
Walter Gander · Martin J. Gander · Felix Kwok

Scientifi c
Computing
 An Introduction
 using Maple and MATLAB

Editorial Board
T. J. Barth

M. Griebel
D. E. Keyes

R. M. Nieminen
D. Roose

T. Schlick

11

Texts in Computational
Science and Engineering 11
Editors

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose
Tamar Schlick

For further volumes:
http://www.springer.com/series/5151

Walter Gander • Martin J. Gander • Felix Kwok

Scientific Computing

An Introduction using Maple and MATLAB

123

Walter Gander
Departement Informatik
ETH Zürich
Zürich
Switzerland

Martin J. Gander
Felix Kwok
Section de Mathématiques
Université de Genève
Genève
Switzerland

ISSN 1611-0994
ISBN 978-3-319-04324-1 ISBN 978-3-319-04325-8 (eBook)
DOI 10.1007/978-3-319-04325-8
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014937000

Mathematics Subject Classification (2010): 65-00, 65-01

c© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this pub-
lication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s
location, in its current version, and permission for use must always be obtained from Springer. Permis-
sions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publica-
tion does not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

V

This book is dedicated to
Professor Gene H. Golub

1932–2007

(picture by Jill Knuth)

The three authors represent three generations of mathematicians who have
been enormously influenced by Gene Golub.

He shaped our lives and our academic careers through his advice, his
leadership, his friendship and his care for younger scientists.

We are indebted and will always honor his memory.

Preface

We are conducting ever more complex computations
built upon the assumption that the underlying numer-
ical methods are mature and reliable.
When we bundle existing algorithms into libraries and
wrap them into packages to facilitate easy use, we create
de facto standards that make it easy to ignore numerical
analysis.

John Guckenheimer, president SIAM, in SIAM News,
June 1998: Numerical Computation in the Information
Age

When redrafting the book I was tempted to present the
algorithms in ALGOL, but decided that the difficulties
of providing procedures which were correct in every de-
tail were prohibitive at this stage.

James Wilkinson, The Algebraic Eigenvalue Problem, Ox-
ford University Press, 1988.

This book is an introduction to scientific computing, the mathematical mod-
eling in science and engineering and the study of how to exploit computers
in the solution of technical and scientific problems. It is based on mathe-
matics, numerical and symbolic/algebraic computations, parallel/distributed
processing and visualization. It is also a popular and growing area — many
new curricula in computational science and engineering have been, and con-
tinue to be, developed, leading to new academic degrees and even entire new
disciplines.

A prerequisite for this development is the ubiquitous presence of com-
puters, which are being used by virtually every student and scientist. While
traditional scientific work is based on developing theories and performing ex-
periments, the possibility to use computers at any time has created a third
way of increasing our knowledge, which is through modeling and simulation.
The use of simulation is further facilitated by the availability of sophisticated,
robust and easy-to-use software libraries. This has the obvious advantage
of shielding the user from the underlying numerics; however, this also has
the danger of leaving the user unaware of the limitations of the algorithms,
which can lead to incorrect results when used improperly. Moreover, some
algorithms can be fast for certain types of problems but highly inefficient for
others. Thus, it is important for the user to be able to make an informed
decision on which algorithms to use, based on the properties of the problem
to be solved. The goal of this book is to familiarize the reader with the basic

VIII

concepts of scientific computing and algorithms that form the workhorses
of many numerical libraries. In fact, we will also emphasize the effective
implementation of the algorithms discussed.

Numerical scientific computing has a long history; in fact, computers were
first built for this purpose. Konrad Zuse [154] built his first (mechanical)
computer in 1938 because he wanted to have a machine that would solve
systems of linear equations that arise, e.g., when a civil engineer designs
a bridge. At about the same time (and independently), Howard H. Aiken
wanted to build a machine that would solve systems of ordinary differential
equations [17].

The first high quality software libraries contained indeed numerical algo-
rithms. They were produced in an international effort in the programming
language ALGOL 60 [111], and are described in the handbook “Numerical
Algebra” [148]. These fundamental procedures for solving linear equations
and eigenvalue problems were developed further, rewritten in FORTRAN,
and became the LINPACK [26] and EISPACK [47] libraries. They are
still in use and available at www.netlib.org from Netlib. In order to help
students to use this software, Cleve Moler created around 1980 a friendly in-
terface to those subroutines, which he called Matlab (Matrix Laboratory).
Matlab was so successful that a company was founded: MathWorks. Today,
Matlab is “the language of technical computing”, a very powerful tool in
scientific computing.

Parallel to the development of numerical libraries, there were also efforts
to do exact and algebraic computations. The first computer algebra systems
were created some 50 years ago: At ETH, Max Engeli created Symbal, and
at MIT, Joel Moses Macsyma. Macsyma is the oldest system that is still
available. However, computer algebra computations require much more com-
puter resources than numerical calculations. Therefore, only when computers
became more powerful did these systems flourish. Today the market leaders
are Mathematica and Maple.

Often, a problem may be solved analytically (“exactly”) by a computer
algebra system. In general, however, analytical solutions do not exist, and
numerical approximations or other special techniques must be used instead.
Moreover, computer Algebra is a very powerful tool for deriving numerical
algorithms; we use Maple for this purpose in several chapters of this book.
Thus, computer algebra systems and numerical libraries are complementary
tools: working with both is essential in scientific computing. We have chosen
Matlab and Maple as basic tools for this book. Nonetheless, we are aware
that the difference between pure computer algebra systems and numerical
Matlab-like systems is disappearing, and the two may merge and become
indistinguishable by the user in the near future.

www.netlib.org

IX

How to use this book

Prerequisites for understanding this book are courses in calculus and linear
algebra. The content of this book is too much for a typical one semester
course in scientific computing. However, the instructor can choose those sec-
tions that he wishes to teach and that fit his schedule. For example, for
an introductory course in scientific computing, one can very well use the
least squares chapter and teach only one of the methods for computing the
QR decomposition. However, for an advanced course focused solely on least
squares methods, one may also wish to consider the singular value decompo-
sition (SVD) as a computational tool for solving least squares problems. In
this case, the book also provides a detailed description on how to compute
the SVD in the chapter on eigenvalues. The material is presented in such a
way that a student can also learn directly from the book. To help the reader
navigate the volume, we provide in section 1.2 some sample courses that have
been taught by the authors at various institutions.

The focus of the book is algorithms: we would like to explain to the
students how some fundamental functions in mathematical software are de-
signed. Many exercises require programming in Matlab or Maple, since
we feel it is important for students to gain experience in using such pow-
erful software systems. They should also know about their limitations and
be aware of the issue addressed by John Guckenheimer. We tried to include
meaningful examples and problems, not just academic exercises.

Acknowledgments

The authors would like to thank Oscar Chinellato, Ellis Whitehead, Oliver
Ernst and Laurence Halpern for their careful proofreading and helpful sug-
gestions.

Walter Gander is indebted to Hong Kong Baptist University (HKBU)
and especially to its Vice President Academic, Franklin Luk, for giving him
the opportunity to continue to teach students after his retirement at ETH.
Several chapters of this book have been presented and improved successfully
in courses at HKBU. We are also thankful to the University of Geneva, where
we met many times to finalize the manuscript.

Geneva and Zürich, August 2013

Walter Gander, Martin J. Gander, Felix Kwok

Contents

Chapter 1. Why Study Scientific Computing? 1
1.1 Example: Designing a Suspension Bridge 1

1.1.1 Constructing a Model 1
1.1.2 Simulating the Bridge 3
1.1.3 Calculating Resonance Frequencies 4
1.1.4 Matching Simulations with Experiments 5

1.2 Navigating this Book: Sample Courses 6
1.2.1 A First Course in Numerical Analysis 7
1.2.2 Advanced Courses . 8
1.2.3 Dependencies Between Chapters 8

Chapter 2. Finite Precision Arithmetic 9
2.1 Introductory Example . 10
2.2 Real Numbers and Machine Numbers 11
2.3 The IEEE Standard . 14

2.3.1 Single Precision . 14
2.3.2 Double Precision . 16

2.4 Rounding Errors . 19
2.4.1 Standard Model of Arithmetic 19
2.4.2 Cancellation . 20

2.5 Condition of a Problem . 24
2.5.1 Norms . 24
2.5.2 Big- and Little-O Notation 27
2.5.3 Condition Number . 29

2.6 Stable and Unstable Algorithms 33
2.6.1 Forward Stability . 33
2.6.2 Backward Stability . 36

2.7 Calculating with Machine Numbers: Tips andTricks 38
2.7.1 Associative Law . 38
2.7.2 Summation Algorithm by W. Kahan 39
2.7.3 Small Numbers . 40
2.7.4 Monotonicity . 40
2.7.5 Avoiding Overflow . 41

