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Foreword

Gregor Kiczales and John Lamping

As we write this foreword, it is Earth Day, a day to think about the interrelatedness of life
on Earth. It is a day to contemplate that while each living thing is an individual organism,
all the organisms in an ecosystem are connected by a complex web of interaction, upon
which they all depend for their continuing existence. One lesson of ecological studies is
that while it is comparatively easy to identify, isolate, and categorize individual organisms,
the relationships among them are much more difficult to identify and don’t fall into nicely
separated categories.

Object-oriented programs are much simpler than natural ecosystems—even though a
programmer trying to chase down a recalcitrant bug might be inclined to disagree—but
they have a similar structure. Like ecosystems, they are composed of individuals, objects in
this case. Also like ecosystems, the behavior of the system arises out of the interrelationships
and interactions of those individuals.

Object-oriented design recognizes this interdependence, and uses notations like class
graphs to help describe the relationships among the objects. Because these relationships
are so important, their design is one of the first steps in a typical object-oriented design.
The detailed design of the individual objects or classes only happens after a system design
is in place.

But because the interrelationships among objects are complex, it is almost impossible to
design them exactly right the first time, as anyone who has built a reasonably large object-
oriented program knows from hard-won experience. The design process is iterative, with
the interactions among objects being redesigned as problems are uncovered during design
or coding of individual objects or classes. And the design process is only the beginning of
changes to the interactions. Other changes will become necessary during maintenance as
the system evolves to meet changing requirements, and still more changes will be necessary
if parts of the system are reused for other applications.

Traditional object-oriented programming has been a great success, partly because of the
kinds of flexibility that object encapsulation provides. But it doesn’t provide comparable
support for flexibility in object interrelationships. For example, object-oriented languages
require coding in the smallest details of the relationships among objects, such as navigation
paths among interacting objects. Often a great deal of code needs to be edited in the
face of even a small change to the conceptual interdependence structure. There are similar
challenges for flexibility in what class should be used for newly created objects, and in

xxiii
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allowing different parts of an evolving program to have different viewpoints on the same
object.

Adaptive object-oriented programming allows programs to be written in a way that
makes them less brittle in the face of such changes. Adaptive object-oriented programming
works by having the programmer program at a higher, schematic level that abstracts away
from details like navigation paths. These schematic patterns can be instantiated to a partic-
ular class graph to get an executable program. In this way it is a kind of metaprogramming.
In many cases, programs can be adapted to new situations simply by changing the instan-
tiation of the schematic patterns, without having to change the high-level program. By
thinking in such terms of higher-level of abstraction, the programmer can write code that
is both simpler and more tolerant of changes.

This book presents a complete, well-designed methodology for adaptive programming in
C++ and tools for supporting the methodology. And because the methodology is program-
ming-language independent, any programmer interested in writing cleaner, more flexible
OBJECT-ORIENTED code should read this book.

We hope the work presented in this book will become one of the building blocks for a
new trend in object-oriented programming, moving beyond object encapsulation to provide
new abstraction tools for the interaction among objects.

Gregor Kiczales
John Lamping

Xerox PARC
Palo Alto, California



Preface

The Purpose of the Book

This book introduces a software development method, called the Demeter! Method, for
developing adaptive object-oriented software. The reader will learn the Demeter Method for
evolutionary software development by specifying class dictionaries for defining the structure
of objects and by specifying propagation patterns for implementing the behavior of the
objects. The reader will learn how class dictionaries and propagation patterns are translated
to C++. Translation to other languages that support the object-oriented paradigm is very
similar. The behavior of objects may be implemented with only partial knowledge of the
object structure.

The Demeter Method is not yet another object-oriented method; it enhances and com-
plements other object-oriented methods, such as Booch, Jacobson, Rumbaugh, and Wirfs-
Brock, by lifting object-oriented software development to a higher level of abstraction by
considering entire families of object-oriented designs and programs. This generalization of
object-oriented software development amplifies the advantages of object-oriented technol-
ogy and eliminates some of its disadvantages, such as the many tiny methods that hinder
program understanding and reusability.

One important insight of the Demeter Method is that for a significant fraction of pro-
gramming tasks, solving a more general problem is easier than solving a specialized problem.
This is why we work with families of programs and designs; it often happens that the families
can be described much more succinctly than the individual programs.

Let’s take a look at nature to better understand how adaptive object-oriented software
(adaptive software from now on) works. You find the essential information about an or-
ganism in its genes. We can view the genes as a process model of the organism, which will
later be complemented by an environment or structural model that customizes the behavior
of the organism. However, the process model puts certain constraints on the applicable
environments. A palm tree will not thrive in Alaska.

From the analogy to nature, we obtain the idea of focusing on the essence in process
models, and we develop our software in terms of process and corresponding structural mod-
els. The process models (which are not only software development processes, but any kind

1Pronunciation: di m&’tr. The stress is on &, which is pronounced like the e in equal.
Demeter is a registered trademark of Demeter-Bund e.V. for agricultural products and a trademark of
Northeastern University for software. Demeter is the ancient greek goddess of farming and gardening,
identified by the Romans with Ceres. The metaphor of gardening and growing software is occasionally used
in the Demeter Method.
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of processes) focus on the essence of a given task, and they define constraints on applicable
structural models.

Why is it easier, for many programming tasks, to solve a more general problem? The
essence of a process model is often more easily specified in terms of a partial structural model
(for example, a partial data structure) than of a detailed structural model (for example, a
complete data structure). The process models expressed as adaptive software therefore
describe entire families of programs.

The Demeter Method provides an approach to object-oriented software development
that is, by experience, easier to use than traditional object-oriented software development
methods.

The purpose of the book is to make the concepts of adaptive software available in a
form that is useful to software developers who currently use object-oriented languages. The
book is the entry point to a wealth of other information on an adaptive software (see Fig.
0.1). Ways to access the rest of the information are discussed in Appendix A (page 589).

