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Objects are stud-
ied in detail in the
next chapter. 
Examining the software engineering background of our discussion, you have see
reasons for demanding a better approach to modular design: reusability and extend
You have realized the limitations of traditional approaches: centralized architec
limiting flexibility. You have discovered the theory behind the object-oriented appro
abstract data types. You have heard enough about the problems. On to the solution

This chapter and the others in part C introduce the fundamental techniques of o
oriented analysis, design and programming. As we go along, we will develop
necessary notation. 

Our first task is to examine the basic building blocks: classes. 

7.1  OBJECTS ARE NOT THE SUBJECT 

What is the central concept of object technology? 

Think twice before you answer “object”. Objects are useful, but they are not 
Ever since Cobol has had structures; ever since Pascal has had records; ever since
C programmer wrote the first C structure definition, humanity has had objects. 

Objects remain important to describe the execution of an O-O system. But the
notion, from which everything in object technology derives, is class, previewed in the
preceding chapter. Here again is the definition:

Abstract data types are a mathematical notion, suitable for the specification 
(also called analysis). Because it introduces implementations, partial or total, the n
of class establishes the necessary link with software construction — design
implementation. Remember that a class is said to be effective if the implementat
total, deferred otherwise. 

Definition: class

A class is an abstract data type equipped with a possibly partial
implementation. 
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The next section, for 
readers who do not 
like the belaboring 
of the obvious, is 
“THE ROLE OF 
CLASSES”, 7.3, 
page 169.
Like an ADT, a class is a type: it describes a set of possible data structures, 
the instances of the class. Abstract data types too have instances; the difference is th
instance of an ADT is a purely mathematical element (a member of some mathem
set), whereas an instance of a class is a data structure that may be represente
memory of a computer and manipulated by a software system. 

For example if we have defined a class STACK by taking the ADT specification of
the previous chapter and adding adequate representation information, the instances
class will be data structures representing individual stacks. Another example, deve
in the rest of this chapter, is a class POINT modeling the notion of point in a two
dimensional space, under some appropriate representation; an instance of that cl
data structure representing a point. Under one of the representations studied belo
cartesian representation, each instance of POINT is a record with two fields representin
the horizontal and vertical coordinates, x and y, of a point. 

The definition of “class” yields as a byproduct a definition of “object”. An objec
simply an instance of some class. For example an instance of class STACK — a data
structure representing a particular stack — is an object; so is an instance of class POINT,
representing a particular point in two-dimensional space. 

The software texts that serve to produce systems are classes. Objects are a r
notion only: they are created and manipulated by the software during its execution.

The present chapter is devoted to the basic mechanisms for writing soft
elements and combining them into systems; as a consequence, its focus is on cla
the next chapter, we will explore the run-time structures generated by an object-or
system; this will require us to study some implementation issues and to take a close
at the nature of objects.  

7.2  AVOIDING THE STANDARD CONFUSION

A class is a model, and an object is an instance of such a model. This property is so o
that it would normally deserve no comments beyond the preceding definitions; but 
been the victim of so much confusion in the more careless segment of the literatu
we must take some time to clarify the obvious. (If you feel that you are immune to s
danger, and have avoided exposure to sloppy object-oriented teaching, you may w
skip this section altogether as it essentially belabors the obvious.) 

What would you think of this?

Among the countries in Europe we may identify the Italian. The Italian has
a mountain chain running through him North-South and he likes good
cooking, often using olive oil. His climate is of the Mediterranean type, and
he speaks a beautifully musical language.
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See e.g. Oliver 
Sacks, ``The Man 
Who Mistook His 
Wife for a Hat and 
Other Clinical 
Tales'', Harper 
Perennials, 1991.

[Coad 1990], 3.3.3, 
page 67.

Exercise E7.1, page
216, asks you to 
clarify each use of 
“Object” in this text. 
If someone in a sober state talked or wrote to you in this fashion, you might suspect 
neurological disease, the inability to distinguish between categories (such as the 
nation) and individuals members of these categories (such as individual Italians), r
enough to give to the ambulance driver the address of Dr. Sacks’s New York clinic.

Yet in the object-oriented software literature similar confusions are comm
Consider the following extract from a popular book on O-O analysis, which uses
example of an interactive system to discuss how to identify abstractions:

In the same breath this text uses the word objects, user and thing in two meanings
belonging to entirely different levels of abstraction:

• A typical user of the interactive system under discussion. 

• The concept of user in general. 

Although this is probably a slip of terminology (a peccadillo which few people 
claim never to have committed) rather than a true confusion on the authors’ part
unfortunately representative of how some of the literature deals with the model-ins
distinction. If you start the study of a new method with this kind of elementary mix
real or apparent, you are not likely to obtain a rational approach to software constru

The mold and the instance 

Take this book — the copy which you are currently reading. Consider it as an object 
common sense of the term. It has its own individual features: the copy may be brand
or already thumbed by previous readers; perhaps you wrote your name on the first
or it belongs to a library and has a local identification code impressed on its spine. 

The basic properties of the book, however, such as its title, publisher, autho
contents, are determined by a general description which applies to every individual 
the book is entitled Object-Oriented Software Construction, it is published by Prentice
Hall, it talks about the object-oriented method, and so on. This set of properties d
not an object but a class of objects (also called, in this case, the type of these objects; for
the time being the notions of type and class may be considered synonymous). 

Call the class OOSC. It defines a certain mold. Objects built from this mold, such
your copy of the book, are called instances of the class. Another example of mold woul
be the plaster cast that a sculptor makes to obtain an inverted version of the desig
set of identical statues; any statue derived from the cast is an instance of the mold.

[W]e might identify a “User” Object in a problem space where the system
does not need to keep any information about the user. In this case, the system
does not need the usual identification number, name, access privilege, and
the like. However, the system does need to monitor the user, responding to
requests and providing timely information. And so, because of required
Services on behalf of the real world thing (in this case, User), we need to add
a corresponding Object to the model of the problem space.
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Page 163.

See “Instances”, 
page 475.
In the quotation from The Name of the Rose which opens part C, the Master is explaining
how he was able to determine, from traces of the snow, that Brownie, the Abbot’s horse,
earlier walked here. Brownie is an instance of the class of all horses. The sign on the
snow, although imprinted by one particular instance, includes only enough information
to determine the class (horse), not its identity (Brownie). Since the class, like the sign,
identifies all horses rather than a particular horse, the extract calls it a sign too. 

Exactly the same concepts apply to software objects. What you will write in 
software systems is the description of classes, such as a class LINKED_STACK describing
properties of stacks in a certain representation. Any particular execution of your s
may use the classes to create objects (data structures); each such object is derived
class, and is called an instance of that class. For example the execution may creat
linked stack object, derived from the description given in class LINKED_STACK; such an
object is an instance of class LINKED_STACK. 

The class is a software text. It is static; in other words, it exists independently o
execution. In contrast, an object derived from that class is a dynamically created
structure, existing only in the memory of a computer during the execution of a syste

This, of course, is in line with the earlier discussion of abstract data types: w
specifying STACK as an ADT, we did not describe any particular stack, but the gen
notion of stack, a mold from which one can derive individual instances ad libitum. 

The statements “x is an instance of T” and “x is an object of type T” will be
considered synonymous for this discussion. 

With the introduction of inheritance we will need to distinguish between the direct
instances of a class (built from the exact pattern defined by the class) and its instances in
the more general sense (direct instances of the class or any of its specializations).

Metaclasses 

Why would so many books and articles confuse two so clearly different notions as
and object? One reason — although not an excuse — is the appeal of the word “obj
simple term from everyday language. But it is misleading. As we already saw in
discussion of seamlessness, although some of the objects (class instances) whic
systems manipulate are the computer representations of objects in the usual sens
term, such as documents, bank accounts or airplanes, many others have no ex
outside of the software; they include in particular the objects introduced for design
implementation purposes — instances of classes such as STATE or LINKED_LIST. 

Another possible source of confusion between objects and classes is that in
cases we may need to treat classes themselves as objects. This need arises only in
contexts, and is mainly relevant to developers of object-oriented develop
environments. For example a compiler or interpreter for an O-O language will manip
data structures representing classes written in that language. The same would hold o
tools such as a browser (a tool used to locate classes and find out about their prop
or a configuration management system. If you produce such tools, you will create o
that represent classes. 
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“Universal classes”, 
page 580. 

See “The creation 
instruction”, page 
232.
Pursuing an analogy used earlier, we may compare this situation to that of a Prentice Hal
employee who is in charge of preparing the catalog of software engineering titles. For the
catalog writer, OOSC, the concept behind this book, is an object — an instance of a class
“catalog entry”. In contrast, for the reader of the book, that concept is a class, of which
the reader’s particular copy is an instance. 

Some object-oriented languages, notably Smalltalk, have introduced a notio
metaclass to handle this kind of situation. A metaclass is a class whose instance
themselves classes — what the Name of the Rose extract called “signs of signs”. 

We will avoid metaclasses in this presentation, however, since they bring m
problems than benefits. In particular, the addition of metaclasses makes it difficult to
static type checking, a required condition of the production of reliable software. The 
applications of metaclasses are better obtained through other mechanisms anyway

• You can use metaclasses to make a set of features available to many or all c
We will achieve the same result by arranging the inheritance structure so th
classes are descendants of a general-purpose, customizable class ANY, containing
the declarations of universal features. 

• A few operations may be viewed as characterizing a class rather than its insta
justifying their inclusion as features of a metaclass. But these operations are fe
known; the most obvious one is object creation — sufficiently important to des
a special language construct, the creation instruction. (Other such operations
as object duplication, will be covered by features of class ANY.) 

• There remains the use of metaclasses to obtain information about a class, su
browser may need: name of the class, list of features, list of parents, list of sup
etc. But we do not need metaclasses for that. It will suffice to devise a library c
E_CLASS, so that each instance of E_CLASS represents a class and its propertie
When we create such an instance, we pass to the creation instruction an arg
representing a certain class C; then by applying the various features of E_CLASS to
that instance, we can learn all about C. 

In practice, then, we can do without a separate concept of metaclass. But eve
method, language or environment that would support this notion, the presen
metaclasses is no excuse for confusing molds and their instances — classes and o

7.3  THE ROLE OF CLASSES 

Having taken the time to remove an absurd but common and damaging confusion, w
now come back to the central properties of classes, and in particular study why they
important to object technology. 

To understand the object-oriented approach, it is essential to realize that classe
two roles which pre-O-O approaches had always treated as separate: module and 
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See chapter 3.
Modules and types 

Programming languages and other notations used in software development (d
languages, specification languages, graphical notations for analysis) always includ
some module facility and some type system. 

A module is a unit of software decomposition. Various forms of module, suc
routines and packages, were studied in an earlier chapter. Regardless of the exac
of module structure, we may call the notion of module a syntactic concept, since the
decomposition into modules only affects the form of software texts, not what the sof
can do; it is indeed possible in principle to write any Ada program as a single packa
any Pascal program as a single main program. Such an approach is not recommen
course, and any competent software developer will use the module facilities o
language at hand to decompose his software into manageable pieces. But if we t
existing program, for example in Pascal, we can always merge all the modules into a
one, and still get a working system with equivalent semantics. (The presence of rec
routines makes the conversion process less trivial, but does not fundamentally affe
discussion.) So the practice of decomposing into modules is dictated by sound engin
and project management principles rather than intrinsic necessity. 

