15

Multiple inheritance

FuII application of inheritance requires an important extension to the framework definec
in the preceding chapter. In studying the basics of the mechanism we have encountered
notion that a class may need more than one parent. Known as multiple inheritance (
distinguish it from the more restrictive case gifgle inheritance), this possibility is

necessary to build robust object-oriented architectures by combining different abstraction

Multiple inheritance, in its basic form, is a straightforward application of the
principles of inheritance already seen; you just allow a class to include an arbitrary numbs
of parents. More detailed probing brings up two interesting issues:

e The need for feature renaming, which in fact has useful applications in single
inheritance too.

» The case ofepeatedinheritance, in which the ancestor relation links two classes in
more than one way.

15.1 EXAMPLES OF MULTIPLE INHERITANCE

The first task is to form a good idea of when multiple inheritance is useful. Let us study :
few typical examples from many different backgrounds; a few will be shown in some
detail, others only sketched.

This review is all the more necessary that in spite of the elegance, necessity ar
fundamental simplicity of multiple inheritance, obvious to anyone who cares to study the
concepts, this facility has sometimes been presented (often, as one later finds out, bas
solely on experience with languages or environments that cannot deal with it) as comple
mysterious, error-prone — as the object-oriented method’s own “goto”. Although it has nc
basis in either fact or theory, this view has been promoted widely enough to require that w
take the time to review a host of cases in which multiple inheritance is indispensable.

As it will turn out, the problem is not to think of valuable examples, but to stop the
flow of examples that will start pouring in once we open the tap.

520 MULTIPLE INHERITANCE §15.1

What not to use as an introductory example

To dispel a frequent confusion, we must first consider an example whose use (with some
variants) by many introductory papers, books and lectures may account for some of the
common mistrust of multiple inheritance. Not that there is anything fundamentally wrong
with the example; it is simply inadequate for an introductory presentation, since it is not
typical of simple, straightforward uses of multiple inheritance.

The standard form of this example involves claTEACHEF andSTUDEN", part
of the model for some university system; you will be invited to note that some students are
also teachers, prompting a new cliTEACHING ASSISTAI that inherits from both
TEACHEFandSTUDEN"

A case of
inheritance...

ASSISTANJ

Is this example an improper use of inheritance? Not necessarily. But as an
introduction to multiple inheritance it is about as bad as they can get. The problem is that
TEACHEF and STUDEN™ are not separate abstractions but variations on a common
theme: person, or more accuratUNIVERSITY PERSC. So if we draw the full picture
we see a case of not just multiple repeatedinheritanci— the scheme, studied later in
this chapter, in which a class is a proper descendant of another through twor more:

... thatis acase
of repeated
inheritance

Repeated inheritance is a special case; as will be noted when we get to it, usiFor details see
facility requires good experience with the more elementary forms of inheritance, singIISEEEﬁTAENDCE,,
multiple. So itis nota matter for beginners, if onéchuse it seems to create conflicts (Wt s 4, page 543 ’

about a featurname orsubscribe to _health pliwhichTEACHING _ASSISTANnherits

§15.1 EXAMPLES OF MULTIPLE INHERITANCE 521

Company
planes

from both of its parents, even though they are really in each case a single feature con
from the common ancestUNIVERSITY PERSC?). With a well-reasoned approach we
will be able to remove these conflicts simply. But it is a serious mistake to begisuchh
exceptional and seemingly tricky cases as if they were typical of multiple inheritance.

The truly common cases do not raise any such problem. Instead of dealing w
variants of a single abstraction, they comtdistinct abstractions. This is the form that
you will need most often in building inheritance structures, and the one that introductc
discussions should describe. The following examples belong to that pattern.

Can an airplane be an asset?

Our first proper example belongs to system modeling more than to software construct
in the strict sense. But it is typical of situations that require multiple inheritance.

Assume a clastAIRPLANE describing the abstraction suggested by its name
Queries may includpassenger_cou, altitude, positior, spee; commands may include
take_of, land, set_spee.d

In a different domain, we may have a clASSE’ describing the accounting notion
of an asset — something which a company owns, although it may still be payir
installments on it, and which it can depreciate or resell. Features may ipurchase_pric,2
resale_valu, depreciat, resel, pay_installmer.t

You must have guessed where we are heading: companies may own comp:
planes. For the pilot, a company plane is just a plane with its usual features: it takes
lands, has a certain speed, flies somewhere. From the viewpoint of the accountant (the
who grumbles that the money would have been better kept in the bank or spent on
productive ventures) it is an asset, with a purchase value (too high), an estimated re
value (too low), and the need to pay interest on the loan each month.

To model the notion of company plane we can resort to muinheritance:

COMPAN
PLANE

classCOMPANY _PLANTEnherit
PLANE
ASSET
feature
... Any feature that is specific to company planes
(rather than applyir to all planes or all asset...
end

522 MULTIPLE INHERITANCE §15.1

To specify multiple parents in theherit clause, just list them one after the other.
(As usual, you can use semicolons as optional separators.) The order in which you list
parents is not significant.

Cases similar t« OMPANY PLANERbound in system modeling. Here are a few:

» Wristwatches (a special case of the notion of watch, itself specializing the general
notion of clock — there are a few inheritance links here) provide commands such as
setting the time, and queries such as the current time and date. Electronic calculators
provide arithmetic features. There also exist some (quite handy) watch-calculators,
elegantly modeled through multiple inheritance.

e Boats; trucksAMPHIBIOUS VEHICLEA variantis: boats; planeldlY DROPLANE
(There is a hint of repeated inheritance here, asTHACHING ASSISTANSince
both parents may themselves be descendants of'\¢&iM&CLE class.)

* You eat in a restaurant; you travel in a train car. To make your trip more enjoyable,
the railway company may let you eat in an instance/®TING_CAR A variant of
this example iISLEEPING_CAR

¢ On an instance cfOFA BEDyou may not only read but also sleep.
« A MOBILE_HOMEis aVEHICLEand aHOUSE

And so on. Multiple inheritance is the natural tool to help model the endless
combinations that astute people never tire of concocting.

For a software engineer the preceding examples may at first appear academic, since
we get paid not to model the world but to build systems. In many practical applications,
however, you will encounter similar combinations of abstractions. A detailed example,
from ISE’s own graphical development environment appears later in this chapter.

Numeric and comparable values

The next example is much more directly useful to the daily practice of object-oriented
software construction. It is essential to the buildup of the Kernel library.

Some of the Kernel library’s classes — that is to say, classes describing abstractions
of potential use to all applications — require arithmetic features: operations such as
infix "+",infix "=, infix "[I', prefix "—" as well as special valuesro (identity element
for "+") andone (identity element for'(1'). Kernel library classes that use these features
includeINTEGER REALandDOUBLE but many non-predefined classes may need them
too, for example a clagd ATRIX describing matrices of some application-specific kind.

It is appropriate to capture the corresponding abstraction through a deferred class

NUMERIG itself a part of the Kernel library:

deferred classNUMERICfeature
... infix "+" infix "=, infix "[0', prefix "-", zerqg one...
end

§15.1 EXAMPLES OF MULTIPLE INHERITANCE 523

Technically the
exact model is that
of a “preorder”.

Mathematically, NUMERIC has a precise specification: its instances represen
members of a ring (a set equipped with two operations, both of which separately give
the structure of a group, one commutative, with distributivity between the two operation

Some classes also need an order relation, with features for comparing arbitr
elementsinfix "<",infix "<=",infix ">",infix ">=". Again this is useful not only to some
Kernel library classes, such STRINC whose instances are comparable through lexical
ordering, but also to many application classes; for example you may write a cls
TENNIS CHAMPIOMhich takes into account the ranking of professional tennis players
with a feature'<" such thatcl < tc2tells us whethetc2 is ranked ahead «cl. Soitis
appropriate to capture the corresponding abstraction through a deferred cl:
COMPARABLYI, itself a part of the Kernel library:

deferred classCOMPARABLEfeature
... infix "<",infix "<=",infix ">", infix ">=" ...
end

COMPARABLEhas a precise mathematical model: its instances represent memb
of a set ordered by a total order relation.

Not all descendants COMPARABLIshould be descendantsNUMERIC: in class
STRINGC we need the order features for lexicographical ordering but not the arithmet
features. Conversely, not all descendantsNUMERIC should be descendants of
COMPARABLLI: the set of real matrices has addition, multiplication, zero and one, givin
it a ring structure, but no total order relation. So it is appropriattCOMPARABLI and
NUMERIC, representing completely different abstractions, should remain distinct classe
neither of them a descendant of the other.

Objects of certain types, however, are both comparable and numeric. (
mathematical terms. the structures modeled by their generating classes are totally ord
rings.) Example classes incluREAL andINTEGEF: integers and real numbers can be
compared for'<=" as well as added and multiplied. These classes should be defin
through multiple inheritance, as in (see the figure on the next page):

expanded classREALinherit
NUMERIC
COMPARABLE
feature

end

Types of objects that need to be both comparable and numeric are sufficiently common
to suggest a clasCOMPARABLE NUMERI, still deferred, covering the merged
abstraction by multiply inheriting fronCOMPARABLEand NUMERIC. So far this
solution has not been adopted for the library because it does not bring any obvious
advantage and seems to open the way to endless combinations: \COMPARABLE _
HASHABLE HASHABLE ADDABLE _SUBTRACTAE? Basing such deferred classes

on well-accepted mathematical abstractions, such as ring or totally ordered set, seems to
yield the right level of granularity. Related issues in the methodology of inheritance are
discussed in detail in chapt16.

MULTIPLE INHERITANCE §15.1

Multiple
COMPARABLE @ structure
inheritance

DOUBLE

524

Windows are trees and rectangles

Assumea window system that allows nesting windows to an arbitrary depth:

Windows and
subwindows

In the corresponding claWINDOW, we will find features of two general kinds:

« Some deal with a window as a member of a hierarchical structure: list of
subwindows, parent window, number of subwindows, add or remove a subwindow.

« Others cover its properties as a graphical object occupying a graphical area: height,
width, x position,y position, display, hide, translate.

§15.1 EXAMPLES OF MULTIPLE INHERITANCE 525

See*WOULD YOU
RATHER BUY OR
INHERIT?", 24.2,
page 81

It is possible to write the class as a single piece, with all these features mix
together. But this would be bad design. To keep the structure manageable we shc
separate the two aspects, treating cWINDOW as the combination of two abstractions:

« Hierarchical structures, which should be covered by a TREE.
* Rectangular screen objects, covered by a RECTANGLI:

In practice we may need more specific class names (describing some particl
category of trees, and a graphical rather than purely geometrical notion of rectangle),
the ones above will be convenient for this discussWINDOW will appear as:

classWINDOWinherit
TREE[WINDOW]
RECTANGLE

feature
... Specific window feature...

end

Note that classTREE will be generic, so we need to specify an actual generic
parameter, herdVINDOW itself. The recursive nature of this definition reflects the
recursion in the situation modeled: a window is a tree of windows.

This example will, later on in the discussion, help us understand the need for a feature
renaming mechanism associated with inheritance.

