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Concurrency, distribution,
client-server and the Internet

Warning
SPOILER (The next
section is30.2 page

Like humans, computers can team up with their peers to achieve results that none
them could obtain alone; unlike humans, they can do many things at once (or with th
appearance of simultaneity), and do all of them well. So far, however, the discussion he
implicitly assumed that the computatiorsequential— proceeds along a single thread of
control. We should now see what happens when this assumption no longer holds, as \
move toconcurrent(also known agarallel) computation.

Concurrency is not a new subject, but for a long time interest in it remained mostly
confined to four application areas: operating systems, networking, implementation o
database management systems, and high-speed scientific software. Although strategic ¢
prestigious, these tasks involve only a small subset of the software developmer
community.

Things have changed. Concurrency is quickly becoming a required component of jus
about every type of application, including some which had traditionally been thought of a:
fundamentally sequential in nature. Beyond mere concurrency, our systems, whether orn
client-server must increasingly becomtistributedover networks, including the network
of networks — thénternet This evolution gives particular urgency to the central question
of this chapter: can we apply object-oriented ideas in a concurrent and distributed contex

Not only is this possible: object technology can help us develop concurrent anc
distributed applications simply and elegantly.

30.1 A SNEAK PREVIEW

As usual, this discussion will not throw a pre-cooked answer at you, but instead wil
carefully build a solution from a detailed analysis of the problem and an exploration of
possible avenues, including a few dead ends. Although necessary to make you underste
the techniques in depth, this thoroughness might lead you to believe that they are comple
that would be inexcusable, since the concurrency mechanism on which we will finally
settle is in fact characterized by almost incredible simplicity. To avoid this risk, we will
begin by examining a summary of the mechanism, without any of the rationale.

If you hate “spoilers”, preferring to start with the full statement of the issues and to let the
drama proceed to its dénouement step by step and inference by inference, ignore the one-
page summary that follows and skip directly to the next section.
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The extension covering full-fledged concurrency and distribution will be as minimal
as it can get starting from a sequential notation: a single new keywseparate. How
is this possible? We use the fundamental scheme of O-O computation: featvesf (a),l,
executed on behalf of some object O1 and caf on the object O2 attachedx, with the
argumenfta. But instead of a single processor that handles operations on all objects, we
may now rely on different processors for O1 and O2 — so that the computation on O1 can
move ahead without waiting for the call to terminate, since another processor handles it.

Because the effect of a call now depends on whether the objects are handled by the
same processor or different ones, the software text must tell us unambiguously what the
intentis for anyx. Hence the need for the new keyword: rather thai x: SOME_TYP,=
we declarex: separate SOME_TYP to indicate thax is handled by a different processor,
so that calls of targex can proceed in parallel with the rest of the computation. With such
a declaration, any creation instructil! x. make(...) will spawn off a new processor — a
new thread of control — to handle future callsxan

Nowhere in the software text should we have to sp whict processor to us All
we state, through thseparate declaration, is that two objects are handled by different
processors, since this radically affects the system’s semantics. Actual processor
assignment can wait until run time. Nor do we settle too early on the exact nature of
processors: a processor can be implemented by a piece of hardware (a computer), but just
as well by a task (process) of the operating system, or, on a multithreaded OS, just a thread
of such a task. Viewed by the software, “processor” is an abstract concept; you can execute
the same concurrent application on widely different architectures (time-sharing on one
computer, distributed network with many computers, threads within one Unix or Windows
task...) without any change to its source text. All you will change is a “Concurrency
Configuration File” which specifies the last-minute mapping of abstract processors to
physical resources.

We need to specify synchronization constraints. The conventions are straightforward:

« No special mechanism is required for a client to resynchronize with its supplier after
a separate cax.f (a) has gone off in parallel. The client will wait when and if it
needs to: when it requests information on the object through a query call, as in
value:= x.some_gquel. This automatic mechanism is callwait by necessi.y

* To obtain exclusive access to a separate object 02, it suffices to use the attached
entity a as an argument to the corresponding call, & (a).

» A routine precondition involving a separate argument suc causes the client to
wait until the precondition holds.

* To guarantee that we can control our software and predict the result (in particular,
rest assured that class invariants will be maintained), we must allow the processor in
charge of an object to execute at most one routine at any given time.

* We may, however, need interrupt the execution of a routine to let a new, high-
priority client take over. This will cause an exception, so that the spurned client can
take the appropriate corrective measures — most likely retrying after a while.

This covers most of the mechanism, which will enable us to build the most advanced
concurrent and distributed applications through the full extent of O-O techniques, A" complete sum-
multiple inheritance to Desigby Contract — as we will now study in detail, forgettinmary appears in
for a while all that we have read in this short preview. 30.11, pagel02t.
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30.2 THE RISE OF CONCURRENCY

Back to square one. We must first review the various forms of concurrency, to underst:
how the evolution of our field requires most software developers to make concurrency [
of their mindset. In addition to the traditional concepts of multiprocessing an
multiprogramming, the past few years have introduced two innovative concepts: obj
request brokers and remote execution through the Net.

Multiprocessing

More and more, we want to use the formidable amount of computing power availal
around us; less and less, we are willing to wait for the computer (although we have becc
quite comfortable with the idea that the computer is waiting for us). So if one processi
unit would not bring us quickly enough the result that we need, we will want to rely c
several units working in parallel. This form of concurrency is known as multiprocessint

Spectacular applications of multiprocessing have involved researchers relying
hundreds of computers scattered over the Internet, at times when the compute
(presumably consenting) owners did not need them, to solve computationally intens
problems such as breaking cryptographic algorithms. Such efforts do not just apply
computing research: Hollywood's insatiable demand for realistic computer graphics h
played its part in fueling progress in this area; the preparation of the Toy Stor, one
of the first to involve artificial characters only (only the voices are human), relied at son
point on a network of more than one hundred high-end workstations — more economic
it seems, than one hundred professional animators.

Multiprocessing is also ubiquitous in high-speed scientific computing, to solve ev:
larger problems of physics, engineering, meteorology, statistics, investment banking.

More routinely, many computing installations use some fornload balancing
automatically dispatching computations among the various computers available at &
particular time on the local network of an organization.

Another form of multiprocessing is the computing architecture knowclient-
server computing, which assigns various specialized roles to the computers on a netwo
the biggest and most expensive machines, of which a typical company network will hg
just one or a few, are “servers” handling shared databases, heavy computations and ¢
strategic central resources; the cheaper machines, ubiquitously located wherever the
an end user, handle decentralizable tasks such as the human interface and sir
computations; they forward to the servers any task that exceeds their competence.

The current popularity of the client-server approach is a swing of the pendulum away
from the trend of the preceding decade. Initially (nineteen-sixties and seventies)
architectures were centralized, forcing users to compete for resources. The personal
computer and workstation revolution of the eighties was largely about empowering users
with resources theretofore reserved to the Center (the “glass house” in industry jargon).
Then they discovered the obvious: a personal computer cannot do everything, and some
resourcesmus be shared. Hence the emergence of client-server architectures in the
nineties. The inevitable cynical comment — that we are back to the one-mainframe-
many-terminals architecture of our youth, only with more expensive terminals now called
“client workstations” — is not really justified: the industry is simply searching, through
trial and error, for the proper tradeoff between decentralization and sharing.
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Multiprogramming

The other main form of concurrency is multiprogramming, which involves a single
computer working on several tasks at once.

If we consider general-purpose systems (excluding processors that are embedded in
an application device, be it a washing machine or an airplane instrument, and single-
mindedly repeat a fixed set of operations), computers are almost always multi-
programmed, performing operating system tasks in parallel with application tasks. In a
strict form of multiprogramming the parallelism is apparent rather than real: at any single
time the processing unit is actually working on just one job; but the time to switch between
jobs is so short that an outside observer can believe they proceed concurrently. In addition,
the processing unit itself may do several things in parallel (as in the advance fetch schemes
of many computers, where each clock cycle loads the next instruction at the same time it
executes the current one), or may actually be a combination of several processing units,
so that multiprogramming becomes intertwined with multiprocessing.

A common application of multiprogramming time-sharini, allowing a single
machine to serve several users at once. But except in the case of very powerful
“mainframe” computers this idea is considered much less attractive now than it was when
computers were a precious rarity. Today we consider our time to be the more valuable
resource, so we want the system to do several things at once just for us. In pamultiar,
windowing user interfaces allow several applications to proceed in parallel: in one window
we browse the Web, in another we edit a document, in yet another we compile and test
some software. All this requires powerful concurrency mechanisms.

Providing each computer user with a multi-windowing, multiprogramming interface
is the responsibility of the operating system. But increasingly the users of the software we
develop want to have concurrerwithin one applicatio. The reason is always the same:
they know that computing power is available by the bountiful, and they do not want to wait
idly. So if it takes a while to load incoming messages in an e-mail system, you will want
to be able to send an outgoing message while this operation proceeds. With a good Web
browser you can access a new site while loading pages from another. In a stock trading
system, you may at any single time be accessing market information from several stock
exchanges, buying here, selling there, and monitoring a client’s portfolio.

It is this need for intra-application concurrency which has suddenly brought the
whole subject of concurrent computing to the forefront of software development and made
it of interest far beyond its original constituencies. Meanwhile, all the traditional
applications remain as important as ever, with new developments in operating systems, the
Internet, local area networks, and scientific computing — where the continual quest for
speed demands ever higher levels of multiprocessing.
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Object request brokers

Another important recent development has been the emergence of the CORBA prop«
from the Object Management Group, and the OLE 2/ActiveX architecture from Microsof
Although the precise goals, details and markets differ, both efforts promise substan
progress towards distributed computing.

The general purpose is to allow applications to access each other’s objects :
services as conveniently as possible, either locally or across a network. The CORBA ef
(more precisely its CORBA 2 stage, clearly the interesting one) has also placed patrtict
emphasis on interoperability:

« CORBA-aware applications can coOperate even if they are based on “object requ
brokers” from different vendors.

* Interoperability also applies to the language level: an application written in one of ti
supported languages can access objects from an application written in another.
interaction goes through an intermediate language called IDL (Interface Definitic
Language); supported languages have an official IDL binding, which maps tf
constructs of the language to those of IDL.

IDL is a common-denominator O-O language centered on the notion of interface. /
IDL interface for a class is similar in spirit to a short form, although more rudimentar
(IDL in particular does not support assertions); it describes the set of features available
a certain abstraction. From a class written in an O-O language such as the notation of
book, tools will derive an IDL interface, making the class and its instances of interest
client software. A client written in the same language or another can, through an I
interface, access across a network the features provided by such a supplier.

Remote execution

Another development of the late nineties is the mechanism for remote execution throt
the World-Wide Web.

The first Web browsers made it not just possible but also convenient to explo
information stored on remote computers anywhere in the world, and to follow logic
connections, ohyperlinks, at the click of a button. But this was a passive mechanism
someone prepared some information, and everyone else accessed it read-only.

The next step was to move to an active setup where clicking on a link actual
triggers execution of an operation. This assumes the presence, within the Web browse
an execution engine which can recognize the downloaded information as executable ct
and execute it. The execution engine can be a built-in part of the browser, or it may
dynamically attached to it in response to the downloading of information of th
corresponding type. This latter solution is known @plug-in mechanism and assumes
that users interested in a particular execution mechanism can download the execu
engine, usually free, from the Internet.
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This idea was first made popular by Java in late 1995 and 1996; Java execution
engines have become widely available. Plug-ins have since appeared for many other
mechanisms. An alternative to providing a specific plug-in is to generate, from any source
language, code for a widely available engine, such as a Java engine; several compiler
vendors have indeed started to provide generators of Java “bytecode” (the low-level
portable code that the Java engine can execute).

For the notation of this book the two avenues have been pursued: ISE has a free execution
engine; and at the time of writing a project is in progress to generate Java bytecode.

Either approach raises the potentialsecurity problems: how much do you trust
someone’s application? If you are not careful, clicking on an innocent-looking hyperlink
could unleash a vicious program that destroys files on your computer, or steals your
personal information. More precisely you should not, as a user, be the one asked to be
careful: the responsibility is on the provider of an execution engine and the associated
library of basic facilities. Some widely publicized Java security failures in 1996 caused
considerable worries about the issue.

The solution is to use carefully designed and certified execution engines and libraries
coming from reputable sources. Often they will have two versions:

« One version is meant for unlimited Internet usage, based on a severely restricted
execution engine.

In ISE’s tool the only I/O library facilities in this restricted tool only read and
write to and from the terminal, not files. The “external” mechanism of the
language has also been removed, so that a vicious application cannot cause
mischief by going to C, say, to perform file manipulations. The Java “Virtual
Machine” (the engine) is also draconian in what it permits Internet “applets”

to do with the file system of your computer.

e The other version has fewer or no such restrictions, and provides the full power of
the libraries, file I/O in particular. It is meant for applications that will run on a secure
Intranet (internal company network) rather than the wilderness of the Internet.

In spite of the insecurity specter, the prospect of unfettered remote execution, a new
step in the ongoing revolution in the way we distribute software, has generated enormous
excitement, which shows no sign of abating.

30.3 FROM PROCESSES TO OBJECTS

To support all these mind-boggling developments, requiring ever more use of concurrent
processing, we need powerful software support. How are we going to program these
things? Object technology, of course, suggests itself.

Robin Milner is said to have exclaimed, in a 1991 workshop at an O-O confer¢Cited in[Matsuoka
“| can’t understand why objec[of O-O languagesare not concurrent in the first pla”.2 1993.
Even if only in the second or third place, how do we go about making objects concul......
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From: Doug Le;,
“Concurrent Pro-
gramming in Java,
Addison-Weslg, y
199¢.

If we start from non-O-O concurrency work, we will find that it largely relies on the
notion ofproces. A process is a program unit that acts like a special-purpose compute
it executes a certain algorithm, usually repeating it until some external event trigge
termination. A typical example is the process that manages a printer, repeatedly execu

“Wait until there is at least a job in the print queue”
“Get the next print job and remove it from the queue”
“Print the job”

Various concurrency models differ in how processes are scheduled ai
synchronized, compete for shared hardware resources, and exchange information. In s
concurrent programming languages, you directly describe a process; in others, sucl
Ada, you may also describe procetypes which at run time are instantiated into
processes, much as the classes of object-oriented software are instantiated into objec

Similarities

The correspondence seems indeed clear. As we start exploring how to combine ideas 1
concurrent programming and object-oriented software construction, it seems natural
identify processes with objects, and process types with classes. Anyone who has stu

concurrent computing and discovers O-O development, or the other way around, will
struck by the similarities between these two technologies:

« Both rely on autonomous, encapsulated modules: processes or process types; cla

e Like processes and unlike the subroutines of sequential, non-O-O approach
objects will, from each activation to the next, retain the values they contain.

* To build reasonable concurrent systems, it is indispensable in practice to enfo
heavy restrictions on how modules can exchange information; otherwise thin
guickly get out of hand. The O-O approach, as we have seen, pladas severe
restrictions on inter-module communication.

¢ The basic mechanism for such communication may loosely be described, in b
cases, under the general label of “message passing”.

So it is not surprising that many people have had a “Eureka!” when first thinking
Milner-like, about making objects concurrent. The unification, it seems, should con
easily.

This first impression is unfortunately wrong: after the similarities, one soon stumble
into the discrepancies.

Active objects

Building on the analogies just summarized, a number of proposals for concurrent O
mechanisms (see the bibliographical notes) have introduced a notion of “active obje
An active object is an object that is also a process: it has its own program to execute.
definition from a book on Java:

Each object is a sing, identifiable process-like entit(not unlike a Unix
proces) with state and behavi.r
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This notion, however, raises difficult problems.

The most significant one is easy to see. A process has its own agenda: as illustrated
by the printer example, it relentlessly executes a certain sequence of actions. Not so with
classes and objects. An object does dc one thing; it is a repository of services (the
features of the generating class), and just waits for the next client to solicit one of those
services — chosen by the client, not the object. If we make the object active, it becomes
responsible for the scheduling of its operations. This creates a conflict with the clients,
which have a very clear view of what the scheduling should be: they just want the supplier,
whenever they need a particular service, to be ready to provide it immediately!

The problem arises in non-object-oriented approaches to concurrency and has led to
mechanisms fasynchronizingprocesses — that is to say, specifying when and how each
is ready to communicate, waiting if necessary for the other to be ready too. For example
in a very simple, unbuffered producer-consumer scheme we may producel process
that repeatedly executes

“Make it known thafproduceris not ready”

“Perform some computation that produces a vix'ie

“Make it known thatproduceris ready”

“Wait for consumeito be ready”

“Passx to consume™

and aconsume process that repeatedly execut€s

. . Handshake
“Make it known thaiconsumeiis ready”

“Wait for produce to be ready”
“Get x from produce”
“Make it known thalconsumeiis not ready”

“Perform some computation that uses the vix’ie

a scheme which we may also view pictorially:

producer consumer A simple
/-\ /\ producer-
Wait Wait consumer

scheme

CommUuNiCa lCam——]- COMmMunicate
Handshake
(passv)
[Consumg

Communication occurs when both processes are ready for each other; this is
sometimes calledhandshak orrendez-vou. The design of synchronization mechanisms
— enabling us in particular to express precisely the instructio“Make it known that
processis ready’and“Wait for processto be ready — has been a fertile area of research
and development for several decades.
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See“Sequencing
and inheritance”,
page 112, as part
of the discussion of
Simule.

All this is fine for processes, the concurrent equivalent of traditional sequenti
programs which “do one thing”; indeed, a concurrent system built with processes is liki
sequential system with several main programs. But in the object-oriented approach
have rejected the notion of main program and instead defined software units that st
ready to provide any one of a number of possible features.

Reconciling this view with the notion of process requires elaborate synchronizatic
constructs to make sure that each supplier is ready to execute a feature when the ¢
needs it. The reconciliation is particularly delicate when both client and supplier are act
objects, since each has its own agenda.

All this does not make impossibli to devise mechanisms based on the notion of
active object, as evidenced by the abundant literature on the subject (to which
bibliographical notes to this chapter give many references). But this evidence also shc
the complexity of the proposed solutions, of which none has gained wide acceptan
suggesting that the active object approach is not the right one.

Active objects clash with inheritance

Doubts about the suitability of the active object approach grow as one starts looking
how it combines with other O-O mechanisms, especially inheritance.

If a classB inherits from a clas/A and both are active (that is to say, describe
instances that must be active objects), what happeB to the description cA’s process?
In many cases you will need to add some new instructions, but without special langus
mechanisms this means that you will almost always have to redefine and rewrite the er
process part — not an attractive proposition.

Here is an example of special language mechanism. Although the Simula
language does not support concurrency, it has a notion of active object: a Simula class
besides its features, include a set of instructions, called the body of the class, so tha
can talk of executing an object — meaning executing the body of its generating class. -
body of a clasA can include a special instructiinner, which has no effect in the class
itself but, in a proper descendB, stands for the body B. So if the body 0A reads

some_initializatio; inner; some_termination_actions

and the body oB reads
specific_B_actions

then execution of that body actually means executing
some_initializatiol, specific_B_actior; some_termination_actions

Although the need for a mechanism of this kind is clear in a language supporting t
notion of active object, objections immediately come to mind: the notation is misleadin
since if you just read the body B you will get a wrong view of what the execution does;
it forces the parent to plan in detail for its descendants, going against basic O-O conc
(the Open-Closed principle); and it only works in a single-inheritance language.
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Even with a different notation, the basic problem will remain: how to combine the
process specification of a class with those of its proper descendants; how to reconcile
parents’ process specifications in the case of multiple inheritance.

