from the previous chapter. The class text was of the form:

classPOINT feature

X, y: REAL

... Routine declaration...
end

The routines have been omitted, and for good reason: the form of the correspond
objects (the direct instances of the class) is solely determined by the attributes, althol
the operation: applicable to the objects depend on the routines. Here the class has t
attributes x andy, both of typeREAL, so a direct instance POINT is an object with two
fields containing values of that type, for example:

220 THE RUN-TIME STRUCTURE: OBJECT<8§8.1

P_OBJ
X 3.4
y ~8.09
(POINT)

Notice the conventions used here and in the rest of this book for representing an object aSee‘Graphical con-
a set of fields, shown as adjacent rectangles containing the associated values. Below thventions”, page 271
object the name of the generating class, POINT, appears in parentheses and in italics;

next to each field, also in italics, there appears the name of the corresponding attribute,

herex andy. Sometimes a name in roman (here P_OBJ) will appear above the object; it

has no counterpart in the software but identifies the object in the discussion.

In diagrams used to show the structure of an object-oriented system, or more commonly
of some part of such a system, classes appear as ellipses. This convention, already used
in the figures of the previous chapter, avoids any confusion between classes and objects.

Simple fields

Both attributes of clasPOINT are of typeREAL As a consequence, each of the
corresponding fields of a direct instancePOINT contains a real value.

This is an example of a field corresponding to an attribute of one of the “basic types”.
Although these types are formally defined as classes, their instances take their values from
predefined sets implemented efficiently on computers. They include:

« BOOLEAN, which has exactly two instances, representing the boolean values true
and false.

« CHARACTEI, whose instances represent characters.
* INTEGEF, whose instances represent integers.

e REAL and DOUBLE, whose instances represent single-precision and double-
precision floating-point numbers.

Another type which for the time being will be treated as a basic type, althougksTRINGS”, 13.5,
will later see that it is actually in a different category,STRINC, whose instancespPage 456
represent finite sequences of characters.

For each of the basic types we will need the ability to denote the corresponding
values in software texts and on figures. The conventions are straightforward:

« ForBOOLEAN, the two instances are writtTrue andFalse.

* To denote an instance CHARACTEI you will write a character enclosed in single
guotes, such A

§8.1 OBJECTS 221

« To denote an instance STRINC write a sequence of characters in double quotes
as in"A STRINC".

* To denote an instance INTEGEF, write a number in an ordinary decimal notation
with an optional sign, as i34, —67% and+4.

* You can also write an instance REAL or DOUBLEIn ordinary notation, as in
3.5 or —C.05. Use the lettele to introduce a decimal exponent, as—-5.e-2
which denotes the same value as precedingexample.

A simple notion of book

Here is a class with attribute types taken from the preceding set:
classBOOKI1 feature
title: STRING
date, page_cour: INTEGER

end

A typical instance of clasBOOKI may appear as follows:

An object titte | "The Red and the Black"
representing a
book date 1830
page_count 341
(BOOKY)

Since for the moment we are only interested in the structure of objects, all tl
features in this class and the next few examples are attributes — none are routines.

This means that our objects are similar at this stage to the records or structure ty
of non-object-oriented languages such as Pascal and C. But unlike the situation in th
languages there is little we can do with such a class in a good O-O langeeges of
the information hiding mechanisms, a client class has no way of assigning values to
fields of such objects. In Pascal, or in C with a slightly different syntax, a record type wi
a similar structure would allow a client to include the declaration and instruction

b1: BOOK1

Warning: not per- bl.page coun:= 355

L“cittz?oir',‘ g;? g's(_) which at run time will assign value 355 to page_cour field of the object attached to
cussion only b1. With classes, however, we should not provide any such facility: letting clients chan

object fields as they please would make a mockery of the rule of information hiding, whi

222 THE RUN-TIME STRUCTURE: OBJECT<8§8.1

implies that the author of each class controls the precise set of operations that clients may
execute on its instances. No such direct field assignment is possible in an O-O context;
clients will perform field modifications through procedures of the class. Later in this
chapter we will add t(BOOK1 a procedure that gives clients the effect of the above
assignment, if the author of the class indeed wishes to grant them such privileges.

We have already seen that C++ and Java actually permit assignments of the form
b1 page coun:=35E. But this simply reflects the inherent limits of attempts to integrate
object technology in a C context.

As the designers of Java themselves write in their book about the langiage: [Arnold 1996,
programmer could still mess up the object by sefa publi(field, because the fie[[is] page 41) ’
subject to changethrough direct assignment instructions. Too many languages require

such “don’t do this” warnings. Rather than propose a language and then explain at lengthSee alscIf it is
how not to use it, it is desirable to define hand in hand the method and a notation that will baroque, fix it”,
support it. page 67)

In proper O-O development, classes without routines, suBOOK]I, have little
practical use (except as ancestors in an inheritance hierarchy, where descendants will
inherit the attributes and provide their own routines; or to represent external objects which
the O-O part can access but not modify, for example sensor data in a real-time system).
But they will help us go through the basic concepts; then we will add routines.

Writers

Using the types mentioned above, we can also define aWRITEF describing a simple
notion of book author:

classWRITEF feature
name, real_nam: STRING
birth_yeay, death_yee: INTEGER

end
name "Stendhal” A “writer
object
real_name "Henri Beyle"
birth_year 1783
death_year 1842
(WRITEP
References

Objects whose fields are all of basic types will not take us very far. We need objects with
fields that represent other objects. For example we will want to represent the property that
a book has an author — denoted by an instance of WRITEF.

§8.1 OBJECTS

223

Two “book”
objects with
“writer”
subobjects

A possibility is to introduce a notion of subobject. For example we might think of
book object, in a new versicBOOKZ of the book class, as having a fiauthoi which is
itself an object, as informally suggested by the following picture:

titte | "The Red and the Black’ title "Life of Rossini"
date 1830 date 1823
padge_ 341 paae_ 307
count count
nameg "Stendhal” namg “"Stendhal”
real_name"Henri Beyle' real_name'Henri Beyle'
birth_yea 1783 birth_yea 1783
death_yea 1842 death_yea 1842
(WRITEF) (WRITEF)
(BOOK?) (BOOK?)

Such a notion of subobject is indeed useful and we will see, later in this chapter, h
to write the corresponding classes.

But here it is not exactly what we need. The example represents two books with |
same author; we ended up duplicating the author information, which now appears as
subobjects, one in each instanceBOOK:. This duplication is probably not acceptable:

« It wastes memory space. Other examples would make this waste even m
unacceptable: imagine for example a set of objects representing people, each
with a subobject representing the country of citizenship, where the number of peo|
represented is large but the number of countries is small.

* Even more importantly, this technique fails to account for the need to expre
sharing. Regardless of representation choices,authoi fields of the two objects
refer to the same instanceWRITEF; if you update thWRITEF object (for example
to record an author’s death), you will want the change to affect all book objec
associated with the given author.

Here then is a better picture of the desired situation, assuming yet another versiol
the book classBOOKZ::

224 THE RUN-TIME STRUCTURE: OBJECTS§8.1
itl " , . . _ Two “book”
title The Red and the Black title |"The Charterhouse of Parma objects with
date 1830 date 1839 references to
the same
paae 341 page 307 “writer” object
count” count
author author
(BOOK?) (BOOK?)
name| "Stendhal"
real_name "Henri Beyle"
birth_year 1783
death_yea 1842
(WRITEF)

Theauthol field of each instance BOOKZ: contains what is known asreference
to a possible object of tyfWRITEF. It is not difficult to define this notion precisely:

Definition: reference

A reference is a run-time value which is eitvoid or attacheoc.

If attached, a reference identifies a single object. (It is then said to be at
to that particular object.)

ached

In the last figure, theauthor reference fields of thBOOK: instances are both
attached to thWRITEF instance, as shown by the arrows, which are conventionally used
on such diagrams to represent a reference attached to an object. The following figure has
a void reference (perhaps to indicate an unknown author), showing the graphical
representation of void references:

title | "Candide, or Optimism"
date 1759
age

Eount 120

author

I

(BOOK3

An object with
a void
reference field

(“Candide” was
published anony-
mously)

§8.1 OBJECTS

225

“Object identity”,
page 1052

The definition of references makes no mention of implementation properties.
reference, if not void, is a way to identify an object; an abstractefor the object. This
is similar to a social security number that uniquely identifies a person, or an area code
identifies a phone area. Nothing implementation-specific or computer-specific here.

The reference concept of course has a counterpart in computer implementations
machine-level programming it is possible to manipulate addresses; many programm
languages offer a notion of pointer. The notion of reference is more abstract. Althougl
reference may end up being represented as an address, it does not have to; and even
the representation of a reference includes an address, it may include other informatior

Another property sets references apart from addresses, although pointers in ty,
languages such as Pascal and Ada (not C) also enjoy it: as will be explained belov
reference in the approach described here is typed. This means that a given reference
only become attached to objects of a specific set of types, determined by a declaratio
the software text. This idea again has counterparts in the non-computer world: a so
security number is only meant for persons, and area codes are only meant for phone a
(They may look like normal integers, but you would adtltwo area codes.)

Object identity

The notion of reference brings about the concept of object identity. Every object crea
during the execution of an object-oriented system has a unique identity, independen
the object’s value as defined by its fields. In particular:

11« Two objects with different identities may have identical fields.

12« Conversely, the fields of a certain object may change during the execution of
system; but this does not affect the object’s identity.

These observations indicate that a phrase such derfotes the same objectlds
may be ambiguous: are we talking about objects with different identities but the sa
contents|I(l)? Or about the states of an object before and after some change is appliet
its fields (2)? We will use the second interpretation: a given object may take on ne
values for its constituent fields during an execution, while remaining “the same objec
Whenever confusion is possible the discussion will be more explicit. Foikagemay
talk of equal (but distinct) objects; equality will be defined more precisely below.

A point of terminology may have caught your attention. It is not a mistake to say (as in
the definition ofl2) that the fields of an object may change. The term “field” as defined
above denotes one of the values that make up an object, not the corresponding field
identifier, which is the name of one of the attributes of the object’s generating class.

For each attribute of the class, for examyee in classBOOK3 the object has a field,

for example1832in the object of the last figure. During execution the attributes will
never change, so each object’s division into fields will remain the same; but the fields
themselves may change. For example an instang®ofK 3will always have four fields,
corresponding to attributegle, date page_countauthor, these fields — the four values
that make up a given object of typ® OK3— may change.

The study of how to make objegqtersistenwill lead us to explore further properties
of object identity.

226 THE RUN-TIME STRUCTURE: OBJECT<8§8.1

Declaring references

Let us see how to extend the initial book cliBOOKI, which only had attributes of basic
types, to the new variarBOOK: which has an attribute representing references to
potential authors. Here is the class text, again just showing the attributes; the only
difference is an extra attribute declaration at the end:

classBOOK: feature

title: STRING

date, page_cour: INTEGER

author WRITER -- This is the new attribute.
end

The type used to declaauthol is simply the name of the corresponding class:
WRITEF. This will be a general rule: whenever a class is declared in the standard form

clas: C feature ... end
then any entity declared of ty|C through a declaration of the form

x: C
denotes values that areference: to potential objects of typC. The reason for this gee pag72.
convention is that using references provides more flexibility, and so are appropriate
vast majority of cases. You will find further examination of this rule (and of the other
possible conventions) in the discussion section of this chapter.

Self-reference

Nothing in the preceding discussion precludes an object O1 from containing a reference
field which (at some point of a system’s execution) is attached to O1 itself. This kind of
self-reference can also be indirect. In the situation pictured below, the object with
"Almaviva" in its namefield is its own landlord (direct reference cycle); the object
"Figaro” loves "Susanna" which loves "Figaro" (indirect reference cycle).

Direct and
name “"Almaviva" indirect self-
reference
landlord
loved_one _ |
(PERSON)
name| "Figaro" "Susanna" | name
landlord landlord
loved_one > loved_one
-

(PERSON). (PERSON).

§8.1 OBJECTS

227

A possible run-
time object
structure

Such cycles in the dynamic structure can only exist if the client relation among tl
corresponding classes also has direct or indirect cycles. In the above example, the ¢
declaration is of the form

classPERSON feature
name. STRING

loved_on, landlord: PERSON1
end

showing a direct cyclePERSON is a client olPERSON).

The reverse property is not true: the presence of a cycle in the client relation does
imply that the run-time structure will have cycles. For example you may declare a clas
classPERSON feature

mothe, father: PERSON2
end

which is a client of itself; but if this models the relations between people suggested by
attributes’ names, there can be no reference cycle in the run-time structure, as it wa
imply that a certain person is his own parent or indirect ancestor.

A look at the run-time object structure

From what we have seen so far emerges a first picture of the structure of an object-oriel
system during its execution.

-
root —

27
"Raphaél”
(TYPE)

p— —1 7
35 —
(TYPE) j
—5

Sarah True

(TYPE3 T 897 N
| (TYPES N _
- 62

. -«
"Caroline" :—]

(TYPE) (TYPE2

228 THE RUN-TIME STRUCTURE: OBJECT<88.2

The system is made of a certain number of objects, with various fields. Some of these
fields are values of basic types (integer fields suc27, character fields such iz and
so on); others are references, some void, others attached to objects. Each object is an
instance of some type, always based on a class and indicated below the object in the figure.
Some types may be represented by just one instance, but more commonly there will be
many instances of a given type; hTYPE1has two instances, the others only one. An
object may have reference fields only; this is the case here wiTYPE: instance, or
basic fields only, as with tFTYPE! instance. There may be self-references: direct, as with
the top field of theTYPEZ2instance, or indirect, as with the clock-wise reference cycle
starting from and coming back to tTYPElinstance at the top.