XII CONTENTS

2.7.6 Testing for Overflow 42

2.7.7 Avoiding Cancellation 43
2.7.8 Computation of Mean and Standard Deviation 45

2.8 Stopping Criteria . 48
2.8.1 Machine-independent Algorithms 48
2.8.2 Test Successive Approximations 51
2.8.3 Check the Residual . 51

2.9 Problems . 52

Chapter 3. Linear Systems of Equations 61
3.1 Introductory Example . 62
3.2 Gaussian Elimination . 66

3.2.1 LU Factorization . 73
3.2.2 Backward Stability . 77

3.2.3 Pivoting and Scaling 79
3.2.4 Sum of Rank-One Matrices 82

3.3 Condition of a System of Linear Equations 84
3.4 Cholesky Decomposition . 88

3.4.1 Symmetric Positive Definite Matrices 88
3.4.2 Stability and Pivoting 92

3.5 Elimination with Givens Rotations 95
3.6 Banded matrices . 97

3.6.1 Storing Banded Matrices 97
3.6.2 Tridiagonal Systems 99
3.6.3 Solving Banded Systems with Pivoting 100
3.6.4 Using Givens Rotations 103

3.7 Problems . 105

Chapter 4. Interpolation . 113
4.1 Introductory Examples . 114
4.2 Polynomial Interpolation . 116

4.2.1 Lagrange Polynomials 117
4.2.2 Interpolation Error . 119
4.2.3 Barycentric Formula 121
4.2.4 Newton’s Interpolation Formula 123

4.2.5 Interpolation Using Orthogonal Polynomials 127
4.2.6 Change of Basis, Relation with LU and QR 132
4.2.7 Aitken-Neville Interpolation 139
4.2.8 Extrapolation . 142

4.3 Piecewise Interpolation with Polynomials 144
4.3.1 Classical Cubic Splines 145
4.3.2 Derivatives for the Spline Function 147
4.3.3 Sherman–Morrison–Woodbury Formula 155
4.3.4 Spline Curves . 157

Contents XIII

4.4 Trigonometric Interpolation 158
4.4.1 Trigonometric Polynomials 160
4.4.2 Fast Fourier Transform (FFT) 162
4.4.3 Trigonometric Interpolation Error 164
4.4.4 Convolutions Using FFT 168

4.5 Problems . 171

Chapter 5. Nonlinear Equations 181
5.1 Introductory Example . 182
5.2 Scalar Nonlinear Equations 184

5.2.1 Bisection . 185
5.2.2 Fixed Point Iteration 187
5.2.3 Convergence Rates . 190
5.2.4 Aitken Acceleration and the ε-Algorithm 193
5.2.5 Construction of One Step Iteration Methods 199
5.2.6 Multiple Zeros . 205
5.2.7 Multi-Step Iteration Methods 207
5.2.8 A New Iteration Formula 210
5.2.9 Dynamical Systems . 212

5.3 Zeros of Polynomials . 215
5.3.1 Condition of the Zeros 217
5.3.2 Companion Matrix . 220
5.3.3 Horner’s Scheme . 222
5.3.4 Number Conversions 227
5.3.5 Newton’s Method: Classical Version 230
5.3.6 Newton Method Using Taylor Expansions 231
5.3.7 Newton Method for Real Simple Zeros 232
5.3.8 Nickel’s Method . 237
5.3.9 Laguerre’s Method . 239

5.4 Nonlinear Systems of Equations 240
5.4.1 Fixed Point Iteration 242
5.4.2 Theorem of Banach 242
5.4.3 Newton’s Method . 245
5.4.4 Continuation Methods 251

5.5 Problems . 252

Chapter 6. Least Squares Problems 261
6.1 Introductory Examples . 262
6.2 Linear Least Squares Problem and the Normal

Equations . 266
6.3 Singular Value Decomposition (SVD) 269

6.3.1 Pseudoinverse . 274
6.3.2 Fundamental Subspaces 275
6.3.3 Solution of the Linear Least Squares Problem 277
6.3.4 SVD and Rank . 279

XIV CONTENTS

6.4 Condition of the Linear Least Squares Problem 280
6.4.1 Differentiation of Pseudoinverses 282
6.4.2 Sensitivity of the Linear Least Squares Problem 285
6.4.3 Normal Equations and Condition 286

6.5 Algorithms Using Orthogonal Matrices 287
6.5.1 QR Decomposition . 287
6.5.2 Method of Householder 289
6.5.3 Method of Givens . 292
6.5.4 Fast Givens . 298
6.5.5 Gram-Schmidt Orthogonalization 301
6.5.6 Gram-Schmidt with Reorthogonalization 306
6.5.7 Partial Reorthogonalization 308
6.5.8 Updating and Downdating the QR

Decomposition . 311
6.5.9 Covariance Matrix Computations Using QR 320

6.6 Linear Least Squares Problems with Linear Constraints . . . 323
6.6.1 Solution with SVD . 325
6.6.2 Classical Solution Using Lagrange Multipliers 328
6.6.3 Direct Elimination of the Constraints 330
6.6.4 Null Space Method . 333

6.7 Special Linear Least Squares Problems with Quadratic
Constraint . 334
6.7.1 Fitting Lines . 335
6.7.2 Fitting Ellipses . 337
6.7.3 Fitting Hyperplanes, Collinearity Test 340
6.7.4 Procrustes or Registration Problem 344
6.7.5 Total Least Squares 349

6.8 Nonlinear Least Squares Problems 354
6.8.1 Notations and Definitions 354
6.8.2 Newton’s Method . 356
6.8.3 Gauss-Newton Method 360
6.8.4 Levenberg-Marquardt Algorithm 361

6.9 Least Squares Fit with Piecewise Functions 364
6.9.1 Structure of the Linearized Problem 367
6.9.2 Piecewise Polynomials 368
6.9.3 Examples . 372

6.10 Problems . 374

Chapter 7. Eigenvalue Problems 387
7.1 Introductory Example . 388
7.2 A Brief Review of the Theory 392

7.2.1 Eigen-Decomposition of a Matrix 392
7.2.2 Characteristic Polynomial 396
7.2.3 Similarity Transformations 396

Contents XV

7.2.4 Diagonalizable Matrices 397

7.2.5 Exponential of a Matrix 397

7.2.6 Condition of Eigenvalues 398

7.3 Method of Jacobi . 405

7.3.1 Reducing Cost by Using Symmetry 414

7.3.2 Stopping Criterion . 417

7.3.3 Algorithm of Rutishauser 417

7.3.4 Remarks and Comments on Jacobi 420

7.4 Power Methods . 422

7.4.1 Power Method . 423

7.4.2 Inverse Power Method (Shift-and-Invert) 424

7.4.3 Orthogonal Iteration 425

7.5 Reduction to Simpler Form 429

7.5.1 Computing Givens Rotations 429

7.5.2 Reduction to Hessenberg Form 430

7.5.3 Reduction to Tridiagonal Form 434

7.6 QR Algorithm . 436

7.6.1 Some History . 437

7.6.2 QR Iteration . 437

7.6.3 Basic Facts . 437

7.6.4 Preservation of Form 438

7.6.5 Symmetric Tridiagonal Matrices 439

7.6.6 Implicit QR Algorithm 443

7.6.7 Convergence of the QR Algorithm 445

7.6.8 Wilkinson’s Shift . 447

7.6.9 Test for Convergence and Deflation 448

7.6.10 Unreduced Matrices have Simple Eigenvalues 449

7.6.11 Specific Numerical Examples 451

7.6.12 Computing the Eigenvectors 453

7.7 Computing the Singular Value Decomposition
(SVD) . 453

7.7.1 Transformations . 454

7.7.2 Householder-Rutishauser Bidiagonalization 454

7.7.3 Golub-Kahan-Lanczos Bidiagonalization 457

7.7.4 Eigenvalues and Singular Values 457

7.7.5 Algorithm of Golub-Reinsch 458

7.8 QD Algorithm . 464

7.8.1 Progressive QD Algorithm 464

7.8.2 Orthogonal LR-Cholesky Algorithm 468

7.8.3 Differential QD Algorithm 472

7.8.4 Improving Convergence Using Shifts 474

7.8.5 Connection to Orthogonal Decompositions 478

7.9 Problems . 482

XVI CONTENTS

Chapter 8. Differentiation . 487
8.1 Introductory Example . 488
8.2 Finite Differences . 491