Later in this chapter we will see other problems, known as the “inheritance anomaly” and “Synchronization for
arising from the use of inheritance with synchronization constraints. concurrent O-O com-

. e tation”, 980
Faced with these difficulties, some of the early O-O concurrency proposals prefIou lon', page

to stay away from inheritance altogether. Although justifiable as a temporary measi

help understand the issues by separating concerns, this exclusion of inheritance cannot be
sustained in a definitive approach to the construction of concurrent object-oriented
software; this would be like cutting the arm because the finger itches. (For good measure,
some of the literature adds that inheritance is a complex and messy notion anyway, as if
telling the patient, after the operation, that having an arm was a bad idea in the first place.)

The inference that we may draw is simpler and less extreme. The problem is not
object technology per se, in particular inheritance; it is not concurrency; it is not even the
combination of these ideas. What causes trouble is the notion of active object.

Processes programmed

As we prepare to get rid of active objects it is useful to note that we will not really be
renouncing anything. An object is able to perform many operations: all the features of its
generating class. By turning it into a process, we select one of these operations as the only
one that really counts. There is absolutely no benefit in doing this! Why limit ourselves to
one algorithm when we can have as many as we want?

Another way to express this observation is that the notion of process need not be a
built-in concept in the concurrency mechanism; processes cprogramme: simply as
routines. Consider for example the concept of printer process cited at the beginning of this
chapter. The object-oriented view tells us to focus on the object type, printer, and to treat
the process as just one routine, live, of the corresponding class:

indexing
descriptior: "Printers handling one print job at a tire
note: “A better versiol, based on a general class PROCI:%S
%appears below under the name PRIN"ER
class
PRINTER_1
feature -- Status report
stop_requeste: BOOLEANis do... end
oldes: JOBis do... end
feature -- Basic operations
setupis do ... end
wait_for_jobis do... end
remove_oldesis do... end
print (j: JOB)is do... end
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feature -- Process behavior

live is
-- Do the printer thing.
do
from setupuntil stop_requesteloop
wait_for_jok; print (oldes); remove_oldest
end
end

... Other feature...
end -- classPRINTER_1

Note the provision foOther feature: although so falive and the supporting features
have claimed all our attention, we can endow processes with many other features if
want to, encouraged by the O-O approach developed elsewhere in this book. Turn
PRINTER _ objects into processes would mean limiting this freedom; that would be
major loss of expressive power, without any visible benefit.

By abstracting from this example, which describes a particular process type sim|
as a class, we can try to provide a more general description of all process types throus
deferred class — behavior clas as we have often encountered in previous chapters
Procedurdive will apply to all processes. We could leave it deferred, but it is nottoo muc
of a commitment to note that most processes will need some initialization, son
termination, and in-between a basic step repeated some number of times. So we
already effect a few things at the most abstract level:

indexing
descriptior: "The most general notion of proc™ss
deferred class
PROCESS
feature -- Status report
ovel: BOOLEAN:Is
-- Must execution terminate now?
deferred
end
feature -- Basic operations
setupis
-- Prepare to execute process operations (default: nothing).
do
end
stepis
-- Execute basic process operations.
deferred
end
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wrapupis
-- Execute termination operations (default: nothing).
do
end

feature -- Process behavior

liveis
-- Perform process lifecycle.
do
from setupuntil overloop
step
end
wrapup
end

end -- classPROCESS

A point of methodology: whereeste is deferred,setu; and wrapuy are effective
procedures, defined as doing nothing. This way we force every effective descendant to
provide a specific implementation stef, the basic process action; but in the not
infrequent cases that require no particular setup or termination operation we avoid
bothering the descendants. This choice between a deferred version and a null effective
version occurs regularly in the design of deferred classes, and you should resolve it based
on your appreciation of the likely characteristics of descendants. A wrong guess is not a
disaster; it will just lead to more effectings or more redefinitions in descendants.

From this pattern we may define a more specialized class, covering printers:

indexing

descriptior: "Printers handling one print job at a tir"ie

note: “Revised version based on class PROC"'=SS
classPRINTERinherit

PROCESS

renameoverasstop_requesteend

feature -- Status report

stop_requeste: BOOLEAN

-- Is the next job in the queue a request to shut down?

oldes: JOBis
-- The oldest job in the queue
do... end

feature -- Basic operations
stepis
-- Process one job.
do
wait_for_jok; print (oldes); remove_oldest
end
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ExerciseE30.1,
page 1035

wait_for_jobis
-- Wait until job queue is not empty.
do

ensure
oldest/= Void
end
remove_oldesis
-- Remove oldest job from queue.
require
oldest/= Void
do
if oldestis_stop_requesthen stop_requeste:= Trueend
“Removeoldes from queue”
end
print (j: JOE) is
-- Printj, unless it is just a stop request.
require
j /= Void
do
if not j.is_stop_requesthen “Print the text associated wij” end
end
end -- classPRINTER

The class assumes that a request to shut off the printer is sent as a special jarint.
for which j.is_stop_reque is true. (It would be cleaner to avoid makiprint and
remove_oldesaware of the special case of the “stop request” job; this is easy to improve

The benefits of O-O modeling are apparent here. In the same way that going fre
main program to classes broadens our perspective by giving us abstract objects that ar
limited to “doing just one thing”, considering a printer process as an object described
a class opens up the possibility of new, useful features. With a printer we can do more t
execute its normal printing operation as coveredive (which we should perhaps have
renamecoperatewhen inheriting it frorPROCES); we might want to add such features
asperform_internal_te;, switch_to_Postscript_level orset_resolutio. The equalizing
effect of the O-O method is as important here as in sequential software.

More generally, the classes sketched in this section show how we can use the nor
object-oriented mechanisms — classes, inheritance, deferred elements, partic
implemented patterns — to implement processes. There is nothing wrong with the conc
of process in an O-O context; indeed, we will need it in many concurrent applications. E
rather than a primitive mechanism it will simply be covered library class PROCESS
based on the version given earlier in this section, or perhaps several such classes cove
variants of the notion.

For the basic new construct of concurrent object technology, we muselsewhere.
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30.4 INTRODUCING CONCURRENT EXECUTION

What — if not the notion of process — fundamentally distinguishes concurrent from
sequential computation?

Processors

To narrow down the specifics of concurrency, it is useful to take a new look at the figure

which helped us lay the very foundations of object technology by examining the three

basic ingredients of computation:

The three forces
of computation

(This figure first
appeared on page
101.)

Processor

To perform a computation is to use certprocessor to apply certairactionsto
certain object.. At the beginning of this book we discovered how object technology
addresses fundamental issues of reusability and extendibility by building software
architectures in which actions are attached to objects (more precisely, object types) rather
than the other way around.

What about processors? Clearly we need a mechanism to execute the actions on the
objects. But in sequential computation there is just one thread of control, hence just one
processor; so it is taken for granted and remains implicit most of the time.

In a concurrent context, however, we will have two or more processors. This
property is of course essential to the idea of concurrency and we can take it as the
definition of the notion. This is the basic answer to the question asked above: processors
(not processes) will be the principal new concept for adding concurrency to the framework
of sequential object-oriented computation. A concurrent system may have any number of
processors, as opposed to just one for a sequential system.

The nature of processors

Definition : processor

A processor is an autonomous thread of control capable of supporting the
sequential execution of instructions on one or more objects.
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[Lieberman 198", |
page 2.. Square
brackets signal differ-
ences in terminoloyy

This is an abstract notion, it should not be confused with that of physical processi
device, for which the rest of this chapter will use the tCPU, common in computer
engineering to denote the processing units of computers. “CPU” is an abbreviation
“Central Processing Unit” even though there is most of the time nothing central abc
CPUs. You can use a CPU to implement a processor; but the notion of processor is m
more abstract and general. A processor can be, for example:

< A computer (with its CPU) on a network.

e A task, also called process, as supported on operating systems such as U
Windows and many others.

* A coroutine. (Coroutines, covered in detail later in this chapter, simulate tru
concurrency by taking turns at execution on a single CPU; after each interruptic
each coroutine resumes its execution where it last left it.)

* A “thread” as supported by such multi-threaded operating systems as Solaris, O
and Windows NT.

Threads are mini-processes. A true process can itself contain many threads, which it
manages directly; the operating system (OS) only sees the process, not its threads.
Usually the threads of a process will all share the same address space (in object-oriented
terms, they potentially have access to the same set of objects), whereas each process has
its own address space. We may view threads as coroutines within a process. The main
advantage of threads is efficiency: whereas creating a process and synchronizing it with
other processes are expensive operations, requiring direct OS intervention (to allocate the
address space and the code of the process), the corresponding operations on threads are
much simpler, do not involve any expensive OS operations, and so can be faster by a
factor of several hundreds or even several thousands.

The difference between processors and CPUs was clearly expressed by He
Lieberman (for a different concurrency model):

The number o[ processor] need not be bounded in adva, and if there are
too many[processor] for the number of real physic[CPU<] you have on
your computer syste, they are automatically time-shat: Thus the user can
pretend that processor resources are practically inf.nite

To avoid any misunderstanding, be sure to remember that throughout this chapter
“processors” denote virtual threads of control; any reference to the physical units
computation uses the term CPU.

At some point before or during you will need to assign computational resources
the processors. The mapping will be expressed by a “Concurrency Control File”,
described below, or associated library facilities.

Handling an object

Any feature call must be handled (executed) by some processor. More generally, i
object O2 ishandlec by a certain processor, ihandlei; the handler is responsible for
executing all calls on O2 (all calls of the foxf (a) wherex is attached to O2).
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We may go further and specify that the handler is assigned to the object at the time
of creation, and remains the same throughout the object's life. This assumption will help
keep the mechanism simple. It may seem restrictive at first, since some distributed
systems may need to suppobject migratiol across a network. But we can address this
need in at least two other ways:

« By allowing the reassignment of a processor to a different CPU (with this solution,
all objects handled by a processor will migrate together).

« By treating object migration as the creation of a new object.

The dual semantics of calls

With multiple processors, we face a possible departure from the usual semantics of the
fundamental operation of object-oriented computation, feature call, of one of the forms

x.f (a) --if f is a command
y:=x.f(a) -- if f is a query

As before, let O2 be the object attachex at the time of the call, and O1 the object
on whose behalf the call is executed. (In other words, the instruction in either form is part
of a call to a certain routine, whose execution uses O1 as its target.)

We have grown accustomed to understanding the effect of the call as the execution
of f’s body applied to O2, usira as argument, and returning a result in the query case. If
the call is part of a sequence of instructions, as with

... previous_instructic; x.f (a); next_instructio; ...

(or the equivalent in the query case), the executitnext_instructio will not commence
until after the completion df.

Not so any more with multiple processors. The very purpose of concurrent
architectures is to enable the client computation to proceed without waiting for the
supplier to have completed its job, if that job is handled by another processor. In the
example of print controllers, sketched at the beginning of this chapter, a client application
will want to send a print request (a “job”) and continue immediately with its own agenda.

So instead of one call semantics we now have two cases:

« If O1 and O2 have the same handler, any further operation onext_instructio)
must wait until the call terminates. Such calls are said 'synchronous.

« If O1 and O2 are handled by different processors, operations on O1 can proceed as
soon as it has initiated the call on O2. Such calls are saidasynchronous.

The asynchronous case is particularly interesting for a command, since the remainder
of the computation may not need any of the effects of the call on O2 until much later (if
at all: O1 may just be responsible for spawning one or more concurrent computations and
then terminating). For a query, we need the result, as in the above example where we
assign it tcy, but as explained below we might be able to proceed concurrently anyway.
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“Expanded types”,
page 25}

Separate entities

A general rule of software construction is that a semantic difference should always
reflected by a difference in the software text.

Now that we have two variants of call semantics we must make sure that the softw
text incontrovertibly indicates which one is intended in each case. What determines
answer is whether the call’s target, O2, has the same handler (the same processor) a
call's originator, O1. So rather than the call itself we should rx, the entity denoting
the target object. In accordance with the static typing policy, developed in earlier chapt
to favor clarity and safety, the mark should appear in the declaratx.n of

This reasoning yields the onnotational extensionsupporting concurrency. Along
with the usual

x: SOME_TYPE
we allow ourselves the declaration form
x: separate SOME_TYPE

to express thax may become attached to objects handled by a different processor. If
class is meant to be used only to declare separate entities, you can also declare it as

separate clasX ... The rest as usu...
instead of jusclassX ... ordeferred classX ....

The convention is the same as for declaring an expanded status: you cany as being

of typeexpandedT, or equivalently just aT if T itself is a class declared expanded

class T... The three possibilities — expanded, deferred, separate — are mutually
exclusive, so at most one qualifying keyword may appear bclas:.

It is quite remarkable that this addition of a single keyword suffices to turn ot
sequential object-oriented notation into one supporting general concurrent computatio

Some straightforward terminology. We may apply the word “separate” to variou
elements, both static (appearing in the software text) and dynamic (existing at run tim
Statically: aseparate clas is a class declared separate clas:...; a separate typ is
based on a separate clasiseparate entil is declared of a separate type, oseparate
T for someT; x.f(...) is aseparate ca if its targeix is a separate entity. Dynamically: the
value of a separate entity iseparate referens; if not void, it will be attached to an object
handled by another processor -separate obje.t

Typical examples of separate class include:

« BOUNDED_BUFFEI, to describe a buffer structure that enables various concurrel
components to exchange data (some components, the producers, depositing obj
into the buffer, and others, the consumers, acquiring objects from it).

* PRINTEF, perhaps better callePRINT_CONTROLLE, to control one or more
printers. By treating the print controllers as separate objects, applications do not ne
to wait for the print job to complete (unlike early Macintoshes, with which you wer
stuck until the last page had come out of the printer).
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* DATABASI, which in the client part of a client-server architecture may serve to
describe the database hosted by a distant server machine, to which the client may
send queries through the network.

* BROWSER_WINDO, in a Web browser that allows you to spawn a new window
where you can examine different Web pages.

Obtaining separate objects

In practice, as illustrated by the preceding examples, separate objects will be of two kinds:

« In the first case an application will want to spawnew separate object, grabbing
the next available processor. (Remember that we can always get a new processor;
since processors are not material resources but abstract facilities, their number is not
bounded.) This is typically the case wWBROWSER_WINDO: you create a new
window when you need one. BOUNDED_ BUFFEF or PRINT_CONTROLLER
may also be created in this way.

* An application may simply need to accessexisting separate object, usually shared
between many different clients. This is the case iIDATABAS| example: the client
application uses an entidb_serve: separate DATABASI to access the database
through such separate calls db_serverask query(sqgl_quer). The server must
have at some stage obtained the valuserve — the database handle — from the
outside. Accesses to existirBOUNDED_BUFFEI or PRINT_CONTROLLER
objects will use a similar scheme.

The separate object is said tocreatedin the first case anexternalin the second.

To obtain a created object, you simply use the creation instructix is a separate
entity, the creation instruction

Il x.make(...)

will, in addition to its usual effect of creating and initializing a new object, assigh a new
processor to handle that object. Such an instruction is caseparate creatian

To obtain an existing external object, you will typically use an external routine, such
as

server(name STRING ... Other argument...): separatt DATABASE

where the arguments serve to identify the requested object. Such a routine will typically
send a message over the network and obtain in return a reference to the object.

A word about possible implementations may be useful here to visualize the notion
of separate object. Assume each of the processors is associatertask (process) of an
operating system such as Windows or Unix, with its own address space; this is of course
just one of many concurrent architectures. Then one way to represent a separate object
within a task is to use a small local object, known proxy:



§30.4 INTRODUCING CONCURRENT EXECUTION 969

A proxy for a
separate object

X: separateU —Ol—> (F;E\Joé(gT
Other
(non-separate)
fields
Other
— > objects

()

I

I

|

|

Address space 1 I
|
o2y
Address space 2 -

Other
objects (V)

The figure shows an object O1, instance of a (T with an attributex: separate U.
The corresponding reference field in O1 is conceptually attached to an object 02, hanc
by another processor. Internally, however, the reference leads to a proxy object, hanc
by the same processor as O1. The proxy is an internal object, not visible to the autho
the concurrent application. It contains enough information to identify O2: the task th
serves as O2's handler, and O2’s address within that task. All operatix on behalf of
O1 or other clients from the same task will go through the proxy. Any other processor tl
also handles objects containing separate references to O2 will have its own proxy for |
Be sure to note that this is only one possible technique, not a required property of the

model. Operating system tasks with separate address spaces are just one way to
implement processors. With threads, for example, the techniques may be different.

Objects here, and objects there

When first presented with the notion of separate entity, some people complain that i
over-committing: “I do not want to know where the object resides! | just want to reque
the operationx.f (...), and let the machinery do the rest — exedf on x whereveix is.”

Although legitimate, this desire to avoid over-commitment does not obviate the ne
for separate declarations. It is true that ttpreciselocation of an object is often an
implementation detail that should not affect the software. But one “yes or no” property
the object’s location remains relevant: whether the object is handled same¢processor
or by another. This is a fundamental semantic difference since it determines whether c
on the object are synchronous or asynchronous — cause the client to wait, or not. Igno!
this property in the software would not be a convenience; it would be a mistake.

Once we know the object is separate, it should not in most cases matter for
functionality of our software (although it may matter for its performance) whether th
object belongs to another thread of the same process, another process on the s
computer, another computer in the same room, another room in the same building, ano
site on the company’s private network, or another Internet node half-way around t
world. But it matters that it is separate.
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A concurrency architecture

The use oseparate declarations to cover the fundamental boolean property “is this object
here, or is it elsewhere?” while leaving room for various physical implementations of
concurrency suggests a two-level architecture, similar to what is available for the

graphical mechanisms (with thVisior library sitting on top of platform-specific

libraries):

General concurrency mechanisfsCOOB

handle

Process-basefl | Thread-based CORBA-

handle based handle

Two-level
architecture for
concurrency
mechanism

(See a similar archi-
tecture for graphical
libraries on page
1067.)

At the highest level the mechanism is platform-independent. This is the level which
most applications use, and which this chapter describes. To perform concurrent
computation, applications simply use ‘separate mechanism.

Internally, the implementation will rely on some practical concurrent architecture
(lower level on the figure). The figure lists some possibilities:

* There may be an implementation using processes (tasks) as provided by the operating
system. Each processor is associated with a process. This solution supports
distributed computing: the process of a separate object can be on a remote machine
as well as a local one. For non-distributed processing, it has the advantage that
processes are stable and well known, and the disadvantage that they are CPU-
intensive; both the creation of a new process and the exchange of information
between processes are expensive operations.

« There may be an implementation using threads. Threads, as already noted, are a
lighter alternative to processes, minimizing the cost of creation and context
switching. Threads, however, have to reside on the same machine.

* A CORBA implementation is also possible, using CORBA distribution mechanisms
as the physical layer to exchange objects across the network.

e Other possible mechanisms include PVM (Parallel Virtual Machine), the Linda
language for concurrent programming, Java thr...ads

As always with such two-level architectures, the correspondence between high-level
constructs and the actual platform mapping handle in terms of a previous chapter) is
in most cases automatic, so that application developers will see the highest level only. But
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mechanisms must be available to let them access the lower level if they need to (anc
course, are ready to renounce platform-independence).

Mapping the processor: the Concurrency Control File

On Ace files see  |f the software does not specify the physical CPUs, this specification must appe

“Assembling a sys- somewhere else. Here is a way to take care of it. This is only one possible solution, n

tem’,page 193 fyndamental part of the approach; the exact format is not essential, but any configurat
mechanism will somehow have to provide the same information.