This kind of structure may look unduly complicated at first — an impression
reinforced by the last figure, which is meant to show many of the available facilities and
does not purport to model any real system. The expression “spaghetti bowl” comes to mind.

But this impression is not justified. The concern for simplicity applies to the software
text and not necessarily to the run-time object structure. The text of a software system
embodies certain relations (such as “is child of”, “loves”, “has as landlord”); a particular
run-time object structure embodies what we may call an instance of these relations — how
the relations hold between members of a certain set of objects. The relations modeled by
the software may be simple even if their instances for a particular set of objects are
complex. Someone who considers the basic idea behind the relation “loves” fairly simple
might find the instance of the relation for a particular group of people — the record of who
loves whom — hopelessly entangled.

So itis often impossible to prevent the run-time object structures of our O-O systems
from becoming big (involving large numbers of objects) and complex (involving many
references with a convoluted structure). A good software development environment will
provide tools that help explore object structures for testing and debugging.

Such run-time complexity does not have to affect the static picture. We should try to
keep the software itself — the set of classes and their relations — as simple as possible.

The observation that simple models can have complex instances is in part a reflection
on the power of computers. A small software text can describe huge computations; a
simple O-O system can at execution time yield millions of objects connected by many
references. A cardinal goal of software engineering is to keep the software simple even
when its instances are not.

8.2 OBJECTS AS A MODELING TOOL

We can use the techniques introduced so far to improve our understanding of the method'’s
modeling power. It is important in particular two clarify two aspects: the various worlds
touched by software development; and the relationship of our software to external reality.

§8.2 OBJECTS AS A MODELING TOOL 229

The four worlds of software development

From the preceding discussions it appears that when talking about object-orien
software development we should distinguish between four separate worlds:

* The modeled system, also known as the external system (as opposed to the soft
system) and described through object types and their abstract relations.

« A particular instantiation of the external system, made of objects between whi
relations may hold.

* The software system, made of classes connected by the relations of the obje
oriented method (client and inheritance).

« An object structure, as may exist during the execution of the software system, me
of software objects connected through references.

The following picture suggests the mappings that exist between these worlds.

Molds and MOLD INSTANCE
their instances

Model
ABSTRACT Object
Software)
4_\ (.
CONCRETE Object
+ Implements

— Isan instance of

On both the software level (lower part of the picture) and the external level (high
part) it is important to distinguish between the general notions (classes and absti
relations, appearing on the left) and their specific instances (objects and relation instan
appearing on the right). This point has already been emphasized in the previous chapt
discussion of the comparative role of classes and objects. It also applies to relations:
must distinguish between the abstract relaloved_oneand the set oloved_onelinks
that exist between the elements of a certain set of objects.

This distinction is emphasized neither by the standard mathematical definitions
relations nor, in the software field, by the theory of relational databases. Limitin
ourselves to binary relations, a relation is defined in both mathematics and relatiol
databases as a set of pairs, all of the f<x, y> where evenx is a member a given sTX

230 THE RUN-TIME STRUCTURE: OBJECT<88.2

and everyy is a member of a given sTY. (In software terminology: ax are of typeT X

and ally are of typeTY.) Appropriate as such definitions may be mathematically, they are
not satisfactory for system modeling, as they fail to make the distinction between an
abstract relation and one of its particular instances. For system modeling, if not for
mathematics and relational databasesloves relation has its own general and abstract
properties, quite independent of the record of who loves whom in a particular group of
people at a particular time.

This discussion will be extended in a later chapter when we lotransformation on “The abstraction
both abstract and concrete objects and give a name to the vertical arrows of the precedingfunction”, page 375
figure: theabstraction functio.n

Reality: a cousin twice removed

You may have noted how the above discussion (and previous ones on neighboring topics)
stayed clear of any reference to the “real world”. Instead, the expression used above in
reference to what the software represents is simply “the modeled system”.

This distinction is not commonly made. Many of the discussions in information
modeling talk about “modeling the real world”, and similar expressions abound in books
about O-O analysis. So we should take a moment to reflect on this notion. Talking about
the “reality” behind a software system isadptive for at least four reasons.

First, reality is in the eyes of the beholder. Without being accused of undue
chauvinism for his profession, a software engineer may with some justification ask his
customers whytheir systems are more real than his. Take a program that performs
mathematical computations — proving the four-color conjecture in graph theory,
integrating some differential equations, or solving geometrical problems in a four-
dimensional Riemann surface. Are we, the software developers, to quarrel with our
mathematician friends (and customers) as to whose artefacts are more real: a piece of
software written in some programming language, or a complete subspace with negative
curvature?

Second, the notion of real world collapses in the not infrequent case of software that
solves software problems — reflexive applications, as they are sometimes called. Take a
C compiler written in Pascal. The “real” objects that it processes are C programs. Why
should we consider these programs more real than the compiler itself? The same
observation applies to other systems handling objects that only exist in a computer: an
editor, a CASE tool, even a document processing system (since the documents it
manipulates are computer objects, the printed version being only their final form).

The third reason is a generalization of the second. In the early days of computSee als¢DISCUS-
may have been legitimate to think of software systems as being superimposed on SION”, 20.6, page
isti independent reality. But today the computers and their software are moreeg" on the dangers
exisung, indep) y y . _p N) of stayinctoo close
more a part of that reality. Like a quantum physicist finding himself unable to separatto reality.
measure from the measurement, we can seldom treat “the real world” and “the software
as independent entities. The MIS field (Management Information Systems, that is to say,

business data processing) provides some of the most vivid evidence: although it may have

§8.3 MANIPULATING OBJECTS AND REFERENCES 231

See'‘BEYOND
SOFTWARE", 6.6,
page 147

been the case with the first MIS applications, a few decades ago, that compar
introduced computers and the associated software simply with the aim of automat
existing procedures, the situation today is radically different, as many existing procedu
already involve computers and their software. To describe the operations of a mod
bank is to describe mechanisms of which software is a fundamental component. The s
is true of most other application areas; many of the activities of physicists and ott
natural scientists, for example, rely on computers and software not as auxiliary tools
as a fundamental part of the operational process. One may reflect here about
expression “virtual reality”, and its implication that what software produces is no less re
than what comes from the outside world. In all such cases the software is not disjoint fr
the reality, as if we had a feedback loop in which operating the software injects some n
and important inputs into the model.

The last reason is even more fundamental. A software system is not a model
reality; it is at best a model of a model of some part of some reality. A hospital’s patie
monitoring system is not a model of the hospital, but the implementation of someong
view of how certain aspects of the hospital management should be handimode of
amode of asubse of the hospital's reality. An astronomy program is not a model of the
universe; it is a software model of someone’s model of some properties of some par
the universe. A financial information system is not a model of the stock exchange; it i
software transposition of a model devised by a certain company to describe those asp
of the stock exchange which are relevant to the company’s goals.

The general theme of the object-oriented method, abstract data types, he
understand why we do not need to delude ourselves with the flattering but illusory noti
that we deal with the real world. The first step to object orientation, as expressed by
ADT theory, is to toss out reality in favor of something less grandiose but more palatab
a set of abstractions characterized by the operations available to clients, and their for
properties. (This gave the ADT modeler's motto — tell me not what you are but what y
have.) Never do we make any pretense that these are the only possible operations
properties: we choose the ones that serve our purposes of the moment, and rejec
others.To model is to disca.d

To a software system, the reality that it addresses is, at best, a cousin twice remov

8.3 MANIPULATING OBJECTS AND REFERENCES

Let us come back to more mundane matters and see how our software systems are ¢
to deal with objects so as to create and use flexible data structures.

Dynamic creation and reattachment

What the description of the run-time object structure has not yet shown is the higt
dynamic nature of a true object-oriented model. As opposed to static and stack-orien
policies of object management, illustrated at the programming language level by Fort
and Pascal respectively, the policy in a proper O-O environment is to let systems cre

232 THE RUN-TIME STRUCTURE: OBJECT<88.3

objects as needed at run time, according to a pattern which is usually impossible to predict
by a mere static examination of the software text.

From an initial state in which (as described in the previous chapter) only one object
has been created — the root object — a system will repetitively perform such operations
on the object structure as creating a new object, attach a previously void reference to an
object, make a reference void, or reattach a previously attached reference to a different
object. The dynamic and unpredictable nature of these operations is part of the reason for
the flexibility of the approach, and its ability to support the dynamic data structures that
are necessary if we are to use advanced algorithms and model the fast-changing properties
of many external systems.

The next sections explore the mechanisms needed to create objects and manipulate
their fields, in particular references.

The creation instruction

Let us see how to create an instance of a class sStBOOK?:. This can only be done by
a routine of a class which is a clientBOOK?, such as
classQUOTATION feature
source BOOK3
page INTEGER
make_boolis
-- Create éBOOK?: object and attacsource to it.
do
... See below...
end
end
which might serve to describe a quotation of a book, appearing in another publication and

identified by two fields: a reference to the quoted book and the number of the page which
quotes the book.

The (soon to be explained) mechanism that creates an instance QUOTATION
will also by default initialize all its fields. An important part of the default initialization
rule is that any reference field, such as the one associated with atsource, will be
initialized to a void reference. In other words, creating an object of QUOTATION
does not by itself create an object of tBOOKE.

The general rule is indeed that, unless you do something to it, a reference remains
void. To change this, you may create a new object through a creation instruction. This can
be done by procedumake boc, which should then read as follows:

§8.3 MANIPULATING OBJECTS AND REFERENCES 233

The “standard
default values”
mentioned in step
CZ appear in the
next bo.

make_boois
-- Create éBOOKZ: object and attacsource to it.
do
I source
end
This illustrates the simplest form of the creation instruct!! x, wherex is an

attribute of the enclosing class or (as will be seen later) a local entity of the enclosi
routine. We will see a few extensions to this basic notation later.

The symbol is usually read aloud as “bang”, so t!! is “bang bang”. The entitx
named in the instructiorsource in the above example) is called ttarget of the creation
instruction.

This form of the creation instruction is known as a “basic creation instruction’
(Another form, involving a call to a procedure of the class, will appear shortly.) Here
the precise effect of a basic creation instruction:

Effect of a basic creation instruction

The effect of a creation instruction of the fo!! x, where the type of th
targetx is a reference type based on a cC, is to execute the following
three steps:

D

C1l . Create a new instance Cl (made of a collection of fields, one for
each attribute oC). Let OC be the new instance.

C2 « Initialize each field 0OC according to the standard default values.

C3 ¢ Attach the value ox (a reference) tOC.

StepC1 will create an instance (C. StepC2 will set the values oéach field to a
predetermined value, which depends on the type of the corresponding attribute. Here
these values:

Default initialization values

For a reference, the default value is a void reference.
For aBOOLEAN, the default value iFalse.
For aCHARACTEI, the default value is the null character.

For a number (of typINTEGEF, REAL or DOUBLE), the default value i
zero (that is to say, the zero value of the appropriate type).

o

234 THE RUN-TIME STRUCTURE: OBJECT<88.3

So for a targesource of typeBOOK?, where the above class declaration read
classBOOK: feature

title: STRING

date, page_cour: INTEGER

author WRITER
end

the creation instructio!! source, executed as part of a call to procedmake_boa of
classQUOTATION, will yield an object of the following form:

title _ﬁ/ A newly
date 0 created and
initialized
object

page_coun 0
author —
(BOOK3J

The integer fields have been initialized to zero. The reference fielauthor has “STRINGS”, 13.5,
been initialized to a void reference. The field title, a STRINGC, also shows a void Page 456
reference. This is because tySTRINC (of which the above initialization rules sait
nothing) is in fact a reference type too, although as noted we may for most practical
purposes treat it as a basic type.

The global picture

Itis important not to lose track of the order in which things happen. For the above instance
of BOOKZ: to be created, the following two events must occur:

B1 < An instance 0QUOTATION gets created. Let Q_OBJ be thatinstance ara bet
an entity whose value is a reference attached to Q_OBJ.

B2 « Some time after steB1, a call of the forna. make booexecutes procedumake
book with Q_OBJ as its target.

It is legitimate of course to ask how we ever get to step B1 — how Q_OBJ itselfse¢’PUTTING
be created. This only pushes the problem further. But by now you know the answer EVERYTHING
question: it all comes back to the Big Bang. To execute a system, you must provide TS%‘%ZER 79,
class and the name of a procedure of that class, the creation procedure. At the start of the’
execution, you are automatically provided with one object, the root object — an instance
of the root class. The root object is the only one that does not need to be created by the
software text itself; it comes from the outside, asobjectus ex machir. Starting with
that one providential object, the software can now create other objects in the normal way,
through routines that execute creation instructions. The first routine to be executed is the
creation procedure, automatically applied to the root object; in all but the most trivial cases
it will include at least one creation instruction so as to start what the previous chapter
compared to a giant firework: the process of producing as many new objects as a particular
execution will need.

§8.3 MANIPULATING OBJECTS AND REFERENCES 235

See the figure on
page22¢€.

Why explicit creation?
Object creation is explicit. Declaring an entity such as

b: BOOK3

does not cause an object to be created at run time: creation will only occur when so
element of the system executes an operation

b

You may have wondered why this was so. Should the declaratilo not be
sufficient if we need an object at run time? What good is it to declare an entity if we ¢
not create an object?

A moment’s reflection, however, shows that the distinction between declaration a
creation is actually the only reasonable solution.

The first argument is breductio ad absurdu. Assume that somehow we start
processing the declarationh and immediately create the corresponding book object. Bu
this object is an instance of claBOOK?S, which has an attributauthol, itself of a
reference typ(WRITEF, so that theauthot field is a reference, for which we must create
an object right away. Now this object has reference fields (remembeSTRINC s in
fact a reference type) and they will require the same treatment: we are starting on a |
path of recursive object creation before we have even begun any useful processing!