book \

~~~~~~ software _
and documentation

theses

viewgraphs
sample applications

world—-wide web

Figure 0.1: Tip of an iceberg

The Purpose of Adaptive Software

Adaptive software is an extension of object-oriented software where relationships between
functions and data are left flexible, that is, where functions and data are loosely coupled
through navigation specifications. Adaptive means that the software heuristically changes
itself to handle an interesting class of requirements changes related to changing the object
structure.

Adaptive software is a natural evolution of object-oriented software since every object-
oriented program is essentially an adaptive program. In many cases however, the adaptive-
ness of the object-oriented program can be significantly improved. Although object-oriented
programs are easier to reuse than programs that are not written in an object-oriented style,
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object-oriented programs are still very rigid and hard to evolve. Our experience shows that
for most application domains, object-oriented programs can be made significantly more gen-
eral and extensible by expressing them as adaptive programs. An adaptive program allows
us to express the “intention” of a program without being side-tracked by the details of the
object structure.

Adaptive software has several benefits:

e Shorter programs and a higher level of abstraction

Adaptive software allows shorter programs by focusing only on the interesting parts
and by having the tedious work done automatically. Programs get shorter by several
factors. The higher the level of a programming tool, the clearer and simpler are the
programs.

e Reusable software libraries

Adaptive software is easier to extend than standard object-oriented software and allows
for unplanned reuse. The “elastic” class structures used during adaptive software
development facilitate reuse.

Adaptive software allows the building of application-oriented, domain-specific reusable
libraries, which can be used in similar projects with no extra cost for the reusability
property (beyond the cost of object-oriented software). Adaptive software provides
the unique capability of parameterizing software with minimal assumptions on how
the software will be used. Producing adaptive software incurs no extra cost since
the software is much shorter when written in adaptive form. Adaptiveness enhances
reusability and the adaptiveness/reusability property pays off in the first project.

o Ability to plan for changes, allow for learning

An important advantage of adaptive software is that it allows for initial error and
subsequent adjustment. Many problems are complex, and often it is not clear how
best to structure the classes at the beginning. With adaptive software, we can easily
make a first approach to the class structure and write the behavior with minimal
dependency on that first approach, so that changing to a better class structure is
much easier.

o Ability to build on familiar object technology

Adaptive software builds on the advantages of object-oriented technology. Object-
oriented programs can often be gradually transformed into shorter, more flexible
adaptive programs. Adaptive software can take advantage of any feature that the
underlying object-oriented base language offers; therefore adaptive software does not
limit the creativity of the object-oriented programmer in any way.

e Risk avoidance

Adaptive software has no disadvantages with respect to object-oriented software.
Adaptive software is usually significantly more expressive than object-oriented soft-
ware, and the best adaptive software can be no worse than the best object-oriented
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software that can be written for a given application. Adaptive software can always be
expanded into ordinary object-oriented software.

Adaptive software can be learned in a few hours by someone who knows an object-
oriented language and object-oriented design.

o Minimal reliance on an object-oriented programming language such as C++ or Small-
talk

Adaptive software provides a tool that allows development of the important parts of
software above the object-oriented programming level.

Object-oriented programming is a promising technology that has been developed over
the last twenty years. One important advantage of object-oriented programming is that it
reduces the semantic gap between a program and the world it models because the world
consists of physical and abstract objects that are represented naturally by software objects
in an object-oriented program.

However, object-oriented design and programming has several disadvantages, the most
significant of which is that it binds functions and data too tightly. A loose binding between
functions and data allows very generic software where data structure information in the
functions or procedures is only used to constrain the applicable data structures. Before a
program can be run, we select one of the applicable data structures, which in turn usually
determines the structure of the input objects. The goal when writing the functions is to
minimize the assumptions we make about the data structures. This technique could be
called data-structure-shy programming, and it leads to generic software that can be flexibly
customized later. One data-structure-shy program potentially describes an infinite collection
of object-oriented programs.

Scope
This book has two functions:

e It serves as an introduction to advanced object-oriented design and programmming
for the professional and student. We serve the following audiences:

— Those interested in object-oriented design and programming.

This book provides a programming-language independent introduction to ad-
vanced object-oriented design and programming. Since our design notation is
executable after behavioral and structural information is merged, we need to use
a programming notation to explain the execution of the designs. We have cho-
sen C++ as our programming language and therefore the reader should know
a subset of C++ (summarized in an appendix). We attempt to use a subset of
C++, which is available with different syntax in programming languages such as
Smalltalk, CLOS, and Objective-C.

— Those interested in C++.

This book introduces a useful design and programming method and shows the
reader how to apply it to C++.
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— Those interested in conceptual object-oriented database design.

A high-level conceptual modeling language is taught that can be applied to the
reader’s favorite object base.

e It provides a detailed introduction to developing adaptive software for the professional
and the student. We serve the following audiences:

— Those interested in analysis and design methods.

The Demeter Method for developing adaptive software is introduced.

— Those interested in programming languages.

A new programming language is taught that allows the reader to describe object-
oriented programs at a higher-level of abstraction than in current object-oriented
languages.

— Those interested in knowledge representation and computer science education.

The reader learns about a new graphical notation for presenting and manipulating
algorithmic knowledge.

The adaptive software concepts serve as a foundation to deliver any kind of algorithmic
knowledge at a high level of abstraction. Adaptive software is a new kind of algorithmic
knowledge representation language applicable to many different areas.

We have been using earlier versions of this book in undergraduate and graduate courses
at Northeastern University since September 1986. The book is ideal for a course on advanced
object-oriented design and object-oriented programming and it is a useful supplement for
any advanced undergraduate or graduate course in which students write C++ programs.
The only prerequisites are a knowledge of a small subset of C++ (or the ability to learn
C++ and some object-oriented design from some C++ book, for example, [Wan94, Lip89,
Poh91, DS89]), and a basic knowledge of discrete mathematics as covered, for example, in
[WL8S].

This book can be used in two ways:

e as the primary source for learning/teaching advanced object-oriented software devel-
opment and for in-house courses on object-oriented analysis, design and programming
(e.g., it has been used at IBM, Mettler-Toledo, Data General, Ciba Geigy, Citibank,
Goodyear);

e as a supplement: In the Principles of Programming Languages and Analysis of Pro-
gramming Languages courses we are using this book for writing interpreters for several
sublanguages of real programming languages, including several subsets of Lisp and a
subset of Prolog. This approach is promoted by [FHW92]. We are using this book
for several projects, including scanner generation, generation of parsers with error re-
covery, compilers, graphical user interfaces with Tcl/Tk, an adaptive scripting tool
(called Isthmus), and for implementing and maintaining the Demeter Tools/C++.
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The Organization of the Book

The book is organized so that it is independent of a specific implementation of adaptive
software. The book focuses on the concepts important to adaptive software development
and the Demeter Method and is not a user’s guide for the Demeter Software. The Deme-
ter software, documentation, and related course material are available on the World-Wide
Web as shown by the uniform resource locators (URLs) in Fig. A.1 (page 589). Further
information about electronic access is in Appendix A (page 589).

The book starts with an introduction to adaptive software specifically for C++ program-
mers. Adaptive software is viewed as a notation to describe C++ programs by eliminating
much of the redundancy C++ programs contain.

The book introduces many nonstandard terms (such as propagation pattern, propaga-
tion directive, class dictionary graph, class dictionary, and class-valued variable) for explain-
ing adaptive software. Such terms are not standard because adaptive software is new and
has not been discussed previously in book form. We introduce the terms in stages and use
them in more and more complex contexts. In Chapter 5 we gradually introduce the various
features of class dictionary graphs and propagation patterns. In later chapters, the concepts
are introduced in more detail.

The book uses two approaches to explaining adaptive and object-oriented software devel-
opment. The first approach, which is the usual informal style used in software development
books, is used in Chapters 1 through 13. The second, more formal approach, which is not
required for using adaptive software, is used in Chapters 15 and 16. The two approaches
are linked together through approximately one hundred instructional objectives described
in Chapter 14.

When a concept or method is explained informally, a related instructional objective is
mentioned. An instructional objective defines a learning unit that the reader should master
and that can be used to prepare exams to test the material learned. An instructional objec-
tive is referenced in a footnote with its page number (and the number of the instructional
objective in parentheses). The reader may follow the link to the instructional objectives
chapter (Chapter 14), which is essentially a road map to the adaptive software knowledge.
The instructional objectives have prerequisites that can be followed to find the context of a
given instructional objective.

Most instructional objectives refer to formal definitions; these may be useful to some of
the advanced users of adaptive software. The formal definitions present the material in yet
another way by trying to optimally cluster the mathematical definitions.

This book contains a glossary, an index, and a self-study guide (Chapter 17) with
suggestions for using the book, the tools, and the documentation together.

Usage Scenarios

The organization of the book is useful for

1. beginning C++ developers, who want to write adaptive software quickly:
Chapters 1, 2, 3, 5,6, 7.1 to 7.5, 8, 9.1, 10, 11.1.

For a deeper understanding, complete all of Chapters 7, 9, 11, and read Chapters 12,
13, and 16. Chapter 3 summarizes the subset of C++ that is used.
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2. intermediate C++ developers, who want to write adaptive software quickly:

Same as above for #1, but Chapter 2 may be skipped.

3. those who have read about Demeter before in magazines, conference proceedings, or
journals, and who want a quick but thorough review: Start with Chapter 15, skipping
some of the formal semantics on first reading, and continue with Chapters 6, etc., as

in #1.

4. intermediate software developers using some object-oriented language (not necessarily
C++). Same as #1, but skip Chapters 2 and 3, except Section 3.5, which discusses
the subset of object-oriented concepts, which are relevant and which you need to learn
to read in C++4 syntax instead of in the syntax of your object-oriented language.

5. instructors, who will benefit from reading Chapter 15 to get a thorough understanding
of the core concepts. This chapter is self-contained. To write a course syllabus, it is
helpful to select some of the instructional objectives in Chapter 14 and complement
them with your own. Chapter 17 proposes one way of coordinating the learning of
the concepts with tool use and it contains ideas for homework. At the end of most
chapters are chapter-specific exercises.

Chapter 4 (Thinking Adaptively) is a motivational chapter which explains why adaptive
software is useful and how it fits into other key ideas of computer science as well as informally
explaining the key concepts. Assignments 1-5 in Chapter 17 can be done if the reader has
the Demeter Tools/C++ installed.

The order of the chapters should be followed, except that Chapters 4 and 15 can be
read independently. Also, Chapter 11 may be read immediately after Chapter 6.

The History of the Demeter Project

During a visiting professorship at the Swiss Federal Institute of Technology in Zurich in the
1982-1983 winter semester (on leave from Princeton University), I was teaching a course on
the theory of VLSI design. It was during preparation of this course that I learned about
Niklaus Wirth’s new hardware description language, called Hades [Wir82]. Svend Knudsen,
a doctoral student of Niklaus Wirth, and I became very interested in Hades and we started to
use it to describe chip architectures. This was the starting point of Zeus [Lie85], a hardware
description language that improved on Hades.

I moved to GTE Laboratories where Zeus was implemented. In 1984, after suggestions
from Gerald Jones, Andrew Goldberg and I first developed a metaprogramming tool [GL85b]
on top of Pascal to simplify the implementation of Zeus; this metaprogramming tool was
the starting point of the Demeter System, and it was used for several design automation
projects other than the Zeus implementation. (Demeter is a sister of Zeus.)

GTE Laboratories gave me permission to continue the Demeter work at Northeastern,
where the project is carried out by numerous dedicated graduate and undergraduate students
who are supported by the College of Computer Science, the National Science Foundation,
ARPA| and several companies, including IBM, Ciba-Geigy, and Citibank.
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Executive Summary

This book introduces the Demeter Method for developing adaptive object-oriented soft-
ware. What is an adaptive program? We give several intuitive explanations in common
terminology.

e An adaptive program is similar to a genre. According to the Random House Dic-
tionary, a genre is a category of artistic endeavor having a particular form, content,
or technique. An adaptive program describes a category of object-oriented programs
that all have a particular form, but the details of the programs are left open. Even
the input objects to the programs are left flexible. The artistic metaphor of a genre
carries further: an adaptive program describes how to “bring the actors on the stage”
without hardcoding the class structure. Bringing the actors on the stage means as-
sembling the right objects so that an operation can be called that takes those objects
as arguments.

e An adaptive program, like a multipurpose mechanism, is useful in a set of related
contexts. In some contexts an adaptive program does exactly what is required and in
other contexts it approximates what is required.

e An adaptive program is a family of analogous object-oriented programs. A member
of the family is called an instance of the adaptive program. An instance is selected by
customizing the adaptive program with a specific class structure.

e An adaptive program is like the genes of a fruit-bearing tree. A specific tree is an
instance of the genes in the same way that an object-oriented program is an instance
of an adaptive program. The genes produce similar looking trees, depending on the
environment. In some environments we will get big trees with sweet fruit and in others
only small trees with sour fruit. By analogy, all instances of an adaptive program have
a similar look. They are all built according to the same pattern, but some work better
than others.

e An adaptive program sketches the solution strategy for a class of problems. It is well
known that solving a more general problem is often simpler than solving a specific
one. The solution of the more general problem is reusable in many situations.

The book explains how to grow adaptive software in a programming-language indepen-
dent way. Since an object-oriented program is a special case of an adaptive program the
book provides a very effective introduction to object-oriented software development. The
adaptive software paradigm proposes a useful way of structuring object-oriented software.

Coverage of Computer Science Subject Areas

“Computing as a Discipline” [DCG'89] presents nine subject areas comprising the disci-
pline of computing. Accreditation boards are using the classifications in “Computing as a
Discipline” to evaluate computer science programs. This book includes some of the material
in six of the nine areas.



PREFACE xxxiii

1. Algorithms and data structures
Readers learn to write algorithms without encoding the details of the data structures
in the algorithms. This makes the algorithms more general and more reusable.

2. Artificial intelligence and robotics
Readers learn to express algorithmic knowledge at a high level of abstraction through
propagation patterns. Structural knowledge representation is introduced through class
dictionaries. Readers learn about analogical reasoning by transforming a program from
one data structure to another.

3. Database and information retrieval
Readers learn to design schemas for object-oriented databases. They also learn a novel
query notation: propagation patterns.

4. Human-to-computer communication
Readers learn a new visualization of programs based on collaborating objects and
classes.

5. Programming languages

Readers learn to use a family of programming languages that live on top of object-
oriented languages. Implementation of these languages is discussed through both
operational and translational semantics.

Class dictionaries and propagation patterns are a new programming language and at
the same time a new specification and design language.

6. Software methodology and engineering
Readers learn principles of development of flexible software systems.

Readers learn the adaptive programming principle: A program should be designed
so that the interfaces of objects can be changed within certain constraints without
affecting the program at all.

“Computing as a Discipline” describes three important processes used in the computing
discipline: Theory, Abstraction, and Design. This book covers aspects of all three processes:

e Theory

Readers learn definitions of class dictionaries and propagation patterns and a few
theorems and proofs. They become experts at proving very simple “theorems” of the
form: This object O is a legal object with respect to a given set of classes.

e Abstraction

Readers learn to abstract class dictionaries from objects. They learn to abstract adap-
tive programs from object-oriented programs. They learn to abstract parameterized
classes from classes.
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e Design

Readers learn about requirements in the form of use-cases. Readers learn about spec-
ification, design, implementation, and testing of adaptive software.

A large part of the book explains how adaptive software works. Since adaptive software
uses an excutable specification language for object-oriented programs, specification,
design, and implementation are closer together than in other approaches to software
development.

Finally, “Computing as a Discipline” identifies twelve recurring concepts fundamental
to computing. The following concepts are covered extensively in this book:

¢ Binding

Adaptive software uses a sophisticated mechanism to bind methods to classes.

e Conceptual and formal models

Readers learn to design their own models and to debug them first with respect to
structure and then with respect to functionality. Debugging of the structure is accom-
plished through parsing. Debugging of the functionality is achieved through “evolution
histories” which allow debugging in layers.

e Evolution

Ease of evolution is one of the key properties of adaptive software. Readers learn how
to evolve their C++ programs by controlling the evolution through class dictionaries
and propagation patterns.

e Levels of abstraction

Readers learn to effectively deal with multiple levels of abstraction, most importantly
learning the distinction between groups of objects and groups of classes. Readers are
challenged by abstraction level collapsing, such as when a group of classes is suddenly
viewed as a group of objects (which happens, for example, when readers learn about
self-describing class dictionaries and how to write programs for them). Parameterized
classes are also used extensively, adding a third layer of abstraction.

When readers write propagation patterns they operate at multiple levels of abstraction:
the object, class, and parameterized class level for the structural information, and the
adaptive and object-oriented level for the behavioral information. Also, when readers
write a propagation pattern, they often think about how the corresponding C++
program looks.

e Reuse

FEase of reuse is one of the driving forces behind adaptive software. Readers learn how
to write software with fewer built-in assumptions, which makes the software easier to
reuse in new environments. The Law of Demeter plays an important role.
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Chapter 1

Introduction

This chapter provides an introduction to adaptive software in a top-down fashion, going
from an abstract adaptive program to a concrete payroll example in C++. If your learning
style is more towards going from the concrete to the abstract, please jump safely ahead to
Chapter 3, From C++ to Demeter, provided you already know some C++4. That chapter
shows you the transition from a C++ program to an adaptive program. A third entry
point to the book is through Chapter 5, Adaptive Software by Example, which also uses a
simple-to-general approach starting with very small examples. There is yet a fourth entry
point into the book, which is recommended for advanced readers only: the self-contained
Chapter 15, Core Concepts and Implementation, which gives you the essence of adaptive
software and a provably correct implementation in forty pages.

1.1 EVOLUTIONARY LIFE CYCLE WITH ADAPTIVE SOFT-
WARE

When developing innovative and complex software systems, traditional software engineering
approaches such as the waterfall model are no longer suitable. Evolutionary software devel-
opment, as described by the spiral model, is used more and more as an important method
to develop innovative software. Evolutionary software development uses an incremental or
evolutionary life-cycle model instead of the traditional sequential life-cycle models.

Adaptive software is an improved form of object-oriented software that has been devel-
