
Adaptive Object-Oriented
Software

The Demeter Method

Karl Lieberherr
College of Computer Science
Northeastern University Boston

Copyright (C) 1996 by Karl J. Lieberherr
All rights reserved by PWS Publishing Company
To order the book, send email to: info@pws.com

Put on the Web with permission by Mike Sugarman, PWS.

To Ruth, Andrea and Eva

Produced with Acrobat 4.0.

Author’s email
lieber@ccs.neu.edu

Contents

Foreword by Gregor Kiczales and John Lamping xxiii

Preface xxv

1 Introduction 1

1.1 EVOLUTIONARY LIFE CYCLE WITH ADAPTIVE SOFTWARE : : : : : 1

1.1.1 How is Adaptiveness Achieved? : 2

1.1.2 Applications of Adaptiveness : 2

1.1.3 Adaptiveness with the Demeter Method : : : : : : : : : : : : : : : : 2

1.1.4 Demeter Life-Cycle : 3

1.1.5 Symmetry Between Adaptive Programs and Customizers : : : : : : 5

1.1.6 Symmetry Between Object Descriptions and Customizers : : : : : : 5

1.2 DISADVANTAGES OF OBJECT-ORIENTED SOFTWARE : : : : : : : : 6

1.3 ADAPTIVE PROGRAMMING : 7

1.4 PROPAGATION PATTERNS : 10

1.5 CUSTOMIZATION : 12

1.6 SUMMARY : 16

1.7 EXERCISES : 16

1.8 BIBLIOGRAPHIC REMARKS : 17

2 Introduction to Object-Oriented Software 18

2.1 CONCEPTS : 24

2.1.1 Abstractions : 26

2.1.2 Classes, Methods, and Delayed Binding : : : : : : : : : : : : : : : : 26

2.1.3 Overloading and Delayed Binding : : : : : : : : : : : : : : : : : : : 30

2.1.4 Reduced Dependencies : 30

2.1.5 Sharing : 30

2.1.6 Making Instances : 33

2.2 EASE OF EVOLUTION : 33

2.3 TERMINOLOGY : 34

2.4 CONVENTIONS : 35

2.4.1 Symbol Usage : 36

2.5 EXERCISES : 36

2.6 BIBLIOGRAPHIC REMARKS : 38

vii

viii CONTENTS

3 From C++ to Demeter 40

3.1 C++ PROGRAM : 42

3.2 ADAPTIVE PROGRAM : 55

3.3 EVOLUTION : 60

3.3.1 Changing Object Structure : 60

3.3.2 Evolving the Functionality : 63

3.4 WHAT IS THE PRICE? : 68

3.5 APPENDIX: FROM C TO C++ : 70

3.6 SUMMARY : 75

3.7 EXERCISES : 75

3.8 BIBLIOGRAPHIC REMARKS : 76

4 Thinking Adaptively 77

4.1 KEY IDEAS : 80

4.1.1 Inventor's Paradox : 80

4.1.2 Stepwise Re�nement : 81

4.1.3 Representation/Interface Independence : : : : : : : : : : : : : : : : 81

4.2 MODELING COMPLEX SYSTEMS : 83

4.3 JUSTIFICATION : 86

4.4 CUSTOMIZATION : 87

4.5 THE ITINERARY PROBLEM : 88

4.5.1 Customizing the Adaptive Program : : : : : : : : : : : : : : : : : : 90

4.5.2 Transporting Objects : 95

4.6 POSITIONING IN THE HISTORY OF SOFTWARE DEVELOPMENT : : 96

4.7 THE TOOLS : 99

4.8 EXPERIENCES WITH ADAPTIVE SOFTWARE : : : : : : : : : : : : : : 101

4.9 SUMMARY : 103

4.10 BIBLIOGRAPHIC REMARKS : 104

5 Adaptive Software by Example 112

5.1 CHANGING REQUIREMENTS : 112

5.2 CUSTOMIZING WITH CLASS DICTIONARIES : : : : : : : : : : : : : : : 116

5.3 OBJECT TRAVERSAL AND TRANSPORTATION : : : : : : : : : : : : : 129

5.4 SUMMARY : 131

5.5 EXERCISES : 132

5.6 BIBLIOGRAPHIC REMARKS : 134

5.7 SOLUTIONS : 134

6 Class Dictionary Graphs and Objects 135

6.1 INTRODUCTORY EXAMPLE : 136

6.2 CLASS DICTIONARY GRAPH RULES : 144

6.2.1 Convenient Extensions : 146

6.3 OBJECTS : 149

6.3.1 Textual Representation : 150

6.3.2 Size : 152

CONTENTS ix

6.4 TRANSLATION TO C++ : 152

6.5 PARAMETERIZED CLASSES : 156

6.6 CLASS DICTIONARY GRAPH DESIGN : : : : : : : : : : : : : : : : : : : 157

6.6.1 Why Alternation Classes are Abstract : : : : : : : : : : : : : : : : : 157

6.6.2 Taxonomy and Class Dictionary Graphs : : : : : : : : : : : : : : : : 157

6.6.3 Construction versus Alternation Edges : : : : : : : : : : : : : : : : 161

6.7 SUMMARY : 163

6.8 EXERCISES : 163

6.9 BIBLIOGRAPHIC REMARKS : 166

6.10 SOLUTIONS : 167

7 Propagation Directives 169

7.1 SIMPLE PROPAGATION DIRECTIVES : : : : : : : : : : : : : : : : : : : 171

7.1.1 Edge Patterns : 178

7.2 SYNTAX SUMMARY FOR PROPAGATION DIRECTIVES : : : : : : : : 179

7.3 APPLYING PROPAGATION DIRECTIVES : : : : : : : : : : : : : : : : : 182

7.4 AVOIDING INFORMATION LOSS : 182

7.5 FINDING PROPAGATION DIRECTIVES : : : : : : : : : : : : : : : : : : : 185

7.5.1 Evolution of Propagation Directives : : : : : : : : : : : : : : : : : : 187

7.6 TESTING OF PROPAGATION DIRECTIVES : : : : : : : : : : : : : : : : 188

7.7 OPERATIONS ON PROPAGATION DIRECTIVES : : : : : : : : : : : : : 188

7.7.1 Join Operator : 188

7.7.2 Merge Operator : 189

7.7.3 Restrict Operator : 189

7.7.4 Propagation Graph Calculus : 190

7.7.5 Propagation Directive Expressions : : : : : : : : : : : : : : : : : : : 191

7.7.6 Customization Space : 193

7.8 SUMMARY : 193

7.9 EXERCISES : 193

7.10 BIBLIOGRAPHIC REMARKS : 199

7.11 SOLUTIONS : 200

8 Propagation Patterns 202

8.1 CONNECTION TO LAW OF DEMETER : : : : : : : : : : : : : : : : : : : 202

8.2 OBJECT-ORIENTED IMPLEMENTATION : : : : : : : : : : : : : : : : : : 207

8.3 SYNTAX SUMMARY FOR PROPAGATION PATTERNS : : : : : : : : : : 211

8.4 EXAMPLES : 212

8.4.1 Graph Algorithms : 212

8.4.2 Chess Board : 219

8.4.3 Painting a Car : 220

8.4.4 Meal : 223

8.4.5 Compiler : 225

8.5 COMPONENTS: SETS OF PROPAGATION PATTERNS : : : : : : : : : : 225

8.6 EDGE WRAPPERS AND VERTEX WRAPPERS : : : : : : : : : : : : : : 229

8.7 PROGRAMMING WITH PROPAGATION PATTERNS : : : : : : : : : : : 234

x CONTENTS

8.7.1 Evolution Histories : 234

8.7.2 Three-Stage Development : 237

8.7.3 Propagation and Alternation : 237

8.7.4 Wrappers Simulating Inheritance : 241

8.7.5 Readers and Writers : 243

8.8 SUMMARY : 245

8.9 EXERCISES : 246

8.10 BIBLIOGRAPHIC REMARKS : 253

8.11 SOLUTIONS : 254

9 Propagation Pattern Interpretation 255

9.1 HOW TO RUN A PROPAGATION PATTERN : : : : : : : : : : : : : : : : 256

9.1.1 Discussion of the Rules : 259

9.2 CUSTOMIZER RESTRICTIONS : 260

9.2.1 Compatibility Restriction : 261

9.2.2 Propagation Restriction : 261

9.2.3 Information Loss Restriction : 262

9.2.4 Delayed Binding Restriction : 265

9.2.5 Inheritance Restriction : 269

9.3 PROPAGATION PATTERN PROPERTIES : : : : : : : : : : : : : : : : : : 271

9.3.1 Alternation Property : 272

9.3.2 Propagation Directive Satisfaction : : : : : : : : : : : : : : : : : : : 272

9.3.3 Propagation Graph Properties : 276

9.3.4 Consistent Ordering : 276

9.3.5 Robustness Under Class Dictionary Transformations : : : : : : : : : 277

9.3.6 Access Independence : 279

9.3.7 Method Selection Rule : 279

9.3.8 Split Alternation Class : 280

9.3.9 Symmetry : 281

9.3.10 No Wrapper Shadowing : 282

9.3.11 Customizer Analysis : 282

9.4 OBJECT-ORIENTED IMPLEMENTATION : : : : : : : : : : : : : : : : : : 285

9.4.1 Exiting Alternation Edges : 286

9.4.2 Wrapper Pushing : 291

9.4.3 Propagation Patterns with Return Types : : : : : : : : : : : : : : : 293

9.5 SUMMARY : 296

9.5.1 The Flat Demeter Method : 297

9.6 EXERCISES : 298

9.7 BIBLIOGRAPHIC REMARKS : 308

9.8 SOLUTIONS : 308

CONTENTS xi

10 Transportation Patterns 309

10.1 SPECIFYING OBJECT TRANSPORTATION : : : : : : : : : : : : : : : : 309

10.2 TRANSPORTATION CUSTOMIZER RESTRICTIONS : : : : : : : : : : : 312

10.2.1 Type-Correctness : 314

10.2.2 Traversal Restrictions : 315

10.2.3 Transportation Restrictions : 315

10.3 TRANSPORTATION PATTERN EXAMPLES : : : : : : : : : : : : : : : : 318

10.3.1 Triples Example : 320

10.3.2 Avoiding Conditional Statements : : : : : : : : : : : : : : : : : : : 326

10.3.3 DFT Example : 327

10.4 CODE GENERATION : 329

10.4.1 Code Generation with Two Transportation Patterns : : : : : : : : : 330

10.4.2 Combining Two Propagation Patterns : : : : : : : : : : : : : : : : : 343

10.5 SUMMARY : 344

10.6 EXERCISES : 345

10.7 BIBLIOGRAPHIC REMARKS : 356

10.8 SOLUTIONS : 356

11 Class Dictionaries 358

11.1 PARSING : 363

11.2 LL(1) CONDITIONS AND LEFT-RECURSION : : : : : : : : : : : : : : : 369

11.2.1 Left-Recursion : 371

11.3 SUMMARY : 372

11.4 EXERCISES : 374

11.5 BIBLIOGRAPHIC REMARKS : 379

11.6 SOLUTIONS : 381

12 Style Rules for Class Dictionaries 382

12.1 LAW OF DEMETER FOR CLASSES : 382

12.2 CLASS DICTIONARY GRAPH OPTIMIZATION : : : : : : : : : : : : : : 386

12.2.1 Minimizing Construction Edges : 387

12.2.2 Minimizing Alternation Edges : 388

12.3 PARAMETERIZATION : 390

12.4 REGULARITY : 393

12.4.1 Regular Structures : 393

12.5 PREFER ALTERNATION : 394

12.6 NORMALIZATION : 396

12.7 COGNITIVE ASPECTS OF NOTATIONS : : : : : : : : : : : : : : : : : : : 397

12.8 EXTENDED EXAMPLES : 398

12.8.1 VLSI Architecture Design : 398

12.8.2 Business Applications : 400

12.9 SUMMARY : 401

12.10 EXERCISES : 402

12.11 BIBLIOGRAPHIC REMARKS : 402

xii CONTENTS

13 Case Study: A Class Structure Comparison Tool 403

13.1 THE DEMETER METHOD : 403

13.1.1 The Demeter Method in a Nutshell : : : : : : : : : : : : : : : : : : 404

13.1.2 Design Checklist : 404

13.1.3 Analysis/Design/Implementation : 407

13.2 GROWING ADAPTIVE SOFTWARE : 407

13.3 PROBLEM FORMULATION : 410

13.3.1 Class Dictionary Graph Extension : : : : : : : : : : : : : : : : : : : 410

13.3.2 Precise Problem Statement : 414

13.4 PROBLEM SOLUTION : 414

13.4.1 Finding the Class Dictionary : 416

13.4.2 Component superclasses : 417

13.4.3 Component partclusters : 419

13.4.4 Component associated : 422

13.5 SUMMARY : 425

13.6 EXERCISES : 425

13.7 BIBLIOGRAPHIC REMARKS : 428

14 Instructional Objectives 429

15 Core Concepts and Implementation 453

15.1 INTRODUCTION : 454

15.1.1 Background : 454

15.1.2 Our Results : 455

15.1.3 Example : 455

15.1.4 Compatibility, Consistency, and Subclass Invariance : : : : : : : : : 461

15.2 THE SEMANTICS OF ADAPTIVE PROGRAMS : : : : : : : : : : : : : : 466

15.2.1 Graphs : 466

15.2.2 Paths : 467

15.2.3 Class Graphs : 468

15.2.4 Object Graphs : 469

15.2.5 Traversal Speci�cations : 469

15.2.6 Wrappers : 471

15.2.7 Adaptive Programs : 472

15.2.8 The Target Language : 473

15.3 IMPLEMENTATION OF ADAPTIVE PROGRAMS : : : : : : : : : : : : : 474

15.4 COMPOSITIONAL CONSISTENCY : 477

15.5 RELATED WORK : 480

15.6 SUMMARY : 482

15.7 EXERCISES : 486

15.8 BIBLIOGRAPHIC REMARKS : 496

CONTENTS xiii

16 Theory of Class Dictionaries 497

16.1 CLASS DICTIONARY GRAPHS : 497

16.1.1 Semi-Class Dictionary Graphs : 498

16.1.2 Class Dictionary Graph Slices : 500

16.1.3 Class Dictionary Graphs : 501

16.1.4 Object Graphs : 502

16.1.5 Inductive Class Dictionary Graphs : : : : : : : : : : : : : : : : : : : 507

16.2 CLASS DICTIONARIES : 508

16.2.1 De�nitions : 509

16.2.2 Flat Class Dictionaries : 512

16.2.3 Languages : 514

16.3 LL(1) RULES : 517

16.4 IMPLICATIONS OF LL(1) RULES : 521

16.4.1 Printing : 521

16.4.2 Parsing : 523

16.4.3 LL(1) Rules and Ambiguous Context-Free Grammars : : : : : : : : 527

16.5 DEMETER DATA MODEL SUMMARY : 527

16.6 SELF APPLICATION : 527

16.6.1 Self-Describing Class Dictionary Graphs : : : : : : : : : : : : : : : : 529

16.6.2 Parameterized Class Dictionaries : 529

16.6.3 Object Graphs : 531

16.6.4 Mapping to C++ : 532

16.7 KNOWLEDGE PATHS AND OBJECT PATHS : : : : : : : : : : : : : : : : 535

16.8 SUMMARY : 540

16.9 EXERCISES : 540

16.10 BIBLIOGRAPHIC REMARKS : 541

17 Selfstudy/Teacher's Guide 542

17.1 INTRODUCTION : 542

17.2 EXPANDED SYLLABUS : 542

17.3 ASSIGNMENT 1 : 545

17.3.1 Background Tasks : 545

17.3.2 Part 1: C++ Program Completion : : : : : : : : : : : : : : : : : : : 545

17.3.3 Part 2: Laboratory Guide : 547

17.4 ASSIGNMENT 2 : 547

17.4.1 Background Tasks : 547

17.4.2 Objectives : 547

17.4.3 Part 1: Writing a Pocket Calculator in C++ : : : : : : : : : : : : : 547

17.4.4 Part 2: Checking Your Solution with Demeter : : : : : : : : : : : : 549

17.4.5 Part 3: Learning C++ : 550

17.4.6 Part 4: Develop Your Own Class Dictionary Graph : : : : : : : : : 551

17.5 ASSIGNMENT 3 : 551

17.5.1 Background Tasks : 551

17.5.2 Part 1: Trip Class Dictionary : 552

17.5.3 Part 2: Inventing and Debugging Class Dictionaries : : : : : : : : : 552

xiv CONTENTS

17.5.4 Part 3: Time Consuming : 553

17.5.5 Part 4: Redoing the Last Part with Demeter : : : : : : : : : : : : : 554

17.6 ASSIGNMENT 4 : 554

17.6.1 Background Tasks : 555

17.6.2 Part 1: Writing a Compiler : 555

17.6.3 Part 2: Compute the Size of an Expression : : : : : : : : : : : : : : 557

17.6.4 Part 3: Compute the Size of a Class Dictionary : : : : : : : : : : : 557

17.7 ASSIGNMENT 5 : 558

17.7.1 Background Tasks : 559

17.7.2 Part 1: Write Your Own Propagation Pattern : : : : : : : : : : : : 559

17.7.3 Part 2: Evolution of a Programming Tool : : : : : : : : : : : : : : : 559

17.8 LEARNING C++ WITH DEMETER : 563

17.8.1 Class Library Generator : 563

17.8.2 Member Function Skeleton Generator : : : : : : : : : : : : : : : : : 563

17.8.3 Simulating the Demeter Library : 564

18 Glossary 565

18.1 DEFINITIONS : 565

18.2 QUICK REFERENCE GUIDE WITH SYNTAX SUMMARY : : : : : : : : 578

18.3 SYNTAX DEFINITIONS : 585

18.3.1 Class Dictionary Syntax : 585

18.4 BIBLIOGRAPHIC REMARKS : 588

A Electronic Access 589

Bibliography 591

Index 606

List of Figures

0.1 Tip of an iceberg : xxvi

1.1 Implementation of adaptive programming : : : : : : : : : : : : : : : : : : : 4

1.2 Customizer reuse : 5

1.3 Adaptive program reuse : 6

1.4 Duplication of class structure in object-oriented programming : : : : : : : : 7

1.5 An in�nite family of programs denoted by an adaptive program : : : : : : : 8

1.6 Informal description of computeSalary adaptive program : : : : : : : : : : : 9

1.7 Propagation pattern for the computeSalary adaptive program : : : : : : : : : 11

1.8 Class dictionary graph representing conglomerates of companies : : : : : : : 12

1.9 Propagation graph for a customization of the computeSalary adaptive program 14

1.10 Another representation for conglomerates of companies : : : : : : : : : : : : 15

1.11 Propagation graph with code for second customization : : : : : : : : : : : : 15

2.1 Graphical class de�nition : 20

2.2 Textual class de�nition : 20

2.3 Class settlement and subclasses : 21

2.4 Graphical alternation class de�nition : 22

2.5 Textual alternation class de�nition : 22

2.6 Class dictionary graph : 27

2.7 Symbol use : 36

3.1 Conglomerate class dictionary: A view of the C++ program : : : : : : : : : 43

3.2 Traversal code for salary addition : 45

3.3 Propagation graph : 57

3.4 English description of conglomerate : 59

3.5 Alternative class dictionary : 61

3.6 Alternative class dictionary, textual form : 62

3.7 Propagation graph for alternative class dictionary : : : : : : : : : : : : : : : 63

3.8 Propagation graph for increasing salary of o�cers : : : : : : : : : : : : : : : 65

3.9 Increase salary of top-level o�cers : 66

4.1 Generic data model : 79

4.2 Adaptive Software : 82

4.3 Programming with hooks : 83

xv

xvi LIST OF FIGURES

4.4 Adaptability of object-oriented program : 84

4.5 Adaptability of object-oriented program : 85

4.6 Propagation pattern print itinerary : 89

4.7 Program customizer Trip 1 : 90

4.8 Program customizer Trip 2 : 91

4.9 Propagation graph Trip 1 : 91

4.10 Propagation graph Trip 2 : 92

4.11 Adaptive versus object-oriented : 93

4.12 A textual form of trip class dictionary : 94

4.13 Corresponding trip description : 94

4.14 Propagation pattern with object transportation : : : : : : : : : : : : : : : : 95

4.15 Class dictionary graph, propagation graph, and C++ program : : : : : : : : 96

4.16 Comparison of programming paradigms : 97

4.17 Delayed-binding viewpoint : 98

4.18 Demeter : 102

5.1 Simple container: graphical representation : : : : : : : : : : : : : : : : : : : 113

5.2 Simple container: textual representation : 113

5.3 One intermediate class : 114

5.4 Propagation directive : 114

5.5 Propagation pattern : 116

5.6 Apple basket object : 117

5.7 Apple basket class dictionary : 118

5.8 Apple basket : 118

5.9 Class dictionary graph for apple/orange basket : : : : : : : : : : : : : : : : : 121

5.10 Textual form of class dictionary for apple/orange basket : : : : : : : : : : : 121

5.11 Additional C++ code : 122

5.12 Optimized fruit basket class dictionary : 122

5.13 Optimized class dictionary in textual form : : : : : : : : : : : : : : : : : : : 123

5.14 Generated code : 124

5.15 Class de�nitions : 125

5.16 Baskets containing several things : 125

5.17 Thing basket : 126

5.18 Updated propagation pattern : 127

5.19 Generated code for modi�ed program : 128

5.20 Nested baskets : 129

5.21 Nested baskets, textual form : 130

6.1 Graphical representation of construction class Meal : : : : : : : : : : : : : : 138

6.2 Textual representation of construction class Meal : : : : : : : : : : : : : : : 138

6.3 Graphical representation of construction class ShrimpCocktail : : : : : : : : : 139

6.4 Textual representation of construction class ShrimpCocktail : : : : : : : : : : 139

6.5 Graphical representation of an alternation class without common parts : : : 140

6.6 Textual representation of an alternation class without common parts : : : : 140

6.7 Graphical representation of alternation class with common parts : : : : : : : 141

LIST OF FIGURES xvii

6.8 Textual representation of alternation class with common parts : : : : : : : : 141

6.9 Graphical representation of repetition class, zero or more : : : : : : : : : : : 141

6.10 Textual representation of repetition class, zero or more : : : : : : : : : : : : 141

6.11 Graphical representation of repetition class, one or more : : : : : : : : : : : 142

6.12 Textual representation of repetition class, one or more : : : : : : : : : : : : 142

6.13 Class dictionary graph for lists : 145

6.14 Connections : 148

6.15 De�nition of associated : 149

6.16 Class dictionary graph for expressions : 153

6.17 Part-centered versus specialization-centered designs : : : : : : : : : : : : : : 161

6.18 Edge choice : 162

7.1 Class dictionary graph without inheritance edges, textual : : : : : : : : : : : 171

7.2 Class dictionary graph without inheritance edges, graphical : : : : : : : : : 172

7.3 Class dictionary graph with inheritance edges, textual : : : : : : : : : : : : : 173

7.4 Class dictionary graph with inheritance edges, graphical : : : : : : : : : : : 174

7.5 Semi-class dictionary graph that is not a class dictionary graph : : : : : : : 175

7.6 Syntax summary for propagation directives : : : : : : : : : : : : : : : : : : : 180

7.7 Syntax summary for join and merge : 180

7.8 Customizer 1: Class dictionary graph Company1 : : : : : : : : : : : : : : : : 186

7.9 Propagation graph calculus : 191

8.1 Programming by hooks : 203

8.2 Violations of the Law of Demeter : 204

8.3 Class dictionary graph to discuss Law of Demeter : : : : : : : : : : : : : : : 205

8.4 Before the Law of Demeter : 205

8.5 After the Law of Demeter : 206

8.6 Class dictionary graph using all features : 209

8.7 Graph example : 212

8.8 Graph class dictionary graph : 213

8.9 Depth-�rst traversal : 214

8.10 Propagation graph dft (extension at Adjacency) : : : : : : : : : : : : : : : : 214

8.11 Propagation graph uncond dft : 215

8.12 Propagation graph �nd : 215

8.13 Propagation graph for extended graph data model : : : : : : : : : : : : : : : 218

8.14 Extended graph data model : 218

8.15 Chess board class dictionary graph : 219

8.16 Count pawns : 219

8.17 Annotated propagation graph : 220

8.18 Car : 221

8.19 Painting a car : 222

8.20 Painting a car, except doors : 222

8.21 Painting car doors only : 222

8.22 Simple counting of X-objects : 223

8.23 Meal example : 224

xviii LIST OF FIGURES

8.24 Expressions : 226

8.25 Compiler : 226

8.26 Equivalent wrappers : 231

8.27 Code for test1 in edge wrapper example : 232

8.28 Code for test2 in edge wrapper example : 233

8.29 Simplifying the cycle checking problem : 235

8.30 Evolution history : 236

8.31 Classi�cation hierarchy : 241

8.32 Simulating method inheritance : 242

8.33 Classi�cation with construction edges : 243

9.1 Interpreter TRAVERSE to run a propagation pattern : : : : : : : : : : : : : 257

9.2 Refrigerator propagation pattern : 262

9.3 Propagation directive information loss : 263

9.4 Customizer with information loss : 263

9.5 Propagation graph : 264

9.6 Delayed binding restriction violated : 266

9.7 Propagation graph : 267

9.8 Bad customizer : 267

9.9 Class dictionary graph Dish : 268

9.10 A propagation pattern : 268

9.11 Propagation graph for eat/Dish : 269

9.12 A propagation pattern : 270

9.13 Overlap of restrictions : 270

9.14 Ordering of wrapper calls : 277

9.15 Class dictionary graph : 280

9.16 Class dictionary graph : 281

9.17 Knowledge paths for object path : 284

9.18 Patchwork class dictionary, textual : 286

9.19 Patchwork class dictionary, graphical : 287

9.20 Propagation graph : 288

9.21 Traversal code : 289

9.22 Coping with unintended inheritance : 290

9.23 Car dealer semi-class dictionary graph with traversal code : : : : : : : : : : 291

9.24 Propagation graph for car dealer semi-class dictionary graph : : : : : : : : : 292

9.25 Wrapper pushing : 292

10.1 Redundant propagation patterns : 310

10.2 Nonredundant propagation pattern : 310

10.3 Town without a dog catcher : 316

10.4 Town with a dog catcher : 317

10.5 Town of SelfEmployed : 317

10.6 Transportation restrictions: Disallowed edges : : : : : : : : : : : : : : : : : : 319

10.7 Propagation directive : 321

10.8 Propagation pattern triples : 322

LIST OF FIGURES xix

10.9 Customizer 1: Class dictionary graph Company1 : : : : : : : : : : : : : : : : 323

10.10 Bringing the actors on stage : 323

10.11 After customization of triples with class dictionary graph Company1 : : : : : 325

10.12 Customizer 2: Class dictionary graph Company2 with repetition vertices : : 325

10.13 Work
ow management : 331

10.14 Transporting resources : 332

10.15 Code for resource transportation : 333

10.16 Code generation with transportation : 334

10.17 Summary: Case 1 : 334

10.18 Base/Derived-wrappers : 336

10.19 Summary: Case 2 : 338

10.20 Summary: Case 3 : 340

10.21 Summary: Case 4 : 342

10.22 Transportation pattern terminology : 345

11.1 Meal language : 360

11.2 Two grammars de�ning the same language : : : : : : : : : : : : : : : : : : : 363

11.3 Syntax graph construction : 365

11.4 Syntax graph repetition : 366

11.5 Syntax graph repetition (nonempty) : 366

11.6 Syntax graph alternation : 366

11.7 Venn diagram for class dictionaries : 372

11.8 LL(1), left-recursive, noninductive : 373

11.9 LL(1), nonleft-recursive, inductive : 373

12.1 Illustration of class dictionary graph slices : : : : : : : : : : : : : : : : : : : 383

12.2 Car and motor : 384

12.3 Three dimensions of class dictionary design : : : : : : : : : : : : : : : : : : : 385

12.4 a has smaller size than b : 386

12.5 Class dictionary to be minimized : 387

12.6 Optimized class dictionary : 388

12.7 Class dictionary that satis�es tree property : : : : : : : : : : : : : : : : : : : 390

12.8 Single inheritance class dictionary : 390

13.1 Castle building analogy : 408

13.2 Experimental heating system: class dictionary graph Furnace : : : : : : : : 411

13.3 Example of object-equivalence: �1 � �2 : 412

13.4 Example of weak-extension: �1 � �2 : 413

13.5 Example of extension: �1 � �2 : 413

14.1 Class dictionary : 432

14.2 C++ translation : 434

14.3 Object-equivalence : 435

14.4 Class dictionary and object graph : 437

14.5 Object construction : 438

14.6 Class dictionary : 438

xx LIST OF FIGURES

14.7 Objects and sentences : 440

14.8 First sets : 441

14.9 Syntax analysis : 442

14.10 Follow sets : 443

14.11 Common normal form : 444

14.12 Growth plan : 446

15.1 Class graph : 455

15.2 C++ program : 456

15.3 Adaptive program : 456

15.4 A regular expression : 457

15.5 Exp-object : 459

15.6 Propagation graph : 460

15.7 Traversal skeleton : 460

15.8 Generated C++ program : 461

15.9 Another class graph : 462

15.10 Adapted C++ program : 462

15.11 Inconsistency : 464

15.12 Violation of subclass invariance : 465

15.13 Find refrigerators owned by families : 466

15.14 Shortcut 1 : 477

15.15 Shortcut 2 : 477

15.16 Shortcut 3 : 478

16.1 A semi-class dictionary graph : 498

16.2 Forbidden graph : 499

16.3 A semi-class dictionary graph that cannot de�ne objects : : : : : : : : : : : 500

16.4 A class dictionary graph slice : 501

16.5 A class dictionary graph slice : 502

16.6 The relations between concepts : 503

16.7 An object of vertex Graduate : 504

16.8 Illegal object : 506

16.9 Illustration of class dictionary graph slices : : : : : : : : : : : : : : : : : : : 507

16.10 Class dictionary graph Graduate school : 509

16.11 Class dictionary Graduate school : 510

16.12 Order all vertices from which vertex A is alternation-reachable : : : : : : : : 513

16.13 Flat class dictionary Graduate school : 515

16.14 Faculty-tree object : 516

16.15 g print : 517

16.16 Two AorB CorD-objects : 521

16.17 g print(D) and g parse(D) with D satisfying the LL(1) rules : : : : : : : : 524

16.18 g parse : 525

16.19 Notations : 532

16.20 Fruit List : 533

16.21 Weaker path concept : 536

LIST OF FIGURES xxi

16.22 Path instantiations : 538

16.23 Class dictionary graph 2 graph for cycle checking on graphs with two kinds

of edges : 539

A.1 Access to software, documentation, and course material : : : : : : : : : : : : 589

A.2 E-mail information : 590

List of Tables

2.1 Objects and operations : 33

6.1 Identifying symbols for classes : 142

6.2 Identifying symbols for edges : 143

7.1 Earlier examples of propagation graphs : 183

15.1 Terminology : 483

16.1 The grammar interpretation of a
at class dictionary : : : : : : : : : : : : : 515

16.2 Demeter data model summary : 528

16.3 The comparison : 528

xxii

Foreword

Gregor Kiczales and John Lamping

As we write this foreword, it is Earth Day, a day to think about the interrelatedness of life

on Earth. It is a day to contemplate that while each living thing is an individual organism,

all the organisms in an ecosystem are connected by a complex web of interaction, upon

which they all depend for their continuing existence. One lesson of ecological studies is

that while it is comparatively easy to identify, isolate, and categorize individual organisms,

the relationships among them are much more di�cult to identify and don't fall into nicely

separated categories.

Object-oriented programs are much simpler than natural ecosystems|even though a

programmer trying to chase down a recalcitrant bug might be inclined to disagree|but

they have a similar structure. Like ecosystems, they are composed of individuals, objects in

this case. Also like ecosystems, the behavior of the system arises out of the interrelationships

and interactions of those individuals.

Object-oriented design recognizes this interdependence, and uses notations like class

graphs to help describe the relationships among the objects. Because these relationships

are so important, their design is one of the �rst steps in a typical object-oriented design.

The detailed design of the individual objects or classes only happens after a system design

is in place.

But because the interrelationships among objects are complex, it is almost impossible to

design them exactly right the �rst time, as anyone who has built a reasonably large object-

oriented program knows from hard-won experience. The design process is iterative, with

the interactions among objects being redesigned as problems are uncovered during design

or coding of individual objects or classes. And the design process is only the beginning of

changes to the interactions. Other changes will become necessary during maintenance as

the system evolves to meet changing requirements, and still more changes will be necessary

if parts of the system are reused for other applications.

Traditional object-oriented programming has been a great success, partly because of the

kinds of
exibility that object encapsulation provides. But it doesn't provide comparable

support for
exibility in object interrelationships. For example, object-oriented languages

require coding in the smallest details of the relationships among objects, such as navigation

paths among interacting objects. Often a great deal of code needs to be edited in the

face of even a small change to the conceptual interdependence structure. There are similar

challenges for
exibility in what class should be used for newly created objects, and in

xxiii

xxiv FOREWORD

allowing di�erent parts of an evolving program to have di�erent viewpoints on the same

object.

Adaptive object-oriented programming allows programs to be written in a way that

makes them less brittle in the face of such changes. Adaptive object-oriented programming

works by having the programmer program at a higher, schematic level that abstracts away

from details like navigation paths. These schematic patterns can be instantiated to a partic-

ular class graph to get an executable program. In this way it is a kind of metaprogramming.

In many cases, programs can be adapted to new situations simply by changing the instan-

tiation of the schematic patterns, without having to change the high-level program. By

thinking in such terms of higher-level of abstraction, the programmer can write code that

is both simpler and more tolerant of changes.

This book presents a complete, well-designed methodology for adaptive programming in

C++ and tools for supporting the methodology. And because the methodology is program-

ming-language independent, any programmer interested in writing cleaner, more
exible

OBJECT-ORIENTED code should read this book.

We hope the work presented in this book will become one of the building blocks for a

new trend in object-oriented programming, moving beyond object encapsulation to provide

new abstraction tools for the interaction among objects.

Gregor Kiczales

John Lamping

Xerox PARC

Palo Alto, California

Preface

The Purpose of the Book

This book introduces a software development method, called the Demeter1 Method, for

developing adaptive object-oriented software. The reader will learn the Demeter Method for

evolutionary software development by specifying class dictionaries for de�ning the structure

of objects and by specifying propagation patterns for implementing the behavior of the

objects. The reader will learn how class dictionaries and propagation patterns are translated

to C++. Translation to other languages that support the object-oriented paradigm is very

similar. The behavior of objects may be implemented with only partial knowledge of the

object structure.

The Demeter Method is not yet another object-oriented method; it enhances and com-

plements other object-oriented methods, such as Booch, Jacobson, Rumbaugh, and Wirfs-

Brock, by lifting object-oriented software development to a higher level of abstraction by

considering entire families of object-oriented designs and programs. This generalization of

object-oriented software development ampli�es the advantages of object-oriented technol-

ogy and eliminates some of its disadvantages, such as the many tiny methods that hinder

program understanding and reusability.

One important insight of the Demeter Method is that for a signi�cant fraction of pro-

gramming tasks, solving a more general problem is easier than solving a specialized problem.

This is why we work with families of programs and designs; it often happens that the families

can be described much more succinctly than the individual programs.

Let's take a look at nature to better understand how adaptive object-oriented software

(adaptive software from now on) works. You �nd the essential information about an or-

ganism in its genes. We can view the genes as a process model of the organism, which will

later be complemented by an environment or structural model that customizes the behavior

of the organism. However, the process model puts certain constraints on the applicable

environments. A palm tree will not thrive in Alaska.

From the analogy to nature, we obtain the idea of focusing on the essence in process

models, and we develop our software in terms of process and corresponding structural mod-

els. The process models (which are not only software development processes, but any kind

1Pronunciation: di m�e'tr. The stress is on �e, which is pronounced like the e in equal.

Demeter is a registered trademark of Demeter-Bund e.V. for agricultural products and a trademark of

Northeastern University for software. Demeter is the ancient greek goddess of farming and gardening,

identi�ed by the Romans with Ceres. The metaphor of gardening and growing software is occasionally used

in the Demeter Method.

xxv

xxvi PREFACE

of processes) focus on the essence of a given task, and they de�ne constraints on applicable

structural models.

Why is it easier, for many programming tasks, to solve a more general problem? The

essence of a process model is often more easily speci�ed in terms of a partial structural model

(for example, a partial data structure) than of a detailed structural model (for example, a

complete data structure). The process models expressed as adaptive software therefore

describe entire families of programs.

The Demeter Method provides an approach to object-oriented software development

that is, by experience, easier to use than traditional object-oriented software development

methods.

The purpose of the book is to make the concepts of adaptive software available in a

form that is useful to software developers who currently use object-oriented languages. The

book is the entry point to a wealth of other information on an adaptive software (see Fig.

0.1). Ways to access the rest of the information are discussed in Appendix A (page 589).

