10

Genericity

Dimensions of
generalization

From the merging of module and types concepts, we have been able to develop
powerful notion of class, which serves as the basis of the object-oriented method and ¢
already, as it stands, enable us to do much. But to achieve our goals of extendibility
reusability and reliability we must make the class construct more flexible, an effort tha
will proceed in two directions. One, vetrtical in the figure below, represents abstraction an
specialization; it will give rise to the study of inheritance in subsequent chapters. Th
present chapter studies the other dimension, horizontal in the figure: type parameterizatic
also known as genericity.

Abstraction

Type parameterization Type parameterization

LIST_OF _OF_ LIST_OF
PEOPLE BOOKS JOURNAL
LINKED_LIST
OF_BOOKS

Specialization

10.1 HORIZONTAL AND VERTICAL TYPE
GENERALIZATION

With the mechanisms studied so far we have all that we need to write the class at the cen
of the figure,LIST_OF_BOOKgSof which an instance represents a list of book objects.
We know what kinds of feature it would haveitto add an elementemoveto delete an

318 GENERICITY §10.2

elementcoun to find out how many elements are present and so on. But it is easy to see
two ways of generalizing the notion LIST OF BOOK:5

 Lists are a special case of “container” structure, of which other examples (among
many) include trees, stacks and arrays. A more abstract variant might be described
by a classSET_OF_BOOK. A more specialized variant, covering a particular
choice of list representation, might be described by a (LINKED LIST _OF
BOOKZ . This is the vertical dimension of our figure — the dimension of inheritance.

« Lists of books are a special case of lists of objects of any particular kind, of which
other examples (among many) include lists of journals, lists of people, lists of
integers. This is the horizontal dimension of our figure — the dimension of
genericity, our topic for the rest of this chapter. By giving classes parameters
representing arbitrary types, we will avoid the need to write many quasi-identical
classes — suchiLIST _OF BOOK andLIST_OF_ PEOPLI— without sacrificing
the safety afforded by static typing.

The relation between these two mechanisms is an elusive question for studeAppendixB.
object-oriented concepts. Should inheritance and genericity be viewed as comrac
competitors in the rush towards more flexible software? That question is the subject
appendix. In the present chapter we concentrate on genericity; this will also enable us to
take a closer look at one of the most common examples of generic structure: arrays.

10.2 THENEED FOR TYPE PARAMETERIZATION

Genericity is not really a new concept in this discussion, although we have not yet ssee‘Genericity”,
applied to classes. We encountered the idea a first time when reviewing tradiiage 9. {in’(’i again
approaches to reusability; and when we studied the mathematical model — abstra<1(33g’ner'c'ty - page

types — we saw the need to define an ADT as parameterized by types.

Generic abstract data types

Our working ADT exampleSTACE, was declared eSTACK[G], meaning that any actual

use requires you to specify an “actual generic parameter” representing the type of the
objects stored in a particular stack. The niG as used in the ADT’s specification stands

for any possible type that these stack elements may have; it is callformal generic
parameter of the class. With this approach you can use a single specification for all
possible stacks; the alternative, hard to accept, would be to have éINTEGER
STACK, a classREAL_STAC and so on.

Any ADT describing “container” structures — data structures such as sets, lists,
trees, matrices, arrays and many others that serve to keep objects of various possible types
— will be similarly generic.

The same concerns, applied to the container classes of our software systems rather
than to the container ADTs of our mathematical models, will yielmilar solution.

§10.2 THE NEED FOR TYPE PARAMETERIZATION 319

Chapter17.

The issue

Let us keep the stack example, no longer as a mathematical ADT but as a software cl
We know how to write a clasINTEGER_STAC describing the notion of stack of
integers. Features will inclucoun (number of elementsput (push a new elemenitem

(top element)remov« (pop the top elementempt (is this stack empty?).

TypelNTEGEFwill be used frequently in this class. For example it is the type of the
argument oput and of the result citer:

put(elemen: INTEGEF) is
-- Pushelemer on top.
do ... end

item: INTEGEF'is
-- Item at top
do ... end

These appearances of tyINTEGEF follow from the rule of explicit declaration that
we have used in developing the notation: any time you introduce an entity, denoti
possible run-time objects, you must write an explicit type declaration for it, selemer:t
INTEGEF. Here this means that you must specify a type for the dtem, for the argument
elemen of procedurepul, and for other entities denoting possible stack elements.