This argument would be even more obvious with a self-referential class, such
PERSON seen above:

classPERSON feature

name: STRING

loved_on, landlorc: PERSON1
end

Treating every declaration as yielding an object would mean that every creation
an instance cPERSON would cause creation of two more such objects (correspondini
toloved on andlandlord), entering into an infinite loop. Yet we have seen that such self
referential definitions, either direct as here or indirect, are common and necessary.

Another argument simply follows from a theme that runs through this chapter: t
use of object technology as a powerful modeling technique. If every reference field we
initialized to a newly created object, we would have room neither for void references n
for multiple references attached to a single object. Both are needed for realistic model
of practical systems:

* In some cases the model may require that a certain reference be left not attache
any object. We used this technique when leavin@uthoifield void to indicate that
a book is by an unknown author.

* In other cases two references should be attached, again for conceptual reas
coming from the model, to the same object. In the self-reference example we saw
loved_onefields of two PERSON instances attached to the same object. It would

236 THE RUN-TIME STRUCTURE: OBJECT<§8.4

not make sense in that case to create an object for each field on creation; what you
need is, rather than a creation instruction, an assignment operation (studied later in
this chapter) that attaches a reference to an already existing object. This observation
applies even more clearly to the self-referential field from the same example (field
landlord for the top object).

The object management mechanism never attaches a reference implicitly. It creates
objects through creation instructions clone operations, seen below and explicit too),
initializing their reference fields to void references; only through explicit instructions will
these fields, in turn, become attached to objects.

In the discussion of inheritance we will see that a creation instruction may use the Syntax‘Ponmorphic cre-
I' T! xto create an object whose tyT is a descendant of the type declarecx.or ation”, page 47')

8.4 CREATION PROCEDURES

All the creation instructions seen so far relied on default initializations. In some cases, you
may be unhappy with the language-defined initializations, wanting instead to provide
specific information to initialize the created object. Creation procedures address this need.

Overriding the default initializations

To use an initialization other than the default, give the class one or more creation
procedures. A creation procedure is a procedure of the class, which is listed in a clause
starting with the keyworcreation at the beginning of the class, before the first feature
clause. The scheme is this:

indexing

classC creation
pl, p2, ...
feature
... Feature declarations, including declarations for procel, pz, ...
end
A style suggestion: the recommended name for creation procedures in simple cases i“CHOOSING THE
make, for a class that has only one creation procedure; for a class that has two or moreRIGHT NAMES”,

creation procedures it is generally desirable to give them a name startiimake and 26.2, page 87.9
continuing with some qualifying word, as in tPOINT example that follows.

The corresponding creation instruction is not !! x any more, but of the form

Nxp(..)

wherep is one of the creation procedures listed increation clause, an(...) is a valid
actual argument list fcp. The effect of such an instruction is to create the object using the
default values as in the earlier form, and to ajp, with the given arguments, to the result.
The instruction is called creation call; it is a combination of creation instruction and
procedure call.

§8.4 CREATION PROCEDURES 237

We can for example add creation procedures to the POINT to enable clients to
specify initial coordinates, either cartesian or polar, when they create a point object. \
will have two creation proceduremake cartesiaandmake pola. Here is the scheme:

Original version of classPOINT 1creation
Elggg,Tg‘;;h%_s make_cartesia, make_polar
feature
... The features studied in the preceding version of the class:
X, Y, 1o, thete, translate, scalg, ...
feature { NONE} -- See explanations below about this export status.
make_cartesia(a, b: REAL) is
-- Initialize point with cartesian coordinata andb.
do
X=ay:=hb
end
make_ polal(r, t: REAL) is
-- Initialize point with polar coordinater andt.
do
x:=r Lcos(t); y:=rLsin(t)
end
end -- classPOINT1

With this class text, a client will create a point through such instructions as

Il my_pointmake_cartesial(0, 1)
I my_pointmake_polai(1, Pi/2)

both having the same effectPi has the value suggested by its name.

Here is the rule defining the effect of such creation calls. The first three steps are
same as for the basic form seen earlier:

Effect of a creation call

The effect of a creation call of the for!! x.p (...), where the type of the
targetx is a reference type based on a cIC, p is a creation procedure of
classC, and(...) represents a valid list of actual arguments for this procedure
if necessary, is to execute the following four steps:

C1l . Create a new instance Cl (made of a collection of fields, one for
each attribute oC). Let OC be the new instance.

C2 « Initialize each field 0OC according to standard default values.
C3 « Attach the value ox (a reference) tOC.
The new StED—H»CAf * Call procedurep, with the arguments given, (OC.

238 THE RUN-TIME STRUCTURE: OBJECT<§8.4

The export status of creation procedures

In POINT1 the two creation procedures have been declared in a feature clause sion the{NONE}
with feature {NONE}. This means they are secret, but only for normal calls, not construct se“Style
creation calls. So the two example creation calls just seen are valid; normal calls ;g;?uergg””%s:clrf;
formmy_pointmake_cartesia(0, 1) ormy_pointmake_polai(1, Pi/2) are invalid since page ==
the features have not been made available for calling by any client.

The decision to make the two procedures secret means we do not want clients, once
a point object exists, to set their coordinates directly, although they may set them
indirectly through the other procedures of the class sutranslateandscale. Of course
this is only one possible policy; you may very well decide to exmake cartesiaand
make_polain addition to making them creation procedures.

It is possible to give a procedure a selective creation status as well by including a set
of classes in braces in icreation clause, as in

classC creation{A, B, ...}
p1, p2,

although this is less frequent than limiting the export status of a feature through the similar
syntaxfeature { A, B, ...} or feature { NONE}. Remember in any case that the creation
status of a procedure is independent of its call export status.

Rules on creation procedures

The two forms of creation instructions, the basic fi!! x and the creation ce!! x.p (...),
are mutually exclusive. As soon as a class hcreation clause, then only the creation
call is permitted; the basic form will be considered invalid and rejected by the compiler.

This convention may seem strange at first, but is justified by considerations of 0See*CLASS
consistency. An object is not just a collection of fields; it is the implementation oINVARIANTS”,
abstract data type, which may impose consistency constraints on the fields. Herli'rﬁégg??%% ':(‘)Ie
typical example. Assume an object representing a person, with a field for the birthgf creation proce-
and another for the age. Then you cannot set these two fields independently to ardures”, page 372
values, but must ensure a consistency constraint: the sum of the age field and the bir
field must equal either the current year or the one before. (In a later chapter we will
how to express such constraints, often reflecting axioms from the underlying ADT, as
class invariants.) A creation instruction mualways yield a consistent object. The basic
form of the creation instruction -!! x with no call — is only acceptable if setting all the
fields to the default values yields a consistent object. If this is not the case, you will need
creation procedures, and should disallow the basic form of the creation instruction.

In some infrequent cases you may want to accept the default initializations (as they
satisfy the class invariant) while also defining one or more creation procedures. The
technique to apply in this case is to Inothinc among the creation procedures. Feature
nothingis a procedure without arguments, inherited from the universal ANY, which
has an empty body (the feature declaration is sirnothingis do enc) so that it does
exactly what the name indicates. Then you can write:

§8.4 CREATION PROCEDURES 239

See“What to do
with deferred
classes”, page 4¢7
and exercistE14.5,
page 51)

See“Syntactic over-
loading”, page 93

classC creation
nothin¢, some_creation_procedt, some_other_creation_proced....2
feature

Although the form!! x is still invalid in this case, clients can achieve the intended
effect by writing the instruction &! x.nothing

Finally, note that as a special case the rule on creation instructions gives a way
define a class thino clien will be permitted to instantiate. A class declaration of the form

classC creation

-- There is nothing here!
feature

... Rest of class te...
end

has a creation clause — an empty one. The above rule states that if thcreation
clause the only permitted creation instructions are creation calls using a creati
procedure; here, since there are no creation procedures, no creation call is permitted.

Being able to disallow class instantiation is of little interest if we limit ourselves t
the object-oriented mechanisms seen so far. But when we move on to inheritance this |
facility may prove handy if we want to specify that a certain class should only be used
ancestor to other classes, never directly to create objects.

Another way to achieve this is to make the cdeferre(, but a deferred class must have
at least one deferred feature, and we will not always have a role for such a feature.

Multiple creation and overloading

In advance of the discussion section, it is illuminating to compare the mechanism
multiple creation procedures with the C++/Java approach. The need is univers
providing several ways to initialize an object on creation. C++ and Java, however, rely
a different technique, name overloading.

In these languages all the creation procedures of a class (its “constructors”) have
same name, which is in fact the class name; if a POINT contains a constructor with
two real arguments correspondingmake_cartesia, the expressionew POINT (0, 1)
will create a new instance. To differentiate between two constructors, the languages |
on the signatures (the types of the arguments).

The problem is of course, as we saw in the discussion of overloading, that t
argument signature is notthe appropriate criterion: if we also want a constructor providi
the equivalent omake pola we are stuck, since the arguments would be the same, tw
real numbers. This is the general problem of overloading: using the same name
different operations, thereby causing potential ambiguity — compounded here by the
of that name as a class name as well as a procedure name.

The technique developed earlier seems preferable in all respects: minimum hassle
creation procedure) if default initializations suffice; prevent creation, if desired, through «
empty creation clause; to provide several forms of creation, define as many creatic
procedures as needed; do not introduce any confusion between class names and fe

240 THE RUN-TIME STRUCTURE: OBJECT<88.5

names; let the effect of every operation stand out clearly from its names, emake1
polar.

8.5 MORE ON REFERENCES

The run-time model gives an important role to references. Let us examine some of their
properties, in particular the notion of void reference, and some of the issues they raise.

States of a reference

A reference may be in either of two states: void and attached. We have seen that a
reference is always void initially and can be come attached through creation. Here is a
more complete picture.

b The possible
b := ¢ (wherec is attached) states of a
reference

ATTACHED
STATE

b:=Void

b := c (wherec is void)

Other than creation, a reference may change state through assignment, as will be
studied shortly. For the moment, please make sure you understand the difference between
the three notions — object, reference and entity — which recur through this chapter:

* “Object” is a run-time notion; any object is an instance of a certain class, created at
execution time and made of a number of fields.

« “Reference” is also a run-time notion: a reference is a value that is either void or
attached to an object. We have seen a precise definition of “attached”: a reference is
attached to an object if it identifies that object unambiguously.

< In contrast, “entity” is a static notion — that is to say, applying to the software iFull definition of
An entity is an identifier appearing in the text of a class, and representing a run“entity”: page 213
value or a set of successive run-time values. (Readers used to traditional for
software development may think of the notion of entity as covering variables,
symbolic constants, routine arguments and function results.)

If bis an entity of reference type, its run-time value is a reference, which may be
attached to an object O. By an abuse of language we can < b itself is attached to O.

Void references and calls

In most situations we expect a reference to be attached to an object, but the rules also
permit a reference to be void. Void references play an important role — if only by making

§8.5 MORE ON REFERENCES 241

See chaptel?, in

a nuisance of themselves — in the object-oriented model of computation. As discus:
extensively in the previous chapter, the fundamental operation in that model is feature c
apply to an instance of a class a feature of that class. This is written

some_entitysome_ featuri(argl, ...)

wheresome_entilis attached to the desired target object. For the callto\some_entity
must indeed be attached to an objecsome_entitis of a reference type and happens to
have a void value at the time of the call, the call cannot procesome_featur needs a
target object.

To be correct, an object-oriented system must never attempt at run time to execu

particular “Sources feature call whose target is void. The effect will beexceptior; the notion of exception,

of exceptions”, page

41z.

The te<“x is not
void” may be
written simply as
x/=Voic. See

and the description of how it is possible to recover from an exception, will be discussec
a later chapter.

It would be desirable to let compilers check the text of a system to guarantee that
such event will occur at run time, in the same way that they can check the absence oft
incompatibilities by enforcing type rules. Unfortunately such a general goal is current
beyond the reach of compilers (unless we place unacceptable restrictions on the langue
So it remains the software developer’s responsibility to ensure that the execution v
never attempt a feature call on a void target. There is of course an easy way to do
always writex.f (...) as

if “x is not void’ then

x.f(...)

else

end

but this is too unwieldy to be acceptable as a universal requirement. Sometimes (as w
a callx.f immediately follows a creatia!! x) itis clear from the context thx is not void,
and you do not want to test.

The question of non-vacuity of references is part of the larger question of softwa
correctness. To prove a system correct, itis necessary to prove that no call is ever apy
to a void reference, and that all the software’s assertions (as studied in a later chapter
satisfied at the appropriate run-time instants. For non-vacuity as well as for assert
correctness, it would be desirable to have an automatic mechanism (a program pro
either integrated with the compiler or designed as a separate software tool) to ascertain
a software system is correct. In the absence of such tools, the result of a violation is a |
time error — an exception. Developers may protect their software against such situati
in two ways:

* When writing the software, trying to prevent the erroneous situations from arising
run time, using all means possible: systematic and careful development, cle
inspections, use of tools that perform at least partial checks.

« If any doubt remains and run-time failures aracoeptable, equipping the software
with provisions for handling exceptions.

242 THE RUN-TIME STRUCTURE: OBJECT<88.6

8.6 OPERATIONS ON REFERENCES

We have seen one way of changing the value of a refex: using a creation instruction
of the form!! x, which creates a new object and attacx to it. A number of other
interesting operations are available on references.

Attaching a reference to an object

So far the classes of this chapter have had attributes but no routines. As noted, this makes
them essentially useless: it is not possible to change any field in an existing object. We
need ways to modify the value of references, without resorting to instructions of the
Pascal-C-Java-C++ forimy_belovesloved _one:= me(to set theloved onefield of an

object directly), which violates information hiding and is syntactically illegal in our
notation.