8.2.1 Generating Finite Difference Approximations 494
8.2.2 Discrete Operators for Partial Derivatives 496

8.3 Algorithmic Differentiation 499
8.3.1 Idea Behind Algorithmic Differentiation 499
8.3.2 Rules for Algorithmic Differentiation 504
8.3.3 Example: Circular Billiard 505
8.3.4 Example: Nonlinear Eigenvalue Problems 509

8.4 Problems . 514

Chapter 9. Quadrature . 517
9.1 Computer Algebra and Numerical Approximations 518
9.2 Newton–Cotes Rules . 521

9.2.1 Error of Newton–Cotes Rules 525
9.2.2 Composite Rules . 527
9.2.3 Euler–Maclaurin Summation Formula 531
9.2.4 Romberg Integration 537

9.3 Gauss Quadrature . 541
9.3.1 Characterization of Nodes and Weights 545
9.3.2 Orthogonal Polynomials 547
9.3.3 Computing the Weights 552
9.3.4 Golub–Welsch Algorithm 555

9.4 Adaptive Quadrature . 561
9.4.1 Stopping Criterion . 563
9.4.2 Adaptive Simpson quadrature 565
9.4.3 Adaptive Lobatto quadrature 569

9.5 Problems . 577

Chapter 10. Numerical Ordinary Differential Equations . . . 583
10.1 Introductory Examples . 584
10.2 Basic Notation and Solution Techniques 587

10.2.1 Notation, Existence of Solutions 587
10.2.2 Analytical and Numerical Solutions 589
10.2.3 Solution by Taylor Expansions 591
10.2.4 Computing with Power Series 593
10.2.5 Euler’s Method . 597
10.2.6 Autonomous ODE, Reduction to First Order

System . 603
10.3 Runge-Kutta Methods . 604

10.3.1 Explicit Runge-Kutta Methods 604
10.3.2 Local Truncation Error 606
10.3.3 Order Conditions . 608
10.3.4 Convergence . 615

Contents XVII

10.3.5 Adaptive Integration 617
10.3.6 Implicit Runge-Kutta Methods 625

10.4 Linear Multistep Methods . 631
10.4.1 Local Truncation Error 635
10.4.2 Order Conditions . 636
10.4.3 Zero Stability . 638
10.4.4 Convergence . 643

10.5 Stiff Problems . 646
10.5.1 A-Stability . 650
10.5.2 A Nonlinear Example 653
10.5.3 Differential Algebraic Equations 655

10.6 Geometric Integration . 656
10.6.1 Symplectic Methods 658
10.6.2 Energy Preserving Methods 661

10.7 Delay Differential Equations 664
10.8 Problems . 666

Chapter 11. Iterative Methods for Linear Systems 673
11.1 Introductory Example . 675
11.2 Solution by Iteration . 677

11.2.1 Matrix Splittings . 677
11.2.2 Residual, Error and the Difference of Iterates 678
11.2.3 Convergence Criteria 680
11.2.4 Singular Systems . 683
11.2.5 Convergence Factor and Convergence Rate 684

11.3 Classical Stationary Iterative Methods 687
11.3.1 Regular Splittings and M-Matrices 687
11.3.2 Jacobi . 691
11.3.3 Gauss-Seidel . 694
11.3.4 Successive Over-relaxation (SOR) 695
11.3.5 Richardson . 702

11.4 Local Minimization by Nonstationary Iterative Methods . . . 704
11.4.1 Conjugate Residuals 705
11.4.2 Steepest Descent . 705

11.5 Global Minimization with Chebyshev Polynomials 708
11.5.1 Chebyshev Semi-Iterative Method 719
11.5.2 Acceleration of SSOR 724

11.6 Global Minimization by Extrapolation 726
11.6.1 Minimal Polynomial Extrapolation (MPE) 729
11.6.2 Reduced Rank Extrapolation (RRE) 733
11.6.3 Modified Minimal Polynomial

Extrapolation (MMPE) 734
11.6.4 Topological ε-Algorithm (TEA) 735
11.6.5 Recursive Topological ε-Algorithm 737

XVIII CONTENTS

11.7 Krylov Subspace Methods . 739
11.7.1 The Conjugate Gradient Method 740
11.7.2 Arnoldi Process . 758
11.7.3 The Symmetric Lanczos Algorithm 761
11.7.4 Solving Linear Equations with Arnoldi 766
11.7.5 Solving Linear Equations with Lanczos 769
11.7.6 Generalized Minimum Residual: GMRES 773
11.7.7 Classical Lanczos for Non-Symmetric Matrices 780
11.7.8 Biconjugate Gradient Method (BiCG) 793
11.7.9 Further Krylov Methods 800

11.8 Preconditioning . 801
11.9 Problems . 804

Chapter 12. Optimization . 817
12.1 Introductory Examples . 818

12.1.1 How much daily exercise is optimal ? 818
12.1.2 Mobile Phone Networks 821
12.1.3 A Problem from Operations Research 828
12.1.4 Classification of Optimization Problems 831

12.2 Mathematical Optimization 832
12.2.1 Local Minima . 832
12.2.2 Constrained minima and Lagrange multipliers 835
12.2.3 Equality and Inequality Constraints 838

12.3 Unconstrained Optimization 842
12.3.1 Line Search Methods 842
12.3.2 Trust Region Methods 856
12.3.3 Direct Methods . 859

12.4 Constrained Optimization . 862
12.4.1 Linear Programming 862
12.4.2 Penalty and Barrier Functions 872
12.4.3 Interior Point Methods 873
12.4.4 Sequential Quadratic Programming 877

12.5 Problems . 880

Bibliography . 887

Index . 895

Chapter 1. Why Study Scientific Computing?

Computational Science and Engineering (CS&E) is now
widely accepted, along with theory and experiment, as a
crucial third mode of scientific investigation and en-
gineering design. Aerospace, automotive, biological,
chemical, semiconductor, and other industrial sectors
now rely on simulation for technical decision support.

Introduction to the First SIAM Conference on Computa-
tional Science and Engineering, September 21–24, 2000,
Washington DC.

The emergence of scientific computing as a vital part of science and en-
gineering coincides with the explosion in computing power in the past 50
years. Many physical phenomena have been well understood and have accu-
rate models describing them since the late 1800s, but before the widespread
use of computers, scientists and engineers were forced to make many simplify-
ing assumptions in the models in order to make them solvable by pencil-and-
paper methods, such as series expansion. With the increase of computing
power, however, one can afford to use numerical methods that are compu-
tationally intensive but that can tackle the full models without the need to
simplify them. Nonetheless, every method has its limitations, and one must
understand how they work in order to use them correctly.

1.1 Example: Designing a Suspension Bridge

To get an idea of the kinds of numerical methods that are used in engineering
problems, let us consider the design of a simple suspension bridge. The bridge
consists of a pair of ropes fastened on both sides of the gorge, see Figure
1.1. Wooden supports going across the bridge are attached to the ropes
at regularly spaced intervals. Wooden boards are then fastened between the
supports to form the deck. We would like to calculate the shape of the bridge
as well as the tension in the rope supporting it.

1.1.1 Constructing a Model

Let us construct a simple one-dimensional model of the bridge structure by
assuming that the bridge does not rock side to side. To calculate the shape
of the bridge, we need to know the forces that are exerted on the ropes by the
supports. Let L be the length of the bridge and x be the distance from one

W. Gander et al., Scientific Computing - An Introduction using Maple and MATLAB,

Texts in Computational Science and Engineering 11,
DOI 10.1007/978-3-319-04325-8 1,

© Springer International Publishing Switzerland 2014

2 WHY STUDY SCIENTIFIC COMPUTING?

Supports

Deck boards
(Others not shown)

Ropes

Figure 1.1. A simple suspension bridge.

Figure 1.2. Force diagram for the bridge example.

end of the bridge. Assume that the supports are located at xi, i = 1, . . . , n,
with h being the spacing between supports. Let w(x) be the force per unit
distance exerted on the deck at x by gravity, due to the weight of the deck and
of the people on it. If we assume that any weight on the segment [xi−1, xi]
are exerted entirely on the supports at xi−1 and xi, then the force fi exerted
on the rope by the support at xi can be written as

fi =

(∫ xi

xi−1

w(x)(x− xi−1) dx+

∫ xi+1

xi

w(x)(xi+1 − x) dx

)
. (1.1)

We now consider the rope as an elastic string, which is stretched by the force
exerted by the wooden supports. Let ui be the height of the bridge at xi,
Ti−1/2 be the tension of the segment of the rope between xi−1 and xi, and
θi−1/2 be the angle it makes with the horizontal. Figure 1.2 shows the force
diagram on the rope at xi.