But as a consequence you must write a different class for every sort of sta
INTEGER_STAC, REAL_STAC, POINT_STACI, BOOK_STACI... All such stack
classes will be identical except for the type declaratioriterr, elemeniand a few other
entities: since the basic operations on a stack are the same regardless of the type of -
elements, nothing in the bodies of the various routines depends on the choice
INTEGEF, REAL, POINT or BOOK as the type of stack element. For anyone concerne
with reusability, this is not attractive.

The issue, then, is the contradiction that container classes seem to cause betweer
of the fundamental quality goals introduced at the beginning of this book:

» Reliability: retaining the benefits of type safety through explicit type declarations.
* Reusability: being able to write a single software element covering variants of

given notion.

The role of typing

Why insist on explicit type declarations (the first of the two requirements)? This is part
the general question of typing, to which an entire chapter is devoted later in this book. |
not too early to note the two basic reasons why an O-O notation should be statically tyy

» Thereadability reason: explicit declarations tell the reader, loud and clear, about tt
intended use of every element. This is precious to whoever — the original author,
someone else — needs to understand the element, for example to debug or exter

320 GENERICITY §10.3

* Thereliability reason: thanks to explicit type declarations, a compiler will be able to
detect erroneous operations before they have had a chance to strike. In the
fundamental operations of object-oriented computation, feature calls of the general
formx.f (a, ...), wherex is of some typTX, the potential for mischief is manyfold:
the class corresponding TX might not have a feature callf; the feature might
exist but be secret; the number of arguments might not coincide with what has been
declared fof in the class; the type f a or another argument might not be compatible
with whatf expects. In all such cases, letting the software text go through unopposed
— as in a language without static typechecking — would usually mean nasty
consequences at run time, such as the program crashing with a diagnostic of the form
“Message not understo” (the typical outcome in Smalltalk, a non-statically-typed
0O-0O language). With explicit typing, the compiler will not let the erroneous
construct through.

The key to software reliability, as was pointed out in the discussion of that notion, is
prevention more than cure. Many studies have found that the cost of correcting an error
grows astronomically when the time of detection is delayed. Static typing, which enables
the early detection of type errors, is a fundamental tool in the quest for reliability.

Without these considerations we would not need explicit declarations, and so we
would not need genericity. As a consequence the rest of this chapter only applies to
statically typetlanguages, that is to say languages which require all entities to be declared
and enforce rules enabling compilers to detect type inconsistencies prior to execution. In
a non-statically-typed language such as Smalltalk, there is no role for genericity; this
removes a language construct, but also removes any protection against schemes such as

my_stackput (my_circle)
my_accoun:= my_stackitem
my_accouniwithdraw (5000)
where an element is retrieved from the top of the stack and treated as if it were a bank

account even though it is in reality (because of the first instruction) a circle, so that the
software ends up trying to withdraw five thousand dollars from a circle on the screen.

Static typing protects us against such mishaps; combining it with the reusability
requirement implies that we develop a mecsm forgenericity.

10.3 GENERIC CLASSES

Reconciling static typing with the requirement of reusability for classes describing
container structures means, as illustrated by the example, that we want both to:

» Declare atype for every entity appearing in the text of a stack class, including entities
representing stack elements.

< Write the class so that it does not give out any clue about the elements’ type, and
hence that it can be used to build stacks of arbitrary elements.

§10.3 GENERIC CLASSES 321

At first sight these requirements seem irreconcilable but they are not. The first o
commands us to declare atype; it does not assume that the declaration is exact! As sot
we have provided a type name, we will have pacified the type checking mechanis
(“Name your fear, and it will go away”.) Hence the idea of genericity: to obtain a type
parameterized class, equip it with the name of a fictitious type, called the formal gene
parameter.

Declaring a generic class

By convention the generic parameter will use the nG for Generic; this is a style
recommendation, not a formal rule. If we need more generic parameters they will be cal
H, | and so on.