A further refinement might follow from the observation that some windows ar
purely text windows. Although we might represent this property by introducing a cla:
TEXT_WINDOWas a client oSTRINC with an attribute

text: STRING

we may prefer to consider that each text winds also a string. In this case we will use
multiple inheritance frorMWINDOW and STRINC. (If all windows of interest are text
windows, we might directly use ftriple inheritance frcTREE, RECTANGLI and
STRING, although evenin that case it is probably better to work in two successive stage

The general question of how to choose between heir and client relations, as in
case OTEXT_WINDOYV, is discussed in detail in the chapter on inheritance methodology

Trees are lists and list elements

ClassTREE itself provides a striking example of multiple inheritance.

A tree is a hierarchical structure made of nodes, each containing some informati
Common definitions tend to be of the form “A tree is either empty or contains an obje
called the root, together with (recursively) a list of trees, called the children of the roo
complemented by a definition node, such as “An empty tree has no nodes; the nodes o
a non-empty tree comprise its root and (recursively) the nodes of its children”. Althou
useful, and reflective of the recursiveness inherent in the notion of tree, these definitic
fail to capture its essential simplicity.

526 MULTIPLE INHERITANCE §15.1

To get a different perspective, observe thatthere is no significant distinction between
the notion of tree and that of node, as we may identify a node with the subtree of which it
is the root. This suggests aiming for a cITREE[G] that describes both trees and nodes.
The formal generic parameiG represents the type of information attached to every node;
the tree below, for example, is an instaof TREE[INTEGEF].

m A tree of

integers

235 -2

[30] [=2flo] [5] [woog

Now consider a notion oLIST, with a class that has been sketched in earlier
chapters. A general implementation (linked, for example) will need an auxiliary class
CELL to describe the individual elements of a list.

LIST
Il s

(CELL)

These notions suggest a simple definition of trees: a tree (or tree node) is a list, the
list of its children; but it is also a potential list element, as it can be made into a subtree of
another tree.

Definition: tree

A tree is a list that is also a list element.

Although this definition would need some refinement to achieve full mathematical
rigor, it directly yields a class definition:

deferred clas: TREE[G] inherit
LIST[G]
CELL[G]

feature

end
FromLISTcome the features to find out the number of childcoun), add a child,
remove a child and so on.

From CELL come the features having to do with a node’s siblings and parents: next
sibling, add a sibling, reattach to a different parent node.

§15.1 EXAMPLES OF MULTIPLE INHERITANCE 527

Elementary
figures

A composite
figure

This example is typical of the reusability benefits of multiple inheritance. Writing
specific features for subtree insertion or removal would needlessly replicate the work dc
for lists. Writing specific features for sibling and parent operations would needless
replicate the work done for list elements. Only a facelift is needed in each case.

In addition you will have to take care, in tfeature clause, of the specific features
of trees and of the little mutual compromises which, as in any marriage, are necessar
ensure that life together is harmonious and prolific. In a (TREE derived from these
ideas, which has been used in many different applications (from graphics to structu
editing), these specific features fit on little more than a page; for the most part, the clas
simply engendered as the legitimate fruit of the union between lists and list elements.

This process is exactly that used in mathematics to combine thectopological vector
spacy, for example, is vector spac that also is @&opological spac; here too, some
connecting axioms need to be added to finish up the merger.

Composite figures

The following example is more than an example; it is a design pattern useful in ma
different contexts.

Consider an inheritance structure containing classes for various graphical figur
such as the one used in the preceding chapter to introduce some of the fundame
concepts of inheritance —FIGURE, OPEN_FIGURE, POLYGOPN RECTANGLI:
ELLIPSE and so on. So far, as you may have noted, that structure used single inheritat

Assume that we have included in this hierarchy all the basic figure patterns that
need. That is not enough yet: many figures are not basic. Of course we could build
graphical illustration from elementary shapes, but that is not a convenient way to wol
instead, we will want to build ourselves a library of figures, some basic, some construc
from the basic ones. For example, from basic segment and circle figures

we may assemble a composite figure, representing a wheel

which someone may in turn use as a predefined pattern to draw, say, a bicycle; and so

528 MULTIPLE INHERITANCE §15.1

We need a general mechanism for adding a new figure type which will be built from
previously defined ones but, once defined, will be on a par with them. Computer drawing
tools provide a&roupcommand for this purpose.

Let us call the corresponding noti@QOMPOSITE FIGUREA composite figure is
clearly a figure; scCOMPOSITE FIGUREshould inherit fromFIGURE, achieving the
goal of treating composite figures “on a par” with basic ones. A composite figure is also
a list of figures — its constituents; each of them may be basic or itself composite. Hence
the use of multiple inheritance:

_ A composite
extent dISpIaY flgure |S a
barycentet rotate* figure and a list
of figures

COMPOSITEY
FIGURE

~

- perimEteF @

/ \pe rimetef

diagonal QUADRANGLE]

perimetef*

perimetef™ BASIC
sidel, side FIGURES
(see previous
perimetei“

chapte)
To get an effective class fAtOMPOSITE FIGURBve choose an implementation
of lists; LINKED LISTis just one possibility. The class declaration will look like this:

§15.1 EXAMPLES OF MULTIPLE INHERITANCE 529

For the details see
“ACTIVE DATA
STRUCTURES”,
23.4, page 774

ExerciseE15.4,
page 567

ExercisesE15.8,
page 56, and
E21.6, page 716

class COMPOSITE_FIGURIinherit
FIGURE
LINKED_LIST[FIGURE]
feature

end

The feature clause is particularly pleasant to write. An operation on a composit
figure is, in many cases, an operation on all of its constituents taken in sequence.
example, proceduridisplay will be effected as follows iCOMPOSITE FIGUR:=

displayis
-- Display figure by displaying all its components in turn.
do
from
start
until
after
loop
item. display
forth
end
end
As in earlier discussions, we assume that our list classes offer traversal mechanisms based
on the notion of cursostari moves the cursor to the first element if any (othenafter

is immediately truejafter indicates whether the cursor is past all elemitern gives the
value of the element at cursor position, forth advances the cursor by one position.

| find this scheme admirable and hope its beauty will strike you too. Almos
everything is concentrated here: classes, multiple inheritance, polymorphic data structt
(LINKED_LIST[FIGURE]), dynamic binding (the caitem. display will apply the proper
variant ofdisplay based on the type of each list element), recursion (note that any li
element — anytemr — may itself be a composite figure, with no limit on the degree of
nesting). To think that some people will live an entire life and never see this!

It is in fact possible to go further. Consider ot COMPOSITE _FIGUR features
such asrotate andtranslate; because they all must apply the corresponding operation t
every member figure in turn, their body will look very much Idisplay. For an object-
oriented designer this is cause for alert: we do not like repetition; we transform it, throu
encapsulation, into reuse. (This could yield a good motto.) The technique to use here i
define a deferred “iterator” class, whose instances are little machines able to iterate o
a COMPOSITE_FIGUR. lts effective descendants may inchlDISPLAY ITERATOR
and so on. This is a straightforward scheme and is left to the reader as an exercise.

The technique describing composite structures through multiple inheritance, using
list or other container class as one of the parents, is a gedesign patterr, directly
useful in widely different areas. Make sure to look at the exercise asking you to ap|
similar reasoning to the notion submen in a window system: a submenu is a menu, but
itis also a menu entry. Another deals weomposit command:in an interactive system.

530 MULTIPLE INHERITANCE §15.1

The marriage of convenience

In the preceding examples the two parents played a symmetric role. This is not always the
case; sometimes each parent brings a contribution of a different nature.

An important application of multiple inheritance is to provide an implementation of
an abstraction defined by a deferred class, using facilities provided by effective class.

A marriage of

ARRAY convenience

ARRAYED
STACK

Consider the implementation of stacks as arrays. Since classes are available t(The deferreé TACK
stacks as well as arrays (deferred STACY, effective forARRA", both seen in earlierc'zszs"’(‘)pl?ge;f: on
chapters), the best way to implement cl:ARRAYED_STAC, describing stackst?RAw\,assketched
implemented as arrays, is to define it as an heir to STACk and ARRA". This is onpage373
conceptually right: an arrayed stack is a stack (as seen by clients) and is also ar. w.iwy
(internally). The general form is:

indexing

descriptior: "Stacks implemented as arr"ys
class ARRAYED_STAC[G] inherit

STACKI[G]

ARRAVY[G]

... A rename subclause will be added here (sege 540 ...

feature

... Implementation of the deferred routinesSTACK

in terms ofARRA" operations (see belo...

end

ARRAYED_STAC offers the same functionality i:STACK, effecting its deferred
features such &full, put, coun through implementations relying on array operations.

Here is an outline of some typical featurfull, counandpui. The condition under
which a stack is full is given by

§15.1 EXAMPLES OF MULTIPLE INHERITANCE 531

See“Using a par-
ent's creation proce-
dure”, page 53

full: BOOLEANIs
-- Is stack representation full?
do
Result :=(count= capacity
end

Herecapacity, inherited from clasARRAY, is the number of positions in the array.
Forcoun we need an attribute:

coun: INTEGER
This is a case of effecting a deferred feature into an attribute. Here finput: is

put(x: G) is
-- Pushx on top.
require
not full
do
count :=count + 1
array_put(x, coun)
end

Procedurearray_pu, inherited fromrARRA", assigns a new value to an array element
given by its index.

The array featurecapacityandarray_pu had different names in claARRA": coun and
pul. The name change is explained later in this chapter.

ARRAYED_STAC is representative of a common kind of multiple inheritance,
called themarriage of convenien. It is like a marriage uniting a rich family and a noble
family. The bride, a deferred class, belongs to the aristocratic family of stacks: it brin
prestigious functionality but no practical wealth — no implementation worth speaking c
(What good is an effectivchange to with a deferredput and remov«?) The groom
comes from a well-to-do bourgeois family, arrays, but needs some luster to match
efficiency of its implementation. The two make a perfect match.

Besides providing effective implementations of routines deferreSTACK, class
ARRAYED_ STAC may also redefine some which were not deferred. In particular, witl
an array representatiochange_togp(x: G), implemented irSTACk asremovefollowed
by put (x), may be implemented more efficiently as

array_put(x, coun)
To make this redefinition valid, do not forget to announce it in the inheritance claus

class ARRAYED_STAC[G] inherit
STACKJ[G]
redefine change_tofend
... The rest as befol...

The invariant of the class might read

532 MULTIPLE INHERITANCE §15.1

invariant
non_negative_cou: count>= 0
bounde: count<=capacity

The two parts of the assertion are of a different nature. The first expresses a prejppismentation
of the abstract data type. (It was in fact already present in the parerSTACF, and so invariants”, page
is redundant; it is included here for pedagogical purposes, but should not appear in 377.
version of the class.) The second line invohcapacity, that is to say the array
representation: it is eimplementation invariant.

You might take a minute to compaARRAYED_STAC, as sketched here, wittThe methodological
STACK: of an earlier discussion, and see how dramatically inheritance simplifies the gfgé)zsdloglftltisfeitels
This comparison will be pursued in the discussion of the methodology of inheritance, wong2, page 84:
will also address some of the criticisms occasionally heard against marriagSTACK: appeared
convenience inheritance and, more generally, against what is sometimes ©npage3st.

implementatin inheritence.