oped to support evolutionary development. It is in the nature of evolutionary development
that there will be many software changes. Therefore, software should be written so that
the impact of changes is limited. Adaptiveness leads to the desired reduction of change
impact and may be combined with other proven techniques for object-oriented software
development.

Adaptive object-oriented software is software that adapts automatically to changing
contexts. Contexts may be behavior, implementation class structures, synchronization struc-
tures, object migration structures, etc.
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1.1.1 How is Adaptiveness Achieved?

Adaptiveness is achieved by expressing programs as loosely coupled, cooperating fragments,
each one describing only the concerns of one context. The loose coupling is achieved with
novel means such as succinct object navigation specifications. The loose coupling of the
fragments leads to adaptiveness since many changes in one fragment preserve the intent of
the other cooperating fragments, which then adjust automatically to the changed fragment.

1.1.2 Applications of Adaptiveness

Adaptive software has other applications beyond applications to evolutionary software de-
velopment.

e Object-oriented databases

One of the applications of adaptive programming is relaxing the need for the program-
mer to know the class structure in detail. This point of partial or high-level knowledge
of the class structure as opposed to its changeability has been explored by the database
community. Adaptiveness makes a new contribution to the area of structure-shy query
languages for object-oriented databases.

e Programming languages

Most programming languages offer some kind of data structure notation. Adaptiveness
may be added to those programming languages by introducing partial data structures
that loosely constrain the set of data structures with which a program can work. The
traditional approach views a data structure as an integral part of a program whereas
adaptive programming views the data structure as something changeable.

1.1.3 Adaptiveness with the Demeter Method

In the Demeter Method we focus on adaptive programs that are a powerful variant of object-
oriented programs. The variant consists of making the programs structure-shy by using
only minimal information about the implementation-specific class structure when writing
the behavior. The advantage of the structure-shy programs is that they express their intent
at a high level of abstraction. Therefore, both readers and writers of those programs have
the advantage that they don’t have to learn a complex class structure. It is sufficient to
have partial knowledge of the class structure. The high level of abstraction also makes the
programs shorter and easier to maintain. Adaptive programs are written using two loosely
coupled fragments: behavior and implementation class structures.

Adaptive software works with partial knowledge about class structures that directly
supports an iterative software life-cycle. When a complex project starts, the optimal class
structure is not known and will be determined iteratively during the project. Changes to
the class structure can be done much more easily with adaptive software than with object-
oriented software. Class libraries can be specified in a flexible way by defining the behavior
as loosely coupled to the structure. Adaptive programs can be written to run with different
class libraries provided the resources needed by the adaptive program are supplied by the
class library.
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1.1.4 Demeter Life-Cycle

The two basic components of a life-cycle model are the set of development phases (described
by activities and deliverables) and the execution order in which the activities are performed
to produce the deliverables. The Demeter life-cycle model is an adaptation of the spiral
model to adaptive software. The four major activities of the spiral model are planning,
risk analysis, engineering, and customer evaluations. The engineering activity develops the
next-level product and consists of software design, coding, and testing. The engineering
activity gets as input the use cases and application objects that have been identified in the
planning phase and the output of the risk analysis to decide what to implement next.

The design phase translates the requirements for the software into a set of represen-
tations. The first representation is a set of customizers that describe class structure, ar-
chitecture, and object languages. The second representation is a set of adaptive programs
(without wrappers), that approximate the intended behavior. The third representation is
a set of evolution histories that say in which order the customizers and adaptive programs
are developed. Both adaptive programs and evolution histories are described using succinct
subgraph specifications.

There are design rules for customizers that allow us to evaluate the quality of customiz-
ers. Customizers are checked for rules whose violation would cause the programs produced
from them to misbehave. Customizers can be optimized after design rule checking.

There are design rules for adaptive programs which allow to measure the quality of
adaptive programs. One such design rule is the Law of Demeter which says that when
writing a wrapper, we should use only a very limited set of classes. Adaptive programs are
written in terms of partial class structures and many of the patterns about class-structure
design developed by the patterns community can be applied when developing adaptive
programs.

The coding phase consists of developing all the wrappers and calling the Demeter com-
piler to translate the adaptive programs and the customizers into executable object-oriented
programs.

The testing phase checks whether all use cases have been implemented properly. Test
inputs are often specified using the object languages defined by the customizers.

The Demeter life-cycle model is built on the foundation of delaying the binding of
methods to classes beyond program writing time. This is achieved through succinct subgraph
specifications. No other life-cycle model uses this approach, which leads to loosely coupled
software. However, the Demeter life-cycle model is open and the good ideas from other life-
cycle models can be reused. For example, use cases from the Jacobson Use-Case method are
reused. Adaptive software promotes a new kind of nonblack-box reuse where the important
information about the organization of software is revealed to improve reusability. Nonblack-
box reuse is also promoted by Gregor Kiczales’ group at Xerox PARC.

Adaptive programming, as used in the Demeter Method /C++, builds on the program-
ming language C++ although the adaptive programming approach is programming-language
independent. However, we need a language to make the concepts concrete and for various
reasons we have chosen C++. Tools have been developed already that support the Demeter
Method for C++, Borland Pascal, and Lisp with an object-oriented extension.

Adaptive programs are improved object-oriented programs that allow us to take full
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advantage of object-oriented technology. The advantages of adaptiveness play a stronger
role, the larger the class structures and the longer the software will live. Adaptive software
has an efficient implementation, incurring no run-time costs over object-oriented software.
Compilation of adaptive software into C++ is also fast.

Maintainability is a key consideration because most costs associated with software prod-
ucts are incurred after the software has been put to use. Adaptive software improves main-
tainability because it is written at a higher level of abstraction.

The Demeter Tools/C++ provide one possible implementation of adaptive software (see
Fig. 1.1).

Adaptive Programming :> Object—Oriented Programming

One Possible Implementation:

Demeter Tools/C++ ~ ———> C++

Legend:

———J> make use of
—

— = is implemented by

Figure 1.1: Implementation of adaptive programming

The process of developing simple adaptive software with the Demeter Tools/C++ con-
sists of the following steps:

1. Write the customizer that specifies the class library and object language.
2. Run the design check tool to check consistency of the customizer.
3. Write the adaptive program that specifies the intended behavior of the application.

4. Run the design check tool to check that the adaptive program is consistent and that
the adaptive program is compatible with the customizer.

5. Generate the C++ code by executing the Demeter compiler. Compile the C++ code.
compile (ADAPTIVE PROGRAMS, CUSTOMIZER) -> executable C++ program

6. Run the executable by using as input object descriptions that are legal with respect
to the customizer.
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1.1.5 Symmetry Between Adaptive Programs and Customizers

Adaptive software development is based on first selecting the needed resources from a class
library, then the adaptations to those resources. The resource selection is expressed by
navigation specifications and the adaptations by wrappers.

Adaptive programs consist of navigation specifications that describe how objects are
traversed augmented by wrappers that specify executable programs (C++ member function
statements) executed before or after traversal of an object. Adaptive programs often also
contain transportation specifications that transport objects to other objects to get a job
done collectively.

There is a symmetrical relationship between customizers and adaptive programs. A
customizer is written once to be used with several adaptive programs that are consistent
with the customizer. This customizer reuse happens, for example, inside one application
when the functionality is expressed in terms of several adaptive programs that will be
customized together (see Fig. 1.2).

Adaptive
Program 1
One Customizer

Adaptive
Program 2

H

Adaptive
Program i

Figure 1.2: Customizer reuse

An adaptive program can be customized with many different customizers that are con-
sistent with the adaptive program (see Fig. 1.3). This adaptive program reuse happens, for
example, during maintenance when the object structure changes.

1.1.6 Symmetry Between Object Descriptions and Customizers

Defining objects using statements of an object-oriented programming language can be a
tedious task. The reason is that the object structure is encoded in great detail into the
statements. Therefore, adaptive software uses so-called sentences to describe families of
objects. By a sentence we mean a sequence of tokens in the sense of language and grammar
theory (see Chapter 11). A specific object can be selected from the family by using a
customizer.

There is a symmetrical relationship between customizers and sentences. A customizer
can be used with several sentences to select objects from the families described by the
sentences. And one sentence can be used with several different customizers to select different
objects.
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Customizer 1

One Adaptive
Program

Customizer 2

Customizer i

Figure 1.3: Adaptive program reuse

1.2 DISADVANTAGES OF OBJECT-ORIENTED SOFTWARE

Object-oriented programs are easier to extend than programs that are not written in an
object-oriented style, but object-oriented programs are still very rigid and hard to adapt
and maintain. A key feature of most popular approaches to object-oriented programming
is that methods are attached to classes—C++, Smalltalk, Eiffel, Beta—or to groups of
classes—CLOS. This feature is both a blessing and a curse. On the brighter side, attaching
methods to classes is at the core of objects being able to receive messages, different classes
of objects responding differently to a given message, and the ability to define standard
protocols. On the darker side, by explicitly attaching every single method to a specific
class, the details of the class structure are encoded into the program unnecessarily. This
leads to programs that are hard to evolve and maintain. In other words, today’s object-
oriented programs often contain more redundant application-specific information than is
necessary, thus limiting their reusability.

Does this mean that we either have to take the curse in order to enjoy the blessing
or give up the blessing altogether? Analyzing the problem we realize that all is not lost.
We need to be able to specify only those elements that are essential to an object-oriented
program and then specify them in a way that allows them to adapt to new environments.

What do we mean by specifying only those elements—classes and methods—that are
essential to an object-oriented program? There is a general impression that object-oriented
programs are structured differently from conventional programs. For many tasks very brief
methods are written that simply “pass through” a message to another method. We regard
“traversal, pass through” methods as nonessential. But more importantly, we intend to
focus on classes and methods that are essential not only to a particular application but also
potentially to a family of related applications.

What is wrong with object-oriented programs? Object-oriented programmers have to
write the details of the class structure repeatedly into their methods. This leads to programs
with high entropy that are polluted by accidental details about the class structure. Figure
1.4 shows a class structure (the full square) and four behaviors which have been written for
various parts of the class structure. The first behavior (f1) uses the right two thirds, the
second behavior (f2) the left two thirds, the third behavior (f3) uses the bottom two thirds



1.3. ADAPTIVE PROGRAMMING 7

and the fourth behavior (f4) uses the top two thirds. The part of the class structure that
is in the center is encoded four times into the methods that implement the four behaviors!
Should there be a change to the class structure in the center area, we would have to update
the four behaviors!

1 2 1
f3
2 4 2
f4
1 2 1
f1 f2

Figure 1.4: Duplication of class structure in object-oriented programming

In this book we introduce adaptive object-oriented programming as an extension
to conventional object-oriented programming. Adaptive object-oriented programming facil-
itates expressing the elements—classes and methods—that are essential to an application by
avoiding a commitment on the particular class structure of the application. Adaptive object-
oriented programs specify essential classes and methods by constraining the configuration
of a class structure that attempts to customize the adaptive program, without spelling out
all the details of such a class structure. This way, adaptive object-oriented programmers
are encouraged to think about families of programs by finding appropriate generalizations.

The remainder of this chapter is organized as follows. Section 1.3 introduces adaptive
programs, describing their structure. Adaptive programs® are specified using propagation
patterns, which express program constraints. Propagation patterns are introduced in Sec-
tion 1.4. An adaptive program denotes an entire family of programs, as many programs
as there are class structures that satisfy its constraints. A class structure that satisfies the
constraints of an adaptive program is said to customize the program, and is specified as a
class dictionary graph. Class dictionary graphs and customization of adaptive programs
are introduced in Section 1.5.

1.3 ADAPTIVE PROGRAMMING

Conventional object-oriented programs consist of a structural definition in which a class
structure is detailed, and a behavioral definition where methods attached to the classes in
the class structure are implemented. Likewise, adaptive programs are defined structurally

Mn the remainder of this book we refer to adaptive object-oriented programs simply as adaptive programs.
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and behaviorally. What makes an adaptive program different is that class structures are
described only partially, by giving a number of constraints that must be satisfied by a
customizing class structure. In addition, behavior is not implemented exhaustively. That
is, methods in an adaptive program are specified only when they are needed, when they
implement an essential piece of behavior. Constraint-based partial specifications can be
satisfied by a vast number of class structures which, when annotated with essential methods
and automatically generated methods, denote a potentially infinite family of conventional
object-oriented programs. This situation is illustrated in Fig. 1.5.

Infinitely many class structures

/_\\
Adaptive Program // —— -
| SAMSTES / \
)
/
denotes selects T ——
73
JLwET )
N o -

Family of programs

Figure 1.5: An infinite family of programs denoted by an adaptive program

Let us further illustrate the process of writing an adaptive program with an example.
We are interested in computing the salaries of the top-level officers in a conglomerate of
companies.

Statement of the computeSalary problem.

Given a conglomerate object that references the salaries of all officers in the
conglomerate, sum up the total salary of only the top-level officers, i.e., the
officers that work directly for the head company of the conglomerate and not for
any of its subsidiaries.

In fact, the process of writing an adaptive program can be seen as a process of making
assumptions. These assumptions are expressed as constraints in the class structures that
customize an adaptive program. Such constraints specify groups of collaborating classes in
the customizing class structures.

What is important about the computeSalary problem? We assume there is a Conglom-
erate object that contains somewhere inside of it an Officer object, which contains a Salary
object. These assumptions imply that for any class structure to successfully customize the
computeSalary adaptive program, it must define a Company class that contains a nested
Officer class, which contains in turn a Salary class. In addition, we require that the compute-
Salary program must not consider officers in subsidiary companies of the conglomerate. This



1.3. ADAPTIVE PROGRAMMING 9

turns into an assumption that the adaptive program must somehow bypass the relationship
subsidiaries of any company in the conglomerate. Thus, the structural section of an adaptive
program should specify a number of constraints, expressed using class-valued and relation-
valued variables. Class-valued variables itemize assumptions on the existence of classes in
a customizing class structure. Relation-valued variables further restrict customizing class
structures by excluding or forcibly including relationships among classes.

Behaviorally, the computeSalary program requires only one essential element, a method
that accumulates the salary values for the Conglomerate class. Nevertheless, every other
method that constitutes a denoted object-oriented program should share a common signa-
ture. In particular, we would like an accumulator totalSalary to be handed to the specified
method for update and to be accessible at the completion of the program. This can be
done by using a modifiable argument, defined by each method in the program. Thus, the
behavioral section of an adaptive program should define a common signature for its meth-
ods, and the code fragments that implement the required essential methods, attached to the
appropriate class-valued variables.

The table in Fig. 1.6 describes informally the structure of the computeSalary adaptive
program. Getting this adaptive program up and running involves the following steps. First,
formally specify the program using a new notation that extends existing object-oriented lan-
guages; Section 1.4 introduces specification of adaptive programs using the propagation
pattern notation. See Fig. 1.7. Second, customize the adaptive program with a particular
class structure that satisfies the program’s constraints; customization is discussed in Sec-
tion 1.5. We give two different customizers: Fig. 1.8, which selects the C++ program in
Fig. 1.9, and Fig. 1.10, which selects the C++ program in Fig. 1.11.

| Structural Constraints Section |

Variables Constraints
Type Value Find all Salary-objects which are con-
tained in Officer objects which are con-
tained in Conglomerate objects
Conglomerate | but not reachable through the
Class Salary subsidiaries relation.
Relation | subsidiaries

| Behavioral Section

Signature | void computeSalary( int& totalSalary )
Attached to Code fragment
Methods | Salary totalSalary = totalSalary

+ *(this->get_value());

Figure 1.6: Informal description of computeSalary adaptive program

Adaptive programming, as would be expected, is realized by delayed binding. We read
in the Encyclopedia of Computer Science: “Broadly speaking, the history of software de-
velopment is the history of ever-later binding time ...” Indeed, in the early days, machine
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language programmers used to bind variables to memory locations, while assembly lan-
guage programmers left this task to the assembler. Later on, Pascal programmers bound
function calls to code; now C++ programmers have the choice to delay this decision until
run-time. Adaptive programming introduces a subsequent degree of delayed binding. While
conventional object-oriented programmers bind methods explicitly to classes, adaptive pro-
grammers delay binding of methods until a class structure customizer is provided.

1.4 PROPAGATION PATTERNS

An adaptive program is specified using a collection of propagation patterns, each of which
specifies a set of related constraints in the adaptive program. Adaptive programs, as we have
pointed out, are customized by class structures. Although we cannot assume the composition
of a specific customizing class structure,? it seems reasonable to assume that it conforms
to some given representation. Propagation patterns take advantage of this, assuming that
customizing class structures are represented as graphs; specifically, as class dictionary
graphs.? Assumptions, such as a class Conglomerate that contains a nested Salary class, are
represented in a propagation pattern as constraints of the form: the traversal from vertex
Conglomerate to vertex Salary must be possible in any class dictionary graph that customizes
this propagation pattern.

Given a customizing class dictionary graph, a propagation pattern produces an object-
oriented program in the family denoted by the adaptive program it specifies. The object-
oriented program is produced in two steps. First we generate a subgraph of the class dictio-
nary graph, denoting the set of collaborating classes specified by the structural constraints
in the adaptive program. Then, a method is attached to each vertex in the generated
subgraph, sharing the signature given by the adaptive program in its behavioral section.
Finally, each method specification in the behavioral section—class and code fragment—is
used to either fill in or annotate some generated method.

Consider again the adaptive program for computing salaries of officers outlined in the
previous section, and summarized in Fig. 1.6. The propagation pattern in Fig. 1.7 specifies
this adaptive program, using the following elements.

1. An operation clause. The signature void computeSalary( int& totalSalary ), shared by
every method that implements the compute salary adaptive program, is specified with
the keyword *operation*.

2. A traversal clause. The class-valued variables in the clauses *from* Conglomerate,
*via* Officer, *to* Salary specify vertices delimiting a traversal in a customizing class
dictionary graph. The relation-valued variable, which in the clause *bypassing* —>
* subsidiaries, * represents an edge in a customizing class dictionary graph, further
constrains the traversal to only those paths that do not include the edge. Given a
customizing class dictionary graph, the traversal specified by this clause induces a
set of vertices representing classes which include the classes in the customizing class
dictionary graph that match the class-valued variables in this traversal clause, and
any class contained in any path denoted by this traversal clause. Each class in such an