Since there is no horizontal displacement in the bridge, the horizontal
forces must balance out, meaning

Ti−1/2 cos(θi−1/2) = Ti+1/2 cos(θi+1/2) = C,

Example: Designing a Suspension Bridge 3

where K is a constant. Vertical force balance then gives

Ti+1/2 sin(θi+1/2)− Ti−1/2 sin(θi−1/2) = fi,

or

C tan(θi+1/2)− C tan(θi−1/2) = fi.

But

tan(θi+1/2) =
ui+1 − ui

h
,

so we in fact have

K(ui+1 − 2ui + ui−1)

h
= fi, i = 1, . . . , n, (1.2)

where u0 and un+1 are the known heights of the bridge at its ends and
u1, . . . , un are the unknown heights.

1.1.2 Simulating the Bridge

Now, if we want to compute the shape of the bridge and the tensions Ti−1/2,
we must first calculate the forces fi from (1.1), and then solve the system
of linear equations (1.2). To calculate the fi, one must evaluate integrals,
which may not be analytically feasible for certain weight distributions w(x).
Instead, one can approximate the integral numerically using a Riemann sum,
for instance:

∫ xi

xi−1

w(x)(x− xi−1) dx ≈ 1

N

N∑
j=1

w(xi−1 + jh/N) · h
j
.

For large N , this converges to the exact value of the integral, but the error
behaves like 1/N ; this means if we want to have three decimal digits of
accuracy in the answer, one would need approximately 103 points. There are
other formulas that give more accurate values with fewer number of points;
this is discussed in more detail in Chapter 9.

The next step is to solve (1.2) for the ui. This can be rewritten as

Au = f ,

where A ∈ R
n×n is a matrix, u ∈ R

n is the vector of unknowns, and f
is the vector of forces we just calculated. This system can be solved by
Gaussian elimination, i.e., by row reducing the matrix, as taught in a basic
linear algebra course. So for n = 4, a uniform distribution w(x) = 1, and

4 WHY STUDY SCIENTIFIC COMPUTING?

u0 = un+1 = 0, we can calculate

⎛
⎜⎜⎝

−2 1 0 0 1
1 −2 1 0 1
0 1 −2 1 1
0 0 1 −2 1

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

−2 1 0 0 1
0 − 3

2
1 0 3

2
0 1 −2 1 1
0 0 1 −2 1

⎞
⎟⎟⎠

−→

⎛
⎜⎜⎝

−2 1 0 0 1
0 − 3

2
1 0 3

2
0 0 − 4

3
1 2

0 0 1 −2 1

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

−2 1 0 0 1
0 − 3

2 1 0 3
2

0 0 − 4
3 1 2

0 0 0 − 5
4

5
2

⎞
⎟⎟⎠ .

Back substitution gives u = h
K (−2,−3,−3,−2)�. However, one often wishes

to calculate the shape of the bridge under different weight distributions w(x),
e.g., when people are standing on different parts of the bridge. So the matrix
A stays the same, but the right-hand side f changes to reflect the different
weight distributions. It would be a waste to have to redo the row reductions
every time, when only f has changed! A much better way is to use the LU
decomposition, which writes the matrix A in factored form and reuses the
factors to solve equations with different right-hand sides. This is shown in
Chapter 3.

In the above row reduction, we can see easily that there are many zero
entries that need not be calculated, but the computer has no way of knowing
that in advance. In fact, the number of additions and multiplications required
for solving the generic (i.e., full) linear system is proportional to n3, whereas
in our case, we only need about n additions and multiplications because of the
many zero entries. To take advantage of the sparse nature of the matrix, one
needs to store it differently and use different algorithms on it. One possibility
is to use the banded matrix format ; this is shown in Section 3.6.

Suppose now that the people on the bridge have moved, but only by a
few meters. The shape of the bridge would have only changed slightly, since
the weight distribution is not very different. Thus, instead of solving a new
linear system from scratch, one could imagine using the previous shape as
a first guess and make small corrections to the solution until it matches the
new distribution. This is the basis of iterative methods, which are discussed
in Chapter 11.

1.1.3 Calculating Resonance Frequencies

A well-designed bridge should never collapse, but there have been spectacular
bridge failures in history. One particularly memorable one was the collapse
of the Tacoma Narrows bridge on November 7, 1940. On that day, powerful
wind gusts have excited a natural resonance mode of the bridge, setting
it into a twisting motion that it was not designed to withstand. As the
winds continued, the amplitude of the twisting motion grew, until the bridge

Example: Designing a Suspension Bridge 5

eventually collapsed1.
It turns out that one can study the resonance modes of the bridge by

considering the eigenvalue problem

Au = λu,

cf. [37]. Clearly, a two-dimensional model is needed to study the twisting
motion mentioned above, but let us illustrate the ideas by considering the
eigenvalues of the 1D model for n = 4. For this simple problem, one can
guess the eigenvectors and verify that

u(k) = (sin(kπ/5), sin(2kπ/5), sin(3kπ/5), sin(4π/5))�, k = 1, 2, 3, 4

are in fact eigenvectors with associated eigenvalues λ(k) = −2 + 2 cos(kπ/5).
However, for more complicated problems, such as one with varying mass
along the bridge or for 2D problems, it is no longer possible to guess the
eigenvectors. Moreover, the characteristic polynomial

P (λ) = det(λI −A)

is a polynomial of degree n, and it is well known that no general formula
exists for finding the roots of such polynomials for n ≥ 5. In Chapter 7, we
will present numerical algorithms for finding the eigenvalues of A. In fact,
the problem of finding eigenvalues numerically also requires approximately
n3 operations, just like Gaussian elimination. This is in stark contrast with
the theoretical point of view that linear systems are “easy” and polynomial
root-finding is “impossible”. To quote the eminent numerical analyst Nick
Trefethen [139],

Abel and Galois notwithstanding, large-scale matrix eigenvalue
problems are about as easy to solve in practice as linear systems
of equations.

1.1.4 Matching Simulations with Experiments

When modeling the bridge in the design process, we must use many parame-
ters, such as the weight of the deck (expressed in terms of the mass density ρ
per unit length) and the elasticity constant K of the supporting rope. In real-
ity, these quantities depend on the actual material used during construction,
and may deviate from the nominal values assumed during the design pro-
cess. To get an accurate model of the bridge for later simulation, one needs
to estimate these parameters from measurements taken during experiments.
For example, we can measure the vertical displacements yi of the constructed
bridge at points xi, and compare it with the displacements ui predicted by
the model, i.e., the displacements satisfying Au = f . Since both A and f

1http://www.youtube.com/watch?v=3mclp9QmCGs

http://www.youtube.com/watch?v=3mclp9QmCGs

6 WHY STUDY SCIENTIFIC COMPUTING?

depend on the model parameters ρ and K, the ui also depend on these pa-
rameters; thus, the mismatch between the model and the experimental data
can be expressed as a function of ρ and K:

F (ρ,K) =
n∑

i=1

|yi − ui(ρ,K)|2. (1.3)

Thus, we can estimate the parameters by finding the optimal parameters ρ∗

and K∗ that minimize F . There are several ways of calculating the minimum:

1. Using multivariate calculus, we know that

∂F

∂ρ
(ρ∗,K∗) = 0,

∂F

∂K
(ρ∗,K∗) = 0. (1.4)

Thus, we have a system of two nonlinear equations in two unknowns,
which must then be solved to obtain ρ∗ and K∗. This can be solved
by many methods, the best known of which is Newton’s method. Such
methods are discussed in Chapter 5.

2. The above approach has the disadvantage that (1.4) is satisfied by all
stationary points of F (ρ,K), i.e., both the maxima and the minima
of F (ρ,K). Since we are only interested in the minima of the func-
tion, a more direct approach would be to start with an initial guess
(ρ0,K0) (e.g., the nominal design values) and then find successively
better approximations (ρk,Kk), k = 1, 2, 3, that reduce the mismatch,
i.e.,

F (ρk+1,Kk+1) ≤ F (ρk,Kk).

This is the basis of optimization algorithms, which can be applied to
other minimization problems. Such methods are discussed in detail in
Chapter 12.

3. The function F (ρ,K) in (1.3) has a very special structure in that it
is a sum of squares of the differences. As a result, the minimization
problem is known as a least-squares problem. Least-squares problems, in
particular linear ones, often arise because they yield the best unbiased
estimator in the statistical sense for linear models. Because of the
prevalence and special structure of least-squares problems, it is possible
to design specialized methods that are more efficient and/or robust for
these problems than general optimization algorithms. One example is
the Gauss–Newton method, which resembles a Newton method, except
that second-order derivative terms are dropped to save on computation.
This and other methods are presented in Chapter 6.