To modify fields of foreign objects, a routine will need to call other routines that the
authors of the corresponding classes have specifically designed for that purpose. Let us
adapt clasPERSON to include such a procedure, which will changeloved onefield
to attach it to a new object. Here is the result:

classPERSON feature
name STRING

loved_on, landlord: PERSON2

set_love((l: PERSON) is
-- Attach theloved_on field of current object ti.
do
loved_one=1
end
end
Procedureset_love assigns to theloved on field of the current instance of
PERSON, areference field, the value of another referel. Reference assignments (like
assignments of simple values such as integers) rely on:= symbol, with the

assignment’s source on the right and the target on the left. In this case, since both source
and target are of reference types, the assignment is said to be a reference assignment.

The effect of a reference assignment is exactly what the name suggests: the target
reference gets reattached to the object to which the source reference is attached — or
becomes void if the source was void. Assume for example that we start with the situation
shown at the top of the facing page; to avoid cluttering the picturlandlord fields and
the irrelevanloved_on¢fields have been left blank.

Assume that we execute the procedure call

a.set_lovec(r)

§8.6 OPERATIONS ON REFERENCES 243

a
referonce y Ol f
assignment name/"Almaviva"
landlord
loved_ong
02¢ (PERSONY). \/ 03
name "Susanna' name "Rosina"
landlord landlord
loved_one loved_one
(PERSON) (PERSONY).

wherea is attached to the top objeO1) andr to the bottom-right objecO3). From the
way set_love has been written, this will execute the assignment

loved_one=1

with Olas the current object al having the same valuer, a reference tO3. The result
is to reattach thloved_on field of O1:

a ——
After V O1 r
reference amdh —
assignment Almaviva
landlord
loved_one
02 (PERSON} l' 03
name "Susanna" name "ROSina"
landlord landlord
loved_one loved_one

(PERSONY (PERSON}

244 THE RUN-TIME STRUCTURE: OBJECT<88.6

If r had been a void reference, the assignment would have maloved on field
of Ol void too.

A natural question at this stage is: what happens to the object to which the modified field
was initially attached — O2 in the figure? Will the space it occupies be automatically
recycled for use by future creation instructions?

This question turns out to be so important as to deserve a chapter of its own — the next
chapter, on memory management and garbage collection. So please hold your breath until
then. But it is not too early for a basic observation: regardless of the final answer, a policy
that would always recycle the object’'s space would be incorrect. In the absence of further
information about the system from which the above run-time structure is extracted, we do
not know whether some other reference is still attached to O2. So a reference assignment
by itself does not tell us what to do with the previously attached object; any mechanism
for recycling objects will need more context.

Reference comparison

In the same way that we have an operation := assignment) to attach a reference to an
object, we need a way to test whether two references are attached to the same object. This
is simply provided by the usual equality opere=.r

If x andy are entities of reference types, the expression
X=Yy
is true if and only if the corresponding references are either both void or both attached to

the same objects. The opposite operator, “not equal”, is w/= (a notation borrowed
from Ada).

For example, the expression
r = a.loved_one

has value true on the last figure, where both sides = sign denote references attached
to the objecO3, but not on the next-to-last figure, whedoved_on is attached tO2
andr is attached tO3.

In the same way that an assignment to a reference is a reference operation, not an
operation on objects, the expressix =y andx /=y compare references, not objects. So
if x andy are attached to two distinct objex = y has value false even if these objects are
field-by-field identical. Operations which compare objects rather than reference will be
introduced later.

The void value

Although it is easy to get a void reference — since all reference fields are by default
initialized to Void —, we will find it convenient to have a name for a reference value
accessible in all contexts and known always to be void. The predefined feature

Void

will play that role.

§8.6 OPERATIONS ON REFERENCES 245

Two common uses (Void are to test whether a certain reference is void, as in
if x=Voidthen ...

and to make a reference void, using the assignment
X := Void

This last assignment has the effect of putting the reference back to the void state,
so of de-attaching it from the attached object, if any:

De-attaching a X
reference from Q ¢ o1 BEFORE
an object

The comment made in the general discussion of reference assignment is worth repeating
here: the assignment Void to x has no immediate effect on the attached obO1 in

the figure); it simply cuts the link between the reference and the object. It would be
incorrect to understand it as freeing the memory associatecO1, since some other
reference may still be attachedO1 even afteix has been de-attached from it. See the
discussion of memory management in the next chapter.

Object cloning and equality

Reference assignments may cause two or more references to become attached to a ¢
object. Sometimes you will need a different form of assignment, which works on tt
object itself: rather than attaching a reference to an existing object, you will want to cre:
a new copy of an existing object.

This goal is achieved through a call to a function ceclone. If y is attached to an
objectQY, the expression

clone(y)

246 THE RUN-TIME STRUCTURE: OBJECT<88.6

denotes a new objeOX, such thaOX has the same number of fieldsOY, each field
of OX being identical to the corresponding fieldOY. If y is void, the value aclone(y)

is also void.

To duplicate the object attachedy and attach the resulting objectx (or makex
void if y is void), you may use a call clone in an assignment:

[1]

X := clone(y)

Here is an illustration of this mechanism.

BEFORE Cloning an
oy object
N
783
AFTER
oYy OX
N A
783 783

We similarly need a mechanism to compare two objects. The expr x =y, as
noted, fulfills another purpose: comparing references. For objects, we will use function

equa. The call

equal(x, y)

returns a boolean value, true if and onlx andy are either both void, or attached to two
objects whose corresponding fields have the same values. If a system executes the clone
assignment [1], the state immediately following that assignment will siequal(x, y).

You may wonder why functioclone has an argument, alequa two arguments treated “The form of clone

symmetrically, rather than being called under forms closer to the usual object-oriented qnd equality opera-
style, for exampley.twin and x.is_equal(y). The answer appears in the discussion ~UONS”. page 274

section, but it is not too early to to guessiit.

§8.6 OPERATIONS ON REFERENCES 247

See chaptell
about assertior.s

Object copying

Functionclone creates a new object as a carbon copy of an existing one. Sometimes
target object already exists; all we want to do is to overwrite its fields. Proccopye
achieves this. It is called through the instruction

x.copy(y)

for x andy of the same type; its effect is to copy the fields of the object attacly onto
the corresponding ones of the object attachex. to

As with all feature calls, any call icopy requires the targex to be non-void. In
addition,y must also be non-void. This inability to deal with void values distinguishe:
copy from clone.

The requirement they must be non-void is so important that we should have a way to
express it formally. The problem is in fact more general: how a routine can state the
preconditions on the arguments passed by its callers. Such preconditions, a case of the
more general notion of assertion, will be discussed in detail in a later chapter. Similarly,
we will learn to express gostconditions such fundamental semantic properties as the
observation made above that the result clone will satisfy equa.

Procedurecopy may be considered more fundamental than funcclone in the
sense that we can, at least for a class with no creation procedure, clonein terms of
copy through the following equivalent function:

clone(y: SOME_TYP) is
-- Void if y is void; otherwise duplicate of object attachew to

do
if y/=Voidthen
Il Result -- Valid only in the absence of creation procedures
Resultcopy(y)
end
end

On execution of a function caResul is automatically initialized using the same
rules defined above for attributes. This is the reason whif needs nelse: sinceResult
is initialized toVoid, the result of the above function is a void valuy is void.

Deep clone and comparison

The form of copy and comparison achieved by routclone, equa andcopy may be
calledshallow since these operations work on an object at the first level only, never tryir
to follow references. There will also be a need deef variants which recursively
duplicate an entire structure.

248 THE RUN-TIME STRUCTURE: OBJECT<88.6

To understand the differences assume for example that we start with the object
structure appearing in black (except for the attribute and class namesAiin the figure
on the facing page, where the enais attached to the object labeled O1.

For purposes of comparison, consider first the simple reference assignment
b:=a

As pictured undeB, this simply attaches the assignment’s tab to the same object
01 to which the sourca was attached. No new object is created.

Next consider the cloning operation
¢ :=clone(a)

This instruction will, as shown undQC, create a single new object O4, field-by-field
identical to O1. It copies the two reference fields onto the corresponding fields of O4,
yielding references that are attached to the same 0 O1 and O3 as the originals. But it
does not duplicate O3 itself, or any other object other than O1. This is why thiclonsic
operation is known as shallow: it stops at the first level of the object structure.

Note that a self-reference has disappearediandlord field of O1 was attached to O1
itself. In O4 this field becomes a reference to the original O1.

In other cases, you may want to go further and duplicate a structure recursively,
without introducing any sharing of references such as occurred in the creation of O4. The
function deep_clon achieves this. Instead of stopping at the object attachwy, the
process of creatindeep_clone(y) recursively follows any reference fields contained in
that object and duplicates the entire structurey is void the result is void too.) The
function will of course process cyclic reference structures properly.

The bottom part of the figure, labelD, illustrates the result of executing
d := deep_clon¢a)

This case introduces no new sharing; all the objects accessible directly or indirectly
from O1 (the object attached a) will be duplicated, yielding new objects O5, O6 and O7.
There is no connection between the old objects (01, 02 and O3) and the new. Object O5,
mimicking O1, has a self-reference.

In the same way that we need both deep and shallow clone operations, equality must
have a deep variant. Tldeep_equ:function compares two object structures to determine
whether they are structurally identical. In the figure’s exandeep_equaholds between
any two ofa, b andd; but whereaequal(a, c) is true, since the corresponding objeO1s
and O4 are field-by-field identicalequal (a, d) is false. In factequa does not hold
betweend and any of the other three. (Bcequal(a, b) andequal (b, c) hold.) In the
general case we may note the following properties:

« After an assignmerx:= clone(y) or a callx.copy(y), the expressioequal(x, y) has
value true. (For the first assignment this property holds whether « is void.)

« After x := deep_cloni(y), the expressiodeep equa(x, y) has value true.

These properties will be expressed as postconditions of the corresponding routines.

88.6 OPERATIONS ON REFERENCES 249
Various forms a
of assignment
andcloning A |nitial state
vy yO!
name|"Almaviva"
landlord —:I
loved_ong _|
(PERSON)L
02 O
name "Figaro" "Susanng" name
landlord landlord
loved_onsg —<—> loved_one
(PERSON). (PERSON).
B Effect ofb:=a
o4
name|"Almaviva'
C Effect ofc := clone(a) landlord
loved_one| —
® |
D Effect ofd := deep_clonga)
®
Y 05
name["Almaviva’| g
landlord fj
loved_one
(PERSONIL
06 O7y
name "Figaro" "Susanna" name
landlord landlord
loved_one - loved_one
(PERSON)Y (PERSON1L

250 THE RUN-TIME STRUCTURE: OBJECT<88.6

Deep storage: a first view of persistence

The study of deep copy and equality leads to another mechanism which, in environments
where it is available, provides one of the great practical advantages of the O-O method.

So far, the discussion has not examined the question of input and output. But of
course an object-oriented system will need to communicate with other systems and with
the rest of the world. Since the information it manipulates is in the form of objects, this
means it must be able to write and read objects to and from files, databases,
communication lines and various devices.

For simplicity this section will assume that the problem is to write to and write from files,
and will use the terms “storage” and “retrieval” for these operations (“input” and “output”
would also be adequate.) But the mechanisms studied must also be applicable for
exchanging objects with the outside world through other means of communication, for
example by sending and receiving objects through a network.

For instances of such classesPOINT or BOOK], storage and retrieval of objects
raise no particular novelty. These classes, used as the first examples at the beginning of
this chapter, have attributes of types suclINTEGEF, REAL andSTRINGC, for which
well-understood external representations are available. Storing an instance of such a class
into a file, or retrieving it from that file, is similar to performing an output or input
operation on a Pascal record or a C structure. Account must be taken, of course, of the
peculiarities of data representations on different machines and in different languages (C,
for example, has a special convention for strings, which the language expects to be
terminated by a null character); but these are well-known technical problems for which
standard solutions exist. So it is reasonable to expect that for such objects a good O-O
environment could provide general-purpose proceduresead andwrite, which, in the
manner oiclone, copy and consorts, would be available to all classes.

But such mechanisms will not take us very far because they do not handle a major
component of the object structure: references. Since references can be represented in
memory (as addresses or otherwise) itis possible to find an external representation as well.
That is not the difficult part of the problem. What matters is the meaning of these
references. A reference attached to an object is worthless without that object.

So as soon as we start dealing with non-trivial objects — objects that contain
references — we cannot satisfy ourselves any more with a storage and retrieval
mechanism that would just work on individual objects; the mechanism must process,
together with an object, all its dependents according to the following definition:

Definition: direct dependents, dependents
The direct dependents of an object are the objects attached to its reference
fields, if any.

The dependents of an object are the object itself and (recursively) the
dependents of its direct dependents

§8.6 OPERATIONS ON REFERENCES 251

With the object structure shown below (identical to earlier examples), it would b
meaningless to store into a file, or transmit over a network, just the (O1. The
operation must also include the dependeniO1: 02 andO3.

o1

Three mutually name "Almaviva" |[€——
dependent
objects landlord
loved_one
(PERSON).
02 O3y
name "Figaro" "Susanna" | name
landlord landlord
loved_one — - loved_one
(PERSON). (PERSON).
In this example any one of the three objects has the other two as dependents. In
BOOK?:= example reproduced below, we may stW1 by itself, and whenever we store
B1 or B2 we must store W1 as well.
Bl B2
“Book” and , _
“\Writer” title | "The R. and the B. titte | "Life of Rossini"
objects date 1832 date 1823
page_ age
count e Fc)o%nt_ £
author autho
(BOOK3 (BOOK3
w1

name| "Stendhal"

real_name'Henri Beylé
birth__year 1783
death_yea 1842

(WRITER

The notion of dependent was implicitly present in the presentatideep_equi.l
Here is the general rule:

252 THE RUN-TIME STRUCTURE: OBJECT<88.6

Persistence Closure principle

Whenever a storage mechanism stores an object, it must store with it the
dependents of that object. Whenever a retrieval mechanism retrigves a
previously stored object, it must also retrieve any dependent of that pbject
that has not yet been retrieved.