Types, at first sight, are a quite different concept. A type is the static descripti
certain dynamic objects: the various data elements that will be processed durin
execution of a software system. The set of types usually includes predefined types s
INTEGER and CHARACTER as well as developer-defined types: record types (a
known as structure types), pointer types, set types (as in Pascal), array types and
The notion of type is a semantic concept, since every type directly influences t
execution of a software system by defining the form of the objects that the system
create and manipulate at run time. 

The class as module and type 

In non-O-O approaches, the module and type concepts remain distinct. The
remarkable property of the notion of class is that it subsumes these two concepts, m
them into a single linguistic construct. A class is a module, or unit of softw
decomposition; but it is also a type (or, in cases involving genericity, a type pattern)

Much of the power of the object-oriented method derives from this identificat
Inheritance, in particular, can only be understood fully if we look at it as providing 
module extension and type specialization. 

What is not clear yet is how it is possible in practice to unify two concepts whic
appear at first so distant. The discussion and examples in the rest of this chapt
answer this question. 
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7.4  A UNIFORM TYPE SYSTEM 

An important aspect of the O-O approach as we will develop it is the simplicity 
uniformity of the type system, deriving from a fundamental property:

The Object rule will apply not just to composite, developer-defined objects (suc
data structures with several fields) but also to basic objects such as integers, real nu
boolean values and characters, which will all be considered to be instances of pred
library classes (INTEGER, REAL, DOUBLE, BOOLEAN, CHARACTER). 

This zeal to make every possible value, however simple, an instance of some
may at first appear exaggerated or even extravagant. After all, mathematician
engineers have used integers and reals successfully for a long time, without knowin
were manipulating class instances. But insisting on uniformity pays off for several rea

• It is always desirable to have a simple and uniform framework rather than m
special cases. Here the type system will be entirely based on the notion of clas

• Describing basic types as ADTs and hence as classes is simple and natural. I
hard, for example, to see how to define the class INTEGER with features covering
arithmetic operations such as "+ " , comparison operations such as "<=", and the
associated properties, derived from the corresponding mathematical axioms.

• By defining the basic types as classes, we allow them to take part in all the
games, especially inheritance and genericity. If we did not treat the basic typ
classes, we would have to introduce severe limitations and many special case

As an example of inheritance, classes INTEGER, REAL and DOUBLE will be heirs to more
general classes: NUMERIC, introducing the basic arithmetic operations such as "+ ", "–"
and "✳", and COMPARABLE, introducing comparison operations such as "<". As an
example of genericity, we can define a generic class MATRIX whose generic parameter
represents the type of matrix elements, so that instances of MATRIX[INTEGER] represent
matrices of integers, instances of MATRIX [REAL] represent matrices of reals and so on. As
an example of combining genericity with inheritance, the preceding definitions also allow
us to use the type MATRIX[NUMERIC], whose instances represent matrices containing
objects of type INTEGER as well as objects of type REAL and objects of any new type T
defined by a software developer so as to inherit from NUMERIC. 

With a good implementation, we do not need to fear any negative consequence
the decision to define all types from classes. Nothing prevents a compiler from h
special knowledge about the basic classes; the code it generates for operations on
of types such as INTEGER and BOOLEAN can then be just as efficient as if these we
built-in types in the language. 

Object rule

Every object is an instance of some class.
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A point and its 
coordinates

The name translate 
refers to the “trans-
lation” operation of 
geometry.
Reaching the goal of a fully consistent and uniform type system requires
combination of several important O-O techniques, to be seen only later: expanded c
to ensure proper representation of simple values; infix and prefix operators, to e
usual arithmetic syntax (such as a < b or –a rather than the more cumbersome a● less_
than(b) or a● negated); constrained genericity, needed to define classes which ma
adapted to various types with specific operations, for example a class MATRIX that can
represent matrices of integers as well as matrices of elements of other numeric typ

7.5  A SIMPLE CLASS 

Let us now see what classes look like by studying a simple but typical example, w
shows some of the fundamental properties applicable to almost all classes. 

The features 

The example is the notion of point, as it could appear in a two-dimensional graphics sy

To characterize type POINT as an abstract data type, we would need the four qu
functions x, y, ρ, θ. (The names of the last two will be spelled out as rho and theta in
software texts.) Function x gives the abscissa of a point (horizontal coordinate), y its
ordinate (vertical coordinate), ρ its distance to the origin, θ the angle to the horizontal axis
The values of x and y for a point are called its cartesian coordinates, those of ρ and θ its
polar coordinates. Another useful query function is distance, which will yield the distance
between two points. 

Then the ADT specification would list commands such as translate (to move a point
by a given horizontal and vertical displacement), rotate (to rotate the point by a certain
angle, around the origin) and scale (to bring the point closer to or further from the orig
by a certain factor). 

It is not difficult to write the full ADT specification including these functions a
some of the associated axioms. For example, two of the function signatures will be

x: POINT → REAL
translate: POINT × REAL × REAL → POINT

and one of the axioms will be (for any point p and any reals a, b): 

x (translate (p1, a, b)) = x (p1) + a 

expressing that translating a point by <a, b> increases its abscissa by a.

θ

ρ
p1

x

y
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“Function catego-
ries”, page 134.

Representing a
point in 
cartesian 
coordinates

Representing a
point in polar 
coordinates
You may wish to complete this ADT specification by yourself. The rest of t
discussion will assume that you have understood the ADT, whether or not you 
written it formally in full, so that we can focus on its implementation — the class. 

Attributes and routines 

Any abstract data type such as POINT is characterized by a set of functions, describing 
operations applicable to instances of the ADT. In classes (ADT implementatio
functions will yield features — the operations applicable to instances of the class. 

We have seen that ADT functions are of three kinds: queries, commands
creators. For features, we need a complementary classification, based on how each
is implemented: by space or by time. 

The example of point coordinates shows the difference clearly. Two com
representations are available for points: cartesian and polar. If we choose car
representation, each instance of the class will contain two fields representing the x and y
of the corresponding point:

If p1 is the point shown, getting its x or its y simply requires looking up the
corresponding field in this structure. Getting ρ or θ, however, requires a computation: fo

ρ we must compute , and for θ we must compute arctg (y/x) with non-zero x. 

If we use polar representation, the situation is reversed: ρ and θ are now accessible
by simple field lookup, x and y require small computations (of ρ cos θ and ρ sin θ).

This example shows the need for two kinds of feature: 

• Some features will be represented by space, that is to say by associating a 
piece of information with every instance of the class. They will be called attributes.
For points, x and y are attributes in cartesian representation; rho and theta are
attributes in polar representation. 

 

 x

y

(CARTESIAN_POINT)

x
2

y
2

+

 
rho

theta

(POLAR_POINT)
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• Some features will be represented by time, that is to say by defining a ce

computation (an algorithm) applicable to all instances of the class. They wi

called routines. For points, rho and theta are routines in cartesian representationx

and y are routines in polar representation. 

A further distinction affects routines (the second of these categories). Some ro

will return a result; they are called functions. Here x and y in polar representation, as we

as rho and theta in cartesian representation, are functions since they return a result, o

REAL. Routines which do not return a result correspond to the commands of an 

specification and are called procedures. For example the class POINT will include

procedures translate, rotate and scale. 

Be sure not to confuse the use of “function” to denote result-returning routines in classes

with the earlier use of this word to denote the mathematical specifications of operations
in abstract data types. This conflict is unfortunate, but follows from well-established

usage of the word in both the mathematics and software fields.

The following tree helps visualize this classification of features:

This is an external classification, in which the principal question is how a feature

look to its clients (its users).

We can also take a more internal view, using as primary criterion how each fe

is implemented in the class, and leading to a different classification:

Procedure

Function

Function Attribute

Returns result: QueryNo result: Command

No argumentArguments

Computation Memory

Feature

ROUTINE
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See “Uniform 
Access”, page 55.
Uniform  access 

One aspect of the preceding classifications may at first appear disturbing and has p
caught your attention. In many cases, we should be able to manipulate object
example a point p1, without having to worry about whether the internal representation
p1 is cartesian, polar or other. Is it appropriate, then, to distinguish explicitly betw
attributes and functions? 

The answer depends on whose view we consider: the supplier’s view (as seen
author of the class itself, here POINT) or the client’s view (as seen by the author of a cla
that uses POINT). For the supplier, the distinction between attributes and function
meaningful and necessary, since in some cases you will want to implement a feat
storage and in others by computation, and the decision must be reflected some
What would be wrong, however, would be to force the clients to be aware of the
difference. If I am accessing p1, I want to be able to find out its x or its ρ without having
to know how such queries are implemented. 

The Uniform Access principle, introduced in the discussion of modularity, answ
this concern. The principle states that a client should be able to access a property
object using a single notation, whether the property is implemented by memory 
computation (space or time, attribute or routine). We shall follow this important princ
in devising a notation for feature call below: the expression denoting the value of x
feature for p1 will always be 

p1●x

whether its effect is to access a field of an object or to execute a routine.

As you will have noted, the uncertainty can only exist for queries without arguments,
which may be implemented as functions or as attributes. A command must be a procedure
a query with arguments must be a function, since attributes cannot have arguments. 

Procedure

Routine

Function

Attribute

Returns resultNo result

Computation Memory

Feature
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“Using assertions 
for documentation: 
the short form of a 
class”, page 389.
The Uniform Access principle is essential to guarantee the autonomy o
components of a system. It preserves the class designer’s freedom to experimen
various implementation techniques without disturbing the clients. 

Pascal, C and Ada violate the principle by providing a different notation for a function
call and for an attribute access. For such non-object-oriented languages this is
understandable (although we have seen that Algol W, a 1966 predecessor to Pasca
satisfied uniform access). More recent languages such as C++ and Java also do no
enforce the principle. Departing from Uniform Access may cause any internal
representation change (such as the switch from polar to cartesian or some othe
representation) to cause upheaval in many client classes. This is a primary source o
instability in software development. 

The Uniform Access principle also yields a requirement on documenta
techniques. If we are to apply the principle consistently, we must ensure that it i
possible to determine, from the official documentation on a class, whether a query w
arguments is a function or an attribute. This will be one of the properties of the sta
mechanism for documenting a class, known as the short form. 

The class 

Here is a version of the class text for POINT. (Any occurrence of consecutive dashes--
introduces a comment, which extends to the end of the line; comments are explan
intended for the reader of the class text and do not affect the semantics of the class

indexing

description: "Two-dimensional points"

class POINT feature 

x, y: REAL

-- Abscissa and ordinate

rho: REAL is
-- Distance to origin (0, 0) 

do
Result := sqrt (x ^ 2 + y ^ 2)

end

theta: REAL is 

-- Angle to horizontal axis
do

…Left to reader (exercise E7.3, page 216) º

end
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distance (p: POINT): REAL is
-- Distance to p

do
Result := sqrt ((x – p●x) ^ 2 + (y – p● y) ^ 2)

end

translate (a, b: REAL) is
-- Move by a horizontally, b vertically.

do
x := x + a

y := y + b
end

scale (factor: REAL) is
-- Scale by factor.

do
x := factor ✳ x
y := factor ✳ y

end

rotate (p: POINT; angle: REAL) is
-- Rotate around p by angle.

do
…Left to reader (exercise E7.3, page 216) …

end

end

The next few sections explain in detail the non-obvious aspects of this class te

The class mainly consists of a clause listing the various features and introduc
the keyword feature. There is also an indexing clause giving general description
information, useful to readers of the class but with no effect on its execution sema
Later on we will learn three optional clauses: inherit  for inheritance, creation for non-
default creation and invariant  for introducing class invariants; we will also see how 
include two or more feature clauses in one class.