papers

FAQ

sample applications

viewgraphs
exams

world−wide web

book

software
and documentation

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~

~~~~~~

~~~

~~~~

~~~~~

~~~~~~~~

~~

~~

~~~~

~~~~~

~~~

~~~

theses

e−mail

Figure 0.1: Tip of an iceberg

The Purpose of Adaptive Software

Adaptive software is an extension of object-oriented software where relationships between

functions and data are left 
exible, that is, where functions and data are loosely coupled

through navigation speci�cations. Adaptive means that the software heuristically changes

itself to handle an interesting class of requirements changes related to changing the object

structure.

Adaptive software is a natural evolution of object-oriented software since every object-

oriented program is essentially an adaptive program. In many cases however, the adaptive-

ness of the object-oriented program can be signi�cantly improved. Although object-oriented

programs are easier to reuse than programs that are not written in an object-oriented style,



PREFACE xxvii

object-oriented programs are still very rigid and hard to evolve. Our experience shows that

for most application domains, object-oriented programs can be made signi�cantly more gen-

eral and extensible by expressing them as adaptive programs. An adaptive program allows

us to express the \intention" of a program without being side-tracked by the details of the

object structure.

Adaptive software has several bene�ts:

� Shorter programs and a higher level of abstraction

Adaptive software allows shorter programs by focusing only on the interesting parts

and by having the tedious work done automatically. Programs get shorter by several

factors. The higher the level of a programming tool, the clearer and simpler are the

programs.

� Reusable software libraries

Adaptive software is easier to extend than standard object-oriented software and allows

for unplanned reuse. The \elastic" class structures used during adaptive software

development facilitate reuse.

Adaptive software allows the building of application-oriented, domain-speci�c reusable

libraries, which can be used in similar projects with no extra cost for the reusability

property (beyond the cost of object-oriented software). Adaptive software provides

the unique capability of parameterizing software with minimal assumptions on how

the software will be used. Producing adaptive software incurs no extra cost since

the software is much shorter when written in adaptive form. Adaptiveness enhances

reusability and the adaptiveness/reusability property pays o� in the �rst project.

� Ability to plan for changes, allow for learning

An important advantage of adaptive software is that it allows for initial error and

subsequent adjustment. Many problems are complex, and often it is not clear how

best to structure the classes at the beginning. With adaptive software, we can easily

make a �rst approach to the class structure and write the behavior with minimal

dependency on that �rst approach, so that changing to a better class structure is

much easier.

� Ability to build on familiar object technology

Adaptive software builds on the advantages of object-oriented technology. Object-

oriented programs can often be gradually transformed into shorter, more 
exible

adaptive programs. Adaptive software can take advantage of any feature that the

underlying object-oriented base language o�ers; therefore adaptive software does not

limit the creativity of the object-oriented programmer in any way.

� Risk avoidance

Adaptive software has no disadvantages with respect to object-oriented software.

Adaptive software is usually signi�cantly more expressive than object-oriented soft-

ware, and the best adaptive software can be no worse than the best object-oriented



xxviii PREFACE

software that can be written for a given application. Adaptive software can always be

expanded into ordinary object-oriented software.

Adaptive software can be learned in a few hours by someone who knows an object-

oriented language and object-oriented design.

� Minimal reliance on an object-oriented programming language such as C++ or Small-

talk

Adaptive software provides a tool that allows development of the important parts of

software above the object-oriented programming level.

Object-oriented programming is a promising technology that has been developed over

the last twenty years. One important advantage of object-oriented programming is that it

reduces the semantic gap between a program and the world it models because the world

consists of physical and abstract objects that are represented naturally by software objects

in an object-oriented program.

However, object-oriented design and programming has several disadvantages, the most

signi�cant of which is that it binds functions and data too tightly. A loose binding between

functions and data allows very generic software where data structure information in the

functions or procedures is only used to constrain the applicable data structures. Before a

program can be run, we select one of the applicable data structures, which in turn usually

determines the structure of the input objects. The goal when writing the functions is to

minimize the assumptions we make about the data structures. This technique could be

called data-structure-shy programming, and it leads to generic software that can be 
exibly

customized later. One data-structure-shy program potentially describes an in�nite collection

of object-oriented programs.

Scope

This book has two functions:

� It serves as an introduction to advanced object-oriented design and programmming

for the professional and student. We serve the following audiences:

{ Those interested in object-oriented design and programming.

This book provides a programming-language independent introduction to ad-

vanced object-oriented design and programming. Since our design notation is

executable after behavioral and structural information is merged, we need to use

a programming notation to explain the execution of the designs. We have cho-

sen C++ as our programming language and therefore the reader should know

a subset of C++ (summarized in an appendix). We attempt to use a subset of

C++, which is available with di�erent syntax in programming languages such as

Smalltalk, CLOS, and Objective-C.

{ Those interested in C++.

This book introduces a useful design and programming method and shows the

reader how to apply it to C++.



PREFACE xxix

{ Those interested in conceptual object-oriented database design.

A high-level conceptual modeling language is taught that can be applied to the

reader's favorite object base.

� It provides a detailed introduction to developing adaptive software for the professional

and the student. We serve the following audiences:

{ Those interested in analysis and design methods.

The Demeter Method for developing adaptive software is introduced.

{ Those interested in programming languages.

A new programming language is taught that allows the reader to describe object-

oriented programs at a higher-level of abstraction than in current object-oriented

languages.

{ Those interested in knowledge representation and computer science education.

The reader learns about a new graphical notation for presenting and manipulating

algorithmic knowledge.

The adaptive software concepts serve as a foundation to deliver any kind of algorithmic

knowledge at a high level of abstraction. Adaptive software is a new kind of algorithmic

knowledge representation language applicable to many di�erent areas.

We have been using earlier versions of this book in undergraduate and graduate courses

at Northeastern University since September 1986. The book is ideal for a course on advanced

object-oriented design and object-oriented programming and it is a useful supplement for

any advanced undergraduate or graduate course in which students write C++ programs.

The only prerequisites are a knowledge of a small subset of C++ (or the ability to learn

C++ and some object-oriented design from some C++ book, for example, [Wan94, Lip89,

Poh91, DS89]), and a basic knowledge of discrete mathematics as covered, for example, in

[WL88].

This book can be used in two ways:

� as the primary source for learning/teaching advanced object-oriented software devel-

opment and for in-house courses on object-oriented analysis, design and programming

(e.g., it has been used at IBM, Mettler-Toledo, Data General, Ciba Geigy, Citibank,

Goodyear);

� as a supplement: In the Principles of Programming Languages and Analysis of Pro-

gramming Languages courses we are using this book for writing interpreters for several

sublanguages of real programming languages, including several subsets of Lisp and a

subset of Prolog. This approach is promoted by [FHW92]. We are using this book

for several projects, including scanner generation, generation of parsers with error re-

covery, compilers, graphical user interfaces with Tcl/Tk, an adaptive scripting tool

(called Isthmus), and for implementing and maintaining the Demeter Tools/C++.



xxx PREFACE

The Organization of the Book

The book is organized so that it is independent of a speci�c implementation of adaptive

software. The book focuses on the concepts important to adaptive software development

and the Demeter Method and is not a user's guide for the Demeter Software. The Deme-

ter software, documentation, and related course material are available on the World-Wide

Web as shown by the uniform resource locators (URLs) in Fig. A.1 (page 589). Further

information about electronic access is in Appendix A (page 589).

The book starts with an introduction to adaptive software speci�cally for C++ program-

mers. Adaptive software is viewed as a notation to describe C++ programs by eliminating

much of the redundancy C++ programs contain.

The book introduces many nonstandard terms (such as propagation pattern, propaga-

tion directive, class dictionary graph, class dictionary, and class-valued variable) for explain-

ing adaptive software. Such terms are not standard because adaptive software is new and

has not been discussed previously in book form. We introduce the terms in stages and use

them in more and more complex contexts. In Chapter 5 we gradually introduce the various

features of class dictionary graphs and propagation patterns. In later chapters, the concepts

are introduced in more detail.

The book uses two approaches to explaining adaptive and object-oriented software devel-

opment. The �rst approach, which is the usual informal style used in software development

books, is used in Chapters 1 through 13. The second, more formal approach, which is not

required for using adaptive software, is used in Chapters 15 and 16. The two approaches

are linked together through approximately one hundred instructional objectives described

in Chapter 14.

When a concept or method is explained informally, a related instructional objective is

mentioned. An instructional objective de�nes a learning unit that the reader should master

and that can be used to prepare exams to test the material learned. An instructional objec-

tive is referenced in a footnote with its page number (and the number of the instructional

objective in parentheses). The reader may follow the link to the instructional objectives

chapter (Chapter 14), which is essentially a road map to the adaptive software knowledge.

The instructional objectives have prerequisites that can be followed to �nd the context of a

given instructional objective.

Most instructional objectives refer to formal de�nitions; these may be useful to some of

the advanced users of adaptive software. The formal de�nitions present the material in yet

another way by trying to optimally cluster the mathematical de�nitions.

This book contains a glossary, an index, and a self-study guide (Chapter 17) with

suggestions for using the book, the tools, and the documentation together.

Usage Scenarios

The organization of the book is useful for

1. beginning C++ developers, who want to write adaptive software quickly:

Chapters 1, 2, 3, 5, 6, 7.1 to 7.5, 8, 9.1, 10, 11.1.

For a deeper understanding, complete all of Chapters 7, 9, 11, and read Chapters 12,

13, and 16. Chapter 3 summarizes the subset of C++ that is used.



PREFACE xxxi

2. intermediate C++ developers, who want to write adaptive software quickly:

Same as above for #1, but Chapter 2 may be skipped.

3. those who have read about Demeter before in magazines, conference proceedings, or

journals, and who want a quick but thorough review: Start with Chapter 15, skipping

some of the formal semantics on �rst reading, and continue with Chapters 6, etc., as

in #1.

4. intermediate software developers using some object-oriented language (not necessarily

C++). Same as #1, but skip Chapters 2 and 3, except Section 3.5, which discusses

the subset of object-oriented concepts, which are relevant and which you need to learn

to read in C++ syntax instead of in the syntax of your object-oriented language.

5. instructors, who will bene�t from reading Chapter 15 to get a thorough understanding

of the core concepts. This chapter is self-contained. To write a course syllabus, it is

helpful to select some of the instructional objectives in Chapter 14 and complement

them with your own. Chapter 17 proposes one way of coordinating the learning of

the concepts with tool use and it contains ideas for homework. At the end of most

chapters are chapter-speci�c exercises.

Chapter 4 (Thinking Adaptively) is a motivational chapter which explains why adaptive

software is useful and how it �ts into other key ideas of computer science as well as informally

explaining the key concepts. Assignments 1-5 in Chapter 17 can be done if the reader has

the Demeter Tools/C++ installed.

The order of the chapters should be followed, except that Chapters 4 and 15 can be

read independently. Also, Chapter 11 may be read immediately after Chapter 6.

The History of the Demeter Project

During a visiting professorship at the Swiss Federal Institute of Technology in Zurich in the

1982-1983 winter semester (on leave from Princeton University), I was teaching a course on

the theory of VLSI design. It was during preparation of this course that I learned about

Niklaus Wirth's new hardware description language, called Hades [Wir82]. Svend Knudsen,

a doctoral student of Niklaus Wirth, and I became very interested in Hades and we started to

use it to describe chip architectures. This was the starting point of Zeus [Lie85], a hardware

description language that improved on Hades.

I moved to GTE Laboratories where Zeus was implemented. In 1984, after suggestions

from Gerald Jones, Andrew Goldberg and I �rst developed a metaprogramming tool [GL85b]

on top of Pascal to simplify the implementation of Zeus; this metaprogramming tool was

the starting point of the Demeter System, and it was used for several design automation

projects other than the Zeus implementation. (Demeter is a sister of Zeus.)

GTE Laboratories gave me permission to continue the Demeter work at Northeastern,

where the project is carried out by numerous dedicated graduate and undergraduate students

who are supported by the College of Computer Science, the National Science Foundation,

ARPA, and several companies, including IBM, Ciba-Geigy, and Citibank.



xxxii PREFACE

Executive Summary

This book introduces the Demeter Method for developing adaptive object-oriented soft-

ware. What is an adaptive program? We give several intuitive explanations in common

terminology.

� An adaptive program is similar to a genre. According to the Random House Dic-

tionary, a genre is a category of artistic endeavor having a particular form, content,

or technique. An adaptive program describes a category of object-oriented programs

that all have a particular form, but the details of the programs are left open. Even

the input objects to the programs are left 
exible. The artistic metaphor of a genre

carries further: an adaptive program describes how to \bring the actors on the stage"

without hardcoding the class structure. Bringing the actors on the stage means as-

sembling the right objects so that an operation can be called that takes those objects

as arguments.

� An adaptive program, like a multipurpose mechanism, is useful in a set of related

contexts. In some contexts an adaptive program does exactly what is required and in

other contexts it approximates what is required.

� An adaptive program is a family of analogous object-oriented programs. A member

of the family is called an instance of the adaptive program. An instance is selected by

customizing the adaptive program with a speci�c class structure.

� An adaptive program is like the genes of a fruit-bearing tree. A speci�c tree is an

instance of the genes in the same way that an object-oriented program is an instance

of an adaptive program. The genes produce similar looking trees, depending on the

environment. In some environments we will get big trees with sweet fruit and in others

only small trees with sour fruit. By analogy, all instances of an adaptive program have

a similar look. They are all built according to the same pattern, but some work better

than others.

� An adaptive program sketches the solution strategy for a class of problems. It is well

known that solving a more general problem is often simpler than solving a speci�c

one. The solution of the more general problem is reusable in many situations.

The book explains how to grow adaptive software in a programming-language indepen-

dent way. Since an object-oriented program is a special case of an adaptive program the

book provides a very e�ective introduction to object-oriented software development. The

adaptive software paradigm proposes a useful way of structuring object-oriented software.

Coverage of Computer Science Subject Areas

\Computing as a Discipline" [DCG+89] presents nine subject areas comprising the disci-

pline of computing. Accreditation boards are using the classi�cations in \Computing as a

Discipline" to evaluate computer science programs. This book includes some of the material

in six of the nine areas.



PREFACE xxxiii

1. Algorithms and data structures

Readers learn to write algorithms without encoding the details of the data structures

in the algorithms. This makes the algorithms more general and more reusable.

2. Arti�cial intelligence and robotics

Readers learn to express algorithmic knowledge at a high level of abstraction through

propagation patterns. Structural knowledge representation is introduced through class

dictionaries. Readers learn about analogical reasoning by transforming a program from

one data structure to another.

3. Database and information retrieval

Readers learn to design schemas for object-oriented databases. They also learn a novel

query notation: propagation patterns.

4. Human-to-computer communication

Readers learn a new visualization of programs based on collaborating objects and

classes.

5. Programming languages

Readers learn to use a family of programming languages that live on top of object-

oriented languages. Implementation of these languages is discussed through both

operational and translational semantics.

Class dictionaries and propagation patterns are a new programming language and at

the same time a new speci�cation and design language.

6. Software methodology and engineering

Readers learn principles of development of 
exible software systems.

Readers learn the adaptive programming principle: A program should be designed

so that the interfaces of objects can be changed within certain constraints without

a�ecting the program at all.

\Computing as a Discipline" describes three important processes used in the computing

discipline: Theory, Abstraction, and Design. This book covers aspects of all three processes:

� Theory

Readers learn de�nitions of class dictionaries and propagation patterns and a few

theorems and proofs. They become experts at proving very simple \theorems" of the

form: This object O is a legal object with respect to a given set of classes.

� Abstraction

Readers learn to abstract class dictionaries from objects. They learn to abstract adap-

tive programs from object-oriented programs. They learn to abstract parameterized

classes from classes.



xxxiv PREFACE

� Design

Readers learn about requirements in the form of use-cases. Readers learn about spec-

i�cation, design, implementation, and testing of adaptive software.

A large part of the book explains how adaptive software works. Since adaptive software

uses an excutable speci�cation language for object-oriented programs, speci�cation,

design, and implementation are closer together than in other approaches to software

development.

Finally, \Computing as a Discipline" identi�es twelve recurring concepts fundamental

to computing. The following concepts are covered extensively in this book:

� Binding

Adaptive software uses a sophisticated mechanism to bind methods to classes.

� Conceptual and formal models

Readers learn to design their own models and to debug them �rst with respect to

structure and then with respect to functionality. Debugging of the structure is accom-

plished through parsing. Debugging of the functionality is achieved through \evolution

histories" which allow debugging in layers.

� Evolution

Ease of evolution is one of the key properties of adaptive software. Readers learn how

to evolve their C++ programs by controlling the evolution through class dictionaries

and propagation patterns.

� Levels of abstraction

Readers learn to e�ectively deal with multiple levels of abstraction, most importantly

learning the distinction between groups of objects and groups of classes. Readers are

challenged by abstraction level collapsing, such as when a group of classes is suddenly

viewed as a group of objects (which happens, for example, when readers learn about

self-describing class dictionaries and how to write programs for them). Parameterized

classes are also used extensively, adding a third layer of abstraction.

When readers write propagation patterns they operate at multiple levels of abstraction:

the object, class, and parameterized class level for the structural information, and the

adaptive and object-oriented level for the behavioral information. Also, when readers

write a propagation pattern, they often think about how the corresponding C++

program looks.

� Reuse

Ease of reuse is one of the driving forces behind adaptive software. Readers learn how

to write software with fewer built-in assumptions, which makes the software easier to

reuse in new environments. The Law of Demeter plays an important role.



PREFACE xxxv

Acknowledgments

This book would not exist in its current form without the Demeter Research Group, a group

of highly talented computer science professionals from around the world who are or have

been doctoral students in the College of Computer Science at Northeastern University.

The individual contributions of the Demeter Research Group members are acknowledged

by the papers we have written and continue to write (see the bibliographic remarks at the

end of each chapter and in the bibliography). Those papers are the basis of separately

published theses. Previous and current team members come from six di�erent countries and

three di�erent continents and include, in alphabetical order (the number in parentheses is

the year of Ph.D. graduation): Paul Bergstein (1994), Ian Holland (1993), Walter H�ursch

(1995), Linda Keszenheimer, Yang Liu, Cristina Lopes, Salil Pradhan, Arthur Riel, Ignacio

Silva-Lepe (1994), Cun Xiao (1994).

Financial support by the National Science Foundation (Richard DeMillo, K.C. Tai,

Bruce Barnes, Helen Gill) and ARPA (John Salasin) and the following companies is very

much appreciated: IBM (Brent Hailpern, Mark Wegman, Clarence Clark, Ashok Malhotra,

Harold Ossher), Mettler-Toledo (Rolf W. Arndt and Linus Meier), Citibank (Je� Chitten-

den, Jim Caldarella), Mitsubishi (Les Belady) and SAIC (George Brown).

I would like to thank Dean Cynthia Brown and Dean Larry Finkelstein for their sup-

port of my project through its entire development. This support has come in several forms:

support of my graduate students, moral support, state-of-the-art equipment, and allowing

me to teach courses where adaptive software can be used, for which many thanks are also

due to Agnes Chan, Richard Rasala, and Mitchell Wand. R�emy Evard, the director of Tech-

nology at Northeastern University's College of Computer Science, and his systems group,

deserve special thanks for providing a well-maintained network which was essential for the

development of the Demeter Tools and for writing the book.

This book has bene�ted from many stimulating discussions with Mitchell Wand. Mitch

helped with a thorough review of our papers and proposals and the thesis work of my

doctoral students. Ken Baclawski has helped in several discussions on adaptive software

and served on the Ph.D. committees of several of my students. Since the fall of 1993, Jens

Palsberg has actively contributed to the development of adaptive software by writing an

in
uential paper and by serving on the Ph.D. committees of Paul Bergstein, Walter H�ursch,

Ignacio Silva-Lepe, and Cun Xiao. Boaz Patt-Shamir has made several contributions to the

type theory for adaptive software.

It was a pleasure to work with my publisher, PWS Publishing Company. They gave

me the feeling throughout that my book is important to them. Mike Sugarman, my editor

at PWS, deserves special thanks for being very enthusiastic about this project from the

�rst day and for guiding me through the process of review, revision, and production. Mike

was a constant source of encouragement and he provided resources to improve the software

and to demonstrate it at OOPSLA even before the review cycle was complete. I appreciate

the work of Mary Thomas Stone for sending out numerous review copies, for collecting the

reviews, for organizing and summarizing them, for organizing the Demeter focus group and

for compiling the Demeter address list.

I would like to thank Abby Heim for organizing and guiding the production of the book.

Her constant availability was very important in working out all the details. The copyediting



xxxvi PREFACE

phase has eliminated many inelegant phrases from my writing. Many thanks to Adrienne

Rebello, the copyeditor.

Many thanks to Nathan Wilbur for his support and his marketing e�orts and to Leslie

Bondaryk for her suggestions regarding the software, speci�cally for her suggestion to pro-

duce a Laboratory Guide. This guide has been praised by many users of the Demeter

Tools/C++.

Thanks to the following PWS reviewers, who have given detailed feedback on earlier

versions of the manuscript:

Dr. Sergio Antoy, Portland State University;

Dr. Bard Bloom, Cornell University;

Dr. H. E. Dunsmore, Purdue University;

Dr. Terry Glagowski, Washington State University;

Dr. Douglas B. Guptill, Technical University of Nova Scotia;

Dr. Joan Lukas, University of Massachusetts-Boston;

Dr. Nenad Marovac, San Diego State University;

Dr. Satoshi Matsuoka, University of Tokyo;

Dr. David C. Rine, George Mason University;

Dr. Wilhelm Rossak, New Jersey Institute of Technology;

Dr. Spencer Rugaber, Georgia Institute of Technology;

Dr. Justin R. Smith, Drexel University;

Dr. Dwight Spencer, Oregon Graduate Institute;

Dr. Peter Wegner, Brown University;

Dr. Laurie H. Werth, University of Texas-Austin;

Dr. Ka-Wing Wong, Eastern Kentucky University.

The reviewers feedback was very helpful in revising the book and was essential to im-

prove the presentation.

Special thanks to Joan Lukas, Satoshi Matsuoka, and Peter Wegner for participating in

The Demeter Focus Group and their valuable input. Peter Wegner has given me input over

many years.

A very inspiring force in the development of adaptive software has been the many

students who took my courses at Northeastern and at conferences. They are too numerous

to mention individually. Arthur Riel was a very important team member in the early days

of Demeter. Greg Sullivan has contributed to the project through his regular participation

during his initial years at Northeastern. Cole Harrison applied adaptiveness to object-

oriented query languages in his Master's thesis. Martin Spit from the University of Twente

in The Netherlands gave very detailed feedback on the book while he wrote his Master's

thesis on the Demeter Method from a method modeling point of view. Joseph Coco, Bob

Familiar, John Janeri, and Wayne Vetrone, have given me detailed feedback on the book.

I would like to thank Cun Xiao, KeWang, and Yang Liu for drawing many of the pictures

in the book. Many thanks to Salil Pradhan for helping with the index, with �netuning the

typesetting, and with production.

I would like to thank my wife, Ruth, for her support during the writing of this book.

It was also Ruth who told me about the old Greek stories from which I chose the name

Demeter.



PREFACE xxxvii

Many thanks to George McQuilken, president of Demeter International Inc., for his

continued support.

Richard Rasala and Robert Futrelle gave me detailed feedback on an early version of

the book a few years ago. Several of the chapters they edited have survived into this �nal

version.

Finally, my thanks to Leslie Lamport for producing Latex with which this book was

produced.

Credits

All or parts of the following papers are reprinted with permission.

� Portions reprinted, with permission, from Communications of the ACM [LSX94].

c
1994 ACM. Used primarily in Chapter 1.

� Paper reprinted, with permission, from ACM Transactions on Programming Languages

and Systems [PXL95]. c
1994 ACM. Used in Chapter 15.

� Portions reprinted, with permission, from IEEE Transactions on Software Engineering

[LX93c]. c
1994 IEEE. Used in Chapters 7, 8, and 16.

� Portions reprinted, with permission, from IEEE Transactions on Knowledge and Data

Engineering [LX93a]. c
1994 IEEE. Used primarily in Chapters 12, and 16.

� Portions reprinted, with permission, from International Journal of Foundations of

Computer Science [LX94]. c
1994 World Scienti�c Publishing Company. Used pri-

marily in Chapter 16.

� Portions reprinted, with permission, from Formal Aspects of Computing [LHX94].

c
1994 British Computer Society. Used primarily in Chapter 13.

� Portions reprinted, with permission, from Lisp and Symbolic Computation [Lie88].

c
1988 Kluwer Academic Publishers. Used primarily in Chapter 12.

� Portions reprinted, with permission, from Journal of Software Engineering [LBS91].
c
1991 IEE. Used primarily in Chapters 12 and 13.

� Portions reprinted, with permission, from Proceedings of International Conference on

Data Engineering [LZHL94]. c
1994 IEEE. Used primarily in Chapter 4.

� Portions reprinted, with permission, from Proceedings of International Conference on

Software Engineering [LR88a]. c
1988 IEEE. Used primarily in Chapter 6.

� Portions reprinted, with permission, from Proceedings of International Workshop on

CASE [LHSX92]. c
1992 IEEE. Used primarily in Chapter 4.

� Portions reprinted, with permission, from Proceedings of Object-Oriented Program-

ming Systems, Languages and Applications Conference [LHR88]. c
1988 ACM. Used

primarily in Chapter 8.



xxxviii PREFACE

� Portions reprinted, with permission, from Proceedings of Object-Oriented Program-

ming Systems, Languages and Applications Conference [LR89]. c
1989 ACM. Used

primarily in Chapter 14.

� Portions reprinted, with permission, from Proceedings of European Conference on

Object-Oriented Programming [BL91]. c
1991 Springer Verlag. Used primarily in

Chapter 5.

� Portions reprinted, with permission, from Proceedings of International Symposium on

Object Technologies for Advanced Software [LX93b]. c
1993 Springer Verlag. Used

primarily in Chapter 10.

� Portions reprinted, with permission, from Proceedings of Information Processing '92,

12th World Computer Congress [Lie92]. c
1992 Elsevier Science B.V. Used in Chapter

8.

� Portions reprinted, with permission, from Journal of Object-Oriented Programming

[LR88b]. c
1988 SIGS Publications Inc. Used primarily in Chapter 6.

Karl J. Lieberherr



Chapter 1

Introduction

This chapter provides an introduction to adaptive software in a top-down fashion, going

from an abstract adaptive program to a concrete payroll example in C++. If your learning

style is more towards going from the concrete to the abstract, please jump safely ahead to

Chapter 3, From C++ to Demeter, provided you already know some C++. That chapter

shows you the transition from a C++ program to an adaptive program. A third entry

point to the book is through Chapter 5, Adaptive Software by Example, which also uses a

simple-to-general approach starting with very small examples. There is yet a fourth entry

point into the book, which is recommended for advanced readers only: the self-contained

Chapter 15, Core Concepts and Implementation, which gives you the essence of adaptive

software and a provably correct implementation in forty pages.

1.1 EVOLUTIONARY LIFE CYCLE WITH ADAPTIVE SOFT-
WARE

When developing innovative and complex software systems, traditional software engineering

approaches such as the waterfall model are no longer suitable. Evolutionary software devel-

opment, as described by the spiral model, is used more and more as an important method

to develop innovative software. Evolutionary software development uses an incremental or

evolutionary life-cycle model instead of the traditional sequential life-cycle models.

Adaptive software is an improved form of object-oriented software that has been devel-

oped to support evolutionary development. It is in the nature of evolutionary development

that there will be many software changes. Therefore, software should be written so that

the impact of changes is limited. Adaptiveness leads to the desired reduction of change

impact and may be combined with other proven techniques for object-oriented software

development.

Adaptive object-oriented software is software that adapts automatically to changing

contexts. Contexts may be behavior, implementation class structures, synchronization struc-

tures, object migration structures, etc.

1



2 CHAPTER 1. INTRODUCTION

1.1.1 How is Adaptiveness Achieved?

Adaptiveness is achieved by expressing programs as loosely coupled, cooperating fragments,

each one describing only the concerns of one context. The loose coupling is achieved with

novel means such as succinct object navigation speci�cations. The loose coupling of the

fragments leads to adaptiveness since many changes in one fragment preserve the intent of

the other cooperating fragments, which then adjust automatically to the changed fragment.

1.1.2 Applications of Adaptiveness

Adaptive software has other applications beyond applications to evolutionary software de-

velopment.

� Object-oriented databases

One of the applications of adaptive programming is relaxing the need for the program-

mer to know the class structure in detail. This point of partial or high-level knowledge

of the class structure as opposed to its changeability has been explored by the database

community. Adaptiveness makes a new contribution to the area of structure-shy query

languages for object-oriented databases.

� Programming languages

Most programming languages o�er some kind of data structure notation. Adaptiveness

may be added to those programming languages by introducing partial data structures

that loosely constrain the set of data structures with which a program can work. The

traditional approach views a data structure as an integral part of a program whereas

adaptive programming views the data structure as something changeable.

1.1.3 Adaptiveness with the Demeter Method

In the Demeter Method we focus on adaptive programs that are a powerful variant of object-

oriented programs. The variant consists of making the programs structure-shy by using

only minimal information about the implementation-speci�c class structure when writing

the behavior. The advantage of the structure-shy programs is that they express their intent

at a high level of abstraction. Therefore, both readers and writers of those programs have

the advantage that they don't have to learn a complex class structure. It is su�cient to

have partial knowledge of the class structure. The high level of abstraction also makes the

programs shorter and easier to maintain. Adaptive programs are written using two loosely

coupled fragments: behavior and implementation class structures.

Adaptive software works with partial knowledge about class structures that directly

supports an iterative software life-cycle. When a complex project starts, the optimal class

structure is not known and will be determined iteratively during the project. Changes to

the class structure can be done much more easily with adaptive software than with object-

oriented software. Class libraries can be speci�ed in a 
exible way by de�ning the behavior

as loosely coupled to the structure. Adaptive programs can be written to run with di�erent

class libraries provided the resources needed by the adaptive program are supplied by the

class library.



1.1. EVOLUTIONARY LIFE CYCLE WITH ADAPTIVE SOFTWARE 3

1.1.4 Demeter Life-Cycle

The two basic components of a life-cycle model are the set of development phases (described

by activities and deliverables) and the execution order in which the activities are performed

to produce the deliverables. The Demeter life-cycle model is an adaptation of the spiral

model to adaptive software. The four major activities of the spiral model are planning,

risk analysis, engineering, and customer evaluations. The engineering activity develops the

next-level product and consists of software design, coding, and testing. The engineering

activity gets as input the use cases and application objects that have been identi�ed in the

planning phase and the output of the risk analysis to decide what to implement next.

The design phase translates the requirements for the software into a set of represen-

tations. The �rst representation is a set of customizers that describe class structure, ar-

chitecture, and object languages. The second representation is a set of adaptive programs

(without wrappers), that approximate the intended behavior. The third representation is

a set of evolution histories that say in which order the customizers and adaptive programs

are developed. Both adaptive programs and evolution histories are described using succinct

subgraph speci�cations.

There are design rules for customizers that allow us to evaluate the quality of customiz-

ers. Customizers are checked for rules whose violation would cause the programs produced

from them to misbehave. Customizers can be optimized after design rule checking.

There are design rules for adaptive programs which allow to measure the quality of

adaptive programs. One such design rule is the Law of Demeter which says that when

writing a wrapper, we should use only a very limited set of classes. Adaptive programs are

written in terms of partial class structures and many of the patterns about class-structure

design developed by the patterns community can be applied when developing adaptive

programs.

The coding phase consists of developing all the wrappers and calling the Demeter com-

piler to translate the adaptive programs and the customizers into executable object-oriented

programs.

The testing phase checks whether all use cases have been implemented properly. Test

inputs are often speci�ed using the object languages de�ned by the customizers.

The Demeter life-cycle model is built on the foundation of delaying the binding of

methods to classes beyond programwriting time. This is achieved through succinct subgraph

speci�cations. No other life-cycle model uses this approach, which leads to loosely coupled

software. However, the Demeter life-cycle model is open and the good ideas from other life-

cycle models can be reused. For example, use cases from the Jacobson Use-Case method are

reused. Adaptive software promotes a new kind of nonblack-box reuse where the important

information about the organization of software is revealed to improve reusability. Nonblack-

box reuse is also promoted by Gregor Kiczales' group at Xerox PARC.

Adaptive programming, as used in the Demeter Method/C++, builds on the program-

ming language C++ although the adaptive programming approach is programming-language

independent. However, we need a language to make the concepts concrete and for various

reasons we have chosen C++. Tools have been developed already that support the Demeter

Method for C++, Borland Pascal, and Lisp with an object-oriented extension.

Adaptive programs are improved object-oriented programs that allow us to take full



4 CHAPTER 1. INTRODUCTION

advantage of object-oriented technology. The advantages of adaptiveness play a stronger

role, the larger the class structures and the longer the software will live. Adaptive software

has an e�cient implementation, incurring no run-time costs over object-oriented software.

Compilation of adaptive software into C++ is also fast.

Maintainability is a key consideration because most costs associated with software prod-

ucts are incurred after the software has been put to use. Adaptive software improves main-

tainability because it is written at a higher level of abstraction.

The Demeter Tools/C++ provide one possible implementation of adaptive software (see

Fig. 1.1).

Adaptive Programming 

One Possible Implementation:

Demeter Tools/C++     C++

Legend:

make use of

is implemented by

Object−Oriented Programming

Figure 1.1: Implementation of adaptive programming

The process of developing simple adaptive software with the Demeter Tools/C++ con-

sists of the following steps:

1. Write the customizer that speci�es the class library and object language.

2. Run the design check tool to check consistency of the customizer.

3. Write the adaptive program that speci�es the intended behavior of the application.

4. Run the design check tool to check that the adaptive program is consistent and that

the adaptive program is compatible with the customizer.

5. Generate the C++ code by executing the Demeter compiler. Compile the C++ code.

compile(ADAPTIVE PROGRAMS, CUSTOMIZER) -> executable C++ program

6. Run the executable by using as input object descriptions that are legal with respect

to the customizer.



1.1. EVOLUTIONARY LIFE CYCLE WITH ADAPTIVE SOFTWARE 5

1.1.5 Symmetry Between Adaptive Programs and Customizers

Adaptive software development is based on �rst selecting the needed resources from a class

library, then the adaptations to those resources. The resource selection is expressed by

navigation speci�cations and the adaptations by wrappers.

Adaptive programs consist of navigation speci�cations that describe how objects are

traversed augmented by wrappers that specify executable programs (C++ member function

statements) executed before or after traversal of an object. Adaptive programs often also

contain transportation speci�cations that transport objects to other objects to get a job

done collectively.

There is a symmetrical relationship between customizers and adaptive programs. A

customizer is written once to be used with several adaptive programs that are consistent

with the customizer. This customizer reuse happens, for example, inside one application

when the functionality is expressed in terms of several adaptive programs that will be

customized together (see Fig. 1.2).

.
.
.
.

One Customizer

Adaptive
Program 1

Adaptive
Program 2

Adaptive 
Program i

....

Figure 1.2: Customizer reuse

An adaptive program can be customized with many di�erent customizers that are con-

sistent with the adaptive program (see Fig. 1.3). This adaptive program reuse happens, for

example, during maintenance when the object structure changes.

1.1.6 Symmetry Between Object Descriptions and Customizers

De�ning objects using statements of an object-oriented programming language can be a

tedious task. The reason is that the object structure is encoded in great detail into the

statements. Therefore, adaptive software uses so-called sentences to describe families of

objects. By a sentence we mean a sequence of tokens in the sense of language and grammar

theory (see Chapter 11). A speci�c object can be selected from the family by using a

customizer.

There is a symmetrical relationship between customizers and sentences. A customizer

can be used with several sentences to select objects from the families described by the

sentences. And one sentence can be used with several di�erent customizers to select di�erent

objects.



6 CHAPTER 1. INTRODUCTION

.
.
.
.

....

One Adaptive
  Program

Customizer 1

Customizer 2

Customizer i

Figure 1.3: Adaptive program reuse

1.2 DISADVANTAGES OF OBJECT-ORIENTED SOFTWARE

Object-oriented programs are easier to extend than programs that are not written in an

object-oriented style, but object-oriented programs are still very rigid and hard to adapt

and maintain. A key feature of most popular approaches to object-oriented programming

is that methods are attached to classes|C++, Smalltalk, Ei�el, Beta|or to groups of

classes|CLOS. This feature is both a blessing and a curse. On the brighter side, attaching

methods to classes is at the core of objects being able to receive messages, di�erent classes

of objects responding di�erently to a given message, and the ability to de�ne standard

protocols. On the darker side, by explicitly attaching every single method to a speci�c

class, the details of the class structure are encoded into the program unnecessarily. This

leads to programs that are hard to evolve and maintain. In other words, today's object-

oriented programs often contain more redundant application-speci�c information than is

necessary, thus limiting their reusability.

Does this mean that we either have to take the curse in order to enjoy the blessing

or give up the blessing altogether? Analyzing the problem we realize that all is not lost.

We need to be able to specify only those elements that are essential to an object-oriented

program and then specify them in a way that allows them to adapt to new environments.

What do we mean by specifying only those elements|classes and methods|that are

essential to an object-oriented program? There is a general impression that object-oriented

programs are structured di�erently from conventional programs. For many tasks very brief

methods are written that simply \pass through" a message to another method. We regard

\traversal, pass through" methods as nonessential. But more importantly, we intend to

focus on classes and methods that are essential not only to a particular application but also

potentially to a family of related applications.

What is wrong with object-oriented programs? Object-oriented programmers have to

write the details of the class structure repeatedly into their methods. This leads to programs

with high entropy that are polluted by accidental details about the class structure. Figure

1.4 shows a class structure (the full square) and four behaviors which have been written for

various parts of the class structure. The �rst behavior (f1) uses the right two thirds, the

second behavior (f2) the left two thirds, the third behavior (f3) uses the bottom two thirds



1.3. ADAPTIVE PROGRAMMING 7

and the fourth behavior (f4) uses the top two thirds. The part of the class structure that

is in the center is encoded four times into the methods that implement the four behaviors!

Should there be a change to the class structure in the center area, we would have to update

the four behaviors!

1 2 1

2 4 2

1 2 1

f1 f2

f3

f4

Figure 1.4: Duplication of class structure in object-oriented programming

In this book we introduce adaptive object-oriented programming as an extension

to conventional object-oriented programming. Adaptive object-oriented programming facil-

itates expressing the elements|classes and methods|that are essential to an application by

avoiding a commitment on the particular class structure of the application. Adaptive object-

oriented programs specify essential classes and methods by constraining the con�guration

of a class structure that attempts to customize the adaptive program, without spelling out

all the details of such a class structure. This way, adaptive object-oriented programmers

are encouraged to think about families of programs by �nding appropriate generalizations.

The remainder of this chapter is organized as follows. Section 1.3 introduces adaptive

programs, describing their structure. Adaptive programs1 are speci�ed using propagation

patterns, which express program constraints. Propagation patterns are introduced in Sec-

tion 1.4. An adaptive program denotes an entire family of programs, as many programs

as there are class structures that satisfy its constraints. A class structure that satis�es the

constraints of an adaptive program is said to customize the program, and is speci�ed as a

class dictionary graph. Class dictionary graphs and customization of adaptive programs

are introduced in Section 1.5.

1.3 ADAPTIVE PROGRAMMING

Conventional object-oriented programs consist of a structural de�nition in which a class

structure is detailed, and a behavioral de�nition where methods attached to the classes in

the class structure are implemented. Likewise, adaptive programs are de�ned structurally

1In the remainder of this book we refer to adaptive object-oriented programs simply as adaptive programs.



8 CHAPTER 1. INTRODUCTION

and behaviorally. What makes an adaptive program di�erent is that class structures are

described only partially, by giving a number of constraints that must be satis�ed by a

customizing class structure. In addition, behavior is not implemented exhaustively. That

is, methods in an adaptive program are speci�ed only when they are needed, when they

implement an essential piece of behavior. Constraint-based partial speci�cations can be

satis�ed by a vast number of class structures which, when annotated with essential methods

and automatically generated methods, denote a potentially in�nite family of conventional

object-oriented programs. This situation is illustrated in Fig. 1.5.

. .
.

.

.

.
.

.
.

.
.

selects

selectsselects

Adaptive Program

satisfies

denotes

Family of programs

Infinitely many class structures

Figure 1.5: An in�nite family of programs denoted by an adaptive program

Let us further illustrate the process of writing an adaptive program with an example.

We are interested in computing the salaries of the top-level o�cers in a conglomerate of

companies.

Statement of the computeSalary problem.

Given a conglomerate object that references the salaries of all o�cers in the

conglomerate, sum up the total salary of only the top-level o�cers, i.e., the

o�cers that work directly for the head company of the conglomerate and not for

any of its subsidiaries.

In fact, the process of writing an adaptive program can be seen as a process of making

assumptions. These assumptions are expressed as constraints in the class structures that

customize an adaptive program. Such constraints specify groups of collaborating classes in

the customizing class structures.

What is important about the computeSalary problem? We assume there is a Conglom-

erate object that contains somewhere inside of it an O�cer object, which contains a Salary

object. These assumptions imply that for any class structure to successfully customize the

computeSalary adaptive program, it must de�ne a Company class that contains a nested

O�cer class, which contains in turn a Salary class. In addition, we require that the compute-

Salary program must not consider o�cers in subsidiary companies of the conglomerate. This



1.3. ADAPTIVE PROGRAMMING 9

turns into an assumption that the adaptive program must somehow bypass the relationship

subsidiaries of any company in the conglomerate. Thus, the structural section of an adaptive

program should specify a number of constraints, expressed using class-valued and relation-

valued variables. Class-valued variables itemize assumptions on the existence of classes in

a customizing class structure. Relation-valued variables further restrict customizing class

structures by excluding or forcibly including relationships among classes.

Behaviorally, the computeSalary program requires only one essential element, a method

that accumulates the salary values for the Conglomerate class. Nevertheless, every other

method that constitutes a denoted object-oriented program should share a common signa-

ture. In particular, we would like an accumulator totalSalary to be handed to the speci�ed

method for update and to be accessible at the completion of the program. This can be

done by using a modi�able argument, de�ned by each method in the program. Thus, the

behavioral section of an adaptive program should de�ne a common signature for its meth-

ods, and the code fragments that implement the required essential methods, attached to the

appropriate class-valued variables.

The table in Fig. 1.6 describes informally the structure of the computeSalary adaptive

program. Getting this adaptive program up and running involves the following steps. First,

formally specify the program using a new notation that extends existing object-oriented lan-

guages; Section 1.4 introduces speci�cation of adaptive programs using the propagation

pattern notation. See Fig. 1.7. Second, customize the adaptive program with a particular

class structure that satis�es the program's constraints; customization is discussed in Sec-

tion 1.5. We give two di�erent customizers: Fig. 1.8, which selects the C++ program in

Fig. 1.9, and Fig. 1.10, which selects the C++ program in Fig. 1.11.

Structural Constraints Section

Variables Constraints

Type Value Find all Salary-objects which are con-

tained in O�cer objects which are con-

tained in Conglomerate objects

Conglomerate but not reachable through the

Class Salary subsidiaries relation.

Relation subsidiaries

Behavioral Section

Signature void computeSalary( int& totalSalary )

Attached to Code fragment

Methods Salary totalSalary = totalSalary

+ *(this->get value());

Figure 1.6: Informal description of computeSalary adaptive program

Adaptive programming, as would be expected, is realized by delayed binding. We read

in the Encyclopedia of Computer Science: \Broadly speaking, the history of software de-

velopment is the history of ever-later binding time ..." Indeed, in the early days, machine



10 CHAPTER 1. INTRODUCTION

language programmers used to bind variables to memory locations, while assembly lan-

guage programmers left this task to the assembler. Later on, Pascal programmers bound

function calls to code; now C++ programmers have the choice to delay this decision until

run-time. Adaptive programming introduces a subsequent degree of delayed binding. While

conventional object-oriented programmers bind methods explicitly to classes, adaptive pro-

grammers delay binding of methods until a class structure customizer is provided.

1.4 PROPAGATION PATTERNS

An adaptive program is speci�ed using a collection of propagation patterns, each of which

speci�es a set of related constraints in the adaptive program. Adaptive programs, as we have

pointed out, are customized by class structures. Although we cannot assume the composition

of a speci�c customizing class structure,2 it seems reasonable to assume that it conforms

to some given representation. Propagation patterns take advantage of this, assuming that

customizing class structures are represented as graphs; speci�cally, as class dictionary

graphs.3 Assumptions, such as a class Conglomerate that contains a nested Salary class, are

represented in a propagation pattern as constraints of the form: the traversal from vertex

Conglomerate to vertex Salary must be possible in any class dictionary graph that customizes

this propagation pattern.

Given a customizing class dictionary graph, a propagation pattern produces an object-

oriented program in the family denoted by the adaptive program it speci�es. The object-

oriented program is produced in two steps. First we generate a subgraph of the class dictio-

nary graph, denoting the set of collaborating classes speci�ed by the structural constraints

in the adaptive program. Then, a method is attached to each vertex in the generated

subgraph, sharing the signature given by the adaptive program in its behavioral section.

Finally, each method speci�cation in the behavioral section|class and code fragment|is

used to either �ll in or annotate some generated method.

Consider again the adaptive program for computing salaries of o�cers outlined in the

previous section, and summarized in Fig. 1.6. The propagation pattern in Fig. 1.7 speci�es

this adaptive program, using the following elements.

1. An operation clause. The signature void computeSalary( int& totalSalary ), shared by

every method that implements the compute salary adaptive program, is speci�ed with

the keyword *operation*.

2. A traversal clause. The class-valued variables in the clauses *from* Conglomerate,

*via* O�cer, *to* Salary specify vertices delimiting a traversal in a customizing class

dictionary graph. The relation-valued variable, which in the clause *bypassing* ->

*, subsidiaries, * represents an edge in a customizing class dictionary graph, further

constrains the traversal to only those paths that do not include the edge. Given a

customizing class dictionary graph, the traversal speci�ed by this clause induces a

set of vertices representing classes which include the classes in the customizing class

dictionary graph that match the class-valued variables in this traversal clause, and

any class contained in any path denoted by this traversal clause. Each class in such an

2That is, how many classes of what kind it has and with how many parts.
3Class dictionary graphs are introduced in Section 1.5.



1.4. PROPAGATION PATTERNS 11

*operation* void computeSalary(int& totalSalary)

*traverse* // structural constraints section

*from* Conglomerate

*bypassing* -> *,subsidiaries,*

*via* Officer

*to* Salary

*wrapper* Salary // behavioral section

*prefix*

(@ totalSalary = totalSalary + *(this->get_value()); @)

Figure 1.7: Propagation pattern for the computeSalary adaptive program

induced set of classes gets a method generated automatically, all of which de�ne one

object-oriented program in the family denoted by the adaptive program computeSalary.

3. A code fragment clause. The class-valued variable in *wrapper* Salary, indicates that

the code totalSalary = totalSalary + *(this->get value()); �lls in the body of the method

generated automatically for class Salary. (@ and @) are used to delimit C++ state-

ments.

In general, a propagation pattern consists of an operation clause, a traversal clause,

and a set of code fragment clauses. A traversal clause is de�ned as a set of propagation

directives, each of which is a 4-tuple composed of the following elements.

1. A nonempty set of source vertices from which a traversal starts, indicated by the

keyword *from*.

2. A possibly empty set of target vertices where a traversal ends, indicated by the keyword

*to*.

3. A possibly empty set of through edges, out of which each path denoted by a traversal

is required to include at least one. Through edges are indicated by the keyword

*through*.

4. A possibly empty set of bypassing edges, none of which may be included in any path

denoted by a traversal. Bypassing edges are indicated by the keyword *bypassing*.

Through and bypassing edges are speci�ed with relation variables.

A *wrapper* code fragment is associated with a class-valued variable or with a relation-

valued variable and can be either *pre�x*, or *su�x*. Wrapper code fragments are pre�xed

or appended to the code that is generated automatically to properly implement traversals,

depending on whether the code fragments are *pre�x* or *su�x*, respectively.



12 CHAPTER 1. INTRODUCTION

1.5 CUSTOMIZATION

Adaptive programs, speci�ed using the propagation pattern notation, exist at a higher level

of abstraction than conventional object-oriented programs, much in the same way that pa-

rameterized classes exist at a more abstract level than nonparameterized or, for that matter,

instantiated classes. To select a particular object-oriented program for execution from the

family denoted by an adaptive program, the adaptive program must be customized or in-

stantiated, the same way a parameterized class is instantiated. As we have indicated, prop-

agation patterns expect customizing class structures to be represented as class dictionary

graphs.

company

subsidiaries

head

officers

salary

Conglomerate

Company

OfficerList

Officer

Ordinary ShareHolding

Salary

Ident name

Address
location

country

String

state

city

street

String
name

turnover

String

name

title

Number

value

sharePercentage

SubsidiaryList

Subsidiary

WhollyOwned PartiallyOwned
stake

Number

Figure 1.8: Class dictionary graph representing conglomerates of companies

Class dictionary graphs represent class structures at a programming-language indepen-

dent level using vertices to represent classes, and edges to represent relationships between

classes. An example of a class dictionary graph is illustrated in Fig. 1.8.4 There are three

kinds of vertices in a class dictionary graph: construction, alternation, and repetition ver-

tices. The vertex labeled Conglomerate is a construction vertex. A construction vertex,

represented as a rectangle (2 ), is an abstraction of a class de�nition in a typical statically

typed programming language (e.g., C++).

4When you run this example with the Demeter Tools/C++, replace String by DemString, Ident by DemI-

dent, and Number by DemNumber.



1.5. CUSTOMIZATION 13

The vertex labeled O�cer is an alternation vertex. Alternation vertices de�ne union

classes, and are represented as . When modeling an application domain it is natural

to take the union of sets of objects de�ned by construction classes. Alternation vertices are

implemented as abstract classes and their alternatives as subclasses through inheritance. In

our example, the vertices labeled Ordinary and ShareHolding are the alternatives of O�cer and

de�ne classes that inherit from class O�cer. The alternative relationship is indicated using

alternation edges (=) ), outgoing from an alternation vertex into either a construction

or another alternation vertex.

Construction and alternation vertices can have outgoing construction edges (�! ),

which represent parts. Part is a high-level concept that might be implemented as a method,

not necessarily as an instance variable. Construction edges outgoing from alternation ver-

tices indicate common parts, inherited by each alternative of the alternation.

Finally, the vertex labeled SubsidiaryList is a repetition vertex. Repetition vertices

represent container classes that have as their instances collections of objects from a given

repeated class. Two important advantages of using repetition vertices are that the designer

need not be concerned with a class belonging to a collection when designing such a class,

and that all the functionality common to container classes, such as iteration, appending,

and element count, can be abstracted into a single class.

Let the class dictionary graph in Fig. 1.8 be a customizer for the propagation pattern

in Fig. 1.7, which speci�es the computeSalary adaptive program. First, we verify that the

class dictionary graph satis�es the constraints in the adaptive program. The class dictionary

graph does de�ne classes Conglomerate and Salary in such a way that the traversal speci�ed

by the propagation pattern is possible. The class dictionary graph in Fig. 1.8 is quite

complex compared to the simple propagation pattern in Fig. 1.7. It is very typical that

the class dictionary graph contains a lot of noise, which is important for other tasks but

irrelevant for the current task.

When a propagation pattern is customized with a class dictionary graph, its traversal

speci�cations induce a set of paths as follows. Every path from each *from* to each *to*

vertex in the class dictionary graph is taken. In our example, some of those paths are:

1. Conglomerate head
�! Company

officers

�! O�cerList �! O�cer
salary

�! Salary

2. Conglomerate
head
�! Company

subsidiaries
�! SubsidiaryList �! Subsidiary

company

�! Company
officers

�! O�cerList �! O�cer
salary

�! Salary

The set of paths is restricted to those paths that contain at least one *through* edge

and that do not contain any *bypassing* edge. In our example, the path Conglomerate
head
�! Company

subsidiaries
�! SubsidiaryList �! Subsidiary

company

�! Company
officers

�! O�cerList

�! O�cer
salary

�! Salary would be eliminated, since it contains the edge
subsidiaries
�! , which

must not be included. The resulting set of paths de�nes a subgraph of the customizing

class dictionary graph referred to as the propagation graph of the customization. The

propagation graph induced by the propagation pattern in our example is shown in Fig. 1.9.

This propagation graph also shows the code that de�nes the object-oriented program

selected by the customizing class dictionary graph of Fig. 1.8. Once the propagation graph

for a customization is computed, the code attached to it is generated as follows. For each



14 CHAPTER 1. INTRODUCTION

head

officers

salary

void Conglomerate::computeSalary( int& totalSalary )
{
   this−>head−>computeSalary( totalSalary );
}

void Company::computeSalary( int& totalSalary )
{
  this−>officers−>computeSalary( totalSalary );
}

void Officer::computeSalary( int& totalSalary )
{
  this−>salary−>computeSalary( totalSalary );
}

void Salary::computeSalary( int& totalSalary )
{
  totalSalary = totalSalary + *(this−>get_value());
}

Conglomerate

Company

OfficerList

Officer

Ordinary ShareHolding

Salary

void OfficerList::computeSalary( int& totalSalary )
{
  OfficerList_iterator nextOfficer( this );
  Officer*             eachOfficer;

  while( eachOfficer = nextOfficer() )
    eachOfficer−>computeSalary( totalSalary );
}

Figure 1.9: Propagation graph for a customization of the computeSalary adaptive program

vertex in the propagation graph, a method is created with the signature given by the oper-

ation speci�cation in the propagation pattern. The body for this method contains as many

calls as the given vertex has outgoing construction edges in the propagation graph.5 Each

call is made to the method with the same signature attached to the vertex target of the

corresponding construction edge. Finally, each wrapper code fragment in the propagation

pattern is pre�xed or appended to the generated code for the vertex or edge it speci�es.

When a wrapper is associated to a class-valued variable, the code fragment is pre�xed or

appended to the entire method generated for the class the variable stands for. Relation-

valued variables, implemented as edges, get code generated in the form of a message send to

the target of the edge. Wrappers associated with relation-valued variables pre�x or append

their code to this message-send code.

To further illustrate the adaptiveness of the propagation pattern in Fig. 1.7, consider

the class dictionary graph in Fig. 1.10, a second customizer for the propagation pattern. In

this customizer, conglomerates have lists of companies with simpler subsidiaries and o�cers.

Again, we verify that this customizer satis�es the constraints posed by the parameters for

the adaptive program speci�ed by the propagation pattern. There is a vertex Conglomerate

from which a traversal is possible to a vertex Salary. Hence, this second customizer induces

the propagation graph of Fig. 1.11, which is also annotated by the code generated for each

vertex.

So far we have discussed customization of adaptive programs using class dictionary

graphs. Another possibility is to use sample objects to automatically generate a customiz-

5Notice, in the propagation graph, as opposed to the class dictionary graph.



1.5. CUSTOMIZATION 15

subsidiaries

officers

ConglomerateIdent name

Address

location

country

String

state

city

street

String
name

turnover

CompanyList

salary

OfficerList

Officer
Salary

String

name

title

value

Number

Company

participants

Figure 1.10: Another representation for conglomerates of companies

officers

salary

participants

void Conglomerate::computeSalary( int& totalSalary )
{
   this−>participants−>computeSalary( totalSalary );
} void CompanyList::computeSalary( int& totalSalary )

{
   CompanyList_iterator nextCompany( *this );
   Company*             eachCompany;

   while( eachCompany = nextCompany() )
      eachCompany−>computeSalary( totalSalary );
}

void Company::computeSalary( int& totalSalary )
{
   this−>officers−>computeSalary( totalSalary );
}

void Officer::computeSalary( int& totalSalary )
{
   this−>salary−>computeSalary( totalSalary );
}

void OfficerList::computeSalary( int& totalSalary )
{
   CompanyList_iterator nextOfficer( *this );
   Company*             eachOfficer;

   while( eachOfficer = nextOfficer() )
      eachOfficer−>computeSalary( totalSalary );
}

Conglomerate

CompanyList

Company

OfficerList

Officer

Salary

void Salary::computeSalary( int& totalSalary )
{
   totalSalary = totalSalary + *(this−>get_value());
}

Figure 1.11: Propagation graph with code for second customization



16 CHAPTER 1. INTRODUCTION

ing class dictionary graph. A technique can be used to generate class dictionary graphs

automatically from object samples. This method �rst generates some class dictionary graph

that describes at least those objects given as samples. In a second stage, the method opti-

mizes the generated class dictionary graph by eliminating redundant parts and reducing the

amount of multiple inheritance, while preserving the set of objects described by the class

dictionary graph.

1.6 SUMMARY

Propagation patterns are motivated by the key idea behind the Law of Demeter. The Law

of Demeter essentially says that when writing a method, one should not hardwire the details

of the class structure into that method. Propagation patterns take this idea one step further

by keeping class structure details out of entire programs as much as possible.

Adaptive programming, realized by the use of propagation patterns, extends the object-

oriented paradigm by lifting programming to a higher level of abstraction. In their simplest

form, which also turns out to be the worst in terms of adaptiveness, adaptive programs are

nothing more than conventional object-oriented programs, where no traversal is used and

where every class gets a method explicitly. But, for a large number of applications, repre-

sented by related customizers, nothing has to be done to an adaptive program to select the

conventional object-oriented program corresponding to any of the customizers. Moreover,

when changes to an adaptive program are indeed necessary, they are considerably easier to

incorporate given the ability that adaptive programs o�er to specify only those elements that

are essential and to specify them in a way that allows them to adapt to new environments.

This means that the 
exibility of object-oriented programs can be signi�cantly improved by

expressing them as adaptive programs, which specify them by minimizing their dependency

on their class structures.

The following advantages stem from the use of adaptive programs.

� Adaptive programs focus on the essence of a problem to be solved and are therefore

simpler and shorter than conventional object-oriented programs.

� Adaptive programs promote reuse. Many behaviors require the same customization

and thus customizers are e�ectively reused. More importantly, every time an adaptive

program is customized reuse is taking place.

� There is no run-time performance penalty over object-oriented programs. By using

appropriate inlining techniques, traversal methods can be optimized, eliminating ap-

parent performance penalties.

1.7 EXERCISES

Exercise 1.1 (Suitable only if you have previous experience with object-oriented software.)

Exercise suggested by Joan Lukas.

Re
ect on your experiences with object-oriented programming to see where the disad-

vantages of object-oriented programming are manifest in your earlier work.



1.8. BIBLIOGRAPHIC REMARKS 17

1.8 BIBLIOGRAPHIC REMARKS

� Parts of this chapter are taken from [LSX94].

� The discussion of adaptive software as collaborating, loosely coupled views has ben-

e�tted from discussions with Gregor Kiczales and John Lamping at ECOOP '94 in

Bologna, Italy.

� The spiral model [Boe88] supports evolutionary software development.



Chapter 2

Introduction to

Object-Oriented Software

In the previous chapter we introduced some basic ideas behind adaptive software. We learned

that adaptive software is a generalization of object-oriented software. Adaptive software

intends to enhance the advantages of object-oriented software and to eliminate some of its

disadvantages. In this chapter we give an introduction to object-oriented software. Readers

already familiar with object-oriented concepts may skip to the next chapter.

Let's assume that we have to provide a program that produces a list of cities in Switzer-

land that have certain properties. Which data do we need? Which operations does the

program have to perform?

We will need data structures to represent the structure of the cities. The data structures

are encapsulated with functions that provide access to the data. The data is accessible only

through the functions, that is, the functions provide an interface to the data. The idea

behind encapsulation is that the low-level data structures are hidden and allowed to change

more easily without requiring a big maintenance e�ort. For example, when the internal data

type of an encapsulated data structure changes, and the interface stays the same, there is

no need to update other parts of the software. Another advantage of encapsulated data

structure is that data consistency can be enforced.

We can choose between four di�erent methods for constructing a program.

1. Write the interface of encapsulated data structures �rst. Then write procedures that

refer to the interface of encapsulated data structures

(a) using detailed information in interfaces of encapsulated data structures

(b) using minimal information in interfaces of encapsulated data structures.

2. Write procedures �rst, and in parallel derive

(a) detailed encapsulated data structures

(b) constraints on encapsulated data structures with which the procedures work and

encapsulated data structures that satisfy the constraints.

18



19

1a is used in data-centered software development methods, including in object-oriented

methods. 2a is also used in object-oriented methods.

1b and 2b are used in the adaptive software approach described in this book. Adaptive

software can be viewed as a higher-level description of object-oriented software. One adap-

tive program describes a collection of object-oriented programs from which we can select

one by giving a speci�c encapsulated data structures. 1b and 2b are closely related. In 1b

we start out with a detailed encapsulated data structure but when we write the program we

use only the important information from the data structure that is relevant to the program.

Data structure information not relevant to this program, but to some other program, will be

ignored. In 2b we formulate the functionality referring only to data structure information

that is relevant for the functionality. In the following introductory example we use method

1a. In Chapter 4 and in later chapters, method 2b is used. Adaptive software is usually

developed following method 1b.

How can we characterize the object-oriented organization of programs? Using the data

to organize the programs is not su�cient to write programs in an object-oriented style. In

the object-oriented approach, a program is viewed as a model of reality. Reality consists of

physical and mental objects that are mapped directly into programs that are written in the

object-oriented style.

Di�erent objects can react di�erently to the same in
uence. For example, if we push a

stick that has been placed vertically, it will fall. If we give the same push to a thirty foot

high tree it will not move. The objects decide how to react to actions or requests. Program

objects that are used in object-oriented programming have the same property.

Object-oriented and adaptive programming are important software technologies. They

do not replace careful thinking during the design and programming process, but they lead,

if used properly, to a signi�cant simpli�cation of the development and maintenance of pro-

grams.

An object is either a physical object (e.g., a village) or an abstract object (e.g., a

mathematical expression (� 3 5)). In most programming languages that support object-

oriented programming, objects are organized into classes. A class de�nes the structure of

the objects that belong to the class.

The following class Village describes villages for a tourist o�ce application.

CLASS Village HAS PARTS

name : Text

inhabitantData : List(Inhabitant)

numberOfMuseums : DemNumber

OPTIONAL

swimmingPools : List(SwimmingPool);

OPTIONAL

neighbors : List(Settlement);

END CLASS Village.

A village has �ve parts for the purpose of this application. These parts are called: name,

inhabitantData, numberOfMuseums, swimmingPools and neighbors. The �rst three parts are

compulsory and the last two optional: they do not have to be given in every object of the

class.



20 CHAPTER 2. INTRODUCTION TO OBJECT-ORIENTED SOFTWARE

The parts themselves are de�ned by classes. For example, the name of a village is given

as an object of class Text. The data about the inhabitants is given as an object belonging to

class List(Inhabitant). The objects of the class List(Inhabitant) have objects of class Inhabitant

as their parts.

Instead of using the verbose notation shown in Fig. 2.3, we use either the graphical

notation in Fig. 2.1 or the more succinct notation in Fig. 2.2. Both �gures show the

notation used by the Demeter Method.1

name
Text

numberOfMuseums

Inhabitant_List SwimmingPool_List

inhabitantData swimmingPools neighbors

Village DemNumber

Settlement_List

Figure 2.1: Graphical class de�nition

Village =

<name> Text

<inhabitantData> List(Inhabitant)

<numberOfMuseums> DemNumber

[<swimmingPools> List(SwimmingPool)]

[<neighbors> List(Settlement)].

Figure 2.2: Textual class de�nition

A class can be used as a cookie cutter to cut an object. For example, we can use the

class Village to construct the village called Ebnat. We have to provide the information for

1Class dictionary graph graphical representation, page 431 (6). This is a reference to an instructional

objective in Chapter 14, the \nerve center" of the book. See also the explanation on page xxx.



21

the required parts of a village: the name, the data about the inhabitants, and the number

of museums.

Classes are organized hierarchically in object-oriented and adaptive programming. For

example, the class Village and the class Town have a common ancestor class that we call Set-

tlement. Villages and towns have many commonalities that are de�ned for class Settlement.

Fig. 2.3 shows class Settlement and its subclasses.

CLASS Settlement IS EITHER

Village OR Town

COMMON PARTS

name : Text

inhabitantData : List(Inhabitant)

numberOfMuseums : DemNumber

OPTIONAL

swimmingPools : List(SwimmingPool);

OPTIONAL

neighbors : List(Settlement);

END CLASS Settlement.

CLASS Village HAS PARTS

END CLASS Village.

CLASS Town HAS PARTS

universityData : List(University)

END CLASS Town.

Figure 2.3: Class settlement and subclasses

Class Town has all the parts of class Settlement and additionally a part called univer-

sityData. Class Village has only the parts of class Settlement. We still need to express

functionality speci�c to villages.

In this context object-oriented programming uses the concept of inheritance. We say

that the class Town and the class Village inherit from class Settlement. A descendant class

inherits the parts of the ancestor class. The values of the parts may be di�erent for each

object. The descendant classes also inherit all the operations of the ancestor class.

Instead of using the verbose notation shown in Fig. 2.3, we use either the graphical

notation in Fig. 2.4 or the more succinct notation in Fig. 2.5.

So far we have dealt with the structure of objects; that is, we considered their com-

position from parts. Now we focus on the functionality of objects. Objects can react to

requests. A request consists of a name that describes a command and a list of arguments.

An example of a request is (we may send such a request to a Town-object):

determine_neighbors_larger_than(7000)



22 CHAPTER 2. INTRODUCTION TO OBJECT-ORIENTED SOFTWARE

name

Text

Inhabitant_List SwimmingPool_List

swimmingPools neighbors

SettlementVillage Town

University_List

inhabitantData

universityData

numberOfMuseums

DemNumber

Settlement_List

Figure 2.4: Graphical alternation class de�nition

Settlement :

Village | Town

*common*

<name> Text

<inhabitantData> List(Inhabitant)

<numberOfMuseums> DemNumber

[<swimmingPools> List(SwimmingPool)]

[<neighbors> List(Settlement)].

Village = .

Town =

<universityData> List(University).

Figure 2.5: Textual alternation class de�nition



23

A request has a signature that de�nes all similar requests. A signature consists of a

function name, arguments with argument types and a return type. The signature of the

above request is

List(Settlement) // return type

determine_neighbors_larger_than(int NumberOfStudents)

To implement a signature, we need a set of collaborating classes. For the above signa-

ture, we need only class Settlement. The request determine neighbors larger than(7000) can

be sent to a settlement (e.g., Lexington), which is stored in the variable TownVariable. More

precisely, TownVariable is a pointer variable that points to a storage location containing the

Town-object.

TownVariable ->

determine_neighbors_larger_than(7000)

This invocation (written in C++ syntax) returns a list of settlements that are neighbors

of town Lexington and have more than 7000 inhabitants.

Objects are stored in the storage device of a computer. The parts of an object are often

not objects themselves, but pointers to other objects. Conversely, this means that an object

can be a part of several objects. For example, the objects Concord and Winchester contain

in their list of neighbors a pointer to the town Lexington. This means that Lexington is a

part of two di�erent objects.

Pointers to objects are not only stored in parts of objects, but also in so-called variables

that are needed for the computations. We have already seen an example: the variable

TownVariable. A variable can be viewed as a container that can store pointers to objects of

some class. For example, SettlementVariable is a variable that can store either a pointer to

a village or a town.

The invocation

SettlementVariable ->

determine_neighbors_larger_than(7000)

returns a list of settlements that are neighbors of the object to which SettlementVariable

points and that count over 7000 inhabitants. How the list is computed is independent of

whether a town or village is in the variable. We see here a big advantage of inheritance.

Functionality, which is useful for both towns and villages, has to be de�ned only once for

settlements.

Now we consider an example where the computation is di�erent for towns and villages.

We implement for class Settlement the operation with signature

Boolean Settlement::has_university_with_more_than (int NumberOfStudents)

This operation computes whether a settlement has a university with a certain number

of students. To implement this functionality, we need the collaboration of three classes:

besides Settlement, we also need Village and Town. For a village the computation is simple:

we always give the answer no since in our model (see the de�nitions of classes Village and

Town in Fig. 2.5) a village cannot have a university.



24 CHAPTER 2. INTRODUCTION TO OBJECT-ORIENTED SOFTWARE

Boolean Village::has_university_with_more_than (int NumberOfStudents)

{return False;}

For a town, the computation needs to request a service from universityData to determine

whether the town has a university with more than NumberOfStudents.

Boolean Town::has_university_with_more_than (int NumberOfStudents)

{return universityData ->

more_than(NumberOfStudents);}

Now we consider the invocation

SettlementVariable ->

has_university_with_more_than(10000)

This invocation �rst determines whether SettlementVariable contains a pointer to a town

or a village and depending on the answer, the code of the town or the village class is activated.

Here we see an important property of object-oriented programs: delayed operation

selection. A request of a service can activate one of several operations. The operation

selected depends on the value of the variable at run-time.

2.1 CONCEPTS

Object-oriented programming was made popular initially by the programming language

Smalltalk [GR83], developed at Xerox PARC, but the important concepts of object-oriented

programming were, however, already present in the programming language Simula 67 .

There are three major ideas in object-oriented programming.

1. Modularity, Information hiding : Objects de�ne programs. Each object is in relation

with other objects and has behavior associated with it. The relations with other

objects are often conveniently stored as local values. In some object-oriented systems,

objects are de�ned in terms of classes. A class de�nes the information that is stored

in the objects of that class as well as the operations, implemented as methods, that

de�ne behavior. Many object-oriented systems allow information hiding; that is,

the detailed low-level de�nitions may be hidden from the user of an object and are

only accessible to the implementor.

The software is organized around objects rather than operations. This usually leads

to a more stable software architecture since the object structure is usually more stable

than the functionality.

2. Method resolution, delayed method selection: Behavior is invoked by requesting a

service from an object. The request will activate one or several methods. Dynamic

method selection determines which method to activate at run-time, depending on

the object arguments that were given to the operation or depending on the object to

which the request was sent.



2.1. CONCEPTS 25

3. Sharing : An object can utilize behavior that appears in other already de�ned ob-

jects. There are two approaches to sharing: The class hierarchy approach and the

prototype approach. In the class hierarchy approach, object classes are organized in a

hierarchy to avoid duplication of information. Descriptions of objects may be inher-

ited from more general classes. Inheritance also opens the way to numerous method

combining techniques. In the prototype approach, an object can share information

with a prototype. Any object can serve as a prototype. To create an object that

shares information with a prototype, you construct an extension object containing a

list of prototypes and personal information idiosyncratic to the object. The notion of

sharing is critically associated with object-oriented programming.

Although these three notions seem straight-forward, their combination creates a pro-

gramming style that revolutionizes software development. Dynamic method selection

as well as sharing help to reduce the size of object-oriented programs.

The object-oriented programming style can be used in any programming language, even

in assembly language. Many languages support object-oriented programming directly.

For most of the object-oriented programming in this book we use the class hierarchy ap-

proach since it is the most appropriate for our applications. However the prototype approach

is superior in some cases, for example, for applications where the sharing relationships are

dynamically changing. An example of such an application is knowledge engineering with

learning. The learning is implemented by changing sharing relationships as well as adjusting

weight parameters.

This book promotes primarily the adaptive programming style with the object-oriented

programming style as a special case. Other approaches to programming are also important.

Functional programming

This style is supported by languages such as Scheme (a dialect of Lisp) and to some

degree by Common Lisp. In pure functional programming, functions are without

side e�ects, and they are treated as �rst class objects. This means that they can

be computed and passed around like numerical values. For example, a function can

be assigned to a variable or a function call may return a function, etc. Examples of

functional languages are Hope, FP, Haskell.

Constraint-based programming

This style is supported by languages such as Prolog or by algebraic speci�cation lan-

guages. Constraint-based programming promotes the point of view that a programmer

should specify only the constraints that the solution must satisfy. This relieves the

programmer from giving a detailed algorithm to �nd a solution. In this book we will

study constraint-based programming by discussing interpreters for subsets of Prolog.

Grammar-based programming

This style is supported by adaptive programming. Grammar-based programming pro-

motes the point of view that data structures are grammars. In grammar-based pro-

gramming, grammars are used not only to de�ne languages and corresponding parsers,

but also for de�ning all data structures. In this book we will make heavy use of the

grammar-based approach.



26 CHAPTER 2. INTRODUCTION TO OBJECT-ORIENTED SOFTWARE

The constraint-based and grammar-based styles are naturally combinable with the object-

oriented style. The theory of functional programming is used to better understand object-

oriented programming.

2.1.1 Abstractions

The way people deal with complexity is by abstraction. The goal of abstraction is to factor

out recurring patterns for later use. Abstraction hides details. Three abstractions that are

almost second nature to the way we think are

� an-instance-of abstraction

� a-subclass-of abstraction

� a-part-of abstraction (association)

We recognize certain properties as being true of all elephants, for instance. Therefore

we need not postulate those properties separately of each individual elephant. In our ter-

minology, each elephant is an-instance-of the class ELEPHANT, and therefore has four

legs, a tail, a trunk, etc. ELEPHANT is a-subclass-of ANIMAL and we can therefore

modularize our knowledge further. Those things that are true of all animals we need not

repeat speci�cally for lions, cats, dogs, etc. Finally, the left leg of an elephant is a-part-of

the elephant as a whole, so if the elephant moves to the other side of a river, we can assume

that his leg does also; we need not record separate position information, except relative

position information, for each piece of the elephant. In each case the abstractions have al-

lowed us to modularize and organize our knowledge, considerably simplifying the knowledge

representation.

Part-of abstractions are subdivided into associations (any kind of binary relationship

between two classes) and physical part-of relationships. For example, the owner of an

elephant is not a physical part of the elephant. However the leg is a physical part.

2.1.2 Classes, Methods, and Delayed Binding

We introduce object-oriented programming with a simple example that demonstrates the

main ideas. We demonstrate the concepts in a language-independent way using our own

notation.

Consider the following simple task: Given a box containing several objects, each one

having a weight, we need a program that returns the total weight of all the objects in the

box plus the weight of the box. When we write the operation for adding the weights, we do

not know what kind of objects may be in the box. In other words, we would like to write

the operation for adding the weights in a generic way that is independent of the classes of

the objects in the box. For every object in the box we need a mechanism to compute the

weight of the object. We do this by invoking a weight operation that takes an object as

an argument. This operation �rst determines the class of the object and, depending on the

class, it then calls the appropriate function to compute the weight. Such an operation is

called a generic or virtual operation. The weight computation may be individualized for

each class. Suppose our box contains a pencil and a sponge. Therefore we consider the

classes in Fig. 2.6 which shows an example of a class dictionary graph.



2.1. CONCEPTS 27

CLASS Object IS EITHER

Pencil Or Sponge

END CLASS Object.

CLASS Pencil HAS PARTS

weight : Weight

END CLASS Pencil.

CLASS Sponge HAS PARTS

waterWeight, spongeMaterialWeight : Weight

END CLASS Sponge.

CLASS Weight HAS PARTS

val : DemNumber

END CLASS Weight.

Object

Pencil Sponge

weight

Weight

spongeMaterialWeight

waterWeight

val

DemNumber

Figure 2.6: Class dictionary graph



28 CHAPTER 2. INTRODUCTION TO OBJECT-ORIENTED SOFTWARE

A class de�nes a type but not necessarily vice versa. The type concept is more general

than the class concept. We say that a variable is of class C if it can contain only objects

of class C. When a variable is of type T, where T is a type de�ned in some programming

language, the variable may contain only T values that are legal with respect to the program-

ming language. But those values might not behave like objects of a class. We maintain this

distinction between types and classes since we want to work with programming languages

that support both object-oriented and traditional programming.

To make programming easier, we use two kinds of classes: concrete classes, such as

Village and abstract classes, such as Settlement. An abstract class must have subclasses but

cannot directly create instances, whereas a concrete class must have instances but cannot

have subclasses. For example, concrete class Town is a subclass of abstract class Settlement

and Lexington is an instance of concrete class Town.

To talk about objects, we use the following synonymous statements interchangeably for

any class C:

� An object belongs to class C

� An object is a member of class C

Those statements can also be used for abstract classes. An object belongs to class C if it is

an instance of a concrete subclass of class C. The statement: \An object is an instance of

class C" can be used only when C is a concrete class.

We store the weight of the pencil inside of each object belonging to class Pencil. There-

fore, computing the weight of a pencil is easy: we return the value of the part variable

weight. As a synonym to part variable we use data member or instance variable or slot.

A class can have any number of part variables. They serve to store the local state of an

object. Each part variable has a type (which might be a class) that describes the set of values

or objects the part variable can contain. This type information is used for improving both

the reliability and e�ciency of the program. The type of a variable is �rst checked before

executing a program (static type checking) and, if necessary, during execution (dynamic

type checking).

A class can be considered as the direct product of the types of the part variables (ignoring

the methods). Each component of the direct product is named. In this context, an object

of a class is an element of the direct product given in the class de�nition. For example, the

class Sponge can be viewed as the direct product Weight � Weight. The �rst component is

called waterWeight and the second spongeMaterialWeight and an object is a pair, for example

(waterWeight = 20, spongeMaterialWeight = 5).

We use the following notation for attaching a method to the classes Pencil and Weight.

The weight is returned in a reference argument, assumed to be initialized with 0.

void Pencil::add_weight(int& w)

{weight -> add_weight(w);}

void Weight::add_weight(int& w)

{w = val + w;}

The class Sponge describes all sponges. In each instance of the class Sponge we store

separately the weight of the water in the sponge and the weight of the sponge material itself.

To compute the weight of the sponge, we have to add these two weights. Formally, we write:



2.1. CONCEPTS 29

void Sponge::add_weight(int& w)

{ waterWeight -> add_weight(w);

spongeMaterialWeight -> add_weight(w); }

In a compiled language such as C++, it is also necessary to de�ne an operation for class

Object.

void Object::add_weight(int& w) = 0 //pure virtual

The = 0 means that the implementation must be de�ned in subclasses, here in Pencil

and Sponge. The operation is said to be pure virtual or deferred.

Any of the weight methods we have de�ned can be called by the operation invocation

(function call) x -> add weight (...), where the value of variable x is either an object of the

Pencil class, the Sponge class, or the Weight class. x may be declared as a variable of class

Object. In this case, the function call will select either the code in class Pencil or in class

Sponge, depending on whether a Pencil-object or a Sponge-object is in x. add weight is called

a virtual function in C++.

Next we de�ne the class that represents all boxes. The local state of a box is a list of

all objects contained in the box, the box name, and the box weight.

Box =

<boxName> DemIdent

<boxWeight> Weight

<objects> List(Object).

Now it is easy to de�ne an operation that returns the sum of the weights of the pencils

and sponges contained in a box plus the weight of the box. We consider each object in the

list that is the value of the part objects, and we add up the weights.

void Box::add_weight(int& w)

{ boxWeight -> add_weight(w);

objects -> add_weight(w); }

void List(Object)::add_weight(int& w)

{ for each object in this

object -> add_weight(w);}

This implementation for class List(Object) is independent of sponges and pencils: It

works for any box that contains objects for which an add weight operation is de�ned. This

contrasts with procedural code where there would be a switch or case statement that checks

whether we have a pencil or a sponge. We have already achieved our goal of writing a

generic operation for adding up the weights of the objects in a box.

Notice how regular the preceding code is: we call the operation add weight for the

parts of every object. Later we will exploit this observation by generating most of this

code automatically.2 To achieve this code regularity, however, we had to give up our habit

of using operations which return a result! Instead we use an operation with a reference

argument. To make progress, we have to give up some old habits.

2Propagation pattern partial evaluation, page 448 (64).



30 CHAPTER 2. INTRODUCTION TO OBJECT-ORIENTED SOFTWARE

2.1.3 Overloading and Delayed Binding

Most programming languages provide overloading of operators and some languages even

allow the user to overload operators. Consider the following Pascal expressions: (1.0 + a)

and (1 + b) where a and b are of type integer. The two addition operations will activate

di�erent code: The �rst will activate a routine for adding real numbers and the second will

activate a routine for adding integers. In other words, the types of the arguments of the

addition operator will determine which routines to call.

In object-oriented languages such as C++, most functions may be overloaded. For

example, we may have two functions named f for the same class A.

void A::f(int& s){ ... }

int A::f(){ ... }

As in the Pascal case, the compiler will determine from the context of the arguments,

which f is intended. For example, a call a -> f(i) must be a call of the �rst f and int b = f()

must be a call of the second f.

Overloading of functions is a di�erent concept from virtual functions that delay the

binding of calls to code. In overloading, the types are used to disambiguate at compile-

time. But with virtual functions, the type of the object contained in a variable at run-time

will disambiguate. In both the overloading and virtual function cases, types are used to

disambiguate at compile-time or run-time, respectively.

2.1.4 Reduced Dependencies

The weight addition example demonstrates another important property of object-oriented

programming : modularity. Each class de�nes the local state of its objects and the methods

that operate on this data. This is a well proven technique that is also available in languages

that do not directly support object-oriented programming (e.g., modules in Modula-2 or

packages in Ada).

Modularity combined with delayed method selection yields a 
exible mechanism for

decoupling software. Consider two programmers who implement the above weight addition

program. One programmer is responsible for writing the code for class List(Object) and

the other for all the other classes. The two programmers do not have to agree on a list of

subclasses of Object that will be supported. In a straight-forward Pascal program for the

weight addition problem it would be necessary to communicate the list of subclasses, since

the programmer of the List(Object)-code would have to include the class information in a

case statement. Object-oriented programming makes it easier to make software pieces more

independent.

The object-oriented approach also makes it easier to update software. If we add another

class of box objects, we do not have to modify the existing software. We just have to add a

class de�nition and a weight method.

2.1.5 Sharing

Next we want to demonstrate the sharing aspects of object-oriented programming. We

assume that most objects in a box are unstructured and have an explicit part variable for

storing the weight. It would be inconvenient to have to de�ne the weight part as well as



2.1. CONCEPTS 31

a method for accessing it for each such object. Therefore we introduce a new class called

UnstructuredObject which has a part weight.

UnstructuredObject : // subclasses

*common* <weight> Weight.

We attach a method to this class that returns the value of the part weight.

void UnstructuredObject::add_weight(int& w)

{ weight -> add_weight(w);}

We inherit from this class in all object classes that are considered to be unstructured

objects. All the functionality that is de�ned for the UnstructuredObject class is also available

in the classes in which we inherit from UnstructuredObject. Speci�cally, in every class that

inherits from the class UnstructuredObject there will be a part called weight. Furthermore,

every class that inherits from the unstructured object class will know how to compute the

weight of an object of the class.

We rede�ne the Pencil class using inheritance

Pencil = .

UnstructuredObject : Pencil.

*common* <weight> Weight.

The �rst line means that Pencil has no immediate parts anymore. The second and third

lines mean that Pencil now inherits from class UnstructuredObject.

This notation is di�erent from conventional object-oriented notation. Inheritance rela-

tionships are usually expressed in the other direction, such as

CLASS Pencil HAS PARTS

INHERITS FROM CLASS UnstructuredObject;

END CLASS Pencil.

In other words, the normal notation lists the immediate superclasses for each class while

we list the subclasses for each superclass. Both notations convey the same information but

there are several advantages to our notation, such as the capability to de�ne application-

speci�c object languages (see Chapter 11). However, our notation does require that a

superclass be modi�ed when a subclass is added.

We call class Pencil a subclass of class UnstructuredObject. Every object of the Pencil

class will have its own part weight.

This is an appropriate point to introduce the concept of instantiation and to compare

it with the membership concept. An object is an instance of a class C if it has been created

with the instantiation function of the system using C as an argument. Such a function is

typically called new or make-instance. For an example of the use of new, see page 33.

Some object-oriented languages use factory objects or constructor functions for creating an

object. If an object is an instance of class C it belongs to class C but the opposite is not

necessarily true. For example, an instance of class Pencil belongs to class UnstructuredObject,

but it is not an instance of class UnstructuredObject. This class is viewed as an abstract class;



32 CHAPTER 2. INTRODUCTION TO OBJECT-ORIENTED SOFTWARE

that is, a class that cannot be instantiated. No object can be an instance of such a class; it

can only belong to that class.

The concept of inheritance allows an object to belong to several classes. For example,

an instance of class Pencil belongs to both the class Pencil and the class UnstructuredObject.

If we inherit a method m from some class but we don't want that method in the speci�c

subclass, it is possible to override the inherited method by de�ning a method with name m

attached to the subclass.

There are situations where we would like to inherit from several classes. Let's assume

that all the objects in a box also belong to a class called Contained. This class has a

part called contained in that allows us to store the containing object. The purpose of the

contained in variable is to point back to the box. If we have several objects distributed in

several boxes, we can use the contained in variable for �nding out in which box the object

resides. We assume that an object can be in at most one box.

Class Contained is de�ned by

Contained : //subclasses

*common* [<contained_in> Universal]. // anytype

From now on we assume that for each part an accessing method and a setting method

are automatically de�ned. For a part x the accessing method is also called get x and the

setting method is called set x. The setting method takes a second argument that de�nes

how the part is set. We inherit now from two classes in the de�nition of the Pencil class.

Pencil = .

UnstructuredObject : Pencil.

*common* <weight> Weight.

Contained : Pencil

*common* [<contained_in> Universal].

In ordinary object-oriented notation this would be written as

CLASS Pencil HAS PARTS

INHERITS FROM CLASSES

UnstructuredObject, Contained;

END CLASS Pencil.

The contained in variable will be set with the following code:

void Box::define_contained_in()

{ objects -> define_contained_in(this);}

void List(Object)::define_contained_in(Box* b)

{ for each object in this // not legal C++ code (pseudo code)

object -> set_contained_in(b);}

This example shows the concept of multiple inheritance, which is available in most

object-oriented programming languages.

The de�ne contained in method uses the variable this (some programming languages use

self instead of this). this is de�ned inside a method de�nition and its value is the object for

which the method is called.



2.2. EASE OF EVOLUTION 33

Operator DemIdent DemNumber Compound

code for code for code for

eval identi�ers numbers compound

expressions

Table 2.1: Objects and operations

2.1.6 Making Instances

Finally, we need a mechanism to build a box with some objects in it. We assume that we

have a generic operation new for creating an instance of a class. The �rst argument to new

is a class name that speci�es for which class to create an object. The remaining arguments

specify how to initialize the parts of the instance.

To set up a box containing two pencils with weight 10 and 12, a sponge with water

weight 20, and sponge material weight 5 we use the following assignment:

box_instance =

new Box("secret-box", // boxName

new Weight(new DemNumber(5)), // boxWeight

new List(Object) ( // objects

new Pencil(new Weight(new DemNumber(10))),

new Pencil(new Weight(new DemNumber(12))),

new Sponge

//waterWeight

(new Weight(new DemNumber(20))),

//spongeMaterialWeight

new Weight(new DemNumber(5))))

This assignment sets the value of the variable box instance to a speci�c instance of the

Box class.

The notation we have used in these examples attempts to stay as close as possible to

either the C++ notation or the notations used in the Demeter Method. But the concepts

presented are intended to be programming-language independent.

2.2 EASE OF EVOLUTION

As an example, consider the evaluation of simple pre�x expressions. For this example, a

pre�x expression is either an identi�er (e.g., speed), a number (e.g., 3), or a compound pre�x

expression (e.g., (� 7 9)). A compound pre�x expression consists of two pre�x expressions,

preceded by an operator that can be either multiplication or addition. In this simple example

we can identify �ve object classes: the class of identi�ers (DemIdent), the class of numbers

(DemNumber), the class of compound pre�x expressions (Compound), the class consisting

only of the multiplication symbol (MulSym), and the class consisting only of the addition

symbol (AddSym). The operation that we want to perform is evaluation (abbreviated eval).

Let's consider Table 2.1, \Objects and operations," which shows a table of three object

classes and one operation. In procedural programming we would write a one-argument

function for evaluation that would look like



34 CHAPTER 2. INTRODUCTION TO OBJECT-ORIENTED SOFTWARE

int eval(Exp* expression)

{switch (expression -> kind())

case DemIdent: ...

case DemNumber: ...

case Compound: ... }

This function contains a conditional statement to distinguish between the three possi-

ble types of the argument. In other words, in procedural programming the objects versus

operations table is encoded into one function. This contrasts with object-oriented program-

ming where the objects and operations table is encoded into several functions. With the

DemNumber class, for example, we will de�ne a method eval, which de�nes how a number is

evaluated. A key di�erence between procedural and object-oriented programming is that in

object-oriented programming the code is broken into smaller pieces. In the above example

we get three small pieces of code in the object-oriented version and one bigger piece in the

procedural approach.

The delayed method selection mechanism of object-oriented programming allows the

implementation of generic operations. Consider the problem of evaluating a compound

pre�x expression. We want to write this evaluation method in a generic way so that it

will work for expressions independent of the operator involved. Therefore we store the

evaluation instructions with the operator. The evaluation method for the class of compound

pre�x expressions will then simply request the operator to evaluate. If we want to add more

operators later on (e.g., division) we only have to provide an additional method for the

division operator. In procedural programming we would have to perform procedure surgery

to add an additional operator.

2.3 TERMINOLOGY

Since the area of object-oriented programming draws on three �elds (Programming Lan-

guages, Arti�cial Intelligence, and Databases), a large number of synonyms are used. Here

we give some of the (approximate) synonyms and some of their sources. OMG stands for

Object Management Group. We adopt some of their terminology.

� Collections of persistent data: knowledge base, database, object base.

� Collections of classes: schema (database), concept map (AI), concept hierarchy (AI),

class dictionary, class hierarchy.

� For collections of related objects: class (Simula, Smalltalk, C++, CLOS, Ei�el), struc-

ture (C++)), 
avor (Flavors), concept (AI), entity set.

� For naming the parts: instance variable (Smalltalk, Flavors), slot (CLOS, frame-

based systems), feature (Ei�el), data member (C++), role (KL-ONE), part (Demeter),

attribute (OMG), local state variable.

� For functionality pieces: method (Smalltalk, Flavors, CLOS, OMG), member function

or friend function (C++), routine (Ei�el), operation (OMG).

� For functionality groups: message (Smalltalk, Ei�el), virtual function (C++), generic

function (CLOS, New Flavors).



2.4. CONVENTIONS 35

� For making instances: instantiation function (Flavors, CLOS), constructor function

(C++), factory class message (Objective-C), class message (Smalltalk).

� For guaranteeing the existence of functionality at lower levels (in statically typed

systems): deferred routine (Ei�el), pure virtual member function (C++).

� Class variable (Smalltalk, Objective-C), shared slot (CLOS), static data member

(C++).

� Entity, object, class instance.

� Is-a link (semantic networks), inheritance link.

� Class A is a derived class of base class B (C++), class A is a subclass class of class B

(Smalltalk), class A inherits from class B (Flavors).

2.4 CONVENTIONS

Adaptive software is based on the concepts of propagation patterns and sentences that are

both customized by class dictionaries. A terminology and a set of symbols are needed

to explain the concepts of propagation patterns, class dictionaries, and sentences. The

terminology is summarized in the glossary chapter.

We use the following conventions throughout the book:

� Verbatim and sanserif fonts are used to represent programming and design notations.

For example, a class de�nition is given by

Company = <divisions> List(Division).

If we refer to the above class in the text, we use sanserif font: \A Company-object

consists of one part ... " which looks similar to verbatim font.

� Italics font is used for emphasis and for mathematical symbols.

For example: \A propagation directive consists of a triple (F; c; T ), where F and

T are class-valued variables ..." Here, F; c, and T are in italics since they are mathe-

matical symbols for sets.

� Boldface font is used for newly de�ned terms.

For example: \A propagation directive consists of ..."

The comment character in design and programming notations as well as in sentences is

// (borrowed from C++). The comment starts with // and goes to the end of the line.



36 CHAPTER 2. INTRODUCTION TO OBJECT-ORIENTED SOFTWARE

2.4.1 Symbol Usage

In naming design objects such as class dictionaries and propagation patterns, we try to use

symbols consistently as shown in Fig. 2.7. Consistent symbol use allows you to recognize

an object by its symbol only. The primary columns indicate which symbols are used in the

Demeter theory. They are typically greek symbols. The book primarily uses symbols in the

secondary columns since we don't want to burden you with Greek symbols. The �rst letter

in the two single columns indicates the main designation (e.g., a class dictionary graph's

main designation is G).

Demeter Terminology

Object Primary Secondary

Class dictionary �;� D, E

Class dictionary graph �;	 G, H

Semi-class dictionary graph �;� S, T

Class dictionary graph slice �;� P, Q

Graph vertices v, w, u, x, y as primary

Graph edges e, d as primary

Set of labels �

Particular labels l, k as primary

Propagation pattern pp,p,q as primary

Propagation directive d,e as primary

Object graph 
;� O, N, I

Object identi�ers i, j as primary

Object graph vertices o, p, m, n as primary

Figure 2.7: Symbol use

2.5 EXERCISES

You are encouraged to follow the exercises in the self-study guide in Chapter 17.

Exercise 2.1 Consider the following speci�cation: Given an A-object, print all C-objects

that are contained in the A-object, and for each such C-object, print all E-objects contained

in the C-object (and A-object).

A B-object is contained in an A-object if the B-object can be reached from the root of

the A-object following zero or more part-of relationships.

Do the following:

� For each of the following programs (Program 1 and Program 2), give an example of

an input for which they fail to meet the speci�cation above.



2.5. EXERCISES 37

� Then correct each program by making minimal changes.

� Can you identify a generic reason for the failure of program 2? Can you give a property

which the speci�cation must satisfy with respect to the class structure so that this

kind of failure cannot happen?

The programming language which we use here supports dynamic binding, overloading

and inheritance. Functions attached to superclasses are assumed to be dynamically bound.

The methods f below are supposed to implement the above speci�cation. A::f means

that method f is attached to class A. a->f() is a call of function f for variable a.

Note: Program 1 is harder to repair than program 2. You might want to do �rst program

2.

� Program 1:

Class structure:

A HAS PART <b : B> .

B HAS PARTS <c : C> <e : E>.

C HAS PART <c1 : C1>.

C1 HAS SUBCLASSES D AND A.

E HAS NO PARTS.

D HAS NO PARTS.

Methods:

void A::f( )

{ get_b()->f( ); }

void B::f( )

{ get_c()->f( );

get_e()->f( ); }

void C::f( )

{ print(); get_c1()->f( ); }

void C1::f( )

{ }

void E::f( )

{ print(); }

� Program 2:

Class structure:



38 CHAPTER 2. INTRODUCTION TO OBJECT-ORIENTED SOFTWARE

A HAS PART <b2 : B2>.

B2 HAS PART <x : X>.

X HAS SUBCLASSES C AND F.

F HAS SUBCLASS E.

C HAS PART <e : E>.

E HAS NO PARTS.

Methods:

void A::f( )

{ get_b2()->f( ); }

void B2::f( )

{ get_x()->f( ); }

void X::f( )

{ }

void C::f( )

{ print(); get_e()->f( );}

void E::f( )

{ print(); }

This question shows some of the pitfalls awaiting object-oriented programmers: Both

programs are the \obvious" solution to the above speci�cation, but unfortunately, they are

both wrong.

2.6 BIBLIOGRAPHIC REMARKS

� Object-oriented programming: Object-oriented programming is promoted and sup-

ported by Simula-67 [DMN70], Smalltalk-80 [GR83], Flavors [Moo86], Objective-C

[Cox86], C++ [Str86], CLOS [BMG+88], Ei�el [Mey88], and many other languages.

The implementation of the Demeter Tools/C++ is written in its own technology, pri-

marily with propagation patterns, and generates C++ code [LHSX92]. An earlier

prototype implementation used Flavors and an extension of Lisp [Lie88, LR88b].

Here is a list of programming languages that support the object-oriented paradigm.

The list is far from exhaustive.

class hierarchy approach

Smalltalk [GR83], Flavors [Moo86], Objective-C [Cox86], Loops, C++ [Str94],

OBJVLISP [BC86], CLOS [BDG+88].

prototype approach

Self [US87], Actors [HB77, Agh86], T [Rees (1985)].



2.6. BIBLIOGRAPHIC REMARKS 39

combined class hierarchy and prototype approach

NewtonScript by Apple Computer [Evi94], Exemplars [LTP86, LaL89].

Some of the important approaches to object-oriented programming are discussed in

[Weg87].

� Metaphors: The \growing" metaphor was used by [Mil71],[Bro87]. The GARDEN

system developed at Brown by Reiss [Rei87] also uses the gardening metaphor.



Chapter 3

From C++ to Demeter

In this introduction we give an example that demonstrates some of the advantages of adap-

tive object-oriented software over C++ software. This chapter is hands-on and both design

and programming oriented to show you how adaptive software is softer than ordinary soft-

ware. The general principles behind adaptive software are explained in Chapter 4.

We are going to introduce a notation to describe C++ programs. This notation is an

extension of C++ with a small language to describe object-oriented designs. The design

notation has two components: a behavioral component and a structural component. The

behavioral design notation describes only incomplete C++ programs since it is a design

notation. The same is true for the structural design notation: it describes only incomplete

C++ programs. A very nice property of our design notation is that a behavioral design can

be completed with a structural design to form an executable C++ program.

A behavioral design outlines how the object-oriented program should be built when a

completing structural design is presented. Of course, the behavioral design has to make some

assumption about the completing structural design, but usually in�nitely many structural

designs can complete a behavioral design. The completion mechanism will be demonstrated

with several examples in this chapter.

To introduce adaptive software quickly, we rely on your knowledge of C++. We assume

that you have the following knowledge about a small subset of C++:

� Class de�nitions with public and private members (both data and function).

A class de�nition has the form (// is the comment character)

class ClassName : public SuperClass {

private:

// members

public:

// members

}

The superclass part exists only if there is a superclass.

40



41

Data members are used to describe the local state of objects. They should all be

private to encapsulate the data. A data member has either the form

ClassName* dataMemberName;

or

CType dataMemberName;

CType is any C type that is not a class, like long, int, 
oat, etc.

Since all data members are private, usually member functions manipulate the data

members.

� Member function declarations, sometimes called signatures, have the form

ClassName* functionName(A* a1, A*& a2, Ctype i1, Ctype& i2 ...)

CType functionName(A* a1, A*& a2, Ctype i1, Ctype& i2, ...)

where A is some class name. A* a1 declares a pointer argument and A*& a1 declares

a reference parameter that is a pointer. The actual parameter must be some l-value

that may be assigned a new pointer during execution of the function. Ctype& declares

a reference parameter of some C type.

� Constructors

They are a special kind of member function. The name of the function is the same as

the class name. The syntax of a constructor signature is

ClassName(Argument* arg, Ctype i, ...);

Constructors are used to allocate objects in the free store with

new ClassName(actualArgument1, ...)

� Function calls, polymorphism

Often objects are put on the free store and allocated with new. In this case, functions

are called with the syntax

variableName -> functionName(actualArgument1, ...);

If the function is a virtual function, the decision regarding which function to call will

be made at run-time, depending on what kind of object is contained in the variable.



42 CHAPTER 3. FROM C++ TO DEMETER

3.1 C++ PROGRAM

We �rst write a C++ program for the following simple problem before we develop an

adaptive program for the same problem. We are given a conglomerate of companies and we

have to compute the total salary paid by the entire conglomerate. The goal of this chapter

is only to demonstrate how adaptive object-oriented programming improves object-oriented

programming. The C++ programs and the corresponding adaptive programs are shown

without explaining them in full detail.

When we write an object-oriented program, we rarely start from scratch. Often we use

common classes like List, Ident, String from a class library. In the following we give a fairly

complete C++ program, which only references an external class library for input-output.

To implement the salary addition, we de�ne a class Conglomerate that de�nes the struc-

ture of conglomerate objects. A speci�c conglomerate of companies will be an object of class

Conglomerate. Any number of conglomerates can be created at run-time from class Con-

glomerate. The Conglomerate class needs an important helper class for keeping track of the

salaries: class Salary. A Conglomerate object will contain many Salary-objects representing

the salaries paid by the conglomerate. Adding together all salaries should be a very simple

task: We have to �nd all the Salary-objects contained in a given Conglomerate-object and

add them together.

First we need to organize the classes. Suppose we use the list of classes that are itemized

at the beginning of �le totalSalary.h below. As a �rst guess, let's structure the classes as

shown in the remaining part of totalSalary.h. We decided to represent lists as recursive

structures like in Lisp and similar languages. Later in the chapter we will use an iterative

structure instead. The iterative structure is usually preferred by C++ programmers; it uses

fewer classes.

The structure is summarized in Fig. 3.1 using adaptive software terminology.1 We

call such a �gure a class dictionary, and its purpose is to describe object structure. The

�gure uses two kinds of classes: construction classes (drawn as 2 ) which are used to

instantiate objects with a �xed number of parts, and alternation classes (drawn as )

which are abstract classes. The �gure uses two kinds of edges: alternation edges (drawn as

=) ) represent kind-of relations, and construction edges (drawn as �! and with labels)

represent has-a relations. Construction edges represent references to other objects and

those references can have many di�erent interpretations. It could mean a physical part-of

reference, also called an aggregation relationship.

For example, the alternation edge O�cer=) ShareHolding O�cer means that class Of-

�cer is a super class of class ShareHolding O�cer; the construction edge Conglomeratehead�!

Company means that class Conglomerate has a data member called head of type Company.

Figure 3.1 de�nes classes whose objects have the following properties. A Conglomerate-

object has a name and consists of a Company-object. A Company-object optionally contains

a list of Subsidiary-objects and it contains a list of O�cer-objects and has a name, a location,

and a turnover. A Subsidiary-object is either an instance of WhollyOwned or an instance of

PartiallyOwned and contains a Company-object. An O�cer-object is either an instance of

ShareHolding O�cer or of Ordinary O�cer.

1Class dictionary graph graphical representation, page 431 (6). This is a reference to an instructional

objective in Chapter 14, the \nerve center" of the book. See also the explanation on page xxx.



3.1. C++ PROGRAM 43

Conglomerate

Company

Address

Officer

Subsidiary

WhollyOwned PartiallyOwned

Salary

name head

state country

location

name turnover

street

city title

company

subsidiaries

officers

stake

salary
DemString

DemIdent

DemNumber

Ordinary_Officer ShareHolding_Officer

Officer_List

Subsidiary_List

v

share_percentage

Officer_Empty

Officer_NonEmpty

first

rest

first

Subsidiary_Empty
Subsidiary_NonEmpty

rest

name

Figure 3.1: Conglomerate class dictionary: A view of the C++ program



44 CHAPTER 3. FROM C++ TO DEMETER

If we write the salary computation program directly in C++, a natural solution is to

�rst write member functions, all called say add salary , for the following classes to specify

a traversal: Conglomerate, Subsidiary, Company, O�cer, Salary, O�cer List, Subsidiary List,

O�cer NonEmpty, Subsidiary NonEmpty.

We need to write traversal code to �nd all Salary-objects contained in the Conglomerate-

object. If one chooses to call a behavior at the bottom of a composite Conglomerate-object,

many objects in the Conglomerate-object must have a behavior that passes-the-call down

one level. This sequence of behaviors is absolutely dependent on the existing class structure,

and any changes to the class structure require that this sequence be examined, and possibly

modi�ed.

As we show in this chapter, adaptive software can express such passes-the-call behaviors

without listing all the participating classes. Instead, the behaviors are written in compact

traversal speci�cation with necessary code fragments added. As a class structure is given,

all the pass-the-call behaviors are generated automatically for all classes for which they

are required, and the code for the desired behavior is inserted in the bottom class and in

important classes in between. In other words, methods are being attached to classes during

adaptive software interpretation in a context of a class structure. The important observation

is that object behaviors coded as adaptive software are not speci�cally attached, at coding

time, to any class. Since the pass-the-call behaviors are generated automatically, they are

somewhat insensitive to changes in the class structure.

With this preview of what adaptive software is, let's return to the concrete C++ pro-

gram. The traversal code that a person would write is shown in Fig. 3.2. The member

function of Conglomerate invokes the member function of Company through data member

head. The member function of Company invokes the member function of O�cer List through

data member o�cers. It also checks if the company has subsidiaries and if it does, it in-

vokes the member function of Subsidiary List through data member subsidiaries. The member

function of Subsidiary List is empty. The member function of Subsidiary NonEmpty invokes

the member function of Subsidiary through data member �rst and the member function of

Subsidiary List through data member rest. The member function of Subsidiary invokes the

member function of Company through data member company. WhollyOwned and Partially-

Owned will inherit their behavior from class Subsidiary. The traversal code continues in this

form until we reach class Salary.

Note that Address-objects need not be traversed since they don't contain Salary-objects.

The traversal program in Fig. 3.2 visits all the Salary-objects contained in a Conglomerate-

object and therefore almost solves the problem.

Some C++ programmers would write the above traversal code slightly di�erently, as

shown in the traversal part of �le totalSalary.C on page 51. But the code is essentially the

same and has the same e�ciency.

The complete C++ solution to the Salary addition problem is given in two parts. Part

1 is an interface �le (totalSalary.h) that de�nes the interface of classes such as Conglomerate

and Salary. Part 2 actually implements the functions that have been announced by the

interface. The implementation �le is called totalSalary.C. An alternative way to organize the

program would be to use two �les for each class. We �rst show the interface �le, sometimes

called a header �le.



3.1. C++ PROGRAM 45

long Conglomerate::add_salary( )

{ long return_val ;

this->add_salary_( return_val );

return return_val; }

void Conglomerate::add_salary_( long& return_val )

{ head->add_salary_( return_val ); }

void Subsidiary::add_salary_( long& return_val )

{ company->add_salary_( return_val ); }

void Company::add_salary_( long& return_val )

{ officers->add_salary_( return_val );

if ( subsidiaries != NULL )

{ subsidiaries->add_salary_( return_val ); } }

void Officer::add_salary_( long& return_val )

{ salary->add_salary_( return_val ); }

void Salary::add_salary_( long& return_val ) { }

void Officer_List::add_salary_( long& return_val ) { }

void Subsidiary_List::add_salary_( long& return_val ) { }

void Officer_NonEmpty::add_salary_( long& return_val )

{ first->add_salary_( return_val );

rest->add_salary_( return_val ); }

void Subsidiary_NonEmpty::add_salary_( long& return_val )

{ first->add_salary_( return_val );

rest->add_salary_( return_val ); }

Figure 3.2: Traversal code for salary addition



46 CHAPTER 3. FROM C++ TO DEMETER

-----------------------------------------------------------

// File totalSalary.h

// This is the header file for totalSalary.C

// Class Declarations.

class Conglomerate;

class Subsidiary;

class WhollyOwned;

class PartiallyOwned;

class Company;

class Address;

class Officer;

class Salary;

class Shareholding_Officer;

class Ordinary_Officer;

class Officer_List;

class Subsidiary_List;

class Officer_Empty;

class Officer_NonEmpty;

class Subsidiary_Empty;

class Subsidiary_NonEmpty;

class DemString;

class DemIdent;

class DemNumber;

The following class de�nitions specify the relationships between the classes. For ex-

ample, class Subsidiary inherits from class PartiallyOwned. And class Company and Sub-

sidiary List are in direct relationship through the binary relation subsidiaries.

-----------------------------------------------------------

// File totalSalary.h continued

// Class definitions

class DemString {

public:

// Constructor

DemString(char *s);

private:

char *val; };

class DemIdent {

public:

// Constructor

DemIdent(char *s);

private:

char *val; };



3.1. C++ PROGRAM 47

class DemNumber {

public:

// Constructor

DemNumber(long n) { val = n; }

// Member function

long evaluate(void) { return val; }

private:

long val; };

class Conglomerate {

public:

// Constructor

Conglomerate(DemIdent *n, Company *c) { name = n; head = c; }

// Member function add_salary()

long add_salary(void);

private:

DemIdent *name;

Company *head; };

class Subsidiary {

public:

// Member functions

virtual long add_salary(void);

void set_company(Company* c) {company = c;}

private:

// common parts of class Subsidiary

Company *company; };

class WhollyOwned : public Subsidiary {

public:

WhollyOwned(Company* c)

{this -> set_company(c);} };

class PartiallyOwned : public Subsidiary {

public:

// Constructor

PartiallyOwned(Company* c, DemNumber *n)

{ this -> set_company(c); stake = n; }

private:

DemNumber *stake; };

class Company {

public:

// Constructor



48 CHAPTER 3. FROM C++ TO DEMETER

Company(DemString *s1, Address *a,

DemString *s2, Officer_List *ol,

Subsidiary_List *sl)

{ name = s1; location = a; turnover = s2;

officers = ol; subsidiaries = sl;

}

// Member function add_salary()

long add_salary(void);

private:

DemString *name;

Address *location;

DemString *turnover;

Officer_List *officers;

Subsidiary_List *subsidiaries; };

class Address {

public:

// Constructor

Address(DemString *s1, DemString *s2,

DemIdent *i1, DemIdent *i2)

{ street = s1; city = s2; state = i1; country = i2; }

private:

DemString *street;

DemString *city;

DemIdent *state;

DemIdent *country; };

class Officer {

public:

// Member functions

virtual long add_salary(void);

void set_name(DemString* n) {name = n;}

void set_title(DemString* t) {title = t;}

void set_salary(Salary* s) {salary = s;}

private:

// common parts of class Officer

DemString *name;

DemString *title;

Salary *salary; };

class Shareholding_Officer : public Officer {

public:

// Constructor

Shareholding_Officer(DemNumber* num, DemString* n,

DemString* t, Salary* s)



3.1. C++ PROGRAM 49

{ share_percentage = num;

this->set_name(n); this->set_title(t);

this->set_salary(s);}

private:

DemNumber *share_percentage; };

class Ordinary_Officer : public Officer {

public:

// Member function

Ordinary_Officer(DemString* n, DemString* t, Salary* s)

{ this->set_name(n); this->set_title(t);

this->set_salary(s);} };

class Salary {

public:

// Constructor

Salary(DemNumber *n) { v = n; }

// Member function add_salary()

long add_salary(void);

private:

DemNumber *v; };

class Officer_List {

public:

// Virtual function add_salary()

virtual long add_salary(void) = 0; };

class Officer_Empty : public Officer_List {

public:

// Member function add_salary()

long add_salary(void); };

class Officer_NonEmpty : public Officer_List {

public:

// Constructor

Officer_NonEmpty(Officer *f, Officer_List *r)

{ first = f; rest = r; }

// Member function

long add_salary(void);

private:

Officer *first;

Officer_List *rest; };

class Subsidiary_List {

public:



50 CHAPTER 3. FROM C++ TO DEMETER

// Virtual function add_salary()

virtual long add_salary(void) = 0; };

class Subsidiary_Empty : public Subsidiary_List {

public:

// Member function

long add_salary(void); };

class Subsidiary_NonEmpty : public Subsidiary_List {

public:

// Constructor

Subsidiary_NonEmpty(Subsidiary *f, Subsidiary_List *r)

{ first = f; rest = r;}

// Member function add_salary()

long add_salary(void);

private:

Subsidiary *first;

Subsidiary_List *rest; };

The implementation �le totalSalary.C follows next.

-----------------------------------------------------------

// File totalSalary.C

// This program computes the total

// salaries in a conglomerate.

#include <iostream.h>

#include <string.h>

#include "Salary.h"

// define remaining constructors

DemString::DemString( char* val_in )

{ // Copy the string to val of DemString object.

if( val_in )

{

this->val = new char[strlen( val_in ) + 1];

strcpy( this->val,val_in );

}

else

this->val = NULL; }

DemIdent::DemIdent( char* val_in )



3.1. C++ PROGRAM 51

{ // Copy the string to val of DemIdent object.

if( val_in )

{

this->val = new char[strlen( val_in ) + 1];

strcpy( this->val,val_in );

}

else

this->val = NULL; }

Next is the traversal part of the C++ program.

-----------------------------------------------------------

// File totalSalary.C continued

long Conglomerate::add_salary(void)

{ long total;

// Compute the total salary for Conglomerate

// class by adding all salaries in

// the head company.

total = head->add_salary();

return total; }

long Subsidiary::add_salary(void)

{ long total;

// Compute the total salary for Subsidiary

// by adding all salaries of all the

// subsidiary companies.

total = company->add_salary();

return total; }

long Company::add_salary(void)

{ long total;

// Compute the total salary for Company

// by adding the sum of salaries of

// all the officers and subsidiaries.

if (subsidiaries != NULL)

total = officers->add_salary() +

subsidiaries->add_salary();

else

total = officers->add_salary();

return total; }

long Officer::add_salary(void)

{ long total;

// Compute salary of officer.

total = salary->add_salary();

return total; }



52 CHAPTER 3. FROM C++ TO DEMETER

long Salary::add_salary(void)

{ long total;

// Return salary.

total = v->evaluate(); }

return total; }

long Officer_Empty::add_salary(void)

{ // Total salaries of Officer_Empty is 0.

return 0; }

long Officer_NonEmpty::add_salary(void)

{ long total;

// Compute salary of all the officers.

total = first->add_salary() + rest->add_salary();

return total; }

long Subsidiary_Empty::add_salary(void)

{ return 0; }

long Subsidiary_NonEmpty::add_salary(void)

{ long total;

// Compute salary of subsidiaries.

total = first->add_salary() + rest->add_salary();

return total; }

Next comes the object construction part of the C++ program. An English description

of the same information is in Fig. 3.4.

-----------------------------------------------------------

// File totalSalary.C continued

// Main Function

main ()

{

DemIdent* iDemIdent1 = new DemIdent( "TransGlobal" );

DemString* iDemString2 = new DemString( "TransGlobal Illumination" );

DemString* iDemString3 = new DemString( "23 Rue du Lac" );

DemString* iDemString4 = new DemString( "Geneva" );

DemIdent* iDemIdent5 = new DemIdent( "GE" );

DemIdent* iDemIdent6 = new DemIdent( "Switzerland" );

Address* iAddress7 =

new Address( iDemString3,iDemString4,iDemIdent5,iDemIdent6 );

DemString* iDemString8 = new DemString( "4bn" );

DemNumber* iDemNumber9 = new DemNumber( 60 );

DemString* iDemString11 = new DemString( "Karl Soller" );

DemString* iDemString12 =



3.1. C++ PROGRAM 53

new DemString( "Chief Executive Officer and President" );

DemNumber* iDemNumber13 = new DemNumber( 200000 );

Salary* iSalary14 = new Salary( iDemNumber13 );

Shareholding_Officer* iShareholding_Officer10 =

new Shareholding_Officer(

iDemNumber9,

iDemString11,

iDemString12,

iSalary14);

DemNumber* iDemNumber15 = new DemNumber( 30 );

DemString* iDemString17 = new DemString( "Jim Miller" );

DemString* iDemString18 = new DemString( "Chief Financial Officer" );

DemNumber* iDemNumber19 = new DemNumber( 150000 );

Salary* iSalary20 = new Salary( iDemNumber19 );

Shareholding_Officer* iShareholding_Officer16 =

new Shareholding_Officer(

iDemNumber15,

iDemString17,

iDemString18,

iSalary20);

DemString* iDemString22 = new DemString( "Guy Jenny" );

DemString* iDemString23 = new DemString( "Secretary" );

DemNumber* iDemNumber24 = new DemNumber( 100000 );

Salary* iSalary25 = new Salary( iDemNumber24 );

Ordinary_Officer* iOrdinary_Officer21 =

new Ordinary_Officer(

iDemString22,

iDemString23,

iSalary25);

Officer_Empty* iOfficer_Empty26 = new Officer_Empty( );

Officer_NonEmpty* iOfficer_NonEmpty27 =

new Officer_NonEmpty( iOrdinary_Officer21,iOfficer_Empty26 );

Officer_NonEmpty* iOfficer_NonEmpty28 =

new Officer_NonEmpty( iShareholding_Officer16,iOfficer_NonEmpty27 );

Officer_NonEmpty* iOfficer_NonEmpty29 =

new Officer_NonEmpty( iShareholding_Officer10,iOfficer_NonEmpty28 );

DemString* iDemString31 = new DemString( "TransGlobal Adventures" );

DemString* iDemString32 = new DemString( "12 Borisinsky Way" );

DemString* iDemString33 = new DemString( "Moscow" );

DemIdent* iDemIdent34 = new DemIdent( "Russia" );

DemIdent* iDemIdent35 = new DemIdent( "USSR" );

Address* iAddress36 =

new Address( iDemString32,iDemString33,iDemIdent34,iDemIdent35 );

DemString* iDemString37 = new DemString( "2bn" );

DemNumber* iDemNumber38 = new DemNumber( 80 );



54 CHAPTER 3. FROM C++ TO DEMETER

DemString* iDemString40 = new DemString( "Boris Kasparov" );

DemString* iDemString41 = new DemString( "Chief Executive Officer" );

DemNumber* iDemNumber42 = new DemNumber( 200000 );

Salary* iSalary43 = new Salary( iDemNumber42 );

Shareholding_Officer* iShareholding_Officer39 =

new Shareholding_Officer(

iDemNumber38,

iDemString40,

iDemString41,

iSalary43);

DemNumber* iDemNumber44 = new DemNumber( 5 );

DemString* iDemString46 = new DemString( "Ivan Spassky" );

DemString* iDemString47 = new DemString( "President" );

DemNumber* iDemNumber48 = new DemNumber( 150000 );

Salary* iSalary49 = new Salary( iDemNumber48 );

Shareholding_Officer* iShareholding_Officer45 =

new Shareholding_Officer(

iDemNumber44,

iDemString46,

iDemString47,

iSalary49);

DemString* iDemString51 = new DemString( "Georg Giezendanner" );

DemString* iDemString52 = new DemString( "Secretary" );

DemNumber* iDemNumber53 = new DemNumber( 100000 );

Salary* iSalary54 = new Salary( iDemNumber53 );

Ordinary_Officer* iOrdinary_Officer50 =

new Ordinary_Officer(

iDemString51, iDemString52, iSalary54);

Officer_Empty* iOfficer_Empty55 = new Officer_Empty( );

Officer_NonEmpty* iOfficer_NonEmpty56 =

new Officer_NonEmpty( iOrdinary_Officer50,iOfficer_Empty55 );

Officer_NonEmpty* iOfficer_NonEmpty57 =

new Officer_NonEmpty( iShareholding_Officer45,iOfficer_NonEmpty56 );

Officer_NonEmpty* iOfficer_NonEmpty58 =

new Officer_NonEmpty( iShareholding_Officer39,iOfficer_NonEmpty57 );

Company* iCompany59 =

new Company( iDemString31,iAddress36,iDemString37,

iOfficer_NonEmpty58,NULL );

WhollyOwned* iWhollyOwned30 = new WhollyOwned(iCompany59);

Subsidiary_Empty* iSubsidiary_Empty60 = new Subsidiary_Empty( );

Subsidiary_NonEmpty* iSubsidiary_NonEmpty61 =

new Subsidiary_NonEmpty( iWhollyOwned30,iSubsidiary_Empty60 );

Company* iCompany62 =

new Company( iDemString2,iAddress7,iDemString8,

iOfficer_NonEmpty29,iSubsidiary_NonEmpty61 );



3.2. ADAPTIVE PROGRAM 55

Conglomerate* iConglomerate63 =

new Conglomerate( iDemIdent1,iCompany62 );

cout << "Total salary = " << iConglomerate63->add_salary() << endl;

}

3.2 ADAPTIVE PROGRAM

Why is the C++ solution so long? There are several reasons, but here we focus only on

the most important one. The C++ program contains signi�cant redundancy which makes

this program inherently rigid and not reusable. This issue shows up in most object-oriented

programs making them rigid and not reusable. (But they are better than nonobject-oriented

programs regarding reusability!)

Let's do the followingGedankenexperiment. Suppose you are given only the implementa-

tion �le totalSalary.C. What can you learn about the interface �le? Well, the implementation

�le tells a lot about how conglomerates are organized. From the add salary implementation

we learn that there is a head company that has subsidiary companies and that a company

has o�cers who are paid a salary. We don't learn the full story about the conglomerates

from the add salary implementation, but we learn a lot. When we look at the part of the

implementation �le that builds a conglomerate object through constructor calls, we learn

even more about the structure of conglomerate objects.

Adaptive software eliminates the redundancy present in the C++ program by telling

the story about the structure and appearance of Conglomerate-objects only once in the class

dictionary in Fig. 3.1, which we explained on page 42. The corresponding textual form of

the class dictionary follows, sprinkled with some comments that explain the notation.2 The

complete notation is explained in detail in Chapters 6 and 11.

Conglomerate = // construction class

"Conglomerate" ":" // for external representation

<name> DemIdent // data member "name" of class DemIdent

"Head Office" ":"

<head> Company . // data member "head" of class Company

Subsidiary : // Alternation class

WholyOwned | // subclass

PartiallyOwned // subclass

*common* <company> Company . // data member of Subsidiary

WholyOwned = // construction class

"Wholy" "owned" .

PartiallyOwned = // construction class

"Partially" "owned" "stake" "="

<stake> DemNumber .

Company =

<name> DemString

2Class dictionary textual representation, page 437 (31).



56 CHAPTER 3. FROM C++ TO DEMETER

"Registered" "Office"

<location> Address

"Turnover" ":"

<turnover> DemString

"Officers" ":"

<officers> Officer_List

[ "Subsidiaries" "{" <subsidiaries> Subsidiary_List "}" ] .

// optional part

Address =

"Street" "-"

<street> DemString

"City" "-"

<city> DemString

"State" "-"

<state> DemIdent

"Country" "-"

<country> DemIdent "." .

Officer : // alternation class

Shareholding_Officer | Ordinary_Officer

*common* // data members of Officer

"Name" "-"

<name> DemString

"Title" "-"

<title> DemString

"Salary" "-"

<salary> Salary "." .

Salary = <v> DemNumber .

Shareholding_Officer =

"Shareholder"

<share_percentage> DemNumber

"percent control" .

Ordinary_Officer =

"Ordinary" .

Officer_List : Officer_Empty | Officer_NonEmpty .

Subsidiary_List : Subsidiary_Empty | Subsidiary_NonEmpty .

Officer_Empty = .

Officer_NonEmpty = <first> Officer <rest> Officer_List .

Subsidiary_Empty = .

Subsidiary_NonEmpty = <first> Subsidiary <rest> Subsidiary_List .

A corresponding graphical form is in Fig. 3.1.

The functionality is now formulated without mentioning the details of the class structure

again. We �rst focus on the traversal and write a speci�cation with which we can generate

the traversal code.



3.2. ADAPTIVE PROGRAM 57

In Demeter notation, we write the following propagation pattern:3

*operation* long add_salary()

// find all Salary-objects in

// Conglomerate-object

*traverse*

*from* Conglomerate *to* Salary

The important part of this propagation pattern is the traversal speci�cation (also called

a propagation directive):

*from* Conglomerate *to* Salary

This line generates exactly the traversal code that we saw earlier in Fig. 3.2. Before

going into the details of writing code for adding the salaries, let us show how this traversal

speci�cation is translated into the C++ program skeleton in Fig. 3.2.

First we interpret the traversal directive as specifying the set of paths from Conglomerate

to Salary.4 Figure 3.3 shows the union of all the paths from Conglomerate to Salary. This

Conglomerate

Company

Officer

Subsidiary

WhollyOwned PartiallyOwned

Salary

head

company

subsidiaries

officers

salary

Ordinary_Officer ShareHolding_Officer

Officer_List

Subsidiary_List

Officer_NonEmpty

first

rest

first

Subsidiary_NonEmpty

rest

Figure 3.3: Propagation graph

graph is called a propagation graph. The rules of translating the propagation graph into

a C++ program skeleton are (simpli�ed to the current example):5

3Legal propagation patterns, page 447 (61).
4Propagation operator, page 446 (59).
5Propagation pattern partial evaluation, page 448 (64).



58 CHAPTER 3. FROM C++ TO DEMETER

� All the classes in the graph get a member function with the signature speci�ed on the

�rst line of the propagation pattern.

� If a class has an outgoing construction edge in the propagation graph, the member

function of the class will contain a member function invocation through the corre-

sponding data member.

� Functions attached to alternation classes are declared to be virtual.

Based on these rules, the propagation graph in Fig. 3.3 is translated into the program

skeleton in Fig. 3.2, except for the arguments in the skeleton.

To add the salaries, we need to add a little bit of code. This is accomplished by writing

a wrapper for the Salary-class that updates a prede�ned variable return val. The complete

propagation pattern follows:6

*operation* long add_salary() *init* (@ 0 @)

// find all Salary-objects in

// Conglomerate-object

*traverse*

*from* Conglomerate *to* Salary

// when a Salary-object is found,

// add it to the total salary

*wrapper* Salary

*prefix* (@ return_val += *v; @)

The wrapper adds a line to class Salary. Code between (@ and @) is C++ code. The

*init* (@ 0 @) initializes the variable return val.

long Conglomerate::add_salary( )

{ long return_val

= 0 ; // <============== NEW from *init* (@ 0 @)

this->add_salary_( return_val );

return return_val; }

void Salary::add_salary_( long& return_val )

{

return_val += *v; // <============== NEW from wrapper Salary

}

Please check the structure of the generated C++ code. First, it is code that resembles

the object structure closely. Second it is code that a human would write.

We call the propagation pattern with

cout << "TotalSalary = " << iConglomerate->add_salary() << endl ;



3.2. ADAPTIVE PROGRAM 59

Conglomerate : TransGlobal

Head Office : "TransGlobal Illumination"

Registered Office

Street - "23 Rue du Lac" City - "Geneva"

State - GE Country - Switzerland.

Turnover : "4bn"

Officers :

Shareholder 60 percent control

Name - "Karl Soller"

Title - "Chief Executive Officer and President"

Salary - 200000.

Shareholder 30 percent control

Name - "Jim Miller"

Title - "Chief Financial Officer" Salary - 150000.

Ordinary

Name - "Guy Jenny"

Title - "Secretary" Salary - 100000.

Subsidiaries {

Wholly owned "TransGlobal Adventures"

Registered Office

Street - "12 Borisinsky Way"

City - "Moscow" State - Russia

Country - USSR.

Turnover : "2bn"

Officers :

Shareholder 80 percent control

Name - "Boris Kasparov"

Title - "Chief Executive Officer"

Salary - 200000.

Shareholder 5 percent control

Name - "Ivan Spassky"

Title - "President" Salary - 150000.

Ordinary

Name - "Georg Giezendanner"

Title - "Secretary" Salary - 100000.

}

Figure 3.4: English description of conglomerate



60 CHAPTER 3. FROM C++ TO DEMETER

The speci�c conglomerate in iConglomerate is de�ned by an English description in Fig.

3.4.

The English description in Fig. 3.4 is much easier to follow than the corresponding

C++ code that de�nes the same object. The C++ code is at the end of �le totalSalary.C

shown earlier. This example illustrates that C++ is not suitable as an object-oriented design

notation. We need a high-level design notation that abstracts from low-level details, and

we achieve this with propagation patterns. The propagation pattern we have seen above

is very soft software. It is not married at all to the current class dictionary and can be

used with many other class dictionaries. With adaptive software we achieve two goals in

one step. Software becomes easier to produce since we have to write signi�cantly less and

software becomes more 
exible.

3.3 EVOLUTION

One goal of adaptive software is to make software soft. We divide the discussion of evolution

in a structural evolution part and in a behavioral evolution part. We compare the evolution

of both a C++ and a corresponding adaptive program.

3.3.1 Changing Object Structure

Classes are like stereotypes. Stereotypical thinking is very useful as long as we constantly

evolve the stereotypes. If we stop to evolve the stereotypes, we become discriminatory and

we start to put objects in the wrong classes. We evolve classes based on objects we have

observed.

Object-oriented programming languages support a discriminatory style of programming

since programmers are unwilling to modify class de�nitions that are replicated in many

program parts. A change in a class de�nition might imply numerous changes in the program.

Adaptive object-oriented programming with propagation patterns and class dictionaries

supports a nondiscriminatory programming style since class descriptions are kept separate

from the programs and are only minimally duplicated in the programs. A change in a class

de�nition involves usually a small number of updates in the programs.

For example, for the class dictionary in Fig. 3.5 no update is needed to the program!

The new class dictionary uses repetition classes for representing lists of o�cers and lists of

subsidiaries.7 A repetition object describes a collection of other objects. A repetition class

is represented by the symbol . More importantly, the structure of Company-objects has

been changed. O�cers are now employees and in addition to o�cers, the companies now

have regular employees and pay salaries to them. An employee may be shareholding.

At the level of C++, the code will look very di�erent when the class dictionary in Fig.

3.5 (the textual form is in Fig. 3.6) is used to customize the propagation pattern. The

propagation graph is shown in Fig. 3.7. It contains several new classes for which new C++

code has to be produced.

The code of class Company now has additional traversal code for the employees data

member.

void Company::add_salary_( long& return_val )

6Legal propagation patterns, page 447 (61).
7Class dictionary textual representation, page 437 (31).



3.3. EVOLUTION 61

employees

Conglomerate

Company

Address

Subsidiary

WhollyOwned PartiallyOwned

Salary

name head

state country

location

name turnover

street

city

name

title

company

subsidiaries

officers

stake

salary

DemString

DemIdent

DemNumber

Subsidiary_List

vshare_percentage

DemReal

Employee_List

Employee

ShareHolding_EmployeeOrdinary_Employee

Figure 3.5: Alternative class dictionary

{

// outgoing calls

this->get_officers()->add_salary_( return_val );

if ( this->get_employees() != NULL )

{

this->get_employees()->add_salary_( return_val );

}

if ( this->get_subsidiaries() != NULL )

{

this->get_subsidiaries()->add_salary_( return_val );

}

}

The traversal code for class Employee List uses an iterator class (not shown) to visit all

elements of the list.

void Employee_List::add_salary_( long& return_val )

{

// outgoing calls

Employee_list_iterator next_Employee(*this);

Employee* each_Employee;

while ( each_Employee = next_Employee() )



62 CHAPTER 3. FROM C++ TO DEMETER

Conglomerate = "Conglomerate" ":" <name> DemIdent

"Head Office" ":" <head> Company .

Subsidiary : WhollyOwned | PartiallyOwned

*common* <company> Company.

WhollyOwned = "Wholly" "owned".

PartiallyOwned = "Partially" "owned" "stake" "=" <stake> DemNumber.

Company = <name> DemString

"Registered" "Office" <location> Address

"Turnover" ":" <turnover> DemString

"Officers" ":" <officers> List(Employee)

["Other" "Employees" ":" <employees> List(Employee)]

// List(Employee) is an instantiation

// of parameterized class List defined below

["Subsidiaries" "{" <subsidiaries> List(Subsidiary) "}" ].

Address = "Street" "-" <street > DemString

"City" "-" <city> DemString

"State" "-" <state> DemIdent

"Country" "-" <country> DemIdent ".".

Employee : Shareholding_Employee | Ordinary_Employee *common*

"Name" "-" <name> DemString

"Title" "-" <title> DemString

"Salary" "-" <salary> Salary "." .

Salary = <v> DemReal.

Shareholding_Employee = "Shareholder" <share_percentage> DemNumber

"percent control".

Ordinary_Employee = "Ordinary".

List(S) ~ { S }. // parameterized repetition class

Figure 3.6: Alternative class dictionary, textual form



3.3. EVOLUTION 63

employees

Conglomerate

Company
Subsidiary

WhollyOwned PartiallyOwned

Salary

head

company

subsidiaries

officers

salary

Subsidiary_List

Employee_List

ShareHolding_EmployeeOrdinary_Employee

Employee

Figure 3.7: Propagation graph for alternative class dictionary

{

each_Employee->add_salary_( return_val );

}

}

The C++ program needs many more changes. The reason the adaptive program needs

no update is that there is still a relationship between Conglomerate and Salary in the class

dictionary.8 And the task is still to �nd all the Salary-objects in a Conglomerate-object.

3.3.2 Evolving the Functionality

Changing the object structure was easy, and it was equally as easy to update the C++

programs working on the objects. We noticed that when the C++ programs were described

by an adaptive program, no change to the program was needed at all. We now go back to

the original class dictionary in Fig. 3.1.

Updating Objects

Next we add functionality to the application. Suppose we want to increase the salary of

all o�cers of the head company by percent percent. Because a salary can now be a real

number, we update the data member type of v in class Salary to DemReal.

To update the salaries, the C++ programmer would have to write traversal code for

the following classes:

8Legal propagation pattern customization, page 447 (62).



64 CHAPTER 3. FROM C++ TO DEMETER

Conglomerate

Company

Officer

Salary

Shareholding_Officer

Ordinary_Officer

Officer_List

Officer_NonEmpty

The detailed traversal code the C++ programmer would produce is9

void Conglomerate::increase_salary( int percent )

{ this->get_head()->increase_salary( percent ); }

void Company::increase_salary( int percent )

{ this->get_officers()->increase_salary( percent ); }

void Officer::increase_salary( int percent )

{ this->get_salary()->increase_salary( percent ); }

void Salary::increase_salary( int percent )

{ }

void Officer_List::increase_salary( int percent )

{ }

void Officer_NonEmpty::increase_salary( int percent )

{ this->get_first()->increase_salary( percent );

this->get_rest()->increase_salary( percent ); }

The traversal code is almost the correct solution. We need to add a little bit of code to

the member functions of class Conglomerate and class Salary.

void Conglomerate::increase_salary( int percent )

{ this->get_head()->increase_salary( percent );

// suffix wrappers

cout << " after " << this; // <=== new

}

The last line in the Conglomerate member function serves to print out the conglomerate

object after it was modi�ed.

For class Salary we use a pre�x wrapper, introduced with *pre�x*, and a su�x wrapper,

introduced with *su�x*. *pre�x* is like an editing instruction that puts the code at the

beginning of the member function. *su�x* is like an editing instruction that puts the code

at the end of the member function.

9Propagation pattern partial evaluation, page 448 (64).



3.3. EVOLUTION 65

void Salary::increase_salary( int percent )

{ // prefix wrappers

this -> // <=== new

set_v(new DemReal(*v * (1 + (percent/100.0)))); // <=== new

// suffix wrappers

cout << " new salary " << this << // <=== new

" percentage " << (1 + (percent/100.0)); // <=== new

}

The bad news about the C++ program we just wrote is that it contains a lot of infor-

mation about the class dictionary. Should the class dictionary change we will have to work

hard to maintain the C++ program.

The adaptive programmer has it comparatively easier. She identi�es the classes that

are involved in the traversal; the propagation graph that describes the traversal to be done

for objects of class Conglomerate de�ned by the class dictionary in Fig. 3.1 is in Fig. 3.8.

Conglomerate

Company

Officer

Salary

head

officers

salary

Ordinary_Officer ShareHolding_Officer

Officer_List

Officer_NonEmpty

first

rest

Figure 3.8: Propagation graph for increasing salary of o�cers

Instead of writing the traversal code manually, we write a propagation directive:

*from* Conglomerate

*bypassing* -> *,subsidiaries,*

*to* Salary

that de�nes the above propagation graph and the corresponding traversal code.10 With

*bypassing*, we can in
uence the size of the propagation graph. The bypassing clause means

10Legal propagation patterns, page 447 (61).



66 CHAPTER 3. FROM C++ TO DEMETER

that the construction edge starting from any class (denoted by *), with label subsidiaries,

and terminating at any class (denoted by *), is bypassed. In the speci�c class dictionary

that we are using, only the construction edge from Company to Subsidiary List with label

subsidiaries

-> Company, subsidiaries, Subsidiary_List

is matching and therefore bypassed. Instead of manually editing the C++ traversal code, we

add editing instructions in the form of wrappers to the propagation pattern. The complete

propagation pattern is in Fig. 3.9. This propagation pattern was developed with the cus-

*operation* void increase_salary(int percent)

*traverse*

*from* Conglomerate

*bypassing* -> *,subsidiaries,*

*to* Salary

*wrapper* Salary

*prefix* (@ this ->

set_v(new DemReal(*v * (1 + (percent/100.0)))); @)

*suffix* (@ cout << " new salary " << this <<

" percentage " << (1 + (percent/100.0)); @)

*wrapper* Conglomerate

*suffix* // to check the result

(@ cout << " after " << this; @)

Figure 3.9: Increase salary of top-level o�cers

tomizer in Fig. 3.1 in mind.11 But how does it behave with the class dictionary in Fig. 3.5

that also allows employees, not only o�cers in the companies? The salary increase program

is supposed to increase only the salary of the top-level o�cers and not of all employees.

Therefore, for the class dictionary in Fig. 3.5, we need to make sure that only the o�cers

are considered. The propagation directive

*from* Conglomerate

*bypassing* -> *,subsidiaries,*

*through* -> *,officers,*

*to* Salary

selects the appropriate propagation graph. At the C++ level, the impact of the *through*

clause is to eliminate statements. For example, in class Company there will be no code that

calls the function for data member o�cers. Similar to the *bypassing* clause, the *through*

11Legal propagation pattern customization, page 447 (62).



3.3. EVOLUTION 67

clause allows us to reduce the size of the propagation graph. The *bypassing* clause takes

an explicit attitude by explicitly excluding certain edges. The *through* clause takes an

implicit attitude by implicitly excluding certain edges through forcing other edges.

It is interesting to notice that to make the C++ program smaller, we add constraints

to the adaptive program. This is unexpected until we realize that adaptive programs are

constraints that constrain object-oriented programs. The more constraints we add, the

smaller the object-oriented program becomes. Could it be that we might have to add so

many constraints that the adaptive program gets larger than the object-oriented program?