The basic mechanism which will achieve this for our purposes is known as the
STORABL facility from the name of the Base library class which includes the
corresponding features. The basic featureSTORABL! are of the form:

store(f: IO_MEDIUM)
retrieved(f: IO_MEDIUM): STORABLE

The effect of a call of the forix store(f) is to store the object attachecx, together
with all its dependents, in the file associated vi. The object attached x is said to be
thehead objec of the stored structure. The generating clasx must be a descendant of
STORABL (that is to say, it must inherit directly or indirectly frSTORABLI); so you
will have to adcSTORABLI to the list of its parents if itis not already there. This applies
only to the generating class of the head object; there is no particular requirement on the
generating classes of the dependent objects — fortunately, since a head object can have
an arbitrary number of direct and indirect dependents, instances of arbitrary classes.

ClasslO_MEDIUM is another Base library class, covering not only files but also
structures for network transmission. Clesf must be non-void and the attached file or
transmission medium must be writable.

The result of a caretrieved(f) is an object structure recursively identical, in the sense
of deep_clon, to the complete object structure storef by an earlier call tstore. Feature
retrievecis a function; its result is a reference to the head object of the retrieved structure.

If you have already acquired a basic understanding of inheritance and of the associate(Se¢*ASSIGNMENT
type rules, you may have noted tretrievec raises a typing problem. The result of this ~ ATTEMPT", 16.5,
function is of typeSTORABL], but it seems that its normal use will be in assignments of page 59..

the formx = retrieved(f) where the type cx is a proper descendantSTORABL, not

STORABL itself, even though the type rules will perix := y only if the type oly is a

descendant of the type x — not the other way around. The key to this problem will be

an important construct, tlassignment attemp. All this will be examined in detail when

we study inheritance and the associated type rules.

TheSTORABL mechanism is our first example of what is known persistence
facility. An object is persistent if it survives individual sessions of the systems that
manipulate it.STORABLI only provides a partial solution to the persistence problem,
suffering from several limitations:

§8.6 OPERATIONS ON REFERENCES 253

Chapter31.

* In the structure stored and retrieved, only one object is known individually: the he:
object. It may be desirable to retain the identity of other objects too.

* As a consequence, the mechanism is not directly usable to retrieve obje
selectively through contents-based or keyword-based queries as in datab
management systems.

< A call toretrievec recreates the entire object structure. This means that you cannot
two or more such calls to retrieve various parts of a structure, unless they are disjoi

To address this problem is to move from a mere persistence mechanism to the no
of object-oriented database, presented in a later chapter, which also discusses a numt
issues associated wiSTORABL!I and other persistence mechanisms, such as schen
evolution (what happens when you retrieve an object and its class has changed?)
persistent object identity.

But the above limitations should not obscure the considerable practical benefits
the STORABLI mechanism as described above. In fact one may conjecture that t
absence of such a mechanism has been one of the major obstacles to the us
sophisticated data structures in traditional development environments. Witho
STORABLI or its equivalent, storing a data structure becomes a major programmil
effort: for every kind of structure that you want to endow with persistence properties yt
must write a special input and output mechanism, including a set of mutually recursi
procedures (one for each type) and special-purpose traversal mechanisms (which
particularly tricky to write in the case of possibly cyclic structures). But the worst part |
not even the work that you have to do initially: as usual, the real trouble comes when
structure changes and you have to update the procedures.

With STORABLI a predefined mechanism is available regardless of your objec
structure, its complexity, and the software’s evolution.

A typical application of thiSTORABLI mechanism is a SAVE facility. Consider an
interactive system, for example a text editor, a graphical editor, a drafting program o
computer-aided design system; it needs to provide its users with a SAVE commanc
store the state of the current session into a file. The information stored should be suffici
to restart the session at any later time, so it must include all the important data structt
of the system. Writing such a procedure in an ad hoc fashion suffers from the difficulti
mentioned; in particular, you will have to update it whenever you change a class dur
development. But with thSTORABLI mechanism and a good choice of head object, yol
can implement the SAVE facility using a single instruction:

head store(save_ fili)

Just by itself, this mechanism would suffice to recommend an object-oriente
environment over s more traditional counterparts.

254 THE RUN-TIME STRUCTURE: OBJECT<88.7

8.7 COMPOSITE OBJECTS AND EXPANDED TYPES

The preceding discussion described the essentials of the run-time structure. It gives an
important role to references. To complete the picture, we must see how to handle values
which arenot references to objects, but the objects themselves.

References are not sufficient

The values considered so far, save for integers, booleans and the like, were references to
objects. Two reasons suggest that we may also need entities whose values are objects:

« An important goal announced in the last chapter is to have a completely uniform type
system, in which basic types (suchBOOLEANandINTEGEF) are handled in the
same way as developer-defined types (sucPOINT or BOOK). But if you use an
entity n to manipulate an integer, you will almost always want the valir to be
an integer, for example 3, not a reference to an object containing the value 3. The
reason is partly efficiency — think of the penalty in both time and space that we
would have to incur if every integer access were indirect; just as important in this
case is the goal of faithful modeling. An integer is conceptually not the same thing
as a reference to an integer.

« Even with complex, developer-defined objects, we may prefer in some cases to
consider that objecO1 contains a subobjeO2, rather than a reference to another
objectO2. The reason again may be efficiency, faithful modeling or both.

Expanded types
The answer to the need for modeling composite objects is simpleC be a class
declared, as all classes so far, under the form

class C feature

end

C may be used as a type. Any entity declared of C represents a reference; for
that reasolIC is called ereference type.

Now assume that we need artity x whose value at run time will be an instance of
C — not a reference to such an instance. We may obtain this effect by dex asng

X : expandecC

This notation uses a new keywoexpandec. The notatiorexpandec C denotes a
type. The instances of this type are exactly the same as the instarC. The only
difference affects declarations using these types: an entity oiC denotes a reference
which may become attached to an instancC; an entity of typeexpandec C, such ax
above, directly denotes an instanceC. f

This mechanism adds the notion of composite object to the structure defined in the
preceding sections. An objeQ is said to be composite if one or more of its fields are

§8.7 COMPOSITE OBJECTS AND EXPANDED TYPES 255

themselves objects — callesubobjects of O. The following example class (routines
again omitted) shows how to describe composite objects:
classCOMPOSITI feature
ref: C
suk: expandec C
end
This class relies oIC declared as aboviCOMPOSITEhas two attributesref,

denoting a reference, arnsuk, denoting a subobjecisub is what makes the class
composite. Any direct instance COMPOSITEmay look like this:

A composite f
object with one e
subobject
—»
-
sub C
(©) ©
(COMPOSITH).

Theref field is a reference attached to an instancC (or void). Thesubfield
(which cannot be void) contains an instancC. f

A notational extension is convenient here. You may sometimes write ¢& with;
the intention that all entities declared of t\E should be expanded. To make this intention
explicit, declare the class as

expanded clas:E feature
... The rest as for any other cle...5
end

A class defined in this manner is said to be an expanded class. Here too the r
declaration changes nothing for instanceE: they are the same as if the class had beer
declared as jusclas< E ... But an entity declared of tyfE will now denote an object, not
a reference. As a consequence of this new possibility, the notion of “expanded tyf
includes two cases:

Definition: expanded type

A type is said to be expanded in the following two cases:
* Itis of the formexpandec C.

« Itis of the formE, whereE is an expanded class.

256 THE RUN-TIME STRUCTURE: OBJECT<88.7

It is not a mistake to declare an entx as being of typexpandec E if E is an
expanded class, just useless, since the result in this case is the same as if yox teeclare
be just of typeE.

We now have two kinds of type; a type which is not expandereference type(a
term already used in this chapter). We may apply the same terminology to the entities
correspondingly declared: reference entities and expanded entities. Similarly, a class is an
expanded class if it has been declareexpandec clas:..., a reference class otherwise.

The role of expanded types

Why do we need expanded types? They play three major roles:
* Improving efficiency.
* Providing better modeling.
« Supporting basic types in a uniform object-oriented type system.

The first application may be the most obvious at first: without expanded types, you
would have to use references every time you need to describe composite objects. This
means that accessing their subobjects would require an operation to follow a reference —
“dereferencing”, as it is sometimes called — which implies a time penalty. There is also a
space penalty, as the run-time structure must devote space to the references themselves.

This performance argument is not, however, the prime justification. The key
argument, in line with this chapter's general emphasis on object-oriented software
construction as a modeling activity, is the need to model composite objects separately
from objects that contain references to other objects. This is not an implementation issue
but a conceptual one.

Consider the two attribute declarations
D1 eref: S
D2 s exp: expandec S

appearing in a clasC (and assuming th:S is a reference class). Declaration D1 simply
expresses that every instanceC “knows about” a certain instance < (unlessrei is
void). Declaration D2 is more committing: it states that every instancecontains an
instance oS. Aside from any implementation issue, this is a quite different relation.

In particular, the “contains” relation as provided by expanded types does not allow
anysharing of the contained elements, whereas the “knows about” relation allows two or
more references to be attached to the same object.

You may apply this property to ensure proper modeling of relations between objects.
Consider for example this class declaration:

§8.7 COMPOSITE OBJECTS AND EXPANDED TYPES 257

All classes shown classWORKSTATIO! feature
are assumed to be
reference(non_ k expande(KEYBOARD
expande) classe c: expandec CPU
m: expandec MONITOR
n: NETWORK
end

Under this model a computer workstation has a keyboard, a CPU (central process
unit) and a monitor, and is attached to a network. The keyboard, CPU and monitor are |
of a single workstation, and cannot be shared between two or more workstations. T
network component, however, is shared: many workstations can be hooked up to the s
network. The class definition reflects these properties by using expanded types for the 1
three attributes, and a reference type for the network attribute.

“Knows about”
and “contains”
between c
objects c ‘
(WORKSTATION (WORKSTATION (WORKSTATION
Y l L
(NETWORL).

So the concept of expanded type, which at first sight appears to be .
implementation-level technique, actually helps describe some of the relations used
information modeling. The “contains” relation, and its inverse often known as “is-par
of ", are central to any effort at building models of external systems; they appear
analysis methods and in database modeling.

Se€’A UNIFORM The third major application of expanded types is in fact a special case of the seco

TYPESYSTEM”, 7.4, : . S .
page 171The outiine The previous chapter emphasized the desirability of a uniform type system, based on

of classREALwas on hotion of class, which must encompass both developer-defined types and basic types.
pageld9 example oREAL was used to show how, with the help of infix and prefix features, we ca

258 THE RUN-TIME STRUCTURE: OBJECT<88.7

indeed model the notion of real number as a class; we can do the same for the other basic
typesBOOLEAN CHARACTEI, INTEGEF, DOUBLE. But a problem remains. If these
classes were treated as reference classes, an entity declared of a basic type, such as

r: REAL

would at run time denote a reference to a possible object containing a value (here of type
REAL). This is unacceptable: to conform to common practice, the valr should be the

real value itself. The solution follows from the earlier discussion: define REAL as
expanded. Its declaration will be

expandec class REALfeature
... Feature declarations exactly as given earlier (see page....89)
end

All the other basic types are similarly defined by expanded classes.
Aggregation

In some areas of computing science — databases, information modeling, requirements
analysis — authors have developed a classification of the relations that may hold between
elements of a modeled system. Often mentioned in this context is the “aggregation”
relation, which serves to express that every object of a certain type is a combination (an
aggregate) of zero or more objects, each of a specified type. For example we might define
“car” as an aggregation of “engine”, “body” etc.

Expanded types provide the equivalent mechanism. We may for example declare
classCARwith features of typeexpandedENGINEandexpandedBODY. Another way
to express this observation is to note that aggregation is covered by the “expanded client”
relation, where a clasC is said to be an expanded client of a clS if it contains a
declaration of a feature of tyexpandedS(or justS if Sis expanded). One advantage of
this modeling approach is that “expanded client” is just a special case of the general client
relation, so that we can use a single framework and notation to combine aggregation-like
dependencies (that is to say, dependencies on subobjects, such as the relation between
WORKSTATIO andKEYBOARI in the earlier example) with dependencies that permit
sharing (such as the relation betwWWORKSTATIO andNETWORI).

With the object-oriented approach, one can avoid the multiplicity of relations found
in the information modeling literature, and cover all possible cases with just two relations:
client (expanded or not) and inheritance.

Properties of expanded types

Consider an expanded tyE (of either form) and an expanded enx of typeE.
Since the value o is always an object, it can never be void. So the expression
x = Void

will always yield the value false, and a call of the fcxrsomefeatur(argl, ...) will - “Void references and
never raise the exception “call on void target” that was possible in the case of referalls’. page 240

§8.7 COMPOSITE OBJECTS AND EXPANDED TYPES 259

See “Effect of a
basic creation
instructior”, page
238,

Cycles in the client
relation were stud-
ied in“Self-refer-
ence”, page 226

Let object O be the value x. As with the case of a non-void referenx is said to
be attached to O. So for any non-void entity we may talk of the attached object, whet|
the entity is of reference or expanded type.

What about creation? The instruction
I x

may be applied to an expandx. For referenc, its effect was to perform three steps:
(C1) create a new objeciC2) initialize its fields to the default value«C3) attach it tox.
For expandewx, stepC1is inappropriate, and stC3is unneeded; so the only effectis to
set all fields to their default values.

