
D
g

10
Genericity
elop a
nd can
ibility,
t that
n and
. The
zation,

 center
cts.

imensions of
eneralization
From the merging of module and types concepts, we have been able to dev
powerful notion of class, which serves as the basis of the object-oriented method a
already, as it stands, enable us to do much. But to achieve our goals of extend
reusability and reliability we must make the class construct more flexible, an effor
will proceed in two directions. One, vertical in the figure below, represents abstractio
specialization; it will give rise to the study of inheritance in subsequent chapters
present chapter studies the other dimension, horizontal in the figure: type parameteri
also known as genericity.

10.1 HORIZONTAL AND VERTICAL TYPE
GENERALIZATION

With the mechanisms studied so far we have all that we need to write the class at the
of the figure, LIST_OF_BOOKS, of which an instance represents a list of book obje
We know what kinds of feature it would have: put to add an element, remove to delete an

LIST_OF_
PEOPLE

LIST_OF_
BOOKS

LIST_OF_
JOURNALS

SET_OF_
BOOKS

LINKED_LIST_
OF_BOOKS

Abstraction

Specialization

Type parameterizationType parameterization

GENERICITY §10.2318

o see

ong
cribed
ar

ce.

hich
s of
 of

eters
tical

nts of
des or
t of an
 us to
.

een it
tional
ct data

l
of the
s

r all

lists,
le types

 rather

Appendix B.

See “Genericity”,
page 96, and again
“Genericity”, page
131.
element, count to find out how many elements are present and so on. But it is easy t
two ways of generalizing the notion of LIST_OF_BOOKS:

• Lists are a special case of “container” structure, of which other examples (am
many) include trees, stacks and arrays. A more abstract variant might be des
by a class SET_OF_BOOKS. A more specialized variant, covering a particul
choice of list representation, might be described by a class LINKED_LIST_OF_
BOOKS. This is the vertical dimension of our figure — the dimension of inheritan

• Lists of books are a special case of lists of objects of any particular kind, of w
other examples (among many) include lists of journals, lists of people, list
integers. This is the horizontal dimension of our figure — the dimension
genericity, our topic for the rest of this chapter. By giving classes param
representing arbitrary types, we will avoid the need to write many quasi-iden
classes — such as LIST_OF_BOOKS and LIST_OF_PEOPLE — without sacrificing
the safety afforded by static typing.

The relation between these two mechanisms is an elusive question for stude
object-oriented concepts. Should inheritance and genericity be viewed as comra
competitors in the rush towards more flexible software? That question is the subjec
appendix. In the present chapter we concentrate on genericity; this will also enable
take a closer look at one of the most common examples of generic structure: arrays

10.2 THE NEED FOR TYPE PARAMETERIZATION

Genericity is not really a new concept in this discussion, although we have not yet s
applied to classes. We encountered the idea a first time when reviewing tradi
approaches to reusability; and when we studied the mathematical model — abstra
types — we saw the need to define an ADT as parameterized by types.

Generic abstract data types

Our working ADT example, STACK, was declared as STACK [G], meaning that any actua
use requires you to specify an “actual generic parameter” representing the type
objects stored in a particular stack. The name G as used in the ADT’s specification stand
for any possible type that these stack elements may have; it is called the formal generic
parameter of the class. With this approach you can use a single specification fo
possible stacks; the alternative, hard to accept, would be to have a class INTEGER_
STACK, a class REAL_STACK and so on.

Any ADT describing “container” structures — data structures such as sets,
trees, matrices, arrays and many others that serve to keep objects of various possib
— will be similarly generic.

The same concerns, applied to the container classes of our software systems
than to the container ADTs of our mathematical models, will yield a similar solution.

§10.2 THE NEED FOR TYPE PARAMETERIZATION 319

 class.
f

 the

t
oting

tack:

of stack
ce of
ned

en two

s.

of a

rt of
k. It is
typed:

t the
or, or
tend it.

Chapter 17.
The issue

Let us keep the stack example, no longer as a mathematical ADT but as a software
We know how to write a class INTEGER_STACK describing the notion of stack o
integers. Features will include count (number of elements), put (push a new element), item
(top element), remove (pop the top element), empty (is this stack empty?).