Fortunately, adaptive object-oriented programs can always be written in such a way that

they are better or equally as good as object-oriented programs. We can always write an

adaptive program in the following form:

*operation* // signature

// no traversal specification

*wrapper* A ...

*wrapper* B ...

...

*wrapper* C ...

In this form, an adaptive program is like an object-oriented program.

Let's do one last evolution step to our salary increase program. This step we will perform

only at the adaptive level since we can easily visualize the mapping to the C++ level. The

functionality we add, in addition to increasing the salaries, will compute the maximum of

all the salaries after the increase. We prepare for this enhancement by adding a reference

argument to the signature. The variable is updated during the traversal and printed out at

the end.

The updated propagation pattern for the class dictionary in Fig. 3.5 is shown below.

*operation* void increase_salary // name of functionality

( // arguments

int percent,

long& max_salary // <===== new: extra argument

)

*traverse* // describes C++ skeleton

*from* Conglomerate

*bypassing* -> *,subsidiaries,*

*through* -> *,officers,*

*to* Salary

*wrapper* Salary // for Salary member function

*prefix* // add at beginning

(@ this -> set_v(new DemReal(*v * (1 + (percent/100.0)))); @)

*suffix*

(@ cout << " new salary " << this << // add at end

" percentage " << (1 + (percent/100.0)); @)

*wrapper* Conglomerate // for Conglomerate member function



68 CHAPTER 3. FROM C++ TO DEMETER

*suffix* // to check result // add at end: after traversal!

(@ cout << " after " << this; @)

// further updates for computing maximum salary

*wrapper* Salary // also for Salary member function

*prefix* // add at beginning

(@ if (*v > max_salary) { // <===== new: test

max_salary = *v; // <===== new: update

@)

*suffix* // add at end; completes syntax of prefix part

(@ } else // <===== new: debug

cout << endl << " no new maximum "; // <===== new: debug

@)

*wrapper* Conglomerate // also for Conglomerate member function

*suffix* // add at end: after traversal

(@

cout << endl <<

" maximum salary " << max_salary; // <===== new: print

@)

Six lines have been added to the propagation pattern we had before. How many lines need

to be added to the C++ program? The last �ve of the six lines are also added to the C++

program. The �rst line, however, is added many times to the C++ program, depending

on how many classes are in the propagation graph. This example nicely demonstrates the

localization of signature information in propagation patterns that signi�cantly simpli�es

signature changes.

The reader may judge from the conglomerate example which notation is easier to use: a

�rst generation object-oriented language such as C++ or a second generation object-oriented

language using propagation patterns and class dictionaries on top of C++.

3.4 WHAT IS THE PRICE?

Adaptive object-oriented software has inherent advantages over object-oriented software.

But what does one have to know to successfully write and maintain adaptive object-oriented

software?

You have to know about class dictionaries and propagation patterns and how they relate

to object-oriented programs. Equipped with this knowledge it is easy for an object-oriented

programmer to write adaptive programs. It takes only about �fteen hours of reading time

to learn the necessary skills plus the time to do �ve homeworks on the computer.

Adaptive software is developed according to the following method.

The Demeter Method in a Nutshell

� Start with requirements, written in the form of use cases. A use case is an English

description of how the desired system should react in a speci�c situation. Derive a class

dictionary, a general graph structure to describe the structure of objects. The class



3.4. WHAT IS THE PRICE? 69

dictionary has secondary importance, since, after the project is complete, the class

dictionary is replaceable by many other class dictionaries without requiring changes

(or only minimal changes) to the rest of the software.

� For each use case, focus on subgraphs of collaborating classes that implement the use

case. Focus on how the collaborating classes cluster objects together. Express the col-

laborations as propagation patterns with minimal dependency on the class dictionary.

The propagation patterns give an implicit speci�cation of the group of collaborating

classes, focusing on the classes and relationships that are really important for the

current use case.

� Enhance the propagation patterns by adding speci�c functionality through wrappers

at vertices and at edges of the class dictionary. The wrappers use the object clusters.

Derive test inputs from use cases and check whether all use cases are satis�ed.

Use cases are helpful to trace requirements throughout the software development pro-

cess. Use cases are translated into class dictionaries to have a precise vocabulary to talk

about the classes. There are three kinds of classes and four kinds of relationships between

classes in class dictionaries. You have to learn a few design rules about class dictionaries.

Use cases are also translated into propagation patterns to provide the functionality of

the objects. To work with propagation patterns, you have to learn about propagation direc-

tives. Propagation directives are succinct speci�cations of object-oriented programs both for

traversing objects as well as for transporting objects. Most propagation patterns contain a

propagation directive but there are also propagation patterns without a propagation direc-

tive. Propagation patterns without a propagation directive are like ordinary object-oriented

programs. Propagation patterns with a propagation directive de�ne an entire family of

C++ programs.

Besides propagation directives, propagation patterns contain other important ingredi-

ents: wrappers. Wrappers are like editing instructions to add to an object-oriented program.

The reason we need the wrappers is that the traversal code de�ned by propagation directives

is not su�cient to express the desired functionality. With wrappers we can use any kind of

C++ statements to express the details of the processing.

What is important here is that C++ statements are used late in the development

process. First, analysis and design are done in terms of class dictionaries and propagation

directives. Those concepts are very high level and visual feedback is available to check

for correctness. The detailed processing is expressed in terms of wrappers once the class

dictionaries and the propagation directives are in good shape.

To summarize, to develop adaptive software you need to know about class dictionaries

and propagation patterns. Class dictionaries consist of partial class de�nitions su�cient to

de�ne the structure of application objects. Propagation patterns may contain propagation

directives to de�ne entire families of object-oriented programs. Propagation patterns also

contain wrappers that may contain any C++ statements.

Learning to write adaptive software requires that you acquire some new concepts. An

adequate set of concepts you need to write useful adaptive programs successfully are:

� Structural speci�cation: class dictionary G

De�nes a set of classes and their relationships and standard functionality.



70 CHAPTER 3. FROM C++ TO DEMETER

� Objects de�ned by G

G requires that objects created from its classes have speci�c parts.

� Flattened class dictionary F = flatten(G)

The flatten function distributes common parts of abstract classes to concrete sub-

classes.12 The flatten function is useful since it allows us to bring a class dictionary

to a normal form for manipulating it, usually selecting a subgraph. After the manipu-

lation, the 
attening may be undone for the selected subgraph. Flat class dictionaries

are usually not written by the user but are produced from non
at class dictionaries by

tools. Flat class dictionaries are a useful intermediate form. Notice that the 
attening

operation is well de�ned since there can be no cycles of alternation edges in a class

dictionary.

In the examples in this chapter we omitted the 
attening and un
attening steps.

� Propagation directive d for F

A propagation directive speci�es a subgraph of F by selecting only some of the paths

in F .

� Propagation graph pg = propagate(d; F )

A propagation graph is essentially the union of paths in F that satisfy propagation

directive d. An important use of propagation graphs is to specify object traversals.

� Behavioral speci�cation: propagation pattern pp = (signature; d; wrappers)

A propagation pattern consists of a signature, an optional propagation directive, and

a set of wrappers. The wrappers are enhancements to the traversal code speci�ed by

propagation directive d. The signature gives the argument names and types of the

behavior.

� Code generation for pp in F

The code generation for pp = (signature; d; wrappers) produces essentially a member

function for every class in the propagation graph determined by d and F . The con-

struction edges in the propagation graph determine the traversal function calls that

are made by the member functions. The wrappers are wrapped around the traversal

code.

3.5 APPENDIX: FROM C TO C++

Basic knowledge of C++ is a prerequisite for the readers of this book. In this appendix

we summarize the subset of C++ that is needed for writing challenging adaptive programs.

The subset is described from the point of view of adaptive software.

Since we cover only a subset of C++ here, it is important to repeat that adaptive

software is an add-on tool to object-oriented software. When writing adaptive software, we

can use the full power of C++ for the following reasons:

12Class dictionary 
attening, page 439 (33).



3.5. APPENDIX: FROM C TO C++ 71

� In wrappers any C++ statement may be used.

� Often we use external class libraries when developing adaptive software. Those class

libraries may be produced by Demeter, or they may be written by the adaptive software

developer, or bought from a third party.

The subset of C++ that we use tends to cover features that are available in similar form

in most programming languages covering the object-oriented paradigm.

We take a uniform approach and put all objects on the heap, with a few exceptions.

The advantage is that member functions are called uniformly with the same syntax. Objects

are allocated uniformly with the new operator.

� Declaring variables

All variables for storing objects de�ned by a class dictionary are declared as pointer

variables.

Fruit = ...

Fruit* my_fruit;

There is an exception: variables for storing iterator objects for repetition classes are

declared as regular objects.

� Members

Each class has members of two kinds:

{ data members: de�ne the local state of objects

{ function members: de�ne the functionality.

There are three visibility categories for members:

{ public

{ private

{ protected.

We make all data members private and provide public access and writing functions.

Data members are de�ned by the class dictionary and the C++ code for accessing and

writing is generated.

� Member functions

The protection of member functions is user controlled. The default is public. The

header �le of a member function is generated from implementation.

Attaching a public member function cost to class Apple uses the following syntax:

int Apple::cost(...)

{...}



72 CHAPTER 3. FROM C++ TO DEMETER

If Apple is an alternation class, then cost will be a virtual function by default. If Apple

is a construction or repetition class, cost is a normal member function.

A public member function can be called everywhere (but we will follow the Law of

Demeter to avoid maintenance problems).

Arguments to member functions typically have one of the forms used in the following

argument list:

(A* a1, A*& a2, Ctype i1, Ctype& i2, ...)

where A is some class name. A* a1 declares a pointer argument and A*& a1 declares

a reference parameter that is a pointer. The actual parameter must be some l-value

that may be assigned a new pointer during execution of the function. Ctype& declares

a reference parameter of some C type.

� Meaning of function calls

Member functions are called with the -> operator.

First we consider calling functions of construction or repetition classes. Consider the

example:

// Contents = ... or Contents ~ ...

Contents* iContents; iContents = ...;

iContents -> weight(...);

The last line is a call of function weight for the object in variable iContents that must

be an instance of class Contents. This is like a regular C function call

weight1(iContents, ...)

The meaning of -> for calling functions of alternation classes is di�erent. The default

is that functions of alternation classes are virtual and we assume this default in the

following discussion. Consider the following example for discussing the meaning of

calling virtual functions.

// Telephone : Cordless | Standard ...

// Cordless = .

// Standard = .

Telephone* iTelephone; iTelephone = ...;

iTelephone -> ringing(...);

The last line is a call of function ringing for the object in variable iTelephone. The object

in variable iTelephone can be an instance of any construction class that is alternation-

reachable from Telephone. A class is alternation-reachable from an alternation class

if it can be reached following alternation edges only.

The call



3.5. APPENDIX: FROM C TO C++ 73

iTelephone -> ringing(...)

does not tell us which code will be called at run-time. We know only that it will be

code that is accessible from construction classes alternation-reachable from Telephone.

Consider the case

// Telephone : Cordless ...

Telephone* iTelephone;

iTelephone = new Cordless(...);

iTelephone -> ringing(...)

Here the last line will activate the ringing function of Cordless (if there is one) or the

ringing function of an alternation predecessor of Cordless.

� this

Member functions have a hidden argument and this allows us to talk about it explicitly.

Consider the member function

void Telephone::ringing(...)

{ ... this ...}

and the call

iTelephone->ringing(...);

When Telephone::ringing is called by the above call, this will contain the object in

iTelephone.

� Simulating super

C++ allows us to use the scope resolution operator to call a function of a super class

directly. An example is

// Telephone : Cordless ...

// Cordless is a subclass of Telephone

void Cordless::print()

{ ... Telephone::print(); ...}

� Overloading of functions and operators <<, >>, () etc.

The same class may have several functions with the same name, provided the argument

types are distinct. The same holds true for operators. For example, the input/output

classes provided with C++ compilers use overloaded shift operators for input and

output. cout is an object of class ostream and we can use the \put to" operator,

called <<, for output. Each time the << is used with cout, printing continues from the

position where it previously left o�. For example,



74 CHAPTER 3. FROM C++ TO DEMETER

cout << "x= " << iD->f() << endl;

�rst prints a comment, then the object that f returns, followed by an end-of-line.

The class istream uses the overloaded operator >> for input. For example,

cin >> d >> z

reads from the standard input (usually the keyboard), a value for d and then for z.

White space is ignored.

To iterate through a repetition object, we use the overloaded function call operator

().

// Fruit_List ~ Fruit { Fruit }.

void Fruit_List::add_cost(float &size )

{

Fruit_list_iterator next_arg(*this);

Fruit* each_arg;

while ( each_arg = next_arg() ) // <=== calls ()

// to get next list element

each_arg->add_cost(size );

}

� Constructors

For construction and repetition classes, constructors are created. They are used to

create objects.

For a construction class

Motor = <horsepower> Number <shaft> DriveShaft.

a constructor

Motor::Motor(Number* x = NULL, DriveShaft* y = NULL)

is created. It has default arguments for x and y.

Motor() is equivalent to Motor(NULL,NULL),

Motor(x1) is equivalent to Motor(x1,NULL).

� Comment character

The comment character in C++ is //. The C comment characters may also be used.



3.6. SUMMARY 75

3.6 SUMMARY

In this chapter we viewed adaptive software as a convenient way to describe C++ software.

Adaptive software is to C++ software what stenography is to the English language. But

adaptive software is succinct stenography since one adaptive program describes an entire

family of C++ programs.

We studied the evolution of a C++ program. We �rst wrote a program to compute

the total salary paid by a conglomerate of companies. Then we decided that the structure

of the conglomerate objects needs to be changed and we rewrote the C++ program. We

then added more functionality to the program and made it work for both class structures

we considered.

We noticed that the changes we did to the software were very time consuming when done

directly at the C++ level. When the C++ programs were described by adaptive programs,

the changes were signi�cantly easier.

In this chapter we showed the most important components of adaptive software and

how they relate to C++. Two important features of adaptive software that we did not

mention are: transportation patterns and edge wrappers. Transportation patterns are used to

transport objects around so that at the right time the appropriate objects are simultaneously

available to do a particular task. Solving a task through objects is like solving a task

with people: It is important that the right people get together at the right time. With

transportation patterns we can achieve the grouping of objects without knowing the detailed

interfaces of the objects.

This chapter has used a small subset of C++ to introduce adaptive software to the C++

programmer. It is very important to remember that adaptive software is a technique that

can be used with any object-oriented programming language. An earlier version of adaptive

software was developed with an extension of Lisp, now known as CLOS.

3.7 EXERCISES

Exercise 3.1 Directly implement the C++ programs dicussed in this chapter and compile

and run them on your computer system. Go through all the evolution steps.

Measure the time it takes to do the exercise. If you spend more than �ve hours, switch

to the next exercise.

Exercise 3.2 Do the previous exercise but describe the C++ programs through adaptive

programs. Use the Demeter Tools/C++ to turn the adaptive programs into C++ programs.

Measure the time it takes to do the exercise. Compare with the time measurement for

the previous exercise.

Further exercises are in the self-study guide (Chapter 17).

Exercise 3.3 How would you implement repetition classes in Demeter?

Hint:

Use parameterized classes as follows to avoid code replication and slow compilation.

template<class T>

class Repetition {



76 CHAPTER 3. FROM C++ TO DEMETER

private:

...

public:

Repetition();

void append(T*);

T* n_th(int);

};

template<class T>

class List : Repetition<void*> {

public:

List() : Repetition<void*> {}

void append(T* p) {Repetition<void*>::append(p);}

T* n_th(int a){(T*) Repetition<void*>::n_th(a);}

};

To de�ne

List(A)

List(B)

you can now use:

List<A>*

List(B>*

3.8 BIBLIOGRAPHIC REMARKS

The conglomerate example is due to Ian Holland and was used in numerous demonstrations

of the Demeter Tools/C++ and in [LSX94].

The reference manual for C++ is [ES90].



Chapter 4

Thinking Adaptively

What system developers need to realize is that developing an information system

is not a one-time e�ort. Information systems resemble the complexity of living

systems as they keep on evolving. Among the important features required of

a system to ensure a fruitful life for it are: Adaptability, Flexibility, Scalability,

Maintainability, Reliability.

Lloyd Osborn (Manager, Boeing Defense & Space Group) in [Osb93].

In this chapter we present the key ideas behind adaptive software, we show adaptive

software development by example, and we report on experiences.

First we address the question: What is adaptive software? A program is called adaptive

if it changes its behavior1 according to its context.

This is a high-level de�nition that has to be taken with a grain of salt. Di�erent kinds

of adaptiveness can be achieved depending on what we view as context. In this book we

focus on data structures, class structures, or data models as context. Instead of viewing

a data structure as an integral part of an algorithm (as is done traditionally), we view it

as context that can be changed signi�cantly without modifying the program. A number

of other artifacts can be viewed as context to a program. For example, we could view the

inputs to a program as being context. Then every program becomes adaptive. Other, more

interesting contexts would be

� Run-time environment

Depending on the other processes with which the program runs, the program will

optimize a parameter to achieve better performance.

� Concurrency properties

Instead of viewing the concurrency-related part of a program as being hardwired to

the program, we view it as context that can be changed. The same program can then

work with many concurrency schemes.

1We use behavior and function as synonyms although others make a distinction. We could distinguish

between two di�erent models for a piece of software: behavior (how it works), function (the role it plays;

what the software does in its environment). Function is viewed as an interpretation of the behavior.

77



78 CHAPTER 4. THINKING ADAPTIVELY

� Distribution properties

Instead of hardwiring object migration into the program, we view it as context. The

same program can then be used together with di�erent object migration strategies.

� Software architecture

Instead of hardwiring the connection between software components into the program,

we view it as context that can be changed. The same program can then work with a

class of software architectures.

� Computational resources (printers, displays, name servers, etc.)

Instead of hardwiring information about computational resources into a program, we

view it as context. The same program can then work with a family of computational

resources.

� Exceptions, failures

Instead of hardwiring exceptions into a program, we view them as context. The same

program can then work with a family of failure-handling schemes.

How can we achieve adaptiveness? A generic mechanism to achieve adaptiveness is to

use loosely coupled collaborating views. For simplicity, we use two sets of complementary,

collaborating views V 1 and V 2, which are loosely coupled in the following way:

An element v1 of V 1 is formulated in terms of partial information about elements

of V 2. More explicitly, view v1 is formulated in terms of constraints that specify

the set of views in V 2 that are compatible with v1.

View v1 is called adaptive since it adapts automatically to elements in V 2 that are

compatible with v1.

Let's consider an example. As V 2 we take class graphs that describe object structures.

Elements of V 1 are programs that specify a group G of collaborating classes for each class

graph in a subset of V 2. Group G is used to formulate the desired functionality. The

groups of collaborating classes are speci�ed implicitly without enumerating them explicitly.

In this example, instead of writing an algorithm for a speci�c data structure, you write an

algorithm for constraints that specify the data structures with which the algorithm works.

In other words, you write an algorithm for a generic data structure de�ned by constraints.

Adaptive software described in this book is speci�ed by complementary, collaborating

views, each one addressing a di�erent concern of the application. The main goal of adaptive

programming is to separate concerns by minimizing dependencies between the complemen-

tary views, so that a large class of modi�cations in one view has a minimum impact on the

other views. The complementary views approach has the advantage that programs become

more 
exible, understandable, and shorter, without loss of run-time e�ciency.

In this book we focus on treating class structures as context. An adaptive program,

instead of being written for a speci�c data model, is written for a generic data model

restricted by a set of structural constraints (see Fig. 4.1). This implies that adaptive

software has the following property: Adaptive software is generic software that de�nes a

family of programs with a large variability in architecture. By the architecture of a program



79

Adaptive software

generic data model

specific data models

behaviors

object−oriented programs

Figure 4.1: Generic data model

we mean the interfaces contained in the program, including the connections between the

interfaces.

Adaptive software can be realized in di�erent ways and a useful realization is described

in this book. A key ingredient to the realization of adaptive software is the concept of a

succinct graph speci�cation. A graph consists of vertices and edges between the vertices.

During software development it is often necessary to describe subgraphs of larger graphs. For

example, the larger graph maybe a datamodel and the subgraph a subdatamodel relevant

to implementing a certain task. A subgraph speci�cation for a graph G is called succinct

if it is smaller than the size of G. The size of a graph is the number of vertices and edges

it contains. An example of a succinct graph speci�cation is: \take all vertices and edges

that are on paths from vertex A to vertex Z." For a big graph with 1000 vertices and 2000

edges and many paths between vertices A and Z, the above speci�cation might describe a

subgraph with 500 vertices and 800 edges. Such a graph is clearly much larger than the

above speci�cation and therefore we call the above speci�cation succinct.

This paragraph summarizes the realization of adaptive software in this book.2 This

summary is abstract and may be skipped on �rst reading. Adaptive software is realized in

terms of succinct graph speci�cations that constrain the structural architectures in which

the adaptive software works. More explicitly, adaptive software is realized as follows. Adap-

tive software is generic software that needs to be instantiated by architectures. Adaptive

software consists of three parts: succinct subgraph speci�cations C, initial behavior speci�-

2Propagation pattern partial evaluation, page 448 (64). This is a reference to an instructional objective

in Chapter 14, the \nerve center" of the book. See also the explanation on page xxx.



80 CHAPTER 4. THINKING ADAPTIVELY

cations expressed in terms of C, and behavior enhancements expressed in terms of C. The

succinct subgraph speci�cations express the permissible architectures. The initial behav-

ior speci�cations express simple behavior in terms of the subgraph speci�cations, and the

behavior enhancements express (in terms of the subgraph speci�cations) how the simple

behavior is enhanced to get the desired behavior.

4.1 KEY IDEAS

We relate adaptive software to important problem-solving principles: inventor's paradox,

stepwise re�nement, and representation independence.

4.1.1 Inventor's Paradox

The \paradox of the inventor," posed by mathematician George Polya [Pol49], is one of

the cornerstones of adaptive software. Polya observed that it is often easier to solve a more

general problem than the one at hand and then to use the solution of the general problem to

solve the speci�c problem. The hard work consists of �nding the appropriate generalization.

Polya uses the following example to demonstrate the technique. Given a line and a regular

octahedron, �nd a plane that contains the line and that cuts the volume of the octahedron

in half. What is important about the regular octahedron to provide for an easy solution?

The fact that it is a symmetric body is important. Given any symmetric body, the solution

consists of choosing the plane that contains the given line and the center of symmetry. The

general solution is easily applied to solve the speci�c octahedron problem.

What is the paradox? Why is it called inventor's paradox? It is a paradox because we

would expect that solving a more general problem is harder than solving a speci�c problem.

It is called inventor's paradox because an invention needs to be done: we have to invent the

proper generalization of the given problem.

Applying Polya's paradox of the inventor to object-oriented program design results in

more adaptive programs being written, programs that adjust gracefully to specializations of

the generalization for which they were designed.

In this book we introduce adaptive object-oriented programming as an exten-

sion to conventional object-oriented programming. We adopt the convention that adaptive

object-oriented programs are just called adaptive programs. Adaptive programming fa-

cilitates expressing the algorithms that are essential to an application without committing

to any particular data structure. Adaptive object-oriented programs specify essential data

structure elements that constrain the con�guration of any data structure that attempts to

customize the adaptive program. This way, programmers are encouraged to think about

families of programs by �nding appropriate data structure generalizations, in the spirit of

Polya.

In adaptive programming, the inventor's paradox has the following interpretation. The

invention consists of inventing a generalized data structure for a speci�c data structure. The

paradox is that it is easier to write programs for the generalized data structure than for the

speci�c data structure.

Soon we will apply the inventor's paradox to writing an application for a travel agency.

Instead of writing the application for a speci�c travel agency, we will write it for an entire

family of travel agencies, and the surprising news is that the generalization simpli�es the

programming task.



4.1. KEY IDEAS 81

4.1.2 Stepwise Re�nement

The development of an algorithm is very often a complex process where the �nal

solution is achieved by stepwise re�nement. In every step certain details get

speci�ed which have been left open in the previous step.

Niklaus Wirth, circa 1970.

The idea of stepwise re�nement is another cornerstone of adaptive software. Adaptive

software lets us write algorithms without knowing the detailed data structures and even

without knowing the interfaces of the data structures. It is only after a re�nement step,

called customization, where the data structures get fully speci�ed.

Adaptive software uses a two-step re�nement method. First get the important parts of

your application right and then worry about the accidental details of your data structures.

Readers might object that delaying commitments to data structures is a well-known

approach to software development. What is the essential di�erence of adaptive software

to the other approaches? Adaptive software is written in two parts: the data part and

the functional part, which are loosely coupled through constraints. This allows the same

functional part to work with di�erent data parts and the same data part can be matched

with di�erent functional parts. The adaptation occurs by a simple form of analogical

reasoning that is rooted in a path calculus for class structures (see Chapter 7, Propagation

Directives).

4.1.3 Representation/Interface Independence

The idea of making software independent of the details of data structures is another corner-

stone of adaptive software. It is traditional in object-oriented software development to hide

representation and implementation information. This comes out of early work of Parnas

[PCW86]. Although we agree with the spirit of the information hiding principle, we feel

that it is too restrictive. It is good to hide low-level representation information but it is

not appropriate to hide essential logical information about object structure. It is good to

make assumptions about the internal structure of objects! I have to repeat this twice since

so many books and papers say the opposite. It is good to make assumptions about the

internal structure of objects!

Sethi [Set89] summarizes information hiding with the informal representation inde-

pendence principle.

A program should be designed so that the representation of an object can be

changed without a�ecting the rest of the program.

We propose a stronger principle, the adaptive programming principle.

A program should be designed so that the interfaces of objects can be changed

within certain constraints without a�ecting the program at all.

The interface of an object is the set of functions that can be called for the object

to manipulate its data. The adaptive programming principle implies that the program

must be written parameterized by interface information. Indeed, an adaptive program is



82 CHAPTER 4. THINKING ADAPTIVELY

parameterized by constraints that say what kind of interface information is expected by the

program. Therefore, an adaptive program does not completely hide all interface information

of its local objects, but it exposes some essential properties of local objects.

By giving up strict information hiding, we surprisingly get better representation in-

dependence. The reason is that adaptive software keeps only a loose coupling between

functions and data expressed by parameterization constraints. The same program works for

an entire family of representations that satisfy the constraints (see Fig. 4.2).

Adaptive programs are data structure-shy programs that are written in terms of hooks

into a data structure (see Fig. 4.3). A hook means an important data structure element. The

adaptive program is written in terms of paths between important data structure elements.

Data-structure-shy software opposes any attempt to encode too many data structure

details into it. This opposition is enforced by a dependency metric that measures the

dependency of a program on a speci�c data structure. The hooks may refer to data types

or relations. Between the hooks there may be a lot of additional information that is ignored

by the adaptive program although the information will be considered when the adaptive

program is used in a speci�c context.

. .
.

.

.

.
.

.
.

.
.

defines

compatible

selects

selects selects

Adaptive program C

Infinitely many class structures compatible with adaptive program C

An infinite family of programs defined by adaptive program C

Figure 4.2: Adaptive Software

The need to program in a data structure-shy way has been recognized by others. In

[GTC+90], we read

... the class hierarchy may become a rigid constraining structure that hampers

innovation and evolution.



4.2. MODELING COMPLEX SYSTEMS 83

class
structurehooksadaptive program

Figure 4.3: Programming with hooks

This suggests that class hierarchy information should be abstracted out and the programs

should be written relatively independent of the hierarchy.

4.2 MODELING COMPLEX SYSTEMS

We �rst present adaptive software as a new modeling technique for complex systems and

then relate adaptive and object-oriented software. The explanation in terms of modeling

has the advantage that it allows us to de�ne adaptive programming without reference to

object-oriented programming.

According to the Encyclopedia of Computer Science and Engineering [Ral83], a complete

model frequently includes both a structural model and a process model. The structural

model describes the organization of the system and the process model describes the operation

or behavior of the system. With this context, we can give a concise informal de�nition of

adaptive programs.

An adaptive program is a generic process model parameterized by graph con-

straints which de�ne compatible structural models as parameters of the process

model.

The graph constraints indicate what kind of paths need to exist in the structural models

that are graphs. The compatible structural models are also called customizers. A traditional

model is the result of applying a customizer to an adaptive program. The innovative feature



84 CHAPTER 4. THINKING ADAPTIVELY

of adaptive programs is that they use graph constraints to specify possible customizers. An

example of a graph constraint is that certain paths exist using or avoiding certain edges.

Adaptive models have several advantages over traditional models.

� Adaptive models focus on the essence of the system being modeled and are therefore

simpler and shorter than traditional models. Adaptive models are not distorted by an

accidental structure that is currently in use, but which makes the model unnecessarily

complex.

� Many behaviors require the same customization. Therefore customizers are e�ectively

reused.

� Graph constraints allow for easy internal changes to the model before customization,

that is, adaptive models can be reused easily in unplanned ways. They are not only

adaptive but also adaptable should the adaptiveness not be su�cient. This means that

when we apply an adaptive program to a customizing class structure and we don't get

the desired behavior, the adjustment necessary at the adaptive level is usually smaller

than the adjustment at the object-oriented language level. We distinguish between

adaptable and adaptive programs. An adaptable program is one that is easy to change

manually to a new context and an adaptive program adjusts automatically to a new

context.

� Graph constraints allow for implicit parameterization of models without giving explicit

parameters. Adaptive models can be re�ned easily before they are customized.

The above list discusses the advantages of an adaptive model with respect to traditional

modeling. With the current interest in object-oriented modeling, it is useful to discuss the

relationship between adaptive and object-oriented modeling.

Object-oriented modeling is a special case of adaptive modeling in that object-oriented

modeling uses very strong graph constraints that determine only a small number of customiz-

ers. Here we view an object-oriented model as consisting only of the methods. The same

set of methods works with several class structures that di�er by the number of inheritance

relationships between the class structures.

For example, the two methods

void A::t() {c -> t();}

void B::t() {print ("hello");}

work with the class structure in Fig. 4.4. Class A has one part (data member, instance

A B
c

Figure 4.4: Adaptability of object-oriented program

variable) named c of class B.



4.2. MODELING COMPLEX SYSTEMS 85

A B
c

C

Figure 4.5: Adaptability of object-oriented program

And the same two methods also work with the class structure in Fig. 4.5. Class A has

one part (instance variable) named c of class B. Class C inherits from class B and class C

has no additional parts.

Advantages of adaptive over object-oriented modeling are

� An adaptive model describes a large family of object-oriented models and is therefore

at a higher level of abstraction. An object-oriented model assigns methods to classes

at program-write-time whereas an adaptive program delays many of those bindings

past write-time.

� An adaptive model together with the customizer is usually shorter than the corre-

sponding object-oriented model (i.e., the result of the application of the customizer to

the adaptive model). The reason is that the same parts of the customizer are usually

applied many times.

� Adaptive models can be specialized more 
exibly than object-oriented models since

they have many specialization points that are not controlled by explicit parameters.

Pre�x and su�x wrappers play an important role.

� There is no run-time performance penalty over object-oriented models due to inlining

compiler technology.

There are only a few disadvantages of adaptive over object-oriented modeling:

� Writers of adaptive models need to learn a small extension to object-oriented languages

(the propagation pattern and class dictionary notation). They need to learn a new

debugging technique (see Chapter 13).

� There are no other disadvantages of adaptive models that do not also apply to object-

oriented models. The reason is that adaptive software is simply a concise represen-

tation of object-oriented software. The conciseness does not introduce new prob-

lems but improves generality of the software and solves (via propagation) the small-

methods problem of object-oriented software. The small-methods problem says that

large object-oriented applications tend to contain a signi�cant number of methods

only two or three lines long.

To explain the di�erence between adaptive and object-oriented models further, we show

the following relationships.



86 CHAPTER 4. THINKING ADAPTIVELY

Every object-oriented program is an adaptive program (no graph constraints are used

to specify customizers, and all methods are programmed). Only a few of the object-oriented

programs are \good" adaptive programs. By a \good" adaptive program we mean a pro-

gram that makes minimal assumptions on its class structures. Every adaptive program

corresponds, through customization, to a family of object-oriented programs.

We have compared adaptive software development with object-oriented software devel-

opment. We brie
y compare object-oriented software development with traditional software

development. Despite hype to the contrary, object-oriented development incurs extra cost

over procedural development.

� Design time

We need to design a class hierarchy using information about the domain. In our

experience, this is a signi�cant cost factor since often designers try to �nd an optimal

class hierarchy. The reason why they want an optimal class hierarchy is that it should

change only minimally over the life-cycle of the software. Unfortunately, this is an

illusion and a lot of time is wasted since class hierarchies will always change. Adaptive

software reduces the need for an optimal class hierarchy since changes in the class

hierarchy can be absorbed easily by adaptive software.

� Maintenance time

In an object-oriented program it is more di�cult to �nd the exact line of code providing

some function because of virtual functions and the prevalence of many small methods.

To understand a program, we have to wade through many small methods that do

simple things. Adaptive software eliminates the small methods problem and therefore

helps with program understanding at maintenance time.

4.3 JUSTIFICATION

Any new software development method needs good reasons for its existence since many meth-

ods are already available and practitioners have di�culty in choosing one. Here are some

of the reasons why adaptive software is worthwhile. Adaptive software is easier to maintain

than object-oriented software since it is written with fewer assumptions on class structures.

Adaptive software is usually considerably shorter than the corresponding object-oriented

software and therefore, it requires less typing than object-oriented software. Adaptive soft-

ware has a higher probability of being reusable than corresponding object-oriented software.

The reason is that one adaptive program de�nes an in�nite collection of object-oriented

programs. Adaptive software is generic software that does not have to be parameterized

explicitly. The software can be 
exibly extended in unforeseen ways by adding arguments

and by wrapping code around already existing code.

In a commercial software development environment, it is important that software is de-

signed to be reusable from the beginning. Often no time is left to make the software reusable

later. And with object-oriented programs, it is often unclear how to make a class reusable|

much e�ort is wasted on useless generalization. Adaptive software makes a contribution in

this area since adaptive programs are never harder to write than object-oriented programs,

but are usually more reusable (an adaptive program de�nes a big family of object-oriented

programs). Furthermore the best adaptive programs are much more expressive than the



4.4. CUSTOMIZATION 87

corresponding object-oriented programs and, in the worst case, an adaptive program is an

object-oriented program. Adaptive software may be used whenever object-oriented software

is used since it can only improve the 
exibility of the software. Adaptive software can always

be made at least as good as the best object-oriented software that can be written for a given

application.

An advantage of adaptive software is that it allows for initial error and subsequent

adjustment. Many problems are complex, and initially it is not clear how to best structure

the classes. Often we know the best class structure only after the project is completed. Not

knowing how to start can easily lead to procrastination. With adaptive software, we can

easily make a �rst guess at the class structure and then write the functionality with minimal

dependency on the class structure. Changing to a better class structure is then much easier.

Adaptive software is a good tool to teach advanced object-oriented software develop-

ment. Adaptive software provides for a better understanding and better use of object-

oriented software. The object-oriented concepts are learned or reinforced as a side e�ect

when the adaptive concepts are learned.

4.4 CUSTOMIZATION

Adaptive programs are written in terms of partial class structures and they need to be

customized into object-oriented programs. An adaptive program can be used with any

complete class structure that is compatible with the given partial class structure. The

customization of an adaptive program can be achieved in at least three ways:

� A few sample objects can be selected that describe by example on what kind of objects

the program is supposed to operate.

� A graph similar to an entity relationship diagram can be used to complete a given

partial class structure (see Fig. 4.2).

� A grammar similar to a BNF (Backus-Naur-Form) grammar can be used to com-

plete a given partial class structure and to specify an application-speci�c language

simultaneously.

An object-oriented program is typically built by customizing several adaptive programs

into the same class structure, as we have shown with the conglomerate example. This

usually requires renaming to avoid name con
icts.

Adaptive software uses a graphical approach to develop object-oriented software. When

developing adaptive software we can proceed in two ways.

� Structure �rst

First develop a class structure, check it for design-rule violations, and check it for

completeness with respect to the structure of the objects it has to represent. Then

for each subtask to be implemented, choose groups of collaborating classes that are

described using minimal knowledge about the class structure in a propagation pattern.

The resulting propagation patterns are customized with the class structure.

� Functionality �rst



88 CHAPTER 4. THINKING ADAPTIVELY

For each subtask to be implemented, choose a partial class structure that contains the

important classes for the subtask. The functionality is then implemented generically

for this partial class structure. Later, the program is customized to an object-oriented

program by using a compatible class structure that has been checked for completeness

and design-rule violations.

In both approaches, much of software development consists of graph manipulation.

Adaptive software introduces a new way to parameterize object-oriented software that

goes beyond parameterized classes or templates. An adaptive program describes an object-

oriented program parameterized by classes and their relationships. A parameter has a type

that is a predicate on a graph. It is interesting that the parameters in
uence the input

and output language and the detailed structure of the classes and object-oriented programs.

In other words, an adaptive program is written without knowing the input language or the

detailed structure of the resulting object-oriented program!

4.5 THE ITINERARY PROBLEM

We turn now to a concrete example. Suppose we are developing a trip itinerary program to

be used by travel agencies. Consider a trip object that describes the structure of a multi-day

trip. The task is to print the itinerary, that is, the list of all locations visited during the trip.

Since we don't know the travel agency to which we will sell the program yet, we are forced

to apply the \paradox of the inventor." (Normally, adaptive software development starts

with a concrete class structure from which the designer/programmer tries to use minimal

information.)

What is important about the trip object to provide for an easy solution? The fact that

it contains location objects; the information that it is a multiday trip object can be ignored.

Speci�cally, we want to implement the following algorithm:

1. Print the departure time at the beginning of the itinerary.

2. For each location visited on the itinerary:

|Print the name of the location.

3. Print the arrival time at the end of the itinerary.

To formulate the adaptive program for the itinerary problem, we use two class-valued

variables called Trip and Location. Those variables will be assigned a speci�c class when the

adaptive program is customized. We then formulate the following minimal assumption on

the class structure:

� Trip: We assume that objects of class Trip contain Location-objects that describe the

itinerary. We assume that a Trip-object has a departure and arrival time.

We will print the departure time at the beginning of the itinerary and the arrival time at

the end of the itinerary.

Next we formulate a propagation pattern that describes a family of implementations of

one signature for a varying group of classes. An adaptive program is a collection of propa-

gation patterns. A propagation pattern is expressed in terms of class-valued and relation-

valued variables. Class-valued variables will be mapped into classes when the propagation



4.5. THE ITINERARY PROBLEM 89

pattern is used in the context of a concrete class dictionary graph. Relation-valued variables

will be replaced by class-relationship names when the propagation pattern is customized.

Both class-valued and relation-valued variables may be renamed before the propagation

pattern is customized to an object-oriented program. A propagation pattern consists of a

propagation directive and a list of annotations, called wrappers (see Fig. 4.6).

Next, the propagation pattern is explained in more detail. Our goal is to imple-

ment the print itinerary task and therefore we write an operation with the signature void

print itinerary(). To accomplish the task, we need the collaboration of a group of classes.

Since we don't know yet for which travel agency we are writing the program, we cannot

itemize the group of collaborators; we can give only a generic speci�cation. We want all the

classes from Trip to Location to help us. This information is expressed in the propagation

directive *from* Trip *to* Location. Besides describing the collaborating classes, a prop-

agation directive has a second very important function: it describes traversal code. The

directive in the example says how to traverse Trip-objects: Traverse all Location-objects.

For this simple example, the traversal code does most of the work needed to solve the

itinerary printing problem. But we need a mechanism to enhance the traversal code so that

exactly the posed problem is solved. Traversal code enhancements are done with wrappers.

A wrapper is attached to a class-valued variable and must contain either a pre�x code

fragment or a su�x code fragment or both. Pre�x code is placed before the traversal code

and su�x code is put after the traversal code. The C++ code itself is placed between the

symbols (@ and @).3

// functionality to be implemented

*operation* void print_itinerary()

// define group of collaborating classes and

// corresponding traversal code

*traverse*

*from* Trip *to* Location

// annotate the traversal code

*wrapper* Trip

*prefix* (@ departure -> g_print(); @)

*suffix* (@ arrival -> g_print(); @)

*wrapper* Location

*prefix* (@ this -> g_print(); @)

Figure 4.6: Propagation pattern print itinerary

The propagation pattern in Fig. 4.6 is formulated in terms of two class-valued variables,

called Trip and Location, and two relation-valued variables called departure and arrival.

The advantage of this notation is that there is not an entire new programming language

3Legal propagation patterns, page 447 (61).



90 CHAPTER 4. THINKING ADAPTIVELY

to learn but only the relatively small propagation language. All the facilities of C++ to

express member functions can be used freely.

4.5.1 Customizing the Adaptive Program

How can the propagation pattern be run?4 We need to select a program from the family of

programs we have written in Fig. 4.6. For this purpose, we need to �nd a class structure

that satis�es the constraints: There exists a path from class Trip to class Location and a

departure and arrival attribute at class Trip. The path concept is used informally here and will

be explained later. There are in�nitely many such class structures since the propagation

pattern is expressed with minimal knowledge of the class structure to keep the software

robust under changes.

Two compatible class structures are shown in Figs. 4.7 and 4.8. The �rst customizer

is for a travel agency that uses very simple trip objects. The second customizer expresses

multiday trip objects. Both customizers use two kinds of classes: construction classes (drawn

as 2 ) that are used to instantiate objects with a �xed number of parts, and repetition classes

(drawn as ) that are used to instantiate objects with a variable number of parts.5 Edges

leaving construction vertices are called construction edges (drawn as �! ) and are labeled

to name the parts. Edges leaving repetition vertices are called repetition edges. Optional

parts are shown with a dashed line (drawn as ...... ).

Trip Location

Means Time

means

departure

arrival

itinerary

city id

val

LocationList

DemIdent DemNumber

DemNumber

Figure 4.7: Program customizer Trip 1

4Legal propagation pattern customization, page 447 (62).
5Class dictionary graph graphical representation, page 431 (6).



4.5. THE ITINERARY PROBLEM 91

Trip Location_ArrowList

Means

means
departure

arrival

itinerary

Location

cityid

day

stops

DayTripList DayTrip

Time

hour

DemNumber DemIdent

DemString

name

Figure 4.8: Program customizer Trip 2

Trip

Location

locations

void LocationList::print_itinerary()
{
  LocationList_iterator nextLoc( this );
  Location *eachLoc;

  while ( eachLoc = nextLoc() )
    eachLoc −> print_itinerary();
}

void Location::print_itinerary()
{
  this −> g_print();
}

LocationList

void Trip::print_itinerary()
{
  departure −> g_print();
  locations −> print_itinarery();
  arrival −> g_print();
}

Figure 4.9: Propagation graph Trip 1



92 CHAPTER 4. THINKING ADAPTIVELY

Trip

Location_ArrowList

itinerary

Location

stops

void Trip::print_itinerary()
{
   departure−>g_print();
   itinerary−>print_itinerary();
   arrival−>g_print();
}

DayTripList

DayTrip

void DayTripList::print_itinerary()
{
   DayTrip_list_iterator nextDayTrip(*this);
   DayTrip *eachDayTrip;

   while (eachDayTrip = nextDayTrip())
       eachDayTrip−>print_itinerary();
}

void Location::print_itinerary()
{
   this−>g_print();
}

void DayTrip::print_itinerary()
{
   stops−>print_itinerary();
}

void Location_ArrowList::print_itinerary()
{
   Location_list_iterator nextLocation(*this);
   Location *eachLocation;

   while (eachLocation = nextLocation())
     eachLocation−>print_itinerary();
}

Figure 4.10: Propagation graph Trip 2

Each of the two customizers speci�es an object-oriented program that is shown in Figs.

4.9 and 4.10. We can view the initial propagation pattern in Fig. 4.6 as a common ab-

straction of the two object-oriented programs obtained by the customizations. The two

customizations demonstrate the adaptiveness of the adaptive program in Fig. 4.6.

How is the object-oriented program constructed from the adaptive program when a

customizer is given? This is the task of the propagation pattern compiler whose operation

is brie
y summarized here. First all the paths speci�ed by the propagation directive *from*

Trip *to* Location are computed. The union of the paths forms a subgraph, called a

propagation graph. Examples of propagation graphs are shown in Figs. 4.9 and 4.10 if

you ignore the C++ code. The propagation graph is a class structure that we are going to

interpret as a set of methods, not a set of classes. The propagation graph is mapped into

a program by translating each vertex into a method as follows. An outgoing construction

edge results in a call to the corresponding part; an outgoing repetition edge results in the

iteration code through the collection. Then the wrapper code is added.

A look at the C++ code in Fig. 4.10 shows little resemblance to the adaptive program in

Fig. 4.6. The code fragments used in the adaptive program appear in the C++ program at

the appropriate places. The signature that is written once in the adaptive program appears

several times in the C++ program. The adaptive program saved us a lot of typing.

There is a second translation, called generate, which must take place before the object-

oriented program can be run. The customizing class dictionary graph is translated into

an application-speci�c class library that contains generic functionality for manipulating

objects, such as copying, printing, comparing, accessing, constructing, etc. The class library



4.5. THE ITINERARY PROBLEM 93

produced by generate and the member functions computed by propagate are combined with

a call of the correct member function to form an executable C++ program.

What is the di�erence between an object-oriented program and an adaptive program?

We use the picture in Fig. 4.11 to describe the di�erence. Fig. 4.11 refers to the propagation

pattern in 4.6 and to the C++ program in Fig. 4.10 (Trip 2). In the adaptive program

code

class−valued 
  variables

code fragments

2

Trip Location_ArrowList LocationDayTripList DayTrip

1

1
2 5 5

1

1

Trip Location

departure

arrival

2 traversal code of size 2

1

1 suffix code fragment of size 1

prefix code fragment of size 1

2

Adaptive program

Object−oriented program

relation−valued
     variables

Figure 4.11: Adaptive versus object-oriented

we can focus only on the essential information. The adaptive program is formulated only

in terms of interesting classes and the traversal code is completely ignored. This example

demonstrates that the Pareto-principle also applies here: for a given task, 80% of the work

is done by 20% of the interesting classes. Propagation patterns allow us to focus on those

interesting classes.

We have discussed how to customize an adaptive program with a class structure. But

this is only one possibility. We can expect that when we put more information into a

customizer, we get a customization with more functionality. What kind of information

can we use for customization? We could use cardinality constraints (e.g., a list must have

between three and four elements), or sharing constraints (e.g., two objects speci�ed by paths

in the class structure must be identical), or external representation information (e.g., the

object must be printed with certain syntactic elements).

Let's look at an example of a class structure with external representation information,

that is, a grammar (see Fig. 4.12). We use a familiar textual representation for grammars

that is an extension of Wirth's EBNF notation [Wir77]. With such a customization we can

now conveniently tell stories about trip objects in an English-like notation. An example is

given in Fig. 4.13. We use // as the comment character.



94 CHAPTER 4. THINKING ADAPTIVELY

Trip = "TRIP"

"by" <means> Means

"departure" <departure> Time

"arrival" <arrival> Time

"ITINERARY" <itinerary> DayTripList.

DayTrip = "day" <day> DemNumber

"stops" <stops> Location_ArrowList.

Location = <city> DemIdent ["(" <id> DemNumber ")"].

Time = "time" <hour> DemNumber.

Means = "direct train" <name> DemString.

Location_ArrowList ~ Location{ "-->" Location}.

DayTripList ~ DayTrip { DayTrip}.

Figure 4.12: A textual form of trip class dictionary

TRIP by

// Means-object

direct train "Glacier Express"

departure

// Time-object

time 10

arrival

// Time-object

time 17

ITINERARY

// DayTripList-object

day 1 stops

// LocationList-object

SaintMoritz ( 10 ) --> Thusis ( 11 ) -->

Chur ( 12 ) --> Andermatt ( 13 )

day 2 stops

// LocationList-object

Andermatt ( 13 ) --> Brig ( 14 ) --> Zermatt ( 15 )

Figure 4.13: Corresponding trip description



4.5. THE ITINERARY PROBLEM 95

4.5.2 Transporting Objects

So far we have seen how to express object traversals in a data structure-shy way. Next we

look at an example of how to transport objects in the same style. Object-transportation is

fundamental to object-oriented programming in that objects need to be transported around

in object structures. When we call a function, we often need several objects to be present

simultaneously to be used as arguments to the function. How can we assemble the objects

together? We could do it the old-fashioned way and explicitly transport an object along a

chain of, say, �ve objects that are objects of classes A,B,C,D, and E. This requires us to

write simple methods for those classes A,B,C,D, and E. The methods have an argument for

the object that is transported. Unfortunately, this technique encodes the object structure

into the program. A better approach is to express the transportation information at a higher

level of abstraction with transportation patterns.

A transportation pattern consists of a carry clause that de�nes parameters for object

transportation, a transportation scope de�nition in the form of a propagation directive fol-

lowed by wrappers that refer to the parameters. Statements to initialize and update trans-

ported objects may also occur inside a transportation pattern. A transportation pattern

describes a family of algorithms to select and transport objects. The selection of subobjects

and the transporting of objects is expressed with minimal knowledge of the class structure

to keep the software robust under changes.

Consider an example of a transportation pattern in Fig. 4.14. The carry clause trans-

ports two objects, called i and s along the path from Person to Unemployed and at Person

the objects are assigned.6 The adaptive program is written in terms of the class-valued

*operation* void income_ssn_unemployed()

*traverse*

*from* Town *to* Unemployed

//transportation pattern

*carry* *in* Income* i = (@ income; @),

*in* DemNumber* s = (@ ssn; @)

*along*

*from* Person *to* Unemployed

*wrapper* Unemployed

*prefix*

(@ i -> g_print(); s -> g_print(); @)

Figure 4.14: Propagation pattern with object transportation

variables: Town, Person, Unemployed, Income, DemNumber and the relation-valued variables

income and ssn. At run-time, an Income-object and a DemNumber-object will be transported

to an Unemployed-object.

6Legal transportation patterns, page 448 (66).



96 CHAPTER 4. THINKING ADAPTIVELY

A customizer for the propagation pattern in Fig. 4.14 is shown in Fig. 4.15a and the

resulting propagation graph and object-oriented program is in Fig. 4.15b.7 The customizer

uses an alternation class called EmploymentStatus (drawn as ). An alternation class

is the dual of a construction class. Although a construction class, such as Trip, must have

instances but cannot have subclasses, an alternation class, such as EmploymentStatus cannot

have instances, but must have subclasses.8 The subclasses of an alternation class are shown

through alternation edges (drawn as =) ). For example, Employed is a subclass of Employ-

mentStatus and therefore there is an alternation edge from EmploymentStatus to Employed.

Methods attached to alternation classes are all considered virtual (although sometimes an

optimization could be done by making some of the functions nonvirtual). The transportation

Town
Person

EmploymentStatus

Unemployed

Person_List

void Town::income_ssn_unemployed()
{
   working_inhabitants−>income_ssn_unemployed();
}

Town Person

Income

ssn

name

income

EmploymentStatus
Unemployed

Person_List

void Person_List::income_ssn_unemployed()
{
   Person_list_iterator nextPerson(*this);
   Person *eachPerson;

   while (eachPerson = nextPerson())
      eachPerson−>income_ssn_unemployed();
}

void Person::income_ssn_unemployed()
{
   employed−>income_ssn_unemployed(income,ssn);
}

void Unemployed::income_ssn_unemployed(
   Income *i, Number *s)
{
   i−>g_print(); s−>g_print();
}

(a)

(b)

DemNumber

v

DemString
Employment

inhabitants

void EmploymentStatus::income_ssn_unemployed(
  Income *i, Number* s) {};

employment

employmentinhabitants

Figure 4.15: Class dictionary graph, propagation graph, and C++ program

is implemented by two extra arguments that are used from Person to Unemployed.9

4.6 POSITIONING IN THE HISTORY OF SOFTWARE DEVEL-
OPMENT

We sketch the history of software development from procedural to object-oriented to adap-

tive. Adaptive programming is an improvement over object-oriented programming in the

same way that object-oriented programming is over procedural programming (see Fig. 4.16).

Object-oriented programming introduces the binding of functions to data structures and

7Legal transportation pattern customization, page 448 (67).
8Class dictionary graph graphical representation, page 431 (6).
9Transportation pattern partial evaluation, page 449 (69).



4.6. POSITIONING IN THE HISTORY OF SOFTWARE DEVELOPMENT 97

adaptive object-oriented programming introduces the binding of functions to constraint-

induced partial data structures. Both bindings are done at write-time. Object-oriented

programming introduces inheritance to express programs at a higher level of abstraction

and adaptive programming uses partial data structures to lift the level of abstraction.

Object-oriented programming employs inheritance to delay the binding of calls to code from

compile-time to run-time and adaptive programming uses partial data structures to delay

the binding of methods to classes from write-time to compile-time. Adaptive programming

is therefore a natural step in the evolution of software development methods.

Paradigm Write-time Resulting delayed Due to

association binding

Procedural Function calls !

code

Object-oriented Functions ! Function calls
run�time

�! Inheritance

Data structures code

Adaptive Functions ! Functions
compile�time

�! Partial

Partial data structures data structures data structures

Figure 4.16: Comparison of programming paradigms

In Fig. 4.17 the history of software development from the delayed binding point of view is

shown in more detail. The �gure shows the progression from procedural to object-oriented to

adaptive software development. In procedural software development the following concepts

are used: data structures, functions, variables, data, and calls. They are mapped as follows:

procedural:

write-time:

variables -> data structures

compile-time:

functions -> addresses

variables -> addresses

calls -> addresses

run-time:

data -> addresses

In object-oriented software development, functions are mapped to data structures. This

leads to encapsulation of data and functionality, which avoids a lot of parameter passing.

Furthermore, object-oriented software development extends data structures with inheritance

that allows delaying the binding of calls to addresses to run-time.

object-oriented:



98 CHAPTER 4. THINKING ADAPTIVELY

partial data structures

addresses

calls

data

variables
data structures

inheritance

functions

write−time

compile−time

run−time

compile−time

compile−time

write−time

propagation−time

write−time

propagation−time

run−time

adaptive

object−oriented

procedural

History of software development

Figure 4.17: Delayed-binding viewpoint

write-time:

variables -> data structures

functions -> data structures

compile-time:

functions -> addresses

variables -> addresses

run-time:

data -> addresses

calls -> addresses

Adaptive software development delays the binding of functions to data structures be-

yond write-time. The new binding time is called propagate-time. The binding is delayed

by introducing partial data structures that are mapped to complete data structures at

customization-time.

adaptive:

write-time:

variables -> partial data structures



4.7. THE TOOLS 99

functions -> partial data structures

propagate-time:

partial data structures -> data structures

variables -> data structures

functions -> data structures

compile-time:

functions -> addresses

variables -> addresses

run-time:

data -> addresses

calls -> addresses

From the delayed binding point of view, we can summarize the history of software

development as follows:

� Object-oriented

Introduces the binding of functions to data structures. Introduces inheritance as a new

mechanism to describe data structures. Inheritance allows us more 
exibility in spec-

ifying the structure of objects. If a superclass gets an additional part, all instances of

subclasses of the superclass also have that part. Inheritance allows delaying the bind-

ing of calls to code to run-time (polymorphism). In some languages, polymorphism

and inheritance are independent.

� Adaptive

Introduces the binding of functions and variables to partial data structures. Partial

data structures are used to describe data structures generically. Partial data structures

allow a programmer to delay the binding of functions to data structures beyond write-

time.

The object-oriented approach and the adaptive approach are analogous in the way they

extend the previous approach. The adaptive approach is a natural evolution of the object-

oriented approach.

4.7 THE TOOLS

To increase the robustness of this book under changing technology, we focus on key concepts

and techniques to develop adaptive object-oriented software. The book is written without

referring to the current implementation of adaptive technology in the Demeter Tools/C++,

except in this section where we describe the existing Demeter Tools/C++. The documenta-

tion available with the software provides detailed glue between the concepts and the current

implementation.

The Demeter Tools/C++ are a set of tools that support the Demeter Method with C++

as implementation language. The Demeter Method taught in this book is, to a large extent,



100 CHAPTER 4. THINKING ADAPTIVELY

programming-language independent and can be used with several programming languages.

Future versions of the Demeter Tools plan to include other programming languages, such

as Smalltalk and Ada, resulting in Demeter Tools/Smalltalk and Demeter Tools/Ada.

The Demeter Tools/C++ support the engineering of adaptive object-oriented software

using C++. The tools are an add-on product that can be used with standard C++ com-

pilers and development environments to support analysis, design, and implementation of

C++ applications. The tools allow you to manipulate C++ code e�ectively by using a

speci�cation language that is above the object-oriented level. The speci�cation language

and its implementation have been carefully researched and formally speci�ed, as described

in numerous scholarly publications. The speci�cation language is an easy to learn superset

of C++.

The Demeter Tools/C++ interface readily with other programming tools such as exter-

nal C libraries, for example, with Motif (Open Software Foundation) and Tcl/Tk (University

of California at Berkeley), and external C++ class libraries, such as NIHCL (US Govern-

ment).

Programming with the Demeter Tools typically starts with a structural speci�cation

(called a class dictionary) followed by a behavioral speci�cation (called propagation pat-

terns). The class dictionary, although we start with it, plays a secondary role during soft-

ware development since we use it only as a guidance to develop the propagation patterns.

We try to put only minimal information about the class dictionary into the propagation

patterns.

An adaptive program for the Demeter Tools/C++ consists of three parts: the class

dictionary in a �le ending in .cd, the propagation patterns in �les ending in .pp and a main

program in �le main.C. The main program calls the functionality de�ned in the propaga-

tion patterns. The Demeter Tools/C++ take those three parts and produce an executable

program using a C++ compiler.

Beginning users need to know only one command to get an executable program from

their adaptive software. Advanced users need to use three commands to process their

adaptive software and they must learn how to set parameters in an Imake�le to customize

the compilation of adaptive software. The three commands are: gen-imake, gen-make, and

make. gen-imake creates a sample Imake�le for the user to customize if desired; gen-make

creates the corresponding Make�le which knows about all the dependencies in the adaptive

application software, andmakewill call the right tools appropriately as the adaptive software

is developed and maintained.

The Demeter Tools/C++ provide the following functionality:

� A compiler and design-rule checker for class dictionaries. Proposes changes to the

class dictionary. The output is C++ source code which provides generic functionality

for manipulating the objects de�ned by the class dictionary (i.e., reading, writing,

comparing, accessing, checking, etc.).

� A compiler and design rule checker for propagation patterns. Checks the consistency

between class dictionaries and propagation patterns. The output is C++ source code.

� A consistency checker for checking the consistency between a class dictionary and



4.8. EXPERIENCES WITH ADAPTIVE SOFTWARE 101

concise textual representations of objects. Used for high-level debugging of class dic-

tionaries.

� A graphical tool for developing class dictionaries.

� A report generator that documents the groups of collaborating classes for each prop-

agation pattern.

� A run-time library that implements a couple of classes that are needed in any appli-

cation.

� Utility tools for documenting class dictionaries.

4.8 EXPERIENCES WITH ADAPTIVE SOFTWARE

We �rst talk about teaching experience and then about software experiences.

� Teaching

We have taught the Demeter Method for several years and developed a way to teach

it in �fteen hours of instruction plus �ve exercises for professionals who know C. The

Demeter Method is easy to learn: to write adaptive programs, you have to learn

about propagation patterns, class dictionaries, and objects. To understand propaga-

tion patterns, you need to know about propagation directives and their relationship

to traversals, about transportation directives, and about a programming language for

writing the code fragments to enhance the traversal and transportation code.

� Software

Adaptive software is a strong user of itself. The Demeter System/C++ is imple-

mented in terms of class dictionaries and propagation patterns, and we �nd that the

maintenance of the system is considerably simpli�ed due to adaptiveness.

Adaptive software has been used in several industrial projects. At Citibank, a sim-

ulator for a part of their object-oriented business model was written and maintained

while the class structure underwent frequent changes. The simulator was written with

propagation patterns and therefore with minimal assumptions on the class structure.

Therefore, the simulator was much easier to maintain.

The following quote from a heavy user of adaptive software indicates that adaptive

software is easier to manipulate than object-oriented software. \Sometimes ... I come

to the conclusion that I would have preferred another structure of classes after all.

Well, I am more or less convinced that without propagation patterns I'd never take

the pain to actually change the whole system unless absolutely necessary. With prop-

agation patterns however the e�ort for such an undertaking is comparatively small."

� Without tool use

The techniques described in this book have also been applied successfully to software

development without using the Demeter Tools/C++.



102 CHAPTER 4. THINKING ADAPTIVELY

The Law of Demeter, which is one of the corner stones of adaptive software, is used

as a style rule at several companies.

Class dictionaries are used during the analysis and design phase, to express both class

hierarchies and object hierarchies. One engineer used the Demeter graphical notation

to describe object hierarchies, starting with the full class dictionary and then trimmed

alternations to a single choice to show a run-time object. The engineers on the team

found this to be easy to understand.

The simple diagramming language for class dictionaries, three vertex shapes and two

line styles, is easy to use. One project leader writes: \Working with a group of

engineers who were mostly new to C++ and object-oriented development, I found the

Demeter diagrams to be very useful in communicating the software architecture and

object relationships."

Propagation patterns and object traversals were used during the design phase. One

project leader writes (a 50000 lines C++ project using Visual C++ and the Microsoft

foundation classes, 9 engineers): \To ensure that the Law of Demeter was applied

when implementing a feature, the Law of Demeter was expressed as a coding standard

that was strictly enforced via code reviews. All functionality that stretched from the

user interface layer of the product through the document layer and down into the mail

transport were expressed as object traversals."

Requirements

identify

identify abstract

Objects

Class dictionary

Class dictionary graph
Sentencesdefine

define

1−1 correspondence

A propagation pattern

define

select

A family of programs defined by the propagation pattern

add syntax

Figure 4.18: Demeter



4.9. SUMMARY 103

4.9 SUMMARY

The concepts of adaptive software and their relationships are summarized in Fig. 4.18. This

chapter presented a new approach to develop software, namely the the Demeter Method.

Somewhat provocatively, the Demeter Method almost goes back to the good old times

when functions and data were separated. Adaptive software plays with a loose coupling

between functionality and class structure.

What is new? An adaptive program di�ers from an object-oriented program in at least

the following ways.

Delayed Binding of Methods

From the article \Binding" in the Encyclopedia of Computer Science:

Broadly speaking, the history of software development is the history of ever-

later binding time : : : .

In an object-oriented program, we code object behavior as operations attached to spe-

ci�c classes. If we desire to call a behavior at the bottom of a composite object, many

objects in that hierarchy must have a behavior that passes-the-call down one level.

This sequence of behaviors is absolutely dependent on the existing class structure,

and any changes to the class structure require that this sequence be examined, and

possibly modi�ed.

Propagation patterns can express such passes-the-call behaviors without listing all the

participating classes. Instead, the behaviors are written in compact traversal clauses

with necessary code fragments added. As a class structure is given, all the pass-the-

call behaviors are generated automatically for all classes for which they are required,

and the code for the desired behavior is inserted in the bottom class and in important

classes in between. In other words, methods are being attached to classes during

propagation pattern interpretation in the context of a class structure.

The important observation is that object behaviors coded as propagation patterns are

not speci�cally attached to any class at coding time.

Adaptiveness and Succinctness

Propagation pattern programs are data-structure-shy programs that repel data struc-

ture details. Object behaviors coded as propagation patterns can be reused also,

sometimes without modi�cation in a di�erent context (i.e., for a di�erent application

with di�erent classes and a di�erent class structure). Therefore, propagation patterns

are adaptive programs.

An important question is whether adaptive software is useful for large applications; that

is, does adaptive software scale well? The answer is a de�nite yes since the larger the class

structures and the more relations there are, the more opportunities there are to propagate.

Adaptive software is useful in any application that has a nontrivial data model, and there

is no loss of execution e�ciency compared to object-oriented software. Object-oriented

software often uses the inlining technique during compilation. Inlining will not generate a

function call for small functions; the code of the function is copied directly into the compiled

code without creating a function call.



104 CHAPTER 4. THINKING ADAPTIVELY

4.10 BIBLIOGRAPHIC REMARKS

� Niklaus Wirth

Several ideas that have been promoted by Niklaus Wirth and which I learned during

my studies at ETH have in
uenced this book.

{ Stepwise re�nement: The idea of stepwise re�nement [Wir71a, Wir74a] is one of

the foundations on which adaptive software is built. It is only after a re�nement

step, called customization, that the data structures and input languages get fully

speci�ed.

{ LL(1) languages: Niklaus Wirth has consistently designed languages that are

easy to learn and read. This was achieved by making the languages parsable by

recursive descent parsers with one symbol look-ahead [Wir76]. We use program

customizers, called class dictionaries, that also must all have the LL(1) property.

LL(1) languages will be used in Chapter 11.

{ EBNF: Niklaus Wirth proposed a standard way to describe languages [Wir77].

We have extended this notation to make it simultaneously a suitable notation for

program customizers used during stepwise re�nement.

{ Lean languages: Niklaus Wirth has resisted attempts to make his notations

baroque [Wir71b, Wir74b, Wir82, Wir84, Wir88, WG89]. The notations used

in the Demeter System have followed his example. For example, the class dictio-

nary notation used for object-oriented design is considerably simpler than other

object-oriented design notations.

� Contracts

Many mechanisms have been invented to make software more 
exible, for example,

implementational re
ection [Rao91] and contracts [HHG90, Hol92]. Rao [Rao91] de-

�nes implementational re
ection as re
ection involving inspection or manipulation

of the implementational structures of other systems used by a program. He argues

that implementation architectures be made explicit and open, allowing customization.

Propagation patterns follow this approach.

A contract describes the collaboration of a group of objects. Adaptive software is

a generalization of contracts by making many participants implicit, increasing the

reusability of the contracts. Some aspects of contracts still have not been integrated

into adaptive software, like run-time switching between contracts.

� Small methods

Several studies (for example, [WH91, WMH93, WH92]) have shown that methods tend

to be very small, most of them serving as a simple bridge to other methods. This is a

natural consequence of encapsulation, and is encouraged by style guidelines for good

programming, such as the Law of Demeter. Another problem is that all these little

methods are explicitly attached to classes in the programming phase, introducing an

implicit commitment to maintain each method's code dependencies on its own class

and on the classes to which the code refers. These characteristics have two undesirable



4.10. BIBLIOGRAPHIC REMARKS 105

consequences: one, understanding each class's functionality is easy, but understanding

programs as a whole can be very hard; two, with class structures changing frequently,

the e�ort to maintain the code can be substantial. The Pareto-principle also applies

in object-oriented programming: for a given task, 80% of the work is done by 20%

of the interesting classes. Propagation patterns allow us to focus on those interesting

classes.

� Use cases

Ivar Jacobson writes in [Jac92]: \Use cases are a way to make complex systems un-

derstandable without, as a �rst step, trying to structure the system into ... objects

... Such structuring creates very technical descriptions which tend to shift the focus

from the problem of understanding the requirement to dealing with implementation-

like descriptions." We use Jacobson's vision when we work with propagation patterns:

they can describe speci�c uses or views of an object system without, as a �rst step,

de�ning the detailed structure of objects.

� Views

In [AB92], Aksit and Bergmans write: \Many object-oriented methods ... expound the

importance of domain knowledge while preparing the user's requirement speci�cations.

Integrating the domain knowledge with these speci�cations, however, can create an

excessive number of objects, although only a few of these objects may be relevant to

the problem ..." Propagation patterns address the issue on focusing on the interesting

objects. The class-valued variables and relation-valued variables focus on what is

important to the problem and the unimportant classes are either ignored or code is

produced automatically for them. A propagation pattern is a view of an integrated

(and properly extended) domain model.

� Law of Demeter

Markku Sakkinen writes in [Sak88a]:\The methods of a class should not depend in

any way on the structure of any class, except the immediate top-level structure of

their own class." With propagation patterns we can now go further and require that

in addition to Sakkinen's view of the Law of Demeter, methods depend only on the

really interesting classes.

� Navigation

Rumbaugh [Rum88] has proposed an operation propagation mechanism. The most

signi�cant di�erence is that his is run-time-based and not using succinct subgraph

speci�cations while our mechanism is compile-time based and geared towards a new

method for developing object-oriented software.

� Unplanned software reuse

A key question behind writing generic software is: what is the level of instantiation-

look-ahead that is needed for writing a generic algorithm. If the generic algorithm

needs to account for each possible use, then it will be di�cult to write and reuse. It is

our experience that propagation patterns have a small instantiation-look-ahead. For



106 CHAPTER 4. THINKING ADAPTIVELY

example, writing generic algorithms in contract form [HHG90, Hol92] requires more

planning on how the contract will be used.

� Programming by example

Propagation patterns are self-contained speci�cations that de�ne requirements for class

dictionary graphs that can be used with them. A propagation pattern is usually

developed and tested for an example class dictionary graph, although a propagation

pattern works for many more class dictionary graphs. Therefore, propagation pattern

programming is an advanced form of programming by example.

Programming by example was an active topic in the early 1970s [BK76]. Programs

were derived from examples of inputs and corresponding outputs. In our case, we write

a program for a sample data structure and we automatically generalize this program

to other data structures.

� Grammar-based programming

The idea of data-structure-shy programming with partial data structures relates to

other areas of computer science outside of object-oriented programming. In the area

of syntax directed semantics, the meaning of a sentence is de�ned as a function of the

structure of the sentence. This is an old and good idea going back to the last cen-

tury, but all current implementations seem to encode the details of the structure into

the meaning function. This leads to software that is hard to maintain under chang-

ing structures, and those structures do change frequently. There is a lot of research

that should be reevaluated from the point of view of data-structure-shy programming,

for example, attribute grammars [RTD83], logic programming [BGV90], and natural

semantics [BDD+88]. Recent work at Carnegie Mellon University [GCN92, SKG88]

investigates grammar transformations and semiautomatic updating of programs writ-

ten for the grammars. If the programs would be written in a data-structure-shy (or

grammar-shy) way, the program transformations are simpli�ed. For example, for many

grammar transformations, the program does not require an update at all.

� Paradox of the inventor

See [Pol49].

� Frameworks

What is a framework? Johnson writes in [Joh92]:

\A framework is a reusable design of a program or a part of a program

expressed as a set of classes [Deu89, JF88]. ... Frameworks are designed by

experts in a particular domain and then used by non-experts."

In other words, a framework is a class library plus documentation on how to use it

and on how it is designed.

Let's de�ne



4.10. BIBLIOGRAPHIC REMARKS 107

adaptive framework =

library of

propagation patterns (pps) and

class dictionaries (cds) +

documentation (purpose, use, design)

The class dictionaries serve as sample customizers to better show typical uses of the

adaptive framework.

To compare informally frameworks with their adaptive counterparts, we could use the

following equations:

framework = customization of adaptive framework

adaptive framework = family of frameworks

framework:class library =

adaptive framework:library of pps/cds

adaptive framework:framework = class:instance

adaptive framework:framework = genre:play

adaptive framework:framework = species:animal

� Decontextualized components

In [WB94] Wile and Balzer discuss decontextualized components. In a decontextu-

alized component, an architecture description language provides the usage context.

Compilation decisions are delayed until the context information is available. Decon-

textualized components make fewer commitments to data and control decisions than

ordinary components. Wile and Balzer also want to make software more 
exible and

adaptable. They don't use the succinct subgraph speci�cations used in adaptive soft-

ware.

� Methods as assertions

Other attempts have been made to generalize object-oriented programming. In [LA94]

the methods-as-assertions view is discussed. This view generalizes object-oriented

programming and helps the programmer to 
exibly express when a certain piece of code

will correctly implement an operation. The methods-as-assertions view is consistent

with the adaptive view but the two are complementary and they could be integrated.

� Intentional programming

Microsoft started a proprietary project on intentional programming at about the same

time our adaptive programming work started (1988).

According to Charles Simonyi from Microsoft (he hired and led the teams that devel-

oped Microsoft Word, Excel, and other applications whose business has grown to over

$2 billion per year), intentional programming addresses each of the following (from:

\Software 2000: A View of the Future," edited by Brian Randell, Gill Ringland, and

Bill Wulf, sponsored by Esprit and ICL):



108 CHAPTER 4. THINKING ADAPTIVELY

{ implementation detail is separated from computational intent (hence the name

intentional programming); so we have the bene�ts of program generators but

without their costs.

{ domain-speci�c knowledge can be added routinely using program transforma-

tions.

{ trade-o�s are simply eliminated by providing great abstraction capabilities (to

express the commonality) and similarly powerful specialization capabilities (to

express the speci�c needs without run-time costs.) The latter is achieved using

partial evaluation.

Intentional programming, because of its proprietary nature, cannot be compared fully

to adaptive programming. The three points above, however, apply to adaptive software

as well. Adaptive programming separates computational intent from object structure.

Adaptive software also adds domain speci�c knowledge about object structure after

the program is written. Adaptive software also uses partial evaluation.

There seems to be one important di�erence between intentional and adaptive pro-

gramming: adaptive programming relies on succinct speci�cations of subgraphs.

� Requirement for design notations

At a CASE workshop at Index Technology in Cambridge in the late 1980s, Peter

Deutsch recommended the following requirement for any design notation: \assignment

of responsibilities to objects without making a commitment about their structure."

Adaptive software satis�es this requirement.

� Structure-shy queries

There is a growing �eld of research in databases related to structure-shy queries. Those

are queries that are relatively independent of the schema of the databases. Abbreviated

path expressions are a technique that is often used. For a detailed comparison see

[Har94].

� Open implementations

The work on open implementations of Gregor Kiczales and his group at Xerox PARC

has several connections to adaptive software. In [Kic92], Kiczales writes: \The idea is

that reusable code should be like a sponge: It provides basic functionality (the base-

level interface), basic structure (the default implementation) but also allows the user

to pour in important customizations from above to �rm it up." An adaptive program

can also be compared to a sponge that can be brought into various forms through

customizations.

Open implementations support a dual interface: a traditional interface and an adjust-

ment interface. So do adaptive programs: a traditional interface and a customization

interface. The customization interface is de�ned by constraints that de�ne the legal

customizers.

Adaptive programs expose important parts of the implementation and pursue a similar

goal to that of open implementations. The class-valued and relation-valued variables



4.10. BIBLIOGRAPHIC REMARKS 109

in an adaptive program expose parts of the implementation. Those variables are used

to control the customization of the adaptive program.

Open implementations of the Xerox PARC kind have grown out of the re
ection and

meta-level architectures community [KRB91]. The distinguishing feature of adaptive

programs as compared to open implementations is the use of succinct subgraph spec-

i�cations.

Some of the papers by the Xerox PARC group on open implementations are [Kic92,

KL92, Kic93].

� Software Architecture [AG92, GSOS92]

Architecture description languages (ADLs) are between requirement de�nition lan-

guages and programming languages. ADLs have a similar motivation to that of lan-

guages for the expression of the output of the analysis and design phase of object-

oriented systems.

ADLs have two intended advantages:

{ to facilitate evolution and maintenance by improving maintenance and develop-

ment productivity, and

{ to improve interoperability between independently developed software compo-

nents.

ADLs work with components and interconnections between them. Useful combinations

of component and connector types are called architectural styles. The architecture of

a system may be viewed as a high-level description of a system's organization. Many

systems conform to the same architecture; an architecture de�nes an entire family of

systems.

There are many analogies between an architectural description and an adaptive pro-

gram. Indeed, an adaptive program quali�es as a high-level architectural description

where many connectors are left implicit. An adaptive program describes a 
uid be-

havioral architecture that is customized by a structural architecture. An adaptive

program describes a family of object systems that can be obtained from the adap-

tive program by two processes: re�nement and customization. Re�nement adds more

wrappers and re�nes propagation directives [LZHL94]. Customization selects a class

structure to freeze the behavioral architecture into a structural architecture.

� Controlling impact of change versus reuse capability

In their paper on object de�nition techniques and prototyping, Wileden, Clarke, and

Wolf write [WCW90]:

On the one hand, the desire to make an object easy to reuse ... seems to

argue for having an information-rich interface|that is an interface that ...

is revealing the objects' structure.

On the other hand, the desire to limit the impact of change seems to argue

for an information-poor interface so that the details of the object can change

without necessarily a�ecting all clients of the object.



110 CHAPTER 4. THINKING ADAPTIVELY

The interface they refer to is a signature interface with parameters and their types.

The tension between information-rich and information-poor interfaces is very real. It

is at the same time a tension between reuse and information hiding. How can we best

balance information-richness and information-poverty in interfaces?

Objects are usually multifunctional and for each function only some parts of the object

are important. Therefore, only the classes of the relevant parts should be put into the

\customization" interface of that function. This approach allows us, surprisingly, to

change the details of objects while automatically preserving an analogous functionality.

The customization interface describing the important classes for a given function has

di�erent properties from the signature interface. When the customization interface is

richer than it should be, we have less reuse (di�erent from signature interface) and

changes will have more impact (same as for signature interface).

Through the customization interface we can control reusability (adaptiveness) and the

impact of changes.

� Disadvantage of object-oriented software

In [GS93], Garlan and Shaw write:

Object-oriented systems have disadvantages the most signi�cant of which

is that in order for one object to interact with another it must know the

identity of that other object. The signi�cance of this is that whenever the

identity of an object changes, it is necessary to modify all other objects that

explicitly invoke it.

This disadvantage does not hold for adaptive object-oriented systems. Interaction

can be speci�ed by elastic relationships, like *from* A *to* B, where the identity of

B-objects is only known to A-objects after customization with a class dictionary. But

at the adaptive program level, A and B can be in a variety of di�erent relationships.

� Subject-oriented programming

Subject-oriented programming supports the packaging of object-oriented systems into

subjects [HO93]. Each subject models its domain in its own subjective way as a

possibly incomplete object-oriented program. Each subject has its own class hierarchy

that contains only the relevant details. Subjects may be composed by a composition

designer.

Subject-oriented programming and adaptive programming package object-oriented

software in a similar way. Adaptive programming can bene�t from the work on compo-

sition of subjects and subjective programming can bene�t from the succinct subgraph

speci�cations used in adaptive programs. They allow the expression of more 
exible

subjects.

� Hot-spot-driven approach

In [Pre94], Wolfgang Pree promotes the idea of hot-spot-driven design. A hot spot is

an aspect of an application domain that needs to be kept 
exible. Metapatterns are

used to implement the hot spots and to gain 
exibility.



4.10. BIBLIOGRAPHIC REMARKS 111

Adaptive programming complements the idea of hot-spot-driven design. In adaptive

programming, the object structure is viewed as a hot spot both for de�ning behavior

and for object creation. Propagation patterns deal with 
exible behavior from the

point of view of the hot spot of class structure. Parsing deals with 
exible object

creation from the point of view of the hot spot of class structure.



Chapter 5

Adaptive Software by Example

In this chapter the important features of adaptive programs, namely propagation patterns

and class dictionaries, are introduced by simple examples that become increasingly more

complex. This chapter intentionally gives de�nitions by examples without introducing the

concepts in full before they are used. Later chapters explain class dictionaries and propa-

gation patterns in detail.

Besides introducing the concepts by examples, this chapter serves a second purpose:

it shows how adaptive programs behave under evolution of the class structure. We will

use essentially one adaptive program in the context of several class dictionaries. Software

evolution and maintenance are very costly activities and we show how adaptiveness simpli�es

software maintenance.

In this chapter we use adaptive programs to query objects. We must stress that adaptive

software is not only useful for querying objects, but for modifying them as well. Adaptive

software is useful for any programming task that requires more than a couple of classes.

5.1 CHANGING REQUIREMENTS

Assume that a customer asks us to write a program to compute the weight of a container.

When we ask what kind of containers they have and how their containers are structured,

we get a rather confusing answer. They say that their containers contain items that have

weights. The structure of the containers varies and they will know the details in an hour, but

by then the program should almost be ready. This situation is quite typical; often customers

keep changing their requirements, but they want to have the programs immediately.

So we are left with the task of writing a program that computes the weight of containers

without knowing their structure. This task looks hard initially, but after some analysis it

turns out to be the right way to approach the problem anyway. Consider an airplane, and

consider that we know the weights of all its parts. The airplane is represented by some data

structure that contains weight �elds and all we have to do is add together the numbers in

all those weight �elds.

How can we �nd all the weight �elds, or weight objects? We traverse the airplane data

structure and visit all the parts that contain weight information. When we get to weight

112



5.1. CHANGING REQUIREMENTS 113

information, we add it to a variable that re
ects the weight of the section of the airplane

we have already traversed.

Now go back to the generic container problem and apply the airplane idea to it. Since

the data structure that we use to represent the container is not important, we may as well

use a simple data structure �rst and use a more complex one later. So we start with the

very simple data structure that describes a container having a weight �eld (see Fig. 5.1).

Container
weight

Weight

DemNumber

v

Figure 5.1: Simple container: graphical representation

Container = <weight> Weight.

Weight = <v> DemNumber.

Figure 5.2: Simple container: textual representation

We use a programming-language independent data structure notation, called the class

dictionary notation which has a textual as well as a graphical representation. In Fig. 5.1, we

graphically de�ne two construction classes, one calledWeight and the other called Container.

Fig. 5.2 shows the corresponding textual representation. When we use the word class in this

chapter, think of a Pascal record type or a C struct. Container has a weight part and Weight

has a DemNumber part. DemNumber is assumed to be a prede�ned class, called a terminal

class, for which the basic number operations, for example, addition, subtraction, etc., are

de�ned. Later we will learn other terminal classes, such as DemReal and DemString. The

pre�x Dem is an abbreviation of Demeter and is used to avoid name con
icts with classes

you might use from another class library.

Next we write a program for the data structures in Fig. 5.1 with the attitude that

the data structure is very volatile and subject to frequent changes. Therefore, we solve the

problem using only minimal information about the data structure. For example, we don't

want to hard-code the information that a container has a part called weight. This kind of

programming style is naturally called data structure-shy since the program is using as little

information as possible about the data structure.

A useful way to think about the problem is to think in terms of collaborating classes

for solving the weight addition problem. We need all the classes from Container to Weight

to solve the problem. There could be a number of intermediate classes between Container



114 CHAPTER 5. ADAPTIVE SOFTWARE BY EXAMPLE

and Weight. For example, in Fig. 5.3, Item is an intermediate class between Container and

Container

weight

DemNumber

v

Weight

Item

contents

Figure 5.3: One intermediate class

Weight.

We need to �nd a generic way to de�ne the group of collaborating classes.1 What about

the speci�cation in Fig. 5.4 that we call a propagation directive? It serves our purpose very

*from* Container *to* Weight

Figure 5.4: Propagation directive

well since it constrains the group of collaborating classes with minimal knowledge of the class

structure. For the previous example in Fig. 5.3, the speci�cation in Fig. 5.4 will include the

class Item that is between Container and Weight. We call such a speci�cation a propagation

directive. It is a concise description of a group of collaborating classes. A propagation

directive de�nes a group of collaborating classes using a *from* ... *to* directive.

Propagation directives play a very important role in object-oriented design. They allow

us to describe object-oriented software in a highly 
exible form. For example, we can

describe software without knowing what the detailed input objects will be.

To use an analogy from the automobile industry, with propagation directives we can

build standard cars whose architecture can be changed after they are built. For example, a

standard car can be customized to a sedan or a bus.

For any given container data structure, the propagation directive will select a subdata

structure that describes the group of collaborating classes. We call such a subdata structure

a propagation graph. In the examples in Fig. 5.1 and Fig. 5.3, all classes except DemNumber

are included in the propagation graph by the propagation directive in Fig. 5.4.

1Propagation directive abstraction, page 447 (60).



5.1. CHANGING REQUIREMENTS 115

So the propagation graph (subdata structure) de�nes a group of collaborating classes,

but it has an additional, very useful interpretation: it de�nes an algorithm to traverse a

given data structure instance, in our example a Container-object. In the example in Fig.

5.3, the algorithm would visit objects in the following order: Container, Item, Weight.

The traversal does most of the work for computing the weight. All we need to do is add

additional code to the traversal code. Consider classWeight: its traversal code has an empty

body. We want to add code that adds the current weight to a variable called return val.

*wrapper* Weight

*prefix*

(@ return_val = return_val + *v; @)

This wrapper adds code to class Weight by wrapping the C++ code between "(@" and

"@)" around the empty body of class Weight.

A wrapper can be viewed as an editing instruction for an object-oriented program. A

pre�x wrapper, such as the one above, adds code that needs to be executed before the

traversal code. When a wrapper is speci�ed without the *pre�x* keyword, it is a pre�x

wrapper by default. The above wrapper can be written in shorter form as

*wrapper* Weight

(@ return_val = return_val + *v; @)

In the rest of the chapter we will use this short form.

Why do we choose to make the Weight wrapper a pre�x wrapper? We could also have

made it a su�x wrapper, using the keyword *su�x*, which would append the code at the

end of the traversal code. In this case it does not matter since the traversal code is empty

for class Weight. We can choose a pre�x or a su�x wrapper.

The code between "(@" and "@)" is C++ code, which needs a little explanation because

of the star appearing before v. Variable v refers to the DemNumber-object that is contained

in Weight. The type of v is a pointer type to DemNumber, in C++ notation the type is

DemNumber*. As a general rule, parts are implemented by pointer types unless a special

notation is used in the class dictionary. This is a general and useful approach in object-

oriented programming.

Since v is a pointer to a DemNumber-object, *v is a DemNumber-object; that is, * is

the dereferencing operator of C++. For class DemNumber we assume (not shown) that

a constructor has been de�ned that creates a DemNumber-object from an int value. The

conversion rules of C++ then call implicitly the constructor as a conversion function during

the evaluation of return val + *v. Readers not familiar with C++ can �nd a transition from

C to C++ for the purpose of writing adaptive software in Chapter 3, Section 3.5.2

Finally we need to agree on a signature for the weight addition function that will be

attached to all the collaborating classes.

*operation* int add_weight() // signature

*init* (@ 0 @) // initialization

2It is important to notice that the adaptive software concept is independent of C++ and it can be used

with many other object-oriented programming languages such as Smalltalk or CLOS.



116 CHAPTER 5. ADAPTIVE SOFTWARE BY EXAMPLE

The function has an implicit variable, called return val, which will be returned when the

function returns. The return val variable can be initialized by giving an expression after the

*init* keyword. In this example, we initialize to 0 since we solve a counting problem.

We now have all the pieces of the program which is given in complete form in Fig. 5.5.

Such a program is called a propagation pattern. It makes few assumptions about the class

*operation* int add_weight()

*init*

(@ 0 @) // C++ code fragment

*traverse*

*from* Container *to* Weight

*wrapper* Weight

(@ return_val = return_val + *v; @) // C++ code fragment

Figure 5.5: Propagation pattern

structure with which it can be used. That is the main point we want to make here. We view

Container and Weight to be class-valued variables that will be mapped onto ordinary classes

later. The algorithm is formulated in terms of the class-valued variables. We make only

two assumptions about the Container and Weight class: one, that a relationship between

the two exists that allows traversal from Container to Weight and two, that Weight has a

part called v for which the addition operator is de�ned. The relationship could be a one-to-

one relationship or a one-to-many relationship; we keep the algorithm independent of such

details.

We further explain the propagation pattern in Fig. 5.5. To implement the add weight

operation, we need the collaboration of a group of classes all having an operation with

the given signature. Since we do not know the group of collaborating classes, we cannot

itemize them, but we can outline them. We need all the classes that are involved in the

relationship between Container and Weight. The speci�cation *from* Container *to* Weight

succinctly de�nes the group of collaborators. They have the important task traversing a

Container-object and �nding all the Weight-objects contained in it. But the traversal itself

does not accomplish any addition. Therefore, we need an editing mechanism that allows

us to personalize the traversal code. The editing is accomplished by wrappers that add

additional code. A wrapper may contain two kinds of code fragments between (@ and @),

at least one of which has to be present. The �rst kind is a pre�x code fragment and the

second kind is a su�x code fragment. The pre�x and su�x code fragments are wrapped

around the traversal code. In the example above we used only a pre�x code fragment.

5.2 CUSTOMIZING WITH CLASS DICTIONARIES

The program in Fig. 5.5 describes a potentially in�nite number of programs for computing

weights of containers and we would like to select a few additional example programs. A

selection is accomplished by writing a class structure called a class dictionary, that satis�es



5.2. CUSTOMIZING WITH CLASS DICTIONARIES 117

the assumptions. We need a class dictionary containing a path from Container to Weight.

This selection can also be viewed as a customization of the original generic program. We

next customize the program in Fig. 5.5 so that it will work on Basket-objects.

First, the program should run on baskets that contain exactly two apples. Later we will

generalize to baskets with several kinds of fruit.

Fig. 5.6 contains a description of a basket, called AppleBasket, containing two apples.

The format of this notation is

ClassName0(

<part1> ClassName1(

<part2> ClassName2 token))

The object AppleBasket has one part, called contents, that contains an object of some class

called TwoFruit. The TwoFruit-object itself contains an Apple-object whose weight is 9 and

an Apple-object whose weight is 12.

Basket(

<contents> TwoFruit(

<fruit1> Apple(

<weight> Weight(

<v> DemNumber "9"))

<fruit2> Apple(

<weight> Weight(

<v> DemNumber "12")))

Figure 5.6: Apple basket object

The object description uses one line per object part. Each such line contains a class

name and in this example each line, except the �rst, also contains a part name.

We abstract the following class de�nitions from this object, which we summarize with

a class dictionary graph shown in Fig. 5.7.3 The vertices drawn as 2 stand for instantiable

classes and they are called construction vertices. The single-shafted edges (�!) stand for

part-of relationships. Those edges are called construction edges. The label of the edge is a

part-name.4 For big class dictionaries, like for big object graphs, the graphical representation

becomes clumsy. Therefore we also use a textual notation that lists the successors of every

vertex in a linear format. The equivalent textual representation for the class dictionary in

Fig. 5.7 is given in Fig. 5.8.5

There is a simple technique to derive the textual notation from the graphical notation:

We traverse each vertex of the graph and for each vertex we write down all its successors.

3Class dictionary graph learning, page 432 (14).
4Class dictionary graph graphical representation, page 431 (6).
5Legal class dictionary graph, page 431 (9).



118 CHAPTER 5. ADAPTIVE SOFTWARE BY EXAMPLE

Basket

contents

TwoFruit

Apple

fruit2fruit1

weight
Weight

DemNumber

v

Figure 5.7: Apple basket class dictionary

.

Basket = <contents> TwoFruit.

TwoFruit = <fruit1> Apple <fruit2> Apple.

Apple = <weight> Weight.

Weight = <v> DemNumber.

Figure 5.8: Apple basket



5.2. CUSTOMIZING WITH CLASS DICTIONARIES 119

The edge labels precede the corresponding successor. There is a minimal amount of concrete

syntax to learn: "=" is used to de�ne construction classes. "<" and ">" are used to surround

part names.6 A "." is used to terminate each class de�nition.

A program to compute the weight of the apples in a basket needs the collaboration of

all classes. All classes need an operation with signature int add weight() . We note that the

classes to which we want to propagate the signature lie on a path from Basket to Weight.

For each class, the add weight operation should call add weight for all the subparts.

The propagation pattern in Fig. 5.5, with the renaming Container => Basket, propagates

the signature void add weight(int& t) to all the classes and for each class the operation

is called on all the part classes. However, there is one exception: for class Weight the

propagation pattern gives the implementation. We use "(@" and "@)" to mark C++ code.

The operation add weight, if called for the AppleBasket object in Fig. 5.6, will return 21.

The code de�ned by this customization explains the meaning of the propagation pattern

in more detail.7 The C++ code uses the auxiliary function add weight . The reason why

function names like add weight rather than add weight are used for the generated functions

is to hide the auxiliary functions.

int Basket::add_weight() {

int return_val = 0; this->add_weight_(return_val);

return return_val;}

//Weight

void Weight::add_weight_(int& return_val)

{return_val = return_val + *v;}

// Basket = <contents> TwoFruit .

void Basket::add_weight_(int& return_val )

{

this->contents->add_weight_(return_val );

}

// TwoFruit = <fruit1> Apple <fruit2> Apple .

void TwoFruit::add_weight_(int& return_val )

{

this->fruit1->add_weight_(return_val );

this->fruit2->add_weight_(return_val );

}

// Apple = <weight> Weight .

void Apple::add_weight_(int& return_val )

{

this->weight->add_weight_(return_val );

}

6Class dictionary graph textual representation, page 431 (7).
7Propagation pattern partial evaluation, page 448 (64).



120 CHAPTER 5. ADAPTIVE SOFTWARE BY EXAMPLE

The generated C++ code contains many more details than the original adaptive pro-

gram. The knowledge about the details comes from the class dictionary we used for cus-

tomization. Your favorite C++ book will help you understand the C++ code, but here is

a pointer. A reference argument is used to pass around the variable return val to collect all

the weight information. The type int& denotes a reference argument (a variable parameter

in Pascal).

Next we want to run the propagation pattern in Fig. 5.5 on more Basket-objects. We

add a second example to the previous basket in Fig. 5.6. We also want to deal with baskets

of the following kind:

Basket(

<contents> TwoFruit(

<fruit1> Orange(

<weight> Weight(

<v> DemNumber "10"))

<fruit2> Orange(

<weight> Weight(

<v> DemNumber "10"))))

With this additional object, called OrangeBasket, the previous class dictionary is no

longer satisfactory.8 We modify the class dictionary as follows to express that a fruit can

be either an apple or an orange: we introduce an abstract class Fruit. The graphical rep-

resentation of the new class dictionary is shown in Fig. 5.9. The vertex drawn as

stands for the abstract Fruit class. The class is abstract since it cannot instantiate objects.

Such classes are called alternation classes and are graphically represented by hexagonal

vertices. The double-shafted arrows(=)) stand for kind-of relationships and are called al-

ternation edges. An alternation edge must start at an alternation vertex, that is, at a

hexagonal vertex.9 The corresponding textual representation of the class dictionary in Fig.

5.9 is in Fig. 5.10.

We learn that alternation classes are introduced by ":" and the alternatives of an

alternation class de�nition are separated by "|".10

Luckily, we do not have to change the propagation pattern in Fig. 5.5 to compute the

weight of the fruit in the basket (we still use, of course, the renaming: Container => Basket).

However, the expanded program now looks di�erent in that it contains the two additional

operations shown in Fig. 5.11. We adopt the general rule that operations attached to

abstract classes are virtual, that is, the operation for class Fruit is virtual. Your C++ book

contains an explanation of virtual functions. Essentially, virtual means the function is late

bound. In the context of this example virtual means that if, for example, fruit1 contains an

Apple-object, the code of class Apple will be called, and if it contains an Orange-object, the

code of class Orange is called.11

The operation add weight will add 20 to argument return val if it is requested for basket

OrangeBasket. But the expanded program is not elegant. We have the function add weight

8Incremental class dictionary graph learning, page 433 (15).
9Class dictionary graph graphical representation, page 431(6).
10Class dictionary graph textual representationpage 431 (7).
11Propagation operator, page 446 (59).



5.2. CUSTOMIZING WITH CLASS DICTIONARIES 121

Basket

contents

TwoFruit

Apple

fruit2fruit1

weight

WeightDemNumber
v

Fruit

Orange

weight

Figure 5.9: Class dictionary graph for apple/orange basket

Basket = <contents> TwoFruit.

TwoFruit = <fruit1> Fruit <fruit2> Fruit.

Fruit : Apple | Orange.

Apple = <weight> Weight.

Orange = <weight> Weight.

Weight = <v> DemNumber.

Figure 5.10: Textual form of class dictionary for apple/orange basket



122 CHAPTER 5. ADAPTIVE SOFTWARE BY EXAMPLE

// Fruit : Apple | Orange .

void Fruit::add_weight(int & return_val ) // virtual

{

}

// Orange = <weight> DemNumber .

void Orange::add_weight(int & return_val )

{

weight->add_weight(return_val);

}

Figure 5.11: Additional C++ code

for DemNumber called twice, once from the Apple class and once from the Orange class. The

weights are common to Fruit and therefore the weight computation should be implemented

at class Fruit. Therefore, we now improve the class dictionary.12 The graphical form is

shown in Fig. 5.12 and the textual form is in Fig. 5.13.

Basket

contents

TwoFruit

Apple

fruit2fruit1

weight
Weight

DemNumber

v

Fruit

Orange

Figure 5.12: Optimized fruit basket class dictionary

We observe that an alternation vertex may have outgoing construction edges. In the

textual representation, construction edge successors follow the alternation edge successors

and they are separated by the keyword *common*.13

12Common normal form, page 444 (47).
13Class dictionary graph textual representation, page 431 (7).



5.2. CUSTOMIZING WITH CLASS DICTIONARIES 123

Basket = <contents> TwoFruit.

TwoFruit = <fruit1> Fruit <fruit2> Fruit.

Fruit : Apple | Orange *common* <weight> Weight.

Apple = .

Orange = .

Weight = <v> DemNumber.

Figure 5.13: Optimized class dictionary in textual form

The propagation pattern stays the same, but the expanded program is now more elegant

and is shown in Fig. 5.14. The change is in the last three functions. (This code can be

optimized for this simple example: delete the two functions for classes Apple and Orange!)

So far we have hidden the C++ code for the class de�nitions.14 Fig. 5.15 shows some

of the class de�nitions needed for the class dictionary in Fig. 5.12. The translation process

is straight-forward. Every class (vertex) in the class dictionary is translated into a C++

class. The relationships between the classes are translated as follows: construction edges

are translated into data members and alternation edges into inheritance relationships, but

in the other direction. The line class Apple :public Fruit says that class Apple inherits from

class Fruit, and the alternation edge goes from Fruit to Apple.

Next we want to work with baskets that can contain any number of fruit, not just

two. Instead of naming them explicitly, we want to refer to them by their position in a

list. We use the examples in Fig. 5.16 to de�ne baskets that may contain several objects.

The opening curly bracket "{" indicates that we start to enumerate objects and the closing

curly bracket "}" terminates the enumeration. The enumerated elements are separated by

a comma.

From the two basket examples in Fig. 5.16, we derive the class de�nitions shown in

Fig. 5.17 in graphical form. In this example we learn about the third and last (after

construction and alternation) kind of class used in class dictionaries, namely repetition

classes, which represent collections of objects, such as lists, arrays, doubly linked lists, sets,

etc. Repetition classes are represented graphically as such as class SeveralThings in

Fig. 5.17. A repetition class has an outgoing edge that indicates the class whose objects

are repeated. For example, class SeveralThings has an outgoing repetition edge (drawn as

�! ) to class Thing. This means that a SeveralThings-object consists of a list of at least

one Thing-object.

The textual form corresponding to Fig. 5.17 is shown below.15

Basket = <contents> SeveralThings.

SeveralThings ~ Thing {Thing}.

Thing : Apple | Orange *common* <weight> DemNumber.

14Class dictionary graph translation, page 433 (18).
15Class dictionary graph textual representation, page 431 (7).



124 CHAPTER 5. ADAPTIVE SOFTWARE BY EXAMPLE

// Basket = <contents>TwoFruit .

int Basket::add_weight() {

int return_val = 0; this->add_weight_(return_val);

return return_val;}

// Weight = <v> DemNumber.

void Weight::add_weight_(int& return_val)

{return_val = return_val + *v;}

// Basket = <contents>TwoFruit .

void Basket::add_weight_(int &return_val )

{

contents->add_weight_(return_val );

}

// TwoFruit = <fruit1> Fruit <fruit2> Fruit .

void TwoFruit::add_weight_(int &return_val )

{

fruit1->add_weight_(return_val );

fruit2->add_weight_(return_val );

}

// Fruit : Apple | Orange *common* <weight> Weight .

void Fruit::add_weight_(int &return_val )

{

weight->add_weight_(return_val );

}

// Apple = .

void Apple::add_weight_(int &return_val )

{

this->Fruit::add_weight_(return_val );

}

// Orange = .

void Orange::add_weight_(int &return_val )

{

this->Fruit::add_weight_(return_val );

}

Figure 5.14: Generated code



5.2. CUSTOMIZING WITH CLASS DICTIONARIES 125

class Basket {

private:

TwoFruit* contents;

public:

void add_weight_(int& s);

int add_weight();

Basket(TwoFruit* = 0);

}

class Fruit {

private:

Weight* weight;

public:

// virtual because Fruit is abstract class

virtual void add_weight_(int& s);

}

class Apple :public Fruit {

public:

void add_weight_(int& s);

Apple();

}

Figure 5.15: Class de�nitions

1. Basket(

<contents> SeveralThings{

Orange(

<weight> DemNumber "9"),

Apple(

<weight> DemNumber "12")})

2. Basket(

<contents> SeveralThings{

Orange(

<weight> DemNumber "5")})

Figure 5.16: Baskets containing several things



126 CHAPTER 5. ADAPTIVE SOFTWARE BY EXAMPLE

Basket

contents

Apple

weight
DemNumber

Orange

SeveralThings

Thing

Figure 5.17: Thing basket

Apple = .

Orange = .

We observe that repetition classes are introduced by the "~" symbol. The repeated part is

written twice, once between "{" and "}".

Note the change in the weight structure. A weight is now directly represented by a

number object. Therefore, the propagation pattern in Fig. 5.5 needs to be changed. We

rename Weight to Thing and write a code fragment for Thing.

The previous class dictionary that has a classWeight is better than this class dictionary

that does not have a Weight class. It is good practice to wrap the terminal classes such as

DemNumber with a properly named construction class.

The updated propagation pattern is shown in Fig. 5.18.

Why was the change made in the way the weight is represented? First, we want to point

out that the initial solution was better and second, we want to indicate that the update

needed at the propagation pattern level is smaller than the update needed at the C++ level.

The initial solution was better, since it is good practice to bu�er each terminal class, such as

DemNumber, by a construction class that indicates the purpose of the number in the given

context.

Fortunately, the propagation pattern stays almost the same. Instead of propagating to

Weight, we propagate to Thing. We cannot propagate into DemNumber since it is a prede-

�ned, precompiled class and propagating into it would mean that we add more functionality

to the class.

The code at the object-oriented level (in C++) is now very di�erent. The generated

code is given in Fig. 5.19. Again, we refer you to your favorite C++ book to understand the

details. The code in the repetition class deserves some explanation. The loop is implemented

through an iterator class. We assume that a class Thing list iterator is de�ned elsewhere,

which has an operation to get the next element from the list. The declaration,



5.2. CUSTOMIZING WITH CLASS DICTIONARIES 127

*operation* int add_weight() *init* (@ 0 @)

*traverse*

*from* Basket *to* Thing

*wrapper* Thing

(@ return_val = return_val + *weight; @)

Figure 5.18: Updated propagation pattern

Thing_list_iterator next_arg(*this);

de�nes an object, called next arg of class Thing list iterator. In C++ an operator can be

overloaded to have a new meaning. Class Thing list iterator has the function call operator

() overloaded. Its meaning is to get the next element from the list.

The line

while ( each_arg = next_arg() )

calls the overloaded function call operator to retrieve a list element and to store it in variable

each arg. (C and C++ allow assignments in boolean expressions that look unusual to a

Pascal/Modula-2 programmer.)

It is important to stress here how easy it was to get the C++ code we need. With

propagation patterns we have a tool with which we can control large quantities of C++

code with just small changes.

The previous class dictionary in Fig. 5.17 allows only fruit to appear in baskets. Next

we want to consider baskets that may contain other baskets. Here is an example, called

NestedBasket:

Basket(

<contents> SeveralThings{

Orange(

<weight> Weight

(<v> DemNumber "10"))

Basket(

<contents> SeveralThings{

Apple(

<weight> Weight

(<v> DemNumber "10"))})})

From the object NestedBasket we derive the class dictionary graph in Fig. 5.20. The

corresponding textual form is shown in Fig. 5.21. The nesting at the object level is repre-

sented as a cycle in the class dictionary. There is a cycle from Basket to SeveralThings to

Thing and back to Basket. A class dictionary that contains such cycles is called inductive.

Inductive class dictionaries are very common in object-oriented applications. An inductive



128 CHAPTER 5. ADAPTIVE SOFTWARE BY EXAMPLE

int Basket::add_weight() {

int return_val = 0; this->add_weight_(return_val);

return return_val;}

// Thing : Apple | Orange *common* <weight> DemNumber .

void Thing::add_weight_(int& return_val)

{return_val = return_val + *weight;}

// Basket = <contents> SeveralThings .

void Basket::add_weight_(int &return_val )

{

contents->add_weight_(return_val );

}

// SeveralThings ~ Thing {Thing }.

void SeveralThings::add_weight_(int &return_val )

{

Thing_list_iterator next_arg(*this);

Thing* each_arg;

while ( each_arg = next_arg() )

each_arg->add_weight_(return_val );

}

Figure 5.19: Generated code for modi�ed program



5.3. OBJECT TRAVERSAL AND TRANSPORTATION 129

Basket

contents

Apple

weight

Orange

SeveralThings

Thing

DemNumber

Weight
v

Fruit

Figure 5.20: Nested baskets

class dictionary has the property that every cycle is well behaved in a sense that is made

precise later (see the chapter on style rules for class dictionaries, Chapter 12). Intutively, a

cycle is well behaved if there is an edge exiting the cycle.

The propagation pattern from Fig. 5.5 does not need updating, except the already

familiar renaming of Container to Basket; the same program will work for the class dictionary

for nested fruit baskets. This shows the power of propagation patterns as well as the power

of delayed binding of calls to code. When the function add weights is called for an element

of SeveralThings, the class of the element will determine whether the function for Basket or

Fruit will be called. All the functions of classes that describe alternatives, such as Thing and

Fruit are virtual functions.

5.3 OBJECT TRAVERSAL AND TRANSPORTATION

Next we consider a more interesting propagation pattern. Let's assume that we need to �nd

all Apple-objects contained in a Basket-object of a given Household-object. We do not care

about the apples that are not in a basket. The following propagation pattern solves the

problem.

*operation* void apples_in_basket()

*traverse*

*from* Household *via* Basket *to* Apple

*wrapper* Apple

(@ this -> g_print(); @)



130 CHAPTER 5. ADAPTIVE SOFTWARE BY EXAMPLE

Basket = <contents> SeveralThings.

SeveralThings ~ Thing {Thing}.

Thing : Basket | Fruit.

Fruit : Apple | Orange *common* <weight> Weight.

Apple = .

Orange = .

Weight = <v> DemNumber.

Figure 5.21: Nested baskets, textual form

The via clause in the propagation directive forces the traversal through class Basket as

desired. Instead of using

*from* Household *via* Basket *to* Apple

we can use equivalently a through clause (assuming Basket is a construction class)

*from* Household

*through* -> Basket,*,*

*to* Apple

The through clause forces paths through relationships. Here we force the paths through

at least one construction relationship that starts at Basket. The expression -> Basket,*,* is

an edge pattern that describes the set of construction edges starting at class Basket. Edge

patterns are used to make the software more 
exible by minimizing dependency on the class

dictionary.

Next we only want to print apples that are not in a refrigerator. This is achieved by

the following propagation pattern:

*operation* void not_in_refrigerator()

*traverse*

*from* Household

*bypassing* -> Refrigerator,*,*

*to* Apple

*wrapper* Apple

(@ this -> g_print(); @)

The bypassing clause makes paths avoid certain relationships. Here any construction

relationship that starts at Refrigerator will be bypassed. Again an edge pattern is used to

minimize dependency on the class dictionary.

To illustrate wrappers with pre�x and su�x code fragments, we want to print the total

number of apples in every refrigerator contained in a household.



5.4. SUMMARY 131

*operation* void count_apples_in_refrigerator()

*wrapper* Household

(@ int s = 0; this -> count(s); @)

*operation* void count(int& s)

*traverse*

*from* Household

*via* Refrigerator

*to* Apple

*wrapper* Refrigerator

*prefix*

(@ int in_frig = s; @)

*suffix*

(@ in_frig = in_frig - s;

cout << "Apples in refrigerator ="

<< in_frig; @)

*wrapper* Apple

(@ s = s + 1; @)

The default traversal code for Refrigerator is wrapped with the pre�x and su�x wrapper.

The su�x wrapper uses the shift operator << to produce output. cout is the output stream.

Further details on the stream classes are in your C++ book.

Transporting objects to the right locations is an important subtask in object-oriented

programming. To illustrate how we can transport objects independently of detailed class

structure knowledge, we consider the following problem that we solve through a transporta-

tion directive.

For every apple in a household, print the apple information and the address of the

household containing the apple.

HouseholdApple = *from* Household *to* Apple

*operation* apple_address()

*traverse* HouseholdApple

*carry* *in* Address* a *along* HouseholdApple

*at* Household (@ a = address @)

*wrapper* Apple

(@ cout << this << a; @)

The carry statement introduces the transportation directive and de�nes a local variable

called a that is loaded with an address of a Household-object at class Household and that is

used at class Apple.

5.4 SUMMARY

We have shown how adaptive programs are used and how they can be customized by class

dictionaries. First we showed di�erent ways of customizing a propagation directive with

increasingly more complex class dictionaries. Then we turned to more complex propagation



132 CHAPTER 5. ADAPTIVE SOFTWARE BY EXAMPLE

patterns, showing several ways to control paths and to annotate object traversals. Two

important properties of propagation patterns have been demonstrated: adaptiveness and

extensibility.

We have shown the transition from objects to class dictionaries and to complete C++

programs. We demonstrated the evolution of a C++ program through an adaptive program

that is applied to more and more complex objects. This incremental development is typical

for object-oriented programming, and adaptive software allows us to automate some of this

incremental development through customization. Although we used C++ as the program-

ming language, a similar approach can be used with any other object-oriented programming

language.

Two questions that we have left open is how we �nd the objects and in which order we

use them to grow the system in small, easy-to-test steps. We will study those questions in

the context of program evolution in the chapter on propagation patterns.

5.5 EXERCISES

Exercise 5.1 Consider the following class dictionary BASKET:

Basket = <nested> NestedBasket.

NestedBasket = <contents> SeveralThings.

SeveralThings : None | OneOrMore.

None = .

OneOrMore = <one> Thing <more> SeveralThings .

Thing : NestedBasket | Fruit.

Fruit : Apple | Orange *common* <weight> DemNumber.

Apple = .

Orange = .

Thing_List ~ {Thing}.

Find the unknowns below by completing the propagation patterns based on the informal

task description at the beginning of each propagation pattern.

This question requires knowledge about propagation patterns returning a value. Such

examples have been used in this chapter but a complete treatment is in the chapter on

propagation pattern interpretation in the subsection on propagation patterns with return

types. In a nutshell, propagation patterns with a return type have a variable return val

available having the same type as the return type. This variable is initialized with an *init*

clause.

A �nal hint: for repetition classes a function append is available that appends its �rst

and only argument to the end of the list.

// Add the weight of all Apple-objects.

*operation* int all_apples() *init* (@ UNKNOWN1 @)

*traverse*

*from* UNKNOWN2 *to* UNKNOWN3

*wrapper* UNKNOWN4

*prefix* (@ UNKNOWN5 += *(this -> UNKNOWN6()); @)



5.5. EXERCISES 133

// Add the weight of all Fruit-objects.

*operation* int all_fruit() *init* (@ UNKNOWN7 @)

*traverse*

*from* UNKNOWN8 *to* UNKNOWN9

*wrapper* UNKNOWN10

*prefix* (@ UNKNOWN11 += *(UNKNOWN12()); @)

// Produce a list of all Thing-objects.

*operation* Thing_List* all_thing() *init* (@ UNKNOWN13 @)

*traverse*

*from* Basket *to* UNKNOWN14

*wrapper* UNKNOWN15

*prefix* (@ UNKNOWN16 -> UNKNOWN17(this); @)

// Produce a list of all Thing-objects which contain an Apple.

*operation* Thing_List* all_thing_containing_apples(int& apple_count)

// is called with variable as first argument which has value 0

*init* (@ new Thing_List() @)

*traverse*

*from* Basket *via* Thing *to* Apple

*wrapper* Apple

*prefix*

(@ apple_count ++ ;@)

*wrapper* Thing

*prefix* (@ int UNKNOWN18 = apple_count; @)

*suffix* (@ if (UNKNOWN19) UNKNOWN20 -> UNKNOWN21(this); @)

//Add two to the weight of all Orange-objects.

*operation* void oranges_plus_two()

*traverse*

*from* Basket *to* Orange

*wrapper* Orange

*prefix* (@

cout << "weight before change " << this-> get_weight() << endl;

UNKNOWN22;

cout << "weight after change " << this-> get_weight() << endl;

@)

Exercise 5.2 Give an object example from which you can abstract the following class

dictionary graph.

Basket = <contents> SeveralThings.

SeveralThings : None | OneOrMore.

None = .

OneOrMore = <one> Thing <more> SeveralThings.

Thing : Basket | Fruit.



134 CHAPTER 5. ADAPTIVE SOFTWARE BY EXAMPLE

Fruit : Apple | Orange *common* <weight> DemNumber.

Apple = .

Orange = .

5.6 BIBLIOGRAPHIC REMARKS

Incremental and global algorithms for class dictionary graph learning and optimization are

in [BL91, LBS90, LBS91, Ber94].

The concept of propagation patterns was developed in a series of publications: [LXS91,

LX93c] and applied in [HSX91, LHSX92, Lie92, LSX94].

The �rst, preliminary implementation of propagation patterns in the form of a C++

skeleton generator was done by Christos Stamelos in the winter of 1990. The implementation

of propagation patterns was brought to its current form primarily through the e�orts of

Cun Xiao and the feedback from hundreds of professionals who work in the Boston software

industry and who took my courses in which adaptive software is used. Linda Keszenheimer,

T. Beutel, and Gregory Bratshpis were early users. Paul Steckler was involved in the early

development of propagation patterns.

Propagation patterns were motivated by the Law of Demeter. A strong driving force

behind propagation patterns was G. Brown since he involved us in a project with initially

vague assumptions on the class structure.

5.7 SOLUTIONS

Solution to Exercise 5.1

UNKNOWN1 = 0 UNKNOWN2 = Basket

UNKNOWN3 = Apple UNKNOWN4 = Apple

UNKNOWN5 = return_val UNKNOWN6 = get_weight

UNKNOWN7 = 0 UNKNOWN8 = Basket

UNKNOWN9 = Fruit UNKNOWN10 = Fruit

UNKNOWN11 = return_val UNKNOWN12 = this -> get_weight

UNKNOWN13 = new Thing_List() UNKNOWN14 = Thing

UNKNOWN15 = Thing UNKNOWN16 = return_val

UNKNOWN17 = append UNKNOWN18 = before

UNKNOWN19 = apple_count > before

UNKNOWN20 = return_val UNKNOWN21 = append

UNKNOWN22 = this -> set_weight(

new DemNumber(*(this -> get_weight()) + 2))



Chapter 6

Class Dictionary Graphs and

Objects

A class dictionary graph serves as a program customizer for propagation patterns that are

executable speci�cations after customization with a class dictionary graph. Propagation

patterns are like a sketch of an algorithm that has to be made more explicit with a class

dictionary graph. Propagation patterns often do not de�ne the details of input, output, and

intermediate objects; those details are provided by a class dictionary graph.

A class dictionary graph consists of a set of class de�nitions which in turn de�ne the

application objects. From the implementation point of view, a class dictionary graph serves

as an interface to an object-oriented system. One immediate practical bene�t of a class

dictionary graph is that it de�nes software for manipulating the objects that it de�nes.

This software can be provided automatically for the application and therefore does not have

to be written by hand.

The term class dictionary is related to the term data dictionary, which is widely used

in conjunction with database management systems. Both types of dictionaries contain

meta-data: data about data. A class dictionary graph is like a schema for a database.

The graphical class dictionary graph notation borrows elements from entity-relationship

diagrams that are widely used for data modeling.

How does a class dictionary graph di�er from a collection of class de�nitions written in

some object-oriented language such as the class de�nitions in your C++ book?

� A class dictionary graph serves as a sca�old to de�ne the behavior of the classes.

� A class dictionary graph is an abstraction of the class de�nitions in some object-

oriented language. It focuses only on is-a and has-a relations between classes. Those

two kinds of relations are su�cient to de�ne the structure of objects. The level of

abstraction of the is-a and has-a relations is useful for several tasks, for example,

planning an implementation or querying the objects de�ned by the class dictionary

graph.

� A class dictionary graph, if extended with concrete syntax, also de�nes a language

135



136 CHAPTER 6. CLASS DICTIONARY GRAPHS AND OBJECTS

for describing the objects. We call such an extended class dictionary graph a class

dictionary. Sentences of the language de�ned by a class dictionary are used for high-

level debugging of the class dictionary without writing a single line of object-oriented

code. Sentences are usually signi�cantly shorter than the corresponding objects and

therefore the debugging process is more e�cient.

� A class dictionary graph contains su�cient information to de�ne legal objects. Each

part of an object has a type. (This also holds true for the class de�nitions of strongly

typed languages, such as C++. However, at compile-time, C++ does not enforce the

rule that all objects must be legal in our sense.)

� Class dictionary graphs are more concise and better structured than object-oriented

language de�ned classes. Several kinds of class de�nitions are used for structuring the

classes.

� Class dictionary graphs may contain parameterized class de�nitions. Parameterized

class de�nitions are not allowed in some object-oriented languages.

� A class dictionary is at a higher level of abstraction than class de�nitions in many

object-oriented languages. In a class dictionary graph, recursive class de�nitions are

free of pointers, and the class de�nitions are given in a programming-language inde-

pendent notation.

We use two notations for describing class dictionaries. Both notations de�ne the same

information but in di�erent robes. The �rst notation, called the concise notation, is easier

to write and uses less space, but is harder to read without learning it. The second notation,

called the graphical notation, is largely self-explanatory. Why should we use two notations?

Each has its purpose.

1. The graphical notation is better for the occasional reader and for readers who are used

to graphical notations. A disadvantage of the graphical notation is that it requires

more space than the concise notation.

2. The concise notation is better for writing big class dictionary graphs, and for people

used to concise notations. Editing the concise notation is faster than editing the

graphical notation. For editing the concise notation you can use your favorite text

editor.

6.1 INTRODUCTORY EXAMPLE

The following is an example of a class dictionary graph de�ning a meal. We begin by

describing a meal in English and then go on to convert the English description into a class

dictionary graph.1 In Chapter 8 we will write a simple program that computes the cost of

a given meal.

At some point in de�ning a class dictionary we must decide what we consider to be

atomic objects. In a meal a steak might be considered atomic since we are not interested

in breaking the meat down into its basic molecular structure. A shrimp cocktail might be

1Class dictionary graph recognition, page 430(5).



6.1. INTRODUCTORY EXAMPLE 137

considered by some to be atomic, but for the purpose of this example we assume that we

are ignorant of the notion of a shrimp cocktail and need to break it down further. Atomic

objects are presented as classes without any parts. We de�ne our meal structure as follows

(this structure can be viewed as a menu describing the choices we have in selecting a meal):

� A meal is an appetizer, an entree, and a dessert. Although a dessert may be considered

optional in many households, we consider it a required part of a meal.

� An appetizer is a melon or a shrimp cocktail; that is, there are two appetizer choices.

� A shrimp cocktail is lettuce, one or more shrimp, and possibly cocktail sauce.

� Cocktail sauce is ketchup and horseradish.

� An entree is a steak platter or a baked stu�ed shrimp platter.

� A steak platter is a steak and the trimmings.

� A baked stu�ed shrimp platter is a stu�ed shrimp and the trimmings.

� The trimmings are a potato and two vegetables.

� A vegetable is carrots, peas, or corn.

� A dessert is pie, cake, or jello.

� We assume that the following items are atomic and need no further description: melon,

shrimp, lettuce, ketchup, horseradish, steak, stu�ed shrimp, potato, carrot, pea, corn,

pie, cake, and jello. The decision as to whether an object is atomic is not only domain

speci�c but also speci�c to the person performing the data abstraction.

Each of the above eleven descriptive phrases falls into one of three categories. Either we are

constructing an object in terms of other objects (a construction class), or we state that an

object is one of several possible objects (an alternation class), or we are de�ning an object

as being a collection of zero (one) or more of other objects of the same kind (a repetition

class).

Examples of these three object descriptions are shown in class dictionary graph notation

below.2

Construction There are two kinds of construction classes: those without and with optional

parts. Meal is an example of a construction class without optional parts. An object of

class Meal has three ordered parts: an object of class Appetizer followed by an object

of class Entree followed by an object of class Dessert. The graphical representation of

this construction class is in Fig. 6.1 and the textual representation is in Fig.6.2.

Next we show an example of a construction class that has an optional part. An object

of class ShrimpCocktail has three ordered parts: an object of class Shrimps followed

by an object of class Lettuce, optionally followed by an object of class CocktailSauce.

The graphical representation of this construction class is in Fig. 6.3 and the textual

2Class dictionary graph textual representation, page 431 (7).



138 CHAPTER 6. CLASS DICTIONARY GRAPHS AND OBJECTS

Meal

Appetizer

Entree

Dessert

appetizer

entree

dessert

Figure 6.1: Graphical representation of construction class Meal

Meal =

<appetizer> Appetizer

<entree> Entree

<dessert> Dessert.

Appetizer = .

Entree = .

Dessert = .

Figure 6.2: Textual representation of construction class Meal



6.1. INTRODUCTORY EXAMPLE 139

representation is in Fig.6.4. In the textual representation, part names are optional.

The default value of the part is the name of the part class with all letters changed

to lowercase letters. This means that a class used as a part class but without a part

name needs to have a least one capital letter in its name. Otherwise there would be

no distinction between class and part name.

ShrimpCocktail = Shrimps Lettuce [CocktailSauce].

is equivalent to

ShrimpCocktail =

<shrimps> Shrimps

<lettuce> Lettuce

[<cocktailSauce> CocktailSauce].

ShrimpCocktail

Shrimps

Lettuce

CocktailSauce

shrim
ps

lettuce
cocktailSauce

Figure 6.3: Graphical representation of construction class ShrimpCocktail

ShrimpCocktail =

Shrimps Lettuce [CocktailSauce].

Shrimps = .

Lettuce = .

CocktailSauce = .

Figure 6.4: Textual representation of construction class ShrimpCocktail

Construction classes have two kinds of outgoing edges: construction edges and optional

construction edges. In the graphical representation, the construction edges always have

a label and the optional construction edges are shown as dashed edges. In the textual

representation, the construction edges have an optional label and the optional parts

are enclosed by [ and ].



140 CHAPTER 6. CLASS DICTIONARY GRAPHS AND OBJECTS

Alternation There are two kinds of alternation classes: those without common parts and

those with common parts. We �rst consider an example of an alternation class without

common parts. In this case the alternatives don't share any common parts. An object

of class Fruit is either an object of classes Apple or Orange or Kiwi. The graphical

representation of class Fruit is in Fig. 6.5 and the textual representation is in Fig. 6.6.

Fruit

Apple Orange Kiwi

Figure 6.5: Graphical representation of an alternation class without common parts

Fruit : Apple | Orange | Kiwi.

Apple = .

Orange = .

Kiwi = .

Figure 6.6: Textual representation of an alternation class without common parts

Next we consider an alternation class with common parts. An object of class Roof

is either an object of classes Concrete or Shingle. Elements of classes Concrete and

Shingle have a part age of class DemNumber.

The graphical representation of class Roof is in Fig. 6.7 and the textual representation

is in Fig. 6.8.

Alternation vertices have three kinds of outgoing edges: alternation edges, construction

edges, and optional construction edges. Alternation edges are shown as doubly shafted

arrows in the graphical representation. In the textual representation, the alternation

edges are given �rst, separated from the construction edges by the keyword *common*.

Alternation edges are never labeled.

Repetition There are two kinds of repetition classes: those de�ning a sequence of zero or

more objects and those de�ning a sequence of one or more objects.

An object of class Banquet has any number of parts: an ordered sequence of zero or

more objects of class Meal.

The graphical representation of class Banquet is in Fig. 6.9 and the textual represen-

tation is in Fig. 6.10.



6.1. INTRODUCTORY EXAMPLE 141

Roof

Concrete Shingle

DemNumber
age

Figure 6.7: Graphical representation of alternation class with common parts

Roof : Concrete | Shingle

*common* <age> DemNumber.

Concrete = .

Shingle = .

Figure 6.8: Textual representation of alternation class with common parts

Banquet Meal

Figure 6.9: Graphical representation of repetition class, zero or more

Banquet ~ {Meal}.

Meal = .

Figure 6.10: Textual representation of repetition class, zero or more



142 CHAPTER 6. CLASS DICTIONARY GRAPHS AND OBJECTS

Symbol Class Kind Mnemonic association

= 2 construction the equal sign is used for

showing composition in terms of parts.

: alternation the colon is often used for introducing

a list of alternatives.

~ repetition repeating ocean wave,

combination of construction,

and alternation.

First symbol is for textual representation, second symbol is for graphical representation.

Table 6.1: Identifying symbols for classes

An object of class AtLeastOneDoor has any number of parts: an ordered sequence of

one or more objects of class Door.

The graphical representation of class AtLeastOneDoor is in Fig. 6.11 and the textual

representation is in Fig. 6.12.

AtLeastOneDoor Door

Figure 6.11: Graphical representation of repetition class, one or more

AtLeastOneDoor ~ Door { Door }.

Door = .

Figure 6.12: Textual representation of repetition class, one or more

Repetition vertices have only one kind of outgoing edge: exactly one repetition edge.

Repetition edges are never labeled.

For several reasons we distinguish between the three kinds of descriptions syntactically in

the second symbol (see Table 6.1). One reason is that A = B. and A : B. have di�erent

meanings. The graphical notation uses three kinds of class symbols (shown in Table 6.1)

and �ve kinds of edge symbols (shown in Table 6.2).



6.1. INTRODUCTORY EXAMPLE 143

Symbol Edge Kind

l
�! construction

=) alternation

�! repetition
l

...... optional construction

...... optional repetition

Table 6.2: Identifying symbols for edges

Many class dictionary graphs make use of descriptive labels in their construction and

alternation class de�nitions. A descriptive label is an identi�er that is enclosed in angle

brackets and precedes a given class name.

The sole purpose of descriptive labels is to give subobjects mnemonic names that make

speci�cations and programs more readable. Descriptive labels are required if two or more of

the same part classes are identi�ed on the right-hand side of a class de�nition. The following

is an example of such a class; it de�nes A-objects that are comprised of two B-objects.

A = <first> B <second> B.

We use labels to make the objects more self describing. The following example illustrates

this point.

GradeReport = Name Percentage.

is not self describing. The following is semantically equivalent but makes the class dictionary

graph, and any methods written for it, easier to read.

GradeReport = <studentName> Name <testScore> Percentage.

The description of our meal in the class dictionary graph notation is as follows:

Meal = Appetizer Entree Dessert.

Appetizer : Melon | ShrimpCocktail.

ShrimpCocktail = Shrimps Lettuce [CocktailSauce].

CocktailSauce = Ketchup HorseRadish.

Entree : SteakPlatter | BakedStuffedShrimp.

SteakPlatter = Steak Trimmings.

BakedStuffedShrimp = StuffedShrimp Trimmings.

Trimmings = Potato <veggie1> Vegetable <veggie2> Vegetable.

Vegetable : Carrots | Peas | Corn.

Dessert : Pie | Cake | Jello.



144 CHAPTER 6. CLASS DICTIONARY GRAPHS AND OBJECTS

Shrimps ~ Shrimp {Shrimp}.

Shrimp = .

Melon = .

Lettuce = .

Ketchup = .

Steak = .

Potato = .

Carrots = .

Peas = .

Cake = .

Pie = .

Jello = .

Corn = .

StuffedShrimp = .

HorseRadish = .

Let us assume we want to create a class dictionary for a banquet or maybe a date

between two people. We can de�ne these as follows:

Banquet ~ Meal {Meal}.

Date = <person1> Person <person2> Person Meal Movie.

The Date class indicates that both persons eat the same meal. We now consider the task

of calculating the cost of a banquet or date. To calculate the cost of a banquet we need to

add up only the cost of each meal in the banquet, reusing the code already written for the

meal. For the cost of a date, we need to write only the methods to �nd the cost of a movie,

again reusing the previous code written for the meal class dictionary. This functionality is

easily implemented by propagation patterns, which will be done in Chapter 8.

6.2 CLASS DICTIONARY GRAPH RULES

Class dictionary graphs are mathematical structures that have to satisfy certain rules. Those

rules are best explained �rst for class dictionary graphs containing only construction and

alternation vertices and edges. The generalization to repetition vertices and edges and to

optional construction edges is straightforward.

To de�ne the rules a class dictionary graph has to satisfy, we de�ne the components

of a class dictionary graph. Here we focus only on the absolutely essential components

of a class dictionary graph and omit features like repetition classes and optional parts.

A class dictionary graph consists of construction vertices V C, alternation vertices V A,

V = V C [ V A, labels �, construction edges EC, and alternation edges EA.

Construction edges are represented as triples: (Vertex in V , Label in �, Vertex in

V ). Alternation edges are represented as pairs: (Alternation vertex in V A, Vertex in V ).

Therefore, we describe a class dictionary graph by a tuple (V;�;EC;EA). In the �rst part,

before the semicolon, we have sets, and after the semicolon we list the relations. We use

the following naming convention: V stands for vertices, E stands for edges, C stands for

construction, A stands for alternation. V and E have precedence over C and A.



6.2. CLASS DICTIONARY GRAPH RULES 145

Notice that by this de�nition, only alternation vertices can have outgoing alternation

edges. Edges in a class dictionary graph cannot start from any vertex kind and go to any

other vertex kind. The edge/vertex restrictions are summarized below. The table indicates

from which vertex kind the edges may originate and to which vertex kind they may go.

VC VA

----|--------------------------

EC | from/to from/to

EA | /to from/to

Consider the classes de�ned in Fig. 6.13. The textual representation of the class dic-

tionary graph is:

List : Empty | Nonempty.

Empty = .

Nonempty = <first> Element <rest> List.

Element = .

List Empty

Nonempty Element

firstrest

Figure 6.13: Class dictionary graph for lists

This class dictionary graph has the following components:

V = fEmpty;Nonempty; Element; Listg;

V C = fEmpty;Nonempty; Elementg; ==construction vertices

V A = fListg; ==alternation vertex

EC = f(Nonempty; rest; List); (Nonempty; first; Element)g; ==construction edges

EA = f(List;Nonempty); (List; Empty)g; ==alternation edges

� = ffirst; restg:

A class dictionary graph has to satisfy three rules. The �rst two rules are essential

for allowing a direct translation of a class dictionary graph into a set of compilable class

de�nitions in an object-oriented programming language.

� Unique label rule

For all vertices v, the labels of construction edges reachable from v by following 0 or

more alternation edges in reverse, must be unique.

This means that the labels of the parts of a vertex, both immediate as well as inherited,

must be unique.

For example, the class dictionary graph



146 CHAPTER 6. CLASS DICTIONARY GRAPHS AND OBJECTS

Compound =

<arg> Expression

<arg> Expression.

Expression = .

violates the unique label rule. It can be repaired, for example, by changing the �rst

arg to arg1.

� Cycle-free alternation rule

No cyclic alternation paths containing one or more edges are allowed in class dictionary

graphs.

An alternation path is a consecutive sequence of alternation edges. A path is cyclic if

it starts at some vertex and returns to the same vertex.

For example, the class dictionary graph

Edible : Fruit | Vegetable.

Fruit : Apple | Orange.

Orange : Edible.

Vegetable = .

Apple = .

violates the cycle-free alternation rule.

In addition to the unique label and cycle-free alternation rules, a class dictionary graph

has to satisfy the next rule.

� At-least-one alternative rule

Every alternation vertex in a class dictionary graph must have at least one outgoing

alternation edge.

The reason for this rule is that a class dictionary graph is used to de�ne objects for

every vertex in the class dictionary graph. If there were an alternation vertex v without

an outgoing alternation edge, there could be no objects of class v.

6.2.1 Convenient Extensions

Class dictionary graphs with construction and alternation edges provide the important mod-

eling power for describing object structures. Repetition classes can be simulated with con-

struction and repetition classes as Fig. 6.13 shows. But for practical applications it is

convenient to have repetition classes directly available. The same applies to optional parts.

The optional part in

Meal =

<appetizer> Appetizer

<entree> Entree

[<dessert> Dessert].



6.2. CLASS DICTIONARY GRAPH RULES 147

can be simulated by

Meal =

<appetizer> Appetizer

<entree> Entree

<dessert> OptDessert.

OptDessert : Dessert | Empty.

Empty = .

A class dictionary graph G = (V C; V A; V R; �; EC;ECO;EA;ER;ERO) consists of

construction vertices V C, alternation vertices V A, repetition vertices V R, V = V C [V A[

V R, labels �, construction edges EC, optional construction edges ECO, alternation edges

EA, repetition edges ER, and optional repetition edgesERO. Construction edges, including

the optional ones, are represented as triples: (Vertex in V C [V A, Label in �, Vertex in V ).

Alternation edges are represented as pairs: (Alternation vertex in V A, Vertex in V C [V A).

Repetition edges, including the optional ones, are represented as pairs: (Vertex in V R,

Vertex in V ).

Notice that by this de�nition, construction edges can exit only from construction or

alternation vertices. Furthermore, an alternation edge cannot terminate in a repetition

vertex. The reason is that a repetition class cannot inherit parts from super classes.

Edges in a class dictionary graph cannot start from any vertex kind and go to any other

vertex kind. The edge/vertex restrictions are summarized below. V T is explained in the

next paragraph.

VC VA VR VT

----|-----------------------------------------------------

EC | from/to from/to /to /to

ECO | from/to from/to /to /to

EA | /to from/to

ER | /to /to from/to /to

ERO | /to /to from/to /to

For practical purposes it is convenient to use prede�ned classes for the most common

objects, such as numbers, identi�ers, strings, etc. For this purpose we use a fourth class

kind, called terminal classes. The terminal classes that we use are: DemNumber, DemReal,

DemIdent, DemString, DemText. V T is the set of terminal classes and the table below

summarizes the edge/vertex restrictions with the presence of V T . No edge can originate

from a terminal class since they are terminal. An alternation edge cannot terminate in a