7.6  BASIC CONVENTIONS 

Class POINT shows a number of techniques which will be used throughout later exam
Let us first look at the basic conventions. 

Recognizing feature kinds

Features x and y are just declared as being of type REAL, with no associated algorithm; so
they can only be attributes. All other features have a clause of the form 
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is
do

… Instructions…
end

which defines an algorithm; this indicates the feature is a routine. Routines rho, theta and
distance are declared as returning a result, of type REAL in all cases, as indicated b
declarations of the form

rho: REAL is …

This defines them as functions. The other two, translate and scale, do not return a
result (since they do not have a result declaration of the form :T for some type T), and so
they are procedures. 

Since x and y are attributes, while rho and theta are functions, the representatio
chosen in this particular class for points is cartesian. 

Routine bodies and header comments

The body of a routine (the do clause) is a sequence of instructions. You can 
semicolons, in the Algol-Pascal tradition, to separate successive instructions
declarations, but the semicolons are optional. We will omit them for simplicity betw
elements on separate lines, but will always include them to delimit instruction
declarations appearing on the same line.

All the instructions in the routines of class POINT are assignments; for assignmen
the notation uses the := symbol (again borrowed from the Algol-Pascal conventions). T
symbol should of course not be confused with the equality symbol =, used, as in
mathematics, as a comparison operator. 

Another convention of the notation is the use of header comments. As already 
comments are introduced by two consecutive dashes --. They may appear at any place 
a class text where the class author feels that readers will benefit from an explanat
special role is played by the header comment which, as a general style rule, should appe
at the beginning of every routine, after the keyword is, indented as shown by the example
in class POINT. Such a header comment should tersely express the purpose of the ro

Attributes should also have a header comment immediately following t
declaration, aligned with routine’s header comments, as illustrated here with x and y.

The indexing clause

At the beginning of the class comes a clause starting with the keyword indexing. It
contains a single entry, labeled description. The indexing clause has no effect on softwa
execution, but serves to associate information with the class. In its general form it co
zero or more entries of the form

index_word: index_value, index_value, …

where the index_word is an arbitrary identifier, and each index_value is an arbitrary
language element (identifier, integer, string…).
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The benefit is twofold:

• Readers of the class get a summary of its properties, without having to see the d

• In a software development environment supporting reuse, query tools (often k
as browsers) can use the indexing information to help potential users find out ab
available classes; the tools can let the users enter various search words and
them with the index words and values.

The example has a single indexing entry, with description as index word and, as
index value, a string describing the purpose of the class. All classes in this book, sa
short examples, will include a description entry. You are strongly encouraged to follow
this example and begin every class text with an indexing clause providing a concise
overview of the class, in the same way that every routine begins with a header com

Both indexing clauses and header comments are faithful applications of the 
Documentation principle: as much as possible of a module’s documentation should a
in the text of the module itself.

Denoting a function’s result 

We need another convention to understand the texts of the functions in class POINT: rho,
theta and distance. 

Any language that supports functions (value-returning routines) must offe
notation allowing the body of a function to set the value which will be returned by
particular call. The convention used here is simple: it relies on a predefined entity n
Result, denoting the value that the call will return. For example, the body of rho contains
an assignment to Result: 

Result := sqrt (x ^ 2 + y ^ 2)

Result is a reserved word, and may only appear in functions. In a function dec
as having a result of type T, Result is treated in the same way as other entities, and ma
assigned values through assignment instructions such as the above. 

Any call to the function will return, as its result, the final value assigned to Result
during the call’s execution. That value always exists since language rules (to be s
detail later) require every execution of the routine, when it starts, to initialize Result to a
preset value. For a REAL the initialization value is zero; so a function of the form 

non_negative_value (x: REAL): REAL is
-- The value of x if positive; zero otherwise.

do
if  x > 0.0 then

Result := x
end

end
will always return a well-defined value (as described by the header comment) even th
the conditional instruction has no else part. 

l 
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Chapter 26 is 
devoted to style 
rules.
The discussion section of this chapter examines the rationale behind the Result
convention and compares it with other techniques such as return instructions. Alth
this convention addresses an issue that arises in all design and programming langu
blends particularly well with the rest of the object-oriented approach. 

Style rules

The class texts in this book follow precise style conventions regarding indentation,
(for typeset output), choice of names for features and classes, use of lower and upp

The discussion will point out these conventions, under the heading “style rules
we go along. They should not be dismissed as mere cosmetics: quality software re
consistency and attention to all details, of form as well as of content. The reusability
makes these observations even more important, since it implies that software tex
have a long life, during which many people will need to understand and improve the

You should apply the style rules right from the time you start writing a class.
example you should never write a routine without immediately including its he
comment. This does not take long, and is not wasted time; in fact it is time saved 
future work on the class, whether by you or by others, whether after half an hour or
half a decade. Using regular indentation, proper spelling for comments and ident
adequate lexical conventions — a space before each opening parenthesis but not af
so on — does not make your task any longer than ignoring these rules, but compo
over months of work and heaps of software produces a tremendous difference. Att
to such details, although not sufficient, is a necessary condition for quality software
quality, the general theme of this book, is what defines software engineering).

The elementary style rules are clear from the preceding class example. Sinc
immediate goal is to explore the basic mechanisms of object technology, their p
description will only appear in a later chapter.

Inheriting general-purpose facilities 

Another aspect of class POINT which requires clarification is the presence of calls to 
sqrt function (in rho and distance). This function should clearly return the square root
a real number, but where does it come from? 

Since it does not seem appropriate to encumber a general-purpose languag
specialized arithmetic operations, the best technique is to define such operatio
features of some specialized class — say ARITHMETIC — and then simply require any
class that needs these facilities to inherit from the specialized class. As will be se
detail in a later chapter, it suffices then to write POINT as 

class POINT inherit
ARITHMETIC

feature
… The rest as before …

end
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This technique of inheriting general-purpose facilities is somewhat controversial; one can
argue that O-O principles suggest making a function such as sqrt a feature of the class
representing the object to which it applies, for example REAL. But there are many
operations on real numbers, not all of which can be included in the class. Square root may
be sufficiently fundamental to justify making it a feature of class REAL; then we would
write a● sqrt rather than sqrt (x). We will return, in the discussion of design principles, to
the question of whether “facilities” classes such as ARITHMETIC are desirable.

7.7  THE OBJECT-ORIENTED STYLE OF COMPUTATION

Let us now move to the fundamental properties of class POINT by trying to understand a
typical routine body and its instructions, then studying how the class and its feature
be used by other classes — clients. 

The current instance 

Here again is the text of one of our example routines, procedure translate: 

translate (a, b: REAL) is

-- Move by a horizontally, b vertically

do

x := x + a

y := y + b

end

At first sight this text appears clear enough: to translate a point by a horizontally, b
vertically, we add a to its x and b to its y. But if you look at it more carefully, it may no
be so obvious anymore! Nowhere in the text have we stated what point we were ta
about. To whose x and whose y are we adding a and b? In the answer to this question wi
lie one of the most distinctive aspects of the object-oriented development style. Befo
are ready to discover that answer we must understand a few intermediate topics.

A class text describes the properties and behavior of objects of a certain type, 
in this example. It does so by describing the properties and behavior of a typical ins
of that type — what we could call the “point in the street” in the way newspapers re
the opinion of the “man or woman in the street”. We will settle for a more formal na
the current instance of the class.

Once in a while, we may need to refer to the current instance explicitly. 
reserved word 

Current

will serve that purpose. In a class text, Current denotes the current instance of the enclosi
class. As an example of when Current is needed, assume we rewrite distance so that it
checks first whether the argument p is the same point as the current instance, in which c
the result is 0 with no need for further computation. Then distance will appear as 
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distance (p: POINT): REAL is

-- Distance to p

do

if p /= Current then

Result := sqrt ((x — p●x) ^ 2 + (y — p●y) ^ 2)

end

end

(/= is the inequality operator. Because of the initialization rule mentioned above
conditional instruction does not need an else part: if p = Current the result is zero.) 

In most circumstances, however, the current instance is implicit and we will not 
to refer to Current by its name. For example, references to x in the body of translate and
the other routines simply mean, if not further qualified: “the x of the current instance”. 

This only pushes back the mystery, of course: “who” really is Current? The answer
will come with the study of routine calls below. As long as we only look at the routine 
it will suffice to know that all operations are relative, by default, to an implicitly defin
object, the current instance. 

Clients and suppliers 

Ignoring for a few moments the enigma of Current’s identity, we know how to define
simple classes. We must now study how to use their definitions. Such uses will be in
classes — since in a pure object-oriented approach every software element is part o
class text. 

There are only two ways to use a class such as POINT. One is to inherit from it; this
is studied in detail in later chapters. The other one is to become a client of POINT. 

The simplest and most common way to become a client of a class is to decla
entity of the corresponding type:

In this definition, a may be an attribute or function of C, or a local entity or argumen
of a routine of C. 

For example, the declarations of x, y, rho, theta and distance above make class POINT
a client of REAL. Other classes may in turn become clients of POINT. Here is an example:

Definition: client, supplier

Let S be a class. A class C which contains a declaration of the form a: S is
said to be a client of S. S is then said to be a supplier of C. 
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class GRAPHICS feature
p1: POINT

…

some_routine is
-- Perform some actions with p1.

do
… Create an instance of POINT and attach it to p1 …
p1● translate (4.0, –1.5) --✳✳

…
end

…
end

Before the instruction marked --✳✳ gets executed, the attribute p1 will have a value
denoting a certain instance of class POINT. Assume that this instance represents t
origin, of coordinates x = 0, y = 0: 

Entity p1 is said to be attached to this object. We do not worry at this point abo
how the object has been created (by the unexplained line that reads “…Create object…”)
and initialized; such topics will be discussed as part of the object model in the next ch
Let us just assume that the object exists and that p1 is attached to it. 

Feature call 

The starred instruction, 

p1●translate (4.0, –1.5)

deserves careful examination since it is our first complete example of what may be 
the basic mechanism of object-oriented computation: feature call. In the execution o
an object-oriented software system, all computation is achieved by calling certain fea
on certain objects. 

This particular feature call means: apply to p1 the feature translate of class POINT,
with arguments 4.0 and –1.5, corresponding to a and b in the declaration of translate as it
appears in the class. More generally, a feature call appears in its basic form as one

x● f
x● f (u, v, …)

x

y

(POINT)

0.0

0.0
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In such a call, x, called the target of the call, is an entity or expression (which at ru
time will be attached to a certain object). As any other entity or expression, x has a certain
type, given by a class C; then f must be one of the features of C. More precisely, in the first
form, f must be an attribute or a routine without arguments; in the second form, f must be
a routine with arguments, and u, v, …, called the actual arguments for the call, must be
expressions matching in type and number the formal arguments declared for f in C. 

In addition, f must be available (exported) to the client containing this call. Thi
the default; a later section will show how to restrict export rights. For the momen
features are available to all clients. 