Type INTEGER will be used frequently in this class. For example it is the type of
argument of put and of the result of item:

put (element: INTEGER) is
-- Push element on top.

do … end

item: INTEGER is
-- Item at top

do … end

These appearances of type INTEGER follow from the rule of explicit declaration tha
we have used in developing the notation: any time you introduce an entity, den
possible run-time objects, you must write an explicit type declaration for it, such as element:
INTEGER. Here this means that you must specify a type for the query item, for the argument
element of procedure put, and for other entities denoting possible stack elements.

But as a consequence you must write a different class for every sort of s
INTEGER_STACK, REAL_STACK, POINT_STACK, BOOK_STACK… All such stack
classes will be identical except for the type declarations of item, element and a few other
entities: since the basic operations on a stack are the same regardless of the type
elements, nothing in the bodies of the various routines depends on the choi
INTEGER, REAL, POINT or BOOK as the type of stack element. For anyone concer
with reusability, this is not attractive.

The issue, then, is the contradiction that container classes seem to cause betwe
of the fundamental quality goals introduced at the beginning of this book:

• Reliability: retaining the benefits of type safety through explicit type declaration

• Reusability: being able to write a single software element covering variants
given notion.

The role of typing

Why insist on explicit type declarations (the first of the two requirements)? This is pa
the general question of typing, to which an entire chapter is devoted later in this boo
not too early to note the two basic reasons why an O-O notation should be statically

• The readability reason: explicit declarations tell the reader, loud and clear, abou
intended use of every element. This is precious to whoever — the original auth
someone else — needs to understand the element, for example to debug or ex

GENERICITY §10.3320

e to
In the
neral
:

 been
le
osed
asty
e form
d
us

n, is
 error
ables

o we
lies to
lared

ion. In
; this
uch as

 bank
t the

n.

bility

bing

tities

, and
• The reliability reason: thanks to explicit type declarations, a compiler will be abl
detect erroneous operations before they have had a chance to strike.
fundamental operations of object-oriented computation, feature calls of the ge
form x● f (a, …), where x is of some type TX, the potential for mischief is manyfold
the class corresponding to TX might not have a feature called f; the feature might
exist but be secret; the number of arguments might not coincide with what has
declared for f in the class; the type for a or another argument might not be compatib
with what f expects. In all such cases, letting the software text go through unopp
— as in a language without static typechecking — would usually mean n
consequences at run time, such as the program crashing with a diagnostic of th
“ Message not understood” (the typical outcome in Smalltalk, a non-statically-type
O-O language). With explicit typing, the compiler will not let the erroneo
construct through.

The key to software reliability, as was pointed out in the discussion of that notio
prevention more than cure. Many studies have found that the cost of correcting an
grows astronomically when the time of detection is delayed. Static typing, which en
the early detection of type errors, is a fundamental tool in the quest for reliability.

Without these considerations we would not need explicit declarations, and s
would not need genericity. As a consequence the rest of this chapter only app
statically typed languages, that is to say languages which require all entities to be dec
and enforce rules enabling compilers to detect type inconsistencies prior to execut
a non-statically-typed language such as Smalltalk, there is no role for genericity
removes a language construct, but also removes any protection against schemes s

my_stack● put (my_circle)

my_account:= my_stack● item

my_account●withdraw (5000)

where an element is retrieved from the top of the stack and treated as if it were a
account even though it is in reality (because of the first instruction) a circle, so tha
software ends up trying to withdraw five thousand dollars from a circle on the scree

Static typing protects us against such mishaps; combining it with the reusa
requirement implies that we develop a mechanism for genericity.

10.3 GENERIC CLASSES

Reconciling static typing with the requirement of reusability for classes descri
container structures means, as illustrated by the stack example, that we want both to:

• Declare a type for every entity appearing in the text of a stack class, including en
representing stack elements.

• Write the class so that it does not give out any clue about the elements’ type
hence that it can be used to build stacks of arbitrary elements.

§10.3 GENERIC CLASSES 321

t one
soon as
nism.
pe-
neric

called

r the
At first sight these requirements seem irreconcilable but they are not. The firs
commands us to declare a type; it does not assume that the declaration is exact! As
we have provided a type name, we will have pacified the type checking mecha
(“Name your fear, and it will go away”.) Hence the idea of genericity: to obtain a ty
parameterized class, equip it with the name of a fictitious type, called the formal ge
parameter.

Declaring a generic class

By convention the generic parameter will use the name G for Generic; this is a style
recommendation, not a formal rule. If we need more generic parameters they will be
H, I and so on.