1.2 Navigating this Book: Sample Courses

This book intentionally contains too many topics to be done from cover to
cover, even for an intensive full-year course. In fact, many chapters contain

Navigating this Book: Sample Courses 7

enough material for stand-alone semester courses on their respective topics.
To help instructors and students navigate through the volume, we provide
some sample courses that can be built from its sections.

1.2.1 A First Course in Numerical Analysis

The following sections have been used to build the first year numerical anal-
ysis course at the University of Geneva in 2011–12 (54 hours of lectures).

1. Finite precision arithmetic (2.1–2.6)

2. Linear systems (3.2–3.4)

3. Interpolation and FFT (4.2.1–4.2.4, 4.3.1, 4.4)

4. Nonlinear equations (5.2.1–5.2.3, 5.4)

5. Linear and nonlinear least squares (6.1–6.8, 6.8.2, 6.8.3, 6.5.1, 6.5.2)

6. Iterative methods (11.1–11.2.5, 11.3.2–11.3.4, 11.7.1)

7. Eigenvalue problems (7.1, 7.2, 7.4, 7.5.2, 7.6)

8. Singular value decomposition (6.3)

9. Numerical integration (9.1, 9.2, 9.3, 9.4.1–9.4.2)

10. Ordinary differential equations (10.1, 10.3)

A first term course at Stanford for computer science students in 1996 and
1997 (’Introduction to Scientific Computing using Maple and Matlab, 40
hours of lectures) was built using

1. Finite precision arithmetic (2.2)

2. Nonlinear equations (5.2.1–5.2.3, 5.2.5, 5.2.7, 5.4)

3. Linear systems (3.2.1, 3.2.2, 3.2.3, 11.2–11.2.3, 11.3.2, 11.3.3, 11.4,
11.7.1)

4. Interpolation (4.2.1–4.2.4, 4.3.1)

5. Least Squares (6.2, 6.5.1, 6.8.2)

6. Differentiation (8.2, 8.2.1)

7. Quadrature (9.2, 9.2.4, 9.3.1, 9.3.2, 9.4.1–9.4.2)

8. Eigenvalue problems (7.3, 7.4, 7.6)

9. Ordinary differential equations (10.1, 10.3, 10.4)

8 WHY STUDY SCIENTIFIC COMPUTING?

1.2.2 Advanced Courses

The following advanced undergraduate/graduate courses (38 hours of lectures
each) have been taught at Baptist University in Hong Kong between 2010
and 2013. We include a list of chapters from which these courses were built.

1. Eigenvalues and Iterative Methods for Linear Equations (Chapters 7,
11)

2. Least Squares (Chapter 6)

3. Quadrature and Ordinary Differential Equations (Chapters 9 and 10)

At the University of Geneva, the following graduate courses (28 hours of
lectures, and 14 hours of exercises) have been taught between 2004 and 2011:

1. Iterative Methods for Linear Equations (Chapter 11)

2. Optimization (Chapter 12)

1.2.3 Dependencies Between Chapters

Chapter 2 on finite precision arithmetic and Chapter 3 on linear equations are
required for most, if not all, of the subsequent chapters. At the beginning of
each chapter, we give a list of sections that are prerequisites to understanding
the material. Readers who are not familiar with these sections should refer
to them first before proceeding.

Chapter 2. Finite Precision Arithmetic

In the past 15 years many numerical analysts have pro-
gressed from being queer people in mathematics depart-
ments to being queer people in computer science depart-
ments!

George Forsythe, What to do till the computer scientist
comes. Amer. Math. Monthly 75, 1968.

It is hardly surprising that numerical analysis is widely
regarded as an unglamorous subject. In fact, mathe-
maticians, physicists, and computer scientists have all
tended to hold numerical analysis in low esteem for
many years – a most unusual consensus.

Nick Trefethen, The definition of numerical analysis,
SIAM news, November 1992.

The golden age of numerical analysis has not yet
started.

Volker Mehrmann, round table discussion ”Future Direc-
tions in Numerical Analysis,” moderated by Gene Golub
and Nick Trefethen at ICIAM 2007.

Finite precision arithmetic underlies all the computations performed numer-
ically, e.g. in Matlab; only symbolic computations, e.g. Maple, are largely
independent of finite precision arithmetic. Historically, when the invention
of computers allowed a large number of operations to be performed in very
rapid succession, nobody knew what the influence of finite precision arith-
metic would be on this many operations: would small rounding errors sum
up rapidly and destroy results? Would they statistically cancel? The early
days of numerical analysis were therefore dominated by the study of round-
ing errors, and made this rapidly developing field not very attractive (see
the quote above). Fortunately, this view of numerical analysis has since
changed, and nowadays the focus of numerical analysis is the study of algo-
rithms for the problems of continuous mathematics1. There are nonetheless
a few pitfalls every person involved in scientific computing should know, and
this chapter is precisely here for this reason. After an introductory example
in Section 2.1, we present the difference between real numbers and machine
numbers in Section 2.2 on a generic, abstract level, and give for the more
computer science oriented reader the concrete IEEE arithmetic standard in
Section 2.3. We then discuss the influence of rounding errors on operations in

1Nick Trefethen, The definition of numerical analysis, SIAM News, November 1992

W. Gander et al., Scientific Computing - An Introduction using Maple and MATLAB,

Texts in Computational Science and Engineering 11,
DOI 10.1007/978-3-319-04325-8 2,

© Springer International Publishing Switzerland 2014

10 FINITE PRECISION ARITHMETIC

Section 2.4, and explain the predominant pitfall of catastrophic cancellation
when computing differences. In Section 2.5, we explain in very general terms
what the condition number of a problem is, and then show in Section 2.6
two properties of algorithms for a given problem, namely forward stability
and backward stability. It is the understanding of condition numbers and
stability that allowed numerical analysts to move away from the study of
rounding errors, and to focus on algorithmic development. Sections 2.7 and
2.8 represent a treasure trove with advanced tips and tricks when computing
in finite precision arithmetic.

2.1 Introductory Example

A very old problem already studied by ancient Greek mathematicians is the
squaring of a circle. The problem consists of constructing a square that has
the same area as the unit circle. Finding a method for transforming a circle
into a square this way (quadrature of the circle) became a famous problem
that remained unsolved until the 19th century, when it was proved using
Galois theory that the problem cannot be solved with the straight edge and
compass.

We know today that the area of a circle is given by A = πr2, where
r denotes the radius of the circle. An approximation is obtained by draw-
ing a regular polygon inside the circle, and by computing the surface of
the polygon. The approximation is improved by increasing the number of
sides. Archimedes managed to produce a 96-sided polygon, and was able
to bracket π in the interval (3 10

71 , 3
1
7). The enclosing interval has length

1/497 = 0.00201207243 — surely good enough for most practical applica-
tions in his time.

Fn

2
cos αn

2

r = 1

sin αn

2

αn

2

C

BA

Figure 2.1. Squaring of a circle

To compute such a polygonal approximation of π, we consider Figure 2.1.
Without loss of generality, we may assume that r = 1. Then the area Fn of
the isosceles triangle ABC with center angle αn := 2π

n
is

Fn = cos
αn

2
sin

αn

2
,

Real Numbers and Machine Numbers 11

and the area of the associated n-sided polygon becomes

An = nFn =
n

2

(
2 cos

αn

2
sin

αn

2

)
=

n

2
sinαn =

n

2
sin

(
2π

n

)
.

Clearly, computing the approximation An using π would be rather contradic-
tory. Fortunately, A2n can be derived from An by simple algebraic transfor-
mations, i.e. by expressing sin(αn/2) in terms of sinαn. This can be achieved
by using identities for trigonometric functions:

sin
αn

2
=

√
1− cosαn

2
=

√
1−
√

1− sin2 αn

2
. (2.1)

Thus, we have obtained a recurrence for sin(αn/2) from sinαn. To start the
recurrence, we compute the area A6 of the regular hexagon. The length of
each side of the six equilateral triangles is 1 and the angle is α6 = 60◦, so
that sinα6 =

√
3
2
. Therefore, the area of the triangle is F6 =

√
3/4 and

A6 = 3
√
3
2 . We obtain the following program for computing the sequence of

approximations An:

Algorithm 2.1. Computation of π, Naive Version

s=sqrt(3)/2; A=3*s; n=6; % initialization

z=[A-pi n A s]; % store the results

while s>1e-10 % termination if s=sin(alpha) small

s=sqrt((1-sqrt(1-s*s))/2); % new sin(alpha/2) value

n=2*n; A=n/2*s; % A=new polygon area

z=[z; A-pi n A s];

end

m=length(z);

for i=1:m

fprintf(’%10d %20.15f %20.15f %20.15f\n’,z(i,2),z(i,3),z(i,1),z(i,4))

end

The results, displayed in Table 2.1, are not what we would expect: ini-
tially, we observe convergence towards π, but for n > 49152, the error grows
again and finally we obtain An = 0 ?! Although the theory and the program
are both correct, we still obtain incorrect answers. We will explain in this
chapter why this is the case.