Our example format is a “Concurrency Control File” (CCF) describing the
concurrent computing resources available to our software. CCFs are similar in purpc
and outlook to Ace files used to control system assembly. A typical CCF looks like this

creation
local_node:
system
"pushkir" (2): "c:\systeml\appexe"
"akhmatov" (4): "/homéuserysyst."
Current: "c:\systeml\appl exe"
end
remote_nodes
system
"lermontoY': "c:\systeml\appexe"
"tiuchey' (2): "/ust/bin/syst:"
end
end
external

Ingres_handle: "mandelstar”" port 9000
ATM_handle: "pasternal" port 8001
end

default
port: 8007 instance: 10
end

Defaults are available for all properties of interest, so that each of the three possible parts
(creation, external, default) is optional, as well as the CCF as a whole.

The creation part specifies what CPUs to use for separate creations (instructions
the form!! x.make(...) for separatx). The example uses two CPU groulocal node;
presumably covering local machines, @emote_node. The software can select a CPU
group through a call such as

set_cpu_grou|("local_node")
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directing subsequent separate creations to use the CPUlocal node:wuntil the next call
to set _cpu_grou. This procedure comes from a claCONCURRENCYproviding
facilities for controlling the mechanism; we will encounter a few more of its features below.

The corresponding CCF entry specifies what CPUs to uslocal _node: the first
two objects will be created on machipushkir, the next four oiakhmatov;, and the next
ten on the current machine (the one which executes the creation instructions); after that
the allocation scheme will repeat itself — two objectpushkir and so on. In the absence
of a processor count, as wiCurrenthere, the value is taken from tinstance entry in
the default part (here 10) if present, and is 1 otherwise. The system used to create each
instance is an executable specified in each entry, suc:\system1\appexe for pushkin
(obviously a machine running Windows or 0S/2).

In this example the processors are all mapped to processes. The CCF also supports
assigning processors to threads (in the thread-based handle) or other concurrency
mechanisms, although we need not concern ourselves with the detalils.

Theexternal part specifies where to look for existing external separate objects. The
CCF refers to these objects through abstract nalngres_handle andATM_handle in
the example, which the software will use as arguments to the functions that establish a
connection with such an object. For example withserverfunction as assumed earlier

server(name STRING ... Other argument...): separatt DATABASE

a call of the fornserver("Ingres_handle”, ...) will yield a separate object denoting the
Ingres database server. The CCF indicates that the corresponding object resides on
machint mandelstarand is accessible on port 9000. In the absence of a port specification
the value used is drawn from tdefaults part or, barring that, a universal default.

The CCF is separate from the software. You may compile a concurrent or distributed
application without any reference to a specific hardware and network architecture; then at
run timeeach separate component of the applicatidhuse its CCF to connect to other
existing componentsexternal parts) and to create new componeicreation parts).

This sketch of CCF conventions has shown how we can map the abstract concepts
of concurrent O-O computation — processors, created separate objects, external separate
objects — to physical resources. As noted, these conventions are only an example of what
can be done, and they are not part of the basic concurrency mechanism. But they
demonstrate that it is possible to decouple the software architecture of a concurrent system
from the concurrent hardware architecture available at any particular stage.

Library mechanisms

With a CCF-like approach, the application software will, most of the time, not concern

itself with the physical concurrency architecture. Some application developers may,
however, need to exert a finer degree of control from within the application, at the possible
expense of dynamic reconfigurability. Some CCF functionalities must then be accessible
directly to the application, enabling it, for example, to select a specific process or thread
for a certain processor. They will be available through libraries as part of the two-level
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concurrency architecture; it does not raise any difficult problem. We will encounter tt
need for more library mechanisms later in this chapter.

At the other extreme, some applications may want unlimited run-time
reconfigurability. It is not enough then to have the ability to read a CCF or similc
configuration information at start-up time and then be stuck with it. But we cannot eith
expect to re-read the configuration before each operation, as this would kill performan
The solution is once again to use a library mechanism: a procedure must be availabl
read or re-read the configuration information dynamically, allowing the application t
adapt to a new configuration when (and only when) it is ready to do so.

Validity rules: unmasking traitors

Because the semantics of calls is different for separate and non-separate objects,
essential to guarantee that a non-separate entity (declax: T for non-separatT) can
never become attached to a separate object. Otherwiseaf (a) would wrongly be
understood — by the compiler, among others — as synchronous, whereas the attac
object is in fact separate and requires asynchronous processing. Such a reference, fa
declared as non-separate while having its loyalties on the other side, will be callec
traitor . We need a simple validity rule to guarantee that our software has no traitor — tt
every representative or lobbyist of a separate power is duly registered as such with
appropriate authorities.

The rule will have four parts. The first part eliminates the risk of producing traitor
through attachment, that is to say assignment or argument passing:

Separateness consistency ru(1)

If the source of an attachment (assignment instruction or argument passing)
is separate, its target entity must be separate too.

An attachment of targex and sourcey is either an assignmext=y or a call
f(...,v, ...) where the actual argument correspondinxisy. Having such an attachment
with y separate but nx would makex a traitor, since we could ux to access a separate
object (the object attachedy) under a non-separate name, as if it were a local object witl
synchronous call. The rule disallows this.

Note that syntacticallx is an entity buy may be any expression. This means that the rule
assumes we have defined the notion of “separate expression”, in line with previous
definitions. A simple expression is an entity; more complex expressions are function calls
(remember in particular that an infix expression suca + b is formally considered a

call, similar to something lika. plus (b)). So the definition is immediate: an expression

is separate if it is either a separate entity or a separate call.

As will be clear from the rest of the discussion, permitting an attachment of a no
separate source to a separate target is harmless — although usually not very useful.
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We need a complementary rule covering the case in which a client passes to a
separate supplier a reference to a local object. Assume the separate call

x.f(a)

wherea, of typeT, is not separate, althoucx is. The declaration of routinf, for the
generating class «, will be of the form

f(u:... SOME_TYP):
and the typ¢T of amust conform t«<SOME_TYP. But this is not sufficient! Viewed from
the supplier’s side (that is to say, from the handle), the object O1 attached a has a

different handler; so unless the corresponding formal arguu is declared as separate it
would become a traitor, giving access to a separate object as if it were non-separate:

Passing a
Hereais a re_ference ®—> - ol reference as
to a local object | argument to a
separate call

\
Processor 1 X.f (a) \\ A (T
\ :
\ s
Processor 2 Mo : .
(the handler ofx) _ N : Hereuis areference

flur...) "~ o () toaseparate object

S0 SOME_TYP must be separate; for example it mayseparate T. Hence the
second consistency rule:

Separateness consistency ru(2)

If an actual argument of a separate call is of a reference typg, the
corresponding formal argument must be declared as separate.

The issue only arises for arguments of reference type. The other case, expanded types,
including in particular the basic types suctiNTEGEF, is considered next.

As an application of the technique, consider an object that spawns several separate
objects, giving them a way to rely later on its resources; it is saying to them, in effect,
“Here is my business cg; call me if you need ". A typical example would be an
operating system’s kernel that creates several separate objects and stands ready to perform
operations for them when they ask. The creation calls will be of the form

Il subsystemmake(Curreni, ... Other argument...)
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Passing to a
separate call an
object with
references

whereCurrentis the ‘business card” enablirsubsystel to remember its progenitor, and
ask for its help in case of need. BecaCurrentis a reference, the corresponding formal
argument irmake must be declared as separate. Most likmake will be of the form
make(p: separate PROGENITOR_TYF, ... Other argument...) is
do
progenitor:=p
... Rest of subsystem initialization operatic...s
end
keeping the value of the progenitor argument in an attriprogenitol of the enclosing
class. The second separateness consistency rule rep to be declared as separate; so

the first rule requires the same of attribprogenitol. Later calls for progenitor resources,
of the formprogenitor. some_resourc(...) will, correctly, be treated as separate calls.

A similar rule is needed for function results:

Separateness consistency ru(3)

If the source of an attachment is the result of a separate call to a fupction
returning a reference type, the target must be declared as separate.

Since the last two rules only apply to actual arguments and results of reference tyy
we need one more rule for the other case, expanded types:

Separateness consistency ru(4)

If an actual argument or result of a separate call is of an expanded type, its
base class may not include, directly or indirectly, any non-separate atfribute
of a reference type.

In other words, the only expanded values that we can pass in a separate call
“completely expanded” objects, with no references to other objects. Otherwise we co!
again run into traitor trouble since attaching an expanded value implies copyobject

01 _ - 02
Processorl @A This is a reference
‘\ to a local object
x.f(a) \ A
\ 5
\ .
\ . This'is a
\ -
Processor 2 N : separate reference
(the handler of x) S S 01!

from O1)

~ ~ - u
f(u?.f)“ - =P : > (fields copied
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The figure illustrates the case in which the formal argunu is itself expanded. The effect of reat-
Then the attachment is simply a copy of the fields of the object O1 onto those of the tachmentin these
0'1 attached tu. Permitting O1 to contain a reference would produce a traitor field in (CZ‘??;"C‘{?_'SMdgmed n
The problem would also arise if O1 had a subobject with a reference; hence the MrReFERENCE AND

“directly or indirectly” in the rule. VALUE SEMAN-

TICS”, 8.8, page

If the formal argumenu is a reference, the attachment is a clone; the call wo?61
create a new object O'1 similar to the one on the last figure and attach reuto it. In

this case the solution is to create the clone explicitly on the client’s side, before the call:

a: expandec SOME_TYP; al: SOME_TYPE

al:=ga; -- This clones the object and attaclal to the clone.
x.f(al)
As per the second validity rule, the formal argunu must be of a separate reference

type,separateSOME_TYP or conforming; the call on the last line malu a separate
reference attached to the newly created clone on the clsides

Importing object structures

A consequence of the separateness consistency rules is that it is not possible to See‘Object cloning
clone function (from the universal cla:ANY) to obtain an object handled by anoth(and equality”, page
processor. The function is declared as 248

clone(other: GENERAI): like otheris
-- New object, field-by-field identical tother

so that an attempt to uye= clone(x) for separatex would violate part 1 of the rule,

which is separate, does not confornother which is not. This is what we want: a separate
object running on a machine in Vladivostok may contain (non-separate) references to
objects that are in Vladivostok too; but then if you could clone it in Kansas City, the
resulting object would contain traitors — references to those objects, now separate, even
though in the generating class the corresponding attributes are not declared as separate.

The following function, also in clasGENERAI, enables us to clone separate object
structures without producing traitors:

deep_impor(other: separateGENERAI): GENERALis

-- New object, field-by-field identical tother
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You should be
familiar with the
notions of shallow
and deep clor; see
“Deep clone and
comparison”, page
241.

The result is a non-separate object structure, recursively duplicated from the sepa
structure starting «othel. For the reasons just explaineshallow import operation could
yield traitors; so what we need is the equivalerdeep_clon applied to a separate object.
Functiondeep_impoi provides it. It will produce a copy of the entire structure, making
all the object copies non-separate. (It may of course still contain separate references it
original structure contained references to objects handled by another processor.)

For the developers of distributed systedeep_impolis a convenient and powerful
mechanism, through which you can transfer possibly large object structures acros
network without the need to write any specialized software, and with the guarantee t
the exact structure (including cycles etc.) will be faithfully duplicated.

30.5 SYNCHRONIZATION ISSUES

We have our basic mechanism for starting concurrent executions (separate creation)
for requesting operations from these executions (the usual feature call mechanism). /
concurrent computation, object-oriented or not, must also provide wesynchronize
concurrent executions, that is to say to define timing dependencies between them.

If you are familiar with concurrency issues, you may have been surprised by t
announcement that a single language mechaiseparate declarations, is enough to add
full concurrency support to our sequential object-oriented framework. Surely we ne
specific synchronization mechanisms too? Actually no. The basic O-O constructs suffi
to cover a wide range of synchronization needs, provided we adapt the definition of th
semantics when they are applied to separate elements. It is a testimony of the power o
object-oriented method that it adapts so simply and gracefully to concurrent computatit

Synchronizationvs. communication

To understand how we should support synchronization in object-oriented concurrency
is useful to begin with a review of non-O-O solutions. Processes (the concurrent units
most of these solutions) need mechanisms of two kinds:

* Synchronizatiormechanisms enforce timing constraints. A typical constraint migh
state that a certain operation of a process, such as accessing a database item,
only occur after a certain operation of another process, such as initializing the ite

e Communicatio mechanisms allow processes to exchange information, which in th
object-oriented case will be in the form of objects (including the special case |
simple values such as integers) or object structures.

A simple classification of approaches to concurrency rests on the observation tl
some of them focus on the synchronization mechanism and then use ordinary n
concurrent techniques such as argument passing for communication, whereas others
communication as the fundamental issue and deduce synchronization from it. We may 1
aboutsynchronization-bast andcommunication-basemechanisms
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Synchronization-based mechanisms

The best known and most elementary synchronization-based mechanism is the
semaphore, a locking tool for controlling shared resources. A semaphore is an object on
which two operations are availablreserve andfree (traditionally calledP andV, but

more suggestive names are preferable). At any time the semaphore is either reserved by a
certain client or free. If it is free and a client execureservy, the semaphore becomes
reserved by that client. If the client that has reserved it exefree, the semaphore
becomes free. If the semaphore is reserved by a client and another ereservs, the

new client will wait until the semaphore is free again. The following table summarizes this
specification:

STATE Free Reserved by | Reserved by Semaphore
OPERATION me someone else operations
reserve Becomes | wait.

reserved by me

free Becomes free.

Events represented by shaded entries are not supposed to occur; they can be treated either

as errors or as having no effect.

The policy for deciding which client gets through when two or more are waiting for
a semaphore that gets freed may be part of the semaphore’s specification, or may be left
unspecified. (Usually clients expectfairnes: property guaranteeing that if everyone
gaining access to the semapholtemately frees it no one will wait forever.)

This description covelbinary semaphores. Ttintegervariant lets at mo«n clients
through at any given time, for sorn, rather than at most one.

Although many practical developments still rely on them, semaphores are widely
considered too low-level for building large, reliable systems. But they provide a good
starting point for discussing more advanced techniques.

Critical regions are a more abstract approach. A critical region is a sequence of
instructions that may be executed by at most one client at a time. To ensure exclusive
access to a certain objea you may write something like

hold athen ... Operations involving fields ca ...end

where the critical region is delimited tthen ... enc. Only one client can execute the
critical region at any given time; others executirhold will wait.

Most applications need a more general variant,conditional critical region, in
which execution of the critical region is subject to a boolean condition. Consider a buffer
shared by a producer, which can only write into the buffer if it is not full, and a consumer,
which can only read from it if it is not empty; they may use the two respective schemes

hold buffer when notbuffer. full then “Write into buffer, making it not emptyend
hold buffer when notbuffer.emptythen “Read from buffer, making it not fullend
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Such interplay between input and output conditions cries for introducing assertio
and giving them a role in synchronization, an idea to be exploited later in this chapter.

Another well-known synchronization-based mechanism, combining the notion
critical region with the modular structure of some modern programming languages, is |
monitor. A monitor is a program module, not unlike the packages of Modula or Ada. Tt
basic synchronization mechanism is simple: mutual exclusion at the routine level. At m
one client may execute a routine of the monitor at any given time.

Also interesting is the notion (path expressior. A path expression specifies the
possible sequencing of a set of processes. For example the expression

init ; (reader* | writer)* ; finish
prescribes the following behavior: firstinit process; then a state in which at any time either
onewriter process or any numberreaderprocesses may be active; thefinish process.
The asterisk* means any number of concurrent instances; the semi; dndicates
sequencingfmeans “either-or”; means any number of successive repetitions. An
argument often cited in favor of path expressions is that they specify the processes anc
synchronization separately, avoiding interference between the description of individt
algorithmic tasks and the description of their scheduling.

Yet another category of techniques for specifying synchronization relies on analyzing the
set of states through which a system or system component can go, and transitions
between these statePetri nets, in particular, rely on graphical descriptions of the
transitions. Although intuitive for simple hardware devices, such techniques quickly
yield a combinatorial explosion in the number of states and transitions, and make it hard
to work hierarchically (specifying subsystems independently, then recursively
embedding their specifications in those of bigger systems). So they do not seem
applicable to large, evolutionary software systems.

Communication-based mechanisms

Starting with Hoare’s “Communicating Sequential Processes” (CSP) in the late seventi
most non-0O-O concurrency work has focused on communication-based approaches.

The rationale is easy to understand. If you have solved the synchronization proble
you must still find a way to make concurrent units communicate. But if you devise a go
communication mechanism you might very well have solved synchronization to
because two units cannot communicate unless the sender is ready to send and the rec
ready to receive, communication implies synchronization; pure synchronization may
viewed as the extreme case of communicating an empty message. If your communica
mechanism is general enough, it will provall the synchronization you need.

CSP is based on this “I communicate, therefore | synchronize” view. The startir
point is a generalization of a fundamental concept of computing, input and output:
process receives informaticv from a certain “channelc through the construc? v; it
sends information to a channel through the conscliiv. Channel input and output are
only two among the possible examplesevent:;

For more flexibility CSP introduces the notion of non-deterministic wait,
represented by the symbl, enabling a process to wait on several possible events ar
execute the action associated with the first that occurs. Assume for example a sys
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enabling a bank’s customers to make inquiries and transfers on their accounts, and the
bank manager to check what is going on:

(balance_enquin? customel -
(ask_passworscustomel? passworc —
(password_valic— (balance_ouicustomel! balance)
I (password_invalic— (denial.customel! denial_messag)))
I transfer_reques? customei- ...
I control_operatior? manager- ...)

In the initial state the system stands ready to accept one of three possible input
events: ebalance enquir or transfer_requesfrom acustome, or acontrol_operation
from amanage. The first event that occurs will trigger the behavior described, using the
same mechanisms, on the right of the corresponding arrow.

The right side of the arrow has only been filled in for the first event: after getting a
balance enquir relative to a certaicustome, you send thcustome anask_ password
event from which you expect to get tpasswor(; you validate the password, as a result
sending to th«ccustome one of two possible messagbalance ot, with thebalance as
argument, odenia.

Once the event's processing is complete, the system returns to its initial state,
listening to possible input events.

The original version of CSP was a major influence on the concurrency mechaThe example reflects
of Ada, whose “tasks” are processes able to wait on several possible “entries” throithe most recent CSP
“ " ion. The Occam language, a direct implementation of CSP, is the riratherthan the origi-

accept” instruction. guage, a du p . + 1S IN€ Pl g 1978 version; see
programming tool for thtranspute, a family of microprocessors designed specifically Ibibliographical

Inmos (now SGS-Thomson) for the construction of highly concurrent architectures. notes. On Ada con-
currency see f1091.

Synchronization for concurrent O-O computation

Many of the ideas just reviewed will help us find the right approach to concurrency in an
object-oriented context. In the final form of the solution you will recognize concepts
coming from CSP as well as monitors and conditional critical regions.

The CSP emphasis on communication seems right for us, since the central technique
of our model of computation — calling a feature, with arguments, on an object — is a
communication mechanism. But there is another reason for preferring a communication-
based solution: a synchronization-based mechanism can conflict with inheritance.