The syntax will include the formal generic parameters in square brackets afte
class name, as with generic ADTs in a previous chapter. Here is an example:

indexing

description: "Stacks of elements of an arbitrary type G"

class STACK [G] feature

count: INTEGER

-- Number of elements in stack

empty: BOOLEAN is

--Are there no items?

do … end

full: BOOLEAN is
-- Is representation full?

do … end

item: G is

-- Top element

do … end

put (x: G) is
-- Add x on top.

do … end

remove is
-- Remove top element.

do … end

end -- class STACK

In the class, you may use a formal generic parameter such as G in declarations: not
only for function results (as in item) and formal arguments of routines (as in put), but also
for attributes and local entities.

GENERICITY §10.3322

entity

t one:

ype, as

meter,

cular,
 class

cks

 texts

, but
 the
ation
 it is

that
ay pass
d

tines
 to a
Using a generic class

A client may use a generic class to declare entities of its own, such as an
representing a stack. In such a case, the declaration must provide types, called actual
generic parameters — as many as the class has formal generic parameters, here jus

sp: STACK [POINT]

Providing an actual generic parameter to a generic class so as to produce a t
here, is called a generic derivation, and the resulting type, such as STACK [POINT], is
said to be generically derived.

A generic derivation both produces and requires a type:

• The result of the derivation, STACK [POINT] in this example, is a type.

• To produce this result, you need an existing type to serve as actual generic para
POINT in the example.

The actual generic parameter is an arbitrary type. Nothing prevents us, in parti
from choosing a type that is itself generically derived; assuming another generic
LIST [G], we can define a stack of lists of points:

slp: STACK [LIST [POINT]]

or even, using STACK [POINT] itself as the actual generic parameter, a stack of sta
of points:

ssp: STACK [STACK [POINT]]

There is no limit — other than suggested by the usual guideline that software
should remain simple — to the depth of such nesting.

Terminology

To discuss genericity, we need to be precise about the terms that we use:

• To produce a type such as STACK [POINT] by providing a type, here POINT, as
actual generic parameter for a generic class, here STACK, is to perform a generic
derivation. You may encounter the term “generic instantiation” for that process
it is confusing because “instantiation” normally denotes a run-time event,
production of an object — an instance — from its mold (a class). Generic deriv
is a static mechanism, affecting the text of the software, not its execution. So
better to use completely different terms.

• This book uses the term “parameter” exclusively to denote the types
parameterize generic classes, never to denote the values that a routine call m
to that routine, called arguments. In traditional software parlance “parameter” an
“argument” are synonymous. Although the decision of which term to use for rou
and which for generic classes is a matter of convention, it is desirable to stick
consistent rule to avoid any confusion.

§10.3 GENERIC CLASSES 323

s of a

h as

tively

o use

s that

ure

r

ent

m

This will be the Fea
ture Application
rule, page 473.
Type checking

Using genericity, you can guarantee that a data structure will only contain element
single type. Assuming a class contains the declarations

sc: STACK [CIRCLE]; sa: STACK [ACCOUNT]; c: CIRCLE; a: ACCOUNT

then the following are valid instructions in routines of that class:

sc● put (c) -- Push a circle onto a stack of circles
sa● put (a) -- Push an account onto a stack of accounts
c := sc● item -- Assign to a circle entity the top of a stack of circles

but each of the following is invalid and will be rejected:

sc● put (a); -- Attempt to push an account onto a stack of circles
sa● put (c); -- Attempt to push a circle onto a stack of accounts
c := sa● item -- Attempt to access as a circle the top of a stack of accounts

This will rule out erroneous operations of the kind described earlier, suc
attempting to withdraw money from a circle.

The type rule

The type rule that makes the first set of examples valid and the second invalid is intui
clear but let us make it precise.

First the basic non-generic rule. Consider a feature declared as follows, with n
of any formal generic parameter, in a non-generic class C

f (a: T): U is …

Then a call of the form x● f (d), appearing in an arbitrary class B where x is of type
C, will be typewise correct if and only if: f is available to B — that is to say, generally
exported, or exported selectively to a set of classes including B; and d is of type T. (When
we bring inheritance into the picture we will also accept d if its type is based on a
descendant of T.) The result of the call — there is a result since the example assume
f is a function — is of type U.