2.2 Real Numbers and Machine Numbers

Every computer is a finite automaton. This implies that a computer can only
store a finite set of numbers and perform only a finite number of operations.
In mathematics, we are used to calculating with real numbers R covering the
continuous interval (−∞,∞), but on the computer, we must contend with a

12 FINITE PRECISION ARITHMETIC

n An An − π sin(αn)

6 2.598076211353316 −0.543516442236477 0.866025403784439
12 3.000000000000000 −0.141592653589794 0.500000000000000
24 3.105828541230250 −0.035764112359543 0.258819045102521
48 3.132628613281237 −0.008964040308556 0.130526192220052
96 3.139350203046872 −0.002242450542921 0.065403129230143

192 3.141031950890530 −0.000560702699263 0.032719082821776
384 3.141452472285344 −0.000140181304449 0.016361731626486
768 3.141557607911622 −0.000035045678171 0.008181139603937

1536 3.141583892148936 −0.000008761440857 0.004090604026236
3072 3.141590463236762 −0.000002190353031 0.002045306291170
6144 3.141592106043048 −0.000000547546745 0.001022653680353

12288 3.141592516588155 −0.000000137001638 0.000511326906997
24576 3.141592618640789 −0.000000034949004 0.000255663461803
49152 3.141592645321216 −0.000000008268577 0.000127831731987
98304 3.141592645321216 −0.000000008268577 0.000063915865994

196608 3.141592645321216 −0.000000008268577 0.000031957932997
393216 3.141592645321216 −0.000000008268577 0.000015978966498
786432 3.141592303811738 −0.000000349778055 0.000007989482381

1572864 3.141592303811738 −0.000000349778055 0.000003994741190
3145728 3.141586839655041 −0.000005813934752 0.000001997367121
6291456 3.141586839655041 −0.000005813934752 0.000000998683561

12582912 3.141674265021758 0.000081611431964 0.000000499355676
25165824 3.141674265021758 0.000081611431964 0.000000249677838
50331648 3.143072740170040 0.001480086580246 0.000000124894489

100663296 3.137475099502783 −0.004117554087010 0.000000062336030
201326592 3.181980515339464 0.040387861749671 0.000000031610136
402653184 3.000000000000000 −0.141592653589793 0.000000014901161
805306368 3.000000000000000 −0.141592653589793 0.000000007450581

1610612736 0.000000000000000 −3.141592653589793 0.000000000000000

Table 2.1. Unstable computation of π

Real Numbers and Machine Numbers 13

discrete, finite set of machine numbers M = {−ãmin, . . . , ãmax}. Hence each
real number a has to be mapped onto a machine number ã to be used on
a computer. In fact a whole interval of real numbers is mapped onto one
machine number, as shown in Figure 2.2.

a ∈ R

ã ∈ M

ãmin 0 ãmax

Figure 2.2.
Mapping of real numbers R onto machine numbers M

Nowadays, machine numbers are often represented in the binary system.
In general, any base (or radix) B could be used to represent numbers. A real
machine number or floating point number consists of two parts, a mantissa
(or significant) m and an exponent e

ã = ±m×Be

m = D.D · · ·D mantissa
e = D · · ·D exponent

where D ∈ {0, 1, . . . , B− 1} stands for one digit. To make the representation
of machine numbers unique (note that e.g. 1.2345× 103 = 0.0012345× 106),
we require for a machine number ã 	= 0 that the first digit before the decimal
point in the mantissa be nonzero; such numbers are called normalized. One
defining characteristic for any finite precision arithmetic is the number of
digits used for the mantissa and the exponent: the number of digits in the
exponent defines the range of the machine numbers, whereas the numbers of
digits in the mantissa defines the precision.

More specifically [100], a finite precision arithmetic is defined by four
integer parameters: B, the base or radix, p, the number of digits in the
mantissa, and l and u defining the exponent range: l ≤ e ≤ u.

The precision of the machine is described by the real machine number
eps. Historically, eps is defined to be the smallest positive ã ∈ M such that
ã + 1 	= 1 when the addition is carried out on the computer. Because this
definition involves details about the behavior of floating point addition, which
are not easily accessible, a newer definition of eps is simply the spacing of
the floating point numbers between 1 and B (usually B = 2). The current
definition only relies on how the numbers are represented.

Simple calculators often use the familiar decimal system (B = 10). Typi-
cally there are p = 10 digits for the mantissa and 2 for the exponent (l = −99
and u = 99). In this finite precision arithmetic, we have

• eps= 0.000000001 = 1.000000000× 10−9,

• the largest machine number

ãmax = 9.999999999× 10+99,

14 FINITE PRECISION ARITHMETIC

• the smallest machine number

ãmin = −9.999999999× 10+99,

• the smallest (normalized) positive machine number

ã+ = 1.000000000× 10−99.

Early computers, for example the MARK 1 designed by Howard Aiken and
Grace Hopper at Harvard and built in 1944, or the ERMETH (Elektronis-
che Rechenmaschine der ETH) constructed by Heinz Rutishauser, Ambros
Speiser and Eduard Stiefel, were also decimal machines. The ERMETH, built
in 1956, was operational at ETH Zurich from 1956–1963. The representation
of a real number used 16 decimal digits: The first digit, the q-digit, stored the
sum of the digits modulo 3. This was used as a check to see if the machine
word had been transmitted correctly from memory to the registers. The next
three digits contained the exponent. Then the next 11 digits represented the
mantissa, and finally, the last digit held the sign. The range of positive ma-
chine numbers was 1.0000000000× 10−200 ≤ ã ≤ 9.9999999999× 10199. The
possibly larger exponent range in this setting from −999 to 999 was not fully
used.

In contrast, the very first programmable computer, the Z3, which was
built by the German civil engineer Konrad Zuse and presented in 1941 to a
group of experts only, was already using the binary system. The Z3 worked
with an exponent of 7 bits and a mantissa of 14 bits (actually 15, since the
numbers were normalized). The range of positive machine numbers was the
interval

[2−63, 1.11111111111111× 262] ≈ [1.08× 10−19, 9.22× 1018].

In Maple (a computer algebra system), numerical computations are per-
formed in base 10. The number of digits of the mantissa is defined by the
variable Digits, which can be freely chosen. The number of digits of the
exponent is given by the word length of the computer — for 32-bit machines,
we have a huge maximal exponent of u = 231 = 2147483648.

2.3 The IEEE Standard

Since 1985 we have for computer hardware the ANSI/IEEE Standard 754
for Floating Point Numbers. It has been adopted by almost all computer
manufacturers. The base is B = 2.

2.3.1 Single Precision

The IEEE single precision floating point standard representation uses a 32-
bit word with bits numbered from 0 to 31 from left to right. The first bit S is

The IEEE Standard 15

the sign bit, the next eight bits E are the exponent bits, e = EEEEEEEE,
and the final 23 bits are the bits F of the mantissa m:

S

e︷ ︸︸ ︷
EEEEEEEE

m︷ ︸︸ ︷
FFFFFFFFFFFFFFFFFFFFFFF

0 1 8 9 31

The value ã represented by the 32 bit word is defined as follows:

normal numbers: If 0 < e < 255, then ã = (−1)S×2e−127×1.m, where 1.m
is the binary number created by prefixing m with an implicit leading 1
and a binary point.

subnormal numbers: If e = 0 and m 	= 0, then ã = (−1)S × 2−126 × 0.m .
These are known as denormalized (or subnormal) numbers.

If e = 0 and m = 0 and S = 1, then ã = −0.

If e = 0 and m = 0 and S = 0, then ã = 0.

exceptions: If e = 255 and m 	= 0, then ã = NaN (Not a number)

If e = 255 and m = 0 and S = 1, then ã = −Inf.

If e = 255 and m = 0 and S = 0, then ã = Inf.