The effect of the above call when executed at run time is defined as follows:

The Single Target principle

What is so special about feature call? After all, every software developer knows h
write a procedure translate which moves a point by a certain displacement, and is ca
in the traditional form (available, with minor variants, in all programming languages

translate (p1, 4.0, –1.5)

Unlike the object-oriented style of feature call, however, this call treats all argum
on an equal basis. The O-O form has no such symmetry: we choose a certain objec
the point p1) as target, relegating the other arguments, here the real numbers 4.0 and –1.5,
to the role of supporting cast. This way of making every call relative to a single t
object is a central part of the object-oriented style of computing:

To novices, this is often the most disconcerting aspect of the method. In ob
oriented software construction, we never really ask: “Apply this operation to these obj
Instead we say: “Apply this operation to this object here.” And perhaps (in the secon
form): “Oh, by the way, I almost forgot, you will need those values there as argumen

What we have seen so far does not really suffice to justify this convention; in fa
negative consequences will, for a while, overshadow its advantages. An examp
counter-intuitive effect appears with the function distance of class POINT, declared above
as distance (p: POINT): REAL, implying that a typical call will be written 

p1● distance (p2)

Effect of calling a feature f on a target x

Apply feature f to the object attached to x, after having initialized each formal
argument of f (if any) to the value of the corresponding actual argument.

Single Target principle

Every operation of object-oriented computation is relative to a certain object,
the current instance at the time of the operation’s execution.
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which runs against the perception of distance as a symmetric operation on two argumen
Only with the introduction of inheritance will the Single Target principle be fully
vindicated. 

The module-type identification 

The Single Target principle is a direct consequence of the module-type merge, pre
earlier as the starting point of object-oriented decomposition: if every module is a 
then every operation in the module is relative to a certain instance of that type (the c
instance). Up to now, however, the details of that merge remained a little mysterio
class, it was said above, is both a module and a type; but how can we reconc
syntactic notion of module (a grouping of related facilities, forming a part of a softw
system) with the semantic notion of type (the static description of certain possible
time objects)? The example of POINT makes the answer clear:

This identification between the operations on instances of a type and the se
provided by a module lies at the heart of the structuring discipline enforced by the o
oriented method. 

The role of Current 

With the help of the same example, we are now also in a position to clear the rem
mystery: what does the current instance really represent? 

The form of calls indicates why the text of a routine (such as translate in POINT)
does not need to specify “who” Current is: since every call to the routine will be relativ
to a certain target, specified explicitly in the call, the execution will treat every fea
name appearing in the text of the routine (for example x in the text of translate) as applying
to that particular target. So for the execution of the call 

p1●translate (4.0, –1.5)

every occurrence of x in the body of translate, such as those in the instruction 

x := x + a

means: “the x of p1”. 

The exact meaning of Current follows from these observations. Current means: “the
target of the current call”. For example, for the duration of the above call, Current will
denote the object attached to p1. In a subsequent call, Current will denote the target of that
new call. That this all makes sense follows from the extreme simplicity of the ob
oriented computation model, based on feature calls and on the Single Target princi

How the module-type merge works

The facilities provided by class POINT, viewed as a module, are precisely
the operations available on instances of class POINT, viewed as a type.
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Qualified and unqualified calls 

It was said above that all object-oriented computation relies on feature call
consequence of this rule is that software texts actually contain more calls than me
eye at first. The calls seen so far were of one of the two forms introduced above: 

x● f
x● f (u, v, …)

Such calls use so-called dot notation (with the “●” symbol) and are said to be
qualified  because the target of the call is explicitly identified: it is the entity or expression
(x in both cases above) that appears before the dot. 

Other calls, however, will be unqualified because their targets are implicit. A
example, assume that we want to add to class POINT a procedure transform that will both
translate and scale a point. The procedure’s text may rely on translate and scale: 

transform (a, b, factor: REAL) is
-- Move by a horizontally, b vertically, then scale by factor.

do
translate (a, b)
scale ( factor)

end

The routine body contains calls to translate and scale. Unlike the earlier examples
these calls do not show an explicit target, and do not use dot notation. Such calls a
to be unqualified . 

Unqualified calls do not violate the property called F2 in the Feature Call principle:
like qualified calls, they have a target. As you have certainly guessed, the target in th
is the current instance. When procedure transform is called on a certain target, its bod
calls translate and scale on the same target. It could in fact have been written

do
Current● translate (a, b)
Current● scale ( factor)

More generally, you may rewrite any unqualified call as a qualified call with Current
as its target. The unqualified form is of course simpler and just as clear. 

The unqualified calls that we have just examined were calls to routines. The 
discussion applies to attributes, although the presence of calls is perhaps less obv
this case. It was noted above that, in the body of translate, the occurrence of x in the
expression x + a denotes the x field of the current instance. Another way of expressing t

Feature Call principle

F1 • No software element ever gets executed except as part of a routine call. 

F2 • Every call has a target.

S
e
a
i
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property is that x is actually a feature call, so that the expression as a whole could 
been written as Current● x + a. 

More generally, any instruction or expression of one of the forms 

f

f (u, v, …)

is in fact an unqualified call, and you may also write it in qualified form as (respectiv

Current● f

Current● f (u, v, …)

although the unqualified forms are more convenient. If you use such a notation 
instruction, f must be a procedure (with no argument in the first form, and with 
appropriate number and types of arguments in the second). If it is an expression, f may be
an attribute (in the first form only, since attributes have no arguments) or a function

Be sure to note that this syntactical equivalence only applies to a feature used
instruction or an expression. So in the following assignment from procedure translate 

x := x + a

only the occurrence of x on the right-hand side is an unqualified call: a is a formal
argument, not a feature; and the occurrence of x on the left is not an expression (one cann
assign a value to an expression), so it would be meaningless to replace it by Current● x.

Operator features 

A further look at the expression x + a leads to a useful notion: operator features. Th
notion (and the present section) may be viewed as pure “cosmetics”, that is to
covering only a syntactical facility without bringing anything really new to the obje
oriented method. But such syntactical properties can be important to make develope
easier if they are present — or miserable if they are absent. Operator features also p
a good example of how successful the object-oriented paradigm can be at integ
earlier approaches smoothly.

Here is the idea. Although you may not have guessed it, the expression x + a contains
not just one call — the call to x, as just seen — but two. In non-O-O computation, w
would consider +  as an operator, applied here to two values x and a, both declared of type
REAL. In a pure O-O model, as noted, the only computational mechanism is feature
so you may consider the addition itself, at least in theory, to be a call to an addition fe

To understand this better, consider how we could define the type REAL. The Object
rule stated earlier implied that every type is based on some class. This appl
predefined types such as REAL as well as developer-defined types such as POINT.
Assume you are requested to write REAL as a class. It is not hard to identify the releva
features: arithmetic operations (addition, subtraction, negation…), comparison operations
(less than, greater than…). So a first sketch could appear as:
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class REAL feature 
 plus (other: REAL): REAL is

-- Sum of current value and other
do

…
end

minus (other: REAL) REAL is
-- Difference of current value and other

do
…

end

negated: REAL is
-- Current value but with opposite sign

do
…

end

less_than (other: REAL): BOOLEAN is
-- Is current value strictly less than other?

do
…

end

… Other features … 
end
With such a form of the class, you could not write an arithmetic expression su

x + a any more; instead, you would use a call of the form 

x● plus (a)

Similarly, you would have to write x● negated instead of the usual –x. 

One might try to justify such a departure from usual mathematical notation o
grounds of consistency with the object-oriented model, and invoke the example of L
suggest that it is sometimes possible to convince a subset of the software develo
community to renounce standard notation. But this argument contains it owns limita
usage of Lisp has always remained marginal. It is rather dangerous to go against no
which have been in existence for centuries, and which people have been using
elementary school, especially when there is nothing wrong with these notations.

A simple syntactical device reconciles the desire for consistency (requiring h
single computational mechanism based on feature call) and the need for compatibilit
traditional notations. It suffices to consider that an expression of the form 

x + a

is in fact a call to the addition feature of class REAL; the only difference with the plus
feature suggested above is that we must rewrite the declaration of the correspo
feature to specify that calls will use operator notation rather than dot notation. 
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Here is the form of a class that achieves this goal: 

indexing
description: "Real numbers"

class REAL feature
infix  "+ " (other: REAL): REAL is

-- Sum of current value and other
do

…
end

infix  "–" (other: REAL) REAL is
-- Difference of current value and other

do
…

end
prefix  "–": REAL is

-- Current value but with opposite sign
do

…
end

infix  "<"  (other: REAL): BOOLEAN is
-- Is current value strictly less than other?

do
…

end
… Other features …

end

Two new keywords have been introduced: infix  and prefix . The only syntactical
extension is that from now on we may choose feature names which, instead of iden
(such as distance or plus), are of one of the two forms 

infix  "§"
prefix  "§"

where § stands for an operator symbol chosen from a list which includes + , –, ✳, <, <=
and a few other possibilities listed below. A feature may have a name of the infix  form
only if it is a function with one argument, such as the functions called plus, minus and less_
than in the original version of class REAL; it may have a name of the prefix  form only if
it is a function with no argument, or an attribute. 

Infix and prefix features, collectively called operator features, are treated exactly
like other features (called identifier features) with the exception of the two syntactica
properties already seen: 

• The name of an operator feature as it appears in the feature’s declaration is 
form infix  "§" or prefix  "§", rather than an identifier. 

• Calls to operator features are of the form u § v (in the infix case) or § u (in the prefix
case) rather than using dot notation. 

s 
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As a consequence of the second property, operator features only support qu
calls. If a routine of class REAL contained, in the first version given earlier, an unqualifi
call of the form plus (y), yielding the sum of the current number and y, the corresponding
call will have to be written Current + y in the second version. With an identifier featur
the corresponding notation, Current● plus (y), is possible but we would not normally us
it in practice since it is uselessly wordy. With an operator feature we do not have a c

Other than the two syntactical differences noted, operator features are 
equivalent to identifier features; for example they are inherited in the same way.
class, not just the basic classes such as REAL, can use operator features; for example
may be convenient in a class VECTOR to have a vector addition function called infix  "+ " . 

The following rule will apply to the operators used in operator features. An ope
is a sequence of one or more printable characters, containing no space or newlin
beginning with one of

+ – ✳ / < > = \ ^ @ # | &

In addition, the following keywords, used for compatibility with usual boole
notation, are permitted as operators:

not and or xor and then or else implies

In the non-keyword case, the reason for restricting the first character is to pre
the clarity of software texts by ensuring that any use of an infix or prefix operat
immediately recognizable as such from its first character.

Basic classes (INTEGER etc.) use the following, known as standard operators:

• Prefix: + – not. 

• Infix: + – ✳ / < > <= >= // \\ ^ and or xor and then or else implies. 

The semantics is the usual one. // is used for integer division, \\ for integer remainder, ^
as the power operation, xor as exclusive or. In class BOOLEAN, and then and or else are
variants of and and or , the difference being explained in a later chapter, and implies is
the implication operator, such that a implies b is the same as (not a) or else b.

Operators not in the “standard” list are called free operators. Here are two exa
of possible operator features using free operators: 

• When we later introduce an ARRAY class, we will use the operator feature infix  "@"
for the function that returns an array element given by its index, so that thei-th
element of an array a may be written simply as a @ i. 

• In class POINT, we could have used the name infix  "|–|" instead of distance, so that
the distance between p1 and p2 is written p1 |–| p2 instead of p1● p2. 

The precedence of all operators is fixed; standard operators have their 
precedence, and all free operators bind tighter than standard operators. 

The use of operator features is a convenient way to maintain compatibility with 
accepted expression notation while ensuring the goal of a fully uniform type syste
stated by the Object Rule) and of a single fundamental mechanism for computation.
same way that treating INTEGER and other basic types as classes does not need to c
any performance problem, treating arithmetic and boolean operations as features d
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need to affect efficiency. Conceptually, a + x is a feature call; but any good compiler wi
know about the basic types and their features, and will be able to handle such a ca
to generate code at least as good as the code generated for a + x in C, Pascal, Ada or any
other language in which +  is a special hard-wired language construct. 