Now assume that C is generic, with G as formal generic parameter, and has a feat

h (a: G): G is …

A call to h will be of the form y●h (e) for some entity y that has been declared, fo
some type V, as

y: C [V]

The counterpart of the non-generic rule is that e must now be of type V (or a
compatible type in the sense of inheritance), since the corresponding formal arguma
is declared as being of type G, the formal generic parameter, and in the case of y we may
consider G, wherever it appears in class C, as a placeholder for V. Similarly, the result of
the call will be of type V. The earlier examples all follow this model: a call of the for
s●put (z) requires an argument z of type POINT if s is of type STACK [POINT], INTEGER

-

GENERICITY §10.3324

rule

ric
ies,

eters

s
 actual
g the

See “THE GLOBAL
INHERITANCE
STRUCTURE”,
16.2, page 580.

To check creek-
clarity do exercise
E10.3, page 331.
if s is of type STACK [INTEGER]; and s● item returns a result of type POINT in the first
case and INTEGER in the second.

These examples involve features with zero or one argument, but the
immediately extends to an arbitrary number of arguments.

Operations on entities of generic types

In a generic class C [G, H, …] consider an entity whose type is one of the formal gene
parameters, for example x of type G. When the class is used by a client to declare entit
G may ultimately represent any type. So any operation that the routines of C perform on
x must be applicable to all types. This leaves only five kinds of operation:

In particular, a creation instruction of the form!! x is illegal, since we know nothing
about the creation procedures, if any, defined for possible actual generic param
corresponding to G.

Cases G4 and G5 refer to class ANY. Mentioned a few times already, this clas
contains features that all classes will inherit. So you can be assured that whatever
type G represents in a particular generic derivation will have access to them. Amon
features of ANY are all the basic operations for copying and comparing objects: clone,
copy, equal, copy, deep_clone, deep_equal and others. This means it is all right, for x and
y of a formal generic type G, to use instructions such as

x● copy (y)

x := clone (y)

if equal (x, y) then …

Ignoring ANY, case G4 permits a call a● f (x) in a generic class C [G] if f takes a
formal argument of type G. In particular a could be of type D [G], where D is another
generic class, declared as D [G] with a feature f that takes an argument of type G, here

Uses of entities of a formal generic type

The valid uses for an entity x whose type G is a formal generic parameter are
the following:

G1 • Use of x as left-hand side in an assignment, x := y, where the right-
hand side expression y is also of type G.

G2 • Use of x as right-hand side of an assignment y := x, where the left-
hand side entity y is also of type G.

G3 • Use of x in a boolean expression of the form x = y or x /= y, where y
is also of type G.

G4 • Use of x as actual argument in a routine call corresponding to a formal
argument declared of type G, or of type ANY.

G5 • Use as target of a call to a feature of ANY.

§10.4 ARRAYS 325

t
s clear

roduct
ricity,

ore,

 these

 we
n we

e
ss.

le of

ith
fined
y call

al

“ANCHORED
DECLARATION”,
16.7, page 598.

A better version of the
class, relying on
assertions, appears in
“Arrays revisited”,
page 373.
denoting D’s own formal generic parameter. (If the preceding sentence does no
immediately make sense, please read it once more and it will, I hope, soon seem a
as a mountain creek!)

Types and classes

We have learned to view the class, the central notion in object technology, as the p
of the corporate merger between the module and type concepts. Until we had gene
we could say that every class is a module and is also a type.

With genericity, the second of these statements is not literally true any m
although the nuance will be small. A generic class declared as C [G] is, rather than a type,
a type pattern covering an infinite set of possible types; you can obtain any one of
by providing an actual generic parameter — itself a type — corresponding to G.

This yields a more general and flexible notion. But for what we gain in power
have to pay a small price in simplicity: only through a small abuse of language ca
continue talking, if x is declared of type T, about “the features of T ” or “the clients of T”;
other than a class, T may now be a generically derived type C [U] for some generic class
C and some type U. Of course there is still a class involved — class C —, which is why
the abuse of language is acceptable.

When we need to be rigorous the terminology is the following. Any type T is
associated with a class, the base class of T, so that it is always correct to talk about th
features or clients of T’s base class. If T is a non-generic class, then it is its own base cla
If T is a generic derivation of the form C [U, …], then the base class of T is C.

The notion of base class will again be useful when we introduce yet another kind of type,
also (like all others in the O-O approach) based on classes, but indirectly: anchored types.