Structure inheritance

Multiple inheritance is indispensable when you want to state explicitly that a certain class
possesses some properties beyond the basic abstraction that it represents.

Consider for example a mechanism that makes object structures persistent (SIGF<TORABL see
on long-term storage). You may have to request that the lead object in a storable sti‘Deep storage: a
be equipped with the corresponding store and retrieve operations: in addition to itsfi"St view of persis-
. . s " . . tence”, page 25)
properties such an object is “storable”. In the Kernel library, as we have seen, this pre
is captured by a clasSTORABL|, from which any other class can inherit. Clearly, SuFor a more detailed
classes may have other parents as well, so this would not work without multiple inheritdiscussion of this
This form of inheritance, from a class that describes a general structural property —i%rt'xjgljpehﬁ]rggﬁtc_e:
with a name that ends wi-ABLE — is similar to inheritance from classCOMPARABLE ance”, page 831
andNUMERIC seen earlier in this chapter. The discussion of inheritance methodology

define it as inheritance of tistructuralkind.

Without multiple inheritance, there would be no way to specify that a certain
abstraction must possess two structural properties — numeric and storable, comparable
and hashable. Selecting one of therthe parent would be like having to choose between
your father and your mother.

Facility inheritance

Here is another typical case. Many tools need “history” facilities, enabling their users to
perform such operations as:

* Viewing the list of recent commands.
« Executing again a recent command.

« Executing a new command defined by editing a recent one and changing a few
details.

§15.1 EXAMPLES OF MULTIPLE INHERITANCE 533

See chapte24.

See chapte3€.

* Undoing the effect of the last command not yet undone

Such a mechanism makes any interactive tool nicer to use. But it is a chore to wr
As a result, only a few tools (such as certain “shells” under Unix and Windows) support
often partially. Yet the general techniques are tool-independent. They can be encapsul
in a class, from which a session-control class for any tool can then inherit. (A soluti
based on the client relation may be possible, but is less attractive.) Once again, with
multiple inheritance such an inheritance link would conflict with other possible parents.

A similar case is that of a claTESTencapsulating a number of mechanisms useful
for testing a class: getting and storing user input, printing and storing output, compari
with expected values, recording all the results, comparing with earlier tesregression
testing, managing the testing process. Although a client-based solution may be prefera
in some cases, it is convenient to have the possibility, for testing ax, of defining a
classX_ TESTthat inherits fromX and fromTEST.

In later chapters we will encounter other cases of facility inheritance, whereby
a classF encapsulates a set of related facilities, such as constants or routines fron
mathematical library, which any class can then obtain by inheriting Fom

Although the use of inheritance in such cases is sometimes viewed with suspicior
is in fact a perfectly legitimate application of the concept. It does differ in one respect frc
the other examples of multiple inheritance reviewed in this chapter: in the cases j
reviewed, we could achieve our goals, albeit less conveniently, with a client rather th
inheritance link.

Buttonholes

Here is a case in which, as in earlier ones, multiple inheritance is indispensable. I
similar in spirit to “company planes”, “sleeping cars” and other examples of th
combination-of-abstractions type encountered earlier. Rather than using concepts fr
some external model, however, this one deals with genuine software abstractions. -
reason why it has been moved to the end of this review of multiple inheritance examp
is that understanding it requires a little background preparation.

Like other graphical applications, many tools of the development environmei
presented in the last chapter offer “buttons”, on which you can click to trigger certa
operations. They also use a “pick and throw” mechanism (a variation on traditional “dra
and-drop”), through which you can select a visual object, causing the mouse cursot
change into a “pebble” that indicates the type of the object, and bring ihole of a
matching shape. You can “throw” the pebble into the hole by right-clicking; this caus
some operation to occur. For example, a Class Tool, which you use to explore 1
properties of a class in the development environment, has a “class hole” into which y
can drag-and-drop a class pebble; this causes the tool to retarget itself to the selected «

534 MULTIPLE INHERITANCE §15.1

Th e Class ho Ie\—.rﬂ Class: ARRAY [G] Cluster: kernel {precompiled) N Plck_an d_
. =l JarRAY = 8= F R throw
The pebble being dragge F— il
description:
"Sequences of values, all of the same type or of a conforming one, %
r | Feature: count ass: FILE % accessible through integer indices in a contiguous interval";
EI EI QI Jeount fram; | FILE EI ﬁl status: "See notice at end of class”;
- X date: "$Date: 95/06/05 16:00:46 §°;
—- Version from class: FI revision: "§Revision: 1.25 §*
count: is class ARRAY [G] inherit
—— Size in bytes (0 if no assoclated physical file)
do RESIZABLE [C]
if exists then redefine
if notis_open_write then full, copy, is_equel,
set_buffer; istent,
Result:= buffered file info.size ent;?nﬂstint e :I
else. :I
/ INDEXABLE [G, INTEGER]
H 1 redetine Q‘
BI= st tie w I O &
consistent, sefup
T T ! QI
Format buttons——-{S| == =] f| ¥/ &+« 38405 =/
In the figure, a user has picked somewhere — in a Feature Tool — the class

INTEGEF, by right-clicking on its name. He is moving it towards the class hole of the
Class Tool currently targeted to (showing the text of) (ARRA". Note the row of format
buttons at the bottom; clicking on one of them will show other informatioARRAY;

for example if you left-click o1z you will get the short form. The pick-and-throw (unless
canceled by a left-click) will end when the user right-clicks on the class hole, whose shape,
representing Class, matches that of the pebble. This will retarget the Class Tool on the
right to the selected class INTEGEF.

In some cases it may be convenient to let a hole act as button too, so that you can not
only throw an object into it but also, independently of any pick-and-throw, left-click on it
to produce a certain effect. For example the class hole, in which the small dot suggests the
presence of a current target (flARRA", thenINTEGEF) can serve as a button; left-
clicking on it retargets the tool to its current target, which is useful if the display was
overwritten. Such holes which double up as buttons are called buttonholes.

As you will have guessed, claBUTTONHOLEmultiply inherits fromBUTTON
and fromHOLE. The new class simply combines the features and properties of its parents,
since a buttonhole reacts like a button to the operations on buttons, and like a hole to the
operations on holes.

An assessment

The examples accumulated so far are representative of the power and usefulnsegM 1994ajon
multiple inheritance. Experience in building general-purpose libraries confirms library design.
multiple inheritance is needed throughout.

Whenever you must combine two abstractions, not having multiple inheritance
would mean that you choose one of them as the official parent, and duplicate all the other’s
features by copy-and-paste — making the new class, as it were, an illegitimate child. On
the illegitimate side, you lose polymorphism, the Open-Closed principle, and all the
reusability benefits of inheritance. This is not acceptable.

§15.2 FEATURE RENAMING 535

15.2 FEATURE RENAMING

Multiple inheritance raises an interesting technical problem: name clashes. The soluti
feature renaming, turns out to have applications far beyond that original problem, a
leads to a better understanding of the nature of classes.

Name clashes

A class has access to all the features of its parents. It can use them without havin
indicate where they come from: past inherit clause inclassC inherit A ..., a feature

f of C is known just af. The same is true of clients C: for x of typeC in some other
class, a call to the feature is written jxsf, without any reference to ttA origin of f. If

the metaphors were not so incompatible, we could view inheritance as a form of adopti
C adopts all the features A.

It adopts them under their assigned names: the set of feature names of a ¢
includes all of its parents’ feature name sets.

What then if two or more parents have used the same name for different featur:
We have relied on the rule of no intra-class overloading: within a class, a feature na
denotes only one feature. This could now be violated because of the parents. Conside

class SANTA BARBARinherit
LONDON
NEW_YORK

feature

end-- classSANTA_BARBARA

What can we do if botLONDONandNEW _YOREKkhad a feature named the same,
sayfoo (for some reason a favorite name in programming examples)?

Do not attach too much importance to the names in this example, by the way. No useful
abstraction is assumed behind the class names, especially none that would justify the
inheritance structure. The names simply make the example easier to follow and remember
than if we called our classA, B andC.

Under no circumstances should we renounce the no-overloading rule, essentia
keep classes simple and easy to understand. Within a class, a name should mean jus
thing. So classSANTA_ BARBARas shown is invalid and the compiler must reject it.

This rule seems rather harsh. In an approach emphasizing construction-box-|
combination of modules from several sources, we may expect attempts to comb
separately developed classes that contain identically named features.

As an example, we saw earlier a version of cTREE that inherits fronCELL andL ST,

both of which have a feature calliterr; for a cell, it returns the value stored in the cell,

and for a list it returns the value at the current cursor position. Both also have a feature
calledpui. These choices of name are all reasonable, and we would not like to have to
change the original classes just because someone got a clever idea for defining trees by
combining them.

536 MULTIPLE INHERITANCE §15.2

What can be done? You should not have to go back to the parents. You may not have
access to the source tex ONDONandNEW _YORI; you may have access to it, but not
be permitted to change it; you may be permitted but unwillinLONDON comes from
an external supplier and you know there will be new releases, which would force you to
do the work all over again; and most importantly you know about the Open-Closed
principle, which says one should not disturb modules when reusing them for new
extensions, and you are rightly wary of changing the interface of cle&. ONDON and
NEW_YOR) which may already have numerous clients that rely on the old names.

It is a mistake to blame the parents for a name clash occurring in inheritance: the
problem is in the would-be heir. There too should the solution be.

The language solution to name clashes follows from these observations. A class that
inherits different but identically named features from different parents is invalid, but will
become valid by including one or mcrename subclauses in the inheritance clause. A
rename subclause gives a new local name to one or more inherited features. For example:

class SANTA_BARBARInherit

LONDON
rename foo as fogend
NEW_YORK

feature

end -- classSANTA_BARBARA

Both withinSANTA BARBARand in its clients, thfoo feature fronrLONDONwill
be referred to &fog, and the one frorNEW _YORIFasfoo. Clients olLONDON, of course,
will still know the feature afoo.

This is enough (assuming there is no other clash, and no other feaLONDON
or NEW_YORUHs calledfog) to remove the clash. Of course, we could have renamed the
NEW_YORHKeature instead; or we could have renamed both for symmetry:
class SANTA BARBARinherit
LONDON
rename foo as fogend

NEW_YORK
rename foo as zooend

feature

end -- classSANTA_BARBARA

Therename subclause follows the name of a parent and comes beforedefine
subclause if any. It can of course rename several features, as in

§15.2 FEATURE RENAMING 537

A name clas|,
removed

classTREE[G] inherit

CELL[G]
renameiterr asnode_iter, putasput_righ end

which removes clashes between featureCELL and their namesakes in the other parent,
LIST. The clause renames titem feature fromCELL asnode_iter, since this feature
denotes the item attached to the current node, and similarly rejputasput_right.

Effects of renaming

Let us make sure we fully understand the results of a renaming. Assume the last forn
classSANTA BARBAR(the one that renames both inher versions ofoc):

foo foo

foom» fog fooms zoo

SANTA_
BARBARA

(Note the graphical symbol for renaming:, .) Assume entities of the three types
[: LONDON, n: NEW_YOR|;, s: SANTA_BARBARA

Thenl.foo and s.fog are both valid; after a polymorphic assignml := s they
would have the same effect, since the feature names represent the same feature. Sim
n.foo ands.zoc are both valid, and aftin := s they would have the same effect.