terminal class since it would alter a prede�ned class.

A graphical version of the previous table is in Fig. 6.14. Terminal classes have a T

inside the symbol. The illegal connections are crossed out.

In addition to the previous table there are the following restrictions. A construction

or alternation vertex can have zero or more outgoing edges of the EC and ECO kind.

A repetition vertex has exactly one outgoing edge, either of the ER or ERO kind. An

alternation vertex has at least one outgoing edge of the EA kind.



148 CHAPTER 6. CLASS DICTIONARY GRAPHS AND OBJECTS

l l

l l

EC

ECO

EA

ER

ERO

VC
From/To

l l

l l

From/To
VA

l l

l l

From/To
VR

EC

ECO

EA

ER

ERO

T Tl

T Tl

l

l

T T

T T

T T

From/To
VT

l l

EC ER ECO EA ERO

Edge/Vertex Restrictions for Class Dictionary Graphs

Figure 6.14: Connections



6.3. OBJECTS 149

class kind A(S)

construction class S = ... unit set f S g

repetition class S ~ ... unit set f S g

alternation class union of A(X) A(Y) A(Z) ...

S : X|Y|Z...

Figure 6.15: De�nition of associated

6.3 OBJECTS

The purpose of a class dictionary graph is to de�ne classes, which in turn de�ne sets of

objects.3

There is a �xed number of terminal classes that de�ne terminal objects. The terminal

objects represent a value such as a number, an identi�er, or a string. These objects are

instances of the classes DemNumber, DemReal, DemIdent, DemString, DemText, respectively.

In addition to the terminal objects, there are composite objects that are de�ned by

the class de�nitions. A special case of the composite objects are the ones without a part.

They are called atomic objects. The class A = . de�nes only atomic objects.

To de�ne the set of legal4 objects with respect to a class dictionary graph, we need to

de�ne, for any class S, the set A(S) of construction classes associated with S. The set of

classes associated with a class is given in Fig. 6.15. It is the set of construction classes

that are reachable through alternation edges from class S.

If T is a set of construction classes then a T -object is an object that is an instance of a

class in T . A legal object with respect to a class dictionary graph is de�ned inductively

as follows. Nothing is a legal object except by virtue of one of the following rules.

1. Every atomic object and every terminal object is a legal object.

2. The following composite objects are legal objects:

(a) If there is a nonempty class de�nition

A = <p1> C1 <p2> C2 ...

then an A-object is legal if all the p1-parts are A(C1)-objects and if all the p2-

parts are A(C2)-objects, etc. An optional part of a construction class may be nil

= NULL.

If A is used as an alternative of an alternation class de�nition, then the A-objects

get all the parts that are de�ned after *common*: If Ai appears in

Q : A1 | A2 | ... *common* <m1> M1 <m2> M2 ...

then Ai-objects have an m1-part that is an A(M1)-object and an m2-part that is

an A(M2)-object, etc.

3Object graph recognition, page 436 (24).
4Legal object graph, page 436 (27).



150 CHAPTER 6. CLASS DICTIONARY GRAPHS AND OBJECTS

(b) If there is a class de�nition

A ~ {B}.

then a legal A-object is an object that has an ordered sequence of legal A(B)-

objects as parts.

(c) If there is a class de�nition

A ~ B {B}.

then a legal A-object is an object that has a nonempty ordered sequence of legal

A(B)-objects as parts.

This de�nition of legal objects allows objects that share subparts and even circular

objects. Instances of the same class may be substituted for each other without changing the

legality of an object.

2a can be simpli�ed, if we use the 
attening operation.5 A class dictionary graph G1

is the 
attened form of a class dictionary graph G2, if in G1 all parts have been pushed

down the alternation edges to construction classes. After the 
attening, no alternation class

has common parts. Flat class dictionary graphs are usually not written by the user but are

produced from non
at class dictionary graphs by tools. Flat class dictionary graphs are a

useful intermediate form. Notice that the 
attening operation is well de�ned since there can

be no cycles of alternation edges in a class dictionary graph.

Next we introduce a textual notation for objects.

6.3.1 Textual Representation

Objects are fundamental to object oriented programming. Therefore we are using a notation

that displays the structure of an object as clearly as possible.6 An object that does not

contain shared subobjects is naturally represented as a tree.

Consider the following class dictionary graph for de�ning class CocktailSauce:

CocktailSauce = <ketchup> Ketchup <horseRadish> HorseRadish.

Every object of class CocktailSauce has the following form.

CocktailSauce(

<ketchup> Ketchup()

<horseRadish> HorseRadish())

Consider the following class dictionary for de�ning nested numerical expressions in pre�x

form:

5Class dictionary graph 
attening, page 435 (22).
6Object graph textual representation, page 436 (26).



6.3. OBJECTS 151

Example = <exps> Expressions.

Expressions ~ { Expression }.

Expression : Variable | Numerical | Compound.

Variable = <name> DemIdent.

Numerical = <value> DemNumber.

Compound =

<op> Operator

<argument1> Expression

<argument2> Expression .

Operator : MulSym | AddSym | SubSym.

MulSym = .

AddSym = .

SubSym = .

An example of a textual representation of an object of class Example is given by

Example (

< exps > Expressions {

Compound (

< op > MulSym ( )

< argument1 > Compound (

< op > AddSym ( )

< argument1 > Compound (

< op > MulSym ( )

< argument1 > Numerical (

< value > DemNumber "3" )

< argument2 > Variable (

< name > DemIdent "a" ) )

< argument2 > Numerical (

< value > DemNumber "5" ) )

< argument2 > Numerical (

< value > DemNumber "7" ) ) ,

Compound (

< op > SubSym ( )

< argument1 > Variable (

< name > DemIdent "a" )

< argument2 > Numerical (

< value > DemNumber "88" ) ) } )

// A list of two expressions

( *

( +

( * 3 a )

5 )

7 )

( - a 88 )



152 CHAPTER 6. CLASS DICTIONARY GRAPHS AND OBJECTS

The tree is laid on its side and has all branches on the same side of the main stem. This

notation uses one line for each object or subobject specifying the object's class. An "f"

after the class name means that the object is an instance of a repetition class. Therefore

such an object has a certain number of unnamed subobjects. They are all listed with the

same indentation. A "(" after the class name means that the object is an instance of a

construction or terminal class. Therefore such an object has a �xed number of named

subobjects. For terminals we show the value of the instance. The last line shows the object

in a more familiar form.

An object contains a shared subobject if some subobject is accessible in more than one

way. An example of a shared object is the internal representation of a pre�x expression in

which both arguments share the same expression. A special class of the objects that contain

shared subobjects are the circular objects.

An object is called circular if it contains a part that contains itself. An example of a

circular object is a compound pre�x expression that contains itself in the �rst argument.

Shared and circular objects are important for e�cient representation of data structures.

6.3.2 Size

When we analyze the running time of our algorithms or when we discuss the computational

complexity of a problem, we need to talk about the size of an object.

The size of an object is the total number of parts of the object. If an object contains

shared subobjects, we count each part only once. The size of an object is equal to the

number of lines in the drawn object. We count the size of a number, identi�er, string, or

any other class terminal element as one. For certain applications it makes more sense to

count the size of an object of a terminal class as the number of characters it contains.

6.4 TRANSLATION TO C++

To make a class dictionary graph a strong sca�old for expressing behavior, we de�ne a

personalized class library for a given class dictionary graph. The functionality of this library

is used in adaptive or object-oriented programs that are written for the class dictionary

graph.

A class dictionary graph D = (V C; V A;�;EC;EA) is mapped into C++ as follows. To

each element of V C corresponds a C++ class with a constructor, and to each element of

V A corresponds an abstract C++ class, that is, a class that has at least one pure virtual

function.

Each vertex is translated into a C++ class as follows:7

� Data members

For each outgoing construction edge a private data member is created. The label

becomes the name of the data member. The type of the data member is a pointer

type of the class corresponding to the target of the construction edge.

A static data member stores the class name. This is done so that an object knows

about the class that it instantiates.

7Class dictionary graph translation, page 433 (18).



6.4. TRANSLATION TO C++ 153

� Function members

For construction vertices only; a constructor with as many arguments as there are

outgoing construction edges or inherited construction edges. The default value for all

arguments is NULL.

For each data member x, a writing function set x (with one argument) and a reading

function get x.

� Inheritance

Each class inherits from its alternation predecessors.

Let's apply the above procedure to the class dictionary graph in Fig. 6.16. The textual

representation of the class dictionary graph is

Exp : Compound | Simple.

Compound = <op> Op <arg1> Exp <arg2> Exp.

Op : Addsym | Mulsym.

Addsym = .

Mulsym = .

Simple = <numValue> DemNumber.

Exp Simple

Compound

numValue
DemNumber

Op

AddsymMulsym

op
arg2arg1

Figure 6.16: Class dictionary graph for expressions

The class library in C++ looks like this:

class Exp {

public:

#include "Exp.h"

};

class Simple : public Exp {

private:

DemNumber *numValue;



154 CHAPTER 6. CLASS DICTIONARY GRAPHS AND OBJECTS

static char *type;

public:

Simple( DemNumber * = NULL );

DemNumber *get_numValue() { return( numValue ); }

void set_numValue( DemNumber *new_numValue )

{ numValue = new_numValue; }

char *get_type() { return( type ); }

};

The implementation of the constructor is not shown; it assigns the arguments to the

appropriate data member.

class Compound : public Exp {

private:

Op *op;

Exp *arg1;

Exp *arg2;

static char *type;

public:

Compound( Op * = NULL, Exp * = NULL, Exp * = NULL );

Op *get_op() { return( op ); }

void set_op( Op *new_op )

{ op = new_op; }

Exp *get_arg1() { return( arg1 ); }

void set_arg1( Exp *new_arg1 )

{ arg1 = new_arg1; }

Exp *get_arg2() { return( arg2 ); }

void set_arg2( Exp *new_arg2 )

{ arg2 = new_arg2; }

char *get_type() { return( type ); }

};

class Op {

public:

};

class Addsym : public Op {

private:

static char *type;

public:

Addsym();

char *get_type() { return( type ); }

};

class Mulsym : public Op {

private:



6.4. TRANSLATION TO C++ 155

static char *type;

public:

Mulsym();

char *get_type() { return( type ); }

};

class DemNumber {

private:

int val;

static char *type;

public:

DemNumber( int = 0 );

char *get_type() { return( type ); }

int get_val() { return( val ); }

void set_val( int new_val ) { val = new_val; }

};

Now let's solve a simple problem for this class dictionary graph: We write a pocket

calculator algorithm in C++ to evaluate the expressions. In a �rst phase we write a program

for simple expressions that are just numbers.8

// phase 1

int Exp::eval(){} // virtual

int Simple::eval() {

return numValue->eval();}

int DemNumber::eval() {

return val;}

In a second phase we add to the program of the �rst phase to get a pocket calculator

for additive expressions. We have the privilege of only adding code because of the delayed

binding of calls to code. For example, in phase 2, when the apply op function is called for

op, the system will determine what kind of operator we have at run-time and the system

will call the right function.

// phase 2

int Compound::eval() {

return op->apply_op(arg1->eval(),

arg2->eval()); }

int Op::apply_op(int n1,int n2) {} // virtual

int Addsym::apply_op(int n1,int n2) {

return n1 + n2; }

To allow both additive and multiplicative expressions, we need to add a multiplication

operator.

8Growth plan, page 445 (54).



156 CHAPTER 6. CLASS DICTIONARY GRAPHS AND OBJECTS

// phase 3

int Mulsym::apply_op(int n1,int n2) {

return n1 * n2; }

Now that the program is complete we need to call it from the main program. We create,

for example, a Compound-object, called iCompound and then we call function eval with

cout << iCompound -> eval();

The class library shown above contains more functionality than is needed for this pocket

calculator. For example, all the get val functions are unnecessary.

A class dictionary graph de�nes universal methods that can be generically provided.

This includes methods for copying, computing the size of objects, drawing, comparing,

printing, and creating a random object. The implementation of those generic methods is

not shown in the class library example.

6.5 PARAMETERIZED CLASSES

Parameterized classes are useful to factor out commonalities in class de�nitions. For exam-

ple, if we use the classes

College1 =

<students> Student_NList

<faculty> Faculty_NList

<staff> Staff_NList.

Student_NList ~ Student {Student}.

Faculty_NList ~ Faculty {Faculty}.

Staff_NList ~ Staff {Staff}.

we can save some typing by using

College2 =

<students> NList(Student)

<faculty> NList(Faculty)

<staff> NList(Staff).

NList(S) ~ S {S}.

Here NList is a parameterized class that takes one class parameter. The meaning of

both college classes is identical. The second formulation allows easier change. For exam-

ple, if we want to represent the lists di�erently, we can easily change the de�nition of the

parameterized class to:

NList(S) = <first> S <rest> List(S).

List(S) : Empty(S) | NList(S).

Empty(S) = .

We use parameterized classes primarily to formulate class dictionaries more elegantly.

A class dictionary containing parameterized classes can always be expanded into a class dic-

tionary without parameterized classes by using the mechanism shown above. For example,



6.6. CLASS DICTIONARY GRAPH DESIGN 157

NList(Student) is translated to Student NList. The rule is that the parameterized class call

is read backward and the opening parentheses are translated to . For example, if we have

the parameterized class de�nition A(S1,S2,S3) = ... and a call with A(F,G,H), the class is

expanded into H G F A.

I cannot resist the temptation to point out that parameterized classes can easily be

misused. For example, we could de�ne a parameterized class A(S):

A(S) = <b> B(S) <c> C(S) <s> S.

B(S) = <d> D <s> S <e> E(S).

C(S) = <s> S.

D = .

E(S) = <s> S.

Such a description would not be robust under changes to the object structures. It

would be better to describe the desired parameterization relatively independent of the class

structure.

6.6 CLASS DICTIONARY GRAPH DESIGN

We discuss connections between taxonomy and class dictionary graph design and give guide-

lines on how to select relationships between classes.

6.6.1 Why Alternation Classes are Abstract

A class has at least two purposes: it is used to create instances and it is used to organize

other classes through is-a relationships. In a class dictionary graph, the two purposes cannot

be ful�lled simultaneously by the same class. Either a class is a construction class and can

be used to create objects but not for is-a relationships, or it is an alternation class and is

used to organize other classes through is-a relationships, but not to create objects directly.

Why this separation? There are numerous pros and cons that have been analyzed by

Walter H�ursch [H�ur94]. The separation has a positive in
uence on the simplicity of the

theory for adaptive software. And the overhead is small should we have to simulate a class

that can create objects and have subclasses. Let A be such a class. We de�ne a class

A generalize by

A_generalize : A_instantiate.

A_instantiate = .

We put the code of class A into class A generalize and use this class for subclassing, and

use class A instantiate for creating objects. The rule that says that all superclasses must be

abstract is called the abstract superclass rule|DEF.

6.6.2 Taxonomy and Class Dictionary Graphs

Taxonomy is the science of classi�cation. We discuss class dictionary graph design in the

context of two kinds of classi�cations: specialization-centered and parts-centered.

Often a subconcept is simpler than a super concept; for example, a square is simpler

than a rectangle. A square is de�ned by one real number, but a rectangle needs two. So we

are tempted to use the following specialization centered class dictionary graph:



158 CHAPTER 6. CLASS DICTIONARY GRAPHS AND OBJECTS

Rectangular : Rectangle | Square *common*

<height> DemNumber

<width> DemNumber.

Rectangle = .

Square = .

However, it is better to follow the guideline for parts-centered design:

If a subclass needs fewer parts than a superclass, rearrange the parts re
ecting

the di�erent needs.

In the context of our example this rule suggests the following class dictionary graph,

since a square needs fewer parts than a rectangle.

Rectangular : Rectangle | Square.

Rectangle =

<height> DemNumber

<width> DemNumber.

Square = <length> DemNumber.

This class dictionary graph allows for rectangles that have height = width but are not

classi�ed as squares. This is better than in the previous class dictionary graph where we

could have lots of squares with di�erent heights and widths.

To motivate the above design guideline, we derive a class dictionary for rectangles,

squares, ellipses, and circles. A �rst solution is to build a conceptual model such as:

Figure: Rectangle | Ellipse.

Rectangle : Square *common*

<height> DemNumber

<width> DemNumber.

Ellipse : Circle *common*

<semiaxis_height> DemNumber

<semiaxis_width> DemNumber.

Square = .

Circle = .

This class dictionary de�nes only square and circle objects. But let's assume that we

would allow alternation classes to be instantiated. We would have the following problems

with the above class dictionary graph:

� A square is represented by two numbers, instead of one.

� We can call the functions for changing the height and the width of a square to any

value, ignoring the constraint that they need to be equal.

The following class dictionary graph gives a conceptual model with its focus still on

specialization, but it no longer assumes that alternation classes are instantiable.

A specialization-centered class dictionary graph follows.



6.6. CLASS DICTIONARY GRAPH DESIGN 159

Figure: Rectangular | Elliptic.

Rectangular : Rectangle | Square *common*

<height> Measure

<width> Measure.

Rectangle = .

Square = .

Elliptic : Ellipse | Circle *common*

<semiaxis_height> Measure

<semiaxis_width> Measure.

Ellipse = .

Circle = .

Measure = <v> DemNumber.

But we still have the two problems mentioned above. However, in this class dictionary

graph Square is no longer a subclass of Rectangle, which will make it easier to improve

the solution. The class dictionary graph was obtained from the previous class dictionary

graph by following the rule that alternation classes cannot be instantiated. This rule implies

the extra classes Rectangular and Elliptic. These classes allow us to deal with the classes

Rectangle and Square separately. On the other hand, a square is no longer represented as a

special kind of rectangle; we only say that a square is a special kind of rectangular object.

Now let's improve the solution and eliminate these two problems. We develop a part-

centered class dictionary graph.

Figure: Rectangular | Elliptic.

Rectangular : Rectangle | Square.

Rectangle =

<height> Measure

<width> Measure.

Square = <length> Measure.

Elliptic : Ellipse | Circle.

Ellipse =

<semiaxis_height> Measure

<semiaxis_width> Measure.

Circle = <radius> Measure.

Measure = <v> DemNumber.

This class dictionary de�nes square, circle, rectangle, and ellipse objects. It also provides

a conceptual model as did the �rst one, but the focus is on representing objects with the

appropriate parts and not on specializing classes. For example, Square is no longer a subclass

of Rectangle.

Which class dictionary graph is better, the part-centered class dictionary graph or the

specialization-centered class dictionary graph? The part-centered class dictionary graph

tends to be better (because of the above two problems). Let's compute the area of a Figure-

object.

For the part-centered class dictionary graph we get the program



160 CHAPTER 6. CLASS DICTIONARY GRAPHS AND OBJECTS

// compute area of any of the 4 figures

// simulating multiple inheritance with wrappers

// A circle inherits code for two reasons:

// its area is determined by one side

// its area is computed using PI

*operation* float area()

*init* (@ 1.0 @)

*traverse* *from* Figure *to* Measure

*wrapper* Measure

*prefix*

(@ return_val = return_val * *v; @)

// order of the following wrappers is important:

// first we need to square, then to multiply by PI

*wrapper* {Circle, Square}

*suffix*

(@ return_val = return_val * return_val; @)

*wrapper* {Circle, Ellipse}

*suffix*

(@ float PI = 3.1415; return_val = return_val * PI; @)

It is interesting to notice that the preceding propagation pattern also works for the

specialization centered class dictionary graph if we delete the wrapper for circle and square.

The propagation pattern uses a class set in conjunction with a wrapper. *wrapper* Circle,

Square means that the wrapper code will be attached to both classes.

The table in Fig. 6.17 compares part-centered and specialization-centered designs.

In conclusion, many conceptual models for an application domain usually exist. We can

distinguish between part-centered and specialization-centered class dictionary graphs and

we noticed that part-centered class dictionary graphs are usually better since they have less

duplication of parts and their programs can be better checked at compile-time.

We noticed that the transition from a specialization-centered program to the part-

centered program is easy. Especially when the program is written with propagation patterns,

a changing class structure can be easily absorbed.

We propose the following informal procedure of getting to a part-centered class dictio-

nary graph:

� Start with traditional specialization-centered classi�cation (assume that alternation

classes are instantiable).

� Implement the restriction that alternation classes are abstract. Make class-superclass

relationships into sibling relationships if di�erent or incompatible parts are needed.

It is interesting to mention that traditional classi�cation hierarchies allow alternation

classes to be instantiated. Another example of a specialization-centered classi�cation is

RealN : Rational.

Rational : Integer.

Integer : Natural.



6.6. CLASS DICTIONARY GRAPH DESIGN 161

Comparison:

part-centered specialization-centered

Advantages:

-----------

less duplication more uniform algorithm

easy to check

at compile time

--------------------------------------------------------

Disadvantages:

--------------

less uniform algorithm run-time check for illegal objects

type system allows illegal

mutation of objects

Figure 6.17: Part-centered versus specialization-centered designs

The corresponding part-centered taxonomy is

RealN : Real | Rational | Integer.

Real = <v> float@C.

Rational = <n> DemNumber <d> DemNumber.

Integer = <v> DemNumber.

6.6.3 Construction versus Alternation Edges

When you design two closely related classes X and Y you have a choice of three structural

relationships between them: construction, alternation, or repetition (see Fig. 6.18).

Which one do you choose?

In all three cases we can say that an X-object contains Y-information. In the construc-

tion and repetition case we can access this information by calling a function of a Y-object

that is part of an X-object. In the alternation case we can use the Y-information by calling

a function of the Y-class.

Here are a few questions that help to decide whether to use a construction/repetition

edge over an alternation edge. If the answer to the following questions is positive, use a

construction edge or a repetition edge.

Do we need Y-information several times in an X-object?

If we change the Y-information in an X-object, do we get an X-object with the

same identity?



162 CHAPTER 6. CLASS DICTIONARY GRAPHS AND OBJECTS

construction

Y = ... Y = ...

X = <y> Y. X : alternatives *common* <y> Y.

alternation

Y : X *common* ...

X = .

repetition

Y = ...

X ~ {Y}.

Figure 6.18: Edge choice

If the answer to the following questions is positive, use an alternation edge.

Is an X-object a kind of a Y-object?

Can the set of Y-objects be split into several disjoint sets, one of them being the

X-objects?

We provide some examples here.

An expression contains several subexpressions. We use a construction or a repetition

edge.

Compound = Op <arg1> Exp <arg2> Exp.

Compound = Op <args> List(Exp).

We use a construction edge if we want to name the parts and a repetition edge if we

want to number the parts.

If we change a tire of a car, we still see it as the same car. Also, if we change the driver

of a car, the car keeps its identity. Therefore we use a construction or a repetition edge in

the following class de�nitions:

Car = <tires> List(Tire) <driver> Driver.

ThreeTireCar = <t1> Tire <t2> Tire <t3> Tire <reserve> Tire.

An apple is a kind of a fruit; therefore we use an alternation edge.

Fruit : Apple | Orange *common* Weight.



6.7. SUMMARY 163

6.7 SUMMARY

In this section we introduced class dictionary graphs without reference to their cousins, class

dictionaries, which are covered in a later chapter.

A class dictionary graph de�nes a set of objects that is usually in�nite. A class dictionary

graph is an interface to a set of class de�nitions written in some programming language.

The most important role of a class dictionary graph is as a customizer of adaptive programs.

6.8 EXERCISES

Exercise 6.1 (Class objective)

Consider the following class dictionary graph:

Example = <l> L.

L ~ {A} .

A = <x> B.

B : D | E *common* <c> C.

C ~ {DemIdent}.

D = .

E : Description | OrderNumber.

Description = .

OrderNumber = .

Give the list of C++ classes de�ned by this class dictionary graph. For each class indicate

what kind of class it is (construction, repetition, or alternation) and whether it is abstract

or not, and list all data members, including the inherited ones, and their types.

Exercise 6.2 Write a class dictionary graph for an application of your choice. Describe

three objects that are legal with respect to the class dictionary graph (using the object

notation) and determine the sizes of the three objects.

Exercise 6.3 Use a class dictionary graph for describing expressions. Give an object that

is legal with respect to the class dictionary graph and that:

1. contains shared subobjects but is not circular.

2. is circular.

Exercise 6.4 Write a C++ program from scratch that evaluates expressions and prints

them out.

Example = <ex> Prefix.

Prefix : Simple | Compound.

Simple = <v> DemNumber.

Compound = Op <arg1> Prefix <arg2> Prefix .

Op : MulSym | AddSym .

MulSym = .

AddSym = .



164 CHAPTER 6. CLASS DICTIONARY GRAPHS AND OBJECTS

Required C++ knowledge: Derived classes (for alternation classes), virtual functions

(almost always needed with derived classes), ordering of classes, constructors. Hint: use

derived classes for the alternatives of an alternation class.

Exercise 6.5 Grow the C++ pre�x expression evaluator from the last exercise to a pre�x

expression evaluator for the following class dictionary graph:

Example = <exps> List(Prefix).

Prefix : Simple | Compound.

Simple = <v> DemNumber.

Compound = Op <args> List(Prefix) .

Op : MulSym | AddSym .

MulSym = .

AddSym = .

List(S) ~ S {S}.

Exercise 6.6 Write a C++ program for di�erentiating (i.e. taking the derivative) of pre�x

expressions. Use the class dictionary graph of the previous exercise.

Exercise 6.7 You are given a class dictionary graph and several objects and you have to

identify missing information in the objects. Find the unknowns below. Class dictionary (for

the entire question):

A = <b> B.

B : C | D | A *common* <w> W.

W ~ {DemIdent} .

C = .

D = .

1. Consider the following three legal A-objects a1, a2, a3. Find the unknowns.

A-object a1:

: A (

< UNKNOWN1 > : C (

< w > : UNKNOWN2 { } )

< UNKNOWN3 > : UNKNOWN4 { } )

A-object a2:

: A (

< b > : UNKNOWN5 (

< b > : UNKNOWN6 (

< b > : C (

< w > : UNKNOWN7 { } )

< w > : UNKNOWN8 { } )

< w > : UNKNOWN9 { } )

< w > : UNKNOWN10 { } )



6.8. EXERCISES 165

A-object a3:

: A (

< b > : A (

< b > : D (

< w > : W {

: UNKNOWN11 "x" } )

< UNKNOWN12 > : UNKNOWN13 {

: UNKNOWN14 "x" ,

: UNKNOWN15 "y" ,

: UNKNOWN16 "z" } )

< w > : W {

: UNKNOWN17 "z" } ) } )

2. For the following A-object,

// : A (

// < b > : C (

// < w > : W { } )

// < w > : W { } ) ,

write C++ statements for creating the A-object. Find the unknowns below.

UNKNOWN18 c1 = UNKNOWN19 ;

c1 -> UNKNOWN20(new UNKNOWN21());

UNKNOWN22 a1 = new UNKNOWN23

(c1);

a1 -> UNKNOWN24(new W());

3. Consider the following illegal objects. Find the �rst error as indicated.

A-object i1:

// give three answers in UNKNOWN25

The FIRST error is on line UNKNOWN25:

replace letter UNKNOWN25 by UNKNOWN25

: A (

< b > : A (

< b > : D (

< b > : C (

< w > : W { } )

< w > : W { } )

< w > : V { } )

< v > : W { } )

A-object i2:

The FIRST error is on line UNKNOWN26: UNKNOWN27 is missing.



166 CHAPTER 6. CLASS DICTIONARY GRAPHS AND OBJECTS

: A (

< b > : A (

< b > : D ()

< w > : W {

: DemReal "x" ,

: DemReal "y" ,

: DemReal "z" } )

< w > : W {

: DemReal "z" } ) } )

6.9 BIBLIOGRAPHIC REMARKS

The meal example is from [LR88b] and was invented by Arthur Riel.

The comparison of specialization-centered and parts-centered design was motivated by

the article \Objectivism: Class considered harmful" on page 128, Comm. ACM, Aug. 1992,

128-130, Juergen F. H. Winkler, Technical correspondence.

� Data dictionaries

A survey on how data dictionaries (related to class dictionaries) are used in database

management systems is given in [ALM82], [Wer86].

The data dictionary approach to program design has been advocated in structured

analysis texts, such as [MM85].

Our basic class dictionary notation (without inheritance or parameterization) was

promoted in the early eighties (see e.g. [Pre87, 5.2.2, page 173]). Warnier Diagrams

also share many characteristics with our class dictionaries.

� Semantic data modeling

A survey of semantic database modeling is given in [HK87]. The task of schema

integration, which is related to the task of class dictionary integration and evolution,

is studied in [BLN86]. View integration is also related to class dictionary integration

and is discussed in [NEL86].

� Object bases

Class dictionary graphs are an important part of the schema of an object base. Work

on object-oriented database systems is represented in [MS87], [SZ87], [AB87], [AH87],

and [HK87].

� Program transformation systems

Our development of Demeter has been motivated by work on program transformation

systems [PS83],[CI84], [BM84].

The MENTOR system [DGHK+75], [DGHKL80] is designed for manipulating struc-

tured data represented by abstract syntax trees.

Our approach has the advantage that the grammar-based approach to program trans-

formation and the rule-based approach (used by many program transformation sys-

tems) are blended in a natural way. Adaptiveness is not present in the older systems.



6.10. SOLUTIONS 167

The Mj�lner project uses a Demeter-like approach [MN88] but does not support adap-

tiveness.

� Hoare's type de�nition language

Hoare proposed the following type de�nition language back in 1972 in his paper on

recursive data structures [Hoa75].

TypeDeclaration =

"type" <typeIdent> Ident "=" Compound.

Compound =

"(" <generators> BarList(Generator) ")".

TypeExpression : Ident | Compound.

Generator =

<generatorIdents> CommaList(Ident)

"(" <types> CommaList(TypeExpression) ")".

BarList(S) ~ S {"|" S}.

CommaList(S) ~ S {"," S}.

Examples:

TYPE proposition =

(prop(letter) |

neg(proposition) |

conj, disj (proposition, proposition))

TYPE list = (unit(identifier) | cons(list, list)).

TYPE expression =

(constant(real) |

variable(identifier) |

minus(expression) |

sum, product, quotient

(expression, expression,

(unknown | known(expression)).

This language contains some core aspects of the Demeter-type de�nition notation.

The Demeter construction classes correspond to Hoare's generators. Hoare considers

such a de�nition as a word algebra. A class is a type that is a subset of a word algebra.

Fig. 6.14 was proposed by John Cosimati.

6.10 SOLUTIONS

Solution to Exercise 6.7



168 CHAPTER 6. CLASS DICTIONARY GRAPHS AND OBJECTS

UNKNOWN1 = b UNKNOWN2 = W

UNKNOWN3 = w UNKNOWN4 = W

UNKNOWN5 = A UNKNOWN6 = A

UNKNOWN7 = W UNKNOWN8 = W

UNKNOWN9 = W UNKNOWN10 = W

UNKNOWN11 = DemIdent UNKNOWN12 = w

UNKNOWN13 = W UNKNOWN14 = DemIdent

UNKNOWN15 = DemIdent UNKNOWN16 = DemIdent

UNKNOWN17 = DemIdent UNKNOWN18 = C*

UNKNOWN19 = new C() UNKNOWN20 = set_w

UNKNOWN21 = W UNKNOWN22 = A*

UNKNOWN23 = A UNKNOWN24 = set_w

UNKNOWN25 = 3, D, A UNKNOWN26 = 3

UNKNOWN27 = <w> W()



Chapter 7

Propagation Directives

Propagation patterns describe new functionality by 
exibly composing existing functionality.

The details of the composition are left open and can be customized later in two ways: by

adding more functionality and by giving the details of the composition.

Each propagation pattern implements a functionality for a group of collaborating classes.

The group of classes is not given explicitly by itemizing elements of the group, but by an

implicit speci�cation. This speci�cation focuses on the important classes and relationships

that are really relevant to the given functionality.

Implicit speci�cations of groups of collaborating classes are given by propagation direc-

tives, which are the subject of this chapter. A propagation directive is a succinct speci�cation

of a group of collaborating classes out of a larger class dictionary graph. The resulting sub-

graph is called a propagation graph. If it is used for the purpose of traversal, it is also

called a traversal graph.

A typical example is the speci�cation of the physical part-of structure of a bigger class

structure that might contain many more relationships than the physical part-of relationships.

For example, a car consists of an engine, transmission, wheels, etc. which are all physical

parts of the car, but the driver of the car does not belong to the physical part-of structure.

The need to work with propagation graphs of a class dictionary arises in di�erent situ-

ations during object-oriented software development.

� Traversal of objects: We need to traverse an object to retrieve certain subobjects. The

extent of the traversal is naturally speci�ed by a propagation directive. This leads to

a loose coupling between traversal domain and class structure.

� Transportation of objects: We need to transport an object down to a subobject or up

to a containing superobject. The range of the transportation is again speci�ed by a

propagation directive. This leads to a loose coupling between transportation domain

and class structure.

� Testing of object-oriented software: When testing an object-oriented system, it is best

to proceed in phases. First we test a small subsystem consisting of a subset of the

classes and then we gradually consider more and more classes. The subsystems are

169



170 CHAPTER 7. PROPAGATION DIRECTIVES

again speci�ed by propagation directives. This leads to a loose coupling between test

plan and class structure.

� Controlling universal operations: Objects need to be manipulated by universal opera-

tions such as copying, comparing, deleting. Often only parts of an object are relevant

to those operations. The relevant parts can be succinctly described by propagation

directives. An application of selective object copying would be selective object mar-

shaling for sending objects across a network.

� Clustering classes: Class dictionaries support named binary (construction edges) and

generalization (alternation edges) relationships. Other kinds of relationships often

appear in clusters and can be succinctly described by propagation directives. An

example would be aggregation relationships. We would describe the physical class

structure with propagation directives. This leads to a loose coupling between clusters

and class structure.

� Opportunistic parameterization: Classes can be reused e�ectively by parameterizing

them with respect to possibly deeply nested part classes. The parameterization range

may be succinctly speci�ed using propagation directives. This leads to a loose coupling

of genericity and class structure.

� Loose coupling of layers: When building a layered system, each layer should be only

loosely coupled to previous layers. If each layer traverses connections of earlier layers

using succinct subgraph speci�cations, we get a loose coupling of the layers. When

the earlier layers change, the later layers are not so strongly a�ected because of the

loose coupling between the layers.

Therefore, work with propagation graphs is very important in object-oriented system

development. But why are we not using those propagation graphs directly, but work with

succinct speci�cations in the form of propagation directives? The reason is that we want to

keep the software 
exible. Instead of de�ning an explicit propagation graph of an explicit

graph, we de�ne a pattern that maps the explicit graph to the propagation graph. In other

words, we solve a more general problem. An important observation is that the pattern is

often shorter than the explicit propagation graph. And furthermore, the pattern will work

for many more graphs than the given explicit graph.

We will use a dependency metric to �nd a good pattern that maps the given graph

into the proper propagation graph. The metric measures how dependent the pattern is on

the given graph. The goal is to �nd a pattern that is minimally dependent on the given

class structure. The dependency metric plays an important role in helping the programmer

�nd a proper generalization to the current problem she is given. The metric guides the

programmer to build only minimal class structure information into the program with two

important bene�ts: more compact software and software that is easier to reuse.

A propagation directive may be applied to many di�erent class dictionaries and for

each one the propagation directive de�nes a propagation graph. Therefore, a propagation

directive is expressed not in terms of classes, but in terms of class-valued variables that

are later mapped to speci�c classes when the propagation directive is applied to a class

dictionary. A class-valued variable is a placeholder for classes we don't know when we write



7.1. SIMPLE PROPAGATION DIRECTIVES 171

the adaptive program. For example, in an adaptive program, we may use a class-valued

variable called Container which is later mapped to classes such as Basket, Briefcase or Suitcase.

In addition, a propagation directive is expressed in terms of relation-valued variables that

are mapped to relations between classes. For example, in the adaptive program we refer

to a relationship variable called contains that may later be mapped to a construction edge

label in some class dictionary graph. The name of the construction edge label may be:

containsThings, containsPapers, or a similar name.

A propagation directive is an elastic class structure. An elastic class structure, when

applied to a rigid class structure, will return a substructure of the rigid class structure. The

dependency metric measures how elastic an elastic class structure is with respect to a speci�c

class structure. The more dependent the class structure, the less elastic it is. Propagation

patterns are written in terms of elastic class structures; they give the adaptiveness property.

7.1 SIMPLE PROPAGATION DIRECTIVES

One application of propagation patterns is the speci�cation of object traversals. At the class

level, the object traversal corresponds to a propagation graph that is made up of the union

of paths from the source of the traversal. A speci�c path denotes the sequence of classes

whose traversal code is called during a speci�c time of the traversal.

Consider the class dictionary graph in Figs. 7.1 and 7.2.

AppleBasket = <apples> AppleList.

AppleList ~ {Apple}.

Fruit : Apple | Orange *common* Weight.

Weight : Kg | Pound *common* <v> DemNumber.

Kg = .

Pound = .

Apple = .

Orange = .

Figure 7.1: Class dictionary graph without inheritance edges, textual

Suppose that we want to print a Kg-object contained in an AppleBasket-object. This

means that the classes AppleBasket, AppleList, Apple, Fruit, Weight, and Kg are all involved

in the traversal. For those classes to form a path, it is natural to add an inheritance

edge from Apple to Fruit to the class dictionary and to call the new structure a semi-class

dictionary graph. A semi-class dictionary graph is a structure with one additional edge

kind: inheritance edges that must terminate at an alternation vertex.

There is an e�ective way avoid the semi-class dictionary graph concept, if one is willing

to work with larger propagation graphs. The trick is to 
atten the class dictionary graph

before the propagation directive is applied to it.1 If we want to undo the 
attening after the

1Class dictionary graph 
attening, page 435 (22).



172 CHAPTER 7. PROPAGATION DIRECTIVES

OrangeApple

AppleList

AppleBasket

Fruit

Weight

Kg Pound

DemNumber

apples

v

Figure 7.2: Class dictionary graph without inheritance edges, graphical



7.1. SIMPLE PROPAGATION DIRECTIVES 173

propagation graph has been computed, we naturally arrive at semi-class dictionary graphs.

So semi-class dictionary graphs are needed, unless you are willing to work with 
attened

propagation graphs. In a �rst attempt to learn adaptive software, it is best to focus on


attened propagation graphs only. Therefore, when we use the term semi-class dictionary

graph, you may think of a class dictionary graph, which is the 
attened form of the semi-

class dictionary graph. Adaptive software for 
attened class dictionary graphs is explained

in a self-contained way in Chapter 15.

A semi-class dictionary graph is a structure that is more general than the class dictionary

graph structure. Every class dictionary graph is a semi-class dictionary graph by de�nition.

So far we have not mentioned the inheritance edges since they were not needed. However,

by de�nition a class dictionary graph has, for every alternation edge, an inheritance edge in

the reverse direction. When we show a class dictionary graph we often omit the inheritance

edges since we know that every alternation edge has an inheritance edge in the reverse

direction, and showing all the inheritance edges would only clutter the pictures. The class

dictionary graph in Figs. 7.1 and 7.2 is shown in Figs. 7.3 and 7.4 with the inheritance

edges added, in both textual and graphical representation.

AppleBasket = <apples> AppleList.

AppleList ~ {Apple}.

Fruit : Apple | Orange *common* Weight.

Weight : Kg | Pound *common* <v> DemNumber.

Kg = .

Pound = .

Apple = (*inherit* Fruit).

Orange = (*inherit* Fruit).

Figure 7.3: Class dictionary graph with inheritance edges, textual

A semi-class dictionary graph is more general than a class dictionary graph since in a

semi-class dictionary graph we might have an inheritance edge without having the corre-

sponding alternation edge. For example, the semi-class dictionary graph in Fig. 7.5 which

contains only the path from AppleBasket to Kg has an inheritance edge from Apple to Fruit

without having the reverse alternation edge. In this example we see another clue why semi-

class dictionary graphs are more general than class dictionary graphs. In a class dictionary

graph every alternation vertex must have at least one alternative, but in a semi-class dic-

tionary graph such as the one in Fig. 7.5 this property does not hold.

In Figs. 7.5 and 7.4 a path from AppleBasket to Kg contains the following edges:

construction AppleBasket
apples

�! AppleList

repetition AppleList ...... Apple

inheritance Apple
.......... Fruit



174 CHAPTER 7. PROPAGATION DIRECTIVES

OrangeApple

AppleList

AppleBasket

Fruit

Weight

Kg Pound

DemNumber

apples

v

Figure 7.4: Class dictionary graph with inheritance edges, graphical



7.1. SIMPLE PROPAGATION DIRECTIVES 175

Apple

AppleList

AppleBasket

Fruit

Weight

Kg

DemNumber

apples

v

Figure 7.5: Semi-class dictionary graph that is not a class dictionary graph



176 CHAPTER 7. PROPAGATION DIRECTIVES

construction Fruit
weight

�! Weight

alternation Weight =) Kg

Inheritance edges are introduced as a convenience to have a natural and intuitive path

concept in class dictionary graphs. To de�ne the domain and range of propagation directives

and for other applications, we work with semi-class dictionary graphs which, in addition to

the construction, alternation, and repetition edges also have inheritance edges. An inheri-

tance edge starts at a construction or alternation vertex and leads to an alternation vertex.

In the same way as class dictionary graphs, semi-class dictionary graphs need to satisfy

design rules. Cycles of inheritance edges are forbidden as well as cycles of alternation edges.

Also, for each vertex, all its vertex labels need to be unique.

The edge and vertex restrictions for semi-class dictionary graphs are derived from the

edge and vertex restrictions for class dictionary graphs and are summarized below.

VC VA VR VT

----|-----------------------------------------------------

EC | from/to from/to /to /to

ECO | from/to from/to /to /to

EA | /to from/to

ER | /to /to from/to /to

ERO | /to /to from/to /to

EI | from/ from/to

Not all paths are meaningful in a semi-class dictionary graph. The intention of the path

concept is to mirror object traversal. In other words, the vertices reachable from a given

vertex A should all correspond to classes that are needed to build objects of class A.

Consider the path de�ned by the following edges:

construction AppleBasket
apples
�! AppleList

repetition AppleList ...... Apple

inheritance Apple
.......... Fruit

alternation Fruit =) Orange

that leads to class Orange. But Orange-objects may not be contained in AppleBasket-objects

and therefore we need to constrain the path concept.2 The restricted kind of paths are

called knowledge paths since they express knowledge links between classes or between

objects. The only constraint we need is that an inheritance edge can be followed only by

another inheritance or a construction edge and that a path may not terminate in a vertex

arrived at by following an inheritance edge.

Every knowledge path in a semi-class dictionary graph is a path, but not vice versa. A

path consists of any sequence of consecutive construction, alternation, repetition, and in-

heritance edges. In regular expression notation we would write: (ECjEAjERjEI)�, where

EC;EA;ER; and EI are the sets of construction, alternation, repetition, and inheritance

2Semi-class dictionary graph reachability, page 431 (8).



7.1. SIMPLE PROPAGATION DIRECTIVES 177

edges, respectively. (The semi-class dictionary graph edge/vertex rules exclude certain

paths. For example, it is not possible to have an alternation edge followed by a repeti-

tion edge.) A knowledge path must satisfy the regular expression ((EI � EC)jEAjER)�

that formalizes the informal description given above.

Several negative examples follow:

� No alternation edge after inheritance edge

The path

inheritance Apple
.......... Fruit

alternation Fruit =) Orange

is not a knowledge path since the inheritance edge is followed by an alternation edge.

� Do not stop after inheritance edge

The path consisting of one edge

inheritance Apple
.......... Fruit

is not a knowledge path since there is no construction edge after the last inheritance

edge.

A positive example follows:

� satisfy the regular expression ((EI �EC)jEAjER)�

The path

inheritance Apple
.......... Fruit

construction Fruit
weight
�! Weight

alternation Weight =) Kg

is a knowledge path from Apple to Weight.

The regular expression ((EI � EC)jEAjER)�, which a knowledge path must satisfy,

can be used to motivate further the need for both alternation and inheritance edges. Let's

assume that we use only one kind of undirected edges instead of alternation and inheritance

edges, and let's call the set of edges E. The above regular expression then simpli�es to:

((E � EC)jEjER)� = (EjECjER)�. This means that there would be no restriction that

would lead to incorrect results.

However, if we are willing to work with 
attened propagation graphs, we don't need to

introduce knowledge paths; we just use the ordinary path concept in class dictionary graphs.

The reason is that in a 
attened propagation graph there can never be a construction edge

after traversing an inheritance edge. So the restriction ((EI � EC)jEAjER)� simpli�es to

(ECjEAjER)� which is no restriction at all.



178 CHAPTER 7. PROPAGATION DIRECTIVES

We have introduced semi-class dictionary graphs and the knowledge path concept. Both

will be needed to de�ne the meaning of propagation directives for general class dictionary

graphs. For 
at class dictionary graphs, we can use a simpler path concept as explained in

Chapter 15. A propagation directive is a triple (F; c; T ), where F (*from*) and T (*to*)

are sets of class-valued variables and c is a constraint expressed in terms of class-valued

variables and relation-valued variables. F stands for \from" and T stands for \to" since F

is determined by the \from" vertices and T by the \to" vertices of a propagation directive.

A propagation directive de�nes a set of knowledge paths in a larger graph. The union

of all those knowledge paths is the subgraph we want. This subgraph is called a propaga-

tion graph. F will be mapped into a set of vertices from which the knowledge paths start.

T will be mapped into a set of vertices at which the knowledge paths end. c is an addi-

tional constraint that all knowledge paths have to satisfy such as bypassing and through

constraints.

7.1.1 Edge Patterns

The constraints are expressed in terms of edge patterns. An edge pattern, once mapped into

a class dictionary graph, de�nes a single edge or a set of edges if the edge is expressed with

the wildcard symbol *. For example, we may de�ne an edge pattern for a construction edge

that starts at an unknown vertex, has labelm and terminates at an unknown vertex. Such an

edge pattern is written as -> *,m,*. An edge pattern may be formulated for construction,

alternation, repetition, and inheritance edges (the syntax is given in Fig. 7.6 in the bypassing

and through clause). An edge pattern matches an edge in a semi-class dictionary graph if

there is an assignment of the class-valued variables, relation-valued variables, and wildcard

symbols to classes and relations of the semi-class dictionary graph so that the edge and the

pattern coincide.

Two kinds of predicates may be applied to edge patterns: bypassing and through. A

knowledge path p of a semi-class dictionary graph S satis�es the bypassing clause e if p does

not contain any edge in S that matches e. A knowledge path p of a semi-class dictionary

graph S satis�es the through clause e if p contains at least one edge in S that matches e.

For example,

*from* A

*bypassing* -> *,m,*

*to* Z

means that we want all knowledge paths from A to Z that do not contain any construction

edge with label m.

Bypassing and through clauses may be combined into more complex constraints by the

and operator.

For example,

*from* A

*bypassing* -> *,e,* ,

-> K,m,M

*through* -> *,x,*

*to* Z



7.2. SYNTAX SUMMARY FOR PROPAGATION DIRECTIVES 179

means that we want all knowledge paths from A to Z that do not contain any construction

edge with label e, nor any construction edge from class K to class M with label m, but that

all paths need to contain a construction edge with label x.

We de�ne that an edge pattern is compatible with a semi-class dictionary graph S, if

the edge pattern matches some edge in S. We de�ne that a constraint c is compatible with

a semi-class dictionary graph S, if the edge pattern of each bypassing or through clause of

c matches some edge in S. A knowledge path p of a semi-class dictionary graph S satis�es

constraint c if c is compatible with S and if p satis�es all bypassing and through clauses of

c.

7.2 SYNTAX SUMMARY FOR PROPAGATION DIRECTIVES

The syntax for propagation directives3 is summarized in simpli�ed form by example in Fig.

7.6.

Indentation di�erentiates vertex-oriented constraints from edge-oriented constraints.

The propagation must start at a set of classes usually containing only one element. The

propagation may go everywhere or it may terminate at a set of classes usually containing

only one element.

Propagation directives may be combined with the join and merge operators, which will

be discussed in Section 7.7. The syntax of join and merge is summarized in Fig. 7.7. The

operators are binary and may be nested to any depth. Join and merge expressions must be

well-formed as de�ned in Section 7.7.

To illustrate the wildcard symbol, the edge pattern

-> *, cost, Money

means the set of construction edges from some vertex through label cost to vertex Money.

For example, the bypassing clause with an edge pattern

*bypassing*

-> *, cost, Money

is equivalent to the bypassing clause

*bypassing*

-> Service, cost, Money ,

Manufacturing, cost, Money

if the class dictionary graph contains the two construction edges.

There may be any number of via clauses. They force paths through vertices. Between

via clauses, or between from and to, we may have several bypassing and through clauses.

A propagation directive is de�ned as triple (F; c; T ) composed by the following elements.

� A nonempty set F of source vertices from which the knowledge paths start.

� A set of target vertices T to where the knowledge paths go.

� A constraint c which is itself a triple:

3Legal propagation patterns, page 447 (61).



180 CHAPTER 7. PROPAGATION DIRECTIVES

// exactly one *from*

*from* {A1, A2, ...}

// zero or more *through*

*through* // one or more edge patterns, separated by ","

// force edges

-> V,m,W , // construction edge with label m

=> V,W , // alternation edge

:> V,W , // inheritance edge

~> V,W // repetition edge

// zero or more *bypassing*

*bypassing* // one or more edge patterns, separated by ","

// avoid edges

-> V,m,W , // construction edge with label m

=> V,W , // alternation edge

:> V,W , // inheritance edge

~> V,W // repetition edge

// zero or more *via*

// force vertices

*via* {K1, K2, ...}

... // more *through* and *bypassing*

*via* {S1, S2, ...}

... // more *through* and *bypassing*

//zero or one *to*

*to* {Z1, Z2, ...}

Instead of V, W, or m the wildcard symbol (*) may be used.

Figure 7.6: Syntax summary for propagation directives

*join* (

*merge* (

*from* A *via* B *to* E, // any *from* ... *to*

*from* A *via* C *to* E), // any *from* ... *to*

*from* E *to* K) // any *from* ... *to*

Figure 7.7: Syntax summary for join and merge



7.2. SYNTAX SUMMARY FOR PROPAGATION DIRECTIVES 181

{ A set of via vertices through which the paths go.

{ An optional speci�cation of a set of edges out of which each path in the propa-

gation graph is required to include at least one (through).

{ An optional speci�cation of a set of edges that describe knowledge paths that are

going to be excluded or bypassed from the propagation graph (bypassing).

via clauses are a shorthand for joins (discussed later in the chapter), for example,

*from* {A1, A2} *via* {S1, S2} *to* {Z1, Z2}

is a shorthand for

*join* (*from* {A1, A2} *to* {S1, S2},

*from* {S1, S2} *to* {Z1, Z2})

The meaning is (as de�ned shortly) that there must be knowledge paths from A1 to S1

and A1 to S2 and A2 to S1 and A2 to S2. The propagation graph is the union of all those

knowledge paths.

It is also possible to use

*from* A

*to-stop* Z

which is equivalent to

*from* A

*bypassing* -> Z,*,*

*bypassing* => Z,*

*bypassing* ~> Z,*

*bypassing* :> Z,*

*to* Z

In other words, the to-stop clause means that there can be no outgoing edges. The

to-stop clause is useful in the context of recursive class structures.

In summary, propagation directives de�ne sets of paths. The basic building block is the

set of all paths from vertex A to vertex B, written as *from* A *to* B. This often results in

too many paths and therefore we need syntax to eliminate paths. We need a mechanism to

force edges and vertices. This is accomplished with *through*, for forcing edges, and with

*via* or *join*, for forcing vertices. We need a mechanism to avoid edges, which is achieved

with *bypassing and *to-stop*. A mechanism to avoid vertices is not needed since we can

avoid them by avoiding edges. The complete syntax of propagation directives will be given

after we have introduced class dictionaries that allow us to de�ne syntax.



182 CHAPTER 7. PROPAGATION DIRECTIVES

7.3 APPLYING PROPAGATION DIRECTIVES

A propagation directive may be applied to a semi-class dictionary graph to de�ne a propa-

gation graph.4 This application makes sense only if the propagation directive is compatible

with the semi-class dictionary graph. A propagation directive (F; c; T ) is compatible with a

semi-class dictionary graph S, if the following two conditions hold:

� All names of class-valued variables in F and T appear as class names in S.

� c is compatible with S; that is, the edge pattern of each bypassing or through clause

of c matches some edge in S. All names of class-valued variables that are via vertices

appear as class names in S.

The propagation graph P de�ned by a propagation directive (F; c; T ) for a compati-

ble semi-class dictionary graph S is the union of all the knowledge paths that satisfy the

constraint c.5 This is the de�nition of the propagate function, which takes as input a

propagation directive and a semi-class dictionary graph, and as the result computes the

propagation graph: triple (P; F; T ) = propagate((F; c; T ); S).

We can interpret the arguments of the propagate function, the propagation directive

pd and the semi-class dictionary graph S a propagation graph in two ways. The �rst

interpretation is high level and the second is low level. The high-level interpretation is

intended to capture the programmer's reading of a propagation graph and the low-level

interpretation captures the compiler's reading of a propagation graph when generating code.

The high-level interpretation of a propagation directive pd and customizer S, written

H(pd; S) is a set of paths in S. The low-level interpretation is a subgraph of S, written

L(pd; S). The low-level interpretation provides a summary of the high-level interpretation.

Since it is a summary only, things might go wrong in that the summary introduces more

paths than intended by the propagation directive. This issue will be discussed shortly as the

information loss concept. A synonym that we also use for information loss is inconsistency.

Although the propagate function returns a triple, we allow the function to be nested by

de�ning

propagate(p2; (P; F; T )) = propagate(p2; P )

Now, propagate(p2; propagate(p1; S)) means to apply directive p1 to S �rst, and to apply

p2 to the resulting propagation graph.

We have already seen several examples of propagation directives, class dictionary graphs,

and corresponding propagation graphs (see Fig. 7.1).

7.4 AVOIDING INFORMATION LOSS

An adaptive program may be compared to a seed that can be planted into di�erent envi-

ronments. Seeds come with planting instructions that tell us when, where, and how the

seeds should be planted. Adaptive programs also come with instructions called customizer

restrictions, about the contexts in which they may be used.

One important di�erence between adaptive programs and seeds is that with adap-

tive programs the planting instructions are enforced by a tool known as the customization

4Legal propagation pattern customization, page 447 (62).
5Propagation operator, page 446 (59).



7.4. AVOIDING INFORMATION LOSS 183

Example Propagation Class dictionary graph Propagation graph

directive

1 Figs. 4.6 4.7 4.9

2 Figs. 4.6 4.8 4.10

3 Figs. 4.14 4.15a 4.15b

Table 7.1: Earlier examples of propagation graphs

checker. If an adaptive program is customized with a customizer that creates no behavior

or the wrong, unintended behavior, the customizer checker will inform us. Sample messages

to inform us about no behavior look like: \there is no path from A to B," \class A does not

appear in graph," \edge e does not appear in graphs," etc. Sample messages to inform us

about unintended behavior look like: \there is an inconsistency because of shortcut paths,"

\there is an inconsistency because of zigzag paths," \there is a violation of the subclass

invariance restriction," etc.

As with planting directions for seeds, the customizer restrictions for adaptive programs

are very mild and we have a large set of customizers to which an adaptive program may be

applied.

The customizer restrictions don't have a negative e�ect on adaptive software develop-

ment. Most of the time when an adaptive program is customized none of the restrictions

applies. In the rare cases when a restriction applies, the customization checker informs us

and we have two choices: we either slightly change the adaptive program or we slightly

change the customizer to get the intended behavior. The customization checker is, however,

very important to check for those rare situations where we would otherwise get the wrong

behavior.

When a propagation pattern is applied to a class dictionary graph, the propagation

graph is determined by the union of the knowledge paths. The reason for this encapsulation

of a set of knowledge paths into a graph is that one, the propagation graphs can be trans-

lated into e�cient object-oriented programs and two, the propagation graphs can easily be

composed using a graph calculus. To manipulate sets of knowledge paths would be much

harder. Unfortunately, the union of the paths into a graph can lose information. The union

of paths might create new paths that are not among the original paths. This implies that

the meaning of the propagation directive is lost.6 We also say that the propagation directive

is inconsistent with the class dictionary graph.

If the propagation directives are formulated without the *merge* operator (see Section

7.7), there is only one kind of information loss (also called inconsistency) known as the

shortcut violation. A shortcut violation happens if the propagation directive requests to go

from A to B through some intermediate vertex or edge, but in the selected graph there is a

shortcut directly from A to B.

If the propagation directive is formulated by using the *merge* operator, there can

be a second kind of information loss or inconsistency known as zigzag violation. A zigzag

violation happens if the propagation directive says to merge two paths and the resulting

6Legal propagation pattern customization, page 447 (62).



184 CHAPTER 7. PROPAGATION DIRECTIVES

graph contains more paths than the two originally merged paths.

Let's consider the information loss problem with the class dictionary graph \Nested

baskets" in Fig. 5.20. To solve the problem \print all the apples in some nested fruit

basket," we might use the propagation directive \nested"

*from* Basket

*through* => Thing, Basket

*to* Apple

It says that the propagation graph is determined by the union of all paths from Basket

to Apple that pass through the alternation edge from Thing to Basket. However, the prop-

agation graph also includes the path that does not go through the alternation edge from

Thing to Basket. Therefore we have lost information by taking the union.

We say that the propagation directive \nested" has the shortcut property with respect

to class dictionary graph \Nested baskets" since the set of paths from Basket to Apple in the

propagation graph contains a shortcut path disallowed by the propagation directive. The

shortcut path goes from Basket to SeveralThings to Thing to Apple.

A propagation directive has information loss (or is inconsistent) with respect to a

class dictionary graph if the propagation graph contains a completed knowledge path not

allowed by the propagation directive. A completed knowledge path is a knowledge path

where every used alternation vertex has an outgoing alternation edge.

If we are willing to work with 
attened propagation graphs, we can drop the two adjec-

tives "completed knowledge" from the information loss de�nition (see Chapter 15).

If information loss exists for a traversal speci�cation, it has to be decomposed into

several traversal speci�cations.

An alternative way to de�ne information loss is to use the high-level interpretation (set of

paths) and low-level interpretation (subgraph) of a propagation directive and a customizer.

We have information loss if the high-level interpretation and the low-level interpretation

di�er. More precisely, if the high-level interpretation and the set of paths from a source to

a target in the low-level interpretation di�er, we have information loss.

A better way to print all the apples in some nested fruit basket is

*operation* void print_apples_in_nested_basket()

*traverse*

// first find a Thing-object in a basket

*from* Basket *to* Thing

*wrapper* Thing

*prefix*

(@ this -> find_nested_basket(); @)

*operation* void find_nested_basket()

*traverse*

// next find a basket in a basket

*from* Thing *to* Basket

*wrapper* Basket

*prefix*



7.5. FINDING PROPAGATION DIRECTIVES 185

(@ this -> print_apples(); @)

*operation* void print_apples()

*traverse*

*from* Basket *to* Apple

*wrapper* Apple

*prefix*

(@ this -> g_print(); @)

It is important that three di�erent signatures are used. The program works with many

di�erent class dictionary graphs since it uses only three class-valued variables (Basket, Thing,

Apple). One might be tempted to use the propagation directives

*from* Basket *to* Basket

*from* Basket *to* Apple

but this would not solve the problem since it does not distinguish between top-level and

nested baskets.

It is interesting to observe that the information loss property is invariant under 
attening

of parts. Let's consider the information loss problem with the class dictionary graph in Fig.

5.20. The propagation directive

*from* Basket *via* Apple *to* Weight

has no information loss for this class dictionary graph. Also when we 
atten the weight-part

from class Fruit to classes Apple and Orange, there is no information loss.

7.5 FINDING PROPAGATION DIRECTIVES

Propagation directives are used for at least two reasons: to make software shorter and

to make it adaptive. Propagation directives may be viewed as a generalization of a pair

(S; P ): semi-class dictionary graph S and a corresponding propagation graph P. There

are many propagation directives that map S into P.7 In a �rst step we want to derive a

propagation directive that makes minimal assumptions on the information in S. To minimize

the assumptions on the existing paths in S, we want to �nd a propagation directive pmin

such that pmin and S are minimally dependent, which means that we cannot �nd a smaller

propagation directive p0 such that p0 and pmin de�ne the same propagation graph for S.

Consider the class dictionary graph in Fig. 7.8.

The two propagation directives

*from* Company

*to* Producer

and

7Propagation directive abstraction, page 447 (60).



186 CHAPTER 7. PROPAGATION DIRECTIVES

ItemAgent Producer

orders
name

name

name

name

location

location

location

sold_by

made_by

Customer

Item_List Item_Empty

Item_NonemptyList

first

rest

Customer_List

Customer_Empty

Customer_NonemptyList

first

rest

Company
customers

DemIdent

Figure 7.8: Customizer 1: Class dictionary graph Company1

*from* Company

*via* Customer_List

*via* Customer

*via* Item_List

*via* Item

*to* Producer

express the same propagation graph. But the �rst propagation directive is much less depen-

dent on the class dictionary graph. More classes can be added or deleted and the program

will still work when the �rst propagation directive is used.

To formalize the dependency concept used above, we introduce a function Dep(p; S)

for a propagation directive p and a semi-class dictionary graph S. Dep(p; S) expresses the

succinctness of a propagation directive p with respect to semi-class dictionary graph S.

A propagation directive is most succinct if it references a minimal number of class-valued

variables or relation-valued variables.

If a propagation directive does not have minimal dependency with respect to a semi-

class dictionary graph S then the propagation directive must be motivated by robustness

under expected changes to S.

Dep(p; S) says how far away p is from the most succinct propagation directive pmin

which de�nes the same propagation graph for S as p.

To formally de�ne dependency, we �rst introduce a function metaSize(p) for a propa-

gation directive p. It is de�ned by

metaSize(p) = the number of distinct class-valued variables in p +

the number of distinct relation-valued variables in p:



7.5. FINDING PROPAGATION DIRECTIVES 187

For an example, consider the following two propagation directives.

� from � Company � to � Money (7:1)

� from � Company � through � � > �; salary; � � to � Money (7:2)

The meta size of propagation directive (7.1) is 2, and of (7.2) is 3.

In addition, we need an algorithm that solves the following minimization problem. Given

a propagation directive p and a semi-class dictionary graph S, �nd a propagation directive

pmin such that propagate (p; S) = propagate (pmin; S) and so that pmin has the minimal

meta size. (Propagate means to compute the propagation graph de�ned by a propagation

directive and a semi-class dictionary graph.) We call the algorithm PDmin(p; S) and it

returns a propagation directive that makes minimal assumptions on the existing paths in S.

For example, consider the directive 7.3.

� from � Company � via � Customer � via � Item � to � fProducer; Agentg (7:3)

PDmin(propagation directive (7:3); Company1) returns the directive:

� from � Company � to � fProducer; Agentg (7:4)

which has meta size 3. We don't give the details of algorithm PDmin.

We de�ne the dependency for a propagation directive p and a semi-class dictionary

graph S to be

Dep(p; S) = 1�metaSize(PDmin(p; S))=metaSize(p):

For example, Dep(propagation directive (7:3); Company1) is 2=5. This means that 2 out of

5 class-valued variables are redundant. Nevertheless, propagation directive (7.3) is a good

propagation directive since it is more robust under changing class structures. This apparent

contradiction will be the topic of the next subsection.

We have 0 � Dep(p; S) < 1. The closer to zero the dependency is, the more succinct

the propagation directive.

In an object-oriented program obtained from propagation patterns and a class dictio-

nary, all the classes and their relationships are explicitly mentioned. Instead of being written

succinctly as with propagation patterns, each class involved will get a method that tells how

the class participates. Therefore, such object-oriented programs have a dependency far away

from 0. The consequence is that they are not adaptive and not easy to evolve.

7.5.1 Evolution of Propagation Directives

We want to write propagation directives so that they are robust under changing class dic-

tionary graphs. We don't want to write minimal directives that might give incorrect results

if the graph changes.

A propagation directive for a class dictionary graph S has to satisfy two con
icting

requirements. On one hand it should succinctly describe the paths that currently exist in S

to make the propagation directive more adaptive; on the other hand it should make minimal

assumptions about the paths that currently do not exist in S. The �rst requirement says



188 CHAPTER 7. PROPAGATION DIRECTIVES

that a propagation directive should use class dictionary graph information (vertices and

labels) minimally; the other one says that to plan for future growth we use more than what

is needed. An example explains this tradeo�.

For a Company-object, we could use propagation directive (7.1) to �nd all the Money-

objects that represent salary information if we have a class dictionary graph where Money is

used only to represent salary information. However, to plan for future growth of the class

dictionary graph, it is better to use propagation directive (7.2) or the directive

*from* Company *via* Salary *to* Money

To deal with dependencies on paths that don't exist in the current semi-class dictionary

graph, we generalize the dependency metric to sets of semi-class dictionary graphs. We need

to write a propagation directive in such a way that it properly computes the propagation

graph for each class dictionary graph in a set that illustrates possible changes in class

structure. We want to �nd a propagation directive pmin such that pmin and the set of class

dictionary graphs are minimally dependent, which means that we cannot �nd a smaller

propagation directive p0 such that p0 and pmin de�ne the same propagation graph for each

class dictionary graph in the set.

To formalize the dependency concept used above, we introduce a function Dep(p;�) for

a propagation directive p and a set of semi-class dictionary graphs �. Dep(p;�) expresses

the succinctness of a propagation directive p with respect to class dictionary graphs in �.

A propagation directive is most succinct if it references a minimal number of class-valued

variables or relation-valued variables. The generalized function Dep is de�ned in a similar

way as the function that works with one semi-class dictionary graph only.

7.6 TESTING OF PROPAGATION DIRECTIVES

We can also use the dependency function to �nd semi-class dictionary graphs for testing a

propagation directive p. We choose a semi-class dictionary graph S for which Dep(p; S) = 0,

and among all those we choose one with minimal size. This will result in a semi-class

dictionary graph that is minimally complex to justify all the aspects of the propagation

directive. For further information on testing propagation directives see the exercise section

of Chapter 15.

7.7 OPERATIONS ON PROPAGATION DIRECTIVES

It is useful to de�ne operations for propagation graphs and propagation directives.8 The

operations allow us to express groups of collaborating classes incrementally by building

complex propagation directive expressions from simpler ones.

7.7.1 Join Operator

Consider the two propagation directives

*from* Country *to* Household

*from* Household *to* Dog

8Propagation directive abstraction, page 447 (60).



7.7. OPERATIONS ON PROPAGATION DIRECTIVES 189

Since the target of the �rst propagation directive coincides with the source of the second

propagation directive, it is natural to join the two propagation directives. We get the

equation:

*join* (*from* Country *to* Household,

*from* Household *to* Dog)

=

*from* Country *via* Household *to* Dog

The join expresses concatenation of the set of paths in the high-level interpretation and

union of graphs in the low-level interpretation.

Notice that the following two propagation directives are di�erent since the second one

also catches the wild dogs and other dogs not associated with a Household-object.

*from* Country *via* Household *to* Dog

*from* Country *to* Dog

7.7.2 Merge Operator

Now consider the two directives

*from* Household *to* Dog

*from* Household *to* Cat

Since they both have the same source, it is natural to merge the two propagation

directives. We get the equation:

*merge* (*from* Household *to* Dog,

*from* Household *to* Cat)

=

*from* Household *to* {Dog, Cat}

7.7.3 Restrict Operator

There is a third operator for propagation directives that is useful: restriction.

For an example for restriction, we consider named propagation directives. It is useful to

name propagation directives so that the same propagation directive has a short name that

can conveniently be used many times.

Consider the following propagation directives:

PhysicalPartStructureCar = *from* Automobile ...

CarScrewsOnly = *restrict* (

*from* Automobile *to* Screw,

PhysicalPartStructureCar)



190 CHAPTER 7. PROPAGATION DIRECTIVES

Propagation directive CarScrewsOnly selects only the part structure that contains all car

screws. If there is a lawn mower in the trunk of the car then the screws in the lawn mower

will not be selected since the lawn mower is not a physical part of the car.

Consider the following propagation directives:

PhysicalPartStructureCar = *from* Automobile ...

CarChipsOnly = *restrict* (

*from* Automobile

*bypassing* -> AirConditioning,*,*

*to* Chip,

PhysicalPartStructureCar)

Propagation directive CarChipsOnly selects only the chips used in the car itself, except

the ones in the air conditioning system. If the car belongs to a computer repair person and

it is full of repair chips, they will not be selected since they are not a physical part of the

car.

One application of propagation directives is to de�ne traversals. We can summarize the

meaning of the propagation directive operations in terms of traversals as follows.

Operation Interpretation

--------------------------------------------------------

merge Union of sets of knowledge paths

join Concatenation of sets of knowledge paths

restrict Restriction of sets of knowledge paths

*from* A

*to* B The set of knowledge paths from A to B

7.7.4 Propagation Graph Calculus

To de�ne the propagation directive operations more precisely, we �rst de�ne the merge and

join operation for propagation graphs. Later we generalize both operations to propagation

directives. The restriction operator is directly de�ned for propagation directives by using

the propagation operator twice.

It is quite useful to use existing propagation graphs to compose new propagation graphs.

We introduce two operators on propagation graphs: merge and join. The merge operator

merges its two operands; the join operator \joins" its two operands. Recall that a propaga-

tion graph is a triple S; F; T , where S is a subgraph, F the \from" vertices, and T the \to"

vertices.

De�nition 7.1 For two given propagation graphs

PS1 = (S1; F1; T1) and PS2 = (S2; F2; T2);

we de�ne two operators as follows:



7.7. OPERATIONS ON PROPAGATION DIRECTIVES 191

1. merge(PS1; PS2) =

8<
:

(S1 [ S2; F1 [ F2; T1) if T1 = T2

(S1 [ S2; F1; T1 [ T2) if F1 = F2

empty otherwise

2. join(PS1; PS2) =

�
(S1 [ S2; F1; T2) if T1 = F2

empty otherwise

The two operators are illustrated in Fig. 7.9. Each propagation graph is a unit with

a source port and a target port. Each port is de�ned by a nonempty set of vertices. The

merging of PS1 and PS2 is the union of source ports, target ports, and knowledge paths

separately. The join of PS1 and PS2 is to plug PS2 into PS1, when the target port of PS1
is the same as the source port of PS2.

F1

T1

F2

T2

F1

T2

1

F1

T T2

F2 F1 F2

1 T2T =

F1

T T2

F2 F1 F2

1 T2T

=

1

semi−class dictionary graph S

source port F

target port T

propagation graph (S,F,T)

merge merge

join

Figure 7.9: Propagation graph calculus

7.7.5 Propagation Directive Expressions

Suppose that we have a large complex semi-class dictionary graph S and we want to apply

di�erent propagation directives to S to have various propagation graphs for di�erent pur-

poses. Sometimes we may �rst want to use a propagation directive on S to trim S to a

simpler propagation graph, and then we can more easily write propagation directives that

will be applied to the simpler propagation graph to obtain the desired result. For the same

reasons that we need a propagation graph calculus, we need a propagation directive calculus

to compose propagation directives.



192 CHAPTER 7. PROPAGATION DIRECTIVES

Three operators are introduced below to compose propagation directives. The operators,

merge and join correspond to the operators, merge and join in the propagation graph

calculus. The restrict operator is de�ned in terms of propagate.

De�nition 7.2 PDE is the set of propagation directive expressions, de�ned as

1. PD 2 PDE (PD is the set of propagation directives),

2. merge(d1; d2) 2 PDE if d1; d2 2 PDE,

3. join(d1; d2) 2 PDE if d1; d2 2 PDE

4. restrict(d1; d2) 2 PDE if d1; d2 2 PDE

We use the propagate operator to generalize merge and join to propagation directives.

Suppose (S0; F; T ) is a propagation graph, S is a semi-class dictionary graph or a propagation

graph. We de�ne (d1 and d2 are propagation directive expressions)

1. propagate(d1; (S
0; F; T )) = propagate(d1; S

0)

2. propagate(merge(d1; d2); S) = merge(propagate(d1; S); propagate(d2; S))

3. propagate(join(d1; d2); S) = join(propagate(d1; S); propagate(d2; S))

4. propagate(restrict(d1; d2); S) = propagate(d1; propagate(d2; S))

The restrict operator de�nes what it means to apply propagation directives in sequence.

The second argument restricts the �rst in the sense that the �rst argument operates only

on what is left by the second argument.

Not all propagation directive expressions can be meaningfully applied to a semi-class

dictionary graph. A propagation directive expression d is compatible with a semi-class

dictionary graph S if propagate(d; S) is not the empty graph. A propagation directive

expression d is compatible with a propagation graph (S; F; T ) if d is compatible with S.

The merge and join operators are very useful for de�ning propagation directives. They

are needed to improve expressiveness. For example,

*merge* (*from* Country *via* Metropolitan *to* Cat,

*from* Country *via* Rural *to* Dog)

cannot be expressed without the merge operator.

Sometimes, propagation directives can be simpli�ed before they are applied to a semi-

class dictionary graph. For an example, the propagation directive

*from* Household

*bypassing* -> LivingRoom,*,*

*bypassing* -> DiningRoom,*,*

*to* VCR

and



7.8. SUMMARY 193

*restrict*(

*from* Household

*bypassing* -> LivingRoom,*,*

*to* VCR,

*from* Household

*bypassing* -> DiningRoom,*,*

*to* VCR)

are equivalent. The �rst one is simpler.

7.7.6 Customization Space

If a propagation directive is compatible with one semi-class dictionary graph, then there

are in�nitely many semi-class dictionary graphs compatible with it. Given a semi-class

dictionary graph compatible with a propagation directive, we can always �nd a larger semi-

class dictionary graph that is also compatible with the propagation directive. The basic

idea is that we can take any edge in the semi-class dictionary graph and add a new vertex

in the middle of the edge.

7.8 SUMMARY

This chapter introduced propagation directives which are used extensively during object-

oriented software development. The main application of propagation directives is to express

design patterns for groups of collaborating classes.

We introduced a metric for propagation directives and semi-class dictionary graphs that

is useful for designing and testing propagation patterns. Given a propagation directive, the

metric helps to �nd a good semi-class dictionary graph for testing the directive, and given a

semi-class dictionary graph, the metric helps to properly formulate a propagation directive.

When developing software with propagation patterns, we recommend that semi-class

dictionary graphs and propagation directives be used so that the dependency between all

propagation directives and the corresponding semi-class dictionary graphs is 0 unless an

exception is motivated by robustness.

7.9 EXERCISES

Exercise 7.1 Remark:

At = Bt Ct.

is an abbreviation for

At = <bt> Bt <ct> Ct.

Consider the following class dictionary:

---------------------------------------------

Class Dictionary

---------------------------------------------

1 Example = B1.



194 CHAPTER 7. PROPAGATION DIRECTIVES

2 A1 : B1 | B2 *common* [A2] .

3 A2 : B3 | B4 *common* [A3] .

4 A3 : B5 | B6.

5 B1 = [C1] [B2].

6 B2 : C1 *common* [B3] .

7 B3 = [C2] [B4].

8 B4 : C2 *common* [B5] .

9 B5 = [C3] [B6].

10 B6 : C3.

11 C1 = .

12 C2 = .

13 C3 = .

-------------------------------------------------------------

Alphabetically Sorted Cross Reference List

-------------------------------------------------------------

A1 :2

A2 :3 2

A3 :4 3

B1 :5 1 2

B2 :6 2 5

B3 :7 3 6

B4 :8 3 7

B5 :9 4 8

B6 :10 4 9

C1 :11 5 6

C2 :12 7 8

C3 :13 9 10

Example :1

Find the unknowns in the following propagation directives and propagation graphs:

Propagation directive:

*traverse*

*from* Example

*bypassing* -> B3,*,UNKNOWN1,

-> *,a3,*,

-> *,*,UNKNOWN2

*to* C3

Equivalent propagation directive, expanded for class dictionary:

*from* Example

*bypassing*

-> B3 , c2 , C2 ,

-> B3 , b4 , B4 ,



7.9. EXERCISES 195

-> A2 , a3 , A3 ,

-> B5 , c3 , C3

*to* C3

Propagation graph:

Example = < b1 > UNKNOWN3 (*inherits* ) .

A1 : UNKNOWN4 *common* UNKNOWN5.

A2 : UNKNOWN6 *common* (*inherits* ) .

B1 = UNKNOWN7 (*inherits* UNKNOWN8 ) .

B2 : UNKNOWN9 *common* (*inherits* UNKNOWN10 ) .

UNKNOWN11 : UNKNOWN12

*common* [ < UNKNOWN13 > UNKNOWN14 ] (*inherits* ) .

B5 = UNKNOWN15 (*inherits* ) .

B6 : UNKNOWN16 *common* (*inherits* ) .

C1 = (*inherits* UNKNOWN17 ) .

C2 = (*inherits* UNKNOWN18 ) .

C3 = (*inherits* UNKNOWN19) .

// There are 13 classes in total

// There are 11 classes in the propagation schema

// There are 2 classes not in the propagation graph

// They are UNKNOWN20 UNKNOWN21

Propagation directive:

*traverse*

*from* Example

*bypassing* -> A1,*,*,

-> A2,*,*,

-> *,*,C1,

-> *,*,C2,

-> *,*,C3

*to* C3

Equivalent, expanded propagation directive:

*from* Example

*bypassing*

-> A1 , a2 , A2 ,

-> A2 , a3 , A3 ,

-> B1 , c1 , C1 ,

-> B3 , c2 , C2 ,

-> B5 , c3 , C3

*to* C3

Propagation graph:



196 CHAPTER 7. PROPAGATION DIRECTIVES

Example = < b1 > B1 (*inherits* ) .

UNKNOWN22 = UNKNOWN23 (*inherits* ) .

B2 : UNKNOWN24 *common* UNKNOWN25 (*inherits* ) .

B3 = UNKNOWN26 (*inherits* ) .

B4 : C2 *common* UNKNOWN27 (*inherits* ) .

B5 = UNKNOWN28 (*inherits* ) .

UNKNOWN29 : UNKNOWN30 *common* (*inherits* ) .

C1 = (*inherits* UNKNOWN31 ) .

C2 = (*inherits* UNKNOWN32 ) .

C3 = (*inherits* UNKNOWN33) .

// There are 13 classes in total

// There are 10 classes in the propagation schema

// There are 3 classes not in the propagation graph

// They are UNKNOWN34 UNKNOWN35 UNKNOWN36

Exercise 7.2 Find algorithms to test the following properties:

� A propagation directive is an all-loser or contradictory if all compatible customizers

have information loss.

Examples:

*from* A

*via* B

*through* ->X,y,Y

*via* C

*through* ->W,v,V

*via* B

*through* ->E,f,F

*to* T

*from* A

*through* -> B,a,A,

-> C,b,B

*to* C

� A propagation directive is an all-winner if no compatible customizer has information

loss.

Examples:

*from* A *to* Z

*from* A *bypassing* ->K,l,L *to* Z



7.9. EXERCISES 197

� A propagation directive is a winner/loser if it is neither an all-winner nor an all-loser.

Most propagation directives are in this category.

Examples:

*from* A *via* B *to* Z

*from* A *through* -> K,l,L *to* Z

� A propagation directive is a failure if it has no compatible customizer at all.

Examples:

*from* A

*through* -> K,l,L

*bypassing* -> K,l,L

*to* Z

*from* A

*bypassing* => *,B,

-> *,*,B

*via* B

*to* Z

What is the complexity of deciding whether a propagation directive is all-loser, all-

winner, winner/loser, failure?

Exercise 7.3 Contributed by Jens Palsberg.

Is the following true or false?

For a given propagation directive that uses the class-valued variables CV and relation-

valued variables RV, there is always a compatible customizer with property X that uses only

vertices with names in CV and edges with label names in RV. For X choose:

no information loss (that is, consistent),

inductive,

no information loss and inductive.

For the case X = inductive there is a counter-example: The propagation directive

*from* A

*through* -> B,a,A

*to* B

has no inductive customizer using only B and A.

Example:

A : B.

B = <a> A.

is noninductive. Noninductive customizers have to be avoided since they produce programs

with in�nite loops.

An inductive extension would be:



198 CHAPTER 7. PROPAGATION DIRECTIVES

A : B | C.

B = <a> A.

C = .

Exercise 7.4 Contributed by Jens Palsberg.

Is the following true or false: If a propagation directive is not a failure and does not

use edge patterns, it has a customizer with the same number of vertices as the propagation

directive contains class-valued variables.

Exercise 7.5 Contributed by Jens Palsberg.

Prove that adding vertices and edges to a customizer never eliminates information loss.

Exercise 7.6 Is the following true? If we have a propagation directive without edge pat-

terns and use only

*from*

*to*

*via*

*bypassing*

*through*

the only failures are propagation directives that contain the pattern:

*bypassing* edge

*through* edge

Exercise 7.7 Consider propagation directives that use only *from* A *to* B, join and

merge. Find an algorithm that checks for a given class dictionary graph G and propagation

directive pd whether the propagation graph propagate(pd;G) has information loss.

Find an algorithm that checks for a given propagation directive whether it has a cus-

tomizer without information loss.

Hint: use a compositional de�nition of information loss; see [PXL95] and Chapter 15

for a solution.

Exercise 7.8 Can we eliminate semi-class dictionary graphs, inheritance edges, and the

regular expression for knowledge paths by working with 
attened customizers only?

Assume you have a propagation directive that does not mention inheritance edges.

Before you apply a customizer you 
atten the customizer by distributing all common parts

to concrete subclasses. After you have applied the propagation directive to the 
attened

customizer, you abstract the common parts, if any, that were distributed before.

Does this approach give the same propagation graph as the one described in the text?

How can we simplify the treatment in the text, if we apply propagation directives to 
at-

tened customizers only? Can we eliminate semi-class dictionary graphs and work with class

dictionary graphs only? Can we eliminate the restriction on knowledge paths?

Exercise 7.9 Propagation directive abstraction algorithm

Find an algorithm that solves the following problem: Given a class dictionary and a

propagation graph, �nd a propagation directive that de�nes the propagation graph.



7.10. BIBLIOGRAPHIC REMARKS 199

Hint: [Sil94] Use strongly-connected components to compute a vertex basis for the

propagation graph. The vertex basis de�nes the set of sources of the propagation directive.

The set of targets of the propagation directive consists, in a �rst approximation, of the

vertices that have no outgoing edges in the propagation graph. Use a set of bypassing

constraints if the set of all paths from the sources to the targets should be too big.

Exercise 7.10 Introduce an intersection operator for propagation directives so that iden-

tities such as the following hold:

*from* A

*bypassing* -> B,c,C

*through* -> D,e,E

*to* F

is equivalent to

*from* A

*bypassing* -> B,c,C

*to* F

intersection

*from* A

*through* -> D,e,E

*to* F

Exercise 7.11 Given a C++ program, how can you identify the traversal parts and express

them as propagation directives?

Hint: See [Sil94].

7.10 BIBLIOGRAPHIC REMARKS

� Path sets are regular

Kleene's Theorem for Digraphs is relevant to the study of propagation directives: Let

G be a directed graph. The set of paths in G with origin i and destination k is a regular

set of paths [FB94]. The set of paths can be computed using dynamic programming.

Example: For the graph

B = [<a> A].

A = [<b> B] [<d> A].

the regular expression describing all paths from B to A is: a(d [ ba)�.

In formal language theory, Kleene's theorem is used to show that the language de�ned

by a nondeterministic �nite automaton is regular.



200 CHAPTER 7. PROPAGATION DIRECTIVES

� Modeling programs as regular expressions

Regular expressions have been used for a long time to study programs. For example,

[Kap69] uses regular expressions to model the 
ow of control in simple programs.

This program modeling allows us to reason about the equivalence of the programs.

Adaptive software also uses regular expressions to model programs. The di�erences are

one, the regular expressions described by adaptive programs are tied to 
ow of control

prescribed by object traversals and most importantly two, the regular expressions are

described in two steps. The �rst step yields a propagation speci�cation and the second

one a class graph. Together, both de�ne a regular expression.

Therefore, a propagation speci�cation can be viewed in two ways: it de�nes a family

of regular expressions, and it de�nes a family of graphs. From both kinds of families

we can select an element by giving a class graph.

� Checking for information loss (inconsistency)

[PXL95] studies propagation directives that use only *from* A *to B, merge and join.

An algorithm is presented to check conservatively for information loss. [PXL95] is in

annotated form in chapter 15.

� Propagation directive abstraction

[Sil94] studies various aspects of propagation directives. It includes identities between

propagation directives, abstracting propagation directives from propagation graphs

and from object-oriented call graphs, and complexity of propagation directive design.

� Opportunistic parameterization

An application of propagation directives to parameterizing class dictionaries is given

in [FL94].

7.11 SOLUTIONS

Solution to Exercise 7.1

UNKNOWN1 = *

UNKNOWN2 = C3

UNKNOWN3 = B1

UNKNOWN4 = NOTHING

UNKNOWN5 = [<a2> A2]

UNKNOWN6 = B4

UNKNOWN7 = [<c1>C1][<b2>B2]

UNKNOWN8 = A1

UNKNOWN9 = C1

UNKNOWN10 = A1

UNKNOWN11 = B4

UNKNOWN12 = C2

UNKNOWN13 = b5



7.11. SOLUTIONS 201

UNKNOWN14 = B5

UNKNOWN15 = [<b6>B6]

UNKNOWN16 = C3

UNKNOWN17 = B2

UNKNOWN18 = B4

UNKNOWN19 = NOTHING

UNKNOWN20 = A3 *CHOICE*

UNKNOWN21 = B3 *CHOICE*

UNKNOWN22 = B1

UNKNOWN23 = [<b2>B2]

UNKNOWN24 = C1

UNKNOWN25 = [<b3>B3]

UNKNOWN26 = [<b4>B4]

UNKNOWN27 = [<b5>B5]

UNKNOWN28 = [<b6>B6]

UNKNOWN29 = B6

UNKNOWN30 = C3

UNKNOWN31 = B2

UNKNOWN32 = B4

UNKNOWN33 = NOTHING

UNKNOWN34 = A1 *CHOICE*

UNKNOWN35 = A2 *CHOICE*

UNKNOWN36 = A3 *CHOICE*



Chapter 8

Propagation Patterns

With propagation patterns we describe adaptive design patterns for groups of collaborating

classes. The adaptiveness of propagation patterns comes from the speci�cation of imple-

mentations without hardwiring them to a class structure (see Fig. 8.1). An implementation

is speci�ed in terms of a few class speci�cations and relationship speci�cations that serve

as hooks into the class structure. But the classes and relationships between the class spec-

i�cations are not mentioned in the implementation; code for them is generated from the

class dictionary graph. In other words, implementations are parameterized by constraints

on class dictionary graph information. An adaptive program contains only hooks into the

class structure and normally does not fully encode the details of the class structure. This

idea of not duplicating the class structure is an application of the key idea behind the Law

of Demeter.

8.1 CONNECTION TO LAW OF DEMETER

The Law of Demeter1 avoids the encoding of details of the class structure in individual

methods whereas adaptive programming attempts to keep the details of the class structure

out of the entire program. The Law of Demeter leads to a programming style where lots

of tiny methods are produced. Using the Demeter Tools/C++, we don't actually write the

tiny methods.

The Law of Demeter (class form) says that inside an operation O of class C we should

call only operations of the following classes, called preferred supplier classes:

� The classes of the immediate subparts (computed or stored) of the current object

� The classes of the argument objects of O (including the class C itself)

� The classes of objects created by O.

The Law of Demeter leads to a programming style that follows the part-of structure of

classes closely and is generally considered bene�cial. In the bibliography section at the end

of this chapter (Section 8.10, page 253) you will �nd quotes about the Law of Demeter

1Law of Demeter for functions, page 445 (56).

202



8.1. CONNECTION TO LAW OF DEMETER 203

program class
structure

hooks

Figure 8.1: Programming by hooks

in popular textbooks. The Law of Demeter essentially says that you should only talk to

yourself (current class), to close relatives (immediate part classes), and friends who visit

you (argument classes). But you never talk to strangers.

The Law of Demeter might be violated in a method that contains nested function calls.

class A f public: void m(); P* p(); B* b; g;

class B f public: C*c; g;

class C f public: void foo(); g;

class P f public: Q* q(); g;

class Q f public: void bar(); g;

void A::m() f

this ! b ! c ! foo();

this ! p() ! q() ! bar();

g

The above program contains violations that are highlighted in Fig. 8.2. The calls of

foo() and bar() are violations.

However, violations can always be eliminated by introducing small methods, as shown

below. We introduce two small methods: B::foo() and P::bar().

class A f public: void m(); P* p(); B* b; g;

class B f public: void foo(); C*c; g;

class C f public: void foo(); g;

class P f public: void bar(); Q* q(); g;

class Q f public: void bar(); g;



204 CHAPTER 8. PROPAGATION PATTERNS

A

B C
b

c

P Q
p() q()

foo()

bar()

Figure 8.2: Violations of the Law of Demeter

void A::m() f

this ! b ! foo();

this ! p() ! bar();

g

void B::foo() f this ! c ! foo(); g

void P::bar() f this ! q() ! bar(); g

Therefore, the Law of Demeter is not restricting what we can express; it restricts only

the form we use for expression.

The Law of Demeter, although a simple rule, has a positive impact on program structure

as the following informal experiment shows. A graduate class had a homework assignment

to write a C++ program for evaluating expressions de�ned by the class dictionary graph

in Fig. 8.3. Without any instruction on the Law of Demeter, some students turned in

programs that are summarized in Fig. 8.4. The C++ code is not shown directly; only a

summary of it is shown. An additional kind of edge, called call dependency edge, shows

call relationships. A call edge from class A to class B means that some function of class A

calls some function of class B. We then taught the Law of Demeter and asked again for a

problem solution. Now the programs looked a lot nicer and are summarized in Fig. 8.5. By

nicer we mean that there are fewer dependencies between the classes. Nicer also means that

call dependencies are often parallel to structural dependencies.

The Law of Demeter promotes information restriction (a generalization of informa-

tion hiding). The public interface of a class C may be used only in classes that are closely

related to C. A set of operations that comply with the Law of Demeter will span a class



8.1. CONNECTION TO LAW OF DEMETER 205

Example Prefix_List

Prefix

Simple Compound

DemNumber

Op

Mulsym Addsym

exps

val

op

args

Figure 8.3: Class dictionary graph to discuss Law of Demeter

Example Prefix_List

Prefix

Simple Compound

DemNumber

Op

Mulsym Addsym

exps

val

op

args

call dependency

Figure 8.4: Before the Law of Demeter



206 CHAPTER 8. PROPAGATION PATTERNS

Example Prefix_List

Prefix

Simple Compound

DemNumber

Op

Mulsym Addsym

exps

val

op

args

call dependency

Figure 8.5: After the Law of Demeter

dictionary subgraph where much of the activity is irrelevant to the core of the algorithm

being implemented. The regularity in the 
ow of messages implied by following the Law of

Demeter can and should be exploited.

Propagation patterns promote the Law of Demeter since for a given class C, the imple-

mentation generated for a propagated operation, calls the same-named operation for some

or all of the classes of the immediate subparts of C. Class C becomes dependent only on

the classes of those parts to which the operation is propagated. Propagation introduces no

undesirable interclass dependencies, and may avoid those that might result from direct user

implementation.

The analysis of object-oriented systems con�rms the fact that small methods, as sug-

gested by the Law of Demeter, abound in object-oriented software. For example, in [PB92]

we read: \A further problematic factor appearing in the Smalltalk system, the dispersal

of operations across tiny procedures, ... stems from the language's object-oriented nature.

This problem exacerbates the di�culty inherent in understanding a large software system

..."

Wilde et al. report that in their tests 80% of all C++ member functions consisted of

two executable statements or less [WH92].

Violating the Law of Demeter, on the other hand, creates larger methods but at the

price of a signi�cant maintenance problem. Propagation patterns were invented to eliminate

the disadvantage of the many small methods produced when following the Law of Demeter.

Propagation patterns grew out of the observation that object-oriented software encodes

the same class relationships repeatedly into the programs. Therefore, the programs become



8.2. OBJECT-ORIENTED IMPLEMENTATION 207

very redundant. Objects of a given class A need to be traversed often for many di�erent

reasons and for any such reason, the composition of class A is encoded into the program.

Should the composition of class A change, all those traversals would have to be changed

manually.

As a �rst, nonoptimal solution we developed a code generator that produced the traver-

sal code which was then edited by hand. The manual editing was not satisfactory since after

a change to the class structure, the traversal had to be regenerated and manually reedited.

A natural second solution was to use the wrapper fragments for enhancing the traversal

code. The wrappers are essentially editing instructions that say how the traversal code has

to be modi�ed. The wrappers have the key advantage that they can be applied to many

di�erent class structures.

A wrapper has a pre�x part and a su�x part, at least one of which must be present.

The wrapper code is wrapped around the traversal code: the pre�x part comes �rst, followed

by the su�x part.

8.2 OBJECT-ORIENTED IMPLEMENTATION

When working with adaptive software it is important to use two views to look at class

dictionary graphs. A class dictionary graph has a C++ view in the form of a C++ class

library, and it has, after being 
attened, a traversal view in the form of C++ member

functions.2

� Class library view of a class dictionary graph. This view was discussed in Chapter 6.

edges

Demeter C++

construction data member

repetition data member

alternation subclassing

vertices

Demeter C++

construction instantiable class

repetition instantiable class

alternation abstract class, virtual functions

The class library provides generic functionality for manipulating objects. The class

library view is a permanent architectural view that provides a sca�old to build func-

tionality.

� Traversal view of a class dictionary graph

2Propagation pattern partial evaluation, page 448 (64).



208 CHAPTER 8. PROPAGATION PATTERNS

This view is very important for understanding propagation patterns. For a given

propagation directive pd and a class dictionary graph G, we compute the propagation

graph pg = propagate(pd;G). The propagation graph pg is the union of all knowledge

paths from a source to a target. The propagation graph determines the meaning of

the propagation pattern. It is best understood by a translation to C++. In Chapter

9 we give more general semantics. Here we make the simplifying assumption that we

only have wrappers at construction classes. The propagation graph is 
attened and

mapped into a set of C++ member functions as follows.

function definitions: edge

Demeter C++

construction call to parts

optional if statement

repetition call to parts (loop)

alternation late binding (virtual function)

does a wrapper exist for a construction edge?

yes: wrap around edge traversal code

function definitions: vertex

does a wrapper exist for vertex?

no : use traversal code

yes: wrap around vertex traversal code

The traversal view of a class dictionary graph is a short-term interpretation used to

de�ne a speci�c functionality. We �rst assume that vertex wrappers are attached only

to construction vertices.

A simple example explains 80% of the semantics of propagation patterns. We give a

class dictionary that uses all features of the notation and we show the code generated for a

propagation pattern that traverses everything. The class dictionary graph is

A = <b> B [<c> C].

B ~ Identifier {Identifier}.

C : A | D *common* <e> B.

D = .

Identifier = <i> DemIdent.

The corresponding graphical form is in Fig. 8.6.

\Traverse everything" is speci�ed by the following propagation pattern:



8.2. OBJECT-ORIENTED IMPLEMENTATION 209

A

B

b

C

Identifier

DemIdent

i

D

c

e

Figure 8.6: Class dictionary graph using all features

*operation* void traverse() // signature

// traverse all subparts of an A-object

*traverse*

*from* A

*wrapper* * // all classes in propagation graph

*prefix*

(@ cout << " prefix " << this << endl; @)

*suffix*

(@ cout << " suffix " << this << endl; @)

The �rst line speci�es the signature of the propagation pattern. The propagation graph

is the complete class dictionary graph, 
attened for the purpose of code generation. For

objects of class A we need to traverse the b, c, and e parts. Part c is optional and therefore

we need to �rst check whether the part exists. The e part is inherited from class C.

void A::traverse( )

{

// prefix wrappers

cout << " prefix " << this << endl;

// outgoing calls

this->get_b()->traverse( );

if ( this->get_c() != NULL )

{



210 CHAPTER 8. PROPAGATION PATTERNS

this->get_c()->traverse( );

}

this->get_e()->traverse( );

// suffix wrappers

cout << " suffix " << this << endl;

}

Class B is a repetition class. We use an iterator object, called next Identi�er, to visit all

elements of a list of Identi�er-objects. The iterator object has the function call operator ()

overloaded to retrieve the next element from the list.

void B::traverse( )

{

// prefix wrappers

cout << " prefix " << this << endl;

// outgoing calls

Identifier_list_iterator next_Identifier(*this);

Identifier* each_Identifier;

while ( each_Identifier = next_Identifier() )

{

each_Identifier->traverse( );

}

// suffix wrappers

cout << " suffix " << this << endl;

}

Traversing a C-object means to traverse either a A- or D-object. Since the propagation

graph is 
attened for code generation, no code is needed for this class. The traversal is

made by the subclasses.

void C::traverse( )

{

}

Traversing a D-object means to traverse its inherited part.

void D::traverse( )

{

// prefix wrappers

cout << " prefix " << this << endl;

// outgoing calls

this->get_e()->traverse( );



8.3. SYNTAX SUMMARY FOR PROPAGATION PATTERNS 211

// suffix wrappers

cout << " suffix " << this << endl;

}

Traversing an Identi�er-object means to traverse nothing (terminal objects, such as

DemIdent-objects are not involved in a traversal).

void Identifier::traverse( )

{

// prefix wrappers

cout << " prefix " << this << endl;

// suffix wrappers

cout << " suffix " << this << endl;

}

This example has shown how objects are traversed for a class dictionary graph that uses

all features of the notation.

The kind of code generation we just learned is called 
at code generation since the prop-

agation graph is 
attened before code generation. This leads to the most straightforward

and easy-to-understand approach to generating code. However, there are non
at, more so-

phisticated ways to generate the code. For example, we could put the traversal code for the

e edge into class C and call it from classes A and D. This would be advantageous if C has

many outgoing edges that need to be traversed.

When we show examples of code generation we use either 
at code generation or a

variant of non
at code generation.

8.3 SYNTAX SUMMARY FOR PROPAGATION PATTERNS

The basic syntax for propagation patterns3 (without transportation patterns) is summarized

below.

*operation* void f() // signature

*traverse* // traversal part is optional

// propagation-directive

// vertex wrapper

*wrapper* C

*prefix*

(@ statements before traversal code @)

*suffix*

(@ statements after traversal code @)

// construction edge wrapper

*wrapper* -> D,e,E

*prefix* (@ statements in D

3Legal propagation patterns, page 447 (61).



212 CHAPTER 8. PROPAGATION PATTERNS

before edge traversal of e @)

*suffix* (@ statements in D

after edge traversal of e @)

// repetition edge wrapper

*wrapper* ~> D,E

*prefix* (@ statements in D

before traversal of list element @)

*suffix* (@ statements in D

after traversal of list element @)

We have seen many examples of vertex wrappers. Edge wrappers are used to attach

code to edges. Traversal code for an edge starting at vertex A may be wrapped with a pre�x

and su�x code fragment. This code will be put before or after the edge traversal call in

class A.

8.4 EXAMPLES

We present several examples of propagation patterns.

8.4.1 Graph Algorithms

Next we look at a more complex example. We implement the depth-�rst traversal (DFT)

algorithm for graphs. As the name implies, it traverses a directed graph in a depth-�rst

manner. See Fig.8.7 for an example where the alphabetical order indicates the DFT order.

A

B

C

D

E

Figure 8.7: Graph example

First we need a class dictionary graph for graphs. Since we want to traverse graphs, an

adjacency list representation makes sense; the class dictionary graph in Fig. 8.8 serves this

purpose. Where did the classes come from? How did we �nd them? Later we will learn

(Chapter 11) how we can derive such class de�nitions from a stylized English description of

adjacency lists. The graph is represented as a list of vertices with the neighbors given for



8.4. EXAMPLES 213

each vertex. In addition, every adjacency, that is, every vertex with its successors, has a

part called marked to store whether a vertex has already been visited during the traversal.

Graph

adjacencies

Adjacency_List

Adjacency_Empty

rest

first

Adjacency

Vertex

source

first

marked

neighbors

rest

Vertex_NonEmpty Vertex_Empty

Vertex_List

Mark MarkSet

MarkUnset

Adjacency_NonEmpty

DemIdent

n

Figure 8.8: Graph class dictionary graph

We assume that the algorithm starts at a vertex from which all other vertices can be

reached. The propagation patterns in Fig. 8.9 implement the depth-�rst traversal algorithm

in terms of the data model in Fig. 8.8. We assume that the input graph object is properly

initialized.

The algorithm is activated by calling function dft for an Adjacency-object. This function

will eventually call the unconditional version of dft (called uncond dft), if the adjacency is

not marked. The reason we use two operations, dft and uncond dft, is that we need two

di�erent methods at class Adjacency. Otherwise we could have used a longer traversal with

one operation name. The collaboration of the classes Mark and MarkUnset is used (see Fig.

8.10; Adjacency is also included since it has a function with name dft). Whether or not an

adjacency is marked is not checked explicitly by the algorithm. Instead an Adjacency-object

is passed to Mark and MarkUnset, and the unconditional version of dft is called only in

MarkUnset. To accomplish the unconditional traversal, we need classes from Adjacency to

Vertex to cooperate (see Fig. 8.11). It is important to exclude the source part of Adjacency,

and therefore we formulate the propagation directive with a through clause.

To implement the �nd operation, we need the cooperation of classes from Graph to

Adjacency (see Fig. 8.12).

How were the propagation patterns in Fig. 8.9 found? Which approach was used to

derive the algorithm? The algorithm was broken into three parts and for each part one

or two propagation patterns were developed. In the �rst part we had to test whether an



214 CHAPTER 8. PROPAGATION PATTERNS

*operation* void dft(Graph* g)

*wrapper* Adjacency

(@ marked->dft(g, this); @)

*operation* void dft(Graph* g,

Adjacency* adj)

*traverse*

*from* Mark *to* MarkUnset

*wrapper* MarkUnset (@ adj->g_print();

adj->set_marked(new MarkSet());

adj->uncond_dft(g); @)

*operation* void uncond_dft(Graph* g)

*traverse*

*from* Adjacency

*through* -> *,neighbors,*

*to* Vertex

*wrapper* Vertex (@ g->find(this)->dft(g); @)

*operation* Adjacency* find(Vertex* v)

*traverse*

*from* Graph *to* Adjacency

*wrapper* Adjacency

(@ if (v->g_equal(source))

return_val=this; ; @)

Figure 8.9: Depth-�rst traversal

Adjacency
marked

Mark

MarkUnset

Figure 8.10: Propagation graph dft (extension at Adjacency)



8.4. EXAMPLES 215

Adjacency

Vertex first

neighbors

rest

Vertex_NonEmpty

Vertex_List

Figure 8.11: Propagation graph uncond dft

Graph

adjacencies

Adjacency_List

rest

first

Adjacency

Adjacency_NonEmpty

Figure 8.12: Propagation graph �nd



216 CHAPTER 8. PROPAGATION PATTERNS

Adjacency-object has been marked. If it was unmarked, it became marked and the function

of part two was called. The �rst part required the collaboration of three classes in two

propagation patterns.

In the second part we had to �nd all neighbors of an Adjacency-object. This required

the collaboration of four classes that we captured with

*from* Adjacency

*through* -> *,neighbors,*

*to* Vertex

Why do we need the *through* keyword? If we omit it, we get a propagation graph that is

too big. It would also include the edge from Adjacency to Vertex with label source. Why are

we using a through clause and not a bypassing clause such as

*from* Adjacency

*bypassing* -> *,source,*

*to* Vertex

This is a matter of taste, but our goal is to write the propagation directives so that they are

robust under evolution of the class dictionary. It appears that the *through* -> *,neighbors,*

constraint is the best choice since we really want to �nd all neighbors.

For the third part we have to �nd all Adjacency-objects contained in a Graph-object.

This requires the collaboration of four classes that we can elegantly capture with

*from* Graph *to* Adjacency

It is interesting to notice here how we can make four classes out of mentioning only

two. This is the magic of adaptive software that allows us to describe many classes in

terms of a few. This makes the software shorter and, more importantly, it becomes easier

to maintain. The maintenance phase is the most expensive part of the entire development

process. Fortunately, adaptive programs are more amenable to changes late in the software

development life-cycle than ordinary object-oriented programs. Adaptive programs will help

to solve the maintenance backlog.

Next we generalize the depth-�rst traversal algorithm to a graph cycle-checking algo-

rithm. It maintains a path of vertices from the start vertex to the current vertex. If the next

vertex during the traversal is a vertex already on the path, a cycle has been found. We use a

parameterized Stack class that keeps track of the path. To get the cycle checker, we enhance

the depth-�rst-traversal propagation patterns as follows (we omit the implementation of the

push, pop, and contains duplicate functions of the stack class):

*reuse-pp* DFT

// we reuse the propagation patterns we already have

// and change them as follows

*code-change*

*operation* void dft(Graph* g)

*add-arguments* Stack<Adjacency>* s

*add-fragments*



8.4. EXAMPLES 217

Adjacency

// add to the member function for Adjacency

*prefix*

(@ s->push(this);

if (s->contains_duplicate(this)){

s->g_print();

cout << "cycle found";} @)

*suffix*

(@ s->pop(); @)

This means that

*operation* void dft(Graph* g)

becomes

*operation* void dft(Graph* g, Stack<Adjacency>* s)

In the above dft function we changed only the signature of dft(Graph* g) and we added a

wrapper for Adjacency with a pre�x and a su�x code fragment. Extra formal and actual

arguments for the de�nitions and calls of the other functions are provided automatically.

This is an elegant reuse of the basic traversal algorithm and compares favorably with corre-

sponding discussions in algorithm textbooks. One key advantage of the approach given here

is that no parameterization of the dft algorithm is needed; we just add new information and

replace the old.

Robustness of Propagation Patterns

Propagation patterns are more reusable than standard object-oriented software. We demon-

strate their 
exibility by changing the class structure for the traversal problem. Instead of

traversing graphs with only one kind of edge, we now traverse graphs with two kinds of edges,

and we want the traversal to be done with respect to both kinds of edges. The new graph

data model is shown in the class dictionary graph in Fig. 8.14. It includes an a neighbors

construction edge but no b neighbors construction edge. However, there are two kinds of

neighbors, A Neighbors and B Neighbors, that express the two kinds of edges. B Neighbors

may have only neighbors parts but A Neighbors may have both neighbors and a neighbors

parts.

The propagation directive

*from* Adjacency

*through* -> *,neighbors,*

*to* Vertex

will select the propagation graph shown in Fig. 8.13.

To adjust the algorithm to the new requirements, nothing needs to be changed; that is,

the propagation patterns in Fig. 8.9 stay invariant. Although we have introduced the new

classes Neighbors, A Neighbors, and B Neighbors, we do not have to write code for them.

The propagation patterns will do it for us.



218 CHAPTER 8. PROPAGATION PATTERNS

Adjacency

Vertex

first

rest

a_neighbors

neighbors

neighbors

Vertex_NonEmpty

Vertex_List

Neighbors

B_Neighbors

A_Neighbors

Figure 8.13: Propagation graph for extended graph data model

Graph

adjacencies

Adjacency_List

Adjacency_Empty

rest

first

Adjacency

Vertex

source

name first

rest

a_neighbors

neighbors

neighbors

Vertex_NonEmpty Vertex_Empty

Vertex_List

Neighbors

B_Neighbors

A_Neighbors

Adjacency_NonEmpty

DemIdent

Figure 8.14: Extended graph data model



8.4. EXAMPLES 219

8.4.2 Chess Board

The next example deals again with a counting problem: consider the class dictionary graph

for a chess board in Fig. 8.15. The propagation pattern in Fig. 8.16 computes the number

ChessBoard

Board

RowList

Row

SquareList

Square

PieceList

Piece

King

Queen

Bishop

Knight

Rook

Pawn

board

rows

squares

contents

rank

removedPieces

DemNumber

Figure 8.15: Chess board class dictionary graph

of pawns on the board. The generated code and the propagation graph is given in Fig. 8.17.

*operation* void countPawns( int& pawnCount )

*traverse*

*from* ChessBoard

*through* -> *,board,*

*to* Pawn

*wrapper* Pawn

(@ pawnCount++; @)

Figure 8.16: Count pawns

A chessboard should always have two kings on it. We could check for this with a

propagation pattern that traverses from Chessboard through board to King. Such cardinality

constraints are expressed by propagation patterns.



220 CHAPTER 8. PROPAGATION PATTERNS

ChessBoard

Board

RowList

Row

SquareList

Square

Piece

Pawn

board

rows

squares

contents

void ChessBoard::countPawns( int& pawnCount )
{
  this−>board−>countPawns( pawnCount );
}

void Row::countPawns( int& pawnCount )
{
  this−>squares−>countPawns( pawnCount );
}

void Board::countPawns( int& pawnCount )
{
  this−>rows−>countPawns( pawnCount );
}

virtual void Piece::countPawns( int& pawnCount )
{
}

void Pawn::countPawns( int& pawnCount )
{
  pawnCount++;
}

void RowList::countPawns( int& pawnCount )
{
  RowList_iterator nextRow( this );
  Row*             eachRow;

  while( eachRow = nextRow() )
    eachRow−>countPawns( pawnCount );
}

void SquareList::countPawns( int& pawnCount )
{
  SquareList_iterator nextSquare( this );
  Square*             eachSquare;

  while( eachSquare = nextSquare() )
    eachSquare−>countPawns( pawnCount );
}

void Square::countPawns( int& pawnCount )
{
  if( this−>contents )
    this−>contents−>countPawns( pawnCount );
}

Figure 8.17: Annotated propagation graph

8.4.3 Painting a Car

A propagation pattern is like a guideline for specifying patterns for painting objects. A

propagation pattern together with a class dictionary graph is a pattern for painting objects

de�ned by the class dictionary graph.

A good example to illustrate the idea of propagation patterns is the automobile painting

problem. It consists of painting the appropriate parts of a car. We write a family of painting

implementations for the following signature:

*operation* void paint(Color* c)

We assume only minimal knowledge about cars. We assume that the class structure is

organized in such a way that each paintable part has a part of class Colored that contains

the color of the part. Therefore, the propagation pattern has to �nd only all Colored-objects

in an Automobile-object, which is accomplished by the propagation pattern in Fig. 8.19.

This propagation pattern is like a guideline for specifying patterns for painting cars. Next

we customize this propagation pattern for painting cars of a speci�c class Automobile.

Consider the class dictionary graph in Fig. 8.18. Recall the rule that A = Bcde. is

equivalent to A = <bcde> Bcde.

The propagation pattern in Fig. 8.19 is much shorter than the generated C++ program.

The propagation pattern �nds the set P of all vertices on some path from vertex Automobile

to vertex Colored. For each vertex in P an operation paint with the given signature is

generated, which calls operation paint for all the part classes in P that contain a Colored

part.



8.4. EXAMPLES 221

Automobile = Roof Hood Trunk Windshield <windows> List(Window)

<body_side_moldings> List(Body_side_molding)

<doors> List(Door) Colored.

Roof = Colored. Hood = Emblem Colored. Emblem = .

Trunk = <trunk_lock> Lock Colored.

Body_side_molding = Colored.

Door = <door_lock> Lock <door_handle> Handle Colored.

Lock = . Handle = . Windshield = .

Window = . Colored = <color> Color <thickness> DemNumber.

Color : Red | Blue. Red = "red". Blue = "blue".

List(S) ~ {S}.

Automobile Roof

Winshield

Hood

Trunk

windows

Window_List

Door_List

doors

Colored

Emblem

Lock

trunk_lock

Window

Door

door_lock

door_handle

Handle

thickness

DemNumber

Red Blue

Body_side_molding_List

body_side_moldings

Body_side_molding

color

Color

Figure 8.18: Car



222 CHAPTER 8. PROPAGATION PATTERNS

*operation* void paint(Color* c)

*traverse*

*from* Automobile

*to* Colored

*wrapper* Colored

*prefix* (@ this->set_color(c); @)

Figure 8.19: Painting a car

In Fig. 8.20, we give a propagation pattern that paints the car, except the doors. We

bypass the doors by using a bypassing directive in the propagation directive. We bypass

any construction edge with label doors. Finally, we paint only the doors of a car with the

*operation* void paint_except_doors(Color* c)

*traverse*

*from* Automobile

*bypassing* -> *,doors,*

*to* Colored

*wrapper* Colored

*prefix* (@ this->set_color(c); @)

Figure 8.20: Painting a car, except doors

propagation pattern in Fig. 8.21.

*operation* void paint_doors(Color* c)

*traverse*

*from* Automobile

*via* Door

*to* Colored

*wrapper* Colored

*prefix* (@ this->set_color(c); @)

Figure 8.21: Painting car doors only



8.4. EXAMPLES 223

Programming tasks can be broken down into simpler tasks, some of which consist of

mostly systematic object traversal tasks. Therefore it is important to provide support

for describing an object traversal mechanism. Traversal-like tasks can be formulated very

succinctly by using propagation patterns.

8.4.4 Meal

Propagation patterns focus on groups of cooperating classes that collaborate primarily by

object traversal. The classes involved in the cooperation are speci�ed by a graph notation

that allows us to select all the paths from a set of start classes to a set of zero or more target

classes, including only paths that use either at least one of a set of through edges or none of

a set of bypassing edges.

Objects of the selected classes collaborate by calling an operation with a �xed signature

for all immediate subparts whose edge is also selected. The operations for the parts are

called in the order the parts are given in the textual form of the class dictionary graph.

The simplest examples for propagation patterns are generic task propagation patterns.

Consider a class dictionary graph G which has only one start class S and which contains a

class X. You would like to write an operation that counts the instances of class X an S-object

contains. This task is easily solved by the propagation pattern in Fig. 8.22. The classes

selected by the propagation pattern are all the classes that have a part class X, directly or

indirectly. In other words, it selects all classes whose collaboration is needed to �nd all the

X-objects in a given S-object.

*operation* int count_x() *init* (@ 0 @)

*traverse*

*from* S *to* X

*wrapper* X

*prefix* (@ return_val += 1; @)

Figure 8.22: Simple counting of X-objects

Consider again the example of computing the cost of a meal. We want to traverse the

parts of a meal object while summing all the costs of the parts.

We use the class dictionary graph in Fig. 8.23.

To compute the cost of a meal we write the following propagation pattern:

*operation* float cost()

*traverse*

*from* Meal

*to*

{Melon, // 3.75

Shrimp, // 1.65

CocktailSauce, // 1.15



224 CHAPTER 8. PROPAGATION PATTERNS

Meal = Appetizer Entree Dessert.

Appetizer : Melon | ShrimpCocktail.

ShrimpCocktail = Shrimps Lettuce [CocktailSauce].

CocktailSauce = Ketchup HorseRadish.

Entree : SteakPlatter | BakedStuffedShrimp.

SteakPlatter = Steak Trimmings.

BakedStuffedShrimp = StuffedShrimp Trimmings.

Trimmings = Potato <veggie1> Vegetable <veggie2> Vegetable.

Vegetable : Carrots | Peas | Corn.

Dessert : Pie | Cake | Jello.

Shrimps ~ Shrimp {Shrimp}.

Shrimp = .

Melon = .

Lettuce = .

Ketchup = .

Steak = .

Potato = .

Carrots = .

Peas = .

Cake = .

Pie = .

Jello = .

Corn = .

StuffedShrimp = .

HorseRadish = .

Figure 8.23: Meal example



8.5. COMPONENTS: SETS OF PROPAGATION PATTERNS 225

SteakPlatter, // 9.00

BakedStuffedShrimp, // 9.10

Pie, // 3.60

Dessert} // 1.50 (default)

We need the following hand-coded wrappers:

*wrapper* Melon

*prefix* (@ return_val += 3.75; @)

*wrapper* Shrimp

*prefix* (@ return_val += 0.65; @)

*wrapper* CocktailSauce

*prefix* (@ return_val += 1.15; @)

*wrapper* SteakPlatter

*prefix* (@ return_val += 9.00; @)

*wrapper* BakedStuffedShrimp

*prefix* (@ return_val += 9.10; @)

*wrapper* Pie

*prefix* (@ return_val += 3.60; @)

*wrapper* Dessert

*prefix* (@ return_val += 1.50; @)

The expansion rules are best explained graphically. A propagation pattern de�nes a

subgraph of the original class dictionary graph that includes all edges and vertices on paths

from the source vertices to the target vertices. Paths in class dictionary graphs have a

precise meaning that is slightly di�erent than the meaning of an ordinary path.4

8.4.5 Compiler

Propagation patterns often protect against changes in the structure of classes. This ro-

bustness of propagation patterns is a clear help during the maintenance process. A good

example of the use of propagation patterns is a propagation pattern for a simple compiler

for post�x expressions. The class dictionary is given in Fig. 8.24. We need only one sim-

ple propagation pattern that de�nes the signature and body for ten functions. We provide

wrappers for three of these functions (Fig. 8.25). The same propagation pattern will also

work on many other class dictionary graphs.

Of course, a change in the class dictionary may invalidate wrapper code fragments. But

updating a few functions is much simpler than potentially having to rewrite all the functions.

8.5 COMPONENTS: SETS OF PROPAGATION PATTERNS

We introduce components that encapsulate groups of collaborating propagation patterns.

Components are software packages that are easy to maintain and reuse for di�erent appli-

cations. Components are a generalization of ordinary application frameworks. An example

4Semi-class dictionary graph reachability, page 431 (8).



226 CHAPTER 8. PROPAGATION PATTERNS

Example = <exps> Postfix_List.

Postfix : Numerical | Compound.

Numerical = <val> DemNumber.

Compound = "(" <args> Args <op> Op ")".

Args = <arg1> Postfix <arg2> Postfix.

Op : Mulsym | Addsym.

Mulsym = "*".

Addsym = "+".

Postfix_List ~ Postfix {Postfix }.

Figure 8.24: Expressions

*operation* void gen_code()

*traverse*

*from* Example

*to* {Numerical, Mulsym, Addsym}

*wrapper* Addsym

*prefix*

(@

cout << " ADI \n";

// adds two top-most elements

// and leaves result on stack

@)

*wrapper* Mulsym

*prefix*

(@

cout << " MLI \n"; @)

*wrapper* Numerical

*prefix*

(@

cout << " LOC " << val << "\n";

// loads constant on stack

@)

Figure 8.25: Compiler



8.5. COMPONENTS: SETS OF PROPAGATION PATTERNS 227

of a framework is a group of classes that de�ne generic dialogs in a graphical user inter-

face. Such an application framework can be specialized for speci�c dialogs, such as question

dialogs. For a discussion of frameworks and patterns, see [GHJV95].

There are several di�erences between application frameworks and components.

� Application frameworks reuse object code but components rely on the reuse of source

code. A component usually implements an interface in terms of propagation which

will a�ect the implementation in the new class structure.

� Components are written in terms of approximate information on a class dictionary

graph. A class dictionary graph acts as a generator of generators, the generators

being propagation patterns. Components are at a higher level of abstraction than

application frameworks.

� Application frameworks are rigid artifacts, but components are 
exible structures that

adjust more easily to change. In components, interfaces are strongly localized.

A component consists of two parts, a constraint part and an implementation part. The

constraint part de�nes all the assumptions made about customizing class dictionaries. The

assumptions fall into the following categories:

� Existence of classes

A list of class-valued variables determines which classes have to be present. A renaming

mechanism is provided to change class and relation names when the component is

customized.

� Partial information on class dictionary

A list of edge patterns speci�es the existence of properties.

Examples:

-> A,*,* A has an outgoing construction edge

-> *,b,* There exists a construction edge b

-> *,*,B B has an incoming construction edge

=> A,* A is an alternation class

-> A,b,* A has part b

-> A,*,B There is a construction edge from A to B

-> *,b,B B has an incoming construction edge b

In addition, we use

=>* A,B B is alternation-reachable from A

For example, a wrapper of the form

A* a = new B(...);



228 CHAPTER 8. PROPAGATION PATTERNS

implies that B is alternation reachable from A. Otherwise, the wrapper would not

compile.

A renaming mechanism is provided for edge labels.

� Path constraints

Propagation directives are used to specify the existence of paths in the customizers.

The path constraints serve several purposes. Besides constraining the customizers of

a component, they are used to specify traversal and transportation code. The path

constraints also specify some cardinality constraints. For example, AZ = *from* A

*to* Z means that an A-object is in relationship with zero or more Z-objects. We can

write this as 0+: AZ. But other cardinality constraints cannot be expressed with the

propagation directive notation.

� Cardinality constraints

Some propagation patterns work only under certain cardinality constraints. The fol-

lowing constraints may be used. AZ is a directive with one source and one target.

1+: AZ one or more

1 : AZ exactly one

0/1: AZ zero or one

� Invariants

Invariants may also be needed to express how a component may be used. The in-

variants may be checked when the component is customized or when it is executed.

The implementation part provides the propagation patterns. Propagation patterns local

to the component are introduced with the *private* ! keyword.

The syntax of components follows the following example:

*component* component_name

// a group of collaborating propagation patterns

*customizers* // sample customizers

// first sample customizer

A = B.

B : C | D.

C = .

D = E.

E ~ {DemIdent}.

,

// second sample customizer

A = B.

B = .

*constraints*

// in this constraints section we summarize the assumptions



8.6. EDGE WRAPPERS AND VERTEX WRAPPERS 229

// made by the propagation patterns

*classes* // class-valued variables

A, B, C, ...

*edge* *patterns* // relation-valued variables

a, b, c, ...

// further constraints as comments

// -> A,b,C

*class-set* // variables for sets of classes

AB = {A, B};

*directives* // named propagation directives

CAB = *from* C *to* *class-set* AB;

// equivalent to

// CAB = *from* C *to* {A, B};

AZ = *from* A *to* Z;

*cardinality*

1+ : AZ; 1 : AZ; 0/1 : AZ

*end*

// propagation patterns

//public function

*operation* ...

// function only for this component

*private* *operation* ...

*require* //functions which are needed by this component

A::*operation* void f(A* a);

// function f for class A is needed

*end* component_name

The syntax for instantiating components is

*comp-path* // directory where components are located

"component_library"

*component* ABC

*rename* // rename vocabulary

ABC_K => new_K,

ABC_L => new_L

*end*

*component* DEF // no renaming needed

*component* GHI ...

8.6 EDGE WRAPPERS AND VERTEX WRAPPERS

Edge wrappers (for construction and repetition edges only) serve to wrap code around

traversal edges. The code will be called in the source classes of the edges. Edge wrappers



230 CHAPTER 8. PROPAGATION PATTERNS

are described either by

*wrapper* -> Source, label, Target

*prefix* (@ code @)

*suffix* (@ code @)

for construction edges or by

*wrapper* ~> Source, Target

*prefix* (@ code @)

*suffix* (@ code @)

for repetition edges.

Some overlap exists in expressiveness between vertex wrappers and edge wrappers, but

both are needed. At �rst it appears that edge wrappers are more expressive since they allow

us to control code on individual edges whereas vertex wrappers cannot discriminate between

di�erent incoming edges.

Some vertex wrappers can easily be expressed by edge wrappers. Consider a class

dictionary graph that contains only construction classes. Consider the two operations test1

and test2 in Fig. 8.26. They are equivalent (if there are no alternation classes) since we

simply push the pre�x code fragment back through the construction edges.

The produced code is given in Figs. 8.27 and 8.28.

Now consider the line with the comment for the su�x vertex wrapper in the propagation

pattern test1. There is no elegant way of expressing this vertex wrapper with edge wrappers!

You are invited to try. Of course, for a speci�c class dictionary it is easy to simulate vertex

wrappers with edge wrappers. A pre�x wrapper becomes a pre�x wrapper of the �rst edge

and a su�x wrapper becomes a su�x wrapper of the last edge.

Another example shows that vertex wrappers are sometimes more generic than edge

wrappers because they make less assumptions of the class dictionary graph.

Consider the class dictionary graph

K = C.

L = C.

C : B.

B = M N.

M = .

N = .

and the propagation patterns

KLMN = *from* {K,L} *via* B *to* {M,N}

*operation* void test1()

*traverse* KLMN

*wrapper* B

*prefix* (@ cout << 1; @)

*operation* void test2()



8.6. EDGE WRAPPERS AND VERTEX WRAPPERS 231

*component* equiv_wrappers

*constraints* // describes assumptions

// made on customizing cd

// and defines suitable abbreviations

*classes* K, L, M, N, B

*directives*

KLMN = *from* {K,L} *via* B *to* {M,N}

*end*

*operation* void test1()

*traverse* KLMN

*wrapper* B

*prefix* (@ cout << 1; @)

// *suffix* (@ cout << 0; @)

*operation* void test2()

*traverse* KLMN

// before entering B

*wrapper* -> *,*,B

*prefix* (@ cout << 1; @)

*end* equiv_wrappers

Figure 8.26: Equivalent wrappers



232 CHAPTER 8. PROPAGATION PATTERNS

void K::test1( )

{ // outgoing calls

b ->test1( ); }

void L::test1( )

{ // outgoing calls

b ->test1( ); }

void B::test1( )

{ // prefix wrappers

cout << 1;

// outgoing calls

m ->test1( );

n ->test1( );

// suffix wrappers

// cout << 0;

}

void M::test1( ) { }

void N::test1( ) { }

Figure 8.27: Code for test1 in edge wrapper example



8.6. EDGE WRAPPERS AND VERTEX WRAPPERS 233

void K::test2( )

{ // outgoing calls

cout << 1;

b ->test2( ); }

void L::test2( )

{ // outgoing calls

cout << 1;

b ->test2( ); }

void B::test2( )

{ // outgoing calls

m ->test2( );

n ->test2( ); }

void M::test2( ) { }

void N::test2( ) { }

Figure 8.28: Code for test2 in edge wrapper example



234 CHAPTER 8. PROPAGATION PATTERNS

*traverse* KLMN

*wrapper* -> *,*,C //!!

*suffix* (@ cout << 1; @)

Operation test1 expresses a traversal with a vertex wrapper. The same traversal can be

expressed only by encoding some detail of the class structure, namely that a class C exists.

In summary, both vertex wrappers and edge wrappers (both pre�x and su�x) are needed

to conveniently express adaptive programs.

8.7 PROGRAMMING WITH PROPAGATION PATTERNS

Programming with propagation patterns involves searching for the really important class

structure aspects of a program. The starting point is a potentially big class dictionary that

describes the static class relationships. The class dictionary does not have to be good or

complete. Work on the class dictionary may continue in parallel with propagation pattern

development.

The big class dictionary will be broken into partitions gradually as propagation patterns

are developed. The goal is to partition the class dictionary so that not too many propagation

paths are broken by the partitioning. For a broken propagation path, the propagation will

stop in the �rst partition and start again in the second partition. We don't want to propagate

directly from one partition to the next. A propagation pattern that works in one partition

can call functions only from other partitions but can not propagate into them.

To develop elegant propagation patterns that work with many class dictionary graphs,

it is important that systematic name conventions are used. For example, the class dictionary

graph

Price = <v> DemNumber.

Salary = <m> Money.

Money = <v> DemNumber.

is not systematic since class Price is not expressed in terms of money. The following class

dictionary graph is better:

Price = <v> Money .

Salary = <m> Money.

Money = <v> DemNumber.

If we want to �nd all the money information, we can propagate to Money with the

second solution. There is an interplay between class dictionaries and propagation patterns.

8.7.1 Evolution Histories

When developing software it is important to do it in layers by simplifying the problem

�rst. Finding a minimal subset of a software system can be done in two ways: We can

simplify with respect to the data or with respect to the functionality. Figure 8.29 gives an

example. Suppose that we have to write a cycle checker for directed graphs which have

two kinds of edges. Data simpli�cation means that we consider only a subset of all possible

inputs. A data simpli�cation would be to consider �rst only graphs that have one kind of



8.7. PROGRAMMING WITH PROPAGATION PATTERNS 235

Functional complexity

Input complexity

DFT traversal on trees

DFT traversal on graphs
with edges of one kind

Cycle−checking on graphs
with edges of one kind

Cycle−checking on graphs
with edges of two kinds

trees graphs with edges
of one kind

graphs with edges
of two kinds

Figure 8.29: Simplifying the cycle checking problem

directed edge. Functionality simpli�cation means that we keep the data the same, but we

simplify the problem. For example, instead of writing a cycle checker directly, we �rst write a

traversal algorithm for the graphs. Later this traversal algorithm will be enhanced to a cycle

checker. Finally, further data simpli�cation leads to the simple problem of writing a traversal

algorithm on trees. Data simpli�cation normally implies functionality simpli�cation.

When one implements the four design phases shown in Fig. 8.29, at each phase the �rst

step is to produce a class dictionary graph that describes the objects for the current phase.

Figure 8.30 gives the statistics of the example. The application program is developed as a

sequence of increasingly more complex components. Step by step, components are naturally

enhanced. Each step has an executable program ready to be tested against the design

requirements. When we write components, we try to make them minimally dependent on the

speci�c class dictionary graph for which they are developed so that we can easily reuse them

on other class dictionary graphs. Therefore the class dictionary graph for which a component

is developed is just an example to explain and understand the program description. Later

when we reuse the description for another class dictionary graph all the names of vertices

and edge labels can be bound to the names in the new class dictionary graph. We call a

collection of components with enhancement relationships an evolution history.

We summarize the evolution phases used in the evolution history for the cycle checking

example. The �rst program formulates the basic depth-�rst traversal algorithm for a wide

variety of tree structures. The second program adds additional knowledge to handle a

wide variety of graph structures. The addition is about marking vertices when they have

been visited and making sure that a marked vertex is not visited again. Program three

adds additional knowledge to handle cycle checking for a wide variety of graph structures,

including graphs with two kinds of edges.



236 CHAPTER 8. PROPAGATION PATTERNS

DFT on trees

DFT on 1−graphs

Cycle−checking on 1−graphs

Cycle−checking on 2−graphs

8

235

12

414

13

584

Total size  of code fragments (characters)

Number of class valued and
relation valued variables

1-graphs: graphs with edges of one kind.

2-graphs: graphs with edges of two kinds.

Figure 8.30: Evolution history



8.7. PROGRAMMING WITH PROPAGATION PATTERNS 237

8.7.2 Three-Stage Development

We recommend that propagation patterns be developed in three stages. First we focus

on the correct traversal of objects. In the second stage we focus on which objects need

to be assembled together at certain places during the traversal, and we use transportation

directives to plan the routes along which the objects will travel. (Transportation is discussed

in Chapter 10.) In the third stage, we express, using wrappers, what kind of acts the

assembled objects need to perform during the various phases of the traversal.

When you develop propagation patterns, eventually you will focus on one subtask and

choose a signature. To implement the subtask, we identify a group of collaborating classes.

Although we have a class dictionary available for which we develop the software, we do

not explicitly itemize the collaborators. Instead we describe the classes by a propagation

directive using only minimal information about the class dictionary. The dependency metric

Dep is a useful guide. When we write the propagation directive we take the evolution of

the class dictionary into account.

A propagation directive is usually developed using the following steps:

� Start with *from* and *to* and *via*.

� Fine-tune with *through* and *bypassing*.

� Use *to-stop* if no recursion is desired.

� Use *merge* and *join* as needed (discussed later).

A propagation directive is used for traversal and transportation. During the �rst stage,

we use a propagation directive as a traversal speci�cation, and we debug the traversal code

by running it. During the second stage, we use a propagation directives as transportation

speci�cations and we debug the traversal and transportation code together. In the third

stage, the detailed processing is addressed by vertex and edge wrappers. The wrappers are

developed incrementally, using a growth plan.5 The complete program (traversal, trans-

portation, and wrappers) is debugged incrementally.

To summarize, adaptive software may be developed in three steps. First we focus on

traversing the correct objects, then on transporting the correct objects, and �nally on doing

the detailed processing. Propagation pattern are naturally grouped into behavioral units,

called components. A component should do only one thing.

8.7.3 Propagation and Alternation

De�ning code for an alternation class can have several intentions: we want to select a subset

of the alternatives, we want to build an inheritance hierarchy using overriding (rede�nition)

of methods, we want to combine code from several subclasses in construction classes associ-

ated with the alternation class. As we will see, the second intention is a special case of the

third.

Each intention requires a di�erent solution. In the following A is an alternation class.

A positive answer to a question helps us select the appropriate solution.

5Growth plan, page 445 (54).



238 CHAPTER 8. PROPAGATION PATTERNS

Subset of Alternatives

Question: Do I want to selectively choose one or a few alternatives?

Example: Consider the class dictionary

Basket = "basket" <contents> SeveralThings.

SeveralThings ~ "(" {Thing} ")" .

Thing : Fruit | Basket.

Fruit : Apple | Orange.

Weight = <v> DemNumber.

Apple = "apple" <weight> Weight.

Orange = "orange" <weight> Weight.

The following propagation pattern computes the total weight of the apples only in a

given fruit basket.

*operation* int add_weight() *init* (@ 0 @)

*traverse*

*from* Basket *via* Apple *to* Weight

*wrapper* Weight

*prefix* (@ return_val = return_val + *v ; @)

Inheritance Hierarchy

Question: Am I using A to provide functionality to subclasses; that is, am I building an

inheritance hierarchy where the code of superclasses is inherited by subclasses?

In this case we do not use propagation, but instead standard object-oriented notation

where each class gets code assigned.

Example: Consider the class dictionary

Symbol :

RegularSymbol | LabeledSymbol

*common* <symbolName> DemIdent.

RegularSymbol = .

LabeledSymbol = ["<" <labelName> DemIdent ">"].

The following propagation pattern computes the slot name of a given symbol. No propaga-

tion is used in the propagation pattern.

*operation* DemIdent* slot_name()

*wrapper* Symbol

*prefix* (@ return_val = symbolName; @)

*wrapper* LabeledSymbol

*prefix* (@ return_val = labelName; @)



8.7. PROGRAMMING WITH PROPAGATION PATTERNS 239

Method Combination

Question: Is all the functionality most easily de�ned at the classes associated with A? Are the

superclasses contributing code incrementally? Do sets of classes have similar functionality

although the set does not have an exclusive superclass?

In this context, we use the following design rule:

Wrappers for sets of classes should be used to express method combination.

In this context of incremental code reuse, using wrappers is more 
exible than multiple

inheritance since the combination mechanism may change from operation to operation and

is not frozen by a class structure.

Consider the following class dictionary graph:

Example = List(ABCD).

ABCD : AB | CD.

AB : A | B.

CD : C | D.

A = "a".

B = "b".

C = "c".

D = "d".

List(S) ~ "(" S {","S} ")".

The following propagation pattern simulates multiple inheritance. Classes B and C

have some common behavior that they get by a wrapper not related to the classi�cation

structure. Classes B and C also get code from class ABCD. associated(A) is the set of

construction classes alternation reachable from A.

*operation* DemString_List* test()

*init* (@ new DemString_List() @)

*traverse* *from* Example

*wrapper* {B,C}

*prefix* (@ return_val ->

append(new DemString("common-BC")); @)

*wrapper* {A,B,C,D} // associated(ABCD)

*prefix* (@ return_val ->

append(new DemString("top-level")); @)

*wrapper* {A,B} // associated(AB)

*prefix* (@ return_val ->

append(new DemString("AB-middle-level")); @)

*wrapper* {C,D} // associated(CD)

*prefix* (@ return_val ->

append(new DemString("CD-middle-level")); @)

On input



240 CHAPTER 8. PROPAGATION PATTERNS

(a, b, c, d)

the propagation pattern produces the following list of strings:

(

"AB-middle-level" , "top-level" ,

"AB-middle-level" , "top-level" ,

"common-BC" , "CD-middle-level" , "top-level" ,

"common-BC" , "CD-middle-level" , "top-level"

)

This means that code of class A is a concatenation of code of classes AB and ABCD.

Code of class C is a concatenation of code of class BC and classes CD and ABCD.

Area computation for squares, rectangles, circles, and ellipses is an application of method

combination with wrappers. Consider the following class dictionary:

Example = <ex> List(Figure).

Figure: Rectangular | Elliptic .

Rectangular : Rectangle | Square.

Rectangle = "rectangle"

<dim1> DemNumber

<dim2> DemNumber.

Square = "square" <dim1 > DemNumber.

Elliptic : Ellipse | Circle.

Ellipse = "ellipse"

<dim1> DemNumber

<dim2> DemNumber.

Circle = "circle" <dim1> DemNumber.

List(S) ~ {S}.

The following propagation pattern computes the area of any of the four �gures if the mea-

sures are given.

// simulating multiple inheritance with wrappers

// A circle inherits code for two reasons:

// its area is determined by one side

// its area is computed using PI

*operation* float area()

*traverse* *from* Figure

*wrapper* {Rectangle, Ellipse}

*prefix*

(@ return_val = *dim1 * *dim2; @)

*wrapper* {Square, Circle}

*prefix*

(@ return_val = *dim1 * *dim1; @)

*wrapper* {Circle, Ellipse}

*suffix*

(@ float PI = 3.1415; return_val = return_val * PI; @)



8.7. PROGRAMMING WITH PROPAGATION PATTERNS 241

8.7.4 Wrappers Simulating Inheritance

A classi�cation hierarchy can be expressed with propagation and class-set wrappers. There-

fore, in principle, we can do without traditional inheritance of methods to express incre-

mental code composition. For each group G of classes that share some common code, we

use a wrapper with class-set G. This has the advantage that we can group classes freely and

de�ne common functionality for them, without changing the inheritance structure.

Consider the class dictionary in Fig. 8.31. The operations t and t2 in Fig. 8.32

Example = List(ABCD).

ABCD : AB | CD.

AB : A | B.

CD : C | D.

A = "a".

B = "b".

C = "c".

D = "d".

List(S) ~ "(" S {","S} ")".

Figure 8.31: Classi�cation hierarchy

have identical behavior. t is written in terms of propagation and t2 is an ordinary object-

oriented program that relies on method overriding. Operation t explicitly says which method

the construction classes get. Operation t2 uses inheritance to give functionality to the

construction classes indirectly. The function associatedmakes it easier to express the method

combination solution.

Both programs produce on input

(a, b, c, d)

the identical output

("A", "AB", "ABCD", "ABCD")

The method combination approach used by the �rst propagation pattern in Fig. 8.32 is

more 
exible. We could easily add more functionality. If classes A and D need to contribute

some common code, we would write a wrapper

*wrapper* {A,D} ...

without changing the class structure.

It is interesting to re
ect on the role of alternation edges. In the above example they

are used to disseminate functionality to the classes A,B,C, and D. But the same dissemi-

nation role, although with some excess baggage, can be played by construction edges. The



242 CHAPTER 8. PROPAGATION PATTERNS

// method combination

*operation* DemString_List* t()

*init* (@ new DemString_List() @)

*traverse* *from* ABCD

*wrapper* {C,D} //associated(ABCD) - associated(AB)

*prefix* (@ return_val -> append(new DemString("ABCD")); @)

*wrapper* B //associated(AB) - associated(A)

*prefix* (@ return_val -> append(new DemString("AB")); @)

*wrapper* A

*prefix* (@ return_val -> append(new DemString("A")); @)

// method overriding

*operation* DemString_List* t2()

*init* (@ new DemString_List() @)

*wrapper* ABCD

*prefix* (@ return_val -> append(new DemString("ABCD")); @)

*wrapper* AB

*prefix* (@ return_val -> append(new DemString("AB")); @)

*wrapper* A

*prefix* (@ return_val -> append(new DemString("A")); @)

Figure 8.32: Simulating method inheritance



8.7. PROGRAMMING WITH PROPAGATION PATTERNS 243

propagation pattern with signature name t in Fig. 8.32 produces identical behavior if used

with the class dictionary in Fig. 8.33.

Example = List(ABCD).

ABCD = [AB] [CD].

AB = [A] [B].

CD = [C] [D].

A = "a".

B = "b".

C = "c".

D = "d".

List(S) ~ "(" S {","S} ")".

Figure 8.33: Classi�cation with construction edges

Traditional object-oriented programming uses only inheritance edges to disseminate

functionality. With class-set code wrappers we can use construction edges as well.

8.7.5 Readers and Writers

Propagation patterns can be partitioned into two kinds: readers and writers. A propagation

pattern is a reader if the traversed object is invariant under the propagation pattern code.

A propagation pattern is a writer if the traversed object gets modi�ed by the propagation

pattern code. Both readers and writers may create new objects from the traversed objects.

An example of a reader is

*operation* int sum()

*init* (@ 0 @)

*traverse*

*from* Airplane *to* Weight

*wrapper*

*prefix*

(@ return_val += *v; @)

The Airplane-object is invariant.

An example of a writer is

*operation* void update_phone_no(PersonName* pname, PhoneNo* phone)

*traverse*

*from* Company *to* Person

*wrapper* Person

*prefix*



244 CHAPTER 8. PROPAGATION PATTERNS

(@ if (this -> get_name() -> g_equal(pname)) {

this -> set_phone_number(phone);} @)

Here the traversed Company-object gets updated.

Propagation patterns are equally useful for reading as well as for modifying objects.

Let's look at some typical propagation patterns that are writers.

� Change a part

*operation* void f(Q* update)

*traverse*

*from* A *to* ClassContainingQ

*wrapper* ClassContainingQ

*prefix*

(@ this -> set_q(update); @)

To avoid memory leakage, we must use a function called rset q, which returns the

pointer to the old object so that we can delete it. For a part <q> Q of class Class, the

rset q function is implemented as

// Class = <q> Q.

Q* Class::rset_q(Q* new_q){

Q* old_q = q;

q = new_q;

return (old_q);}

The wrapper for ClassContainingQ is replaced by

(@ delete(this -> rset_q(update)); @)

� Add element to list

*operation* void f(Q* new_element)

*traverse*

*from* A *to* ClassContainingList

*wrapper* ClassContainingList

*prefix*

(@ partContainingList -> append(new_element); @)

An important consideration when building entirely new objects under program control

is to avoid building the structure manually. It is better to create a skeleton of the structure

with parsing (see Chapter 11) and then to �ll in the terminal objects using writers as

described above. In other words, we use a prototypical object that gets copied and �lled in.



8.8. SUMMARY 245

8.8 SUMMARY

We summarize propagation patterns (without transportation, which will be discussed in

Chapter 10). Adaptive software is expressed as propagation patterns. There are two kinds

of propagation patterns:

� Incremental inheritance propagation patterns

� Overriding inheritance propagation patterns

The incremental inheritance propagation patterns are the interesting ones and have a

traversal directive. The overriding inheritance propagation patterns are like object-oriented

programs and express the functions attached to classes explicitly.

The incremental inheritance propagation patterns can have several wrappers of two

di�erent kinds:

� Vertex wrappers

� Edge wrappers

Both kinds of wrappers are either pre�x wrappers, su�x wrappers, or both. A vertex

pre�x wrapper of class A is called before an object of class A is entered and a vertex su�x

wrapper is called after an object of class A is left.

Edge wrappers cannot be de�ned for alternation edges, but can be de�ned for construc-

tion and repetition edges. A pre�x edge wrapper is called before the corresponding edge is

traversed and a su�x edge wrapper is called after traversing the edge.

The implementation of propagation patterns is summarized in two phases. First we

focus on the traversal property, without taking wrappers into account.

� Traversals

The implementation of propagation patterns has to satisfy two important require-

ments:

{ traversal meaning of propagation patterns. The required traversals are done; that

is, the subobjects selected by the propagation directive are properly traversed.

{ observes path constraints. Only the required traversals are done; that is, the

traversal does not traverse paths disallowed by the propagation directive.

Code generation:

{ edges:

in 
attened traversal graph

construction, repetition : call part

{ alternation vertices: attached functions are virtual



246 CHAPTER 8. PROPAGATION PATTERNS

� Wrappers

When wrappers are present, they all must be called. This requires wrapper pushing

consistent with the incremental use of inheritance in the presence of traversal.

Code generation:

{ alternation vertices:

wrapper pushing; if a vertex has an outgoing alternation edge distribute wrapper

to target of alternation edge. Distribute further if rule applies again.

8.9 EXERCISES

Exercise 8.1 Consider a propagation pattern of the form

*operation* void f()

*traverse*

*from* A *via* B *to* C

*prefix* C

(@ cout << this; @)

Is the following true or false? Explain your answer. For all class dictionary graphs G in an

equivalence class of object-equivalent class dictionary graphs and for every A-object of G,

the above program will have identical behavior after a suitable mapping of A, B, and C to

classes or class sets of G.

Exercise 8.2 Method combination allows us to combine code at the leaf classes of an

inheritance hierarchy in a 
exible way by rearranging the wrappers. How 
exible is the

approach? Can you think of a situation where the desired ordering cannot be achieved

without manual expansion of the code? Which reorderings can be achieved?

Exercise 8.3 Is the following correct? Explain your answer.

The two propagation patterns below, called f1 and f2, are equivalent.

*operation* void f1()

*constraints*

*class* A, B

*traverse*

*from* A *to* B

*wrapper* B

*prefix* (@ ... @)

*operation* void f2()

*constraints*

*class* A, B

*class-set*

Assoc_B = { ... }; // associated(B)

*end*

*traverse*



8.9. EXERCISES 247

*from* A *to* Assoc_B

*wrapper* B

*prefix* (@ ... @)

Hint: In general, the knowledge paths in the second one are longer.

Exercise 8.4 Below you get a propagation pattern and the corresponding C++ code for

two distinct class dictionaries. From the C++ programs, derive the information in the

propagation pattern.

Propagation pattern:

*operation* void UNKNOWN1()

*traverse*

UNKNOWN2 // make it as small as possible

*wrapper* UNKNOWN3

*prefix*

(@ cout << "in UNKNOWN4 " << endl; @)

*wrapper* UNKNOWN5

*suffix*

(@ cout << "after UNKNOWN6-traversal " << endl; @)

Class dictionary 1

A = <b> B <f1> F.

B = <c> C <f2> F.

C = <d> D <f3> F.

D = <e> E.

E = <f> F.

F = .

and the corresponding C++ program

// A = <b > B

// <f1 > F .

void A::fun( )

{ // outgoing calls

this->get_b()->fun( );

// suffix class wrappers

cout << "after A-traversal " << endl; }

// B = <c > C

// <f2 > F .

void B::fun( )

{ // outgoing calls

this->get_c()->fun( ); }

// C = <d > D



248 CHAPTER 8. PROPAGATION PATTERNS

// <f3 > F .

void C::fun( )

{ // outgoing calls

this->get_d()->fun( ); }

// D = <e > E .

void D::fun( )

{ // outgoing calls

this->get_e()->fun( ); }

// E = <f > F .

void E::fun( )

{ // outgoing calls

this->get_f()->fun( ); }

// F = .

void F::fun( )

{ // prefix class wrappers

cout << "in F " << endl; }

Class dictionary 2

A = <b1> B1 <f1> F.

B1 = <c1> C1.

C1 = <b> B.

B = <c> C <f2> F.

C = <d> D <f3> F.

D = <e1> E1 <f4> F.

E1 = <f5> F1.

F1 = <e> E.

E = <f> F.

F = .

and the corresponding C++ program

// A = <b1 > B1

// <f1 > F .

void A::fun( )

{ // construction edge prefix wrappers

this->get_b1()->fun( );

// suffix class wrappers

cout << "after A-traversal " << endl; }

// B1 = <c1 > C1 .

void B1::fun( )

{ // outgoing calls



8.9. EXERCISES 249

this->get_c1()->fun( ); }

// C1 = <b > B .

void C1::fun( )

{ // outgoing calls

this->get_b()->fun( ); }

// B = <c > C

// <f2 > F .

void B::fun( )

{ // construction edge prefix wrappers

this->get_c()->fun( ); }

// C = <d > D

// <f3 > F .

void C::fun( )

{ // outgoing calls

this->get_d()->fun( ); }

// D = <e1 > E1

// <f4 > F .

void D::fun( )

{ // outgoing calls

this->get_e1()->fun( );

this->get_f4()->fun( ); }

// E1 = <f5 > F1 .

void E1::fun( )

{ // outgoing calls

this->get_f5()->fun( ); }

// F1 = <e > E .

void F1::fun( )

{ // outgoing calls

this->get_e()->fun( ); }

// E = <f > F .

void E::fun( )

{ // outgoing calls

this->get_f()->fun( ); }

// F = .

void F::fun( )

{ // prefix class wrappers

cout << "in F " << endl; }



250 CHAPTER 8. PROPAGATION PATTERNS

Exercise 8.5 Consider the following class dictionary, propagation pattern, and propagation

graph. Find the UNKNOWNS.

Class dictionary

Cd_graph = <adjacencies> List(Adjacency).

Adjacency =

<source> Vertex

<ns> Neighbors ".".

Neighbors : Construct_ns | Alternat_ns

*common* <construct_ns> List(Labeled_vertex).

Labeled_vertex =

"<" <label_name> DemIdent ">" <vertex> Comma_list(Vertex).

// vertex plays double role:

// in cd: Part class (only one element in list)

// in PartCluster: Cluster

Alternat_ns = ":" <alternat_ns> Bar_list(Vertex) [<common> Common].

Common = "*common*".

Construct_ns = "=".

Vertex = <vertex_name> DemIdent [ "*mark*" <mark> DemIdent ].