10.4 ARRAYS

As a conclusion to this discussion it is useful to take a look at a very useful examp
container class: ARRAY, which represents one-dimensional arrays.

Arrays as objects

The notion of array is usually part of a programming language’s definition. But w
object technology we do not need to burden the notation with special prede
constructs: an array is just a container object, an instance of a class which we ma
ARRAY.

ARRAY is a good example of generic class. Here is a first outline:

indexing
description: "Sequences of values, all of the same type or of a conforming one, %

%accessible through integer indices in a contiguous interv"
class ARRAY [G] creation

make

GENERICITY §10.4326

e it
an
feature

make (minindex, maxindex: INTEGER) is
-- Allocate array with bounds minindex and maxindex
-- (empty if minindex > maxindex)

do … end

lower, upper, count: INTEGER
-- Minimum and maximum legal index; array size.

put (v: G; i: INTEGER) is
-- Assign v to the entry of index i

do … end

infix "@", item (i: INTEGER): G is
-- Entry of index i

do … end

end -- class ARRAY

To create an array of bounds m and n, with a declared of type ARRAY [T] for some
type T, you will execute the creation instruction

!! a●make (m, n)

To set the value of an array element you will use procedure put: the call a● put (x, i)
sets the value of the i-th element to x. To access the value of an element you will use
function item (the synonym infix "@" will be explained shortly), as in

x := a●item (i)

Here is a sketch of how you might use the class from a client:

pa: ARRAY [POINT]; p1: POINT; i, j: INTEGER

…

!! pa● make (–32, 101) -- Allocate array with the bounds shown.
pa● put (p1, i) -- Assign p1 to entry of index i.
…
p1 := pa●item (j) -- Assign to p1 the value of entry of index j.

In conventional (say Pascal) notation, you would write

pa [i] := p1 for pa● put (i, p1)
p1 := pa [i] for p1 := pa● item (i)

Array properties

A few observations on the preceding class:

• Similar classes exist for arrays with more dimensions: ARRAY2 etc.

• Feature count may be implemented as either an attribute or a function, sinc
satisfies count = upper – lower+1. This is expressed in the actual class by
invariant, as explained in the next chapter.

§10.4 ARRAYS 327

tency

of
 the
ce the
le of a

lled
class
 can

even
pts of
cial-
rce the

take a
hat the
ex —

al
sider

ompiler

ity,
f the
• More generally, assertion techniques will allow us to associate precise consis
conditions with put and item, expressing that calls are only valid if the index i is
between lower and upper.

The idea of describing arrays as objects and ARRAY as a class is a good example
the unifying and simplifying power of object technology, which helps us narrow down
notation (the design or programming language) to the bare essentials and redu
number of special-purpose constructs. Here an array is simply viewed as an examp
container structure, with its own access method represented by features put and item.

Since ARRAY is a normal class, it can fully participate in what an earlier chapter ca
the object-oriented games; in particular other classes can inherit from it. A
ARRAYED_LIST describing the implementation of the abstract notion of list by arrays
be a descendant of both LIST and ARRAY. We will study many such constructions.

As soon as we learn about assertions we will take this unifying approach
further; thanks to preconditions, we will be able to handle through the normal conce
the object-oriented method one more problem traditionally thought to require spe
purpose mechanisms: run-time bounds checking (monitoring array accesses to enfo
rule that all indices must lie between the bounds).

Efficiency considerations

The fear may arise that all this elegance and simplicity could cause performance to
hit. One of the primary reasons developers use arrays in traditional approaches is t
basic operations — accessing or modifying an array element known through its ind
are fast. Are we now going to pay the price of a routine call every time we use item or put?

We do not need to. That ARRAY looks to the unsuspecting developer as a norm
class does not prevent the compiler from cheating — from relying on some in
information. This information enables the compiler to detect calls to item and put and
hijack them so as to generate exactly the same code that a Fortran, Pascal or C c
would produce for equivalent instructions as shown above (p1 := pa [i] and pa [i] := p1 in
Pascal syntax). So the developer will gain the best of both worlds: the uniform
generality, simplicity, and ease of use of the O-O solution; and the performance o
traditional solution.

The compiler’s job is not trivial. As will be clear in the study of inheritance, it is possible
for a descendant of class ARRAY to redefine any feature of the class, and such
redefinitions may be called indirectly through dynamic binding. So compilers must
perform a thorough analysis to check that the replacement is indeed correct. Today’s
compilers from ISE and other companies can indeed, for a typical array-intensive
computation typical of large scientific software, generate code whose efficiency matches
that of hand-written C or Fortran code.