None of the following, however, is valid:

e |.zog |.fog, n.zo¢, n.fog since neithelLONDON nor NEW_YORKhas a feature
calledfog or zoc.

e s.foosince as a result of the renamSANTA_ BARBARhas no feature callefoc.

Artificial as the names are, this example also illustrates the nature of the name cl
issue. Believe it or not, | have heard it presented as a “deep semantic problem”. It is nei
semantic nor deep; rather, a simple syntactical problem. Had one of the class authors |
led by the local context to choose the nifogin the first class czoc in the second, no clash
would have occurred; yet in each case the change is just one letter. The name clash is,
were, a case of bad luck; it does not reveal any intrinsic problem with the classes or tt
ability to be combined. If you think of multiple inheritance as marriage, this is not a drama
case, discovered at the last minute, of a rare blood incompatibility; it is more like realizi
that the spouses’ mothers are both called Tatiana, making life a little more complicated
their grandchildren to come, but easy to solve through proper g conventions.

538 MULTIPLE INHERITANCE §15.2

Renaming and redeclaration

In the last chapter we studied another inheritance mechanism: redeclaration of an inherited
feature. (Remember that redeclaration includes the redefinition of an already effective
feature, and the effecting of a deferred one.) It is illuminating to compare the effect of
renaming and redeclaring a feature:

* Redeclaration changes the feature, but keeps its name.
* Renaming changes the name but keeps the feature.

With redeclaration you can ensure that sam¢ feature name refers idifferent
actual features depending on the type of the object to which it is applied (that is to say, the
dynamic type of the corresponding entity). This is a semantic mechanism.

Renaming is a syntactic mechanism, allowing you to refer tsame feature under
differen" names in different classes.

In some cases you may want to do both:

class SANTA BARBARIinherit
LONDON
rename
fooas fog
redefine
fog
end

Then assumind: LONDON; s SANTA_BARBARas befor, and the polymorphic
assignmenl := s, the callsl. foc ands.fogwill both trigger the redefined version (whose
declaration must appear irfeature clause of the class).

You will have noted that thredefine subclause uses the new name. This is normal
since that name is the only one under which the feature is known in the class. Accordingly,
the rename clause appears before all other inheritance subclaredefine, and others
yet to be studiecexport, undefing, selec). Past theename clause, the feature — like an
immigrant given a new identity at Ellis Island by a customs officer who found the old
name too hard to pronounce — has shed its ancestral name and will be known under its
new one to class, clients and descendants alike.

Local name adaptation

The ability to rename an inherited feature is interesting even in the absence of a name
clash. It allows the designer of a class to define the appropriate name for every feature,
whether immediate (declared in the class itself) or inherited.

The name under which a class inherits a facility from an ancestor is not necessarily
the most telling one for its clients. The original name may have been well adapted to the
ancestor’s clients, but the new class has its own context, its own abstraction, which may

§15.2 FEATURE RENAMING 539

See“Standard
names”, page 8¢.2

suggest its own naming conventions. To provide this abstraction it finds the ancestc
featuresuseful, but not necessarily the feature names. Renaming, which enables us
distinguish features from feature names, provides the solution.

The construction of clasWINDOW as an heir oTREE provides a good example.
TREE describes the hierarchical structure, common to general trees and windows; but
tree names may not be desirable for the interfaceWINDOW presents to its clients.
Renaming provides the ability to put these names in tune with the local context:

classWINDOWinherit
TREE[WINDOW]
rename
child as subwindoy, is_lea asis_termina, rootas screel,
arity aschild_coun, ...
end
RECTANGLE
feature
... Specific window feature...

end

Similarly, TREE inheriting fromCELL may renamright asright_siblinc and so on.
Through renaming, a class may offer its clients a consistent set of names for the serv
it offers, regardless of how these services were built from facilities provided by ancesto

The game of the name

The use of renaming for local name adaptation highlights the importance of naming
feature naming, but also class naming — in object-oriented software construction. A cl:
is formally a mapping from feature names to features; the feature names determine ho
will be known to the rest of the world.

In a later chapter we will see a number of systematic rules for choosing featt
names. Interestingly, they promote a set of across-the-board nancoun, puj, iter,
removs, ... — to emphasize commonalities between abstractions over the inevitak
differences. This style, which increases the likelihood of name clashes under multij
inheritance, decreases the need for “vanity” renaming of the kind illustrated wi
WINDOW. But whatever general naming conventions we follow, we must have th
flexibility to adapt the names to the local needs of each class.

Using a parent’s creation procedure

Let us see one more example of renaming, illustrating a typical scheme where the rena
feature is a creation procedure. RemenmARRAYED STAC, obtained by inheritance
from STACK andARRAY, the creation procedure ARRA" allocates an array with given
bounds:

540 MULTIPLE INHERITANCE §15.2

make(mink, maxt: INTEGEF) is
-- Allocate array with boundminb andmaxb
-- (empty ifmink > maxt)
do ... end

To create a stack, we must allocate the array so that it will accommodate a given
number of items. The implementation will rely on the creation procedtARRA/

class ARRAYED_STAC[G] inherit
STACKI[G]
redefine change_tojend
ARRAY[G]
rename
countas capacity, pul as array_pu, makeas array_make
end
creation
make
feature -- Initialization
make(n: INTEGEF) is
-- Allocate stack for at mon elements.
require
non_negative_si: n>=0
do
array_make(1, n)
ensure
capacity_se capacity=n
empt: count=0
end
... Other features (see “The marriage of convenience”, page...30)

invariant
count>= 0; count<= capacity
end -- classARRAYED_ STACK

Note that here our naming conventions — the usmake as the standard name for
basic creation procedures — would cause a hame clash, which, however, does not occur
thanks to renaming.

We also need to remove ambiguities countand put, both used for features of
ARRAYas well asSTACE. Querycoun, by convention, denotes the number of items in a
structure; forARRAYED_STAC, the relevant count is the number of elements pushed,
that is to saycoun from STACK; the othercoun, from ARRA", becomes the stack’s
capacity — the maximum number of pushable items — and so is rencapacit).
Similarly, pul for stacks is the push operation; we keep the ¢put (the operation that
replaces the element at a certain array position) under the newarray pu. It is used,
as you will remember, in the effecting he othelpui, the stack pushing procedure.

§15.3 FLATTENING THE STRUCTURE 541

15.3 FLATTENING THE STRUCTURE

Renaming is only one of the tools that the inheritance craftsman can use to build r
classes satisfying the needs of his clients. Another is redefinition. Later in this chapter,
in the next one, we will see a few more mechanisms: undefinition selec, descendant
hiding. The power of these combined mechanisms makes inheritance sometimes obtru:
and suggests the need for a special, inheritance-free version of a class: the flat form.

The flat form

In the view that we see emerging, inheritance suppliertechnique more than a client
technique. It is primarily an internal tool for constructing classes effectively. True, th
client side will need to know about the inheritance structure if it is to use polymorphis
and dynamic binding (wital: A; bl: B you need to know théB is a descendant A if

you are to use the assignmeal := bl); apart from that case, however, the inheritance
structure that led to a particular class is none of the clients’ business.

Like a good car mechanic, we are entirely led by the needs of our customers, but how we
go about taking care of them in the back of the garage is our responsibility.

As a consequence, it should be possible to present a class in a self-contained mar
independent from any knowledge of its ancestry. This is particularly important in the ca
of using inheritance to separate various components of a composite abstraction, suc
the tree and rectangle parts of the window concept.

The flat form of a class serves that purpose. It is not something you will ever writ
instead, you will rely on a tool of the software development environment to produce it f
you, through a command-line scrifflat class_nam) or when you click on a certain icon.

The flat form of a clasC is a valid class text which has exactly the same semantic
asC when viewed from a client, except for polymorphic uses, but includes no inheritan
clause. It is what the class would have looked like had its author not been able to |
inheritance. To produce a flat form means:

* Removing the entirinherit clause if any.
» Keeping all the feature declarations or redeclaratiorC. of

e Adding declarations for all inherited features, copied from the declarations in tt
applicable parents and taking into account all the inheritance transformations tl
were specified in theinheritance clause: renaming, redefinition, undefinition,
selec, feature join.

* Adding to each inherited feature a comment line of the ffrom ANCESTOR
indicating the name of the proper ancestor from which the current version is derive
the closest one that declared or redeclared the feature (and, in the case of a fee
join, described later in this chapter, the winning side).

* Reconstructing the full preconditions and postconditions of inherited routine
(according to the rules on assertion inheritance explained in the next chapter).

542 MULTIPLE INHERITANCE §15.3

* Reconstructing the full invariant, tanding all the parents’ invariants, after applying
the proper transformations if they use any renamed or selected feature.

The resulting class text shows all the features of the class at the same leveAn “immediate”
making any difference (except for tfrom ANCESTOI comments) between immediateféature is one intro-
. . duced in the class
and inherited features. If present, the labels of feature clauses —feature -- Access jiay.
— are retained; clauses with identical labels, whether from parents or the class itse

merged. Within each feature clause the features appear alphabetically.

The illustration below shows the beginning of the flat form of the Base library class
LINKED_ TREE, produced in a Class Tool of ISE's development environment (and
scrolled past thindexing clause). To obtain this result, you target the Class Tool to the
class, and click on the Flat forrrbutton.

] Flat form of class LINKED_TREE [G] 1 D|splay|ng a
a ELEENE flat form
=

class
LINEED_TREE [G]

creation
make

feature —— Access

child_cursor: CURSOR is
—— Current cursor position
-— (f:mmv_LINKED_LIST)
do
!LINKED LIST CURSOR [G]! Resultmake ichild, child_after, child before)
end;

child_index: INTEGER is
—— Index of current position

—— (from LINKED_LIST) :I
local
p LINEED_LIST CURSOR[G] :I
dojf child_after then @I
Result = arity + 1
els ;:fsnutt chéﬂxsii;fure then ﬂl
5] I ‘0

Format buttons: flat flat-short short

Uses of the flat form

The flat form is a precious tool for developers: it enables them to see the full set of
properties of a class, all together in one place, ignoring how these features were derived
in the inheritance games. A potential drawback of inheritance is that when reading a class
text you may not immediately see what a feature name means, since the declaration can
be in any ancestor. The flat form solves this problem by giving you the full picture.

The flat form may also be useful to deliver a stand-alone version of a class, not
encumbered by the class history. That version will not be usable polymorphically.

§15.4 REPEATED INHERITANCE 543

See“Using asser-
tions for documen-
tation: the short
form of a class”,
page 391

Repeated
inheritance

The flat-short form

The flat form is a valid class text. So in its just mentioned role as documentation, it is
interest for the supplier side — for developers working on the class itself or a ne
descendant. The client side needs more abstraction.

In an earlier chapter we saw the tool that provides this abstracshort
(corresponding in the last figure to the second button to the ricflat.)f

Combining the two notions yields the notion of flat-short form. Like the short form
the flat-short form of a class only includes public information, removing any non-exporte
feature and, for exported features, removing any implementation asdo clauses in
particular. But like the flat form, it treats all features, immediate or inherited, as peers
whereas for a class with parents the non-flat short form only shows information abc
immediate features.