// parameterized classes

List(S) ~ {S} .

Nlist(S) ~ S {S}.

Comma_list(S) ~ S {"," S}.

Bar_list(S) ~ S {"|" S}.

Cluster = "*clusters*" <clusters> List(PartCluster) .

PartCluster = "*source*" <source> Vertex

"(" <parts> List(Labeled_vertex) ")".

Dummy = List(Vertex).

Propagation Pattern

// computes the set of construction classes which are alternation-

// reachable from vertex v in class dictionary graph cd.

// alternation-reachable means by following only alternation edges.

*operation* Vertex_Comma_list* find_assoc

(Vertex* v, Cd_graph* cd)

*init* (@ new Vertex_Comma_list(); @)

*traverse*

*from* UNKNOWN1

*bypassing* -> *,construct_ns,* ,

-> *,UNKNOWN2,*

*to* {UNKNOWN3, UNKNOWN4}



8.9. EXERCISES 251

*wrapper* Cd_graph

*suffix* (@ cout << "\n assoc " << v << " is " << return_val << "\n"; @)

*wrapper* Adjacency

*prefix* (@ if (source->g_equal(v)) { @)

*suffix* (@ } @)

*wrapper* UNKNOWN5

*prefix* (@ return_val -> append((Vertex *)(v -> g_copy()));

cout << "\n Vertex appended in find_assoc " << v << "\n"; @)

*wrapper* UNKNOWN6

*prefix*

(@

cout << "\n alternative of " << v << " is " << this << "\n";

return_val ->

concatenate(cd -> find_assoc(this, cd)); @)

// concatenate combines two lists

Propagation schema for traversal

Cd_graph = UNKNOWN7 .

Adjacency = UNKNOWN8 .

Neighbors : UNKNOWN9 .

Alternat_ns = UNKNOWN10 .

Construct_ns = UNKNOWN11 .

Vertex = .

UNKNOWN12 ~ { UNKNOWN13 } .

UNKNOWN14 ~ UNKNOWN15 { UNKNOWN16 } .

/////////////////////////////////////////////////////////////////

// There are 17 classes in total

// There are 8 classes in the propagation schema

// There are 9 classes not in the propagation graph

/////////////////////////////////////////////////////////////

Trace output

IN Cd_graph::find_assoc

IN Cd_graph::find_assoc

IN Adjacency_List::find_assoc

IN Adjacency::find_assoc

OUT Adjacency::find_assoc

IN Adjacency::find_assoc

IN Alternat_ns::find_assoc

IN Vertex_Bar_list::find_assoc

IN Vertex::find_assoc



252 CHAPTER 8. PROPAGATION PATTERNS

alternative of O is A

IN Cd_graph::find_assoc

IN Cd_graph::find_assoc

IN Adjacency_List::find_assoc

IN Adjacency::find_assoc

OUT Adjacency::find_assoc

IN Adjacency::find_assoc

OUT Adjacency::find_assoc

IN Adjacency::find_assoc

IN Construct_ns::find_assoc

Vertex appended in find_assoc A

OUT Construct_ns::find_assoc

OUT Adjacency::find_assoc

IN Adjacency::find_assoc

OUT Adjacency::find_assoc

IN Adjacency::find_assoc

OUT Adjacency::find_assoc

IN Adjacency::find_assoc

OUT Adjacency::find_assoc

IN Adjacency::find_assoc

OUT Adjacency::find_assoc

IN Adjacency::find_assoc

OUT Adjacency::find_assoc

IN Adjacency::find_assoc

OUT Adjacency::find_assoc

OUT Adjacency_List::find_assoc

assoc A is A

OUT Cd_graph::find_assoc

OUT Cd_graph::find_assoc

OUT Vertex::find_assoc

OUT Vertex_Bar_list::find_assoc

OUT Alternat_ns::find_assoc

OUT Adjacency::find_assoc

IN Adjacency::find_assoc

OUT Adjacency::find_assoc

IN Adjacency::find_assoc

OUT Adjacency::find_assoc

IN Adjacency::find_assoc

OUT Adjacency::find_assoc

IN Adjacency::find_assoc

OUT Adjacency::find_assoc

IN Adjacency::find_assoc

OUT Adjacency::find_assoc



8.10. BIBLIOGRAPHIC REMARKS 253

IN Adjacency::find_assoc

OUT Adjacency::find_assoc

IN Adjacency::find_assoc

OUT Adjacency::find_assoc

OUT Adjacency_List::find_assoc

assoc O is A

OUT Cd_graph::find_assoc

OUT Cd_graph::find_assoc

8.10 BIBLIOGRAPHIC REMARKS

� Pattern community

Propagation patterns provide a polished mechanism for software development through

formal patterns. Informal, but more general patterns, have been promoted for several

years by Kent Beck, Ward Cunningham, and others [Bec87, Bec94]. In pattern soft-

ware development, abstractors and elaborators do their work. A pattern consists of a

problem, a context, and a solution. For more information on patterns, send mail to

patterns-request@cs.uiuc.edu.

� Law of Demeter

The Law of Demeter was introduced in [LHR88, LH89a, LHLR88, Sak88a].

It is discussed in several theses (e.g., [Hol93, Cas91]) and several textbooks, for exam-

ple,

Rumbaugh/OMT Method [RBP+91]

{ Context

Chapter: Programming Style; Section: Extensibility

{ Quote

Avoid traversing multiple links or methods. A method should have limited knowl-

edge of an object model. A method must be able to traverse links to obtain its

neighbors and must be able to call operations on them, but it should not traverse

a second link from the neighbor to a third class.

Coleman/Fusion Method [Col94]

{ Context

Chapter: Design; Section: Principles of Good Design; Subsection: Visibility

Graphs

{ Quote

Minimize data and functional dependencies. ... Following the Law of Demeter im-

proves the modularity of a system. An object is dependent only on its immediate

structure and makes no assumptions about the structure beyond the immediate

references. Applying this law, one can achieve \loosely coupled" systems and

localization of information.



254 CHAPTER 8. PROPAGATION PATTERNS

Booch/Booch Method [Boo86]

{ Context

Chapter: Classes and Objects; Section: On Building Quality Classes and Objects;

Subsection: Choosing Relationships

{ Quote

The basic e�ect of applying this Law is the creation of loosely coupled classes,

whose implementation secrets are encapsulated. Such classes are fairly unen-

cumbered, meaning that to understand the meaning of one class, you need not

understand the details of many other classes.

8.11 SOLUTIONS

Solution to Exercise 8.4

UNKNOWN1 = fun()

UNKNOWN2 = *from* A *via* D *to* F

or: (but longer):

*from* A

*bypassing* -> *,f1,*,

-> *,f2,*,

-> *,f3,*

*to* F

UNKNOWN3 = F

UNKNOWN4 = F

UNKNOWN5 = A

UNKNOWN6 = A

Solution to Exercise 8.5

UNKNOWN1 = Cd_graph

UNKNOWN2 = source

UNKNOWN3 = Vertex CHOICE

UNKNOWN4 = Construct_ns CHOICE

UNKNOWN5 = Construct_ns

UNKNOWN6 = Vertex

UNKNOWN7 = < adjacencies > Adjacency_List

UNKNOWN8 = < ns > Neighbors

UNKNOWN9 = Construct_ns | Alternat_ns *common*

UNKNOWN10 = < alternat_ns > Vertex_Bar_list

UNKNOWN11 = NOTHING

UNKNOWN12 = Adjacency_List

UNKNOWN13 = Adjacency

UNKNOWN14 = Vertex_Bar_list

UNKNOWN15 = Vertex

UNKNOWN16 = Vertex



Chapter 9

Propagation Pattern

Interpretation

This chapter has a connection to Chapter 15. In this chapter we discuss many of the details

of propagation pattern interpretation, and in Chapter 15 we focus on the essence of the

interpreter. Chapter 15 also presents a compiler and proves the correctness of the compiler

with respect to the interpreter.

There are two kinds of propagation patterns: those with a traversal directive and those

without a traversal directive. This chapter explains the meaning and implementation of

propagation patterns with traversal directives.

We explain propagation patterns by �rst giving an algorithm called TRAVERSE for

propagation pattern execution in terms of object traversal, and wrapper execution as the side

e�ect of the traversal. This algorithm uniquely prescribes in which order the wrappers are

called for a given input object. The intent of the rules is to traverse only the object paths that

are allowed by the constraints in the propagation patterns. However, the rules fail to give

appropriate behavior if customizers that cause a misbehavior are used. Those customizers

don't appear often in applications. Therefore, we introduce customizer restrictions that

ensure that the rules result in correct behavior as speci�ed in the propagation directives

of the propagation patterns. An alternative solution would have been to generalize the

implementation of propagation patterns to allow for the misbehaving customizers. But since

those customizers are usually \strange" customizers, we have decided to exclude them.

The rules together with the customizer restrictions guarantee that the propagation pat-

terns have a number of very useful properties for adaptive software development. Those

properties can be viewed as requirements that the propagation pattern interpretation algo-

rithm TRAVERSE satis�es. The algorithm is shorter than the discussion of all its properties

and therefore we give the algorithm �rst.

Finally we discuss an object-oriented implementation of propagation patterns that is

faithful to algorithm TRAVERSE and that has all the properties discussed. The core of

algorithm TRAVERSE is given in Chapter 15.

255



256 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

9.1 HOW TO RUN A PROPAGATION PATTERN

Given a propagation pattern pp and a compatible, single-inheritance class dictionary graph

G, the program propagate(pp;G) has the behavior described below. First we compute

the propagation graph pg = propagate(d;G), where d is the propagation directive of pp.

Wrappers can be attached only to vertices of the pg. We assume �rst that each vertex and

each edge has at most one wrapper.

We use the following de�nitions. A propagation vertex contained in a propagation

graph of a class dictionary graph is either a construction vertex in the propagation graph

or a target vertex.

A propagation object of a propagation graph is an object of a propagation vertex of

that graph.

A call of the propagation pattern pp on an object graph of one of the sources of propa-

gation directive d of pp leads to a traversal of the object graph and to wrapper executions.1

Essentially, the relevant parts of the object are traversed and as vertices and edges are tra-

versed, the appropriate wrappers are executed. The interpreter TRAVERSE is given in Fig.

9.1.

Algorithm TRAVERSE is a high-level interpreter that treats the wrappers as black

boxes.

The following explains the interpreter in more detail and allows for several wrappers

per object or vertex. The interpreter follows these rules:

� Only-subobjects

{ inside propagation graph

When an instance O of vertex V is traversed, only the part objects of O prescribed

by the de�nition of V in the propagation graph pg, are traversed.

{ outside propagation graph

When an object O of vertex V is traversed and the object is an instance of a

vertex not in the propagation graph, no further traversal is done for O and no

wrappers are called for O. In other words, objects that are not instances of classes

in the propagation graph are not traversed unless they belong to a target class.

� Part-ordering

{ immediate-�rst

The part objects described by the immediate parts of a subclass are visited before

the part objects described by the immediate parts of the superclasses.

{ class dictionary graph order

The part objects described by the immediate parts of a vertex are traversed in

the order the parts are de�ned in the class dictionary graph.

1Propagation pattern interpretation, page 447 (63).



9.1. HOW TO RUN A PROPAGATION PATTERN 257

Input:

A propagation pattern pp containing a propagation directive d, a class dictionary graph G

compatible with the propagation pattern pp, and an object O which is an object of a source

vertex of d.

Output:

Traversal of O with sequence of wrapper executions.

Partial compilation: pg = propagate(d;G)

call TRAVERSE(O), where

TRAVERSE(O : object of class dictionary graph G)

1. If O is not a propagation object of pg then nothing happens.

2. Otherwise,

(a) pre�x wrappers of the class of O and its superclasses (alternation predecessors)

in pg are executed in the least-speci�c to most-speci�c order.

(b) part-objects prescribed by the inheritance and construction edges in pg are tra-

versed next. For each part object O0 of O, TRAVERSE(O0) is called in the

following order:

i. part-objects of O prescribed by a subclass are traversed before the part-

objects prescribed by its superclasses.

ii. part-objects of O prescribed by a class are traversed in the order de�ned in

the class dictionary graph.

If a part has an edge wrapper, the pre�x wrapper is executed immediately before

the part is traversed and the su�x wrapper immediately afterwards.

(c) su�x code fragments of the class of O and its superclasses (alternation predeces-

sors) in pg are executed in the most-speci�c to least-speci�c order.

Figure 9.1: Interpreter TRAVERSE to run a propagation pattern



258 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

� Class-wrapper

We describe which wrappers are executed and in what order.

When an instance of construction vertex V is traversed, if the object is

{ a propagation object, then the wrappers of vertex V and its alternation prede-

cessors or inheritance successors in the propagation graph are executed.

{ a non-propagation object, then none of the wrappers is executed and no traversal

is done.

The wrappers are called in the following order:

{ pre�x-parts-su�x

The pre�x wrapper of a vertex is executed before traversing any part object and

before executing the su�x wrapper. The su�x wrapper of a vertex is executed

after executing the pre�x wrapper and after traversing any part-object.

{ wrapper-extension

When an instance of vertex V is traversed, the pre�x wrappers of V as well as

the pre�x wrappers of all alternation predecessors or inheritance successors of V

are executed.

� pre�x-super-sub

Let V be either an immediate alternation predecessor or an immediate in-

heritance successor of W in the propagation graph. The pre�x wrapper of V

is executed before the pre�x wrapper of W .

� su�x-sub-super

The su�x wrapper of V is executed after the su�x wrapper of W .

� Edge wrapper, pre�x-edge-su�x

When an object edge is traversed, we consider the corresponding construction edge.

The pre�x wrapper of the construction edge is executed immediately before the object

edge is traversed. The su�x wrapper is executed immediately after the object edge is

traversed.

If a vertex or edge has several wrappers

� pp-order-class

If a vertex has two pre�x wrappers pw1; pw2, and pw1 is textually before pw2 in the

propagation pattern, then pw1 is executed before pw2.

If vertex has two su�x wrappers sw1; sw2, and sw1 is textually before sw2 in the

propagation pattern, then sw2 is executed before sw1.

� pp-order-edge

Same as pp-order-class but now for edges instead of vertices.



9.1. HOW TO RUN A PROPAGATION PATTERN 259

9.1.1 Discussion of the Rules

The rules specify how to interpret an object in the context of a class dictionary graph and a

propagation pattern. The rules provide an operational semantics for propagation patterns.

The immediate-�rst rule needs justi�cation. It says that the immediate parts are tra-

versed before the inherited parts. The main reason for the rule is that we would like to have

robustness under 
attening of common parts. When the common parts are 
attened they

are appended after the immediate parts. Therefore, due to the immediate-�rst rule, a small

change to a customizer, such as 
attening, will not change the order in which the wrappers

are called.

The selection of the pre�x-super-sub rule over the pre�x-sub-super rule requires motiva-

tion. The pre�x-super-sub rule has an important advantage over the pre�x-sub-super rule:

robustness of the superclass for the purpose of initialization. A superclass contains more

general code than a subclass. The speci�c code could be dependent on the general code.

But the general code should not depend on the speci�c code. This would be a violation of

robustness of the superclass if it would be dependent on subclasses. Since a pre�x wrapper

often has the intention to initialize or to do some preliminary work, it is natural to call the

most general code �rst.

If there is no dependency between the code of the superclass and the code of the subclass,

we would be happy with either the pre�x-super-sub or pre�x-sub-super rule.

There is an apparent tension between the pre�x-super-sub rule and the immediate-�rst

rule. The pre�x-super-sub rule asks for super-�rst, but immediate-�rst asks for sub-�rst.

This is not a contradiction since wrappers and traversals are handled independently.

Below is an example that shows a dependency of the code of the subclass on the code

of the superclass. The idea behind the example is: initialize at the superclass, use at the

subclass.

For example, we want to print the cost of each dessert and entree for a Banquet-object.

We reset a summation variable at the beginning of dessert and entree.

Banquet = List(Meal).

Meal = Entree Dessert.

Entree : Wienerschnitzel | Steak.

Dessert : Mousse | Cake.

Mousse = [ WhippedCream ].

Cake = .

Wienerschnitzel = TomatoSoup Peas Potatos Schnitzel.

TomatoSoup = [ WhippedCream ].

*operation* void partial_cost(int& c)

// c should really be a variable local to the pp

*traverse*

*from* Banquet

*wrapper* Dessert

*prefix* (@ c = 3; @) // fixed cost of dessert

*suffix* (@ cout << " dessert cost " << c; @)

*wrapper* Mousse



260 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

*prefix* (@ c = c + 4; @) // additional cost for mousse

*wrapper* Cake

*prefix* (@ c = c + 2; @) // additional cost for cake

*wrapper* WhippedCream

*prefix* (@ c = c + 1; @) // additional cost for whipped cream

*wrapper* Entree

*prefix* (@ c = 10; @) // fixed cost of entree

*suffix* (@ cout << " entree cost " << c; @)

*wrapper* Wienerschnitzel

*prefix* (@ c = c + 5; @) // additional cost for Wienerschnitzel

*wrapper* Steak

*prefix* (@ c = c + 7; @) // additional cost for steak

9.2 CUSTOMIZER RESTRICTIONS

Several customizer restrictions are needed. Some of them simply make the programmeaning-

ful with respect to the customizer. Others are needed to enforce correct behavior.2 Rather

than generalizing the interpreter, we exclude the uninteresting borderline cases. Those sit-

uations that the customizer restrictions exclude occur with small probability in practice.

Therefore, the reader may skip this section on �rst reading.

We summarize the customizer restrictions.

Name Purpose

compatibility vocabulary of propagation pattern matches

vocabulary of customizer

propagation no source is superfluous

information loss disallow traversal shortcuts and zigzag paths

(synonym: consistency)

delayed binding disallow traversal shortcuts

(synonym: subclass due to delayed binding

invariance) (specific to object-oriented implementation)

inheritance provide sufficiently many inheritance

edges for every propagation alternation

vertex to be on a completed knowledge path

(needed only for nonflat class dictionaries)

The following restriction is implied

(by inheritance and delayed binding restriction):

2Legal propagation pattern customization, page 447 (62).



9.2. CUSTOMIZER RESTRICTIONS 261

alternation provide sufficiently many alternation

edges for every propagation alternation

vertex to be on a completed knowledge path

9.2.1 Compatibility Restriction

It is important that the vocabulary of a propagation pattern matches the vocabulary of the

customizer. For example, the propagation pattern cannot mention a class-valued variable

A without indicating how A is mapped into a vertex of the customizer. In the simplest

situation this means that a propagation pattern using A is not compatible with a customizer

not using A. A propagation pattern pp is compatible with a semi-class dictionary graph G

if the propagation directive of pp is compatible with G and if the vertices and edge patterns

appearing in wrappers are compatible with G. The compatibility of a propagation directive

or edge pattern with a semi-class dictionary graph is de�ned in the chapter on propagation

directives. The compatibility restriction ensures properly de�ned propagation graphs.

9.2.2 Propagation Restriction

A fundamental customizer restriction covered by the compatibility restriction between a

propagation directive and a semi-class dictionary graph is that there is at least one knowledge

path from a source to a target. If there were no knowledge path, the propagation graph

would be empty and no functionality would be de�ned. The propagation restriction

addresses the issue that for every source some functionality is de�ned.

� No source is super
uous

From every source vertex there is at least one path to some target vertex. More

precisely, for a propagation directive (F; c; T ) and semi-class dictionary graph S|For

all images v of F (sources) in S there exists an image w of T (targets) in S such that

there exists at least one knowledge path in S from v to w satisfying c.

What would happen without the propagation restriction? If we allowed super
uous

source vertices, we would call functions that don't exist. We would have a type violation at

the object-oriented level.

For the vertices in *via* clauses, we adopt the same rule as for *through*|at least one

is used.

Consider the propagation pattern

*operation* void search()

*traverse*

*from* {Kitchen, House}

*to* {Key, Hamster}

*wrapper* {Key, Hamster}

*prefix*

(@ this -> return_to_its_place(); @)

The propagation directive

*from* {Kitchen, House} *to* {Key, Hamster}



262 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

is equivalent to

*merge*(

*merge*(

*from* Kitchen *to* Key,

*from* Kitchen *to* Hamster),

*merge*(

*from* House *to* Key,

*from* House *to* Hamster))

Some of the four paths may de�ne the empty propagation graph. But at least two of

the paths have to de�ne a nonempty propagation graph. At least two paths are needed to

cover both sources.

9.2.3 Information Loss Restriction

Sometimes information loss is also called inconsistency. This customizer restriction can

be understood in the context of propagation directives. It disallows information loss in

propagation directives, as discussed in the chapter on propagation directives. A propagation

directive has information loss with respect to a class dictionary graph if the propagation

graph contains a completed knowledge path that does not satisfy the propagation directive.

A knowledge path from a source to a target is completed if every used alternation vertex

on the path has an outgoing alternation edge.

We use the refrigerator example to illustrate propagation directive information loss.

Consider the propagation pattern in Fig. 9.2. The customizer whose graphical represen-

*operation* void collect()

*traverse*

*from* Country

*via* Family

*to* {Refrigerator, Chessboard}

*wrapper* {Refrigerator, Chessboard}

*prefix* (@ this -> g_print(); @)

Figure 9.2: Refrigerator propagation pattern

tation is in Fig. 9.3 and whose textual representation is in 9.4 has information loss. The

propagation graph is shown in Fig. 9.5.

The propagation directive information loss is demonstrated by the knowledge path Coun-

try, ThingList, Thing, Refrigerator. This is a completed knowledge path that does not satisfy

the propagation directive.

The information loss causes things outside Family-objects to be printed. The reason is

that the union of paths from Country to Refrigerator also contains paths that do not satisfy

the propagation directive.



9.2. CUSTOMIZER RESTRICTIONS 263

Country ThingList
Thing

Family Chessboard RefrigeratorLocation

Members

has

has

location

owns

Figure 9.3: Propagation directive information loss

Country = <has> ThingList.

Family =

<owns> ThingList

<has> Members

<location> Location.

Members = .

Location = .

Thing : Family | Chessboard | Refrigerator.

Refrigerator = .

Chessboard = .

ThingList ~ Thing {Thing}.

Figure 9.4: Customizer with information loss



264 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

Country ThingList
Thing

Family Chessboard Refrigerator

owns

has

Figure 9.5: Propagation graph

Two solutions can avoid the information loss restriction. Either the propagation pattern

is split into two or the class dictionary is slightly changed.

The customizer (in Fig. 9.4) contains both alternation and construction vertices. We

could also give a customizer that demonstrates information loss by using construction ver-

tices only.

As a second example consider the propagation directive

*from* A

*via* K

*to* {X,Y}

and the class dictionary

A = "a" B.

B : K | C.

K = "k" B.

C = X Y.

X = "x".

Y = "y".

The propagation directive will traverse all X and Y objects, not just the ones that are

subobjects of K-objects. This customizer creates information loss; therefore it is disallowed.



9.2. CUSTOMIZER RESTRICTIONS 265

9.2.4 Delayed Binding Restriction

The delayed binding restriction is sometimes also called the Subclass Invariance Restriction.

In a �rst approximation, the delayed binding restriction says that the propagation graph

cannot contain an alternation vertex and an alternative of the alternation vertex, without

containing the corresponding alternation edge. In this situation, delayed binding causes the

propagation pattern to malfunction.

Consider again the refrigerator propagation pattern in Fig. 9.2. Now we use the class

dictionary

Country = <has> RorSList.

RorS : Refrigerator | State.

State = <has> FamilyList.

Family =

<owns> ThingList

<members> Members

<location> Location.

Members = .

Location = .

Thing : Kitchen | Chessboard.

Kitchen = <contains> Refrigerator.

Refrigerator = .

Chessboard = .

FamilyList ~ Family {Family}.

ThingList ~ Thing {Thing}.

RorSList ~ RorS {RorS}.

which is also shown in Fig. 9.6.

The propagation graph is in Fig. 9.7. In this example we have a violation of the

delayed binding restriction because the alternation edge from RorS to Refrigerator is not in

the propagation graph. Delayed binding will also print Refrigerator-objects, which are not

contained in Family-objects. Two solutions can avoid the delayed binding restriction. Either

the propagation pattern is split into two or the class structure is slightly changed.

As a second example, consider the class dictionary graph in Fig. 9.8 for the propagation

directive

*from* A

*via* K

*to* {X,Y}

If an X-object is in the b-part of A, it should not be traversed since the X-object is not

a subobject of a K-object. But it will be traversed nevertheless because of late binding.

Therefore, we disallow such customizers that create a propagation graph with \missing"

alternation edges.

We give another example that discusses the delayed binding restriction from the in-

formation loss point of view. Two kinds of information loss play a role during adaptive



266 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

Country
has

RorSList RorS

State Refrigerator

FamilyList

Family
members

Members

owns

Location

location

ThingList

Thing

Kitchen Chessboard

contains

Figure 9.6: Delayed binding restriction violated



9.2. CUSTOMIZER RESTRICTIONS 267

Country
has

RorSList RorS

State Refrigerator

FamilyList

Family
owns

ThingList

Thing

Kitchen Chessboard

contains

Figure 9.7: Propagation graph

A = B.

B : X | K.

C = X.

K = X Y.

X = "x".

Y = "y".

Figure 9.8: Bad customizer



268 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

software development. The �rst one, which we already discussed, is related to propagation

directives. When knowledge paths are merged into a graph, new paths are introduced that

are not allowed by the propagation directive. The second kind of information loss is related

to delayed binding. There is an algorithm to test for both kinds of information loss and to

appropriately inform the developer of adaptive software. (See Chapter 15.)

FoodDish

Cooked

food

meat

LambBeef

MeatVegetable
vegetable

Potato Bean

Figure 9.9: Class dictionary graph Dish

Consider the semi-class dictionary graph in Fig. 9.9. A dish may contain raw vegetables,

raw meat, and cooked meat with some vegetables. There are two kinds of vegetables|

potatoes and beans, and two kinds of meat|lamb and beef. We want to write a program

that takes a dish and eats only cooked meat. First, we would like to write the propagation

pattern in Fig. 9.10 to do the job. The corresponding C++ program is shown in Fig. 9.11.

*class-set* VM = {Vegetable, Meat};

*operation* void eat()

*traverse*

*from* Dish

*through* => Food, Cooked

*to* *class-set* VM

*wrapper* *class-set* VM

*prefix* (@ this -> eat(); @)

Figure 9.10: A propagation pattern

In fact, the program will eat any food, whether it is raw or not. For example, class

Vegetable is a subclass of class Food and method eat() of class Food is a virtual member

function. If a piece of raw vegetable is in a dish, the program will eat it because of the late

binding of methods eat() at run-time.



9.2. CUSTOMIZER RESTRICTIONS 269

FoodDish

Cooked

food

meat

LambBeef

Meat

void Dish:eat()
{
  food−>eat();
}

void Food::eat()
{

}

void Meat::eat()
{
  /* eat meat */
}

Vegetable

BeanPotato

vegetable

void Vegetable::eat()
{
  /* eat vegetable */
}

Figure 9.11: Propagation graph for eat/Dish

The delayed binding restriction enforces subclass invariance for the propagation

graph with respect to the class dictionary graph and can be stated informally as follows.

Any two vertices in the propagation graph have a subclass path between them if they do in

the class dictionary graph. The formal de�nition is:

For a propagation directive d and a semi-class dictionary graph S we compute

the propagation graph pg = propagate(d; S). There is a violation of the delayed

binding restriction if there exist two vertices v and w such that v is used and v

and w are in pg, but there is an alternation path from v to w which consists of

alternation edges not in pg.

A vertex v is used in the propagation graph pg, if vertex v is a source vertex of the

propagation directive d, or vertex v has at least one incoming alternation or construction

edge.

It is straightforward to check such information loss due to delayed binding. To cor-

rect the information loss, the propagation pattern in Fig. 9.10 is decomposed into two

propagation patterns with di�erent signatures (see Fig. 9.12).

The information loss restriction (consistency restriction) and the delayed binding re-

striction (subclass invariance restriction) overlap in the sense that the information loss

restriction already excludes cases that are also excluded by the delayed binding restriction.

For an example see Fig. 9.13.

9.2.5 Inheritance Restriction

The purpose of the inheritance restriction is that there are no abandoned common parts.

This restriction makes sure that there are enough inheritance edges in the propagation

graph to guarantee that every alternation vertex in the propagation graph is on a completed

knowledge path from a source to a target in the propagation graph.



270 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

*operation* void eat2()

*traverse* *from* Dish *to* Cooked

*wrapper* Cooked

*prefix* (@ this -> eat_cooked(); @)

*operation* void eatCooked()

*traverse*

*from* Cooked *to* *class-set* VM

*wrapper* *class-set* VM

*prefix* (@ this -> eat(); @)

Figure 9.12: A propagation pattern

X = A.

A : D *common* B.

B : C | D.

C = A.

D = "d".

*operation* void f()

*traverse*

*from* X *via* C *to* D

*wrapper* D

*prefix*

(@ cout << this; @)

Figure 9.13: Overlap of restrictions



9.3. PROPAGATION PATTERN PROPERTIES 271

The interpreter requires that an object is traversed based on information in the prop-

agation graph. The propagation graph has to satisfy the inheritance restriction, otherwise

there will be classes in the propagation graph whose objects are never visited.

The inheritance restriction requires:

If a nontarget alternation vertex has outgoing construction or inheritance edges,

it must have at least one incoming inheritance edge.

In other words, if a nontarget vertex is contributing, it must have at least one incoming

inheritance edge.

To motivate this customizer restriction, consider the following example:

Container = <fruit1> Fruit <fruit2> Apple.

Fruit : Apple | Orange *common* <w> Weight.

Apple = .

Orange = .

Weight = .

*operation* void f()

*traverse*

*from* Container

*bypassing*

:> Apple, Fruit,

:> Orange, Fruit

*to* {Apple, Weight}

*wrapper* Weight

*prefix* (@ cout << this; @)

The propagation graph is

Container = <fruit1> Fruit <fruit2> Apple.

Fruit : Apple *common* <w> Weight.

Apple = .

Weight = .

We note that the inheritance edge from Apple to Fruit is missing. In the propagation

graph, Fruit is contributing. Therefore, Fruit should have an incoming inheritance edge.

Since it does not, there is no completed knowledge path from Container to Weight. For no

input, a Weight-object will be printed.

This is undesirable and therefore we exclude customizers that don't allow for completed

knowledge paths from source to target.

9.3 PROPAGATION PATTERN PROPERTIES

The rules imply a unique operational semantics for propagation patterns. Together with the

customizer restrictions, propagation patterns have many useful properties that are important

for adaptive software development.



272 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

9.3.1 Alternation Property

If an alternation vertex in the propagation graph has no outgoing alternation edge in the

propagation graph then there is no completed knowledge path that contains the alternation

vertex. Therefore, the alternation vertex could not participate in a traversal. The inheri-

tance and delayed binding restrictions imply the following property, which guarantees that

every alternation vertex participates in a traversal.

The alternation property requires that each used, nontarget vertex in a prop-

agation graph has at least one outgoing alternation edge.

A vertex on a knowledge path from a source to a target vertex is used if it has incoming

construction or alternation edges or if it is a source vertex. To motivate this customizer

property, consider the following example:

Container = <fruit> Fruit.

Fruit : Apple *common* <w> Weight.

Apple = .

Weight = .

*operation* void f()

*traverse*

*from* Container

*bypassing* => Fruit, Apple

*to* {Weight}

*wrapper* Weight

*prefix* (@ cout << this; @)

The propagation graph consists only of

Container = <fruit> Fruit.

Fruit : *common* <w> Weight.

Weight = .

Unfortunately the only knowledge path contained in the propagation graph cannot be

completed within the propagation graph. Therefore the interpreter TRAVERSE will not

traverse any Fruit-object although the propagation directive allows such traversals. There-

fore, customizers that violate the alternation property are disallowed.

9.3.2 Propagation Directive Satisfaction

We assume that the customizer restrictions hold. One of the primary objectives of a prop-

agation pattern is to specify traversals of objects of a group of collaborating classes. When

the code of those classes executes, objects will be traversed as speci�ed in the directive of

the propagation pattern.

In this section we will talk about class dictionary graphs and object graphs simultane-

ously. To avoid confusion, we use the following terminology:



9.3. PROPAGATION PATTERN PROPERTIES 273

Class Level

-----------

Graph Object-oriented design

vertex class

edge relationship between classes

path sequence of consecutive edges

derived class relationship

Object Level

------------

Graph Object-oriented design

node object

arc binary relationship between objects

traversal sequence of consecutive arcs

traversal of the object

A node in an object graph is a source node if it is an object of a source vertex of the

propagation graph. A node in an object graph is a target node if it is an object of a target

vertex of the propagation graph.

The traversals done by the interpreter TRAVERSE fall into two categories:

� Regular traversal

A regular traversal from a source node to a target node of the object graph is a

traversal going through propagation nodes only.

� Prematurely terminated traversal

A prematurely terminated traversal is a traversal from a source node following zero

or more propagation nodes and terminating in a nonpropagation node.

The concept of a completed knowledge path is important for de�ning properties of

propagation patterns.

A completed knowledge path is a knowledge path from a source vertex to a target vertex

of a propagation graph if all alternation vertices described here are followed by an outgoing

alternation edge: any alternation vertex preceded by a construction or alternation edge on

the path, and if the source vertex is an alternation vertex.

The traversals done by the interpreter TRAVERSE have the following important prop-

erties:

� Regular-completed

If a class dictionary graph satis�es the customizer restrictions then every regular

traversal is an instance of a completed knowledge path in the propagation graph.

The completed knowledge path satis�es the propagation directive.



274 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

This follows essentially from the propagation directive information loss de�nition and

the knowledge path instantiation de�nition: if there is no information loss then all

completed knowledge paths that go from a source vertex to a target vertex of the

propagation graph satisfy the directive.

� Completed-regular

For every completed knowledge path in the propagation graph there is an object O so

that TRAVERSE(O) makes a regular traversal, which is an instance of the knowledge

path.

The two properties ensure that there is a one-to-one correspondence between regular

traversals and completed knowledge paths.

This means that objects are properly traversed as de�ned in the propagation pattern.

Consider the following propagation pattern:

*operation* void collect()

*traverse*

*from* A

*via* K

*to* {X, Y}

*wrapper* {K, X, Y}

*prefix* (@ this -> g_print(); @)

This propagation pattern should print all the K- and X- and Y-objects that are reachable

from an A-object following the constraints expressed by the propagation directive. To de�ne

the constraints of a propagation directive at the object level, we use the concept of a traversal

to be an instance of a knowledge path. A traversal is an instance of a knowledge path if the

sequence of construction edges corresponding to the object graph arcs is a legal sequence

with respect to the knowledge path. The knowledge path may contain additional edges.

More precisely, the meaning of the above propagation pattern is

For a given A-object print in preorder all objects of classes K, X, and Y that

satisfy the following constraint: They are contained in an A-object along paths

that are instances of the knowledge paths de�ned by the propagation directive.

For an object traversal starting from a source object of propagation directive d, the

corresponding completed knowledge path p must satisfy one of the following rules:

� p satis�es d

� p is a prematurely terminated path

A knowledge path p is prematurely terminated if both of the following conditions

hold:

� path p does not satisfy d



9.3. PROPAGATION PATTERN PROPERTIES 275

� after dropping the last vertex and its alternation predecessors from p, except the last

one, the path can be extended to one satisfying d

For a given propagation directive, class dictionary graph, and corresponding propaga-

tion graph there are two possibilities: either there are prematurely terminated paths in the

propagation graph or there are none. Both situations happen frequently. A good strat-

egy when writing propagation patterns is to make them independent of the existence of

prematurely terminated paths.

Instead of writing

*from* Person *to* Salary

*wrapper* Person

*prefix* (@ cout << "salary updated"; @)

*wrapper* Salary

*prefix* (@ this -> christmas_bonus(); @)

it is better to write

*from* Person *to* Salary

*wrapper* Person

*wrapper* Salary

*prefix* (@ this -> christmas_bonus(); @)

*suffix* (@ cout << "salary updated"; @)

The second solution has the advantage that it will also behave properly if a person does not

have a salary part. Nothing will be done in this case for the second solution.

An example of premature path termination is shown by the following propagation di-

rective and class dictionary graph:

*from* A *via* B *to* E

A = <b> B.

B : C | D.

C = E.

E = .

D : F | G.

F = .

G = .

B has one alternative outside the propagation graph. An A-object with a F-part leads

to a prematurely terminated traversal (which is considered acceptable). We have the pre-

maturely terminated path A, B, D, F. After deleting D and F from the path, the path can

be completed to A, B, C, E, which satis�es the propagation directive.

Propagation graph satisfaction means that the traversed object paths are permitted by

the propagation graph. For every traversed object path, the corresponding knowledge path

is in the propagation graph (unless it is prematurely terminated). For example,



276 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

*operation* void f()

*traverse*

*from* A

// constraint

*to* Z

*wrapper* Z

*prefix* (@ cout << this; @)

prints at least all Z-objects that are reachable along object paths satisfying the constraint.

Constraint satisfaction means that for every object path traversed, there must exist a

knowledge path in the class dictionary graph that satis�es the constraint so that the object

path is an instance of the knowledge path.

9.3.3 Propagation Graph Properties

A propagation graph for a class dictionary graph has two kinds of outgoing alternation edges

exiting from the propagation graph to the class dictionary graph.

� To nonpropagation vertices

Such an alternation edge leads to a prematurely terminated traversal at the object

level.

� To propagation vertices (i.e., vertices associated with a target vertex)

Such alternation edges lead to a regular traversal at the object level.

9.3.4 Consistent Ordering

When writing a program that �nds all B-objects properly contained in an A-object, we

expect that the pre�x wrapper of A is executed before the pre�x wrapper of B. Such a local

ordering property is useful for reasoning about the ordering of wrapper executions.

When an object edge from an A-object to a B-object is traversed, the activation of the

wrappers of A and B and of the construction edge on the path from A to B is always done

in the same order, independent of the customizer used.

More precisely, for the propagation pattern

*operation* void f()

*traverse*

*from* A

*through* ->*,b,*

*to* B

*wrapper* A

*prefix* (@ cout << " pA "; @)

*suffix* (@ cout << " sA "; @)

*wrapper* B

*prefix* (@ cout << " pB "; @)

*suffix* (@ cout << " sB "; @)

*wrapper* -> *,b,*



9.3. PROPAGATION PATTERN PROPERTIES 277

*prefix* (@ cout << " pCE-b "; @)

*suffix* (@ cout << " sCE-b "; @)

the wrappers are always called in the following order (also see Fig. 9.14; the wrappers are

called in order 1 through 6):

pA < pCE-b < pB < sB < sCE-b < sA

This will be guaranteed by any compatible customizer. p-CE stands for pre�x wrapper

of a construction edge. s-CE stands for su�x wrapper of a construction edge.

1 2 3

p p p prefix wrappers (2 vertices, 1 edge)

A ------------> B

b

s s s suffix wrappers (2 vertices, 1 edge)

4 5 6

Figure 9.14: Ordering of wrapper calls

pA and pB are pre�x wrappers for vertices A and B. pCE-b is a pre�x wrapper for the

construction edge labeled b. sA, sB, and sCE-b are corresponding su�x wrappers.

9.3.5 Robustness Under Class Dictionary Transformations

Robustness is an important property for the evolution of customized adaptive software.

When we have a customized program running and we make a small change to the class

dictionary, we don't want to have the behavior of the program changed in a big way.

Propagation patterns are robust in the following way. If a propagation pattern is applied

to two class dictionaries that both de�ne the same objects with the same ordering for part

objects, and if the propagation pattern is compatible with both class dictionaries, then the

activation of the wrappers is identical for both object-oriented programs when they execute

on the same object.

Robustness essentially means that the calling order of customized adaptive programs is

invariant under order-preserving, object-equivalent changes to the customizer. Of course,

we make the assumption that the object-equivalent customizers that we consider are also

compatible with the propagation pattern. For example, 
attening of common parts should

not change the sequence of wrapper calls as demonstrated in the example below.

Consider the following propagation pattern that will be customized by two object-

equivalent class dictionaries.



278 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

*operation* void f()

*traverse*

*from* Ex *to* Common

*wrapper* Base

*prefix*

(@ cout << " pBase " ; @)

*suffix*

(@ cout << " sBase " ; @)

*wrapper* Derived

*prefix*

(@ cout << " pDerived " ; @)

*suffix*

(@ cout << " sDerived " ; @)

*wrapper* Common

*prefix*

(@ cout << " pCommon " ; @)

*wrapper* -> *,q,*

*prefix*

(@ cout << " pCE-q" ; @)

*suffix*

(@ cout << " sCE-q" ; @)

Next we show two object-equivalent customizers:

Ex = <r> Base.

Base : Derived .

Derived = "derived" <q> Common.

Common = "common".

Ex = <r> Base.

Base : Derived *common* <q> Common.

Derived = "derived".

Common = "common".

When we run both resulting programs on the object:

: Ex (

< r > : Derived (

< q > : Common ( ) ) )

derived common

we get the following output for both customizers:



9.3. PROPAGATION PATTERN PROPERTIES 279

pBase

pDerived

pCE-q

pCommon

sCE-q

sDerived

sBase

9.3.6 Access Independence

Independent of where a propagation starts, for an instance of class D, the wrappers of class

D are activated in the same sequence when a D-object is traversed.

For example, D-objects may appear as named parts of a construction class or as elements

of a heterogeneous list. In the following example we have D-objects in two di�erent parts.

A = <c> C.

B = <d> D.

C : D *common* <e> E.

D = <e2> E.

*operation* void f()

*traverse*

*from* {A,B}

*via* D

*to* E

*wrapper* C

*prefix* (@ cout << " pC "; @)

*wrapper* D

*prefix* (@ cout << " pD "; @)

*wrapper* -> *,e2,*

*prefix* (@ cout << " pCE-e2 "; @)

Independent of whether an instance of class D is in the c or d part, the wrappers are

called in the same order: pC, pD, pCE-e2, ...

9.3.7 Method Selection Rule

Propagation patterns with a traversal directive support a special kind of delayed binding:

choose one of many alternatives. It is a special kind of delayed binding since no overriding

is allowed. Overriding is expressed with propagation patterns without a traversal directive.

The method selection takes place because in a part, we can have only objects that are

instances of classes associated with the part class. For example,

*operation* void select()

*traverse*

*from* A

*to* {B,C} // B,C are construction classes



280 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

// which are alternation-reachable from A

*wrapper* {B,C}

*prefix* (@ this -> visit(); @)

If the A-object is a B-object, the wrapper of B is called. If the A-object is a C-object, the

wrapper of C is called.

9.3.8 Split Alternation Class

Alternation classes have wrappers and parts, and the activation of the two is treated sepa-

rately. Between the call of a wrapper of an alternation class and the traversal of the parts

of the alternation class, other code may be called.

For example, for the class dictionary graph in Fig. 9.15 and the propagation pattern

A

H
b

B

Figure 9.15: Class dictionary graph

*operation* void f()

*traverse*

*from* A

*through* -> *,b,*

*to* B

*wrapper* A

*prefix* (@ cout << " pA "; @)

*wrapper* H

*prefix* (@ cout << " pH "; @)

*wrapper* -> *,b,*

*prefix* (@ cout << " pCE-b "; @)

the wrappers are called in the order

pH

pA

pCE-b

The pre�x wrapper of A is called between the wrappers of class H. There could be much

more in between: if A has parts, they would be traversed �rst.



9.3. PROPAGATION PATTERN PROPERTIES 281

9.3.9 Symmetry

Pre�x and su�x wrappers are called symmetrically. If the pre�x wrapper of classes A and

B are called in the order A, B, then the su�x wrappers are called in the order B, A.

For example, consider the class dictionary graph in Fig. 9.16, and the propagation

Example

A

a

b2

QB

H

b

Figure 9.16: Class dictionary graph

pattern

*operation* DemString_List* test()

*init* (@ new DemString_List() @)

*traverse* *from* Example *to* B

*wrapper* A

*prefix* (@ return_val -> append(new DemString("pA")); @)

*suffix* (@ return_val -> append(new DemString("sA")); @)

*wrapper* H

*prefix* (@ return_val -> append(new DemString("pH")); @)

*suffix* (@ return_val -> append(new DemString("sH")); @)

*wrapper* B

*prefix* (@ return_val -> append(new DemString("pB")); @)

*suffix* (@ return_val -> append(new DemString("sB")); @)

*wrapper* -> *,b,*

*prefix* (@ return_val -> append(new DemString("pCE-b")); @)

*suffix* (@ return_val -> append(new DemString("sCE-b")); @)

*wrapper* -> *,b2,*

*prefix* (@ return_val -> append(new DemString("pCE-b2")); @)

*suffix* (@ return_val -> append(new DemString("sCE-b2")); @)

On input

Example(

<a> A(

<b> B()

<b2> B()))



282 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

the output is (we show the derivation of the order in terms of the rules in comments)

// derivation

// pH < pA (prefix-super-sub)

("pH", "pA" ,

// pCE-b2 < pCE-b (immediate-first)

// pA < CE-b2 < pB (consistent-ordering)

// sB < sCE-b2 < sA (consistent-ordering)

"pCE-b2" , "pB" , "sB" , "sCE-b2" ,

// H < CE-b < B (consistent-ordering)

// sB < sCE-b < sA (consistent-ordering)

"pCE-b" , "pB" , "sB" , "sCE-b" ,

// sA < sH (suffix-sub-super)

"sA" , "sH" )

9.3.10 No Wrapper Shadowing

If a wrapper of class A is executed then all the wrappers of alternation predecessors of A (in

the propagation graph) will be called.

Propagation patterns with a traversal speci�cation employ incremental inheritance.

There is no room for overriding of wrappers. If overriding inheritance for wrappers is

needed, a propagation pattern without a traversal directive is used.

It is worth mentioning that shadowing for the purpose of traversal is possible.

Consider the propagation directive

*merge*(

*from* Basket *to* Apple,

*from* Basket *via* Orange *to* Weight)

This directive is useful for printing the weight of all orange objects and all information

about apple objects. For the class dictionary graph

Container = <fruit> List(Fruit).

Fruit : Apple | Orange *common* <w> Weight.

Apple = .

Orange = .

Weight = <v> DemNumber.

we will traverse the weight-part of Orange-objects but not the weight-part of Apple-objects.

So overriding for the purpose of traversal is possible.

9.3.11 Customizer Analysis

A given object edge can be an instance of one of �ve distinct knowledge path kinds. Consider

an object edge from some object belonging to class A to some object belonging to class B.

A and B are not necessarily construction classes; they may be alternation classes.

This object edge can be an instance of �ve di�erent knowledge path kinds which we

discuss in turn. We talk about knowledge path kinds since an alternation or inheritance

edge may be replaced by several alternation or inheritance edges in the following discussion.



9.3. PROPAGATION PATTERN PROPERTIES 283

For all �ve cases we show the wrapper execution sequence. Since pre�x and su�x

wrappers are called symmetrically, it is su�cient to focus on the pre�x wrappers. A pre�x

wrapper is described by the name of the class. For example, A B means that the wrappers

are called in the following order: the pre�x wrapper of A, the pre�x wrapper of B, the su�x

wrapper of B, the su�x wrapper of A.

We use CE-b to describe the wrapper of construction edge with label b. B may be a

construction or an alternation class. The �ve class dictionary graphs are summarized in

Fig. 9.17.

1. Knowledge path: only construction edge.

A = <b> B. or A : *common* <b> B.

A CE-b B

2. Knowledge path: alternation-construction

A : H.

H = <b> B.

wrapper execution sequence

A H CE-b B

3. Knowledge path: construction-alternation

A = <b> H.

H : B.

wrapper execution sequence

A CE-b H B

4. Knowledge path: inheritance-construction

A = (*inherit* H). or A : *common* (*inherit* H).

H : *common* <b> B.

wrapper execution sequence

H A CE-b B

5. Knowledge path: alternation-inheritance-construction

A : H *common* <b> B.

H = (*inherit* A).

wrapper execution sequence

A H CE-b B



284 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

A

b

B A B

b

(1)

A

H
b

B

(2)
A

H

b

B
(3)

A

H
b

B H
b

B

A

(4)

A

H

b
B

(5)

Figure 9.17: Knowledge paths for object path



9.4. OBJECT-ORIENTED IMPLEMENTATION 285

9.4 OBJECT-ORIENTED IMPLEMENTATION

We summarize approaches to the translation of a propagation graph into C++ member

functions. Two important possibilities are 
at code generation3 and non
at code generation.

Flat code generation 
attens the propagation graph before the code is produced. This

produces larger code, but it is very easy to understand.

Non
at code generation does not 
atten the propagation graph before code generation,

and there are several ways to optimize the generated code. A straightforward way to non
at

code generation is to translate every inheritance edge into a call to the superclass.

We �rst assume that vertex wrappers are attached only to construction vertices and

show the translation of a propagation graph into C++.

� Flat code generation

The following rules govern the 
at code generation (
at, no alternation wrappers).

function definitions: edge

Demeter C++

construction call to parts

optional if statement

repetition call to parts (loop)

alternation late binding (virtual function)

does a wrapper exist for a construction edge?

yes: wrap around edge traversal code

function definitions: vertex

does a wrapper exist for vertex?

no : use traversal code

yes: wrap around vertex traversal code

� Non
at code generation

For non
at code generation (non
at, no alternation wrappers) there is one important

additional rule:

inheritance call to super

for traversal only

In addition, empty methods need to be generated as discussed in the following section

on exiting alternation edges.

3Propagation pattern partial evaluation, page 448 (64).



286 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

To give an explanation of how propagation patterns work, we consider an example

of a class dictionary graph that uses all features of the class dictionary graph notation

and a simple propagation pattern, and then we show the generated code for non
at code

generation.

The code is produced in two steps. First a propagation graph is produced by computing

all knowledge paths from the source to the targets. The resulting propagation graph is

translated into the program according to the propagation graph translation rules.

The application is about creating a patchwork quilt by using a set of primitive designs

that may be turned and sown together. We use the following propagation directive:

*operation* void traverse()

*traverse*

*from* Patchwork

*to* Measure

// no wrappers

The class dictionary graph is given in Figs. 9.18 and 9.19.

Patchwork =

<primitives> PrimitiveExp_List

<pattern> PatchworkExp.

PatchworkExp :

PrimitiveExp | TurnExp | SewExp

*common*

[<length> Measure]

[<width> Measure].

Measure = <v> DemNumber.

PrimitiveExp = <patternName> Name.

Name = <v> DemIdent.

TurnExp = <arg1> PatchworkExp .

SewExp = <arg1> PatchworkExp <arg2> PatchworkExp .

PrimitiveExp_List ~ {PrimitiveExp}.

Figure 9.18: Patchwork class dictionary, textual

The propagation graph is given in Fig. 9.20. It is almost the original class dictionary

graph. The generated C++ code is in Fig. 9.21.

9.4.1 Exiting Alternation Edges

This section applies only to non
at code generation. It may be skipped. An exiting alter-

nation edge is an alternation edge that exits the propagation graph. There are two kinds of

exiting alternation edges:



9.4. OBJECT-ORIENTED IMPLEMENTATION 287

SewExp

DemNumber
v

Patchwork

primitives

PrimitiveExp_List

PatchworkExp

PrimitiveExp

TurnExp

Measure

length width

Name

pattern

v

DemIdent

arg1

arg1

arg2

patternName

Figure 9.19: Patchwork class dictionary, graphical



288 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

SewExp

Patchwork

primitives

PrimitiveExp_List

PatchworkExp

PrimitiveExp

TurnExp

Measure

length width

pattern

arg1

arg1

arg2

Figure 9.20: Propagation graph

� The target of the exiting edge is a vertex associated with a target vertex of the prop-

agation directive.

This means that the target is an alternation successor of a target vertex of the prop-

agation directive.

� The target is a nonpropagation vertex.

This means that the target is an alternation successor of an inner vertex of the propa-

gation graph. An empty method is produced for the target vertex as described below.

This issue of code generation of empty methods is not covered by the patchwork exam-

ple and will be addressed with another example. Propagation patterns de�ne code for class

structures and when those class structures contain inheritance then we have to distinguish

between two kinds of classes: classes that get code de�ned directly and classes that get code

de�ned through inheritance. This can cause unintended behavior in propagation patterns

unless we limit the in
uence of the inheritance relations. Consider the semi-class dictionary

graph in Fig. 9.23 and the propagation pattern in Fig. 9.22. The intention of this propa-

gation pattern is to access only the Maker-objects belonging to some HeavyTruck-objects.

This only works if classes Car, Jeep, and LightTruck do not inherit the code from class

Vehicle. Otherwise, the propagation pattern has the same e�ect as the one in Fig. 9.22 if

the *via* HeavyTruck clause is omitted.

This would be undesirable since we lost the information that the path is forced through

HeavyTruck. Therefore the following rule, called the empty-methods-rule, is used for code

generation:



9.4. OBJECT-ORIENTED IMPLEMENTATION 289

void Patchwork::traverse(){

// <primitives> PrimitiveExp_List

primitives->traverse();

// <pattern> PatchworkExp

pattern->traverse(); }

void PatchworkExp::traverse(){

//[ < length > Measure ]

if( length )

length->traverse();

//[ < width > Measure ]

if( width )

width->traverse(); }

void PrimitiveExp::traverse(){

this->PatchworkExp::traverse(); }

void TurnExp::traverse(){

// <arg1> PatchworkExp

arg1->traverse();

this->PatchworkExp::traverse(); }

void SewExp::traverse(){

// <arg1> PatchworkExp

arg1->traverse();

// <arg2> PatchworkExp

arg2->traverse();

this->PatchworkExp::traverse(); }

void PrimitiveExp_List::traverse(){

PrimitiveExp_list_iterator next_arg(*this);

PrimitiveExp* each_arg;

while ( each_arg = next_arg() )

each_arg->traverse(); }

void Measure::traverse(){ }

Figure 9.21: Traversal code



290 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

*component* empty_methods

*customizers*

// terminals between " and " should be ignored.

// this is external representation information

// and will be explained later.

CarDealer = <vehicles> List(Vehicle).

List(S) ~ "(" {S} ")".

Vehicle : Car | Jeep | Truck *common*

<maker> Maker <price> DemNumber.

Maker = <name> DemIdent.

Truck : LightTruck | HeavyTruck.

Car = "car".

Jeep = "jeep".

LightTruck = "light" "truck".

HeavyTruck = "heavy" "truck".

*operation* void report_HT()

*traverse*

*from* CarDealer

*via* HeavyTruck

*to* Maker

*wrapper* Vehicle

*prefix*

(@ cout << "Price" << this -> get_price(); @)

*wrapper* Maker

*prefix*

(@ cout << "Make" << this -> get_name(); @)

*end* empty_methods

Figure 9.22: Coping with unintended inheritance



9.4. OBJECT-ORIENTED IMPLEMENTATION 291

For every alternation class C in a propagation graph such that there is at least

one immediate subclass of class C not in the propagation graph, all the imme-

diate subclasses of class C which are contained in the original graph but not in

the propagation graph, get an empty operation generated.

A target class is a class used in the to clause in a propagation directive.

A shorter, equivalent formulation is

Every nonpropagation vertex with an incoming alternation edge exiting the prop-

agation graph gets an empty method generated.

In the above example, classes Car, Jeep, and LightTruckwill each get an empty method

generated (see Fig. 9.24). Therefore, the information about cars, jeeps, and light trucks will

not be reported.

With empty methods attached to classes Car, Jeep, and LightTruck, the program in

Fig. 9.24 describes the same semantics described by the propagation pattern in Fig. 9.22.

CarDealer
vehicles

Vehicles Vehicle

Car

Truck

LightTruck HeavyTruck

price

Jeep

Maker
maker

name

location

name

regid

DemIdent

DemNumber

DemReal

Figure 9.23: Car dealer semi-class dictionary graph with traversal code

9.4.2 Wrapper Pushing

When a wrapper is attached to an alternation class A it needs to be properly called when

an instance of an associated class of A is traversed. One convenient implementation pushes

the wrapper to the associated classes.

Consider the example in Fig. 9.25. If there is a wrapper at class Family, it will be

pushed to class Urban.

Wrapper pushing is best described in terms of an extended 
attening operation. Instead

of 
attening only all the common parts, the wrappers are also 
attened. The pre�x wrappers

are concatenated in the the same order as the common parts would be concatenated. The

su�x wrappers are concatenated in the opposite order.

If a class A has two wrapper speci�cations



292 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

CarDealer
vehicles

Vehicle

Car

Truck

LightTruck
HeavyTruck

Jeep

EmptyList NonemptyList

Maker

maker

void HeavyTruck::reportHT()
{
  this−>Truck::reportHT();
}

void Truck::reportHT()
{
  this−>Vehicle::reportHT();
}

void Vehicles::reportHT()
{
}

void EmptyList::reportHT()
{
}

void NonemptyList::reportHT()
{
  first−>reportHT();
  rest−>reportHT();
}

rest

first

void Car::reportHT()
{
}

void Jeep::reportHT()
{
}

void LightTruck::reportHT()
{
}

Vehicles

void Maker::reportHT()
{

}

void CarDealer::reportHT()
{
  vehicles−>reportHT();
}

void Vehicle::reportHT()
{
  maker−>reportHT();

}

DemIdent

DemNumber DemReal

Figure 9.24: Propagation graph for car dealer semi-class dictionary graph

Country FamilyList Family Chessboard Refigerator

Members

Location

Rural
Surburb Urban

has

has

location
owns

Thing

ThingList

Figure 9.25: Wrapper pushing



9.4. OBJECT-ORIENTED IMPLEMENTATION 293

*wrapper* A

*prefix* (@ pA1(); @)

*suffix* (@ sA1(); @)

*wrapper* A

*prefix* (@ pA2(); @)

*suffix* (@ sA2(); @)

then the order is the same as if only the following wrapper were used

*wrapper* A

*prefix* (@ pA1(); pA2(); @)

*suffix* (@ sA2(); sA1(); @)

Multiple wrapper speci�cations for the same class are useful. Sometimes the same

traversal implements two simple tasks, each with its own set of wrappers that might be

de�ned for overlapping classes.

9.4.3 Propagation Patterns with Return Types

The operation signature may also use a return type: If we want to return an object of class

R, we use

*operation* R* f() *init* (@ ... @)

As usual, we put all objects into the heap (free-store). Therefore, the * is used after R to

indicate that we return a pointer to an object.

If we want to return an integer, for example, we use

*operation* int f() *init* (@ ... @)

This means that a variable called return val will be de�ned throughout the traversal

and may be used to accumulate information during the traversal. When the traversal is

complete, the value of this variable will be returned. The variable may be initialized by the

expression after the init keyword.

Let's compare propagation patterns with and without a return type. First we show a

propagation pattern and associated code with return type and then without return type.

As the customizing class dictionary we use

Basket = <contents> Apple_List.

Apple_List : Empty | Nonempty.

Empty = .

Nonempty = <first> Apple <rest> Apple_List.

Apple = "apple".

Refrigerator = "refrigerator".

The propagation pattern with return type is



294 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

*operation* int f1(Refrigerator* r)

*init* (@ 0 @)

*traverse*

*from* Basket *to* Apple

*wrapper* Apple

*prefix*

(@ r-> g_print(); return_val = return_val + 1; @)

The corresponding object-oriented program is

int Basket::f1( Refrigerator* r )

{ int return_val = 0 ;

this->f1_( return_val, r );

return return_val; }

void Basket::f1_( int& return_val, Refrigerator* r )

{ contents ->f1_( return_val, r ); }

void Apple_List::f1_( int& return_val, Refrigerator* r )

{ }

void Empty::f1_( int& return_val, Refrigerator* r )

{ }

void Nonempty::f1_( int& return_val, Refrigerator* r )

{ first ->f1_( return_val, r );

rest ->f1_( return_val, r ); }

void Apple::f1_( int& return_val, Refrigerator* r )

{ r-> g_print(); return_val = return_val + 1; }

The propagation pattern without a return type is

*operation* void f2(Refrigerator* r)

*traverse*

*from* Basket *to* Apple

*wrapper* Apple

*prefix*

(@ r-> g_print(); @)

The corresponding object-oriented code is

void Basket::f2( Refrigerator* r )

{ contents ->f2( r ); }

void Apple_List::f2( Refrigerator* r )



9.4. OBJECT-ORIENTED IMPLEMENTATION 295

{ }

void Empty::f2( Refrigerator* r )

{ }

void Nonempty::f2( Refrigerator* r )

{ first ->f2( r );

rest ->f2( r ); }

void Apple::f2( Refrigerator* r )

{ r-> g_print(); }

Operations f1 and f2 are analogous. They do the same work except that f1 also counts.

The analogy is clearly re
ected in the generated code. For f1 one additional function is

created, called an initialization function. This function simply initializes the count and then

calls the auxiliary function f1 . A one-to-one relationship exists between the functions with

name f1 and f2.

The reason why the function name f1 and not f1 is used in the generated code is to hide

the auxiliary functions. They are there to do the task of the propagation pattern and should

not be called explicitly. The code generation rule implies that operation names should not

end in to avoid con
icts.

The above example implies the following rule for working with wrappers. If the operation

has a nonvoid return type, the body of the wrapper may use a variable return val which is

de�ned in the initalization function. The variable return val is used to accumulate the return

value of the operation. For a function with a void return type, variable return val is not

available.

It is very important that the meaning of wrappers is almost the same whether we have a

nonvoid or a void return type. The reason is that with wrappers for operations with a void

return type we can easily construct software by using several pre�x and su�x wrappers.

For operations with a nonvoid return type we want to do the same.

Imagine what would happen if we would implement f1 as

int Basket::f1( Refrigerator* r)

{ return contents ->f1( r ); }

int Apple_List::f1( Refrigerator* r)

{ return (0);}

int Nonempty::f1( Refrigerator* r)

{

return (first ->f1(r) + rest ->f1(r)); }

int Apple::f1( Refrigerator* r)

{ r-> g_print(); return (1); }

This is considered good programming style by most programming communities, but it

is not satisfactory from a reusability point of view. If we want to do some post processing



296 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

for any of the classes, we could not write a su�x wrapper. Therefore, the return val solution

used by propagation patterns is much better and fosters unplanned software reuse.

9.5 SUMMARY

The traversal meaning of a propagation pattern, a customizing class dictionary graph, and

an object on which the propagation pattern is invoked is controlled by a small set of rules:

pure-traversal

only-subobject

part-ordering

immediate-first

cdg-order

wrapper

class

prefix-parts-suffix

extension

prefix-super-sub

suffix-sub-super

pp-order-class

edge

prefix-edge-suffix

pp-order-edge

There are a few unlikely situations where the rules don't create the right behavor.

Since the situations are unlikely, we introduce customizer restrictions that exclude those

situations.

The rules, together with the customizer restrictions imply a number of useful and in-

teresting properties for propagation patterns.

propagation directive satisfaction

method selection

consistent ordering

access independence

symmetry

robustness

alternation class split

no wrapper shadowing

customizer analysis

An object-oriented implementation is introduced that satis�es the rules and properties

discussed above. The implementation 
attens the propagation graph and then generates

code according to the following rules. All vertices in the propagation graph get a method.

The bodies of the methods are determined by

� A construction edge in the propagation graph is translated to a call for the part.



9.5. SUMMARY 297

� An edge wrapper inserts code into the body of the method of the source of the edge.

The pre�x wrapper goes before the part call, the su�x wrapper goes after the part

call.

� For an alternation vertex, which is not alternation-reachable from a target vertex, the

body contains a statement: print \prematurely terminated path."

� Wrappers of alternation classes are pushed into the construction subclasses.

A method of an alternation vertex is virtual.

9.5.1 The Flat Demeter Method

The Demeter Method with its generality with semi-class dictionary graphs, knowledge paths,

completed knowledge paths, etc. can be intimidating to a new user. We get a useful, very

simple method, called the 
at Demeter Method, if we make the following assumption:

When we work with propagation directives we think in terms of 
attened class

dictionary graphs although we might present them in un
attened form for easier

comprehension.

The 
attening operation has to be learned anyway for understanding the object struc-

ture and for understanding the language structure de�ned by a class dictionary. Thinking

in terms of 
attened class dictionary graphs means that the inheritance edges disappear.

This means that we get a method where we do the work with class dictionary graphs, elim-

inating the semi-class dictionary graphs. With the inheritance edges gone, we lose some

of the expressiveness, but the lost expressiveness does not seem to be important for many

applications

� We can no longer mention inheritance edges in propagation patterns.

� We get additional customizer restrictions:

{ we cannot use a customizer for which a propagation directive forces an inheritance

edge. For example, *from* Apple *via* Fruit *to* Weight cannot be used together

with

Fruit : Apple *common* Weight

{ we cannot use customizers that attach wrappers to super
uous alternation classes

after the 
attening. An alternation class is super
uous if it is not contributing

and not used.

� Construction edges should be written in the form

-> *,b,C

because if we write them in the form

-> A,b,C



298 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

and A is an alternation class, the edge no longer exists after 
attening.

The important bene�t of the 
at Demeter Method is that we need to learn fewer and

simpler concepts; for example, we can work without semi-class dictionary graphs, knowledge

paths, completed knowledge paths, etc. A summary of the 
at Demeter Method is in

Chapter 15.

9.6 EXERCISES

Exercise 9.1 Consider the following.

-----------------------------

Class Dictionary

-----------------------------

1 Example = <a1> A1.

2 A1 : B.

3 B = <c> C <h> H.

4 D1 : C *common* <e> E.

5 C = .

6 E = <f> F <h> H.

7 G1 : F *common* <g> G.

8 F = .

9 G = <h> H.

10 H = .

-------------------------------------------

Alphabetically Sorted Cross Reference List

-------------------------------------------

A1 :2 1

B :3 2

C :5 3 4

D1 :4

E :6 4

Example :1

F :8 6 7

G :9 7

G1 :7

H :10 3 6 9

Find the unknowns in the following object. It corresponds to the empty sentence.

: Example (

< UNKNOWN1 > : UNKNOWN2 (

< UNKNOWN3 > : UNKNOWN4 (

< UNKNOWN5 > : UNKNOWN6 (

< UNKNOWN7 > : UNKNOWN8 (

< UNKNOWN9 > : UNKNOWN10 (



9.6. EXERCISES 299

< UNKNOWN11 > : H ( ) ) )

< UNKNOWN12 > : UNKNOWN13 ( ) ) )

< UNKNOWN14 > : H ( ) ) )

Find the unknowns in the following propagation pattern and corresponding C++ pro-

gram.

Propagation pattern:

*operation* void fun()

*traverse*

*from* Example *via* E *to* H

*wrapper* H

*prefix* (@ cout << endl << "done" << endl; @)

C++ program (without 
attening the propagation graph):

void Example::fun( )

{ this->UNKNOWN15()->fun( ); }

void A1::fun( )

{ UNKNOWN16}

void B::fun( )

{ this->UNKNOWN17()->fun( ); }

void D1::fun( )

{ this->UNKNOWN18()->fun( ); }

void C::fun( )

{ UNKNOWN19 }

void E::fun( )

{ this->UNKNOWN20()->fun( );

this->UNKNOWN21()->fun( ); }

void G1::fun( )

{ this->UNKNOWN22()->fun( ); }

void F::fun( )

{ this->G1::fun( ); }

void G::fun( )

{ this->UNKNOWN23()->fun( ); }

void UNKNOWN24::fun( )

{ // prefix blocks

cout << endl << "done" << endl; }



300 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

Exercise 9.2 This exercise uses class dictionaries covered in Chapter 11.

Consider the following.

-------------------------------------------------------------

Class Dictionary

-------------------------------------------------------------

1 RestaurantOrder = <orders> OrderList.

2 OrderList ~ {Order}.

3 Order = "ORDER:"

4 [ "Appetizer:" <appetizer> Appetizer_List ]

5 "Entree:" <entree> Entree

6 "Salad" <salad> Salad

7 [ "Dessert" <dessert> Dessert ]

8 "Bon" "Appetit!".

9 Appetizer_List ~ Appetizer { "and" Appetizer }.

10 Entree : Beef | Chicken | Vegetarian | Fish .

11 Dessert = "with" <calories> DemNumber "calories".

12 Appetizer : Soup| Nachos |

13 Potato_Skins | Stuffed_Mushrooms.

14 Soup = "Soup".

15 Nachos = "Nachos".

16 Potato_Skins = "Potato" "Skins".

17 Stuffed_Mushrooms = "Stuffed" "Mushrooms".

18 Salad = <greens> Lettuce "with"

19 <dressing> Salad_Dressing "dressing"

20 "and" <garnish> Vegetable.

21 Beef = "Beef".

22 Chicken = "Chicken".

23 Vegetarian = "Vegetarian Entree".

24 Lettuce = .

25 Salad_Dressing = <brandName> DemString "("

26 <calories> DemNumber "calories )".

27 Vegetable : Tomato| Carrot.

28 Tomato = "tomatoes".

29 Carrot = "carrots".

30 Fish : OceanFish | LakeFish

31 *common* "Fish -" <name> DemString.

32 LakeFish = "Lake".

33 OceanFish = "Ocean".

-------------------------------------------------------------

Alphabetically Sorted Cross Reference List

-------------------------------------------------------------

Appetizer :12 9 9

Appetizer_List :9 4

Beef :21 10



9.6. EXERCISES 301

Carrot :29 27

Chicken :22 10

Dessert :11 7

Entree :10 5

Fish :30 10

LakeFish :32 30

Lettuce :24 18

Nachos :15 12

OceanFish :33 30

Order :3 2

OrderList :2 1

Potato_Skins :16 13

RestaurantOrder :1

Salad :18 6

Salad_Dressing :25 19

Soup :14 12

Stuffed_Mushrooms :17 13

Tomato :28 27

Vegetable :27 20

Vegetarian :23 10

Find the unknowns in the following propagation pattern, object, corresponding sentence,

trace (for the object), and C++ program.

//

// Print the UNKNOWN1 and UNKNOWN2 for the

// orders which have UNKNOWN3 on the salad.

//

*operation* void f()

*traverse*

*from* RestaurantOrder *to* Salad

*wrapper* Salad

*prefix*

(@ this -> f(dressing); @)

*operation* void f(Salad_Dressing* d)

*traverse*

*from* Salad *to* Carrot

*wrapper* Carrot

*prefix*

(@ d->g_print();

cout << "\n"; @)

Object:

: RestaurantOrder (



302 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

< orders > : UNKNOWN4 {

: Order (

< entree > : Beef ( )

< salad > : Salad (

< greens > : Lettuce ( )

< dressing > : Salad_Dressing (

< brandName > : DemString "UNKNOWN5"

< calories > : DemNumber "UNKNOWN6" )

< garnish > : UNKNOWN7 ( ) )

< dessert > : Dessert (

< calories > : DemNumber "UNKNOWN8" ) ) ,

: Order (

< appetizer > : Appetizer_List {

: UNKNOWN9 ( ) ,

: UNKNOWN10 ( ) ,

: Soup ( ) }

< entree > : UNKNOWN11 ( )

< salad > : Salad (

< greens > : Lettuce ( )

< dressing > : Salad_Dressing (

< brandName > : DemString "UNKNOWN12"

< calories > : DemNumber "UNKNOWN13" )

< garnish > : UNKNOWN14 ( ) ) ) ,

: Order (

< appetizer > : Appetizer_List {

: UNKNOWN15 ( ) }

< entree > : UNKNOWN16 (

< name > : DemString "Native Swordfish" )

< salad > : Salad (

< greens > : Lettuce ( )

< dressing > : Salad_Dressing (

< brandName > : DemString "Italian"

< calories > : DemNumber "250" )

< garnish > : UNKNOWN17 ( ) )

< dessert > : Dessert (

< calories > : DemNumber "UNKNOWN18" ) ) } )

Sentence:

ORDER:

Entree: Beef

Salad with "Bleu Cheese" (1500 calories ) dressing and carrots

Dessert with 1000 calories

Bon Appetit!

ORDER:

Appetizer: Nachos and Potato Skins and Soup



9.6. EXERCISES 303

Entree: Chicken

Salad with "French" (550 calories ) dressing and tomatoes

Bon Appetit!

ORDER:

Appetizer: Stuffed Mushrooms

Entree: Ocean Fish - "Native Swordfish"

Salad with "Italian" (250 calories ) dressing and carrots

Dessert with 5700 calories

Bon Appetit!

Trace (object above is used as input):

>> void RestaurantOrder::f()

>> void OrderList::f()

>> void Order::f()

>> void UNKNOWN19::f()

>> void Salad::f(Salad_Dressing* d)

>> void UNKNOWN20::f(Salad_Dressing* d)

UNKNOWN21

<< void UNKNOWN22::f(Salad_Dressing* d)

<< void Salad::f(Salad_Dressing* d)

<< void UNKNOWN23::f()

<< void Order::f()

>> void Order::f()

>> void Salad::f()

>> void Salad::f(Salad_Dressing* d)

>> void Tomato::f(Salad_Dressing* d)

<< void Tomato::f(Salad_Dressing* d)

<< void Salad::f(Salad_Dressing* d)

<< void Salad::f()

<< void Order::f()

>> void Order::f()

>> void UNKNOWN24::f()

>> void Salad::f(Salad_Dressing* d)

>> void UNKNOWN25::f(Salad_Dressing* d)

UNKNOWN26

<< void UNKNOWN27::f(Salad_Dressing* d)

<< void Salad::f(Salad_Dressing* d)

<< void UNKNOWN28::f()

<< void Order::f()

<< void OrderList::f()

<< void RestaurantOrder::f()

C++ program:

void RestaurantOrder::f( )



304 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

{ this->get_orders()->f( ); }

void OrderList::f( )

{ Order_list_iterator next_Order(*this);

Order* each_Order;

while ( each_Order = UNKNOWN29 )

{

each_Order->f( ); } }

void Order::f( )

{ this->UNKNOWN30()->f( ); }

void Salad::f( )

{ // prefix blocks

this -> f(dressing); }

void Salad::f( Salad_Dressing* d )

{ this->UNKNOWN31()->f( d ); }

void Vegetable::f( Salad_Dressing* d )

{ UNKNOWN32 }

void Tomato::f( Salad_Dressing* d )

{ }

void Carrot::f( Salad_Dressing* d )

{ // prefix blocks

d->UNKNOWN33();

cout << "\n"; }

Exercise 9.3 Find a class dictionary graph G and two propagation directives pd1 and pd2
so that propagate(pd1; S) and propagate(pd2; S) de�ne the same propagation graph and, so

that pd1 has information loss while pd2 has not.

Exercise 9.4 Given two propagation patterns, determine whether they are traversal equiv-

alent. That is, for all reasonable class dictionary graphs and inputs they have the same

traversal and wrapper execution behavior. What is the complexity of this decision prob-

lem?

Exercise 9.5 Can you �nd two class dictionary graphsG andG1 and a propagation pattern

pp so that propagate(pp;G) has running-time O(n) and propagate(pp;G1) has running-time

O(n � n)?

Exercise 9.6 Optimizing the code generation. One code generation mechanism calls the

superclass code whenever an inheritance edge is present in the propagation graph. Some-

times, this superclass call is not needed resulting in faster execution and shorter code.

Consider the propagation directive *from* A *to* C. The example



9.6. EXERCISES 305

Ex = A.

A : B *common* C.

B = (*inherits* A).

does not require the call to the superclass since inheritance provides the same functionality.

However,

Ex = A.

A : B *common* C.

B = C (*inherits* A).

requires the call to the superclass. Does the following condition create correct code for a

propagation graph?

Let A be an alternation class with alternative B. Assume that the inheritance edge from

B to A is in the propagation graph. If there is a class C so that there is no knowledge

path from B to C avoiding A, but there is a knowledge path from A to C, starting with a

construction edge, then no call to the superclass A is generated in B.

Exercise 9.7 Assume a propagation pattern where wrappers are attached only to construc-

tion classes and construction edges of the form -> *,b,*.

Is the following true or false?

For a propagation pattern pp, a compatible class dictionary graph G, and a class dic-

tionary graph G1 which is order-preserving and object-equivalent to G, if G and G1 are

compatible with pp, then both propagate(pp;G) and propagate(pp;G1) execute wrappers

in the same order.

Exercise 9.8 Consider the following �ve class dictionaries cd1, ... ,cd5 and the four prop-

agation patterns f1, ... ,f4.

cd1:

Ex = PCList(A).

PCList(S) ~ "(" S { "," S } ")".

A = K Z.

K = L.

L = <z2> Z.

Z = .

--------------------------------------------------

cd2:

Ex = PCList(A).

PCList(S) ~ "(" S { "," S } ")".

A = D <z1> Z.

D = <z2> Z <k> K.

K = ["l" <l> L].

L = <a> A.

Z = .

--------------------------------------------------



306 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

cd3:

Ex = PCList(A).

PCList(S) ~ "(" S { "," S } ")".

A = <d1> D <z1> Z.

D = <k1> K <u1> U.

U = ["a" <a1> A].

K = <z2> Z ["l" <l> L].

L = <u2> U.

Z = .

--------------------------------------------------

cd4:

Ex = PCList(A).

PCList(S) ~ "(" S { "," S } ")".

A = <d1> D <z1> Z.

D = <k1> K.

K = L.

L = Z.

Z = .

V1 : D | U1 *common* <v2> V2.

V2 : U2 | Z.

U1 = "u1".

U2 = "u2".

--------------------------------------------------

cd5:

Ex = PCList(A).

PCList(S) ~ "(" S { "," S } ")".

A = D.

D : K | Z.

K = ["l" L].

L = Z.

Z = .

--------------------------------------------------

The four propagation patterns are:

*operation* void f1()

*traverse*

*from* Ex *to* Z

*wrapper* Z

*prefix*

(@ cout << this << endl; @)

*wrapper* A



9.6. EXERCISES 307

*suffix*

(@ cout << "f1 after traversing A ------------------" << endl; @)

*operation* void f2()

*traverse*

*from* Ex *via* K *to* Z

*wrapper* Z

*prefix*

(@ cout << this << endl; @)

*wrapper* A

*suffix*

(@ cout << "f2 after traversing A ------------------" << endl; @)

*operation* void f3()

*traverse*

*from* Ex

*bypassing* -> K,l,L

*to* Z

*wrapper* Z

*prefix*

(@ cout << this << endl; @)

*wrapper* A

*suffix*

(@ cout << "f3 after traversing A ------------------" << endl; @)

*operation* void f4()

*traverse*

*from* Ex

*through* -> K,l,L

*to* Z

*wrapper* Z

*prefix*

(@ cout << this << endl; @)

*wrapper* A

*suffix*

(@ cout << "f4 after traversing A ------------------" << endl; @)

For which combinations of class dictionary and propagation pattern is there information

loss (= inconsistency) between the propagation directive in the propagation pattern and the

class dictionary?

Put your answer for propagation directive fi and class dictionary cdj into

UNKNOWNi;j :

For example, UNKNOWN1;3 contains nothing if there is no information loss for f1 and

cd3; otherwise UNKNOWN1;3 contains a shortcut path.



308 CHAPTER 9. PROPAGATION PATTERN INTERPRETATION

9.7 BIBLIOGRAPHIC REMARKS

� The publications [WH91, WMH93, WH92] describe the tiny method problem in object-

oriented programming. Propagation patterns provide a solution to this problem.

� Cun Xiao's thesis [Xia94] formally de�nes the semantics of propagation patterns.

9.8 SOLUTIONS

Solution to Exercise 9.2

UNKNOWN1 = salad dressing name *CHOICE* brand name

UNKNOWN2 = number of calories UNKNOWN3 = carrots

UNKNOWN4 = OrderList UNKNOWN5 = Bleu Cheese

UNKNOWN6 = 1500 UNKNOWN7 = Carrot

UNKNOWN8 = 1000 UNKNOWN9 = Nachos

UNKNOWN10 = Potato_skins UNKNOWN11 = Chicken

UNKNOWN12 = French UNKNOWN13 = 550

UNKNOWN14 = Tomato UNKNOWN15 = stuffed_Mushrooms

UNKNOWN16 = OceanFish UNKNOWN17 = Carrot

UNKNOWN18 = 5700 UNKNOWN19 = Salad

UNKNOWN20 = Carrot

UNKNOWN21 = "Bleu Cheese" (1500 calories)

UNKNOWN22 = Carrot UNKNOWN23 = Salad

UNKNOWN24 = Salad UNKNOWN25 = Carrot

UNKNOWN26 = "Italian" (250 calories) UNKNOWN27 = Carrot

UNKNOWN28 = Salad UNKNOWN29 = next_Order()

UNKNOWN30 = get_salad UNKNOWN31 = get_garnish

UNKNOWN32 = NOTHING UNKNOWN33 = g_print

Solution to Exercise 9.8

UNKNOWN11 = NOTHING UNKNOWN12 = NOTHING

UNKNOWN13 = NOTHING UNKNOWN14 = NOTHING

UNKNOWN15 = NOTHING UNKNOWN21 = NOTHING

UNKNOWN22 = Ex A_PCList A Z

UNKNOWN23 = Ex A_PCList A D K Z

UNKNOWN24 = NOTHING UNKNOWN25 = NOTHING

UNKNOWN31 = NOTHING UNKNOWN32 = NOTHING

UNKNOWN33 = NOTHING UNKNOWN34 = NOTHING

UNKNOWN35 = NOTHING UNKNOWN41 = NOTHING

UNKNOWN42 = Ex A_PCList A Z

UNKNOWN43 = Ex A_PCList A D K Z

UNKNOWN44 = NOTHING UNKNOWN45 = NOTHING



Chapter 10

Transportation Patterns

During execution, an object-oriented program may be compared to a play. The objects

correspond to actors and the locus of control is on the stage. At any point in time, a group

of actors will be on the stage to perform their act. Those actors correspond to objects

participating in a function call. In this chapter we discuss how we can elegantly specify the

sequence of actor sets we need on the stage.

10.1 SPECIFYING OBJECT TRANSPORTATION

Object transportation can be simulated with propagation patterns, but at the expense of a

longer program, reduced maintainability, and reusability. Consider the following problem.

For a given Company-object you have to �nd the Customer-objects it contains and for each

such Customer-object you need all Item-objects that the customer ordered. For a given Item-

object you need to know the containing Customer-object. This problem can be solved with

the two propagation patterns in Fig. 10.1.

Although the propagation patterns in Fig. 10.1 are generic and work with many di�erent

class dictionary graphs, they contain redundant signature information, and their closely

related assumptions on potential class structures are scattered into two propagation patterns

instead of one. The two propagation patterns have the following evolution problems:

� Redundant signature

Let's suppose we add an extra argument X* x to the signature. We have to add x to

both signatures shown in Fig. 10.1 and we have to update the call.

� Ine�ciency or structure dependency

The two propagation patterns in Fig. 10.1 have another disadvantage: class Customer

gets two methods with di�erent signatures. The only way to avoid two methods for

class Customer would be to encode more class structure into the program. We would

have to mention the class that \follows" the Customer class.

To avoid the signature redundancy and the ine�ciency or structure dependency prob-

lem, we replace the two propagation patterns with only one that uses a transportation

pattern (Fig. 10.2). If we now add an extra argument X* x, we have to update only one

309



310 CHAPTER 10. TRANSPORTATION PATTERNS

*operation* void itemsAndCustomers()

*traverse*

*from* Company *to* Customer

*wrapper* Customer

*prefix* (@ this -> itemsAndCustomers(this); @)

*operation* void itemsAndCustomers(Customer* c)

*traverse*

*from* Customer *to* Item

*wrapper* Item

*prefix* (@ c -> g_print(); this -> g_print(); @)

Figure 10.1: Redundant propagation patterns

signature. In addition, the extra call and structure dependency disappear. The solution in

*operation* itemsAndCustomers()

*traverse*

*from* Company *to* Item

*carry* *in* Customer* c = (@ this @)

*along* *from* Customer *to* Item

*wrapper* Item

*prefix* (@ c -> g_print(); this -> g_print(); @)

Figure 10.2: Nonredundant propagation pattern

Fig. 10.2 creates only one method for class Customer without encoding more class structure.

Transportation patterns solve the evolution problems mentioned above and most im-

portantly, we get a reusable unit. The transportation pattern that starts with *carry* can

be used in other contexts with other traversal directives and in combination with other

transportation patterns.

Transportation allows us to distribute an object to a group of other objects speci�ed

through a subgraph in the class dictionary graph. We call such a subgraph a transportation

graph. A transportation graph is described by a transportation directive that is like a

propagation directive. Transportation can be simulated by pure propagation patterns at the

expense of maintainability and reusability. Therefore, we consider transportation not just

syntactic sugar since the same maintainability and reusability cannot be achieved without

transportation.



10.1. SPECIFYING OBJECT TRANSPORTATION 311

A transportation pattern has the form

*carry*

// transported variables

// broadcasting

*in* P* p

= (@ ... @) // optional, for initialization

, // condensing

*out* Q* q

= (@ ... @) // optional, for initialization

, // broadcasting and condensing

*inout* R* r

= (@ ... @) // optional, for initialization

*along*

// propagation directive, see above

// defines transportation graph

*at* A // update transported variable

p = (@ ... @)

*at* B // update transported variables

q = (@ ... @), r = (@ ... @)

*carry* // several carry are allowed

...

*along*

...

*at*

// wrappers which usually use the transported variables

// both vertex and edge wrappers may be used

...

// end transportation pattern

This means that a group of variables p, q, r will be available along all vertices of

the transportation graph de�ned by the �rst transportation directive of the transportation

pattern. A similar set of variables is de�ned by the second and later carry statements. To

make those variables available to other classes is in line with the Law of Demeter since it

allows calling functions of method arguments.

A transportation pattern lives in the context of a propagation pattern that contains a

propagation directive specifying a traversal graph. Therefore we call such a propagation di-

rective a traversal propagation directive. The propagation directives inside a transportation

pattern are called transportation propagation directives and each determines a transporta-

tion graph. This terminology is summarized as

propagation directive

(generic: succinct subgraph definition)



312 CHAPTER 10. TRANSPORTATION PATTERNS

used for traversal:

traversal propagation directive,

determines a traversal graph

used for transportation:

transportation propagation directive,

determines a transportation graph

An example of the embedding of a transportation pattern into a propagation pattern

is:

*operation* void f()

*traverse*

*from* A *to* Z

// transportation pattern

// see above

// additional wrappers used for traversal

*wrapper* A

...

*wrapper* Z

...

// end propagation pattern

An *in* variable is used for broadcasting information to several objects. An *out*

variable is used for condensing information from several objects. Alternatively, we can say

that an *in* variable is used for transporting objects down the class dictionary graph and

an *out* variable is used for transporting objects up the class dictionary graph.

Therefore, transportation variables are split into broadcasters and condensers. The

same transportation pattern may contain broadcasters and condensers.

If down is used, the broadcasting starts from a source transportation object to target

transportation objects. If up is used, the condensing starts from the target transportation

objects back to a source transportation object.

An optional *at* clause may be used to update variables during the traversal.

10.2 TRANSPORTATION CUSTOMIZER RESTRICTIONS

This section may be skipped on �rst reading since the customizer restrictions rarely apply

in practice.

The study of customizer restrictions for adaptive programs, whether they are propaga-

tion patterns or transportation patterns, has the following structure:



10.2. TRANSPORTATION CUSTOMIZER RESTRICTIONS 313

� Without a customizer

Type-correctness: An adaptive program is type-correct if at least one customizer cre-

ates an executable program implementing the intent of the adaptive program. Type-

correctness implies:

Well-formedness: The adaptive program must satisfy simple structural constraints.

� With a customizer S

{ Compatibility: S must satisfy the customizer constraints; that is, the customiza-

tion must generate a nonempty program.

{ Implementation correctness: the implementation of the customization might op-

timize the customized program. This optimization might destroy the intent of

the adaptive program for some customizers, implying further customization re-

strictions.

Now we apply the above approach to transportation patterns.

� Without a customizer (traversal graph)

Type-correctness: The transportation patterns allow for at least one customizer that

satis�es all the restrictions. This implies:

Well-formedness: The transportation variables are not de�ned more than once and

the at-clauses contain only assignments to variables declared in a carry clause. Each

propagation directive appearing in the transportation pattern must be well-formed.

� With a traversal graph

{ Compatibility

The transportation directives must be compatible with the traversal graph; that

is, the terminology used in the transportation pattern must be a subset of the

terminology in the traversal graph.

In addition, each transportation directive in the propagation pattern has to satisfy

two transportation restrictions:

� The Transportation Entry Restriction (discussed below) which limits how

the transportation graph may be entered from the traversal graph.

� The Transportation Recursion Restriction (discussed below) which limits the

edges that go into a transportation source vertex.

Without those restrictions, the customized program would not be meaningful.

{ Implementation correctness

Those restrictions are analogous to the restrictions for propagation patterns.

� The Consistency Restriction for Transportation which is analogous to the

consistency restriction (information loss restriction) for traversal.

Object transportation expresses object-
ow, and when there are shortcut

paths or zigzag paths in the transportation graph, the intent of the object


ow would be violated.



314 CHAPTER 10. TRANSPORTATION PATTERNS

� The Subclass Invariance Restriction for Transportation which is analogous to

the Subclass Invariance Restriction (delayed binding restriction) for traversal.

The Transportation Entry Restriction and the Transportation Recursion Restriction

ensure that the C++ code we generate is type-correct in the sense that each generated

method invocation has a corresponding method de�nition.

If any of the restrictions occurs, a simple transformation either changes the adaptive pro-

gram, or the class dictionary, or both to eliminate the restriction and to preserve the intent

of the program.

We have discussed the situation when a transportation pattern is customized with a

traversal graph. A transportation pattern will live in some propagation pattern and therefore

we need to discuss the customization of propagation patterns that contain transportation

patterns.

10.2.1 Type-Correctness

Given a propagation pattern containing a traversal propagation directive tv and a trans-

portation propagation directive tp, the following type-correctness rule needs to hold true:1

� tv and tp are both type-correct; that is, there exists a customizing class dictionary

graph that de�nes a nonempty propagation graph.

� restrict(tp; tv) is type-correct; that is, there is a customizing class dictionary graph S

such that propagate(tp; propagate(tv; S)) de�nes a nonempty propagation graph. This

implies that the transportation graph must be contained in the propagation graph.

By de�nition, the transportation graph is always a subgraph of the traversal graph. A

customizing class dictionary graph S for a pair (tp; tv) has to satisfy: propagate(tv; S) is

nonempty and propagate(tp; propagate(tv; S)) is nonempty.2

A negative example of two propagation directives that do not satisfy the type-correctness

rule is

TV = *from* A *bypassing* -> *,k,* *to* Z

TP = *from* A *through* -> *,k,* *to* Z

Two positive examples are

TV = *from* A *to* Z

TP = *from* B *to* Q

TV = *from* A *via* B *to* Z

TP = *from* B *to* Z

Object transportation is naturally implemented by signature extension. The signature

is extended for the vertices in the transportation graph as implied by the example in Figs.

10.1 and 10.2.

1Legal transportation patterns, page 448 (66).
2Legal transportation pattern customization, page 448 (67).



10.2. TRANSPORTATION CUSTOMIZER RESTRICTIONS 315

10.2.2 Traversal Restrictions

Traversal restrictions are discussed in Chapter 7.

10.2.3 Transportation Restrictions

Transportation patterns and their customizers need to follow two transportation customizer

restrictions: the Transportation Entry Restriction and the Transportation Recursion Re-

striction. To formulate the transportation customizer restrictions, we use the following

terminology. A transportation directive of a transportation pattern and the correspond-

ing transportation graph are de�ned with respect to a bigger traversal graph. The edges

in the transportation graph are said to be transportation edges. Edges in the traversal

graph, but not in the current transportation graph, are said to be nontransportation edges.

The sources of the transportation graph are said to be source-transportation vertices. The

Transportation Entry Restriction is now formulated as follows:

No vertices of a transportation graph, except its source vertices, can have in-

coming nontransportation edges.

A nontransportation edge is an edge that is not in the transportation graph we are

currently considering; it may be contained in another transportation graph that is used

with the same traversal graph.

A simple letter example is

// class dictionary

A = B C.

B = C.

C = .

// propagation pattern

*operation* void f()

*traverse*

*from* A *to* C

// transportation pattern

*carry* *in* B* b

*along* *from* B *to* C

An appropriate error message is

propagate: error:

nontransportation construction edge '-> A,c,C' is not allowed,

since 'C' is in

the transportation graph but not a transportation source.

The reason for the restriction is to get a C++ program that compiles. We further

explain the motivation by introducing the concept of a con
ict vertex. If v is not a source-

transportation vertex, we call it a con
ict vertex. Consider the propagation pattern in

Fig. 10.2. If Customer is not between Company and Item, the propagation pattern is not



316 CHAPTER 10. TRANSPORTATION PATTERNS

meaningful. The reason is that a con
ict vertex would exist. A con
ict vertex is a vertex

that is reachable from a source of the traversal graph along paths requiring distinct numbers

of arguments. This happens, for example, when a transportation graph can be entered from

a source of the bigger traversal graph without going through a source of the transportation

graph. Propagation patterns may be applied only to class dictionary graphs that do not

create any con
ict vertices. In other words, transportation directives limit the applicable

class dictionary graphs.

To better understand the Transportation Entry Restriction more examples are shown.

In the �rst example we need to print the names of all the self-employed people living in a

given town.

*operation* void printNamesOfSelfEmployed()

*traverse*

*from* Town *to* SelfEmployed

*carry*

*in* DemIdent* person_name = (@ this -> get_name(); @)

*along*

*from* Person *to* SelfEmployed

*wrapper* SelfEmployed

*prefix* (@ person_name -> g_print(); @)

The customization with the class dictionary graph in Fig. 10.3 is legal, but the customization

with the class dictionary graph in Fig. 10.4 is illegal. In Fig. 10.4, we transport an DemIdent-

object from Person to SelfEmployed along the traversal from Town to SelfEmployed. When

a SelfEmployed-object receives message printNamesOfSelfEmployed, it expects an argu-

ment, called person name, of the message. But the dog catcher does not have the argument

person name well de�ned. The transportation customizer restriction is violated since the

construction edge Town
dogCatcher

�! SelfEmployed enters a vertex in the transportation graph,

which is not a source-transportation vertex.

Town Person

working_inhabitants

name

Unemployed

Person_List

SelfEmployed Employed

DemIdent

Figure 10.3: Town without a dog catcher

The customization with the class dictionary graph in Fig. 10.5 shows another viola-

tion of the Transportation Entry Restriction. There is a traversal-only edge entering the

transportation graph at SelfEmployed that is not a transportation source.



10.2. TRANSPORTATION CUSTOMIZER RESTRICTIONS 317

Town Person
name

Unemployed

Person_List

SelfEmployed Employed

inhabitants

dogCatcher

DemIdent

Figure 10.4: Town with a dog catcher

Town Person
name

UnemployedSelfEmployed Employed

inhabitants

SelfEmployed_List DemIdent

Figure 10.5: Town of SelfEmployed



318 CHAPTER 10. TRANSPORTATION PATTERNS

The Transportation Recursion Restriction is de�ned as

A source vertex of a transportation graph cannot have incoming transportation

edges.

The reason for the restriction is again to avoid compilation errors. Consider the following

class dictionary:

Example = Expression.

Expression : Numerical | Compound.

Numerical = <val> DemNumber.

Compound = <op> Addition <arg1> Expression <arg2> Expression.

Addition = "+".

Let's write a transportation pattern that counts the number of addition operators in an

Example-object. A �rst solution might be

*operation* void countAdditions()

*traverse*

*from* Example *to* Addition

// transportation pattern

*carry* *in* DemNumber* count = (@ new DemNumber(0); @)

*along*

*from* Expression *to* Addition

*wrapper* Addition

*prefix*

(@ count -> set_val(*count + 1); cout << count << endl; @)

// end transportation pattern

Class Expression is the source vertex of the transportation graph. But Expression has an

incoming transportation edge and therefore the above transportation pattern and customizer

are illegal.

To repair the violation, we start the transportation at Example; that is, we replace

*from* Expression *to* Addition by *from* Example *to* Addition. Now class Example is the

transportation start class and there is no transportation edge back to Example. Like in this

example, customizer restrictions can always be repaired easily.

Fig. 10.6 summarizes the transportation customizer restriction discussed.

Note that the transportation edge going into a traversal source vertex is not explicitly

excluded by a restriction. But its exclusion is implied by the Transportation Recursion

Restriction. If there were a transportation edge into a traversal source then there would also

be a transportation edge into a transportation source. The reason is that the transportation

source is reachable along transportation edges from the traversal source.

10.3 TRANSPORTATION PATTERN EXAMPLES

Transportation patterns carry objects across graphs without knowing the detailed structure

of the graphs. If those graphs contain alternation edges, then the transportation pattern

simulates a conditional statement.



10.3. TRANSPORTATION PATTERN EXAMPLES 319

transportation graph trn traversal graph trv

source port of trn
source port of trv

a transportation edge
going into a source vertex a traversal−only edge going

into a transportation vertex

trv: traversal graph

trn: transportation graph

two upper thick arrows: Transportation Recursion Restriction

lower thick arrow: Transportation Entry Restriction

Figure 10.6: Transportation restrictions: Disallowed edges



320 CHAPTER 10. TRANSPORTATION PATTERNS

10.3.1 Triples Example

We use an example to show how to design and write an adaptive and extensible object-

oriented program.

Suppose we have a company that works with producers who manufacture product items

that are sold by sales agents to customers. We would like to �nd all the triples of customers,

producers, and sales agents who do business together (that is, they buy, produce, and sell

the same items) and are located in the same location. In other words, we need to implement

a function called triples() which �nds the desired entities.

The standard object-oriented approach would next itemize a group of collaborating

classes needed for implementing the triples() function. This has the disadvantage that

the algorithm depends on this speci�c list of classes. Instead, we want to make only a

minimal number of assumptions on the class dictionary and we then use those assumptions

to describe the group of collaborating classes we need.

Assumptions about the class dictionary are expressed in terms of class-valued variables

and relation-valued variables. The class-valued variables will be mapped to real classes later

when we select a speci�c program from the in�nite set of programs we are going to describe.

We assume that we have class-valued variables Company, Customer, Producer, Agent, and

Item, which will be mapped to classes with the same names. We also make the following

additional assumptions about the class dictionary:

Company: From Company there is a path via Customer and via Item to Producer and Agent.

That is, Company-objects contain Customer-objects, which in turn contain Item-objects,

which in turn contain Producer- and Agent-objects.

The following summarizes the assumed ordering of the classes:

Company

Customer

Item

Producer Agent

Customer: We assume that a customer has a name and a location.

Item: The relations between Item and Producer and between Item and Agent are 1-1

relations.

Producer: We assume that a producer has a name and a location.

Agent: We assume that an agent has a name and a location.

With those assumptions we can now formulate a program that will work with any

class dictionary that satis�es those assumptions. Therefore, we have now set up the right

structure to write an in�nite family of programs. We can later select speci�c programs from

this family by applying the program to a class structure that satis�es the assumptions. To

write the program, we �rst describe the group of collaborating classes needed to implement

the triples() function. Since the details of the class structure are not known, a generic



10.3. TRANSPORTATION PATTERN EXAMPLES 321

*from* Company

*via* Customer

*via* Item

*to* {Producer, Agent}

Figure 10.7: Propagation directive

speci�cation of the collaboration group is given, instead of an itemized list of collaborators.

The generic speci�cation is expressed in Fig. 10.7.

The propagation pattern needed for our example is given in Fig. 10.8. Fig. 10.10 shows

how objects are transported to an Item-object where the bulk of the computation is done.

Component triples de�nes a family of programs that provide the triples() function

implemented by the propagation pattern in Fig. 10.8.

Two class dictionary graphs will be given to customize the adaptive program and to

select two di�erent C++ programs from the family. The two class dictionary graphs have

di�erent structures and de�ne di�erent objects. We will explain the customization process

in detail by using the class structure in Fig. 10.9. The customization interprets propagation

pattern triples in the context of a class dictionary graph.

Figure 10.9 shows the �rst customizer, called Company1. It is a class structure in

graphical form that satis�es the assumptions listed in Fig. 10.8.

The propagation directive (Figure 10.7) de�nes a set of paths from Company to Producer

and Agent. Three examples are:

1. Company
customers
�! Customer_List=) Customer_NonemptyList

first

�!

Customer
orders
�! Item_List=)

Item_NonemptyList
first

�! Item
sold by

�! Agent

2. Company
customers
�! Customer_List=) Customer_NonemptyList

first

�!

Customer
orders
�! Item_List=)

Item_NonemptyList
first

�! Item
made by

�! Producer

3. Company
customers
�! Customer_List=) Customer_NonemptyList

first

�!

Customer
orders
�! Item_List=)

Item_NonemptyList
rest
�! Item_List=) Item_NonemptyList

first

�! Item
sold by

�! Agent

According to the �rst path, we locate the �rst Customer-object in a list of Customer-

objects that belongs to a Company-object; then we follow part-of relation orders to locate

its part-object, an Item_List-object; then we locate the �rst Item-object in the Item_List-

object. The Item-object is the �rst item ordered by the customer. Finally we reach the

Agent-object which is the part-object of the �rst Item-object.

The second path describes the same traversal as the �rst one except that �nally we

reach a Producer-object instead of an Agent-object.



322 CHAPTER 10. TRANSPORTATION PATTERNS

*operation* void triples()

*constraints*

*classes* Company, Producer, Agent, Item

*directives*

// introduce names for traversal and transportation graphs

C_PA = *from* Company *to* {Producer,Agent};

C_I = *from* Customer *to* Item;

I_P = *from* Item *to* Producer;

I_A = *from* Item *to* Agent;

*end*

*traverse* C_PA

// begin transportation pattern

*carry* *in* DemIdent* c_name, *in* DemIdent* c_location

*along* C_I

*at* Customer

c_name = (@ get_name() @)

c_location = (@ get_location() @)

*carry* *out* DemIdent* p_name, *out* DemIdent* p_location

*along* I_P

*at* Producer

p_name = (@ get_name() @)

p_location = (@ get_location() @)

*carry* *out* DemIdent* a_name, *out* DemIdent* a_location

*along* I_A

*at* Agent

a_name = (@ get_name() @)

a_location = (@ get_location() @)

*wrapper* Item

*suffix*

(@ if ((c_location->g_equal(a_location)) &&

(p_location->g_equal(a_location)))

{ c_name -> g_print();

p_name -> g_print();

a_name -> g_print(); } @)

// end transportation pattern

Figure 10.8: Propagation pattern triples



10.3. TRANSPORTATION PATTERN EXAMPLES 323

Customer_Empty

ItemAgent Producer

orders
name

name

name

name

location

location

location

sold_by

made_by

Customer

Item_List Item_Empty

Item_NonemptyList

first

rest

Customer_List Customer_NonemptyList

first

rest

Company
customers

DemIdent

Figure 10.9: Customizer 1: Class dictionary graph Company1

Item

orders

name

location

sold_by

made_by

Customer

Item_ListItem_Empty

Item_NonemptyList

first

rest

Customer_List

Customer_Empty

Customer_NonemptyList

first

rest

Company
customers

Producername

location

Agent name

location

traversal object transportation

c
_
n
a
m
e

c
_
l
o
c
a
t
i
o
n

p_namep_location
a_location

a_name

DemIdent

DemIdent

DemIdent

Figure 10.10: Bringing the actors on stage



324 CHAPTER 10. TRANSPORTATION PATTERNS

The third path also describes the same traversal as the �rst one except that we choose

the second Item-object from an Item_List-object instead of the �rst Item-object.

We call all such paths knowledge paths, since they follow the knowledge links between

objects.

To solve the problem we posed, we need to transport objects during traversal from

each Customer-object to the Producer- and Agent-objects (see Fig. 10.10). We want to

transport two DemIdent-objects, which are the name and location of a Customer-object to

each Item-object ordered by the customer. For each Item-object, we also want to transport

the four DemIdent-objects, which are the names and locations of its producer and agent to

the Item-object. Then, at each Item-object conditions can be checked, and desired actions

can be taken. In other words, at an item object we need six actors, all identi�er objects, to

play the next scene. Recall that && is the and operator of C++.

The object transportation is speci�ed by transportation patterns that are implemented

by adding arguments to the signatures of those classes that participate in the transportation.

This implementation process is called signature extension. A transportation pattern

consists of an argument declaration part, a transportation directive (after the keyword

*along*), and an initialization part (after the keyword *at*). The arguments name the

variables that will be transported, the transportation part speci�es the transportation scope,

and the initialization part de�nes initialization of the arguments. Similar to the argument

modes in Ada, argument modes *in*, *out*, *inout* are provided. Argument mode *in*

is used to pass down DemIdent-objects from each Customer-object to each Item-object

contained by the Customer-object. Argument mode *out* is used to bring information to

the Item-object from its subobjects.

The transportation pattern uses one wrapper at class Item to process all the transported

objects. The wrapper checks a condition and if it holds, the names of the producer, the

agent, and the customer who orders the item are printed. It is important that the wrapper is

a su�x wrapper since some of the transported objects are available only after the traversal.

The C++ program selected by class dictionary graph Company1 in Fig. 10.9 is in Fig.

10.11. The program is divided into four blocks due to the di�erent signatures.

Component triples is adaptive since it works for many di�erent class structures.

Fig. 10.12 shows a second customizer that uses two repetition vertices (drawn as ).

Customers, Items, and a construction class Warehouse are introduced. The two repetition

vertices are used to replace two alternation vertices and six construction vertices which

are Customer_List, Customer_Empty, Customer_NonemptyList, Item_List, Item_Empty,

and Item_NonemptyList. Despite these changes, propagation pattern triples can still be

used on class dictionary graph Company2, because the propagation pattern does not depend

on how list structures are speci�ed, and what exactly the relation is between Item and

Producer.

When we use class dictionary graph Company2 to select a C++ program from the family

of programs de�ned by propagation pattern triples, we will get a program di�erent from

the one in Fig. 10.11 because of the di�erent class structure.

Propagation patterns are much more 
exible software artifacts than traditional object-

oriented programs. We have shown how a program adapts itself to di�erent class structures.

When there is a large change to a class structure, it is much easier to adjust the propagation

pattern rather than the corresponding object-oriented program.



10.3. TRANSPORTATION PATTERN EXAMPLES 325

orders

Customer

Item_List

first

Item_NonemptyList

rest

first

Customer_List

Customer_NonemptyList

rest

Item

Producer Agent

Company

customers

void Company::triples() {
   customers−>triples();
}

void Customer_List::triples() { } //virtual

void triples()

void Customer_NonemptyList::triples() {
      first−>triples();
      rest−>triples();
}

void Customer::triples() {
     orders−>triples(this−>get_name(),this−>get_location());
}

       c_name−>g_print();
       p_name−>g_print();
       a_name−>g_print();
    }
}

made_by

sold_by

void Item_List::triples(DemIdent* c_name,DemIdent* c_location) { } //virtual

void Item_NonemptyList::triples(DemIdent* c_name,DemIdent* c_location) {
        first−>triples(c_name,c_location);
        rest−>triples(c_name,c_location);
}

void Agent::triples(DemIdent*& a_name,DemIdent*&a_location) {
        a_name = this−>get_name();
        a_location = this−>get_location();
}

void Item::triples(DemIdent* c_name,DemIdent* c_location) {
    DemIdent * p_name,* p_location,* a_name,* a_location;
    made_by−>triples(c_name,c_location,p_name,p_location);
    sold_by−>triples(c_name,c_location,a_name,a_location);
    if (c_location−>g_equal(a_location) 
              && p_location−>g_equal(a_location)) {

void Producer::triples(DemIdent*& p_name,DemIdent*& p_location) {
       p_name = this−>get_name();
       p_location = this−>get_location();
}

void triples(DemIdent*&  a_name,DemIdent*& a_location)

void triples(DemIdent* c_name,DemIdent* c_location)

void triples(DemIdent*& p_name,DemIdent*& p_location)

Figure 10.11: After customization of triples with class dictionary graph Company1

Item

Agent

Producer

orders

name

name

name

name

location

location

location
sold_by

CustomerCompany
customers

Warehouse

stored_in

owned_by

Customers Items

DemIdent

Figure 10.12: Customizer 2: Class dictionary graph Company2 with repetition vertices



326 CHAPTER 10. TRANSPORTATION PATTERNS

10.3.2 Avoiding Conditional Statements

Consider the statements

A* a = ...;

if (a -> property())

a -> do_it();

If property is de�ned by: \Is there a U-object in the A-object (under the assumption

that there is at most one U-object in an A-object)" then the above statements can be

implemented by the following, which avoids a conditional statement.

*operation* void do_it_property()

*traverse* *from* A *to* U

*carry* *in* A* a

*along*

*from* A *to* U

*at* A* a = (@ this @)

*wrapper* U

*prefix* (@ a -> do_it(); @)

Notice that when an A-object contains no U-object, a call of do it property on the A-object

has no e�ect. The conditional is eliminated now:

A* a = ...;

a -> do_it_property();

The following component shows a more general solution of the transporting-down prob-

lem. The schema example shows a use case that applies the propagation pattern to a graph

problem.

*component* test_subobjects

// tests whether an A-object contains a U-object

// and for each occurrence function

// g_print is called on a B-object which contains

// the U-object.

// The intention is usually that there is

// at least one alternation edge

// on the path from B to U.

// Can be generalized to several U-objects

*customizers*

Graph = <adjs> List(Adjacency).

Adjacency = <source> DemIdent <neighbors> Neighbors.

Neighbors : A_Neighbors | B_Neighbors *common*.

A_Neighbors = "a".

B_Neighbors = "b".

// *rename*



10.3. TRANSPORTATION PATTERN EXAMPLES 327

// Graph => A,

// Adjacency => B,

// A_Neighbors => U

*constraints*

*classes* A,B,U

*class-set* Targets = {U}

*directives*

AU = *from* A *via* B *to* *class-set* Targets;

BU = *from* B *to* *class-set* Targets

*end*

*operation* void do_it_property()

*traverse* AU

*carry* *in* B* b *along* BU

*at* B b = (@ this @)

*wrapper* *class-set* Targets

*prefix* (@ b -> g_print(); @)

*require* *operation* void g_print()

*end* test_subobjects

In summary, checking for the existence of subobjects in a given object can be done

without explicit conditional statements. The approach is to take advantage of delayed bind

of calls to code (virtual functions in C++) and to express traversal and transportation

succinctly.

10.3.3 DFT Example

The following component improves the earlier algorithm from the chapter on propagation

patterns by now using a transportation directive.

*component* dft // a group of collaborating propagation patterns

// group will be called with init()

*constraints*

// in this constraint section we summarize the assumptions

// made by the propagation patterns

*classes* // class-valued variables

Graph, Adjacency, MarkUnset, Vertex

*edge* *patterns* // relation-valued variables

-> *,neighbors,*,

-> *,marked,*,

-> *,start,*,

-> *,source,*

*directives* // named propagation directives

AMU = *from* Adjacency *to* MarkUnset;

AcV = *from* Adjacency *through* -> *,neighbors,* *to* Vertex;

GA = *from* Graph *to* Adjacency;



328 CHAPTER 10. TRANSPORTATION PATTERNS

*end*

// propagation patterns for dft

*operation* void dft(Graph* g)

*traverse* AMU

// transportation pattern

*carry* *in* Adjacency* adj = (@ this @)

*along* AMU

*wrapper* MarkUnset

*prefix*

(@ adj -> g_print();

adj -> set_marked(new MarkSet());

adj -> uncond_dft(g);

@)

// end transportation pattern

*operation* void uncond_dft(Graph* g)

*traverse* AcV

*wrapper* Vertex

*prefix*

(@ g->find(this)->dft(g);

// find is a functional edge from Vertex to Adjacency

// a computed part; o.k. with Law of D.

// better to use propagation supporting derived edges

@)

*operation* Adjacency* find(Vertex* v) *init* (@ NULL @)

*traverse* GA

*wrapper* Adjacency

*prefix*

(@ if (v -> g_equal(source)) return_val=this; @)

*operation* void init()

*traverse* GA

*wrapper* Adjacency

*prefix*

(@ this -> set_marked(new MarkUnset()); @)

*wrapper* Graph

*suffix*

(@ this -> find(start) -> dft(this); @)

*end* dft

A component serves to group together several propagation patterns and forms a very

reusable software unit. The dft component may be combined with several other components.



10.4. CODE GENERATION 329

The collection of such components may be injected into the following class dictionary, for

example.

Graph = <adjacencies> List(Adjacency) "*start*" <start> Vertex.

Adjacency =

":" <source> Vertex <neighbors> List(Vertex) <marked> Mark.

Mark : MarkSet | MarkUnset *common*.

MarkSet = "*set*".

MarkUnset = .

Vertex = <name> DemIdent.

List(S) : Empty(S) | NonEmpty(S) *common*.

Empty(S) = .

NonEmpty(S) = <first> S <rest> List(S).

It often happens that components are written with a con
icting vocabulary since they

are developed by di�erent people. For example, a graph algorithm might have been formu-

lated for networks and now we want to reuse it for graphs. A renaming, such as,

Network => Graph,

Node => Vertex

takes care of the mapping of the vocabulary.

10.4 CODE GENERATION

The code generation for propagation patterns falls into the following steps.

1. Check whether the class dictionary graph is compatible with the propagation pattern.

Class dictionary graph Company1 in Figure 10.9 is compatible with the propagation

patterns in triples.

2. Apply the propagation directive of the propagation pattern to the class dictionary

graph to get propagation graph 
.

Propagation graphs are constructed from the set of knowledge paths satisfying the

propagation directive. Propagation graphs describe object traversals.

3. Extend signatures.

When we apply component triples to class dictionary graph Company1 in Fig. 10.9,

signatures are extended (Fig. 10.11 shows the result). Therefore during the traversal,

objects are transported to desired locations.

4. Attach code fragments.

Based on the traversal directive, member functions are created and wrappers are

attached to various classes that participate in the traversal (see Fig. 10.11). The

transportation graph in
uences the code generation for the traversal.



330 CHAPTER 10. TRANSPORTATION PATTERNS

5. Generate a program in a target language. The compiler will do the detailed type-

checking.

The executable program in C++ for our example is in Fig. 10.11.

To show how code generation works in detail, we use the class dictionary graph in Fig.

10.13. The propagation pattern under consideration is in Fig. 10.14. The generated code

is in Fig. 10.15. This example does not show signature extension at an alternation class; it

will be explained shortly.

10.4.1 Code Generation with Two Transportation Patterns

We consider four propagation patterns with two transportation patterns. The �rst trans-

portation pattern uses a broadcasting variable, the other a condensing variable. We consider

cases where the transportation starts at an alternation vertex, which makes the translation

to C++ more interesting. We use the following class dictionary throughout:

Ex = <r> Base.

Base : Derived *common* <q> Common.

Derived = "derived" <d> DerivedPart.

DerivedPart = "part".

Common = "common".

Transport = "transported".

This class dictionary lets us discuss the four important kinds of transportations sum-

marized in Fig. 10.16. They are determined by the combination of the following two cases,

each having two possibilities:

� Transportation starting at alternation class Base or starting at nonalternation class

Ex.

� Transportations where the traversal graph contains an inheritance edge or where it

does not contain an inheritance edge. In both cases, wrappers are pushed down to

subclasses.

To show how the wrappers are handled, we assume that Base has a pre�x wrapper pBase

and a su�x wrapper sBase, and Derived has a pre�x wrapper pDerived and a su�x wrapper

sDerived. In all four cases the wrappers for Base and Derived are called in the following

order:

pBase

pDerived

sDerived

sBase

This means that the implementation of transportation satis�es the following rule. A

pre�x wrapper is called just after an object is entered; a su�x wrapper is called just before an

object is left. If the class of an object has several superclasses, the following rule applies: for



10.4. CODE GENERATION 331

WorkFlowManagement =

<tasks> List(Task).

Task = "timing" Timing

"name" TaskName

<description> DemText

"prerequisites"

<prerequisites> List(TaskName)

"resources"

<resources> List(Resource).

TaskName = <v> DemIdent.

Timing =

<dueDate> Date

<startDate> Date

<completionDate> Date.

Date : DateOpen | DateSelected.

DateSelected =

<day> DemNumber

<month> DemNumber

<year> DemNumber.

Resource = "sun4".

DateOpen = "open".

List(S) ~ "(" {S} ")".

Number

WorkFlowManagement

ResourceList

Resource

resources

prerequisites

Ident

value

Text

description

Timing

timing

Date

startDate
dueDate

completionDate

DateOpen

DateSelected
day

month

year

description

TaskNameList

projectName
TaskName

TaskList

projects

Task

Figure 10.13: Work 
ow management



332 CHAPTER 10. TRANSPORTATION PATTERNS

*operation* Resource_List* required_res()

// print resources required by all started projects

*init* (@ new Resource_List() @)

*traverse*

*from* WorkFlowManagement

*via* Task

*through* -> *,startDate,*

*to* DateSelected

// transportation pattern

*carry* *in* Resource_List* r = (@ resources; @)

*along* *from* Task *to* DateSelected

*wrapper* DateSelected

*prefix*

(@ return_val -> concatenate(r); @)

Figure 10.14: Transporting resources

the pre�x wrappers, the most speci�c pre�x wrapper is called �rst. For the su�x wrappers,

the most speci�c su�x wrapper is called last.

We want to write a program that traverses an Ex-object and transports a Transport-

object from a Base-object to the Common-object. In the same traversal we want to transport

the Common-object back to the Base-object.

Since C++ has the equal signature rule (the signature of a function f has to be identical

at the base and derived class), for cases 1 and 2 we use two functions for each of the two

classes Base and Derived.

Base::f() Base::f( 2 arguments)

^

|

| calls

|

Derived::f() calls -> Derived::f( 2 arguments)

Case 1

If Base has a pre�x wrapper pBase and a su�x wrapper sBase, and Derived has a pre�x

wrapper pDerived and a su�x wrapper sDerived, then the generated code will look like the

example in Fig. 10.17 and will be called in the sequence: 1 through 6.

The propagation pattern consists of the traversal directive and two transportation pat-

terns. The �rst transportation pattern uses a broadcasting variable that sends a Transport-

object from a Base-object to a Common-object and prints it. This is achieved by the trans-

portation pattern



10.4. CODE GENERATION 333

Resource_List* WorkFlowManagement::required_res( )

{ Resource_List* return_val = new Resource_List() ;

// outgoing calls

this->required_res_( return_val );

return return_val;

}

void WorkFlowManagement::required_res_

( Resource_List* & return_val )

{ tasks ->required_res_( return_val );

}

void Task::required_res_

( Resource_List* & return_val )

{ // variables for carrying in and out

Resource_List* r ;

// assignments for carrying in

r = resources;

// outgoing calls

timing ->required_res_( return_val, r );

}

void Timing::required_res_

( Resource_List* & return_val, Resource_List* r )

{ startDate ->required_res_( return_val, r );

}

void Date::required_res_

( Resource_List* & return_val, Resource_List* r )

{ }

void DateSelected::required_res_

( Resource_List* & return_val, Resource_List* r )

{ // prefix blocks

return_val -> concatenate(r);

}

void Task_List::required_res_

( Resource_List* & return_val )

{ // outgoing calls

Task_list_iterator next_Task(*this);

Task* each_Task;

while ( each_Task = next_Task() )

{

each_Task->required_res_( return_val );

}

}

Figure 10.15: Code for resource transportation



334 CHAPTER 10. TRANSPORTATION PATTERNS

with inheritance edge without inheritance edge

(call to super)

-------------------------------------------------------------------------

A: Case 1 Case 2

trv: Ex via Base to Common trv: Ex via Base to DerivedPart

trn: Base to Common trn: Base to DerivedPart

-------------------------------------------------------------------------

B: Case 3 Case 4

trv: Ex to Common trv: Ex to DerivedPart

trn: Ex to Common trn: Ex to DerivedPart

-------------------------------------------------------------------------

A: transportation starts at alternation class

(transportation code pushing)

B: transportation starts at nonalternation class

trv: traversal

trn: transportation

Figure 10.16: Code generation with transportation

| 0 args | 2 arguments

--------|-------------------|---------------------

Base | (never called) | no function

--------|-------------------|---------------------

| | 2 pBase

| | 3 pDerived

Derived | 1 calls 2 args | 4 call base

| | 5 sDerived

| | 6 sBase

Figure 10.17: Summary: Case 1



10.4. CODE GENERATION 335

////////////// BROADCASTING //////////////////

*carry* *in* Transport* trans

*along* *from* Base *to* Common

*at* Base

trans = (@ new Transport(); @)

*wrapper* Common

*prefix*

(@ cout << endl << "TRANSPORTED "

<< trans << " TO " << this << endl ; @)

/// end transportation

The second transportation speci�cation is a condenser and transports a Common-object

back to a Base-object and prints it. This is achieved by

///////////// CONDENSING ///////////////////

*carry* *out* Common* c

*along* *from* Base *to* Common

*at* Common

c = (@ this ; @)

*wrapper* Base

*suffix*

(@ cout << endl << "TRANSPORTED "

<< c << " TO " << this << endl ; @)

/// end transportation

Note that in a condenser the transportation graph is speci�ed in a forward manner *from*

Base *to* Common, although the transported object 
ows in the reverse direction from

Common to Base.

The condenser assumes that a Base-object contains at least one Common-object. Oth-

erwise the program will fail when it tries to print in class Base.

The complete propagation pattern is shown below. It includes the sequence of wrappers

in Fig. 10.18, called Base/Derived-wrappers, which will be used repeatedly.

*operation* void f()

*traverse*

*from* Ex *via* Base *to* Common

////////////// BROADCASTING //////////////////

*carry* *in* Transport* trans

*along* *from* Base *to* Common

*at* Base

trans = (@ new Transport(); @)

*wrapper* Common

*prefix*

(@ cout << endl << "TRANSPORTED "

<< trans << " TO " << this << endl ; @)

/// end transportation



336 CHAPTER 10. TRANSPORTATION PATTERNS

*wrapper* Base

*prefix*

(@ cout << endl << " pBase " << endl; @) // pBase

*suffix*

(@ cout << endl << " sBase " << endl; @) // sBase

*wrapper* Derived

*prefix*

(@ cout << endl << " pDerived " << endl; @) // pDerived

*suffix*

(@ cout << endl << " sDerived " << endl; @) // sDerived

Figure 10.18: Base/Derived-wrappers

///////////// CONDENSING ///////////////////

*carry* *out* Common* c

*along* *from* Base *to* Common

*at* Common

c = (@ this ; @)

*wrapper* Base

*suffix*

(@ cout << endl << "TRANSPORTED "

<< c << " TO " << this << endl ; @)

/// end transportation

//===================

insert Base/Derived-wrappers

//===================

Next we translate the propagation pattern to C++ for the given class dictionary. Trans-

portation speci�cations are implemented by signature extension. We will extend the signa-

ture at class Base with two arguments.

In this example we can observe a di�erent kind of code pushing than the wrapper pushing

we saw with traversals only. The code pushing in this example is related to transportation.

Now let's look at the code produced. We use PUSHED T to mark transportation code

pushing and PUSHED W to mark wrapper pushing.

// Ex = <r > Base .

void Ex::f( )

{

this->get_r()->f( );

}



10.4. CODE GENERATION 337

// Base : Derived

// *common* <q > Common .

void Base::f( )

{

// PREMATURELY TERMINATED

}

void Derived::f( )

{

// variable definitions for carrying in and out

Transport* trans = new Transport(); // PUSHED T

Common* c ; // PUSHED T

this->f( trans , c );

}

Why is there no code at class Base? What happened to the su�x wrapper for class

Base? It will be attached to class Derived after signature extension with two arguments.

The transportation code associated in the propagation pattern with class Base is pushed

to class Derived, which has a function with zero arguments containing transportation dec-

larations and initialization. Class Derived calls a function of Derived with two additional

arguments. Pushing of transportation code is triggered by signature extension at an alter-

nation class.

C++ has the equal-signature rule which requires that at Base and Derived we have the

same signature with zero arguments.

// Derived = "derived"

// <d > DerivedPart .

void Derived::f( Transport* trans,Common* & c )

{

// prefix class wrappers

cout << endl << " pBase " << endl; // PUSHED W

cout << endl << " pDerived " << endl;

this->get_q()->f( trans , c );

// suffix class wrappers

cout << endl << " sDerived " << endl;

cout << endl << " sBase " << endl; // PUSHED W

cout << endl << "TRANSPORTED "

<< c << " TO " << this << endl ;

}

// Common = "common" .

void Common::f( Transport* trans,Common* & c )

{

// prefix class wrappers

cout << endl << "TRANSPORTED "

<< trans << " TO " << this << endl ;



338 CHAPTER 10. TRANSPORTATION PATTERNS

// assignments for carrying out

c = this ; ;

}

Class Derived has a function f with two arguments. The su�x block of class Base shows

up at the end of the two-argument function of class Derived. This is important since the

su�x block refers to one of the two arguments. The su�x block would not be well de�ned

in the context of the zero-argument function of class Derived.

Case 2

Next we consider Case 2. It shows wrapper pushing in the absence of an inheritance edge.

| 0 args | 2 arguments

--------|-------------------|---------------------

| |

Base | (never called) |

| |

--------|-------------------|---------------------

| | 2 pBase

Derived | 1 calls 2 args | 3 pDerived

| | 4 call part

| | 5 sDerived

| | 6 sBase

Figure 10.19: Summary: Case 2

The propagation pattern is now

*operation* void f()

*traverse*

*from* Ex *via* Base *to* DerivedPart

////////////////////////////////

*carry* *in* Transport* trans

*along* *from* Base *to* DerivedPart

*at* Base

trans = (@ new Transport(); @)

*wrapper* DerivedPart

*prefix*

(@ cout << endl << "TRANSPORTED "

<< trans << " TO " << this << endl ; @)

/// end transportation

////////////////////////////////



10.4. CODE GENERATION 339

*carry* *out* DerivedPart* c

*along* *from* Base *to* DerivedPart

*at* DerivedPart

c = (@ this ; @)

*wrapper* Base

*suffix*

(@ cout << endl << "TRANSPORTED "

<< c << " TO " << this << endl ; @)

/// end transportation

//===================

insert Base/Derived-wrappers

//===================

The corresponding C++ code is below and is summarized in Fig. 10.19.

// Ex = <r > Base .

void Ex::f( )

{

this->get_r()->f( );

}

// Base : Derived

// *common* <q > Common .

void Base::f( )

{

// PREMATURELY TERMINATED

}

void Derived::f( )

{

// variable definitions for carrying in and out

Transport* trans = new Transport(); // PUSHED T

DerivedPart* c ; // PUSHED T

this->f( trans , c );

}

// Derived = "derived"

// <d > DerivedPart .

void Derived::f( Transport* trans,DerivedPart* & c )

{

// prefix class wrappers

cout << endl << " pBase " << endl; // PUSHED W

cout << endl << " pDerived " << endl;

// outgoing calls

// construction edge prefix wrappers



340 CHAPTER 10. TRANSPORTATION PATTERNS

this->get_d()->f( trans , c );

// construction edge suffix wrappers

// suffix class wrappers

cout << endl << " sDerived " << endl;

cout << endl << " sBase " << endl; // PUSHED W

cout << endl << "TRANSPORTED " //PUSHED W

<< c << " TO " << this << endl ; //PUSHED W

}

// DerivedPart = "part" .

void DerivedPart::f( Transport* trans,DerivedPart* & c )

{

// prefix class wrappers

cout << endl << "TRANSPORTED "

<< trans << " TO " << this << endl ;

// assignments for carrying out

c = this ;

}

Case 3

| 2 arguments

--------|-------------------

Base | 4 call part

--------|-------------------

| 1 pBase

| 2 pDerived

Derived | 3 call base

| 5 sDerived

| 6 sBase

Figure 10.20: Summary: Case 3

In Case 3 the transportation starts at a nonalternation vertex. The propagation pattern

is

*operation* void f()

*traverse*

*from* Ex *to* Common

////////////////////////////////

*carry* *in* Transport* trans



10.4. CODE GENERATION 341

*along* *from* Ex *to* Common

*at* Ex

trans = (@ new Transport(); @)

*wrapper* Common

*prefix*

(@ cout << endl << "TRANSPORTED "

<< trans << " TO " << this << endl ; @)

/// end transportation

////////////////////////////////

*carry* *out* Common* c

*along* *from* Ex *to* Common

*at* Common

c = (@ this ; @)

*wrapper* Ex

*suffix*

(@ cout << endl << "TRANSPORTED "

<< c << " TO " << this << endl ; @)

/// end transportation

//===================

insert Base/Derived-wrappers

//===================

The corresponding C++ code is summarized in Fig. 10.20 and shown in detail below.

void Ex::f( )

{ // variables for carrying in and out

Transport* trans ;

Common* c ;

// assignments for carrying in

trans = new Transport(); ;

// prefix blocks

// outgoing calls

r ->f( trans , c );

// suffix blocks

cout << endl << "TRANSPORTED "

<< c << " TO " << this << endl ; }

void Base::f( Transport* trans,Common* & c )

{

// outgoing calls

q ->f( trans , c );

}



342 CHAPTER 10. TRANSPORTATION PATTERNS

void Derived::f( Transport* trans,Common* & c )

{

// prefix blocks

// pBase PUSHED W

// pDerived

// outgoing calls

this->Base::f( trans , c );

// suffix blocks

// sDerived

// sBase PUSHED W

}

void Common::f( Transport* trans,Common* & c )

{ // prefix blocks

cout << endl << "TRANSPORTED "

<< trans << " TO " << this << endl ;

// assignments for carrying out

c = this ;}

Case 4

| 2 arguments

--------|-------------------

Base |

--------|-------------------

| 1 pBase

| 2 pDerived

Derived | 3 call part

| 4 sDerived

| 5 sBase

Figure 10.21: Summary: Case 4

This case is the simplest since the transportation starts at a nonalternation vertex and

since no inheritance edges are in the propagation graph. The propagation pattern is

*operation* void f()

*traverse*

*from* Ex *to* DerivedPart

////////////////////////////////



10.4. CODE GENERATION 343

*carry* *in* Transport* trans

*along* *from* Ex *to* DerivedPart

*at* Ex

trans = (@ new Transport(); @)

*wrapper* DerivedPart

*prefix*

(@ cout << endl << "TRANSPORTED "

<< trans << " TO " << this << endl ; @)

/// end transportation

////////////////////////////////

*carry* *out* DerivedPart* c

*along* *from* Ex *to* DerivedPart

*at* DerivedPart

c = (@ this ; @)

*wrapper* Ex

*suffix*

(@ cout << endl << "TRANSPORTED "

<< c << " TO " << this << endl ; @)

/// end transportation

//===================

insert Base/Derived-wrappers

//===================

The C++ code is left as an exercise.

10.4.2 Combining Two Propagation Patterns

For e�ciency reasons, it is often better to combine two independent traversals into one. To

compute a sum and an average, we might start with two independent traversals.

*operation* void fsum(int& sum)

*traverse*

*from* B *to* X

*wrapper* B

*prefix* (@ sum = 0; @)

*wrapper* X

*prefix* (@ sum = sum + *v; @)

and

*operation* void fcount(int& count)

*traverse*

*from* B *to* Z

*wrapper* B

*prefix* (@ count = 0; @)

*wrapper* Z

*prefix* (@ count ++ ; @)



344 CHAPTER 10. TRANSPORTATION PATTERNS

Then we call both functions and print their results.

*operation* call_them()

*wrapper* B

*prefix*

(@ this -> fsum(s); this -> fcount(c);

cout << s << c;

@)

Instead of traversing B-objects in two sweeps, it is more e�cient to traverse them in

one sweep. This is especially the case if the paths to X and Z have a big overlap. The above

three propagation patterns are equivalent to the following one; more precisely, the function

call them and combined produce the same output when called for a B-object.

*operation* void combined()

*traverse*

*from* B *to* {X, Z}

// transportation pattern for fsum

*carry* *out* int sum

*along* *from* B *to* X

*wrapper* B

*prefix* (@ sum = 0; @)

*wrapper* X

*prefix* (@ sum = sum + *v; @)

// end transportation for fsum

// transportation pattern for fcount

*carry* *out* int count

*along* *from* B *to* Z

*wrapper* B

*prefix* (@ count = 0; @)

*wrapper* Z

*prefix* (@ count ++ ; @)

// end transportation for fcount

*wrapper* B

*suffix*

(@ cout << sum << count; @)

The strategy of the combination is to replace the two traversals by two transportations

that collect the same information, and to embed the two transportations into a traversal

that �ts them both. The new traversal directive is the merge of the two original traversal

directives.

10.5 SUMMARY

Transportation patterns simplify the transportation of objects. They allow us to group

objects together without having to know the details of their structure.



10.6. EXERCISES 345

A transportation pattern is a reusable unit that lives in the context of a propagation

pattern containing a traversal directive. The same transportation pattern may be used

with di�erent traversals. A transportation pattern consists of several *carry* statements

(containing transportation directives and initialization statements). Several transportation

patterns may be used in a propagation pattern.

A class dictionary that customizes a propagation pattern containing transportation

patterns has to satisfy additional customizer restrictions beyond those for the traversal.

The terminology is summarized in Fig. 10.22.

propagation pattern (with traversal)

propagation directive

which determines traversal graph

zero or more transportation patterns

wrappers

transportation pattern

carry statements (declare transportation variables)

propagation directive

which determines transportation graph

initialization of transportation variables

wrappers which use transported variables

Figure 10.22: Transportation pattern terminology

10.6 EXERCISES

Exercise 10.1 (contributed by Cristina Lopes)

The following statement is about the relationship between traversal and transportation

graphs. Is it correct? If so, prove it; otherwise �nd a counterexample. If the traversal graph

has a single source and a single target, all the paths from the source to the target in the

traversal graph must pass through the source of the transportation graph.

Exercise 10.2 Write a propagation pattern which for a given A-object brings the X-object

to the Y-object and prints them both in class Y. Write three di�erent propagation patterns,

one for each of the following class dictionaries.

� A = <x> X.

X = <y> Y.

Y = .

Hint:

traversal: *from* A *to* Y

transportation: *from* X *to* Y



346 CHAPTER 10. TRANSPORTATION PATTERNS

� A = <y> Y.

Y = <x> X.

X = .

Hint:

traversal: *from* A *to* X

transportation: *from* Y *to* X

� A = <x> X <y> Y.

X = .

Y = .

Hint:

traversal: *from* A *to* Y

transportation: *from* A *to* Y

How can the class dictionary graphs be generalized so that the propagation patterns

don't need updating and still implement the same task?

Exercise 10.3 Consider the following class dictionary, called ES. (It is a grammar de�ning

an equation language; see Chapter 11.)

1 EquationSystem = <eqs> List(Equation).

2 Equation =

3 <var> Variable "="

4 <exp> Exp "." .

5 Exp :

6 FunctionCall |

7 Variable |

8 Number.

9 FunctionCall = "*call*" <fn> Function

10 <args> CommaList(Exp) .

11 Variable = <variableName> DemIdent.

12 Function = <functionName> DemIdent.

13 Number = <n> DemNumber.

14 List(S) ~ {S}.

15 CommaList(S) ~ "(" S {"," S} ")".

Sorted cross reference list:

CommaList :15 10

Equation :2 1

EquationSystem :1

Exp :5 4 10

Function :12 9



10.6. EXERCISES 347

FunctionCall :9 6

List :14 1

Number :13 8

Variable :11 3 7

All traversal and transportation graphs are with respect to ES.

� Consider the following propagation directive:

*from* EquationSystem

*through* -> * , var , *

*to* Variable

Find the unknowns in the propagation graph:

UNKNOWN1 = UNKNOWN2 .

Equation = < UNKNOWN3 > UNKNOWN4 .

UNKNOWN5 = .

UNKNOWN6 ~ { UNKNOWN7 } .

� Consider the following propagation directive:

*from* EquationSystem

*bypassing* -> Equation , var , Variable

*to* Variable

Find the unknowns in the propagation graph:

UNKNOWN8 = < UNKNOWN9 > UNKNOWN10 .

UNKNOWN11 = < UNKNOWN12 > UNKNOWN13 .

UNKNOWN14 : UNKNOWN15 | UNKNOWN16 .

UNKNOWN17 = < UNKNOWN18 > UNKNOWN19 .

UNKNOWN20 = .

UNKNOWN21 ~ { UNKNOWN22 } .

UNKNOWN23 ~ UNKNOWN24 .

� Consider the following propagation directive (for traversal):

*from* EquationSystem

*through* -> Equation , var , Variable

*to* Variable

and the corresponding transportation directive:

*from* EquationSystem *to* Variable

Find the unknowns in the following transportation graph:



348 CHAPTER 10. TRANSPORTATION PATTERNS

UNKNOWN25 = < UNKNOWN26 > UNKNOWN27 .

Equation = < UNKNOWN28> UNKNOWN29 .

UNKNOWN30 = UNKNOWN31 .

UNKNOWN32 ~ { UNKNOWN33 } .

� Consider the following propagation directive (for traversal):

*from* EquationSystem

*bypassing* -> Equation , var , Variable

*to* Variable

and the corresponding transportation directive:

*from* Equation *to* Variable

Find the unknowns in the following transportation graph:

UNKNOWN34 = < UNKNOWN35 > UNKNOWN36 .

UNKNOWN37 : UNKNOWN38 | UNKNOWN39 .

UNKNOWN40 = < UNKNOWN41 > UNKNOWN42 .

UNKNOWN43 = .

UNKNOWN44 ~ UNKNOWN45 .

Exercise 10.4 The class dictionary is ES (see previous exercise). Consider the propagation

pattern:

*operation* void f(ostream& strm)

*traverse*

*from* EquationSystem

*through* -> *,var,*

*to* Variable

*carry*

*in* EquationSystem* c

*along* *from* EquationSystem

*to* Variable

*at* EquationSystem c =(@ this @)

*wrapper* Variable

*prefix*

(@ strm << this << "\t:" <<

this->get_variableName()->get_line_number() << "\t";

c->g(this,strm);

strm << "\n";@)

*operation* void g(Variable* v,ostream& strm)

*traverse*



10.6. EXERCISES 349

*from* EquationSystem

*bypassing* -> *,var,*

*to* Variable

*carry* *in* Equation* eq

*along* *from* Equation *to* Variable

*at* Equation

eq = (@ this @)

*wrapper* ~> Equation_List, Equation

*prefix*

(@ cout << "going through next equation "

<< each_Equation << endl; @)

*wrapper* Variable

*prefix*

(@

cout << endl << this << " from " << eq <<

" compared with " << v << endl;

if (this->g_equal(v))

{

strm << "used on " <<

this->get_variableName()->get_line_number() << "\n";

}

@)

and the following input object

: EquationSystem (

< eqs > : Equation_List {

: Equation (

< var > : Variable (

< variableName > : DemIdent "a" )

< exp > : Number (

< n > : DemNumber "1" ) ) ,

: Equation (

< var > : Variable (

< variableName > : DemIdent "b" )

< exp > : Number (

< n > : DemNumber "2" ) ) ,

: Equation (

< var > : Variable (

< variableName > : DemIdent "c" )

< exp > : FunctionCall (

< fn > : Function (

< functionName > : DemIdent "f" )

< args > : Exp_CommaList {

: Variable (



350 CHAPTER 10. TRANSPORTATION PATTERNS

< variableName > : DemIdent "a" ) ,

: FunctionCall (

< fn > : Function (

< functionName > : DemIdent "g" )

< args > : Exp_CommaList {

: Variable (

< variableName > : DemIdent "b" ) } ) } ) ) ,

: Equation (

< var > : Variable (

< variableName > : DemIdent "d" )

< exp > : FunctionCall (

< fn > : Function (

< functionName > : DemIdent "h" )

< args > : Exp_CommaList {

: Number (

< n > : DemNumber "1" ) ,

: Variable (

< variableName > : DemIdent "c" ) ,

: Number (

< n > : DemNumber "6" ) } ) ) } )

Find the unknowns in the following sentence and trace. The object in sentence form

a = UNKNOWN1.

b = UNKNOWN2.

c = *call* UNKNOWN3 (UNKNOWN4,*call* g(UNKNOWN5)).

UNKNOWN6 = *call* UNKNOWN7(UNKNOWN8, UNKNOWN9, UNKNOWN10).

The trace

>> void EquationSystem::f(ostream& strm)

>> void UNKNOWN11::f(ostream& strm,EquationSystem* c)

>> void UNKNOWN12::f(ostream& strm,EquationSystem* c)

>> void UNKNOWN13::f(ostream& strm,EquationSystem* c)

a :2 >> void EquationSystem::g(Variable* v,ostream& strm)

>> void Equation_List::g(Variable* v,ostream& strm)

going through next equation a = UNKNOWN14 .

>> void UNKNOWN15::g(Variable* v,ostream& strm)

>> void Number::g(Variable* v,ostream& strm,Equation* eq)

<< void Number::g(Variable* v,ostream& strm,Equation* eq)

<< void UNKNOWN16::g(Variable* v,ostream& strm)

going through next equation b = UNKNOWN17 .

>> void UNKNOWN18::g(Variable* v,ostream& strm)

>> void Number::g(Variable* v,ostream& strm,Equation* eq)

<< void Number::g(Variable* v,ostream& strm,Equation* eq)

<< void UNKNOWN19::g(Variable* v,ostream& strm)



10.6. EXERCISES 351

going through next equation UNKNOWN20

>> void Equation::g(Variable* v,ostream& strm)

>> void FunctionCall::g(Variable* v,ostream& strm,Equation* eq)

>> void Exp_CommaList::g(Variable* v,ostream& strm,Equation* eq)

>> void Variable::g(Variable* v,ostream& strm,Equation* eq)

a from UNKNOWN21 compared with a

used on 4

<< void UNKNOWN22::g(Variable* v,ostream& strm,Equation* eq)

>> void UNKNOWN23::g(Variable* v,ostream& strm,Equation* eq)

>> void UNKNOWN24::g(Variable* v,ostream& strm,Equation* eq)

>> void UNKNOWN25::g(Variable* v,ostream& strm,Equation* eq)

b from UNKNOWN26 compared with a

<< void UNKNOWN27::g(Variable* v,ostream& strm,Equation* eq)

<< void UNKNOWN28::g(Variable* v,ostream& strm,Equation* eq)

<< void UNKNOWN29::g(Variable* v,ostream& strm,Equation* eq)

<< void UNKNOWN30::g(Variable* v,ostream& strm,Equation* eq)

<< void FunctionCall::g(Variable* v,ostream& strm,Equation* eq)

<< void Equation::g(Variable* v,ostream& strm)

going through next equation UNKNOWN31

>> void Equation::g(Variable* v,ostream& strm)

>> void FunctionCall::g(Variable* v,ostream& strm,Equation* eq)

>> void Exp_CommaList::g(Variable* v,ostream& strm,Equation* eq)

>> void Number::g(Variable* v,ostream& strm,Equation* eq)

<< void Number::g(Variable* v,ostream& strm,Equation* eq)

>> void Variable::g(Variable* v,ostream& strm,Equation* eq)

c from UNKNOWN32 compared with UNKNOWN33

<< void Variable::g(Variable* v,ostream& strm,Equation* eq)

>> void Number::g(Variable* v,ostream& strm,Equation* eq)

<< void Number::g(Variable* v,ostream& strm,Equation* eq)

<< void Exp_CommaList::g(Variable* v,ostream& strm,Equation* eq)

<< void FunctionCall::g(Variable* v,ostream& strm,Equation* eq)

<< void Equation::g(Variable* v,ostream& strm)

<< void Equation_List::g(Variable* v,ostream& strm)

<< void EquationSystem::g(Variable* v,ostream& strm)

<< void Variable::f(ostream& strm,EquationSystem* c)

<< void Equation::f(ostream& strm,EquationSystem* c)

>> void Equation::f(ostream& strm,EquationSystem* c)

>> void Variable::f(ostream& strm,EquationSystem* c)

b :3 >> void EquationSystem::g(Variable* v,ostream& strm)

>> void Equation_List::g(Variable* v,ostream& strm)

going through next equation a = UNKNOWN34 .



352 CHAPTER 10. TRANSPORTATION PATTERNS

>> void Equation::g(Variable* v,ostream& strm)

>> void Number::g(Variable* v,ostream& strm,Equation* eq)

<< void Number::g(Variable* v,ostream& strm,Equation* eq)

<< void Equation::g(Variable* v,ostream& strm)

going through next equation b = UNKNOWN35 .

>> void Equation::g(Variable* v,ostream& strm)

>> void Number::g(Variable* v,ostream& strm,Equation* eq)

<< void Number::g(Variable* v,ostream& strm,Equation* eq)

<< void Equation::g(Variable* v,ostream& strm)

going through next equation UNKNOWN36

>> void Equation::g(Variable* v,ostream& strm)

>> void FunctionCall::g(Variable* v,ostream& strm,Equation* eq)

>> void Exp_CommaList::g(Variable* v,ostream& strm,Equation* eq)

>> void Variable::g(Variable* v,ostream& strm,Equation* eq)

a from UNKNOWN37 compared with b

<< void Variable::g(Variable* v,ostream& strm,Equation* eq)

>> void FunctionCall::g(Variable* v,ostream& strm,Equation* eq)

>> void Exp_CommaList::g(Variable* v,ostream& strm,Equation* eq)

>> void Variable::g(Variable* v,ostream& strm,Equation* eq)

b from UNKNOWN38 compared with b

used on 4

<< void Variable::g(Variable* v,ostream& strm,Equation* eq)

<< void Exp_CommaList::g(Variable* v,ostream& strm,Equation* eq)

<< void FunctionCall::g(Variable* v,ostream& strm,Equation* eq)

<< void Exp_CommaList::g(Variable* v,ostream& strm,Equation* eq)

<< void FunctionCall::g(Variable* v,ostream& strm,Equation* eq)

<< void Equation::g(Variable* v,ostream& strm)

going through next equation UNKNOWN39

>> void Equation::g(Variable* v,ostream& strm)

>> void FunctionCall::g(Variable* v,ostream& strm,Equation* eq)

>> void Exp_CommaList::g(Variable* v,ostream& strm,Equation* eq)

>> void Number::g(Variable* v,ostream& strm,Equation* eq)

<< void Number::g(Variable* v,ostream& strm,Equation* eq)

>> void Variable::g(Variable* v,ostream& strm,Equation* eq)

c from UNKNOWN40 compared with b

<< void Variable::g(Variable* v,ostream& strm,Equation* eq)

>> void Number::g(Variable* v,ostream& strm,Equation* eq)

<< void Number::g(Variable* v,ostream& strm,Equation* eq)

<< void Exp_CommaList::g(Variable* v,ostream& strm,Equation* eq)

<< void FunctionCall::g(Variable* v,ostream& strm,Equation* eq)

<< void Equation::g(Variable* v,ostream& strm)

<< void Equation_List::g(Variable* v,ostream& strm)



10.6. EXERCISES 353

<< void EquationSystem::g(Variable* v,ostream& strm)

<< void Variable::f(ostream& strm,EquationSystem* c)

<< void Equation::f(ostream& strm,EquationSystem* c)

>> void Equation::f(ostream& strm,EquationSystem* c)

>> void Variable::f(ostream& strm,EquationSystem* c)

c :4 >> void EquationSystem::g(Variable* v,ostream& strm)

>> void Equation_List::g(Variable* v,ostream& strm)

rest deleted

Exercise 10.5 Consider the following propagation patterns together with class dictionary

ES (see previous exercise).

*operation* void f(ostream& strm)

*traverse*

*from* EquationSystem

*through* -> *,var,*

*to* Variable

*carry*

*in* EquationSystem* c

*along* *from* EquationSystem

*to* Variable

*at* EquationSystem c =(@ this @)

*wrapper* Variable

*prefix*

(@ strm << this << "\t:" <<

this->get_variableName()->get_line_number() << "\t";

c->g(this,strm);

strm << "\n";@)

*operation* void g(Variable* v,ostream& strm)

*traverse*

*from* EquationSystem

*bypassing* -> *,var,*

*to* Variable

*carry* *in* Equation* eq

*along* *from* Equation *to* Variable

*at* Equation

eq = (@ this @)

*wrapper* ~> Equation_List, Equation

*prefix*

(@ cout << "going through next equation "

<< each_Equation << endl; @)

*wrapper* Variable



354 CHAPTER 10. TRANSPORTATION PATTERNS

*prefix*

(@

cout << endl << this << " from " << eq <<

" compared with " << v << endl;

if (this->g_equal(v))

{

strm << "used on " <<

this->get_variableName()->get_line_number() << "\n";

}

@)

Find the unknowns in the following C++ program:

void EquationSystem::f( ostream& strm )

{ // variables for carrying in and out

EquationSystem* c ;

// assignments for carrying in

c = UNKNOWN1 ;

// outgoing calls

eqs ->f( UNKNOWN2 , UNKNOWN3 ); }

void Equation::f( ostream& strm, EquationSystem* c )

{ // outgoing calls

var ->f( UNKNOWN4 , UNKNOWN5 ); }

void Variable::f( ostream& strm, EquationSystem* c )

{ // prefix blocks

strm << this << "\t:" <<

this->get_variableName()->get_line_number() << "\t";

c->g(this,strm);

strm << "\n"; }

void Equation_List::f( ostream& strm, EquationSystem* c )

{ // outgoing calls

Equation_list_iterator next_Equation(*this);

Equation* each_Equation;

UNKNOWN6 ( UNKNOWN7 = UNKNOWN8() )

{

UNKNOWN9->f( strm , c ); } }

void EquationSystem::g( Variable* v,ostream& strm )

{ // outgoing calls

eqs ->g( v , strm ); }



10.6. EXERCISES 355

void Equation::g( Variable* v,ostream& strm )

{ // variables for carrying in and out

UNKNOWN10

// assignments for carrying in

UNKNOWN11

// outgoing calls

exp ->g( UNKNOWN12 , UNKNOWN13 , UNKNOWN14 ); }

void Exp::g( Variable* v,ostream& strm, Equation* eq )

{ }

void Number::g( Variable* v,ostream& strm, Equation* eq )

{ UNKNOWN15 }

void FunctionCall::g( Variable* v,ostream& strm, Equation* eq )

{ // outgoing calls

args ->g( v , strm , eq ); }

void Variable::g( Variable* v,ostream& strm, Equation* eq )

{

cout << endl << this << " from " << eq <<

" UNKNOWN16 with " << v << endl;

if (this->g_equal(v))

{

strm << "used on " <<

this->UNKNOWN17()->get_line_number() << "\n";

}

}

void Equation_List::g( Variable* v,ostream& strm )

{ // outgoing calls

Equation_list_iterator next_Equation(*this);

Equation* each_Equation;

UNKNOWN18 ( UNKNOWN19 = UNKNOWN20() )

{

cout << "UNKNOWN21"

<< each_Equation << endl;

each_Equation->g( v , strm );

} }

void Exp_CommaList::g( Variable* v,ostream& strm, Equation* eq )



356 CHAPTER 10. TRANSPORTATION PATTERNS

{ // outgoing calls

Exp_list_iterator next_Exp(*this);

Exp* each_Exp;

UNKNOWN22 ( UNKNOWN23 = UNKNOWN24() )

{

each_Exp->g( v , strm , eq );

} }

10.7 BIBLIOGRAPHIC REMARKS

� The \bring actors on stage" metaphor was suggested by Sam Adams [Ada93].

� The triples example is from [LX93b].

� The DFT example is from [LX93c].

10.8 SOLUTIONS

Solution to Exercise 10.3

UNKNOWN1 = EquationSystem UNKNOWN2 = < eqs > Equation_List

UNKNOWN3 = var UNKNOWN4 = Variable

UNKNOWN5 = Variable UNKNOWN6 = Equation_List

UNKNOWN7 = Equation UNKNOWN8 = EquationSystem

UNKNOWN9 = eqs UNKNOWN10 = Equation_List

UNKNOWN11 = Equation UNKNOWN12 = exp

UNKNOWN13 = Exp UNKNOWN14 = Exp

UNKNOWN15 = FunctionCall *CHOICE* switch with UNKNOWN16

UNKNOWN16 = Variable UNKNOWN17 = FunctionCall

UNKNOWN18 = args UNKNOWN19 = Exp_CommaList

UNKNOWN20 = Variable UNKNOWN21 = Equation_List

UNKNOWN22 = Equation UNKNOWN23 = Exp_CommaList

UNKNOWN24 = Exp UNKNOWN25 = EquationSystem

UNKNOWN26 = eqs UNKNOWN27 = Equation_List

UNKNOWN28 = var UNKNOWN29 = Variable

UNKNOWN30 = Variable UNKNOWN31 = nothing

UNKNOWN32 = Equation_List UNKNOWN33 = Equation

UNKNOWN34 = Equation UNKNOWN35 = exp

UNKNOWN36 = Exp UNKNOWN37 = Exp

UNKNOWN38 = FunctionCall *CHOICE* swith with UNKNOWN 39

UNKNOWN39 = Variable UNKNOWN40 = FunctionCall

UNKNOWN41 = args UNKNOWN42 = Exp_CommaList

UNKNOWN43 = Variable UNKNOWN44 = Exp_CommaList

UNKNOWN45 = Exp { Exp }

Solution to Exercise 10.5



10.8. SOLUTIONS 357

UNKNOWN1 = this UNKNOWN2 = strm

UNKNOWN3 = c UNKNOWN4 = strm

UNKNOWN5 = c UNKNOWN6 = while

UNKNOWN7 = each_Equation UNKNOWN8 = next_Equation

UNKNOWN9 = each_Equation UNKNOWN10 = Equation* eq ;

UNKNOWN11 = eq = this ; UNKNOWN12 = v

UNKNOWN13 = strm UNKNOWN14 = eq

UNKNOWN15 = nothing UNKNOWN16 = compared

UNKNOWN17 = get_variableName UNKNOWN18 = while

UNKNOWN19 = each_Equation UNKNOWN20 = next_Equation

UNKNOWN21 = going through next equation

UNKNOWN22 = while UNKNOWN23 = each_Exp

UNKNOWN24 = next_Exp



Chapter 11

Class Dictionaries

Class dictionaries are more sophisticated propagation pattern customizers than are class

dictionary graphs. With a class dictionary we can choose not only the detailed structure of

objects, but also an application-speci�c notation for describing the objects succinctly. This

notation allows us to describe \input stories" for propagation patterns. For example, for a

restaurant administration program we can write a story that describes today's menu.

Objects are important for object-oriented design and programming, but they are too

bulky to look at or to produce by hand. An example of an object is

Compound(

<op> MulSym()

<args> ArgList{

Variable(

<v> DemIdent "a")

Variable(

<v> DemIdent "b")})

Can we �nd a more succinct way to describe objects than the textual object notation or,

even worse, the statements of a programming language (e.g., constructor calls)? Which

information is essential in the objects? We certainly need the values of the atomic objects

and some information about how those atomic objects are grouped together into larger

objects. In the above example we need to know that a and b are atomic objects of the

expression. This grouping can be expressed with some extra strings that we put between

the atomic objects to allow a program to recover an object from a sentence. We use the

word sentence simply to mean a sequence of terminals. It can be a proper English or French

sentence or a stylized sentence, or it can be anything. To make a complete sentence out of

a b, we use a few extra terminals: (* a b). Although much shorter than the above object, it

conveys the same information if we use a class dictionary to interpret (* a b).

We �rst study how we can assign a concise sentence to an object. The goal in the back

of our mind is to make the sentences expressive enough so that we can recover the objects

automatically.

358



359

Consider again the meal example. We would like to describe a meal with a sentence

such as

Appetizer:

Melon

Entree:

Steak Potato Carrots Peas

Dessert:

Cake

instead of using the object notation. We can achieve this with the class dictionary in Fig.

11.1. A sentence is like a story about an object. The stories can be concise, like the one

above, or verbose, and it is the class dictionary designer who decides. For example, the

above meal description could be given by the following sentence:

At Hotel Switzerland you will enjoy

Melon as an appetizer

Steak Potato Carrots Peas as entree

and Cake as a delicious dessert.

You will enjoy a splendid view of the Alps during good weather.

It is easy to adjust the class dictionary in Fig. 11.1 so that meals are represented in the

above verbose form as sentences. All we need is to replace the �rst class de�nition by

Meal = "At Hotel Switzerland you will enjoy"

Appetizer "as an appetizer"

Entree "as entree and"

Dessert "as a delicious dessert."

"You will enjoy a splendid view of the Alps during good weather.".

If sentences are like stories about objects, then class dictionaries are like templates for

stories. A class dictionary prescribes precisely how we have to write the stories about the

application objects. Class dictionary design is like designing story templates.

We can also look at a sentence as describing a family of objects. We select a speci�c

object from the family by selecting a class dictionary that is compatible with the sentence.

From this point of view a sentence is like a propagation pattern: both are customized by a

class dictionary.

Conceptually, a class dictionary is very similar to a class dictionary graph. A class

dictionary can be viewed as a class dictionary graph with comments required to de�ne the

input language.

Concrete syntax (also known as syntactic sugar) is used to \sweeten" the syntax of the

sentences. Below are examples of construction, alternation, and repetition class de�nitions

which show where concrete syntax may be used.1 We call the concrete syntax elements

tokens.

1Legal class dictionary, page 437 (32).



360 CHAPTER 11. CLASS DICTIONARIES

Meal =

"Appetizer:" Appetizer

"Entree:" Entree

"Dessert:" Dessert.

Appetizer : Melon | ShrimpCocktail.

ShrimpCocktail = "Shrimp Cocktail" Shrimps Lettuce [CocktailSauce].