GENERICITY §10.5328

not
The

s
ature

cess.
otation

,
al

pecial
cept,

uce for
The
 for the

ericity
sing
ea of
actual
of the

The notion of infix
feature was intro-
duced in “Operator
features”, page 187.

From: Martin Car-
roll & Margaret
Ellis, “Reducing
Instantiation Time”,
in “C++ Report”,
vol. 6, no. 5, July-
August 1994, pages
14, 16 and 64.
List<T> would be
LIST [T] in the nota-
tion of this book.
An infix synonym

Class ARRAY provides the opportunity to introduce a small facility that, although
directly related to the other topics of this chapter, will be useful in practice.
declaration of feature item actually reads

infix "@", item (i: INTEGER): G is …

This introduces two feature names infix "@" and item as synonyms, that is to say a
denoting the same feature, given by the declaration that follows. In general, a fe
declaration of the form

a, b, c, … “Feature description”

is considered as an abbreviation for a sequence of declarations of the form

a “Feature description”
b “Feature description”
c “Feature description”
…

all for the same “Feature description”. This is applicable to attributes (where the “Feature
description” is of the form: some_type) as well as routines (where it reads is routine_body).

The benefit in this example is that you have a simpler notation for array ac
Although consistent with the access mechanisms for other data structures, the n
a● item (i) is more wordy than the traditional a [i] found, with some variants, in Pascal, C
Fortran and so on. By defining infix "@"as a synonym, you can actually beat tradition
languages at their own terseness game by writing an array element as a @ i (the supreme
dream: undercutting — by one keystroke — even C!). Note again that this is not a s
language mechanism but the straightforward application of a general O-O con
operator features, combined here with the notion of synonym.

10.5 THE COST OF GENERICITY

As always, we need to make sure that the object-oriented techniques that we introd
reusability, extendibility and reliability do not imply a performance overhead.
question has just been raised and answered for arrays; but we need to examine it
genericity mechanism at large. How much will genericity cost?

The concern arises in particular because of the experience of C++, where gen
(known as the template mechanism) was a late addition to the language, cau
performance difficulties. It appears that some compiler implementations take the id
parameterization literally, generating a different copy of the class features for each
generic parameter! As a consequence the literature warns C++ programmers
dangers of using templates too generously:

Template instantiation time is already an issue for some C++ users… If a user
creates a List<int>, a List<String>, a List<Widget>, and a List<Blidget>
(where Widget and Blidget are user-defined classes), and calls head, tail, and

§10.6 DISCUSSION: NOT DONE YET 329

inal

ld of
ion; it
 single

icity
ance.

 have

vative

d
ement
t what
ngles,

the type

s and
en we
uiring
ss, we
uch a
for an
called
insert on all four objects, then each of these functions will be instantiated [in
the sense of generically derived] four times. A widely useful class such as List
might be instantiated in user programs with many different types, causing
many functions to be instantiated. Thus, a significant amount of code might be
generated for the [features of] the List template [class].

The authors of this advice (both with respected C++ expertise from the orig
AT&T group, one of them co-author of the official C++ reference [Ellis 1990]) go on
proposing various techniques for avoiding template derivation. But developers shou
course be protected from such concerns. Genericity should not imply code duplicat
is possible, with appropriate language design and a good compiler, to generate a
target code for any generic class, so that all of the following will be small or zero:

• Effect on compilation time.

• Effect on the size of the generated code.

• Effect on execution time.

• Effect on execution space.

When working in such an environment, you can use the full power of gener
without any fear of unpleasant effects on either compile-time or at run-time perform

10.6 DISCUSSION: NOT DONE YET

The presentation of genericity has introduced the basic ideas. But, as you may
noticed, it leaves two important questions unanswered.

First, in our effort to guarantee type safety, we may have erred on the conser
side. We will be prevented from pushing a bank account onto a STACK[CIRCLE], or a
point onto a STACK [ACCOUNT]. This is what we want: it is hard to imagine what kin
of application — other than general-purpose utilities such as a database manag
system — would need to handle a stack containing both points and bank accounts. Bu
about a graphics application asking for a stack that contains a few circles, a few recta
a few points? This request seems quite reasonable, and we cannot accommodate it;
system defined so far will reject the call figure_stack●put (that_point) if figure_stack has
been declared of type STACK[FIGURE] and that_point of any type other than FIGURE.
We can give a name to such structures: polymorphic data structures. The challenge will
be to support them without renouncing the benefits of type safety.