When using operators such as + , < and others in expressions, we may forget, m
of the time, that they actually stand for feature calls; the effect of these operators is th
we would expect in traditional approaches. But it is pleasant to know that, thanks 
theoretical context of their definition, they do not cause any departure from ob
oriented principles, and fit in perfectly with the rest of the method. 

7.8  SELECTIVE EXPORTS AND INFORMATION HIDING

In the examples seen so far all the features of a class were exported to all possible 
This is of course not always acceptable; we know from earlier discussion how impo
information hiding is to the design of coherent and flexible architectures. 

Let us take a look at how we can indeed restrict features to no clients, or to 
clients only. This section only introduces the notation; the chapter on the design of
interfaces will discuss its proper use.

Full disclosure

By default, as noted, features declared without any particular precaution are availa
all clients. In a class of the form 

class S1 feature

f …

g …
…

end

features f, g, … are available to all clients of S1. This means that in a class C, for an entity
x declared of type S1, a call

x● f …

is valid, provided the call satisfies the other validity conditions on calls to f, regarding the
number and types of arguments if any. (For simplicity the discussion will use iden
features as examples, but it applies in exactly the same way to operator features, for
the clients will use calls in infix or prefix form rather than dot notation.)

Restricting client access

To restrict the set of clients that can call a certain feature h, we will use the possibility for
a class to have two or more feature clauses. The class will then be of the form 
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class S2 feature

f …
g …

feature { A, B}

h …
…

end

Features f and g have the same status as before: available to all clients. Featurh is
available only to A and B, and to their descendants (the classes that inherit directl
indirectly from A or B). This means that with x declared of type S2 a call of the form 

x● h …

is invalid unless it appears in the text of A, B, or one of their descendants. 

As a special case, if you want to hide a feature i from all clients, you may declare i
as exported to an empty list of clients: 

class S3 feature { }

i …
end

In this case a call of the form x● i (…) is always invalid. The only permitted calls t
i are unqualified calls of the form 

i (…)

appearing in the text of a routine of S3 itself, or one of its descendants. This mechani
ensures full information hiding. 

The possibility of hiding a feature from all clients, as illustrated by i, is present in
many O-O languages. But most do not offer the selective mechanism illustrated h:
exporting a feature to certain designated clients and their proper descendants. T
regrettable since many applications will need this degree of fine control. 

 The discussion section of the present chapter explains why selective exports
critical part of the architectural mechanisms of the object-oriented approach, avoidin
need for “super-modules” that would hamper the simplicity of the method.

We will encounter various examples of selective exports in subsequent chapter
will study their methodological role in the design of good modular interfaces.

Style for declaring secret features

A small point of style. A feature declared in the form used above for i is secret, but perhaps
this property does not stand out strongly enough from the syntax. In particular
difference with a public feature may not be visible enough, as in 
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class S4 feature
exported…

feature {  }

secret …

end

where feature exported is available to all clients whereas secret is available to no client.
The difference between feature {  } , with an empty list in braces, and feature, with no
braces, is a little weak. For that reason, the recommended notation uses not an em
but a list consisting of the single class NONE, as in 

class S5 feature
… Exported …

feature { NONE}
… Secret …

end

Class NONE, which will be studied in a later chapter in connection with inheritan
is a Base library class which is so defined as to have no instances and no descenda
exporting a feature to NONE only is, for all practical purposes, the same as keepin
secret. As a result there is no meaningful difference between the forms illustrated S4
and S5; for reasons of clarity and readability, however, the second form is preferred
will be employed in the rest of this book whenever we need to introduce a secret fea

Exporting to yourself

A consequence of the rules seen so far is that a class may have to export a secret 
Assume the declaration

indexing
note: " Invalid as it stands (see explanations below)"

class S6 feature
x: S6
my_routine is do … print (x● secret) … end

feature { NONE}
secret: INTEGER

end -- class S6

By declaring x of type S6 and making the call x● secret, the class becomes its ow
client. But this call is invalid, since secret is exported to no class! That the unauthoriz
client is S6 itself does not make any difference: the { NONE}  export status of secret makes
any call x● secret invalid. Permitting exceptions would damage the simplicity of the ru

The solution is simple: instead of feature {NONE}  the header of the second feature
clause should read feature { S6} , exporting the feature to the class itself and its descenda

Be sure to note that this is only needed if you want to use the feature in a qua
call such as appears in print (x● secret). If you are simply using secret by itself, as in the
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instruction print (secret), you of course do not need to export it at all. Features declare
a class must be usable by the routines of the class and its descendants; otherwise w
never do anything with a secret feature! Only if you use the feature indirectly in a qua
call do you need to export it to yourself.

7.9  PUTTING EVERYTHING TOGETHER 

The previous discussions have introduced the basic mechanisms of object-or
computation, but we are still missing the big picture: how does anything ever get exec

Answering this question will help us piece everything together and understand
to build executable systems from individual classes. 

General relativity 

What is a little mind-boggling is that every description given so far of what happens a
time has been relative. The effect of a routine such as translate is relative to the current
instance; within the class text, as noted, the current instance is not known. So we ca
try to understand the effect of a call with respect to a specific target, such as p1 in

p1● translate (u, v)

But this brings the next question: what does p1 actually denote? Here again th
answer is relative. The above call must appear in the text of some class su
GRAPHICS. Assume that p1 is an attribute of class GRAPHICS. Then the occurrence o
p1 in the call, as noted above, may be viewed as a call: p1 stands for Current● p1. So we
have only pushed the problem further, as we must know what object Current stood for at
the time of the above call! In other words, we must look at the client that called the ro
of class GRAPHICS containing that call. 

So this attempt at understanding a feature call starts off a chain of reasoning, 
we will not be able to follow to the end unless we know where execution started. 

The Big Bang

To understand what is going on let us generalize the above example to an arbitrary 
we do understand that arbitrary call, we will indeed understand all of O-O computa
thanks to the Feature Call principle which stated that

Any call will be of one of the following two forms (the argument list may be abs
in either case): 

• Unqualified: f (a, b, …)

• Qualified: x● g (u, v, …)

F1 • No software element ever gets executed except as part of a routine call. 

F2 • Every call has a target.



§7.9  PUTTING EVERYTHING TOGETHER 195

ll

me

 only
urrent
bitten

 what

d. The

edure
tions
t of all
 the

Bang
 stage
the

 an
The call appears in the body of a routine r. It can only get executed as part of a ca
to r. Assume we know the target of that call, some object OBJ. Then the target t is easy to
determine in each case: 

T1 • For the unqualified form, t is simply OBJ. Cases T2, T3 and T4 will apply to the
qualified form. 

T2 • If x is an attribute, the x field of OBJ has a value which must be attached to so
object; t is that object.

T3 • If x is a function, we must first execute the (unqualified) call to x; the result gives
us t. 

T4 • If x is a local entity of r , earlier instructions will have given x a value, which at the
time of the call must be attached to a certain object; t is that object. 

The only problem with these answers is of course that they are relative: they
help us if we know the current instance OBJ. What is OBJ? Why, the target of the c
call, of course! As in the traditional song (the kid was eaten by the cat, the cat was 
by the dog, the dog was beaten by the stick…), we do not see the end of the chain. 

To transform these relative answers into absolute ones, then, we must know
happened when everything started — at Big Bang time. Here is the rule:

At Big Bang time, an object gets created, and a creation procedure gets starte
root object is an instance of a certain class, the system’s root class; the creation procedure
is one of the procedures of the root class. In all but trivial systems, the creation proc
will itself create new objects and call routines on them, triggering more object crea
and more routine calls. System execution as a whole is the successive deploymen
the pieces in a giant and complex firework, all resulting directly or indirectly from
initial lighting of a minuscule spark. 

Once we know where everything starts, it is not difficult to trace the fate of Current
throughout this chain reaction. The first current object, at the start of everything (Big 
time, when the root’s creation procedure is called), is the root object. Then at any
during system execution let r be the latest routine to have been called; if OBJ was 
current object at the time of the call to r, here is what becomes of Current during the
execution of r: 

C1 • If r  executes an instruction which does not call a routine (for example
assignment), we keep the same object as current object.

C2 • Starting an unqualified call also keeps the same object as current object. 

Definition: system execution

Execution of an object-oriented software system consists of the following
two steps: 

• Create a certain object, called the root object for the execution. 

• Apply a certain procedure, called a creation procedure, to that object.
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C3 •Starting a qualified call x●f … causes the target object of that call, which is t
object attached to x (determined from OBJ through the rules called T1 to T4 at the
top of the previous page), to become the new current object. When the
terminates, OBJ resumes its role as current object. 

In cases C2 and C3 the call may be to a routine that itself includes further ca
qualified or not; so this rule must be understood recursively. 

There is nothing mysterious or confusing, then, in the rule for determining the t
of any call, even though that rule is relative and in fact recursive. What is mind-bog
is the power of computers, the power we use to play sorcerer’s apprentice by wri
deceptively small software text and then executing it to create objects and pe
computations on them in numbers so large — number of objects, number of comput
— as to appear almost infinite when measured on the scale of human understandin

Systems 

The emphasis in this chapter is on classes: the individual components of object-or
software construction. To obtain executable code, we must assemble classes into sy

The definition of a system follows from the previous discussion. To make u
system we need three things: 

• A set CS of classes, called the system’s class set.

• The indication of which class in CS is the root class. 

• The indication of which procedure of the root class is the root creation procedure. 

To yield a meaningful system, these elements must satisfy a consistency con
system closure: any class needed directly or indirectly by the root class must be part oCS. 

Let us be a little more precise:

• A class C needs directly a class D if the text of C refers to D. There are two basic
ways in which C may need directly D: C may be a client of D, as defined earlier in
this chapter, and C may inherit from D, according to the inheritance relation whic
we will study later. 

• A class C needs a class E, with no further qualification, if C is E or C needs directly
a class D which (recursively) needs E. 

With these definitions we may state the closure requirement as follows:

If the system is closed, a language-processing tool, such as a compiler, will b
to process all its classes, starting with the root class, and recursively handling n

Definition: system closure

A system is closed if and only if its class set contains all classes needed by
the root class. 
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classes as it encounters their names. If the tool is a compiler, it will then produc
executable code corresponding to the entire system. 

This act of tying together the set of classes of a system, to generate an exec
result, is called assembly and is the last step in the software construction process. 

Not a main program 

The discussions in the previous chapters repeatedly emphasized that systems dev
with the object-oriented method have no notion of main program. By introducing
notion of root class, and requiring the system specification to indicate a particular cre
procedure, have we not brought main programs back through a side door? 

Not quite. What is wrong with the traditional notion of main program is tha
merges two unrelated concepts: 

• The place where execution begins. 

• The top, or fundamental component of the system’s architecture. 

The first of these is obviously necessary: every system will begin its execution
somewhere, so we must have a way to let developers specify the starting point; he
will do so by specifying a root class and a creation procedure. (In the case of conc
rather than sequential computation we may have to specify several starting points, o
independent thread of computation.)

On the concept of top, enough abuse has been heaped in earlier chapters to
further comments unnecessary.

But regardless of the intrinsic merit of each of the two notions, there is no reas
merge them: no reason to assume that the starting point of a computation will p
particularly important role in the architecture of the corresponding system. Initializa
is just one of many aspects of a system. To take a typical example, the initialization
operating system is its booting procedure, usually a small and relatively mar
component of the OS; using it as the top of the system’s design would not lead 
elegant or useful architecture. The notion of system, and object technology in genera
in fact on the reverse assumption: that the most important property of a system is t
of classes that it contains, the individual capabilities of these classes, and 
relationships. In this view the choice of a root class is a secondary property, and sho
easy to change as the system evolves. 