2That is, how many classes of what kind it has and with how many parts.
3(lass dictionary graphs are introduced in Section 1.5.
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xoperation* void computeSalary(int& totalSalary)
*traverse* // structural constraints section

*from* Conglomerate

*bypassing* -> *,subsidiaries,*
*via*x Officer

*to*x Salary

*wrapper* Salary // behavioral section

*prefix*

(@ totalSalary = totalSalary + *(this->get_value()); @)

Figure 1.7: Propagation pattern for the computeSalary adaptive program

induced set of classes gets a method generated automatically, all of which define one
object-oriented program in the family denoted by the adaptive program computeSalary.

A code fragment clause. The class-valued variable in *wrapper* Salary, indicates that
the code totalSalary = totalSalary + *(this->get_value()); fills in the body of the method
generated automatically for class Salary. (@ and @) are used to delimit C++ state-
ments.

In general, a propagation pattern consists of an operation clause, a traversal clause,

and a set of code fragment clauses. A traversal clause is defined as a set of propagation
directives, each of which is a 4-tuple composed of the following elements.

1.

A nonempty set of source vertices from which a traversal starts, indicated by the
keyword *from*.

A possibly empty set of target vertices where a traversal ends, indicated by the keyword
*to*,

A possibly empty set of through edges, out of which each path denoted by a traversal
is required to include at least one. Through edges are indicated by the keyword
*through*.

A possibly empty set of bypassing edges, none of which may be included in any path
denoted by a traversal. Bypassing edges are indicated by the keyword *bypassing*.
Through and bypassing edges are specified with relation variables.

A *wrapper* code fragment is associated with a class-valued variable or with a relation-

valued variable and can be either *prefix*, or *suffix*. Wrapper code fragments are prefixed
or appended to the code that is generated automatically to properly implement traversals,
depending on whether the code fragments are *prefix* or *suffix*, respectively.
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1.5 CUSTOMIZATION

Adaptive programs, specified using the propagation pattern notation, exist at a higher level
of abstraction than conventional object-oriented programs, much in the same way that pa-
rameterized classes exist at a more abstract level than nonparameterized or, for that matter,
instantiated classes. To select a particular object-oriented program for execution from the
family denoted by an adaptive program, the adaptive program must be customized or in-
stantiated, the same way a parameterized class is instantiated. As we have indicated, prop-
agation patterns expect customizing class structures to be represented as class dictionary
graphs.

Ident name Conglomerate

state

head :
country String

name
ity Address _ Company
Yy location
turnover

String

street - officers
—~ Subsidiaries OfficerList String

D D

SubsidiaryL.ist

Subsidiary

salary value
sharePercentage

WhollyOwned  PartiallyOwned Ordinary ShareHolding

stake

[]

Number

Figure 1.8: Class dictionary graph representing conglomerates of companies

Class dictionary graphs represent class structures at a programming-language indepen-
dent level using vertices to represent classes, and edges to represent relationships between
classes. An example of a class dictionary graph is illustrated in Fig. 1.8.* There are three
kinds of vertices in a class dictionary graph: construction, alternation, and repetition ver-
tices. The vertex labeled Conglomerate is a construction vertex. A construction vertex,
represented as a rectangle (O ), is an abstraction of a class definition in a typical statically
typed programming language (e.g., C++).

4When you run this example with the Demeter Tools/C++, replace String by DemString, Ident by Deml-
dent, and Number by DemNumber.
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The vertex labeled Officer is an alternation vertex. Alternation vertices define union
classes, and are represented as <. When modeling an application domain it is natural
to take the union of sets of objects defined by construction classes. Alternation vertices are
implemented as abstract classes and their alternatives as subclasses through inheritance. In
our example, the vertices labeled Ordinary and ShareHolding are the alternatives of Officer and
define classes that inherit from class Officer. The alternative relationship is indicated using
alternation edges (= ), outgoing from an alternation vertex into either a construction
or another alternation vertex.

Construction and alternation vertices can have outgoing construction edges (— ),
which represent parts. Part is a high-level concept that might be implemented as a method,
not necessarily as an instance variable. Construction edges outgoing from alternation ver-
tices indicate common parts, inherited by each alternative of the alternation.

Finally, the vertex labeled SubsidiaryList is a repetition vertex. Repetition vertices
represent container classes that have as their instances collections of objects from a given
repeated class. Two important advantages of using repetition vertices are that the designer
need not be concerned with a class belonging to a collection when designing such a class,
and that all the functionality common to container classes, such as iteration, appending,
and element count, can be abstracted into a single class.

Let the class dictionary graph in Fig. 1.8 be a customizer for the propagation pattern
in Fig. 1.7, which specifies the computeSalary adaptive program. First, we verify that the
class dictionary graph satisfies the constraints in the adaptive program. The class dictionary
graph does define classes Conglomerate and Salary in such a way that the traversal specified
by the propagation pattern is possible. The class dictionary graph in Fig. 1.8 is quite
complex compared to the simple propagation pattern in Fig. 1.7. It is very typical that
the class dictionary graph contains a lot of noise, which is important for other tasks but
irrelevant for the current task.

When a propagation pattern is customized with a class dictionary graph, its traversal
specifications induce a set of paths as follows. Every path from each *from* to each *to*
vertex in the class dictionary graph is taken. In our example, some of those paths are:

head of ficers salary

1. Conglomerate === Company =" OfficerList — Officer " Salary

head company

2. Conglomerate == Company SubsidiaryList — Subsidiary "— " Company
L OfficerList — Officer ““%" Salary

subsidiaries
—

The set of paths is restricted to those paths that contain at least one *through* edge
and that do not contain any *bypassing* edge. In our example, the path Conglomerate
bead Company SubsidiarylList — Subsidiary Company "2 OfficerList
— Officer "% Salary would be eliminated, since it contains the edge “*"“£4** which
must not be included. The resulting set of paths defines a subgraph of the customizing
class dictionary graph referred to as the propagation graph of the customization. The
propagation graph induced by the propagation pattern in our example is shown in Fig. 1.9.

This propagation graph also shows the code that defines the object-oriented program
selected by the customizing class dictionary graph of Fig. 1.8. Once the propagation graph
for a customization is computed, the code attached to it is generated as follows. For each

subsidigries company
idids AN
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Conglomerate
void Conglomerate::computeSalary( int& totalSalary ) I:l

this—>head->computeSalary( totalSalary ); head
void OfficerList::computeSalary( int& totalSalary )

Company { .. .. N
void Company::computeSalary( int& totalSalary ) I:l gg:ﬁgl‘ |st_|ter2;oc$]gef>f<itccgfrfllcer( this);

this—>officers—>computeSalary( totalSalary ); while( eachOfficer = nextOfficer() )

officers eachOfficer->computeSalary( totalSalary );

OfficerList }

void Officer::computeSalary( int& totalSalary ) ¢

this—>salary->computeSalary( totalSalary );

' Salary
Officer  salary

void Salary::computeSalary( int& totalSalary )

totalSalary = totalSalary + *(this—>get_value());

Ordinary ShareHolding

Figure 1.9: Propagation graph for a customization of the computeSalary adaptive program

vertex in the propagation graph, a method is created with the signature given by the oper-
ation specification in the propagation pattern. The body for this method contains as many
calls as the given vertex has outgoing construction edges in the propagation graph.® Each
call is made to the method with the same signature attached to the vertex target of the
corresponding construction edge. Finally, each wrapper code fragment in the propagation
pattern is prefixed or appended to the generated code for the vertex or edge it specifies.
When a wrapper is associated to a class-valued variable, the code fragment is prefixed or
appended to the entire method generated for the class the variable stands for. Relation-
valued variables, implemented as edges, get code generated in the form of a message send to
the target of the edge. Wrappers associated with relation-valued variables prefix or append
their code to this message-send code.

To further illustrate the adaptiveness of the propagation pattern in Fig. 1.7, consider
the class dictionary graph in Fig. 1.10, a second customizer for the propagation pattern. In
this customizer, conglomerates have lists of companies with simpler subsidiaries and officers.
Again, we verify that this customizer satisfies the constraints posed by the parameters for
the adaptive program specified by the propagation pattern. There is a vertex Conglomerate
from which a traversal is possible to a vertex Salary. Hence, this second customizer induces
the propagation graph of Fig. 1.11, which is also annotated by the code generated for each
vertex.

So far we have discussed customization of adaptive programs using class dictionary
graphs. Another possibility is to use sample objects to automatically generate a customiz-

5Notice, in the propagation graph, as opposed to the class dictionary graph.
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Ident Conglomerate

name
state
%untry

participj&l

String ity Address CompanyList

location

/subsidiaries

y e String
Compan tur nover
officers pany
OfficerList String
@ name
title

Salary Number

T
|:| salar

y value

Figure 1.10: Another representation for conglomerates of companies

void Conglomer ate::computeSalary( int& totalSalary )

this—>participants->computeSalary( totalSalary ); Conglomer ate

void CompanyL ist::computeSalary( int& totalSalary )

participants CompanyList_iterator nextCompany( *this);
Company* eachCompany;
. while( eachCompany = nextCompany() )
CompanyList eachCompany—->computeSalary( totalSalary );
void Company::computeSalary( int& totalSalary ) }
this->officer s=>computeSalary( totalSalary ); Company }/oid OfficerList::computeSalary( int& totalSalary )
CompanyList_iterator nextOfficer ( *this);
officers Company* eachOfficer;
OfficerList while( eachOfficer = nextOfficer() )

eachOfficer—>computeSalary( totalSalary );

}

Officer void Salary::computeSalary( int& totalSalary )

o ' {
void Officer::computeSalary( int& totalSalary ) totalSalary = totalSalary + * (this->get_value());
this—>salary->computeSalary( totalSalary );

Salary

Figure 1.11: Propagation graph with code for second customization
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ing class dictionary graph. A technique can be used to generate class dictionary graphs
automatically from object samples. This method first generates some class dictionary graph
that describes at least those objects given as samples. In a second stage, the method opti-
mizes the generated class dictionary graph by eliminating redundant parts and reducing the
amount of multiple inheritance, while preserving the set of objects described by the class
dictionary graph.

1.6 SUMMARY

Propagation patterns are motivated by the key idea behind the Law of Demeter. The Law
of Demeter essentially says that when writing a method, one should not hardwire the details
of the class structure into that method. Propagation patterns take this idea one step further
by keeping class structure details out of entire programs as much as possible.

Adaptive programming, realized by the use of propagation patterns, extends the object-
oriented paradigm by lifting programming to a higher level of abstraction. In their simplest
form, which also turns out to be the worst in terms of adaptiveness, adaptive programs are
nothing more than conventional object-oriented programs, where no traversal is used and
where every class gets a method explicitly. But, for a large number of applications, repre-
sented by related customizers, nothing has to be done to an adaptive program to select the
conventional object-oriented program corresponding to any of the customizers. Moreover,
when changes to an adaptive program are indeed necessary, they are considerably easier to
incorporate given the ability that adaptive programs offer to specify only those elements that
are essential and to specify them in a way that allows them to adapt to new environments.
This means that the flexibility of object-oriented programs can be significantly improved by
expressing them as adaptive programs, which specify them by minimizing their dependency
on their class structures.

The following advantages stem from the use of adaptive programs.

e Adaptive programs focus on the essence of a problem to be solved and are therefore
simpler and shorter than conventional object-oriented programs.

e Adaptive programs promote reuse. Many behaviors require the same customization
and thus customizers are effectively reused. More importantly, every time an adaptive
program is customized reuse is taking place.

e There is no run-time performance penalty over object-oriented programs. By using
appropriate inlining techniques, traversal methods can be optimized, eliminating ap-
parent performance penalties.

1.7 EXERCISES

Exercise 1.1 (Suitable only if you have previous experience with object-oriented software.)
Exercise suggested by Joan Lukas.

Reflect on your experiences with object-oriented programming to see where the disad-
vantages of object-oriented programming are manifest in your earlier work.
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1.8 BIBLIOGRAPHIC REMARKS

e Parts of this chapter are taken from [LSX94].

e The discussion of adaptive software as collaborating, loosely coupled views has ben-
efitted from discussions with Gregor Kiczales and John Lamping at ECOOP ’94 in
Bologna, Italy.

e The spiral model [Boe88] supports evolutionary software development.



Chapter 2

Introduction to
Object-Oriented Software

In the previous chapter we introduced some basic ideas behind adaptive software. We learned
that adaptive software is a generalization of object-oriented software. Adaptive software
intends to enhance the advantages of object-oriented software and to eliminate some of its
disadvantages. In this chapter we give an introduction to object-oriented software. Readers
already familiar with object-oriented concepts may skip to the next chapter.

Let’s assume that we have to provide a program that produces a list of cities in Switzer-
land that have certain properties. Which data do we need? Which operations does the
program have to perform?

We will need data structures to represent the structure of the cities. The data structures
are encapsulated with functions that provide access to the data. The data is accessible only
through the functions, that is, the functions provide an interface to the data. The idea
behind encapsulation is that the low-level data structures are hidden and allowed to change
more easily without requiring a big maintenance effort. For example, when the internal data
type of an encapsulated data structure changes, and the interface stays the same, there is
no need to update other parts of the software. Another advantage of encapsulated data
structure is that data consistency can be enforced.

We can choose between four different methods for constructing a program.

1. Write the interface of encapsulated data structures first. Then write procedures that
refer to the interface of encapsulated data structures

(a) using detailed information in interfaces of encapsulated data structures

(b) using minimal information in interfaces of encapsulated data structures.

2. Write procedures first, and in parallel derive

(a) detailed encapsulated data structures

(b) constraints on encapsulated data structures with which the procedures work and
encapsulated data structures that satisfy the constraints.

18
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la is used in data-centered software development methods, including in object-oriented
methods. 2a is also used in object-oriented methods.

1b and 2b are used in the adaptive software approach described in this book. Adaptive
software can be viewed as a higher-level description of object-oriented software. One adap-
tive program describes a collection of object-oriented programs from which we can select
one by giving a specific encapsulated data structures. 1b and 2b are closely related. In 1b
we start out with a detailed encapsulated data structure but when we write the program we
use only the important information from the data structure that is relevant to the program.
Data structure information not relevant to this program, but to some other program, will be
ignored. In 2b we formulate the functionality referring only to data structure information
that is relevant for the functionality. In the following introductory example we use method
la. In Chapter 4 and in later chapters, method 2b is used. Adaptive software is usually
developed following method 1b.

How can we characterize the object-oriented organization of programs? Using the data
to organize the programs is not sufficient to write programs in an object-oriented style. In
the object-oriented approach, a program is viewed as a model of reality. Reality consists of
physical and mental objects that are mapped directly into programs that are written in the
object-oriented style.

Different objects can react differently to the same influence. For example, if we push a
stick that has been placed vertically, it will fall. If we give the same push to a thirty foot
high tree it will not move. The objects decide how to react to actions or requests. Program
objects that are used in object-oriented programming have the same property.

Object-oriented and adaptive programming are important software technologies. They
do not replace careful thinking during the design and programming process, but they lead,
if used properly, to a significant simplification of the development and maintenance of pro-
grams.

An object is either a physical object (e.g., a village) or an abstract object (e.g., a
mathematical expression (x 3 5)). In most programming languages that support object-
oriented programming, objects are organized into classes. A class defines the structure of
the objects that belong to the class.

The following class Village describes villages for a tourist office application.

CLASS Village HAS PARTS
name : Text
inhabitantData : List(Inhabitant)
number0fMuseums : DemNumber
OPTIONAL
swimmingPools : List(SwimmingPool) ;
OPTIONAL
neighbors : List(Settlement);
END CLASS Village.

A village has five parts for the purpose of this application. These parts are called: name,
inhabitantData, numberOfMuseums, swimmingPools and neighbors. The first three parts are
compulsory and the last two optional: they do not have to be given in every object of the
class.
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The parts themselves are defined by classes. For example, the name of a village is given
as an object of class Text. The data about the inhabitants is given as an object belonging to
class List(Inhabitant). The objects of the class List(Inhabitant) have objects of class Inhabitant
as their parts.

Instead of using the verbose notation shown in Fig. 2.3, we use either the graphical
notation in Fig. 2.1 or the more succinct notation in Fig. 2.2. Both figures show the
notation used by the Demeter Method.!

Text Village DemNumber
name numberOfMuseums
[ 1= ~[]
~ ~
~
\ S
inhabitantData swimmingPools \ N _ neighbors
Inhabitant_List SwimmingPool_List Settlement_List

Figure 2.1: Graphical class definition

Village =
<name> Text
<inhabitantData> List(Inhabitant)
<number0fMuseums> DemNumber
[<swimmingPools> List(SwimmingPool)]
[<neighbors> List(Settlement)].

Figure 2.2: Textual class definition

A class can be used as a cookie cutter to cut an object. For example, we can use the
class Village to construct the village called Ebnat. We have to provide the information for

LClass dictionary graph graphical representation, page 431 (6). This is a reference to an instructional
objective in Chapter 14, the “nerve center” of the book. See also the explanation on page xxx.



21

the required parts of a village: the name, the data about the inhabitants, and the number
of museums.

Classes are organized hierarchically in object-oriented and adaptive programming. For
example, the class Village and the class Town have a common ancestor class that we call Set-
tlement. Villages and towns have many commonalities that are defined for class Settlement.
Fig. 2.3 shows class Settlement and its subclasses.

CLASS Settlement IS EITHER
Village OR Town
COMMON PARTS
name : Text
inhabitantData : List(Inhabitant)
number(0fMuseums : DemNumber
OPTIONAL
swimmingPools : List(SwimmingPool);
OPTIONAL
neighbors : List(Settlement);
END CLASS Settlement.

CLASS Village HAS PARTS
END CLASS Village.

CLASS Town HAS PARTS

universityData : List(University)
END CLASS Town.

Figure 2.3: Class settlement and subclasses

Class Town has all the parts of class Settlement and additionally a part called univer-
sityData. Class Village has only the parts of class Settlement. We still need to express
functionality specific to villages.

In this context object-oriented programming uses the concept of inheritance. We say
that the class Town and the class Village inherit from class Settlement. A descendant class
inherits the parts of the ancestor class. The values of the parts may be different for each
object. The descendant classes also inherit all the operations of the ancestor class.

Instead of using the verbose notation shown in Fig. 2.3, we use either the graphical
notation in Fig. 2.4 or the more succinct notation in Fig. 2.5.

So far we have dealt with the structure of objects; that is, we considered their com-
position from parts. Now we focus on the functionality of objects. Objects can react to
requests. A request consists of a name that describes a command and a list of arguments.
An example of a request is (we may send such a request to a Town-object):

determine_neighbors_larger_than(7000)
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Village Settlement Town
D universityData D
|:| N -
name \ \\ numberOfMuseums University List
red [] AN
\ \ DemNumber

inhabitantData swimmingPools neighbors\\
\

<@ & I

Inhabitant_List SwimmingPool_List  Settlement_List

Figure 2.4: Graphical alternation class definition

Settlement :

Village | Town
*common*

<name> Text
<inhabitantData> List (Inhabitant)
<number0fMuseums> DemNumber
[<swimmingPools> List (SwimmingPool)]
[<neighbors> List(Settlement)] .

Village = .

Town =
<universityData> List(University) .

Figure 2.5: Textual alternation class definition
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A request has a signature that defines all similar requests. A signature consists of a
function name, arguments with argument types and a return type. The signature of the
above request is

List(Settlement) // return type
determine_neighbors_larger_than(int NumberOfStudents)

To implement a signature, we need a set of collaborating classes. For the above signa-
ture, we need only class Settlement. The request determine_neighbors_larger_than(7000) can
be sent to a settlement (e.g., Lexington), which is stored in the variable TownVariable. More