CocktailSauce = Ketchup HorseRadish.

Entree : SteakPlatter | BakedStuffedShrimp.

SteakPlatter = Steak Trimmings.

BakedStuffedShrimp = StuffedShrimp Trimmings.

Trimmings = Potato <veggie1> Vegetable <veggie2> Vegetable.

Vegetable : Carrots | Peas | Corn.

Dessert : Pie | Cake | Jello.

Shrimps ~ Shrimp {Shrimp}.

Shrimp = .

Melon = "Melon".

Lettuce = .

Ketchup = .

Steak = "Steak".

Potato = "Potato".

Carrots = "Carrots".

Peas = "Peas".

Cake = "Cake".

Pie = "Pie".

Jello = "Jello".

Corn = "Corn".

StuffedShrimp = "Stuffed Shrimp".

HorseRadish = .

Figure 11.1: Meal language



361

Construction class:

Info =

"Demeter System" <t> Trademarked

"followed" "by"

["Law of Demeter" NotTrademarked]

"developed" "at" Northeastern.

Each part may have some syntax associated with it that can appear before or after the

part.

Alternation class:

Fruit: Apple | Orange *common*

"weight" <weight> DemNumber "end".

The alternatives of an alternation class may not contain syntax.

Repetition class:

List ~ "begin" "list"

{"before-each" Element "after-each"}

"end" "list".

List ~ "first" Element

{"separator" "prefix" Element "suffix"}

"terminator".

Syntax is not allowed between the �rst element and the repeated part. To specify

the language de�ned by a class dictionary, we �rst translate a class dictionary into a class

dictionary without common parts; that is, into a 
at class dictionary. The class dictionary

without common parts2 is then used as a printing table to print a given object.3 The

collection of all printed legal objects constitutes the language of the class dictionary.

The expansion of common parts is best demonstrated with an example. Consider the

class dictionary

Basket = <contents> Fruit_List.

Fruit_List ~ {Fruit}.

Fruit : Apple | Orange *common*

"weight" <weight> DemNumber "end".

Apple = "apple".

Orange = "orange".

After expansion of common parts

2Class dictionary 
attening, page 439 (33).
3Printing, page 439 (34).



362 CHAPTER 11. CLASS DICTIONARIES

// flat class dictionary

Basket = <contents> Fruit_List.

Fruit_List ~ {Fruit}.

Fruit : Apple | Orange.

Apple = "apple"

"weight" <weight> DemNumber "end".

Orange = "orange"

"weight" <weight> DemNumber "end".

The common parts are 
attened out to all the construction classes; therefore we call

the expanded class dictionaries 
at. Flat class dictionaries are usually not written by the

user but are produced from non
at class dictionaries by tools. Flat class dictionaries are

a useful intermediate form. Notice that the 
attening operation is well de�ned since there

can be no cycles of alternation edges in a class dictionary graph.

For 
at class dictionaries it is straightforward to de�ne a printing operation4 that is

applicable to any object. We determine the class of the object and look up the class def-

inition. Then we print the object according to the class de�nition, including the concrete

syntax. For example, to print an Apple-object, we �rst print weight followed by printing a

DemNumber-object followed by printing end. The set of all legal objects in printed form

for some class dictionary G is the language de�ned by G. The language de�ned by G is

sometimes called the set of sentences de�ned by G.

To demonstrate the printing algorithm we use the above class dictionary for baskets.

Consider the following Basket-object that we want to print.

Basket (

< contents > Fruit_List {

Apple (

< weight > DemNumber "2" ) ,

Orange (

< weight > DemNumber "5" ) } )

When we print it, we get the following output:

// sentence describing a Basket-object

apple weight 2 end

orange weight 5 end

If we change the class dictionary to

Basket = "basket" <contents> Fruit_List.

Fruit_List ~ "(" {Fruit} ")".

Fruit : Apple | Orange *common*

"weight" <weight> DemNumber.

Apple = "apple".

Orange = "orange".

4Printing, page 439 (34).



11.1. PARSING 363

the same object appears as

basket

( apple weight 2 orange weight 5 )

11.1 PARSING

We know how a class dictionary de�nes a language by assigning a sentence to each object.

An object represents the structure of a given sentence relative to a class dictionary. A class

dictionary is closely related to a grammar, the main di�erence being that a grammar de�nes

only a language and a class dictionary additionally de�nes classes. (Knowledge of grammars

is not a prerequisite for understanding this section.) Examples of two grammars, using the

Extended Backus-Naur Form (EBNF) notation are in Fig. 11.2.

// Grammar 1

Basket = {Apple | Orange}.

Apple = "apple" "weight" DemNumber "end".

Orange = "orange" "weight" DemNumber "end".

// Grammar 2, almost a class dictionary

Basket = Fruit_List.

Fruit_List = {Fruit}.

Fruit = Apple | Orange.

Apple = "apple" "weight" DemNumber "end".

Orange = "orange" "weight" DemNumber "end".

Figure 11.2: Two grammars de�ning the same language

The di�erences between a grammar and a class dictionary are

� A grammar is usually shorter than a class dictionary since it is not concerned about

object structure.

� A grammar does not have labels to name parts.

� A grammar does not have common parts; it is like a 
at class dictionary.

� The syntax for grammars and class dictionaries is di�erent but grammars can be

written in a form that is close to a class dictionary (see Grammar 2 in Fig. 11.2).

Normally we are interested in de�ning an object by reading5 its description from a

text �le. We call such a description a sentence that de�nes an object. A special kind of

object, called a tree object, is de�ned by a sentence. It is called a tree object since its

5Parsing, page 441 (38).



364 CHAPTER 11. CLASS DICTIONARIES

underlying graph structure, given by the reference relationships between the objects, is a

tree. Not every object is a tree object for some sentence. There are also circular objects

and objects that share subobjects. An object o is said to be a tree object for a sentence

s if its structure is a tree and not a general graph. Tree objects o have the property that

printing o and reading the sentence again returns an object identical to the original object

o. Not every object needs to be a tree object since many objects are built under program

control, and there is never a need to read them from a text �le.

The class dictionary contains all the information that is usually put into a grammar

for de�ning a language. Therefore standard parser generator technology can be used to

generate a parser automatically from the class dictionary. The parser takes as input a

sentence in some �le and returns the corresponding tree object. The grammar given in the

class dictionary de�nes how to build the tree object.

We want to restrict ourselves to a subset of all class dictionaries that promote good

\object story writing". We want the stories to be easy to read and write and learn. We also

want the stories to be unique so that no two di�erent stories describe the same object.

Therefore we introduce the concept of an ambiguous class dictionary. A class dictionary

is ambiguous if there exist two distinct objects that map to the same sentence when they

are printed. An example of an ambiguous class dictionary is:

Basket = <fruits> Fruit_List.

Fruit_List ~ {Fruit}.

Fruit : Apple | Orange.

Apple = "apple".

Orange = "apple".

The sentence "apple apple" represents four di�erent kinds of baskets:

� A basket with two apples

� A basket with one apple and one orange

� A basket with one orange and one apple

� A basket with two oranges.

Therefore, the class dictionary is ambiguous.

We want to avoid ambiguous class dictionaries; therefore we need an algorithm to check

whether a class dictionary is ambiguous. Not all problems are algorithmically solvable and

computer scientists have found many computational problems that are provably not algo-

rithmically solvable. Indeed, the class dictionary ambiguity problem cannot be solved by

an algorithm. This can be proved by a reduction that shows that if the class dictionary

ambiguity problem is solvable, then one of the provably unsolvable problems (Post's cor-

respondence problem) is solvable. This leads to a contradiction and therefore the class

dictionary ambiguity problem is not algorithmically solvable.

We need to look for a work-around regarding the checking of a class dictionary for

ambiguity. The solution is to restrict our attention to a subset U of all class dictionaries

that are useful in practice and for which we can solve the ambiguity problem e�ciently.



11.1. PARSING 365

We also need to �nd a subset U so that we can e�ciently check whether a class dictionary

belongs to U or not.

We choose U to be the set of LL(1) class dictionaries. We can e�ciently check whether

a class dictionary is LL(1), and in fact all LL(1) class dictionaries are not ambiguous. An

LL(1) class dictionary has to satisfy two rules. We will learn Rule 1 shortly; Rule 2 is more

technical and is explained in the next section and in the theory part of the book.

The LL(1) class dictionaries tend to de�ne languages that are easy to learn and read.

LL(1) class dictionaries are therefore very useful in practice especially in an environment

where languages change frequently.

We parse class dictionaries by so-called recursive descent parsing, which will be explained

next. This explains in detail how an object is constructed from a sentence. Recursive descent

parsing is a standard concept from compiler theory; refer to your favorite compiler book

(for example, [ASU86]) to learn how recursive descent parsing is used to build compilers.

A sentence is made up of terminals. There are two kinds of terminals, namely terminals

with a value and terminals without a value. A number such as 123 is a terminal with a

value and it represents an object of terminal class DemNumber. As a rule, terminals with

values are representing objects belonging to a terminal class. Terminals without values

correspond to the terminals appearing in the class dictionary. For example, apple orange are

two terminals that correspond to the two terminals in the following class dictionary:

Fruits = Apple Orange.

Apple = "apple".

Orange = "orange".

We also call the terminals without value tokens. Notice that we overload the token concept

since the syntax elements in a class dictionary are also called tokens.

Recursive descent parsing is best explained by mapping class dictionaries into syntax

graphs (also called syntax charts or syntax diagrams) which are widely used for de�ning

programming languages. In a syntax graph, classes are shown inside rectangles and tokens

inside ovals. For every class there is one syntax graph. The syntax graph of a construction

class

A = B1[B2] : : : Bn:

is given in Fig. 11.3.

......  B1 B2 BnA

Figure 11.3: Syntax graph construction

The syntax graph of a repetition class

A ~ {S ";"}.

is given in Fig. 11.4.

The syntax graph of a repetition class



366 CHAPTER 11. CLASS DICTIONARIES

; S

A

Figure 11.4: Syntax graph repetition

A ~ S { ";" S}.

is given in Fig. 11.5.

A S

;

Figure 11.5: Syntax graph repetition (nonempty)

The syntax graph of an alternation class

A : B1jB2j : : : jBn:

is given in Fig. 11.6.

...
...

 
B1

B2

Bn

A

Figure 11.6: Syntax graph alternation

The parser works like a train that is trying to load a sentence while traversing the syntax

graphs. (The sentence is broken into a sequence of terminals by a scanner.) The train enters

the start syntax chart which corresponds to the start class of the class dictionary. Whenever

the train enters a rectangle it moves to the syntax graph of the class in the rectangle.

Whenever the train enters an oval it loads the token, provided it is the next terminal in

the sentence to be parsed. The train stops and signals a syntax error if there is a di�erent

terminal in the input sentence.

The train has to make a decision whenever it comes to an intersection. We assume

that the decision is made with a look-ahead of only one terminal and that no backtracking



11.1. PARSING 367

will be necessary. In a syntax graph that corresponds to a repetition class there is one

branching point with a branching factor of 2. In a syntax graph that corresponds to a

construction class there are as many branching points with branching factor 2 as there are

optional elements. In a syntax graph that corresponds to an alternation class there is one

branching point with a factor of n, where n is the number of classes on the right side of the

alternation class de�nition.

To de�ne the decision process more formally we have to de�ne the �rst set first(S)

for every class S.6 first(S) is the set of all terminals that can appear as �rst terminal in a

sentence of S. A branch gets labeled with the set first(S). When S may derive the empty

string, we de�ne that first(S) contains epsilon.

We give several representative examples of how to compute �rst sets. We describe �rst

sets as sets of strings between quotes, epsilon, and terminal class names. *terminal-class*

DemIdent is used for class DemIdent (similarly for other terminal classes) and epsilon stands

for the empty string.

� Construction classes:

A = B C.

B = "is".

first(A) = first(B) = "is"

A = [B] [C] "is".

first(A) = first(B) union first(C) union "is"

A = [DemString] [DemNumber] DemIdent.

first(A) =

{*terminal-class* DemString,

*terminal-class* DemNumber, *terminal-class* DemIdent}

A = B C.

B = [DemIdent].

C = ["else" DemString].

first(A) = first(B) union first(C) union epsilon

= {*terminal-class* DemIdent, epsilon, "else"}

epsilon is in the �rst set since the language of A contains the empty string as a legal

sentence.

A = B C.

B = [DemIdent].

C = "else" DemString.

first(A) = first(B) union first(C) removing epsilon

= {*terminal-class* DemIdent, "else"}

6First sets, page 439 (37).



368 CHAPTER 11. CLASS DICTIONARIES

� Repetition classes:

A ~ {DemIdent}.

first(A) = {*epsilon*, *terminal-class* DemIdent}

A ~ "is" {DemIdent}.

first(A) = "is"

A ~ {DemIdent} "is".

first(A) = first(DemIdent) union "is"

= {*terminal-class* DemIdent, "is"}

� Alternation classes:

A : B | C.

B = "b".

C = "c".

first(A) = first(B) union first(C) = {"b", "c"}

A : B | C.

B ~ {DemIdent}.

C = "c".

first(A) = first(B) union first(C)

= {*terminal-class* DemIdent, *epsilon*, "c"}

To simplify the decision process at a branching point we make the following assumption:

� We require that all the branches at a branching point in an alternation class de�nition

have disjoint �rst sets (Rule 1).

With this restriction it is easy for the train to make these decisions. At an alternation

class branching point, compare the next input terminal in the sentence to be parsed with

the �rst sets of the branches. If the next input terminal is contained in any of those �rst

sets we take that branch. Otherwise an error message is printed unless epsilon is in the

�rst set of one branch, in which case this epsilon branch will be taken. According to Rule

1, only one branch may contain epsilon.

At a construction class branching point, we check whether the next input terminal is in

the �rst set of what is inside the square brackets. If it is, we take the path that brings us

to the optional terminal; otherwise, we take the other branch.

At a repetition class branching point, we check whether the next input terminal is in

the �rst set of what is inside the curly brackets. If it is, we take the path through the loop,

else we take the other branch.

This description implies that we have to compute the �rst function not only for classes,

but for classes that might be preceded by terminals. This is a straightforward generalization.

If the class is preceded by a string then the �rst set contains only that string.



11.2. LL(1) CONDITIONS AND LEFT-RECURSION 369

We have seen that an error message can be generated at a branching point inside an

alternation class de�nition. At a branching point inside a construction or repetition class

de�nition we will never generate an error message. However, the parser generates an error

message at nonbranching points, namely whenever a speci�c terminal is expected and that

terminal is not the next input terminal.

We now extend the parser described above so that it returns a tree object for a given

input string. This tree object stores the structural information about the string, but not all

the details. None of the strings in the grammar de�nition will show up in the tree object.

Whenever the train starts a new syntax graph G that corresponds either to a con-

struction or repetition class de�nition, a class instance is created. If G is de�ned by a

construction class, the values of the parts will be assigned recursively when the syntax

graphs of the classes on the right side are traversed. If G is de�ned by a repetition class, a

list of objects will be created. It will be a list as long as the number of repetitions of objects

of the class on the right side of the repetition class. Whenever the train starts a new syntax

graph G that corresponds to an alternation class, the tree object remains unchanged.

The basket examples at the end of the last section also serve as examples for parsing.

11.2 LL(1) CONDITIONS AND LEFT-RECURSION

The LL(1) conditions for a class dictionary consist of two rules.7 These conditions exclude

ambiguous class dictionaries while being checkable e�ciently. We have already discussed the

�rst LL(1) rule since it is needed by the parsing algorithm. The �rst LL(1) rule requires that

the �rst sets of the alternatives of an alternation class are disjoint. The second LL(1) rule

is needed to make class dictionaries nonambiguous. To de�ne Rule 2 we need to introduce

follow sets.

follow(A) for some vertex A consists of all terminals that can appear immediately after

a sentence of L(A). L(A) is the set of all printed A-objects. The follow sets are computed

with respect to the start class, which is the �rst class appearing in the class dictionary. For

terminals of terminal sets, the corresponding terminal class name is given. If the end of �le

can appear after a sentence of L(A), then follow(A) contains eof.

Consider the example class dictionary

Basket = <contents> SeveralThings.

SeveralThings ~ {Thing}.

Thing : Apple | Orange *common* <weight> DemNumber.

Apple = "apple".

Orange = "orange".

Some of the follow sets are

follow(Thing) = f eof, "apple", "orange" g,

follow(SeveralThings) = f eof g.

The follow set of Thing contains eof since a Thing-object can be the last thing in a

basket. It contains "apple" since an apple may appear after a Thing-object.

7LL(1) conditions, page 442 (42).



370 CHAPTER 11. CLASS DICTIONARIES

Now we can formulate the second and last rule of the LL(1) conditions

Rule 2:

For all alternation classes

A : A1 | ... | An.

if an alternative, say A1, contains empty in its �rst set first(A1), then first(A2), first(A3);

... have to be disjoint from follow(A).

The following example motivates Rule 2. The class dictionary

Example = <l> List <f> Final.

List : Nonempty | Empty.

Nonempty = <first> Element <rest> List.

Empty = .

Element = "c".

Final : Empty | End.

End = "c".

violates Rule 2.

We choose A1 to be Empty and A2 to be Nonempty and A to be List. The relevant �rst

and follow sets are

first(Empty) = {empty}.

first(NonEmpty) = {"c"}.

follow(List) = {"c", eof}.

Now �rst(NonEmpty) is not disjoint from follow(List) and therefore Rule 2 is violated.

The following two objects have the same corresponding sentence

object 1:

:Example(

<l> :Empty()

<f> :End())

object 2:

:Example(

<l> :Nonempty(<first> :Element() <rest> :Empty())

<f> :Empty())

In both cases, the sentence c is printed. For object 1, c is printed by the End-object.

For object 2, c is printed by the Element-object.

Violation of the LL(1) conditions does not necessarily imply that the class dictionary is

ambiguous. For example, the following class dictionary is not LL(1) but it is not ambiguous.

Example = <l> List <f> Final.

List : Nonempty | Empty.



11.2. LL(1) CONDITIONS AND LEFT-RECURSION 371

Nonempty = <first> Element <rest> List.

Empty = .

Element = "c".

Final : End.

End = "c".

Rule two of the LL(1) conditions is violated. follow(List) contains "c" and so does

�rst(Nonempty). But we cannot �nd two distinct objects that are mapped to the same

sentence by the printing function g print. This example however shows parsing ambiguity.

When the parser sees the "c" terminal in the input while parsing an Example-object, it

does not know whether to build a Nonempty or an Empty-object in part l. The �rst "c"

terminal has two di�erent interpretations. We can represent it as an Element-object or as

an End-object.

The LL(1) conditions force the object printing algorithm g print() to have a useful

property. We can always retrieve the object from the output of the printing algorithm.

The LL(1) conditions are su�cient for g print to be a bijection (i.e., onto and one-to-one)

between tree objects and sentences. If a 
at class dictionary G satis�es the LL(1) Rules 1

and 2 then the function g print(G;!) is a bijection from C-objects in TreeObjects(G) to

L(C). A 
at class dictionary is a class dictionary where all common parts and terminals

have been pushed down to the construction classes.

The inverse of g print is function g parse : for all ! 2 TreeObjects(G)

! = g parse(G; class of !; g print(G;!))

11.2.1 Left-Recursion

The LL(1) rules exclude a certain kind of left-recursion.

Informally, a class dictionary is left-recursive if it contains paths along which no input

is consumed. An example of such a class dictionary is

Basket = <contents> Contents.

Contents : Fruit | Basket.

Fruit : Apple | Orange.

Apple = "apple".

Orange = .

There is left-recursion that involves the two classes

Basket = <contents> Contents .

Contents : Fruit | Basket .

We can go through the cycle Basket, Contents any number of times without consuming

input.

This kind of left-recursion is a special case of LL(1) condition violation; speci�cally, a

Rule 1 violation. Consider the �rst sets of the two alternatives of Contents:

first(Fruit) = {"apple", empty}.

first{Basket} = {"apple", empty}



372 CHAPTER 11. CLASS DICTIONARIES

The two �rst sets are not disjoint and therefore Rule 1 is violated.

Left-recursion can appear in a second form; consider the class dictionary graph

Mother = <has> Child.

Child = <has> Mother.

Here the LL(1) conditions are satis�ed but we still have left-recursion. This kind of

left-recursion is excluded by the inductiveness axiom, which is discussed in the chapter on

class dictionary design techniques (Chapter 12).

11.3 SUMMARY

A class dictionary D de�nes a language through the following mechanism. We consider

all objects de�ned by the class dictionary graph G contained in D. This set is called

TreeObjects(D). We apply the print function which prints each object in TreeObjects(D),

and we call the resulting set Sentences(D). This is the language de�ned by D.

To facilitate the writing, understanding, and learning of sentences, we use a subset of

class dictionaries, called LL(1) class dictionaries. An LL(1) class dictionary is not ambigu-

ous, and has other desirable properties. Speci�cally, di�erent alternatives of an alternation

class are introduced by di�erent tokens.

This chapter explained the parsing process in detail, which takes a class dictionary and

a sentence and constructs the corresponding object.

The relationships between class dictionaries and class dictionary graphs is summarized

in Fig. 11.7. Four properties are considered in the �gure: nonambiguous, LL(1), inductive,

LL(1)

12

3

4

5

6
7 8

91011

class dictionaries

nonleft−recursive

nonambiguous

inductive

Figure 11.7: Venn diagram for class dictionaries

nonleft-recursive. Inductive class dictionaries are discussed in Chapter 12 but we give here

the intuition: A class dictionary is inductive if it contains only good recursions; that is,

recursions that terminate. Ideally, a class dictionary should satisfy all four properties.

If the properties were independent, sixteen di�erent sets would be de�ned by the four



11.3. SUMMARY 373

properties. However, there are only eleven because of the implication relationships between

the properties (LL(1) implies nonambiguous, LL(1) and inductive imply nonleft-recursive).

We show example members for some of the eleven sets.

1. Nonambiguous, nonLL(1), noninductive, and left-recursive

A = B C.

B : E | C.

C = "c".

E = E.

2. LL(1), left-recursive, noninductive, Fig. 11.8

BA

Figure 11.8: LL(1), left-recursive, noninductive

A = B.

B = A.

3. LL(1), nonleft-recursive, inductive, Fig. 11.9

A

Figure 11.9: LL(1), nonleft-recursive, inductive

A = .

4. Nonambiguous, nonLL(1), left-recursive, inductive

A = B.

B : A | C.

C = "c".

5. Ambiguous, nonLL(1), inductive



374 CHAPTER 11. CLASS DICTIONARIES

A = B C.

B : U | V.

C : G | H.

U = "c".

V = .

G = "c".

H = .

6. Ambiguous, nonLL(1), noninductive, left-recursive

A : B | C.

B = B.

C = .

11.4 EXERCISES

Exercise 11.1 (Design and implementation objective)

Write a class dictionary that de�nes Lisp lists, assuming that the atoms are only iden-

ti�ers. Your language should handle the following examples:

()

(a b c)

(a (a b c) d)

(a (a b () c ( a b)) d)

etc.

Write a program for the class dictionary that counts the number of atoms in a Lisp list.

The answer for the above examples should be

0 3 5 7 etc.

Verify that your class dictionary satis�es the LL(1) properties.

Exercise 11.2 Write an adaptive program so that it removes all while statements from a

Modula-2 program. We assume that the class dictionary for Modula-2 contains the following

class de�nitions:

StatementSeq ~ Statements {";" Statements}.

Statements = [Statement].

Statement : WhileStat | IfStat ...

WhileStat = "while" ...

You can assume that Statements is used only in StatementSeq.

Exercise 11.3 (Programming for given class dictionary objective)

The following class dictionary de�nes the data structures used by company Zeus Inc.



11.4. EXERCISES 375

CustomerList ~ {Customer}.

Customer =

<customerNumber> DemNumber <customerName> DemString

<customerAddress> Address <telephone> DemNumber

<contracts> ContractList.

Address =

<street> DemString <city> DemString

<state> DemString <zip> DemNumber

<phone> DemNumber.

ContractList ~ Contract {Contract}.

Contract =

<contractNumber> DemNumber <deliveryAddress> Address

<date> DemString <remarks> DemString

ContractLines.

ContractLines ~ ContractLine {ContractLine}.

ContractLine =

Part <quantity> DemNumber

<discount> DemNumber <amount> DemNumber.

Part =

<partNumber> DemNumber <description> DemString

<price> DemNumber.

The company Zeus Inc. has to send a letter to all customers who bought part number

4556. Write an adaptive program that prints out the addresses of all customers who ordered

part 4556. The format of the addresses is unimportant, as long as the street, city, state,

and ZIP code is contained in each address.

Exercise 11.4 (Design and implementation objective)

.

1. Invent a notation for describing any given position on a chess board, write a class

dictionary for it, and write a program that prints the number of white pieces on a

given board.

2. Give a sample input that describes a board with about �ve pieces on it.

3. Give the same board position in the object notation.

Exercise 11.5 Consider the following class dictionary:



376 CHAPTER 11. CLASS DICTIONARIES

A ~ {B}.

B : C | D .

C = "xxx" A ["if" B] "yyy".

D = .

Check the following inputs for syntactical correctness. For each input that is syntacti-

cally correct, give the object in the object notation.

� 1 2 3 xxx if 999 yyy

� a b c xxx 1 2 3 yyy

� xxx if yyy

Exercise 11.6 (Programming for given class dictionary objective)

A post�x expression is an expression where the operator comes after the arguments.

For example, [3 4 *] is a post�x expression that evaluates to 12.

Consider the following post�x expression language:

Example = ExpressionList.

ExpressionList ~ { Expression }.

Expression : Simple | Compound.

Simple = <v> DemNumber.

Compound = "[" <argument1> Expression <argument2> Expression

Operator "]".

Operator : MulSym | AddSym | SubSym.

MulSym = "*".

AddSym = "+".

SubSym = "-".

Write a program that returns the list of evaluations of the post�x expressions. For

example, if the input contains 2 3 [3 4 *] then the program returns the list (2 3 12).

Exercise 11.7 (Programming for given class dictionary objective)

Write a program that operates on a grammar that satis�es the following class dictionary

Grammar ~ {Rule}.

Rule = <ruleName> DemIdent Body ".".

Body : Construct | Alternat | Repetit.

Construct = "=" <partsAndSyntax> List(AnySymbol).

Alternat = ":" <alternatives> BarList(DemIdent).

List(S) ~ {S}.

BarList(S) ~ S {"|" S}.

SandwichedSymbol = <first> AuxList Symbol <second> AuxList.

Repetit = "~" <first> AuxList [ <nonempty> DemIdent ]

"{" SandwichedSymbol "}" <second> AuxList.

AnySymbol : Symbol | OptSymbol | Aux.



11.4. EXERCISES 377

Symbol = [ "<" <labelName> DemIdent ">" ] <symbolName> DemIdent.

OptSymbol = "[" SandwichedSymbol "]".

Aux : Token.

Token = <v> DemString.

AuxList ~ { Aux }.

Write a program that prints the list of all rules with a Construct body.

Write a program that prints out all label names.

Example:

A = <x> B <y> DemIdent.

B = <x> DemIdent.

The output should look like:

with Construct body = (A B)

labels = (x y x)

Your algorithm should be linear time and space in the length of the input grammar.

Exercise 11.8 (Programming for given class dictionary objective)

Consider the following class structure:

Tree = "proper" <root> DemNumber <left> TreeOrLeaf <right> TreeOrLeaf.

TreeOrLeaf : Tree | Leaf.

Leaf = "leaf" DemNumber.

All instances of class Tree are binary search trees. All numbers that occur in the left

subtree are smaller than the root, and all numbers that occur in the right subtree are greater

than the root.

Write a method search for class Tree that takes as argument a number, and returns 1 if

the number is in the tree and 0 otherwise.

Exercise 11.9 (Programming for given class dictionary objective)

Write a translator for the following language:

Statement : ForStatement | PrintStatement.

ForStatement = "for" DemIdent ":=" <lower> DemNumber "to" <upper> DemNumber

"do" Statement.

PrintStatement = "(print" IdentList ")".

IdentList ~ DemIdent { DemIdent}.

The purpose of the translator is to expand the for statements and produce a sequence

of lists. They re
ect the assignments made by the for statements. The following example

should make the semantics of this language clear.

Example: The input

for i:=1 to 2 do

for j :=3 to 4 do (print j i)



378 CHAPTER 11. CLASS DICTIONARIES

should output

(3 1)

(4 1)

(3 2)

(4 2)

Exercise 11.10 (Programming for given class dictionary objective)

Write a semantic checker for the language of the last problem. Verify that every variable

that occurs in the print statement is assigned within a for statement.

Example:

for i:=1 to 3 do (print x)

is illegal.

Exercise 11.11 Consider the grammar

Person = "name" <name> DemIdent ["bittenBy" <bittenBy> DogList].

DogList ~ {Dog}

Dog =

"dogName" <dogName> DemIdent

<owner> Person.

Check the following three inputs for syntactical correctness. For those that are correct,

draw the object.

name Peter

bittenBy "dogName" Barry name Jeff

"dogName" Bless name Linda

name Ana

bittenby

name bittenby

Exercise 11.12 Consider the following class dictionary:

S = "a" [S] "b".

(Input �nding objective) Give three distinct elements belonging to the language de�ned

by this class dictionary.

(Language objective) Give a precise de�nition of the language de�ned by this class

dictionary. Give a proof that the class dictionary de�nes exactly the described language.



11.5. BIBLIOGRAPHIC REMARKS 379

11.5 BIBLIOGRAPHIC REMARKS

The meal example is from [LR88b].

� Compiler theory:

The concepts of recursive descent parsing, �rst sets, follow sets, and the LL(1) condi-

tions are reused from compiler theory. See for example [ASU86].

� Grammar-based programming:

There are few papers about object-oriented programming using a grammar-based ap-

proach. An early paper that goes in this direction is [San82], which describes the Lithe

language. In Lithe, class names are used as the nonterminal alphabet of a grammar.

For manipulating objects, Lithe does not use message passing, but syntax-directed

translation.

A grammar-based approach to meta programming in Pascal has been introduced

in [CI84]. [Fra81] uses grammars for de�ning data structures. [KMMPN85] intro-

duces an algebra of program fragments. The POPART system treats grammars as

objects [Wil83]. The synthesizer generator project also uses a grammar-based ap-

proach [RT84]. GEM described in [GL85b] is the predecessor of Demeter. The EBNF

grammar notation is due to [Wir77].

� Program enhancement: [Bal86] proposes a frame-based object model to simplify pro-

gram enhancement which has some similarities to the Demeter system.

� Knowledge engineering: Many papers in knowledge engineering propose an approach

similar to the one used in the Demeter system. Minsky proposed an object-oriented

approach to knowledge representation [Min75].

The language KL-ONE [BS85] is an object-oriented knowledge representation language

based on inheritance. KL-ONE was used in the late seventies. A class is called

a concept in KL-ONE. Concepts are subdivided into primitive and de�ned concepts.

Primitive concepts can be speci�ed by a rich set of necessary conditions. A role belongs

to a concept and describes potential relationships between instances of the concept

and those of other closely associated concepts (i.e., its properties, parts, etc.). Roles

are the KL-ONE equivalent to two-place predicates. The components of a KL-ONE

concept are its superconcepts and the local internal structure expressed in 2.1 roles and

2.2 constraints, which express the interrelations among the roles. The roles and the

constraints of a concept are taken as a set of restrictions applied to the superconcepts.

Superconcepts are thought of as approximate descriptions, whereas the local internal

structure expresses essential di�erences.

There are several di�erent kinds of roles, of which the role set is the most important.

A role set captures the commonality among a set of individual role players. Role sets

themselves have structure. Each role set has a value restriction (given by a type),

and number restrictions to express cardinality information. KL-ONE supports role

set restrictions that add constraints on the �llers of a role with respect to some con-

cepts. KL-ONE uses a graphical language and the JARGON [Woo79] language to



380 CHAPTER 11. CLASS DICTIONARIES

specify concepts. JARGON is a stylized, restricted, English-like language for describ-

ing objects and relationships. KL-ONE has been further developed in NIKL [KBR86],

[Mor84], and KL-TWO [Vil84].

Classes de�ned by predicates (or generators [Bee87]) allow automatic classi�cation of

objects. This shifts an important burden from the user to the system (where it surely

belongs), and it is very useful in knowledge acquisition and maintenance.

When classes are de�ned by predicates, it is necessary to study the complexity of the

subsumption problem. The subsumption problem consists of deciding whether one

class is a subclass of another class. It is well known that the subsumption problem

can easily become intractable (for a summary see [PS88]; for the original article see

[BL84]).

Frame-based description languages (including KL-ONE; a recent paper is [PS88]) are

related to the Demeter system in the following way. A class dictionary de�nes a concept

language that allows us to de�ne concepts in terms of classes de�ned in the class

dictionary and restrictions expressed in terms of instance variables. Such a concept

language de�nes a subsumption algorithm that computes whether one concept is a

subconcept of another.

Sheu [She87] proposes to put a logic-programming knowledge base as an interface

between the user and an object-oriented system.

Object-oriented knowledge representation for spatial information is proposed in the

paper [MK88].

� Object-oriented design:

A good overview is given in [Weg87].

� Theory of program data:

The work of Cartwright promotes a constructive approach to data speci�cation, called

domain construction, and is a precursor of our work on class dictionaries [Car84].

The idea of domain construction has its roots in the symbolic view of data pioneered

by John McCarthy and embodied in the programming language Lisp. The domain

construction approach to data speci�cation views a data domain as a set of symbolic

objects and associated operations satisfying the following three constraints:

{ Finite constructibility. Every data object is constructed by composing functions,

called constructors.

{ Unique constructibility. No two syntactically distinct objects denote identical

elements of the domain universe.

{ Explicit de�nability. Every operation, excluding a small set of primitive functions

serving as building blocks, is explicitly de�ned by a recursive function de�nition.

Cartwright uses subset de�nition to de�ne noncontext-free types like height-balanced

binary trees or nonrepeating sequences of integers. Quotient de�nitions are used to

de�ne types containing objects that are not uniquely constructible, such as �nite sets

and �nite maps.



11.6. SOLUTIONS 381

The Demeter approach also falls into the constructive method of data de�nition. At

the moment we do not support subset and quotient de�nitions since they are di�cult

to handle at compile-time.

The constructors in the Demeter system come from construction and repetition classes.

Alternation classes don't provide constructors.

11.6 SOLUTIONS

Solution to 11.12

3 inputs:

a b

a a b b

a a a b b b

This class dictionary de�nes the language anbn. We prove this by induction on n:

Base For n = 1 it is true. When the optional symbol is missing, we get ab.

Step Induction hypothesis: Assume that the above class dictionary de�nes the language

a
n
b
n for all n = m�1; n > 0. We want to show this fact for n = m. Consider entering

the optional symbol [S] one additional time. This adds one a and one b to am�1bm�1

which by the induction hypothesis belongs to the language. Therefore we get that

ambm also belongs to the language.



Chapter 12

Style Rules for Class

Dictionaries

In this chapter we present several style rules related to the structural organization of classes.

De�ning the class dictionary for an application is a very important and interesting task. The

class dictionary determines all the data structures, which in turn determine the e�ciency

of the algorithms. The class dictionary also in
uences the reusability of the resulting code.

There is a need to break large class dictionaries into modular pieces that are easier to

manage. This topic of modularization will be discussed elsewhere. In this chapter we have

collected a set of useful design techniques for those modular pieces of class dictionaries.

The style rules cover several topics: avoiding bad recursion in class structures, optimiza-

tion of class structures, parameterization, systematic structuring and naming, functional

dependency normalization, and notational issues such as viscosity.

12.1 LAW OF DEMETER FOR CLASSES

The class dictionary graphs of object-oriented applications often contain cycles which means

that the class de�nitions are recursive. The goal of the Law of Demeter for classes is to

avoid bad recursions in class structures; that is, recursions which cannot terminate.

If a class dictionary graph does not contain any cycle, we can build complex objects from

simple objects inductively. The reason is obvious. We can topologically sort any acyclic

directed graph, and the topological order tells us in what order to build the objects. As

class dictionary graphs become more and more complex, which means there may be more

and more cycles, we can still build objects inductively and incrementally as long as every

cycle has a way out of cycles. We call such class dictionaries inductive. Otherwise we have

to build �nite cyclic objects for any vertex on those cycles. We argue that noninductive

class dictionary graphs should be avoided most of the time.

Consider the class dictionary graph in Fig. 12.1a. When we construct a class dictio-

nary graph slice anchored at vertex Nonempty, vertex Nonempty forces all the outgoing

construction and inheritance edges to be included in the slice. Vertex List must have the

only outgoing alternation edge List=) Nonempty, because it has an incoming construction

382



12.1. LAW OF DEMETER FOR CLASSES 383

(a) (b)

(c) (d)

EmptyEmpty

List

Nonempty Element

List

Nonempty Element

List

Nonempty Nonempty ElementElement

List

rest

first

rest

first

rest

first

rest

first

Figure 12.1: Illustration of class dictionary graph slices

edge. Fig. 12.1b shows the only class dictionary graph slice anchored at vertex Nonempty.

Consider the class dictionary graph in Fig. 12.1c. In Fig. 12.1d we show one of the

class dictionary graph slices anchored at vertex Nonempty. The di�erence from the above

case is that we can select alternation edge List=) Empty instead of taking alternation edge

List=) Nonempty.

In the class dictionary graph of Fig. 12.1a, a Nonempty-object must contain an Element-

object and a List-object. A List-object must always be a Nonempty-object|an in�-

nite recursion. In Fig. 12.1b, this in�nite recursion is expressed by the cycle formed by

Nonempty
rest
�! List and List=) Nonempty. This cycle is forced to be included.

In the class dictionary graph of Fig. 12.1c, a Nonempty-object must contain an Element-

object and a List-object. But a List-object can be an Empty-object. In this case, we don't

have an in�nite recursion. We can have a Nonempty-object that is a list containing only one

element, an Element-object. The Empty-object is used here for the end of the list.

Comparing the two class dictionary graphs in Fig. 12.1a and 12.1c, we can build only

cyclic Nonempty-objects from the �rst class dictionary graph in Fig. 12.1a; but we can build

acyclic Nonempty-objects of any size based on the Nonempty-objects of smaller size for the

second class dictionary graph. We call the second class dictionary graph an inductive class

dictionary graph. The �rst class dictionary graph is not inductive.

To introduce the Law of Demeter for classes, we reuse reachability concepts and the

class dictionary graph slice concept introduced earlier.

A vertex w in a semi-class dictionary graph is said to be reachable from a vertex v by

a path of length n, if there is a knowledge or an inheritance path of length n from v to w.



384 CHAPTER 12. STYLE RULES FOR CLASS DICTIONARIES

A semi-class dictionary graph is cycle-free if there is no v 2 V such that v is reachable

from v by a path of at least length 1.

A semi-class dictionary graph is inductive if it satis�es the inductiveness rule. The

inductiveness rule is: For all vertices v there exists at least one cycle-free class dictionary

graph slice anchored at v.

The purpose of the inductiveness rule is

1. To make each recursion well de�ned and to guarantee that the inductive de�nitions of

the objects associated with the vertices of the class dictionary graph have a base case.

Informally, the rule disallows classes that have only circular objects.

2. To exclude certain useless symbols from the grammar corresponding to a class dictio-

nary graph. There are two kinds of useless symbols: the ones that cannot be reached

from the start symbol and the ones that are involved in an in�nite recursion. The

inductiveness rule excludes useless symbols of the in�nite recursion kind.

3. To allow a tool to generate more code for groups of classes that satisfy this rule.

Car

Motor

motorbelongsto

Figure 12.2: Car and motor

Sometimes, people may want to keep their class dictionary graphs noninductive for

some purposes, as shown in Fig. 12.2. Every Car-object must have a Motor-object. Every

Motor-object must have a Car-object on which it is installed. Therefore we propose an

approximation of the inductiveness rule.

The Law of Demeter for Classes is:

Maximize the number of inductive vertices of a class dictionary graph1.

Maximizing the number of inductive vertices in a class dictionary graph minimizes the

complexity of building objects and the software associated with them. Fewer objects are

forced to be cyclic. Further motivation for the Law of Demeter for classes includes

1The Law of Demeter for classes is di�erent from the Law of Demeter (for functions) in class form

discussed in Chapter 8.



12.1. LAW OF DEMETER FOR CLASSES 385

� The objects de�ned by noninductive vertices must all be cyclic. Classes that de�ne

only cyclic objects should be used only when absolutely needed. It is harder to reason

about them.

� Cyclic objects are harder to manipulate because of the danger of in�nite loops.

It is useful to discuss three dimensions of class dictionary design.

� C: number of common parts of abstract classes.

� F: number of vertices that are not inductive.

� L: LL(1) violations. Count the number of di�erent violations of Rule 1 and Rule 2.

programming
spaceparsing

subspace

inductive plane

0

C

L

gra
mma

r l
inebi

je
ct

io
n

li
ne

cd graph
subspace

parsing
subspace

F

Figure 12.3: Three dimensions of class dictionary design

Figure 12.3 shows the design/programming space in the three dimensions.

� Pure data model subspace, class dictionary graphs (labeled as cd graph subspace in

Fig. 12.3)

Initially, when we develop a class structure, we put it into the class dictionary graph

subspace. We will have many LL(1) violations and the class dictionary graph might

not be inductive.

� Inductive class dictionaries plane



386 CHAPTER 12. STYLE RULES FOR CLASS DICTIONARIES

We improve the class dictionary graph and turn it into a class dictionary graph without

noninductive vertices. This brings us into the inductive plane. We also maximize the

common parts, which moves us away from the grammar line (traditional grammars

don't have common parts).

� Parsing subspace

We improve the class dictionary graph and turn it into a class dictionary with zero

LL(1) violations. This moves us onto the bijection line. For class dictionaries on the

bijection line, there is a bijection between sentences and tree objects.

12.2 CLASS DICTIONARY GRAPH OPTIMIZATION

The goal of class dictionary graph optimization is to improve the class organization while

keeping the set of objects invariant. This involves \inventing" abstract classes to minimize

the total size of the class dictionary graph.2 Our algorithms are programming-language

independent and are useful to programmers who use languages such as C++. Class dictio-

nary graph optimization has applications to design, reverse engineering and optimization of

programs.

We formalize the concept that two sets of class de�nitions de�ne the same set of objects.

A class dictionary graph D1 is object-equivalent to a class dictionary graph D2 if

Objects(D1) = Objects(D2)

The size of a class dictionary graph is the number of construction edges plus one quarter

the number of alternation edges.

The constant one quarter is arbitrary. All that is important is that this constant is

smaller than a half. The reason is that we want the class dictionary in Fig. 12.4a to be

smaller than the class dictionary in Fig. 12.4b.

Fruit

Apple Orange

Weight Apple Orange

Weight

weight

weight weight

(a) (b)

Figure 12.4: a has smaller size than b

2Class dictionary graph minimization, page 444 (50).



12.2. CLASS DICTIONARY GRAPH OPTIMIZATION 387

Anyway, we want alternation edges to be cheaper than construction edges since alter-

nation edges express commonality between classes explicitly. This leads to better software

organization through better abstraction and less code duplication.

The class dictionary graph minimization problem is de�ned as follows. Given a class

dictionary graph, �nd an object-equivalent class dictionary graph of minimal size. Class

dictionary graph minimization means more than moving common parts \as high as possible"

in the class dictionary graph. It also minimizes the number of alternation edges.

In other words, we propose to minimize the number of edges in a class dictionary graph

while keeping the set of objects invariant. Our technique is as good as the input it gets: If

the input does not contain the structural key abstractions of the application domain then

the optimized hierarchy will not be useful either, following the maxim: garbage in|garbage

out.

However if the input uses names consistently to describe a class dictionary graph then

our metric is useful in �nding good hierarchies. However, we don't intend for our algorithms

be used to restructure class hierarchies without human control. We believe that the output

of our algorithms makes valuable proposals to the human designer who then makes a �nal

decision.

Our current metric is quite rough: we just minimize the number of edges. We could

minimize other criteria, such as the amount of multiple inheritance or the amount of repeated

inheritance. A class B has repeated inheritance from class A, if there are two or more

edge-disjoint alternation paths from A to B. The study of other metrics is left for future

investigations.

12.2.1 Minimizing Construction Edges

Even simple functions cannot be implemented properly if a class dictionary graph does not

have a minimal number of construction edges. By properly we mean with resilience to

change.

Consider the class dictionary in Fig. 12.5, which is not minimized.

length

weight

weight

DemNumberCoin

radius height

width Brick

Figure 12.5: Class dictionary to be minimized

Suppose we implement a print function for Coin and Brick. Now assume that several

hundred years have passed and that we �nd ourselves on the moon where the weight has a

di�erent composition: a gravity and a mass. We then have to rewrite our print function for

both Coin and Brick.

After minimization of the number of construction edges in Fig. 12.5 we get the class

dictionary in Fig. 12.6. In this minimized class dictionary we implement the print function



388 CHAPTER 12. STYLE RULES FOR CLASS DICTIONARIES

Coin = <radius> Number .

Brick = <width> Number <length> Number <height> Number .

Weight_related : Coin | Brick *common* <weight> Number.

Figure 12.6: Optimized class dictionary

for Coin with the method:

void Coin::print() {

radius -> print(); Weight_related::print();}

The advantage of the optimization is that information about weights is now isolated to

one class. If we change information about weights, we have to update only one class. For

example, after the change of the weight composition, we get the new class

Weight_related : Coin | Brick *common* <mass> Number <gravity> Number.

We reimplement the print function for this new class and no change is necessary for

classes Brick and Coin.

In summary, if the class dictionary graph has a minimal number of construction edges

and the functions are written following the strong Law of Demeter (for functions), the soft-

ware is more resilient to change. The strong Law of Demeter says that a function f attached

to class C should call only functions of the immediate part classes of C, of argument classes

of f including C, and of classes that are instantiated in f. A disadvantage of construction

edge minimization is that it creates multiple inheritance. Therefore, it is not always strictly

followed.

12.2.2 Minimizing Alternation Edges

Consider the following nonminimal class dictionary graph.

Occupation :

Undergrad_student | TA | Professor | Adm_assistant

*common* <ssn> Number.

Student : Undergrad_student | TA *common* <gpa> Real.

Faculty : Professor | TA *common* <course_assigned> Course.

Professor = .

TA = .

Adm_assistant = .

Course = .

Undergrad_student = <major> Area.

Area : Economics | Comp_sci.



12.2. CLASS DICTIONARY GRAPH OPTIMIZATION 389

Economics = .

Comp_sci = .

University_employee : TA | Professor | Adm_assistant

*common* <salary> Real.

Change the class de�nitions for Occupation and University employee to

Occupation : Student | University_employee *common* <ssn> Number.

University_employee : Faculty | Adm_assistant *common* <salary> Real.

We have now reduced the number of alternation edges by three at the expense of adding

repeated inheritance. By repeated inheritance we mean that a class is inherited several times

in the same class. In the above example, class Occupation is inherited twice in class TA:

Occupation -> University_employee -> Faculty -> TA

-> Student -> TA

However, not only alternation edges are reduced, but also the amount of multiple in-

heritance, which we propose as another metric to produce good schemas from the software

engineering point of view.

Class dictionary graph minimization consists of two steps.

� Construction edge minimization. This is an easy task: we abstract out the common

parts and attach them to an alternation class. If there is no appropriate alternation

class, we introduce a new one.

� Alternation edge minimization. Alternation edge minimization is in general a compu-

tationally expensive problem (it is known to be NP-hard), but there is a special case,

called the tree property3 case, where there is an e�cient algorithm.

To minimize the construction edges, we use the concept of a redundant part. In a �rst

approximation a construction edge with label x and target vertex v is called redundant in

a class dictionary graph, if there is more than one x-labeled construction edge going into

v. This de�nition of redundant part is adequate for many practical situations. To cover all

cases, it needs to be slightly generalized. A construction edge with label x and target vertex

v is called redundant if there is a second construction edge with label x and target vertex

w such that v and w have the same set of associated classes.

A class dictionary graph has a minimal number of construction edges if it does not

contain any redundant construction edges.

Alternation edge minimization solves the following problem. Given a class dictionary

graph D with a minimal number of construction edges, �nd a class dictionary graph D1

such that the total number of alternation edges of D1 is minimal, and so that D and D1 are

object-equivalent.

Next we consider a special case of the alternation edge minimization problem. This

creates an interesting link between single inheritance and a property of class dictionary

graphs, called the tree property.

3Tree property, page 444 (49).



390 CHAPTER 12. STYLE RULES FOR CLASS DICTIONARIES

De�nition A class dictionary graph G is called a single inheritance class dictionary

graph, if for each vertex v in G, v has at most one incoming alternation edge.

A class dictionary graph can become an object-equivalent, single inheritance class dic-

tionary graph if and only if its sets of associated vertices satisfy the tree property. (The set

of associated vertices of a vertex is the set of all the concrete subclasses.) The set of associ-

ated vertices of a vertex can be regarded as an inheritance cluster. If all inheritance clusters

in a class dictionary graph are pairwise disjoint or in a proper subset relationship, then the

class dictionary graph can become an object-equivalent single inheritance class dictionary

graph. Furthermore, by checking whether the sets of associated vertices of a class dictionary

graph satisfy the tree property, we are e�ectively transforming such a class dictionary graph

into a single inheritance class dictionary graph.

De�nition A collection of subsets of a set S has the tree property if for any pair of subsets

of S one element of the pair is completely contained in the other, or if the two subsets are

disjoint.

When a collection of subsets has the tree property, the graph having the subsets as

vertices and the subset relationships as edges is a tree.

When the tree property is satis�ed, it is easy to reorganize the class dictionary graph

into a single inheritance class dictionary graph. The set inclusion relationships describe the

inheritance structure.

Consider the following example. The class dictionary in Fig. 12.7 satis�es the tree

property. The classes associated with ChessPiece are a superset of the classes associated

with O�cer. Therefore we can transform the class dictionary into the object-equivalent

ChessPiece : Queen | King | Rook | Bishop | Knight | Pawn.

Officer : Queen | King | Rook.

Figure 12.7: Class dictionary that satis�es tree property

class dictionary in Fig. 12.8, which is single inheritance.

ChessPiece : Officer | Bishop | Knight | Pawn.

Officer : Queen | King | Rook.

Figure 12.8: Single inheritance class dictionary

12.3 PARAMETERIZATION

Good abstractions in a class dictionary have numerous bene�ts. The class dictionary usually

becomes cleaner and shorter, and an object-oriented program that uses the class dictionary



12.3. PARAMETERIZATION 391

will have less duplication of functionality. The goal of abstraction is to factor out recurring

patterns and to make an instance of the recurring pattern where it is used.

Parameterization uses auxiliary parameterized classes for reinforcing the abstraction

mechanism.

Consider the following class dictionary that introduces two classes (Department and

Division) by using two parameterized classes (Organization and List). The parameters are

used to express the degree of variability of the parameterized class.

Organization(SubOrganization, SuperOrganization) =

<contains> List(SubOrganization)

[<partOf> SuperOrganization]

<managedBy> Employee.

List(P) ~ {P}.

Division = "Division"

<org> Organization(Department, Company).

Department = "Department"

<org> Organization(Employee, Division).

This class dictionary is much better than the following one, which does not use parameterized

classes.

Division = "Division"

<contains> DepartmentList

[<partOf> Company]

<managedBy> Employee.

DepartmentList ~ {Department}.

Department = "Department"

<contains> EmployeeList

[<partOf> Division]

<managedBy> Employee.

EmployeeList ~ {Employee}.

The parameterized version is more 
exible. It is a well known principle that solving a

more general problem than the one under consideration often yields a better solution for

the given problem. It is likely that the insight gained from the generalized problem will be

of future bene�t.

The following example shows how to de�ne parameterized lists without a repetition

class, using the terminology of the Lisp programming language.

List(E) : Nil | Cons(E).

Cons(E) = <car> E <cdr> List(E).

Nil = .



392 CHAPTER 12. STYLE RULES FOR CLASS DICTIONARIES

In the next example we use parameterization to personalize a language. We de�ne a

language Sandwiched, which encloses an instance sandwiched between two lists of strings.

The following class dictionary (version 1)

Sandwiched(P) =

<left> StringList <s> P <right> StringList.

Repetit = "~"

<first> StringList [ <nonempty> Instance ]

"{" <s> Sandwiched(Instance) "}"

<second> StringList.

OptionalInstance =

"[" <s> Sandwiched(LabeledInstance) "]".

is better than (version 2)

SandwichedLabeledInstance =

<left> StringList LabeledInstance <right> StringList.

Repetit = "~"

<first> StringList [ <nonempty> Instance ]

"{" SandwichedLabeledInstance "}"

<second> StringList.

OptionalInstance =

"[" SandwichedLabeledInstance "]".

Both class dictionaries use

Instance = Vertex.

LabeledInstance = [<label> Label] Vertex.

A sentence for Repetit, version 1 is

~ "start" { Family } "end"

A sentence for OptionalInstance, version 1 is

[ <arg1> Exp ]

However, a sentence for Repetit, version 2 is

~ "start" { <urban> Family } "end"

which is not allowed by version 1.

Although we use abstraction, we cannot precisely formulate the recurring pattern.

Therefore the language de�ned by the second class dictionary is larger. Version 1 is preferred

since it de�nes exactly what we want.

It is acceptable to make the language larger if you can introduce a nice abstraction. It

is much better to parameterize the abstraction and avoid enlarging the language. The right

abstraction simpli�es programming.



12.4. REGULARITY 393

12.4 REGULARITY

Good label names, class names, and parameterized class names signi�cantly improve the

readability of the associated object-oriented programs. We have adopted the following

conventions: class and parameterized class names always start with a capital letter. Label

names start with a lowercase letter.

It is important that the instance variable names have a succinct mnemonic interpreta-

tion. Therefore it is often advisable to introduce labels for the purpose of better naming

only.

To facilitate the writing of adaptive programs, it is advisable that terminal classes be

bu�ered by construction classes. Instead of using

Order =

<orderNumber> DemNumber

<quantity> DemNumber

<customerNumber> DemNumber

<price> DemNumber.

it is better to use

Order =

<orderNumber> OrderNumber

<quantity> Quantity

<customerNumber> CustomerNumber

<price> Money.

OrderNumber = <v> DemNumber.

Quantity = <v> DemNumber.

CustomerNumber = <v> DemNumber.

Money = <v> DemNumber.

This leads to a more regular class structure for which it is easier to write adaptive

software.

To summarize this section we propose the following design rule, calledTerminal-Bu�er

rule:

Usually, a terminal class should be used only as the only part class of a construc-

tion class. The label of the terminal class should be unimportant, for example,

it could be always <v>. This leads to the desired bu�ering of terminal classes.

12.4.1 Regular Structures

We use the adjective regular in an informal way. We say that a class dictionary has a

regular structure if similar classes are de�ned similarly. Regular de�nitions are without

exception easier to learn, use, describe, and implement. They also make a class dictionary

more reusable.

As an example we consider a fragment of the Modula-2 grammar, compare it with

the corresponding fragment of the Pascal grammar and demonstrate that the Modula-2

grammar is more regular.



394 CHAPTER 12. STYLE RULES FOR CLASS DICTIONARIES

// Part of Modula-2 grammar

Statement = [Statements].

Statements : IfStatement | RepeatStatement.

StatementSequence ~ Statement {";" Statement}.

IfStatement =

"if" <condition> Expression

"then" <thenPart> StatementSequence

"end".

RepeatStatement =

"repeat"

StatementSequence

"until" <condition> Expression.

This Modula-2 grammar is better than the corresponding fragment of the Pascal gram-

mar.

// Part of Pascal grammar

Statement : BeginEnd | IfStatement | RepeatStatement.

StatementSequence ~ Statement {";" Statement}.

BeginEnd = "begin" StatementSequence "end".

IfStatement =

"if" <condition> Expression

"then" <thenPart> Statement.

RepeatStatement =

"repeat"

StatementSequence

"until" <condition> Expression.

Notice how the Modula-2 grammar is more systematic. Both if-statements and repeat-

statements contain statement sequences and this is expressed in the same way for both kinds

of statements. In the Pascal class dictionary, however, if-statements and repeat-statements

are treated di�erently. A class, called BeginEnd, is needed, which turns several statements

into one. This class is needed in the if-statement through class Statement.

12.5 PREFER ALTERNATION

Alternation classes should be used whenever possible. The reason is that a well designed

object-oriented program will not contain an explicit conditional statement for the case anal-

ysis that needs to be done for an alternation class.

For example, one way to de�ne a Prolog clause is

Clause = <head> Literal

[":-" <rightSide> LiteralList] ".".

However, the following de�nition will give a cleaner object-oriented program.



12.5. PREFER ALTERNATION 395

Clause : Fact | Rule *common* ".".

Fact = "fact" <head> Literal .

Rule = "rule" <head> Literal ":-"

<rightSide> LiteralList .

Although the concrete syntax is slightly di�erent, both de�nitions of a Prolog clause

store the same information. A program that processes a clause corresponding to the �rst

de�nition will contain a conditional statement that tests whether rightSide is non-nil. A

program that processes a clause corresponding to the second de�nition will delegate the

conditional check to the underlying object-oriented system and it will not be explicitly

contained in the program. In this case it was necessary to add the keywords "fact" and

"rule" to the language because of the look-ahead of one symbol requirement.

There are other reasons, besides having shorter programs, for using alternation in a

class dictionary:

� Modularity. The class dictionary is more modular. If we change the de�nition of a

rule we don't have to change the de�nition of Clause.

� Space. The objects can be represented with less space since a fact will not have an

instance variable rightSide that is always nil.

� Ease of adaptive programming.

Consider the following example: A = B [C] [D]. If C and D are mutually exclusive

and exactly one is present, it is better to use A = B X. X : C | D.

The object-oriented program for the second version will send a message to the object

in instance variable X and the underlying object-oriented system will determine whether

we have an instance of C or D. There is no need for an explicit conditional statement to

distinguish between the two possible types of X.

However the program for the �rst version will contain at least one explicit conditional

statement.

To compare the class dictionaries further, consider the following programming task:

Given a PrologProgram-object, print the list of all the Rule-objects that are contained in the

PrologProgram-object.

For the second class dictionary, we can use

*operation* void print_rules()

*traverse*

*from* PrologProgram *to* Rule

*wrapper* Rule

*prefix* (@ cout << this; @)

For the �rst class dictionary, we can use

*operation* void print_rules()

*traverse*

*from* PrologProgram



396 CHAPTER 12. STYLE RULES FOR CLASS DICTIONARIES

*via* Clause

*to LiteralList

*carry* *in* Clause* cin = (@ this @)

*along* *from* Clause *to* LiteralList

*wrapper* LiteralList

*prefix* (@ cout << cin; @)

12.6 NORMALIZATION

When de�ning the class dictionary for database type applications, the theory of normal

forms is relevant. The class dictionary should be written in normalized form. Normalization

will make it easier to extend the class dictionary and it enforces a more systematic and

clean organization. The normalization is based on the concepts of key and functional

dependency.

In the following we adopt de�nitions from the relational database �eld to class dictio-

naries that describe object-oriented databases. The adopted de�nitions serve in turn as

style rules for class dictionaries. The motivation behind these de�nitions is to introduce the

concept of a normalized class with respect to functional dependencies.

De�nition: An instance variable V 1 of some class C is functionally dependent on

instance variable V 2 if for all instances of class C each value of V 2 has no more than one value

of V 1 associated with it. In other words, the value of the instance variable V 2 determines the

value of instance variable V 1. We also use the terminology: V 2 functionally determines

V 1. The concept of functional dependency is easily extended to sets of instance variables.

De�nition: A key for a class C is a collection of instance variables that (1) functionally

determines all instance variables of C, and (2) no proper subset has this property.

The concept of the key of a class is not a property of the class de�nition but rather a

fact about an intended use of a class; that is, the intended set of instances.

Consider the class

Employee =

<employeeNumber> DemNumber

<employeeName> DemString

<salary> DemNumber

<projectNumber> DemNumber

<completionDate> DemString.

The key is employeeNumber. Several problems with this class de�nition are:

� Before any employees are recruited for a project, the completion date of a project can

be stored only in a strange way, by making an instance of class Employee with dummy

employee number, name, and salary.

� If all employees should leave the project, all instances containing the completion date

would be deleted.

� If the completion date of a project is changed, it will be necessary to search through

all instances of class Employee.



12.7. COGNITIVE ASPECTS OF NOTATIONS 397

Therefore it is better to split the above class de�nition into two.

Employee =

<employeeNumber> DemNumber

<employeeName> DemString

<salary> DemNumber

<projectNumber> DemNumber.

Project =

<projectNumber> DemNumber

<completionDate> DemString.

The key for Employee is employeeNumber and for Project it is projectNumber.

The reason why the �rst Employee class has problems is that the project number de-

termines the completion date, but projectNumber is not a part of the key of the Employee

class. Therefore we de�ne that a class is normalized if whenever an instance variable is

functionally dependent on a set S of instance variables, S contains a key.4 We recommend

that classes be normalized.

It is often the case that there are no functional dependencies among the instance vari-

ables of a class. For example, the class Assignment, which is de�ned by

Assignment = <variable> DemIdent <assignedValue> Expression.

does not have a functional dependency among its two instance variables. In such classes all

instance variables are a part of the key, and the concept of normalization is trivial.

12.7 COGNITIVE ASPECTS OF NOTATIONS

We want the notations de�ned by class dictionaries to be easy to read, write and modify.

What is important in a notation to make it that way? Here is some advice from cognitive

psychology.

� Opportunistic planning (which means to adapt the planning to circumstances without

regard to principles): The notation must allow for opportunistic planning rather than

require a �xed strategy. It has been repeatedly shown that users prefer opportunistic

planning. High-level and low-level decisions are mixed; development in one area is

postponed because potential interactions are foreseen; the descriptions are frequently

modi�ed.

However, opportunistic planning can hinder reusability. The use of individual mod-

eling approaches may lead to nontransferable models. A method for system design

should provide enough 
exibility to allow designers to make full use of their creative

resources while guiding them towards uniform descriptions.

� Order independence: The descriptions should be order independent as much as possi-

ble. What is needed is to decouple the meaning of the description from the �nal text

order as much as possible.

4This de�nition is a derivative of the Boyce-Codd normal form from relational database theory.



398 CHAPTER 12. STYLE RULES FOR CLASS DICTIONARIES

� Viscosity: A viscous notation resists local changes. Correspondingly, a viscous nota-

tion contains many dependencies between its parts, so that a small change requires

several implied adjustments. The notation should have the right amount of viscosity.

Viscous notations cause more work, yet they often have advantages. Their higher

redundancy helps to detect certain errors and sweeping accidental changes are less

likely. The extra work involved in using viscous notations may encourage users to

think about their requirements more carefully.

� Role-expressiveness: The reader of a sentence must discover the role of each component

of the sentence. Notations that show their structure clearly are called role-expressive.

Since the reader of a sentence has to recognize the intentions from the text, the presence

of keywords reliably associated with particular intentions is helpful. This implies that

each part of a class should be introduced by some keyword. This in turn implies that

each alternative of an alternation class should start with a di�erent keyword. Therefore

the need for role-expressiveness is a strong motivator to use the LL(1) conditions for

class dictionaries. The LL(1) conditions improve readability, a fact that is well known

since the early days of Pascal in the late 1960s. Role-expressiveness also implies that

keywords should not be overused; each keyword should indicate one intention. A rich

set of keywords, however, also has disadvantages. It makes the language less uniform

and increases the vocabulary to be learned.

To make a notation easier to use it is often necessary to provide tool support. These tools

should keep track of dependencies that are expressed by a sentence, and the tools should

make the dependencies easily accessible to the user (for example, by cross-referencing or

browsing).

12.8 EXTENDED EXAMPLES

In this section we show some extended examples that have been designed with the techniques

explained in this section.

12.8.1 VLSI Architecture Design

The functionality and structure that is put onto a chip is often naturally expressed in

parameterized form: n-bit carry-look-ahead adder, n-bit multiplier, n-bit sorter, n-bit bus,

n-processor array, etc. It is very natural to de�ne the hardware on a chip in our class

dictionary notation and then to express the functionality of the chip as an object-oriented

program. The next class dictionary de�nes the structure of a Batcher sorting network in

parameterized form. The structure of a sorting network is simple: The input consists of n

numbers that are split into two parts of equal size. Each half is sorted in parallel by a sorting

network of half the size. The output of the two half-sized sorting networks is sent through a

merging network. The output from the merging network is the the desired sorted sequence.

Such recursive structures have many applications. For example, a Batcher odd-even merging

network has a similar structure. Therefore we parameterize the structure description and

introduce the parameterized classes DivideAndConquerNetwork, Induction, and NonTrivial.



12.8. EXTENDED EXAMPLES 399

Merge = <network> DivideAndConquerNetwork(List(Comparator)).

Sort = <network> DivideAndConquerNetwork(Merge).

DivideAndConquerNetwork(Q) =

"input" <input> List(DemNumber)

"output" <output> List(DemNumber)

"local" <local> Induction(Q).

Induction(Q) : NonTrivial(Q) | Trivial(Q).

NonTrivial(Q) =

"left" <left> DivideAndConquerNetwork(Q)

"right" <right> DivideAndConquerNetwork(Q)

"postProcessing" <postProcessing> Q.

Trivial(Q) = .

List(S) ~ {S}.

Comparator = "c".

It is interesting that at this level of abstraction merging and sorting are almost identical.

The only di�erence is that the sorting network uses a merger for post processing and the

merging network uses a list of comparators. This class dictionary can be used in several

ways for simulating, for example, sorting networks.

The parameterized class DivideAndConquerNetwork will be useful for many other appli-

cations.

An example sentence for a Merge-object is

input 1 2 3 4

output 5 6 7 8

local

left

input 9 10

output 11 12

local

right

input 13 14

output 15 16

local

postProcessing

c c

Indentation is used to show the recursive structure of the network.

In the next example we de�ne the structure of a Newton-Raphson pipeline. The pa-

rameterized classes are: ProcessorArray and List.

NR = <array> ProcessorArray(NewtonRaphsonElement).

ProcessorArray(Processor) =

"input" <input> Ports

"local" <processors> List(Processor)

"output" <output> Ports.



400 CHAPTER 12. STYLE RULES FOR CLASS DICTIONARIES

List(Processor) ~ {Processor}.

Register = "Register"

"input" <i> DemReal

"local" <store> DemReal

"output" <o> DemReal.

NewtonRaphsonElement = "NewtonRaphsonElement"

"input" <input> Ports

"local"

<argumentSave> Register

<estimateSave> Register

"output" <output> Ports.

Ports = <argument> DemReal <estimate> DemReal.

The parameterized class ProcessorArray will have many more applications than just

de�ning a Newton Raphson pipeline.

12.8.2 Business Applications

We describe the example from [TYF86] in our class dictionary notation. The constraints

are not formulated in the class dictionary. Instead, they are formulated as part of the

object-oriented program that works on the data.

Company = <divisions> List(Division).

Organization(SubOrganization, SuperOrganization) =

<contains> List(SubOrganization)

[<partOf> SuperOrganization]

<managedBy> Employee.

List(P) ~ {P}.

Division = "Division"

<org> Organization(Department, Company).

Department = "Department"

<org> Organization(Employee, Division).

Employee : Manager | Engineer |

Technician | Secretary

*common*

[<belongsTo> Department]

[<manages> Department]

[<heads> Division]

[<marriedTo> Employee]

<skills> List(Skill)

<assignedTo> List(Project).

Project =

<requiredSkills> List(Skill)



12.9. SUMMARY 401

<location> Location.

Manager = "Manager".

Engineer = "Engineer"

<hasAllocated> PC

<belongsToProfAssoc> List(ProfAssoc).

Technician = "Technician".

Secretary = "Secretary".

Skill = "skill".

PC = "pc".

ProfAssoc = "assoc".

Location = "location".

Next we describe a class dictionary for an other company. The classes Order, Customer,

and Product are normalized. This example shows the bu�ering of terminal classes.

Company =

"orders" <orders> List(Order)

"customers" <customers> List(Customer)

"products" <products> List(Product).

Order = "Order" <orderNumber> OrderNumber

<orderDate> Date

<customer> Customer

<quantityOrdered> DemNumber

<product> Product.

Customer = "Customer" <customerNumber> CustomerNumber

<customerName> Name

<customerAddress> Address.

Product = "Product"

<productNumber> ProductNumber

<productName> Name

<productPrice> Money.

Address = .

OrderNumber = DemNumber.

CustomerNumber = DemNumber.

ProductNumber = DemNumber.

Name = DemString.

Money = DemNumber.

Date = .

List(P) ~ {P}.

12.9 SUMMARY

This chapter used to play an important role in the Demeter Method. With the advent of

adaptive software, the role of the chapter has diminished somewhat. The rules described



402 CHAPTER 12. STYLE RULES FOR CLASS DICTIONARIES

here are still useful since a clean class dictionary is important.

12.10 EXERCISES

Exercise 12.1 What is the relationship between a noninductive vertex and a useless vertex?

A vertex is useless, if it cannot be instantiated in a �nite, noncyclic object.

12.11 BIBLIOGRAPHIC REMARKS

� Database design:

A paper by John and Diane Smith [SS77] outlines some of the features of the Deme-

ter system. Their aggregation/generalization concepts correspond to our construc-

tion/alternation concepts.

Normalization of relational databases is explained in [Ull82] and [Sal86]. For inter-

esting relationships between relational database design and object-oriented database

design see [Kor86].

Types and subtypes are discussed in [HO87].

� Complexity:

Whether the language equivalence problem for deterministic context-free grammars

is decidable or not is an open problem. Class dictionaries not using recursion de�ne

regular expressions of a restricted form (LL(1) restrictions). The equivalence problem

for general regular expressions is NP-hard [GJ79].

� Transformations:

The term \promotion of structure" is from [SB86].

� Predecessor:

Since 1984 we have designed or participated in the design of numerous class dictio-

naries of various sizes, ranging from a couple of lines to a few hundred lines. Some of

these class dictionaries were written for the predecessor of Demeter: GEM [GL85b].

The class dictionaries were used for applications such as silicon compilation for Zeus

[GL85a], translation between intermediate forms for automatic test generation, trans-

lation of algebraic speci�cations into Prolog, programming language implementation,

etc.

� Cognitive aspects:

[Gre89] describes cognitive dimensions of notations.



Chapter 13

Case Study: A Class Structure

Comparison Tool

In this chapter we go through the process of developing a simple programming tool for com-

paring class dictionaries. We use the Demeter Method for adaptive software development

that we developed piece by piece in earlier chapters. The Demeter Method allows you to de-

velop adaptive software, which is highly generic software that needs to be instantiated. The

Demeter Method is a two-phase software development method. In phase one the adaptive

software is developed and in phase two the adaptive software is instantiated by customizers.

The phases are used iteratively.

Adaptive software consists of three parts:

� succinct constraints C on customizers

� initial behavior speci�cations expressed in terms of C

� behavior enhancements expressed in terms of C

The succinct constraints express the set of permissible customizers. A key ingredient

to adaptiveness is that the constraints are succinct; that is, they are expressed in terms

of partial knowledge about a larger structure. The initial behavior speci�cations express

simple behavior. The behavior enhancements express in terms of the constraints, how the

simple behavior is enhanced to get the desired behavior.

The constraints are graph constraints that are expressed, for example, in terms of edge

patterns and propagation directives. The initial behavior speci�cations are propagation

patterns, possibly with transportation directives, but without the wrappers. They de�ne

traversals and transportations. The enhancements are the vertex and edge wrappers.

13.1 THE DEMETER METHOD

We �rst give a summary of the method.

403



404 CHAPTER 13. CASE STUDY: A CLASS STRUCTURE COMPARISON TOOL

13.1.1 The Demeter Method in a Nutshell

The following artifacts are derived from the use cases.

� Derive a class dictionary.

Start with requirements, written in the form of use cases and a high-level structural

object model that describes the structure of application objects. The structural object

model provides the vocabulary for expressing the use cases. A use case describes a

typical use of the software to be built. From the high-level structural object model we

derive a class dictionary to describe the structure of objects. The class dictionary has

secondary importance since, after the project is complete, it is replaceable by many

other class dictionaries without requiring changes or only a few changes to the rest of

the software.

� Derive traversal and transportation patterns without wrappers.

For each use case, focus on subgraphs of collaborating classes that implement the use

case. Focus on how the collaborating classes cluster objects together. Express the

clustering in terms of transportation patterns. Express the collaborations as propaga-

tion patterns that have minimal dependency on the class dictionary. The propagation

patterns give an implicit speci�cation of the group of collaborating classes, focusing

on the classes and relationships that are really important for the current use case.

� Derive the wrappers.

Enhance the propagation patterns by adding speci�c functionality through wrappers

at vertices or at edges of the class dictionary. The wrappers use the object clusters.

Derive test inputs from use cases and use them to test the system.

Next we describe the steps taken during adaptive software development and maintenance

in more detail.

13.1.2 Design Checklist

We give a summary of the software engineering process for adaptive software. When applying

the Demeter Method, the following activities are performed iteratively.

1. Develop/maintain use cases (and the high-level object structure)

Use cases are used throughout adaptive software development and maintenance. Use

cases are often described in English. Sometimes a class dictionary is developed to

de�ne a use case notation and a tool is used to test the software after development

by driving it with use cases written in the use case notation. In other words, the use

cases serve as test scripts.

Use cases are used to develop and test class dictionaries and propagation patterns.

Organize use cases into a list where the easy use cases are �rst and the most complex

uses cases are last. Find relationships among the use cases such as when one use case

calls another use case or when one use case is a re�nement of another use case. The list

of use cases you produce should contain a small set of functionally simpli�ed use cases



13.1. THE DEMETER METHOD 405

that will be used to build a simple and interesting subsystem of the target system.

We call this subsystem the system core.

Instead of use cases, a formal speci�cation language could be used to de�ne the be-

havior.

2. Develop/maintain class dictionaries

(a) Finding classes through language design

Derive/maintain stylized English descriptions (sentences) of objects mentioned in

or implied by use cases, and develop preliminary class dictionary. The approach

is to de�ne a language for describing the objects and to express the language by

a class dictionary. The classes are produced as a by-product. The classes are

derived from the sentences in several steps. First a set of objects O is abstracted

from the sentences. Then a simple algorithm is used to turn O into a class

dictionary which de�nes O and similar objects. The class dictionary is optimized,

preserving object equivalence, and �nally the terminals are inserted into the class

dictionary to make it a grammar that de�nes the original sentences.

(b) Reuse

Can existing class dictionaries be used and modi�ed?

(c) Testing

Test class dictionaries against stylized English descriptions.

(d) Robustness analysis

Do a maintenance/robustness analysis of your class dictionaries. The adaptive

software developer views information in class dictionaries as constantly changing.

What kind of changes are likely to be made to the class dictionaries during

maintenance? This information is valuable when the propagation directives are

written. The succinct graph descriptions can be made more robust.

(e) Growth plans

The class dictionaries you produce should contain the subset of classes needed

to build a simple, but interesting subsystem of the target system, the system

core. Each class dictionary should have a corresponding growth plan consisting

of growth phases of the class dictionary. A growth plan is de�ned by a sequence

of propagation directives, each de�ning a class dictionary graph slice.

Growth plans are used to describe structural simpli�cations. They are used to

manage complexity during the debugging of adaptive programs.

3. Develop/maintain propagation patterns

Select a use case (the easy ones often come �rst) and translate it into a set of collab-

orating propagation patterns.

(a) Functional decomposition

Decompose a use case into simpler functions that are expressed as propagation

patterns. (This is functional decomposition based on object structure.) Introduce



406 CHAPTER 13. CASE STUDY: A CLASS STRUCTURE COMPARISON TOOL

new classes as needed. Decomposing a use case into simpler functions is a creative

activity that involves knowledge of algorithms and data structures, and it takes

performance requirements into account.

(b) Reuse

Can existing propagation patterns be used or modi�ed? Can existing class li-

braries be used?

(c) Develop propagation patterns

The translation of a use case into propagation patterns is done in several steps:

i. traversal directive

Select a name of a function needed to implement a use case. Select a con-

nected group of collaborating classes that need a function with the selected

name for the implementation of the use case. Translate the group of name-

equivalent functions into a propagation directive that will specify the traver-

sal with minimal knowledge of the class dictionary. But take the robustness

analysis of the class dictionary into account. Test the propagation directives

by checking that they do the intended traversals on input objects.

ii. transportation patterns

Group objects into clusters that are needed to perform a task simultaneously.

Write transportation patterns to produce object clusters with minimal de-

pendency on the class dictionaries. If class dictionaries do not naturally

support grouping the objects, change class dictionaries. Embed transporta-

tion directives into traversal directives. Test the traversal and transporta-

tion directives by checking that they bring the \intended actors on stage."

Both steps, that is, �nding traversal and transportation directives, require

the abstraction of propagation graphs into propagation directives. First �nd

suitable sources and then suitable targets. To make the propagation graph

smaller, use either *via*, *bypassing*, or *through*. Use *to-stop* to control

unwanted recursions. Use *merge* and *join* as needed.

iii. wrappers

Augment the traversal and transportation code with wrappers at vertices

and edges. Write/modify wrappers that will call other propagation patterns.

(d) Testing

Test propagation patterns against use cases. This testing is done in layers by

data simpli�cation, using growth plans.

Do data simpli�cations for class dictionaries. What are the simplest class dic-

tionaries to start with? What is the next phase of the class dictionaries to be

selected? How are the inputs of those class dictionaries constrained? During

testing, use inputs from the selected layer before you go to the next layer. Later

layers usually activate more wrappers than early layers. This leads to incremental

testing of the wrappers.

Software development methods frequently are decomposed into an analysis phase, a

design phase, and an implementation phase.



13.2. GROWING ADAPTIVE SOFTWARE 407

13.1.3 Analysis/Design/Implementation

We may split analysis, design, and implementation as follows.

� Analysis (problem oriented)

Developing and maintaining use cases and high-level object structure. What are the

user's needs? Developing initial class dictionaries and partitioning them. Developing

class interfaces. Robustness analysis for class dictionaries.

Do cost/bene�t considerations, cost and schedule estimations, risk analysis. Make a

project plan.

� Design (solution-oriented, collaborating objects)

Developing propagation directives for traversal and transportation. Re�ne the class

dictionaries. Developing constraints for the customizers.

Re�ne cost/bene�t considerations, cost and schedule estimations, risk analysis. Re�ne

project plan.

� Implementation (solution-oriented, details of collaboration)

Developing the vertex and edge wrappers.

This subdivison assigns the di�erent parts of an adaptive program to the three di�erent

software development stages. This is di�erent from other software development methods

where the analysis and design phases might produce a lot of paper that does not directly

contribute to the executable program, and much of which usually counts as implementation,

is done automatically.

13.2 GROWING ADAPTIVE SOFTWARE

Both class dictionaries and propagation patterns are building blocks for growing software.

We need mechanisms to compose class dictionaries to get new class dictionaries, and to

compose propagation patterns to get new propagation patterns. Also, we need a mechanism

to customize propagation patterns with class dictionaries.

Developing a large software system is quite similar to building a large castle that consists

of several partitions. The analogy is summarized in Fig. 13.1. The analogy refers to basic

class libraries produced from a class dictionary. By this we mean the class library of a class

dictionary in a speci�c programming language.

How do we build a new castle? We need to know which function it has to serve. Based

on the function of the castle we will choose a suitable architecture and a suitable interior

design. The architecture will partition the castle into several partitions and the interior

design de�nes how to put the furniture and �xtures into each room.

How do we build a new application using adaptive software? We need to know

the functionality of the application, which will strongly in
uence the class dic-

tionaries and propagation patterns we use. Each class dictionary corresponds

to a partition of the castle and for each class dictionary a group of propagation

patterns will decorate the classes with functions. The classes correspond to the



408 CHAPTER 13. CASE STUDY: A CLASS STRUCTURE COMPARISON TOOL

Castle construction Adaptive software construction

======================================================

castle architecture group of class dictionaries

empty castle group of basic class libraries

with partitions each produced from a

class dictionary

empty castle partition basic class library produced from

class dictionary

castle with furniture group of class libraries

defined by with injected methods

interior designs

room class

connections references

between partitions to external classes

(doors, stairs)

minimize minimize

connections references to external classes

furniture piece method

interior design propagation patterns

repository repository of propagation patterns

of interior designs (organized as components)

repository repository of

of castle architectures class dictionaries

Figure 13.1: Castle building analogy



13.2. GROWING ADAPTIVE SOFTWARE 409

rooms of the castle and the functions to the furniture. A propagation pattern is

like an interior design that speci�es how to arrange the furniture in the rooms.

Before we spend a lot of time developing an architecture and an interior design for the

needed function of the castle, we browse through old architecture descriptions and interior

designs that were developed for a related purpose.

We browse through our repository of class dictionaries and propagation patterns

to �nd useful artifacts. This browsing may be assisted by tools that allow us

to match partial class dictionaries and propagation patterns with information in

the library.

When can the residents move in? How can I build a small functional subsystem of the

castle? Do I need something from every partition of the castle? How can I get a development

plan for the castle that lets us grow the small functional subsystem into the full castle in a

well organized sequence of steps?

We identify a small subsystem through data and function simpli�cation. Data

simpli�cation is guided by using class dictionary graph slices. This results in a

functional subsystem with a plan (called an evolution history) on how to grow

it. Growing means extending the class dictionaries and re�ning the propagation

patterns.

When planning for the castle, we try to keep the partitions of the castle only loosely

connected so that a change in one partition usually does not imply lots of changes in other

partitions. Usually the interior design plans are related to one partition.

The architecture of the software can in principle be described by one huge class

dictionary. But for many reasons, the class dictionary is partitioned into smaller

class dictionaries referencing one another. We keep the number of those refer-

ences small. Another important driving force for partitioning class dictionaries

is the desire not to cut propagation paths. A propagation pattern may only

propagate within the classes of one class dictionary and it may not propagate

across class dictionary boundaries. The reason for this rule is that a change in a

class dictionary should a�ect only the propagation patterns related to that class

dictionary but not propagation patterns in other partitions. Similarly, a change

in a propagation directive of a propagation pattern should a�ect only the classes

of the current class dictionary and not classes in other partitions.

As we plan the castle, we have to make sure that there is a good match between the

architecture and the interior design plans. If there is an inconsistency between the interior

designs and the architecture, there is a need to adjust the two. There is an interplay between

interior design and architecture.

A bad class dictionary makes it hard to design elegant propagation patterns,

and a badly written propagation pattern can combine with only relatively few

class dictionaries. There is an interaction between class dictionary design and



410 CHAPTER 13. CASE STUDY: A CLASS STRUCTURE COMPARISON TOOL

propagation pattern design. The terminology of the class dictionary has to be

chosen to make the propagation patterns easy to write.

Also, if the huge class dictionary is badly partitioned into class dictionaries,

propagation patterns will be more di�cult to write. The propagation patterns

we need for an application have an in
uence on how we partition the huge class

dictionary.

We write our interior designs so that they are loosely coupled with architecture. This

allows us to apply the interior designs to many di�erent architectures.

When we write the functionality in terms of propagation patterns, we use only

minimal information from the class dictionary. This allows us to apply the same

propagation pattern to many di�erent class dictionaries.

13.3 PROBLEM FORMULATION

The problem solved by the case study has been chosen for the following reasons:

� It is an interesting self-contained problem that exercises many aspects of the Demeter

Method.

� It uses concepts useful to adaptive software development, and the resulting tool is an

important element of a tool suite.

Next we introduce the concepts.

13.3.1 Class Dictionary Graph Extension

The extension of class dictionary graphs can be viewed from primarily two perspectives. A

�ne-grained perspective considers the extension of a class dictionary graph at the primitive

elements of the data model, such as adding a new class, renaming a class, adding a part to a

class, and so forth. Another perspective is more coarse grained, capturing transformations

of class dictionary graphs as a whole. In particular, one analyzes the set of objects that can

be modeled by the class dictionary graph. In this section, three coarse-grained extensions

are de�ned.

All extensions are expressed as relations on class dictionary graphs. Every relation is

naturally associated with a transformation of a class dictionary graph. The three key exten-

sion relations are: object-equivalence, weak-extension, and extension. Object-equivalence

preserves the set of objects modeled by the class dictionary graph, weak extension enlarges

the set of objects, and extension enlarges and augments the set of objects. The extension

relations represent a sequence of increasingly stronger transformations and form the basis

of fundamental relations for software reuse.

Before we present the extension relations in more detail, we need a succinct way to

specify the set of all classes whose instances can be assigned to a part of a given class. This

is described by the notion of PartClusters de�ned below.1 Informally, the PartClusters of

a class v is a list of pairs, one for each part of v. Each pair consists of the part name and

1Part clusters, page 433 (20).



13.3. PROBLEM FORMULATION 411

the set of construction classes whose instances can be assigned to the part. Note that only

instances of construction classes can be assigned to any part. Since alternation classes are

abstract and cannot be instantiated, they need not be considered. Consider for example the

class Furnace in Figure 13.2. The actual class of part norm is NormSensor, an alternation

class, but only instances of either class OilSensor or class FaultSensor can be assigned to

norm.

OilSensor FaultSensor

Number
trigger

TempSensor

temp

ProbeTemp
Sensor

probetemp

SensorTemperature

Kelvin Celsius

value

norm

NormSensor

Furnace

furnacetemp

FurnaceTemp
Sensor

Figure 13.2: Experimental heating system: class dictionary graph Furnace

Example 13.1 We give the PartClusters for some vertices of the class dictionary graph

Furnace depicted in Figure 13.2.

� PartClustersFurnace(ProbeTempSensor) =

f(temp,fKelvin, Celsiusg), (trigger,fNumberg)g.

Both parts of class ProbeTempSensor are inherited: temp from class TempSensor and

trigger from class Sensor. Only objects of classes Kelvin and Celsius can be assigned to

part temp.

� PartClustersFurnace(Furnace) = f (probetemp, fProbeTempSensorg), (furnacetemp,

fFurnaceTempSensorg), (norm, fOilSensor, FaultSensorg)g.



412 CHAPTER 13. CASE STUDY: A CLASS STRUCTURE COMPARISON TOOL

Class Furnace has three parts: probetemp, furnacetemp, and norm. To probetemp,

objects of class ProbeTempSensor can be assigned, to furnacetemp, objects of class

FurnaceTempSensor, and to norm, objects of classes OilSensor and FaultSensor.

� PartClustersFurnace(Kelvin) = f (value,fNumberg)g.

Part value is inherited and can have objects of class Number assigned to it.

If two class dictionary graphs �1 and �2 are object-equivalent, then both describe the

same set of objects.2 In other words, they must have the same PartClusters. If they are

in a weak-extension relation then all objects have the same number of parts, but possibly

di�erent ones. If they are in an extension relation then the number of parts may be di�erent

also.

1 2

OilSensor FaultSensor

Number

TempSensor

temp

ProbeTemp
Sensor

probetemp

Temperature

Kelvin Celsius

value

norm

NormSensor

furnacetemp

FurnaceTemp
Sensor

Furnace

OilSensor FaultSensor

Number

temp

ProbeTemp
Sensor

probetemp

Temperature

Kelvin Celsius

value

norm

NormSensor

furnacetemp

FurnaceTemp
Sensor

Furnace

value

temp

object−equivalence

Figure 13.3: Example of object-equivalence: �1 � �2

Example 13.2 Figures 13.3 through 13.5 give an example of a class dictionary graph in

object-equivalence, weak-extension, and extension relation. They represent the following

changes to the class dictionary graph structure and hence to the model of the application

domain:

1. Object-equivalence (Figure 13.3)

The designer abstracted out the common structure of the two temperature sensors into a

common superclass called TempSensor. She also realized that both units of temperature

have a value to denote the magnitude, so she abstracted the part value up into the

common superclass Temperature.

2. Weak-extension (Figure 13.4)

The basic unit of the system has changed to a set of two furnaces, a normal furnace

and a high temperature furnace with only two temperature sensors. A furnace still has

2Object equivalence and class dictionary graph extension, page 435 (21).



13.3. PROBLEM FORMULATION 413

OilSensor FaultSensor

Number

TempSensor

temp

ProbeTemp
Sensor

probetemp

Temperature

Kelvin Celsius

value

norm

NormSensor

oventemp

probetemp

hightemp norm

furnacetemp

FurnaceTemp
Sensor

Furnace

FurnaceSet

HighTemp
Furnace

2

OilSensor FaultSensor

Number

TempSensor

temp

ProbeTemp
Sensor

probetemp

Temperature

Kelvin Celsius

value

norm

NormSensor

furnacetemp

FurnaceTemp
Sensor

Furnace

1

weak−extension

Figure 13.4: Example of weak-extension: �1 � �2

Number

trigger

TempSensor

temp

ProbeTemp
Sensor

probetemp

Temperature

Kelvin Celsius

value

Furnace

FurnaceTemp
Sensor

furnacetemp

OilSensor FaultSensor

Number
trigger

TempSensor

temp

ProbeTemp
Sensor

probetemp

SensorTemperature

Kelvin Celsius

value

norm

NormSensor

Furnace

FurnaceTemp
Sensor

furnacetemp

1 2

extension

Figure 13.5: Example of extension: �1 � �2



414 CHAPTER 13. CASE STUDY: A CLASS STRUCTURE COMPARISON TOOL

three sensors but the �rst one (probetemp) can be both a ProbeTempSensor as well as

a FurnaceTempSensor, and the third one (norm) can be one of the TempSensors also.

3. Extension (Figure 13.5)

The furnace has a new sensor, a NormSensor, which can be either an OilSensor or a

FaultSensor, both also having a trigger.

The PartClusters(v) of a class v is a list of pairs, one for each part of v. Each pair con-

sists of the part name and the set of construction classes whose instances can be assigned to

the part. With the PartCluster de�nition, we can now give a de�nition of object-equivalence

without referring to the set of objects de�ned by the two class dictionary graphs.

13.3.2 Precise Problem Statement

� Let G1 and G2 be two class dictionary graphs, where for i = 1; 2 :

Gi = (V Ci; V Ai;�i; ECi; EAi):

Class dictionary graph G1 and G2 are object-equivalent if V C1 = V C2 and for all

v 2 V C1 :

PartClustersG1(v) = PartClustersG2(v):

We now focus on object-equivalence only. The task is to implement the following use

cases:

1. Given two object-equivalent class dictionary graphs G1; G2, the program will report:

G1 is object-equivalent to G2. An example input is in Fig. 13.3.

2. Given two not object-equivalent class dictionary graphs G1; G2, the program will re-

port: G1 is not object-equivalent to G2. One of the following reasons will be given:

G1 weakly extends G2 (see Fig. 13.4), G1 extends G2 (see Fig. 13.5), G1 and G2 are

not in any extension relation.

3. If an input �le that is supposed to contain a class dictionary graph contains

(a) a syntactically incorrect class dictionary graph, a syntax error and line number

will be given for the �rst error.

(b) a semantically incorrect class dictionary graph (e.g., a violation of the unique

label rule), an error message will be given for each kind of error.

13.4 PROBLEM SOLUTION

Since we will test the program in layers, we simplify the problem by simplifying the data and

the behavior. (This simpli�cation is done in parallel with the class structure generalization.

We write the algorithms for the simpli�ed problem for a family of class structures.)

The intent of the simpli�cation is to start with a simple working subsystem and to

gradually extend it. Our hope is that as we generalize the class structure later, our propa-

gation patterns will faithfully implement our intent for the more general class dictionaries



13.4. PROBLEM SOLUTION 415

also. This hope is often ful�lled due to the analogical generalization capabilities of properly

designed propagation patterns.

Two kinds of simpli�cations are:

� Simplify data

In the context of the object-equivalence problem, this means that initially we can focus

just on class dictionaries with only construction and alternation vertices and edges.

We ignore things like optional parts, syntax, and repetition vertices. We could go

further in simpli�cation and use only construction vertices and edges initially.

� Simplify behavior

The data simpli�cations also lead to behavior simpli�cations. But we can simplify the

functionality further. For example, for two class dictionaries to be object-equivalent,

they must have the same set of construction classes. So �rst we could check the

construction classes.

We already noticed that computing the PartClusters is an important subcomputation.

Testing object-equivalence means: �nd part clusters for construction classes of both

class dictionaries, and check that name-equivalent construction classes have the same

part clusters.

To compute the PartClusters we need to �nd all the inherited parts of a class, which

in turn means that we need to compute all the superclasses of a class.

Simplifying the behavior is problem decomposition: we simplify until we get to tasks

we know how to implement.

What is the di�erence between this kind of problem decomposition and stepwise re�ne-

ment widely used in procedural programming? It is quite similar, but we are de�ning the

behavior for class dictionaries.

The PartCluster problem can be decomposed as follows:

part clusters of a class

compute parts

compute super classes

compute all parts

immediate parts +

parts of all super classes

for each part class compute

set of associated classes

In terms of packaging, we are developing three components, each describing a group of

collaborating propagation patterns:

� partclusters

� superclasses

� associated



416 CHAPTER 13. CASE STUDY: A CLASS STRUCTURE COMPARISON TOOL

If we developed an air tra�c controller, we would develop a class dictionary for air tra�c

control. Since we develop a tool for class dictionary graphs, we develop a class dictionary

for class dictionary graphs.

13.4.1 Finding the Class Dictionary

How do we �nd the objects we need? We are going to need objects to de�ne classes and

PartClusters. The class de�nitions look like

A = <b> B <c> C.

B : C | D *common* <x> X.

The PartClusters will have the appearance

*clusters*

*source* A ( < b > C , D < c > C , H )

*source* B ( < x > X )

*source* E ( < y > Y )

*source* C ( < x > X < y > Y )

*source* D ( < x > X )

*source* H ( < y > Y )

Since labeled vertices are used by class de�nitions as well as by PartClusters, there is

some sharing between the class dictionary for class de�nitions and the one for clusters. We

now give a class dictionary for the above notations.

Cd_graph = <adjacencies> List(Adjacency).

Adjacency =

<source> Vertex

<ns> Neighbors ".".

Neighbors : Construct_ns | Alternat_ns

*common* <construct_ns> List(Labeled_vertex).

Labeled_vertex =

"<" <label_name> DemIdent ">"

// for input, the comma list has only one element

<vertex> Comma_list(Vertex).

Alternat_ns = ":"

<alternat_ns> Bar_list(Vertex) "*common*".

Construct_ns = "=".

Vertex = <vertex_name> DemIdent.

// parameterized classes

List(S) ~ {S} .

Comma_list(S) ~ S {"," S}.

Bar_list(S) ~ S {"|" S}.

// representing results

Cluster = "*clusters*" <clusters> List(PartCluster) .



13.4. PROBLEM SOLUTION 417

PartCluster = "*source*" <source> Vertex

"(" <parts> List(Labeled_vertex) ")".

// Labeled_vertex.vertex contains associated sets

// auxiliary list class

Dummy = List(Vertex).

// Needed for return type of functions.

We debug this class dictionary by feeding it sentences. This is all accomplished without

writing a line of C++ code. With the class dictionary now in a reasonably good state, we

move on to develop the behavior. We develop the behavior in phases based on the functional

decomposition we did earlier.

13.4.2 Component superclasses

The component superclasses de�nes a family of algorithms for computing the superclasses of

a given class. The component is developed in three phases. In the �rst phase, the traversal

graph is determined. We need to �nd all Vertex-objects that are alternatives of alternation

classes in the class dictionary graph. This is achieved by the propagation directive

*from* Cd_graph

*via* Adjacency

*through* -> *,alternat_ns,*

*to* Vertex

How did we �nd this directive? The source and the target are very easy to �nd in this

case. But the propagation graph de�ned by

*from* Cd_graph

*to* Vertex

is too big. We can cut it down in several ways. For example,

*from* Cd_graph

*bypassing* -> *,source,*,

-> *,construct_ns,*

*to* Vertex

would also give the right propagation graph. Or we could use

*from* Cd_graph

*via* Vertex_Bar_list

*to* Vertex

to get the right propagation graph.

We think that the propagation directive

*from* Cd_graph

*through* -> *,alternat_ns,*

*to* Vertex



418 CHAPTER 13. CASE STUDY: A CLASS STRUCTURE COMPARISON TOOL

is the most natural way to specify the subgraph since it directly says that we are interested

in the neighbors of alternation classes (ns stands for neighbors). This is likely to be a robust

speci�cation as the class dictionary changes during the life-cycle of the application.

Why did we add *via* Adjacency? Because we know that it is important for Adjacency to

be on the path from Cd graph to Vertex. This is the case for the current class dictionary, but

it might not be the case for others. Remember that when we develop propagation patterns,

we write constraints that limit the permissible customizers.

After this discussion of design alternatives, we continue with the algorithm. At class

Vertex we check whether we have found the right vertex and if so, we recursively compute

the superclasses. At vertex v we need to know the name of the alternation class containing

v. Therefore, we transport the class name from Adjacency to Vertex.

*component* superclasses

// a group of collaborating propagation patterns

*constraints*

// in this constraints section we summarize the assumptions

// made by the propagation patterns

*classes* // class-valued variables

Cd_graph, Vertex, Adjacency, Vertex_List

*edge* *patterns* // edge constraints

-> *,alternat_ns,*,

-> Adjacency, source, *

*directives* // named propagation directives

CV =

// classes which have a superclass

*from* Cd_graph

*via* Adjacency

*through* -> *,alternat_ns,*

*to* Vertex;

AV = *from* Adjacency *to* Vertex;

*end*

// propagation patterns

*operation* Vertex_List* find_super

(Vertex* v)

*init* (@ new Vertex_List() @)

*traverse* CV // find all alternatives

// transportation directive

*carry* *in* Cd_graph* cd = (@ this @)

// needed at Vertex to compute superclasses

// recursively

*along* CV

*carry* *in* Vertex* sv = (@ this -> get_source() @)

*along* AV



13.4. PROBLEM SOLUTION 419

*wrapper* Vertex

*prefix*

(@ if (this -> g_equal(v)) {

// found super class sv

return_val -> append(sv);

// recursively compute superclass of sv

return_val -> concatenate

(cd -> find_super(sv)); } @)

// debugging

*wrapper* Cd_graph

*suffix*

(@ cout << endl << "super_classes of "

<< v << "are" << endl

<< return_val << endl; @)

*require*

// standard generic library, standard generation

*end* superclasses

At run-time, a call to �nd super for a Cd graph-object and a Vertex-object as argument,

will traverse the CV subgraph. At class Cd graph we load the Cd graph-object, since we need

it at class Vertex to call �nd super recursively. At class Adjacency we load the source vertex

object, since we need it at class Vertex to know which superclass we found.

We can test component superclasses independently by injecting it into the class dictio-

nary.

13.4.3 Component partclusters

Next we focus on component partclusters. It introduces function part clusters() for class

Cd graph. This function collects all the immediate parts for all class de�nitions and with

the help of �nd super it also collects the inherited parts.

Component partclusters is developed in three phases. For the traversal part we need

to �nd all the Adjacency-objects contained in a Cd graph-object. This is achieved by the

propagation directive

*from* Cd_graph *to* Adjacency

At class Adjacency we need to know the class dictionary (for computing the superclasses

and for computing the inherited parts). Therefore, we transport the class dictionary from

Cd graph to Adjacency.

At class Adjacency we must also collect all the PartClusters into a list. Therefore, we

transport the PartCluster List-object contained in a Cluster-object from Cd graph to Adja-

cency.

Now we are ready to �ll in the detailed processing in terms of wrappers. The pre�x

wrapper for Adjacency computes all the parts of the class de�nition. The su�x wrapper for

Adjacency calls an auxiliary function to �ll in the associated classes for the part classes.



420 CHAPTER 13. CASE STUDY: A CLASS STRUCTURE COMPARISON TOOL

Function �nd inh parts needs to collect all the parts for every superclass. Unfortunately

we cannot propagate from Vertex list to Labeled vertex because there is no such path. In-

stead, we propagate from Vertex List to Vertex and at Vertex we use function �nd to get the

corresponding Adjacency-object. Finally we propagate from Adjacency to Labeled vertex to

collect all the inherited parts.

This example shows the need for derived edges. If we could introduce a derived edge

from Vertex to Adjacency with label �nd, then we could propagate directly from Vertex to

Labeled vertex.

In function �nd inh parts we kept (in comments) a bug that appeared during initial

development of this software. The bug resulted in the wrong output when all parts of the

algorithm were used.

The bug was found through testing. When a class dictionary with two levels of inheri-

tance was used, the results were wrong.

How was the bug localized? The bug must be related to collecting the inherited parts.

First component superclasses was thought to be the suspect. It was tested but it worked

�ne. Then the function �nd inh parts was tested in isolation (together with function �nd)

and it produced the wrong results.

A nice property of propagation patterns is that they can be tested incrementally by

injecting them one-by-one into the classes. Also, during the debugging phase it is necessary

to add print statements. Those print statements can be added as additional wrappers,

minimizing the need to modify existing program text.

*component* partclusters

// a group of collaborating propagation patterns

*constraints*

// in this constraints section we summarize the assumptions

// made by the propagation patterns

*classes* // class-valued variables

Cd_graph, Adjacency,

Vertex, Labeled_vertex,

Cluster, PartCluster_List,

PartCluster, Vertex_list, Labeled_vertex_List

*edge* *patterns* // constraints on edges

-> Adjacency,source,Vertex,

-> Adjacency,ns,*,

-> Neighbors, construct_ns, *

*directives* // named propagation directives

// *directives*

CA = *from* Cd_graph *to* Adjacency;

*end*

// propagation patterns

*operation* Cluster* part_clusters()

*init* (@ new Cluster( new PartCluster_List()) @)



13.4. PROBLEM SOLUTION 421

*traverse* CA

*carry* *in* Cd_graph* cd = (@ this @)

// needed at Adjacency to compute superclasses

// and inherited parts

*along* CA

*carry* *in* PartCluster_List* pcl =

(@ return_val -> get_clusters(); @)

// needed at Adjacency to add part cluster

*along* CA

*wrapper* Adjacency

*prefix*

(@

Vertex_List* l = cd->find_super(this->get_source());

// immediate parts

Labeled_vertex_List* lvl =

((Labeled_vertex_List *)

this -> get_ns() -> get_construct_ns() -> g_copy());

// inherited parts

lvl -> concatenate(l -> find_inh_parts(cd));

PartCluster* pc =

new PartCluster(this->get_source(), lvl);

pcl -> append(pc); @)

*wrapper* Cd_graph

*suffix* (@ return_val -> insert_assoc(this); @)

*private* *operation* Labeled_vertex_List*

find_inh_parts(Cd_graph* cd)

*init* (@ new Labeled_vertex_List(); @)

*constraints* // assumptions

*directives*

VV = *from* Vertex_List *to* Vertex;

*end*

*traverse* VV

*wrapper* Vertex

*prefix*

(@

// initial bug :

// return_val =

// cd->find(this)->find_inh_parts2();

// corrected :

return_val -> concatenate(

cd->find(this)->find_inh_parts2());

@)

// debugging



422 CHAPTER 13. CASE STUDY: A CLASS STRUCTURE COMPARISON TOOL

*wrapper* Vertex_List

*suffix*

(@

// return_val -> g_check("Labeled_vertex_List");

cout << endl << "inherited parts collected from " << this <<

" are" << endl << return_val << endl; @)

*private* *operation* Labeled_vertex_List* find_inh_parts2()

*init* (@ new Labeled_vertex_List() @)

*constraints*

*directives*

AL = *from* Adjacency *to* Labeled_vertex;

*end*

*traverse* AL

*wrapper* Labeled_vertex

*prefix*

(@

return_val->

append((Labeled_vertex*) this -> g_copy());

@)

*private* *operation* void insert_assoc(Cd_graph* cd)

*traverse*

*from* Cluster *to* Labeled_vertex

*wrapper* Labeled_vertex

*prefix*

(@ this -> set_vertex

(cd->associated(this->get_vertex() -> car())); @)

*require*

// dependency on external functions

// Cd_graph

*operation* Vertex_List* find_super (Vertex* v)

// Cd_graph

*operation* Vertex_Comma_list* associated (Vertex* v)

// Cd_graph

*operation* Adjacency* find(Vertex* v)

*end* partclusters

Component partclusters refers to a function associated, which is implemented in compo-

nent associated.

13.4.4 Component associated

The idea of the algorithm in component associated is to �nd all Vertex-objects that are

alternatives of an alternation class with the appropriate name. While we search for suitable

Vertex-objects, we also go after construction class bodies (Construct ns-objects).



13.4. PROBLEM SOLUTION 423

This simultaneous searching could be expressed by a merge operation.

*merge*(

*from* Cd_graph

*through* -> *,alternat_ns,*

*to* Vertex,

*from* Cd_graph

*to* Construct_ns)

Instead, we use

*from* Cd_graph

*bypassing* -> *,construct_ns,* ,

-> *,source,*

*to* {Vertex, Construct_ns}

which de�nes the same graph for the present class dictionary. The transportation pattern

carries the class dictionary around since it is needed for a recursive call at class Vertex.

*component* associated

// a group of collaborating propagation patterns

// to compute the set of all instantiable subclasses

// of a given class.

*constraints*

// in this constraints section we summarize the assumptions

// made by the propagation patterns

*classes* // class-valued variables

Cd_graph, Vertex,

Construct_ns, Vertex_Comma_list

*edge* *patterns* // edge constraints

-> *,construct_ns,*,

-> Adjacency, source, Vertex

*class-set*

VC = {Vertex, Construct_ns};

*directives* // named propagation directives

CVC =

*from* Cd_graph

*bypassing* -> *,construct_ns,* ,

-> *,source,*

*to* *class-set* VC;

*end*

// propagation patterns

*operation* Vertex_Comma_list* associated

(Vertex* v)

*init* (@ new Vertex_Comma_list(); @)



424 CHAPTER 13. CASE STUDY: A CLASS STRUCTURE COMPARISON TOOL

*traverse* CVC

// transportation directive

*carry* *in* Cd_graph* cd = (@ this @)

*along* CVC

*wrapper* Vertex

*prefix*

(@ return_val ->

concatenate(cd ->

associated(this)); @)

*wrapper* Adjacency

*prefix* (@ if (this->get_source()->g_equal(v)) { @)

*suffix* (@ } @)

*wrapper* Construct_ns

*prefix*

(@ return_val ->

append((Vertex *)(v -> g_copy())); @)

// end transportation directive

*end* associated

We can now run the application after we have injected the components into the class

structure. For example, on input

A = <b> B <c> E.

B : C | D *common* <x> X.

E : G | H *common* <y> Y.

C = .

D = .

G = .

H = .

X = .

Y = .

we get the output:

*clusters*

*source* A ( < b > C , D < c > G , H )

*source* B ( < x > X )

*source* E ( < y > Y )

*source* C ( < x > X )

*source* D ( < x > X )

*source* G ( < y > Y )

*source* H ( < y > Y )

*source* X ( )

*source* Y ( )



13.5. SUMMARY 425

The next step in the implementation is to write propagation patterns for comparing the

PartClusters. This is left as an exercise; the bibliography section points to further literature

on class dictionary extension relations.

13.5 SUMMARY

We outlined the Demeter Method for developing adaptive programs. Adaptive programs

are programs where class structures are described only partially, by giving constraints that

must be satis�ed by a customizing class dictionary.

The Demeter Method works with use cases, class dictionaries, and propagation patterns.

Groups of collaborating propagation patterns are encapsulated into components.

The Demeter Method is scalable to large systems. The idea of using succinct subgraph

speci�cations is most e�ective for large systems with thousands of classes. Such a system is

represented by several collaborating class dictionaries, each one containing not more than

one hundred classes to keep compile and link times manageable.

13.6 EXERCISES

Exercise 13.1 Complete the implementation of the class dictionary comparator outlined

in this chapter. Add a graphical user interface using Tcl/Tk.

Exercise 13.2 In [GHJV95] a proposal is made to use design patterns to help designers

to apply existing methods. Apply this idea to the Demeter Method. Reuse patterns from

[GHJV95] as appropriate. Below is a discussion of some of their patterns.

The authors of [GHJV95] have �gured out, at the level of object-oriented software,

what new concepts (i.e., design patterns) are necessary to get 
exible software. In this

book, we step outside object-oriented software and use adaptive object-oriented software to

express 
exible software. The di�erence is that the kinds of 
exibility addressed by adaptive

software is focused towards letting programmers talk in concepts they already had rather

than in arti�cial concepts. Therefore, 
exible design at the adaptive level is much easier

than design at the object-oriented level.

Visitor This pattern stresses the importance of traversals in object-oriented software. In

[GHJV95], the structural design pattern Composite and the behavioral design pattern

Visitor are introduced. The purpose of the design pattern book is not to invent new

patterns but to document widely used design patterns. The Composite pattern describes

how to compose objects into tree structures to represent part-whole hierarchies and the

Visitor pattern serves to traverse a part-whole hierarchy. With respect to the traversal

operations, we read in [GHJV95]: \The problem here is that distributing all these operations

across the various node classes leads to a system that is hard to understand, maintain and

change."

The idea of the Visitor pattern is to code a traversal once and then to use it several

times. The consequences of using the Visitor pattern are:

� Adding new operations that use the same traversal is easy. You do not have to change

each class in the traversal domain.



426 CHAPTER 13. CASE STUDY: A CLASS STRUCTURE COMPARISON TOOL

� Related operations are gathered together. Related behavior is localized in a visitor

and not spread over the classes de�ning the object structure.

� Adding a new class that participates in the traversal is hard. In [GHJV95] we read:

when new classes that participate in the traversal are added frequently, \it is probably

easier just to de�ne the operations on the classes that make up the structure."

With adaptive software we achieve the goals of the Visitor pattern more e�ectively. We

de�ne the pattern Adaptive Visitor which is fundamental to adaptive software develop-

ment:

� Intent

Represent an operation to be performed on the elements of an object structure. Adap-

tive Visitor gathers the code describing the traversal in one place with minimal de-

pendency on the class structure.

� Motivation

For an operation to be performed on an object structure, usually many of the objects

involved are accidental and not of inherent importance. Those objects have only

simple traversal behavior and their methods are quite small. Statistics of object-

oriented systems show that a large fraction of the methods in an application are very

short. Those short methods are usually for object traversal.

When several operations have to be performed on an object structure, the tiny methods

become a nuisance since they encode the details of the class structure into the methods.

� Applicability

Use the Adaptive Visitor pattern when

{ An object structure contains at least two classes of objects and you want to

perform operations on those objects that depend on the classes of the objects.

You want to avoid polluting the classes with many simple methods. The Adaptive

Visitor pattern lets you keep related behavior together in a group of propagation

patterns.

{ The classes de�ning the object structure may change often and you may often

want to de�ne new operations over the structure. (Notice here the di�erence

from the Visitor pattern, where changes to the class structure are costly.)

� Consequences

{ Adaptive Visitor makes adding new operations easy, even with modi�ed traver-

sals.

You write a new propagation pattern that adjusts the previous propagation di-

rective by using one of the propagation directive primitives, such as join and

merge.



13.6. EXERCISES 427

{ Visiting across class hierarchies is easy. A propagation directive is like a power-

ful iterator that not only iterates through lists but through any kind of object

structure.

� Implementation

The implementation of the Adaptive Visitor pattern is done with propagation patterns.

The propagation directive de�nes the traversal domain and the wrappers are like

editing instructions that in
uence what needs to be done during the traversal. Both

edge wrappers and vertex wrappers are used.

� Known Uses

The Adaptive Visitor pattern is used extensively in the implementation of the Demeter

Tools/C++.

� Sample Code

A propagation pattern with transportation pattern

// print names of all employees who earn more than $100000

*operation* void select_more_than_100000

*traverse*

*from* Company

*via* Employee

*via* Salary

*to* Money

*carry* *in* Name* n = (@ name @)

*along*

*from* Employee *to* Money

*wrapper* Money

*prefix*

(@ if (*val > 100000) cout << n; @)

Builder Builder is a creational pattern with the intent to separate the construction of an

object from the representation.

Adaptive software uses a corresponding Adaptive Builder pattern that relies on parsing

an object description to create an object.

Interpreter Interpreter is a behavioral pattern which for a given language de�nes a rep-

resentation of the grammar that is used to interpret the sentences of the language.

Adaptive software uses a corresponding Adaptive Interpreter pattern that uses a class

dictionary to express the grammar and an adaptive program to do the interpretation.

Iterator Iterator provides a way to access the elements of an aggregate object sequentially

without exposing the implementation of the object.



428 CHAPTER 13. CASE STUDY: A CLASS STRUCTURE COMPARISON TOOL

Adaptive software uses a corresponding Adaptive Iterator pattern that uses a *from* ...

*to* expression to express the iterator. Important aspects of the implementation may be

exposed at the discretion of the designer to make the software more reusable.

13.7 BIBLIOGRAPHIC REMARKS

� Class dictionary transformations

Object-preserving class transformations are discussed in [Ber91, Ber94].

Object-extending class transformations are discussed in [BH93, HLM93, LHX94, Ber94,

H�ur95].

� Use cases

They were introduced in [JCJO92, Jac87].

� Other methods

The Demeter Method is unique as the �rst adaptive object-oriented method. As an

object-oriented method only, it is related to many other methods, including: [RBP+91,

JCJO92, WBWW90, Boo91, CY90, Col94, HSE94, SM92].

The castle analogy was suggested by George McQuilken.



Chapter 14

Instructional Objectives

An instructional objective (objective, for short) is a description of a performance we want

you to exhibit; it describes an intended result of an instruction. Objectives are useful

for designing instructional content, for evaluating the success of the instruction, and for

organizing your e�orts.1

Our method includes an ordered set of objectives designed to guide the uninitiated user

from zero knowledge about adaptive object-oriented programming through class de�nitions

to propagation patterns and transportation patterns. The method of teaching by objectives

is valuable since it provides a metric by which you can gauge your progress. In addition to

providing a useful metric, this method provides a facility through which you can begin your

studies at a level commensurate with your experience.

We divide the study of adaptive object-oriented programming into structural and be-

havioral concepts. The structural concepts include objects and class dictionaries. Class

dictionaries themselves are learned in stages, �rst just focussing on construction and alter-

nation vertices and edges and later, on optional parts, repetition classes, and edges, and

�nally on parameterized classes. The behavioral concepts include propagation directives,

propagation patterns, and transportation patterns.

This chapter is the nerve center of the book. It summarizes what you will learn. Each

objective contains pointers to other parts of the book where more related information is

available. Conversely, most parts of the book point back to this nerve center through

footnotes. A footnote consists of an objective name, a page number, and the objective

number.

Each objective consists of several parts pointing to other parts of the book. The pre-

requisite part lists other objectives you have to master for the current objective. The index

part of an objective points to entries in the book's index, from where further information

can be gathered about the objective. For example, you can �nd relevant glossary entries

through the index. If you need very precise, but formal de�nitions, the formal de�nition

part contains pointers to formal de�nitions, either in the book, or in published papers.

1For a course on cryptography which I prepared for Sandia Laboratories in Albuquerque, New Mexico,

I was required to use an instructional objectives approach as described in [Mag62]. I found this approach

useful; therefore, I apply it to this book.

429



430 CHAPTER 14. INSTRUCTIONAL OBJECTIVES

Object Example Graphs

1. Objective: Object example graph recognition.

Behavior: Given a graph, determine whether it has the structure of an object example

graph.

Prerequisites: Basic mathematics.

Negative examples: An edge is labeled by a vertex.

Formal de�nition: [LBS91, Ber94, Sil94].

2. Objective: Object example graph textual representation.

Behavior: Given a graph with the structure of an object example graph, write its

textual description.

Prerequisites: Object example graph recognition (1).

Index: learning.

Formal de�nition: [LBS91, Ber94, Sil94].

3. Objective: Legal object example graphs.

Behavior: Given a list of object example graphs, decide whether they are legal.

Prerequisites: Object example graph recognition (1).

Formal de�nition: [LBS91, Ber94, Sil94].

4. Objective: Object example �nding.

Behavior: Given a use case, �nd a representative list of object example graphs for

input objects, output objects, and intermediate objects.

Prerequisites: Understanding of use case, Object example graph recognition(1).

Class Dictionary Graphs

5. Objective: Class dictionary graph recognition.

Behavior: Given a graph, determine whether it has the structure of a class dictionary

graph.

Prerequisites: Basic mathematics.

Negative examples: An alternation vertex has no outgoing alternation edge. An edge

is labeled by a vertex.

Index: class dictionary graph, construction, alternation, repetition.

Formal de�nition: 501.



431

6. Objective: Class dictionary graph graphical representation.

Behavior: Given a mathematical description of a class dictionary graph, draw a picture

of the graph and vice versa.

Prerequisites: Class dictionary graph recognition (5).

Index: graphical.

Formal de�nition: 501.

7. Objective: Class dictionary graph textual representation.

Behavior: Given a graph with the structure of a class dictionary graph, write its

textual description.

Prerequisites: Class dictionary graph recognition (5).

Index: textual.

Formal de�nition: 529.

8. Objective: Semi-class dictionary graph reachability.

Behavior: Given a semi-class dictionary graph and a vertex v, list all vertices that are

alternation-reachable, construction-reachable, inheritance-reachable, and reachable by

a knowledge path from v.

Prerequisites: Class dictionary graph recognition (5) .

Index: knowledge path, alternation-reachable, cycle-free.

Formal de�nition: 498.

9. Objective: Legal class dictionary graph.

Behavior: Given a class dictionary graph, determine whether it is legal.

Prerequisites: Class dictionary graph recognition (5) .

Negative examples: The class dictionary in Fig. 14.1, page 432 violates the Cycle-Free

Alternation Axiom since the path from Fruit to Apple and back forms an alternation

cycle. It also violates the Unique Label Axiom since classMilitary has two parts labeled

orbit (one immediate and one inherited).

Index: unique label rule, cycle-free alternation rule.

Formal de�nition: 501.

10. Objective: Class dictionary graph slice.

Behavior: Given a class dictionary graphD and a subgraph S of D, determine whether

S is a class dictionary graph slice of D.

Prerequisites: Class dictionary graph recognition (5) .

Negative examples: A construction vertex of the subgraph does not have all outgoing

construction edges in the subgraph.

Index: class dictionary graph slice.

Formal de�nition: 500.



432 CHAPTER 14. INSTRUCTIONAL OBJECTIVES

Satellite :

Military |

Civilian

*common* <orbit> Orbit.

Military = <orbit> Low_orbit.

Civilian = <c> Country.

Country = <x> Civilian.

Fruit : Apple.

Apple : Fruit.

Figure 14.1: Class dictionary

11. Objective: Inductive class dictionary graph.

Behavior: Given a class dictionary graph D, determine whether it is inductive.

Prerequisites: Legal class dictionary graph (9), Class dictionary graph slice (10).

Index: inductive, useless class de�nitions.

Formal de�nition: 508.

12. Objective: Making class dictionary graph inductive.

Behavior: Given a class dictionary graph D that violates the Inductiveness Axiom,

�nd a minimum class dictionary graph that satis�es the Inductiveness Axiom and

whose objects include the objects of D.

Prerequisites: Inductive class dictionary graph (11).

13. Objective: Law of Demeter for classes.

Behavior: Given a class dictionary graph D, determine the number of vertices that

are not inductive.

Prerequisites: Legal class dictionary graph (9), Class dictionary graph slice (10).

Index: Law of Demeter for classes.

14. Objective: Class dictionary graph learning.

Behavior: Given a set of object example graphs, �nd a class dictionary graph D so

that Objects(D) contains only objects similar to the example graphs.

Prerequisites: Legal object example graphs (3), Legal class dictionary graph (9).

Index: learning.

Formal de�nition: [Ber94, Sil94, LBS91].



433

15. Objective: Incremental class dictionary graph learning.

Behavior: Given a class dictionary graph and a legal object example graph, extend

the class dictionary graph so that it de�nes all objects that it de�ned before, as well

as the new example object and objects similar to the example graph.

Prerequisites: Class dictionary graph learning (14).

Formal de�nition: [BL91, Ber94].

16. Objective: Class dictionary graph development.

Behavior: Write a legal class dictionary graph for a given application domain.

Prerequisites: Legal class dictionary graph (9), Legal object graph (27).

17. Objective: Class dictionary graph checking with objects.

Behavior: Given a class dictionary graph and an object graph, decide whether the

object is legal with respect to the class dictionary graph. If it is illegal, propose a

change to either the class dictionary graph or the object graph to make the object

graph legal with respect to the class dictionary graph.

Prerequisites: Legal object graph (27), Part clusters (20).

Index: class dictionary graph design.

18. Objective: Class dictionary graph translation.

Behavior: Given a class dictionary graph, give a list of the generated C++ classes

(interfaces and implementations).

Prerequisites: Legal class dictionary graph (9), C++.

Positive examples: See Fig. 14.2.

Index: legal object, translation to C++.

19. Objective: Class dictionary graph parts.

Behavior: Given a class dictionary graph, list all its parts.

Prerequisites: Legal class dictionary graph (9) .

Index: 
at, parts.

Formal de�nition: 503.

20. Objective: Part clusters.

Behavior: Given a class dictionary graph and a class, write down the part clusters of

the class.

Prerequisites: Legal class dictionary graph (9).

Index: part cluster.

Formal de�nition: 504.



434 CHAPTER 14. INSTRUCTIONAL OBJECTIVES

A = <b> B <c> C.

B : C | D.

C = .

D = .

translation:

class A {

private:

B* b;

C* c;

// ...

public:

B* get_b() {return b;}

void set_b(B* b_in) {b = b_in;}

C* get_c() {return c;}

void set_c(C* c_in) {c = c_in;}

A(B* b_in = 0, C* c_in = 0){

b = b_in;

c = c_in;}

// ...

}

Figure 14.2: C++ translation



435

21. Objective: Object equivalence and class dictionary graph extension.

Behavior: Given two class dictionary graphs, decide whether they de�ne the same set

of objects or whether they are in an extension or weak extension relationship.

Prerequisites: Legal class dictionary graph (9), Legal object graph (27).

Positive examples: The two class dictionaries in Fig. 14.3 de�ne the same set of

objects.

Index: object equivalence.

Formal de�nition: 414.

A : B | C | D.

B_or_c : B | C.

B = .

C = .

D = .

A : B_or_c | D.

B_or_c : B | C.

B = .

C = .

D = .

Figure 14.3: Object-equivalence

22. Objective: Class dictionary graph 
attening.

Behavior: Given a class dictionary graph, compute an object-equivalent class dictio-

nary graph without common parts. .

Prerequisites: Object equivalence and class dictionary graph extension (21).

Index: 
at.

Formal de�nition: 469.

23. Objective: Parameterized class dictionary graph expansion.

Behavior: Given a parameterized class dictionary graph, check whether it is legal and

expand it into an equivalent (with respect to objects and sentences) nonparameterized

class dictionary graph.

Prerequisites: Legal class dictionary (32).

Index: parameterized class dictionary.



436 CHAPTER 14. INSTRUCTIONAL OBJECTIVES

Object Graphs

24. Objective: Object graph recognition.

Behavior: Given a graph, determine whether it has the structure of an object graph

with respect to a class dictionary graph.

Prerequisites: Legal class dictionary graph (9).

Negative examples: A vertex is labeled with a class that does not exist in the class

dictionary graph. An edge is not labeled.

Index: object.

Formal de�nition: 505.

25. Objective: Object graph graphical representation.

Behavior: Given an object graph, draw a picture of it.

Prerequisites: Object graph recognition (24).

26. Objective: Object graph textual representation.

Behavior: Given an object graph, write its textual description.

Prerequisites: Object graph recognition (24).

Index: object graph: syntax.

Formal de�nition: 506.

27. Objective: Legal object graph.

Behavior: Given an object graph, determine whether it is legal with respect to a given

class dictionary graph.

Prerequisites: Legal class dictionary graph (9).

Negative examples: The object graph with respect to the class dictionary graph

shown in Fig. 14.4 is illegal since b cannot contain an F-object (only D- or E-objects

are allowed) and since c cannot contain a D-object.

There cannot be a d-part.

Index: atomic object, terminal object, associated, legal object.

Formal de�nition: 505.

28. Objective: Object graph �nding.

Behavior: Given a class dictionary graph, �nd �ve di�erent objects that are legal with

respect to the class dictionary graph.

Prerequisites: Legal class dictionary graph (9), Legal object graph (27).

29. Objective: Object construction.

Behavior: Given a class dictionary graph and an object graph, write a C++ program

that creates a C++ object corresponding to the object graph.



437

A = <b> B <c> C.

B : D | E *common* <f> F.

C = .

D = .

E = .

F = .

object graph:

:A(

<b> :F()

<c> :D()

<d> E())

Figure 14.4: Class dictionary and object graph

Prerequisites: Legal class dictionary graph (9), Legal object graph (27), C++.

Positive examples: See Fig. 14.5.

Index: object graph translation.

Class Dictionaries

30. Objective: Class dictionary recognition.

Behavior: Given a mathematical structure, recognize whether it is a class dictionary.

Prerequisites: Class dictionary graph recognition (5).

Negative examples: The class dictionary in Fig. 14.6 is illegal since elements of V T

cannot occur as alternatives.

Index: terminal, class dictionary.

Formal de�nition: 509.

31. Objective: Class dictionary textual representation.

Behavior: Given a class dictionary, write its textual description.

Prerequisites: Class dictionary recognition (30).

Index: textual representation.

Formal de�nition: 529.

32. Objective: Legal class dictionary.

Behavior: Given a class dictionary, determine whether it is legal.



438 CHAPTER 14. INSTRUCTIONAL OBJECTIVES

A = <b> B <c> C.

B : C | D.

C = .

D = .

object graph:

:A(

<b> :C()

<c> :C())

C++ program:

i = new A(new C(), new C());

Figure 14.5: Object construction

Prefix : Ident | Number | Compound.

Compound = .

*terminal_sets* Ident, Number.

Figure 14.6: Class dictionary



439

Prerequisites: Legal class dictionary graph (9).

Formal de�nition: 511.

33. Objective: Class dictionary 
attening.

Behavior: Given a class dictionary, compute the 
attened, object-equivalent class

dictionary that does not have common parts.

Prerequisites: Class dictionary graph 
attening (22).

Index: 
at.

Formal de�nition: 512.

34. Objective: Printing.

Behavior: Given a class dictionary and an object graph, write the sentence that rep-

resents the object in the language de�ned by the class dictionary.

Prerequisites: Legal class dictionary (32), Legal object graph (27).

Give an English explanation of the language de�ned by a class dictionary.

Positive examples: See Fig. 14.7.

Index: language.

Formal de�nition: 516.

35. Objective: Language design.

Behavior: Given an English description of a language, �nd a class dictionary that

de�nes that language.

Index: class dictionary design.

Prerequisites: Printing (34).

36. Objective: Scanning.

Behavior: Given a class dictionary and a character sequence, transform the characters

into a terminal sequence (consisting of elements of � and elements of the terminal sets

in VT).

Prerequisites: Class dictionary recognition (30).

Index: scanning a sentence.

37. Objective: First sets.

Behavior: Given a class dictionary, compute the �rst sets.

Prerequisites: Legal class dictionary (32), Printing (34) .

Positive examples: See Fig. 14.8.

Index: �rst.

Formal de�nition: 517.



440 CHAPTER 14. INSTRUCTIONAL OBJECTIVES

A = "*" <b> B "+" "end".

B : C | D.

C = "is" <s> String.

D = "d" <i> Ident.

object graph:

A(

<b> C(

<s> String "*common*"))

sentence:

* is "*common*" + end

object graph:

:A(

<b> :D(

<i> :Ident "common"))

sentence:

* d common + end

Figure 14.7: Objects and sentences



441

A = <b> B <c> C <d> D.

B : Empty | B1.

C : Empty | B2.

D = "end".

Empty = .

B1 = "b1".

B2 = "b2".

First sets:

first(A) = {"b1", "b2", "end"},

first(B) = {empty, "b1"},

first(C) = {empty, "b2"},

first(D) = {"end"},

first(Empty) = {empty},

etc.

Figure 14.8: First sets

38. Objective: Parsing.

Behavior: Given a class dictionary and a sentence belonging to the language de�ned

by the class dictionary, give the corresponding object graph. Recognize syntax errors.

Prerequisites: Legal class dictionary (32), First sets (37).

Positive examples: See Fig. 14.9.

Index: parsing.

Formal de�nition: 524.

39. Objective: Sentence �nding.

Behavior: Given a class dictionary, �nd �ve di�erent sentences that are legal with

respect to the class dictionary.

Prerequisites: Legal class dictionary (32), Parsing (38).

40. Objective: Class dictionary checking with sentences.

Behavior: Given a class dictionary and a sentence, decide whether the sentence is

legal with respect to the class dictionary. If it is not legal, propose a change to the

class dictionary or the sentence to make the sentence legal with respect to the class

dictionary.

Prerequisites: Legal class dictionary (32), Legal object graph (27).

41. Objective: Follow sets.



442 CHAPTER 14. INSTRUCTIONAL OBJECTIVES

The sentence

b1 end

is syntactically correct and de�nes the object graph

:A(

<b> :B1()

<c> :Empty()

<d> :D())

The sentence

b2 b1 end

is syntactically incorrect since b1 must be before b2.

Figure 14.9: Syntax analysis

Behavior: Given a class dictionary, compute the follow sets.

Prerequisites: Legal class dictionary (32), First sets (37).

Positive examples: See Fig. 14.10.

Index: follow.

Formal de�nition: 519.

42. Objective: LL(1) conditions.

Behavior: Given a single-inheritance class dictionary, determine whether or not it

is LL(1). Given a multiple-inheritance class dictionary, prove that it satis�es the

multiple-inheritance LL(1) conditions.

Prerequisites: Legal class dictionary (32), Follow sets (41).

Positive examples: The class dictionary in Fig. 14.10 is LL(1) since �rst(Empty) is

disjoint from �rst(B1) and from �rst(B2), and since follow(B) and �rst(B1) are disjoint,

and since follow(C) and �rst(B2) are disjoint.

Index: LL(1) conditions.

Formal de�nition: 519.

43. Objective: LL(1) correction.

Behavior: Given a single-inheritance class dictionary, add concrete syntax to make it

LL(1). Given a multiple-inheritance class dictionary, add concrete syntax to make it

satisfy the multiple-inheritance LL(1) conditions.

Prerequisites: Legal class dictionary (32), (42).



443

A = <b> B <c> C <d> D.

B : Empty | B1.

C : Empty | B2.

D = "end".

Empty = .

B1 = "b1".

B2 = "b2".

Follow sets:

follow(A) = {eof},

follow(B) = {"b2", "end"},

follow(C) = {"end"},

follow(D) = {eof},

follow(Empty) = {"b2", "end"},

etc.

Figure 14.10: Follow sets

44. Objective: Class dictionary development.

Behavior: Given a project speci�cation (a set of use cases), develop a class dictionary

for it.

Prerequisites: Legal class dictionary (32), LL(1) correction (43).

Class Dictionary Optimization

45. Objective: Equivalent parts.

Behavior: Given a class dictionary graph, determine all pairs of parts that are equiv-

alent. Given a class dictionary graph, transform it to an object-equivalent class dic-

tionary graph where each part is only equivalent to itself.

Prerequisites: Legal class dictionary graph (9).

Index: redundant part.

Formal de�nition: [LBS91, Ber94, Sil94].

46. Objective: Redundant parts.

Behavior: Given a class dictionary, �nd all redundant parts.

Prerequisites: Equivalent parts (45).

Index: redundant part.



444 CHAPTER 14. INSTRUCTIONAL OBJECTIVES

47. Objective: Common normal form.

Behavior: Given a class dictionary graph, bring it to common normal form while

preserving object-equivalence. Given a class dictionary, bring it to common normal

form while preserving object-equivalence and language.

Prerequisites: Redundant parts (46).

Positive examples: See Fig. 14.11. The second class dictionary is in CNF.

Index: minimize construction edges.

A = <b> B.

B = .

C = <b> B.

A_or_C : A | C *common* <b> B.

A = .

B = .

C = .

Figure 14.11: Common normal form

48. Objective: Consolidation of alternatives.

Behavior: Given a class dictionary graph in CNF, minimize it while preserving object-

equivalence.

Prerequisites: Common normal form (47).

Index: minimize alternation edges.

49. Objective: Tree property.

Behavior: Given a class dictionary graph, determine whether it has the tree property.

If it has the tree property, transform it to an object-equivalent single-inheritance class

dictionary graph.

Prerequisites: Object equivalence and class dictionary graph extension (21).

Index: tree property.

Formal de�nition: [Sil94].

50. Objective: Class dictionary graph minimization.

Behavior: Given a class dictionary graph, �nd a minimal object-equivalent class dic-

tionary graph.

Prerequisites: Common normal form (47), Consolidation of alternatives (48).

Index: minimize alternation edges, minimize construction edges.



445

Formal de�nition: [LBS91, Ber94, Sil94].

Design

51. Objective: Use case decomposition.

Behavior: Given a requirement speci�cation (set of uses cases for initial design or

maintenance), decompose them into a list of simpler use cases needed for the imple-

mentation of subsystems.

Prerequisites: Experience.

52. Objective: Use case translation.

Behavior: Given a use case, translate it into a sequence of collaborating propagation

patterns.

Prerequisites: Legal class dictionary (32).

53. Objective: Library objective.

Behavior: Given a class dictionary and a speci�cation (set if use cases), decide which

library to use (e.g., NIHCL, Interviews, C++ tasks) and select an appropriate group

of classes for reuse.

Prerequisites: Knowledge of libraries, Legal class dictionary (32).

54. Objective: Growth plan.

Behavior: Given a class dictionary graph and a growth plan, check whether it is

legal and compute the growth plan complexity. Identify incomplete phases. Give a

minimally adequate set of inputs for each phase.

Prerequisites: Legal class dictionary graph (9).

Positive examples: See Fig. 14.12.

Index: growth plan.

55. Objective: Adaptive program test growth plan.

Behavior: Given an adaptive program, �nd a growth plan for testing the adaptive

program.

Prerequisites: Growth plan (54) .

56. Objective: Law of Demeter for functions.

Behavior: Given an object-oriented program, decide whether it satis�es the Law of

Demeter for functions. If it does not, rewrite it.

Prerequisites: Object-oriented programming language.

Index: Law of Demeter.

Formal de�nition: [Hol93, LHR88].



446 CHAPTER 14. INSTRUCTIONAL OBJECTIVES

A : B | C.

B : D | E.

D : F | G.

F = <g> G.

C = .

E = .

G = .

Phases:

0: A, C.

1: B, E.

2: D, G.

3: F.

growth complexity: 7/4

Figure 14.12: Growth plan

57. Objective: Legal propagation directive.

Behavior: Given a propagation directive, check whether it is syntactically and seman-

tically correct.

Prerequisites: Legal class dictionary graph (9).

Index: propagation directive.

58. Objective: Legal propagation directive customization.

Behavior: Given a class dictionary graph and a propagation directive, check whether

the propagation directive is compatible with the class dictionary graph. If the class

dictionary graph violates the information loss customizer restriction, show why it is

violated.

Prerequisites: Legal class dictionary graph (9).

Index: compatible, information loss, customizer restrictions.

Formal de�nition: [LX93b, PXL95, Xia94].

59. Objective: Propagation operator.

Behavior: Given a propagation directive pd and a compatible class dictionary graph

G, compute the propagation graph

propagate(pd;G) = pg



447

by merging the paths into a graph.

Prerequisites: Legal propagation directive (57).

Index: propagate.

Formal de�nition: [LX93c, Xia94].

60. Objective: Propagation directive abstraction.

Behavior: Given a class dictionary graph G and a propagation graph pg contained in

the class dictionary graphG, �nd a propagation directive pd so that propagate(pd;G) =

pg. Depending on the set of primitives used in the propagation directive, the answer

will be di�erent. The goal is to �nd a \small" propagation directive with dependency

on the class dictionary graph close to minimum. Available primitives are: *from*,

*to*, *bypassing*, *through*, *to-stop*, *via*, *join*, *merge*, *restrict*.

Prerequisites: Legal propagation directive (57).

Index: propagation pattern design.

Formal de�nition: [Sil94].

61. Objective: Legal propagation patterns.

Behavior: Given a set of propagation patterns, check whether they are syntactically

and semantically correct.

Prerequisites: Legal class dictionary graph (9).

Index: propagation pattern.

Formal de�nition: [LX93c, Xia94].

62. Objective: Legal propagation pattern customization.

Behavior: Given a class dictionary graph and a propagation pattern, check whether

the propagation pattern is compatible with the class dictionary graph, and give the

propagation graphs (traversal graph and the transportation graphs, if any). If the

class dictionary graph violates a customizer restriction, name it and show why it is

violated.

Prerequisites: Legal class dictionary graph (9).

Index: customizer restrictions, compatible.

Formal de�nition: [Xia94].

63. Objective: Propagation pattern interpretation.

Behavior: Given a class dictionary graph G, a propagation pattern pp compatible with

G, and an object O of the class dictionary graph, give the output produced by pp on

O.

Prerequisites: Legal propagation patterns (61).

Index: propagation patterns: operational semantics.

Formal de�nition: [Xia94].



448 CHAPTER 14. INSTRUCTIONAL OBJECTIVES

64. Objective: Propagation pattern partial evaluation.

Behavior: Given a class dictionary graph G and a propagation pattern pp compatible

with G, translate pp into a correct object-oriented program with respect to G.

Prerequisites: Legal propagation patterns (61).

Index: translation to C++: propagation patterns.

Formal de�nition: [Xia94].

65. Objective: Object-oriented design.

Behavior: Given a project speci�cation, develop a class dictionary and a list of tasks

with their task designs and growth plans. Satisfy the Law of Demeter.

Prerequisites: Class dictionary development (44), Library objective (53), Use case

decomposition (51), Adaptive program test growth plan (55), Use case translation

(52), Law of Demeter for functions (56).

Programming

66. Objective: Legal transportation patterns.

Behavior: Given a set of transportation patterns embedded in a propagation pattern,

check whether they are syntactically and semantically correct.

Prerequisites: Propagation operator (59).

Index: transportation pattern: syntax, consistent: transportation pattern.

67. Objective: Legal transportation pattern customization.

Behavior: Given a transportation pattern (embedded in a propagation pattern) and

a class dictionary graph, check whether the transportation pattern is compatible with

the class dictionary graph, and give the transportation graph and associated C++

code. If the class dictionary graph violates a customizer restriction related to the

transportation patterns, name it and show why it is violated.

Prerequisites: Legal transportation patterns, page 448 (66).; Propagation operator,

page 446 (59)..

Index: customizer restriction: transportation patterns.

Formal de�nition: [Xia94].

68. Objective: Transportation pattern interpretation.

Behavior: Given a class dictionary graph G, a propagation pattern pp compatible

with G and containing several transportation patterns, and an object O of the class

dictionary graph, give the output produced by pp on O.

Prerequisites: Legal propagation patterns (61).

Index: translation to C++: transportation patterns.



449

69. Objective: Transportation pattern partial evaluation.

Behavior: Given a class dictionary graph G and a propagation pattern pp compatible

with G and containing transportation patterns, translate pp into a correct object-

oriented program with respect to G.

Prerequisites: Legal propagation patterns (61).

Index: signature extension, translation to C++: transportation patterns,wrapper

pushing.

Formal de�nition: [Xia94].

70. Objective: Propagation pattern development.

Behavior: Given a task design, �nd a collection of propagation patterns that imple-

ment the task.

Prerequisites: Propagation directive abstraction (60).

71. Objective: Virtual function table.

Behavior: Given a single-inheritance class dictionary graph that is decorated with

virtual functions at the alternation classes, produce the virtual function tables needed

for all construction classes that are alternation-reachable from an alternation class

with virtual functions.

Prerequisites: Legal class dictionary graph (9).

72. Objective: Programming in C++.

Behavior: Write a C++ program for a given project speci�cation.

Prerequisites: C++, Legal class dictionary graph (9), Legal object graph (27), Object

construction (29), Class dictionary graph translation (18), Law of Demeter for func-

tions (56), Virtual function table (71), Growth plan (54), Object-oriented design (65),

Propagation pattern development (70).

73. Objective: Generic Programming.

Behavior: Write a C++ program for a function that is de�ned for all applications; that

is, implement a function that performs some action regardless of the class dictionary

used.

Prerequisites: Programming in C++ (72).

Course Speci�c Objectives

74. Objective: Programming language implementation.

Behavior: Given a class dictionary for a programming language, implement an inter-

preter or a compiler for the language.

Prerequisites: Knowledge of a subset of a programming language (e.g., Scheme, Pas-

cal, C, Prolog), Programming in C++ (72), Developing an application in existing

environment (89), Generation (90).



450 CHAPTER 14. INSTRUCTIONAL OBJECTIVES

75. Objective: EER diagram to object-oriented program.

Behavior: Given an extended entity-relationship diagram, translate its information

content into a class dictionary and a C++ constraints checker.

Prerequisites: EER.

76. Objective: Data model implementation.

Behavior: Given a class dictionary for a data model, implement a schema checker, and

a schema compiler.

Prerequisites: ER, EER, Relational model, Programming in C++ (72), Developing an

application in existing environment (89), Generation (90).

77. Objective: Data model translation.

Behavior: Given two class dictionaries for two data models, implement a translator.

Prerequisites: Programming in C++ (72), Developing an application in existing

environment (89).

78. Objective: Data model as class dictionary.

Behavior: Given a data model de�nition, write a class dictionary that de�nes the

structure and the language of the data model (for the structures, constraints, and

operations).

Prerequisites: Class dictionary development (44).

Demeter System

79. Objective: Setting up your account for Demeter.

Behavior: Give the commands to set up your account to use Demeter.

Prerequisites: UNIX.

80. Objective: Semantic checking and class dictionary debugging.

Behavior: Given a class dictionary, check it for semantic errors and correct it until no

errors are reported.

Prerequisites: Legal class dictionary (32).

81. Objective: Graphical, textual representation.

Behavior: Show the structure of a class dictionary by producing a graphical represen-

tation.

82. Objective: Miscellaneous class dictionary tools.

Behavior: Summarize all the class dictionary design tools available and how they can

be called; for example, single inheritance checking, English translation, etc.

Using an Existing Environment



451

83. Objective: Available functions in generated environment.

Behavior: Given a class dictionary, list all the classes and their functions that are

available in the generated environment.

Prerequisites: Legal class dictionary (32).

84. Objective: Implementation �les.

Behavior: Given a generated environment, give the directories where you can write

your code and describe what kind of code you can put in each �le and how you have

to name the �les.

Prerequisites: Legal class dictionary (32), Available functions in generated environ-

ment (83).

85. Objective: Propagation/Compilation/Linking.

Behavior: Describe how you can in
uence the compilation and linking process through

changes to the Imake�le. Explain the gen-make and make commands.

86. Objective: Interface �les.

Behavior: Given a class dictionary and a set of C++ function implementations, give

the set of generated function interfaces.

Prerequisites: Legal class dictionary (32).

87. Objective: Compilation Error.

Behavior: Given a compilation error, �nd the �le where the error is located.

Prerequisites: UNIX, C++.

88. Objective: Debugging.

Behavior: If your program produces a core dump, use the system to �nd the problem.

Prerequisites: Unix, C++.

89. Objective: Developing an application in existing environment.

Behavior: Given a class dictionary and an environment, write application code in the

environment.