This conflict is most obvious if we consider path expressions. The idea of using path
expressions has attracted many researchers on O-O concurrency as a way to specify the
actual processing, given by the features of a class, separately from the synchronization
constraints, given by path expressions. The purely computational aspects of the software,
which may have existed prior to the introduction of concurrency, will thus remain
untainted by concurrency concerns. So for example if a BUFFERhas the features
removt (remove the oldest element of the buffer) ¢ul (add an element), we may
express the synchronization through constraints such as
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Notation and exam-
ple from[Matsuoka
1993, which intro-
duced the term
“inheritance anom-
aly”. For more
details on the exam-
ple see exercise
E30.3, page 1035

See"Active objects
clash with inherit-
ance”, page 953

empt: {puf}
partial: { put, removi}
full: {remov¢

using a path-expression-like notation which lists three possible states and, for each of th
the permitted operations. But then assume you want a desceNEW_BUFFEI to
provide an extra featuremove tw which removes two buffer items at a time (with a
buffer size of at least three). Then you need an almost completely new set of states:

empt: {pui}

partial_one {put, remov} -- State in which the buffer contains exactly one item
partial_two_or_mor: { put, removy, remove_tw}

full: {removt, remove_tw}

and if the routines specify what states they produce in each possible case, they must a
redefined frorBUFFEFR to NEW BUFFEF, defeating the purpose of inheritance.

This problem, and similar ones identified by several researchers, have been dub
theinheritance anomaly, and have led some concurrent O-O language designers to vie
inheritance with suspicion. The first versions of the POOL parallel object-oriente
language, for example, excluded inheritance (see the bibliographical notes).

Concerns about the “inheritance anomaly” have sparked an abundant literatt
proposing solutions, which generally try to decrease the amount of redefinition by looki
for modular ways of specifying the synchronization constraints, so that descendants
describe the changes more incrementally, instead of having to redefine everything.

On closer examination, however, the problem does not appear to be inheritance
even any inherent conflict between inheritance and concurrency, but instead the ide:
specifying synchronization constraints separately from the routines themselves. (T
formalisms discussed actually do not quite meet this goal anyway, since the routines
specify their exit states.)

To the reader of this book, rfaliar with the principles of Design bContract, the
technique using explicit states and a list of the features applicable in each state will look
low-level. The specifications o0BUFFEFR and NEW_ BUFFERobscure fundamental
properties that we have learned to characterize through precondput should state
require not full; similarly, remove_twcshould stateequire count>= 2; and so on. This
more compact and more abstract specification is easier to explain, to adapt (changir
routine’s precondition does not affect any other routine), and to relate to the views
outsiders such as customers. State-based techniques appear more restrictive and ¢
prone. They also raise the risk of combinatorial explosion mentioned in relation to Pe
nets and other state-based models: for the above elementary examples the number of ¢
is already three in one case and four in the other, suggesting that in a complex syste
might become unmanageable.

The “inheritance anomaly” only occurs because such specifications tend to be ri
and fragile: change anything, and the whole specification crumbles.

At the beginning of this chapter we saw another apparent inheritance-concurrency clash;
but the culprit turned out to be the notion of active object. In both cases inheritance is at
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odds not with concurrency but with a particular approach to concurrency (active objects,
state-based specifications); rather than dismissing or limiting inheritance — cutting the
arm whose finger itches — the solution is to look for better concurrency mechanisms.

One of the practical consequences of this discussion is that we should try to rely, for
synchronization in concurrent computation, on what we already have in the object-oriented
model, in particular assertions. Preconditions will indeed play a central role for
synchronization, although we will need to adapt their semantics from the sequential case.

30.6 ACCESSING SEPARATE OBJECTS

We now have enough background to devise the proper synchronization mechanisms for
our concurrent object-oriented systems.

Concurrent accesses to an object

The first question to address is how many executions may proceed concurrently on an
object. The answer was in fact implicit in the definition of the notions of processor and
handler: if all calls to features on an object are executed by its handler (the processor in
charge of it), and a processor is a single thread of execution, it follows that at most one
feature may be executing on a given object at any time.

Should we not allow several routines to execute concurrently on a given object? The
main incentive for answerinnois to retain the ability to reason on our software.

The study of class correctness in an earlier chapter provides the proper perspective.
We saw the lifecycle of an object pictured as this:

IIa.make(...)

> st The life of an
+ a.f(..) object
= (This figure first
* a.g(...) gggiared on page
S3
+ af(.)
S4

v

In this view the object is externally observable only in the states marked as shaded
squares: just after creation (S1), after every application of a feature by a client (S2 and
subsequent states). These have been called the “stable times” of the object's life. A
consequence was the formal rule: to prove the correctness of the class, we only have to
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These rules have
been slightly sim-
plified. The full ver-
sions appear in
“WHEN IS A
CLASS COR-
RECT?", 11.9,
page 370

verify one property for each creation procedure, and one property for each expor
feature. Ifp is a creation procedure, the property to check is

{ Defaultand prep} Body, {posh and INV}

meaning: if you execute the body pfvhen the object has been initialized to the default
values and the precondition pfholds, you will end up satisfying the postcondition and
the invariant. For an exported routinghe property to check is

{pre, and INV} Body {post and INV}

meaning: if you executewhen the precondition and the invariant are satisfied, you will
end up satisfying the postcondition and the invariant.

So the number of things to check is very limited; there are no complicated run-tin
scenarios to analyze. This is important even in a somewhat informal approach to softw
development, which still requires the ability to reason about the software execution
examining the software text. The informal version of the preceding properties is that y
can understand the class by looking at its routines separately from each other
convincing yourself, however informally, that each routine will deliver the intended fina
state starting from the expected initial state.

Introduce concurrent execution into this simple, consistent world, and all hell brea
loose. Even plain interleaving, in which we would start executing a routine, interrupt it
favor of another, switch back to the first and so on, would deprive us from any ability
use straightforward reasoning on our software texts. We simply would not have any c
as to what can happen at run-time; trying to guess would force us to examine all poss
interleavings, immediately leading to a combinatorial explosion of cases to consider.

So for simplicity and consistency we will let at most one routine execute on ar
particular object at any particular time. Note, however, that in a case of emergency, o
a client keeps an object for too long, we should be aliltdorupt the client, as long as
we do so in a sufficiently violent way — triggering an exception — to ensure that tf
unfortunate client will receive a notification, enabling it to take corrective action i
appropriate. The mechanismadels explained later, offers that possibility.

The end of the discussion section examines whether any circumstances would allow us
to relax the prohibition of concurrent accesses to a single object.

Reserving an object

We need a way for a client to obtain exclusive access to a certain resource, represente
a certain object.

An idea which seems attractive at first (but will not suffice) would be simply to rely
on the notion of separate call. Consider, executed on behalf of a certain client object |
the callx.f (...), for separatex attached at run time to O2. Once the call has startec
executing, we have seen that O1 can safely move to its next business without waiting
the call’s termination; but this execution of the call cannot start until O2 is free for O1. ¢
we might decide that before starting the call the client will wait until the target object is fre
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Unfortunately this simple scheme is not sufficient, because it does not allow the
client to decide how long to retain an object. Assume O2 is some shared data structure
such as a buffer, and the corresponding class provides procremoveto remove an
element. A client O1 may need to remove two consecutive elements, but just writing

buffer.remove, buffer.remove

will not do: between the two instructions, any other client can jump in and perform
operations on the shared structure! So the two elements might not be adjacent.

One solution is to add to the generating classhuffeir (or of a descendant) a
procedureremove _tw that removes two elements at once. But in the general case that is
unrealistic: you cannot change your suppliers for every synchronization nyour own
client cod.. There must be a way for the client to reserve a supplier object for as long as
it needs, using the supplier class as it is.

In other words, we need something like a critical region mechanism. The sygi itical regions

introduced earlier was see“Synchroniza-
. - . tion-based mecha-
hold athen actions_requiring_exclusive_acceend nisms’, page 978

or the conditional variant
hold awhen a.some_propertthen actions_requiring_exclusive_acceend

We will, however, go for a simpler approach, perhaps surprising at first. The
convention will simply be that ia is a non-void separate expression a call of the form

actions_requiring_exclusive_acci(a)

causes the caller to wait until the object attachea is available. In other words, there is
no need for ¢hold instruction; to reserve a separate object, you simply use it as actual
argument in a call.

Note that waiting only makes sense if the routine contains at least oxssome_routine “Separate call
on the formal argumerx corresponding ta. Otherwise, for example if all it does is a semantics”, page
“business card” assignmesome_attribute= x, there is no need to wait. This is specified 99¢.

in the full form of the rule, also involving preconditions, which appears later in this chapter.

Other policies are possible, and indeed some authors have proposed retholdg ¢.
instruction (see the bibliographical notes). But the use of argument passing as the object
reservation mechanism helps keep the concurrency model simple and easy to learn. One
of the observations justifying this policy is that with ‘hold scheme shown above it will
be tempting for developers, in line with the general “Encapsulate Repetition” motto of
0O-0 development, to gather in a routine the actions that require exclusive access to an
object; this trend was foreseen in the above summary hold instruction, where the
actions appear as a single routactions_requiring_exclusive_acc. But then such a
routine will need an argument representing the object; here we go further and consider that
the presence of such an argument suffices to achieve object reservation.

This convention also means that, paradoxically enomost separate calls do not
need to wa. When we are executing the body of a routine that has a separate formal
argumenia, we know that we have already reserved the attached object, so any call with
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targeta can proceed immediately. As we have seen, there is no need to wait for the cal
terminate. In the general case, with a routine of the form

r (a: separate SOME_TYP) is
do
coarl(.); ...
coar2(..); ...
end

an implementation can continue executing the intermediate instructions without waitir
for any of the calls to terminate, as long as it logs all the cala so that they will be
executed in the order requested. (We have yet to see how to wait for a separate ca
terminate if that is what we want; so far, we just start calls and never wait!)

If a routine has two or more separate arguments, a client call will wait until it can reserve

all the corresponding objects. This requirement is hard on the compiler, which will have

to generate code using protocols for multiple simultaneous reservations; for that reason,
an implementation might at first impose the restriction that a routine may have at most
one separate formal argument. But if the full mechanism is implemented it provides

considerable benefits to application developers; as a typical example, studied later in this
chapter, the famous “dining philosophers” problem admits an almost trivial solution.

Accessing separate objects

The last example shows how to use, as the target of a separate call, a formal argun
itself separate, of the enclosing routr. An advantage is that we do not need to worry
about how to get access to the target object: this was taken care of by ther, which

had to reserve the object — waiting if necessary until it is free.

We can go further and make this schemeonly one for separate calls:

Separate Call rule

The target of a separate call must be a formal argument of the routine in
which the call appears.

Remember thatacealr (...) is separate if the targa is itself an entity or expression
declared as separate. So if we have a separate a we cannot call a feature on it unless
a is a formal argument of the enclosing routine. If, for examattrib is an attribute
declared as separate, we must use, insteattrib.r (...), the callrf (attrib, ...) with

rf (x: separate SOME_TYP; ... Other argument...) is
-- Callr onx.
do
x.r(...)

end

This rule may appear to place an undue burden on developers of concurr
applications, since it forces them to encapsulate all uses of separate objects in routine
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may indeed be possible to devise a variant of this chapter's model which does notinclude
the Separate Call rule; but as you start using the model you will, | think, realize that the
rule is in fact of great help. It encourages developers to identify accesses to separate
objects and separate them from the rest of the computation. Most importantly, it avoids
grave errors that would be almost bound to happen without it.

The following case is typical. Assume a shared data structure — such as, once &according to David
a buffer — with featureremoveto remove an element accoun to query the number of Gries, “natural”is
elements. Then it is quite “natural” to write ggfoa':cv%ggiii?t:
if buffer.count>= 2 then ware discussions
buffer.removg; buffer.remove

end

The intent is presumably to remove two elements. But, as we have already seen, this will
not always work —at least not unless we have secured exclusive accebuffel.
Otherwise between the time you tcountand the time you execute the firemovt, any
other client can come in and remove an element, so that you will end up trying to apply
removito an empty structure.

Another example, assuming that we follow the style of previous chapters and include
a featureitem, side-effect-free, to return the element removi removes, is

if not buffer.emptythen
value:= buffer.item; buffer.remove
end

Without a protection orbuffel, another client may add or remove an element
between the calls titem andremove. If the author of the above extract thinks that the
effect is to access an element and remove it, he will be right some of the time; but if this
is not your lucky day you will access an element and remove another — so that you may
for example (if you repeat the above scheme) access the same element twice! Very wrong.

By makingbuffer an argument of the enclosing routine, we avoid these problems:
bufferis guaranteed to be reserved for the duration of the routine’s call.

Of course the fault in the examples cited lies with the developer, who was not careful
enough. But without the Separate Call rule such errors are too easy to make. What makes
things really bad is that the run-time behavior is non-deterministic, since it depends on the
relative speed of the clients. The bug will be intermittent, here one minute, gone the next.
Worse yet, it will probably occur rarely: after all (using the first example) a competing
client has to be quite lucky to squeeze in between your tcoun and your first call to
removt. So the bug may be very hard to reproduce and isolate.

Such tricky bugs are responsible for the nightmarish reputation of concurrent system
debugging. Any rule that can significantly decrease their likelihood of occurring is a big
potential help.

With the Separate Call rule you will write the examples as the following procedures,
assuming a separate tyBOUNDED BUFFEI detailed below:
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See the bibliographi-
cal note s

remove_twc(buffe: BOUNDED_BUFFEF) is
-- Remove oldest two items.
do
if buffer.count>= 2then
buffer.removs; buffer.remove
end
end

get_and_remov(buffer BOUNDED_BUFFEI) is
-- Assign oldest item tvalue, and remove it.
do
if not buffer.emptythen
value:= buffer.iten; buffer.remove
end
end

These procedures may be part of some application class; preferably, they will app
in a classBUFFER_ACCESwhich encapsulates buffer manipulation operations, anc
serves as parent to application classes needing to use buffers of the appropriate type.

The procedures both seem to be crying for a precondition. We will shortly see to
that they can get one.

Wait by necessity

Assume that a separate call suchbuffer.removehas been started, after waiting if
necessary for any separate arguments to become available. We have seen that from
on it does not block the client, which can proceed with the rest of its computation. B
surely the client may need to resynchronize with the supplier. When should we wait 1
the call to terminate?

It would seem that we need a special mechanism, as has indeed been propose
some concurrent O-O languages such as Hybrid, to reunite the parent computation witt
prodigal call. But instead we can use the idea of wait by necessity, due to Denis Caror
The goal is to wait when we truly need to, but no earlier.

When does the client need to be sure that eacr (...), for separata attached to a
separate object O1, is finished? Not when it is doing something else on other obje
separate or not; not even necessarily when it has started a new procecatr (...) on
the same separate object since, as we have seen, a smart implementation can simpl
such calls so that they will be processed in the order emitted (an essential requiremen
course); but when we need to access some property (Ther we require the object to
be available, and all preceding calls on it to have been finished.

You will remember the division of features incommand (procedures), which
perform some transformation on the target object,queries(functions and attributes)
which return information about it. Command calls do not need to wait, but query cal
may.
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Consider for example a separate sts and the successive calls
S.put(x1); ... Other instruction...; s.put(x2); ... Other instruction...; value:=s.item

(which because of the Separate Call rule must appear in a routine ofs is a formal
argument). Assuming none of tOther instruction usess, the only one that requires us

to wait is the last instruction since it needs some information about the stack, its top value
(which in this case should x2).

These observations yield the basic concept of wait by necessity: once a separate call
has started, a client only needs to wait for its termination if the call is to a query. A more
precise rule will be given below, after we look at a practical example.

Wait by necessity (also called “lazy wait”, and similar to mechanisnisaif by
necessity” and “lazy evaluation” familiar to Lispers and students of theoretical computing
science) is a convenient rule which allows you to start parallel computations as you need
and avoid unnecessary waiting, but be reassured that the compwill wait when it mu«.t

A multi-launcher

Here is a typical example showing the benefits of wait by necessity. Assume that a certain
object must create a set of other objects, each of which goes off on its own:
launch(a: ARRAY[separate X]) is
-- Get every element @ started.
require
-- No element oa is void

local
i INTEGER
do
from i := a.loweruntil i > a.upperloop
launch_one(a @ 1);i:=i+1
end
end

launch_one(p: separateX) is
-- Ge! p started.
require
p /=Void
do
p.live
end
If, as may well be the case, procedlive of classX describes an infinite process The dining philos-
this scheme relies on the guarantee that each loop iteration will prioceediately after oPhers’, page 10C3
startinglaunch_on,, without waiting for the call to terminate: otherwise the loop wouiu
never get beyond its first iteration. One of the examples below uses this scheme.
Readers familiar with coroutine-based discrete event simulation, studied in a later “Coroutine con-

chapter, will recognize a scheme very close to what happens when you start a simulateccepts”, page 1118
process and want to gain control back, as permitted by Sindetact instruction.
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An optimization

(This section examines a fine point and may be skipped on first reading.)

To wrap up this discussion of wait by necessity we need to examine more carefu
when a client should wait for a separate call to terminate.

We have seen that only query calls should cause waiting. But we may go further
examining whether the query’s result is of an expanded type or a reference type. (For
s.itemexample, assumirs of typeSTACK[SOME_TYP], this is determined bSOME _
TYPE.) If the type is expanded, for example if INTEGERor another of the basic types,
there is no choice: we need the value, so the client computation must wait until the qu
has computed its result. But for a reference type, one can imagine that a s
implementation could still proceed while the result, a separate object, is being comput
in particular, if the implementation uses proxies for separate objects, the proxy obj
itself can be created immediately, so that the reference to it is available even if the pre
does not yet refer to the desired separate object.

This optimization, however, complicates the concurrency mechanism because
means proxies must have a “ready or not” boolean attribute, and all operations on sepe
references must wait until the proxy is ready. It also seems to prescribe a partict
implementation — through proxies. So we will not retain it as part of the basic rule:

Wait by necessity

If a client has started one or more calls on a certain separate object, and it
executes on that object a call to a query, that call will only proceed after all

the earlier ones have been compleand any further client operations wijll
wait for the query call to terminate.

To account for the possible optimization just discussed, repa call to a quer™
by “a call to a query returning of expanded t”.ye

Avoiding deadlock

Along with several typical and important examples of passing separate references
separate calls, we have seen that it is also possible to pass non-separate references, a
as the corresponding formal arguments are declared as separate (since, on the supp
side, they represent foreign objects, and we do not want any traitors). Non-sepat
references raise a risk of deadlock and must be handled carefully.

The normal way of passing non-separate references is what we have called
business car scheme: we use a separate call of the txuf (a) wherex is separate bia
is not; that is to sa‘a is a reference to a local object of the client, possCurrent itself;
on the supplier sid¢ is of the form



990 CONCURRENCY, DISTRIBUTION, CLIENT-SERVER AND THE INTERNE'§30.7

f (u: separate SOME_TYP) is
do
local_reference=u
end

wherelocal referenc, also of typeseparate SOME_TYP, is an attribute of the enclosing
supplier class. Later on, in routines other tf, the supplier may uslocal_referenc to
request operations on objects on the original client’s side, through separate calls of the
form local_referencesome_routing...)

This scheme is sound. Assume, however,f did more, for example that it included
a call of the formu.g (...) for someg. This is likely to produce deadlock: the client (the
handler for the object attachedu anda) is busy executinif or, with wait by necessity,
may be executing another call that has reserved the same object.

The following rule will avoid this kind of situation:

Business Card principle

If a separate call uses a non-separate actual argument of a reference type, the
routine should only use the corresponding formal as source of assignments.

At present this is a only methodological guideline although it may be desirab ExerciseE30.4, page
introduce a formal validity rule (an exercise asks you to explore this idea further.) 51035?1393?'5"530-137
more comments on deadlocks appear in the discussion section. page 29ss

30.7 WAIT CONDITIONS

One synchronization rule remains to be seen. It will deal with two questions at once:

« How can we make a client wait until a certain condition is satisfied, as in conditional
critical regions?