The syntax will include the formal generic parameters in square brackets after t
class name, as with generic ADTSs in a previous chapter. Here is an example:
indexing
descriptior: "Stacks of elements of an arbitrary typ™ G
class STACK[G] feature
coun: INTEGER
-- Number of elements in stack
empt: BOOLEANIs
--Are there no items?
do ... end
full: BOOLEANIs
-- Is representation full?
do ... end
item: Gis
-- Top element
do ... end
put(x: G) is
-- Add x on top.
do ... end
removeis
-- Remove top element.
do ... end

end -- classSTACK
In the class, you may use a formal generic parameter sLG in declarations: not

only for function results (as iterr) and formal arguments of routines (aspuf), but also
for attributes and local entities.

322 GENERICITY §10.3

Using a generic class

A client may use a generic class to declare entities of its own, such as an entity
representing a stack. In such a case, the declaration must provide typesactuald
generic parameter:— as many as the class has formal generic parameters, here just one:

S[: STACK[POINT]

Providing an actual generic parameter to a generic class so as to produce a type, as
here, is called igeneric derivatior, and the resulting type, such STACK[POINT], is
said to be generically derived.

A generic derivation both produces and requires a type:
* The result of the derivatioiSTACK[POINT] in this example, is a type.

« To produce this result, you need an existing type to serve as actual generic parameter,
POINT in the example.

The actual generic parameter is an arbitrary type. Nothing prevents us, in particular,
from choosing a type that is itself generically derived; assuming another generic class
LIST[G], we can define a stack of lists of points:

slp: STACK [LIST[POINT]]

or even, usingSTACK[POINT] itself as the actual generic parameter, a stack of stacks
of points:

ssp: STACK[STACK[POINT]]

There is no limit — other than suggested by the usual guideline that software texts
should remain simple — to the depth of such nesting.

Terminology

To discuss genericity, we need to be precise about the terms that we use:

e To produce a type such STACK[POINT] by providing a type, herPOINT, as
actual generic parameter for a generic class, STACK, is to perform :generic
derivation. You may encounter the term “generic instantiation” for that process, but
it is confusing because “instantiation” normally denotes a run-time event, the
production of an object — an instance — from its mold (a class). Generic derivation
is a static mechanism, affecting the text of the software, not its execution. So it is
better to use completely different terms.

e This book uses the term “parameter” exclusively to denote the types that
parameterize generic classes, never to denote the values that a routine call may pass
to that routine, calleargument. In traditional software parlance “parameter” and
“argument” are synonymous. Although the decision of which term to use for routines
and which for generic classes is a matter of convention, it is desirable to stick to a
consistent rule to avoid any confusion.

§10.3 GENERIC CLASSES 323

Type checking

Using genericity, you can guarantee that a data structure will only contain elements c
single type. Assuming a class contains the declarations

sc¢: STACK[CIRCLE]; se: STACK[ACCOUNT]; c: CIRCLE; a: ACCOUNT

then the following are valid instructions in routines of that class:

sc.put(c) -- Push a circle onto a stack of circles
sa.put(a) -- Push an account onto a stack of accounts
c:=scitem -- Assign to a circle entity the top of a stack of circles

but each of the following is invalid and will be rejected:

sc.put (a); -- Attempt to push an account onto a stack of circles
sa.put(c); -- Attempt to push a circle onto a stack of accounts
c:=saitem -- Attempt to access as a circle the top of a stack of accounts

This will rule out erroneous operations of the kind described earlier, such
attempting to withdraw money from a circle.

The type rule

The type rule that makes the first set of examples valid and the second invalid is intuitiv
clear but let us make it precise.

First the basic non-generic rule. Consider a feature declared as follows, with no t
of any formal generic parameter, in a non-generic (Cass

f(aaT): Uis...

This will be the Fea- Then a call of the fornx.f (d), appearing in an arbitrary claB wherex is of type

ture Application . will be typewise correct if and only if is available tcB — that is to say, generally

rule, pagears. exported, or exported selectively to a set of classes incliB; andd is of typeT. (When
we bring inheritance into the picture we will also accd if its type is based on a
descendant (T.) The result of the call — there is a result since the example assumes tl
f is a function — is of typU.

Now assume thC is generic, wittG as formal generic parameter, and has a feature
h(a: G): Gis...