As discussed extensively in an earlier chapter, the quest for extendibility
reusability requires that we shed the practice of asking “what is the main function?”
early stage of the system’s design and of organizing the architecture around the a
Instead, the approach promotes the development of reusable software component
as abstract data type implementations — classes. Systems are then built as reconfi
assemblies of such components. 

In fact, you will not always build systems in the practice of O-O softw
development. An important application of the method is to develop libraries  of reusable
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components — classes. A library is not a system, and has no root class. When deve
a library, you may of course need to produce, compile and execute one or more s
along the way, but such systems are a means, not an end: they help test the comp
and will usually not be part of the library as finally delivered. The actual delivered pro
is the set of classes making up the library, which other developers will then use to pr
their own systems — or again their own libraries. 

Assembling a system

The process of putting together a number of classes (one of which is designated a
to produce an executable system was called “assembly” above. How in practice 
assemble a system? 

Let us assume an operating system of the usual form, where we will keep our
texts stored in files. The language processing tool in charge of this task (com
interpreter) will need the following information: 

A1 • The name of the root class. 

A2 • A universe, or set of files which may contain the text of classes needed by the
(in the above precise sense of “needed”). 

This information should not be included in the class texts themselves. Identify
class as root in its own text (A1) would violate the “no main program” principle. Lettin
a class text include information about the files where the needed classes reside wo
the class to a particular location in the file system of a given installation; this w
prevent use of the class by another installation and is clearly inappropriate. 

These observations suggest that the system assembly process will need to 
some information stored outside of the text of the classes themselves. To provid
information we will rely on a little control language called Lace. Let us observe
process, but not until we have noted that the details of Lace are not essential to the m
Lace is just an example of a control language, allowing us to keep the O-O compo
(the classes) autonomous and reusable, and to rely on a separate mechanism f
actual assembly into systems.

A typical Lace document, known as an Ace file, might appear as follows: 

system painting root
GRAPHICS ("painting_application")

cluster
base_library: " \ library\base";

graphical_library: " \library\graphics";
painting_application: " \user \application"

end -- system painting

The cluster clause defines the universe (the set of files containing class texts)
organized as a list of clusters; a cluster is a group of related classes, represe
subsystem or a library.
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In practice, an operating system such as Windows, VMS or Unix provide
convenient mechanism to support the notion of cluster: directories. Its file syste
structured as a tree, where only the terminal nodes (leaves), called “plain files”, co
directly usable information; the internal nodes, called directories, are sets of files (
files or again directories).

We may associate each cluster with a directory. This convention is used in La
illustrated above: every cluster, with a Lace name such as base_library, has an associated
directory, whose name is given as a string in double quotes, such as "\ library\base". This
file name assumes Windows conventions (names of the form \dir1\dir2\…), but this is
just for the sake of the example. You can obtain the corresponding Unix name
replacing the backslash characters \ by slashes /.

Although by default you may use the hierarchical structure of directories to represent cluster
nesting, Lace has a notion of subcluster through which you can define the logical structure
of the cluster hierarchy, regardless of the clusters’ physical locations in the file system.

The directories listed in the cluster clause may contain files of all kinds. T
determine the universe, the system assembly process will need to know which o
these files may contain class texts. A simple convention is to require the text of any
of name NAME to be stored in a file of name name●e (lower case). Let us assume th
convention (which can easily be extended for more flexibility) for the rest of 
discussion. Then the universe is the set of files having names of the form name●e in the
list of directories appearing in the cluster clause. 

The root clause of Lace serves to designate the root class of the system. Here th
class is GRAPHICS and, as indicated in parentheses, it appears in the painting_application
cluster. If there is only one class called GRAPHICS in the universe, it is not necessary t
specify the cluster. 

Assume that you start a language processing tool, for example a compiler, to pr
the system described by the above Ace. Assume further that none of the classes
system has been compiled yet. The compiler finds the text of the root class, GRAPHICS,
in the file graphics● e of the cluster painting_application; that file appears in the directory

Root directory

Subdirectory

Non-directory
file

d3d2d1

d4

f3
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\user \application. By analyzing the text of class GRAPHICS, the compiler will find the
names of the classes needed by GRAPHICS and will look for files with the corresponding
● e names in the three cluster directories. It will then apply the same search to the c
needed by these new classes, repeating the process until it has located all the 
needed directly or indirectly by the root. 

An important property of this process is that it should be automatic. As a software
developer, you should not have to write lists of dependencies between modules (kno
“Make files”), or to indicate in each file the names of the files that will be needed fo
compilation (through what is known in C and C++ as “Include directives”). Not only 
tedious to have to create and maintain such dependency information manually
process also raises the possibility of errors when the software evolves. All that th
requires you to provide is the information that no tool can find by itself: the name o
root class, and the list of locations in the file system where needed classes — what 
was called the class set of the system — may appear. 

To simplify the work of developers further, a good compiler will, when called i
directory where no Ace is present, construct a template Ace whose cluster clause includes
the basic libraries (kernel, fundamental data structures and algorithms, graphics et
the current directory, so that you will only have to fill in the name of the system and 
root class, avoiding the need to remember the syntax of Lace. 

The end result of the compilation process is an executable file, whose name 
one given after system in the Ace — painting in the example. 

The Lace language includes a few other simple constructs, used to control the a
of language processing tools, in particular compiler options and assertion monit
levels. We will encounter some of them as we explore further O-O techniques. La
noted, also supports the notion of logical subcluster, so that you can use it to de
complex system structures, including the notions of subsystem and multi-level libra

Using a system description language such as Lace, separate from the develo
language, allows classes to remain independent from the system or systems in whic
intervene. Classes are software components, similar to chips in electronic design; a 
is one particular assembly of classes, similar to a board or a computer made by asse
a certain set of chips. 

Printing your name 

Reusable software components are great, but sometimes all you want to do is just a
task, such as printing a string. You may have been wondering how to write a “prog
that will do it. Having introduced the notion of system, we can answer this bur
question. (Some people tend to be nervous about the whole approach until they se
to do this, hence this little digression.) 

The following little class has a procedure which will print a string: 
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class SIMPLE creation
make

feature
make is

-- Print an example string.
do

print_line ("Hello Sarah!")
end

end

The procedure print_line can take an argument of any type; it prints a defa
representation of the corresponding object, here a string, on a line. Also available isprint
which does not go to a new line after printing. Both procedures are available to all cla
coming from a universal ancestor, GENERAL, as explained in a later chapter.

To obtain a system that will print the given string, do the following: 

E1 • Put the above class text in a file called simple● e in some directory. 

E2 • Start the compiler.

E3 • If you have not provided an Ace, you will be prompted to edit a new o
automatically generated from a template; just fill in the name of the root c
SIMPLE, the name of the system — say my_ first — and the cluster directory.

E4 • Exit from the editor; the compiler will assemble the system and produce
executable file called my_ first. 

E5 • Execute the result. On platforms such as Unix with a notion of command
execution a command will have been generated, of name my_ first; simply type that
name. On graphical platforms such as Windows and OS/2, a new icon will 
appeared, labeled my_ first; just double-click on that icon.

The result of the last step will be, as desired, to print on your console the mess

Structure and order: the software developer as arsonist 

We now have an overall picture of the software construction process in the object-ori
method — assembling classes into systems. We also know how to reconstruct the
of events that will lead to the execution of a particular operation. Assume this operat

[A]
x● g (u, v, …)

appearing in the text of a routine r of a class C, of which we assume x to be an attribute.
How does it ever get executed? Let us recapitulate. You must have included C in a system,
and assembled that system with the help of an appropriate Ace. Then you mus
started an execution of that system by creating an instance of its root class. The

Hello Sarah!
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creation procedure must have executed one or more operations which, direc
indirectly, caused the creation of an instance C_OBJ of C, and the execution of a call o
the form 

[B]

a● r (…)

where a was at the time attached to C_OBJ. Then the call shown as [A] will execute g,
with the arguments given, using as target the object attached to the x field of C_OBJ. 

So by now we know (as well we should) how to find out the exact sequence of e
that will occur during the execution of a system. But this assumes we look at the 
system. In general we will not be able, just by examining the text of a given clas
determine the order in which clients will call its various routines. The only orde
property that is immediately visible is the order in which a given routine execute
instructions of its body. 

Even at the system level, the structure is so decentralized that the task of pred
the precise order of operations, although possible in principle, is often difficult. M
importantly, it is usually not very interesting. Remember that we treat the root class
somewhat superficial property of the system — a particular choice, made late i
development process, of how we are going to combine a set of individual componen
schedule their available operations. 

This downplaying of ordering constraints is part of object technology’s cons
push for decentralization in system architectures. The emphasis is not on “the” exe
of “the” program (as in Pascal or C programming and many design methods) but o
services provided by a set of classes through their features. The order in which the services
will be exercised, during the execution of a particular system built from these classe
secondary property. 

The method goes in fact further by prescribing that even if you know the order of
execution you should not base any serious system design decision on it. The rea
this rule was explored in earlier chapters: it is a consequence of the concer
extendibility and reusability. It is much easier to add or change services in a decentr
structure than to change the order of operations if that order was one of the propertie
to build the architecture. This reluctance of the object-oriented method to conside
order of operations as a fundamental property of software systems — what an e
discussion called the shopping list approach — is one of its major differences with
of the other popular software design methods.

These observations once again evoke the picture of the software develop
firework expert or perhaps arsonist. He prepares a giant conflagration, making sur
all the needed components are ready for assembly and all the needed connections 
He then lights up a match and watches the blaze. But if the structure has been prop
up and every component is properly attached to its neighbors, there is no need to 
or even try to predict the exact sequence of lightings; it suffices to know that every
that must burn will burn, and will not do so before its time has come. 
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7.10  DISCUSSION

As a conclusion to this chapter, let us consider the rationale behind some of the dec
made in the design of the method and notation, exploring along the way a few alter
paths. Similar discussion sections will appear at the end of most chapters introducin
constructs; their aim is to spur the reader’s own thinking by presenting a ca
uncensored view of a few delicate issues.

Form of declarations 

To hone our critical skills on something that is not too life-threatening, let us start w
syntactical property. One point worth noting is the notation for feature declarations
routines, there are none of the keywords procedure or function  such as they appear in
many languages; the form of a feature determines whether it is an attribute, a proced
a function. The beginning of a feature declaration is just the feature name, say 

f …

When you have read this, you must still keep all possibilities open. If a lis
arguments comes next, as in 

g (a1: A; b1: B; …) …

then you know g is a routine; it could still be either a function or a procedure. Next a t
may come: 

f: T …
g (a1: A; b1: B; …): T …

In the first example, f can still be either an attribute or a function without argumen
in the second, however, the suspense stops, as g can only be a function. Coming back to f,
the ambiguity will be resolved by what appears after T: if nothing, f is an attribute, as in

my_ file: FILE

But if an is is present, followed by a routine body (do or the variants once and
external to be seen later), as in 

f: T is
-- …

do … end

f is a function. Yet another variant is: 

f: T is some_value

which defines f as a constant attribute of value some_value. 

The syntax is designed to allow easy recognition of the various kinds of fea
while emphasizing the fundamental similarities. The very notion of feature, cove
routines as well as attributes, is in line with the Uniform Access principle — the go
providing clients with abstract facilities and downplaying their representation differen
The similarity between feature declarations follows from the same ideas. 
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“Uniform Access”, 
page 55; see also, in 
the present chapter, 
“Uniform access”, 
page 175.