Some examples:

0 10000000 00000000000000000000000 = +1 x 2^(128-127) x 1.0 = 2

0 10000001 10100000000000000000000 = +1 x 2^(129-127) x 1.101 = 6.5

1 10000001 10100000000000000000000 = -1 x 2^(129-127) x 1.101 = -6.5

0 00000000 00000000000000000000000 = 0

1 00000000 00000000000000000000000 = -0

0 11111111 00000000000000000000000 = Inf

1 11111111 00000000000000000000000 = -Inf

0 11111111 00000100000000000000000 = NaN

1 11111111 00100010001001010101010 = NaN

0 00000001 00000000000000000000000 = +1 x 2^(1-127) x 1.0 = 2^(-126)

0 00000000 10000000000000000000000 = +1 x 2^(-126) x 0.1 = 2^(-127)

0 00000000 00000000000000000000001

= +1 x 2^(-126) x 0.00000000000000000000001 = 2^(-149)

= smallest positive denormalized machine number

InMatlab, real numbers are usually represented in double precision. The
function single can however be used to convert numbers to single precision.
Matlab can also print real numbers using the hexadecimal format, which is
convenient for examining their internal representations:

>> format hex

16 FINITE PRECISION ARITHMETIC

>> x=single(2)

x =

40000000

>> 2

ans =

4000000000000000

>> s=realmin(’single’)*eps(’single’)

s =

00000001

>> format long

>> s

s =

1.4012985e-45

>> s/2

ans =

0

% Exceptions

>> z=sin(0)/sqrt(0)

Warning: Divide by zero.

z =

NaN

>> y=log(0)

Warning: Log of zero.

y =

-Inf

>> t=cot(0)

Warning: Divide by zero.

> In cot at 13

t =

Inf

We can see that x represents the number 2 in single precision. The functions
realmin and eps with parameter ’single’ compute the machine constants
for single precision. This means that s is the smallest denormalized number
in single precision. Dividing s by 2 gives zero because of underflow. The
computation of z yields an undefined expression which results in NaN even
though the limit is defined. The final two computations for y and t show the
exceptions Inf and -Inf.

2.3.2 Double Precision

The IEEE double precision floating point standard representation uses a 64-
bit word with bits numbered from 0 to 63 from left to right. The first bit
S is the sign bit, the next eleven bits E are the exponent bits for e and the
final 52 bits F represent the mantissa m:

S

e︷ ︸︸ ︷
EEEEEEEEEEE

m︷ ︸︸ ︷
FFFFF · · ·FFFFF

0 1 11 12 63

The IEEE Standard 17

The value ã represented by the 64-bit word is defined as follows:

normal numbers: If 0 < e < 2047, then ã = (−1)S × 2e−1023 × 1.m, where
1.m is the binary number created by prefixing m with an implicit lead-
ing 1 and a binary point.

subnormal numbers: If e = 0 and m 	= 0, then ã = (−1)S ×2−1022×0.m ,
which are again denormalized numbers.

If e = 0 and m = 0 and S = 1, then ã = −0.

If e = 0 and m = 0 and S = 0, then ã = 0.

exceptions: If e = 2047 and m 	= 0, then ã = NaN (Not a number)

If e = 2047 and m = 0 and S = 1, then ã = −Inf.

If e = 2047 and m = 0 and S = 0, then ã = Inf.

In Matlab, real computations are performed in IEEE double precision by
default. Using again the hexadecimal format in Matlab to see the internal
representation, we obtain for example

>> format hex

>> 2

ans = 4000000000000000

If we expand each hexadecimal digit to 4 binary digits we obtain for the
number 2:

0100 0000 0000 0000 0000 0000 0000 0000 0000

We skipped with seven groups of four zero binary digits. The interpre-
tation is: +1× 21024−1023 × 1.0 = 2.

>> 6.5

ans = 401a000000000000

This means

0100 0000 0001 1010 0000 0000 0000 0000 0000

Again we skipped with seven groups of four zeros. The resulting number
is +1× 21025−1023 × (1 + 1

2 + 1
8) = 6.5.

From now on, our discussion will focus on double precision arithmetic,
since this is the usual mode of computation for real numbers in the IEEE
Standard. Furthermore, we will stick to the IEEE Standard as used in Mat-

lab. In other, more low-level programming languages, the behavior of the
IEEE arithmetic can be adapted, e.g. the exception handling can be explicitly
specified.

• The machine precision is eps = 2−52.

18 FINITE PRECISION ARITHMETIC

• The largest machine number ãmax is denoted by realmax. Note that

>> realmax

ans = 1.7977e+308

>> log2(ans)

ans = 1024

>> 2^1024

ans = Inf

This looks like a contradiction at first glance, since the largest exponent
should be 22046−1023 = 21023 according the IEEE conventions. But
realmax is the number with the largest possible exponent and with the
mantissa F consisting of all ones:

>> format hex

>> realmax

ans = 7fefffffffffffff

This is

V = +1× 22046−1023 × 1. 11 . . . 1︸ ︷︷ ︸
52Bits

= 21023 ×
(
1 +

(
1

2

)1

+

(
1

2

)2

+ · · ·+
(
1

2

)52
)

= 21023 × 1− (1
2

)53
1− (1

2

) = 21023 × (2− eps)

Even though Matlab reports log2(realmax)=1024, realmax does not
equal 21024, but rather (2−eps)×21023; taking the logarithm of realmax
yields 1024 only because of rounding. Similar rounding effects would
also occur for machine numbers that are a bit smaller than realmax.

• The computation range is the interval [−realmax, realmax]. If an op-
eration produces a result outside this interval, then it is said to overflow.
Before the IEEE Standard, computation would halt with an error mes-
sage in such a case. Now the result of an overflow operation is assigned
the number ±Inf.

• The smallest positive normalized number is realmin = 2−1022.

• IEEE allows computations with denormalized numbers. The positive
denormalized numbers are in the interval [realmin ∗ eps, realmin]. If
an operation produces a strictly positive number that is smaller than
realmin ∗ eps, then this result is said to be in the underflow range.
Since such a result cannot be represented, zero is assigned instead.

Rounding Errors 19

• When computing with denormalized numbers, we may suffer a loss of
precision. Consider the following Matlab program:

>> format long

>> res=pi*realmin/123456789101112

res = 5.681754927174335e-322

>> res2=res*123456789101112/realmin

res2 = 3.15248510554597

>> pi = 3.14159265358979

The first result res is a denormalized number, and thus can no longer
be represented with full accuracy. So when we reverse the operations
and compute res2, we obtain a result which only contains 2 correct dec-
imal digits. We therefore recommend avoiding the use of denormalized
numbers whenever possible.

2.4 Rounding Errors

2.4.1 Standard Model of Arithmetic

Let ã and b̃ be two machine numbers. Then c = ã× b̃ will in general not be a
machine number anymore, since the product of two numbers contains twice
as many digits. The computed result will therefore be rounded to a machine
number c̃ which is closest to c.

As an example, consider the 8-digit decimal numbers

ã = 1.2345678 and b̃ = 1.1111111,

whose product is

c = 1.37174198628258 and c̃ = 1.3717420.

The absolute rounding error is the difference ra = c̃− c = 1.371742e−8, and

r =
ra
c

= 1e−8

is called the relative rounding error.
On today’s computers, basic arithmetic operations obey the standard

model of arithmetic: for a, b ∈ M, we have

a⊕̃b = (a⊕ b)(1 + r), (2.2)

where r is the relative rounding error with |r| < eps, the machine precision.
We denote with ⊕ ∈ {+,−,×, /} the exact basic operation and with ⊕̃ the
equivalent computer operation.

20 FINITE PRECISION ARITHMETIC

Another interpretation of the standard model of arithmetic is due to
Wilkinson. In what follows, we will no longer use the multiplication sym-
bol × for the exact operation; it is common practice in algebra to denote
multiplication without any symbol: ab ⇐⇒ a× b. Consider the operations

Addition: a+̃b = (a+ b)(1 + r) = (a+ ar) + (b+ br) = ã+ b̃

Subtraction: a−̃b = (a− b)(1 + r) = (a+ ar)− (b+ br) = ã− b̃

Multiplication: a×̃b = ab(1 + r) = a(b+ br) = ab̃

Division: a/̃b = (a/b)(1 + r) = (a+ ar)/b = ã/b

In each of the above, the operation satisfies

Wilkinson’s Principle

The result of a numerical computation on the computer is the
result of an exact computation with slightly perturbed initial data.

For example, the numerical result of the multiplication a×̃b is the exact
result ab̃ with a slightly perturbed operand b̃ = b + br. As a consequence
of Wilkinson’s Principle, we need to study the effect that slightly perturbed
data have on the result of a computation. This is done in Section 2.6.

2.4.2 Cancellation

A special rounding error is called cancellation. If we subtract two almost
equal numbers, leading digits will cancel. Consider the following two numbers
with 5 decimal digits:

1.2345e0
−1.2344e0
0.0001e0 = 1.0000e−4

If the two numbers were exact, the result delivered by the computer would
also be exact. But if the first two numbers had been obtained by previous
calculations and were affected by rounding errors, then the result would at
best be 1.XXXXe−4, where the digits denoted by X are unknown.