The flat-short form is the primary mechanism for documenting classes, in particul
reusable library classes, for the benefits of their users (client authors). The book presen
the Base librarie[M 1994a provides all the class specifications in that form.

15.4 REPEATED INHERITANCE

As noted at the beginning of this chapter, repeated inheritance arises whenever a cla
a descendant of another in more than one way. This case causes some pote
ambiguities, which we must resolve.

Repeated inheritance will only arise explicitly in advanced development; so if you a
only surveying the key components of the method you may skip directly to the next chap

Sharing ancestors

As soon as multiple inheritance is allowed into a language, it becomes possible for a cl
D to inherit from two classeB and C, both of which are heirs, or more generally
descendants, of the same clA. This situation is called repea inheritance.

P @

*
L 4 A/

€D
" 5
)

(1) Indirect (2) Direct

544 MULTIPLE INHERITANCE §15.4

If B andC are heirs of proper descendant<A (case 1 in the figure), the repeated
inheritance is said to be indirect.A, B andC are all the same class (case 2), the repeated
inheritance is direct; this is achieved by writing

classD inherit
A
A

feature

end

Intercontinental drivers

The following system modeling example will enable us to see under what circumstances
repeated inheritance may occur and to study the problem that it raises. Assume a class
DRIVEF with attributes such as

age: INTEGER
addres: STRING
violation_coun: INTEGER -- The number of recorded traffic violations

and routines such as

pass_birthdayis do age := age + lend
pay_feeis
-- Pay the yearly license fee.
do... end

An heir of DRIVEF, taking into account the specific characteristics of US tax rules,
may beUS DRIVEL Another may bFRENCH_DRIVEI (with reference to places where
cars are driven, not citizenship).

Now we may want to consider people who drive in both France and the US, perhaps
because they reside in each country for some part of the year. A simple way to express this
situation is to use multiple inheritance: ciFRENCH _US DRIVE will be declared as
heir to bottUS DRIVEFandFRENCH_DRIVEL As shown by the figure at the top of the
facing page, this causes repeated inheritance.

To make sure that the example is a proper use of inheritance we asstUS_DRIVER

and FRENCH_DRIVEI are not just distinguished by the value of some attribute
representing the country of driving, but are indeed distinct abstraction variants, each with
its specific features. Chapt24 discusses in depth the methodology of using inheritance.

Sharing and replication
The first and principal problem of repeated inheritance appears clearly in the
intercontinental driver example:

What is the meaning in the repeated descen(FRENCH_US DRIVE in
the exampl): of a feature inherited from the repeated ance(DRIVEF)?

§15.4 REPEATED INHERITANCE 545

Kinds of driver

Page536.

age pass_birthday
address @ pay_fee
violation_count
FRENCH
DRIVER

FRENCH_US
DRIVER

Consider a feature such age. It is inherited fromDRIVEF by bothUS_DRIVER
andFRENCH_DRIVE], so at first sight the name clash rule seems to require renamin
But this would be too stringent: there is no real conflict sage fromUS_DRIVEFand
age fromFRENCH_DRIVEl are not really different features: they are one feature, frorm
DRIVEF. Unless you are trying to hide something from someone, you have the same :
wherever you happen to be driving. The same applies to procpass_birthday

If you read carefully the rule about name clashes, you will have noted that it does 1
preclude such cases. It stated:

A class that inherits different but identically named features from different
parentsis invaliu

Here the versions cage and pass_birthda that FRENCH_US_ DRIVE inherits
from its two parents are nadifferent” features, but a single feature in each case. So ther
is no real name clash. (An ambiguity could still exist if one of the features was redeclal
in an intermediate ancestor; we will see shortly how to resolve it. For the moment \
assume that nothing is redeclared.)

In such cases, when a feature coming from a repeated ancestor is inherited unde
same name from two or more parents, the clear rule is that it should give a single feat
in the repeated descendant. This case will be csharing.

Is sharing always appropriate? No. Consiaddres, pay_fe,, violation_coun: our
dual drivers will most likely declare two different addresses to the respective Departme
of Motor Vehicles; paying the yearly fee is a separate process for each country; and tra
violations are distinct. For each of these features inheritedDRIVEF, classFRENCH
US_DRIVEIneeds not one but two different features. This case will be aeplication.

546 MULTIPLE INHERITANCE §15.4

What the example — and many others — also shows is that we could not get what
we need with a policy that would either share all features of a repeated ancestor or
replicate all of them. This is too coarse a level of granularity. We need the ability to tune
the policyseparately for each repeatedly inherited fea.ure

We have seen how to obtain sharing: just do nothing — inherit the original version
from both parents under the same name. How do we obtain replication? By doing the
reverse: inheriting it under two different names.

This idea is consistent with the general rule, simple and clear, that we apply to
features and their names: within a class, a feature name denotes only one feature; two
separate names denote two separate features. So to replicate a repeatedly inherited feature
we simply make sure that some renaming occurs along the way.

Repeated Inheritance rule

In a repeated descendant, versions of a repeatedly inherited feature inherited
under the same name represent a single feature. Versions inherited under
different names represent separate features, each replicated from the original
in the common ancestor.

This rule applies to attributes as well as routines. It gives us a powerful replication
mechanism: from one feature of a class, it is possible in a descendant to get two or more
features. For an attribute, this means an extra field in all the instances; for a routine, it
means a new routine, initially with the same algorithm.

Exceptin special cases involving redeclaration, the replication can be conceptual only:
no code actually gets duplicated, but the repeated descendant has access to two features.

The rule gives us the desired flexibility for combining classes. For example the class
FRENCH_US DRIVE may look like this:

classFRENCH_US_DRIVElinherit
FRENCH_DRIVER
rename
addressas french_addres,s
violation_counfasfrench_violation_coul,t
pay_feeas pay_french_fee
end
US_DRIVER
rename
addressas us_address
violation_couniasus_violation_cour,t
pay_feeas pay_us_fee
end
feature

end -- classFRENCH_US_DRIVER

§15.4 REPEATED INHERITANCE 547
Sharing and age pass_birthday
replication address @ pay_fee
violation_count /\
FRENCH_
DRIVER

pay feem» pay_french_fee

violation_count
~» french_violations_count

5§ FRENCH_US_
DRIVER

pay_feemy pay_us_fee
violation_count
A~y US_violations_count

addressmy french_addre addressw» us_address

The renaming occurs here at the last stage — in the repeated descendant — but s
or all of it could also have been done by intermediate anceFRENCH_DRIVEI and
US_DRIVEF all that counts is whether in the end a feature is repeatedly inherited unc
one name or more.

The featurerage andpass_birthda, which have not been renamed along any of the
inheritance paths, will remained shared, as desired.

A replicated attribute such addres will, as noted, yield a new field in each of the
instances of the repeated descendant. So assuming there are no other features than th
listed, here is how instances of the claswill look:

Attribute age age
replication address french_address
violation_coun french_violation_count
us_address
(DRIVER us_violation_count

(FRENCH_US_DRIVER

(Instances oFRENCH_DRIVElandUS_DRIVEFhave the same composition as those of
DRIVEF as shown.)

This is the conceptual picture, but with a good implementation it must be the concre
representation too. Particularly important is the ability not to replicate the fields for shar
attributes such eage in FRENCH_US_DRIVE. A naive implementation would replicate
all fields anyway; some fields, such as the dupliage field, would simply never be used.
Such waste of space is not acceptable, since it would accumulate as we go down inherit:

548 MULTIPLE INHERITANCE §15.4

hierarchies, and lead to catastrophic space inefficiency. (As a general rule, one must be
very careful with attributes, as every attribute field will be present at run timgcim one
of the potentially many instances of a class and its descendants.)

The compiling mechanism of the development environment described at the end of
this book indeed makes sure that no attribute space is lost: conceptually shared attributes
are shared physically too. This is one of the most difficult parts of implementing
inheritance and the calling machinery of dynamic binding, especially under the additional
requirement that repeated inheritance must not affect the performance achievements
described in earlier chapters:

« Zero cost for genericity.

* Small, constant-bounded cost for dynamic binding (that cost must be the same
whether or not a system includes repeated inheritance).

The implementation meets these goals, making repeated inheritance a technique that
any system can use at no extra cost.

Repeated inheritance in C++ follows a different pattern. The level of granularity for

deciding to share or duplicate is the class. So if you need to duplicate one field from the

repeated ancestor, you will need to duplicate all. For that reason, C++ users tend to stay

away from this mechanism altogether. Java has eliminated the problem — by eliminating
multiple inheritance.

Unobtrusive repeated inheritance

Cases of repeated inheritance similar to the “transcontinental drivers”, with duplicated
features as well as shared ones, do occur in practice, but not frequently. They are not for
beginners; only after you have reached a good level of sophistication and practice in object
technology should you encounter any need for them.

If you are writing a straightforward application and end up using repeated
inheritance, you are probably making things more complicthan you need to.

® Redundant
* inheritance

The figure shows a typical beginner’s (or absent-minded developer’s) miD ixe:
made an heir ¢B, and also needs facilities frcA; butB itself inherits fromA. Forgetting
that inheritance is transitive, the developer wrote

§15.4 REPEATED INHERITANCE 549

See‘THE GLOBAL
INHERITANCE
STRUCTURE”",
16.2, page 580

classD... inherit
B
A

This case causes repeated inheritance, but what it really shovesluadant
inheritance. One of the pleasant consequences of the conventions discussed so far, a
the corresponding implementation, is that they will yield the expected behavior in suct
case: in the absence of renaming, all features will be shared; no new features will
introduced, and there will be no performance overhead. Eereiiames some attributes,
the only consequence will be some waste of space.

The only exception is the case in whighas redefined a feature &f which causes
an ambiguity inD. But then, as explained below, you will get an error message from th
compiler, inviting you to select one of the two versions for uge.in

A case of redundant but harmless inheritance may occur whés a class
implementing general-purpose facilities like input or output (such as theliass~ILES
from the Kernel library), needed iy as well asB. It is enough foiD to inherit fromB:
this makesD a descendant of, giving it access to all the needed features. Inheriting
redundantly will not, however, have any harmful consequences — in fact, it will have r
consequences at all.

Such involuntary and innocuous cases of repeated inheritance may also occur as a result
of inheritance from universal classeklY andGENERAI studied in the next chapter.

The renaming rule

(This section introduces no new concept but gives a more precise formulation of the rt
seen so far, and an explanatory example.)

We can now give a precise working of the rule prohibiting name clashes:

Definition: final name

The final name of a feature in a class is:

e For an immediate feature (that is to say, a feature declared in the class
itself), the name under which it is declared.

e For an inherited feature that is not renamed, its final name (recurs|vely)
in the parent from which it is inherited.

e For a renamed feature, the name resulting from the renaming.

Single Name rule

Two different effective features of a class may not have the same final name.

550 MULTIPLE INHERITANCE §15.4

A name clash occurs if two different features, both effective, still have the same
name even after renaming subclauses have been taken into account. Such a name clash
makes the class invalid, but is easy to correct by adding the proper renaming subclause.

The key word idifferen features. If a feature from a repeated ancestor is inherited
from both parents under the same name, the sharing rule applieone featureis being
inherited, so there is no name clash.