precisely, TownVariable is a pointer variable that points to a storage location containing the
Town-object.

TownVariable ->
determine_neighbors_larger_than(7000)

This invocation (written in C++ syntax) returns a list of settlements that are neighbors
of town Lexington and have more than 7000 inhabitants.

Objects are stored in the storage device of a computer. The parts of an object are often
not objects themselves, but pointers to other objects. Conversely, this means that an object
can be a part of several objects. For example, the objects Concord and Winchester contain
in their list of neighbors a pointer to the town Lexington. This means that Lexington is a
part of two different objects.

Pointers to objects are not only stored in parts of objects, but also in so-called variables
that are needed for the computations. We have already seen an example: the variable
TownVariable. A variable can be viewed as a container that can store pointers to objects of
some class. For example, SettlementVariable is a variable that can store either a pointer to
a village or a town.

The invocation

SettlementVariable ->
determine_neighbors_larger_than(7000)

returns a list of settlements that are neighbors of the object to which SettlementVariable
points and that count over 7000 inhabitants. How the list is computed is independent of
whether a town or village is in the variable. We see here a big advantage of inheritance.
Functionality, which is useful for both towns and villages, has to be defined only once for
settlements.

Now we consider an example where the computation is different for towns and villages.
We implement for class Settlement the operation with signature

Boolean Settlement::has_university_with_more_than (int NumberOfStudents)

This operation computes whether a settlement has a university with a certain number
of students. To implement this functionality, we need the collaboration of three classes:
besides Settlement, we also need Village and Town. For a village the computation is simple:
we always give the answer no since in our model (see the definitions of classes Village and
Town in Fig. 2.5) a village cannot have a university.
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Boolean Village::has_university_with_more_than (int NumberOfStudents)
{return False;}

For a town, the computation needs to request a service from universityData to determine
whether the town has a university with more than NumberOfStudents.

Boolean Town::has_university_with_more_than (int NumberOfStudents)
{return universityData ->
more_than (NumberOfStudents) ; }

Now we consider the invocation

SettlementVariable ->
has_university_with_more_than(10000)

This invocation first determines whether SettlementVariable contains a pointer to a town
or a village and depending on the answer, the code of the town or the village class is activated.

Here we see an important property of object-oriented programs: delayed operation
selection. A request of a service can activate one of several operations. The operation
selected depends on the value of the variable at run-time.

2.1 CONCEPTS

Object-oriented programming was made popular initially by the programming language
Smalltalk [GR83], developed at Xerox PARC, but the important concepts of object-oriented
programming were, however, already present in the programming language Simula 67.
There are three major ideas in object-oriented programming.

1. Modularity, Information hiding: Objects define programs. Each object is in relation
with other objects and has behavior associated with it. The relations with other
objects are often conveniently stored as local values. In some object-oriented systems,
objects are defined in terms of classes. A class defines the information that is stored
in the objects of that class as well as the operations, implemented as methods, that
define behavior. Many object-oriented systems allow information hiding; that is,
the detailed low-level definitions may be hidden from the user of an object and are
only accessible to the implementor.

The software is organized around objects rather than operations. This usually leads
to a more stable software architecture since the object structure is usually more stable
than the functionality.

2. Method resolution, delayed method selection: Behavior is invoked by requesting a
service from an object. The request will activate one or several methods. Dynamic
method selection determines which method to activate at run-time, depending on
the object arguments that were given to the operation or depending on the object to
which the request was sent.
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3. Sharing: An object can utilize behavior that appears in other already defined ob-
jects. There are two approaches to sharing: The class hierarchy approach and the
prototype approach. In the class hierarchy approach, object classes are organized in a
hierarchy to avoid duplication of information. Descriptions of objects may be inher-
ited from more general classes. Inheritance also opens the way to numerous method
combining techniques. In the prototype approach, an object can share information
with a prototype. Any object can serve as a prototype. To create an object that
shares information with a prototype, you construct an extension object containing a
list of prototypes and personal information idiosyncratic to the object. The notion of
sharing is critically associated with object-oriented programming.

Although these three notions seem straight-forward, their combination creates a pro-
gramming style that revolutionizes software development. Dynamic method selection
as well as sharing help to reduce the size of object-oriented programs.

The object-oriented programming style can be used in any programming language, even
in assembly language. Many languages support object-oriented programming directly.

For most of the object-oriented programming in this book we use the class hierarchy ap-
proach since it is the most appropriate for our applications. However the prototype approach
is superior in some cases, for example, for applications where the sharing relationships are
dynamically changing. An example of such an application is knowledge engineering with
learning. The learning is implemented by changing sharing relationships as well as adjusting
weight parameters.

This book promotes primarily the adaptive programming style with the object-oriented
programming style as a special case. Other approaches to programming are also important.

Functional programming

This style is supported by languages such as Scheme (a dialect of Lisp) and to some
degree by Common Lisp. In pure functional programming, functions are without
side effects, and they are treated as first class objects. This means that they can
be computed and passed around like numerical values. For example, a function can
be assigned to a variable or a function call may return a function, etc. Examples of
functional languages are Hope, FP, Haskell.

Constraint-based programming

This style is supported by languages such as Prolog or by algebraic specification lan-
guages. Constraint-based programming promotes the point of view that a programmer
should specify only the constraints that the solution must satisfy. This relieves the
programmer from giving a detailed algorithm to find a solution. In this book we will
study constraint-based programming by discussing interpreters for subsets of Prolog.

Grammar-based programming

This style is supported by adaptive programming. Grammar-based programming pro-
motes the point of view that data structures are grammars. In grammar-based pro-
gramming, grammars are used not only to define languages and corresponding parsers,
but also for defining all data structures. In this book we will make heavy use of the
grammar-based approach.
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The constraint-based and grammar-based styles are naturally combinable with the object-
oriented style. The theory of functional programming is used to better understand object-
oriented programming.

2.1.1 Abstractions

The way people deal with complexity is by abstraction. The goal of abstraction is to factor
out recurring patterns for later use. Abstraction hides details. Three abstractions that are
almost second nature to the way we think are

e an-instance-of abstraction
e a-subclass-of abstraction

e a-part-of abstraction (association)

We recognize certain properties as being true of all elephants, for instance. Therefore
we need not postulate those properties separately of each individual elephant. In our ter-
minology, each elephant is an-instance-of the class ELEPHANT, and therefore has four
legs, a tail, a trunk, etc. ELEPHANT is a-subclass-of ANIMAL and we can therefore
modularize our knowledge further. Those things that are true of all animals we need not
repeat specifically for lions, cats, dogs, etc. Finally, the left leg of an elephant is a-part-of
the elephant as a whole, so if the elephant moves to the other side of a river, we can assume
that his leg does also; we need not record separate position information, except relative
position information, for each piece of the elephant. In each case the abstractions have al-
lowed us to modularize and organize our knowledge, considerably simplifying the knowledge
representation.

Part-of abstractions are subdivided into associations (any kind of binary relationship
between two classes) and physical part-of relationships. For example, the owner of an
elephant is not a physical part of the elephant. However the leg is a physical part.

2.1.2 Classes, Methods, and Delayed Binding

We introduce object-oriented programming with a simple example that demonstrates the
main ideas. We demonstrate the concepts in a language-independent way using our own
notation.

Consider the following simple task: Given a box containing several objects, each one
having a weight, we need a program that returns the total weight of all the objects in the
box plus the weight of the box. When we write the operation for adding the weights, we do
not know what kind of objects may be in the box. In other words, we would like to write
the operation for adding the weights in a generic way that is independent of the classes of
the objects in the box. For every object in the box we need a mechanism to compute the
weight of the object. We do this by invoking a weight operation that takes an object as
an argument. This operation first determines the class of the object and, depending on the
class, it then calls the appropriate function to compute the weight. Such an operation is
called a generic or virtual operation. The weight computation may be individualized for
each class. Suppose our box contains a pencil and a sponge. Therefore we consider the
classes in Fig. 2.6 which shows an example of a class dictionary graph.
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CLASS Object IS EITHER
Pencil Or Sponge
END CLASS Object.

CLASS Pencil HAS PARTS
weight : Weight
END CLASS Pencil.

CLASS Sponge HAS PARTS

waterWeight, spongeMaterialWeight :

END CLASS Sponge.
CLASS Weight HAS PARTS

val : DemNumber
END CLASS Weight.

Pencil

—

weight

Weight

Weight

Object

Sponge

spongeMaterialWeight

[]

DemNumber

Figure 2.6: Class dictionary graph
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A class defines a type but not necessarily vice versa. The type concept is more general
than the class concept. We say that a variable is of class C if it can contain only objects
of class C. When a variable is of type T, where T is a type defined in some programming
language, the variable may contain only T values that are legal with respect to the program-
ming language. But those values might not behave like objects of a class. We maintain this
distinction between types and classes since we want to work with programming languages
that support both object-oriented and traditional programming.

To make programming easier, we use two kinds of classes: concrete classes, such as
Village and abstract classes, such as Settlement. An abstract class must have subclasses but
cannot directly create instances, whereas a concrete class must have instances but cannot
have subclasses. For example, concrete class Town is a subclass of abstract class Settlement
and Lexington is an instance of concrete class Town.

To talk about objects, we use the following synonymous statements interchangeably for
any class C:

e An object belongs to class C
e An object is a member of class C

Those statements can also be used for abstract classes. An object belongs to class C if it is
an instance of a concrete subclass of class C. The statement: “An object is an instance of
class C” can be used only when C is a concrete class.

We store the weight of the pencil inside of each object belonging to class Pencil. There-
fore, computing the weight of a pencil is easy: we return the value of the part variable
weight. As a synonym to part variable we use data member or instance variable or slot.

A class can have any number of part variables. They serve to store the local state of an
object. Each part variable has a type (which might be a class) that describes the set of values
or objects the part variable can contain. This type information is used for improving both
the reliability and efficiency of the program. The type of a variable is first checked before
executing a program (static type checking) and, if necessary, during execution (dynamic
type checking).

A class can be considered as the direct product of the types of the part variables (ignoring
the methods). Each component of the direct product is named. In this context, an object
of a class is an element of the direct product given in the class definition. For example, the
class Sponge can be viewed as the direct product Weight x Weight. The first component is
called waterWeight and the second spongeMaterialWeight and an object is a pair, for example
(waterWeight = 20, spongeMaterialWeight = 5).

We use the following notation for attaching a method to the classes Pencil and Weight.
The weight is returned in a reference argument, assumed to be initialized with 0.

void Pencil::add_weight(int& w)
{weight -> add_weight(w);}
void Weight::add_weight(int& w)

{w = val + w;}

The class Sponge describes all sponges. In each instance of the class Sponge we store
separately the weight of the water in the sponge and the weight of the sponge material itself.
To compute the weight of the sponge, we have to add these two weights. Formally, we write:
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void Sponge::add_weight(int& w)
{ waterWeight -> add_weight(w);
spongeMaterialWeight -> add_weight(w); }

In a compiled language such as C++, it is also necessary to define an operation for class
Object.

void Object::add_weight(int& w) = 0 //pure virtual

The = 0 means that the implementation must be defined in subclasses, here in Pencil
and Sponge. The operation is said to be pure virtual or deferred.

Any of the weight methods we have defined can be called by the operation invocation
(function call) x => add_weight (...), where the value of variable x is either an object of the
Pencil class, the Sponge class, or the Weight class. x may be declared as a variable of class
Object. In this case, the function call will select either the code in class Pencil or in class
Sponge, depending on whether a Pencil-object or a Sponge-object is in x. add_weight is called
a virtual function in C++.

Next we define the class that represents all boxes. The local state of a box is a list of
all objects contained in the box, the box name, and the box weight.

Box =
<boxName> DemIdent
<boxWeight> Weight
<objects> List(Object).

Now it is easy to define an operation that returns the sum of the weights of the pencils
and sponges contained in a box plus the weight of the box. We consider each object in the
list that is the value of the part objects, and we add up the weights.

void Box::add_weight (int& w)
{ boxWeight -> add_weight (w);
objects -> add_weight(w); }

void List(0Object)::add_weight (int& w)
{ for each object in this
object -> add_weight(w);}

This implementation for class List(Object) is independent of sponges and pencils: It
works for any box that contains objects for which an add_weight operation is defined. This
contrasts with procedural code where there would be a switch or case statement that checks
whether we have a pencil or a sponge. We have already achieved our goal of writing a
generic operation for adding up the weights of the objects in a box.

Notice how regular the preceding code is: we call the operation add_weight for the
parts of every object. Later we will exploit this observation by generating most of this
code automatically.? To achieve this code regularity, however, we had to give up our habit
of using operations which return a result! Instead we use an operation with a reference
argument. To make progress, we have to give up some old habits.

2Propagation pattern partial evaluation, page 448 (64).
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2.1.3 Overloading and Delayed Binding

Most programming languages provide overloading of operators and some languages even
allow the user to overload operators. Consider the following Pascal expressions: (1.0 + a)
and (1 + b) where a and b are of type integer. The two addition operations will activate
different code: The first will activate a routine for adding real numbers and the second will
activate a routine for adding integers. In other words, the types of the arguments of the
addition operator will determine which routines to call.

In object-oriented languages such as C++, most functions may be overloaded. For
example, we may have two functions named f for the same class A.

void A::f(int& s){ ... }
int A::fQ){ ... }

As in the Pascal case, the compiler will determine from the context of the arguments,
which f is intended. For example, a call a => f(i) must be a call of the first f and int b = f()
must be a call of the second f.

Overloading of functions is a different concept from virtual functions that delay the
binding of calls to code. In overloading, the types are used to disambiguate at compile-
time. But with virtual functions, the type of the object contained in a variable at run-time
will disambiguate. In both the overloading and virtual function cases, types are used to
disambiguate at compile-time or run-time, respectively.

2.1.4 Reduced Dependencies

The weight addition example demonstrates another important property of object-oriented
programming : modularity. Each class defines the local state of its objects and the methods
that operate on this data. This is a well proven technique that is also available in languages
that do not directly support object-oriented programming (e.g., modules in Modula-2 or
packages in Ada).

Modularity combined with delayed method selection yields a flexible mechanism for
decoupling software. Consider two programmers who implement the above weight addition
program. One programmer is responsible for writing the code for class List(Object) and
the other for all the other classes. The two programmers do not have to agree on a list of
subclasses of Object that will be supported. In a straight-forward Pascal program for the
weight addition problem it would be necessary to communicate the list of subclasses, since
the programmer of the List(Object)-code would have to include the class information in a
case statement. Object-oriented programming makes it easier to make software pieces more
independent.

The object-oriented approach also makes it easier to update software. If we add another
class of box objects, we do not have to modify the existing software. We just have to add a
class definition and a weight method.

2.1.5 Sharing

Next we want to demonstrate the sharing aspects of object-oriented programming. We
assume that most objects in a box are unstructured and have an explicit part variable for
storing the weight. It would be inconvenient to have to define the weight part as well as
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a method for accessing it for each such object. Therefore we introduce a new class called
UnstructuredObject which has a part weight.

UnstructuredObject : // subclasses
*common* <weight> Weight.

We attach a method to this class that returns the value of the part weight.

void UnstructuredObject::add_weight (int& w)
{ weight -> add_weight(w);}

We inherit from this class in all object classes that are considered to be unstructured
objects. All the functionality that is defined for the UnstructuredObject class is also available
in the classes in which we inherit from UnstructuredObject. Specifically, in every class that
inherits from the class UnstructuredObject there will be a part called weight. Furthermore,
every class that inherits from the unstructured object class will know how to compute the
weight of an object of the class.

We redefine the Pencil class using inheritance

Pencil = .
UnstructuredObject : Pencil.
*common* <weight> Weight.

The first line means that Pencil has no immediate parts anymore. The second and third
lines mean that Pencil now inherits from class UnstructuredObject.

This notation is different from conventional object-oriented notation. Inheritance rela-
tionships are usually expressed in the other direction, such as

CLASS Pencil HAS PARTS
INHERITS FROM CLASS UnstructuredObject;
END CLASS Pencil.

In other words, the normal notation lists the immediate superclasses for each class while
we list the subclasses for each superclass. Both notations convey the same information but
there are several advantages to our notation, such as the capability to define application-
specific object languages (see Chapter 11). However, our notation does require that a
superclass be modified when a subclass is added.

We call class Pencil a subclass of class UnstructuredObject. Every object of the Pencil
class will have its own part weight.

This is an appropriate point to introduce the concept of instantiation and to compare
it with the membership concept. An object is an instance of a class C' if it has been created
with the instantiation function of the system using C as an argument. Such a function is
typically called new or make-instance. For an example of the use of new, see page 33.
Some object-oriented languages use factory objects or constructor functions for creating an
object. If an object is an instance of class C it belongs to class C' but the opposite is not
necessarily true. For example, an instance of class Pencil belongs to class UnstructuredObject,
but it is not an instance of class UnstructuredObject. This class is viewed as an abstract class;



32 CHAPTER 2. INTRODUCTION TO OBJECT-ORIENTED SOFTWARE

that is, a class that cannot be instantiated. No object can be an instance of such a class; it
can only belong to that class.

The concept of inheritance allows an object to belong to several classes. For example,
an instance of class Pencil belongs to both the class Pencil and the class UnstructuredObject.
If we inherit a method m from some class but we don’t want that method in the specific
subclass, it is possible to override the inherited method by defining a method with name m
attached to the subclass.

There are situations where we would like to inherit from several classes. Let’s assume
that all the objects in a box also belong to a class called Contained. This class has a
part called contained_in that allows us to store the containing object. The purpose of the
contained_in variable is to point back to the box. If we have several objects distributed in
several boxes, we can use the contained_in variable for finding out in which box the object
resides. We assume that an object can be in at most one box.

Class Contained is defined by

Contained : //subclasses
*common* [<contained_in> Universall]. // anytype

From now on we assume that for each part an accessing method and a setting method
are automatically defined. For a part x the accessing method is also called getx and the
setting method is called set_x. The setting method takes a second argument that defines
how the part is set. We inherit now from two classes in the definition of the Pencil class.

Pencil = .
UnstructuredObject : Pencil.
*common* <weight> Weight.
Contained : Pencil