A call to h will be of the formy.h (e) for some entityy that has been declared, for
some typeV, as

y: C[V]

The counterpart of the non-generic rule is te must now be of typ¢/ (or a
compatible type in the sense of inheritance), since the corresponding formal araumer
is declared as being of ty|G, the formal generic parameter, and in the casy we may
considelG, wherever it appears in claC, as a placeholder f¢/. Similarly, the result of
the call will be of typeV. The earlier examples all follow this model: a call of the form
s.put(z) requires an argumez of typePOINT if sis of typeSTACK[POINT], INTEGER

324 GENERICITY §10.3

if sis of typeSTACK [INTEGEF]; ands.iterr returns a result of typPOINT in the first
case aniNTEGEF in the second.

These examples involve features with zero or one argument, but the rule
immediately extends to an arbitrary humber of arguments.

Operations on entities of generic types

In a generic clasC [G, H, ...] consider an entity whose type is one of the formal generic
parameters, for exampx of typeG. When the class is used by a client to declare entities,
G may ultimately represent any type. So any operation that the routiiC perform on

x must be applicable to all types. This leaves only five kinds of operation:

Uses of entities of a formal generic type
The valid uses for an entix whose typ¢G is a formal generic parameter are
the following:

G1 « Use ofx as left-hand side in an assignm x:= y, where the right
hand side expressicy is also of typ¢G.

G2 « Use ofx as right-hand side of an assignmyr.= x, where the left/
hand side entity is also of typeG.

G3 « Use ofx in a boolean expression of the fc x=y orx /=y, wherey
is also of typeG.

G4 « Use oix as actual argument in a routine call corresponding to a formal
argument declared of tyfG, or of typeANY.

G5 ¢ Use as target of a call to a featureANY.

In particular, a creation instruction of the fo!! xis illegal, since we know nothing
about the creation procedures, if any, defined for possible actual generic parameters
corresponding tG.

Cases G4 and G5 refer to cléANY. Mentioned a few times already, this clasSeeTHE GLOBAL
contains features that all classes will inherit. So you can be assured that whatever !NHERITANCE
type G represents in a particular generic derivation will have access to them. Amonfgz?pc;gg'ggo’
features olANY are all the basic operations for copying and comparing objclone,
copy, equa, copy, deep_clon, deep_equiand others. This means itis all right, xand

y of a formal generic typG, to use instructions such as

X.copy(y)
X := clone(y)

if equal(x,y) then ...
q xy) To check creek-

Ignoring ANY, case G4 permits a cé!f (x) in a generic clasC [G] if f takes a clarity do exercise
formal argument of typG. In particulara could be of typeD [G], whereD is another F10-3: page 321
generic class, declared D [G] with a featuref that takes an argument of tyG, here

§10.4 ARRAYS

325

“ANCHORED
DECLARATION",
16.7, page 5¢8

A better version of the

clas, relying on

assertion, appears in

“Arrays revisited”,
page 373

denoting D's own formal generic parameter. (If theepeding sentence does not
immediately make sense, please read it once more and it will, | hope, soon seem as ¢
as a moutain creek!)

Types and classes

We have learned to view the class, the central notion in object technology, as the proc
of the corporate merger between the module and type concepts. Until we had generic
we could say that every class is a module and is also a type.

With genericity, the second of these statements is not literally true any mor
although the nuance will be small. A generic class declarC [G] is, rather than a type,
a type pattern covering an infinite set of possible types; you can obtain any one of th
by providing an actual generic parameter — itself a type — correspondG.g to

This yields a more general and flexible notion. But for what we gain in power w
have to pay a small price in simplicity: only through a small abuse of language can
continue talking, itx is declared of typT, about “the features (1" or “the clients oiT";
other than a clasT may now be a generically derived tyC [U] for some generic class
C and some typU. Of course there is still a class involved — cIC —, which is why
the abuse of language is acceptable.

When we need to be rigorous the terminology is the following. Any T is
associated with a class, tbase clas of T, so that it is always correct to talk about the
features or clients (T’s base class. T is a non-generic class, then it is its own base class
If Tis a generic derivation of the forC [U, ...], then the base classTis C.

The notion of base class will again be useful when we introduce yet another kind of type,
also (like all others in the O-O approach) based on classes, irectly: anchored types.