The prohibition of name clashes only applies to effective features. If one or more
homonymous features are deferred, you can actumergethem since there is no
incompatibility between implementations; the details will be seen shortly.

The rules are simple, intuitive and straightforward. To check our understanding one
final time, let us build a simple example showing a legitimate case and an invalid case:

classA feature
this_one_Ol INTEGER this_one_O °
end

classB inherit A feature
portends_troubl: REAL
end

portends_troublg portends_trouble

classC inherit A feature
portends_troubl: CHARACTER
end
classD inherit
-- This class is invalid!
B
C
end

That clas<D inheritsthis_one OKtwice — once fronB, once fromC — doesnot
cause a name clash, since the feature will be shared; it is indeed the same feature, coming
from A, in each case.

The two features calleportends_troubl, however, deserve their name: they are
different features, and so they cause a name clash, makincD: invalid. (They have
different types, but giving them the same type would not affect this discussion.)

It is easy to make clai valid through renaming; for example:

classD inherit
-- This class is now quite valid.

renameportends_troubleasdoes_not_portend_trouble_any mend

end

§15.4 REPEATED INHERITANCE 551

Redefinition
causing
potential
ambiguity

Conflicting redefinitions

In the cases seen so far only names could change along the various inheritance paths."
if some intermediate ancestor, suclBas C on the last figure, redeclares a feature that is
then repeatedly inherited? Under dynamic binding there may be an ambigity in

Two simple mechanisms, undefinition and selection, will solve the issue. As usu
you will be invited to participate in the development of these mechanisms and will see tl
once a problem is stated clearly the language solution follows immediately.

Assume that somewhere along the way a repeatedly inherited feature gets redefir

ClassB redefines featur& (this is the conventional meaning of the symbol, as
you will recall). So now you have two variantsfavailable inD: the redefined version
from B, and the version fronT, which here is the original version frofm (We might
assume thatC also redefineg in its own way, but this would bring nothing to the
discussion except more symmetry.) This is different from all the previous cases, in whi
there was only one version of the feature, possibly inherited under different names.

What are the consequences? The answer depends on wheihleerits the two
versions off under the same name or different names, that is to say whether the repee
inheritance rule implies sharing or replication. Let us review the two cases in turn.

Conflicts under sharing: undefinition and join

Assume first that the two versions are inherited under the same name. This is the shat
case: with just one feature name, there must be exactly one feature. Three possibilitie

S1 . If one of the two versions is deferred and the other effective, there is no difficulty
the effective version will serve to effect the other. Note that in the Single Name ruls
this case was explicitly permitted: the rule only prohibited name clashes betwee
two effective features.

552 MULTIPLE INHERITANCE §15.4

S2 «If both versions are effective, but each of them appearsredefine subclause,
there is no problem either: both inherited versions are merged into a new version,
whose redefinition appears in the class.

S3 «But if the versions are both effective and not both redefined, we have a true name
clash: clasD will be rejected as violating the Single Name rule.

Often SZ will indeed reflect an error: you have created an ambiguity for a certain
feature name, and you must resolve it. The usual resolutiorrename one of the two
variants; then instead of sharing you get replication — two different features. This is the
other main case, replication, studied next.

In some situations, however, you may want a more sophisticated resolution of the S3
conflict: letting one of the two variants, say the one fiB, take over. Then the obvious
solution is to transform this case irS1by making one of the two variants deferred.

The rules on redefinition allow us to redefine an effecf into a deferred version;
but they would force us to introduce an intermediate clas<C’, an heir oiC whose only
role is to redefind into a deferred version; then we would mD inherit fromC' rather
than C. This is heavy and inelegant. Instead, we need a simple language mechanism:
undefine. It will yield a new subclause in the inheritance part:

classD inherit
B
C
undefine f end
feature

end

If more than one subclause is presundefine naturally comes afterename(since
any undefinition should apply to the final name of a feature) but bredefine (since we
should take care of any undefinition before we redefine anything).

A sign that a proposed language mechanism is desirable is, almost always, that it
should solve several problems rather than just one. (Converbac language
mechanisms tend to cause as many problems, through their interactions with other
language traits, as they purport to solve.) The undefinition mechanism satisfies this
property: it gives us the ability join features under multiple — not necessarily repeated
— inheritance. Assume that we wish to combine two abstractiononep

Two parents
f g with features

to be merged

@D

§15.4 REPEATED INHERITANCE 553

We wantD to treat the two featurdf andg as a single feature; this clearly requires
that they have compatible signatures (number and types of arguments and result if any),
compatible semantics. Assuming that they have different names, and that we want to k
thef name, we can achieve the desired result by combining renaming with undefinition:

classD inherit

B
rename
g asf
undefine
f
end
feature

end

Here the victory oB is total: it inposes both the feature and the feature name. Al
other combinations are possible: we may get the feature from one of the parents and
name from the other; or we may rename both features to an entirely new neDue for

Another way to join features is more symmetric: replace both inherited versions by
new one. To achieve this, simply make sure that the features have the same final ne
adding erename subclause if necessary, and list them botredefine subclauses, with a
new declaration in the class. Then there is no illicit name clash (this iSz above), and
both features are joined into the new version.

Note the versatility of the renaming mechanism (showing that it satisfies the ju
introduced criterion for good language traits): originally introduced as a technique f
removing name clashes, it now enables Lintroduce name clashes — name clashes of a
desirable kind, resolved by undefining oif the inheried versions tcet theother take over.

Conflicts under replication: selection

There remains to consider the case of conflicting redefinitions under replication, that is
say when the repeated descendant inherits the separately redefined features with diffe
names, and they are bceffective.

The need for f o

selection

f Ay DFFT

554 MULTIPLE INHERITANCE §15.4

On theB branch in the figure, featufis renamedfand is also redefined. Favoring
again simplicity over symmetry we assume no change irC branch; renaming or
redefiningf in C would not affect the discussion. Also, note that the result would be the
same ifB redefined the feature without renaming it, the renaming then occurringDit the
level. Let us assume this is not a case of join (which would arise if we redefined both
features, undeS2 above, or undefined one of them).

Because the features are inherited under different nbf andf, replication applies:
D gets two separate features from the feaf of A. In contrast with previous cases of
replication, these are not duplicates of the same feature, but different features.

Here, unlike in the sharing case, there is no name clash. But as the careful reader will
have noted, a different problem arises (the last issue of repeated inheritance), due to
dynamic binding. Assume that a polymorphic enal of type A, the common ancestor,
becomes attached at run time to an instancD, the common descendant. What then
should the calal.f do?

The rule of dynamic binding states that the versiof to apply is the one deduced
from the type of the target object, hiD. But now for the first time that rule is ambiguous:
D has two versions — known locally bf andf — of the originalf of A.

The observation made in the case of name clashes, which led to the renaming
mechanism, applies here too: we cannot, in an approach favoring clarity and reliability, let
the compiler make the choice behind the scenes through some default rule. The author of
the software must be in control.

This shows the need for a simple language mechanism to resolve the ambiguity:

classD inherit
B

selectf end
feature

end
to triggerC’s version under dynamic binding for an entity of t A, and
classD inherit
selectbf end

C
feature

end

to selectB’s version instead. Thiselec clause will naturally appear aftrename,
undefine andredefine if present (you select variants once everything has been named and
defined). Here is the rule governing its usage:

§15.4 REPEATED

INHERITANCE 555

The case in which
both are redefined
corresponds t(Sz,
page 552.

“Using the original
version in a redefini-
tion”, page 49.)

Select rule

A class that inherits two or more different effective versions of a feature|from
a repeated ancestor, and does not redefine them both, mustinclude exactly one
of them in eselec clause.

Theselec resolves the ambiguity once and for all: proper descendants of the cla
do not need to repeat it (and should not).

Selecting everything

Every redefinition conflict must be resolved throtselec. When combining two classes
that cause several such conflicts, you may want one of the classes to win all or mos
these conflicts. This happens in particular with inheritance of the “marriage ¢
convenience” form, as illustrated tARRAYED STAC inheriting from STACk and
ARRA, if the parents have a common ancestor. (In the Base libraries, both classes ¢
are indeed distant descendants of a getCONTAINEF class.) In such a case, since one
of the parents — what has been called the noble parentSTACK— provides the
specification, you will probably want to resolve all conflicts, or most of them, in its favor

The following important notational facility simplifies your task in such cases, by
avoiding the need to list all conflicting features individually. At most one of the parer
listings in theinherit clause may be of the form

SOME_PARENT
select all end

The effect is simply, as suggested by the keywall, to resolve in favor of
SOME_PARENall redefinition conflicts — more precisely all the conflicts that might
remain after the application of othselec subclauses. This last qualification means that
you can still request some other parent’s \on for certainfeatures.

Keeping the original version of a redefined feature

(This section describes a more specialized technique and may be skipped on first readi

In the introduction to inheritance we saw a simple construct allowing a redefine
feature to call the original versiolPrecurso. The repeated inheritance mechanism,
through its support for feature duplication, provides a more general (but also heavi
solution in those rare cases for which the basic mechanism does not suffice.

Consider again the earlier exampBUTTON inheriting from WINDOW and
redefiningdisplay as

displayis
-- Display button on the screen.
do
window_display
special_button_actions
end

556 MULTIPLE INHERITANCE §15.4

wherewindow _displa takes care of displaying the button as if it were a normal window,
andspecial _button_actior adds button-specific elements such as displaying the button’s
border. Featurwindow_displa is exactly the same as tWINDOW version ofdisplay.

We have seen how to wriwindow_displa simply asPrecurso. (If there is any
ambiguity, that is to say if two or more parents redefine display routine into the new
one, the selected parent will appear in double braces{{ WINDOW}} Precurso.) We
can achieve the same goal, although less simply, through repeated inheritance:

indexing

WARNINC "This is a first attempt — this version is invi"id
class BUTTONinherit
WINDOW
redefinedisplayend
WINDOW
renamedisplayaswindow_displayend
feature

end -- classBUTTON

Because one of the branches renadisplay, the repeated inheritance rule indicates
that BUTTON will have two versions of that feature, one redefined and keeping the
original name, the other not redefined but having the rwvindow_displav

As indicated, this is almost valid but not quite: we neselec. If (as will usually
be the case) we want to select the redefined version, this will give:
indexing
note: "This the(valid!) repeated inheritance scheme for continuing to use %
%the original version of a redefined feat"ire
class BUTTONinherit

WINDOW
redefine

display

I .
se ect. - The selection
display

end

WINDOW
rename
displayaswindow_display
export
{NONE} window_display
end

feature

end -- classBUTTON

§15.4 REPEATED INHERITANCE 557

If several features need this scheme, you can list them together (in other words, \
do not need to inherit more than twice from the parent). Often you will want to resolve «
conflicts in favor of the redefined versions; in that case select al.

Theexport clause (studied only in the next chapter, although there is little more to it than
shown here) changes the export status of an inherited fedAWVINDOW probably
exported the originadisplay, now known aswindow_displa, but BUTTON makes it
secret. Althougtlwindow_displa is a full-fledged feature of the class, which needs it for

its internal purposes, clients have no use for it. As discussed in earlier examples,
exporting the original version of an inherited feature might make the class formally
incorrect if that version does not satisfy the new class invariant.