Second, our generic parameters represent arbitrary types. This is fine for stack
arrays, since any object is by essence “stackable” and storable into an array. But wh
come to structures such as vectors, we will want to be able to add two vectors, req
that we can also add two vector elements; and if we want to define a hash table cla
will need the certainty that a hash function is applicable to every table element. S
form of genericity, whereby the formal generic parameter does not any more stand
arbitrary type, but represents a type guaranteed to offer certain operations, will be
constrained genericity.

GENERICITY §10.7330

 and

nted in

 type

.

meter
hand
ity or
h as

ecific

res,

t

as Z,
s. The
n early

s to

nswer
uage

y be
nted

Ada,

For references on
Ada see chapter 33.

Page 160.
For both of these problems, the object-oriented method will provide simple
elegant solutions, both based on combining genericity with inheritance.

10.7 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

• Classes may have formal generic parameters representing types.

• Generic classes serve to describe general container data structures, impleme
the same way regardless of the elements they contain.

• Genericity is only needed in a typed language, to ensure statically checkable
safety.

• A client of a generic class must provide actual types for the formal parameters

• The only permitted operations on an entity whose type is a formal generic para
are operations applicable to every type. The entity may serve as left- or right-
side of an assignment, actual routine argument, or operand of an equal
inequality test. It may also participate in universally applicable features suc
cloning and object equality testing.

• The notion of array can be covered by a generic library class, without any sp
language mechanism but also without any loss in run-time performance.

• More flexible advanced uses of genericity — polymorphic data structu
constrained genericity — require the introduction of inheritance.

10.8 BIBLIOGRAPHICAL NOTES

An early language supporting genericity was LPG [Bert 1983]. Ada made the concep
widely known through its generic package mechanism.

Genericity has also been introduced in formal specification languages such
CLEAR and OBJ-2, to which references appear in the chapter on abstract data type
generic mechanism described here was derived from the mechanism introduced in a
version of Z [Abrial 1980] [Abrial 1980a] and extended in M [M 1985b].

Aside from the notation of this book, one of the first object-oriented language
offer genericity was DEC’s Trellis language [Schaffert 1986].

EXERCISES

E10.1 Constrained genericity

This exercise is a little peculiar since it asks you a question to which a detailed a
appears later in the book. Its aim is to get you thinking about the proper lang
structures, and compare your answer to what will be introduced later. It will onl
worthwhile if you are new to this problem and have not yet seen the object-orie
solution. Familiarity with how the problem is handled in other approaches, notably
may be helpful but is not required.

§E10.2 EXERCISES 331

in the
bject-

rained
neric

eric

al
The question is about constrained genericity, a need that was presented
discussion section. Devise a language mechanism, compatible with the spirit of the o
oriented approach and with the notations seen so far, that will address const
genericity by enabling the author of a generic class to specify that valid actual ge
parameters must possess certain operations.

E10.2 Two-dimensional arrays

Using class ARRAY both as inspiration and as basis for the implementation, write a gen
class ARRAY2 describing two-dimensional arrays.

E10.3 Using your own formal generic parameter as someone else’s actu

Construct an example in which a routine of a generic class C [G] calls a routine declared
in another generic class D [G] as taking a formal argument of type G.

GENERICITY §E10.3332

	10 10 Genericity
	Dimensions of generalization
	10.1 HORIZONTAL AND VERTICAL TYPE GENERALIZATION
	10.2 THE NEED FOR TYPE PARAMETERIZATION
	Generic abstract data types
	The issue
	The role of typing

	10.3 GENERIC CLASSES
	Declaring a generic class
	Using a generic class
	Terminology
	Type checking
	The type rule
	Operations on entities of generic types
	Uses of entities of a formal generic type

	Types and classes

	10.4 ARRAYS
	Arrays as objects
	Array properties
	Efficiency considerations
	An infix synonym

	10.5 THE COST OF GENERICITY
	10.6 DISCUSSION: NOT DONE YET
	10.7 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	10.8 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E10.1 Constrained genericity
	E10.2 Two-dimensional arrays
	E10.3 Using your own formal generic parameter as s...