* What is the meaning of assertions, in particular preconditions, in a concurrent context?

A buffer is a separate queue

We need a working example. To study what happens to assertions, it is interesting to take
a closer look at a notion that is ubiquitous in concurrent application (and has already
appeared informally several times in this chaptbounded buffers. A bounded buffer,
illustrated by the top figure on the facing page, allows different components of a
concurrent system to exchange data, produced by some and consumed by others, without
forcing each producer that has generated an object to wait until a consumer is ready to use
it, and conversely. Instead, communication occurs through a shared structure, the buffer;
producers deposit their wares into the buffer, and consumers get their material from it. In
a bounded implementation the structure can only hold a certain nimaxcountof

items, and so it can get full. But waits will only occur when a consumer needs to consume
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and the buffer is empty, or when a producer needs to produce and the buffer is full. |
well-regulated system such events will be much more infrequent than with unbuffer
communication, and their frequency will decrease as the buffer's capacity grows. True
new source of delays arises because buffer access must be exclusive: at most one «
may at any one time be performing a depcpui) or retrieval item, remove) operation.
But these are very simple and fast operations, so any resulting wait is typically short.

In most cases the time sequence in which objects have been produced is releval
the consumers, so the buffer must maintafirst-in , first-out policy (FIFO): an object
deposited before another must be retrieved before it. The behavior is similar to that of tr
cars being added at one end of a single track and removed at the other end:

Bounded buffer

Producers Consumers
produce consume
— [ | | ] 11 |\—>
The bounded queue A typical implementation — not essential to the discussion, but giving us a mo

of the Undoing : . . L
design pattern used concrete view — can use an arrrepresentationof size capacity = maxcount + .

a similar represen- Managed circularly; the integoldes will be the index of the oldest item, anex the
tation. See pagélQ index of the position to be used for inserting the next item that comes in. We can pict
the array as being torn into a ring so that positions ‘capacityare conceptually adjacent:

Bounded buffer 1 oldest
implemented by
an array

capacity
- Occupied position

|:| Free position

- Reserved position

maxcount

next

The procedurputused by a producer to add an itx will be implemented as
representationput (x, nex); next:= (next\\ maxcoul) + 1

where\\ is the integer remainder operation; the guiterr used by consumers to obtain
the oldest element simply returrepresentation @ olde (the array element at index
oldes); and procedureemovt simply executesoldes:= (oldest\\ maxcou)) + 1. The
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array entry at indexapacity shaded in gray on the figure, is kept free; this makeor an alternative
possible to distinguish between the testefompty expressed asext= oldesf and the test EeChnique see
for full, expressed a®ext\\ maxcount+ 1 = oldest gLéﬂZﬁEﬁUf'ggge
The structure, with its FIFO policy, and the circular array representation, arttet

course not concurrency-specific: what we have is simphpwunded queuesimilar to

many of the structures studied in preceding chapters. Writing the corresponding class —

directly applicable to the Undoing design pattern — is not hard; here is a short form of the

class, in simplified form (main features only, header comments removed, principal

assertion clauses only):

class interfaceBOUNDED_QUEUHG] feature
empty full: BOOLEAN
put(x: G)
require
not full

ensure
not empty

remove
require
not empty
ensure
not full
item G
require
not empty
end -- class interfacBOUNDED_QUEUE

Obtaining from this description a class describing bounded buffers is about as simple
as we could dream:

separate clasBOUNDED_BUFFERG] inherit
BOUNDED_ QUEUHG]
end

The separate qualifier applies only to the class where it appears, not its heirs. So a
separate class may, as here, inherit from a non-separate one, and conversely. The
convention is the same as with the other two qualifiers applicable to aetassided
anddeferred. As noted, the three properties are mutually exclusive, so that at most one
of the qualifiers may appear before the keywdeds

We see once again the fundamental simplicity of concurrent O-O software
development, and the smooth transition from sequential to concurrent concepts, made
possible in particular by the method’s focus on encapsulation. A bounded buffer (a notion
for which you will find many complicated descriptions if you look at the concurrency
literature) is nothing else than a bounded queue made separate.
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Preconditions under concurrent execution

Let us examine a typical use of a bounded bibufferby a client, for example a producer
that needs to deposit a certain oby using the procedurpui. Assume thabuffer is an
attribute of the enclosing class, having been declared, for som¢T which is also the
type ofy, asbuffe: BOUNDED BUFFER[T].
The client may for example have initializbuffer to a reference to the actual buffer
passed by its creation procedure, usingbusiness carscheme suggested earlier:

make(b: BOUNDED_BUFFEFT], ...)is do...; buffer:=b; ... end

Becaustbuffel, being declared of a separate type, is a separate entity, any call of t
form buffer. put (y) is a separate call and has to appear in a routine of \buffer is an
argument. So we should instead put (buffer, y) whereput (a routine of the client class,
not to be confused with ttput of BOUNDED BUFFEF, which it calls) is declared as

put(b: BOUNDED_BUFFEHRT]; x: T) is
-- Insertx into b. (First attempt.)
do
b. put (x)
end

Well, this is not quite right. Procedurpui of BOUNDED_ BUFFEl has a
precondition not full. Since it does not make sense to try to inxinto b if bis full, we
should mimic this precondition for our new procedure in the client class:

put(b: BOUNDED_ BUFFEFR[T]; x: T) is
-- Insertx into b.
require
not b. full
do
b. put (x)
end

Better. How can we call this procedure with a spebuffer andy? We must make
sure, of course, that the precondition is satisfied on input. One way is to test:

if not full (buffer) then put (buffel, y) -- [PUT1]
but we could also rely on the context of the call as in
remove(buffel); put(buffel, y) -- [PUT2]

where the postcondition (emove includesnot full. (Example PUT2 assumes that its
initial state satisfies the appropriate preconditnot empt, for removt itself.)

Is this going to work? The answer, disappointing in light of the earlier comment
about the unpredictability of bugs in concurrent systemmaybt. Between the test for
full and the call foputin the PUT1 variant, or betweremovtandputin PUT2, any other
client may have interfered and made the buffer full again. This is the same flaw tt
required us, earlier on, to provide an object reservation mechanism through encapsulat
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We could try encapsulation again by writing PUT1 or PUT2 as a procedure to which
buffel will be passed as argument, giving for PUT1:

put_if_possible(b: BOUNDED_BUFFEI [T]; x: T) is
-- Insertx into b if possible; otherwise swas_ ful to true.
do
if b.full thenwas_ful:= Trueelse
put (b, x); was_ full:= False
end
end

But this does not really help me as a client. First, having to cwas_ ful on returnis a
nuisance; then, what do | do if it is true? Try again, probably — but with no more
guarantee of result. What | probably want is a way to exeput when the buffer is
indisputably non-full, even if | have wait for this to be the case.

The precondition paradox

This situation that we have just uncovered is disturbing because it seems to invalidate, in
a concurrent context, the basic methodological guideline for getting softwareDesign

by Contract. With a queue, that is to say in sequential computation, we have been used to
precisely defined specifications of mutual obligations and benefits:

put OBLIGATIONS BENEFITS A contract
routine put for
: - v bounded
(Satisfy preconditior:) (From postconditior:) queues
Client Only callput(x) on anon- | Get new, non-empty queue
full queue. with x added. (From the
example for stacks
Supplier |(Satisfy postconditio:) (From preconditior:) on page343)
Update queue to acx and Processing protected by
ensurenot empt.! assumption that queue not full.

Implicit behind such contracts isno hidden claus: principle: the precondition is
the only requirement that a client must satisfy to get served. If yoput with a non-full
queue, you are entitled to the routine’s result, as expressed by the postcondition.

Butin a concurrent context, with a separate supplier sucBOUNDED_ BUFFEIR
things are rather distressing for the client: however hard we try to please the supplier by
ensuring its stated precondition, we can never be sure to meet its expectations! To execute
correctly, however, the suppliers still need the precondition. For example the body of
routineput in classBOUNDED QUEUI (which is the same asBOUNDED BUFFEI).
will most likely not work unlesfull is guaranteed to be false.
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ExerciseE30.6,
page 1035

To summarize: suppliers cannot do their work without the guarantee that tl
precondition holds; but for separate arguments the clientunable to ensure these
preconditions. This may be called tconcurrent precondition paradox.

There is a similapostconditiol paradox: on return from a separate capul, we cannot

any more be sure thnot emptyand other postcondition clauses hold for the client. These
properties are satisfied just after the routine’s termination; but some other client may
invalidate them before the caller gets restarted. Because the problem is even more serious
for preconditions, which determine the correct execution of suppliers, the rest of the
discussion mainly considers preconditions.

The paradoxes only arise for separate formal arguments. For a non-sepal
argument — in particular for an expanded value such as an integer — we can continu
rely on the usual properties of assertions. But this not much consolation.

Although this has not yet been widely recognized in the literature, the concurre
precondition paradox is one of the central issues of concurrent O-O software constructi
and the futility of trying to retain habitual assertion semantics is one of the princip
factors distinguishing concurrent computation from its sequential variants.

The precondition paradox may also arise in situations that are not ordinarily thought of
as involving concurrency, such as accessing a file. This is explored in an exercise.

The concurrent semantics of preconditions

To resolve the concurrent precondition paradox we assess the situation throt
three observations:

Al + Suppliers need the preconditions to protect their routine bodies pui will never
work, in classBOUNDED BUFFElasinBOUNDED QUEUI, unless the routine
has the guarantee that on entry the queue is non-full.

A2« Separate clients cannot rely any more on the usual (sequential) semantics
preconditions. Testing fofull before calling your buffer supplier gives you no
guarantee at all.

A3 ¢ Because each client may be vying with others for resource access, a client may
prepared to wait before it gets its resources — if this guarantees correct processi
after the wait.

The conclusion seems inescapable: we still need preconditions, if only for tl
suppliers’ sake, but they must be given a different semantics. Instead of being
correctness conditic, as in the sequential context, a precondition applying to a separa
argument will be await condition. This will apply to what we may call “separate
precondition clauses”: any precondition clause involving a call whose target is a separ
argument. A typical separate precondition clausnot b.full for put.
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Here is the rule:

Separate call semantics
Before it can start executing the routine’s body, a separate call must waljt until
every blocking object is free and every separate precondition clause is satisfied.

In this definition, an object iblockingif it is attached to an actual argument,
and the routine uses the corresponding formal as the target of at least gne call.

A separate object is free if it is not being used as an actual argument of a separate
call (implying that no routine is being executed on it).

The rule only causes waiting for separate arguments appearing as call targets
somewhere in the routine’s body (it uses the word “blocking” for the corresponding objects
since they can block the call from proceeding). With a routine ofbusiness card” form

r (x: separate SOME_TYP) is dosome_attribute= x end

or some other scheme that does not contain a call of thexftsome_routin, there is no
need to wait on the actual argument correspondiix, to

If there is such a call the short form of the class must reflect it for the benefit of client
authors. It will present the routine header (x: blocking SOME_TYP))...

With this rule the above version putin a client class achieves the desired result:
put(b: BOUNDED BUFFEHT]; x: T) is
require
not b. full
do
b.put (x)
ensure
not b.empty

end

A call of the formput(buffer, 1), from a producer client, will wait unibuffer is free
(available) and not full. Ibufferis free but full, the call cannot be satisfied; but some other
client, a consumer, may get access to it (since the precondition of interest to consumers,
not b.empt, will be satisfied in this case); after such a client has removed an item, making
the buffer non-full, the producer client can now have its call executed.

Which client should the implementation let through if two or more satisfy the conditions

of the rule (blocking objects free, preconditions satisfied)? Some people, for fear of

overspecifying, prefer to leave such decisions to the compiler, while providing library

features allowing an application to specify a particular policy. It seems better to define a

default first-in-first-out policy, which enhances portability and helps towards solving the

issue of fairness. Library mechanisms can still be available to application writers who

wish to override the default.

Be sure to note that the special semantics of preconditions as wait conditions only
applies to what we have called separate precondition clauses, that is to say, clauses
involving a condition of the forrb.some_properiwherebis a separate argument. A non-
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See“Monitoring
assertions at run
time”, page 393

As a consequence,
the assertion may
not appearin aclass
invariant, which is
not part of a routine.

separate clause, suchi > = 0 wherei is an integer, ab /= Void even ifb is separate (this
does not involve a call ch), will keep its usual correctness semantics since the concurrel
precondition paradox does not apply in such cases: if the client ensures the ste
condition before the call, it will still hold when the routine starts; if the condition does nc
hold, no amount of waiting would change the situation.

Assertions, sequential and concurrent

The idea that assertions, and in particular preconditions, may have two different seman
— sometimes correctness conditions, sometimes wait conditions — may have surpri
you. But there is no way around it: the sequential semantics is inapplicable in the cas
separate precondition clauses.

One possible objection must be answered. We have seen that a mere compila
switch can turn run-time assertion checking on or off. Is it not dangerous, then, to atte
that much semantic importance to preconditions in concurrent object-oriented syster
No, it is not. The assertions are an integral part of the software, whether or not they
enabled at run time. Because in a correct sequential system the assertions will always f
we may turn off assertion checking for efficiency if we think we have removed all th
bugs; but conceptually the assertions are still there. With concurrency the only differer
is that certain assertions — the separate precondition clauses — may be violated at
time even for a correct system, and serve as wait conditions. So the assertion monito
options must not apply to these clauses.

A validity constraint

To avert deadlock situations, we need to impose a validity constraint on precondition &
postcondition clauses. Assume we permitted routines of the form

f (x: SOME_TYP) is
require
some_propert(separate_attribut):
do

end

where separate_attribut is a separate attribute of the enclosing class. Nothing in thi
example, savseparate_attribul, need be separate. The evaluatiorf’s precondition,
either as part of assertion monitoring for correctness, or as a synchronization conditiol
the actual argument corresponding¢x in a call is itself separate, could cause blocking if
the attached object is not available.

This is not acceptable and is prohibited by the following rule:

Assertion Argument rule

If an assertion contains a function call, any actual argument of that call|must,
if separate, be a formal argument of the enclosing routine.
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States and transitions

The following figure summarizes some of the preceding discussion by showing the
various possible states in which objects and processors may be, and how they will change

state as a result of calls.

ObJeCt states Successful call uses this object as
separate argument
FREE » (RESERVED
- -
Call terminates
Processor states Object and

—+1Successful call uses as target an
processor states

object handled by this process
( IDLE | < >< BUSY > and transitions
Call terminates

Current routine attemplts [ sgme
an unsuccessful call as

A call is successfi if the handler of its target is idle or suspended, all its non-void
separate arguments are attached to free objects, and the corresponding separate
precondition clauses, if any, are true. Note that this makes the definitions of object and

processor states mutually dependent.

30.8 REQUESTING SPECIAL SERVICE

We have completed the review of the basic communication and synchronization policy.
For more flexibility, it is useful to define a few mechanisms that will allow interrupting
the normal processing in some cases.

Because these facilities are add-ons intended for convenience, rather than a part of
the basic concurrency model, they are available not as language constructs but as library
features. We will assume a cleCONCURRENC, which classes needing these special
mechanisms can inherit. A similar approach has already been used twice in this book:

* To complement the basic exception handling rules when finer control is des‘ADVANCED

through the library clasEXCEPTION.3 EXCEPTION HAN-
DLING", 12.6, page

« To complement the default memory management and garbage collection mech“‘o3Rl'Y‘,‘,CIaSS ’Vé'(f)g/"
when finer control is desired, through the library cMEMORNM. »page
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[Yonezawa 1987

See‘Concurrent
accesses to an
object”, page 982

The comments on
static binding were
on page514.

See als‘Permitting
concurrentaccess?”,
page 1031

Express messages

The ABCL/1 concurrent language introduced the notion of “express message” for wh
we want to let a supplier object serve a certain VIP client immediately, even though t
supplier may be busy with another client.

In some approaches an express message will just interrupt the normal message
serviced, and then let the normal message be resumed. But this is unacceptable, as we
earlier in this chapter when we found out that at most one execution should be active
any object at any given time: the express message, like any exported feature, need
initial state satisfying the invariant; but who knows in what state the interrupted routit
will be when it is forced to yield to the express message? And who knows what state
express message will produce as a result? All this opens the way to what the discussic
static binding calledone of the worst events that could occur during the execution of
software syste”: producing an inconsistent object. As we saw thdf such a situation
can aris¢, we can no longer hope to predict what execution w”. do

This does not mean, however, that we should reject the notion of express mess
altogether. We may indeed need to interrupt a client — either because we have sometl
more important to do with the object it has reserved, or because it is overextending
welcome to retain it. But such an interruption is not a polite request to step aside fo
while. It ismurde, at least attempted murder. To take our rival's place we shoot at it, <
that it will die unless it can recover in the hospital. In software terms, the interruptir
client must cause eexceptior in its rival, which will either retry (the hospital) or fail.

Such behavior, however, assumes that the challenger is somehow stronger than
holder. If not, the one that will get an exception is the challenger.

Duels and their semantics

The almost inescapable metaphor suggests that instead of the “express mess
terminology we talk about the attempt to snatch a shared object from its current holdel
adue (the result, in an earlier era, of trying to snatch away someone’s legitimate spous
An object has executed the instruction

r (b)

whereb is separate. After possibly waiting for the object of its desh, to become free,
and for separate precondition clauses to hold, it has caph, becoming its current
holdel. The execution or onb has started on behalf of the holder, but is not finished.
Another separate object, tchallenge, executes

s(c)

wherec, also separate, is attached to the same object as the hd. Normally, the
challenger will wait until the call tris over. What if the challenger is impatient?



1000 CONCURRENCY, DISTRIBUTION, CLIENT-SERVER AND THE INTERNE'§30.8

Through procedures in clasCONCURRENC we can provide the necessary
flexibility. On the holder’s side we havield, which means: “I am willing to release my
hold if someone more worthy comes along”. Most holders, of course, are not so
accommodating: unless it makes an explicit cayield, a holder will retain its hold. To
return to this default behavior, you may use the proceretain.

On the challenger’s side we can use two kinds of request to get special treatment:

« demani means “now or never!”. If you cannot immediately capture the object of
your dreams (that is to say, if the holder has not ceyield), you will get an
exception. (This is the old suicide threat trick, aCosi fan tutt.)

« insis'is more gentle: you try to interrupt the holder’s routine, but if that is impossible
you accept the common lot — waiting until the object is freed.

To return to the default behavior of waiting for the holder to finishwait_turr.

A call to one of thesCONCURRENC procedures will retain its effect until anotheExerciseE30.5, page
supersedes it. Note that the two sets of facilities are not exclusive; for examjl03% asksyoutoadd
L . . . priorities.
challenger could use boinsisi to request special treatment ayield to accept being
interrupted by another. A priority scheme can be added, so that challengers will only
to others with higher priorities, but we can ignore this refinement here.

The following table shows the result of a duel — a conflict between a holder and a
challenger — in all possible cases. The default options and behavior, in the absence of any
call to CONCURRENC procedures, arunderlined!

Challenger — wait_turn demand insist The semantics
of duels
| Holder
retain Challenger waits Exception in Challenger waits
challenger
yield Challenger wait$ Exception in Exception in
holder’s routine.| holder’s routine.

The “holder’s routine” that gets an exception in the two rightmost bottom entries is
the supplier routine being executed on behalf of the holder. In the absenretry, it
will pass on the exception to the holder, and the challenger will get the object.