To apply hiding to all features inherited along a certain branch you can, here too, use the
keywordall, as inexport { NONE} all.

This pattern of exporting only the redefined version, making the original secret und
a new name, is the most common. It is not universal; the heir class sometimes need
export both versions (assuming the original does not violate the invariant), or to hide bc

How useful is this technique using repeated inheritance to keep the original versionr
a redefined feature? Usually you do not need it:Precursol construct suffices. You
should use repeated inheritance when you do not just require the old version
implementing the redefined one, but want to keep it, along with the redefined version,
one of the features of the new class.

Remember that if both are exported they must both make sense for the corresponc
abstraction; in particular, they must preserve the invariant.

An advanced example

Here is an extensive example showing various aspects of repeated inheritance at wor

The problem, similar in spirit to the last example, comes from an interestin
discussion in the basic book on C[Stroustrup 1991.]

Consider a clasWINDOW with its display procedure and two heirWWINDOW
WITH_BORDEI and WINDOW_WITH_MEN! representing the abstractions suggested
by their names. Each redefindisplay so that it will first perform the standard window
display, and then display the border in the first case, and the menu cells in the seconc

We may want to describe windows that have both a border and a menu; hence
use of repeated inheritance for clWINDOW_WITH_BORDER_AND_MENU

558 MULTIPLE INHERITANCE §15.4

variants
WINDOW _
WITH BORDER
WINDOW_WITH.
BORDER_AND_MENU

In classWINDOW_WITH_BORDER_AND_MET we will again redefinedisplay;
here the redefined version should apply the standard window display, then display the
border, then display the menu.

The originalWINDOW class has the following form:

classWINDOWfeature
displayis
-- Display window (general algorithm)
do

end

... Other feature...
end

For an heir such aWINDOW_WITH BORDE we need to apply the original
display and add border display. We do not need repeated inheritance here, but can simply
rely on thePrecursorconstruct:

classWINDOW_WITH_BORDEIlinherit
WINDOW
redefine displayend
feature -- Output
displayis
-- Draw window and its border.

do
Precursor

draw_border
end

feature {NONE} -- Implementation
draw_borderis do ... end

end

§15.4 REPEATED INHERITANCE 559

Note the addition of a procedidraw_borde which displays the border. It has been
hidden from clients (exported INONE), since from the outside it makes no sense to
display the border only. ClaWINDOW_WITH_ MENTIis exactly symmetrical:

classWINDOW_WITH_MENLUinherit
WINDOW
redefine displayend
feature -- Output
displayis
-- Draw window and its menu.
do
Precursor
draw_menu
end

feature {NONE} -- Implementation

draw_mentis do ... end

end

It remains to write the common hé/INDOW_WITH_BORDER_AND_MENU
of these two classes, a repeated descenddWINDOW. Here is a first attempt:

indexing
WARNINC "This is a first attempt — this version will not work prop!"rly
class WINDOW_WITH_BORDER_AND_MENinherit
WINDOW_WITH_BORDER
redefine displayend
WINDOW_WITH_MENU
redefine displayend

feature
displayis
-- Draw window and its border.
do
{WINDOW_WITH_BORDE}} Precursor
{WINDOW_WITH_MENW}} Precursor
end
end

Note the need to name the parentin each uPrecurso: each parent hasdisplay
feature, each redefined into the same idisplay(otherwise we would have an invalid
name clash, of course), so in each case we must say which one we want.

560 MULTIPLE INHERITANCE §15.4

But, as Stroustrup notes (for a different solution), this is not correct: both parent
versions call the origindWINDOW version, which will end up being called twice, possibly
producing garbled output. To get a correct form, we may among other solutions let the new
class inherit directly fronWINDOW, making it a triple descendant of that class:

indexing
note: "This is a correct versic'n
class WINDOW_WITH_BORDER_AND_MENinherit
WINDOW_WITH_BORDER
redefine
display
export {NONE}
draw_border
end
WINDOW_WITH_MENU
redefine
display
export {NONE}
draw_menu
end
WINDOW
redefine displayend
feature
displayis
-- Draw window and its border.
do
{ WINDOW}} Precursor
draw_border
draw_menu
end

end

Note that for good measure we have made feaidraw_borde anddraw_menu
hidden in the new class, as there does not seem to be any reason for clients of
WINDOW_WITH_BORDER_AND_MET! to call them directly.

In spite of its lavish use of repeated inheritance, this class does not neselecty
since it redefines all inherited versionsdisplay into one. This is the benefit of using
Precurso rather than feature replication.

A good way to test your understanding of repeated inheritance is to rewriteExerciseE15.10,
example without making use of tiPrecurso construct, that is to say by using repeatP29¢ 563
inheritance to obtain feature replication at the level of the two intermediate classes = _.
will, of course, neeselec subclauses.

§15.4 REPEATED INHERITANCE 561

In the version obtained above, there is sharing only, no replication. Let us exte
Stroustrup’s example by assuming tWINDOW also has a queiid (perhaps an integer)
used to identify each window. If each window is identified at most once,d will be
shared and we do not need to change anything. But if we want to keep track separatel
instances of each window type, an instancVINDOW WITH BORDER_AND MENU
will have three separate identifiers. The new class combines sharing with replication:

The only changes are indexing
wifhaggigmi marked note: "More complete version with separate identif'zrs
' class WINDOW_WITH_BORDER_AND_MENinherit
WINDOW_WITH_BORDER
rename
id asborder_id -
redefine
display
export { NONE}
draw_border
end
WINDOW_WITH_MENU
rename
id asmenu_id -
redefine
display
export { NONE}
draw_menu
end
WINDOW
rename
id aswindow _id
redefine
display
select
window_id
end
feature
.... The rest as befo....
end

Note the need fcselecing one of the versions d.

Repeated inheritance and genericity

To finish this review of repeated inheritance, we must consider a specific case which co
cause trouble if left unchecked. It arises for features involving formal generic paramete
Consider the following scheme (which could also arise with indirect repeated inheritance

562 MULTIPLE INHERITANCE §15.4

class A[G] feature
G ...
end
class B inherit
A[INTEGEF]
A [REAL]
end
In classB, the repeated inheritance rule would imply tf is shared. But this leaves

an ambiguity on its type: does itreturn an integer or a real? The same problem would occur
if f were a routine with an argument of tyG.:

Such an ambiguity is not acceptable. Hence the rule:

Genericity in Repeated Inheritance rule

The type of any feature that is shared under the repeated inheritance rule, and
the type of any of its arguments if it is a routine, may not be a generic
parameter of the class from which the feature is repeatedly inherited.

You can remove the ambiguity by renaming the offending feature at the point of
inheritance, to get duplication rather thanaming.

Rules on names

(This section only formalizes previously seen rules, and may be skipped on first reading.)

We have seen that name clashes are prohibited when they could cause ambiguity, but
that some cases are valid. To finish off this presentation of multiple and repeated
inheritance without leaving any ambiguity, it is useful to summarize the constraints on
name clashes with a single rule:

Name clashes: definition and rule
In a class obtained through multiple inheritancname clas occurs wher
two features inherited from different parents have the same final name,
A name clash makes the class invexcep in any of the following cases:

N1 The two features are inherited from a common ancestor, and none has
been redeclared from the version in that ancestor.

N2 <Both features have compatible signatures, and at least one of them is
inherited in deferred form.

N3 <Both features have compatible signatures, and they are both redefined
in the class.

§15.5 DISCUSSION 563

CaseNl is the sharing case under repeated inheritance.

In caseN2, a feature is “inherited in deferred form” if it was deferred in the parent
or if it was effective but the claiundefines it.

Case«N2 andN3 have been separated but can be merged into a single cgjointhe
case. Considerinn featuresn >= 2) rather than just two, these cases arise when the cla:
getsn features with the same name, and compatible signatures, from its various pare
The name clash is valid if we can let the inheritance join all of these features into ot
without any ambiguity. This means that:

* You can have any number of deferred features among the lot since they will r
cause any conflicting definitions. (As noted, a deferred feature is either one that w
already deferred, or one that the class undefines.)

« If exactly one of the features is effective, it imposes its implementation to the othe

 If two or more features are effective, the class must provide a common redefiniti
for all of them. (An example was the joiningWWINDOW_WITH_BORDER_AND_
MENU of thedisplayprocedures of the three parents.) The redefinition will also, of
course, serve as effecting for any deferred feature participating in the clash.

Here then is the precise rule on Precurso (...) construct. If a redefinition uses a
precursor version, casN3 is the only one causing ambiguity as to whose version i
intended. Then you must resolve the ambiguity by writing the precursor call «
{{ PAREN}} Precurso (...) wherePAREN is the name of the desired class. In all other
cases (simple inheritance, or multiple outsidN3) naming the parentis optional.

15.5 DISCUSSION

Let us probe further the consequences of some of the decisions made in this chapter.

Renaming

Any language that has multiple inheritance must deal with the problem of name clash
Since we cannot and should not require developers to change the original classes, only
conventions are possible besides the solution described in this chapter:

« Require clients to remove any ambiguity.
e Choose a default interpretation.

With the first convention, a cla:C inheriting two features callef, one fromA and
one from B, would be accepted by the compiler, possibly with a warning messag
Nothing bad would happen unless a clienC contained something like

x. C
Lo X

which would be invalid. The client would have to qualify the referenf, with a notation
suchax. f |Aorx. f|B, to specify one of the variants.

564 MULTIPLE INHERITANCE §15.5

This solution, however, runs contrary to one of the principles emphasized in this
chapter: that the inheritance structure leading to a class is a private affair between the class
and its ancestors, not relevant for clients except through its influence on polymorphic uses.
When | use servict from C, | should not need to know whettC introduced it itself or
got it fromA or B.

With the second conventiox.f is valid; the underlying language mechanisms select
one of the variants, based on some criterion such as the order inC lists its parents;
a notation may be available for requesting another variant explicitly.

This approach has been implemented in several Lisp-based languages supporting
multiple inheritance. But it is dangerous to let some underlying system choose a default
semantics. The solution is also incompatible with static typing: there is no reason why two
features with the same name in different parents should be typewise compatible.

The renaming mechanism solves these problems; it brings other benefits, such as the
ability to rename inherited features with names that are meaningful to clients.

O-O development and overloading

This chapter’s discussion of the role of names brings the final perspective on the question
of in-class name overloading, complementing the preliminary observations made in
earlier chapters.

Recall that in languages such as Ada (83 and 95) you can give the same name to
different features within the same syntactical unit, as in

infix "+" (a, b: VECTOR) is ...
infix "+" (a, b: MATRIY) is ...

which could both appear in the same Ada package. C++ and Java have made the same
possibility available within a single class.

An earlier presentation called this facilisyntactic overloading. It is a static "Syntactic over-
mechanism: to disambiguate a given call, sucx + v, it suffices to look at the types of©ading’. page 9:
the argumentx andy, which are apparent from the program text.

Object technology introduces a more powerful of overloadisemantic (or
dynamiq overloading. If classeVECTOF andMATRIX both inherit a feature

infix "+" (a: T)is ...
from a common ancestNUMERIC, and each redeclares it in the appropriate way, then
a callx +y will have a different effect depending on the dynamic tygx. (Infix features
are just a notational convenience: with a non-infix feature thex + y would be written

something likex. plus (y).) Only at run time will the ambiguity be resolved. As we know,
this property is key to the flexibility of O-O development.