10.4 ARRAYS

As a conclusion to this discussion it is useful to take a look at a very useful example
container classARRA", which represents one-dimensional arrays.

Arrays as objects

The notion of array is usually part of a programming language’s definition. But wit
object technology we do not need to burden the notation with special predefin
constructs: an array is just a container object, an instance of a class which we may
ARRA
ARRA"is a good example of generic class. Here is a first outline:
indexing
descriptiot: "Sequences of vali, all of the same type or of a conforming ,/%e
%accessible through integer indices in a contiguous int"rval
class ARRAY[G] creation
make

326 GENERICITY §10.4

feature
make(mininde;, maxinde: INTEGEF) is
-- Allocate array with bounomininde> andmaxindex
-- (empty ifmininde> > maxinde).
do... end
lower, uppe, coun: INTEGER
-- Minimum and maximum legal index; array size.
put(v: G; i: INTEGEF) is
-- Assignv to the entry of indeii:
do... end
infix "@", iter (i: INTEGEF): Gis
-- Entry of indexi
do... end
end -- classARRAY
To create an array of bounm andn, with a declared of typ;tARRAY[T] for some
typeT, you will execute the creation instruction
Il a.make(m, n)

To set the value of an array element you will use proceput: the calla.put (x, i)
sets the value of thi-th element tcx. To access the value of an element ydll wse
functionitem (the synonyminfix "@" will be explained shortly), as in

X = a.item(i)
Here is a sketch of how you might use the class from a client:
pa: ARRAY[POINT]; pl: POINT; i, j: INTEGER

Il pa.make(-32, 107) -- Allocate array with the bounds shown.
pa.put(pl, i) -- Assignp1 to entry of indei.
pl:= pa.iterr (j) -- Assign topl the value of entry of indej.

In conventional (say Pascal) notation, you would write

pali] :=p1 for pa.put(i, pl)
pl:=pali] for pl:=pa.item(i)

Array properties

A few observations on the preceding class:
< Similar classes exist for arrays with more dimensiARRAY etc.

* Featurecountmay be implemented as either an attribute or a function, since it
satisfiescount = upper — lower+. This is expressed in the actual class by an
invariant, as explained in the next chapter.

§10.4 ARRAYS

327

* More generally, assertion techniques will allow us to associate precise consister
conditions withput anditerr, expressing that calls are only valid if the ind is
betweerlower anduppe..

The idea of describing arrays as objects ARRA" as a class is a good example of
the unifying and simplifying power of object technology, which helps us narrow down th
notation (the design or programming language) to the bare essentials and reduce
number of special-purpose constructs. Here an array is simply viewed as an example
container structure, with its own access method represented by feput anditerr.

SinceARRA"is a normal class, it can fully participate in what an earlier chapter calle
the object-oriented games; in particular other classes can inherit from it. A cla
ARRAYED LISdescribing the implementation of the abstract notion of list by arrays ca
be a descendant of bcLISTandARRA". We will study many such constructions.

As soon as we learn about assertions we will take this unifying approach ev
further; thanks to preconditions, we will be able to handle through the normal concepts
the object-oriented method one more problem traditionally thought to require speci
purpose mechanisms: run-time bounds checking (monitoring array accesses to enforce
rule that all indices must lie between the bounds).

Efficiency considerations

The fear may arise that all this elegance and simplicity could cause performance to tal
hit. One of the primary reasons developers use arrays in traditional approaches is tha
basic operations — accessing or modifying an array element known through its index
are fast. Are we now going to pay the price of a routine call every time vitem or pui?

We do not need to. ThARRA" looks to the unsuspecting developer as a normal
class does not prevent the compiler from cheating — from relying on some insid
information. This information enables the compiler to detect calitem and put and
hijack them so as to generate exactly the same code that a Fortran, Pascal or C com
would produce for equivalent instructions as shown abpIc=pa[i] andpali] := plin
Pascal syntax). So the developer will gain the best of both worlds: the uniformit
generality, simplicity, and ease of use of the O-O solution; and the performance of t
traditional solution.

The compiler’s job is not trivial. As will be clear in the study of inheritance, it is possible
for a descendant of clasARRA" to redefine any feature of the class, and such
redefinitions may be called indirectly through dynamic binding. So compilers must
perform a thorough analysis to check that the replacement is indeed correct. Today’s
compilers from ISE and other companies can indeed, for a typical array-intensive
computation typical of large scientific software, generate code whose efficiency matches
that of hand-written C or Forin code.