As you will remember, every kind of exception has a code, accessible through class
EXCEPTION. To distinguish an exception caused by one of the situations appearing in
the above tabl(EXCEPTIONSprovides the boolean queis_concurrency_interruat

Interrupt handling : the Secretary-Receptionist Algorithm

Here is an example using duels. Assume a certain controller object has started off a
number of partner objects, and then proceeds with its own work, which needs a certain
resourcesharec. But the other objects may need access to the shared resource, and the
controller is willing to interrupt its current task to let any of them proceed; when the
partner is done, the controller resumes the last interrupted task.
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This general description covers among others the case of an operating system ke
(the controller) which starts off input-output processors (the partners), but does not w
for an 1/0O operation to complete, since 1/O is typically several orders of magnitude slow
than computation. When an I/O operation terminates, its processor can interrupt the ke
to request attention. This is the traditional interrupt-driven scheme for handling I/O — al
the problem which gave the original impetus, many years ago, to the study of concurrer

The general scheme may be calledSecretary-Receptionist Algoritt by analogy
with what you find in many organizations: a receptionist sits near the entrance to gre
register and direct visitors, but this is not a full-time job; the receptionist is also entrust
with some other work, usually secretarial. When a visitor shows up, the reception
interrupts his work, takes care of the visitor, and then goes back to the interrupted tas

Restarting a task after it has been started and interrupted may require some cleal
this is why the following procedure passewperate the value ointerruptec, which will
enableoperateto find out whether the current task has already been attempted. The fil
argument ooperate, herenex, identifies the task to perforrThe procedure is assumed
to be part of a class that inherits from bCONCURRENC (for yield andretain) and
EXCEPTION. (foris_concurrency_interru)). Procedurcoperate could take a long time to
execute, and so is the interruptible part.

execute_interruptiblis
-- Perform own set of actions, but take interrupts
-- (the Secretary-Receptionist Algorithm).
local
done, nex: INTEGEF; interruptec BOOLEAN
do
from done:= 0 until termination_criterionloop
if interruptedthen
process_interruptioi(sharec); interrupted:= False
else
next:= done + 7 yield
operate(nex, share, interrupte(-- This is the interruptible part.
retain;, done:= next
end
end
rescue
if is_concurrency_interrufthen
interrupted:= Trug; retry
end
end

Some of the steps performed by the controller may actually have been requestec
one of the interrupting partners. In an 1/O interrupt, for example, the 1/0O processor w
signal the end of an operation and (in the input case) the availability of the data just re
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The interrupting partner may use the obsharecto deposit that information; to interrupt
the controller, it will execute

insisy;, interrupt(sharec); wait_turn
-- Request controller’s attention, interrupting it if necessary.
-- Deposit any needed information into the obsharec.

This is the reason wiprocess_interruptio, like operate, usessharecas argument:
it may have to analyze ttsharedobject to detect information passed by the interrupting
partner. This will allow it, if necessary, to set up one of its upcoming tasks, to be executed
on behalf of that partner. Note thiprocess interruptio, unlike operate, is not
interruptible; any other partner that becomes ready while it is executing will have to wait
(otherwise some partner requests might get lost)process_interruptio should only
perform simple operations — registering information for future processing. If that is not
possible, you may use a slightly different scheme in wprocess_interruptio relies on
a separate object other thsharet.

We have one more precaution to take. Although partners’ requests can be processed
later (through calls toperat¢in upcoming steps), it is essential that none of these requests
be lost. With the scheme as given, after a partner execuinterrupi, another one could
do the same, overriding the information deposited by the first, before the controller has
had the time to register that information by execuprocess_interruptio. This case is
not acceptable. To avoid it, we can just add to the generating clsharec a boolean
attribute deposite with the associated setting and resetting procedures. interrupt
will have the preconditioinot shared deposite, so as to wait until the previous partner
has been registered, and will execute the sharedset_depositedefore returning;
process_interruptic will executesharedset not depositebefore exiting.

The partners are initialized bybusiness card” calls of the forlhhpartner. make
(shareg, ...) which pass them a referencesharedto be retained for future needs.

Procedureexecute interruptiblyhas been spelled out in full, with the application-
specific elements represented by calls to routioperate, process_interruption
termination_criteriol that are assumed to be deferred, in the behavior class style. This
prepares for the procedure’s possible inclusion into a concurrency library.

About the rest of this chapter

With the presentation of the duel mechanism we have finished defining the set of
necessary concurrency tools. The rest of this chapter provides an extensive set of
examples, from diverse application areas, illustrating the use of these tools. After the
examples you will find:

» A sketch of a proof rule, for mathematically-inclined readers. 30.10, page 1022
* A summary of the concurrency mechanism, with syntax, validity rules and seman30.11, page 10-.5
» A discussion of the mechanism’s goals and of further work needed. 30.12, page 108

* A detailed bibliography of other work in this area. 30.14, page 10%3
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30.9 EXAMPLES

To illustrate the mechanism, here now are a few examples chosen from dive
backgrounds — from traditional concurrent programming examples through large-sc:
multiprocessing to real-time applications.

The dining philosophels
The

philosophers’

spaghetti plate \§

Dijkstra’s famous “dining philosophers”, an artificial example meant to illustrate the
behavior of operating system processes vying for shared resources, is an obligatory
of any discussion on concurrency. Five philosophers around a table spend their ti
thinking, then eating, then thinking again and so on. To eat the spaghetti, each ne
access to the fork immediately to his left and to his right — creating contention ar
possible deadlock.

The class is defi- . . . . .
nitely not what peo The following class describes the philosopher’s behavior. Thanks to the mechani

ple mean by for reserving objects through separate arguments, there is essentially (in contrast with
“spaghetti code”

usual solutions in the literature) no explicit synchronization code:
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separate clasPHILOSOPHEI creation
make
inherit
GENERAL_PHILOSOPHER
PROCESS
renamesetupasgetupundefine getupend
feature {BUTLEF}
stepis
-- Perform a philosopher’s tasks.
do
think

eat(left, right) g Cl'he synchronizat@u

end

feature { NONE}
eat(l, r: separate FORK) is
-- Eat, having grabbel andr.
do... end

end -- classPHILOSOPHER

The entire synchronization requirement is embodied by the ceal, which uses
argumentieft andright representing the two necessary forks, thus reserving these objects.

The simplicity of this solution comes from the mechanism’s ability to reserve several
resources through a single call having several separate argumenieft andright. If
we restricted the separate arguments to at most one per call, the solution would use one of
the many published algorithms for getting hold of two forks one after the other without
causing deadlock.

The principal procedure of claPHILOSOPHEF does not appear above since ClassPROCESS
comes from the behavior claPROCES: procedurelive, which as given itPROCESS appeared on page
simply executesrom setupuntil overloop stepend, so all we need to redefine here {20+ /aPup
ster. | hope you will enjoy the renaming setuf asgetuy — denoting the philosopher’s

initial operation.

remains an empty

Thanks to the use of multiple object reservation through arguments, the solution
described here does not produce deadlock; but it is not guaranteed to be fair. Some of the
philosophers can conspire to starve the others. Here too the literature provides various
solutions, which may be integrated into the above scheme.

To avoid confusion of genres the concurrency-independent features of a philosopher
have been kept in a claGENERAL_PHILOSOPHER
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classGENERAL_PHILOSOPHE creation
make

feature -- Initialization

make (I, r: separateFORK) is
-- Definel as left anar as right forks.
do
left:=1; right :=r
end
feature { NONE} -- Implementation

left, right: separate FORK
-- The two required forks

getupis
-- Take any necessary initialization action.
do ... end
thinkis

-- Any appropriate action or lack thereof.
do ... end

end-- clast GENERAL_PHILOSOPHER

The rest of the system simply takes care of initialization and of describing tf
auxiliary abstractions. Forks have no immediately relevant properties:

class FORKend
A butler is used to set up and start a session:

class BUTLERcreation
make

feature

coun: INTEGER
-- The number of both philosophers and forks

launchis

-- Start a full session.

local
i: INTEGER

do
from i := 1 until i > countloop

launch_one(participants @ ); i :=i+ 1

end

end
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feature { NONE}
launch_one(p: PHILOSOPHEI) is
-- Let one philosopher start his actual life.
do
p.live
end
participants ARRAY[PHILOSOPHEI
cutlery: ARRAY[FORK]
feature {NONE} -- Initialization
make(n: INTEGEF) is
-- Initialize a session wi n philosophers.

require

n>=0
do

count:=n

Il participantemake(1, coun); !! cutlery.make(1, coun)
make_philosophers

ensure
count=n

end

make_philosopheris
-- Set up philosophers.
local
i INTEGEF; p: PHILOSOPHEF; left, right: FORK
do
from i := 1 until i > countloop
p := philosophers @ i
left := cutlery @ i
right := cutlery @((i \\ coun) +1
Il p. make(left, right)
=i+l
end
end

invariant
count>= Q; participants count= coun; cutlery.count= count
end

Note howlaunct andlaunch_on, using a pattern discussed in the presentation See"A multi-
wait by necessity, rely on the property that the p:live will not cause waiting, allowing g‘é‘E“Cher » page
the loop to proceed to the next philosopher. '
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Making full use of hardware parallelism

The following example illustrates how to use wait bgcessity to draw the maximum
benefit from any available hardware parallelism. It shows a sophisticated fcloadf
balancin¢in which we offload computation to many different computers on a network
Thanks to the notion of processor, we can rely on the concurrency mechanism to cho
these computers automatically for us.

The example itself — computing the number of nodes in a binary tree — is of littl
practical value, but illustrates a general scheme that may be extremely useful for lar
heavy computations such as those encountered in cryptography or advanced comg
graphics, for which developers need all the resources they can get, but do not want to t
to take care manually of the assignment of abstract computing units to actual compute

Consider first a class extract that does not involve concurrency:

classBINARY_TREIFG] feature
left, right: BINARY_TREI[G]
... Other feature...
node: INTEGERIs
-- Number of nodes in this tree
do
Result:= node_coun(left) + node_coun(right) + 1
end
feature { NONE}
node_coun(b: BINARY_TREHG]): INTEGERIs
-- Number of nodes b
do
if b/=Voidthen Result:= b.nodesend
end

end -- classBINARY TREE

Functionnode: uses recursion to compute the number of nodes in a tree. Tt
recursion is indirect, througnode cour.

In a concurrent environment offering many processors, we could offload all tf
separate node computations to different processors. Declaring the clseparate,
replacingnode: by an attribute and introducing procedures does the job:
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separate clasBINARY_TREE][G] feature
left, right: BINARY_TREE[G]
... Other feature...
node: INTEGER

update_nodeis
-- Update nodes to reflect the number of nodes in this tree.
do
nodes:=1
compute_node(lefl); compute _node(right)
adjust_node(left); adjust_nodey(right)
end
feature { NONE}
compute_node(b: BINARY_TREE[G]) is
-- Update information about the number of node¢ b.in
do
if b /= Voidthen
b.update_nodes
end
end

adjust_nodey(b: BINARY_TREE[G]) is
-- Adjust number of nodes from thosebn
do
if b/=Voidthen nodes:= nodes + hnodesend
end
end-- classBINARY_TREE1

The recursive calls tcompute nod« will now be started in parallel. The addition
operations wait for these two parallel computations to complete.

If an unbounded number of CPUs (physical processors) are available, this solution
seems to make the optimal possible use of the hardware parallelism. If there are fewer
CPUs than nodes in the tree, the speedup over sequential computation will depend on how
well the implementation allocates CPUs to the (virtual) processors.

The presence of two tests for vacuityb may appear unpleasant. It results, however,

from the need to separate the parallelizable part — the procedure calls, launched

concurrently orleft andright — from the additions, which by nature must wait for their

operands to become ready. On how to specify the
. . . L . mapping se“Map-

An attractive property of the solution is that it ignores the practical problem ping the processors:

assigning the actual computers. The software just allocates processors as it needs tothe Concurrency
is done in the creation instructions, not shown, which will appear in particular in C%”tro' File’, page
insertion procedure: to insert a new element into a binary tree you create a new

through!! new nodemake(new_elemel) which here new nodebeing of the separate
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type BINARY_ TREE[G], will allocate a new processor to it.) The mapping of these
virtual processors to the available physical resources is entirely automatic.

Locks

Assume you want to allow a number of clients (the “lockers”) to obtain exclusive access
certain resources (the “lockables”) without having to enclose the exclusive access secti
in routines. This will provide us with a semaphore-like mechanism. Here is a solution:

classLOCKEF feature
grab (resource. separate LOCKABLE) is

-- Request exclusive access to resource.

require
not resourcelocked

do
resourceset_holdei(Curren)

end

release(resource. separate LOCKABLE) is
require
resourceis_held(Curren)
do
resourcerelease
end
end

classLOCKABLE feature { LOCKEF}
set_holdel(l: separate LOCKEF) is
-- Designat | asholder.
require
| /= Void
do
holder:= |
ensure
locked
end
lockec: BOOLEANIs
-- Is resource reserved by a locker?
do
Result:= (holder/= Void)
end
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is_held(l: separate LOCKEF): BOOLEANIs
-- Is resource reserved |7

do
Result:= (holder=1)
end
releaseis
-- Release from current holder.
do
holder:= Void
ensure
not locked
end
feature { NONE}
holder: separate LOCKER

invariant

locked_iff_holde: locked= (holdel /= Void)
end

Any class describing resources will inherit froLOCKABLE. The proper
functioning of the mechanism assumes that every locker performs sequegrab and
releast operations, in this order. Other behavior will usually result in deadlock; this
problem was mentioned in the discussion of semaphores as one of the major limitations of
this technique. But we can once again rely on the power of object-oriented computation to
enforce the required protocol; rather than trusting every locker to behave, we may require
lockers to go through proceduuse in descendants of the following behavior class:

deferred classLOCKING_PROCESfeature

resource separate LOCKABLE
useis
-- Make disciplined use cresource.
require
resource/= Void
do
from I lock; setupuntil overloop
lock.grab (resourcy)
exclusive_actions
lock.release(resource)
end
finalize
end
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ExerciseE30.7,
page 1033

ExerciseE30.7,
page 1035

set_resourcr: separate LOCKABLE) is
-- Selecir as resource for use.
require
r /= Void
do
resource=r
ensure
resource/= Void
end
feature { NONE}
lock: LOCKER

exclusive_actions
-- Operations executed whiresourceis under exclusive access

deferred
end
setup
-- Initial action; by default: do nothing.
do
end

ovel: BOOLEAN:Is
-- Is locking behavior finished?

deferred
end
finalize
-- Final action; by default: do nothing.
do
end

end -- classLOCKING_PROCESS

An effective descendant (LOCKING_PROCES will effect exclusive_actions
and ovel, and may redefinesetu; and finalize. Note that it is desirable to write
LOCKING_PROCEES as adescendant PROCES 3

Whether or not we go throulc OCKING_PROCES, agrab does not take away the
corresponding lockable from all possible clients: it only excludes other lockers th
observe the protocol. To exclude any client from accessing a resource, you must enc
the operations accessing the resource in a routine to which you pass it as an argumer

Routinegrab of classLOCKEF is an example of what has been calledbusiness
card scheme: passing resource a reference to thCurrent locker, which the resource
will keep as a separate reference.

Based on the pattern provided by these classes, it is not difficult to write othe
implementing semaphores under their various forms. Object-oriented mechanisms helj
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help users of our classes avoid the classic danger of semaphores: exereservion a
resource and forgetting to execute the corresporfree. A developer using a behavior

class such aLOCKING PROCESwill fill in the deferred operations to cover the needs

of his application, and can rely on the predefined general scheme to guarantee that each
reservewill be properly followei by the correspondinfree.

Coroutines

Although not truly concurrent, at least not in its basic form, our next example is essential
as a way to test the general applicability of a concurrent mechanism.

The first (and probably the only) major programming language to include a coroutine “Coroutine con-
construct was also the first object-oriented language, Simula 67; we will study its CePts’, page 111(in
coroutine mechanism as part of the presentation of Simula. That discussion will also € Simula chapt).

- . Theresume instruc-
resent some examples of the practical use of coroutines. - .
p P P tion comes from Sim-

Coroutines emulate concurrency on a sequential computer. They provide a foula-
program unit that, although similar to the traditional notion of routine, reflects a more
symmetric form of communication:

< With a routine call, there is a master and a slave; the caller starts a routine, waits for
its termination, and picks up where it left; the routine, however, always starts from
the beginning. The callccalls; the routinereturns.

< With coroutines, the relationship is between peers; coroa gets stuck in its work
and calls coroutinb for help;b restarts where it last left, and continues until it is its
turn to get stuck or it has proceeded as far as needed for the momea picks up
its computation. Instead of separate call and return mechanisms, there is a single
operatiorresume c, meaning: restart coroutitc where it was last interrupted; | will
wait until someone elsresumes me.

Coroutine

a
> sequencing
resumeb
resumeb
b resumea resumea

This is all strictly sequential and meant to be executed on a single process (task) of
a single computer. But the ideas are clearly drawn from concurrent computation; in fact
an operating system running on a single CPU will internally use a coroutine-like
mechanism to implement such schemes as time-sharing, multitasking and multithreading.

Coroutines may be viewed as a boundary case of concurrency: the poor man’s
substitute to concurrent computation when only one thread of control is available. It is
always a good idea to check that a general-purpose mechanism degrades gracefully to
boundary cases; so let us see how we can represent coroutines. The following two classes
will achieve this goal.
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separate classCOROUTINE creation
make

feature { COROUTINE}
resume(i: INTEGEF) is
-- Wake up coroutine of identifid¢ and go to sleep.
do
actual_resum(i, controller)
end
feature { NONE} -- Implementation
controller: COROUTINE_CONTROLLER
identifier: INTEGER

actual_resum(i: INTEGEF; c: COROUTINE_CONTROLLE) is
-- Wake up coroutine of identifi i and go to sleep.
-- (Actual work ofresum).
do
c.set_nex(i); requesi(c)
end
requesi(c: COROUTINE_CONTROLLE)is
-- Request eventual re-awakeningc)y
require
c.is_nexi(identifier)
do
-- No action necessary
end
feature { NONE} -- Creation
make(i: INTEGEF, c: COROUTINE_CONTROLLE) is
-- Assigni as identifier an ¢ as controller.
do
identifier == i
controller:=c¢
end
end -- clast COROUTINE
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separate classCOROUTINE_CONTROLLE feature { NONE}
nex: INTEGER
feature { COROUTINE}
set_nex(i: INTEGEF) is
-- Selec i as the identifier of the next coroutine to be awakened.
do
next:=i
end
is_next(i: INTEGEF): BOOLEANIs
-- Isii the index of the next coroutine to be awakened?
do
Result:= (next=i)
end
end -- clast COROUTINE_CONTROLLER

One or more coroutines will share one coroutine controller (created through a “cExerciseE30.10,
function not shown here). Each coroutine has an integer identifier. To resume a coriPage 1035
of identifieri, procedureresum: will, throughactual resum, set thenex attribute of the
controller toi, and then block, waiting on the preconditinext= j, wherej is the
coroutine’s own identifier. This ensures the desired behavior.

Although it looks like normal concurrent software, this solution ensures that (if all
coroutines have different identifiers) at most one coroutine may proceed &iamy
making it useless to allocate more than one physical CPU. (The controller could actually
make use of its own CPU, but its actions are so simple as not to warrant it.)

The recourse to integer identifiers is necessary since gresum:an argument of
type COROUTINE, a separate type, would cause deadlock. In practice, you should
probably usewunique declarations to avoid having to choose the values manually. This use
of integers also has an interesting consequence: if we allow two or more coroutines to have
the same identifier, then with a single CPU we obtenon-deterministic mechanism: a
callresume(i) will permit restarting any coroutine whose identifier has vi. With more
than one CPU a ciresume(i) will allow all coroutines of identifiei to proceed in parallel.