Prerequisites: Legal class dictionary (32), Setting up your account for Demeter (79),

Available functions in generated environment (83), Implementation �les (84), Interface

�les (86), Propagation/Compilation/Linking (85), Compilation Error (87), Debugging

(88).

Generating Your Own Environments

90. Objective: Generation.

Behavior: Given a class dictionary, give the commands to generate your own environ-

ments. Explain the gen-imake command.

Prerequisites: Semantic checking and class dictionary debugging (80).



452 CHAPTER 14. INSTRUCTIONAL OBJECTIVES

91. Objective: Lex.

Behavior: Describe where and how to change a lex input �le to get the desired scanner.

The comment de�nitions, the white space de�nitions, and the terminal set de�nitions

may be changed.

Prerequisites: Generation (90).



Chapter 15

Core Concepts and

Implementation

This chapter is an annotated version of [PXL95]. That paper was written for the ACM

TOPLAS Journal (Transactions on Programming Languages and Systems published by the

Association for Computing Machinery) and uses a style common in the programming lan-

guage theory community. This style is very elegant and precise but may be di�cult to

read by people outside the programming language theory community. The purpose of the

annotations is to make the chapter available to a wider audience. With those annotations it

serves as a brief introduction to adaptive software for advanced undergraduate and graduate

students. This chapter does not intend to fully model the Demeter system. However, the

treatment is very precise and gives a reasonable �rst approximation to what propagation

patterns are intended to do.

Adaptive programs compute with objects, just like object-oriented programs. Each

task to be accomplished is speci�ed by a so-called propagation pattern that traverses the

receiver object.1 The object traversal is a recursive descent via the instance variables where

information is collected or propagated along the way.2 A propagation pattern consists of a

name for the task, a succinct speci�cation of the parts of the receiver object that should be

traversed, and code fragments to be executed when speci�c object types are encountered.

The propagation patterns need to be complemented by a class graph that de�nes the detailed

object structure. The separation of structure and behavior yields a degree of 
exibility and

understandability not present in traditional object-oriented languages. For example, the

class graph can be changed without changing the adaptive program at all.

We present an e�cient implementation of adaptive programs. Given an adaptive pro-

gram and a class graph, we generate an e�cient object-oriented program, for example in

C++. Moreover, we prove the correctness of the core of this translation. A key assumption

in the theorem is that the traversal speci�cations are consistent with the class graph. We

1The propagation pattern will be called on an object and that object is called the receiver object.
2Recursive descent does not mean that the structure is necessarily recursive. It means that the traversal

is depth-�rst.

453



454 CHAPTER 15. CORE CONCEPTS AND IMPLEMENTATION

prove the soundness of a proof system for conservatively checking consistency, and we show

how to implement it e�ciently.3

15.1 INTRODUCTION

15.1.1 Background

One goal of object-oriented programming is to obtain 
exible software through such mech-

anisms as inheritance and late binding. For example, 
exibility was one of the goals in the

project led by Booch [Boo90] where an Ada package was converted to a C++ component li-

brary. He used templates to parameterize certain components so that local substitutions are

possible. But the degree of variability of such components is limited. Later he stated [Boo94]:

\Building frameworks is hard. In crafting general class libraries, you must balance the needs

for functionality, 
exibility, and simplicity. Strive to build 
exible libraries, because you can

never know exactly how programmers will use your abstractions. Furthermore, it is wise to

build libraries that make as few assumptions about their environments as possible so that

programmers can easily combine them with other class libraries."

A key feature of most popular approaches to object-oriented programming is to explicitly

attach every method of a program to a speci�c class. As a result, when the class structure

changes, the methods often need modi�cations as well. In [GTC+90], we read \... the

class hierarchy may become a rigid constraining structure that hampers innovation and

evolution."

The idea of adaptive programs has been presented in [LX93c, LHSX92, Lie92, LX93b,

LSX94, Kes93]. The basic idea is to separate the program text and the class structure.

The result is called an adaptive program. It is a collection of propagation patterns and

it computes with objects, just like object-oriented programs. Each propagation pattern

accomplishes a speci�c task by traversing the receiver object. In a corresponding object-

oriented program, the same task may require a family of methods speci�ed in several classes.

The object traversal is a recursive descent via the instance variables where information is

collected or propagated along the way. A propagation pattern consists of

1. Name for the task

2. Succinct speci�cation of the parts of the receiver object that should be traversed

3. Code fragments to be executed when speci�c object types are encountered

The separation of structure and behavior yields a degree of 
exibility and understandability

not present in traditional object-oriented languages. For example, the class graph can be

changed without changing the adaptive program at all. Moreover, with adaptive software,

it is possible to make a �rst guess on a class graph, and later with minimal e�ort change

to a new class graph. In contrast, if we write a C++ program for example, then it usually

needs signi�cant updates to work on another class graph.4

3It is not necessary to have an algorithm that detects exactly which traversal speci�cations are inconsis-

tent with a class graph. It is su�cient to have an algorithm that labels some consistent, but \unimportant"

class graphs as inconsistent, as long as all inconsistent class graphs are labeled as inconsistent. This is what

conservatively checking for inconsistency means. The algorithm for checking inconsistency is formulated so

that it is easy to prove properties of it. It is formulated as a proof system consisting of a few rules.
4The C++ program generated from an adaptive program and a class graph is several factors larger than



15.1. INTRODUCTION 455

15.1.2 Our Results

We present an e�cient implementation of adaptive programs. Given an adaptive program

and a class graph, we generate an object-oriented program, for example, in C++. Moreover,

we prove the correctness of the core of this translation. A key assumption in the theorem is

that the traversal speci�cations are consistent with the class graph. We prove the soundness

of a proof system for conservatively checking consistency, and we show how to implement it

e�ciently.

The translation of an adaptive program and a class graph into a C++ program is imple-

mented in the Demeter system. The Demeter system itself is an adaptive program, compiled

by itself to C++.

15.1.3 Example

LitExp ProcExp

AssignExp

formal

body

AppExp

rand

rator

Variable

val

var

Number
val

id
Ident

Exp

Figure 15.1: Class graph

We now give an example of adaptive programming. Along the way, we informally introduce

the concepts that will be de�ned and reasoned about in Sections 15.2 through 15.4. Suppose

we want to write a C++ program to print out all free variables in a Scheme expression. We

will do that by �rst writing an adaptive program and then generating the C++ program.

While analyzing the problem, we identify several classes and relationships, yielding the

class graph shown in Fig. 15.1.5 (For simplicity, the example does not cover all of Scheme.)

We take this graph as our �rst guess on a class graph for solving the problem. The �gure uses

two kinds of classes: concrete classes (drawn as 2 ) which are used to instantiate objects,

and abstract classes (drawn as ) which are not instantiable. The �gure uses two kinds

the adaptive program and class graph on a regular basis. This holds true for the Demeter system implemen-

tation of adaptive software. The factor is a possible quantitative measure of 
exibility and understandability.
5Class graph is shorter than class dictionary graph, but has a similar meaning. Class graphs model both

class dictionary graphs and propagation graphs.



456 CHAPTER 15. CORE CONCEPTS AND IMPLEMENTATION

}

   boundVars−>push(formal);
void ProcExp::findFreeVars(VariableList* boundVars) {

   boundVars−>pop();
   body−>findFreeVars(boundVars);

void Variable::findFreeVars(VariableList* boundVars) {

}

   if (!boundVars−>contains(this))   this−>g_print();void AppExp::findFreeVars(VariableList* boundVars) {
   rator−>findFreeVars(boundVars);
   rand−>findFreeVars(boundVars);
}

void Exp::findFreeVars(VariableList * boundVars) {
   // virtual member function
}
void AssignExp::findFreeVars(VariableList* boundVars)
{
   val−>findFreeVars(boundVars);
   var−>findFreeVars(boundVars);
}

Figure 15.2: C++ program

1 operation void findFreeVars(VariableList* boundVars)

2 traverse

3 [Exp; Variable]

4 wrapper ProcExp

5 pre�x

6 { boundVars->push(formal); }

7 su�x

8 { boundVars->pop(); }

9 wrapper Variable

10 pre�x

11 { if (!boundVars->contains(this)) this->g_print(); }

Figure 15.3: Adaptive program



15.1. INTRODUCTION 457

of edges: subclass edges (drawn as =) ) representing kind-of relations, and construction

edges (drawn as�! and with labels) representing has-a relations. For example, the subclass

edge Exp=) LitExp means that class Exp is a superclass of class LitExp; the construction

edge LitExp
val
�! Number means that class LitExp has a part called val of type Number.

If we write this program directly in C++ (see Fig. 15.2), a natural solution is to write

methods �rst, all called findFreeVars, for the following classes: Exp, Variable, AssignExp,

ProcExp, and AppExp. (An explanation of C++ terminology and syntax is given in Ap-

pendix A.) The C++ program has two ingredients: traversal and processing. The traversal

is speci�ed by the C++ code not in boldface in Fig. 15.2. It �nds all Variable-objects in an

Exp-object. The processing is the code in boldface that maintains a stack of bound variables

and checks whether a variable found is a free variable by using the stack.

We use the adaptive program in Fig. 15.3 to specify an equivalent C++ program. Com-

pared with the C++ program, the adaptive program is shorter than the one in Fig. 15.2.

(Later, we will demonstrate how the adaptive program can be combined with class struc-

tures other than the one in Fig. 15.1).

The adaptive program in Fig. 15.3 contains just one propagation pattern (because the

problem to be solved is simple). The propagation pattern consists of a signature, a traversal

speci�cation, and some code wrappers. The propagation pattern speci�es a collection of

collaborating methods, as described in the following.

Informally, the traversal speci�cation, [Exp, Variable], describes a traversal of Exp-

objects: traverse an Exp-object, locate all Variable-objects nested inside. We call this spec-

i�cation fragment a traversal speci�cation. The code fragments to be executed during

traversals are called wrappers, and they are written in C++.

We interpret this traversal speci�cation as specifying the set of paths from Exp to

Variable. A path is described by an alternating sequence of nodes and labels. The set of

paths can be described by the regular expression shown in Fig. 15.4.6

((Exp,�,AppExp,rator) +

(Exp,�,AppExp,rand) +

(Exp,�,ProcExp,body) +

(Exp,�,AssignExp,val))�( (Exp,�,Variable) +

(Exp,�,AssignExp,var,Variable) +

(Exp,�,ProcExp,formal,Variable))

Figure 15.4: A regular expression

The regular expression is a concatenation of two subexpressions. The �rst half is a

Kleene-closure of a union of four expressions. The second half is a union of three expres-

sions. A sentence of the regular language is an alternating sequence of nodes and labels

6The set of paths in a graph from A to B can always be described by a regular expression. This is a

theorem in graph theory.



458 CHAPTER 15. CORE CONCEPTS AND IMPLEMENTATION

(construction edge labels or �).7 A diamond between two vertices means that the second

vertex is a subclass of the �rst vertex. For example, the sentence

Exp; �; Variable

corresponds to the path

Exp =) Variable ;

and the sentence

Exp; �; AssignExp; val; Exp; �; AssignExp; var; Variable

corresponds to path

Exp =) AssignExp
val
�! Exp =) AssignExp

var
�! Variable :

We use the set of paths to guide the traversal of an Exp-object. Consider the object

graph in Fig. 15.5a. There are �ve object nodes in the graph. i1, i2, i3, i4, and i5 are

object identi�ers. The names after colons are the classes of the objects. The edges with

labels are part-of relationships between the objects. We want to traverse the object graph

starting from node i1, being guided by the set of paths above. Since the class of node i1

is AssignExp, we �rst select all the paths from the set that begin with Exp,�,AssignExp.

These paths are described by the following regular expression.

(Exp,�,AssignExp,val)((Exp,�,AppExp,rator) +

(Exp,�,AppExp,rand) +

(Exp,�,ProcExp,body) +

(Exp,�,AssignExp,val))�( (Exp,�,Variable) +

(Exp,�,AssignExp,var,Variable) +

(Exp,�,ProcExp,formal,Variable)) +

(Exp,�,AssignExp,var,Variable)

Moreover, we remove the pre�x Exp,� from the paths, since this pre�x gives only the

insigni�cant information that AssignExp is a subclass of Exp. We are then left with a set

of paths described by the following regular expression, which we denote E.

(AssignExp,val)((Exp,�,AppExp,rator) +

(Exp,�,AppExp,rand) +

(Exp,�,ProcExp,body) +

(Exp,�,AssignExp,val))�( (Exp,�,Variable) +

(Exp,�,AssignExp,var,Variable) +

(Exp,�,ProcExp,formal,Variable)) +

(AssignExp,var,Variable)

After visiting the object i1, we continue by visiting the part objects of i1. There are

two such parts, called val and var. To visit the val part, which is the object i4, we

�rst select all those paths that begin with AssignExp,val,Exp, and we remove the pre�x

AssignExp,val, yielding:

7The use of � simpli�es the theory.



15.1. INTRODUCTION 459

((Exp,�,AppExp,rator) +

(Exp,�,AppExp,rand) +

(Exp,�,ProcExp,body) +

(Exp,�,AssignExp,val))�( (Exp,�,Variable) +

(Exp,�,AssignExp,var,Variable) +

(Exp,�,ProcExp,formal,Variable))

Since the class of the object i4 is LitExp, we will select paths from the set described by

the preceding regular expression that begin with (Exp,�,LitExp). However, there is none.

Therefore, the traversal stops at node i4.8 Notice that we let the set of paths guide the

traversal as long as possible. This is the reason why the traversal visits node i4; whether or

not we should continue the traversal can only be determined from the run-time information

about the contents of the val-part. For example, we could have a ProcExp-object in the

val part. In that case we would have to traverse further. When the traversal meets i4, it

simply abandons that path.

To visit the var part of i1, which is the object i2, we �rst select those paths described

by the regular expression E that begin with Exp,�,Variable, and we remove the pre�x

Exp,�, yielding just Variable. After visiting the object i2, we check how many part objects

that need to be visited further. Since no outgoing edge from Variable is on the path, the

traversal stops at node i2.

The nodes which are visited are marked black in Fig. 15.5b.

Cycles in the object graph may lead to a nonterminating traversal. In the Demeter

system, one can handle such situations by inserting appropriate code into the code wrappers.

This possibility will not be discussed further in this chapter.

i1: AssignExp i2: Variable

val

var

i4: LitExp

val

var

val

id

i1: AssignExp i2: Variable i3: Ident

i4: LitExp i5: Number

a b

Figure 15.5: Exp-object

We now indicate how to implement the preceding traversal e�ciently. The set of paths

described by the traversal speci�cation forms a graph called the propagation graph; see

Fig. 15.6. This graph is a subgraph of the class graph in Fig. 15.1. The propagation pattern

in Fig. 15.3 is then translated into C++ as follows.

8This is a special kind of node visit due to a prematurely terminated path. A prematurely terminated

path occurs whenever the object leads the traversal to a node from which it is impossible to reach the target.



460 CHAPTER 15. CORE CONCEPTS AND IMPLEMENTATION

� Each class in the propagation graph gets a method with the interface speci�ed on line

1 in Fig. 15.3. Methods of abstract classes are virtual (for an explanation of the term

virtual, see Appendix A).

� If a class has an outgoing construction edge in the propagation graph, then the method

will contain a method invocation through the corresponding part.

Notice that the subclass edges in the propagation graph do not cause generation of code;

the late binding of C++ gives the right behavior.

ProcExp

AssignExp

formal

body

AppExp

rand

rator

Variable

val

var

: source vertex (where traversal starts)

: target vertex (where traversal ends)

Exp

propagation graph for Variable][Exp,

Figure 15.6: Propagation graph

}

void ProcExp::findFreeVars(VariableList* boundVars) {

   body−>findFreeVars(boundVars);

void Variable::findFreeVars(VariableList* boundVars) {

}
void AppExp::findFreeVars(VariableList* boundVars) {
   rator−>findFreeVars(boundVars);
   rand−>findFreeVars(boundVars);
}

void Exp::findFreeVars(VariableList * boundVars) {
   // virtual member function
}
void AssignExp::findFreeVars(VariableList* boundVars)
{
   val−>findFreeVars(boundVars);
   var−>findFreeVars(boundVars);
}

Figure 15.7: Traversal skeleton

Based on these rules, the propagation graph in Fig. 15.6 is translated into the program

skeleton in Fig. 15.7.

The code wrappers in lines 4{11 of Fig. 15.3 enhance the traversal speci�cation to print

out free variables. The wrapper clause attached to class ProcExp adds one statement at



15.1. INTRODUCTION 461

}

   boundVars−>push(formal);
void ProcExp::findFreeVars(VariableList* boundVars) {

   boundVars−>pop();

   formal−>findFreeVars(boundVars);
   body−>findFreeVars(boundVars);

void Variable::findFreeVars(VariableList* boundVars) {

}
   if (!boundVars−>contains(this))   this−>g_print();void AppExp::findFreeVars(VariableList* boundVars) {

   rator−>findFreeVars(boundVars);
   rand−>findFreeVars(boundVars);
}

void Exp::findFreeVars(VariableList * boundVars) {
   // virtual member function
}
void AssignExp::findFreeVars(VariableList* boundVars)
{
   val−>findFreeVars(boundVars);
   var−>findFreeVars(boundVars);
}

Figure 15.8: Generated C++ program

the beginning and the end of the method of class ProcExp in Fig. 15.7. The wrapper

clause attached to class Variable adds one statement at the beginning of the method of class

Variable in Fig. 15.7. The resulting enhanced program is the one in Fig. 15.8, where the

statements in boldface are from the wrappers.

The automatically generated program in Fig. 15.8 di�ers from the handwritten one in

Fig. 15.2 in just one way, as follows. The ProcExp method in Fig. 15.8 contains an extra

method invocation. The reason is simply that every outgoing construction edge causes the

generation of a method invocation. For this particular example, the extra method invocation

has no e�ect, so it does no harm. It does make the program less e�cient, of course. In

general, we may be interested in writing in the traversal speci�cation that certain edges

should be bypassed. For example, if we write that the edge from ProcExp to Variable should

be bypassed, then the generated code should be exactly that of Fig. 15.2. This is possible

in our Demeter system, but it will not be discussed further in this chapter.

Suppose we change the class graph by adding two new classes IfExp and VarExp as

subclasses of Exp, letting the class Variable be a part class of VarExp, and renaming the

labels var and val to rvalue and lvalue respectively. The resulting class graph is in Fig. 15.9.

Had we written the C++ program by hand, it would need considerable change. In contrast,

the adaptive program needs no change at all. The C++ program generated from the adaptive

program for the new class graph is in Fig. 15.10. The example indicates that compared to

object-oriented software, adaptive software can be shorter and more 
exible, and therefore

easier to understand and maintain.9

15.1.4 Compatibility, Consistency, and Subclass Invariance

When generating an object-oriented program from an adaptive program and a class graph,

we require the traversal speci�cations to be compatible and consistent with the class

graph, and we require the propagation graph determined by the traversal speci�cation to be

9Adaptiveness has several applications including an application to building layered systems. When we

write programs for a layer it is advisable not to rely on the detailed functionality of earlier layers. With

adaptive software we can provide this independence. We deal with only two layers. The �rst layer provides

very simple functionality based on the structure of objects. The second layer expresses new behavior in

terms of the simple behavior. For the generalization to work, we need to add functional (also called derived)

edges to the class graph.



462 CHAPTER 15. CORE CONCEPTS AND IMPLEMENTATION

LitExp

Number

ProcExp

val

AssignExp
formal

body

AppExp

rand

rator

var
IdentVariable

id

rvalue

lvalue

IfExp

testExp

falseExp

trueExpVarExp

Exp

Figure 15.9: Another class graph

}

void AppExp::findFreeVars(VariableList* boundVars) {
   rator−>findFreeVars(boundVars);
   rand−>findFreeVars(boundVars);
}

   boundVars−>push(formal);
void ProcExp::findFreeVars(VariableList* boundVars) {

   boundVars−>pop();
   body−>findFreeVars(boundVars);

void Variable::findFreeVars(VariableList* boundVars) {

}

   if (!boundVars−>contains(this))   this−>g_print();

void Exp::findFreeVars(VariableList * boundVars) {
   // virtual member function
}
void VarExp::findFreeVars(VariableList* boundVars) {
  var−>findFreeVars(boundVars);
}
void AssignExp::findFreeVars(VariableList* boundVars)
{
   lvalue−>findFreeVars(boundVars);
   rvalue−>findFreeVars(boundVars);
}
void IfExp::findFreeVars(VariableList* boundVars)
{
   testExp−>findFreeVars(boundVars);
   trueExp−>findFreeVars(boundVars);
   falseExp−>findFreeVars(boundVars);
}

Figure 15.10: Adapted C++ program



15.1. INTRODUCTION 463

a subclass invariant subgraph of the class graph. This section gives an informal motivation

for these concepts.

The notions of compatibility, consistency, and subclass invariance are tied to the concept

of a propagation graph which was brie
y mentioned in the previous section. The propagation

graph is the starting point when generating code from a traversal speci�cation. Thus, when

given a propagation pattern and a class graph, the �rst task is to compute the propagation

graph. The propagation graph represents the paths to be traversed. This set of paths may

be in�nite, yet the propagation graph represents it compactly. Intuitively, compatibility,

consistency, and subclass invariance can be understood as follows.

� Compatibility. The propagation graph represents at least some paths.10

� Consistency. The propagation graph represents at most the speci�ed paths.11

� Subclass invariance. Any two nodes in the propagation graph have a subclass path

between them if they do in the class graph.12

These three conditions ensure the correctness of the informal code-generation rules from the

previous section for generating e�cient traversal code. If the speci�cation is not compatible

with the class graph, then the traversals may not reach the speci�ed subobjects. If the

speci�cation is not consistent with the class graph, or the propagation graph is not a subclass

invariant subgraph of the class graph, then the traversals would go wrong as illustrated

below.

We might attempt to compile adaptive programs without the preceding three conditions.

This would require another representation of the paths. Currently, we do not know how to

do that e�ciently, so we prefer to outlaw class graphs that lead to violation of the preceding

conditions. Our experience with the Demeter system indicates that the three conditions are

met by typical programs. Moreover, in cases where the conditions are violated, it is usually

straightforward to decompose the traversal speci�cation such that each of the components

meets the conditions.

Checking compatibility is straightforward: compute the propagation graph and check

if it represents some paths. Checking subclass invariance is also straightforward: compute

the propagation graph, and for each node pair in the propagation graph, check that if they

are connected by subclass edges in the original graph, then they are also connected by

subclass edges in the propagation graph. Checking consistency, however, is nontrivial, and

Section 15.4 is devoted to this problem.

Traversal speci�cations can be combined in several ways, for example, by \concatena-

tion of paths" and \union of sets of paths". In an analogy with type checking, we want

compositional consistency checking. Thus, when we combine two speci�cations that are

10This is di�erent than saying the propagation graph contains at least one path. The compatibility

restriction says that for each subspeci�cation there must be at least one path and therefore, compatibility

may require several paths. An example where compatibility requires two paths is: [A;B]�[B;Z]+[A;C]�[C;Z].

By \at least some paths" we mean at least a constant number of paths where the constant depends on the

traversal speci�cation.
11Equivalently, the propagation graph contains no more paths than the ones allowed by the traversal

speci�cation.
12In other words, if class B is a subclass of class A and both A and B are in the propagation graph, then

the propagation graph must include a path of subclass edges from A to B.



464 CHAPTER 15. CORE CONCEPTS AND IMPLEMENTATION

both consistent with a graph, we want to check that their combination is consistent with

that graph also. In Section 15.4 we present a compositional proof system for checking that,

and we prove it sound.13 We also give an e�cient algorithm for checking compositional

consistency. Here, we give an informal outline of the system.

Consider the class graph in Fig. 15.11(a). The traversal speci�cation on the left bottom

describes a traversal of an Expression-object. This traversal visits all the Numerical-objects

nested in Compound-objects in an Expression-object. Fig. 15.11(b) is the corresponding

propagation graph. Unfortunately, this propagation graph has a path from Expression to

Numerical that does not go through Compound. We call such a path a shortcut. The

e�cient traversal code generated from the propagation graph will visit a Numerical-object

even if it is not nested in a Compound-object.

(a) (b)

Expression

Compound

Add

op

arg2

arg1

Male

PetLover

Pet

CatDog

petpet

Name

namename

Expression

Compound

arg2

arg1

Male

PetLover

Pet

CatDog

petpet

Name

namename

(c) (d)

FemaleFemale

[ Expression, Compound] [ Compound, Numerical]

Number

value

Numerical Numerical

+
[ Female, Cat]([ PetLover, Female]

[ Male, Dog]([ PetLover, Male]

[ Cat, Name])

[Dog, Name])

Zigzag:

: source vertex (where traversal starts)

: target vertex (where traversal ends)

Shortcut:

Figure 15.11: Inconsistency

Consider then the class graph in Fig. 15.11(c). The propagation speci�cation on the

right bottom describes a traversal of a PetLover-object. This speci�cation says that we

want to visit a Name-object which is nested in a Cat-object owned by a female pet lover,

or nested in a Dog-object owned by a male pet lover. Fig. 15.11(d) is the corresponding

propagation graph. Unfortunately, this propagation graph has two paths that do not satisfy

the speci�cation: PetLover=) Male
pet

�! Pet=) Cat
name
�! Name and PetLover=) Female

pet

�!

Pet=) Dog
name
�! Name. We call such paths zigzag paths. The e�cient traversal code

generated from the propagation graph will visit all Name-objects no matter what.

In these cases, the traversal speci�cations are not consistent with the class graphs. Our

soundness theorem states that for conservatively checking for consistency, it is su�cient to

be able to rule out shortcuts and zigzag paths.

13Soundness means that compositionally consistent directives are consistent.



15.1. INTRODUCTION 465

Finally we show an example of the signi�cance of the subclass invariance condition. The

program in Fig. 15.13 prints out all refrigerators owned by families. Fig. 15.12(b) illustrates

the propagation graph when the program is applied to the class graph in Fig. 15.12(a).

Notice that Refrigerator is a subclass of Thing in the class graph of Fig. 15.12(a), but

not in the propagation graph of Fig. 15.12(b). Fig. 15.12(c) shows the C++ code gener-

ated from the propagation graph. In the C++ code, the method attached to Thing is a

virtual method. Because of late binding, any Refrigerator-object, whether it is a part-

object of a Family-object or not, will be printed out. Subclass invariance rules out this

program. Notice that we can decompose the traversal speci�cation into [Country; Family]

and [Family; Refrigerator], and it is easy to see that the propagation graphs for both

of these satisfy the subclass invariance condition. Hence, the programmer can rewrite the

program using two propagation patterns to solve the problem once it is detected.

Country

Thing

Family Refrigerator

has

has
ThingList

ThingNonemptyList

EmptyList

first

second

Country

Thing

Family Refrigerator

has

has
ThingList

ThingNonemptyList

first

second

Country

Thing

Family

Refrigerator

has

has
ThingList

ThingNonemptyList

first

secondvoid Country::findFrigOwnedByFamily()
 {
   has−>findFrigOwnedByFamily();
}
void ThingList::findFrigOwnedByFamily()
{
  // virtual method
}
void Thing::findFrigOwnedByFamily()
{
   // virtual method
}
void Family::findFrigOwnedByFamily()
{
   has−>findFrigOwnedByFamily();
}

   this−>g_print();
}

void ThingNonemptyList::findFrigOwnedByFamily()
{
   first−>findFrigOwnedByFamily();
   second−>findFrigOwnedByFamily();
}

(a) (b)

(c)

void Refrigerator::findFrigOwnedByFamily()
{

Figure 15.12: Violation of subclass invariance



466 CHAPTER 15. CORE CONCEPTS AND IMPLEMENTATION

operation void findFrigOwnedByFamily()

traverse

[Country; Family] � [Family; Refrigerator]
wrapper Refrigerator

pre�x

{ this->g_print(); }

Figure 15.13: Find refrigerators owned by families

We will now turn to the formal presentation of our results. In the following section we

present the syntax and semantics of adaptive programs. In Section 15.3 we show the core

part of the e�cient implementation of adaptive programs, and we prove the corresponding

correctness theorem. In Section 15.4 we prove the soundness of a proof system for conserva-

tively checking consistency, and we show how to implement it e�ciently. Finally, in Section

15.5 we compare our approach to previous work.

15.2 THE SEMANTICS OF ADAPTIVE PROGRAMS

In the following we �rst de�ne the concepts of graphs, paths, class graphs, object graphs,

traversal speci�cations, and wrappers, and then present the semantics of adaptive programs

and the semantics of an object-oriented target language.14

15.2.1 Graphs

We will use graphs for three purposes: to de�ne classes (class graphs), objects (object

graphs), and propagation graphs (subgraphs of class graphs). A directed graph is a pair

(N;E) where N is a set of nodes, and E is a set of edges where E � N �N . If (v1; v2) 2 E,

then v1 is the source and, v2 is the target of (v1; v2).

We will use the operation [ on graphs, de�ned as follows. If G1 = (N1; E1) and

G2 = (N2; E2), then G1 [G2 = (N1 [N2; E1 [ E2).

Let (L;�) be a totally ordered set of labels, such that � 62 L. De�ne L = L [ f � g.15

We will consider only graphs where each edge has a label from L. An edge (u; v) with

label l will be written u
l

! v.

If G is a graph and u is a node of G, Edges
G
(u) denotes the set of edges from u.16

14See Appendix B for the list of concepts that are important for adaptive software development.
15The total order will be used to de�ne the order of edges going out from each vertex. This is important to

de�ne object traversals. In the Demeter system, the ordering of edges is done more 
exibly on a per-vertex

basis.

The � is used for subclass edges.

A total order on a set S is a partial order R such that any two elements are comparable; that is, for all a

and b, either aRb or bRa. A partial order has to be re
exive, transitive and antisymmetric.
16A directed labeled graph is a pair (N;L; E) where N is a set of nodes and E is a set of edges where

E � N � L�N and L is a set of edge labels. All graphs used in this chapter are directed labeled graphs.



15.2. THE SEMANTICS OF ADAPTIVE PROGRAMS 467

15.2.2 Paths

A path in a graph is a sequence v1l1v2l2 : : : vn where v1; : : : ; vn are nodes of the graph;

l1; : : : ; ln�1 are labels; and vi
li
! vi+1 is an edge of the graph for all i 2 1::n� 1. We call v1

and vn the source and the target of the path, respectively. If p1 = v1 : : : vi and p2 = vi : : : vn,

then we de�ne the concatenation p1p2 = v1 : : : vi : : : vn.
17

Suppose P1 and P2 are sets of paths where all paths in P1 have the target v and where

all paths of P2 have the source v. Then we de�ne18

P1 � P2 = fp j p = p1p2 where p1 2 P1 and p2 2 P2g:

Next we introduce the Reduce function which is used in the de�nition of several other

functions. Reduce is an operator that removes zero or more leading subclass edges from a

set of paths. If R is a path set, then

Reduce(R) = fvn : : : vn+m j v1l1v2 : : : vn : : : vn+m 2 R; li = �; i 2 1::n� 1;m � 0g

Head(R) = fv1 j v1 : : : vn 2 Reduce(R) g :

Intuitively, each path in Reduce(R) can be obtained from a path in R by removing a pre�x

where all labels are �. Note that the pre�x does not have to be maximal: we can remove

zero or more subclass edges. Moreover, Head(R) is the set of classes we can get to in R

when following zero or more �-labels.

For example, consider the graph in Fig. 15.1, and denote the set of paths from Exp to

Variable as R0; see Fig. 15.4.

Head(R0) = fExp; Variable; AssignExp; ProcExp; AppExpg

If R is a path set, u is a node, and l is a label, then

Select(R; u) = fv1 : : : vn j v1 : : : vn 2 Reduce(R); v1 = ug

Car(R; u) = fv1
l1
! v2 j v1l1v2 : : : vn 2 Select(R; u)g

Cdr(l; R; u) = fv2 : : : vn j v1l1v2 : : : vn 2 Select(R; u); l1 = lg

Intuitively, Select(R; u) is the set of post�xes of paths in R where each post�x begins with u

and where u 2 Head(R). Moreover, Car(R; u) is the set of the �rst edges on such post�xes.

Finally, Cdr(l; R; u) is the set of tails of post�xes where the head has label l.19

For the same example,

Select(R0; AssignExp) =

Language(

(AssignExp,val)((Exp,�,AppExp,rator) +

17The vi in a path don't have to be distinct. v1 is a path from source v1 to target v1 where n = 1.
18P1 [ P2 is the set union of the paths in P1 and P2.
19If u is a concrete class, then Car(R; u) consists of construction edges only. If none of the paths in R

starts in u then Car(R; u) is empty. If u is an abstract class, then Car(R; u) may contain both construction

and subclass edges.



468 CHAPTER 15. CORE CONCEPTS AND IMPLEMENTATION

(Exp,�,AppExp,rand) +

(Exp,�,ProcExp,body) +

(Exp,�,AssignExp,val))�( (Exp,�,Variable) +

(Exp,�,AssignExp,var,Variable) +

(Exp,�,ProcExp,formal,Variable)) +

(AssignExp,var,Variable))

Car(R0; AssignExp) = fAssignExp
val
! Exp; AssignExp

var
! Variableg

Cdr(var; R0; AssignExp) = fVariableg

where Language(E) denotes the language generated by the regular expression E.

The operator Graph maps a set of paths to the smallest graph that contains all the

paths.

The set PathsG(A;B) consists of all paths from A to B in the graph G.

A setR of paths is convex over a graphG if R is nonempty and of the form PathsG(A;B).

We write Root(R) = A and Leaf(R) = B.

Lemma 15.1 If R is a convex path set over G, u 2 Head(R), and Car(R; u) = fu
li
! vi j i 2

1::ng, then Cdr(li; R; u) = PathsG(vi; Leaf(R)) for all i 2 1::n.

Proof. Immediate.20 2

15.2.3 Class Graphs

The following notion of class graph is akin to those presented in [LX93c, PS93].21 A class

graph is a �nite directed graph. Each node represents either an abstract or a concrete

class. The predicate Abstract is true of nodes that represent abstract classes, and it is

false otherwise. Each edge is labeled by an element of L. If l 2 L, then the edge u
l

! v

indicates that the class represented by u has an instance variable with name l and with a

type represented by v. Such an edge is called a construction edge. If l = �, then the edge

u
l

! v indicates that the class represented by u has a subclass represented by v. Such an

edge is called a subclass edge. If not Abstract(u), then there are only construction edges

from u. Moreover, for each l 2 L, there is at most one outgoing construction edge from u

with label l.22

If � is a class graph and u; v are nodes of �, then Subclass�(u; v) is true if v 2

Head(Paths�(u; v)) and false otherwise. Intuitively, there is at least one path in � from

u to v that consists of only subclass edges.23

20Let's assume u is a concrete class. Then Car(R; u) is the set of construction edges exiting from u. The

Cdrs are the paths from the targets of the construction edges to Leaf(R)). In a Lisp list, a car (�rst element)

has one corresponding cdr (rest of the list); here each car has several corresponding cdrs.
21It is closely related to the semi-class dictionary graphs in [LX93c].
22Later, we will also exclude cycles of subclass edges.

The binary equality predicate on classes will be written =nodes.

We don't require here that each abstract class has at least one outgoing subclass edge. The reason is that

class graphs will also be used in the role of propagation graphs.
23This is an interesting de�nition of the subclass relationship. The �rst argument is the superclass, the

second one the subclass. If u is a construction class then Subclass�(u; v) is always false for v di�erent from

u. Subclass�(u; u) is true for all u.



15.2. THE SEMANTICS OF ADAPTIVE PROGRAMS 469

If � and �0 are class graphs, then �0 is a subclass invariant subgraph of �, if �0 is a

subgraph of �, and for u; v 2 �0, if Subclass�(u; v) then Subclass0�(u; v).

A node v is aRome-node24 of a class graph � if for every node u in �, Paths�(u; v) 6= ;.

Clearly, if u is a node and v is a Rome-node, then for every u0 2 Head(Paths�(u; v)),

Car(Paths�(u; v); u
0) = Edges�(u

0) :

The notion of Rome-node is central in the proof of correctness of the implementation of

adaptive programs.

A class graph is 
at if for every node u where Abstract(u), all outgoing edges are subclass

edges. We are only interested class graphs for which there exists an object-equivalent 
at

one. Two class graphs are object-equivalent if they de�ne the same set of objects. Given

a class graph, it is straightforward to generate an object-equivalent 
at one, provided the

class graph satis�es two additional rules. Such a restricted class graph is called a class

dictionary graph. The �rst rule requires that each abstract class has at least one outgoing

subclass edge. This in itself does not guarantee that every class graph can be 
attened

since we could have a cycle of subclass edges. Therefore, the second rule requires that there

are no cycles consisting entirely of subclass edges. With those two rules added, every class

graph, called a class dictionary graph, can be 
attened into an object-equivalent 
at one.25

Object-preserving class transformations have been studied by Bergstein [Ber91]. We will

henceforth assume that all class graphs are 
at.

15.2.4 Object Graphs

An object graph is a �nite directed graph. Each node represents an object, and the func-

tion Class maps each node to \its class"; that is, a concrete class in some class graph. Each

edge is labeled by an element of L. The edge u
l

! v indicates that the object represented

by u has a part object represented by v. For each node u and each label l 2 L, there is at

most one outgoing edge from u with label l.

Given a class graph � and an object graph 
, 
 conforms to � if for every node o of


, Class(o) is a node of �, and moreover

� If Class(o)
l

! v is in �, then there exists o
l

! o0 in 
 such that Subclass�(v;Class(o
0)).26

15.2.5 Traversal Speci�cations

A traversal speci�cation is generated from the grammar

D ::= [A;B] j D �D j D +D

24All paths lead to Rome.
25Class dictionary graphs satisfy the abstract superclass rule; that is, all superclasses are abstract. For a

discussion of the abstract superclass rule, see [H�ur94].
26We allow class graphs for which there are no conforming object graphs. For example, A = B. B : . is

a class graph that has no conforming object graph.

When an object conforms to a class graph, the object graph is not necessarily \legal" with respect to the

class graph. It is possible that the object graph has extra edges that are disallowed by the class graph. For

proving the theorems in this chapter we don't need the stronger legality de�nition.

The conformance de�nition says that we can put only objects whose class is a subclass of v in a part of

class v.



470 CHAPTER 15. CORE CONCEPTS AND IMPLEMENTATION

where A and B are nodes of a class graph.27

Our slogan is: \This language is the �-calculus of traversal speci�cations." The idea

is that although this language can be extended in many ways to ease programming, it

does contain the essential constructs. Possible extensions include the empty speci�cation,

notation for including or excluding certain edges, and boolean connectives. In the Demeter

system, we use those extensions.

A traversal speci�cation denotes a set of paths in a given class graph �, intuitively as

follows.28 29

Directive Set of paths

[A;B] The set of paths from A to B in �

D1 �D2 Concatenation of sets of paths

D1 +D2 Union of sets of paths

For a traversal speci�cation to be meaningful, it has to be well-formed. A traversal speci�ca-

tion is well-formed if it determines a source node and a target node, if each concatenation

has a meeting point, and if each union of a set of paths preserves the source and the target.

Formally, the predicate WF is de�ned in terms of two functions, Source and Target, which

both map a speci�cation to a node.

WF([A;B]) = true

WF(D1 �D2) = WF(D1) ^WF(D2) ^

Target(D1) =nodes Source(D2)

WF(D1 +D2) = WF(D1) ^WF(D2) ^

Source(D1) =nodes Source(D2) ^ Target(D1) =nodes Target(D2)

Source([A;B]) = A Target([A;B]) = B

Source(D1 �D2) = Source(D1) Target(D1 �D2) = Target(D2)

Source(D1 +D2) = Source(D1) Target(D1 +D2) = Target(D1)

Source(D) is the source node determined by D, and Target(D) is the target node determined

by D.30

Moreover, D is compatible with �, if for any subspeci�cation D0 of D, there is a path

in � from Source(D0) to Target(D0).31

27An alternative view is that A and B are class-valued variables that will be mapped later to speci�c

classes when the speci�cation is customized. Adaptive software is written in terms of class-valued variables

without reference to a class graph.
28A traversal speci�cation is like an algebraic expression: it is abstract. Only when we substitute numbers

for the variables, do we get a value. Similarly, when we provide a class graph, we get a set of paths from

the traversal speci�cation.
29Directive is a synonym for traversal speci�cation. The operator � is called the join operator, + is called

the merge operator.
30Well-formedness is a concept at the adaptive level without a reference to a class graph.

The well-formedness de�nition given here is very restrictive since each traversal speci�cation can have

only one source and one target. In the Demeter system we allow several sources and targets and a more

general well-formedness concept.
31Compatibility may require the existence of several paths. Consider: A = B D. B = . D = C. and the

speci�cation ([A;B] � [B;C]) + ([A;D] � [D;C]). Compatibility requires the existence of two paths.



15.2. THE SEMANTICS OF ADAPTIVE PROGRAMS 471

If D is well-formed and compatible with �, then PathSet�(D) is a set of paths in �

from the source of D to the target of D, de�ned as follows:32

PathSet�([A;B]) = Paths�(A;B)

PathSet�(D1 �D2) = PathSet�(D1) � PathSet�(D2)

PathSet�(D1 +D2) = PathSet�(D1) [ PathSet�(D2)

Lemma 15.2 If WF(D) and D is compatible with �, then (i) PathSet�(D) is well de�ned

and (ii) each path in PathSet�(D) starts in Source(D) and ends in Target(D).

Proof. By induction on the structure of D.33 2

15.2.6 Wrappers

Awrapper map is a mapping from concrete classes in some class graph to code wrappers;

that is, statements in some language, for example C++.34 The idea is that when an object

is processed by an adaptive program, the code wrapper for the class of that object will be

executed. To ease programming, it is convenient to have both pre�x and su�x wrappers,

as indicated by the example in Section 15.1. The Demeter system supports both vertex

wrappers and construction edge wrappers, but in this chapter we consider only vertex pre�x

wrappers.

The intuition behind compatibility is that the class graph uses the vocabulary of the speci�cation. In the

Demeter system we allow renaming of class-valued variables in a speci�cation.

Why is the following de�nition not appropriate? D is compatible with �, if there is a path in � from

Source(D) to Target(D).
32PathSet is a concept at the object-oriented level where a class graph is given for customizing the speci-

�cation. Paths is de�ned for a pair of vertices and PathSet is de�ned for traversal speci�cations. Since both

de�ne sets of paths, we could have overloaded PathSet but we have chosen not to do so for clarity.
33The proof does not need the assumption that D is compatible with �. If D is not compatible with �

the path set is empty and the lemma holds.
34In this chapter, wrappers can be attached only to concrete classes. In the Demeter system they also

can be attached to abstract classes. This is convenient if the target of a speci�cation is an abstract class.

This chapter would force us to attach the code to subclasses of the abstract class. An alternative approach

(taken by the Demeter system) is to 
atten the wrappers to subclasses. The Demeter system supports two

kinds of propagation patterns:

� With traversal speci�cation

They support incremental inheritance in that wrappers of superclasses add to the behavior of sub-

classes.

� Without traversal speci�cation

They support overriding inheritance in that wrappers of subclasses override wrappers of superclasses.

They also support ordinary object-oriented programming with the additional bene�t of interface

localization.

In this chapter, the wrappers themselves need to be syntactically correct statements in some programming

language. In the Demeter system, the wrappers together with the traversal code need to be syntactically

correct. This allows for more 
exibility like expressing conditional traversal.

In this chapter, a wrapper is attached to one class-valued variable. In the Demeter system, a wrapper

may be attached to a set of class-valued variables. This is very useful to bring behavior into several classes

without relying on the subclass structure.



472 CHAPTER 15. CORE CONCEPTS AND IMPLEMENTATION

15.2.7 Adaptive Programs

In general, an adaptive program is a collection of propagation patterns. For simplicity, here

we consider the case where there is just one propagation pattern and where the execution

of code wrappers does not a�ect the course of an ongoing traversal.35 Such an adaptive

program (D;W ) consists of a well-formed traversal speci�cation D, and a wrapper map W .

Given class graph �, an object graph 
, and a node o in 
, the semantics of (D;W ) is given

by the function Run36:

Run(D;W )(�;
; o) = ExecuteW (Traverse(PathSet�(D);
; o))

Traverse(R;
; o) =

�
H if exists Hsuch that 
 `s o : R >H

? otherwise

If 
 is an object graph, o is a node in 
, R is a path set over �, and H is a sequence

of objects, then the judgement


 `s o : R >H

means that when traversing the object graph 
 starting in o, and guided by the path set

R, then H is the traversal history; that is, the sequence of objects that are traversed.37

Formally, this holds when the judgement is derivable using the following rule:


 `s oi : Cdr(li; R;Class(o)) >Hi 8i 2 1::n


 `s o : R > o �H1 � ::: �Hn

if Car(R;Class(o)) =

fClass(o)
li
! wi j i 2 1::ng,

o
li
! oi is in 
; i 2 1::n, and

lj < lk for 1 � j < k � n.

The label s of the turnstile indicates semantics.38

35In this section a formal operational semantics of adaptive programs is given. Essentially, the meaning of

an adaptive program is a function that maps an object graph belonging to some class graph into a traversal

history that is a sequence of traversed objects.
36Later, we will call the function Run only when

Subclass(Source(D);Class(o)):

This will be mentioned in the correctness theorem for the implementation.
37A synonym for judgement would be: statement. The statement contains some nice looking symbols

such as `s and > but those symbols are there only to make the statement more readable. You could replace

those symbols by anything you like or you could drop them altogether. For example, we could use instead

the notation

Statement(
; o; R;H)

38This rule is read as follows: if the statements, called premises, above the horizontal bar have already

been derived then we can derive the statement, called conclusion, under the bar provided the condition on

the right (four lines beginning with if) holds. The condition on the right essentially labels the construction

edges outgoing from Class(o). Since Class(o) is a concrete class, Car(R;Class(o)) consists only of construction

edges. wi is de�ned in the condition on the right but it is never used. From the context we can infer that

wi is a superclass of Class(oi); i.e., Subclass(Class(oi); wi).

The semantics works in the opposite direction than the program execution would.

The derivation rule says essentially: to get the traversal history of an object with respect to path set R,

traverse the subobjects permitted by path set R and then concatenate the traversals of those subobjects.



15.2. THE SEMANTICS OF ADAPTIVE PROGRAMS 473

The functions Car and Cdr perform the operations on sets of paths that were informally

described in the example in Section 15.1. Notice that for n = 0, the rule is an axiom; it is

then simply


 `s o : R > o
if Car(R;Class(o)) = ;

Car(R;Class(o)) = ; can hold for two reasons:

� The paths in R start with Class(o) but Class(o) has no outgoing construction edges.

(R = fClass(o)g).

� None of the paths in R start with Class(o).

The second reason is used when a dead end is reached during traversal.

Notice that Traverse is well de�ned: if both 
 `s o : R > H1 and 
 `s o : R > H2,

then H1 = H2. This can be proved by induction on the structure of the derivation of


 `s o : R >H1.

The call ExecuteW (H) executes in sequence the wrappers for the class of each object in

H . We leave ExecuteW unspeci�ed, since its de�nition depends on the language in which

the code wrappers are written.

15.2.8 The Target Language

We will compile adaptive programs into an object-oriented target language.39 Given that

the source language contains only adaptive programs consisting of one propagation pattern,

we make the target language correspondingly simple. A program in the target language is

a partial function from nodes in a class graph to methods.40 All of those methods have

the same name. In the semantics below, that name is not made explicit, but for clarity we

will call it M in the following discussion. A method is a tuple of the form hl1 : : : lni, where

l1 : : : ln 2 L. When invoked, such a method executes by sending the message M to each of

the subobjects labeled l1 : : : ln.

Hi is a sequence of object nodes that describes how object oi is traversed. For example, the traversal

history for the traversal described in the context of Fig. 15.5 is the sequence i1, i4, i2. Subclass(Class(oi); wi)

holds for i 2 1::n although not explicitly mentioned in the rule.

The traversal history concatenation operator is not de�ned formally, but is straightforward. It concate-

nates sequences of object nodes.

It is interesting that in the derivation rule Car is used only when the second argument is a concrete class.

Therefore, the Cdrs start \after" a construction edge.

Here we use the total order of the labels to express the traversal.

The axiom allows judgements that are not intended by the programmer. Consider the class graph X = A

B. A = . B = . For traversal speci�cation [X;A] and an X-object, the traversal history for the B-object is

well de�ned, although B-objects are not traversed. But this is not a problem. It is common that semantics

is de�ned for more than the correct programs. Here, we are only interested in what is referenced in Theorem

15.1. If the de�nitions work for other cases, we don't care. To better understand the context of the semantics

it is worthwile to look at the premises of Theorem 15.1.
39In this section we give an operational semantics of the target language to which we compile adaptive

programs. This language does not include wrappers since traversal and wrapper execution are treated

separately.
40Below we use P to denote such a partial function. It is partial since usually a traversal is concerned

with only a subset of the class graph.



474 CHAPTER 15. CORE CONCEPTS AND IMPLEMENTATION

If 
 is an object graph, o is a node in 
, P is a program in the target language, and H

is a sequence of objects, then the judgement


 `t o : P >H

means that when sending the message M to o, we get a traversal of the object graph 


starting in o so that H is the traversal history. Formally, this holds when the judgement is

derivable using the following rule:


 `t oi : P >Hi 8i 2 1::n


 `t o : P > o �H1 � ::: �Hn

if P(Class(o)) = hl1 : : : lni,

o
li
! oi is in 
; i 2 1::n, and

lj < lk for 1 � j < k � n.

The label t of the turnstile indicates \target." Notice that for n = 0, the rule is an axiom;

it is then simply


 `t o : P > o
if P(Class(o)) = hi.

Intuitively, the rule says that when sending the message M to o, we check to see if o

understands the message, and if so, then we invoke the method.

Given a program in the target language, it is straightforward to generate, for example,

a C++ program.

15.3 IMPLEMENTATION OF ADAPTIVE PROGRAMS

We will implement adaptive programs e�ciently by representing PathSet�(D) as

Graph(PathSet�(D));

the propagation graph.41 The advantage of this representation is that the function

Graph(PathSet�(D)) can be e�ciently computed by the function PG�, de�ned as follows:
42

PG�([A;B]) = Graph(Paths�(A;B))

PG�(D1 �D2) = PG�(D1) [ PG�(D2)

PG�(D1 +D2) = PG�(D1) [ PG�(D2)

Lemma 15.3 If WF(D) and D is compatible with �, then PG�(D) = Graph(PathSet�(D))

and

PathSet�(D) � PathsPG�(D)(Source(D);Target(D)).

Proof. By induction on the structure of D.43 2

41Recall that Graph de�nes the smallest graph containing a set of paths.
42Function PG returns a class graph called a propagation graph. A propagation graph might not have

any conforming objects. This is appropriate since propagation graphs are used to de�ne programs and not

objects.
43Can you �nd a D and � such that

PathSet�(D) � PathsPG�(D)(Source(D);Target(D)):

To detect this situation is the purpose of the consistency concept.



15.3. IMPLEMENTATION OF ADAPTIVE PROGRAMS 475

Intuitively, we may view

PathSet�(D)

as a high-level interpretation of the traversal speci�cation D. It describes the intent of the

programmer. In contrast,

PathsPG�(D)(Source(D);Target(D))

is a low-level interpretation of D. It describes those paths the implementation will consider.

The drawback of the low-level interpretation is that Graph(PathSet�(D)) may contain

paths from Source(D) to Target(D) that are not in PathSet�(D). Given a well-formed

speci�cation D and a class graph �, a well-formed speci�cation D is consistent with a

class graph �, written � j= D, if

PathSet�(D) = PathsPG�(D)(Source(D);Target(D)) :

Intuitively, a well-formed speci�cation is consistent with a class graph if the high-level

interpretation and the low-level interpretation coincide. The following translation of adap-

tive programs into the target language requires compatibility, consistency, and subclass

invariance.

Given a class graph � and a traversal speci�cation D, we de�ne the target program

Comp(D;�) by Comp(D;�) = PPG�(D);�. For any two class graphs �;�0 where �0 is a

subgraph of �, P�0;� is the partial function from nodes in � to methods, such that:

� For a concrete class v 2 �0, P�0;�(v) = hl1 : : : lni, where Edges�0(v) = fv
li
! wi j i 2

1::ng and lj < lk for 1 � j < k � n.44

� For a concrete class v 2 (�n�0) where Subclass�(u; v) for some u 2 �0, P�0;�(v) = hi.45

� For all other classes v 2 �, P�0;�(v) is unde�ned.

In the Demeter system, the compiler generates empty virtual C++ methods for the

abstract classes of �0. Here, we use a target language without inheritance, so to model

empty virtual methods, we generate empty methods for all concrete classes outside �0 that

are subclasses of some class in �0.46

The correctness of the preceding translation is proved as follows.

Lemma 15.4 If WF(D), � j= D, and D is compatible with �, then (i) PathSet�(D) is

convex over PG�(D), (ii) Source(D) = Root(PathSet�(D)), and (iii)

Target(D) = Leaf(PathSet�(D)):

44Intuitively, a call to M is generated for each construction edge in the propagation graph.
45All concrete classes in � but not in �0 which are a subclass of a class in �0, get an empty method. This

is used to simulate virtual functions.
46It is interesting to notice how the compiler P�0;� is de�ned. Although it will be used only when the

�rst argument is a propagation graph, it is formulated in a more general form. Why? We see here the roots

of adaptiveness in mathematics. It is often easier to prove a more general theorem. In Lemma 15.6 we use

this idea and state the lemma in a more general form to facilitate the proof.

In adaptive programming we use the same idea. Instead of writing a speci�c program, we write a generic

program that is shorter and easier to maintain. In adaptive programming we generalize the data structures

by expressing the adaptive program in terms of class-valued variables.



476 CHAPTER 15. CORE CONCEPTS AND IMPLEMENTATION

Proof. Immediate, using Lemma 15.2. 2

Lemma 15.5 If WF(D), and D is compatible with �, then Target(D) is a Rome-node of

PG�(D).

Proof. By induction on the structure of D. 2

Lemma 15.6 For two class graphs �;�0 such that �0 is a subclass invariant subgraph of

�, an object graph 
 conforming to �, a convex path set R over �0, a node o in 
 such that

Subclass�(Root(R);Class(o)), where Leaf(R) is a Rome-node of �0, and a traversal history

H, we have


 `s o : R >H i� 
 `t o : P�0;� >H :

Proof. Suppose �rst that 
 `s o : R > H is derivable. We proceed by induction on

the structure of the derivation of 
 `s o : R > H . Since 
 `s o : R > H is derivable,

we have that Car(R;Class(o)) = fClass(o)
li
! wi j i 2 1::ng; o

li
! oi is in 
; i 2 1::n,

lj < lk for 1 � j < k � n; and that 
 `s oi : Cdr(li; R;Class(o)) > Hi is derivable for all

i 2 1::n. There are two cases.

First, if Class(o) 62 �0, then Car(R;Class(o)) = ;. Moreover, since

Subclass�(Root(R);Class(o));

we have P�0;�(Class(o)) = hi, so H = o, and 
 `t o : P�0;� >H is derivable.

Second, if Class(o) 2 �0, then since Leaf(R) is a Rome-node of �0, there is a path p in �0

from Class(o) to Leaf(R). Moreover, since Subclass�(Root(R);Class(o)), and �
0 is a subclass

invariant subgraph of �, we have Subclass�0(Root(R);Class(o)) and thus a path p
0 in �0 from

Root(R) to Class(o) consisting of only subclass edges. Since R is convex over �0, we get that

p0p 2 R, and hence Class(o) 2 Head(R). Since Leaf(R) is a Rome-node of �0, we then have

Car(R;Class(o)) = Edges�0(Class(o)). Thus, P�0;�(Class(o)) = hl1 : : : lni. Using Lemma 15.1

we get that Cdr(li; R;Class(o)) is convex and that Leaf(Cdr(li; R;Class(o))) is a Rome-node of

�0. Since 
 conforms to �, we also have that Subclass�(Root(Cdr(li; R;Class(o)));Class(oi))

for all i 2 1::n. By the induction hypothesis, 
 `t oi : P�0;� >Hi is derivable for all i 2 1::n.

Hence, 
 `t o : P�0;� >H is derivable.

The converse is proved similarly. 2

Theorem 15.1 (Correctness) For a class graph �, a well-formed speci�cation D, an

object graph 
 conforming to �, a node o in 
 such that Subclass�(Source(D);Class(o)),

and a traversal history H, if � j= D, D is compatible with �, and PG�(D) is a subclass

invariant subgraph of �, then


 `s o : PathSet�(D) >H i� 
 `t o : Comp(D;�) >H :

Proof. By Lemma 15.4, PathSet�(D) is convex over PG�(D),

Source(D) = Root(PathSet�(D));

and

Target(D) = Leaf(PathSet�(D)):

By Lemma 15.5 we obtain that Target(D) is a Rome-node of PG�(D). Finally, Comp(D;�) =

PPG�(D);�. The conclusion then follows from Lemma 15.6. 2



15.4. COMPOSITIONAL CONSISTENCY 477

15.4 COMPOSITIONAL CONSISTENCY

We now present an algorithm that does compositional consistency checking. First we present

a speci�cation of the algorithm, in the form of three inference rules.

Given class graphs �1 and �2 and nodes A, B, and C, we write

NoShortcut(�1;�2; A;B;C)

if it is the case that Paths�1[�2(A;C) � Paths�1(A;B) � Paths�2(B;C).
47 To better under-

stand the shortcut property we study the three minimal examples involving three nodes.

The speci�cation we use in all three cases is [A;B] � [B;C]. �1 is the class graph determined

by [A;B]. �2 is the class graph determined by [B;C]. The propagation graph is the entire

graph that contains a direct edge from A to C leading to a shortcut. The three examples

are in Figs. 15.14, 15.15, and 15.16. In Fig. 15.14, the propagation graph of [B;C] contains

A = B C.

B = [A].

C = .

Figure 15.14: Shortcut 1

the edge from A to C. In Fig. 15.15, the propagation graphs of [A;B] and [B;C] contain

A = B C.

B = C.

C = [A].

Figure 15.15: Shortcut 2

the edge from A to C. In Fig. 15.16, the propagation graph of [A;B] contains the edge

from A to C.

Given �1 and �2 and nodes A and B, we write

NoZigzag(�1;�2; A;B)

if Paths�1[�2(A;B) � Paths�1(A;B) [ Paths�2(A;B).
48

47A shortcut inconsistency can occur only in a speci�cation that contains at least one join (�). It would

be equivalent and maybe more intuitive to use = instead of � in the NoShortcut predicate de�nition.
48A zigzag inconsistency can occur only in a speci�cation that contains at least one merge (+). It would

be equivalent and maybe more intuitive to use = instead of � in the NoZigzag predicate de�nition.



478 CHAPTER 15. CORE CONCEPTS AND IMPLEMENTATION

A = B C.

B = C.

C = [B].

Figure 15.16: Shortcut 3

The judgement � ` D means that D is compositionally consistent with �. The judge-

ment is conservative in the sense that for well-formed speci�cations, � ` D implies � j= D,

but not necessarily vice versa. There are three rules:49

� ` [A;B]

� ` D1 � ` D2

� ` D1 �D2

if NoShortcut(PG�(D1); PG�(D2); Source(D1);Target(D1);Target(D2))

� ` D1 � ` D2

� ` D1 +D2

if NoZigzag(PG�(D1); PG�(D2); Source(D1);Target(D1))

Theorem 15.2 (Soundness) If WF(D), then � ` D implies � j= D.50

Proof. We proceed by induction on the structure of the derivation of � ` D. In the

base case, consider � ` [A;B]. We must prove � j= [A;B], which amounts to proving

PathSet�([A;B]) = PathsPG�([A;B])(A;B), which is immediate.

In the induction step, consider �rst � ` D1 �D2. We must prove � j= D1 � D2, which

amounts to proving PathSet�(D1 � D2) = PathsPG�(D1�D2)(Source(D1);Target(D2)), which

in turn amounts to proving

PathSet�(D1) � PathSet�(D2) = PathsPG�(D1)[PG�(D2)(Source(D1);Target(D2)):

By the induction hypothesis we have � j= D1 and � j= D2 so we need to prove

PathsPG�(D1)(Source(D1);Target(D1)) � PathsPG�(D2)(Source(D2);Target(D2)) =

PathsPG�(D1)[PG�(D2)(Source(D1);Target(D2)).

49A from-to speci�cation is always compositionally consistent.
50Soundness means that compositional consistency is a specialization of consistency. We see here a com-

mon pattern in computer science: if we cannot easily check a property P , we invent a more specialized

property Q which we can check easily and which implies Q. Of course, there will be elements for which

property Q does not hold although P holds for the same element. Property Q is chosen in such a way that

the preceding situation does not hold for too many elements.

An application of the preceding pattern is: P = consistent. Q = compositionally consistent.

Another application is in grammar theory: P = the grammar is ambiguous. P is even undecidable. Q =

the grammar is LL(1).

Compositional consistency is a good specialization of consistency, and does not exclude too many cases

of consistency. If compositional consistency holds for a speci�cation and a class graph, we know that it will

also hold for the subspeci�cations. This nice property does not hold for consistency as we will show shortly.



15.4. COMPOSITIONAL CONSISTENCY 479

From WF(D1 �D2) we get that Target(D1) = Source(D2) and clearly

PathsPG�(D1)(Source(D1);Target(D1)) � PathsPG�(D2)(Source(D2);Target(D2)) �

PathsPG�(D1)[PG�(D2)(Source(D1);Target(D2)).

The reverse inclusion follows from

NoShortcut(PG�(D1); PG�(D2); Source(D1);Target(D1);Target(D2)):

Consider then � ` D1 +D2. We must prove � j= D1 +D2 which amounts to proving

PathSet�(D1 +D2) = PathsPG�(D1+D2)(Source(D1);Target(D1)) which in turn amounts to

proving PathSet�(D1) [ PathSet�(D2) = PathsPG�(D1)[PG�(D2)(Source(D1);Target(D1)).

By the induction hypothesis we have � j= D1 and � j= D2 so we need to prove

PathsPG�(D1)(Source(D1);Target(D1)) [ PathsPG�(D2)(Source(D2);Target(D2)) =

PathsPG�(D1)[PG�(D2)(Source(D1);Target(D1)).

From WF(D1 �D2) we get that Source(D1) = Source(D2) and Target(D1) = Target(D2),

and clearly

PathsPG�(D1)(Source(D1);Target(D1)) [ PathsPG�(D2)(Source(D2);Target(D2)) �

PathsPG�(D1)[PG�(D2)(Source(D1);Target(D1)).

The reverse inclusion follows from

NoZigzag(PG�(D1); PG�(D2); Source(D1);Target(D1)):

2

In general, the converse of Theorem 15.2 is false. For example, consider the spec-

i�cation D = ([A;B] � [B;C]) + [A;C] and the graph � = (fA;B;Cg; fA
l

! B;B
m

!

A;A
m

! Cg). Clearly, WF(D) and � j= D, but � 6` D because � 6` ([A;B] � [B;C]).

To see � 6` ([A;B] � [B;C]), notice that AmC 2 PathsPG�([A;B]�[B;C])(A;C), but AmC 62

PathSet�([A;B] � [B;C]).
51

Given D and �, we can decide if � ` D by the following algorithm:

Input: A speci�cation D and a graph �.

1: Check WF(D).

2: Check � ` D by

� building PG�(D) recursively; and along the way

� computing the appropriate instances of NoShortcut and NoZigzag.

We can compute WF(D) in O(jDj) time, we can build PG�(D) in O(jDj j�j) time, and

we can check each instance of NoShortcut and NoZigzag in O(j�j) time. Hence, the total

running time is O(jDj j�j).

51This example shows that if a speci�cation is consistent, the subspeci�cations are not necessarily

consistent.



480 CHAPTER 15. CORE CONCEPTS AND IMPLEMENTATION

15.5 RELATED WORK

There are many approaches to making software 
exible. In comparison, adaptive program-

ming has a unique feature: succinct traversal speci�cations. In the following we brie
y assess

some of the approaches that are most closely related to the idea of adaptive programs.

Metaprogramming systems tend to spend considerable time doing recursive descents

across program structures represented as data structures. In such systems, graph traversals

are usually expressed either with attribute grammars [WG84] or other syntax-directed facil-

ities such as code walkers [Gol89] (see also Wile [Wil86, Wil83]). With attribute grammars,

detailing the traversal is necessary and laborious, and it is subject to the same maintenance

problems as raw object-oriented methods containing explicit traversal code. With code

walkers, the traversal is speci�ed separately from the functionality, as in adaptive programs.

Specifying the traversal is either more laborious than it is with our traversal speci�cations,

or it uses defaults that are similar to what adaptive programming provides.

Object-oriented databases have been introduced to ease the development of database

applications. Object navigation is a common activity of processing in hierarchical or object-

oriented databases [Day89, CW91]. Queries can be speci�ed in terms of navigating prop-

erty value paths. However, as observed by Abiteboul and Bonner [AB91], the current

object-oriented databases applications still demonstrate lack of 
exibility. For example, re-

structuring object schemas often triggers a good amount of work in restructuring database

applications accordingly. Markowitz and Shoshani [MS89, MS93] also observed the need to

write adaptive database queries. They state: \In order to express database queries, users are

often required to remember and understand large, complex database structures. It is impor-

tant to relax this requirement by allowing users to express concise (abbreviated) queries, so

that they can manage with partial or even no knowledge of the database structure" [MS89].

Kifer, Kim and Sagiv [KKS92] allow for similar abbreviated queries where a path expression

can be bound to a sequence of attributes. Bussche and Vossen [VdBV93] use weights to

help determine the meaning of certain abbreviated path expressions. Our use of succinct

traversal speci�cations is intended to achieve such conciseness.

Rumbaugh [Rum88] proposed an operation propagation mechanism to specify object-

oriented software. The motivation of his work was to increase the clarity of program speci-

�cations and to reduce the amount of code to be written. He found that lots of operations

such as copy, print, and save always propagate to some objects in a collection. He proceeded

by separating the propagation part out of an operation, and speci�ed the propagation by

attaching propagation attributes to classes involved in the operation. This is similar to the

code walker approach. By doing so, the rules for propagating were clearly declared, easier

to understand and modify, and the amount of code to be written is reduced. Rumbaugh's

mechanism is run-time based, however, and appears to be less 
exible than the succinct

traversal speci�cations. Rumbaugh's mechanism requires explicitly attaching propagation

attributes to each individual class involved in an operation. When the class structure evolves,

programmers have to update propagation attributes. With an adaptive program, there may

be no need to update the program even if the underlying class structure changes.

Harrison and Ossher [HO91] also found the need to separate the navigation responsibility

from the processing responsibility, which simpli�es system implementations and eliminates a

good amount of explicit navigation code. They proposed a means of propagating messages



15.5. RELATED WORK 481

between objects that are widely separated in a network based on routing speci�cations.

A single, central navigator propagates messages according to routing speci�cations. They

used default routing speci�cations to de�ne how messages pass uninteresting objects. Their

mechanism seems better than Rumbaugh's mechanism because routing speci�cations can

be described relatively independent of object structures. The primary di�erence between

their mechanism and ours is that theirs is run-time based.

Lamping and Abadi [LA94] discuss the methods-as-assertions view. This view general-

izes object-oriented programming and helps the programmer express 
exibly when a certain

piece of code will correctly implement an operation. The methods-as-assertions view is con-

sistent with the adaptive view, and moreover the two views are complementary and might

be combined.

Wile and Balzer [WB94] discuss decontextualized components. In a decontextualized

component, an architecture description language provides the usage context. Compilation

decisions are delayed until the context information is available. Decontextualized compo-

nents make fewer commitments to data and control decisions than do ordinary components.

They do not use succinct traversal speci�cations, however.

In 1992, Kiczales and Lamping [KL92] wrote: \The problem then is how to say enough

about the internal workings of the [class] library that the user can write replacement mod-

ules, without saying so much that the implementor has no room to work." While the

metaobject protocol community addresses the problem with metaobject protocol programs,

we address it with succinct subgraph speci�cations that exploit regularities in object-oriented

software.

Object-oriented programs, especially those that follow such programming styles as the

Law of Demeter [LH89a], have the small-methods problem [WH91, WMH93, WH92]. The

small-methods problem results in dispersed program structure, hindering high-level and de-

tailed understanding. To maintain object-oriented software, software developers have to

trace how an operation is propagated along an object hierarchy and where the process-

ing job is getting done. Experience shows that such tracing is time consuming and error

prone [WMH93]. We could avoid the small methods by creating larger methods. This, how-

ever, would be at the price of a signi�cant maintenance problem because in every method

we would then encode more details of the class structure. Adaptive software solves the

small-methods problem without introducing large methods and the associated maintenance

problem.

Adaptive programs may be used as a succinct way to document object-oriented software.

A large group of small cooperative methods can be summarized by a propagation pattern.

As a result, the speci�cation of the operation becomes localized and possibly shorter and

easier to understand.52

In conventional object-oriented programming, object traversal may be speci�ed using

patterns. Gamma, Helm, Johnson, and Vlissides [GHJV95], introduce the structural design

pattern Composite and the behavioral design pattern Visitor. The Composite pattern de-

scribes how to compose objects into tree structures to represent part-whole hierarchies, and

52There is also an interesting connection to robotics. Earlier approaches used detailed world models to

control robots. This resulted in in
exible and slow robots. In 1986, Brooks [Bro86] introduced the sub-

sumption architecture that avoids building and maintaining world models except for the need of individual

behavior. In adaptive software we also avoid detailed world models when we express behavior.



482 CHAPTER 15. CORE CONCEPTS AND IMPLEMENTATION

the Visitor pattern serves to traverse a part-whole hierarchy. With respect to the traversal

operations, we read in [GHJV95]: \The problem here is that distributing all these opera-

tions across the various node classes leads to a system that is hard to understand, maintain

and change." The idea of the Visitor pattern is to code a traversal once and then to use it

several times. The consequences of using the Visitor pattern are:

� Adding new operations that use the same traversal is easy. There is no need to change

each class in the traversal domain.

� Related behavior is localized in a visitor and not spread over the classes de�ning the

object structure.

� It is hard to add a new class as a participant in the traversal. In [GHJV95] we

read: \When new classes which participate in the traversal are added frequently, it is

probably easier just to de�ne the operations on the classes that make up the structure."

With adaptive software we achieve the goals of the Visitor pattern more e�ectively. We can

use a propagation pattern that gathers the code that describes the traversal together in one

place. This makes it easy to add a new class as a participant in the traversal.

In deductive databases, searching is guided by logical rules. Current work [CTT93] ad-

dresses combining deductive databases and object technology. We believe that our succinct

traversal speci�cations can help eliminate the need for at least some of the rules.

15.6 SUMMARY

Our implementation of adaptive programs has two main advantages. First, there is no loss

of e�ciency compared to conventional object-oriented programming. The generated object-

oriented code is as e�cient as equivalent handwritten traversal code. In the examples of this

chapter, we use C++ as the target language. It is possible to use any typed language with

classes, multiple inheritance, instance variables, methods, and late binding; for example,

Ei�el [Mey88].

The second advantage is that our implementation scales well. Intuitively, the more

classes a program contains, the longer the paths in the corresponding class graphs. Thus,

larger programs often mean more traversal code. With our implementation of adaptive

programs, the traversal code is automatically generated.

The usefulness of adaptive software hinges on two questions:

1. How much traversal happens in object-oriented programs?

2. If there is traversal, can it be speci�ed succinctly?

Regarding the �rst question, statistics of object-oriented systems show that they contain

many small methods. Those small methods tend to contain traversal code so their presence

documents that traversal is common. The reason traversal is common is that, for each task

we implement, there are often only a few worker classes that do interesting work, but many

other bystanders that participate in the traversals only. Moreover, as we go from task to

task, a class that was a worker may become a bystander, and vice versa.



15.6. SUMMARY 483

Regarding the second question, our experience with the Demeter system indicates that

the forms of traversal that often appear in object-oriented programs can nicely be captured

in our language of traversal speci�cations.53

If no traversal is going on, or if there is no succinct speci�cation for the traversal we

want, we may simply use the empty traversal speci�cation in each propagation pattern. This

leads to the generation of an object-oriented program with just one method for each prop-

agation pattern.54 We believe that both situations (no traversal and no succinct traversal

speci�cation) are rare in practice.

Notice that any object-oriented program can be reengineered into an adaptive program.

The idea is to specify each method as a propagation pattern with the empty traversal

speci�cation. This demonstrates that an adaptive program at most needs to be as long as

an object-oriented program for the same task.

Acknowledgment: We thank Mitchell Wand for numerous discussions and a wealth of

suggestions for how to improve the ideas presented in this chapter. We also thank Jan Van

den Bussche, William Clinger, Walter H�ursch, Linda Keszenheimer, and the anonymous

referees for helpful comments on a draft of the chapter.

Appendix A: C++

This appendix is for readers who are not familiar with C++ [ES90].

C++ is an extension of C in that classes in C++ are a generalization of structures in C.

Members of a class can be not only data (called data members) but also functions (member

functions). Table 15.1 shows the di�erent terminology used in C++, Smalltalk [GR83], and

CLOS [Ste90].

C++ Smalltalk CLOS

data member instance variable named slot

member function method function

virtual function method generic function

member function call message send function call

Table 15.1: Terminology

In C++ terminology, when a class A is inherited by a class B, class A is called a base class

or superclass, and class B is called a derived class or subclass. Moreover, class A may be a

supertype of class B. (This need not be the case in C++, e.g., when the inheritance is so-

called private.) When class A is a supertype of class B, class B supports all member function

interfaces that A supports. Furthermore, for a member function de�ned in A, the class B

can have a member function with the same interface but with di�erent implementation

that overrides the implementation in A. Late binding of function calls is made possible by

declaring the member function virtual, outlined as follows.

class A

53The bypassing and through speci�cations not covered in this chapter are important for expressing

traversals.
54There might be several methods for each propagation pattern if several methods have the same signature.



484 CHAPTER 15. CORE CONCEPTS AND IMPLEMENTATION

{

public:

virtual void f();

};

The following code fragment gives a member function de�nition.

void A::f()

{

// A's implementation goes here

}

The keyword void means that the method does not return any value. The syntax \::"

resolves the function as a member function of class A. The fragment enclosed by braces is

the implementation of the member function, which contains a line of C++ comment starting

with \//" (double slash).

In C++, a variable v, which holds objects, can be of at least the following two kinds:

� Holding an object directly. De�ned as

A v;

� Holding an address of an object. De�ned as

A* v;

When class A is a supertype of B, the variable v with the second de�nition above can

not only hold addresses of A-objects but also addresses of B-objects. To invoke the member

function f() on the object pointed to by variable v, C++ uses the following syntax.

v->f();

Appendix B: Terminology Summary

We summarize the terminology used in this chapter. The terms listed below are needed for

understanding the kernel of adaptive software. If you are interested in learning enough con-

cepts to write adaptive programs, you need to focus only on the terms related to compilation

(they are marked by +). You can ignore the terms needed to formulate the interpreter in

terms of path sets and the terms needed for proofs only.



15.6. SUMMARY 485

Class Graph Terms

This chapter Synonyms

class graph + class dictionary graph, semi class dictionary graph

node + vertex

abstract class + alternation class

concrete class + construction class

subclass edge + alternation edge

construction edge +

propagation graph +

Edges+

Subclass+ alternation-reachable

path + knowledge path

Paths+

Graph+

Reduce

Head

Select

Car

Cdr

Root

Leaf

convex path set

Rome-node

Propagation Pattern Terms

This chapter Synonyms

signature +

traversal speci�cation + propagation directive

source, Source+

target, Target+

[A;B], from-to + *from* A *to* B

join +

merge +

wrapper +

well-formed, WF+ legal

Object Graph and Class Graph Terms

This chapter Synonyms

conform + legal



486 CHAPTER 15. CORE CONCEPTS AND IMPLEMENTATION

Class Graph and Propagation Pattern Terms

This chapter Synonyms

PathSet+

PG+ propagate

P+

Comp+ propagate

compatible +

consistent + information loss

compositionally consistent +

shortcut, NoShortcut+

zigzag, NoZigzag+

subclass invariance + delayed binding restriction

Concepts not covered in this chapter include: collaborating propagation patterns, prop-

agation patterns for non
at class graphs, transportation patterns, class dictionaries, etc.

15.7 EXERCISES

Exercise 15.1 Prove the following identities.

D1 +D1 = D1 idempotency of merge

D1 + (D2 +D3) = (D1 +D2) +D3 associativity of merge

D1 � (D2 �D3) = (D1 �D2) �D3 associativity of join

D1 � (D2 +D3) = (D1 �D2) + (D1 �D3) distributivity

(D2 +D3) �D1 = (D2 �D1) + (D3 �D1) distributivity

D1 +D2 = D2 +D1 commutativity of merge

D1 � D2 ( D1 � D2 ) i� for all class graphs � compatible and consistent with D1 and D2

the propagation graph PG�(D1) is a (proper) subgraph of PG�(D2). D1 = D2 i� D1 � D2

and D2 � D1.

Can you �nd any other such identities that cannot be derived from the preceding iden-

tities? See [LX93c].

What is the complexity of deciding whether D1 � D2?

Exercise 15.2 Prove that if Re�ne(D1; D2) then D1 � D2. Does the converse hold? Re�ne

is de�ned by the following equations:

Re�ne(D1 ; D1)

Re�ne([A;B] ; [A;C] � [C;B]) for any class� valued variable C

Re�ne([A;B] ; [A;B] +D1) provided Source(D1) = A and Target(D1) = B

Re�ne(D1 �D2 ; D1 � (D3 �D2)) provided WF holds for second argument

Re�ne(D1 +D2 ; D1 + (D3 +D2)) provided WF holds for second argument

See [LZHL94].



15.7. EXERCISES 487

Exercise 15.3 Representative class graph

Every traversal speci�cation de�nes a class graph as follows:

Repr([A;B]) is A = < bs > List(B):

Repr(D1 +D2) is the union of Repr(D1) and Repr(D2):

Repr(D1 �D2) is the union of Repr(D1) and Repr(D2):

Classes with the same name are merged.

The representative class graph of ([A;B] � [B;C]) + ([A;D] � [D;C]) is

A = <bs> List(B) <ds> List(D).

B = <cs> List(C).

D = <cs> List(C).

List(S) : E(S) | N(S).

E(S) = .

N(S) = <first> S <rest> List(S).

Prove the following:

� Prove that the representative class graph is consistent with the speci�cation or give a

counterexample.

� Inequivalence of two propagation patterns can be tested with the representative class

graph.

If two propagation patterns without wrappers D1; D2 are di�erent (i.e., they show

di�erent traversal histories for some class graph � and object graph 
, more precisely,

Run(D1)(�;
; o) 6= Run(D2)(�;
; o))

and Repr(D1) is compatible and consistent with D1 and D2 then there exists an ob-

ject graph 
1 conforming to Repr(D1) for which the two propagation patterns show

di�erent traversal histories for some node o1 of 
1. More precisely:

Run(D1)(Repr(D1);
1; o1) 6= Run(D2)(Repr(D1);
1; o1)

� Show that two propagation patterns without wrappers containing the speci�cations

D1 and D2 are equivalent if D1 = D2. (See Exercise 15.1.)

Exercise 15.4 Restrict operator [LX93c]

De�ne D1 >D2 (the restrict operator) as follows:

PG�(D1 >D2) = PGPG�(D2)(D1)

Given a traversal speci�cation containing a restrict operator, can it be eliminated by

expressing it in terms of from-to, merge, and join?

What kind of identities hold for traversal speci�cations containing the restrict operator?

Are the following two directives equivalent?



488 CHAPTER 15. CORE CONCEPTS AND IMPLEMENTATION

*restrict* (

*merge* (

*join* ( *from LibrarySystem *to* Book,

*from* Book *to* Title)

*join* ( *from* LibrarySystem *to* CD,

*from* CD *to* Publisher ))

*from* LibrarySystem *through* -> *,ml,* *to* *)

and

*merge* (

*join* ( *from LibrarySystem

*through* -> *,ml,*

*to* Book,

*from* Book *to* Title)

*join* ( *from* LibrarySystem

*through* -> *,ml,*

*to* CD,

*from* CD *to* Publisher ))

The restrict operator is important when you build layered adaptive software using de-

rived or functional edges.

Exercise 15.5 Explain why traversal speci�cations contain a given node.

Let Why(E;�; D) be the largest subgraph of PG�(D) so that all paths from Source(D)

to Target(D) contain node E.

Give an algorithm for computing Why and prove it correct. Hint: Why(E;�; [A;B]) =

PG�([A;E] � [E;B]).

Exercise 15.6 Need for negation [LSX94, Sil94]

Consider the class graph G:

A = B1 B2.

B1 = B.

B2 = B.

B = AOpt.

AOpt : A | NoA.

NoA = .

Try to �nd a speci�cation that selects the following subgraph H

A = B1.

B1 = B.

B = .

so that the speci�cation is consistent with G. Prove that it is impossible to �nd such a

speci�cation using from-to, join, and merge.



15.7. EXERCISES 489

Introduce a new primitive [X; not Y; Z] with the meaning for a class graph � to be

Graph(Paths�(X; not Y; Z));

where Paths�(X; not Y; Z) is the set of paths from X to Z not passing through Y .

Can you now express the preceding subgraphH? Can you make the speci�cation shorter

using the restrict operator?

Prove that the speci�cation

[A;B1] � [B1; B] + [A;B2] � [B2; B]

is not compositionally consistent with G.

Exercise 15.7 Growth plans [LX93c]

A class graph slice anchored at vertex v is a class graph so that all abstract vertices

have at least one outgoing subclass edge. All concrete classes must be reachable from v.

Prove that a class graph slice de�nes at least one object o with Class(o) = v so that o

conforms to the class graph slice. Also prove that no concrete class is super
uous; that is,

it may be used in some conforming object.

For a class graph �, a class graph slice � anchored at vertex v is a subgraph

of �, which is a class graph slice anchored at vertex v so that for each vertex v of � all

construction edges outgoing from v in � are in �.

Prove that if an object graph 
 conforms to a class graph slice of class graph � then it

also conforms to �.

A growth plan of a class graph � anchored at v is a sequence s1:::sn of class graph

slices of � which have the following properties:

� They are all anchored at vertex v.

� They increase in size; that is, slice si+1 contains more edges than slice si.

� The last slice is the full graph; that is, sn = �.

Prove that there is an object graph that conforms to slice si+1 but not to slice si. That

is, the set of conforming object graphs gets larger as we move through the growth plan

slices.

Exercise 15.8 Inductive class graphs [LX93a]

A vertex v of a class graph � is inductive if there is a cycle-free class graph slice of �

anchored at v.

A class graph is inductive if all vertices of the class graph are inductive.

Prove the following: If vertex v is not inductive then all conforming objects with the

following property are cyclic: they contain a node o such that Class(o) = v.

An example of a noninductive class graph is

A : B.

B = A.



490 CHAPTER 15. CORE CONCEPTS AND IMPLEMENTATION

Exercise 15.9 Time complexity

The size of an object is the number of edges of its object graph.

The running time T (n) of a propagation pattern P on input objects of size n is the

maximum length of the traversal history created by P on any 
 of size n starting at any

node o of 
.

Consider a propagation pattern containing the speci�cation

*operation* void f()

*traverse*

*from* A *to* B

How does the customizing class graph in
uence the running time of the propagation pat-

tern? The claim is that when object graphs with shared objects are allowed, the customizing

class graph may force the running time from linear to exponential.

Prove the following: [Xia94] There is a customizing class graph for the preceding pro-

gram P such that T (n) = O(cn) for some constant c > 1.

Hint: As class graph consider the directed complete graph C(m) with m concrete ver-

tices. C(m) is constructed from C(m � 1) by adding a node and a directed construction

edge from that node to every node in C(m� 1): As object graphs consider graphs with the

same structure as the class graphs. Remember that even the Fibonacci numbers determined

by the recurrence F (n) = F (n� 1) + F (n� 2) grow exponentially.

Prove the following: There is a customizing class graph for the preceding program P

such that T (n) = O(n).

Exercise 15.10 Complete set of object-equivalence transformations

Given a class graph � and an object graph 
, 
 is legal for � if 
 conforms to � and

moreover

� If edge o
l

! o0 is in 
 then there exists a construction edge Class(o)
l

! v in � such

that Subclass�(v;Class(o
0)).

De�ne Objects(�) to be the set of all legal objects of class graph �. Two class graphs

�1 and �2 are object-equivalent if Objects(�1) = Objects(�2).

Give an alternative de�nition of object-equivalence entirely in terms of class graphs

without mentioning object graphs.

Find a set of complete object-preserving class graph transformations [Ber91, Ber94].

Exercise 15.11 Metric for structure-shyness [LX93b]

A speci�cationD may be too dependent on the speci�cs of a class graph �. The function

Dep(D;�) measures this dependency.

De�ne

size([A;B]) = 2

size(D1 �D2) = size(D1) + size(D2) + 1

size(D1 +D2) = size(D1) + size(D2) + 1

De�ne Dmin(D;�) as a speci�cation of minimal size among all speci�cations E for

which PG�(E) = PG�(D).



15.7. EXERCISES 491

De�ne Dep(D;�) = 1 � size(Dmin(D;�))=size(D). The closer to zero the function

Dep, the more succinct the speci�cation.

What is the complexity of computing Dep and Dmin? Is the computation of Dmin

NP-hard? Hint: See the Ph.D. thesis of Ignacio Silva-Lepe [Sil94].

Exercise 15.12 Generalize the theory in this chapter so that we can attach wrappers to

alternation classes also.

Exercise 15.13 Adaptive sets of objects

Traversal speci�cations may be reused as adaptive set speci�cations. For a speci�cation

D, the adaptive set fDg consists of the set of Target(D)-objects contained in a Source(D)-

object. The adaptive set fDg needs to be customized to an ordinary set fDg�;
;o with a

class graph �, conforming object graph 
 and node o such that Class(o) = Source(D).

We also introduce the adaptive set fD whereD1; D2:::Dng. We assume that Target(D) =

Source(Di) for i = 1:::n: fD where D1; D2:::Dng is the set of Target(D)-objects containing

a Di-object for all i = 1:::n: The Target(D)-objects are contained in a Source(D)-object.

Introduce adaptive set union, intersection, and di�erence. Develop an algorithm to check

that two adaptive sets are equivalent; that is, for all compatible and consistent customizers

and conforming object graphs we get identical sets.

Given a set of adaptive sets all having the same source, at which vertex is it cheapest

to have all sets available for a given class graph? This question is related to the e�cient

implementation of adaptive programs that use adaptive sets to specify resources.

Exercise 15.14 Prematurely terminated paths

A traversal in an object graph 
 of class graph � with respect to traversal speci�ca-

tion D is prematurely terminated at node o if [Source(d);Class(o)] � [Class(o);Target(d)] is

incompatible with PG�(D). (We assume that D is consistent with �.)

Modify the semantics for traversals so that the traversal history contains a \prematurely

terminated" marker after each node o where the traversal terminated prematurely.

Develop an algorithm that checks for a given class graph � and speci�cation D that no

object graph of � will create prematurely terminated paths during a traversal according to

D.

Exercise 15.15 Asymptotic analysis of the bene�ts of adaptiveness

The key idea behind adaptive software is that we can bene�t from the structure of a

class graph � when we want to de�ne subgraphs of �. To illustrate this point, let's consider

the class graph Cn which consists of one cycle of construction vertices and edges. The class

graph has n vertices and vertex i is connected to vertex i+1 by a construction edge. Vertex

n is connected to vertex 1.

Now let's consider all connected subgraphs of this graph, except the entire Cn. Prove

that the average number of vertices in those subgraphs is n=2. This means that on the

average we need to write n=2 symbols to fully describe a subgraph.

But with succinct subgraph speci�cations we can do much better. Each of the subgraphs

can be described with a constant number of symbols: [i; stop j]. The stop symbol means

that no path exits vertex j. i is the �rst vertex and j is the last vertex in the subgraph.



492 CHAPTER 15. CORE CONCEPTS AND IMPLEMENTATION

This means that for this class of graphs we get an improvement by an arbitrary fac-

tor when we use succinct subgraph speci�cations. The larger the graph, the larger the

improvement.

To consider another extreme graph, let's consider the complete graph. To describe a

subgraph consisting of a single path is best done by a complete path speci�cation such as

[1; direct 5][5; direct 7][7; direct 4]::: which describes the path from 1 to 5 to 7 to 4, etc.

So here the succinct subgraph speci�cations don't help. direct means that there must be a

direct edge and that only that direct edge is selected as path.

The class graphs appearing in applications are somewhere \between" the cycle and the

complete graph. As a general rule of thumb we can say that the larger the class graphs and

the less connected they are, the more useful are the succinct subgraph speci�cations. But

they can never make the subgraph speci�cations longer; they can only help.

Exercise 15.16 Adequate testing of propagation directives

When testing an adaptive program (white box testing; that is, we have access to the

source of the program), we have to test the propagation directive. We de�ne the following

adequate testing rule: A class graph � is adequately testing a directive D, if D is compatible

and consistent with � and if for each compound subdirective D1 of D, the class graph �

contains a path from Source(D1) to Target(D1) not satisfying D1. A subdirective is called

compound, if it is not of the form [A;B].

1. Find a class graph that adequately tests (([A;B] � [B;C]) � [C;D]) + (([A;X ] � [X;Y ]) �

[Y;D]).

2. Develop an algorithm that, for a directive D as input, computes a class graph as

output that adequately tests D. Find a directive D for which there is no class graph

that tests it adequately.

3. Can you �nd a better condition for adequate testing of propagation directives?

4. Describe a family of propagation directive errors which a class graph that adequately

tests a propagation directive is capable to detect.

Exercise 15.17 Forward path traversals (suggested by Michael Werner)

When dense, highly connected class graphs are used (e.g., graphs where for each con-

struction edge from A to B there is also a construction edge from B to A), we need a stronger

path concept to de�ne subgraphs conveniently. One way to achieve this is to use forward

paths.

A path is a forward path, if not both a forward and the corresponding reverse edge are

contained in it. More precisely, a path p is a forward path if there is no pair of vertices X

and Y in p such that p contains both a construction edge from X to Y and a construction

edge from Y to X.

Develop a theory of traversal speci�cations for forward paths. There is a need for the

concept of a forward consistent traversal speci�cation with respect to a class graph.

Exercise 15.18 Contradicting traversal speci�cations (suggested by Jens Palsberg)

For the following three propagation patterns �nd a class dictionary that customizes all

three of them.



15.7. EXERCISES 493

Check whether your class dictionary has a shortcut. A class dictionary has a shortcut

with respect to a propagation directive if the propagation graph contains a path that violates

the propagation directive by taking a shortcut.

*operation* void f1()

*traverse*

*from* A *via* B *to* C

*wrapper* C

(@ cout << this; @)

*operation* void f2()

*traverse*

*from* C *via* B *to* D

*wrapper* D

(@ cout << this; @)

*operation* void f3()

*traverse*

*from* A *via* C *to* D

*wrapper* D

(@ cout << this; @)

Show that all class dictionaries compatible with the preceding three propagation direc-

tives for the three propagation patterns must have a shortcut with one of the propagation

directives.

A set of traversal speci�cations is contradictory if there is no customizing class graph

compatible and consistent with all of the speci�cations in the set. For example, the directive

set

[A;B] � [B;C] ^ [C;B] � [B;D] ^ [A;C] � [C;D]

is contradictory.

Find an algorithm which for a given a set of traversal speci�cations decides whether it

is contradictory. Call your algorithm \satis�ability checker for traversal speci�cations".

When writing adaptive software, we �nd that sets of traversal speci�cations are rarely

contradictory and that the following algorithm shows that they are not contradictory.

An algorithm for �nding a compatible and consistent class dictionary for a set of traver-

sal speci�cations is: For each traversal speci�cation �nd the representative class graph

(introduced in an earlier exercise). Take the union of the representative class graphs. We

call the class graph we obtain by this construction the representative class graph for the set

of traversal speci�cations. We call a set of traversal speci�cations natural if their repre-

sentative class graph is compatible and consistent with each traversal speci�cation in the

set.

A natural set of traversal speci�cations is obviously not contradictory. Discuss the

adequacy of the concept of natural sets of traversal speci�cations for composing adaptive

software. Does naturalness exclude too many sets that are not contradictory? Find examples

of nonnatural sets of traversal speci�cations that are not contradictory.



494 CHAPTER 15. CORE CONCEPTS AND IMPLEMENTATION

Hint (reduction proposed by Boaz Patt-Shamir): Checking whether a set of propagation

directives D is not contradictory can be reduced to checking whether for D there is a class

graph G with at most jCV (D)j nodes that is compatible and consistent with every directive

in D. CV (D) means the set of class-valued variables mentioned in D.

The reduction is achieved as follows: Let's assume we have a class graph G0 which is

consistent with all directives in D, and let's further assume that G0 contains a node X not

in CV (D). We can �nd a graph G that is compatible and consistent with all directives in

D and that has X eliminated. In graph G we replace vertex X with a complete bipartite

graph. Let X have m incoming edges and n outgoing edges. We replace X by the complete

bipartite graph K(m;n). K(m;n) has an edge from each of the m vertices on the \left" to

each of the n vertices on the \right."

Since X is not mentioned in any of the directives in D, the removal of X does not change

the consistency and compatibility property with each of the directives in D. We repeat the

preceding process until there are only nodes in CV (D) left in the graph.

A further reduction is useful: Checking whether a set of propagation directives D is

not contradictory can be reduced to checking whether for D there is a class graph G that is

compatible and consistent with every directive in D and that has at most one edge between

any pair of nodes.

Combining the two reductions, in order to check that D is not contradictory we have

only to search through all class graphs with at most jCV (D)j nodes and at most jCV (D)j2

edges. This is a �nite number of graphs to search. For each class graph we check for

compatibility and consistency using the algorithms described earlier. Can this algorithm be

made more e�cient?

Exercise 15.19 Propagation graphs and reducible 
ow graphs (suggested by John Reif)

Since propagation graphs summarize the structure of programs that use structured


ow-of-control statements, they must be reducible 
ow graphs. The concept of reducible


owgraphs is studied in compiler theory with the purpose of loop optimization [ASU86].

De�ne the concept of a reducible class graph using the concept of dominator. Discuss

whether class graphs in general should be reducible or whether only propagation graphs

should be reducible. Give an example of a nonreducible class graph and a propagation

directive that selects a reducible propagation graph. Implement a tool that e�ciently checks

whether a propagation graph is reducible. (This tool would be useful for checking whether

a propagation directive selects a \reasonable" propagation graph.)

Exercise 15.20 Identity

Prove or disprove the following identity (suggested by Boaz Patt-Shamir)

([A;B] � [B;C]) � ([C;D] � [D;E]) + ([A;F ] � [F;C]) � ([C;G] � [G;E]) =

([A;B] � [B;C] + [A;F ] � [F;C]) � ([C;D] � [D;E] + [C;G] � [G;E])

Exercise 15.21 Propagation directive abstraction

Given a set of pairs of class graphs (cdi; pgi) for i = 1:::n, �nd a propagation directive

D (if there is one), such that D and cdi are compatible and consistent and PGcdi
(D) = pgi

for all i = 1:::n. Under which circumstances is D unique if viewed as a function from class



15.7. EXERCISES 495

graphs to class graphs? (This problem can be viewed as propagation directive interpolation

in analogy to polynomial interpolation.)

Exercise 15.22 Code generation for sets of directives

A current de�ciency of adaptive software is that the presence of inconsistency requires

manual intervention by the programmer. The goal is to automatically handle inconsistency

and still generate the correct traversal code.

Given a set of directives fdig and a class graph G compatible with each of the directives,

�nd a correct traversal implementation for each of the directives.

A traversal implementation of directive d is correct for graph G, if all the traversals

satisfy the directive; that is, at run-time no traversal will be made that violates the directive.

We ask for a correct traversal implementation even in the case of inconsistency as shown

in the following example.

Directive d = [A;B] � [B;C].

Graph G:

A = X.

X = B C.

B = X.

X = .

G is compositionally inconsistent with d because of the shortcut from A via X directly

to C. But still we can create a correct implementation by using two traversal functions: f

for the traversal of [A;B] and fred for the traversal of [B;C].

The compositional consistency checking algorithm is useful for controlling the code

generation in the presence of inconsistency.

Some forms of inconsistency require that the target of the directive has an interface

supporting several functions. For example, for d = [A;B] � [B;D] + [A;C] � [C;D], and class

graph

A = X.

X = B C D.

B = X.

C = X.

we need two functions at A to address the inconsistency.

This is an interesting code generation problem; the goal is not only to generate provably

correct code but also tight code, which runs e�ciently.

Exercise 15.23 Computing propagation graphs (proposed by Boaz Patt-Shamir)

Implement the following algorithm to compute the propagation graph of [A;B] in graph

G.

1. Do a breadth-�rst traversal from A and mark blue all nodes and edges that are reached.

2. Do a breadth-�rst traversal from B on reversed graph and mark red all nodes and

edges that are reached. In the reversed graph all edges have been reversed.



496 CHAPTER 15. CORE CONCEPTS AND IMPLEMENTATION

3. The propagation graph consists of the nodes and edges marked both blue and red.

What is the running-time of your algorithm?

Exercise 15.24 Proof system for compositional satis�ability.

A directive D is compositionally satis�able if there is a graph G so that directive D

is compositionally consistent with the class graph G. Find a proof system for compositional

unsatis�ability for directives that are in sum-of-product form.

A directive is in sum-of-product form (SOPF), if it is of the form
P

n

i=1Di, where

each Di is a product of the form [A;B] � [B;C] � :::; that is, a join of primitive directives of

the form [X;Y ]. The summation is used to describe merging of directives.

Hint: Use the following analogy to the propositional calculus (boolean expressions).

The directives correspond to propositional formulas in conjunctive normal form (CNF). A

boolean formula is in conjunctive normal form if it is of the form
Q

n

i=1 Ci, where each

Ci is a disjunction (or-operation) of literals. A literal is either a boolean variable v or its

negation v0. The product describes a conjunction (and-operation) of clauses. Each product

of a directive in SOPF corresponds to a clause of a boolean formula in CNF.

Let x1; x2; :::; xn be the variables that appear in a boolean formula S. An interpre-

tation I of S is a mapping of the variables x1; x2; :::; xn to true or false. We say that an

interpretation I is a model of S if S is true under the interpretation I . A formula that has

a model is satis�able.

Consider the following analogies

boolean algebra directives

formula in CNF directive in SOPF

clause product (join of primitives)

interpretation compatible class graph

model compositionally consistent

and compatible class graph

satisfiable compositionally satisfiable

A well-known proof system, called resolution for unsatis�ability of boolean formulas

in CNF [Rob65], allows us to prove that a formula is unsatis�able. Two clauses c1 and c2

clash if there is exactly one literal in c1 that is complemented in c2. If the clauses c1 [ fxg

and c2 [ fxg clash, then c1 [ c2 is the resolvent of the two clauses. A resolution proof

for the unsatis�ability of a boolean formula S in CNF is a sequence of clauses c1; c2; :::; ck
so that ck is the empty clause. For 1 � i � k � 1 the clause ci+1 must be a resolvent of

S \ c1 \ c2 \ ::: \ ci. It can be shown that a formula is unsatis�able if and only if it has a

resolution proof. Such a proof system is called complete.

Can you �nd a complete proof system for compositional satis�ability? What kind of

additional products can we add to a given a directive without disturbing the compositional

satis�ability?

15.8 BIBLIOGRAPHIC REMARKS

This chapter is an annotated version of [PXL95] extended with exercises and a terminology

summary. It is reprinted with permission of ACM.



Chapter 16

Theory of Class Dictionaries

This chapter is for intermediate and expert users of adaptive software technology after they

have refreshed their knowledge of discrete mathematics. You can successfully use adaptive

software without knowing about any of the formalisms used in this chapter.

In earlier chapters you get an intuitive, informal de�nition of the concepts with plenty

of motivation. This informal style is a good way to learn the technology, but is bound not

to answer all the questions that arise when the technology is applied to big projects. In

this chapter we compensate for the earlier informality by giving a formal de�nition of the

concepts. Motivation is minimal; a discussion of the theory is available in several journal

papers.

This chapter serves the following purposes:

� Intuition is insu�cient.

For many applications, the intuitive explanations are su�cient. But when our intuition

fails, we need to go back to formal de�nitions that contain all the details.

� Instructors need help.

Instructors of adaptive software need to have a fall-back position in the form of a

reference manual that de�nes the programming language and method they teach.

This chapter serves as a formal reference manual.

� Implementors need help.

Implementors of tools for adaptive software technology need a formal de�nition of

what they have to implement.

16.1 CLASS DICTIONARY GRAPHS

We have introduced three kinds of vertices: construction, alternation, and repetition ver-

tices. We also introduced six kinds of edges: required/optional construction, alternation,

inheritance, and zero-more/one-more repetition edges. Since repetition vertices and op-

tional construction edges can be represented by alternation and construction concepts, we

deal with only construction, alternation vertices, (required) construction edges, alternation

edges, and inheritance edges in the theoretical treatment of this chapter.

497



498 CHAPTER 16. THEORY OF CLASS DICTIONARIES

16.1.1 Semi-Class Dictionary Graphs

AtLeastOneCourse

Students

Course

Courses

Undergraduate

String
Student

first

secondsecond

first

name

takes

taken_by

Empty
AtLeastOneStudent

Graduate

Figure 16.1: A semi-class dictionary graph

Fig. 16.1 shows a semi-class dictionary graph.

De�nition 16.1 A semi-class dictionary graph is a tuple � = (V C; V A;�;EC;EA;EI)

with �nitely many labeled vertices in the disjoint sets V C and V A. We de�ne V = V C[V A.

V C is a set of vertices called construction vertices. V A is a set of vertices called alternation

vertices. EC is a ternary relation on V � V ��, called construction edges. � is a �nite set

of construction edge labels. EA is a binary relation on V A � V , called alternation edges.

EI is a binary relation on V � V A, called inheritance edges.

We also use V (�) to represent all the vertices in �. Next we de�ne reachability

concepts.1

De�nition 16.2 In a semi-class dictionary graph � = (V C; V A;�;EC;EA;EI)

� An alternation path is a path satisfying regular expression EA�; that is, containing

only alternation edges.

Vertex w is alternation-reachable from vertex v if there is an alternation path from

v to w or v = w.

We write v
�

=)w if w is alternation-reachable from v. We write v
+
=)w if w is alternation-

reachable from v via more than one alternation edge.

1Semi-class dictionary graph reachability, page 431 (8).



16.1. CLASS DICTIONARY GRAPHS 499

� An inheritance path is a path satisfying regular expression EI�; that is, containing

only inheritance edges.

Vertex w inherits from vertex v if there is an inheritance path from v to w or v = w.

We write v
..........*

w if v inherits from w. We write v
+..........

w if v inherits from w via more

than one inheritance edge.

� A knowledge path is a path satisfying regular expression (EA j (EI)�EC)�; that is,

a knowledge path is a sequence of construction, alternation, and inheritance edges such

that an inheritance edge can be followed only by a construction edge or an inheritance

edge, and the path cannot end with an inheritance edge.

The length of path p is the number of edges in p. We say that from vertex v back to

vertex v there is always an alternation path of length zero, an inheritance path of length

zero, and a knowledge path of length zero. A cycle in a semi-class dictionary graph is a

path of length more than zero from some vertex v back to v.

If there is an alternation path from vertex v to vertex w, then vertex w is a subclass

of vertex v, and any object of w is also an object of v. If there is an inheritance path from

vertex v to vertex w, then vertex v inherits from vertex w. The relation inherits is the

re
exive transitive closure of the relation EI . The relation alternation-reachable is the

re
exive transitive closure of the relation EA.

Further explanation is needed for knowledge paths. The motivation behind the knowl-

edge path concept is to de�ne the set of classes needed to build objects of a given class. The

set of vertices that are reachable (by a knowledge path) from a given vertex v, de�nes the

set of classes whose instances may appear as (nested) part-objects of v-objects.

Alternation paths are a special kind of knowledge paths. Inheritance paths are not.

When we refer to a path p, we mean a knowledge path, unless we explicitly mention that p

is an inheritance or alternation path.

v

x yl w w’
l

Figure 16.2: Forbidden graph

The semi-class dictionary graphs that appear in applications should always satisfy two

independent axioms. We say a semi-class dictionary graph is legal if it satis�es two axioms

called the Cycle-Free Alternation and Inheritance Axiom and the Unique Label

Axiom.

De�nition 16.3 A legal semi-class dictionary graph � = (V C; V A;�; EC;EA;EI) sat-

is�es (V = V C [ V A):



500 CHAPTER 16. THEORY OF CLASS DICTIONARIES

Cycle-Free Alternation and Inheritance Axiom

There are no alternation cycles and no inheritance cycles; that is, 6 9v 2 V : v
+
=)v or

v

+..........
v;

Unique Label Axiom (see Fig. 16.2)

8v; w; w0; x; y 2 V; l 2 � : if v
..........*

w or w
�

=)v, and v
..........*

w0 or w0 �

=)v, then

w
l

�! x;w
0 l
�! y 2 EC implies w

l
�! x = w

0 l
�! y (i.e., w = w

0 and x = y):

From now on, when we refer to a semi-class dictionary graph, we mean a legal semi-class

dictionary graph.

16.1.2 Class Dictionary Graph Slices

Plant Tree

Figure 16.3: A semi-class dictionary graph that cannot de�ne objects

Some semi-class dictionary graphs are not meaningful for de�ning objects. For this purpose

we use class dictionary graph slices.2

De�nition 16.4 A class dictionary graph slice P = (V CP ; V AP ;�P ;ECP ; EAP ; EIP )

anchored at vertex v0 is a semi-class dictionary graph with the following four properties

(VP = V CP [ V AP ):

1. v0 2 VP and 8w 2 VP 9v 2 VP : v is reachable from v0 via a knowledge path and w is

reachable from v via an inheritance path.

2. 8v=)w 2 EAP : w
..........

v 2 EIP .

In other words, alternation edges imply inheritance edges.

3. 8v 2 V AP 9w 2 VP : w
..........

v 2 EIP .

In other words, there is no alternation vertex without an incoming inheritance edge.

4. 8v 2 V AP : v = v0 or 9w=)v 2 EAP or 9w
l
�! v 2 ECP implies 9v0 2

VP s:t: v=)v0 2 EAP :

In other words, if an alternation vertex is \used" (i.e., it is v0 or has some incoming

construction or alternation edge in P ), then this vertex must have at least one outgoing

alternation edge in P .

The vertices incident with the edges are also in P.

The semi-class dictionary graph in Fig. 16.4 is a class dictionary graph slice.

2Class dictionary graph slice, page 431 (10).



16.1. CLASS DICTIONARY GRAPHS 501

String
Student

name
Graduate

Figure 16.4: A class dictionary graph slice

16.1.3 Class Dictionary Graphs

De�nition 16.5 A class dictionary graph3 � = (V C; V A;�; EC;EA;EI) is a union

of class dictionary graph slices such that

v=)w 2 EA iff w
..........

v 2 EI:

We can also give a direct de�nition of class dictionary graphs without relying on class

dictionary graph slices.

De�nition 16.6 A class dictionary graph is a tuple � = (V C; V A; V T;�;EC;EA) with

�nitely many labeled vertices in the disjoint sets V C and V A. We de�ne V = V C [ V A.

V C is a set of vertices called construction vertices. V A is a set of vertices called alternation

vertices. V T is a subset of V C, called terminal vertices. EC is a ternary relation on

V � V � �, called construction edges. � is a �nite set of construction edge labels. EA is a

binary relation on V A� V , called alternation edges.

In addition, a class dictionary graph de�ned this way must satisfy the cycle-free alternation

and the unique label axiom. Those two axioms are similar to the ones we discussed for

semi-class dictionary graphs.

The semi-class dictionary graph in Fig. 16.1 is a class dictionary graph. We use the

following graphical notation4 for drawing class dictionary graphs: squares for construction

vertices, hexagons for alternation vertices, thin lines for construction edges, and double lines

for alternation edges.

In class dictionary graphs, since the inheritance edge, say v
..........

w, occurs whenever the

alternation edge w=)v occurs and vice versa, we usually do not draw inheritance edges in

class dictionary graphs.

A class dictionary graph � de�nes objects for each vertex in �. Sometimes when we want

to analyze or test a system, we need to �nd all the required vertices and associated edges to

build objects for a certain vertex. Class dictionary graph slices of a given class dictionary

graph provide such functionality. Informally, a class dictionary graph slice anchored at class

C contains enough classes to build some C-object.

De�nition 16.7 For a class dictionary graph � = (V C�; V A�;��;EC�; EA�; EI�), a

class dictionary graph slice P = (V CP ; V AP ;�P ;ECP ; EAP ; EIP ) of � anchored at

vertex v0 is a class dictionary graph slice with the following three properties:

3Legal class dictionary graph, page 431 (9).
4Class dictionary graph graphical representation, page 431 (6).



502 CHAPTER 16. THEORY OF CLASS DICTIONARIES

1. V CP � V C�, V AP � V A�, ECP � EC�, EAP � EA�, EIP � EI� and �P � ��

2. 8v 2 V CP [ V AP8v
..........

w 2 EI� : v
..........

w 2 EIP :

In other words, if a (construction or alternation) vertex v is contained in VP then all

inheritance edges outgoing from v in � are in P .

3. 8v 2 V CP [ V AP8v
l

�! w 2 EC� : v
l

�! w 2 ECP :

In other words, if a (construction or alternation) vertex v is contained in VP then all

construction edges outgoing from v in � are in P .

The vertices incident with the edges are also in P.

Students

Course

Courses

String
Student

first

secondsecond

first

name

takes

taken_by

Empty
AtLeastOneStudent

Graduate

AtLeastOneCourse

Figure 16.5: A class dictionary graph slice

Figure 16.5 is a class dictionary graph slice of the class dictionary graph in Fig. 16.1,

anchored at Graduate.

Figure 16.6 shows the relations between the concepts we introduced so far.

16.1.4 Object Graphs

In this section we formally de�ne a set of objects de�ned by a class dictionary graph slice

and therefore also by a class dictionary graph. We �rst de�ne three technical concepts:

associated, Parts, and PartClusters before we de�ne object graphs. An associated

set of a class de�nes the set of instantiable subclasses of the class. Function Parts de�nes

the set of parts of a class with their names and types. PartClusters is a generalization of

Parts where the part types are given by a set of instantiable classes, using the de�nition of



16.1. CLASS DICTIONARY GRAPHS 503

Anchored at v

G

Class Dictionary Graph G

Semi−class Dictionary Graphs

of G
Class Dictionary Graph Slices

Class Dictionary Graph Slices

Figure 16.6: The relations between concepts

associated classes. The object graph de�nition is split into two parts: �rst we de�ne the

structure of object graphs without reference to a class dictionary graph slice and then we

introduce the legality of an object-graph with respect to a class dictionary graph slice.

All the objects in this model are instantiated from construction vertices. For any vertex

v in a class dictionary graph slice �, if we know the set S of all the construction vertices that

are alternation-reachable from v, we will know all the possible classes of objects of vertex

v. The set S is called the associated set of vertex v.

De�nition 16.8 Let P be the class dictionary graph slice (V C; V A;�; EC;EA;EI) an-

chored at some vertex. The associated set of a vertex v 2 V C [ V A is

A(v) = fv
0
j v

0
2 V C and v

�

=)v
0
g:

Next we introduce the Parts function. The construction edge v
l

�! w describes a part-

of relationship of vertex v with vertex w. The relation is called l. Such relationships can be

inherited by inheritance descendants. It is convenient to have the pair (l; w), called a part,

which means the relation with vertex w, called l. Therefore each vertex has the parts of its

own or inherited from its inheritance ancestors.

Consider the class dictionary graph in Fig. 16.5. Vertex Graduate has two parts, (name;

String) and (takes; AtLeastOneCourse). The two parts are inherited from vertex Student.

De�nition 16.9 Let P be the class dictionary graph slice (V C; V A;�; EC;EA;EI) an-

chored at some vertex. For any v 2 V ,5

Parts(v) = f(l; w) j 9v0 : v
..........*

v
0
and v

0 l
�! w 2 ECg:

5Class dictionary graph parts, page 433 (19).



504 CHAPTER 16. THEORY OF CLASS DICTIONARIES

The PartClusters function is a generalization of the Parts function. For an object of

a given vertex, each immediate part-object corresponds to an object of a part class. The

function Parts is not su�cient to de�ne what kind of objects can be in each part. Therefore

we replace w with A(w) in the previous de�nition to obtain the de�nition of part clusters.

The result indicates the classes that may be instantiated for each part.

De�nition 16.10 Let P be the class dictionary graph slice (V C; V A;�; EC;EA;EI) an-

chored at some vertex. For any v 2 V ,6

PartClusters(v) = f(l;A(w)) j 9v0 : v
..........*

v
0
and v

0 l
�! w 2 ECg:

Consider the class dictionary graph in Fig. 16.5.

PartClusters(AtLeastOneStudent) = f (first; fGraduateg);

(rest; fEmptyg) g:

Figure 16.7 shows an object of vertex Graduate, usually called a Graduate-object. The

graph is called an object graph. Each vertex in the object graph corresponds to an

instantiation of a construction vertex. Each edge is an instance of a part-of relation. We

use i1
name
�! i2 to represent the edge from vertex i1 to vertex i2 with label name. In the

picture, i1 is the object identi�er of the Graduate-object, and similarly for i2, i3, etc.

first

second

second

first

name

takes

taken_by

Graduatei1: Stringi2:

AtLeastOneCoursei3: Emptyi4:

Coursei5:

AtLeastOneStudenti6:

Emptyi7:

Figure 16.7: An object of vertex Graduate

An object graph de�ned below describes the structures of a group of objects mathemat-

ically. Each vertex in the object graph corresponds to an element in the group, called an

instance/object of some vertex in a class dictionary graph slice.

6Part clusters, page 433 (20).



16.1. CLASS DICTIONARY GRAPHS 505

De�nition 16.11 An object graph7 is a graph H = (W;S;�H ; E; �) with vertex sets

W , S satisfying the following properties:

1. The function � :W ! S maps each vertex of H to a vertex in S.

2. �H is a set of edge labels.

3. E is a ternary relation on W �W � �H .

All the elements in W are object identi�ers. All the elements in S are the types of the

vertices in the object graph.

In an object graph H = (W;S;�H ; E; �), a path P is a sequence of edges from E such

that the end vertex of each edge in P is the start vertex of the next edge in P if there is

one. The length of path P is the total number of edges in P .

If there is a path of length n from vertex v to vertex w, we can write v
n

7! w. For any

vertex v, it is always true that v
0
7! v. We write v

�

7! w when n can be zero; we write v
+
7! w

when n is larger than zero. We say that vertex w is reachable from vertex v when v
�

7! w.

In an object graph H = (W;S;�H ; E; �), if there exists a vertex w0 in W such that

every vertex in W is reachable from w0, then we call object graph H an object graph

anchored at w0.

Not all object graphs with respect to a class dictionary graph slice are legal. Intuitively,

the object structure has to be consistent with the class de�nitions and all the classes in S

have to be construction classes.

De�nition 16.12 An object graph H = (W;S;�H ; E; �) anchored at w0 is a legal8

v0-object with respect to a class dictionary graph slice P anchored at v0 where P =

(V C; V A;�; EC;EA), if H satis�es the following two rules.

Unique Label Axiom

8v; w; w0 2 W8l 2 �H :

v
l

�! w; v
l

�! w
0
2 E implies v

l
�! w = v

l
�! w

0 (i.e., w = w
0):

Conformance Axiom

1. S � V C [ V A and

2. v0
�

=) �(w0),

3. 8� 2 W 9v 2 S s.t. �(�) = v and

(a) 8(�; �; l) 2 E : 9(l; A) 2 PartClusters(v) s.t. �(�) 2 A

(b) 8(l; A) 2 PartClusters(v) : 9� 2W s.t. �(�) 2 A and (�; �; l) 2 E.

7Object graph recognition, page 436 (24).
8Legal object graph, page 436 (27).



506 CHAPTER 16. THEORY OF CLASS DICTIONARIES

The Unique Label Axiom states that no two edges with the same label are outgoing

from a vertex in an object graph. The Conformance Axiom enforces three properties. First,

all the vertices in S have to be construction vertices in P . Therefore every vertex in W

must be an instance of some construction vertex in P . Second, the anchor of the object

graph must be an instance of a vertex in P which is alternation reachable from v0. Third,

if a vertex � in W is an instance of a construction vertex v in P , then every part-object

of the instance must conform to some part of vertex v, and every part of vertex v must

have an instance as a part-object of instance �. The third property is an application of the

Unique Label Axiom. If this axiom is violated, we cannot identify the element (l; A) from

PartClusters(v), simply by the label l.

The object graph anchored at vertex i1 in Fig. 16.8 is not a legal Graduate-object of

the class dictionary graph slice in Fig. 16.5, since vertex Graduate has two parts. But the

object graph is a legal Graduate-object of the class dictionary graph slice in Fig. 16.4.

name
Graduatei1: Stringi2:

Figure 16.8: Illegal object

From now on, when we talk about object graphs we mean that they are legal object

graphs, unless we explicitly mention illegality. Next we formally de�ne all the object graphs

of a class dictionary graph �. In database terminology, Objects(�) represents all instances

of object base schema �. When we say C-object, where C is a construction vertex in the

class dictionary graph, it means an instance of vertex C. For any alternation ancestor A of

vertex C, we also say a C-object is an A-object.

We allow objects with several anchors. They are the union of objects with a single

anchor.

We use a textual notation9 for describing object graphs using an adjacency representa-

tion that also shows the mapping of object graph vertices to class dictionary graph vertices.

De�nition 16.13 Let class dictionary graph � be (V C; V A;�; EC;EA;EI).

� An �-object graph anchored at �, where � 2 V C, is an object graph anchored at �

with �(�) = �.

� An �-object graph, where � 2 V A, is a 
-object graph for some 
 2 V C s.t. �
�

=) 
.

� 8� 2 V C;Objects(�) = fojo is an �-object graphg.

� 8� 2 V A;Objects(�) =
S
u2A(�)Objects(u):

� Objects(�) =
S
u2V C

Objects(u):



16.1. CLASS DICTIONARY GRAPHS 507

(a) (b)

(c) (d)

EmptyEmpty

List

Nonempty Element

List

Nonempty Element

List

Nonempty Nonempty ElementElement

List

rest

first

rest

first

rest

first

rest

first

Figure 16.9: Illustration of class dictionary graph slices

16.1.5 Inductive Class Dictionary Graphs

Consider the class dictionary graph in Fig. 16.9a. When we construct a class dictionary

graph slice anchored at vertex Nonempty, vertex Nonempty forces all the outgoing con-

struction and inheritance edges. Vertex List must have the one outgoing alternation edge

List=) Nonempty, because it has an incoming construction edge. Figure 16.9b shows the

only class dictionary graph slice anchored at vertex Nonempty.

Consider the class dictionary graph in Fig. 16.9c. Figure 16.9d shows one of the class

dictionary graph slices anchored at vertex Nonempty. The di�erence from the preceding

case is that we can select alternation edge List=) Empty instead of taking alternation edge

List=) Nonempty.

In the class dictionary graph of Fig. 16.9a, a Nonempty-object must contain an Element-

object and a List-object. A List-object is always a Nonempty-object | an in�nite recur-

sion. In Fig. 16.9b, this in�nite recursion is expressed by the cycle formed by Nonempty
rest
�!

List and List=) Nonempty. This cycle is forced to be included.

In the class dictionary graph of Fig. 16.9c, a Nonempty-object must contain an Element-

object and a List-object. But a List-object can be an Empty-object. In this case, we don't

have an in�nite recursion. We can have a Nonempty-object which is a list containing only

one element, an Element-object. The Empty-object is used here for the end of the list.

Comparing the two class dictionary graphs in Fig. 16.9a and Fig. 16.9c, we can build

only cyclic Nonempty-objects from the �rst class dictionary graph in Fig. 16.9a. We can

9Object graph textual representation, page 436 (26).



508 CHAPTER 16. THEORY OF CLASS DICTIONARIES

build acyclic Nonempty-objects of any size based on the Nonempty-objects of smaller size for

the second class dictionary graph. We call the second class dictionary graph an inductive

class dictionary graph. The �rst class dictionary graph is not inductive.

De�nition 16.14 Inductiveness Axiom

A class dictionary graph is inductive if for all vertices v of the graph there exists at

least one cycle-free class dictionary graph slice anchored at v.

If a class dictionary graph � is not inductive, we call each vertex v in � for which no

cycle-free class dictionary graph slice is anchored at v, a noninductive vertex.

We conclude the discussion of the Inductiveness Axiom with the following comparison:

� If the Inductiveness Axiom is violated for a class dictionary graph �, then there is a

vertex v 2 V� such that Objects(v) contains only circular objects. A circular object

is an object that contains cycles in its part-of relationships.

� If the Inductiveness Axiom is satis�ed, then for all vertices v 2 V;Objects(v) contains

inductively de�ned, noncircular objects as well as circular objects.

Law of Demeter for Classes

Minimize the number of noninductive vertices in a class dictionary graph.

We claim that when people minimize the number of noninductive vertices in a class

dictionary graph, they minimize the di�culty of building objects and the associated software.

The Unique Label Axiom, Cycle-Free Alternation and Inheritance Axiom, and Induc-

tiveness Axiom imply a mathematical theory; for example, the following theorem belongs

to this theory.

Theorem 16.1 There is no cyclic construction path in a class dictionary graph

� = (V C; V A;�;EC;EA;EI);

that is, for all v 2 V C [ V A there is no construction path from v to v.

Proof: If there is a cyclic construction path then no vertex v on the path will have a cycle-

free class dictionary graph slice since all construction edges leaving a vertex must be included

in the class dictionary graph slice containing that vertex. Therefore, the Inductiveness

Axiom is violated.

16.2 CLASS DICTIONARIES

So far we have considered class dictionary graphs as a mechanism of describing classes.

But we also need a mechanism for describing objects in a succinct form. The object graph

mechanism is not su�cient for this purpose. We extend class dictionary graphs to class

dictionaries so that we can use them for describing objects succinctly at a high level of

abstraction.



16.2. CLASS DICTIONARIES 509

population rest

first

Person

Graduate

Teaching_assistant

Staff

Graduate_without_aid Graduate_with_aid

Research_assistant

Employee

String

Real
salary

gpa

id

name

Faculty

Teacher
val

Salary

Graduate_school
Person_list

Person_empty_list

Person_nonempty_list

Figure 16.10: Class dictionary graph Graduate school

16.2.1 De�nitions

We use the textual adjacency list representation in Fig. 16.11 to describe the class structure

in Fig. 16.10. It is called the class dictionary notation.

Each construction vertex is de�ned by a construction class de�nition that starts with

the name of the source vertex followed by an equal sign. The equal sign is followed by a list

of parts and syntax. The label of each part is enclosed between \<" and \>". The name

after the label is the type of the part. The syntax is enclosed by double quotes.

Each alternation vertex is de�ned by an alternation class de�nition that starts with the

name of the source vertex followed by a colon, which is in turn followed by a set of alternatives

and a list of parts and syntax. The set and the list are separated by \*common*." The set

comes �rst and its elements (vertices) are separated by \|."

Real and String are not shown on the left-hand sides of the class de�nitions, since they

are prede�ned.

To de�ne class dictionaries mathematically, we need four more components in addition

to those of class dictionary graphs, namely V S, ES, �, and �.10 V S is a set of syn-

tax vertices used in a class dictionary, such as "Faculty" and "Staff" above. We use

Faculty ,! "Faculty" to express that vertex "Faculty" has syntax "Faculty". We call

the relationship a syntax edge. ES is the set of all syntax edges in a class dictionary. �

is for ordering classes. � is for ordering the list of parts and syntax on the right-hand side

of each class de�nition.

De�nition 16.15 A class dictionary is a tuple D = (�; V S;ES;�;�; S) where � is a

class dictionary graph (V C; V A; V T;�;EC;EA; ). V = V C[V A (disjoint union) is a �nite

10Class dictionary recognition page 437 (30).



510 CHAPTER 16. THEORY OF CLASS DICTIONARIES

Graduate_school = <population> Person_nonempty_list.

Person_nonempty_list = <first> Person <rest> Person_list.

Person_list : Person_nonempty_list | Person_empty_list.

Person_empty_list = .

Person : Graduate |

Employee

*common* <id> String <name> String.

Graduate : Graduate_without_aid |

Graduate_with_aid

*common* <gpa> Real.

Graduate_without_aid = "Graduate_without_aid".

Graduate_with_aid : Research_assistant | Teaching_assistant.

Research_assistant = "Research_assistant".

Teaching_assistant = "Teaching_assistant".

Employee : Staff | Teacher *common* <salary> Salary.

Staff = "Staff".

Salary = <val> Real.

Teacher : Teaching_assistant | Faculty.

Faculty = "Faculty".

Figure 16.11: Class dictionary Graduate school



16.2. CLASS DICTIONARIES 511

nonempty set called the class vertices; V S is a �nite set called the syntax vertices. ES

is a binary relation on V � V S, called syntax edges.

Function � : V ! N maps each vertex in V to a unique natural number. Function

� : EC [ ES ! N maps each edge in EC [ ES to a unique natural number.

S is a vertex in V C [ V A, called the start vertex.

The di�erences between class dictionary graphs and class dictionaries [Lie88] are as

follows. A class dictionary has syntax for describing the syntax of the language. In a class

dictionary, the ordering of classes and parts is relevant; that is, the order of the successors

of a vertex along construction edges is relevant.

The order of class de�nitions and the order of syntax and parts are usually determined

by the order in which they are written. In the preceding example, we have

�(Graduate school) < �(Person nonempty list) < ::: < �(Faculty);

and in the class de�nition of Person_nonempty_list

�(Person nonempty list
first

�! Person) < �(Person nonempty list
rest
�! Person list):

Before we discuss the legality of class dictionaries, we need to de�ne the reachability

concept.

De�nition 16.16 Consider a class dictionary D = (�; V S;ES;�;�; S) with class dictio-

nary graph � = (V C; V A; V T;�;EC;EA). For any vertices v and w in V C [ V A, w is

reachable from v if

� v and w are the same vertex, or

� v =) w 2 EA, or

� 9l 2 � : v
l

�! w 2 EC, or

� 9x 2 V C [ V A : x is reachable from v and w is reachable from x.

A class dictionary is a context-free grammar. To de�ne a language properly, a class dic-

tionary has to satisfy some additional properties with respect to a class dictionary graph.11

De�nition 16.17 A class dictionary D = (�; V S;ES;�;�; S) is legal if

1. The class dictionary graph � = (V C; V A; V T;EC;EA;�) is legal

2. For every vertex v in V C [ V A, v is reachable from S

3. 8s 2 V S 8v 2 V T : s 62 TerminalSet(v)

4. 8v; w 2 V T : TerminalSet(v) \ TerminalSet(w) 6= ; implies v = w

TerminalSet(v) is the set of all the syntax terminals de�ned by terminal vertex v.

The set of all the syntax terminals in a class dictionary is the union of two sets of

syntax terminals. The �rst set is de�ned by all the syntax vertices in the class dictionary;

the second set is the union of all TerminalSet(v) where v is ranging over all the terminal

vertices in the class dictionary. The two sets should be disjoint.

11Legal class dictionary, page 437 (32).



512 CHAPTER 16. THEORY OF CLASS DICTIONARIES

16.2.2 Flat Class Dictionaries

To cope with parsing and printing of objects de�ned by a class dictionary, we have to

transform a class dictionary into an equivalent one without common parts and syntax. This

transformation is called 
attening since the inheritance structure is 
attened. The result

is called a 
at class dictionary. In a class dictionary, the order of class de�nitions as well

as that of parts and syntax in a given class de�nition are relevant for the language.

We design an algorithm for the 
attening transformation. Informally, when a construc-

tion vertex v inherits several parts and syntax from alternation ancestors, we append the

inherited parts and syntax after the immediate parts and syntax of the construction vertex.

If v inherits parts and syntax from several alternation ancestors, these parts and syntax are

concatenated based on the order of the alternation ancestors.

Example 16.1 shows how the order of class de�nitions is relevant to the language de�ned

by a class dictionary.

Example 16.1 Consider the class dictionary below (comments are pre�xed with \//"):

MotorBoat = "capacity" // syntax vertex

<c> Number. // class vertex; part label is c

MotorPowered : MotorBoat *common* "horsepower" <hp> Number.

WaterVehicle : MotorBoat *common* "speed" <speed> Number.

Its 
at class dictionary is

MotorBoat = "capacity" <c> Number

"horsepower" <hp> Number

"speed" <speed> Number.

MotorPowered : MotorBoat.

WaterVehicle : MotorBoat.

If the class de�nitions is reordered as follows,

MotorBoat = "capacity" <c> Number.

WaterVehicle : MotorBoat *common* "speed" <speed> Number.

MotorPowered : MotorBoat *common* "horsepower" <hp> Number.

its 
at class dictionary is

MotorBoat = "capacity" <c> Number

"speed" <speed> Number

"horsepower" <hp> Number.

MotorPowered : MotorBoat.

WaterVehicle : MotorBoat.

Whenever we consider the language of a class dictionary D, we �rst transform D into

a 
at class dictionary D0, and then we consider the language of D0. Before formalizing the


attening transformation, we �rst de�ne an ordering function �v

D
that orders all vertices in

D from which vertex v is alternation-reachable.12

We may use any ordering function �v

D
that can be computed by a linear-time deter-

ministic algorithm using only the following components of D: EA, V and �. One possible

12Class dictionary 
attening, page 439 (33).



16.2. CLASS DICTIONARIES 513

algorithm is a Depth-First-Traversal algorithm. Starting from vertex v, the algorithm tra-

verses the subgraph formed by a set S of all the vertices from which vertex v is alternation-

reachable, assigning each vertex in S to a unique number along the way. When a vertex has

several incoming alternation edges, the order in which immediate alternation ancestors are

chosen to visit next is the increasing order determined by function � of D.

Consider the class structure in Fig. 16.12. The class structure contains all vertices from

which vertex A is alternation-reachable in the class dictionary D = (�; V S;ES;�;�; S)

where �(A) < �(D) < �(C) < �(B) < �(E) < �(F) < �(G). We can have

�A
D
= f(A; 1); (B; 2); (C; 3); (D; 4); (E; 5); (F; 6); (G; 7)g:

A

B

C

D

E

F

G

Figure 16.12: Order all vertices from which vertex A is alternation-reachable

Please notice that the de�nition of function �v

D
is much simpler for single inheritance

class dictionaries.

Next we use order function �v

D
to 
atten a class dictionary D = (�; V S;ES;�;�; S).

For a construction vertex v, function �v

D
together with function � determines the order of

its outgoing construction edges and syntax edges in the 
attened class dictionary.

De�nition 16.18 Let D be class dictionary

(�; V S;ES;�;�; S)

where � = (V C; V A; V T;�;EC;EA). Its 
at class dictionary is

D
0 = (�0; V S;ES0;�;�0

; S)

where �0 = (V C; V A; V T;�;EC 0; EA) and

1. 8v 2 V A 8l 2 � 8w 2 V C [ V A [ V S: v
l

�! w 62 EC 0 and v ,! w 62 ES0

Alternation vertices do not have common parts and syntax.



514 CHAPTER 16. THEORY OF CLASS DICTIONARIES

2. Let n be the maximum number assigned by function � to the edges in EC [ ES.

For each construction edge v
l

�! w 2 EC and for each construction vertex x 2 V C

with v
�

=)x, if v = x we have

x
l

�! w 2 EC
0 and �0(x

l
�! w) = �(v

l
�! w);

otherwise, we have

x
l
�! w 2 EC

0 and �0(x
l

�! w) = �x

D
(v) � n+�(v

l
�! w)

For each syntax edge v ,! w 2 ES and for each construction vertex x 2 V C with

v
�

=)x, if v = x we have

x ,! w 2 ES
0 and �0(x ,! w) = �(v ,! w);

otherwise, we have

x ,! w 2 ES
0 and �0(x ,! w) = �x

D
(v) � n+�(v ,! w)

An interesting remark is that the order of class de�nitions in a class dictionary a�ects

the order of parts and terminals in its 
at class dictionary (see Example 16.1). For single

inheritance class dictionaries (i.e., class dictionaries where each vertex has at most one

incoming alternation edge), the order of the class de�nitions does not a�ect the order of

parts and terminals in the corresponding 
at class dictionaries. Also it is obvious that D

and D0 de�ne the same set of objects.

In the following discussion, we consider only 
at class dictionaries. The 
at class dic-

tionary of the class dictionary in Fig. 16.11 is in Fig. 16.13.

16.2.3 Languages

There are two ways to associate a formal language with a class dictionary D. The �rst one,

called the object approach, uses the set of objects of D, and the second more traditional

approach in language theory, called the derivation approach, uses derivation trees. Here

we study the object approach. We de�ne a special set of objects called tree-objects. To

each tree-object, we apply a printing function, called g print, which assigns to each object

its textual representation, called a sentence. The set of sentences we can generate by this

mechanism is called the language de�ned by the class dictionary.

We consider sentences as declarative object de�nitions, and the object notations in

object-oriented languages as imperative object de�nitions.

For talking about grammars and their languages we use the synonyms in Table 16.1.

We use special objects called tree-objects to de�ne languages.

De�nition 16.19 In a 
at class dictionary D = (�; V S;ES;�;�; S) with class dictionary

graph � = (V C; V A; V T;�;EC;EA), for any vertex � 2 V C [ V A, an object graph t

anchored at r is an �-tree-object if

� the object graph t has a tree structure,



16.2. CLASS DICTIONARIES 515

Graduate_school = <population> Person_nonempty_list.

Person_nonempty_list = <first> Person <rest> Person_list.

Person_list : Person_nonempty_list | Person_empty_list.

Person_empty_list = .

Person : Graduate | Employee .

Graduate : Graduate_without_aid | Graduate_with_aid .

Graduate_without_aid = "Graduate_without_aid"

<id> String <name> String <gpa> Real.

Graduate_with_aid : Research_assistant | Teaching_assistant.

Research_assistant = "Research_assistant"

<id> String <name> String <gpa> Real.

Teaching_assistant = "Teaching_assistant"

<id> String <name> String

<gpa> Real <salary> Salary.

Employee : Staff | Teacher.

Staff = "Staff" <id> String <name> String

<salary> Salary.

Salary = <val> Real.

Teacher : Teaching_assistant | Faculty.

Faculty = "Faculty" <id> String <name> String

<salary> Salary.

Figure 16.13: Flat class dictionary Graduate school

Class dictionary Grammar

vertex class vertex symbol(s) nonterminal symbol

terminal vertex set of terminal symbols

syntax vertex terminal symbol

Table 16.1: The grammar interpretation of a 
at class dictionary



516 CHAPTER 16. THEORY OF CLASS DICTIONARIES

� children in the tree are ordered,

� �
�

=) �(r).

The anchor of the tree-object t is also called the root, written as root(t).

The set of tree-objects of D TreeObjects(D) = ft j t is an �-tree-object for some � 2

V Cg:

Tree-objects are drawn with the root at the top. For any inner vertex � of a tree-object,

its part-objects/children are drawn from left to right. The �rst child of � is at the leftmost

position. Figure 16.14 contains a tree-object with respect to the 
at class dictionary in

Fig. 16.13. Figure 16.15 shows a printing function called g print.13 g print traverses its

salary
id name

i1: Faculty

i2: String

"123456789"

i3: String

"Tom"

i4: Salary

val

60000.00 i5: Real

Figure 16.14: Faculty-tree object

argument tree-object ! in pre-order, and prints out the values of syntax terminals along the

way by referring to the class de�nitions in the class dictionary D.

For example, the sentence with respect to the Faculty-object in Fig. 16.14 is

Faculty 123456789 Tom 60000:00

We use g print to de�ne the language of a class dictionary.

De�nition 16.20 For a vertex u 2 V C [ V A in a class dictionary D with class dictionary

graph � = (V C; V A; V T;�;EC;EA), a u-sentence is the result of g print(D; t), for some

u-tree-object t.

De�nition 16.21 For a vertex u 2 V C [ V A in a class dictionary D with class dictionary

graph � = (V C; V A; V T;�;EC;EA),

L(u) = fs j s is a u-sentenceg:

De�nition 16.22 In a class dictionary D with class dictionary graph

� = (V C; V A; V T;�;EC;EA)

L(D) = fs j s is a u-sentence for some u 2 V C [ V Ag:

13Printing, page 439 (34).



16.3. LL(1) RULES 517

The g print algorithm

Input : Flat class dictionary D and D-object graph ! 2 TreeObjects(D):

Output : The sentence that describes the object graph !.

Assumption : When NextPartorSyntax(!) is �rst called for !;

it will return the reference of the �rst part or syntax vertex of !.

g print(D;!)

1 for each construction and syntax edge e of �(!) ordered by � do

2 if e 2 ES and e = v ,! w

3 then print syntax(w)

(* print out the syntax represented by syntax vertex w. *)

4 else let e be e = v
l

�! w

5 if w 2 V T (* w is a terminal vertex. *)

6 then print terminal(NextPartorSyntax(!))

(* print out the value of the terminal. *)

7 else g print(D;NextPartorSyntax(!))

Figure 16.15: g print

16.3 LL(1) RULES

A class dictionaryD allows us to describe tree-objects in succinct form by writing a sentence

in L(D). For generality, it is important that sentences allow us to describe all legal tree-

objects so that each tree-object has exactly one description as a sentence. The LL(1) con-

ditions described below play an important role in the mapping process between tree-objects

and sentences. We derive the LL(1) conditions for class dictionaries from the requirement

that the g print function must be one-to-one. We �nd the LL(1) parsing technology optimal

for quickly changing languages.

The LL(1) conditions [ASU86] play an important role in the mapping process between

derivation trees and sentences. Tree-objects are di�erent from derivation trees, since they

do not contain alternation vertices met during the parsing process; derivation trees con-

tain all the nonterminals met during the derivation. We also extend the LL(1) rules to

multiple inheritance. Therefore our LL(1) rules are not the same as the well-known LL(1)

conditions [ASU86].

First, we give the de�nition of �rst set which is just a generalization of the one

in [ASU86]. It is needed for our �rst LL(1) rule.14

De�nition 16.23 In a 
at class dictionary D with class dictionary graph

� = (V C; V A; V T;�;EC;EA)

14First sets, page 439 (37).



518 CHAPTER 16. THEORY OF CLASS DICTIONARIES

for any vertex u 2 V C [ V A the �rst set of u, first(u), is a set of syntax terminals that

contains

� empty15, if L(u) contains the empty sentence.

� All the syntax vertices or terminal vertices whose syntax terminal(s) may appear as

the �rst element in an element of L(u).

First sets are computed based on Theorem 1.

Theorem 16.2 In a 
at class dictionary

D = (�; V S;ES;�;�; S) where � = (V C; V A; V T;�;EC;EA)

for any vertex u 2 V C [ V A [ V S the �rst set of u, first(u), may be computed according

to the following rules:

1. if u 2 V S, then first(u) = fug

2. if u 2 V T , then first(u) = fug

3. if u 2 V A, then 8v s.t. u=)v 2 EA, the following holds:

if e 2 first(v); then e 2 first(u)

4. if u 2 V C and e1; :::; en are all the ordered construction and syntax edges outgoing

from u,

(a) if n = 0 , then empty 2 first(u)

(b) otherwise 8ei(1 � i � n) s.t. i=1 or �rst sets of all elements before ei contain

empty:

i. if ei 2 ES and ei = vi ,! wi, then wi 2 first(u)

ii. if ei 2 EC and ei = vi
li
�! wi, then one of the following holds:

A. 8s 2 first(wi)� femptyg; s 2 first(u)

B. 8s 2 first(wi); s 2 first(u) if i = n

Example 16.2 We illustrate the �rst sets of all the vertices in the following class dictionary.

Course = <or> OptionalOrRequired

<dn> DayOrNight

":" <name> String.

OptionalOrRequired : Optional | Required.

DayOrNight : Day | Night.

Optional = "optional".

Required = .

Day = "day".

Night = .

15
empty is called � in [ASU86].



16.3. LL(1) RULES 519

first(Course) = f" : "; "day"; "optional"g
first(OptionalOrRequired) = fempty; "optional"g
first(DayOrNight) = fempty; "day"g
first(Optional) = f"optional"g
first(Required) = femptyg

first(Day) = f"day"g
first(Night) = femptyg

first(String) = fStringg

The LL(1) conditions are speci�ed by two rules.16

Rule 1 For each alternation class de�nition in a 
at class dictionary

D = (�; V S;ES;�;�; S)

with � = (V C; V A; V T;�;EC;EA), say in textual form

A : A1 j ::: j An:

and any two construction vertices C;C 0 where Ai

�

=)C and Aj

�

=)C 0 and 1 � i; j � n, if

first(C) \ first(C 0) 6= ; then C = C 0.

For example, the following class dictionary violates Rule 1.

AorB : A | B.

A = "a".

B = "a".

An A-object is an AorB-object. A B-object is also an AorB-object. But g print maps

both an A-object and a B-object to the sentence "a". Therefore g print is not a bijection

between TreeObjects(AorB) and Sentences(AorB).

In ordinary language theory, Rule 1 is simpler and only requires that first(Ai) \

first(Aj) = ;. The example in Fig. 16.10 motivates the generalization which is necessary

due to multiple inheritance. Consider the example in Fig. 16.10, where first(Graduate)

and first(Employee) are not disjoint, but the class dictionary in Fig. 16.10 still satis�es

Rule 1.

The follow set concept, as the �rst set concept, is used to check our second LL(1) rule.

It is a variant of the follow set concept in [ASU86]. Informally, follow(u) is de�ned as the

set of all terminals that may immediately follow a u-sentence in a sentence of L(S).17

De�nition 16.24 In a 
at class dictionary

D = (�; V S;ES;�;�; S) where � = (V C; V A; V T;�;EC;EA)

for any vertex u 2 V C [ V A the follow set of u, follow(u), is the smallest set satisfying

the following rules:

16LL(1) conditions, page 442 (42).
17Follow sets, page 441 (41).



520 CHAPTER 16. THEORY OF CLASS DICTIONARIES

1. If u = S, then eof 2 follow(u)

2. 8v=)u 2 EA, the following holds:

8s 2 follow(v); s 2 follow(u)

3. 8w 2 V C s.t. e1; :::; en are all the construction and syntax edges ordered by �, �nd i

s.t. ei = w
l

�! u and 1 � i � n.

(a) if i = n, then

8s 2 follow(w) : s 2 follow(u)

(b) otherwise

i. if ei+1 2 ES and ei+1 = w ,! y, then y 2 follow(u)

ii. if ei+1 2 EC and ei+1 = w
l
�! x, then one of the following holds:

A. if empty 62 first(x), then 8s 2 first(x) : s 2 follow(u)

B. if empty 2 first(x), then 8s 2 first(x) � femptyg : s 2 follow(u) and

8s 2 follow(x) : s 2 follow(u)

Example 16.3 The follow sets of the following class dictionary are shown below. Ident is a
terminal vertex.

Tree = <root> Ident <key> Number <left> TreeOpt "|" <right> TreeOpt.

TreeOpt : Tree | Empty.

Empty = .

follow(Tree) = feof; "j"g

follow(TreeOpt) = feof; "j"g

follow(Empty) = feof; "j"g

follow(Ident) = fNumberg

follow(Number) = f"j"; Identg

Rule 2 For all alternation class de�nitions in a 
at class dictionary

D = (�; V S;ES;�;�; S)

with � = (V C; V A; V T;�;EC;EA), say in textual form

A : A1 j ::: j An:

if an alternative, say A1, contains empty in its �rst set first(A1), then

first(Ai) \ follow(A) = ;

where 2 � i � n.

For example, the following class dictionary violates Rule 2.



16.4. IMPLICATIONS OF LL(1) RULES 521

AorB_CorD = <aorb> AorB <cord> CorD.

AorB : A | B.

CorD : C | D.

A = "a".

B = .

C = "a".

D = .

g print is not a bijection between TreeObjects(AorB CorD) and Sentences(AorB CorD),

because g print maps the two di�erent AorB CorD-objects in Fig. 16.16a and Fig. 16.16b to

the sentence "a". We prove soon that the LL(1) conditions imply that g print is a bijection

between tree-objects and sentences of a speci�c class.

i2: A i3: D

aorb cord

(a)

i1: AorB_CorD

i5: B i6: C

aorb cord

(b)

i4: AorB_CorD

Figure 16.16: Two AorB CorD-objects

16.4 IMPLICATIONS OF LL(1) RULES

We discuss the role of the LL(1) rules played in printing and parsing of objects.

16.4.1 Printing

Next, we want to prove that if a class dictionary D satis�es the LL(1) rules and has the

start symbol S, then g print is a bijection between TreeObjects(S) and L(S). To make our

discussion precise, we de�ne the equality of sentences and tree-objects.

De�nition 16.25 Two sentences s1; s2 are equal (s1 = s2), if they are the same sequence

of syntax terminals.

De�nition 16.26 For a 
at class dictionary D with class dictionary graph

� = (V C; V A; V T;�;EC;EA)

tree-object t1 anchored at r1 and t2 anchored at r2 are equal (t1 = t2) if

1. �(r1) = �(r2), and if �(r1); �(r2) 2 V T then print terminal(r1) = print terminal(r2),

or



522 CHAPTER 16. THEORY OF CLASS DICTIONARIES

2. r1 and r2 have the following properties:

(a) r1; r2 have the same number of children.

(b) if r1; r2 have n children(n � 1) each, the tree-object rooted at the ith child in r1
is equal to the tree-object rooted at the ith child in r2, where 1 � i � n.

Theorem 16.3 (One-to-One Property of g print)

Consider a 
at class dictionary D = (�; V S;ES;�;�; S) that satis�es the LL(1) rules where

� = (V C; V A;�;EC;EA). For any two T -tree-objects t1 and t2 where T 2 V C[V A, t1 = t2

if g print(D; t1) = g print(D; t2).

Proof. We proceed by induction on the maximum depth of tree-objects t1 and t2.

� Base case

When the maximum depth of t1 and t2 is zero, we immediately have t1 = t2, since

{ If T 2 V A and �(root(t1)) 6= �(root(t2)), Rule 1 is violated.

{ If T 2 V C, we can only have �(root(t1)) = �(root(t2)) = T .

� Induction step

Assume that for any two T 0-tree-objects t01 and t02 where T 0 2 V C [ V AS and

Depth(t01); Depth(t
0

2) � K, they are equal if g print(D; t01) = g print(D; t02).

Consider any two T -tree-objects t1 and t2 that have the following properties:

{ max(Depth(t1); Depth(t2)) � K + 1,

{ root(t1) has n children (n � 1) which are the roots of objects s1; :::; si; :::; sn,

{ root(t2) has n children (n � 1) which are the roots of objects s01; :::; s
0

i
; :::; s

0

n
,

{ g print(D; t1) = g print(D; t2).

We know that �(root(t1)) = �(root(t2)) for the same reasons as those in the base step.

Suppose that there exists j where 1 � j � n such that g print(D; sj) 6= g print(D; s0
j
)

and g print(D; sk) = g print(D; s0
k
) for all k < j. Then one of the outputs of

g print(D; sj) and g print(D; s
0

j
) must be empty. Otherwise the sentences for t1 and

t2 cannot be the same. Suppose that g print(D; s
0

j
) = empty, g print(D; sj) 6= empty

and that the �rst syntax terminal of g print(D; sj) is s.

In the class de�nition of �(root(t1)), let � be the jth part vertex that corresponds to

sj and s0
j
. So, sj and s0

j
are �-tree-objects. From the preceding assumption, we have

s 2 first(�) \ follow(�):

Next we prove that the result is a contradiction since it leads to a violation of Rule 2.

We consider the following two cases.



16.4. IMPLICATIONS OF LL(1) RULES 523

1. When �(root(s0
j
)) 6= �(root(sj )), � must be an alternation vertex, and there must

be an alternation vertex A that is alternation-reachable from �, and A has two

di�erent alternatives, say A1 and A2, so that �(root(sj )) 2 A1, �(root(sj )) 62 A2,

�(root(s0
j
)) 62 A1 and �(root(s

0

j
)) 2 A2. Therefore, we have

s 2 first(A1) \ follow(A) and empty 2 first(A2):

Therefore, Rule 2 is violated.

2. Otherwise, we have �(root(s0
j
)) = �(root(sj )) = � and � 2 V C.

Since g print(D; s0
j
) = empty and g print(D; sj) 6= empty, root(sj) and root(s

0

j
)

must have at least one child, and the right hand side of the class de�nition of �

contains no syntax vertex.

We also know that s 2 first(�) \ follow(�), and empty 2 first(�).

Again root(s0
j
) and root(sj) have the same number of children, say m. Select

the �rst subtree ssl ( 1 � l � m) of sj such that g print(D; ssl) 6= empty and

g print(D; ss0
l
) = empty where ss0

l
is the lth child of c0

j
. Let the lth part vertex

of � be �. We know that s 2 first(�), empty 2 first(�), and s 2 follow(�).

If �(root(ssl)) 6= �(root(ss0
l
)), then we have a violation of Rule 2 as reasoned

above. Otherwise, we repeat such a process. Since the depth of each tree-object

is �nite, eventually we will meet a violation of Rule 2.

In other words, g print(D; si) = g print(D; s0
i
) for all 1 � i � n. By the induction

hypothesis, for all 1 � i � n, we have si = s
0

i
. Therefore, t1 = t2.

2

For any vertex T in V C [ V A, by the de�nition of L(T ), g print is a total functional

from TreeObjects(T ) to L(T ) and satis�es the onto property. Therefore g print is a

bijection between TreeObjects(T ) and L(T ), if D satis�es the two LL(1) rules.

16.4.2 Parsing

Before presenting a simple table-driven parsing algorithm g parse in Fig. 16.18 that allows

us to map a sentence to a tree-object, we introduce the inductiveness concept for class

dictionaries. A class dictionary is inductive if it does not contain useless class de�nitions.

The useless terminology is borrowed from [HU79].

De�nition 16.27 A class dictionary D = (�; V S;ES;�;�; S) with class dictionary graph

� = (V C; V A; V T;�;EC;EA) is inductive, if for all v 2 V C at least one v-tree-object

exists.

Inductiveness plays a role in the parsing process, in the sense that inductiveness elimi-

nates useless symbols. These useless symbols can never be used during parsing.

Example 16.4 The following class dictionary satis�es the LL(1) rules, but is not inductive. C

and D can never be used in parsing, otherwise the input would be in�nitely long.

C = "c" <d> D.

D : C.



524 CHAPTER 16. THEORY OF CLASS DICTIONARIES

TreeObjects(C)

o

s

p

s

L(C)

r t

TreeObjects(D)

Objects(D)

g_print(D,r)

g_parse(D,C,t)

g_print(D,o)
g_parse(D,C,s)

g_prin
t(D,p)

L(D)

L(A)
g_parse

(D,A,s)TreeObjects(A)

Sentences(D)

Figure 16.17: g print(D) and g parse(D) with D satisfying the LL(1) rules

Given an inductive class dictionary D with start symbol S and satisfying the LL(1)

rules and an S-sentence s obtained by applying g print to an S-tree-object t, by con-

struction, g parse(D;S) will create the S-tree-object t on reading s. In other words, if

g print is a bijection between TreeObjects(S) and L(S), g parse is also a bijection be-

tween TreeObjects(S) and L(S). Therefore, g parse is the inverse function of g print by

construction.18 Software developers can have the parser quickly create objects by feeding

sentences. In this way, they can debug their class dictionaries and programs. Remember that

in our approach to programming we design a domain language for each program we write.

Fig. 16.17 shows the relation between tree-objects and sentences when class dictionary D

satis�es the LL(1) rules.

We have to guarantee that g parse always halts on any input.

Theorem 16.4 (Halting Property of g parse)

For a 
at inductive class dictionary

D = (�; V S;ES;�;�; S)

with � = (V C; V A; V T;�;EC;EA) satisfying Rule 1, on any given �nite string s,

g parse(D; s)

either reports an error or creates a unique �nite S-tree-object t with g parse(D; s) = t and

g print(D; t) = s.

Proof. We know that V C, V A, V T , V S, EC, EA, andES are �nite sets. If g parse(D; s)

does not halt on reading the string s, g parse(D; s) must repeatedly meet a sequence of

18Parsing, page 441 (38).



16.4. IMPLICATIONS OF LL(1) RULES 525

The g parse algorithm

Input : Flat class dictionary D = (�; V S;ES;�;�; S) with

� = (V C; V A; V T;�;EC;EA) and a string s.

Output : S-object graph corresponding to s or error message.

Assumption : t is a global variable.

g parse(D; s) (* parse sentence s as a S-object of D *)

1.1 t = get token(s) (* removes t from s *)

1.2 ! = parse(D;S; s)

1.3 if t is eof then return !

1.4 else ReportError

parse(D;C; s)

2.1 if C is a terminal vertex (i.e., C 2 V T )

2.2 then if t 2 TerminalSet(C)

2.3 then ! = MakeTerminal(C; t); t = get token()

2.4 else ReportError