More generally, the presence of expanded types affects the default initializati
performed as part of C2. Assume a class, expanded or not, having one or m
expanded attributes:

classF feature
u: BOOLEAN
v: INTEGER
w: REAL
x: C
y: expandecC
z. E

end

whereE is expanded buC is not. The initialization of a direct instance F involves
setting theu field to false, thev field to 0, thew field to 0.0, thex field to a void reference,
and thiy andz to instances cC andE respectively, whose fields are themselves initialized
according to the standard rules. This initialization process is to be applied recursive
sinceC andE may themselves include expanded fields.

As you may have realized, a restriction is necessary for expanded types to be us:
(to ensure that the recursive process just defined always remains finite): although,
discussed eatrlier, the client relation may in general include cycles, such cycles must m
no use of expanded attributes. For example it is not permitted for C to have an
attribute of typeexpandec D if classD has an attribute of typexpandec C; this would
mean that every object of ty|C includes a subobject of ty|D: and conversely — a clear
impossibility. Hence the following rule, based on the notion of “expanded client” alreac
introduced informally above:

Expanded Client rule

Let “expanded client” the relation between classes be defined as foCows:
is an expanded client <€ if some attribute oC is of an expanded type based
on S(that is to sayexpandec S, or justs if S is an expanded class).

Then the expanded client relation may not include any cycles.

260 THE RUN-TIME STRUCTURE: OBJECT<88.7

In other words there may not be a set of claA, B, C, ... N such thaiA is an
expanded client cB, B an expanded client («C etc., withN being an expanded client of
A. In particular A may not have an attribute of tyexpandec A, as this would makA an
expanded client of itself.

No references to subobjects

A final comment about expanded types will answer the question of how to mix references
and subobjects. An expanded class, or an expanded type based on a reference class, may
have reference attributes. So a subobject may contain references attached to objects:

O_COMP

A subobject
other with a
oc reference to
of another object
sub y OD
X
y
(©) I
(D)

(COMPOSITE).

The situation pictured assumes the following declarations:

classCOMPOSITE feature
other: SOME_TYPE
suk: expandecC

end

classC feature

ref: D

x: OTHER_TYP;y: YET_ANOTHER_TYPE
end

classD feature

end

EachCOMPOSITEinstance, such as O_COMP in the figure, has a subobject (OC in
the figure) containing a referenwef which may be attached to an object (OD in the
figure).

But the reverse situation, where a reference would become attached to a subobject,
is impossible. (This will follow from the rules on assignment and argument passing,
studied in the next section.) So the run-time structure can never come to the state
described by the picture on the facing page, where OE contains a reference to OC, a
subobject of O_CMP1, and OC similarly contains a reference to itself.

§8.8 ATTACHMENT: REFERENCE AND VALUE SEMANTICS 261

A reference to
a subobject

Garbage collection
is studied in the next

chapter

If skipping go to

“DEALING WITH
REFERENCES:

BENEFITS AND
DANGERS”, 8.9,
page 265

O_CMP1 OE
other
OCy
ref - | (E)
sub | X WARNING
y IMPOSSIBLE SITUATION
© (FOR PURPOSES OF
(COMPOSITEL ILLUSTRATION ONLY)

This rule is open to criticism since it limits the modeling power of the approact
Earlier versions of this book’s notation did in fact permit references to subobjects. But t
possibility was found to cause more problems than it was worth:

< From the implementation’s perspective, the garbage collection mechanism must
prepared to deal with subobject references even if in a given execution there are
such references, or none at all. This caused a significant performance degradatic

« From the viewpoint of modeling, excluding subobject references actually turned o
to simplify system descriptions by defining a single unit of referencing, the object

The discussion will point out what precise attachment rule would have to k
modified to revert to the scheme in which references may be attached bjects.o

8.8 ATTACHMENT: REFERENCE AND VALUE SEMANTICS

(This section covers more specialized information and you may skip it on first reading.

The introduction of expanded types means that we must take a second look at 1
fundamental operations studied earlier in this chapter: assignment, w:=, which
attaches a reference to an object, and the associated comparison operitisor=. Since
entities may now denote objects as well as references to objects, we must decide v
assignment and equality will mean in the first of these cases.

Attachment

The semantics of assignment will actually cover more than this operation. Another case
which the value of an entity may change is argument passing in routine calls. Assum
routine (procedure or function) of the form

r(...,x. SOME_TYP,...)

Here entityx is one of thdormal arguments of r. Now consider a particular call to
r, of one of the possible two forms (unqualifand qualified):

r(..y...)
tr (b, ...)

where expressioy is theactual argumeni having the same position in the list of actual
arguments ax has in the list of formal arguments.

262 THE RUN-TIME STRUCTURE: OBJECT<88.8

Wheneverr gets started as a result of one of these calls, it initializes each of its
formal arguments with the value of the corresponding actual argument, sy for x.

For simplicity and consistency, the rules governing such actual-formal argument
associations are the same as the rules governing assignment. In other words, the initial
effect onx of such a call is exactly asx were the target of assignment of the form

X:=y
This rule yields a definition:

Definition: attachment

An attachment oy tox is either of the following two operations:
* An assignment of the forix :=y.

« The initialization ofx at the time of a routine call, whex is a formal
argument of a routine ary. is the corresponding actual argument
the call.

in

In both casesx is thetarget of the attachment ary its source.

Exactly the same rules will be applicable in both cases to determine whether an
attachment is valid (depending on the types of its target and source) and, if it is, what effect
it will have at execution time.

Reference and copy attachment

We have seen a first rule for the effect of attachment when studying reference assignment.
If both source and target are references, then the effect of an assignment

X:=y

and of the corresponding argument passing is to rx denote the same reference yas

This was illustrated through several examplesy is void prior to the attachment, the
operation will makex void too; ify is attached to an objewx will end up attached to the
same object.

What now if the types cx andy are expanded? Reference assignment would not
make sense, but a copy (the shallow form) is possible. The meaning of an attachment of
an expanded source to an expanded target will indeed be a copy. With the declarations

X, y: expandec SOME_CLASS

the assignme x := y will copy every field of the object attached y onto the
corresponding field of the object attachecx, producing the same effect as

x.copy (y)

which of course is still legal in this case. (In the case of reference tx := y and
x.copy(y) are both legal but have different effects.)

§8.8 ATTACHMENT: REFERENCE AND VALUE SEMANTICS 263

This copy semantics for expanded types yields the expected effect in the case of
basic types which, as noted above, are all expanded. For exarm andn have been
declared of typd NTEGEF, you will expect the assignmem := n, or a corresponding
argument passing, to copy the value onto that oim.

The analysis just applied to attachment transposes immediately to a related operat
comparison. Consider the boolean expressx =y andx /=y, which will have opposite
values. Fox andy of reference types, as already noted, the tests compare refeix =ces:
y yields true if and only ix andy are either both void or both attached to the same object
For expandewx andy, this would not make sense; the only acceptable semantics is to u
field-by-field comparison, so that in this cex =y will have the same value equal(x, y).

“Fixed semantics It is possible, as we will see in the discussion of inheritance, to adapt the semantics of
for copy, clone and equalto support a specific notion of equality for the instances of some class. This has no
equality features”, effect on the semantics =, which, for safety and simplicity, is always that of the original
page 583 functionstandard_equall

The basic rule for attachment and comparison, then, is summarized by t
following observation:

An attachment oy tox is a copy of objectx if x andy are of expanded typas
(including any of the basic types). It is a reference attachmx andy are
of reference types.

Similarly, an equality or inequality tex = y or x /=y is a comparison off
objects foix andy of expanded types; itis a comparison of referencx and
y are of reference types.

Hybrid attachments

In the cases seen so far, the source and target types of an attachment are of the
category — both expanded or both reference. What if they are of different categories?

See chaptel?, in First considex := y where the targex is of an expanded type and the soty is of a
particular “Sources reference type. Because reference assignment does not make sx, the only acceptable
Zfl;)(cept'ons +P3%€ semantics for this attachment is copy semantics: copy the fields of the object attey:hed
onto the corresponding fields of the object attachex. This is indeed the effect of the
assignment in this case; but it only makes seny is non-void at the time of execution
(otherwise there is no attached objecty is void, the result will be to trigger an exception.
The effect of exceptions, and the specification of how to recover from an exception, «
discussed in a later chapter.
For expanderx, the tesx = VVoic does not cause any abnormal event; it simply yields the
result false. But there is no way we can find an acceptable semantics for the assignment
x :=Void, so any attempt at executing it causes an exception.
Now consider the other casx := y wherex is of a reference type ary is of an
expanded type. Then at run tiry is always attached to an object, which we mayQY,
and the attachment should also atix to an object. One possibility would be to attx to
QY. This convention, however, would introduce the possibility of references to subobjec
as in routinereattact below:

264 THE RUN-TIME STRUCTURE: OBJECT<88.8

classC feature

end

class COMPOSITEfeature
x. C
y: expandec C

reattachis
dox:=yend
end
If, as suggested earlier, we prohibit references to subobjects, we may in such a case
prescribe that the attachment perforiclone of OY. This will indeed be the effect of the

attachment for expanded source and reference target: attach the target to a clone of the
source object.

The following table summarizes the semantics of attachment in the cases studied:

Type of sourcy — | Reference Expanded Effect of
attachment
. Type of targex X:=y
Reference attachment| Clone; effect of
Reference x := clone(y)
Copy; effect of Copy; effect of
Expanded x.copy (y) Xx.copy(y)

(will fail if y is void)

To allow references to subobjects, it would suffice to replace the clone semantics
defined in the top-right entry by the semantics of reference attachment.

Equality comparison

The semantics of equality comparison (= and/= signs) should be compatible with
the semantics of attachmenty /= zis true and you execux :=y, then bottx =y and
x /= zshould be true immediately after the assignment.

Besides=, we have seen that there is an opereequa applicable to objects. Which
of these operations is available depends on the circumstances:

El«If x andy are references, you can test both for reference equality and, if the
references are not void, for object equality. We have defined the opex =y as
denoting reference equality in this case. Jequa function was introduced to
cover object equality; for completeness it also applies wx or y is void
(returning true in this case only if both are).

§8.9 DEALING WITH REFERENCES: BENEFITS AND DANGERS 265

Meaning of
comparison

X=y

E2« If xanc yare expanded, the only operation that makes sense is object comparisc

E3« If x is a reference any is expanded, object equality is also the only meaningful
operation — again extended to accept \x, in which case it will return false since
y cannot be void.

This analysis yields the desirable interpretation = in all cases. For object
comparisonequa is always available, conveniently extended to deal with cases in whic
one or both operands are vo= serves to apply reference comparison when it makes
sense, defaulting tequa in other cases:

Type ofy — | Reference Expanded

| Type ofx

Reference comparison | equal(x, y)
Reference i.e. object comparison X
non-void, false iix void.

equal(x, y) equal(x, y)
Expanded i.e. object comparison y | i.e. object comparison.
non-void, false iy void.

By comparing with the preceding table, you may check 9 and/= are indeed
compatible witr:=in the sense defined above. Recall in particularequal(x, y) will be
true as a result := clone(y) or x.copy(y).

This issue that we have just settled arises in any language which includes pointe
references (such as Pascal, Ada, Modula-2, C, Lisp etc.), but is particularly acute in
object-oriented language in which all non-basic types are reference types; in addition,
reasons explained in the discussion section, the syntax does not explicitly show then
be refereces, o we need tbe particularly careful.

8.9 DEALING WITH REFERENCES: BENEFITS AND DANGERS

Two properties of the run-time model, as introduced in the preceding sections, dese
further examination. One is the important role of references; the other is the dt
semantics of basic operations such as assignment, argument passing and equality
which, as we have seen, produce different effects for reference and expanded operan

Dynamic aliasing

If x andy are of reference types ary is not void, the assignmerx := y, or the
corresponding attachment in a call, cawx andy to be attached to the same object.

266 THE RUN-TIME STRUCTURE: OBJECT<88.9

Sharing as a
@ ¢ ¢ @ result of an

attachment

IAI

783

The result is to binx andy in a durable way (until any further assignment to any of
them). In particular, an operation of the formf, wheref is some feature of the
corresponding class, will have the same effewt.f since they affect the same object.

The attachment cx to the same object ¢ is known as dynamic aliasing: aliasing
because the assignment makes an object accessible through two references, like a person
known under two names; dynamic because the aliasing occurs at run time.

Static aliasing, where a software text specifies that two names will always denote the
same value regardless of what happens at execution time, is also possible in some
programming languages: the FortEQUIVALENCE directive states that two variables

will always denote the contents of the same memory location; and the C preprocessor
directive #define x \specifies that any further occurrencex in the program text means
exactly the same thing .

Because of dynamic aliasing, attachment operations have a more far-reaching effect
on entities of reference types than on those of expanded typx andy are of type
INTEGEF, an example of expanded type, the assignrx := y only resets the value xf
using that oly; but it does not durably binx andy. For reference types, the assignment
causesx andy to become aliases for the same object.

The semantics of aliasing

A somewhat shocking consequence of aliasing (static or dynamic) is that an operation may
affect an entity that it does not even cite.

Models of computation that do not involve aliasing enjoy a pleasant property: the
correctness of such extracts as

[NO SURPRISE]
-- Assume that herP (y) holds
X:=y
C(x)
-- Then hereP (y) still holds.

This example assumes thP (y) is an arbitrary properof y, andC (x) some
operation whose textual description in the software may inwx but does not involvy.
Correctness here means that the property of “NO SURPRISE” expressed by the comments
is indeed satisfied: P (y) is true initially, then no action «x can invalidate this property.