So the above scheme, which for a single CPU provides a coroutine mechanism,
doubles up in the case of several CPUs as a mechanism for controlling the maximum
number of processes of a certain type which may be simultaneously active.

An elevator control system

The following example shows a case where object technology and the mechanism defined
in this chapter can be used to achieve a pleasantly decentralized event-driven architecture
for a real-time application.

The example describes software for an elevator control system, with several
elevators serving many floors. The design below is somewhat fanatically object-oriented
in that every significant type of component in the physical system — for example the



§30.9 EXAMPLES 1015

Milner quote page nhotion of individual button in an elevator cabin, marked with a floor number — has &

95€. associated separate class, so that each corresponding object such as a button has it
virtual thread of control (processor). This is getting close to Milner's wish, quoted at tt
beginning of this chapter, of making all objects parallel. The benefit is that the system
entirely event-driven; it does not need to include any loop for examining repeatedly t
status of objects, for example whether any button has been pressed.

The class texts below are only sketched, but provide a good idea of what a compl
solution would be. In most cases the creation procedures have not been included.

This implementation of the elevator example, adapted to control elevator displays on

multiple screens and computers across the Internet (rather than actual elevators), has been

used at several conferences to demonstrate concurrent and distributed O-O mechanisms.

ClassMOTOR describes the motor associated with one elevator cabin, and tt
interface with the mechanical hardware:

separate clasMOTOF feature { ELEVATOF}
move(floor: INTEGEF) is
-- Go tofloor; once there, report.
do
“Direct the physical device to move floor”
signal_stoppe(cabir)
end
signal_stoppe(e: ELEVATOW) is
-- Report that elevator stopped on leez2l
do
e.record_stop(positior)
end

feature { NONE}
cabin: ELEVATOR

positior: INTEGERIs
-- Current floor level
do
Result:= “The current floor level, read from physical sensors”
end
end

The creation procedure of this class must associate an elecabir, with every
motor. ClassELEVATOF includes the reverse information through attribpuller,
indicating the motor pulling the current elevator.

The reason for making an elevator and its motor separate objects is to reduce
grain of locking: once an elevator has semove request to its elevator, it is free again,
thanks to the wait by necessity policy, to accept requests from buttons either inside
outside the cabin. It will resynchronize with its motor upon receipt of a call to procedu
record_sto|, throughsignal stoppe. Only for a very short time will an instance of
ELEVATOF be reserved by a call from eitheMOTOF or BUTTON object
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separate clastELEVATOF creation
make

feature {BUTTON}

accept(floor: INTEGEF) is
-- Record and process a request to gfloor.
do
record(floor)
if not movingthen process_reque«end
end

feature {MOTOF}
record_stog(floor: INTEGEF) is
-- Record information that elevator has stoppedloor.
do
moving:= false; position:= floor; process_request
end
feature { DISPATCHER
positior: INTEGER
movin¢. BOOLEAN
feature { NONE}
puller: MOTOR

pendin¢ QUEUE[INTEGEHR
-- The queue of pending requests
-- (each identified by the number of the destination floor)
record(floor: INTEGEF) is
-- Record request to go floor.
do
“Algorithm to insert request for floor into pending”
end
process_requesis
-- Handle next pending request, if any.
local
floor: INTEGER
do
if not pendingemptythen
floor := pendingitem
actual_procesi(puller, floor)
pendingremove
end
end
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actual_proces(m: separate MOTOF; floor: INTEGEF) is
-- Directm to go tofloor.
do
moving:= True; m.move(floor)
end
end

Buttons are of two kinds: floor buttons, which passengers press to call the eleva
to a certain floor, and cabin buttons, inside a cabin, which they press to make the ca
move to a certain floor. The two kinds send different requests: for a cabin button, t
request is directed to a specific cabin; for a floor button, it can be handled by any eleve
and so will be sent to a dispatcher object, which will poll the various elevators to sele
one that will handle the request. (The selection algorithm is left unimplemented belc
since itis irrelevant to this discussion; the same applies to the algorithm used by eleva
to manage theipendincqueue of requests in claELEVATOF above.)

ClassFLOOR_BUTTOIl assumes that there is only one button on each floor. Itis nc
difficult to update the design to support two buttons, one for up requests and the other
down requests.

It is convenient although not essential to have a common pBUTTON for the
classes representing the two kinds of button. Remember that the features exportec
ELEVATOFto BUTTON are, through the standard rules of selective information hiding
also exported to the two descendants of this class.

separate clasBUTTON feature
target INTEGER

end

separate clas<CABIN_BUTTOT! inherit BUTTON feature
target: INTEGER
cabin: ELEVATOR
requeslis
-- Send to associated elevator a request to stop ontargei.
do
actual_reques(cabir)
end
actual_reques(e: ELEVATOF) is
-- Get hold ole and send a request to stop on l¢arget.
do
e.accept(targei)
end
end
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separate clasFLOOR_BUTTOI inherit
BUTTON

feature

controller: DISPATCHER

requeslis
-- Send to dispatcher a request to stop on ltargel.
do
actual_reques(controller)
end

actual_reques(d: DISPATCHE]) is
-- Send tcd a request to stop on levtargel.
do
d.accept(targe)
end
end

The question of switching button lights on and off has been ignored. It is not hard to
add calls to routines which will take care of this.

Here finally is clasDISPATCHEL To develop the algorithm that selects an elevator
in procedureaccep, you would need to let it access the attribipositior andmoving of
classELEVATOF, which in the full system should be complemented by a boolean attribute
going_uf. Such accesses will not cause any problem as the design ensures that
ELEVATOF objects never get reserved for a long time.
separate classDISPATCHETF creation
make

feature {FLOOR_BUTTOL}

accept(floor: INTEGEF) is

-- Handle a request to send an elevatcfloor.

local
index. INTEGEF; chosel: ELEVATOR

do
“Algorithm to determine what elevator should handle the

request forfloor”

index:=“The index of the chosen elevator”
choser:= elevators @ index
send_reques(chose, floor)

end
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All routines with an
argumenit: REAL
need the precondi-
tiont>= 0, omitted
for brevity.

feature { NONE}

send_reques(e: ELEVATOF, floor: INTEGEF) is
-- Send tce a request to go ffloor.
do
e.accept(floor)
end
elevator: ARRAY[ELEVATOF]

feature { NONE} -- Creatiol

makeis
-- Set up the array of elevators.
do
“Initialize array elevators”
end

end

A watchdog mechanism

Along with the previous one, the following example shows the mechanism’s applicabili
to real-time problems. It also provides a good illustration of the concept of duel.

We want to enable an object to perform a call to a certain procactior, with the
provision that the call will be interrupted, and a boolean attrifailed set to true, if the
procedure has not completed its execution at seconds. The only basic timing
mechanism available is a procedwait (t), which will execute fot seconds.

Here is the solution, using a duel. A class that needs the mechanism should inh
from the behavior clasTIMED and provide an effective version of the procedure
actior which, in TIMED, is deferred. To leactior execute for at most seconds, it
suffices to calltimed_action(t). This procedure sets up a watchdog (an instance o
classWATCHDOQ), which executewait (t) and then interrupts its client. If, however,
actior has been completed in the meantime, it is the client that interrupts the watchdc

deferred classTIMED inherit
CONCURRENCY
feature { NONE}
failed: BOOLEAN, alarm: WATCHDOG
timed_actior(t: REAL) is
-- Execute action, but interrupt aftt seconds if not complete.
-- If interrupted before completion, <failed to true.
do
set_alarm(t); unset_alarn(t); failed:= False
rescue
if is_concurrency_interrugthen failed := Trueend
end
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set_alarm(t: REAL) is
-- Set alarm to interrupt current object aft seconds.

do
-- Create alarm if necessary:
if alarm= Voidthen!! alarmend
yield; actual_se(alarm, t); retain
end

unset_alarrr(t: REAL) is
-- Remove the last alarm set.
do
deman, actual_unse(alarm); wait_turn
end
actionis
-- The action to be performed under watchdog control
deferred
end
feature {NONE} -- Actual access to watchd og
actual_sei(a: WATCHDOC; t: REAL) is
-- Start upa to interrupt current object aftt seconds.
do
a.set(t)
end
... Procedureactual_unsesimilar, left to the reade...
feature {WATCHDOC(} -- The interrupting operaticn
stopis
-- Empty action to let watchdog interrupt a caltimed_action
do -- Nothingend
end -- clasTIMED

separate class

WATCHDOG
feature { TIMED}
set(caller: separate TIMED; t: REAL) is See exercisE30.13,
-- After t seconds, interruycaller; {Jh«?}ge 103.dab0ut §
if interrupted before, terminate silently. thggﬁ&g‘g%i’: |
require principle.
caller_exist: caller /= Void
local

interruptec BOOLEAN
do

if not interruptedthen wait (t); deman;; caller. stof; wait_turnend
rescue

if is_concurrency_interrugthen interrupted := Trug; retry end
end
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unsetis
-- Remove alarm (empty action to let client interrse).
do -- Nothingend

feature { NONE}

early_terminatio: BOOLEAN
end -- clast WATCHDOG
For clarity and to avoid mistakes every uswetainshould, as here, include also the

following retain, in the formyield; “Some call” retain. Every use odemanc(or insisf)

should similarly be of the forrdeman; “Some call” wait_turr. You can use behavior
classes to enforce this rule.

Accessing buffers

As a last example, let us wrap up the example of bounded buffers used several times ir
presentation of the mechanism. We have seen that the class could be declared as
separate class BOUNDED_BUFFER[G] inherit BOUNDED_QUEUE [G] end,
assuming the proper sequenBOUNDED_QUEUE class.

To use a call such igsremove on an entityg of typeBOUNDED BUFFEFT], you
must enclose it in a routine usiq as formal argument. It may be useful for that purpose
to provide a clasBUFFER_ACCESthat fully encapsulates the notion of bounded buffer;
application classes may inherit frcBUFFER_ACCES. There is nothing difficult about
this behavior class, but it provides a good example of how we can encapsulate sepe
classes, directly derived from sequential ones sucBOUNDED_QUEUE, so as to
facilitate their direct uses by concurrent applications.

indexing

descriptior: “Encapsulation of access to bounded buf'ers
class BUFFER_ACCES][G] is
put(q: BOUNDED BUFFEFG]; x: G) is
-- Insertx into g, waiting if necessary until there is room.
require
not g.full
do
g.put(x)
ensure
not g.empty

end
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remove(q: BOUNDED_BUFFEFR[G]) is
-- Remove an element frog, waiting if necessary
-- until there is such an element.
require
not g.empty
do
g.remove
ensure
not q.full
end
item(q: BOUNDED_BUFFEF[G]): Gis
-- Oldest element not yet consumed
require
not g.empty
do
Result= g.item
ensure
not g.full
end
end

30.10 TOWARDS A PROOF RULE

(This section is for mathematically-inclined readers only. Although you may undersOn firstreading you
the basic ideas without having had a formal exposure to the theory of programgﬁérsnlg’Ne,,t‘%Sl'z
languages, full understanding requires that you be familiar with the basics of that thpage 1023

as given for example i[M 1990], whose notations will be used here.)

The basic mathematical property of sequential object-oriented computation was
given semi-formally in the discussion of DesignContract:

{INV and pre} body{INV and pos}

wherepre, pos andbody are the precondition, postcondition and body of a routine, and
INV is the class invariant. With suitable axiomatization of the basic instructions this could
serve as the basis of a fully formal axiomatic semantics for object-oriented software.

Without going that far, let us express the property more rigorously in the form of a
proof rule for calls. Such a rule is fundamental for a mathematical study of O-O software
since the heart of object-oriented computation — whether sequential as before, or
concurrent as we are now able to achieve — is operations of the form

t.f(...,a ...)

which call a featurd, possibly with arguments such a, on a target representing an
object. The proof rule for the sequential case may be informally stated as follows:
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The basic
sequential
proof technique

If we can prove that the body f, started in a state satisfying the precondition

of f, terminates in a state satisfying the postcondition, then we can deduce the
same property for the above call, with actual arguments sta substituted
for the corresponding formal arguments, and every non-qualified call in the
assertions (of the formsome boolean_prope) replaced by the
corresponding property i t (of the forn t.some_boolean_prope).y

For example, if we are able to prove that the actual implementatiput in class
BOUNDED_QUEUL, assumin¢not full initially, produces a state satisfyiinot empty,
then for any queuq and elemena the rule allows us to deduce

{not g.full} g.put(x) {not g.empt}

More formally, we may express the basic proof rule as an adaptation to the obje
oriented form of computation of Hoare’s procedure proof rule:

{inv /\ P} Body(r) {INVL /\ q }

p OPre(r) g O Post(r)

{ A plcan{ A 9}

p OPre(r) g O Post(r)

Here INV is the class invariar Pre (f) is the set of precondition clauses f and
Post(f) the set of its postcondition clauses. Recall that an assertion is the conjunction
a set of clauses, of the form

clausg; ...; clausg,

The large “and” signs/\ indicate conjunction of all the clauses. The actual argument
of f have not been explicitly included in the call, but the primed expressions ¢ tugi as
indicate substitution of the call’s actual arguments for the formal argumet. ts of

In the interest of conciseness, the rule is stated above in the form which does not support
proofs of recursive routines. Adding such support, however, does not affect the present
discussion. For details of how to handle recursion[M 1990].

The reason for considering the assertion clauses separately and then “anding” t
is that this form prepares the rule’'s adaptation, described next, to separate calls in
concurrent case. Also of interest as preparation for the concurrent version is that you n
take the invarianINV into account in the proof of the routine body (above the line),
without any visible benefit for the proof of the call (below the line). More assertions wit
that property will appear in the concurrent rule.

What then changes with concurrency? Waiting on a precondition clause occurs o
for a precondition of the forr.conc, wheret is a formal argument of the enclosing
routine, and is separate. In a routine of the form
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f(..,aT,..)is
require
clausel clause?...

do

end

any of the precondition clauses not involving any separate call on a separate formal
argument is a correctness condition: any client must ensure that condition prior to any call,
otherwise the callis in error. Any precondition clause involving a call of thedosome
condition, wherea is a separate formal argument, is a wait condition which will cause calls
to block if it is not satisfied.

These observations may be expressed as a proof rule which, for separate
computation, replaces the preceding sequential rule:

{invO /\ P} Body(r) {INv[] /\ q }

p OPre (r) g O Post(r)

P} cai() /\ a3

p ONonsep_Prér) q 0 Nonsep_Posfr)

whereNonsep prdf) is the set of clauses fiis precondition which do not involve any
separate calls, and similarly folonsep_pod(f).

This rule captures in part the essence of parallel computation. To prove a routine
correct, we must still prove the same conditions (those above the line) as in the sequential
rule. But the consequences on the properties of a call (below the line) are different: the
client has fewer properties to ensure before the call, since, as discussed in detail earlier in
this chapter, trying to ensure the separate part of the precondition would be futile anyway;
but we also obtain fewer guarantees on output. The former difference may be considered
good news for the client, the latter is bad news.

The separate clauses in preconditions and postconditions thus join the invariant as
properties that must be included as part of the internal proof of the routine body, but are
not directly usable as properties of the call.

The rule also serves to restore the symmetry between preconditions and
postconditions, following a discussion that highlighted the role of the preconditions.
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30.11 A SUMMARY OF THE MECHANISM

Onfirstreading you Here now is the precise description of the concurrency facilities presented in earl

may move téDIS-
CUSSION", 30.12,
page 1028

sections. There is no new material in this section, which serves only as reference and |
be skipped on first reading. The description consists of four parts: syntax; validi
constraints; semantics; library mechanisms. It extends the sequential O-O mechani:
developed in the preceding chapters.

Syntax

The syntactic extension involves just one new keywsegarate
A declaration of an entity or function, which normally appears as
x: TYPE

may now also be of the form
X: separateTYPE

In addition, a class declaration, which normally begins with onela$s C,
deferred class C and expanded class C, may now also be of a new form:
separate clas<. In this caseC will be called a separate class. It follows from the syntax
convention that a class may be at most one of: separated, expanded, deferred. As
expanded and deferred, the property of being separate is not inherited: a class is sep
or not according to its own declaration, regardless of its parents’ separateness status.

A type is said to be separate if it is either based on a separate class or of the f
separateT for someT (in which case it is not an error, although redundant] far be
separate — again the same convention as for expanded). An entity or function is sepa
if its type is separate. An expression is separate if it is either a separate entity or a ca
a separate function. A call or creation instruction is separate if its target (an expressionr
separate. A precondition clause is separate if it involves a separate call (whose tar
because of rules that follow, can only be a formal argument).

Constraints

A Separateness Consistency rule in four parts governs the validity of separate calls:

e (1) If the source of an attachment (assignment instruction or assignment passing
separate, its target entity must be separate too.

* (2) If an actual argument of a separate call is of a reference type, the corresponc
formal argument must be declared as separate.

* (3) If the source of an attachment is the result of a separate call to a function return
a reference type, the target must be declared as separate.

* (4) If an actual argument of a separate call is of an expanded type, its base class
not include, directly or indirectly, any non-separate attribute of a reference type.
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There is also a simple consistency rule on types (not given earlier): in a type of the
form separate TYPE, the base class TYPE must be neither deferred nor expanded.

For a separate call to be valid, the target of the call must be a formal argument of the
enclosing routine.

If an assertion contains a function call, any actual argument of that call must, if
separate, be a formal argument of the enclosing routine, if any (separate argument rule).

Semantics

Each object is handled by a processor, its handler. If the it of a creation instruction
is non-separate, the newly created object will be handled by the same processor as the
creating object. It is separate, the new object will be allocated to a new processor.

Once it has been created, an object will at any time be in either of two states: free and
reserved. It is free if no feature is being executed on it, and no separate client is currently
executing a routine that uses as actual argument a separate reference attached to it.

A processor will be in one of three states: idle, busy and suspended. Itis busy if it is
executing a routine whose target is an object that it handles. It becomes suspended if it
attempts an unsuccessful call (defined below) whose target is an object that it handles.

The semantics of calls is affected only if one of more of the elements involved —
target and actual arguments — are separate. The discussion assumes a call of the general
formt.f (..., s ...) wherefis aroutine. (Iff is an attribute, we will assume for simplicity
that it is called through an implicit function returning its value.)

The call is executed as part of the execution of a routine on a certainC_OB,,
which may only be in a busy state at that stage. The basic notion is the following:

Definition: satisfiable call

In the absence CONCURRENC features (described next), a call to a routine
f, executed on behalf of an objeC OB, is satisfiable if and only if every
separate actual argument having a non-void value, and hence attached to a
separate objetA OB., satisfies the following two conditions if the routine
uses the corresponding formal as target of at least one call:

Sle A OBlis free or reserved tC_OB..

S2 e« Every separate clause of the preconditionf has value true when
evaluated foA_OB!. and the actual arguments given.
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If a processor executes a satisfiable call, the call is said to be successful &
proceeds immediatehC_OB. remains reserved, its processor remains in the busy stat
every A_OB. becomes reserved, the target remains reserved, the target’s hanc
becomes busy, and it starts executing the routine of the call. When the call termina
the target’s handler returns to its previous state (idle or suspended) anA_OBJ
object returns to its previous state (free or reserveC_OB.).

If the call is not satisfiable, it is said to be unsuccesC _OB. enters the suspended
state. The call attempt has no immediate effect on its target and actual arguments. If
or more earlier unsuccessful calls are now satisfiable, the processor selects one of the
become successful as just described. The default policy if more than one is satisfiabl
to select the one that has been waiting longest.