Semantic overloading is the truly interesting mechanism. It allows us to use the same
name, in different classes, for variants of what is essenthe same operatiol— such
as addition fronNUMERIC. The next chapter's rules on assertions will make it even more
clear that a feature redeclaration must keep the same fundamental semantics.

§15.5 DISCUSSION 565

“Multiple creation
and overloading”,
page 239

Does this leave a role for syntactic overloading in object technology? It is hard
find any. One can understand why Ada 83, which does not have classes, should
syntactic overloading. But in an object-oriented language, to let developers choose
same name fctwo different operationsis to create the possibility of confusion.

The problem is that the syntactic form of overloading clashes with the semantic for
provided by polymorphism and dynamic binding. Consider axcf (a). If it follows the
possibly polymorphic assignmerx := y anda := b, the result is exactly the same, in the
absence of renaming, as thalyaf (b), even ify andb have other types thex anda. But
with overloading this property is not true any mcf may be the overloaded name of two
features, one for the type a and one for the type ¢b. Which rule takes precedence,
syntactic overloading or the O-O concept of dynamic binding? (Probably the former, kb
not until it has fooled a few developers, novice or not.) To make things worse, the b:
class oly’s type may redefine either or both of the overloaded features. The combinatio
are endless; so are the sources of confusion and error.

What we are witnessing here is the unpleasant consequences of the interac
between two separate language traits. (A language addition, as noted eatrlier in this che
on another topic, should whenever possisolve new problems beyond its original
purpose — not create new problems through its interaction with other mechanisms.)
prudent language designer, having toyed with a possible new facility, and encounter
such incompatibilities with more important properties of the design, quickly retreats.

What, against these risks, is the potential benefit of syntactic overloading? (
careful examination it seems dubious to start with. A simple principle of readability holc
that within the same module a reader should have absolutely no hesitation making
connection between a name and the meaning of that name; with in-class overloading,
property collapses.

A typical example — sometimes mentioned in favor of overloading — is that o
features of eSTRINGclass. To append another string or a single character you will, i
the absence of overloading, use different feature names, slzadd _string(s2) and
sl.add charactel('A"), or perhaps, using infix operatoss:= s1 ++ sz ands:= sl +'A".
With overloading, you can use a single name for both operations. But is this rea
desirable? Objects of typCHARACTEIandSTRINC have quite different properties; for
example appending a character will always increase the length by 1; appending a st
may leave the length unchanged (if the appended string was empty) or increase it by
amount. It seems not only reasonable but desirable to use different names — espec
since the confusions cited above are definitely possible (assum«CHARACTER
inherits fromSTRINGand that another descendant redefiadd_strin¢ but notadd
characte.)

Finally, we have already encountered the observation that even if we want
overloading we would in general need a different disambiguating criterion. Syntact
overloading distinguishes competing routines by looking at their signatures (numbers &
types of arguments); but this is often not significant. The typical example was the creat
procedures for points, or complex numbemake cartesia andmake pola both take
two arguments of typREAL — to mean completely different things. You cannot use

566 MULTIPLE INHERITANCE §15.6

overloading here! The routines’ signatures are irrelevant. To express that two features are
different, we should use the obvious technique, the same that we apply in everyday life to
express that two things or concepts are different: give them different names.

For creation operations (“constructors”) suchmake cartesic andmake_pola the

Java and C++ solution is particularly ironic: ymay not give them different names but

are forced to rely on overloading, using the class name. | have been unable to find a good
solution to this problem other than adding an artificial third argument.

In summary: syntactic (in-class) overloading appears in an object-oriented context
to create many problems for no visible benefit. (Some methodological advice to users of
languages such as C++, Java and Ada 95: do not use this facility at all, except for cases
such as multiple constructor functions in which the language leaves no other choice.) In a
consistent and productive application of object technology we should stick to the rule —
simple, easy to teach, easy to apply and easy to remember — that, within a class, every
feature has a name and every feature name denotes one feature.

15.6 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

e The construction-box approach to software construction favored by object
technology requires the ability to combine several abstractions into one. This is
achieved by multiple inheritance.

« In the simplest and most common cases of multiple inheritance, the two parents
represent disjoint abstractions.

« Multiple inheritance is frequently needed, both for system modeling and for
everyday software development, in particular the construction of reusable libraries.

* Name clashes under multiple inheritance should be removed through renaming.

* Renaming also serves to provide classes with locally adapted terminology for
inherited features.

» Features should be distinguished from feature names. The same feature can be
known under different names in different classes. A class defines a mapping from
feature names to features.

* Repeated inheritance, an advanced technique, arises as a result of multiple
inheritance when a class is a descendant of another through two or more paths.

« Under repeated inheritance, a feature from the common ancestor yields a single
feature if it is inherited under a single name, separate features otherwise.

« Competing versions from a common ancestor must be disambiguated, for dynamic
binding, through selec subclause.

* The replication mechanism of repeated inheritance should not replicate any feature
involving generic parameters.

¢ In an object-oriented framework, the semantic form of overloading provided by
dynamic binding is more useful than syntactic overloading.

§15.7 BIBLIOGRAPHICAL NOTES 567

ExerciseE15.8,
page 5613

See alsd‘ltera-
tors”, page 84:3

15.7 BIBLIOGRAPHICAL NOTES

The renaming mechanism and the repeated inheritance rules originated with the nota
of this book. The undefinition mechanism is an invention of Michael Schweitzer, and tl
selection mechanism an invention of John Potter, both in unpublished correspondenct

The walking menu example comes fr(M 1988c].

EXERCISES

E15.1 Windows as trees

ClassWINDOW inherits fromTREE[WINDOW)]. Explain the generic parameter. Show
that it yields an interesting clause in the class invariant.

E15.2 Is a window a string?

A window has an associated text, described by an attrtexi of type STRINC. Rather
than having this attribute, shotWINDOW be declared as an heirSTRINC?

E15.3 Doing windows fully

Complete the design of ttWINDOW class, showing exactly what is needed from the
underlying terminal handling mechanism.

E15.4 Figure iterators

The presentation of cla«cCOMPOSITE_FIGUR mentioned the possibility of using
iterator classes for all operations that perform a certain operation on a composite figt
Develop the corresponding iterator classHint: [M 1994a presents library iterator
classes which provide the basic pattern.)

E15.5 Linked stacks

Write the classLINKED STACH which describes a linked list implementation of stacks,
as an heir to botSTACFandLINKED_LIST.

E15.6 Circular lists and chains

Explain why theLIST class may not be used for circular listHint: a look at the
assertions, benefiting from the discussion at the beginning of the next chapter, may hel
Define a classCHAIN that can be used as parent bothLIST and to a new class
CIRCULAF describing circular lists. UpdatLIST and if necessary its descendants
accordingly. Complete the class structure to provide for various implementations
circular lists.

568 MULTIPLE INHERITANCE §E15.7

E15.7 Trees

One way to look at a tree is to see it as a recursive structure: a list of trees. Instead of the
technique described in this chapter, whTREE is defined as heir to boLINKED_LIST
andLINKABLE, it seems possible to define

class TREE[G] inherit
LIST[TREE[G]]
feature ... end

Can you expand this definition into a usable class? Compare it with the method used in
the discussion of this chapter.

E15.8 Walking menus

Window systems offer a notion of menu, which we can cover through eMENU, with

a query giving the list of entries and commands to display the menu, move to the next entry
etc. Since menus are made of entries we also need aMENU_ENTR' with queries

such asparent_men andoperation (the operation to execute when a user selects the
entry), and commands suchexecute(which executeoperatior).

Many systems offer cascading menus, also called “walking menus”, where selecting an
entry causes the display of a submenu. The figure illustrates a walking menu under Sun’s
Open Windows manager, where selecting the ePrograms brings up a submenu:

) Workspace 2 Programs Wa|k| ng
(Programs) | (Cemmand Tool. Bl
Utilities "~ Text Editor.
Preperties.. File Manager... men uS
Mail Tool.
Help "
Desktop Intro, g‘a E: I HIEGHEIT
Exit Calculator.. (The last entry of the
Print Tool.,
Audio Taol. submen, Demos,
T Tool.. H
e denotesinturna
Shapshet.,
Icon Editor.., su bmen')
Perfermance Meter..
shell Tool..
Demos

Show how to define the claSUBMENL. (Hint: a submenu is a menu and a menu entry,
whoseoperatior must display the submenu.)

Could this notion be described elegantly in a language with no multiple inheritance?
E15.9 The flat pecursor

What should the flat form of a class show for an instruction usinPrecursorconstruct?

E15.10 Repeated inéritance for replication

Write the WINDOW_WITH_BORDER_AND_ME! class without recourse to the
Precursorconstruct, using replication under repeated inheritance to gain access to the
parent version of a redefined feature. Make sure to use the |selec subclauses and to

give each feature its proper expctatus.

	15 15 Multiple inheritance
	15.1 EXAMPLES OF MULTIPLE INHERITANCE
	What not to use as an introductory example
	A case of multiple inheritanceº
	º that is a case of repeated inheritance

	Can an airplane be an asset?
	Company planes

	Numeric and comparable values
	Windows are trees and rectangles
	Multiple structure inheritance
	Windows and subwindows

	Trees are lists and list elements
	A tree of integers
	Definition: tree

	Composite figures
	Elementary figures
	A composite figure
	A composite figure is a figure and a list of figur...

	The marriage of convenience
	A marriage of convenience

	Structure inheritance
	Facility inheritance
	Buttonholes
	Pick-and- throw

	An assessment

	15.2 FEATURE RENAMING
	Name clashes
	Effects of renaming
	A name clash, removed

	Renaming and redeclaration
	Local name adaptation
	The game of the name
	Using a parent’s creation procedure

	15.3 FLATTENING THE STRUCTURE
	The flat form
	Displaying a flat form

	Uses of the flat form
	The flat-short form

	15.4 REPEATED INHERITANCE
	Sharing ancestors
	Repeated inheritance

	Intercontinental drivers
	Sharing and replication
	Kinds of driver
	Repeated Inheritance rule
	Sharing and replication
	Attribute replication

	Unobtrusive repeated inheritance
	Redundant inheritance

	The renaming rule
	Definition: final name
	Single Name rule

	Conflicting redefinitions
	Redefinition causing potential ambiguity

	Conflicts under sharing: undefinition and join
	Two parents with features to be merged

	Conflicts under replication: selection
	The need for selection
	Select rule

	Selecting everything
	Keeping the original version of a redefined featur...
	An advanced example
	Window variants

	Repeated inheritance and genericity
	Genericity in Repeated Inheritance rule

	Rules on names
	Name clashes: definition and rule

	15.5 DISCUSSION
	Renaming
	O-O development and overloading

	15.6 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	15.7 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E15.1 Windows as trees
	E15.2 Is a window a string?
	E15.3 Doing windows fully
	E15.4 Figure iterators
	E15.5 Linked stacks
	E15.6 Circular lists and chains
	E15.7 Trees
	E15.8 Walking menus
	Walking menus

	E15.9 The flat precursor
	E15.10 Repeated inheritance for replication