328 GENERICITY 8§10.5

An infix synonym

ClassARRA" provides the opportunity to introduce a small facility that, although not
directly related to the other topics of this chapter, will be useful in practice. The
declaration of featuriterr actually reads

infix "@", iterr (i: INTEGEF): G is ...

This introduces two feature naminfix "@" anditemas synonyms, that is to say as
denoting the same feature, given by the declaration that follows. In general, a feature
declaration of the form

a, b, c, ... “Feature description”
is considered as an abbreviation for a sequence of declarations of the form

a “Feature description”
b “Feature description”
c “Feature description”

all for the sam¢Feature descriptior. This is applicable to attributes (where “Feature
description'is of the form: some_typ) as well as routines (where it reds routine_bod).

The benefit in this example is that you have a simpler notation for array acThe notion of infix
Although consistent with the access mechanisms for other data structures, the n(featUﬂ?V‘\{aS intro-
a.item (i) is more wordy than the traditiona [i] found, with some variants, in Pascal, C?e“a&ﬁ?eg,f)ppaegrgtf;]
Fortran and so on. By definirinfix "@"as a synonym, you can actually beat tradition..
languages at their own terseness game by writing an array elera @ i(the supreme
dream: undercutting — by one keystroke — even C!). Note again that this is not a special
language mechanism but the straightforward application of a general O-O concept,
operator features, combined here with the notion of synonym.

10.5 THE COST OF GENERICITY

As always, we need to make sure that the object-oriented techniques that we introduce for
reusability, extendibility and reliability do not imply a performance overhead. The
question has just been raised and answered for arrays; but we need to examine it for the
genericity mechanism at large. How much will genericity cost?

The concern arises in particular because of the experience of C++, where genlgrggt\l(ﬂartin Car-
(known as thetemplate mechanism) was a late addition to the language, cauq g margaret
performance difficulties. It appears that some compiler implementations take the icEllis, “Reducing
parameterization literally, generating a different copy of the class features for each Instantiation Time”,

generic parameter! As a consequence the literature warns C++ programmers i?ol.(:(sisesp,%tl’y-
dangers of using templates too generously: August 1994, pages
. 14, 16 and 64.
Template instantiation time is already an issue for some C++ ... Ifa user List<T> would be
creates alisi<int>, a List<String>, a Lisi<Widge>, and a List<Blidge> LIST[T] inthe nota-

(whereWidge andBlidget are user-defined classt; and callsheac, tail, and tion of this book.

§10.6 DISCUSSION: NOT DONE YET 329

inseri on all four object, then each of these functions will be instantie[ind
the sense of generically derivefour time:. A widely useful class such List
might be instantiated in user programs with many different , causing
many functions to be instantia. Thus, a significant amount of code might be
generated for th(features of] theList template[class.

The authors of this advice (both with respected C++ expertise from the origin
AT&T group, one of them co-author of the official C++ refere[Ellis 1990])) go on
proposing various techniques for avoiding template derivation. But developers should
course be protected from such concerns. Genericity should not imply code duplication
is possible, with appropriate language design and a good compiler, to generate a sil
target code for any generic class, so that all of the following will be small or zero:

« Effect on compilation time.

« Effect on the size of the generated code.
« Effect on execution time.

« Effect on execution space.

When working in such an environment, you can use the full power of genericif
without any fear of unpleasant effects on either compile-time or at run-time performan

10.6 DISCUSSION: NOT DONE YET

The presentation of genericity has introduced the basic ideas. But, as you may h
noticed, it leaves two important questions unanswered.

First, in our effort to guarantee type safety, we may have erred on the conservat
side. We will be prevented from pushing a bank account oiISTACK[CIRCLE], or a
point onto sSTACK[ACCOUNT]. This is what we want: it is hard to imagine what kind
of application — other than general-purpose utilities such as a database managen
system — would need to handle a stack containing both points and bank accounts. Butv
about a graphics application asking for a stack that contains a few circles, a few rectanc
a few points? This request seems quite reasonable, and we cannot accommodate it; the
system defined so far will reject the cfigure stackput (that_poin) if figure stac has
been declared of tyfSTACK[FIGURE] andthat pointof any type other thaFIGURE.