The figures 
appeared on pages 
174 and 175.

“Using assertions 
for documentation: 
the short form of a 
class”, page 389.

“Redeclaring a func-
tion into an attribute”, 
page 491.
Attributes vs. functions 

Let us explore further the consequences of the Uniform Access principle and of gro
attributes and routines under a common heading — features.

The principle stated that clients of a module should be able to use any se
provided by the module in a uniform way, regardless of how the service is implem
— through storage or through computation. Here the services are the features of the
what is meaningful for clients is the availability of certain features and their prope
Whether a given feature is implemented by storing appropriate data or by computin
result on demand is, for most purposes, irrelevant. 

Assume for example a class PERSON containing a feature age of type INTEGER,
with no arguments. If the author of a client class writes the expression 

Isabelle● age

the only important information is that age will return an integer, the age field of a
instance of PERSON attached, at run-time, to the entity Isabelle. Internally, age may be
either an attribute, stored with each object, or a function, computed by subtractin
value of a birth_date attribute from the current year. But the author of the client class d
not need to know which one of these solutions was chosen by the author of PERSON. 

The notation for accessing an attribute, then, is the same as for calling a routine; 
the notations for declaring these two kinds of feature are as similar as conceptually poss
Then if the author of a supplier class reverses an implementation decision (implem
as a function a feature that was initially an attribute, or conversely), clients will no
affected; they will require neither change, possibly not even recompilation.

The contrast between the supplier’s and client’s view of the features of a modul
apparent in the two figures which helped introduce the notion of feature earlier in
chapter. The first used as its primary criterion the distinction between routines
attributes, reflecting the internal (implementation) view, which is also the supplier’s v
In the second figure, the primary distinction was between commands and querie
latter further subdivided into queries with and without arguments. This is the external
— the client’s view. 

The decision to treat attributes and functions without arguments as equivale
clients has two important consequences, which later chapters will develop:

• The first consequence affects software documentation. The standard 
documentation for a class, known as the short form  of the class, will be devised so
as not to reveal whether a given feature is an attribute or a function (in cas
which it could be either).

• The second consequence affects inheritance, the major technique for ad
software components to new circumstances without disrupting existing softwa
a certain class introduces a feature as a function without arguments, desce
classes will be permitted to redefine the feature as an attribute, substituting memo
for computation. 
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Exporting attributes 

A consequence of the preceding observations is that classes may export attribute
example, class POINT, in the cartesian implementation introduced earlier, has attributx
and y, and exports them to clients in exactly the same way as the functions rho and theta.
To obtain the value of an attribute for a certain object, you simply use feature call not
as in my_point● x or my_ point● theta.

This ability to export attributes differs from the conventions that exist in many O
languages. Typical of these is Smalltalk, where only routines (called “methods”) ma
exported by a class; attributes (“instance variables”) are not directly accessible to cl

A consequence of the Smalltalk approach is that if you want to obtain the effe
exporting an attribute you have to write a small exported function whose only purpo
to return the attribute’s value. So in the POINT example we could call the attribute
internal_x and internal_y, and write the class as follows (using the notation of this bo
rather than the exact Smalltalk syntax, and calling the functions abscissa and ordinate
rather than x and y to avoid any confusion): 

class POINT feature -- Public features:
abscissa: REAL is

-- Horizontal coordinate
do Result := internal_x end

ordinate: REAL is
-- Vertical coordinate

do Result := internal_y end

… Other features as in the earlier version …
feature { NONE} -- Features inaccessible to clients: 

internal_x, internal_y: REAL

end

This approach has two drawbacks: 

• It forces authors of supplier classes to write many small functions such as abscissa
and ordinate. Although in practice such functions will be short (since the syntax
Smalltalk is terse, and makes it possible to give the same name to an attribute
function, avoiding the need to devise special attribute names such as internal_x and
internal_y), writing them is still a waste of effort on the part of the class author, 
reading them is a useless distraction for the class reader. 

• The method entails a significant performance penalty: every access to a field 
object now requires a routine call. No wonder object technology has develop
reputation for inefficiency in some circles. (It is possible to develop an optimiz
compiler which will expand calls to abscissa-style functions in-line, but then what is
the role of these functions?)

The technique discussed in this chapter seems preferable. It avoids the ne
cluttering class texts with numerous little extra functions, and instead lets the 
designers export attributes as needed. Contrary to what a superficial examination

n 
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suggest, this policy does not violate information hiding; it is in fact a dir
implementation of this principle and of the associated principle of Uniform Access
satisfy these requirements it suffices to make sure that attributes, as seen by clien
indistinguishable from functions without arguments, and that they have the 
properties for inheritance and class documentation. 

This technique reconciles the goals of Uniform Access (essential for the clients)
of writing class texts (essential for the suppliers), and efficiency (essential for every

The client’s privileges on an attribute

Exporting an attribute, using the techniques just discussed, allows clients to acce
value of an attribute for a certain object, as in my_point● x It does not allow clients to
modify that value. You may not assign to an attribute; the assignment

my_point● x := 3.7

is syntactically illegal. The syntax rule is simple: a●attrib, if attrib is an attribute (or for
that matter a function) is an expression, not an entity, so you cannot assign to it, an
than you can assign to the expression a + b.

To make attrib accessible in modification mode, you must write and export
appropriate procedure, of the form: 

set_attrib (v: G) is

-- Set to v the value of attrib.

do

attrib := v

end

Instead of this convention, one could imagine a syntax for specifying access r
such as

class C feature [AM]

…

feature [A] { D, E}

…

where A would mean access and M modification. (Specifying A could be optional: if you
export something you must at least allow clients to access it in read mode). This 
avoid the frequent need for writing procedures similar to set_attrib.

Besides not justifying the extra language complication, this solution is not flex
enough. In many cases, you will want to export specific ways of modifying an attribute.
For example, the following class exports a counter, and the right to modify it
arbitrarily but only by increments of +1 or –1: 
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class COUNTING feature

counter: INTEGER
increment is

-- Increment counter
do

count := count + 1
end

decrement is
-- Decrement counter

do
count := count — 1

end
end

Similarly, class POINT as developed in this chapter does not let its clients set tx
and y of a point directly; clients can change the values of these attributes, but only by 
through the specific mechanisms that have been exported for that purpose, proc
translate and scale.

When we study assertions we will see another fundamental reason why 
inappropriate to let clients perform direct assignments of the a● attrib := some_value form:
not all some_value are acceptable. You may define a procedure such as

set_polygon_size (new_size: INTEGER) is
-- Set the number of polygon vertices to new_size.

require
new_size >= 3

do
size := new_size

end

requiring any actual argument to be 3 or more. Direct assignments would ma
impossible to enforce this constraint; a call could then produce an incorrect object.

These considerations show that a class writer must have at his disposal, fo
attribute, five possible levels for granting access privileges to clients:

Level 0 is total protection: clients have no way of accessing the attribute. At le
and above, you make the attribute available for access, but at level 1 you do not gra
modification right. At level 2, you let clients modify the attribute through spec
algorithms. At level 3, you let them set the value, but only if it satisfies certain constra
as in the polygon size example. Level 4 removes the constraints.

 No access Read only Restricted write Protected write

(0) (1) (2) (3)

Unrestricted

(4)
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The solution described in this chapter is a consequence of this analysis. Export
attribute only gives clients access permission (level 1); permission to modify is spe
by writing and exporting appropriate procedures, which give clients restricted rights
the counter and point examples (level 2), direct modification rights under some const
(3) or unrestricted rights (4).

This solution is an improvement over the ones commonly found in O-O langua

• In Smalltalk, as noted, you have to write special encapsulation functions, such 
earlier abscissa and ordinate, just to let clients access an attribute at level 1; this m
mean both extra work for the developer and a performance overhead. Here th
no need to write routines for attribute access; only for attribute modifications (le
2 and above) do we require writing a routine, since it is conceptually necessa
the reasons just seen.

• C++ and Java are the other extreme: if you export an attribute then it is up for 
at level 4: clients can set it through direct assignments in the my_point● x := 3.7
style as well as access its value. The only way to achieve level 2 (not 3 i
absence of an O-O assertion mechanism in these languages) is to hide the a
altogether, and then write exported routines, both procedures for modifica
(levels 2 or 4) and functions for access (level 1). But then you get the s
behavior as with the Smalltalk approach.

This discussion of a fairly specific language trait illustrates two of the gen
principles of language design: do not needlessly bother the programmer; know wh
stop introducing new language constructs at the point of diminishing returns. 

Optimizing calls

At levels 2 and 3 of the preceding discussion, the use of explicit procedure calls su
my_polygon● set_size (5) to change an attribute value is inevitable. At level 4, one co
fear the effect on performance of using the set_attrib-style. The compiler, however, ca
generate the same code for my_point● set_x (3.7) as it would for my_point● x := 3.7 had this
last phrasing been legal.

ISE’s compiler achieves this through a general in-line expansion mechanism, which
eliminates certain routine calls by inserting the routine body directly, with appropriate
argument substitutions, into the caller’s code.

In-line expansion is indeed one of the transformations that we may expect fro
optimizing compiler for an object-oriented language. The modular style of develop
fostered by object technology produces many small routines. It would be unaccepta
developers to have to worry about the effect of the corresponding calls on perform
They should just use the clearest and most robust architecture they can devise, ac
to the modularity principles studied in this book, and expect the compiler to get rid o
calls which may be relevant to the design but not necessary for the execution.
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In some programming languages, notably Ada and C++, developers specify 
routines they want expanded in-line. I find it preferable to treat this task as an auto
optimization, for several reasons:

• It is not always correct to expand a call in-line; since the compiler must,
correctness, check that the optimization applies, it may just as well spare deve
the trouble of requesting it in the first place.

• With changes in the software, in particular through inheritance, a routine which
inlinable may become non-inlinable. A software tool is better than a huma
detecting such cases.

• On a large system, compilers will always be more effective. They are better equ
to apply the proper heuristics — based on routine size and number of calls 
decide what routines should be inlined. This is again especially critical as
software changes; we cannot expect a human to track the evolution of every p

• Software developers have better things to do with their time.

The modern software engineering view is that such tedious, automatable and de
optimizations should be handled by software tools, not people. The policy of leaving 
to the responsibility of developers is one of the principal criticisms that have been le
at C++ and Ada. We will encounter this debate again in studying two other 
mechanisms of object technology: memory management, and dynamic binding.

The architectural role of selective exports

The selective export facility is not just a convenience; it is essential to object-orie
architecture. It enables a set of conceptually related classes to make some of their f
accessible to each other without releasing them to the rest of the world, that is t
without violating the rule of Information Hiding. It also helps us understand a freque
debated issue: whether we need modules above the level of classes.

Without selective exports, the only solution (other than renouncing Informa
Hiding altogether) would be to introduce a new modular structure to group classes.
super-modules, similar to Ada’s or Java’s packages, would have their own rules for h
and exporting. By adding a completely new and partly incompatible module level t
elegant framework defined by classes, they would yield a bigger, hard-to-learn lang

Rather than using a separate package construct, the super-modules could them
be classes; this is the approach of Simula, which permits class nesting. It too brin
share of extra complexity, for no clear benefit.