An operation orx does not affect a property y f

§8.9 DEALING WITH REFERENCES: BENEFITS AND DANGERS 267

With entities of expanded types, property NO SURPRISE indeed holds. Here is
typical example, assumirx andy of typeINTEGEF:

-- Assume that hery>=0
X:=y

=-1
-- Then herey >= 0 still holds.

In no way can the assignmenix have any effect oy in this case. But now consider
a similar one involving dynamic aliasing. Ix andy be oftypeC, where clasC s of the form

clas: C feature
boolattr: BOOLEAN
-- Boolean attribute, modeling some object property.
set_trueis
-- Makeboolattr true.
do
boolattr:= True
end
... Other feature...
end
Assume thay is of typeC and that its value at some run-time instant is not void.
Then the following instance of the above scheme violates property NO SURPRISE:

[SURPRISE, SURPRISE!]

-- Assume thay.boolattt is false. ()
X:=y

-- Here it is still true thay. boolattr is false. BatseTrue| boolattr

x.set_true
-- But then herey.boolattr is true!

The last instruction of this extract does notinvcy in any way; yet one of its effects
is to change the propertiesy, as indicated by the final comment.

Coming to terms with dynamic aliasing

Having seen the disturbing consequences of reference assignments and dynamic alia

one may legitimately ask why we should keep such a facility in our model of computatio
The answer is twofold — partly theoretical and partly practical:

* We need reference assignments if we are to benefit from the full power of the obje
oriented method, in particular to describe complex data structures. The issue her
again to make sure that our tools are versatile enough for our modeling needs.

* In the practice of object-oriented software construction, encapsulation makes
possible to avoid the dangers of reference manipulations.

Let us examine these two important aspects in turn.

268 THE RUN-TIME STRUCTURE: OBJECTS §8.9

Aliasing in software and elsewhere

The first observation is simply that many of the data structures we will need require
references and reference sharing. Some standard data structures, for example, include
cyclically chained elements, which you cannot implement without references. In
representing list and tree structures, it is often convenient to let every node contain a
reference to its neighbor or parent. The figure below shows a circular list representation,
combining both of these ideas. Open any textbook on fundamental data structures and
algorithms, as used in introductory computing science courses, and you will find many
such examples. With object technology we will want, if anything, to use even more

sophisticated structures.
A linked
@ circular list

=

Share
references
(aliasing)

\
o

In fact the need for references, reference attachment and reference sharing already
arises with quite unsophisticated data structures. Recall the classes used above to describe
books; one of the variants was

first

classBOOK3feature Page226.
... Other features,..
author. WRITER

end

Here the need for reference sharing is simply a consequence of the property that two
or more books may have the same author. Many of the examples of this chapter also cause
sharing; in theeERSONcase, several people may have the same landlord. The question,
as already noted, is modeling power, not just the requirements of implementation.

But then ifbl andb?2 are two instances a&fOOK3with the same author, we have a
case of aliasingbl. authorandb?2. authorare two references attached to the same object,
and using any of them as target of a feature call will have exactly the same effect as using
the other. Seen in this light, dynamic aliasing appears less as a potentially dangerous
software facility than as a fact of life, the price to pay for the convenience of being able to
refer to things under more than one name.

§8.9 DEALING WITH REFERENCES: BENEFITS AND DANGERS 269

Itis indeed easy to find violations of the above NO SURPRISE property without ev
entering the software field. Consider the following property and operation, defined for al
bookb:

« NOT_NOBEL(b) stands for: “the author (i has never received the Nobel prize”.
« NOBELIZE(b) stands for: “Give the Nobel prize to the authob”.

Now assumerb denotes the booThe Red and the Bla and cp denotesThe
Charterhouse of Parn. Then the following is a correct development:

Stendhal lived prior [SURPRISE IN OSLO]

to the establishment - Assume that hetNOT_NOBEL(rb) holds

of the priz, of _

course — and would NOBELIZE(cp)

probably not have -- Then hereNOT_NOBEL(rb) does not hold any more!

gotitanywa; he did -

not even make it to An operation orcp has changed a property of a different enrb, not even named

the Acadeém e in the instruction! The consequencesrb may actually be quite significant (with a Nobel

author an out-of-print book will be reprinted, its price may rise etc.). In this non-softwal
case exactly the same thing happens as when the opexaset trus, in the earlier
software example, produced an important effecy even though it did not refer .

So dynamic aliasing is not just a consequence of programmers’ dirty tricks wif
references or pointers. It is a consequence of the human abiname things (“objects”
in the most general sense of the word), and to give many names to one thing. In class
rhetoric, this was known aspolyonym, as with the use of “Cybele”, “Demeter” and
“Ceres” for the same goddess, eantonomasi, the ability to refer to an object through
indirect phrases, as with “The beautiful daughter of Agammemnon” for Helena of Tro
Polyonymy, antonomasia and the resulting dynamic aliasing are not restricted to gods
heroes; if in the cafeteria you overhear two conjectures from separate conversations,
stating that the spouse of the engineering Vice President just got a big promotion and
other that the company has fired its accountant, you will not realize the contradiction
unless you know that the accountant is the VP’s husband.

Encapsulating reference manipulations

By now we have accumulated enough evidence that any realistic framework for model
and software development must support the notion of reference, and consequel
dynamic aliasing. How then do we cope with the unpleasant consequences of th
mechanisms? The inability to ensure the NO SURPRISE property illustrates hc
references and aliasing endanger our ability to reason systematically about our softw
that is to say, to infer run-time properties of the software’s execution, in a safe and sim
way, by examining the software text.

To find an answer it helps to understand first how much of this issue is specific
the object-oriented method. If you are familiar with such programming languages
Pascal, C, PL/I, Ada and Lisp you will probably have noted that much of the abo
discussion applies to them as well. They all have a way of allocating objects dynamice
(although in C the corresponding functicmalloc, is in the library rather than the

270 THE RUN-TIME STRUCTURE: OBJECT<§8.10

language proper) and of letting objects contain references to other objects. The level of
abstraction of the language mechanisms varies significantly: C and PL/I pointers are
scantily dressed machine addresses; Pascal and Ada use typing rules to wrap pointers in
more respectable attire, although they do not need much prompting to return to their
original state.

What then is new with object-oriented development? The answer lies not in the
theoretical power of the method (whose run-time structures are similar to those of Pascal or
Ada, with the important difference of garbage collection, studied in the next chapter) but in
the practice of software construction. O-O development implies reuse. In particular, any
project in which many application classes perform tricky manipulations (such as reference
manipulation) is a flawed use of the object-oriented approach. Such operations should be
encapsulated once and for all in library classes.

Regardless of the application domain, if a system includes object structures requiring
non-trivial reference operations, the vast majority of these structures are not application-
specific but merely instances of such frequently needed and well-known structures as lists
of various kinds, trees under various representations, graphs, hash tables and a few others.
Inagood O-O environment a library will be readily available, offering many implementations
of these structures; appeniA: will sketch an example, the Base library. The classes of such
a library may contain many operations on references (think for example of the reference
manipulations needed to insert or delete an element in a linked list, or a node in a tree using
linked representation). The library should have been patiently crafted and validated, so as to
take care of the tricky problems once and for all.

If, as you are building the application, you recognize the need for complex oFReuse consumers,
structures which are not adequately covered by the available libraries, you should Ireuse producers”,
them as requiring new general-purpose classes. You should design and check’@9¢ 6"
carefully, under the expectation that in due time they will become part of some library.

Using the terminology introduced in an earlier chapter, such a case is an example of
moving from a consumer’s to a producer’s view of reuse.

The remaining reference manipulations in application-dependent classes should be
restricted to simple and safe operations. (The bibliographical notes cite an article by
Suzuki which explores this idea further.)

8.10 DISCUSSION

This chapter has introduced a number of rules and notations for manipulating objects and
the corresponding entities. Some of these conventions may have surprised you. So it is
useful to conclude our exploration of objects and their properties by examining the issues
involved and the reasons behind the choices made. Although | hope you will in the end
agree with these choices, the more important goal of this discussion is to make sure that
you fully understand the underlying problems, so that even if you prefer a different
solution you choose it with your eyes open.

§8.10 DISCUSSIO

N 271

“The mold and the
instance”, page 167.

Graphical conventions

To warm up let us begin with a little notational issue — a detail, really, but software
sometimes in the details. This particular detail is the set of conventions used to illustr
classes and objects in graphical representations.

The previous chapter emphasized the importance of not confusing the notions
class and object. Accordingly, the graphical representations are different. Objects
represented as rectangles. Classes, as they appear in system architecture diagram
represented by ellipses (connected by arrows representing the relations between cla:
single arrow for the inheritance relation, double arrow for the client relation).

Class and object representations appear in different contexts: a class ellipse will
part of a diagram representing the structure of a software system; an object rectangle
be part of a diagram representing a snapshot of the state of a system during its execu
Because these two kinds of diagram address completely different purposes, ther:
usually no opportunity in paper presentations such as the present book for having b
class and object representations appear in the same context. But the situation is diffe
with interactive CASE tools: during the execution of a software system, you may want (f
example for debugging purposes) to look at an object, and then display its generating ¢
to examine the features, parents or other properties of that class.

On BON see the bib- The graphical conventions used for classes and objects are compatible with

liographical notes
and chaptei27.

From a review of
Martin and Odell's
“Object-Oriented
Analysis and
Design”, in OOPS
(British Computer
Society O-O interest
group newslette),

1€, Winter 199
pages 35-37

standard established by Nerson and Waldén’s BON method. In BON (Business Obj
Notation), which is meant for use in interactive CASE tools as well as for pap
documentation, class bubbles can be stretched vertically so as to reveal a class’s feat
invariant, indexing words, and other properties.

As with any choice of graphical representation, there is no absolute justification f
the conventions used in BON and in this book. But if the graphical symbols at our dispo
are ellipses and rectangles, and the elements to be represented are classes and object
it does appear preferable to assign rectangles to objects: an object is a set of fields, s
can represent each field by a small rectangle and glue together a set of fields to mak
a bigger rectangle which represents an object.

A further convention, illustrated by the figures of this chapter, is to make expands
fields appear shaded, whereas references fields are blank; subobjects appear as sn
embedded rectangles, containing their own fields. All these conventions follow from tl
decision to use rectangles for objects.

On the lighter side, it is hard to resist quoting the following non-scientific argumen
from lan Graham'’s critiqgue of an O-O analysis book that uses a diffconvention:

Nor do | like showing classes as sharp cornered trial. | like to think that
instances have sharp corners because if you drop them on your foqgt they
hurt, whereas classes can’t hurt anyone and therefore have rounded corners

272 THE RUN-TIME STRUCTURE: OBJECT<§8.10

References and simple values

An important syntactical question is whether we should deal differently with references
and simple values. As noted, assignment and equality test have different meanings for
references and for values of expanded types — the latter including values of basic types:
integers and the like. Yet the same symbols are used in both :=, =, /=. Is this not
dangerous? Would it not be preferable to use different sets of symbols to remind the reader
that the meanings are different?

Using two sets of symbols was indeed the solution of Simula 67. Transposinsimule, covered in

notation slightly so as to make it compatible with those of the present book, the Sichapter3s, abbrevi-

solution is to declare an entity of a reference 1C as ?é?sraereme o

x: reference C
where the keyworreference reminds the reader that instancesx will be references.
Assuming the declarations

m, n: INTEGER

X, y: reference C

then different notations are used for operations on simple and reference types, as follows:

EXPANDED REFERENCE Simula-style
OPERATION OPERANDS OPERANDS nOta“an for
: operations on
Assignment m.=n X:—y reference and
Equality test m=n X==y expanded
Inequality test m/=n x=/=y values

The Simula conventions remove any ambiguity. Why not keep them then? The
reason is that in practice they turn out in spite of the best intentions to cause more harm
than help. The problems begin with a mundane matter: typing errors. The two sets of
symbols are so close that one tends to make syntactical oversights, such := instead
of :—. Such errors will be caught by the compiler. But although compiler-checkable
restrictions in programming languages are meant to help programmers, the checks are of
no use here: either you know the difference between reference and value semantics, in
which case the obligation to prove again, each time you write an assignment or equality,
that you did understand this difference, is rather annoying; or you do not understand the
difference, but then the compiler message will not help you much!

The remarkable aspect of the Simula convention is that you do not in fact have a
choice: for references, no predefined construct is available that would give value
semantics. It might have seemed reasonable to allow two sets of operations onazntities
andb of reference types:

» a:— bfor reference assignment, aa == b for reference comparison.

e a:=bfor copy assignment (the equivalent, in our notation, of ea := clone(b) or
a.copy(b)), anda = b for object comparison (the equivalent of equal(a, b)).

§8.10 DISCUSSION 273

But this is not the case; for operands of reference types, with one exception, Sim
only provides the first set of operations, and any attempt t¢= or = will produce a
syntactical error. If you need operations of the second set (copy or clone, obje
comparison), you must write specific routines corresponding tclone, copyandequal
for each target class. (The exception isTEXT type, representing character strings, for
which Simula does offer both sets of operations.)

On further examination, by the way, the idea of allowing both sets of operations f
all reference types does not appear so clever. It would mean that a trivial oversight si
as typing:= for .— would now go undetected by the compiler but produce an effect quit
different from the programmer’s intent, for exampclone where a reference assignment
was intended.

As a result of this analysis, the notation of this book uses a different convention frc
Simula’s: the same symbols apply for expanded and reference types, with differe
semantics (value in one case, reference in the other). You can achieve the effect of v
semantics for objects of reference types by using predefined routines, available on

types:

* a:=clone(b) or a.copy(b) for object assignment.
e equal(a, b) for object (field-by-field) comparison.