*common* [<contained_in> Universal].

In ordinary object-oriented notation this would be written as

CLASS Pencil HAS PARTS
INHERITS FROM CLASSES
UnstructuredObject, Contained;
END CLASS Pencil.

The contained_in variable will be set with the following code:

void Box::define_contained_in()
{ objects -> define_contained_in(this);}
void List(0Object)::define_contained_in(Box* b)
{ for each object in this // not legal C++ code (pseudo code)
object -> set_contained_in(b);}

This example shows the concept of multiple inheritance, which is available in most
object-oriented programming languages.

The define_contained_in method uses the variable this (some programming languages use
self instead of this). this is defined inside a method definition and its value is the object for
which the method is called.
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Operator | Demldent | DemNumber | Compound
code for code for code for

eval identifiers | numbers compound

expressions

Table 2.1: Objects and operations

2.1.6 Making Instances

Finally, we need a mechanism to build a box with some objects in it. We assume that we
have a generic operation new for creating an instance of a class. The first argument to new
is a class name that specifies for which class to create an object. The remaining arguments
specify how to initialize the parts of the instance.

To set up a box containing two pencils with weight 10 and 12, a sponge with water
weight 20, and sponge material weight 5 we use the following assignment:

box_instance =

new Box("secret-box", // boxName
new Weight(new DemNumber(5)), // boxWeight
new List(Object) ( // objects

new Pencil(new Weight (new DemNumber(10))),
new Pencil(new Weight (new DemNumber(12))),
new Sponge
//waterWeight
(new Weight (new DemNumber (20))),
//spongeMaterialWeight
new Weight (new DemNumber(5))))

This assignment sets the value of the variable box_instance to a specific instance of the
Box class.

The notation we have used in these examples attempts to stay as close as possible to
either the C++ notation or the notations used in the Demeter Method. But the concepts
presented are intended to be programming-language independent.

2.2 EASE OF EVOLUTION

As an example, consider the evaluation of simple prefix expressions. For this example, a
prefix expression is either an identifier (e.g., speed), a number (e.g., 3), or a compound prefix
expression (e.g., (* 79)). A compound prefix expression consists of two prefix expressions,
preceded by an operator that can be either multiplication or addition. In this simple example
we can identify five object classes: the class of identifiers (Demldent), the class of numbers
(DemNumber), the class of compound prefix expressions (Compound), the class consisting
only of the multiplication symbol (MulSym), and the class consisting only of the addition
symbol (AddSym). The operation that we want to perform is evaluation (abbreviated eval).
Let’s consider Table 2.1, “Objects and operations,” which shows a table of three object
classes and one operation. In procedural programming we would write a one-argument
function for evaluation that would look like



34 CHAPTER 2. INTRODUCTION TO OBJECT-ORIENTED SOFTWARE

int eval(Exp* expression)
{switch (expression -> kind())
case DemlIdent:
case DemNumber:
case Compound: ... }

This function contains a conditional statement to distinguish between the three possi-
ble types of the argument. In other words, in procedural programming the objects versus
operations table is encoded into one function. This contrasts with object-oriented program-
ming where the objects and operations table is encoded into several functions. With the
DemNumber class, for example, we will define a method eval, which defines how a number is
evaluated. A key difference between procedural and object-oriented programming is that in
object-oriented programming the code is broken into smaller pieces. In the above example
we get three small pieces of code in the object-oriented version and one bigger piece in the
procedural approach.

The delayed method selection mechanism of object-oriented programming allows the
implementation of generic operations. Consider the problem of evaluating a compound
prefix expression. We want to write this evaluation method in a generic way so that it
will work for expressions independent of the operator involved. Therefore we store the
evaluation instructions with the operator. The evaluation method for the class of compound
prefix expressions will then simply request the operator to evaluate. If we want to add more
operators later on (e.g., division) we only have to provide an additional method for the
division operator. In procedural programming we would have to perform procedure surgery
to add an additional operator.

2.3 TERMINOLOGY

Since the area of object-oriented programming draws on three fields (Programming Lan-
guages, Artificial Intelligence, and Databases), a large number of synonyms are used. Here
we give some of the (approximate) synonyms and some of their sources. OMG stands for
Object Management Group. We adopt some of their terminology.

e Collections of persistent data: knowledge base, database, object base.

e Collections of classes: schema (database), concept map (AI), concept hierarchy (AI),
class dictionary, class hierarchy.

e For collections of related objects: class (Simula, Smalltalk, C+4, CLOS, Eiffel), struc-
ture (C++)), flavor (Flavors), concept (Al), entity set.

e For naming the parts: instance variable (Smalltalk, Flavors), slot (CLOS, frame-
based systems), feature (Eiffel), data member (C++), role (KL-ONE), part (Demeter),
attribute (OMG), local state variable.

e For functionality pieces: method (Smalltalk, Flavors, CLOS, OMG), member function
or friend function (C++), routine (Eiffel), operation (OMG).

e For functionality groups: message (Smalltalk, Eiffel), virtual function (C++), generic
function (CLOS, New Flavors).
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e For making instances: instantiation function (Flavors, CLOS), constructor function
(C++), factory class message (Objective-C), class message (Smalltalk).

e For guaranteeing the existence of functionality at lower levels (in statically typed
systems): deferred routine (Eiffel), pure virtual member function (C++).

e Class variable (Smalltalk, Objective-C), shared slot (CLOS), static data member
(C++).

e Entity, object, class instance.
e Is-a link (semantic networks), inheritance link.

e Class A is a derived class of base class B (C++), class A is a subclass class of class B
(Smalltalk), class A inherits from class B (Flavors).

2.4 CONVENTIONS

Adaptive software is based on the concepts of propagation patterns and sentences that are
both customized by class dictionaries. A terminology and a set of symbols are needed
to explain the concepts of propagation patterns, class dictionaries, and sentences. The
terminology is summarized in the glossary chapter.

We use the following conventions throughout the book:

e Verbatim and sanserif fonts are used to represent programming and design notations.

For example, a class definition is given by
Company = <divisions> List(Division).

If we refer to the above class in the text, we use sanserif font: “A Company-object
consists of one part ... 7 which looks similar to verbatim font.
e Italics font is used for emphasis and for mathematical symbols.

For example: “A propagation directive consists of a triple (F,¢,T'), where F' and
T are class-valued variables ...” Here, F,c, and T are in italics since they are mathe-
matical symbols for sets.

e Boldface font is used for newly defined terms.

For example: “A propagation directive consists of ...”

The comment character in design and programming notations as well as in sentences is
// (borrowed from C++). The comment starts with // and goes to the end of the line.
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2.4.1 Symbol Usage

In naming design objects such as class dictionaries and propagation patterns, we try to use
symbols consistently as shown in Fig. 2.7. Consistent symbol use allows you to recognize
an object by its symbol only. The primary columns indicate which symbols are used in the
Demeter theory. They are typically greek symbols. The book primarily uses symbols in the
secondary columns since we don’t want to burden you with Greek symbols. The first letter
in the two single columns indicates the main designation (e.g., a class dictionary graph’s
main designation is G).

Demeter Terminology

Object Primary Secondary
Class dictionary A0 D, E
Class dictionary graph rw G, H
Semi-class dictionary graph T S, T
Class dictionary graph slice II,= P, Q
Graph vertices vV, W, U, X, y | as primary
Graph edges e, d as primary
Set of labels A
Particular labels 1, k as primary
Propagation pattern PP,P,q as primary
Propagation directive d,e as primary
Object graph Q, O,N, I
Object identifiers i, ] as primary
Object graph vertices 0, p, m,n | as primary

Figure 2.7: Symbol use

2.5 EXERCISES

You are encouraged to follow the exercises in the self-study guide in Chapter 17.

Exercise 2.1 Consider the following specification: Given an A-object, print all C-objects
that are contained in the A-object, and for each such C-object, print all E-objects contained
in the C-object (and A-object).

A B-object is contained in an A-object if the B-object can be reached from the root of
the A-object following zero or more part-of relationships.

Do the following:

e For each of the following programs (Program 1 and Program 2), give an example of
an input for which they fail to meet the specification above.



2.5. EXERCISES 37

e Then correct each program by making minimal changes.

e Can you identify a generic reason for the failure of program 2?7 Can you give a property
which the specification must satisfy with respect to the class structure so that this
kind of failure cannot happen?

The programming language which we use here supports dynamic binding, overloading
and inheritance. Functions attached to superclasses are assumed to be dynamically bound.

The methods f below are supposed to implement the above specification. A::f means
that method f is attached to class A. a->f () is a call of function f for variable a.

Note: Program 1 is harder to repair than program 2. You might want to do first program

e Program 1:

Class structure:

A HAS PART <b : B> .

B HAS PARTS <c : C> <e : E>.
C HAS PART <c1 : Ci>.

C1 HAS SUBCLASSES D AND A.

E HAS NO PARTS.

D HAS NO PARTS.

Methods:

void A::f( )
{ get_bO->£(C ); }

void B::f( )
{ get_cQO—>f( );
get_e(O)—>£( ); }

void C::f( )
{ print(); get_c1()—>f( ); }

void Cl::£f( )
{1}

void E::f( )
{ print(); %

e Program 2:

Class structure:
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A HAS PART <b2 : B2>.

B2 HAS PART <x : X>.

X HAS SUBCLASSES C AND F.
F HAS SUBCLASS E.

C HAS PART <e : E>.

E HAS NO PARTS.

Methods:

void A::f( )
{ get_b20->f(C ); %}

void B2::f( )
{ get_xO)—>f(C ); }

void X::f( )
{1}

void C::f( )
{ print(); get_eO—>f( );}

void E::f( )
{ print(); %

This question shows some of the pitfalls awaiting object-oriented programmers: Both
programs are the “obvious” solution to the above specification, but unfortunately, they are
both wrong.

2.6 BIBLIOGRAPHIC REMARKS

e Object-oriented programming: Object-oriented programming is promoted and sup-
ported by Simula-67 [DMNT70], Smalltalk-80 [GR83|, Flavors [Moo86], Objective-C
[Cox86], C++ [Str86], CLOS [BMGT88], Eiffel [Mey88], and many other languages.
The implementation of the Demeter Tools/C++ is written in its own technology, pri-
marily with propagation patterns, and generates C++ code [LHSX92]. An earlier
prototype implementation used Flavors and an extension of Lisp [Lie88, LR&8b].

Here is a list of programming languages that support the object-oriented paradigm.
The list is far from exhaustive.

class hierarchy approach
Smalltalk [GR83], Flavors [Moo86], Objective-C [Cox86], Loops, C++ [Str94],
OBJVLISP [BC86], CLOS [BDG'88].

prototype approach
Self [US87], Actors [HB77, Agh86], T [Rees (1985)].
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combined class hierarchy and prototype approach
NewtonScript by Apple Computer [Evi94], Exemplars [LTP86, Lal.89].

Some of the important approaches to object-oriented programming are discussed in
[Weg87].

e Metaphors: The “growing” metaphor was used by [Mil71],[Bro87]. The GARDEN
system developed at Brown by Reiss [Rei87] also uses the gardening metaphor.



Chapter 3

From C+4-+ to Demeter

In this introduction we give an example that demonstrates some of the advantages of adap-
tive object-oriented software over C++ software. This chapter is hands-on and both design
and programming oriented to show you how adaptive software is softer than ordinary soft-
ware. The general principles behind adaptive software are explained in Chapter 4.

We are going to introduce a notation to describe C++ programs. This notation is an
extension of C++ with a small language to describe object-oriented designs. The design
notation has two components: a behavioral component and a structural component. The
behavioral design notation describes only incomplete C++ programs since it is a design
notation. The same is true for the structural design notation: it describes only incomplete
C++ programs. A very nice property of our design notation is that a behavioral design can
be completed with a structural design to form an executable C++ program.

A behavioral design outlines how the object-oriented program should be built when a
completing structural design is presented. Of course, the behavioral design has to make some
assumption about the completing structural design, but usually infinitely many structural
designs can complete a behavioral design. The completion mechanism will be demonstrated
with several examples in this chapter.

To introduce adaptive software quickly, we rely on your knowledge of C++. We assume
that you have the following knowledge about a small subset of C++:

e Class definitions with public and private members (both data and function).

A class definition has the form (// is the comment character)

class ClassName : public SuperClass {
private:
// members
public:
// members

The superclass part exists only if there is a superclass.

40
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Data members are used to describe the local state of objects. They should all be
private to encapsulate the data. A data member has either the form

ClassName* dataMemberName;
or
CType dataMemberName;

CType is any C type that is not a class, like long, int, float, etc.

Since all data members are private, usually member functions manipulate the data
members.

Member function declarations, sometimes called signatures, have the form

ClassName* functionName(A* al, A*& a2, Ctype il, Ctype& i2 ...)

CType functionName(A* al, A*& a2, Ctype il, Ctype& i2, ...)

where A is some clags name. A* al declares a pointer argument and A*& al declares
a reference parameter that is a pointer. The actual parameter must be some l-value
that may be assigned a new pointer during execution of the function. Ctype& declares
a reference parameter of some C type.

Constructors

They are a special kind of member function. The name of the function is the same as
the class name. The syntax of a constructor signature is

ClassName (Argument* arg, Ctype i, ...);

Constructors are used to allocate objects in the free store with

new ClassName(actualArgumentl, ...)

Function calls, polymorphism

Often objects are put on the free store and allocated with new. In this case, functions
are called with the syntax

variableName -> functionName(actualArgumentl, ...);

If the function is a virtual function, the decision regarding which function to call will
be made at run-time, depending on what kind of object is contained in the variable.
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3.1 C++4+ PROGRAM

We first write a C++ program for the following simple problem before we develop an
adaptive program for the same problem. We are given a conglomerate of companies and we
have to compute the total salary paid by the entire conglomerate. The goal of this chapter
is only to demonstrate how adaptive object-oriented programming improves object-oriented
programming. The C++ programs and the corresponding adaptive programs are shown
without explaining them in full detail.

When we write an object-oriented program, we rarely start from scratch. Often we use
common classes like List, Ident, String from a class library. In the following we give a fairly
complete C++ program, which only references an external class library for input-output.

To implement the salary addition, we define a class Conglomerate that defines the struc-
ture of conglomerate objects. A specific conglomerate of companies will be an object of class
Conglomerate. Any number of conglomerates can be created at run-time from class Con-
glomerate. The Conglomerate class needs an important helper class for keeping track of the
salaries: class Salary. A Conglomerate object will contain many Salary-objects representing
the salaries paid by the conglomerate. Adding together all salaries should be a very simple
task: We have to find all the Salary-objects contained in a given Conglomerate-object and
add them together.

First we need to organize the classes. Suppose we use the list of classes that are itemized
at the beginning of file totalSalary.h below. As a first guess, let’s structure the classes as
shown in the remaining part of totalSalary.h. We decided to represent lists as recursive
structures like in Lisp and similar languages. Later in the chapter we will use an iterative
structure instead. The iterative structure is usually preferred by C++ programmers; it uses
fewer classes.

The structure is summarized in Fig. 3.1 using adaptive software terminology.! We
call such a figure a class dictionary, and its purpose is to describe object structure. The
figure uses two kinds of classes: construction classes (drawn as O ) which are used to
instantiate objects with a fixed number of parts, and alternation classes (drawn as <)
which are abstract classes. The figure uses two kinds of edges: alternation edges (drawn as
= ) represent kind-of relations, and construction edges (drawn as — and with labels)
represent has-a relations. Construction edges represent references to other objects and
those references can have many different interpretations. It could mean a physical part-of
reference, also called an aggregation relationship.

For example, the alternation edge Officer=—>- ShareHolding_Officer means that class Of-
ficer is a super class of class ShareHolding_Officer; the construction edge Conglomerate®®4
Company means that class Conglomerate has a data member called head of type Company.

Figure 3.1 defines classes whose objects have the following properties. A Conglomerate-
object has a name and consists of a Company-object. A Company-object optionally contains
a list of Subsidiary-objects and it contains a list of Officer-objects and has a name, a location,
and a turnover. A Subsidiary-object is either an instance of WhollyOwned or an instance of
PartiallyOwned and contains a Company-object. An Officer-object is either an instance of
ShareHolding_Officer or of Ordinary_Officer.

LClass dictionary graph graphical representation, page 431 (6). This is a reference to an instructional
objective in Chapter 14, the “nerve center” of the book. See also the explanation on page xxx.
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Conglomerate Subsidiary Empty
Subsidiary NonEmpty
rest
7 first
name head
subsidiaries
_ Subsidiary List
Subsidiary
DemIdent Company company
officers
' \Officer_List
state country name turnover
WhollyOuned  partiafl 1yOwned
rest
Officer Empty stake
street
: Officer NonEmpty ! DemNumber
city
Address DemString Salary
first Salary
Officer

share_percentage

Ordinary Officer ShareHolding Officer

Figure 3.1: Conglomerate class dictionary: A view of the C++ program
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If we write the salary computation program directly in C++, a natural solution is to
first write member functions, all called say add_salary_, for the following classes to specify
a traversal: Conglomerate, Subsidiary, Company, Officer, Salary, Officer_List, Subsidiary_List,
Officer_NonEmpty, Subsidiary_NonEmpty.

We need to write traversal code to find all Salary-objects contained in the Conglomerate-
object. If one chooses to call a behavior at the bottom of a composite Conglomerate-object,
many objects in the Conglomerate-object must have a behavior that passes-the-call down
one level. This sequence of behaviors is absolutely dependent on the existing class structure,
and any changes to the class structure require that this sequence be examined, and possibly
modified.

As we show in this chapter, adaptive software can express such passes-the-call behaviors
without listing all the participating classes. Instead, the behaviors are written in compact
traversal specification with necessary code fragments added. As a class structure is given,
all the pass-the-call behaviors are generated automatically for all classes for which they
are required, and the code for the desired behavior is inserted in the bottom class and in
important classes in between. In other words, methods are being attached to classes during
adaptive software interpretation in a context of a class structure. The important observation
is that object behaviors coded as adaptive software are not specifically attached, at coding
time, to any class. Since the pass-the-call behaviors are generated automatically, they are
somewhat insensitive to changes in the class structure.

With this preview of what adaptive software is, let’s return to the concrete C++ pro-
gram. The traversal code that a person would write is shown in Fig. 3.2. The member
function of Conglomerate invokes the member function of Company through data member
head. The member function of Company invokes the member function of Officer_List through
data member officers. It also checks if the company has subsidiaries and if it does, it in-
vokes the member function of Subsidiary_List through data member subsidiaries. The member
function of Subsidiary_List is empty. The member function of Subsidiary_NonEmpty invokes
the member function of Subsidiary through data member first and the member function of
Subsidiary_List through data member rest. The member function of Subsidiary invokes the
member function of Company through data member company. WhollyOwned and Partially-
Owned will inherit their behavior from class Subsidiary. The traversal code continues in this
form until we reach class Salary.

Note that Address-objects need not be traversed since they don’t contain Salary-objects.
The traversal program in Fig. 3.2 visits all the Salary-objects contained in a Conglomerate-
object and therefore almost solves the problem.

Some C++ programmers would write the above traversal code slightly differently, as
shown in the traversal part of file totalSalary.C on page 51. But the code is essentially the
same and has the same efficiency.

The complete C++ solution to the Salary addition problem is given in two parts. Part
1 is an interface file (totalSalary.h) that defines the interface of classes such as Conglomerate
and Salary. Part 2 actually implements the functions that have been announced by the
interface. The implementation file is called totalSalary.C. An alternative way to organize the
program would be to use two files for each class. We first show the interface file, sometimes
called a header file.



3.1. C++ PROGRAM

45

long Conglomerate::add_salary( )

{ long return_val ;
this->add_salary_( return_val );
return return_val; }

void Conglomerate::add_salary_( long& return_val )
{ head->add_salary_( return_val ); }

void Subsidiary::add_salary_( long& return_val )
{ company->add_salary_( return_val ); }

void Company::add_salary_( long& return_val )
{ officers->add_salary_( return_val );
if ( subsidiaries != NULL )

{ subsidiaries->add_salary_( return_val ); } }

void Officer::add_salary_( long& return_val )
{ salary->add_salary_( return_val ); }

void Salary::add_salary_( long& return_val ) { }
void Officer_List::add_salary_( long& return_val ) { }