The final semantic change is the definition of wait by necessity: if a client has start
one of more calls on a certain separate object, and it executes on that object a call
query, that call will only proceed after all the earlier ones have been completed, and ¢
further client operations will wait for the query call to terminate. (We have seen that
optimizing implementation might apply this rule only to queries returninexpanded
resuli.) When waiting for these calls to terminate, the client remains in the “resestatel”

Library mechanisms

Features of clasCONCURRENC enable us in some cases to consider that conSlon
of the satisfiable call definition holds everA_OBJ has been reserved by another object
(the “holder”), assuminC_OB. (the “challenger’) has calledemandor insisf; if as a
result the call is considered satisfiable, the holder will get an exception. This will on
occur if the holder is in a “yielding” state, which it can achieve by cayield.

To go back to the default non-yielding state, the holder can exretain; the
boolean queryieldinc indicates the current state. The challenger’s state is given by tt
integer quenChallengin¢which may have the valiNorma, Demandin: or Insistinc.

To return to the defaulNorma state the challenger can execwait_turr. The
difference betweedemancandinsistaffects what happens if the holder is yieldinc: with
demancthe challenger will get an exception; winsis it simply waits as withwait_turr.

When these mechanisms cause an exception in the holder or challenger, the boo
queryis_concurrency_excepti from classEXCEPTION: has value true.
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30.12 DISCUSSION

As a conclusion to this presentation, let us review the essential criteria that should guide
the development of a concurrent O-O mechanism. These criteria served as a basis for the
approach presented here; in a few cases, as will be seen, some more work remains to be
done to achieve their full satisfaction. The goals include:

¢ Minimality of mechanism.

* Full use of inheritance and other object-oriented techniques.
» Compatibility withDesign byContract.

* Provability.

» Support for command-query distinction.

* Applicability to many forms of concurrency.

» Support for coroutine programming.

< Adaptability through libraries.

e Support for reuse of non-concurrent software.

e Support for deadlock avoidance.

We will also take a final look at the question of interleavargesses to an object.

Minimality of mechanism

Object-oriented software construction is a rich and powerful paradigm, which, as noted at
the beginning of this chapter, intuitively seems ready to support concurrency.

It is essential, then, to aim for the smallest possible extension. Minimalism here is
not just a question of good language design. If the concurrent extension is not minimal,
some concurrency constructs will be redundant with the object-oriented constructs, or will
conflict with them, making the developer's task hard or impossible. To avoid such a
situation, we must find the smallest syntactic and semeepsilor that will give
concurrent execution capabilities to our object-oriented programs.

The extension presented in the preceding sections is indeed minimal syntactically,
since it is not possible to add less than one new keyword.

Full use of inheritance and other object-oriented techniques

It would be unacceptable to have a concurrent object-oriented mechanism that does not
take advantage of all O-O techniques, in particular inheritance. We have noted that the
“inheritance anomaly” and other potential conflicts are not inherent to concurrent O-O
development but follow from specific choices of concurrency mechanisms, in particular
active objects, state-based models and path-expression-like synchronization; the
appropriate conclusion is to reject these choices and retain inheritance.
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“Objects as

We have repeatedly seen how inheritance can be used to produce high-level beha
class (such ePROCES) describing general patterns to be inherited by descendants. Mo
of the examples would be impossible without multiple inheritance.

Among other O-O techniques, information hiding also plays a central role.

Compatibility with Design byContract

It is essential to retain the systematic, logic-based approach to software construction
documentation expressed by the principles of Design by Contract. The results of this chal
were indeed based on the study of assertions and how they fare in a concurrent contex

In that study we encountered a striking property, the concurrent preconditic
paradox, which forced us to provide a different semantics for assertions in the concurr
case. This gives an even more fundamental place to assertions in the resulting mechar

Support for command-query separation

A principle of object-oriented software construction was developed in preceding chapte

machines”, page 7©1Command-Query Separation. The principle enjoins us not to mix commands (procedure

which change objects, and queries (functions and attributes), which return informati
about objects but do not change them. This precludes side-effect-producing functions.

Itis commonly believed that the principle cannot hold in a concurrent context, as f
example you cannot write

next_elemer:= buffer.item

buffer.remove

and have the guarantee that the element removed by the second call is the same thz¢
first instruction assigned tnext_iten. Between the two instructions, another client can
mess up with the shared buffer. Such examples are often used to claim that one must |
a side-effect-producing functicgei, which will both return an element and remove it.

This argument is plainly wrong. It is confusing two notions: exclusive access ar
routine specification. With the notation of this chapter, it is easy to obtain exclusive acce
without sacrificing the Command-Query Separation principle: simply enclose the tw
instructions above, witbuffer replaced byb, in a procedure of formal argumeb, and
call that procedure with the attribtbuffer as argument. Or, if you ot require the two
operations to apply to the same element, and want to minimize the amount of time a shz
resource is held, writtwo separate routines. This kind of flexibility is important for the
developer. It can be provided, thanks to a simple exclusive access mechanism, whethe
not functions may have side effects.
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Applicability to many forms of concurrency

A general criterion for the design of a concurrent mechanism is that it should make it
support many different forms of concurrency: shared memory, multitasking, network
programming, client-server computing, distributed processing, real time.

With such a broad set of application areas, a language mechanism cannot be
expected to provide all the answers. But it should lend itself to adaptation to all the
intended forms of concurrency. This is achieved by using the abstract notion of processor,
and relying on a distinct facility (Concurrency Control File, libre...) to adapt the
solution to any particular hardware architecture that you may have available.

Adaptability through libraries

Many concurrency mechanisms have been proposed over the years; some of the best
known were reviewed at the beginning of this chapter. Each has its partisans, and each
may provide the best approach for a certain problem area.

It is important, then, that the proposed mechanism should support at least some of
these mechanisms. More precisely, the solution must be general enough to allow us to
prograirr various concurrency constructs in terms of that mechanism.

Here the facilities of the object-oriented method should again be put to good use.
One of the most important aspects of the method is that it supports the construction of
libraries for widely used schemes. The library construction facilities (classes, assertions,
constrained and unconstrained genericity, multiple inheritance, deferred classes and
others) should allow us to express many concurrency mechanisms in the form of library
components. Examples of such encapsulating mechanisms (suchPROCES class
and the behavior class for locks) have been presented in this chapter, and the exercises
suggest a few more.

One may expect that a number of libraries will be produced, relying on the basic
tools and complementing them, to support concurrency models catering to specific needs
and tastes.

We have also seen the use of library classes sSuCONCURRENC to provide
various refinements to the basic scheme defined by the language mechanism.

Support for coroutine programming

As a special case, coroutines provide a form of quasi-concurrency, interesting both in
itself (in particular for simulation activities), and as a smoke test of the applicability of the
mechanisms, since a general solution should adapt itself gracefully to boundary cases. We
have seen how it is possible, once again using the library construction mechanisms of
object technology, to express coroutines based on the general concurrent mechanism.
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ClassBUFFER _
ACCESSwas on
pagel02l.

“Locks”, page
100¢, and exercise
E30.8, page 10:.6

“Concurrent
accesses to an
object”, page 982

Support for reuse of non-concurrent software

It is necessary to support the reuse of existing, non-concurrent software, especi
libraries of reusable software components.

We have seen how smooth the transition is between sequential classes suct
BOUNDED_QUEUland their concurrent counterparts sucBOUNDED BUFFEI (just
write separate class BOUNDED_BUFFER[G] inherit BOUNDED_QUEUE[G] end).
This result is somewhat tempered by the frequent desirability of encapsulation classes ¢
as ourBUFFER_ACCES. Such encapsulation seems useful, however, and may be :
inescapable consequence of the semantic differences between sequential and conct
computation. Also note that such wrapper classes are easy to write.

Support for deadlock avoidance

One area in which more work remains necessary is how to guarantee deadlock avoida

Deadlock potential is a fact of concurrent life. For example any mechanism that c
be used to program semaphores (and a mechanism not powerful enough to emulate
semaphores would be viewed with suspicion) can cause deadlock, since semaphore!
trivially open to that possibility.

The solution lies partly in the use of high-level encapsulation mechanisms. F
example a set of classes encapsulating semaphores, as was presented for locks, s
come with behavior classes that automatically provifree for everyreservs, thereby
guaranteeing deadlock avoidance for applications that follow the recommended pract
by inheriting from the behavior class. This is, in my experience, the best recipe f
deadlock avoidance.

This approach may not be sufficient, however, and it may be possible to devi
simple non-deadlock rules, automatically checkable by a static tool. Such a rule (expres
as a methodological principle rather than a language validity rule, for fear it may be t
restrictive) was given earlier: ttBusiness Cal principle. But more ineeded.

Permitting concurrent access?

A final note on one of the principal properties of the approach: the requirement that at m
one client may access any supplier object at any given time, preventing interleaving
routines and requiring any VIP treatment to use the duel mechanism.

The rationale was clear: if any challenger client can interrupt the execution of
routine at any time, we lose the ability to reason on our classes (through properties of
form {INV and pre} body{INV and pos}) since the challenger can leave the object in an
arbitrary state.

This objection would disappear if we only permittchallengers to execute a
routine of a very special kind: @pplicative routine (in the sense defined for functions
in earlier chapters) which does not modify the object or, if it modifies it, cancels all it
modifications before it leaves. This would assume a language mechanism to state th
routine is applicative, and compilers enforcing property.
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30.13 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

< Concurrency and distribution are playing an increasing role in most application areas
of computers.

» Concurrency has many variants, including multiprocessing and multiprogramming.
The Internet, the Web and object request brokers bring even more possibilities.

e It is possible to use the fundamental schemes of object technology — classes,
encapsulation, multiple inheritance, deferred classes, assertions and so on — for the
greatest benefit of developers of concurrent and distributed applications.

« No active-passive object distinction is necessary or desirable. Objects are by nature
able to perform many operations; making them active would restrict them to just one.

« A simple extension of the sequential object-oriented notation, using a single
keywords separate), covers all the major application areas of concurrency.

« Each object is handled by a processor. Processors are an abstract notion describing
threads of control; a system can use as many processors as it wants regardless of the
number of available computing devices (CPUSs). It must be possible to define the
mapping from processors to CPUs outside of the software proper.

« An object handled by a different processor is said to be separate.

e Calls on separate targets have a different semantics, asynchronous rather than
synchronous. For that reason, any entity representing separate objects must be
declared as such, using the keywseparate.

« Consistency rules, implying in particular that a separate entity may not be assigned
to a non-separate one, ensure that there are no “traitors” — that no non-separate
entity becomes attached to a separate object.

* To achieve exclusive access to a separate object, it suffices to use the corresponding
reference as an argument to a separate call (a call with a separate target).

* The target of a separate call must itself be a separate formal argument of the
enclosing routine.

« Preconditions on separate targets cannot keep their usual semantics as correctness
conditions (this is the “concurrent precondition paradox”). They serve as wait
conditions.

* The mechanism developed in this chapter covers multitasking, time-sharing, multi-
threading, client-server computing, distributed processing on networks such as the
Internet, coroutines and real-time applications.
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30.14 BIBLIOGRAPHICAL NOTES

The approach to concurrency described in this chapter evolved from a presentatior
TOOLS EUROPE[M 1990a and was revised i[M 1993b], from which some of the
material in this chapter (examples in particular) was derived. It is now known as SCO(
for “Simple Concurrent Object-Oriented Programming”. John Potter and Ghinwa Jallo
have developed a variant that includes an exphold instruction [Jalloul 1991]
[Jalloul 1994. Wait by necessity was introduced by Denis Caro[Caromel 1989]
[Caromel 199%]

The first implementation of the model described here was developed by Terry Ta
and Xavier Le Vourch. Both contributed new insights.

A good textbook on the traditional approaches to concurren[Ben Ari 1990.
Original references include: on semapho[Dijkstra 1968a, which also introduced the
“dining philosophers” problem; on monitor{Hoare 1974; on path expressions,
[Campbell 1974. The original CSP model was described[Hoare 197€; the book
[Hoare 198t presents a revised model with special emphasis on its mathematic
properties. Occam?2 is describec[Inmos 1988. A CSP and Occam archive is available
at Oxford University http://www.comlat.ox.ac.uk/archive/csg.html (I am grateful to Bill
Roscoe from Oxford for help with details of CSP). CCS (Communicating Concurrel
Systems)[Milner 1989] is another influential mathematically-based model. Although
cited only in passing in this chapter, Carriero’s and Gelernter's Linda method and tc
[Carriero 1990is a must know for anyone interested in concurrency.

A special issue of thCommunications of the AC[M 1993a presents a number of
important approaches to concurrent object-oriented programming, originally drawn fro
concurrency papers at various TOOLS conferences.

Another collection of papers that appeared at about the same t{{Agha 1993.
An earlier collective book edited by Yonezawa and Tol{Yonezawa 198’ served as
catalyst for much of the work in the field and is still good reading. Other surveys incluc
a thesis [Papathomas 199:and an articlWyatt 1992. Yet another compilation of
contributions by many autho[Wilson 1996 covers C++ concurrency extensions.

Hewitt's and Agha’sactors model, which predates the object-oriented renaissanc
and comes from a somewhat different background, has influenced many concurrent C
approaches; it is described in an art[Agha 1990 and a bool[Agha 1986. Actors are
computational agents similar to active objects, each with a mail address and a behay
An actor communicates with others through messages sent to their mail addresses
achieve asynchronous communication, the messages are buffered. An actor proce
messages through functions and by providing “replacement behaviors” to be used in |
of the actor's earlier behavior after a certain message has been processed.
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One of the earliest and most thoroughly explored parallel object-oriented languages
is POOL[America 1989; POOL uses a notion of active object, which was found to raise
problems when combined with inheritance. For that reason inheritance was introduced
into the language only after a detailed study which led to the separation of inheritance and
subtyping mechanisms. The design of POOL is also notable for having shown, from the
start, a strong concern for formal language specification.

Much of the important work in concurrent O-O languages has come from Japan.
[Yonezawa 198, already cited, contains the description of several influential Japanese
developments, such as ABCL[Yonezawa 1987:. MUSE, an object-oriented operating
system developed at the Sony Computer Science Laboratory, was presented by Tokoro
and his colleagues at TOOLS EUROPE 1¢Yokote 1989. The term “inheritance
anomaly” was introduced by Matsuoka and Yonez{Matsuoka 199%, and further
papers by Matsuoka and collaborators which propose various remedies.

Work on distributed systems has been particularly active in France, with the
CHORUS operating system, of whi[Lea 1993 describes an object-oriented extension;
the GUIDE language and system of Krakowet al. [Balter 1991; and the SOS system
of Shapiroet al [Shapiro 198C In the area of programming massively parallel
architectures, primarily for scientific applications, Jean-Marc Jézéquel has developed the
EPEE systen[Jézéquel 199;, [Jézéquel 199( (chapter 9)][Guidec 199€|

Also influential has been the work done by Nierstrasz and his colleagues at the
University of Geneve around the Hybrid langu{Nierstrasz 1992 [Papathomas 199.2]
which does not have two categories of objects (active and passive) but relies instead on
the notion of thread of control, callactivity. The basic communication mechanism is
remote procedure call, either synchronous or asynchronous.

Other important projects include DRAGOOQJAtkinson 1991, which, like the
mechanism of this chapter, uses preconditions and postconditions to express
synchronization, and pSath[Feldman 199, based on the notion of thread and a
predefinecMONITOF class.

Many other developments would need to be added to this list. For more complete
surveys, see the references cited at the beginning of this section. The proceedings of
workshops regularly held at the ECOOP and OOPSLA conferences, Agha 1988,

[Agha 1991, [Tokoro 1992, describe a variety of ongoing research projects and are
precious to anyone who wants to find out what problems researchers consider most pressing.

The work reported in this chapter has benefited at various stages from the comments
and criticism of many people. In addition to colleagues cited in the first two paragraphs
of this section they include Mordechai Ben-Ari, Richard Bielak, John Bruno, Paul
Dubois, Carlo Ghezzi, Peter L6hr, Dino Mandrioli, Jean-Marc Nerson, Robert Switzer
and Kim Waldén.
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EXERCISES

E30.1 Printers

Page96?. Complete thePRINTEF class, implementing the job queue as a bounded buffer an
making sure queue manipulation routines as welprint do not need to process the
special “stop request” print jolprint may havenot j.is_stop reque as a precondition).

E30.2 Why import must be deep

Assume that a shallow import mechanism (rather tdeep_impol) were available.
Construct an example that will produce an inconsistent structure — one in which
separate object is attached to a non-separate entity.

E30.3 The “inheritance anomaly”

“Synchronization for In the BUFFEFR example used to illustrate the “inheritance anomaly”, assume that ea

concurrent O-O com- routine specifies the exit state in each case usyield instruction, as in
putation”, page 98

put(x: G) is
do
“Add x to the data structure representing the buffer”
if “All positions now occupiedthen
yield full
else
yield partial
end
end

Write the corresponding scheme removt. Then write the clasNEW_BUFFEFwith the
added procedurremove_tw and show that the class must redefine both of the inherites
features (along with the specification of which features are applicable in which states)

E30.4 Deadlock avoidanc(research problen)

Page99C. Starting from the Business Card principle, investigate whether it is feasible to eliming
some of the possible deadlocks by introducing a validity rule on the use of non-separ
actual arguments to separate calls. The rule should be reasonable (that is to say, it sk
not preclude commonly useful schemes), enforceable by a compiler (in particular
incremental compiler), and easily explainable to developers.

E30.5 Priorities

“Duels and their ~ Examine how to add a priority scheme to the duel mechanism oiCONCURRENC,Y
Sercnantics", page retaining upward compatibility with the semantics defined in the presentation
99€. proceduretyield, insist and related ones.
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E30.6 Files and the precondition paradox
Consider the following simple extract from a routine manipulating a file:
f: FILE

if f/=Voidand ther f.readablethen
f.some_input_routine
-- some_input_routir is any routine that reads
-- data from the file; its precondition readable:
end

Discuss how, in spite of the absence of obvious concurrency in this example, the
precondition paradox can apply to Hint: afile is a separate persistent structure, so an
interactive user or some other software system can access the file in between the various
operations performed by the extract.) Discuss what can happen as a consequence of this
problem, and possible solutions.

E30.7 Locking

Rewrite the clasLOCKING PROCESES as an heir of clasPROCES 3 Pagel01(. Class
. PROCES was on
E30.8 Binary semaphores page9sl.

Write one or more classes implementing the notion of binary semapHint : start from “Locks”, page
the classes implementing locks.) As suggested atthe end of the discussion of locks, 100<.

to include high-level behavior classes, meant to be used through inheritance, vwinui
guarantee a correct patternreserve andfree operations.

E30.9 Integer semaphores
Write one or more classes implementing the notion of integer semaphore.
E30.10 Coroutine controller

Complete the implementation of coroutines by spelling out how the controller is creiCoroutines”, page
. 101z.
E30.11 Coroutine examples

The discussion of Simula presents several examples of coroutines. Use the cor“Coroutine con-
classes of the present chapter to implement these examples. cepts”, page 111(in

the Simula chapt)r
E30.12 Elevators

Complete the elevator example by adding all the creation procedures as well #Anelevatorcontrol
missing algorithms, in particular for selecting floor requests. system’, page 1014

E30.13 Watchods and the Business Card principle

Show that the proceduse of classWATCHDOC violates the Business Card principlerage102c.
Explain why this is all right.

E30.14 Once routines and concurrency

What is the appropriate semantics for once routines in a concurrent context: executed once
per system execution, or once per processor?
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