These notations are sufficiently different from their reference counter:= and-=,
respectively) to avert any risk of confusion.

Beyond the purely syntactical aspects, this issue is interesting because it typif
some of the tradeoffs that arise in language design when a balance must be found betv
conflicting criteria. One criterion, which won in the Simula case, may be stated as:

« “Make sure different concepts are expressed by different symbols”.

But the opposing forces, which dominated in the design of our notation, say:
« “Avoid bothering the software developer.”

* “Weigh carefully any new restriction against the actual benefits that it will bring ir
terms of security and other quality factors.” Here the restriction is the prohibition c
:= and similar operators for references.

» “Make sure that the most common operations can be expressed by short and sin
notations.” The application of this principle requires some care, as the langua
designer may be wrong in his guesses of what cases will be the most common. |
in the present example it seems clear that on entities of expanded types (sucl
INTEGEF) value assignment and comparison are the most frequent operatior
whereas on references entities reference assignment and comparison are n
frequent than clone, copy and object comparison. So itis appropriate:= and=
for the fundamental operations in both cases.

274 THE RUN-TIME STRUCTURE: OBJECT<§8.10

* “To keep the language small and simple, do not introduce new notations unless they
are absolutely necessary”. This applies in particular if, as in this example, existing
notations will do the job and there is no danger of confusion.

« “If you know there is a serious risk of confusion between two facilities, make the
associated notations as different as possible.” This leads us to avoid makii— both
and:= available for the same operands with different semantics.

One more reason plays a role in the present case, although it involves mechanisms
that we have not yet studied. In later chapters we will learn to write generic classes, such
asLIST[G], whereG, known as a formal generic parameter, stands for an arbitrary type.
Such a class may manipulate entities of tG and use them in assignments and equality
tests. Clients that need to use the class will do so by providing a type to serve as actual
generic parameter; for example they may LIST [INTEGEF] or LIST[POINT]. As
these examples indicate, the actual generic parameter may be an expanded type (as in the
first case) as well as a reference type (as in the second case). In the routines of such a
generic class, ia andb are of typeG, it is often useful to use assignments of the form
a := b or tests of the forra = b with the intent of obtaining value semantics if the actual
generic parameter is expanded (as VINTEGEF) and reference semantics if it is a
reference type (as wilPOINT).

An example of a routine which needs such dual behavior is a procedure for inserting an
elemenix into a list. The procedure creates a new list cex is an integer, the cell must
contain a copy of that integer, butx is a reference to an object the cell will contain a
reference to the same object.

In such a case the rules defined above ensure the desired dual behavior, which would
have been impossible to achieve if a different syntax had been required for the two kinds
of semantics. If, on the other hand, you want a single identical behavior in all cases, you
can specify it too: that behavior can only be value semantics (since reference semantics
does not make sense for expanded types); so in the appropriate routines you should use
not:= and= butclone (or copy) andequa.

The form of clone and equality operations

A small point of style which may have surprised you is the form under which routines
clone andequa are called. The notations

clone(x)
equal(x, y)

do not look very O-0O at first; a dogmatic reading of the previous chapter would Su¢THE OBJECT-
conventions that seem more in line with what was there called “the object-orientedORIENTED STYLE

— . OF COMPUTA-
of computation”; for example: TION", 7.7, page

. 181
X.twin

x.is_equal(y)

§8.10 DISCUSSION 275

In a very early version of the notation, these were indeed the conventions. But th
raise the problem of void references. A feature call of the xof (...) cannot be executed
correctly if, at run time, the value xis void. (In that case the call will trigger an exception
which, unless the class contains specific provisions to recover from the exception, v
cause the execution of the entire system to terminate abnormally.) So the second se
conventions would only work for non-vox. Because in many casx may indeed be
void, this would mean that most usestwin would in practice be of the form

if x =Voidthen
z:=Void
else
Z:= Xx.twin
end

and most uses (s_equa of the form

and thenis a variant if

of and. See“Non- _ . _ .

strict boolean opera- ((x = Voic) and (y = Voic)) or

tors”, page 454 ((x /= Void) and then x.is_equal(y))
then

Needless to say, these conventions were not kept for long. We quickly became ti
of having to write such convoluted expressions — and even more of having to face 1
consequences (run-time errors) when we forgot. The conventions finally retaine
described earlier in this chapter, have the pleasant property of giving the expected res
for void x: in that cascclone(x) is a void value, anequal(x, y) is true if and only ity is
also void.

Procedurecopy, called under the forrx.copy (y), raises no particular problem: it
requiresx (and alscy) to be non-void, but this requirement is acceptable because it is
consequence of the semanticscopy, which copies an object onto another and so does
not makes sense unless both objects exist. The conditicy, as explained in a later
chapter, is captured by an official preconditioncopy and so is present in a clear form
in the documentation for this procedure.

It should be noted that a functiis_equa as introduced above exists. The reason is
that it is often convenient to define specific variants of equality, adapted to a class ¢
overriding the default semantics of field-by-field comparison. To obtain this effect |
suffices to redefine functiois_equa in the desired classes. Functiequa is defined in
terms ofis_equa (through the expression shown above to illustrate the uis_equa),
and so will follow its redefinitions.

See als(‘Fixed se- . . _ L .
mantics for copy, In the case cclong, there is no need ftwin. This is becaustclone is simply defined

clone and equality as a creation plus a call copy. So to adapt the meaning clone to the specific needs of
features”, page 5€3 a class it suffices to redefine procedcopy for that classclone will automatically follow.

276 THE RUN-TIME STRUCTURE: OBJECT<S88.11

The status of universal operations

The last comments have partly lifted the veil on a question that have may caught your
attention: what is the status of the universal operatclone, copy, equa, is_equa,
deep_clon, deep_equi?

Although fundamental in practice, these operations are not language const‘THE GLOBAL
They come from a Kernel library clasANY, which has the special property that eve!/NHERITANCE
class written by a software developer automatically inherits (directly or indirectly) f\fggupi;g'gfd
ANY. This is why it is possible to redefine the features mentioned to support a particular '
view of equality or copying.

We need not concern ourselves with the details here, as they will be studied together
with inheritance. But it is useful to know that, thanks to the inheritance mechanism, we
can rely on library classes to provide facilities that are then made available to any class —
and can be adapted by any class to suit its own sc purposes.

8.11 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

e Object-oriented computation is characterized by a highly dynamic run-time
structure, where objects are created on demand rather than pre-allocated.

* Some of the objects manipulated by the software are (usually quite indirect) models
of outside objects. Others serve design and implementation purposes only.

* An object is made of a number of values called fields. Each field corresponds to an
attribute of the object’s generator (the class of which the object is a direct instance).

« A value, in particular a field of an object, is either an object or a reference.

« A reference is either void or attached to an object. Thex = Void tells which of
the two cases holds. A call with tarcx, such asx.f (...), can only be executed
correctly ifx is non-void.

« If the declaration of a class begins wclas: C ..., an entity declared of tyrC will
denote a reference, which may become attached to instanC. If the declaration
begins withexpandecclas: D ..., an entity declared of tyfD: will denote an object
(an instance aD), and will never be void.

e The basic typesBOOLEAN CHARACTEI INTEGEF, REAL DOUBLE) are
defined by expanded classes.

« Expanded declarations also make it possible to define composite objects: objects
with subobjects.

« Object structures may contain cyclic chains of references.

* The creation instructio!! x creates an object, initializes its field to default values
(such as void for references and zero for numbers), and atix to it. If the class
has defined creation procedures, The instruction will also perform, in the form
II' x.creatproc(...), any desired specific initializations.

§8.12 BIBLIOGRAPHICAL NOTES 277

« On entities of reference types, assignme¢=) and equality test=) are reference
operations. On entities of expanded types, they represent copy and field-by-fie
comparison. They also have the appropriate semantics for mixed operands.

» Reference operations cause dynamic aliasing, which makes it more difficult
reason formally about software. In practice, most non-trivial referenc
manipulations should be encapsulated in library classes.

8.12 BIBLIOGRAPHICAL NOTES

The notion of object identity plays an important role in databases, especially obje
oriented databases. See chai31 and its bibliographical notes.

The graphical conventions of the BON method (Business Object Notation), design
by Jean-Marc Nerson and Kim Waldén, appeiifWaldén 1995. James McKim and
Richard Bielak expound the merits of multiple creation procecin [Bielak 1994.

The risks caused by unfettered pointer or reference operations have worried softw
methodologists for a long time, prompting the inevitable suggestion that they are the d
equivalent of what abhorregotao instructions represent on the control side. A surprisingly
little-known article by Nori SuzukiSuzuki 1982 explores whether a disciplined
approach, using higher-level operations (in the same way that one goto by sticking
to the “structured programming” constructs of sequence, conditional and loop), cot
avoid the troubles of dynamic aliasing. Although the results are somewhat disappointi
— by the author's own admission — the article is useful reading.

| am indebted to Ross Scaife from the University of Kentucky for help with
rhetorical terms. See his pagehttp://www.uky.edUArtsScience/Classic/rhetoric.html.

EXERCISES

E8.1 Books and authors

Starting from the various sketches given in this chapter, write cIBOOK andWRITER
covering a useful view of books and their authors. Be sure to include the relevant routir
(not just the attributes as in most of this chapter).

E8.2 Persons

Write a classPERSOI covering a simple notion of person, with attribuname (a
STRINCQ), mothe, father andsibling (describing the next older sibling if any). Include
routines which will find (respectively) the list of names of ancestors, direct cousin
cousins direct or indirect, uncles or aunts, siblings-in-laws, parents-in-laws etc. of a giv
personHint: write recursive procedures (but make sure to avoid infinite recursion whel
the relations, for example direct or indirect cousin, are cyclic.).

278 THE RUN-TIME STRUCTURE: OBJECT<S8ES.3

E8.3 Notation design

Assume you are frequently using comparisons of the ixtis_equal(y) and want to See*Operator fea-
simplify the notation to take advantage of infix features (applicable hereis_equais tures’, page 187

a function with one argument). With an infix feature using some opes, the call will Zggur};?r'?ﬁsf;ﬁfgres
be writtenx § y. This little exercise asks you to invent a symbol§, compatible with the operators

rules on infix operators. There are of course many possible answers, and deciding be...c...

them is partly (but only partly) a matter of taste.

Hint: The symbol should be easy to remember and somehow suggest equality; but perhaps
even more importantly it should be different enough fi= to avoid mistakes. Here you

can benefit from the study of C and C++ which, departing from mathematical tradition,
use= for assignment rather than equality comparison, but for the latter operation introduce

a similar-looking symbol==. The matter is made even more delicate by the rule that
permits treating an assignment as an expression, whose value is the value being assigned
to the target, and by the rule accepting values such as integers as boolean expressions,
meaning true if non-zero, so that compilers will accept a text of the form

if (x=1y)then...

although in most practical cases it is in error (mistakenly u= for ==), and will have
the probably incorrect effect of assigning the valt y to x, returning true if and only if
that value is non-zero.

	8 8 The run-time structure: objects
	8.1 OBJECTS
	What is an object?
	Definition: object

	Basic form
	Simple fields
	A simple notion of book
	An object representing a book

	Writers
	A “writer” object

	References
	Two “book” objects with “writer” subobjects
	Two “book” objects with references to the same “wr...
	Definition: reference
	An object with a void reference field

	Object identity
	Declaring references
	Self-reference
	Direct and indirect self- reference

	A look at the run-time object structure
	A possible run- time object structure

	8.2 OBJECTS AS A MODELING TOOL
	The four worlds of software development
	Molds and their instances

	Reality: a cousin twice removed

	8.3 MANIPULATING OBJECTS AND REFERENCES
	Dynamic creation and reattachment
	The creation instruction
	Effect of a basic creation instruction
	Default initialization values
	A newly created and initialized object

	The global picture
	Why explicit creation?

	8.4 CREATION PROCEDURES
	Overriding the default initializations
	Effect of a creation call

	The export status of creation procedures
	Rules on creation procedures
	Multiple creation and overloading

	8.5 MORE ON REFERENCES
	States of a reference
	The possible states of a reference

	Void references and calls

	8.6 OPERATIONS ON REFERENCES
	Attaching a reference to an object
	Before reference assignment
	After reference assignment

	Reference comparison
	The void value
	Object cloning and equality
	De-attaching a reference from an object
	Cloning an object

	Object copying
	Deep clone and comparison
	Deep storage: a first view of persistence
	Definition: direct dependents, dependents
	Three mutually dependent objects
	“Book” and “Writer” objects
	Persistence Closure principle

	8.7 COMPOSITE OBJECTS AND EXPANDED TYPES
	References are not sufficient
	Expanded types
	A composite object with one subobject
	Definition: expanded type

	The role of expanded types
	“Knows about” and “contains” relations between obj...

	Aggregation
	Properties of expanded types
	Expanded Client rule

	No references to subobjects
	A subobject with a reference to another object
	A reference to a subobject

	8.8 ATTACHMENT: REFERENCE AND VALUE SEMANTICS
	Attachment
	Definition: attachment

	Reference and copy attachment
	Hybrid attachments
	Effect of attachment x := y

	Equality comparison
	Meaning of comparison x = y

	8.9 DEALING WITH REFERENCES: BENEFITS AND DANGERS
	Dynamic aliasing
	Sharing as a result of an attachment

	The semantics of aliasing
	Coming to terms with dynamic aliasing
	Aliasing in software and elsewhere
	A linked circular list

	Encapsulating reference manipulations

	8.10 DISCUSSION
	Graphical conventions
	References and simple values
	Simula-style notations for operations on reference...

	The form of clone and equality operations
	The status of universal operations

	8.11 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	8.12 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E8.1 Books and authors
	E8.2 Persons
	E8.3 Notation design