void Subsidiary_List::add_salary_( long& return_val ) { }
void Officer_NonEmpty::add_salary_( long& return_val )
{ first->add_salary_( return_val );

rest->add_salary_( return_val ); }
void Subsidiary_NonEmpty::add_salary_( long& return_val )

{ first->add_salary_( return_val );
rest->add_salary_( return_val ); }

Figure 3.2: Traversal code for salary addition
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// File totalSalary.h
// This is the header file for totalSalary.C

// Class Declarations.

class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class

Conglomerate;
Subsidiary;
WhollyOwned;
PartiallyOwned;
Company;

Address;

Officer;

Salary;
Shareholding_Officer;
Ordinary_0Officer;
Officer_List;
Subsidiary_List;
Officer_Empty;
Officer_NonEmpty;
Subsidiary_Empty;
Subsidiary_NonEmpty;
DemString;

DemIdent;

DemNumber;

The following class definitions specify the relationships between the classes. For ex-
ample, class Subsidiary inherits from class PartiallyOwned. And class Company and Sub-
sidiary_List are in direct relationship through the binary relation subsidiaries.

// File totalSalary.h continued

// Class definitions

class

DemString {

public:
// Constructor
DemString(char *s);
private:
char *val; };

class

DemIdent {

public:
// Constructor
DemIdent (char *s);
private:
char *val; };
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class DemNumber {
public:

// Constructor

DemNumber (long n) { val = n; }

// Member function

long evaluate(void) { return val; }
private:

long val; };

class Conglomerate {
public:
// Constructor
Conglomerate(DemIdent *n, Company *c) { name = n; head = c; }
// Member function add_salary()
long add_salary(void);
private:
DemIdent *name;
Company *head; };

class Subsidiary {
public:
// Member functions
virtual long add_salary(void);
void set_company (Company* c) {company = c;}
private:
// common parts of class Subsidiary
Company *company; I;

class WhollyOwned : public Subsidiary {
public:
WhollyOwned (Company* c)
{this -> set_company(c);} };

class PartiallyOwned : public Subsidiary {
public:
// Constructor
PartiallyOwned(Company* c, DemNumber *n)
{ this -> set_company(c); stake = n; }
private:
DemNumber *stake; };

class Company {
public:
// Constructor
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Company (DemString *s1, Address *a,
DemString *s2, Officer_List
Subsidiary_List *sl)

{ name sl; location a; turnover

officers ol; subsidiaries sl;

}

// Member function add_salary()

long add_salary(void) ;

private:

DemString *name;

Address *location;

DemString *turnover;

Officer_List *officers;

Subsidiary_List *subsidiaries; };

class Address {
public:
// Constructor
Address(DemString *s1, DemString *s2
DemIdent *il, DemIdent *i2)
sl; city = s2; il

{ street
private:
DemString *street;
DemString *city;
DemIdent *state;
DemIdent *country; I};

state

class Officer {
public:
// Member functions
virtual long add_salary(void);
void set_name(DemString* n) {name
void set_title(DemString* t) {title
void set_salary(Salary* s) {salary =
private:
// common parts of class Officer
DemString *name;
DemString *title;
Salary xsalary; };

class Shareholding_QOfficer :
public:
// Constructor
Shareholding_ Officer (DemNumber* num,
DemString* t, Salary* s)

n;}
=t
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*ol,

s2;

>

; country = i2; }

T
s;}

public Officer {

DemString* n,
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{ share_percentage = num;
this->set_name(n); this->set_title(t);
this->set_salary(s);}

private:
DemNumber *share_percentage; };

class Ordinary_Officer : public Officer {
public:
// Member function
Ordinary_Officer (DemString* n, DemString* t, Salary* s)
{ this->set_name(n); this->set_title(t);
this->set_salary(s);} };

class Salary {

public:
// Constructor
Salary (DemNumber *n) { v = n; }
// Member function add_salary()
long add_salary(void);

private:
DemNumber *v; };

class Officer_List {

public:
// Virtual function add_salary()
virtual long add_salary(void) = 0; I};

class Officer_Empty : public Officer_List {
public:

// Member function add_salary()

long add_salary(void); };

class Officer_NonEmpty : public Officer_List {
public:

// Constructor

Officer_NonEmpty (0Officer *f, Officer_List *r)

{ first = f; rest = r; }

// Member function

long add_salary(void);
private:

Officer *first;

Officer_List *rest; };

class Subsidiary_List {
public:

49
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// Virtual function add_salary()
virtual long add_salary(void) = 0; };

class Subsidiary_Empty : public Subsidiary_List {
public:

// Member function

long add_salary(void); };

class Subsidiary_NonEmpty : public Subsidiary_List {
public:

// Constructor

Subsidiary_NonEmpty(Subsidiary *f, Subsidiary_List *r)

{ first = f; rest = r;}

// Member function add_salary()

long add_salary(void);
private:

Subsidiary *first;

Subsidiary_List *rest; };

The implementation file totalSalary.C follows next.

// File totalSalary.C
// This program computes the total
// salaries in a conglomerate.

#include <iostream.h>
#include <string.h>
#include "Salary.h"

// define remaining constructors

DemString: :DemString( char* val_in )
{ // Copy the string to val of DemString object.
if( val_in )

{
this->val = new char[strlen( val_in ) + 1];
strcpy( this->val,val_in );
}
else

this->val = NULL; }

DemIdent: :DemIdent ( char* val_in )
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{

// Copy the string to val of DemIdent object.
if( val_in )

{
this->val = new char[strlen( val_in ) + 1];
strcpy( this->val,val_in );
}
else

this->val = NULL; }

Next is the traversal part of the C++ program.

// File totalSalary.C continued
long Conglomerate::add_salary(void)

{

long total;

// Compute the total salary for Conglomerate
// class by adding all salaries in

// the head company.

total = head->add_salary();

return total; }

long Subsidiary::add_salary(void)

{

long total;

// Compute the total salary for Subsidiary
// by adding all salaries of all the

// subsidiary companies.

total = company->add_salary();

return total; }

long Company: :add_salary(void)

{

long total;
// Compute the total salary for Company
// by adding the sum of salaries of
// all the officers and subsidiaries.
if (subsidiaries != NULL)

total = officers->add_salary() +

subsidiaries->add_salary();

else

total = officers->add_salary();
return total; }

long Officer::add_salary(void)
{ long total;

// Compute salary of officer.
total = salary->add_salary();
return total; }
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long Salary::add_salary(void)
{ long total;
// Return salary.
total = v->evaluate(); }
return total; }

long Officer_Empty::add_salary(void)
{ // Total salaries of Officer_Empty is O.
return 0; }

long Officer_NonEmpty::add_salary(void)

{ long total;
// Compute salary of all the officers.
total = first->add_salary() + rest->add_salary();
return total; }

long Subsidiary_Empty::add_salary(void)
{ return 0; }

long Subsidiary_NonEmpty::add_salary(void)

{ long total;
// Compute salary of subsidiaries.
total = first->add_salary() + rest->add_salary();
return total; }

Next comes the object construction part of the C++ program. An English description
of the same information is in Fig. 3.4.

// File totalSalary.C continued

// Main Function

main ()

{
DemIdent* iDemIdentl = new DemIdent( "TransGlobal" );
DemString* iDemString2 = new DemString( "TransGlobal Illumination" );
DemString* iDemString3 = new DemString( "23 Rue du Lac" );
DemString* iDemString4 = new DemString( "Geneva" );
DemIdent* iDemIdent5 = new DemIdent( "GE" );
DemIdent* iDemIdent6 = new DemIdent( "Switzerland" );
Address* iAddress7 =

new Address( iDemString3,iDemString4,iDemIdent5,iDemIdent6 ) ;

DemString* iDemString8 = new DemString( "4bn" );
DemNumber* iDemNumber9 = new DemNumber( 60 );
DemString* iDemStringll = new DemString( "Karl Soller" );
DemString* iDemStringl2 =
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new DemString( "Chief Executive Officer and President" );
DemNumber* iDemNumber13 = new DemNumber ( 200000 );
Salary* iSalaryl4 = new Salary( iDemNumber13 );
Shareholding Officer* iShareholding_0Officerl0 =
new Shareholding Officer(
iDemNumber9,
iDemStringll,
iDemStringl2,
iSalary14);
DemNumber* iDemNumberl5
DemString* iDemStringl7 = new DemString( "Jim Miller" );
DemString* iDemStringl8 = new DemString( "Chief Financial Officer" );
DemNumber* iDemNumber19 = new DemNumber ( 150000 );
Salary* iSalary20 = new Salary( iDemNumber19 );
Shareholding_Officer* iShareholding_Officerl6 =
new Shareholding Officer(
iDemNumber15,
iDemStringl7,
iDemStringil8,
iSalary20) ;
DemString* iDemString22 = new DemString( "Guy Jenny" );
DemString* iDemString23 = new DemString( "Secretary" );
DemNumber* iDemNumber24 = new DemNumber( 100000 );
Salary* iSalary25 = new Salary( iDemNumber24 );
Ordinary_Officer* iOrdinary_0fficer2l =
new Ordinary_Officer(
iDemString22,
iDemString23,
iSalary25) ;
Officer_Empty* iOfficer_Empty26 = new Officer_Empty( );
Officer_NonEmpty* iOfficer_NonEmpty27 =
new 0fficer_NonEmpty( iOrdinary_Officer21,i0fficer_Empty26 );
Officer_NonEmpty* iOfficer_NonEmpty28 =
new Officer_NonEmpty( iShareholding_Officer16,i0Officer_NonEmpty27 );
Officer_NonEmpty* i0fficer_NonEmpty29 =
new Officer_NonEmpty( iShareholding_0fficer10,iOfficer_NonEmpty28 );
DemString* iDemString31l = new DemString( "TransGlobal Adventures" );
DemString* iDemString32 = new DemString( "12 Borisinsky Way" );
DemString* iDemString33 = new DemString( "Moscow" );
DemIdent* iDemIdent34 = new DemIdent( "Russia" );
DemIdent* iDemIdent35 = new DemIdent( "USSR" );
Address* iAddress36 =
new Address( iDemString32,iDemString33,iDemIdent34,iDemIdent35 );
DemString* iDemString37 = new DemString( "2bn" );
DemNumber* iDemNumber38 = new DemNumber( 80 );

new DemNumber( 30 );
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DemString* iDemString40 = new DemString( "Boris Kasparov" );
DemString* iDemString4l = new DemString( "Chief Executive Officer" );
DemNumber* iDemNumber42 = new DemNumber ( 200000 );
Salary* iSalary43 = new Salary( iDemNumber42 );
Shareholding_Officer* iShareholding_0Officer39 =
new Shareholding Officer(
iDemNumber38,
iDemString40,
iDemString41l,
iSalary43);
DemNumber* iDemNumber44
DemString* iDemString46 = new DemString( "Ivan Spassky" );
DemString* iDemString47 = new DemString( "President" );
DemNumber* iDemNumber48 = new DemNumber( 150000 );
Salary* iSalary49 = new Salary( iDemNumber48 ) ;
Shareholding_Officer* iShareholding_0Officer4b =
new Shareholding Officer(
iDemNumber44,
iDemString46,
iDemString47,
iSalary49);
DemString* iDemString5l = new DemString( "Georg Giezendanner" );
DemString* iDemString52 = new DemString( "Secretary" );
DemNumber* iDemNumber53 = new DemNumber( 100000 );
Salary* iSalaryb54 = new Salary( iDemNumber53 );
Ordinary_Officer* iOrdinary_0fficerb0 =
new Ordinary_Officer(
iDemString51, iDemStringb2, iSalary54);
Officer_Empty* iOfficer_Empty55 = new Officer_Empty( );
Officer_NonEmpty* i0fficer_NonEmpty56 =
new 0fficer_NonEmpty( iOrdinary_Officer50,i0fficer_Empty55 );
Officer_NonEmpty* iOfficer_NonEmptyb7 =
new 0fficer_NonEmpty( iShareholding Officer45,i0fficer_NonEmpty56 );
Officer_NonEmpty* i0fficer_NonEmpty58 =
new Officer_NonEmpty( iShareholding_0fficer39,i0fficer_NonEmpty57 );
Company* iCompanyb9 =
new Company( iDemString31,iAddress36,iDemString37,
i0fficer_NonEmpty58,NULL );
WhollyOwned* iWhollyOwned30 = new WhollyOwned (iCompany59) ;
Subsidiary_Empty* iSubsidiary_Empty60 = new Subsidiary_Empty( );
Subsidiary_NonEmpty* iSubsidiary_NonEmpty61l =
new Subsidiary_NonEmpty( iWhollyOwned30,iSubsidiary_Empty60 );
Company* iCompany62 =
new Company( iDemString2,iAddress7,iDemString8,
i0fficer_NonEmpty29,iSubsidiary_NonEmpty61 );

new DemNumber( 5 );
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Conglomerate* iConglomerate63 =
new Conglomerate( iDemIdentl,iCompany62 ) ;

cout << "Total salary = " << iConglomerate63->add_salary() << endl;
}

3.2 ADAPTIVE PROGRAM

Why is the C++ solution so long? There are several reasons, but here we focus only on
the most important one. The C++ program contains significant redundancy which makes
this program inherently rigid and not reusable. This issue shows up in most object-oriented
programs making them rigid and not reusable. (But they are better than nonobject-oriented
programs regarding reusability!)

Let’s do the following Gedankenexperiment. Suppose you are given only the implementa-
tion file totalSalary.C. What can you learn about the interface file? Well, the implementation
file tells a lot about how conglomerates are organized. From the add_salary implementation
we learn that there is a head company that has subsidiary companies and that a company
has officers who are paid a salary. We don’t learn the full story about the conglomerates
from the add_salary implementation, but we learn a lot. When we look at the part of the
implementation file that builds a conglomerate object through constructor calls, we learn
even more about the structure of conglomerate objects.

Adaptive software eliminates the redundancy present in the C++ program by telling
the story about the structure and appearance of Conglomerate-objects only once in the class
dictionary in Fig. 3.1, which we explained on page 42. The corresponding textual form of
the class dictionary follows, sprinkled with some comments that explain the notation.? The
complete notation is explained in detail in Chapters 6 and 11.

Conglomerate = // construction class
"Conglomerate" ":" // for external representation
<name> DemIdent // data member '"name" of class DemIdent
"Head Office" ":"
<head> Company . // data member "head" of class Company
Subsidiary : // Alternation class
WholyOwned | // subclass
PartiallyOwned // subclass
*common* <company> Company . // data member of Subsidiary
WholyOwned = // construction class
"Wholy" "owned"
PartiallyOwned = // construction class

"Partially" "owned" "stake" "="
<stake> DemNumber .
Company =
<name> DemString

2(Class dictionary textual representation, page 437 (31).
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"Registered" "Office"
<location> Address
"Turnover" ":"
<turnover> DemString
"Officers" ":"
<officers> Officer_List
[ "Subsidiaries" "{" <subsidiaries> Subsidiary_List "}" ]
// optional part
Address =
"Street" "-"
<street> DemString
"City" "-"
<city> DemString
IIStatell n_n
<state> DemIdent
"Country" "-"
<country> DemIdent ".
Officer : // alternation class
Shareholding_Officer | Ordinary_Officer
*common* // data members of Officer
"Name" "-"
<name> DemString
IITitlell n_n
<title> DemString
Ilsalaryll n_n
<salary> Salary "."
Salary = <v> DemNumber .
Shareholding_Officer =
"Shareholder"
<share_percentage> DemNumber
"percent control"
Ordinary_QOfficer =
"Ordinary"
Officer_List : Officer_Empty | Officer_NonEmpty .
Subsidiary_List : Subsidiary_Empty | Subsidiary_NonEmpty .
Officer_Empty = .
Officer_NonEmpty = <first> Officer <rest> Officer_List .
Subsidiary_Empty
Subsidiary_NonEmpty = <first> Subsidiary <rest> Subsidiary_List .

A corresponding graphical form is in Fig. 3.1.

The functionality is now formulated without mentioning the details of the class structure
again. We first focus on the traversal and write a specification with which we can generate
the traversal code.
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In Demeter notation, we write the following propagation pattern:?

xoperation* long add_salary()
// find all Salary-objects in
// Conglomerate-object
*traversex*
*from* Conglomerate *to* Salary

The important part of this propagation pattern is the traversal specification (also called
a propagation directive):

*from* Conglomerate *tox Salary

This line generates exactly the traversal code that we saw earlier in Fig. 3.2. Before
going into the details of writing code for adding the salaries, let us show how this traversal
specification is translated into the C++ program skeleton in Fig. 3.2.

First we interpret the traversal directive as specifying the set of paths from Conglomerate
to Salary.* Figure 3.3 shows the union of all the paths from Conglomerate to Salary. This

Conglomerate
Subsidiary NonEmpty

/ first
head
subsidiaries
—

Subsidiary List

—
- Subsidiary
- compan
Company -
officers
\ Officer List

T WhollyOwned partiallyOwned

rest

Officer_ NonEmpty

Salary

first

Ordinary_ Officer ShareHolding Officer

Figure 3.3: Propagation graph

graph is called a propagation graph. The rules of translating the propagation graph into
a C++ program skeleton are (simplified to the current example):

3Legal propagation patterns, page 447 (61).
4Propagation operator, page 446 (59).
5Propagation pattern partial evaluation, page 448 (64).
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e All the classes in the graph get a member function with the signature specified on the
first line of the propagation pattern.

e If a class has an outgoing construction edge in the propagation graph, the member
function of the class will contain a member function invocation through the corre-
sponding data member.

e Functions attached to alternation classes are declared to be virtual.

Based on these rules, the propagation graph in Fig. 3.3 is translated into the program
skeleton in Fig. 3.2, except for the arguments in the skeleton.

To add the salaries, we need to add a little bit of code. This is accomplished by writing
a wrapper for the Salary-class that updates a predefined variable return_val. The complete
propagation pattern follows:®

xoperation* long add_salary() *initx (@ 0 @)
// find all Salary-objects in
// Conglomerate-object
*traversex*
*from* Conglomerate *tox Salary

// when a Salary-object is found,
// add it to the total salary
*wrapper* Salary

xprefix* (@ return_val += xv; @)

The wrapper adds a line to class Salary. Code between (@ and @) is C++ code. The
*init* (@ 0 @) initializes the variable return_val.

long Conglomerate::add_salary( )
{ long return_val
= 0 ; // < NEW from *initx (@ 0 @)
this->add_salary_( return_val );
return return_val; }

void Salary::add_salary_( long& return_val )

{

return_val += *v; // < NEW from wrapper Salary

3

Please check the structure of the generated C++ code. First, it is code that resembles
the object structure closely. Second it is code that a human would write.
We call the propagation pattern with

cout << "TotalSalary = " << iConglomerate->add_salary() << endl ;
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Conglomerate : TransGlobal
Head Office : "TransGlobal Illumination"
Registered Office
Street - "23 Rue du Lac" City - "Geneva"
State - GE Country - Switzerland.
Turnover : "4bn"
Officers :
Shareholder 60 percent control
Name - "Karl Soller"
Title - "Chief Executive Officer and President"
Salary - 200000.

Shareholder 30 percent control
Name - "Jim Miller"
Title - "Chief Financial Officer" Salary - 150000.

Ordinary
Name - "Guy Jenny"
Title - "Secretary" Salary - 100000.
Subsidiaries {
Wholly owned "TransGlobal Adventures'
Registered Office
Street - "12 Borisinsky Way"

City - "Moscow" State - Russia
Country - USSR.

Turnover : "2bn"

Officers :
Shareholder 80 percent control
Name - "Boris Kasparov"

Title - "Chief Executive Officer"
Salary - 200000.

Shareholder 5 percent control
Name - "Ivan Spassky"
Title - "President" Salary - 150000.

Ordinary

Name - "Georg Giezendanner"

Title - "Secretary" Salary - 100000.
X

Figure 3.4: English description of conglomerate
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The specific conglomerate in iConglomerate is defined by an English description in Fig.
3.4.

The English description in Fig. 3.4 is much easier to follow than the corresponding
C++ code that defines the same object. The C++ code is at the end of file totalSalary.C
shown earlier. This example illustrates that C++ is not suitable as an object-oriented design
notation. We need a high-level design notation that abstracts from low-level details, and
we achieve this with propagation patterns. The propagation pattern we have seen above
is very soft software. It is not married at all to the current class dictionary and can be
used with many other class dictionaries. With adaptive software we achieve two goals in
one step. Software becomes easier to produce since we have to write significantly less and
software becomes more flexible.

3.3 EVOLUTION

One goal of adaptive software is to make software soft. We divide the discussion of evolution
in a structural evolution part and in a behavioral evolution part. We compare the evolution
of both a C++ and a corresponding adaptive program.

3.3.1 Changing Object Structure

Classes are like stereotypes. Stereotypical thinking is very useful as long as we constantly
evolve the stereotypes. If we stop to evolve the stereotypes, we become discriminatory and
we start to put objects in the wrong classes. We evolve classes based on objects we have
observed.

Object-oriented programming languages support a discriminatory style of programming
since programmers are unwilling to modify class definitions that are replicated in many
program parts. A change in a class definition might imply numerous changes in the program.
Adaptive object-oriented programming with propagation patterns and class dictionaries
supports a nondiscriminatory programming style since class descriptions are kept separate
from the programs and are only minimally duplicated in the programs. A change in a class
definition involves usually a small number of updates in the programs.

For example, for the class dictionary in Fig. 3.5 no update is needed to the program!
The new class dictionary uses repetition classes for representing lists of officers and lists of
subsidiaries.” A repetition object describes a collection of other objects. A repetition class
is represented by the symbol <. More importantly, the structure of Company-objects has
been changed. Officers are now employees and in addition to officers, the companies now
have regular employees and pay salaries to them. An employee may be shareholding.

At the level of C++, the code will look very different when the class dictionary in Fig.
3.5 (the textual form is in Fig. 3.6) is used to customize the propagation pattern. The
propagation graph is shown in Fig. 3.7. It contains several new classes for which new C++
code has to be produced.

The code of class Company now has additional traversal code for the employees data
member.

void Company::add_salary_( long& return_val )

6Legal propagation patterns, page 447 (61).
7Class dictionary textual representation, page 437 (31).



3.3. EVOLUTION 61
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Figure 3.5: Alternative class dictionary

{
// outgoing calls
this->get_officers()->add_salary_( return_val );
if ( this->get_employees() != NULL )
{
this->get_employees()->add_salary_( return_val );
}
if ( this->get_subsidiaries() != NULL )
{
this->get_subsidiaries()->add_salary_( return_val );
}
}

The traversal code for class Employee_List uses an iterator class (not shown) to visit all
elements of the list.

void Employee_List::add_salary_( long& return_val )

{
// outgoing calls
Employee_list_iterator next_Employee(*this);
Employeex each_Employee;

while ( each_Employee = next_Employee() )
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Conglomerate = "Conglomerate" ":" <name> Demldent
"Head Office" ":" <head> Company .

Subsidiary : WhollyOwned | PartiallyOwned
*common* <company> Company.

WhollyOwned = "Wholly" "owned".
PartiallyOwned = "Partially" "owned" "stake" "=" <stake> DemNumber.

Company = <name> DemString
"Registered" "Office" <location> Address

"Turnover" ":" <turnover> DemString
"Officers" ":" <officers> List(Employee)
["Other" "Employees" ":" <employees> List(Employee)]

// List (Employee) is an instantiation
// of parameterized class List defined below

["Subsidiaries" "{" <subsidiaries> List(Subsidiary) "}" ].
Address = "Street" "-" <street > DemString
"City" "-" <city> DemString
"State" "-" <state> DemIdent
"Country" "-" <country> DemIdent ".".

Employee : Shareholding Employee | Ordinary_Employee *common*

"Name" "-" <name> DemString
"Title" "-" <title> DemString
"Salary" "-" <salary> Salary "."

Salary = <v> DemReal.

Shareholding_Employee = "Shareholder" <share_percentage> DemNumber
"percent control".

Ordinary_Employee = "Ordinary".
List(S) ~ { S }. // parameterized repetition class