2.5 else if t 2 first(C)

2.6 then choose d in A(C) such that t 2 first(d)

2.7 else if empty 2 first(C)

2.8 then choose d in A(C) such that empty 2 first(d)

2.9 else ReportError

2.10 build an empty d-object !

(* all parts are missing and will be set by the following statements *)

2.11 for each outgoing construction and syntax edge e from vertex d do

2.12 if e is a syntax edge (i.e., e = v ,! w and e 2 ES)

2.13 then if w 6= t then ReportError else t = get token()

2.14 else let e be v l
�! w

2.15 set the part of ! called l to the result of parse(D;w; s)

2.16 return !

Figure 16.18: g parse



526 CHAPTER 16. THEORY OF CLASS DICTIONARIES

vertices, say A1; :::; Ai; :::; An, in a circular way without consuming any terminals in s.

Therefore, empty is in the �rst sets of all of them; that is,

empty 2 first(A1) \ ::: \ first(Ai) \ ::: \ first(An):

Otherwise g parse will report an error on line 2.9. According to the existence of the cycle,

first(A1) = ::: = first(Ai) = ::: = first(An):

Since D is inductive, the cycle must contain both construction and alternation vertices.

Further, by the �rst set de�nition, there must be a construction vertex v in A(Ak) for

some alternation vertex on the cycle, where 1 � k � n such that v is not on the cycle and

empty 2 first(v).

Since D is inductive and 
at, there must be a construction vertex w on the cycle such

that the alternation path from Ak to w is on the cycle.

We obtain that v 6= w but empty 2 first(v) \ first(w); that is, Rule 1 is violated.

Therefore the assumption at the beginning is not true. So g parse(D; s) either reports

an error or creates a unique �nite S-tree-object.

Since g parse is an inverse function of g print, we have

g parse(D; s) = t and g print(D; t) = s or

g print(D; g parse(D; s)) = s

2

We will not discuss left-recursion [ASU86] in our case, because the LL(1) rules to-

gether with inductiveness eliminate left-recursion. For illustration, see Examples 16.5, 16.6,

and 16.7.

Example 16.5 The following class dictionary contains left-recursion, and violates Rule 1, because
first(C) = first(D) = femptyg:

A = <b> B.

B : C | D.

C = <a> A.

D = .

Example 16.6 The inductive class dictionary below contains left-recursion, and violates Rule 2,
because 00e00

2 follow(B), empty 2 first(D), and 00e00
2 first(C):

A = <b> B <e> E.

B : C | D.

C = <a> A.

D = .

E = "e".

Example 16.7 The following class dictionary contains left-recursion and satis�es the LL(1) rules,
but it is not inductive.

A = <b> B <e> E.

B : C .

C = <a> A.

E = "e".



16.5. DEMETER DATA MODEL SUMMARY 527

16.4.3 LL(1) Rules and Ambiguous Context-Free Grammars

So far we have shown that if a class dictionary D satis�es the LL(1) rules, then g print is

a bijection between sentences and tree-objects of a vertex in D. We also know that if the

LL(1) rules are violated then g print might not be a bijection. An example is:

A : B | C.

B = "b".

C = "b".

But sometimes if the LL(1) rules are violated, we still have a bijection:

A : B | C.

B = "b" "x".

C = "b" "y".

Here g print is a bijection. If for a class dictionary D the function g print is not a bijection,

we say that the class dictionary is ambiguous.

It would be useful to write a tool that tests whether a class dictionary is ambiguous.

However the problem is undecidable by a reduction to Post's correspondence problem (see

page 200 of [HU79]). Here, we see the role of LL(1) rules: ambiguity is too general, but the

LL(1) conditions can be checked e�ciently and they imply nonambiguity.

Of course, the LR(1) conditions (and others) also can be checked e�ciently and they

imply nonambiguity and we can e�ciently parse the corresponding languages (see [HU79]).

So why do we use the LL(1) conditions? The reason is psychological: they de�ne languages

that are easier to read and learn.

Based on the discussion above, Fig. 11.7, page 372 illustrates the inclusion relationships

between sets of class dictionaries de�ned in terms of the four properties: nonambiguous,

LL(1), nonleft-recursive, and inductive.

16.5 DEMETER DATA MODEL SUMMARY

Table 16.2 gives a summary of the six increasingly more speci�c axiomatic structures used

in our method.

16.6 SELF APPLICATION

We suggest and demonstrate an alternative way to de�ne mathematical objects other than

using sets with relations and axioms (see Table 16.3). Instead we use a class dictionary to

de�ne a set of legal objects, and we use semantic rules to constrain those objects.

The advantages of the alternative approach are:

� We can easily introduce a convenient syntax for describing set elements and relations.

A richer vocabulary is available.

� From the class dictionary we can generate an application-speci�c class library to speed

up the implementation of algorithms operating on the objects.

� The class dictionary notation allows us to use propagation patterns easily to express

the semantic rules.



528 CHAPTER 16. THEORY OF CLASS DICTIONARIES

Demeter Data Model Summary

Structure Applications

semi-class dictionary programming with propagation patterns [LXS91].

graphs and propaga-

tion schemas Propagation pattern speci�cations de�ne semi-class

dictionary graphs called propagation graphs.

The propagation graphs are mapped into programs.

class dictionary graph

slices

growth plans [LH89b], inductiveness axiom, and ob-

ject graphs.

A growth plan is a sequence of class dictionary graph slices.

Inductiveness is de�ned in terms of existence of cycle-free

class dictionary graph slices.

class dictionary

graphs

classes in some object-oriented programming

language.

Alternation vertices correspond to abstract classes.

Construction vertices correspond to concrete classes.

Alternation edges correspond to inheritance relations.

Construction edges correspond to part-of relations.

inductive class inductive object graphs.

dictionary graphs Objects are de�ned inductively.

class dictionaries application-speci�c object language.

A class dictionary de�nes both a class dictionary graph and

a language.

LL(1) class dictionar-

ies

object construction from sentences.

An LL(1) class dictionary is not ambiguous; that is, the

printing function is one-to-one.

Table 16.2: Demeter data model summary

Traditional Alternative

sets(relations) class dictionary

axioms semantic rules

Table 16.3: The comparison



16.6. SELF APPLICATION 529

To demonstrate the usefulness of the class dictionary approach, we apply it now to

de�ne itself.

16.6.1 Self-Describing Class Dictionary Graphs

The following class dictionary, called DH-G, describes class dictionaries, and is also self-

describing:19 20

Cd_graph = < adjacencies > Adjacency_List .

Adjacency = < vertex > Vertex

< ns > Neighbors_wc "." .

Neighbors_wc : Construct_ns | Alternat_ns

*common* < construct_ns > Any_vertex_List.

Construct_ns = "=".

Alternat_ns = ":"

< alternat_successors > Vertex_Bar_list "*common*".

Any_vertex : Labeled_vertex | Syntax_vertex *common*.

Vertex = < vertex_name > Ident .

Label = "<" < label_name > Ident ">" .

Syntax_vertex = < string > String .

Labeled_vertex = < label > Label < vertex > Vertex .

Adjacency_List : Empty_List | Adjacency_NList *common*.

Adjacency_NList = <first> Adjacency <rest> Adjacency_List.

Any_vertex_List : Empty_List | Any_vertex_NList *common*.

Any_vertex_NList = <first> Any_vertex <rest> Any_vertex_List.

Vertex_Bar_list = <first> Vertex <rest> Tvertex_Bar_list.

Tvertex_Bar_list : Empty_List | Tvertex_Bar_NList *common*.

Tvertex_Bar_Nlist = "|" <first> Vertex <rest> Tvertex_Bar_list.

Empty_List = .

16.6.2 Parameterized Class Dictionaries

To make class dictionaries easier to use, we allow them to be parameterized.

Instead of writing

Adjacency_List : Empty_List | NAdjacency_List *common*.

Adjacency_NList = <first> Adjacency <rest> Adjacency_List.

Any_vertex_List : Empty_List | Any_vertex_NList *common*.

Any_vertex_NList = <first> Any_vertex <rest> Any_vertex_NList.

we want to use directly

19Class dictionary textual representation, page 437 (31).
20Class dictionary graph textual representation, page 431 (7).



530 CHAPTER 16. THEORY OF CLASS DICTIONARIES

List(Adjacency)

List(Any_vertex)

Therefore, we de�ne:

List(S) : Empty_list(S) |Nonempty_list(S) *common*.

Nonempty_list(S) = <first> S <rest> List(S).

Empty_list(S) = .

or with an abbreviation:

List(S) ~ {S}.

A nonempty list is described by

NList(S) ~ S { S } .

We call List(S) and NList(S) repetition vertices. We also introduce the abbreviation

A = [<b> B].

for

A = <b> OptB.

OptB : B | Empty.

Empty = .

We call [<b> B] an optional part of A. With these facilities we can now introduce the

parameterized class dictionaries de�ned by the following class dictionary, called DH-P:

Cd_graph = < adjacencies > List(Adjacency).

Adjacency =

< vertex > Vertex

["(" < parameters> Comma_list(Vertex) ")"]

< ns > Neighbors "." .

Neighbors_wc : Construct_ns | Alternat_ns

*common* < construct_ns > List(Any_vertex).

Neighbors : Neighbors_wc | Repetit_n *common*.

Construct_ns = "=".

Alternat_ns = ":"

< alternat_ns > Bar_list(Term) "*common*".

Repetit_n = "~" <sandwiched> Sandwich(Kernel).

Kernel = [ <nonempty> Term ]

"{" <repeated> Sandwich(Term) "}".

Any_vertex : Labeled_term | Optional_term |

Syntax_vertex *common*.

Vertex = < vertex_name > Ident .

Label = "<" < label_name > Ident ">" .

Syntax_vertex = < string > String .



16.6. SELF APPLICATION 531

Labeled_term = < label > Label < vertex > Term.

Term = <vertex> Vertex

["(" <actual_parameters> Comma_list(Term) ")" ].

Optional_term = "[" <opt> Sandwich(Labeled_term) "]".

List(S) ~ {S}.

Bar_list(S) ~ S {"|" S}.

Comma_list(S) ~ S {"," S}.

Sandwich(S) =

<first> List(Syntax_vertex) <inner> S

<second> List(Syntax_vertex).

In DH-P we have added repetition classes and optional parts. We can restrict this class

dictionary to describe only nonparameterized class dictionaries by disallowing a nonnull pa-

rameters part in an Adjacency and by disallowing that a Term has a nonnull actual parameters

part.

We didn't add repetition vertices and optional parts into our mathematical model in

the main part of the chapter because we can simulate them by alternation and construction

vertices.

Now we list the informal semantic rules for parameterized class dictionaries.

� The axioms of unparameterized class dictionary graphs.

� All alternatives on the right-hand side of an alternation class de�nition must have the

same parameters.

� The scope of a formal parameter is the class de�nition in which it is de�ned.

� A formal or actual parameter cannot be a parameterized class.

� All parameterized class de�nitions must be bounded [CW85], [LR88b].

� The number of formal and actual parameters must match.

16.6.3 Object Graphs

We use a textual notation for describing object graphs using an adjacency representation.

It also shows the mapping of object graph vertices to class dictionary graph vertices.

inst1:v1(

<successor1> inst2:v2( ... )

<successor2> inst3:v3( ... )

...

<successorn> instn:vn( ... ))

The vertices correspond to the instance names, such as inst1, inst2 , ..., instn. The name

after the instance name is preceded by a \:" and gives the label assigned by �. The edge

labels are given between the < and > signs.

For describing shared objects, we use the notation:



532 CHAPTER 16. THEORY OF CLASS DICTIONARIES

inst1:v1(

<successor1> inst2)

where inst2 is an object identi�er de�ned elsewhere. Each object identi�er has to be de�ned

exactly once.

The following class dictionary, called Object-CD, de�nes the structure of object graphs

based on the preceding notation. We also allow repetition objects.21

Obj_graph = < adjacencies> List(Inst_or_adj).

Inst_or_adj : Named_adjacency | Adjacency.

Named_adjacency =

<inst_name> Ident

[<adjacency> Adjacency].

Adjacency =

":" <vertex> Vertex <neighbors> Constituents.

Constituents : Construction_parts | Repetition_parts |

Terminal_value.

Construction_parts = "(" <parts> List(Labeled_adjacency) ")".

Repetition_parts = "{" [ <parts> Comma_list(Inst_or_adj) ] "}".

Terminal_value = <terminal_value> String.

Labeled_adjacency =

<objName> Label <objDescr> Inst_or_adj.

Label = "<" <objName> Ident ">".

Vertex = <vertex_name> Ident.

List(S) ~ {S}.

Comma_list(S) ~ S { "," S }.

Figure 16.19 summarizes how we use the di�erent class dictionaries.

Structure Class Dictionary

object graph Object-CD

class dictionary graph DH-G

class dictionary DH-G

parameterized DH-P

class dictionary

Figure 16.19: Notations

16.6.4 Mapping to C++

Class dictionaries and object graphs can be mapped into a programming language, such as

C++ or CLOS. Indeed, the translation can be adapted easily to any programming language

that supports classes and objects, multiple inheritance, and delayed binding of calls to code.

21Object graph textual representation, page 436 (26).



16.6. SELF APPLICATION 533

Class Dictionaries

A class dictionary DG = (V C; V A; V T;�;EC;EA) has an interpretation in C++: A class

with a constructor corresponds to each element of V C and an abstract class corresponds to

each element of V A. The mapping process allows multiple inheritance class dictionaries.

A prede�ned class Universal is the superclass of all classes. Class Universal provides

generic functionality for parsing (g parse), printing (g print), drawing (using the object

graph notation), copying, and comparing of objects. A prede�ned class Terminal is a subclass

of class Universal. Class Terminal provides generic functions for terminal classes.

Each vertex is interpreted as a C++ class as follows:

� Data members

A private data member is created for each outgoing construction edge. The label

becomes the name of the data member. The type of the data member is a pointer

type of the class corresponding to the target of the construction edge.

A static data member stores the class name.

� Function members For construction vertices only, a constructor that has as many ar-

guments as there are outgoing construction edges. The default value for all arguments

is NULL.

For each data member x, a writing function set x (with one argument) and a reading

function get x.

A cast-down function dealing with cast-down in multiple inheritance case.

� Inheritance

All alternation vertices without alternation ancestors inherit from class Universal. Each

class inherits from its alternation predecessors, which are virtual base classes.

Fruit_List = <first> Fruit <rest> Rest.

Rest : None | Fruit_List.

None = .

Fruit : Apple | Orange *common* <weight> DemNumber.

Apple = "apple" .

Orange = "orange" .

Figure 16.20: Fruit List

Example 16.8 Consider the class dictionary in Fig. 16.20. The following class de�nitions in
C++ are automatically generated.



534 CHAPTER 16. THEORY OF CLASS DICTIONARIES

class Rest : public Universal {

private: static char *type;

public: Rest();

~Rest();

char *get_type() { return( type ); }

virtual void DEM_abstract() = 0;

};

class Fruit_List : public Rest {

private: Fruit *first;

Rest *rest;

static char *type;

public: Fruit_List( Fruit * = NULL, Rest * = NULL );

~Fruit_List();

Fruit *get_first() { return( first ); }

void set_first( Fruit *new_first ) { first = new_first; }

Rest *get_rest() { return( rest ); }

void set_rest( Rest *new_rest ) { rest = new_rest; }

char *get_type() { return( type ); }

void DEM_abstract() { }

};

class None : public Rest {

private: static char *type;

public: None();

~None();

char *get_type() { return( type ); }

void DEM_abstract() { }

};

class Fruit : public Universal {

private: DemNumber *weight;

static char *type;

public: Fruit();

~Fruit();

DemNumber *get_weight() { return( weight ); }

void set_weight( DemNumber *new_weight ) { weight = new_weight; }

char *get_type() { return( type ); }

virtual void DEM_abstract() = 0;

};

class Apple : public Fruit {

private: static char *type;

public: Apple( );

~Apple();

char *get_type() { return( type ); }

void DEM_abstract() { }

};

class Orange : public Fruit {

private: static char *type;

public: Orange( );

~Orange();

char *get_type() { return( type ); }



16.7. KNOWLEDGE PATHS AND OBJECT PATHS 535

void DEM_abstract() { }

};

class DemNumber : public Terminal {

private: int val;

static char *type;

public: DemNumber( int = 0 );

~DemNumber();

char *get_type() { return( type ); }

int get_val() { return( val ); }

void set_val( int new_val ) { val = new_val; }

};

The function DEM abstract() is de�ned as a pure virtual function for alternation vertices, to

make alternation classes uninstantiable.

Object Graphs

We describe how an object graph can be translated into a C++ program that produces the

equivalent object in C++.

An object graph H = (W;�H ; E; �) with respect to a class dictionary graph

DG = (V;�; EC;EA) is mapped into a C++ object as follows:

For each vertex v 2 VH we create an instance of class �(v) by calling the class construc-

tor.

For the object graph in Fig. 16.7, we do the following.

Teacher *iTeacher = new Teacher( new DemNumber(40000));

//the argument is for salary

iTeacher->set_name(new DemIdent("John"));

iTeacher->set_ssn(new DemNumber(212011234));

//now iTeacher points to the legal Teacher-object.

The constructor call of Teacher has as many arguments as there are immediate parts of

Teacher. The parts are constructed recursively. If a construction vertex has inherited parts

from an alternation vertex, then we need to call the set functions to assign values to the

inherited parts. The advantage is that we don't need to modify code when a class dictionary

reorganization changes the order of parts.

16.7 KNOWLEDGE PATHS AND OBJECT PATHS

Relationships between knowledge paths and object paths are analyzed in this subsection.

A knowledge path is a path in a class dictionary graph, whereas an object path is a path

in an object graph. An object path has the standard graph-theoretic de�nition: it is a

sequence of adjacent edges in an object graph. One important use of knowledge paths is to

de�ne the traversals of objects. A knowledge path is like a nondeterministic program that

de�nes a pattern that tells how to traverse objects. One knowledge path usually de�nes

many di�erent traversals; that is, many di�erent object paths that we call instances of

the knowledge path. Some of the knowledge paths uniquely de�ne one object path for a

given object, and we call those knowledge paths completed. We de�ne that an object



536 CHAPTER 16. THEORY OF CLASS DICTIONARIES

path is the instantiation of a knowledge path if the construction edges encountered in the

knowledge path match the edges encountered in the object graph. Next we informally derive

the knowledge path concept from a set of requirements.

To describe the traversal of objects, we need a path concept PATH at the class level. The

path concept PATH represents a set of paths and needs to have the following three properties:

1. If there is a path from A to B satisfying PATH, then there exists an A-object that contains

a nested B-object.

2. The concatenation of any two paths satisfying PATH, which are from A to B and from

B to C, is a path from A to C satisfying PATH.

3. We want to have the weakest path concept: if P is a path concept satisfying 1 and 2

then any path that satis�es P also satis�es PATH.

The motivation for the �rst condition is that we want to use paths satisfying PATH to

traverse objects and to �nd appropriate subobjects. The second condition is needed since

we are de�ning operations on semi-class dictionary graphs and propagation graphs that

involve the concatenation of paths. Namely, we use existing object traversal descriptions to

construct a bigger and more complex traversal description. The third condition is motivated

by wanting to impose the least amount of restrictions.

The knowledge path concept is the weakest concept that satis�es the three properties.

Suppose we give a weaker path concept that allows alternation edges to follow inheritance

edges in a path. The restriction on paths in a regular expression would be (EA j EI j EC)�.

In other words, there is no restriction at all. Based on this weaker concept, if there is a path

from vertex A to B, it is not true that there is a path in an object graph that goes from an

A-object to a B-object. An example is shown in Fig. 16.21.

first

Vertex_List

rest

Vertex_NonemptyListVertex_Empty

Vertex Ident
name

Figure 16.21: Weaker path concept

Vertex_Empty
.......... Vertex_List=) Vertex_NonemptyList is a weaker path, but no

Vertex_Empty-object can contain a Vertex_NonemptyList-object. Therefore the knowledge

path concept is the weakest path concept to describe the knowledge relationships between

objects; in other words, to describe possible paths between objects.

We continue with the path instantiation concept which shows how a knowledge path

describes object traversals. The following discussions are in the context of a class dictionary

graph slice, because class dictionary graph slices are the weakest concept to de�ne objects.

To check whether an object path instantiates a knowledge path we perform two tasks

recursively (see Fig. 16.22). First, we skip all consecutive alternation edges (if any) in the



16.7. KNOWLEDGE PATHS AND OBJECT PATHS 537

knowledge path. Then we check whether there is an alternation path from the target of the

last alternation edge to the construction vertex of which the �rst object in the object path

is an instance. Second, we �nd the �rst construction edge in the knowledge path, and we

check that the label of the construction edge and the label of the �rst edge in the object

path coincide. In the knowledge path we now eliminate all edges we have visited, including

the �rst construction edge. In the object path we eliminate the �rst edge, and we continue

with the checking recursively. More precisely:

De�nition 16.28 Given a knowledge path p = v0 e1 v1 ::: vi�1 ei vi ::: vn in a class

dictionary graph slice P and an object path p0 = w0 e
0

1 w1 ::: wj�1 e
0

j
wj ::: wm in a legal

object O of P where n � m � 0, vi(0 � i � n) and ei(1 � i � n) are vertices and edges in P ,

wj(0 � j � m) and e0
j
(1 � j � m) are vertices and edges in O, object path p0 instantiates

knowledge path p, if the following conditions hold:

1. Find the longest path v0 e1 v1 ::: vr�1 er vr of consecutive alternation edges starting

at v0. If there are no alternation edges, then r = 0. The following must hold:

vr
�

=)�(w0):

2. If m > 0, then there must be a construction edge in p; let es be the �rst construction

edge. Assuming es = vs�1
ls
�! vs and e01 = w0

l0
1

�! w1, we have

(a) ls = l01 and

(b) object path

w1 ::: wj�1 e
0

j
wj ::: wm

instantiates knowledge path

vs ::: vi�1 ei vi ::: vn

A consequence of the de�nition is that �(w1) 2 A(vs), but �(w0) 2 A(vs�1) does

not always hold (vs is the target of the �rst construction edge es in De�nition 16.28).

For example, Fig. 16.22 illustrates an example in which the object path from w0 to w3

instantiates the knowledge path from v0 to v6. �(w1) is in A(v1), but �(w2) is not in A(v5).

A knowledge path may describe several traversals. For example, consider the class

dictionary graph in Fig. 16.23 and the knowledge path Neighbors
a neighbors

�! Vertex_List.

This knowledge path describes the traversal that goes from an A_Neighbors-object to a

Vertex_Empty-object, or from a B_Neighbors-object to a Vertex_NonemptyList-object. If

we want to have a knowledge path that describes exactly the traversal from an A_Neighbors-

object to a Vertex_Empty-object, we have to use the knowledge path

Neighbors=) A_Neighbors
.......... Neighbors

a neighbors

�! Vertex_List=) Vertex_Empty.

We call this knowledge path completed, and it is the completion of

Neighbors
a neighbors

�! Vertex_List.

A completed knowledge path uniquely de�nes an object path.



538 CHAPTER 16. THEORY OF CLASS DICTIONARIES

1 3 6l l l1 20w w w 3w

1

3

3 5

6

2 = 4 = =

0v v v v

6vv v

ll

l 1

λ(   )λ(   ) λ(   )1λ(   )0w
w 2w 3w

0v 6v 0v

0w 3wObject path from     to

Knowledge path from     to     which is also a class dictionary graph slice anchored at

Figure 16.22: Path instantiations

Informally, a knowledge path is completed if in the knowledge path we cannot take

an alternation edge to an alternation vertex and then immediately follow an outgoing con-

struction or inheritance edge. The knowledge path must end at a construction vertex. More

formally:

De�nition 16.29 Let p be a knowledge path and p = v0 e1 v1 ::: vi�1 ei vi ::: vn. p is

completed, if the following conditions hold:

1. vn is a construction vertex and

2. If ei is an alternation edge and vi is an alternation vertex, then i+ 1 < n and ei+1 is

also an alternation edge.

To better describe the relationship between knowledge paths and object paths, we in-

troduce the completion of a knowledge path. A knowledge path p1 is the completion of a

knowledge path p2, if there exists an object path that is an instantiation of both p1 and

p2, and with the same intuition as the fourth property in De�nition 16.4, every alternation

vertex v on p1 preceded by an incoming construction and alternation edge must be followed

by an outgoing alternation edge. Formally,

De�nition 16.30 Given two knowledge paths p1 = v10 e11 v11 ::: v1
i�1 e1

i
v1
i
::: v1

n
and

p2 = v20 e21 v21 ::: v2
i�1 e2

i
v2
i
::: v2

m
in a class dictionary graph slice P where m � 0 and

n � 0, knowledge path p1 is a completion of a knowledge path p2 if the following

three conditions hold:



16.7. KNOWLEDGE PATHS AND OBJECT PATHS 539

first

Vertex_List

rest

Vertex_NonemptyListVertex_Empty

Neighbors

A_Neighbors B_Neighbors

a_neighbors

b_neighbors

Graph
adjacencies

Adjacency
first

rest

Adjacency_List

Vertex Ident
name

source

neighbors

Adjacency_NonemptyList

Adjacency_Empty

marked

start

graph

Input

Mark

Finished

MarkSetMarkUnset

Unfinished

Figure 16.23: Class dictionary graph 2 graph for cycle checking on graphs with two kinds of

edges



540 CHAPTER 16. THEORY OF CLASS DICTIONARIES

1. v10 = v20 and v
2
n

�

=)v1
m
and

2. p1 is completed and

3. If p2 contains construction edges, p1 contains exactly the same construction edges and

in the same order.

The following theorems describe correspondences between knowledge paths and object

paths.

Theorem 16.5 For a class dictionary graph slice P and a legal object O of P and an object

path p0 in O there exists a unique completed knowledge path p in P such that p0 instantiates

p.

Proof. By contradiction. If there were more than one completed knowledge path, then

the Unique Label Axiom would be violated. 2

Theorem 16.6 For every knowledge path p in a class dictionary graph slice P , there exists

a legal object O of P and a path p0 in object O such that p0 instantiates p.

Proof. By induction on the number of construction edges on the path. 2

Based on the property of the regular expression (EA j (EI)�EC)�, we have the following

properties of knowledge paths:

1. Knowledge paths are closed under concatenation.

2. Splitting a knowledge path after a construction or alternation edge yields two knowl-

edge paths.

The propagation graph calculus and the propagation directive calculus are based on the

properties of knowledge paths discussed in this section.

16.8 SUMMARY

In this chapter we summarized the theory of class dictionaries.

16.9 EXERCISES

Exercise 16.1 (suggested by Walter H�ursch [H�ur94])

Class dictionaries enforce the abstract superclass rule (ASR) which says that all su-

perclasses must be abstract; that is, they cannot be instantiated. We have used this rule

successfully since the �rst implementation of class dictionaries in 1984. One reason for the

rule is that it makes important concepts of object-oriented design easier to work with. The

purpose of this exercise is to give quantitative evidence to the last statement.

The strategy is to rewrite several of the formal de�nitions about class dictionaries assum-

ing that ASR is violated; that is, we can have alternation edges outgoing from construction

classes. Comparing the complexity (length) of the old and new formal de�nitions gives a

quantitative measure for the simplicity promoted by ASR.

Rewrite the following de�nitions:



16.10. BIBLIOGRAPHIC REMARKS 541

� Objects(G), where G is a class dictionary graph.

� Object-equivalence between two class dictionary graphs.

� Decomposition of object-equivalence into primitive transformations. The primitives

will change. What is the new set of primitives?

� PartCluster de�nition.

� Instantiation of a knowledge path as an object path.

This de�nition is fundamental to the semantics of propagation patterns.

16.10 BIBLIOGRAPHIC REMARKS

This chapter is based on several joint papers with Cun Xiao: [LX93a, LX93c, LX94] and

Cun Xiao's thesis [Xia94].

� Parsing

Parsing theory is covered in [HU79] and [ASU86]. The useless terminology is borrowed

from [HU79]. Inductiveness is formally discussed in [LX93a]. For Post's correspon-

dence problem, see page 200 of [HU79].

The concepts �rst set and follow set are de�ned in a similar way in [Hec86] as we

described them here.

� Class dictionaries

[Lie88] is the �rst journal paper on class dictionaries. [SAK88b] describes work useful

for the theory of class dictionary graphs.

� Grammatical Structures

In his book, Erwin Engeler [Eng73] introduces the concept of a grammatical structure

that satis�es two axioms: Unique readability and Induction. He then associates to

a given grammar a grammatical structure. Engeler's early work has an interesting

relationship to our work in object-oriented systems. The concept of an inductive class

dictionary graph is a re�nement of a grammatical structure and the association of a

grammar to a grammatical structure is similar to the association of a class dictionary

to a class dictionary graph.



Chapter 17

Selfstudy/Teacher's Guide

17.1 INTRODUCTION

The book is written with minimal reference to the Demeter Tools to keep it independent of

the current implementation of adaptive software. The current implementation is, however,

a very useful and well debugged companion for learning about adaptive software and using

it productively. In this selfstudy guide we show one way the tools can be used to learn about

adaptive software development. The guide contains an outline to follow when learning to

use the tools.

This selfstudy guide has grown out of �ve carefully orchestrated assignments that we

have developed to teach adaptive software e�ectively. The assignments coordinate the tasks

of reading appropriate book chapters and documentation information and doing some exer-

cises using the tools.

The Demeter System was developed with the objective of signi�cantly improving the

productiveness of software engineers with minimal training costs. We have tested the ad-

equacy of this selfstudy guide in numerous academic and industrial courses and projects

and found that we can e�ectively teach our method in about �ve weeks with three hours

of lectures per week and hands-on exercises. In the �ve additional weeks, the students do

a project of signi�cant size which would be impossible to complete without the Demeter

System in the available time. We use the same method in both a junior-level undergraduate

and a graduate course, but with more emphasis on the theory in the graduate course.

17.2 EXPANDED SYLLABUS

The syllabus is outlined by the �ve assignments that the students solve. The �rst three

assignments include C++ programming assignments not required by readers who have solid

C++ development experience.

� Writing a simple C++ program without using virtual functions. Design rule checking

a class dictionary graph.

� Writing a simple C++ program with virtual functions. Writing and debugging class

dictionary graphs.

542



17.2. EXPANDED SYLLABUS 543

� Spending a few hours writing a larger C++ program. Writing and debugging class

dictionaries. Implementing the C++ program with propagation patterns.

� Programming with propagation patterns without transportation patterns.

� Programming with propagation patterns with transportation patterns.

The rationale behind this assignment sequence is to give the students the con�dence to

write simple C++ programs. After they have learned high-level concepts such as class dic-

tionaries and propagation patterns using the Demeter Tools/C++, they can then suddenly

write much larger C++ programs (containing thousands of lines of code).

First we teach the basic concepts of object-oriented programming: classes with part-of

and kind-of relationships, methods, inheritance, and delayed binding, and we show how they

are expressed in C++. We teach only a small subset of C++ that is available in similar form

in many other object-oriented languages, such as Smalltalk-80 and CLOS. The introduction

of C++ builds on knowledge of C or Pascal. In Assignment 1, the students complete a

simple C++ program without inheritance and without virtual functions, such as a program

to compute the size of a tree. They write only the class de�nitions and they get the C++

code for constructing an object and the member function implementations.

In Assignment 2, the students complete a more complex C++ program with virtual

functions, such as a simple pocket calculator. Inheritance is used only for late binding of

calls to code but not to express common functionality. In the second part of the assignment,

students write class dictionary graphs for several domains including C++ programs, binary

trees, linked lists, and a domain of their choice (an orchestra, golf course, chess board, etc.).

In Assignments 1 and 2 the students see how tedious it is to describe objects in C++.

We use this experience to motivate class dictionaries. A class dictionary is a class dictionary

graph with concrete syntax added to de�ne an application-speci�c language for describing

objects in declarative form. The language consists of a set of sentences that can be automat-

ically parsed into objects. In connection with class dictionaries we discuss printing, parsing,

and ambiguity of class dictionaries. We now clarify the informal syntax de�nition for class

dictionaries and object graphs by showing them a class dictionary for class dictionaries and

object graphs.

In the book, class dictionaries are introduced late (Chapter 11). However, for the

practical use of the tools it is very useful to read sentences to create objects. Therefore,

Chapter 11 is organized so that it can be read anytime after Chapter 6.

In Assignment 3, the students work on a C++ program with over a dozen classes. They

are given a time limit but are not expected to complete the program in the given time frame.

A good example is to compute the total salary in a conglomerate of companies. In addition,

the students learn to debug class dictionaries by writing sentences in an application-speci�c

language and by checking whether the corresponding objects can be represented by the class

dictionary. The class dictionary graph from Assignment 2 is enhanced to a class dictionary

and the students write sentences for the resulting class dictionary.

Also in Assignment 3 the students implement the C++ program using propagation

patterns and a class dictionary. With those new concepts, the programming task is much

easier.



544 CHAPTER 17. SELFSTUDY/TEACHER'S GUIDE

To debug propagation pattern code, we introduce growth plans. A growth plan consists

of a sequence of larger and larger class dictionary graph slices all anchored at the same class.

A class dictionary graph slice anchored at some class v contains enough classes to build at

least one object of class v.

Equipped with propagation patterns, students solve several small tasks in Assignment

4. Good examples are writing a simple compiler for post�x expressions by generating code

for a stack machine, computing the size of post�x expressions, and computing the size of

a class dictionary graph by using a class dictionary graph that describes class dictionary

graphs.

In Assignment 5, the focus is on the evolution of class structures. The same problem

is solved for three related class structures. Since the solution is done with propagation

patterns, the evolution is much easier to master.

After Assignment 5, students select a project from my list or they create one themselves

that is related to their COOP1 or work experience. While they work on the projects, I give

lectures on a variety of object-oriented design topics that help them do their projects.

� Finding the �rst prototype: simplifying the data (with growth plans) and additionally

simplifying the functionality, if needed.

� Parameterized classes, repetition classes, and optional parts.

� Class dictionary transformations: object-equivalence, optimization of class dictionaries

(common normal form, consolidation of alternatives, tree property), 
attening, weak

extension, extension [LBS91, BL91, Ber91].

� The Law of Demeter for functions (object/class and weak/strong form) [LHR88,

LH89a] and its relationship to propagation patterns.

� The Law of Demeter for classes [LX93a] .

� Propagation pattern transformations: equivalence of propagation directives, adding

*bypassing*, *through*, and *to-stop*.

� Testing of object-oriented programs, minimally adequate test sets.

� Adaptive programs and their evolution and reuse, splitting a project into subprojects,

relationship to growth plans.

� Case studies: program evolution and modeling the design process.

The material has been divided into about eighty instructional objectives (see Chapter

14), each covering a simple learning unit. For example, the legal object objective asks

students to determine whether a given object graph is legal with respect to a class dictionary

graph. Many of the objectives are handled by the Demeter Tools/C++ which support the

Demeter Method on UNIX platforms with C++. Therefore, the tools are also an e�ective

learning aid, besides facilitating the programming process.

1Co-operative education is an education model where students work in industry during their study.

Co-operative eduction was pioneered by Northeastern University.



17.3. ASSIGNMENT 1 545

The course relies on the Demeter Tools/C++ and their documentation. Each tool has a

man page, and the User's Guide and Laboratory Guide contain detailed information about

how to use the tools. Information about how to get the software, documentation, and course

material is in Fig. A.1 (page 589). OO is pointing to the course material directory.

17.3 ASSIGNMENT 1

17.3.1 Background Tasks

� Make sure you have done the account set-up described in the User's Guide or Labo-

ratory Guide.

� Read the preface, Chapter 1, Chapter 3, and Chapter 4 of this book.

� Learn about C++ class de�nition syntax from your C++ book.

17.3.2 Part 1: C++ Program Completion

Turn in the C++ program fragment you wrote, and its output.

This assignment familiarizes you with a subset of C++. You are asked to write class

de�nitions for the following program so that it produces the output given at the end (lines

starting with //). Put your entire program into one �le called tree.C and compile with your

C++ compiler, for example,

CC tree.C

or

gcc tree.C

#include <iostream.h>

// write here the class definitions for DemNumber and Tree

DemNumber::DemNumber() {};

Tree::Tree(DemNumber* node_in, Tree* left_in, Tree* right_in)

{

node = node_in;

left = left_in;

right = right_in;

}

int max(int a, int b){

return (a>b ? a : b);}

int Tree::depth(){

return (max (left ? left->depth() : 0, right ? right->depth() : 0) + 1);

}



546 CHAPTER 17. SELFSTUDY/TEACHER'S GUIDE

int Tree::size(){

return (left ? left->size() : 0) +

(right ? right->size() : 0) + 1;

}

main (){

cout << "\nFirst Tree" << "\n";

DemNumber *n1 = new DemNumber();

Tree *t1 = new Tree(n1, 0, 0);

cout<<"\ndepth of tree 1 =";

cout<<t1->depth();

cout<<"\nsize of tree 1 =";

cout<<t1->size();

cout << "\nSecond Tree" << "\n";

Tree *t2 = new Tree(n1, t1, t1);

cout<<"\ndepth of tree 2 =";

cout<<t2->depth();

cout<<"\nsize of tree 3 =";

cout<<t2->size();

cout << "\nThird Tree" << "\n";

Tree *t3 = new Tree(n1, t2, t1);

cout<<"\ndepth of tree 3 =";

cout<<t3->depth();

cout<<"\nsize of tree 5 =";

cout<<t3->size();

}

// output to be produced

//First Tree

//

//depth of tree 1 =1

//size of tree 1 =1

//Second Tree

//

//depth of tree 2 =2

//size of tree 3 =3

//Third Tree

//

//depth of tree 3 =3

//size of tree 5 =5



17.4. ASSIGNMENT 2 547

17.3.3 Part 2: Laboratory Guide

After you have read the assigned chapters in this book, work through the Laboratory Guide.

Run the Demeter Tools/C++ as instructed in the Laboratory Guide and turn in all �les

that you modi�ed.

17.4 ASSIGNMENT 2

17.4.1 Background Tasks

� Man pages

Read the output of:

man sem-check

� Reading

{ User's Guide

Read about how to check your class dictionary with sem-check.

{ This book

Read Chapter 2 and Chapter 5.

{ C++ book

Read about virtual functions.

17.4.2 Objectives

In this assignment you will learn the following instructional objectives and their prerequisites

(see Chapter 14): Legal class dictionary graph (objective 9, page 431), and legal object graph

(objective 27, page 436).

17.4.3 Part 1: Writing a Pocket Calculator in C++

This part exercises a larger subset of C++ than Assignment 1. Speci�cally, now you use

virtual functions. Write a C++ program to evaluate pre�x expressions. You have to write

only the data structure part and constructor functions. Your program should behave like a

pocket calculator; for example, the object corresponding to

Compound(

<op> Mulsym

<arg1> Compound (

<op> Addsym

<arg1> Numerical (

<numValue> DemNumber "1")

<arg2> Numerical (

<numValue> DemNumber "1"))

<arg2> Numerical (

<numValue> DemNumber "3"))



548 CHAPTER 17. SELFSTUDY/TEACHER'S GUIDE

should evaluate to 6. (A simpler representation would be: (* (+ 1 1) 3).)

In the object notation above, a class name must be followed by ( ... ) or f ... g unless

it is a name of a prede�ned class (DemIdent, DemNumber, DemString, DemReal). Inside the

parentheses ( ... ) is a list of named parts. Each part name is surrounded by angle brackets

< ... >. After the part name is an object graph. Inside the curly braces f ... g is a list of

object graphs.

The pre�x expressions that your program should handle are simple. They are de�ned

by the following class dictionary graph:

Exp : Numerical | Compound.

Numerical = <numValue> DemNumber. // DemNumber has a part val

// containing an int

Compound =

<op> Op <arg1> Exp <arg2> Exp .

Op : Addsym | Subsym | Mulsym.

Addsym = .

Subsym = .

Mulsym = .

You might want to take the following program as a start. It implements most of the

procedural part of your program. All you have to provide is the data structure part and

constructor implementations.

#include <iostream.h>

int DemNumber::eval() {

return val;}

int Numerical::eval() {return numValue->eval();}

int Compound::eval(){ return op->apply_op(arg1->eval(), arg2->eval()); }

int Exp::eval() { return 0; }

int Addsym::apply_op(int n1,int n2) { return n1 + n2; }

int Subsym::apply_op(int n1,int n2) { return(n1 - n2); }

int Mulsym::apply_op(int n1,int n2) { return(n1 * n2); }

int Op::apply_op(int n1,int n2) { return 0; }

In the main program we build an object which then gets evaluated:

main()

{

DemNumber* iNumber1 = new DemNumber(100);

DemNumber* iNumber2 = new DemNumber(22);

DemNumber* iNumber3 = new DemNumber(44);

DemNumber* iNumber4 = new DemNumber(3);

DemNumber* iNumber5 = new DemNumber(33);

Numerical* iNumerical1 = new Numerical(iNumber1);

Numerical* iNumerical2 = new Numerical(iNumber2);

Numerical* iNumerical3 = new Numerical(iNumber3);



17.4. ASSIGNMENT 2 549

Numerical* iNumerical4 = new Numerical(iNumber4);

Numerical* iNumerical5 = new Numerical(iNumber5);

Addsym* add = new Addsym();

Subsym* sub = new Subsym();

Mulsym* mul = new Mulsym();

Compound* c1 = new Compound(add, iNumerical1, iNumerical1);

Compound* c2 = new Compound(add, iNumerical2, iNumerical3);

Compound* c3 = new Compound(sub, c2, iNumerical5);

Compound* c4 = new Compound(mul, iNumerical4, c3);

cout<< "\n\n result_1: " ;

cout<< " = " << c1->eval();

cout<< "\n result_2: " ;

cout<< " = " << c2->eval();

cout<< "\n result_3: " ;

cout<< " = " << c4->eval() << "\n\n" ;

}

Add the appropriate class de�nitions to make your pre�x expression evaluator work. Your

C++ compiler should compile it and when you run it you should get the right results.

17.4.4 Part 2: Checking Your Solution with Demeter

The goal of this part is to give a �ve-line explanation why Demeter could solve the problem

with the available information.

In this part, the Demeter Tools/C++ will solve Part 1 for you. Copy the �les in

directory

$OO/hw/2/expr.cl

to one of your own directories.

The �les are (you should inspect them):

cd.cd

demeter-input

main.C

prog.C

user-calls.h

Now type

demeter >& sc &

which saves the output of the demeter command into �le sc. Get up and stretch while the

computer is creating the C++ classes that you did in Part 1 of this assignment. When it is

done, type

run

The output of the program in Part 1 will be produced. Why could the computer solve your

assignment? Find an explanation, at most �ve lines long. All the information available to

the computer is in the above �les.



550 CHAPTER 17. SELFSTUDY/TEACHER'S GUIDE

17.4.5 Part 3: Learning C++

Turn in a certi�ed class dictionary graph describing a fragment of the structure of the C++

Programming Language (certi�ed means that the class dictionary graph has to pass the

design rule test done by sem-check -n).

Most programs we write in this course will be written or generated in C++. Therefore,

we need to learn the structure of C++ programs from our C++ textbook. For example,

the following class dictionary describes some of the structure of C++ member function

de�nitions:

Type = < name > DemIdent [ < attribute > Type_attribute ] .

Pointer = .

Type_attribute : Reference | Pointer .

Reference = .

Program = < program > FunctionDefinition_List .

FunctionDefinition_List ~

FunctionDefinition_List_elements { FunctionDefinition_List_elements } .

FunctionDefinition_List_elements : FunctionDefinition .

FunctionDefinition =

< returnType > Type < attachedToClass > ClassName

< memberFunction > MemberFunctionName

< formalArguments > FormalArgument_List < statements > Statement_List .

ClassName = < n > DemIdent .

MemberFunctionName = < n > DemIdent .

FormalArgument_List ~

FormalArgument_List_elements { FormalArgument_List_elements } .

FormalArgument_List_elements : FormalArgument .

FormalArgument = .

Statement_List ~ Statement_List_elements { Statement_List_elements } .

Statement_List_elements : Assignment | FunctionMemberCall .

Assignment = < lhs > VariableName < rhs > Numeral .

VariableName = < n > DemIdent .

Numeral = < n > DemNumber .

FunctionMemberCall =

< name > MemberFunctionName < actuals > ActualArgument_List .

ActualArgument_List ~

ActualArgument_List_elements { ActualArgument_List_elements } .

ActualArgument_List_elements : ActualArgument .

ActualArgument = .

Write a class dictionary graph with at least twice as many classes (about forty) that

re
ects more of the structure of the C++ language. Reuse the class de�nitions above and

modify them if you like. Make heavy use of your C++ book.



17.5. ASSIGNMENT 3 551

17.4.6 Part 4: Develop Your Own Class Dictionary Graph

Write your own class dictionary graph for your own favorite domain. Don't choose something

too large. It should require about twenty classes.

Potential systems are: a concert, a city, a home, a kitchen, a spaceship, you name it!

Be creative and imaginative.

For both Parts 3 and 4: after you have developed the class dictionary graphs, draw

them in graphical form.

For the last two parts, turn in your class dictionary graphs in both textual and graphical

form. Also use the sem-check -n command on each class dictionary and turn in a statement

that your solutions passed sem-check -n. The sem-check -n command should not give any

error messages; otherwise adapt your class dictionary graph.

To draw and develop the class dictionary graphs graphically, you are invited to use the

xcddraw

command on a workstation. Alternatively, you can draw them manually.

17.5 ASSIGNMENT 3

Sample exams are in

$OO/exams/

In $OO/exams/practice-exam-handout you �nd instructions on how to prepare your own

exams using the instructional objectives in Chapter 14.

When you have questions about using Demeter commands, check the Demeter frequently

asked question �le (for the URL, see page 589). This �le contains a list of frequently asked

questions together with answers.

The theme of this assignment is to learn to write and debug class dictionaries and to

write a complete C++ program that traverses objects to perform a simple addition task.

17.5.1 Background Tasks

� User's Guide

Read about how to make a class dictionary LL(1).

� Reading

{ Read Chapter 6 (Class Dictionary Graphs and Objects) and Chapter 11 (Class

Dictionaries) in this book.

{ In your C++ book, reread about virtual member functions and abstract classes.

Also read about constructors.

{ Read the class dictionary for class dictionaries in Chapter 18, Section 18.3, page

585. It is also in

$OO/doc/cds/cd-class-dictionaries

It describes the input language for sem-check. Keep the class dictionary handy

for looking up the syntax when you write inputs.

Also read the syntax de�nition for class dictionaries in the User's Guide.



552 CHAPTER 17. SELFSTUDY/TEACHER'S GUIDE

17.5.2 Part 1: Trip Class Dictionary

Turn in your class dictionary checked by sem-check.

Prepare a �le called trip.cd for the class dictionary given in Chapter 4 in Fig. 4.8 on

page 91. It starts with

Trip = "TRIP" "by" <means> Means ...

and then call the command

sem-check -i trip.cd

If you get an error message, correct your input. Repeat until your class dictionary

passes the design rule check done by sem-check.

The -i 
ag will create a �le called notmod/cds/cd-ll1-corrected. If you get an LL(1)

violation from sem-check, that �le will tell you one way to correct it.

Turn in the class dictionary you used with the statement: it passed the design rule test.

17.5.3 Part 2: Inventing and Debugging Class Dictionaries

Turn in class dictionaries and sentences.

1. Write a class dictionary for post�x expressions. Your class dictionary should accept

sentences of the form

(2 3 +)

(2 3 4 *)

((1 1 1 +) (5 5 5 *) 7 +)

2. Write a class dictionary for binary trees. Your class dictionary should accept sentences

of the form

(tree 4

:left

(tree 5

:left

:right)

:right

(tree 8

:left

(tree 9

:left

:right)

:right))

3. Write a class dictionary for the class dictionary graph that you invented in Assignment

2. Add any kind of concrete syntax you like.



17.5. ASSIGNMENT 3 553

Use the commands sem-check, demeter and run to debug your class dictionaries. (See

the quick reference page, Section 18.2, page 578 for a brief description of the Demeter

commands.) sem-check should accept your class dictionaries without any errors or warnings.

For all subparts turn in the class dictionary, the set of sentences you used for debugging

them, and the statement \sem-check accepted my class dictionary without warning or error

and run accepted all the sentences I list."

17.5.4 Part 3: Time Consuming

Turn in your C++ program.

This part may be done in groups of three or four students to learn (by experience)

about the group dynamics of object-oriented software development. Ideally, this should be

the same group of students who will work together on a later project. Single-person groups

are �ne too, unless you want to learn about group dynamics.

In this part of the assignment you write a complete C++ program. The purpose is to

give you the experience of writing a C++ program from scratch.

This part is mainly an exercise in typing and debugging C++ code and learning about

software development in groups. The task the program solves is very simple and it does not

require much more C++ knowledge than what you have acquired in Assignments 1 and 2.

Therefore, spend at most three times as many hours as there are team members on

solving this part and then turn in whatever you have at that point with a description of any

problems you ran into.

The reason for this time limit is that you should not waste your time debugging C++

code that can be generated with 100% precision automatically. In the last part of this

assignment you will solve the task of this part in �fteen minutes, after I have told you

the secret of how to do it. So don't feel intimidated if you cannot completely debug your

program in the given time; it will be very easy for you to do this with an adaptive program.

Write a C++ program that computes the total of the o�cer salaries in a conglomerate

de�ned by the class dictionary starting on page 55 and in graphical form in Fig. 3.1.

Write the class de�nitions for the above class dictionary and write a member function

for class Conglomerate that adds up all the salaries in a Conglomerate-object.

Test your function with the object de�ned by C++ constructor calls in Chapter 3. The

description starts on page 52. If you don't like this C++ code, you may replace it by better,

but equivalent code.

Figure 3.4, page 59 contains another description of the same object in an English-like

notation.

To implement a constructor for DemString, you might want to use:

DemString::DemString( char* val_in )

{

if( val_in )

{

this->val = new char[strlen( val_in ) + 1];

strcpy( this->val,val_in );

}

else



554 CHAPTER 17. SELFSTUDY/TEACHER'S GUIDE

this->val = NULL;

}

This de�nition is also used in the Demeter Tools/C++.

Hint: Write the member functions that you need in phases:

1. Write a member function for each of the following classes

Conglomerate Company

Officer_List Officer_Empty

2. Write a member function for each of the following classes

Officer_NonEmpty Officer

Ordinary_Officer Salary

3. Write a member function for the following class

Shareholding_Officer

4. Write a member function for each of the following classes

Subsidiary_List Subsidiary_Empty

5. Write a member function for each of the following classes

Subsidiary_NonEmpty Subsidiary

17.5.5 Part 4: Redoing the Last Part with Demeter

Copy the �les in directory $OO/hw/3/congl.cl into one of your directories. Inspect them

and call

demeter >& sc &

run

Enjoy a relaxation exercise while the computer does your assignment.

17.6 ASSIGNMENT 4

This assignment invites you to work with simple propagation patterns. This is much more

productive than having you write C++ programs from scratch.



17.6. ASSIGNMENT 4 555

17.6.1 Background Tasks

� Read the following man pages:

man demeter

man generate

man propagate

man headers

man compile

man g_code

man g_displayAsTree

man g_draw

man run

Note: generate, propagate, headers, and compile are commands of the application pro-

grammer interface of the Demeter Tools. Usually those commands are called directly

for you when you use \demeter".

� Read Chapter 7, Chapter 8, and Chapter 9.

Read the quick reference page for the Demeter Tools/C++. The latest version of the

reference page is always in

$OO/doc/Demeter-Tools-C++Quick-Reference

17.6.2 Part 1: Writing a Compiler

Write propagation patterns for a compiler, for a stack machine for the following programming

language.

Example = <exps> Postfix_list.

Postfix : Numerical | Compound.

Numerical = <val> DemNumber.

Compound = "{" <arguments> Arguments <op> Op "}".

Arguments = <arg1> Postfix <arg2> Postfix .

Op : Mulsym | Addsym | Subsym.

Mulsym = "*".

Addsym = "+".

Subsym = "-".

Postfix_list ~ Postfix {Postfix }.

Use the following code for generating the stack machine code. The stack machine has

only four instructions:

ADI for addition

MLI for multiplication

SBI for subtraction



556 CHAPTER 17. SELFSTUDY/TEACHER'S GUIDE

The above three operations take the two topmost elements of the stack as arguments. The

fourth operation, LOC, allows you to load a constant onto the stack. You implement only

the code generator and not an interpreter for the stack machine.

// Implementation of member functions for the compiler.

void Addsym::code_gen() {

cout << " ADI \n";} // adds two top-most elements

// and leaves result on stack

void Mulsym::code_gen() {

cout << " MLI \n";}

void Subsym::code_gen() {

cout << " SBI \n";}

void DemNumber::code_gen() {

cout << " LOC %d\n",val ;} // loads constant on stack

Your compiler should produce the following output for the input

1

{2 3 *}

{3 4 +}

{{3 4 *} {2 3*} +}

generated stack machine code:

1

LOC 1

{2 3 *}

LOC 2

LOC 3

MLI

{3 4 +}

LOC 3

LOC 4

ADI

{{3 4 *} {2 3 *} +}

LOC 3

LOC 4

MLI

LOC 2

LOC 3



17.6. ASSIGNMENT 4 557

MLI

ADI

Turn in your compiler with the output produced for

2 {1 3 *} {1000 {{3 4 +} 6 *} -}

17.6.3 Part 2: Compute the Size of an Expression

Write a propagation pattern to compute the size of an expression. Use the class dictionary

from Part 1. An operator has size 1, in general; however, the - operator has size 10. A

number has size 5.

Your program should produce the following output for the input

1

{2 3 *}

{34 6 -}

Output:

1

size: 5

{2 3 *}

size: 11

{34 6 -}

size: 20

17.6.4 Part 3: Compute the Size of a Class Dictionary

For class dictionaries de�ned by the class dictionary in

$OO/sample-class-libraries/c-nice-small/cd.cd

compute their size, according to the following de�nition:

De�nition 17.1 Size of a class dictionary

We de�ne the size of a class dictionary to be: number of construction edges + number

of alternation edges * 1/4 + number of characters in all the strings (tokens).

Examples:

A = . has size zero

A = <x> DemNumber "end". has size 1 + 3 = 4 (3 is the size of the token)

size

A = <x> B. //1



558 CHAPTER 17. SELFSTUDY/TEACHER'S GUIDE

Y : U | V. //2 * (1/4)

U = <x> X "alternat". //1 + 8

V = <x> X "alternat". //1 + 8

has size 3 + 2 * (1/4) + 2 * 8

Your program should print the total size only.

Hint: For class Syntax vertex use something like:

*wrapper* Syntax_vertex // interface: (float& size)

*prefix*

(@ size = size + strlen(*string); @)

to compute the size of a token. Note that it is not possible to attach code to terminal classes

such as DemString.

Turn in your propagation pattern and the output it produced for two class dictionaries:

1.

$OO/sample-class-libraries/c-nice-small/cd.cd

2. What is the size of the following class dictionary? Turn it in also.

Example = <exps> Prefix_list.

Prefix : Numerical | Compound.

Numerical = <val> DemNumber.

Compound = "{" <arguments> Arguments <op> Op "}".

Arguments = <arg1> Prefix <arg2> Prefix .

Op : Mulsym | Addsym .

Mulsym = "*".

Addsym = "+".

Prefix_list : Empty | NonEmpty.

Empty = .

NonEmpty = <car> Prefix <cdr> Prefix_list.

For each part where you write a C++ program using propagation patterns, turn in the

following:

Your class dictionary, the �les *.pp (i.e., your propagation patterns), the part of main.C

where you call your propagation patterns, the propagation graph �les in directory inter-pps

with �lenames of the form *.trv, generate.bene�t, propagate.bene�t, inputs, and outputs.

17.7 ASSIGNMENT 5

This assignment invites you to work with propagation patterns that contain transportation

patterns.



17.7. ASSIGNMENT 5 559

17.7.1 Background Tasks

� Read the following man pages:

man Universal

man Repetition

man Terminal

� Read Chapter 10 (Transportation Patterns).

17.7.2 Part 1: Write Your Own Propagation Pattern

For the class dictionary that you developed in Assignments 2 and 3, write a simple propa-

gation pattern that uses a transportation directive. Test your program using the tools.

17.7.3 Part 2: Evolution of a Programming Tool

This part is about evolving a speci�c functionality through three di�erent class structures.

This assignment shows what happens during the maintenance phase of adaptive software.

The functionality is described below. The program has two inputs: a class dictionary

and a class name. For the given class name print the list of all class de�nitions where the

class is used on the right-hand side. Print each class de�nition at most once.

For example, let's assume that we have a class dictionary for class dictionaries in �le

cd.cd (for example, the class dictionary in Section 18.3.1, page 585) and the following class

dictionary in �le demeter-input:

Example = <exps> Expressions.

Expressions ~ { Expression }.

Expression : Variable | Numerical | Compound.

Variable = <name> DemIdent.

Numerical = <value> DemNumber.

Compound = "("

<op> Operator

<argument1> Expression

<argument2> Expression ")".

Operator : MulSym | AddSym | SubSym.

MulSym = "*".

AddSym = "+".

SubSym = "-".

The program produces the following output: \Class Expression is used in the following

class de�nitions:"

Expressions ~ { Expression }.

Compound = "("

<op> Operator

<argument1> Expression

<argument2> Expression ")".



560 CHAPTER 17. SELFSTUDY/TEACHER'S GUIDE

(Note that class Compound is printed only once.)

Write a program for three of the four following meta class dictionaries: DH-small, DH-

nice, DH-full, DH-ancient de�ned below. (The word meta is used to distinguish between

class dictionaries used as inputs and those used to de�ne class dictionaries and to produce a

C++ program. The meta class dictionaries are used in this assignment to produce a C++

program.) Eliminate the one for which it is hardest to write the program. Is it the largest

one?

This means that you develop three applications with �le cd.cd containing one of the

four meta class dictionaries. You are allowed to add more parts to the classes de�ned by the

meta class dictionaries. You may also add more classes. But the meta class dictionary you

use in an application must accept the class dictionaries accepted by one of the three meta

class dictionaries you select. In other words, you can only extend the meta class dictionaries

but you cannot delete from them or change them radically.

This means that you write three closely related propagation patterns for the three

applications. As inputs in �le demeter-input you may choose any class dictionary that

allows you to test your propagation pattern. For some of the four meta class dictionaries

you can use the meta class dictionary itself in �le demeter-input! Please note that the input

format required by DH-small is unusual.

Why is it hard to programwith one of the class dictionaries below? Give a one-paragraph

description.

Your program should be called by

run demeter-input CLASSNAME

demeter-input contains the �rst input, namely a class dictionary. CLASSNAME contains the

second input, namely a class name.

In main.C we suggest you call the propagation pattern with:

iCd_graph->print_references_to(argv[argc - 1]);

or

DemIdent* name=new DemIdent(argv[argc - 1]);

iCd_graph->print_references_to(name);

The �le main.C (which is usually copied from main.C.sample) provides the connection

between the Demeter generated code and the propagation patterns. It is common to process

command line arguments in main.C as shown above.

The four meta class dictionaries are:

� DH-small

CdGraph = <adjs> List(Adjacency).

Adjacency =

<source> Vertex

<ns> Neighbors.

Neighbors : C | A *common* <constructNs> List(Vertex).



17.7. ASSIGNMENT 5 561

A = ":" <alternatNs> List(Vertex).

C = "=".

Vertex = <v> DemIdent.

List(S) ~ "(" {S} ")".

� DH-nice

Cd_graph = <first> Adj <rest> Adj_list.

Adj = <vertex> Vertex <ns> Neighbors ".".

Neighbors: Construct | Alternat.

Construct = "=" <c_ns> Any_vertex_list.

Alternat = ":" <first> Vertex "|" <second> Vertex.

Any_vertex : Labeled_vertex | Syntax_vertex.

Syntax_vertex = <string> DemString.

Labeled_vertex = "<" <label_name> DemIdent ">"

<class_name> Vertex.

Adj_list: Empty_cd_graph | Cd_graph.

Any_vertex_list: Empty | Nany_vertex_list.

Nany_vertex_list =

<first> Any_vertex <rest> Any_vertex_list.

Empty = .

Empty_cd_graph = .

Vertex = <name> DemIdent.

� DH-full

Cd_graph = < adjacencies > Nlist(Adjacency).

Adjacency =

< source > Vertex

["(" < parameters> Comma_list(Vertex) ")"]

< ns > Neighbors "." .

Neighbors :

Neighbors_wc |

Repetit_n

*common*.

Neighbors_wc :

Construct_ns |

Alternat_ns

*common* < construct_ns > List(Any_vertex).

Construct_ns = "=".

Alternat_ns = ":"

< alternat_ns > Bar_list(Term) [<common> Common].

Common = "*common*".

Repetit_n = "~" <sandwiched> Sandwich(Kernel).

Kernel = [ <nonempty> Term ]



562 CHAPTER 17. SELFSTUDY/TEACHER'S GUIDE

"{" <repeated> Sandwich(Term) "}".

Any_vertex :

Opt_labeled_term

| Optional_term

| Syntax_vertex.

Vertex = < vertex_name > DemIdent.

Syntax_vertex :

Regular_syntax

| Print_command.

Print_command :

Print_indent | Print_unindent | Print_skip | Print_space *common*.

Print_indent = "+" .

Print_unindent = "-" .

Print_skip = "*l" .

Print_space = "*s" .

Regular_syntax = < string > DemString .

Opt_labeled_term :

Labeled

| Regular

*common* <vertex> Term.

Regular = .

Labeled = "<" < label_name > DemIdent ">" .

Term :

Normal

*common* <vertex> Vertex

["@" <module_name> Module_name]

["(" <actual_parameters> Comma_list(Term) ")" ].

Module_name = <module_name> DemIdent.

Normal = .

Optional_term = "[" <opt> Sandwich(Opt_labeled_term) "]".

// parameterized classes

List(S) ~ {S}.

Nlist(S) ~ S {S}.

Bar_list(S) ~ S {"|" S}.

Comma_list(S) ~ S {"," S}.

Sandwich(S) =

<first> List(Syntax_vertex) <inner> S

<second> List(Syntax_vertex).

� DH-ancient

Start = Grammar.

Grammar ~ {Rule}.

Rule = <ruleName> DemIdent Body ".".

Body : Construct | Alternat | Repetit.



17.8. LEARNING C++ WITH DEMETER 563

Construct = "=" List(AnySymbol).

Alternat = ":" BarList(DemIdent).

SandwichedSymbol = <first> AuxList Symbol <second> AuxList.

Repetit = "~" <first> AuxList [ <nonempty> DemIdent ]

"{" SandwichedSymbol "}" <second> AuxList.

AnySymbol : Symbol | OptSymbol | Aux.

Symbol = [ "<" <labelName> DemIdent ">" ] <symbolName> DemIdent.

OptSymbol = "[" SandwichedSymbol "]".

Aux : Syntax.

Syntax = DemString.

AuxList ~ { Aux }.

List(S) ~ {S}.

BarList(S) ~ S { "|" S}.

For each part where you write a C++ program using propagation patterns, turn in:

your class dictionary, the �les *.pp (i.e., your propagation patterns), the part of main.C

where you call your propagation patterns, the propagation graph �les in inter-pps (they

are of the form *.trv), the transportation graph �les inter-pps (they are of the form *.trn),

generate.bene�t, propagate.bene�t, inputs, and outputs.

In this assignment you have written three C++ programs c1, c2, and c3 (those are the

*-DEM.C �les produced by the propagation pattern compiler) and three propagation pattern

programs p1, p2, and p3 (those are your *.pp �les).

Use a di�erential �le comparator (such as di�; use man di�) to compare p1, p2 and p1,

p3 and p2, p3. Do the same for the C++ programs as follows: c1, c2 and c1, c3 and c2, c3.

Where are the di�erences bigger? Between the C++ programs or the propagation patterns?

Write one paragraph of explanation and turn it in.

17.8 LEARNING C++ WITH DEMETER

The Demeter Tools/C++ can be used in a variety of di�erent ways to learn about object-

oriented design and C++.

17.8.1 Class Library Generator

This was the primary application of Demeter a few years ago. The idea is to create a class

dictionary and to generate the C++ class de�nitions with Demeter. The functionality is

implemented by manually writing the C++ member functions.

For beginning C++ programmers, the instructor can create the class dictionaries and

generate an environment and create input sentences for testing. The students can �rst focus

on the class dictionary notation and C++ statements appearing in member functions. The

instructor initially should use only the basic features of class dictionaries.

17.8.2 Member Function Skeleton Generator

The next level of use of Demeter is not only to generate the class de�nitions in C++ but

also to produce member function skeletons. The skeletons are produced by the instructor by



564 CHAPTER 17. SELFSTUDY/TEACHER'S GUIDE

writing propagation patterns without wrappers. It is the task of the C++ programmers to

edit the C++ member functions manually to make them do the right tasks. This approach

has the advantage that students learn to think in terms of traversal programs early. They

also can complete interesting projects in a reasonable amount of time. The instructor has to

remove the *.pp �les after the generation of the skeletons. Then the regular make command

(or demeter command) can be used to compile the environments with the C++ member

functions completed by the student.

17.8.3 Simulating the Demeter Library

This is about reinventing the Demeter run-time library. The instructor produces a class

dictionary using only construction and alternation classes. Objects are created by using

the function g code(). The member functions are very simple and don't call any generic

functions starting with g . The students are given all the �les in /notmod/sun4 (or whatever

the architecture is) and are asked to implement enough of the generic library to make the

programs run. Compilation is done with make.



Chapter 18

Glossary

18.1 DEFINITIONS

1. Law of Demeter

A style rule for object-oriented design and programming that suggests that a method

should make only minimal assumptions about other classes. The rule essentially re-

quires that a method attached to class A should use only the interface of the immediate

part classes of A (both computed and stored), and of argument classes of the method,

including A. Limits the set of clients of a class, in other words; \a method should not

talk to strangers."

2. LL(1) conditions (single inheritance class dictionary)

A class dictionary that satis�es the LL(1) conditions is an example of a class dictionary

that is not ambiguous. Essentially, a class dictionary is LL(1) if all sentences are

uniquely readable in the sense that the �rst sets of the alternatives of all alternation

classes are pair-wise disjoint and there is no ambiguity with respect to alternatives

whose �rst set is empty.

3. Transportation Entry Restriction

A restriction about how a transportation pattern may be customized. No vertices of a

transportation graph, except its source vertices, can have incoming nontransportation

edges.

4. Transportation Recursion Restriction

A restriction about how a transportation pattern may be customized: A source vertex

of the transportation graph cannot have incoming transportation edges.

5. abstract class

A class that cannot be used directly for object creation. Concrete subclasses of the

abstract class are used for object creation. An object may belong to an abstract class,

although it can never be an instance of that class.

565



566 CHAPTER 18. GLOSSARY

6. adaptive program

A program written in terms of loosely coupled contexts; for example, structure and

behavior. The coupling is done through succinct subgraph speci�cations.

7. adaptive programming principle

A program should be designed so that the interfaces of objects can be changed within

certain constraints without a�ecting the program at all.

8. at-least-one alternative rule

A rule for class dictionary graphs. Every alternation vertex in a class dictionary graph

must have at least one outgoing alternation edge.

9. alternation edge

An edge between an alternation vertex and a construction or alternation vertex. De-

scribes an is-a relationship. Graphical representation is by a double-shafted arrow.

Textual representation separates alternatives by "|".

10. alternation vertex

A vertex in a class dictionary. De�nes an abstract class that cannot be used to create

objects. Graphical representation is by a hexagon. Textual representation includes ":"

after class name. Outgoing alternation edges are given �rst, seperated by *common*

from the outgoing construction edges.

11. alternation-reachable

A vertex A is alternation-reachable from a vertex B, if A can be reached from B by

following alternation edges only.

12. ambiguous class dictionary

A class dictionary is ambiguous if there exist two distinct objects that map to the

same sentence when they are printed.

13. associated

The vertices (classes) associated with a vertex (class) v are the construction classes

reachable from v by following only alternation edges.

14. attribute

A part of an object is called an attribute if the type of the part is a terminal class

such as DemIdent, DemNumber.

15. bypassing clause

A constraint in a propagation directive that forces a set of edges to be bypassed.

16. class-valued variable

A variable in an adaptive program that will be mapped to a class when the adaptive

program is customized.



18.1. DEFINITIONS 567

17. class dictionary

A graph with four kinds of vertices and �ve kinds of edges. The four vertex kinds

are: construction, alternation, repetition, and syntax. The �ve kinds of edges are:

construction, alternation, repetition, inheritance, and syntax.

There are three kinds of class dictionaries: semi-class dictionary graphs, class dictio-

nary graphs, and class dictionaries.

The set of all semi-class dictionary graphs includes the set of all class dictionary graphs.

The set of all class dictionaries includes all class dictionary graphs.

The semi-class dictionary graphs and class dictionary graphs don't have syntax edges

and vertices.

A selector to select a program de�ned by propagation patterns. A collection of class

de�nitions and simultaneously a language de�nition.

A class dictionary has both a graphical and textual representation.

18. class dictionary graph

A class dictionary without syntax information. A class dictionary graph consists of

three kinds of classes: construction, alternation, and repetition, and four kinds of

edges: construction, alternation, repetition, and inheritance.

A group of collaborating classes and their basic relations. Serves as customizer for

propagation patterns and as a speci�cation of an application-speci�c set of classes.

Satis�es unique label rule and cycle-free alternation rule. Every alternation vertex

must have at least one outgoing alternation edge. Satis�es edge/vertex restrictions.

19. class dictionary graph slice

A subgraph of a class dictionary that de�nes a subset of the objects.

20. client of a class

A class or method that invokes an operation of the class.

21. common parts

An alternation class has common parts if and only if it has outgoing construction

edges. The common parts are common to all alternatives.

22. compatible

This term is overloaded.

A propagation directive d = (F; c; T ) is compatible with a semi-class dictionary graph

S if the following conditions hold:

� All images of source, target, and via class-valued variables are in S.

� c is compatible with S; that is, the edge pattern of each bypassing or through

clause of c matches some edge in S.



568 CHAPTER 18. GLOSSARY

� For all images v of F in S and all images w of T in S there exists at least one

knowledge path in S satisfying c.

A propagation directive expression d is compatible with a semi-class dictionary graph

S, if each propagation directive appearing in d is compatible with d and propagate(d1; S)

is not the empty subgraph for any of the subdirectives d1 of d.

A propagation pattern p is compatible with a semi-class dictionary graph S, if each

propagation directive expression of p is compatible with S, if all edge patterns ap-

pearing in edge wrappers are compatible with S, and if the images of all class-valued

variables and relation-valued variables appearing in p are in S.

23. component

A component encapsulates a group of collaborating propagation patterns. It contains

sample class dictionary graphs that serve as typical customizers. It contains \meta"

variable declarations for class-valued, relation-valued, and graph-valued variables. The

graph-valued variables are de�ned by propagation directives.

24. concrete class

A class that may be used by the user to create objects. It may be either a construction,

repetition, or terminal class.

25. constraint

A propagation directive contains a constraint that constrains the paths from the source

to the target vertices.

26. construction edge

An edge between a construction or alternation vertex and another vertex. Describes a

has-a, knows-about, or part-of relationship. Has a label that names the part. Textual

representation encloses the label between "<" and ">".

27. construction vertex

A vertex in a class dictionary. De�nes a concrete class that can have instances but

cannot have subclasses. Has named parts and is used to construct objects in terms of

a �xed number of part objects. Graphical representation is by a rectangle. Textual

representation includes "=" after class name.

28. contributing vertex

An alternation vertex is contributing if it has at least one outgoing construction or

inheritance edge. (Contributing means contributing at least one part, directly or

indirectly.)

29. customizer

A class dictionary (or a set of equivalent objects).



18.1. DEFINITIONS 569

30. cycle-free alternation rule

No cyclic alternation paths containing one or more edges are allowed in class dictionary

graphs.

An alternation path is a consecutive sequence of alternation edges. A path is cyclic if

it starts at some vertex and returns to the same vertex.

31. delayed binding rule (single inheritance class dictionary)

A restriction on the class dictionaries that may be used to customize a propagation

pattern. Needed to guarantee proper traversal semantics.

A rule for customizing class dictionaries and the corresponding propagation graphs.

If a propagation graph contains an alternation vertex A and a vertex B, and B is

alternation-reachable from A in the class dictionary and A is used in the propagation

graph, then B has to be alternation-reachable from A in the propagation graph also.

A vertex is used in the propagation graph if it is a source vertex of the propagation

graph or has at least one incoming construction or alternation edge in the propagation

graph.

For 
at class dictionaries, the rule is simpler and called subclass-invariance: Any two

vertices in the propagation graph have an alternation path between them if they have

one in the class dictionary.

32. dependency metric

A function with two arguments that measures how dependent a propagation directive

is on a semi-class dictionary graph.

33. design pattern

A solution to a problem in a context.

34. edge pattern

A speci�cation of a set of edges using the wild card symbol *. For example, -> A,*,B

is an edge pattern that de�nes the set of construction edges from A to B with any

label.

35. edge/vertex restrictions

Restrictions that limit the possible edges in a class dictionary, class dictionary graph

or semi-class dictionary graph. For example, an alternation edge may not start from

a construction vertex.

36. edge wrapper

A wrapper de�ned for a construction, repetition, or inheritance edge. Consists of a

pre�x or su�x wrapper or both. Called in the source class of the edge.

37. �rst set

The �rst set of a vertex of a class dictionary is the set of all tokens that may be the

�rst token in a sentence belonging to the language of the vertex.



570 CHAPTER 18. GLOSSARY

38. 
at class dictionary

A class dictionary without common parts. All parts have been 
attened to construc-

tion classes.

39. follow set

The follow set of a vertex V of a class dictionary with respect to a start vertex S is

the set of all tokens that may follow a sentence of the language of V embedded in a

sentence of S.

40. framework

A class library that will be adapted to speci�c needs. The framework may be in-

complete. The documentation of the framework explains how the framework may be

completed. For a discussion of frameworks and patterns, see [GHJV95].

41. from clause

A constraint in a propagation directive that speci�es a set of vertices from which the

knowledge paths start.

42. graph

A structure with vertices and edges.

43. incremental inheritance

The code in the superclass is called in addition to the code in the subclass.

44. incremental inheritance rule

A restriction on the class dictionaries that may be used to customize a propagation

pattern. Needed to guarantee proper traversal semantics.

A rule for propagation graphs. If a propagation graph contains an alternation vertex

A with an outgoing alternation edge from A to B, and if the alternation vertex A has

outgoing construction or inheritance edges, then the propagation graph also contains

the inheritance edge from B to A.

45. inductive

A semi-class dictionary graph or class dictionary is inductive if every vertex in the

graph is inductive. A vertex is inductive if a cycle-free class dictionary slice is anchored

at the vertex.

46. information loss (inconsistency)

A propagation directive has information loss with respect to a class dictionary graph

if the propagation graph contains a completed knowledge path that does not satisfy

the propagation directive. A path from a source to a target is completed if every used

alternation vertex on the path has an outgoing alternation edge. A path is completed

by adding alternation and inheritance edges.

For a simpler de�nition for 
at class dictionary graphs, see Chapter 15.



18.1. DEFINITIONS 571

47. inheritance edge

An edge from a construction or alternation vertex to an alternation vertex. Describes

from where a class inherits.

48. instance

An object is an instance of a class v if it has been created by a constructor of the class.

v must be an instantiable class; that is, a construction, repetition, or terminal class.

An instance of a class satis�es all the conditions imposed by the class dictionary for

that class.

49. interface

A listing of the operations that an object or class provides. This includes the signatures

of the operations.

50. join

An operation de�ned for propagation graphs and propagation directives. Joins two

propagation graphs together provided the targets of the �rst are equal to the sources

of the second.

51. knowledge path

A path in a class dictionary graph that satis�es the restriction that a sequence of inher-

itance edges is eventually followed by a construction edge and never by an alternation

edge.

52. language

The language of a class dictionary is the set of printed objects de�ned by the class

dictionary.

53. match

An edge pattern matches an edge in a semi-class dictionary graph if there is a mapping

of the class-valued variables and relation-valued variables, and wildcard symbols to

vertices and construction edge names in the semi-class dictionary graph, so that the

pattern and the edge coincide.

54. merge

An operation de�ned for propagation graphs and propagation directives. Merges two

propagation graphs together provided certain conditions apply.

55. method

An implementation of an operation. Code that may be executed to perform a requested

service.

56. method resolution

The selection of the method to perform a requested operation.



572 CHAPTER 18. GLOSSARY

57. multiple inheritance

A class dictionary has multiple inheritance if there exists a vertex that has two outgoing

inheritance edges.

58. object

An object with respect to a class dictionary is an object that has exactly the parts

described by the class dictionary. The parts contain only objects allowed by the class

dictionary. An object of a vertex (class) V is an instance of a vertex (class) associated

with v. An instance of a vertex (class) v is an object created with a constructor of v.

This requires that v is an instantiable class.

A combination of state and a set of methods that explicitly embodies an abstraction

characterized by the behavior of relevant requests.

59. object creation

An event that causes the existence of an object that is distinct from any other objects.

60. object destruction

An event that causes an object to cease to exist.

61. object-equivalent

Two class dictionaries are object-equivalent if they de�ne the same set of objects.

62. object reference

A value that unambigously identi�es an object. Object references are never reused to

identify another object.

63. operation

A service that can be requested. An operation has an associated signature, which may

restrict which actual parameters are valid.

64. operation name

A name used in a request to identify an operation.

65. optional construction edge

An edge that describes an optional part. Graphically represented by a dashed edge.

Textual representation uses [ and ].

66. optional repetition edge

An edge that indicates that a list may contain zero or more parts. Graphically repre-

sented by a dashed edge. Textual representation uses R ~ {S}.

67. overriding inheritance

The code in the subclass overrides the code in the superclass.



18.1. DEFINITIONS 573

68. parameter passing mode

Describes the direction of information 
ow for an operation parameter. The parameter

passing modes are in, out, and inout.

69. parameterized class

A parameterized class with one argument is de�ned by a class de�nition of the form

A(S) = ...

A(S) ~ ...

A(S) : ...

S is a formal parameter that is substituted by a class when the parameterized class is

used. For example,

B = <a> A(DemIdent) <b> A(DemReal).

is a class that uses the parameterized class A twice. Class B will be expanded into

B = <a> DemIdent_A <b> DemReal_A.

(Several parameters may be used.)

70. parsing a sentence

Scanning followed by syntax analysis and object creation. The parser consumes the

sequence of tokens delivered by the scanner, checks for syntactic correctness with

respect to the class dictionary, and builds the object recursively.

71. part

A relationship between two classes. Implies a relationship between objects of those

classes.

A named part a is made visible to clients as a pair of operations: get a and set a. Read-

only parts generate a get operation only. Named parts are represented by construction

edges. Indexed parts are represented by repetition edges.

72. persistent object

An object that can survive the process or thread that created it. A persistent object

exists until it is explicitly deleted.

73. printing an object

Retrieve the class de�nition of the object's class and recursively print the object with

the tokens prescribed by the class dictionary.

74. pre�x wrapper

A code fragment belonging to a wrapper. Added at the beginning of the method for

a vertex wrapper and after the edge traversal for an edge wrapper.



574 CHAPTER 18. GLOSSARY

75. propagate

An operator that takes a propagation directive and a semi-class dictionary graph

and produces a propagation graph. The propagation graph itself is also a semi-class

dictionary graph.

76. propagation directive (= directive)

A succinct speci�cation of a subgraph of a class dictionary using from, to, via, by-

passing, and through clauses. The subgraph is used for purposes such as traversal or

transportation.

77. propagation directive expression (= directive expression)

An expression built from propagation directives of the form (F; c; T ) and the operators

merge; join, and restrict.

78. propagation graph

A semi-class dictionary graph. The result of applying a propagation directive to a

class dictionary. A propagation graph has a speci�c use as a traversal graph or as a

transportation graph.

79. propagation vertex

A propagation vertex of a propagation graph is either a construction vertex or a target

vertex in the propagation graph. A target vertex may be an alternation vertex.

80. propagation object

A propagation object of a propagation graph is an object of a propagation vertex of

the propagation graph.

81. propagation pattern

Speci�es methods for a class dictionary. All the methods have the same name. Writ-

ten in terms of class-valued and relation-valued variables. Consists of a propagation

directive that speci�es a traversal graph, wrappers, and transportation patterns. A

propagation pattern is customized to an object-oriented program by a class dictionary.

82. referential integrity

The property ensuring that an object reference that exists in the state associated with

an object reliably identi�es a single object.

83. relation-valued variable

A variable in an adaptive program that will be mapped to a construction edge label

when the adaptive program is customized.

84. repetition edge

An edge between a repetition vertex and another vertex. Describes a has-a, knows-

about, or part-of relationship. Textual representation encloses target vertex between

"{" and "}".



18.1. DEFINITIONS 575

85. repetition vertex

A vertex in a class dictionary. De�nes a collection class, such as a list. A list is the

only possibility in the current implementation. De�nes a concrete class which can have

instances but cannot have subclasses. Has indexed parts. Graphical representation

is by an overlayed hexagon and rectangle. Textual representation includes "~" after

class name.

86. request

A function call in C++. Calls an operation that will use method resolution to �nd

the appropriate method.

87. restrict

An operator that takes two propagation directives and returns a new propagation

directive which is the restriction of the �rst by the second.

A client issues a request to cause a service to be performed. A request consists of an

operation and zero or more actual parameters.

88. satisfy

This term is used in several contexts, for example:

� knowledge paths

{ A knowledge path p of a semi-class dictionary graph S satis�es a bypassing

clause e if p does not contain any edge in S that matches e.

{ A knowledge path p of a semi-class dictionary graph S satis�es a through

clause e if p contains at least one edge in S that matches e.

{ A knowledge path p of a semi-class dictionary graph S satis�es a constraint

c if p satis�es all bypassing and through clauses in c.

� class dictionary graphs

A class dictionary graph satis�es the edge/vertex restrictions and the unique

label, cycle-free alternation, and at-least-one alternative rules.

89. scanning a sentence

Translating a sequence of characters into a sequence of terminals de�ned by a class

dictionary. The terminals correspond to the syntax vertices (tokens) and the terminals

de�ned by terminal vertices in the class dictionary.

90. semi-class dictionary graph

A class dictionary graph where inheritance edges and alternation edges may be used

independently. An alternation vertex may have zero outgoing alternation edges.

91. sentence

A sequence of terminals. A sentence is a robust object description that can be used

with many di�erent class dictionaries. A parser translates a sentence into an object.



576 CHAPTER 18. GLOSSARY

92. shortcut violation

A customizer causes a shortcut violation if the propagation graph contains more paths

than allowed by the propagation directive. The propagation directive must contain the

join, via, or through operator. The shortcut violation is a special kind of inconsistency.

93. signature

De�nes the parameters of a given operation including their number order, data types,

and passing mode, and the results if any.

94. signature extension

An implementation technique for transportation patterns.

95. single inheritance

A class dictionary is single inheritance if every vertex has at most one outgoing inher-

itance edge.

96. source vertex

A propagation graph has a set of source vertices. A propagation directive has a set of

source vertices.

97. state

The time varying properties of an object that a�ect that object's behavior.

98. su�x wrapper

A code fragment belonging to a wrapper. Added at the end of the method for a vertex

wrapper and after the edge traversal for an edge wrapper.

99. synchronous request

A request where the client pauses to wait for completion of the request.

100. syntax edge

An edge from a construction, alternation, or repetition vertex to a syntax vertex.

Indicates the position of the syntax vertex (token).

101. syntax vertex

A vertex representing a token.

102. target vertex

A propagation graph has a set of target vertices. A propagation directive has an

optional set of target vertices.

103. terminal

A sequence of characters that form a symbol belonging to the alphabet of a language.

We distingiush between terminals with a value and terminals without a value. Termi-

nals with a value represent objects of terminal classes. Terminals without a value are

called tokens.



18.1. DEFINITIONS 577

104. terminal vertex

A vertex describing a set of similar terminals. Examples are: DemIdent (for identi-

�ers), DemNumber (for integers), DemText (for text), DemString (for strings), Dem-

Real (for real numbers).

105. through clause

A constraint in a propagation directive that forces at least one of a set of edges to be

included.

106. to clause

A constraint in a propagation directive that forces knowledge paths to go to a set of

vertices.

107. to-stop clause

A constraint in a propagation directive that forces knowledge paths to go to a set of

vertices without leaving them again.

108. token

A sequence of characters viewed as a \unit," such as repeat or *from*. Overloaded:

in a sentence, a token is a terminal without a value and in a class dictionary, a token

is a string denoting concrete syntax.

109. transportation graph

A propagation graph used for transportation.

110. transportation patterns

Speci�es which objects are transported along which graphs. Consists of parameter

declarations, a propagation directive that speci�es a transportation graph, updating

statements for initializing and updating parameters and wrappers that use the param-

eters and add to the traversal code.

111. traversal graph

A propagation graph used for traversal.

112. unique label rule

For all vertices V, the labels of construction edges reachable from V by following zero

or more alternation edges in reverse, must be unique.

This means that the labels of the parts of a vertex, both immediate as well as inherited

parts, must be unique.

113. use case

Represents interactions between a user and an object system. Used for de�ning user

requirements.



578 CHAPTER 18. GLOSSARY

114. used vertex

A vertex on a knowledge path from a source to a target vertex is used if it has incoming

construction or alternation edges or if it is a source vertex.

115. value

Any entity that may be a possible actual parameter in a request. Values that serve to

identify objects are called object references.

116. vertex

A node in a graph.

117. vertex wrapper

A wrapper de�ned for a construction, repetition, or alternation class.

118. via clause

A constraint in a propagation directive that forces a set of vertices to be included.

119. wrapper

Consists of a pre�x and/or su�x wrapper. A pre�x or su�x wrapper is a code frag-

ment. Adds to the traversal code de�ned by a propagation directive. The wrappers

add code by wrapping a pre�x and/or a su�x code fragment around the traversal

code. There are two kinds of wrappers: edge wrappers and vertex wrappers.

120. zigzag violation

A customizer causes a zigzag violation if the propagation graph contains more paths

than allowed by the propagation directive. The propagation directive must contain

the merge operator. The zigzag violation is a special kind of inconsistency.

18.2 QUICK REFERENCEGUIDEWITH SYNTAX SUMMARY

In Fig. A.1, page 589, you �nd the URLs for the User's Guide and Laboratory Guide and

the Demeter FAQ. We give a Quick Reference Guide to the Demeter Tools/C++ next.

***************************************

DEMETER TOOLS/C++ Quick Reference Guide

***************************************

In file $OO/doc/Demeter-Tools-C++Quick-Reference

(version 3, Winter 1995)

A tool suite for adaptive object-oriented

application development in C++.

*** CONCEPTS

class dictionary



18.2. QUICK REFERENCE GUIDE WITH SYNTAX SUMMARY 579

Describes the inheritance and the

binary relation structure of your application. Serves as a lattice

to propagate the functionality. (should reside in file cd.cd)

propagation pattern

Describes how the functionality is distributed over the classes.

(should always reside in files with names of the form *.pp)

*** GETTING HELP

man demeter

man TOOL-NAME

As a last resort (after checking User's Guide and FAQ), send e-mail to

demeter@ccs.neu.edu

*** SIMPLEST TOOL USE

Put your class dictionary into file

cd.cd

Put your propagation patterns into files of the form

*.pp

Put your input objects into file

demeter-input

Then call the commands

demeter

cp main.C.sample main.C

Edit main.C near end where you call your propagation patterns.

Then call again

demeter

You execute your program with

run

Whenever you change something, you call again

demeter



580 CHAPTER 18. GLOSSARY

*** DESIGN TOOLS

sem-check -n cd.cd

Checks the class dictionary graph cd.cd.

sem-check cd.cd

Checks the class dictionary cd.cd, including the LL(1) conditions.

xcddraw

To develop class dictionaries graphically.

cd-numbered-xref

To produce a class dictionary cross reference listing.

*** PROGRAMMING TOOLS

demeter

Makes Demeter act like a compiler. Put class dictionary in cd.cd,

the main program in main.C and the propagation patterns in *.pp

files and call demeter.

The run command allows you to run your program.

gen-imake (imake-sample is a synonym)

Creates a sample Imakefile with default settings.

gen-make (dmkmf is a synonym)

Creates a corresponding Makefile with the Demeter "knowledge".

make

The Demeter super command with one goal: to create a compiled

class library.

run ...

To run the application.

*** TYPICAL TOOL USE

EDIT cd.cd

sem-check cd.cd

gen-imake

gen-make



18.2. QUICK REFERENCE GUIDE WITH SYNTAX SUMMARY 581

make

run - empty class library works

cp main.C.sample main.C

EDIT demeter-input

make

run demeter-input - class library self-test works!!

EDIT demeter-input

EDIT *.pp - add functionality

EDIT main.C - call functionality

make - spread the functions and compile

run demeter-input - do you get the right output?

make clobber - when software is not maintained

for an extended period.

*** REGENERATION

make

*** SAMPLE CLASS LIBRARIES

See directory $OO/sample-class-libraries.

Class libraries are in subdirectories c-*/generated

*** DEMO

See directory $OO/demo

File how-to-use tells you how to run the demo.

*** SYNTAX (in simplified form, reflecting typical use)

// is the comment character

Propagation directives

----------------------------------------------------------------

// exactly one *from*

*from* {A1, A2, ...}

// zero or one *through*

*through* // one or more edge patterns, separated by ","

-> V,m,W , // construction edge with label m

=> V,W , // alternation edge



582 CHAPTER 18. GLOSSARY

:> V,W , // inheritance edge

~> V,W // repetition edge

// zero or one *bypassing*

*bypassing* // one or more edge patterns, separated by ","

-> V,m,W , // construction edge with label m

=> V,W , // alternation edge

:> V,W , // inheritance edge

~> V,W // repetition edge

// zero or more *via*

*via* {K1, K2, ...}

... // zero or one *through* and/or zero or one *bypassing*

*via* {S1, S2, ...}

... // zero or one *through* and/or zero or one *bypassing*

//zero or one *to*

*to* {Z1, Z2, ...}

Instead of V, W, or m the wildcard symbol "*" may be used.

// *merge* and *join*

*join* (

*merge* (

*from* A *via* B *to* E, // any *from* ... *to*

*from* A *via* C *to* E), // any *from* ... *to*

*from* E *to* K) // any *from* ... *to*

Wrappers

----------------------------------------------------------------

Edge

*wrapper*

// edge pattern

-> *,m,*

// zero or one

*prefix* (@ ... @)

// zero or one

*suffix* (@ ... @)

Vertex

*wrapper*

// class-valued variables, one or more

{A,B,C}



18.2. QUICK REFERENCE GUIDE WITH SYNTAX SUMMARY 583

// zero or one

*prefix* (@ ... @)

// zero or one

*suffix* (@ ... @)

Transportation pattern

----------------------------------------------------------------

*carry*

// transported variables

// broadcasting

*in* P* p

= (@ ... @) // optional, for initialization

, // condensing

*out* Q* q

= (@ ... @) // optional, for initialization

, // broadcasting and condensing

*inout* R* r

= (@ ... @) // optional, for initialization

*along*

// propagation directive, see above

// defines transportation graph

*at* A // update transported variable

p = (@ ... @)

*at* B // update transported variables

q = (@ ... @), r = (@ ... @)

// one or more wrappers, see above

...

// *end*

Propagation patterns

----------------------------------------------------------------

*operation*

//signature

void f(*in* B* b, *out* C* c)

*traverse*

// propagation directive, see above

...

// zero or more transportation patterns, see above

// zero or more wrappers, see above

Class dictionary graphs

----------------------------------------------------------------



584 CHAPTER 18. GLOSSARY

// zero or more class definitions

// first class is start class

// ordering of remaining class definitions is irrelevant

// for single-inheritance class dictionary

// construction class

Meal =

// zero or more parts

// required part, construction edge

<appetizer> Appetizer

// required part, construction edge

<entree> Entree

// optional part, optional construction edge

[<dessert> Dessert].

// alternation class

Dessert :

// alternatives, alternation edges, one or more

ApplePie | IceCream

// separator

*common*

// common parts, construction edges, zero or more

<w> WhippedCream.

// repetition class

Banquet ~

// repetition edge

Meal {Meal}.

Shrimps ~

// optional repetition edge

{Shrimp}.

// Parameterized classes

Sandwich(S) = <first> BreadSlice <sandwiched> S <second> BreadSlice.

RecursiveList(S) : Empty(S) | NonEmpty(S).

List(S) ~ S {S}.

// Use of parameterized classes

Meat = .

Sandwiches = <s> RecursiveList(Sandwich(Meat)).



18.3. SYNTAX DEFINITIONS 585

Class dictionaries

Syntax may optionally appear around parts.

A = "to-introduce" <b> B "to-separate" <c> C "to-terminate".

B : C | D

*common*

"to-continue" <b> B "to-separate" <c> C "to-terminate".

CommaList(S) ~

"to-start-collection" S

{"to-separate-collection-elements" S}

"to-end-collection".

StatementList ~

"begin" Statement {";" Statement} "end".

FruitList ~

"(" {Fruit} ")".

18.3 SYNTAX DEFINITIONS

We provide the class dictionary which de�nes the syntax of class dictionaries. It is used

by the Demeter Tools/C++. The User's Guide contains syntax de�nitions using a more

standard syntax.

18.3.1 Class Dictionary Syntax

1 Cd_graph =

2 < adjacencies > Nlist(Adjacency)

3 ["*terminal_sets*" <terminal_sets> Comma_list(Vertex) "."].

4 Adjacency =

5 < source > Vertex

6 ["(" < parameters> Comma_list(Vertex) ")"]

7 < ns > Neighbors

8 "." .

9 Neighbors :

10 Neighbors_wc |

11 Repetit_n

12 *common*.

13 Neighbors_wc :

14 Construct_ns |

15 Alternat_ns

16 *common* < construct_ns > List(Any_vertex).



586 CHAPTER 18. GLOSSARY

17 Construct_ns = "=".

18 Alternat_ns = ":"

19 < alternat_ns > Bar_list(Term)

20 [<common> Common].

21 Common = "*common*".

22 Repetit_n = "~" <sandwiched> Sandwich(Kernel).

23 Kernel = [ <nonempty> Term ]

24 "{" <repeated> Sandwich(Term) "}".

25 Any_vertex :

26 Opt_labeled_term

27 | Optional_term

28 | Syntax_vertex

29 | Inherit_term.

30 Vertex = < vertex_name > DemIdent .

31 Syntax_vertex :

32 Regular_syntax

33 | Print_command

34 *common*.

35 Regular_syntax = < string > DemString .

36 Print_command :

37 Print_indent | Print_unindent | Print_skip | Print_space.

38 Print_indent = "+" .

39 Print_unindent = "-" .

40 Print_skip = "*l" .

41 Print_space = "*s" .

42 Opt_labeled_term :

43 Labeled

44 | Regular

45 *common* [StaticSpec] [AccessorSpec] <vertex> Term.

46

47 StaticSpec = "*static*" .

48 AccessorSpec : ReadOnlyAcc | PrivateAcc *common* .

49 ReadOnlyAcc = "*read-only*" .

50 PrivateAcc = "*private*" .

51

52 Regular = .

53 Labeled = "<" < label_name > DemIdent ">" .

54 Inherit_term = "*inherit*" <inherited> Comma_list(Term).

55

56

57 Term : Normal | CppTerm *common* <vertex> Vertex

58 <moduleRef> TermRef

59 ["(" <actual_parameters> Comma_list(Term) ")" ].

60

61 CppTerm = "$" .



18.3. SYNTAX DEFINITIONS 587

62

63 Normal = .

64

65 TermRef : LocalRef | ModuleRef.

66

67 ModuleRef : CompRef | LibRef *common* <moduleName> DemIdent.

68

69 LocalRef = .

70 CompRef = "@".

71 LibRef = "@@".

72

73 Optional_term = "[" <opt> Sandwich(Opt_labeled_term) "]".

74

75 // Parameterized classes

76 List(S) ~ {S}.

77 Nlist(S) ~ S {S}.

78 Bar_list(S) ~ S {"|" S}.

79 Comma_list(S) ~ S {"," S}.

80 Sandwich(S) =

81 <first> List(Syntax_vertex) <inner> S

82 <second> List(Syntax_vertex)

83 .

AccessorSpec :48 45

Adjacency :4 2

Alternat_ns :18 15

Any_vertex :25 16

Bar_list :78 19

Cd_graph :1

Comma_list :79 3 6 54 59

Common :21 20

CompRef :70 67

Construct_ns :17 14

CppTerm :61 57

Inherit_term :54 29

Kernel :23 22

Labeled :53 43

LibRef :71 67

List :76 16 81 82

LocalRef :69 65

ModuleRef :67 65

Neighbors :9 7

Neighbors_wc :13 10

Nlist :77 2

Normal :63 57

Opt_labeled_term :42 26 73



588 CHAPTER 18. GLOSSARY

Optional_term :73 27

Print_command :36 33

Print_indent :38 37

Print_skip :40 37

Print_space :41 37

Print_unindent :39 37

PrivateAcc :50 48

ReadOnlyAcc :49 48

Regular :52 44

Regular_syntax :35 32

Repetit_n :22 11

Sandwich :80 22 24 73

StaticSpec :47 45

Syntax_vertex :31 28 81 82

Term :57 19 23 24 45 54 59

TermRef :65 58

Vertex :30 3 5 6 57

18.4 BIBLIOGRAPHIC REMARKS

� Terminology: We adopt some of the terminology of the object model developed by

the Object Management Group [Gro91]. It serves the purpose well since their model

is also programming language independent.



Appendix A

Electronic Access

The Demeter software, documentation, and related course material are available on the

World-Wide Web as shown by the uniform resource locators (URLs) in Fig. A.1. Readers

Pointers to object code for various architectures

http://www.ccs.neu.edu/research/demeter/DemeterTools.txt

Frequently Asked Questions

http://www.ccs.neu.edu/research/demeter/Demeter-FAQ

User's Guide

http://www.ccs.neu.edu/research/demeter/docs/u-guide.ps

Laboratory Guide

http://www.ccs.neu.edu/research/demeter/docs/l-guide.ps

Course material (OO points to this directory)

http://www.ccs.neu.edu/research/demeter/course

Further information is at the Demeter Home Page

http://www.ccs.neu.edu/research/demeter

Figure A.1: Access to software, documentation, and course material

who do not have access to the world-wide web can download the information by ftp. Direc-

tory

ftp://ftp.ccs.neu.edu/pub/research/demeter/www-mirror

589



590 APPENDIX A. ELECTRONIC ACCESS

contains a mirror of DemeterTools.txt, Demeter-FAQ, u-guide.ps, l-guide.ps, and directory

course. Use the protocol:

% ftp ftp.ccs.neu.edu

Name ( ... ): ftp

Password: your-email-address

and go to pub/research/demeter/www-mirror to retrieve the �les. OO is a variable used in

the book. It points to the course directory (see Fig. A.1).

Recent papers on adaptive software are available from URL:

ftp://ftp.ccs.neu.edu/pub/people/lieber

Published papers on adaptive software are available from URL:

ftp://ftp.ccs.neu.edu/pub/research/demeter

and its subdirectories (e.g., documents/papers).

Information about adaptive software is also available by e-mail (see Fig. A.2). You can

subscribe by e-mail to a mailing list on adaptive software and you will be informed about

new developments. You may also direct your individual questions to the Demeter Research

Group at Northeastern University.

E-mail questions and bug reports to

demeter@ccs.neu.edu

To get regular updates on adaptive software (both regarding tool developments and theo-

retical advances), send the message with body

subscribe adaptive

to

majordomo@ccs.neu.edu

Figure A.2: E-mail information

Support to use the software in commercial projects is provided by Demeter International,

Inc. Please contact demeter@acm.org.



Bibliography

[AB87] M.P. Atkinson and O.P. Buneman. Types and persistence in database pro-

gramming languages. ACM Computing Surveys, 19(2):105{190, June 1987.

[AB91] Serge Abiteboul and Anthony Bonner. Objects and views. In James Cli�ord

and Roger King, editors, Proceedings of ACM SIGMOD International Con-

ference on management of Data, pages 238{247, Denver, Colorado, May 29-31

1991. ACM Press.

[AB92] Mehmet Aksit and Lodewijk Bergmans. Obstacles in object-oriented software

development. In Object-Oriented Programming Systems, Languages and Ap-

plications Conference, in Special Issue of SIGPLAN Notices, pages 341{358,

Vancouver, Canada, 1992. ACM Press.

[Ada93] Sam Adams. Private communication. WOOD (Workshop on Object-Oriented

Design, Snowbird, Utah, March 8-10), March 1993.

[AG92] R. Allen and David Garlan. A formal approach to software architectures. In

J. van Leeuwen, editor, Proceedings of IFIP World Congress, Madrid, Spain,

1992. Elsevier Science Publisher B.V.

[Agh86] Gul A. Agha. Actors: a Model of Concurrent Computation in Distributed

Systems. MIT Press, Cambridge, MA, 1986.

[AH87] S. Abiteboul and R. Hull. A formal semantic database model. ACM Trans-

actions on Database Systems, 12(4):525{565, December 1987.

[ALM82] F. Allen, M. Loomis, and M. Mannino. The Integrated Dictionary/ Directory

System. ACM Computing Surveys, 14(2), 1982.

[ASU86] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles,

Techniques and Tools. Addison-Wesley, 1986.

[Bal86] R.N. Balzer. Program enhancement. ACM SIGSOFT Software Engineering

Notes, 11(4):66, 1986.

[BC86] J.P. Briot and P. Cointe. The OBJVLISP project: de�nition of a uniform self-

described and extensible object-oriented language. In European Conference

on Arti�cial Intelligence, Brighton, UK, 1986.

591



592 BIBLIOGRAPHY

[BDD+88] P. Borras, D.Clement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and

V. Pascual. Centaur: the system. In ACM SIGSOFT Symposium on Software

Development Environments, Boston, MA, November 1988. ACM Press.

[BDG+88] D.G. Bobrow, L.G. DeMichiel, R.P. Gabriel, S.E. Keene, G. Kiczales, and

D.A. Moon. Common Lisp Object System Speci�cation. SIGPLAN Notices,

23, September 1988.

[Bec87] Kent Beck. Using a pattern language for programming. In Object-Oriented

Programming Systems, Languages and Applications Conference, in Special Is-

sue of SIGPLAN Notices, page 16. ACM Press, 1987. Addendum to OOP-

SLA'87 Proceedings, SIGPLAN Notices, Vol. 23, No. 5, May 1988.

[Bec94] Kent Beck. Patterns and software development. Dr. Dobbs Journal, 19(2):18{

22, February 1994.

[Bee87] David Beech. Groundwork for an object-oriented database model. In Bruce

Shriver and Peter Wegner, editors, Research Directions in Object-Oriented

Programming, pages 317{354. MIT Press, 1987.

[Ber91] Paul Bergstein. Object-preserving class transformations. In Object-Oriented

Programming Systems, Languages and Applications Conference, in Special Is-

sue of SIGPLAN Notices, pages 299{313, Phoenix, Arizona, 1991. ACM Press.

SIGPLAN Notices, Vol. 26, No. 11, November.

[Ber94] Paul Bergstein. Managing the Evolution of Object-Oriented Systems. PhD

thesis, Northeastern University, 1994. 151 pages.

[BGV90] Robert A. Ballance, Susan L. Graham, and Michael L. VanDeVanter. The Pan

language-based editing system. In ACM SIGSOFT Symposium on Software

Development Environments, pages 77{93, Irvine, CA, 1990. ACM Press.

[BH93] Paul L. Bergstein and Walter L. H�ursch. Maintaining behavioral consistency

during schema evolution. In S. Nishio and A. Yonezawa, editors, International

Symposium on Object Technologies for Advanced Software, pages 176{193,

Kanazawa, Japan, November 1993. JSSST, Springer Verlag, Lecture Notes in

Computer Science.

[BK76] A.W. Biermann and R. Krishnasawamy. Constructing programs from example

computations. IEEE Transactions on Software Engineering, SE-2(3):141{153,

September 1976.

[BL84] Ronald J. Brachman and Hector J. Levesque. The tractability of subsumption

in frame-based description languages. In Proceedings AAAI-84, pages 34{37,

Austin, Texas, 1984. American Association for Arti�cial Intelligence.

[BL91] Paul Bergstein and Karl Lieberherr. Incremental class dictionary learning

and optimization. In European Conference on Object-Oriented Programming,

pages 377{396, Geneva, Switzerland, 1991. Springer Verlag Lecture Notes 512.



BIBLIOGRAPHY 593

[BLN86] C. Batini, M. Lenzerini, and S.B. Navathe. A comparative analysis of method-

ologies for database schema integration. ACM Computing Surveys, 19(4):323{

364, December 1986.

[BM84] J.M. Boyle and M.N. Muralidharan. Program reusability through pro-

gram transformation. IEEE Transactions on Software Engineering, SE-10(5),

September 1984.

[BMG+88] Daniel Bobrow, Linda G. De Michiel, Richard P. Gabriel, Sonya E. Keene,

Gregor Kiczales, and David A. Moon. Common Lisp Object System Speci�-

cation. Draft submitted to X3J13, March 1988.

[Boe88] Barry Boehm. A spiral model of software development and enhancement.

IEEE Computer Magazine, 21(5):61{72, May 1988.

[Boo86] Grady Booch. Object-oriented development. IEEE Transactions on Software

Engineering, SE-12(2), February 1986.

[Boo90] Grady Booch. The design of the C++ Booch components. In Object-Oriented

Programming Systems, Languages and Applications Conference, in Special Is-

sue of SIGPLAN Notices, pages 1{11, Ottawa, Canada, 1990. ACM Press.

[Boo91] Grady Booch. Object-Oriented Design With Applications. Ben-

jamin/Cummings Publishing Company, Inc., 1991.

[Boo94] Grady Booch. Design an application framework. Dr. Dobbs Journal, 19(2):24{

32, February 1994.

[Bro86] R. A. Brooks. A robust layered control system for a mobile robot. IEEE

Journal of Robotics and Automation, 2(1):14{23, 1986.

[Bro87] Frederick P. Brooks. No silver bullet, essence and accidents of software engi-

neering. IEEE Computer Magazine, pages 10{19, April 1987.

[BS85] R.J. Brachman and J.G. Schmolze. An overview of the KL-ONE knowledge

representation system. Cognitive Sciences, 9(2):171{216, 1985.

[Car84] Robert Cartwright. Recursive programs as de�nitions in �rst order logic.

SIAM Journal on Computing, 13(2):374{408, May 1984.

[Cas91] Eduardo Casais. Managing Evolution in Object-Oriented Environments: An

Algorithmic Approach. PhD thesis, University of Geneva, 1991.

[CI84] Robert D. Cameron and M. Robert Ito. Grammar-based de�nition of metapro-

gramming systems. ACM Transactions on Programming Languages and Sys-

tems, 6(1):20{54, January 1984.

[Col94] Derek Coleman. Object-Oriented Development|The Fusion Method. Prentice-

Hall, 1994.



594 BIBLIOGRAPHY

[Cox86] Brad J. Cox. Object-Oriented Programming, An evolutionary approach.

Addison-Wesley, 1986.

[CTT93] Stefano Ceri, Katsumi Tanaka, and Shalom Tsur. Deductive and Object-

Oriented Databases. Springer Verlag (LNCS 760), 1993.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction, and

polymorphism. ACM Computing Surveys, 17(4):471, December 1985.

[CW91] N. Coburn and G. E. Weddell. Path constraints for graph-based data models:

Towards a uni�ed theory of typing constraints, equations, and functional de-

pendencies. In C. Delobel M. Kifer Y. Masunaga, editor, Second International

Conference, DOOD'91, pages 313{331, Munich, Germany, 1991. Springer Ver-

lag.

[CY90] Peter Coad and Edward Yourdon. Object-Oriented Analysis. Yourdon Press,

1990. Second edition.

[Day89] Umeshwar Dayal. Queries and views in an object-oriented data model. In

Richard Hull, Ron Morrison, and David Stemple, editors, Proceedings of the

Second International Workshop on Database Programming Languages, pages

80{102, Gleneden Beach, OR, June 4-8 1989. Morgan Kaufmann.

[DCG+89] Peter J. Denning, Douglas E. Comer, David Gries, Michael C. Mulder,

Allen B. Tucker, A. Joe Turner, and Paul R. Young. Computing as a dis-

cipline. Communications of the ACM, 32(1):9{23, January 1989.

[Deu89] L. Peter Deutsch. Design reuse and frameworks in the Smalltalk-80 system.

In Ted J. Biggersta� and Alan J. Perlis, editors, Software reusability, Appli-

cations and experience, volume 2. ACM Press, 1989.

[DGHK+75] Veronique Donzeau-Gouge, G�erard Huet, Gilles Kahn, Bernard Lang, and

J.J. L�evy. A structure oriented program editor: A �rst step towards computer

assisted programming. In Proceedings of International Computing Symposium

1975, 1975.

[DGHKL80] Veronique Donzeau-Gouge, G�erard Huet, Gilles Kahn, and Bernard Lang.

Programming environments based on structured editors: The MENTOR ex-

perience. Technical report, Res. Rep. 26 INRIA, 1980.

[DMN70] O.J. Dahl, B. Myhrhaug, and K. Nygaard. SIMULA 67 Common Base Lan-

guage. Publication Number S-22, Norwegian Computing Center, October

1970.

[DS89] Stephen C. Dewhurst and Kathy T. Stark. Programming in C++. Prentice-

Hall Software Series. Prentice-Hall, 1989.

[Eng73] Erwin Engeler. The Theory of Computation. Academic Press, 1973.



BIBLIOGRAPHY 595

[ES90] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference

Manual. Addison-Wesley, 1990.

[Evi94] Mikel Evins. Objects without classes. IEEE Computer Magazine, 27(3):104{

109, March 1994.

[FB94] Robert W. Floyd and Richard Beigel. The Language of Machines. Computer

Science Press, 1994.

[FHW92] D.P. Friedman, C.T. Hayes, and M. Wand. Essentials of programming lan-

guages. MIT Press/McGraw-Hill, 1992.

[FL94] Natalya Friedman and Karl Lieberherr. Reuse of adaptive software through

opportunistic parameterization. Technical Report NU-CCS-94-17, Northeast-

ern University, May 1994.

[Fra81] C.W. Fraser. Syntax-directed editing of general data structures. In Proceed-

ings ACM SIGPLAN/SIGOA Conference on Text Manipulation, pages 17{21,

Portland, OR, 1981.

[GCN92] David Garlan, Linxi Cai, and Robert Nord. A transformational approach to

generating application-speci�c environments. In Herbert Weber, editor, ACM

SIGSOFT Symposium on Software Development Environments, pages 68{77,

Tyson's Corner, VA, 1992. ACM Press.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,

1995.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability. Free-

man, 1979.

[GL85a] Steven M. German and Karl J. Lieberherr. Zeus: A language for expressing

algorithms in hardware. IEEE Computer Magazine, pages 55{65, February

1985.

[GL85b] A.V. Goldberg and K.J. Lieberherr. GEM: A generator of environments for

metaprogramming. In SOFTFAIR II, ACM/IEEE Conference on Software

Tools, pages 86{95, San Francisco, 1985.

[Gol89] N. M. Goldman. Code walking and recursive descent: A generic approach. In

Proceedings of the Second CLOS Users and Implementors Workshop, 1989.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: The Language and its Im-

plementation. Addison-Wesley, 1983.

[Gre89] T.R.G. Green. Cognitive dimensions of notations. MRC Applied Psychology

Unit, Rank Xerox EuroPARC, Cambridge, February 1989.



596 BIBLIOGRAPHY

[Gro91] Object Management Group. The common object request broker: Architecture

and speci�cation. OMG Document Number 91.12.1, Revision 1.1, 492 Old

Connecticut Path, Framingham, MA 01701, December 1991.

[GS93] David Garlan and Mary Shaw. An introduction to software architecture.

In Advances in Software Engineering and Knowledge Engineering, volume I.

World Scienti�c Publishing Company, 1993.

[GSOS92] D. Garlan, M. Shaw, C. Okasaki, and R. Swonger. Experience with a course

on architectures for software systems. In Springer Verlag, Lecture Notes in

Computer Science, volume 376. Springer Verlag, 1992. Sixth SEI Conference

on Software Engineering Education.

[GTC+90] Simon Gibbs, Dennis Tsichritzis, Eduardo Casais, Oscar Nierstrasz, and

Xavier Pintado. Class management for software communities. Communi-

cations of the ACM, 33(9):90{103, September 1990.

[Har94] Coleman Harrison. Aql: An adaptive query language. Technical Report NU-

CCS-94-19, Northeastern University, October 1994. Master's Thesis.

[HB77] Carl Hewitt and H. Baker. Laws for communicating parallel processes. In

IFIP Congress Proceedings, pages 987{992. IFIP (International Federation

for Information Processing), August 1977.

[Hec86] Reinhold Heckmann. An e�cient ELL(1)-parser generator. Acta Informatica,

23:127{148, 1986.

[HHG90] Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts: Spec-

ifying behavioral compositions in object-oriented systems. In Object-Oriented

Programming Systems, Languages and Applications Conference, in Special Is-

sue of SIGPLAN Notices, pages 169{180, Ottawa, 1990. ACM Press. Joint

conference ECOOP/OOPSLA.

[HK87] Richard Hull and Roger King. Semantic database modeling: Survey, applica-

tions, and research issues. ACM Computing Surveys, 19(3):201{260, Septem-

ber 1987.

[HLM93] Walter L. H�ursch, Karl J. Lieberherr, and Sougata Mukherjea. Object-

oriented schema extension and abstraction. In ACM Computer Science Con-

ference, Symposium on Applied Computing, pages 54{62, Indianapolis, Indi-

ana, February 1993. ACM Press.

[HO87] Daniel C. Halbert and Patrick D. O'Brien. Using types and inheritance in

object-based languages. In European Conference on Object-Oriented Program-

ming, pages 20{31. Springer Verlag, Lecture Notes 276, 1987.

[HO91] William Harrison and Harold Ossher. Structure-bound messages: Separating

navigation from processing. Submitted for publication, 1991.



BIBLIOGRAPHY 597

[HO93] William Harrison and Harold Ossher. Subject-oriented programming (A cri-

tique of pure objects). In Proceedings OOPSLA '93, ACM SIGPLAN Notices,

pages 411{428, October 1993. Published as Proceedings OOPSLA '93, ACM

SIGPLAN Notices, volume 28, number 10.

[Hoa75] C.A.R. Hoare. Recursive data structures. International Journal on Computer

and Information Science, pages 105{133, June 1975.

[Hol92] Ian M. Holland. Specifying reusable components using contracts. In Euro-

pean Conference on Object-Oriented Programming, pages 287{308, Utrecht,

Netherlands, 1992. Springer Verlag Lecture Notes 615.

[Hol93] Ian M. Holland. The Design and Representation of Object-Oriented Compo-

nents. PhD thesis, Northeastern University, 1993.

[HSE94] Brian Henderson-Sellers and Julian Edwards. Booktwo of Object-Oriented

Knowledge: The Working Object. Object-oriented Series. Prentice-Hall, 1994.

[HSX91] Walter L. H�ursch, Linda M. Seiter, and Cun Xiao. In any CASE: Demeter.

The American Programmer, 4(10):46{56, October 1991.

[HU79] John E. Hopcroft and Je�rey D. Ullman. Introduction to Automata Theory,

Languages, and Computation. Addison-Wesley, 1979.

[H�ur94] Walter L. H�ursch. Should Superclasses be Abstract? In Remo Pareschi

and Mario Tokoro, editors, European Conference on Object-Oriented Program-

ming, pages 12{31, Bologna, Italy, July 1994. Springer Verlag, Lecture Notes

in Computer Science.

[H�ur95] Walter H�ursch. Maintaining Consistency and Behavior of Object-Oriented

Systems during Evolution. PhD thesis, Northeastern University, 1995. 331

pages.

[Jac87] Ivar Jacobson. Object-oriented development in an industrial environment. In

Object-Oriented Programming Systems, Languages and Applications Confer-

ence, in Special Issue of SIGPLAN Notices, pages 183{191, Orlando, Florida,

1987.

[Jac92] Ivar Jacobson. The use case construct in object-oriented software engineering.

Technical report, Objective Systems, 1992.

[JCJO92] Ivar Jacobson, Magnus Christerson, Patrick Jonsson, and Gunnar Over-

gaard. Object-Oriented Software Engineering: A Use Case Driven Approach.

Addison-Wesley, 1992.

[JF88] Ralph E. Johnson and Brian Foote. Designing reusable classes. Journal of

Object-Oriented Programming, 1(2):22{35, June/July 1988.



598 BIBLIOGRAPHY

[Joh92] Ralph Johnson. Documenting frameworks using patterns. In Object-Oriented

Programming Systems, Languages and Applications Conference, in Special Is-

sue of SIGPLAN Notices, pages 63{76, Vancouver, Canada, 1992. ACM Press.

[Kap69] Donald M. Kaplan. Regular expressions and the equivalence of programs.

Journal of Computer and System Sciences, 3:361{386, 1969.

[KBR86] Thomas S. Kaczmarek, Raymond Bates, and Gabriel Robins. Recent Devel-

opments in NIKL. In National Conference on Arti�cial Intelligence, pages

978{985. Morgan Kaufman Publishers, 1986.

[Kes93] Linda Keszenheimer. Specifying and adapting object behavior during system

evolution. In Conference on Software Maintenance, pages 254{261, Montreal,

Canada, 1993. IEEE Press.

[Kic92] Gregor Kiczales. Towards a new model of abstraction in software engineering.

In Proceedings of IMSA Workshop on Re
ection and Meta-level Architectures,

1992.

[Kic93] Gregor Kiczales. Traces (a cut at the \make isn't generic" problem). In

S. Nishio and A. Yonezawa, editors, International Symposium on Object Tech-

nologies for Advanced Software, Kanazawa, Japan, November 1993. JSSST,

Springer Verlag, Lecture Notes in Computer Science.

[KKS92] Michael Kifer, Won Kim, and Yehoshua Sagiv. Querying object-oriented

databases. In Michael Stonebraker, editor, Proceedings of ACM/SIGMOD

Annual Conference on Management of Data, pages 393{402, San Diego, CA,

1992. ACM Press.

[KL92] Gregor Kiczales and John Lamping. Issues in the design and documentation

of class libraries. In Object-Oriented Programming Systems, Languages and

Applications Conference, in Special Issue of SIGPLAN Notices, pages 435{

451, Vancouver, Canada, 1992. ACM.

[KMMPN85] Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Moller-Pederson, and

Kristen Nygaard. An algebra for program fragments. In ACM SIGPLAN

85 Symposium on Programming Languages and Programming Environments,

volume 20, Seattle, WA, 1985. SIGPLAN.

[Kor86] Henry F. Korth. Extending the scope of relational languages. IEEE Software,

pages 19{28, January 1986.

[KRB91] G. Kiczales, J. Des Rivi�ere, and D.G. Bobrow. The Art of the Metaobject

Protocol. MIT Press, 1991.

[LA94] John Lamping and Martin Abadi. Methods as assertions. In Remo Pareschi

and Mario Tokoro, editors, European Conference on Object-Oriented Program-

ming, volume 821, pages 60{80, Bologna, Italy, July 1994. Springer Verlag,

Lecture Notes in Computer Science.



BIBLIOGRAPHY 599

[LaL89] Wilf R. LaLonde. Designing families of data types using exemplars. ACM

Transactions on Programming Languages and Systems, 11(2):212{248, April

1989.

[LBS90] Karl J. Lieberherr, Paul Bergstein, and Ignacio Silva-Lepe. Abstraction

of object-oriented data models. In Hannu Kangassalo, editor, Proceedings

of International Conference on Entity-Relationship, pages 81{94, Lausanne,

Switzerland, 1990. Elsevier.

[LBS91] Karl J. Lieberherr, Paul Bergstein, and Ignacio Silva-Lepe. From objects to

classes: Algorithms for object-oriented design. Journal of Software Engineer-

ing, 6(4):205{228, July 1991.

[LH89a] Karl J. Lieberherr and Ian Holland. Assuring good style for object-oriented

programs. IEEE Software, pages 38{48, September 1989.

[LH89b] Karl J. Lieberherr and Ian Holland. Tools for preventive software maintenance.

In Conference on Software Maintenance, pages 2{13, Miami, Florida, October

16-19, 1989. IEEE Press.

[LHLR88] Karl J. Lieberherr, Ian Holland, Gar-Lin Lee, and Arthur J. Riel. An ob-

jective sense of style. IEEE Computer Magazine, June 1988. Open Channel

publication.

[LHR88] Karl J. Lieberherr, Ian Holland, and Arthur J. Riel. Object-oriented program-

ming: An objective sense of style. In Object-Oriented Programming Systems,

Languages and Applications Conference, in Special Issue of SIGPLAN No-

tices, number 11, pages 323{334, San Diego, CA, September 1988. A short

version of this paper appears in IEEE Computer Magazine, June 1988, Open

Channel section, pages 78-79.

[LHSX92] Karl J. Lieberherr, Walter H�ursch, Ignacio Silva-Lepe, and Cun Xiao. Experi-

ence with a graph-based propagation pattern programming tool. In Gene Forte

et al., editor, International Workshop on CASE, pages 114{119, Montr�eal,

Canada, 1992. IEEE Computer Society.

[LHX94] Karl J. Lieberherr, Walter L. H�ursch, and Cun Xiao. Object-extending class

transformations. Formal Aspects of Computing, the International Journal of

Formal Methods, (6):391{416, 1994. Also available as Technical Report NU-

CCS-91-8, Northeastern University.

[Lie85] Karl J. Lieberherr. Toward a standard hardware description language. IEEE

Design and Test of Computers, 2(1):55{62, February 1985.

[Lie88] Karl J. Lieberherr. Object-oriented programming with class dictionaries.

Journal on Lisp and Symbolic Computation, 1(2):185{212, 1988.



600 BIBLIOGRAPHY

[Lie92] Karl J. Lieberherr. Component enhancement: An adaptive reusability mech-

anism for groups of collaborating classes. In J. van Leeuwen, editor, Informa-

tion Processing '92, 12th World Computer Congress, pages 179{185, Madrid,

Spain, 1992. Elsevier.

[Lip89] S.B. Lippman. C++ Primer. Addison-Wesley, 1989. Second edition.

[LR88a] Karl J. Lieberherr and Arthur J. Riel. Demeter: A CASE study of soft-

ware growth through parameterized classes. In International Conference on

Software Engineering, pages 254{264, Ra�es City, Singapore, 1988.

[LR88b] Karl J. Lieberherr and Arthur J. Riel. Demeter: A CASE study of software

growth through parameterized classes. Journal of Object-Oriented Program-

ming, 1(3):8{22, August, September 1988. A shorter version of this paper

was presented at the 10th International Conference on Software Engineering,

Singapore, April 1988, IEEE Press, pages 254-264.

[LR89] Karl J. Lieberherr and Arthur J. Riel. Contributions to teaching object-

oriented design and programming. In Object-Oriented Programming Systems,

Languages and Applications Conference, in Special Issue of SIGPLAN No-

tices, pages 11{22, October 1989.

[LSX94] Karl J. Lieberherr, Ignacio Silva-Lepe, and Cun Xiao. Adaptive object-

oriented programming using graph-based customization. Communications of

the ACM, 37(5):94{101, May 1994.

[LTP86] Wilf R. LaLonde, Dave A. Thomas, and John R. Pugh. An exemplar based

smalltalk. In Proceedings OOPSLA '86, ACM SIGPLAN Notices, pages 322{

330, November 1986. Published as Proceedings OOPSLA '86, ACM SIGPLAN

Notices, Volume 21, Number 11.

[LX93a] Karl J. Lieberherr and Cun Xiao. Formal Foundations for Object-Oriented

Data Modeling. IEEE Transactions on Knowledge and Data Engineering,

5(3):462{478, June 1993.

[LX93b] Karl J. Lieberherr and Cun Xiao. Minimizing dependency on class structures

with adaptive programs. In S. Nishio and A. Yonezawa, editors, International

Symposium on Object Technologies for Advanced Software, pages 424{441,

Kanazawa, Japan, November 1993. JSSST, Springer Verlag.

[LX93c] Karl J. Lieberherr and Cun Xiao. Object-Oriented Software Evolution. IEEE

Transactions on Software Engineering, 19(4):313{343, April 1993.

[LX94] Karl J. Lieberherr and Cun Xiao. Customizing adaptive software to object-

oriented software using grammars. International Journal of Foundations of

Computer Science, World Scienti�c Publishing Company, 5(2):179{208, 1994.

[LXS91] Karl Lieberherr, Cun Xiao, and Ignacio Silva-Lepe. Propagation patterns:

Graph-based speci�cations of cooperative behavior. Technical Report NU-

CCS-91-14, Northeastern University, September 1991.



BIBLIOGRAPHY 601

[LZHL94] Ling Liu, Roberto Zicari, Walter H�ursch, and Karl Lieberherr. Polymorphic

reuse mechanisms for object-oriented database speci�cations. In International

Conference on Data Engineering, pages 180{189, Houston, February 1994.

IEEE.

[Mag62] Robert F. Mager. Preparing Instructional Objectives. Fearon Publishers, Inc.,

1962.

[Mey88] Bertrand Meyer. Object-Oriented Software Construction. Series in Computer

Science. Prentice-Hall International, 1988.

[Mil71] H.D. Mills. Top-down programming in large systems. In R. Ruskin, editor,

Debugging Techniques in Large Systems. Prentice-Hall, 1971.

[Min75] Marvin Minsky. A framework for representing knowledge. In P. Winston,

editor, The Psychology of Computer Vision, pages 211{277. McGraw-Hill,

1975.

[MK88] L. Mohan and R.L. Kashyap. An object-oriented knowledge representation for

spatial information. IEEE Transactions on Software Engineering, 14(5):675{

681, May 1988.

[MM85] J. Martin and C. McClure. Structured Techniques for Computing. Prentice-

Hall, 1985.

[MN88] Ole LehrmannMadsen and Claus N�rgaard. An object-oriented metaprogram-

ming system. In Proceedings of the Annual Hawaii International Conference

on System Sciences, pages 406{415, 1988.

[Moo86] David A. Moon. Object-Oriented Programming with Flavors. In Object-

Oriented Programming Systems, Languages and Applications Conference, in

Special Issue of SIGPLAN Notices, pages 1{8, Portland, OR, 1986.

[Mor84] Matthew Morgenstern. Constraint equations: a concise compilable represen-

tation for quanti�ed constraints in semantic networks. In National Conference

on Arti�cial Intelligence, pages 255{259. Morgan Kaufman Publishers, 1984.

[MS87] David Meier and Jacob Stein. Development and implementation of an object-

oriented DBMS. In Bruce Shriver and Peter Wegner, editors, Research Direc-

tions in Object-Oriented Programming, pages 355{392. MIT Press, 1987.

[MS89] Victor M. Markowitz and Arie Shoshani. Abbreviated query interpretation

in entity-relationship oriented databases. Lawrence Berkeley Lab., Berkeley,

CA, 1989.

[MS93] Victor M. Markowitz and Arie Shoshani. Object queries over relational

databases: Language, implementation, and application. In 9th International

Conference on Data Engineering, pages 71{80. IEEE Press, 1993.



602 BIBLIOGRAPHY

[NEL86] S. Navathe, R. Elmasari, and J. Larson. Integrating user views in database

design. IEEE Computer Magazine, 19(1):50{62, 1986.

[Osb93] Lloyd Osborn. Information systems lessons learned. In Educating the next

generation of information specialists, pages 40{41, Alexandria, VA, 1993. Na-

tional Science Foundation.

[PB92] Carl Ponder and Bill Bush. Polymorphism considered harmful. In SIGPLAN

Notices, pages 76{79, 1992. Also in ACM Software Engineering Notes, Vol.

19, No. 2, April 1994, pages 35-37.

[PCW86] David Lorge Parnas, Paul C. Clements, and David M. Weiss. Enhancing

reusability with information hiding. In Peter Freeman, editor, Tutorial: Soft-

ware Reusability, pages 83{90. IEEE Press, 1986.

[Poh91] Ira Pohl. C++ for Pascal Programmers. Addison-Wesley, 1991.

[Pol49] George Polya. How to solve it. Princeton University Press, 1949.

[Pre87] Roger S. Pressman. Software Engineering: A practitioner's approach, Second

edition. McGraw-Hill, 1987.

[Pre94] Wolfgang Pree. Design Patterns for Object-Oriented Software Development.

Addison-Wesley, 1994.

[PS83] Helmut A. Partsch and R. Steinbrueggen. Program transformation systems.

ACM Computing Surveys, 15(3):199{236, September 1983.

[PS88] Peter F. Patel-Schneider. An approach to practical object-based knowledge

representation systems. In Proceedings of the Annual Hawaii International

Conference on System Sciences, pages 367{375, 1988.

[PS93] Jens Palsberg and Michael I. Schwartzbach. Object-Oriented Type Systems.

John Wiley & Sons, 1993.

[PXL95] Jens Palsberg, Cun Xiao, and Karl Lieberherr. E�cient implementation of

adaptive software. ACM Transactions on Programming Languages and Sys-

tems, 17(2):264{292, March 1995.

[Ral83] Anthony Ralston. Encyclopedia of Computer Science and Engineering. Van

Nostrand Reinhold Company, Inc., 1983. Second edition.

[Rao91] Ramana Rao. Implementation Re
ection in Silica. In European Conference

on Object-Oriented Programming. Springer Verlag, 1991.

[RBP+91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and

William Lorensen. Object-Oriented Modeling and Design. Prentice-Hall, 1991.

[Rei87] Steven P. Reiss. On object-oriented framework for conceptual programming.

In Bruce Shriver and Peter Wegner, editors, Research Directions in Object-

Oriented Programming, pages 189{218. MIT Press, 1987.



BIBLIOGRAPHY 603

[Rob65] J.A. Robinson. A machine-oriented logic based on the resolution principle.

Journal of the Association for Computing Machinery, 12(1):23{41, 1965.

[RT84] T. Reps and T. Teitelbaum. The synthesizer generator. SIGPLAN, 19(5),

1984.

[RTD83] Thomas Reps, Tim Teitelbaum, and Alan Demers. Incremental context-

dependent analysis for language-based editors. ACM Transactions on Pro-

gramming Languages and Systems, 5(3), July 1983.

[Rum88] James Rumbaugh. Controlling propagation of operations using attributes on

relations. In Object-Oriented Programming Systems, Languages and Applica-

tions Conference, in Special Issue of SIGPLAN Notices, pages 285{297, San

Diego, CA, 1988. ACM.

[Sak88a] Markku Sakkinen. Comments on the Law of Demeter and C++. SIGPLAN

Notices, 23(12):38{44, December 1988.

[SAK88b] G. Smolka and H. Ait-Kaci. Inheritance hierarchies: Semantics and uni�ca-

tion. Journal on Symbolic Computation, 1988. Special issue on uni�cation.

[Sal86] Betty Salzberg. An Introduction to Database Design. Academic Press, 1986.

[San82] David Sandberg. LITHE: A language combining a 
exible syntax and classes.

In ACM Symposium on Principles of Programming Languages, pages 142{145,

Albuquerque, NM, 1982. ACM.

[SB86] Mark Ste�k and Daniel G. Bobrow. Object-oriented programming: Themes

and variations. The AI Magazine, pages 40{62, January 1986.

[Set89] Ravi Sethi. Programming Languages: Concepts and Constructs. Addison-

Wesley, 1989.

[She87] Philip Sheu. Programming object-based systems with knowledge. In Interna-

tional CASE Workshop, Index Technology, Cambridge, MA, 1987.

[Sil94] Ignacio Silva-Lepe. Techniques for Reverse-engineering and Re-engineering

into the Object-Oriented Paradigm. PhD thesis, Northeastern University,

1994. 133 pages.

[SKG88] Barbara Staudt, Charles Kr�uger, and David Garlan. Transformgen: Automat-

ing the maintenance of structure-oriented environments. Technical Report

CMU-CS-88-186, Department of Computer Science, CMU, 11 1988.

[SM92] Sally Shlaer and Stephen J. Mellor. Object Life Cycles: Modeling the World

in States. Yourdon Press, Englewood Cli�s, 1992.

[SS77] J.M. Smith and D.C.P. Smith. Database abstractions: Aggregation and gen-

eralization. ACM Transactions on Database Systems, 2(2), June 1977.



604 BIBLIOGRAPHY

[Ste90] Guy L. Steele. Common Lisp: the Language. Digital Press, second edition,

1990.

[Str86] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

[Str94] Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, 1994.

[SZ87] Andrea Skarra and Stanley Zdonik. Type evolution in an object-oriented

database. In Bruce Shriver and Peter Wegner, editors, Research Directions in

Object-Oriented Programming, pages 393{416. MIT Press, 1987.

[TYF86] T.J. Teorey, D. Yang, and J.P. Fry. A logical design methodology for relational

databases. ACM Computing Surveys, 18(2):197{222, June 1986.

[Ull82] Je�rey D. Ullman. Principles of Database Systems. Computer Science Press,

1982.

[US87] David Ungar and Randall B. Smith. Self: The power of simplicity. In Object-

Oriented Programming Systems, Languages and Applications Conference, in

Special Issue of SIGPLAN Notices, number 12, pages 227{242. ACM, 1987.

[VdBV93] Jan Van den Bussche and Gottfried Vossen. An extension of path expressions

to simplify navigation in object-oriented queries. In Deductive and Object-

Oriented Databases, pages 267{282. Springer Verlag (LNCS 760), 1993.

[Vil84] Mark Vilain. Kl-two, a hybrid knowledge representation system. Technical

Report 5694, Bolt, Beranek, and Newman, 1984.

[Wan94] Paul S. Wang. C++ with Object-Oriented Programming. PWS Publishing

Company, 1994.

[WB94] David S. Wile and Robert M. Balzer. Architecture-based compilation. Spon-

sored by ARPA, January 1994.

[WBWW90] Rebecca Wirfs-Brock, BrianWilkerson, and LaurenWiener. Designing Object-

Oriented Software. Prentice-Hall, 1990.

[WCW90] Jack C. Wileden, Lori A. Clarke, and Alexander L. Wolf. A comparative

evaluation of object de�nition techniques. ACM Transactions on Programming

Languages and Systems, 12(4):670{699, October 1990.

[Weg87] Peter Wegner. The object-oriented classi�cation paradigm. In Bruce Shriver

and Peter Wegner, editors, Research Directions in Object-Oriented Program-

ming, pages 479{560. MIT Press, 1987.

[Wer86] Charles J. Wertz. The Data Dictionary. QED Information Sciences, Inc.,

1986.

[WG84] William Waite and Gerhard Goos. Compiler Construction. Springer Verlag,

1984.



BIBLIOGRAPHY 605

[WG89] Niklaus Wirth and J�urg Gutknecht. The Oberon System. Software{Practice

and Experience, 19(9):857{893, September 1989.

[WH91] Norman Wilde and Ross Huitt. Maintenance support for object-oriented pro-

grams. In Conference on Software Maintenance, pages 162{170, Sorrento,

Italy, 1991. IEEE Press.

[WH92] Norman Wilde and Ross Huitt. Maintenance support for object-oriented pro-

grams. IEEE Transactions on Software Engineering, 18(12):1038{1044, De-

cember 1992.

[Wil83] David S. Wile. Program developments: Formal explanations of implementa-

tions. Communications of the ACM, 26(11):902{911, 1983.

[Wil86] David S. Wile. Organizing programming knowledge into syntax-directed ex-

perts. In International Workshop on Advanced Programming Environments,

pages 551{565. Springer Verlag (LNCS 244), 1986.

[Wir71a] Niklaus Wirth. Program development by stepwise re�nement. Communica-

tions of the ACM, 14(4):221{227, 1971.

[Wir71b] Niklaus Wirth. The Programming Language Pascal. Acta Informatica, 1:35{

63, 1971.

[Wir74a] Niklaus Wirth. On the composition of well-structured programs. ACM Com-

puting Surveys, 6(4):247{259, 1974.

[Wir74b] Niklaus Wirth. On the design of programming languages. In IFIP, Amster-

dam, pages 386{393. North-Holland, 1974.

[Wir76] Niklaus Wirth. Algorithms + Data Structures = Programs. Prentice-Hall,

1976.

[Wir77] Niklaus Wirth. What can we do about the unnecessary diversity of notation

for syntactic de�nitions? Communications of the ACM, 20(11):822{823, 1977.

[Wir82] Niklaus Wirth. Hades: A Notation for the Description of Hardware. Technical

report, Swiss Federal Institute of Technology, August 1982.

[Wir84] Niklaus Wirth. Programming in Modula-2. Springer Verlag, 1984.

[Wir88] Niklaus Wirth. The programming language Oberon. Software{Practice and

Experience, 18(7):671{690, July 1988.

[WL88] Jim Woodcock and Martin Loomes. Software Engineering Mathematics.

Addison-Wesley, 1988.

[WMH93] Norman Wilde, Paul Matthews, and Ross Huitt. Maintaining object-oriented

software. IEEE Software, pages 75{80, January 1993.



606 BIBLIOGRAPHY

[Woo79] W. A. Woods. Theoretical studies in natural language understanding. Tech-

nical Report 4332, Bolt, Beranek, and Newman, 1979.

[Xia94] Cun Xiao. Adaptive Software: Automatic Navigation Through Partially Spec-

i�ed Data Structures. PhD thesis, Northeastern University, 1994. 189 pages.



Index

�, 144, 501

*along*, 311

*at*, 311

*bypassing*, 178

*carry*, 311

*common*, 122, 140, 509

*from*, 116, 178

*in*, 311

*init*, 115, 116, 293

*inout*, 311

*join*, 188

*merge*, 189

*operation*, 115, 208, 211

*out*, 311

*pre�x*, 115, 208, 211

*private*, 228

*su�x*, 130, 208, 211

*through*, 130, 178

*to*, 116, 178

*to-stop*, 181

*traverse*, 116, 208, 211

*via*, 130

*wrapper*, 208, 211

->, 211

., 119

:, 120, 140, 142

<, 119, 137

=, 119, 137, 142

>, 119, 137

[, 139

], 139

|, 120, 140

~, 126, 140, 142

~>, 211

=), 120, 140

�!, 117, 139

, 120, 140, 142

2 , 117, 142

, 123, 140, 142

abbreviated queries, 480

Abiteboul, Serge, 480

abstract class, 157, 468, 540, 565

abstract superclass rule, 157, 469, 535, 540

abstraction, 26, 391

access independence, 279

accessor method, 32

Adams, Sam, 356

adaptive program, 454, 472, 566, see prop-

agation pattern

assumptions, 227, 320

implementation, 455, 474

correctness, 475

adaptive programming principle, 81, 566

adaptive software

composition, 225, 492

editing, 207

further work, 590

history, 207

parsing, 358

parts, 403

reusability, 217

usefulness, 482

aggregation, 42, see construction

Agha, Gul, 38

Aksit, Mehmet, 105

all-loser, 196

all-winner, 196

alternation class, 120, 140, 144, 147, 157,

361, 366, 509, see abstract

607



608 INDEX

optional part, 394

alternation edge, 120, 140, 144, 147, 161,

566

alternation property, 272

alternation vertex, 566, see alternation class

alternation-reachable, 72, 468, 498, 566

ambiguous

class dictionary, 364, 527, 566

analysis, 407

Arndt, Rolf, xxxv

associated, 149, 422, 503

association, 26

asymptotic analysis of adaptiveness, 491

at-least-one alternative rule, 566

atomic object, 149

attribute, 566

avoiding conditional statement, 318, 326

Baclawski, Kenneth, xxxv

bad recursion, 382

Balzer, Robert, 107, 379, 481

Barnes, Bruce, xxxv

Beck, Kent, 253

Beigel, Robert, 199

Bergmans, Lodewijk, 105

Bobrow, Daniel, 402

Booch Method, 254

Booch, Grady, xxv, 254, 454

Boyce-Codd normal form, 397

breadth-�rst

traversal, 495

broadcast, 312

Brown, Cynthia, xxxv

Brown, George, xxxv

bypassing clause, 130, 178, 566, see prop-

agation directive

C++ code, 115

Caldarella, Jim, xxxv

Cameron, Robert, 166

Cardelli, Luca, 531

cardinality constraint, 219, 228

Cartwright, Robert, 380

Casais, Eduardo, 253, 454

castle analogy, 407

chess board, 219

Chittenden, Je�, xxxv

circular object, 152

Clark, Clarence, xxxv

Clarke, Lori, 109

class, 24, 26, 28

parameterized, 156

bounded, 531

expanded, 156

class dictionary, 93, 117, 359, 372, 511,

567

ambiguous, 364, 527

debugging, 417

design, 234, 393, 405

design rules, 364

edge pattern, 227


at, 361, 512

for class dictionary, 563

grammar, 363

inductive, 372

left-recursive, 372

LL(1), 372

naming, 234

nonambiguous, 372

ordering of classes, 514

parameterized

rules, 531

syntax, 529

partial information, 227

partitioning, 234

self-describing, 529

syntax, 529

textual representation, 359, 530

class dictionary design, 397

buy versus inherit, 161

dimensions, 385

class dictionary graph, 12, 135, 144, 468,

501, 511, 567

compatible

propagation directive, 470

concise notation, 136

consistent

propagation directive, 461, 475

cycle-free, 383

dense, 492



INDEX 609

design, 157

extension, 410


at, 150

graphical notation, 136

graphical representation, 117

summary, 142

inductive, 382, 507

useless symbol, 523

learning, 117

minimization, 389

tree property, 389

normalization, 396

object-equivalent, 414

parameterization, 391

parts-centered, 157

reachable, 498

rule, 501

abstract superclass, 469

at-least-one alternative, 469

no subclass cycle, 469

size, 386

specialization-centered, 157

textual notation, 136

textual representation, 137, 139, 140

summary, 142

class dictionary graph slice, 382, 500, 501,

567

of class dictionary graph, 501

class graph, 468

class graph slice, 489

class library generator, 563, see User's Guide

class-set, 241

class-valued variable, 88, 566

client of a class, 567

Clinger, William, 483

CLOS, xxviii

Coad, Peter, 428

code walker, 480

Coleman, Derek, 253

collaborating classes, 169, 202, 237, 404

common part, 122, 140, 567

compatibility, 463

compatible, 461, 567

constraint, 179

edge pattern, 179

propagation directive, 192, 193, 470

completion of knowledge path, 273, 538

component, 225, 568

example, 327

invariant, 228

composite object, 149

compositional consistency, 463

sound, 478

concrete class, 568

condense, 312

conforms, 469

consistency checking

running time, 479

consistent, 183, 461, 475, 570, 576, 578

class dictionary graph

propagation directive, 461, 475

compositional, 463

constraint, 178, 568

constraint-based programming, 25

construction class, 90, 137, 144, 147, 361,

365, 509, see concrete

construction edge, 90, 117, 139, 144, 147,

161, 568

optional, 139

construction vertex, 117, 568, see construc-

tion class

constructor, 31, 41, 533

generated, 74

contradictory propagation directive, 196,

492

contradictory set of propagation directives,

493

convex set of paths, 468

correctness of implementation, 475

coupling

loose, 78

course material, 589

Cox, Brad, 38

Cunningham, Ward, 253

customizer, 568, see class dictionary

customizer restriction, 255, 260

transportation pattern, 315

cycle-free alternation rule, 569

data abstraction, 390



610 INDEX

data member, 28, 533

private, 152

database, 396

debugging, 237, 405, 417, 420

delayed binding, 97, 279

delayed binding restriction, 265, 268

delayed binding rule, 265, 569

delayed operation selection, 24

Demeter, xxv

FAQ, 589

Home page, 589

pronunciation, xxv

Demeter data model, 527

Demeter Method, 403

Demeter Tools/C++, 12, 99, 455, 544,

589

questions, 590

Quick Reference Guide, 578

DeMillo, Richard, xxxv

dense class dictionary graph, 492

dependency metric, 186, 490, 569

depth �rst traversal, 212, 327

derivation tree, 514, 517

derived edge, 420

design, 407

opportunistic planning, 397

design pattern, 425, 481, 569

Deutsch, Peter, 106, 108

divide-and-conquer, 398

Donzeau-Gouge, Veronique, 166

download software, 589

e-mail questions, 590

EA, 144, 501

EC, 144, 501

edge kinds, 142

edge pattern, 130, 178, 569, see propaga-

tion pattern

edge wrapper, 229, 245, 569, see propaga-

tion pattern

edge/vertex restrictions, 145, 147, 176, 569

e�ciency, 344

elastic class structure, 169, 171

encapsulation, 24

Engeler, Erwin, 541

entity-relationship diagram, 135

evolution, 120, 187, 310

unforeseen, 86

evolution history, 234

example

area of �gures, 240

business, 400

car, 220

chess board, 219

class dictionary comparison, 403

compiler, 225

component, 327

cycle checking, 235

depth �rst traversal, 212, 235

with transportation, 327

free variables, 455

furnace, 411

graduate school, 509

meal, 223, 259, 359

part clusters, 419

patchwork, 286

pipeline, 399

refrigerator, 262, 265, 465

Scheme, 455

simulate multiple inheritance, 239

sorting network, 399

superclass, 418

testing for subobjects, 326

triples, 318

VLSI design, 398

work 
ow management, 330

FAQ, 589

�nding the objects, 416

Finkelstein, Larry, xxxv

�rst set, 367, 517, 569, see LL(1)


at class dictionary, 362, 512, 570


at class dictionary graph, 150, 171, 469


at Demeter Method, 173, 297, 298

Floyd, Richard, 199

follow set, 369, 519, 570, see LL(1)

Foote, Brian, 106

forward path, 492

framework, 227, 454

from clause, 570, see propagation directive



INDEX 611

function member, 533

public, 153

functional decomposition, 405

functional dependency, 396

Functional programming, 25

Fusion Method, 253

Gamma, Erich, 481

Garey, Michael, 402

Garlan, David, 106, 109, 110

generic operation, 26, 34

German, Steve, 402

Gibbs, Simon, 454

Gill, Helen, xxxv

Goldberg, Adele, 38

Goldberg, Andrew, xxxi, 379

Graham, Susan, 106

grammar, 363

ambiguous, 527

context-free, 511

grammar-based programming, 25

graph, 466, 570

graph algorithm, 212

graphical representation

class dictionary graph, 120, 123, 142

growth plan, 155, 237, 405, 489, 500, 501,

554

H�ursch, Walter, xxxv

Hailpern, Brent, xxxv

Harrison, William, 110, 480

Helm, Richard, 481

Henderson-Sellers, Brian, 428

Hewitt, Carl, 38

history

Demeter Project, xxxi

software development, 97

Hoare, Charles Anthony Richard, 167

Holland, Ian, xxxv

homework assignments, 542

hook to class dictionary, 202

Hopcroft, John, 541

hot-spot-driven approach, 110

Huet, G�erard, 166

Hull, Richard, 166

implementation, 407

implicit case analysis, 394

inconsistent

avoid, 264, 269

overlap with subclass invariant, 269

incremental inheritance, 245, 570

rule, 570

induction, 149

inductive, 382, 489, 507, 508, 523, 570

information loss, 183, 570, see consistent

propagation directive, 262

information restriction, 204

inheritance, 25, 31, 153, 498

incremental, 239, 245, 279, 282

overriding, 237, 245, 279

inheritance edge, 171, 571

inheritance restriction, 269

instance, 33, 571

instance variable, 28

instantiate

knowledge path by object path, 537

intentional programming, 107

interface, 571

Internet

access to Demeter Tools, 589

inventor's paradox, xxv, 80, 88, 391, 475

Ito, Robert, 166

Jacobson, Ivar, xxv, 105, 428

Johnson, David, 402

Johnson, Ralph, 106, 481

join, 181, 189, 571

propagation directive, 192

propagation graph, 190

judgement, 472

Keszenheimer, Linda, xxxv

key, 396

Kiczales, Gregor, 3, 108, 481

Kifer, Michael, 480

Kim, Won, 480

King, Roger, 166

Kleene's theorem for digraphs, 199

knowledge path, 176, 177, 282, 324, 498,

499, 535, 571



612 INDEX

completion, 538

instantiation, 535

traversals, 535

Knudsen, Svend, xxxi

label, 144, 147, 466

Laboratory Guide, 589

LaLonde, Wilf, 39

Lamping, John, 481

Lang, Bernard, 166

language, 361, 362, 514, 516, 571

language implementation, 225

Law of Demeter, 202, 481, 565

adaptive programming, 202

classes, 382

Law of Demeter for classes, 383, 508

learning class dictionary graph, 120

left-recursion, 371, see LL(1), inductive

legal object, 149, 490

Lippman, Stanley, xxix

Liu, Linling, 109

LL(1) conditions, 365, 369, 398, 517, 527,

565, see ambiguous

implications, 521

Rule 1, 519

Rule 2, 520

loose coupling, 78, 169

Lopes, Cristina, xxxv

Madsen, Ole Lehrmann, 167

make-instance, 31

Malhotra, Ashok, xxxv

Markowitz, Victor, 480

match, 571

McQuilken, George, xxxvii

meal, 359

meal example, 136

Meier, David, 166

Meier, Linus, xxxv

Mellor, Stephen, 428

memory leakage, 244

merge, 189, 571

propagation directive, 192

propagation graph, 190

merge and inconsistency, 183

metaSize, 186

method, 24, 28, 571

method combination, 239, 241

method resolution, 571

metric

class dictionary graph, 386

Dep, 237

dependency, 170

structure-shyness, 490

Meyer, Bertrand, 482

minimize

alternation edges, 388

class dictionary graph, 389

construction edges, 387

Minsky, Marvin, 379

Modula-2, 393

modularity, 24, 30, 395

multiple inheritance, 32, 239, 241, 572

naming, 393

new, 31

Nierstrasz, Oscar, 454

nonambiguous, 372

nonterminal symbol, 514

normalization, 396

notation

role expressiveness

LL(1) conditions, 398

viscosity, 398

NP-hard

class dictionary minimization, 389

propagation directive minimization, 491

N�rgaard, Claus, 167

object, 149, 150, 572

building under program control, 244

circular, 384

creation, 572

destruction, 572

essential information, 358

graph, 149

path, 536

print, 361

reference, 572

size, 152, 490



INDEX 613

state, 28

transportation, 309

traversal, 256

tree, 364

object de�nition

declarative, 514

imperative, 514

object graph, 469, 504, see object

class dictionary graph slice, 502

syntax, 531

textual notation, 506

translation, 535

Object Management Group, 34

object-equivalent, 277, 386, 469, 572

Objective-C, xxviii

OMT Method, 253

operation, 10, 24, 572

deferred, 29

operation name, 572

operational semantics, 472

propagation pattern, 255

target language, 473

optional construction edge, 90, 147, 572

optional repetition edge, 147, 572

Ossher, Harold, xxxv, 110, 480

overloading, 30

override method, 32

overriding inheritance, 245, 572

Palsberg, Jens, xxxv, 197, 468, 492

parameter passing mode, 312, 573

parameterization, 88, 391

explicit, 84

parameterized class, 156, 529, 573

Parnas, David, 81

parse, 363, 364, 521, 523, 525

bijection, 524

halting property, 524

recursive descent, 365

train analogy, 366

parsing a sentence, 573

part, 573

part variable, 28

PartCluster, 410, 504

Parts, 503

parts-centered design, 158

Partsch, Helmut, 166

Pascal, 394

path, 457, 467

constraint satisfaction, 276

in object graph, 505

knowledge

completed, 273

prematurely terminated, 459

requirements, 536

path instantiation, 536

path set, 182, 471

map to graph, 474

Patt-Shamir, Boaz, xxxv, 494

pattern

Adaptive Visitor, 426

Builder, 427

Composite, 425, 481

Interpreter, 427

Iterator, 427

prototype, 244

Visitor, 425, 481

persistent object, 573, see sentence

Polya, George, 80

Pree, Wolfgang, 110

pre�x expression, 33

pre�x wrapper, 573

prematurely terminated path, 273, 459

print, 361, 362, 516, 521

bijection, 371, 522

printing an object, 573

problem decomposition, 415

Prolog, 394

proof system, 472, 474, 496

soundness, 466

propagate, 574

propagate operator, 182, 474

propagation directive, 57, 89, 129, 178,

574

applications, 169

cardinality constraint, 228

compatible, 182

class dictionary graph, 470

consistent, 183, 262

class dictionary graph, 461, 475



614 INDEX

design tradeo�, 188

evolution, 187

expression, 192, 574

�nding it, 185

high-level interpretation, 182, 475

information loss, 183

join, 192

join and inconsistency, 183

low-level interpretation, 182, 475

merge, 192

merge and inconsistency, 183

path constraint, 228

satisfaction, 272

shortcut violation, 183

subclass invariance restriction, 183

testing, 188, 492

zigzag violation, 183

propagation graph, 57, 92, 169, 178, 182,

459, 474, 574

examples, 182

propagation object, 256

propagation pattern, 88, 89, 116, 207, 255,

574

design, 234, 237

implementation, 207, 285

operational semantics, 255

reader, 243

robustness, 277

sentence, 359

simulate multiple inheritance, 239

with return type, 293

with traversal directive, 255

without traversal directive, 255

writer, 243

propagation restriction, 261

propagation vertex, 256

prototype, 25

Pugh, John, 39

questions, 590

Quick Reference Guide, 578

reachable, 511

reducible 
ow graphs, 494

redundant part, 389

redundant program, 207

referential integrity, 574

re�nement of propagation directives, 486

regular

expression, 199, 457

set, 199

regularity, 393

Reif, John, 494

relation

has-a, 135

is-a, 135

relation-valued variable, 89, 574

repetition class, 90, 123, 140, 147, 361,

365

simulate, 530

repetition edge, 90, 123, 142, 147, 574

repetition vertex, 575, see repetition class

representative class graph, 487, 493

Reps, Thomas, 106

request, 24, 575

restrict operator, 189, 487, 575

propagation directive, 192

return variable, 293

return val, 132, 293, see propagation pat-

tern

reusability, 217

Riel, Arthur, xxxv, 166

robustness, 217

robustness analysis, 405

rule

abstract superclass, 535

class dictionary graph, 501

no subclass cycle, 501

unique label, 501

class dictionary graph slice, 502

LL(1), 517

parameterized class dictionary, 531

semi-class dictionary graph, 499

no subclass cycle, 499

unique label, 500

terminal-bu�er, 393

Rumbaugh, James, xxv, 253, 480

running time, 490

Sagiv, Yehoshua, 480



INDEX 615

Sakkinen, Markku, 105, 253

Salasin, John, xxxv

Salzberg, Betty, 402

satisfy, 575

clause, 178

constraint, 179

scanning a sentence, 366, 575, see parse

Schwartzbach, Michael, 468

self-describing

class dictionary, 529

selfstudy, 542

semantics of propagation pattern, 472

semi-class dictionary graph, 171, 285, 498,

575

rule, 499

sentence, 358, 359, 516, 575

family of objects, 359

set of paths, 182, 459, 471

traversal guidance, 458

Sethi, Ravi, 81

shared object, 152

sharing, 25, 30

Shaw, Mary, 109, 110

Sheu, Philip, 380

Shlaer, Sally, 428

shortcut violation, 183, 464, 477, 576

Shoshani, Arie, 480

signature, 23, 115, 209, 237, 576

extension, 576

Silva-Lepe, Ignacio, xxxv

simpli�cation

behavior, 234, 415

data, 234, 415

single inheritance, 390, 576

size of object, 490

Skarra, Andrea, 166

slot, 28

small methods, 206

Smalltalk, xxviii

Smith, Randall, 38

solving more general problem, 391, see Polya's

inventor paradox

source vertex, 470, 576

state, 28, 576

Ste�k, Mark, 402

Stein, Jacob, 166

Stroustrup, Bjarne, xxix

style rule

class dictionary, 382

subclass edge, 457, 468, see alternation

edge

subclass invariance, 463, 469

subclass invariance restriction, 183, 265

subclass relationship, 468

subject-oriented, 110

succinct subgraph speci�cation, 169, 178,

311, 454, see propagation direc-

tive

su�x wrapper, 576

syllabus, 542

synchronous request, 576

syntax, 359

class dictionary, 532

object graph, 532

syntax chart, 365

syntax diagram, 365

syntax edge, 509, 576

syntax error, 366

syntax summary, seeQuick Reference Guide

component, 228

propagation directives, 179

propagation patterns, 211

syntax vertex, 509, 576

Tai, K.C., xxxv

target language, 473

target vertex, 470, 576

Teitelbaum, Tim, 106

Terminal, 533, see User's Guide

terminal, 365, 511, 576

with a value, 365

without a value, 365

terminal class, 365

bu�ering, 393

terminal object, 149

terminal symbol, 514

terminal vertex, 511, 577, see terminal

class

terminology summary, 484

testing, 188, 235, 404, 406, 492



616 INDEX

incremental, 420

textual representation

class dictionary graph, 142, 529

this, 32

Thomas, Dave, 39

through clause, 130, 178, 577, see propa-

gation directive

to clause, 577, see propagation directive

to-stop clause, 577, see propagation direc-

tive

token, 359, 365, 577

translation to C++, 119, 120, 123, 126,

152, 532, seeDemeter Tools/C++

class dictionary, 533

object graph, 535

propagation pattern, 207, 285, 459

transportation patterns, 329

transportation directive, 311

Transportation Entry Restriction, 315, 565

transportation graph, 311, 577

transportation pattern, 309, 324, 577

customizer restriction

Transportation Entry Restriction,

315

Transportation Recursion Restric-

tion, 315

design, 406

packaging, 343

syntax, 311

type-correct, 314

wrapper pushing, 330

Transportation Recursion Restriction, 315,

565

traversal, 169, 171

breadth-�rst, 495

overriding, 282

traversal graph, 169, 577

traversal history, 472

traversal order, 256

traversal speci�cation, 457, 469, see prop-

agation directive

well-formed, 470

TRAVERSE, 255

tree object, 364, 514

tree property, 390, see single inheritance

triples example, 318

Tsichritzis, Dennis, 454

type theory for adaptive software, 492

type-correct, 314

Ullman, Je�rey, 402

Ungar, David, 38

unique label rule, 577

Universal, 533, see User's Guide

unsolvable problem

ambiguity

class dictionary, 364

Post's correspondence, 527

use case, 404, 577

used vertex, 268, 578

usefulness of adaptive software, 482

useless

class, 523

symbol, 523

User's Guide, 589

VA, 144, 501

value, 578

Van den Bussche, Jan, 480

variable

class-valued, 227, 320

relation-valued, 320

renaming, 227

VC, 144, 501

vertex, 578

vertex wrapper, 229, 245, 578

via clause, 130, 578, see propagation di-

rective

virtual, 26

virtual base class, 533

virtual function, 120

Vlissides, John, 481

Vossen, Gottfried, 480

VT, 501

Wand, Mitchell, xxxv, 483

Wegman, Mark, xxxv

Wegner, Peter, 39, 531

well-formed traversal speci�cation, 470

wildcard symbol, 179

Wilde, Norman, 308, 481



INDEX 617

Wile, David, 107, 480, 481

Wileden, Jack, 109

Wirfs-Brock, Rebbeca, xxv

Wirth, Niklaus, xxxi, 81, 104, 379

Wolf, Alexander, 109

wrapper, 89, 130, 471, 578

class set, 239

edge, 245

ordering, 276, 283

pushing, 291, 330

several for same class or edge, 258

simulate inheritance, 241

symmetry, 281

vertex, 245

WWW information

on adaptive software, 589

Xiao, Cun, xxxv

Yourdon, Edward, 428

Zdonik, Stanley, 166

Zicari, Roberto, 109

zigzag violation, 183, 464, 477, 578