We have seen that the simplicity of object technology relies for a good part o
use of a single modular concept, the class; its support for reusability relies on our a
to extract a class from its context, keeping only its logical dependencies. With a s
module concept we run the risk of losing these advantages. In particular, if a class b
to a package or an enclosing class we will not be able to reuse it by itself; if we wa
include it in another super-module we will need either to import the entire original su
module, or to make a copy of the class — not an attractive form of reuse.
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See chapter 36.
The need will remain to group classes in structured collections. This wil
addressed in a later chapter through the notion of cluster. But the cluster is a managemen
and organizational notion; making it a language construct would jeopardize the simp
of the object-oriented approach and its support for modularity.

When we want to let a group of classes grant each other special privileges, we 
need a super-module; selective exports, a modest extension to basic information h
provide a straightforward solution, allowing classes to retain their status of free-sta
software components. This is, in my opinion, a typical case of how a simple, low-tech
can outperform the heavy artillery of a “powerful” mechanism.

Listing imports 

Each class lists, in the headers of its feature clauses, the features that it makes availa
to others. Why not, one might ask, also list features obtained from other classes
encapsulation language Modula-2 indeed provides an import  clause.

In a typed approach to O-O software construction, however, such a clause wou
serve any purpose other than documentation. To use a feature f from another class C, you
must be a client or (through inheritance) a descendant of that class. In the first ca
only one seen so far, this means that every use of f is of the form 

a ●f

where, since our notation is typed, a must have been declared: 

a: C

showing without any ambiguity that f came from the C. In the descendant case th
information will be available from the official class documentation, its “flat-short form

So there is no need to bother developers with import clauses.

There is a need, however, to help developers with import documentation. A goo
graphical development environment should include mechanisms that enable yo
clicking a button, to see the suppliers and ancestors of a class, and follow the impor
further by exploring their own suppliers and ancestors.

Denoting the result of a function 

An interesting language issue broached earlier in this chapter is how to denote fu
results. It is worth exploring further although it applies to non-O-O languages as we

Consider a function — a value-returning routine. Since the purpose of any call t
function is to compute a certain result and return it to the caller, the question arises o
to denote that result in the text of the function itself, in particular in the instructions w
initialize and update the result. 

The convention introduced in this chapter uses a special entity, Result, treated as a
local entity and initialized to the appropriate default value; the result returned by a c
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the final value of Result. Because of the initialization rules, that value is always defin
even if the routine body contains no assignment to Result. For example, the function 

f: INTEGER is
do

if  some_condition then Result := 10 end
end

will return the value 10 if some_condition is satisfied at the time of the call, and 0 (th
default initialization value for INTEGER) otherwise. 

The technique using Result originated, as far as I know, with the notation develop
in this book. (Since the first edition it has found its way into at least one other lang
Borland’s Delphi.) Note that it would not work in a language allowing functions to
declared within functions, as the name Result would then be ambiguous. Among th
techniques used in earlier languages, the most common are: 

A • Explicit return instructions (C, C++/Java, Ada, Modula-2). 

B • Treating the function name as a variable (Fortran, Algol 60, Simula, Algol 
Pascal). 

Convention A relies on an instruction of the form return  e whose execution
terminates the current execution of the enclosing function, returning e as the result. This
technique has the benefit of clarity, since it makes the returned value stand out c
from the function text. But it suffers from several drawbacks: 

A1 • Often, the result must in practice be obtained through some computation
initialization and a few subsequent updates. This means you must introduc
declare an extraneous variable (an entity in the terminology of this chapter) ju
the purpose of holding the intermediate results of the computation. 

A2 • The technique tends to promote multiple-exit modules, which are contrary to
principles of good program structuring. 

A3 • The language definition must specify what will happen if the last instruct
executed by a call to the function is not a return . The Ada result in this case is t
raise … a run-time exception! (This may be viewed as the ultimate in bu
passing, the language designers having transferred the responsibility for lan
design issues not just to software developers, but finally to the end-users of the
programs developed in the language!) 

Note that it is possible to solve the last two problems by treating return  not as an
instruction, but as a syntactic clause which would be a required part of any function

function name (arguments): TYPE is
do

…
return

expression
end
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Chapter 11.
This solution remains compatible in spirit with the idea of a return  instruction while
addressing its most serious deficiencies. No common language, however, uses it, 
course it still leaves problem A1 open. 

The second common technique, B, treats a function’s name as a variable with
text of the function. The value returned by a call is the final value of that variable. (
avoids introducing a special variable as mentioned under A1.) 

The above three problems do not arise in this approach. But it raises other diffic
because the same name now ambiguously denotes both a function and a variable.
particularly confusing in a language allowing recursion, where a function body may
the function’s name to denote a recursive call. Because an occurrence of the fun
name now has two possible meanings, the language must define precise conventio
when it denotes the variable, and when it denotes a function call. Usually, in the bo
a function f, an occurrence of the name f as the target of an assignment (or other conte
implying a value to be modified) denotes the variable, as in 

f := x

and an occurrence of f in an expression (or other contexts implying a value to be acces
denotes a recursive function call, as in 

x := f

which is valid only if f has no arguments. But then an assignment of the form 

f := f + 1

will be either rejected by the compiler (if f has arguments) or, worse, understood 
containing a recursive call whose result gets assigned to f (the variable). The latter
interpretation is almost certainly not what the developer had in mind: if f had been a
normal variable, the instruction would simply have increased its value by one. Her
assignment will usually cause a non-terminating computation. To obtain the de
effect, the developer will have to introduce an extra variable; this takes us back to pr
A1 above and defeats the whole purpose of using technique B. 

The convention introduced in this chapter, relying on the predefined entity Result,
avoids the drawbacks of both A and B. An extra advantage, in a language providin
default initialization of all entities including Result, is that it simplifies the writing of
functions: if, as often happens, you want the result to be the default value except in s
cases, you can use the scheme

do
if  some_condition then Result := “Some specific value” end

end

without worrying about an else clause. The language definition must, of course, spe
all default values in an unambiguous and platform-independent way; the next chapte
introduce such conventions for our notation.

A final benefit of the Result convention will become clear when we study Design 
Contract: we can use Result to express an abstract property of a function’s res
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independent of its implementation, in the routine’s postcondition. None of the o
conventions would allow us to write

infix "|_" (x: REAL): INTEGER is
-- Integer part of x

do
… Implementation omitted …

ensure
no_greater: Result <= x
smallest_possible: Result + 1 > x

end

The postcondition is the ensure clause, stating two properties of the result: that it
no greater than the argument; and that adding 1 to it yields a result greater than the argument.

Complement: a precise definition of entities 

It will be useful, while we are considering notational problems, to clarify a notion that
repeatedly been used above, but not yet defined precisely: entities. Rather than a 
concept of object technology, this is simply a technical notion, generalizing the tradit
notion of variable; we need a precise definition.

Entities as used in this book cover names that denote run-time values, them
attached to possible objects. We have now seen all three possible cases:

Case E2 indicates that the entity Result is treated, for all purposes, as a local entit
other local entities are introduced in the local clause. Result and other local entities of a
routine are initialized anew each time the routine is called. 

All entities except formal arguments (E3) are writable, that is to say may appear 
the target x of an assignment x := some_value.

7.11  KEY CONCEPTS INTRODUCED IN THIS CHAPTER 

• The fundamental concept of object technology is the notion of class. A class 
abstract data type, partially or fully implemented. 

• A class may have instances, called objects. 

Definition: entity

An entity is one of the following:

E1 • An attribute of a class. 

E2 • A routine’s local entity, including the predefined entity Result for a
function.

E3 • A formal argument of a routine.
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• Do not confuse objects (dynamic items) with classes (the static description o
properties common to a set of run-time objects). 

• In a consistent approach to object technology, every object is an instance of a 

• The class serves as both a module and a type. The originality and power of th
model come in part from the fusion of these two notions. 

• A class is characterized by features, including attributes (representing fields o
instances of the class) and routines (representing computations on these inst
A routine may be a function, which returns a result, or a procedure, which does

• The basic mechanism of object-oriented computation is feature call. A feature
applies a feature of a class to an instance of that class, possibly with argumen

• Feature call uses either dot notation (for identifier features) or operator nota
prefix or infix (for operator features). 

• Every operation is relative to a “current instance” of a class. 

• For clients of a class (other classes which use its features), an attribu
indistinguishable from a function without arguments, in accordance with 
Uniform Access principle. 

• An executable assembly of classes is called a system. A system contains a roo
and all the classes which the root needs directly or indirectly (through the clien
inheritance relations). To execute the system is to create an instance of the roo
and to call a creation procedure on that instance. 

• Systems should have a decentralized architecture. Ordering relations betwe
operations are inessential to the design. 

• A small system description language, Lace, makes it possible to specify h
system should be assembled. A Lace specification, or Ace, indicates the root
and the set of directories where the system’s clusters reside. 

• The system assembly process should be automatic, with no need for Make fi
Include directives. 

• The Information Hiding mechanism needs flexibility: besides being hidden
generally available, a feature may need to be exported to some clients only; a
attribute may need to be exported for access only, access and restricted modifi
or full modification.

• Exporting an attribute gives clients the right to access it. Modifying it requ
calling the appropriate exported procedure.

• Selective exports are necessary to enable groups of closely related classes 
special access to each other’s features.

• There is no need for a super-module construct above classes. Classes should
independent software components.

• The modular style promoted by object-oriented development leads to many 
routines. Inlining, a compiler optimization, removes any potential efficien
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consequence. Detecting inlinable calls should be the responsibility of the com
not software developers.

7.12  BIBLIOGRAPHICAL NOTES 

The notion of class comes from the Simula 67 language; see the bibliographical refe
of the corresponding chapter. A Simula class is both a module and a type, althoug
property was not emphasized in the Simula literature, and was dropped by 
successors of Simula.

The Single Target principle may be viewed as a software equivalent of a tech
that is well known in mathematical logic and theoretical computing science: currying . To
curry a two-argument function f is to replace it by a one-argument function g yielding a
one-argument function as a result, such that for any applicable x and y: 

(g (x)) (y) = f (x, y)

To curry a function, in other words, is to specialize it on its first argument. Th
similar to the transformation described in this chapter to replace a traditional 
argument routine rotate, called under the form 

rotate (some_point, some_angle)

by a one-argument function with a target, called under the form 

some_point● rotate (some_angle)

[M 1990]describes currying and some of its applications to computing scienc
particular the formal study of programming language syntax and semantics. We
encounter currying again in the discussion of graphical user interfaces.

A few language designs have used the concept of object as a software con
rather than just a run-time notion as described in this chapter. In such approaches,
for exploratory programming, there may be no need for a notion of class. The most n
representative of this school of thought is the Self language [Chambers 1991], which uses
“prototypes” rather than classes. 

The detail of the conventions for infix and prefix operators, in particular 
precedence table, is given in [M 1992].

James McKim brought to my attention the final argument for the Result convention
(its use for postconditions).
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EXERCISES

E7.1  Clarifying the terminology 

[This exercise requires two well-sharpened pencils, one blue and the other red.]

Study the textbook extract used earlier in this chapter to illustrate the confusion be
objects and classes; for each use of the word “object”, “thing” or “user” in that ext
underline the word in blue if you think that the authors really meant object; underline 
word in red if you think that they really meant class. 

E7.2  POINT as an abstract data type

Write an abstract data type specification for the notion of two-dimensional poin
suggested in the informal introduction of that notion. 

E7.3  Completing POINT 

Complete the text of class POINT by filling in the missing details and adding a procedu
rotate (to rotate a point around the origin) as well as any other feature that you fe
necessary. 

E7.4  Polar coordinates

Write the text of class POINT so as to use a polar, rather than cartesian, representation. 
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