We can give a name to such structupolymorphic data structures. The challenge will
be to support them without renouncing the benefits of type safety.

Second, our generic parameters represent arbitrary types. This is fine for stacks
arrays, since any object is by essence “stackable” and storable into an array. But wher
come to structures such as vectors, we will want to be able to add two vectors, requir
that we can also add two vector elements; and if we want to define a hash table class
will need the certainty that a hash function is applicable to every table element. Suc
form of genericity, whereby the formal generic parameter does not any more stand for
arbitrary type, but represents a type guaranteed to offer certain operations, will be cal
constrained genericity.

330 GENERICITY §10.7

For both of these problems, the object-oriented method will provide simple and
elegant solutions, both based on combining genericity with inheritance.

10.7 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

» Classes may have formal generic parameters representing types.

» Generic classes serve to describe general container data structures, implemented in
the same way regardless of the elements they contain.

« Genericity is only needed in a typed language, to ensure statically checkable type
safety.

« A client of a generic class must provide actual types for the formal parameters.

* The only permitted operations on an entity whose type is a formal generic parameter
are operations applicable to every type. The entity may serve as left- or right-hand
side of an assignment, actual routine argument, or operand of an equality or
inequality test. It may also participate in universally applicable features such as
cloning and object equality testing.

* The notion of array can be covered by a generic library class, without any specific
language mechanism but also without any loss in run-time performance.

« More flexible advanced uses of genericity — polymorphic data structures,
constrained genericity — require the introduction of inheritance.

10.8 BIBLIOGRAPHICAL NOTES

An early language supporting genericity was L[Bert 1983. Ada made the concepiFor references on
widely known through its generic package mechanism. Ada see chapte3:.

Genericity has also been introduced in formal specification languages such pageiec.
CLEAR and OBJ-2, to which references appear in the chapter on abstract data type
generic mechanism described here was derived from the mechanism introduced in an early
version of Z[Abrial 1980] [Abrial 1980a anc extended in MM 1985b].

Aside from the notation of this book, one of the first object-oriented languages to
offer genericity was DEC'’s Trellis langua[Schaffert 198€,

EXERCISES

E10.1 Constrained genericity

This exercise is a little peculiar since it asks you a question to which a detailed answer
appears later in the book. Its aim is to get you thinking about the proper language
structures, and compare your answer to what will be introduced later. It will only be
worthwhile if you are new to this problem and have not yet seen the object-oriented
solution. Familiarity with how the problem is handled in other approaches, notably Ada,
may be helpful but is not required.

8§E10.2 EXERCISES 331

The question is about constrained genericity, a need that was presented in
discussion section. Devise a language mechanism, compatible with the spirit of the obje
oriented approach and with the notations seen so far, that will address constrail
genericity by enabling the author of a generic class to specify that valid actual gene
parameters must possess certain operations.

E10.2 Two-dimensional arrays

Using classtARRA both as inspiration and as basis for the implementation, write a gener
classARRAY describing two-dimensional arrays.

E10.3 Using your own formal generic parameter as someone else’s actual

Construct an example in which a routine of a generic (C [G] calls a routine declared
in another generic claD [G] as taking a formal argument of tyG.:

332 GENERICITY 8E10.3

	10 10 Genericity
	Dimensions of generalization
	10.1 HORIZONTAL AND VERTICAL TYPE GENERALIZATION
	10.2 THE NEED FOR TYPE PARAMETERIZATION
	Generic abstract data types
	The issue
	The role of typing

	10.3 GENERIC CLASSES
	Declaring a generic class
	Using a generic class
	Terminology
	Type checking
	The type rule
	Operations on entities of generic types
	Uses of entities of a formal generic type

	Types and classes

	10.4 ARRAYS
	Arrays as objects
	Array properties
	Efficiency considerations
	An infix synonym

	10.5 THE COST OF GENERICITY
	10.6 DISCUSSION: NOT DONE YET
	10.7 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	10.8 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E10.1 Constrained genericity
	E10.2 Two-dimensional arrays
	E10.3 Using your own formal generic parameter as s...