Figure 3.6: Alternative class dictionary, textual form
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Figure 3.7: Propagation graph for alternative class dictionary

{
each_Employee->add_salary_( return_val );
}
}

The C++ program needs many more changes. The reason the adaptive program needs
no update is that there is still a relationship between Conglomerate and Salary in the class
dictionary.® And the task is still to find all the Salary-objects in a Conglomerate-object.

3.3.2 Evolving the Functionality

Changing the object structure was easy, and it was equally as easy to update the C++
programs working on the objects. We noticed that when the C++ programs were described
by an adaptive program, no change to the program was needed at all. We now go back to
the original class dictionary in Fig. 3.1.

Updating Objects

Next we add functionality to the application. Suppose we want to increase the salary of
all officers of the head company by percent percent. Because a salary can now be a real
number, we update the data member type of v in class Salary to DemReal.

To update the salaries, the C++ programmer would have to write traversal code for
the following classes:

8TLegal propagation pattern customization, page 447 (62).
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Conglomerate

Company

Officer

Salary
Shareholding_Officer
Ordinary_Officer
Officer_List
Officer_NonEmpty

The detailed traversal code the C++ programmer would produce is®

void Conglomerate::increase_salary( int percent )
{ this->get_head()->increase_salary( percent ); }

void Company::increase_salary( int percent )
{ this->get_officers()->increase_salary( percent ); }

void Officer::increase_salary( int percent )
{ this->get_salary()->increase_salary( percent ); }

void Salary::increase_salary( int percent )

{1}

void Officer_List::increase_salary( int percent )

{1}

void Officer_NonEmpty::increase_salary( int percent )
{ this->get_first()->increase_salary( percent );
this->get_rest()->increase_salary( percent ); }

The traversal code is almost the correct solution. We need to add a little bit of code to
the member functions of class Conglomerate and class Salary.

void Conglomerate::increase_salary( int percent )
{ this->get_head()->increase_salary( percent );
// suffix wrappers
cout << " after " << this; // <=== new

}

The last line in the Conglomerate member function serves to print out the conglomerate
object after it was modified.

For class Salary we use a prefix wrapper, introduced with *prefix*, and a suffix wrapper,
introduced with *suffix*. *prefix* is like an editing instruction that puts the code at the
beginning of the member function. *suffix* is like an editing instruction that puts the code
at the end of the member function.

9Propagation pattern partial evaluation, page 448 (64).
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void Salary::increase_salary( int percent )
{ // prefix wrappers

this —> // <=== new
set_v(new DemReal (*v * (1 + (percent/100.0)))); // <=== new

// suffix wrappers
cout << " new salary " << this << // <=== new
" percentage " << (1 + (percent/100.0)); // <=== new

The bad news about the C++ program we just wrote is that it contains a lot of infor-
mation about the class dictionary. Should the class dictionary change we will have to work
hard to maintain the C++ program.

The adaptive programmer has it comparatively easier. She identifies the classes that
are involved in the traversal; the propagation graph that describes the traversal to be done
for objects of class Conglomerate defined by the class dictionary in Fig. 3.1 is in Fig. 3.8.

Conglomerate

head

Company

\\\\\\\*“OfficeriList
officers

rest
Salary

Officer NonEmpty

First Salary

Officexr

]

Ordinary Officer ShareHolding Officer

Figure 3.8: Propagation graph for increasing salary of officers

Instead of writing the traversal code manually, we write a propagation directive:
*from* Conglomerate

*bypassing* -> *,subsidiaries,*
*to*x Salary

that defines the above propagation graph and the corresponding traversal code.!® With
*bypassing*, we can influence the size of the propagation graph. The bypassing clause means

10T,egal propagation patterns, page 447 (61).
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that the construction edge starting from any class (denoted by *), with label subsidiaries,
and terminating at any class (denoted by *), is bypassed. In the specific class dictionary
that we are using, only the construction edge from Company to Subsidiary_List with label
subsidiaries

-> Company, subsidiaries, Subsidiary_List

is matching and therefore bypassed. Instead of manually editing the C++ traversal code, we
add editing instructions in the form of wrappers to the propagation pattern. The complete
propagation pattern is in Fig. 3.9. This propagation pattern was developed with the cus-

xoperation* void increase_salary(int percent)
*traversex*
*from* Conglomerate
xbypassing* -> *,subsidiaries,*
*to* Salary

*wrapper* Salary
xprefix* (@ this ->
set_v(new DemReal(*v * (1 + (percent/100.0)))); @)
xsuffix* (@ cout << " new salary " << this <<
" percentage " << (1 + (percent/100.0)); @)
*wrapper* Conglomerate
xsuffix* // to check the result
(@ cout << " after " << this; @)

Figure 3.9: Increase salary of top-level officers

tomizer in Fig. 3.1 in mind.'" But how does it behave with the class dictionary in Fig. 3.5
that also allows employees, not only officers in the companies? The salary increase program
is supposed to increase only the salary of the top-level officers and not of all employees.
Therefore, for the class dictionary in Fig. 3.5, we need to make sure that only the officers
are considered. The propagation directive

*from* Conglomerate
*bypassing* -> *,subsidiaries,*
*through* -> *,officers,*

*to*x Salary

selects the appropriate propagation graph. At the C++ level, the impact of the *through*
clause is to eliminate statements. For example, in class Company there will be no code that
calls the function for data member officers. Similar to the *bypassing* clause, the *through*

Tegal propagation pattern customization, page 447 (62).



3.3. EVOLUTION 67

clause allows us to reduce the size of the propagation graph. The *bypassing* clause takes
an explicit attitude by explicitly excluding certain edges. The *through* clause takes an
implicit attitude by implicitly excluding certain edges through forcing other edges.

It is interesting to notice that to make the C++ program smaller, we add constraints
to the adaptive program. This is unexpected until we realize that adaptive programs are
constraints that constrain object-oriented programs. The more constraints we add, the
smaller the object-oriented program becomes. Could it be that we might have to add so
many constraints that the adaptive program gets larger than the object-oriented program?
Fortunately, adaptive object-oriented programs can always be written in such a way that
they are better or equally as good as object-oriented programs. We can always write an
adaptive program in the following form:

xoperation* // signature

// no traversal specification
*wrapper* A ...
*wrapper* B ...

*wrapper* C ...

In this form, an adaptive program is like an object-oriented program.

Let’s do one last evolution step to our salary increase program. This step we will perform
only at the adaptive level since we can easily visualize the mapping to the C++ level. The
functionality we add, in addition to increasing the salaries, will compute the maximum of
all the salaries after the increase. We prepare for this enhancement by adding a reference
argument to the signature. The variable is updated during the traversal and printed out at
the end.

The updated propagation pattern for the class dictionary in Fig. 3.5 is shown below.

*operation* void increase_salary // name of functionality
( // arguments
int percent,
long& max_salary // <===== new: extra argument
)
*traversex // describes C++ skeleton

*from* Conglomerate
*bypassing* -> *,subsidiaries,*
*through* -> *,officers,*

*to*x Salary

*wrapper* Salary // for Salary member function
xprefix* // add at beginning
(@ this -> set_v(new DemReal(*v * (1 + (percent/100.0)))); @)
*suffix*
(@ cout << " new salary " << this << // add at end

" percentage " << (1 + (percent/100.0)); @)
*wrapper* Conglomerate // for Conglomerate member function
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xsuffix* // to check result // add at end: after traversal!
(@ cout << " after " << this; @)

// further updates for computing maximum salary

*wrapper* Salary // also for Salary member function
xprefix* // add at beginning
(@ if (*v > max_salary) { // <===== new: test
max_salary = *v; // <===== new: update
©)
*suffix* // add at end; completes syntax of prefix part
(@ } else // <===== new: debug
cout << endl << " no new maximum "; // <===== new: debug
@)
*wrapper* Conglomerate // also for Conglomerate member function
xsuffixx // add at end: after traversal
(e
cout << endl <<
" maximum salary " << max_salary; // <===== new: print
@)

Six lines have been added to the propagation pattern we had before. How many lines need
to be added to the C++ program? The last five of the six lines are also added to the C++
program. The first line, however, is added many times to the C++ program, depending
on how many classes are in the propagation graph. This example nicely demonstrates the
localization of signature information in propagation patterns that significantly simplifies
signature changes.

The reader may judge from the conglomerate example which notation is easier to use: a
first generation object-oriented language such as C++ or a second generation object-oriented
language using propagation patterns and class dictionaries on top of C++.

3.4 WHAT IS THE PRICE?

Adaptive object-oriented software has inherent advantages over object-oriented software.
But what does one have to know to successfully write and maintain adaptive object-oriented
software?

You have to know about class dictionaries and propagation patterns and how they relate
to object-oriented programs. Equipped with this knowledge it is easy for an object-oriented
programmer to write adaptive programs. It takes only about fifteen hours of reading time
to learn the necessary skills plus the time to do five homeworks on the computer.

Adaptive software is developed according to the following method.

The Demeter Method in a Nutshell

e Start with requirements, written in the form of use cases. A use case is an English
description of how the desired system should react in a specific situation. Derive a class
dictionary, a general graph structure to describe the structure of objects. The class
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dictionary has secondary importance, since, after the project is complete, the class
dictionary is replaceable by many other class dictionaries without requiring changes
(or only minimal changes) to the rest of the software.

e For each use case, focus on subgraphs of collaborating classes that implement the use
case. Focus on how the collaborating classes cluster objects together. Express the col-
laborations as propagation patterns with minimal dependency on the class dictionary.
The propagation patterns give an implicit specification of the group of collaborating
classes, focusing on the classes and relationships that are really important for the
current use case.

e Enhance the propagation patterns by adding specific functionality through wrappers
at vertices and at edges of the class dictionary. The wrappers use the object clusters.
Derive test inputs from use cases and check whether all use cases are satisfied.

Use cases are helpful to trace requirements throughout the software development pro-
cess. Use cases are translated into class dictionaries to have a precise vocabulary to talk
about the classes. There are three kinds of classes and four kinds of relationships between
classes in class dictionaries. You have to learn a few design rules about class dictionaries.

Use cases are also translated into propagation patterns to provide the functionality of
the objects. To work with propagation patterns, you have to learn about propagation direc-
tives. Propagation directives are succinct specifications of object-oriented programs both for
traversing objects as well as for transporting objects. Most propagation patterns contain a
propagation directive but there are also propagation patterns without a propagation direc-
tive. Propagation patterns without a propagation directive are like ordinary object-oriented
programs. Propagation patterns with a propagation directive define an entire family of
C++ programs.

Besides propagation directives, propagation patterns contain other important ingredi-
ents: wrappers. Wrappers are like editing instructions to add to an object-oriented program.
The reason we need the wrappers is that the traversal code defined by propagation directives
is not sufficient to express the desired functionality. With wrappers we can use any kind of
C++ statements to express the details of the processing.

What is important here is that C++ statements are used late in the development
process. First, analysis and design are done in terms of class dictionaries and propagation
directives. Those concepts are very high level and visual feedback is available to check
for correctness. The detailed processing is expressed in terms of wrappers once the class
dictionaries and the propagation directives are in good shape.

To summarize, to develop adaptive software you need to know about class dictionaries
and propagation patterns. Class dictionaries consist of partial class definitions sufficient to
define the structure of application objects. Propagation patterns may contain propagation
directives to define entire families of object-oriented programs. Propagation patterns also
contain wrappers that may contain any C++ statements.

Learning to write adaptive software requires that you acquire some new concepts. An
adequate set of concepts you need to write useful adaptive programs successfully are:

e Structural specification: class dictionary G

Defines a set of classes and their relationships and standard functionality.
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e Objects defined by G

G requires that objects created from its classes have specific parts.

e Flattened class dictionary F = flatten(G)

The flatten function distributes common parts of abstract classes to concrete sub-
classes.'? The flatten function is useful since it allows us to bring a class dictionary
to a normal form for manipulating it, usually selecting a subgraph. After the manipu-
lation, the flattening may be undone for the selected subgraph. Flat class dictionaries
are usually not written by the user but are produced from nonflat class dictionaries by
tools. Flat class dictionaries are a useful intermediate form. Notice that the flattening
operation is well defined since there can be no cycles of alternation edges in a class
dictionary.

In the examples in this chapter we omitted the flattening and unflattening steps.

e Propagation directive d for F

A propagation directive specifies a subgraph of F' by selecting only some of the paths
in F.

e Propagation graph pg = propagate(d, F')

A propagation graph is essentially the union of paths in F' that satisfy propagation
directive d. An important use of propagation graphs is to specify object traversals.

e Behavioral specification: propagation pattern pp = (signature, d, wrappers)

A propagation pattern consists of a signature, an optional propagation directive, and
a set of wrappers. The wrappers are enhancements to the traversal code specified by
propagation directive d. The signature gives the argument names and types of the
behavior.

e Code generation for pp in F'

The code generation for pp = (signature, d, wrappers) produces essentially a member
function for every class in the propagation graph determined by d and F. The con-
struction edges in the propagation graph determine the traversal function calls that
are made by the member functions. The wrappers are wrapped around the traversal
code.

3.5 APPENDIX: FROM C TO C++4

Basic knowledge of C++ is a prerequisite for the readers of this book. In this appendix
we summarize the subset of C++ that is needed for writing challenging adaptive programs.
The subset is described from the point of view of adaptive software.

Since we cover only a subset of C++ here, it is important to repeat that adaptive
software is an add-on tool to object-oriented software. When writing adaptive software, we
can use the full power of C++ for the following reasons:

12(Class dictionary flattening, page 439 (33).
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e In wrappers any C++ statement may be used.

e Often we use external class libraries when developing adaptive software. Those class
libraries may be produced by Demeter, or they may be written by the adaptive software
developer, or bought from a third party.

The subset of C++ that we use tends to cover features that are available in similar form
in most programming languages covering the object-oriented paradigm.

We take a uniform approach and put all objects on the heap, with a few exceptions.
The advantage is that member functions are called uniformly with the same syntax. Objects
are allocated uniformly with the new operator.

e Declaring variables

All variables for storing objects defined by a class dictionary are declared as pointer
variables.

Fruit = ...
Fruit* my_fruit;

There is an exception: variables for storing iterator objects for repetition classes are
declared as regular objects.
e Members

Each class has members of two kinds:

— data members: define the local state of objects

— function members: define the functionality.

There are three visibility categories for members:

— public
— private
— protected.
We make all data members private and provide public access and writing functions.
Data members are defined by the class dictionary and the C++ code for accessing and
writing is generated.
e Member functions

The protection of member functions is user controlled. The default is public. The
header file of a member function is generated from implementation.

Attaching a public member function cost to class Apple uses the following syntax:

int Apple::cost(...)
{...}
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If Apple is an alternation class, then cost will be a virtual function by default. If Apple
is a construction or repetition class, cost is a normal member function.

A public member function can be called everywhere (but we will follow the Law of
Demeter to avoid maintenance problems).

Arguments to member functions typically have one of the forms used in the following
argument list:

(Ax al, Ax& a2, Ctype il, Ctype& i2, ...)

where A is some class name. A* al declares a pointer argument and A*& al declares
a reference parameter that is a pointer. The actual parameter must be some l-value
that may be assigned a new pointer during execution of the function. Ctype& declares
a reference parameter of some C type.

Meaning of function calls
Member functions are called with the —> operator.

First we consider calling functions of construction or repetition classes. Consider the
example:

// Contents = ... or Contents ~
Contents* iContents; iContents = ...;
iContents -> weight(...);

The last line is a call of function weight for the object in variable iContents that must
be an instance of class Contents. This is like a regular C function call

weightl(iContents, ...)

The meaning of => for calling functions of alternation classes is different. The default
is that functions of alternation classes are virtual and we assume this default in the
following discussion. Consider the following example for discussing the meaning of
calling virtual functions.

// Telephone : Cordless | Standard ...
// Cordless = .

// Standard = .

Telephone* iTelephone; iTelephone = ...;
iTelephone -> ringing(...);

The last line is a call of function ringing for the object in variable iTelephone. The object
in variable iTelephone can be an instance of any construction class that is alternation-
reachable from Telephone. A class is alternation-reachable from an alternation class
if it can be reached following alternation edges only.

The call
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iTelephone -> ringing(...)

does not tell us which code will be called at run-time. We know only that it will be
code that is accessible from construction classes alternation-reachable from Telephone.

Consider the case

// Telephone : Cordless ...
Telephonex* iTelephone;
iTelephone = new Cordless(...);
iTelephone -> ringing(...)

Here the last line will activate the ringing function of Cordless (if there is one) or the
ringing function of an alternation predecessor of Cordless.

e this

Member functions have a hidden argument and this allows us to talk about it explicitly.
Consider the member function

void Telephone::ringing(...)
{ ... this ...}

and the call
iTelephone->ringing(...);

When Telephone::ringing is called by the above call, this will contain the object in
iTelephone.

e Simulating super

C++ allows us to use the scope resolution operator to call a function of a super class
directly. An example is

// Telephone : Cordless ...
// Cordless is a subclass of Telephone
void Cordless: :print()

{ ... Telephone::print(); ...}

e Overloading of functions and operators <<, >>, () etc.

The same class may have several functions with the same name, provided the argument
types are distinct. The same holds true for operators. For example, the input/output
classes provided with C++ compilers use overloaded shift operators for input and
output. cout is an object of class ostream and we can use the “put to” operator,
called <<, for output. Each time the << is used with cout, printing continues from the
position where it previously left off. For example,
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cout << "x= " << iD->f() << endl;

first prints a comment, then the object that f returns, followed by an end-of-line.

The class istream uses the overloaded operator >> for input. For example,
cin >> d > z

reads from the standard input (usually the keyboard), a value for d and then for z.
White space is ignored.

To iterate through a repetition object, we use the overloaded function call operator

(-

// Fruit_List ~ Fruit { Fruit }.
void Fruit_List::add_cost(float &size )

{
Fruit_list_iterator next_arg(*this) ;
Fruitx* each_arg;
while ( each_arg = next_arg() ) // <=== calls ()
// to get next list element
each_arg->add_cost(size );
}
Constructors

For construction and repetition classes, constructors are created. They are used to
create objects.

For a construction class
Motor = <horsepower> Number <shaft> DriveShaft.

a constructor
Motor: :Motor (Number* x = NULL, DriveShaft* y = NULL)

is created. It has default arguments for x and y.
Motor() is equivalent to Motor(NULL,NULL),
Motor(x1) is equivalent to Motor(x1,NULL).
Comment character

The comment character in C++ is //. The C comment characters may also be used.
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3.6 SUMMARY

In this chapter we viewed adaptive software as a convenient way to describe C++ software.
Adaptive software is to C++ software what stenography is to the English language. But
adaptive software is succinct stenography since one adaptive program describes an entire
family of C+4+ programs.

We studied the evolution of a C++ program. We first wrote a program to compute
the total salary paid by a conglomerate of companies. Then we decided that the structure
of the conglomerate objects needs to be changed and we rewrote the C++ program. We
then added more functionality to the program and made it work for both class structures
we considered.

We noticed that the changes we did to the software were very time consuming when done
directly at the C++ level. When the C++ programs were described by adaptive programs,
the changes were significantly easier.

In this chapter we showed the most important components of adaptive software and
how they relate to C++. Two important features of adaptive software that we did not
mention are: transportation patterns and edge wrappers. Transportation patterns are used to