This is exactly what happened in our example at the beginning of this
chapter. To compute sin(α/2) from sinα, we used the recurrence (2.1):

sin
αn

2
=

√
1−
√

1− sin2 αn

2
.

Since sinαn → 0, the numerator on the right hand side is

1−
√
1− ε2, with small ε = sinαn,

Rounding Errors 21

and suffers from severe cancellation. This is the reason why the algorithm
performed so badly, even though the theory and program are both correct.

It is possible in this case to rearrange the computation and avoid cancel-
lation:

sin
αn

2
=

√
1−
√
1− sin2 αn

2
=

√√√√1−
√
1− sin2 αn

2

1 +
√

1− sin2 αn

1 +
√

1− sin2 αn

=

√
1− (1− sin2 αn)

2(1 +
√

1− sin2 αn)
=

sinαn√
2(1 +

√
1− sin2 αn)

.

This last expression no longer suffers from cancellation, and we obtain the
new program:

Algorithm 2.2. Computation of π, Stable Version

oldA=0;s=sqrt(3)/2; newA=3*s; n=6; % initialization

z=[newA-pi n newA s]; % store the results

while newA>oldA % quit if area does not increase

oldA=newA;

s=s/sqrt(2*(1+sqrt((1+s)*(1-s)))); % new sine value

n=2*n; newA=n/2*s;

z=[z; newA-pi n newA s];

end

m=length(z);

for i=1:m

fprintf(’%10d %20.15f %20.15f\n’,z(i,2),z(i,3),z(i,1))

end

This time we do converge to the correct value of π (see Table 2.2). Notice
also the elegant termination criterion: since the surface of the next polygon
grows, we theoretically have

A6 < · · · < An < A2n < π.

However, this cannot be true forever in finite precision arithmetic, since there
is only a finite set of machine numbers. Thus, the situation An ≥ A2n must
occur at some stage, and this is the condition to stop the iteration. Note that
this condition is independent of the machine, in the sense that the iteration
will always terminate as long as we have finite precision arithmetic, and when
it does terminate, it always gives the best possible approximation for the
precision of the machine. More examples of machine-independent algorithms
can be found in Section 2.8.1.

A second example in which cancellation occurs is the problem of numerical
differentiation (see Chapter 8). Given a twice continuously differentiable

22 FINITE PRECISION ARITHMETIC

n An An − π
6 2.598076211353316 −0.543516442236477

12 3.000000000000000 −0.141592653589793
24 3.105828541230249 −0.035764112359544
48 3.132628613281238 −0.008964040308555
96 3.139350203046867 −0.002242450542926

192 3.141031950890509 −0.000560702699284
384 3.141452472285462 −0.000140181304332
768 3.141557607911857 −0.000035045677936

1536 3.141583892148318 −0.000008761441475
3072 3.141590463228050 −0.000002190361744
6144 3.141592105999271 −0.000000547590522

12288 3.141592516692156 −0.000000136897637
24576 3.141592619365383 −0.000000034224410
49152 3.141592645033690 −0.000000008556103
98304 3.141592651450766 −0.000000002139027

196608 3.141592653055036 −0.000000000534757
393216 3.141592653456104 −0.000000000133690
786432 3.141592653556371 −0.000000000033422
1572864 3.141592653581438 −0.000000000008355
3145728 3.141592653587705 −0.000000000002089
6291456 3.141592653589271 −0.000000000000522

12582912 3.141592653589663 −0.000000000000130
25165824 3.141592653589761 −0.000000000000032
50331648 3.141592653589786 −0.000000000000008

100663296 3.141592653589791 −0.000000000000002
201326592 3.141592653589794 0.000000000000000
402653184 3.141592653589794 0.000000000000001
805306368 3.141592653589794 0.000000000000001

Table 2.2. Stable Computation of π

Rounding Errors 23

function f : R → R, suppose we wish to calculate the derivative f ′(x0) at
some point x0 using the approximation

f ′(x0) ≈ Dx0,h(f) =
f(x0 + h)− f(x0)

h
.

This approximation is useful if, for instance, f(x) is the result of a complex
simulation, for which an analytic formula is not readily available. If we
expand f(x) by a Taylor series around x = x0, we see that

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2
f ′′(ξ)

where |ξ − x0| ≤ h, so that

f(x0 + h)− f(x0)

h
= f ′(x0) +

h

2
f ′′(ξ). (2.3)

Thus, we expect the error to decrease linearly with h as we let h tend to zero.
As an example, consider the problem of evaluating f ′(x0) for f(x) = ex with
x0 = 1. We use the following code to generate a plot of the approximation
error:

>> h=10.^(-15:0);

>> f=@(x) exp(x);

>> x0=1;

>> fp=(f(x0+h)-f(x0))./h;

>> loglog(h,abs(fp-exp(x0)));

10
−15

10
−10

10
−5

10
0

10
−8

10
−6

10
−4

10
−2

10
0

10
2

h

F
in

ite
 d

iff
er

en
ce

 e
rr

or

Figure 2.3. Results of numerical differentiation for f(x) = ex, x0 = 1

Figure 2.3 shows the resulting plot. For relatively large h, i.e., for h > 1e−8,
the error is indeed proportional to h, as suggested by (2.3). However, the
plot clearly shows that the error is minimal for h ≈ 1e−8, and then the

24 FINITE PRECISION ARITHMETIC

error increases again as h decreases further. This is again due to severe
cancellation: when h is small, we have f(x0 + h) ≈ f(x0). In particular,
since f(x0) = f ′(x0) = 2.71828... is of moderate size, we expect for h = 10−t

that f(x0 + h) differs from f(x0) by only | log10(eps)| − t digits, i.e., t digits
are lost due to finite precision arithmetic. Thus, when h < 10−8, we lose
more digits due to roundoff error than the accuracy gained by a better Taylor
approximation. In general, the highest relative accuracy that can be expected
by this approximation is about

√
eps, which is a far cry from the eps precision

promised by the machine.

We observe that in the first example, we obtain bad results due to an
unstable formula, but a better implementation can be devised to remove
the instability and obtain good results. In the second example, however, it is
unclear how to rearrange the computation without knowing the exact formula
for f(x); one might suspect that the problem is inherently harder. In order
to quantify what we mean by easy or hard problems, we need to introduce
the notion of conditioning.

2.5 Condition of a Problem

Intuitively, the conditioning of a problem measures how sensitive it is to
small changes in the data; if the problem is very sensitive, it is inherently
more difficult to solve it using finite precision arithmetic. In order to properly
define “small” changes, however, we need define the notion of distance for
R

n.

2.5.1 Norms

A natural way to measure distance in higher dimensions is the Euclidean
norm, which represents the distance of two points we are used to in daily
life. There are however many other ways of measuring distance, also between
matrices, and these distance characterizations are called norms.

Definition 2.1. (Vector Norm) A vector norm is a function ‖x‖ :
R

n −→ R such that

1. ‖x‖ > 0 whenever x 	= 0.

2. ‖αx‖ = |α| ‖x‖ for all α ∈ R and x ∈ R
n.

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x,y ∈ R
n (triangle inequality).

Note that vector norms can also be defined for vectors in C
n, but we will

mostly concentrate on real vector spaces, with the exception of Chapter 7
(Eigenvalue problems). Frequently used norms are

Condition of a Problem 25

The spectral norm or Euclidean norm or 2-norm : It measures the
Euclidean length of a vector and is defined by

‖x‖2 :=

√√√√ n∑
i=1

|xi|2.

The infinity norm or maximum norm : It measures the largest element
in modulus and is defined by

‖x‖∞ := max
1≤i≤n

|xi|.

The 1-norm : It measures the sum of all the elements in modulus and is
defined by

‖x‖1 :=

n∑
i=1

|xi|.

Definition 2.2. (Matrix Norm) A matrix norm is a function ‖A‖ :
R

m×n −→ R such that

1. ‖A‖ > 0 whenever A 	= 0.

2. ‖αA‖ = |α| ‖A‖ for all α ∈ R and A ∈ R
m×n.

3. ‖A+B‖ ≤ ‖A‖+ ‖B‖ for all A,B ∈ R
m×n (triangle inequality).

When the matrix A ∈ R
m×n represents a linear map between the normed

linear spaces R
n and R

m, it is customary to define the induced matrix norm
by

‖A‖ = sup
‖x‖=1

‖Ax‖, (2.4)

where the norms ‖x‖ and ‖Ax‖ correspond to the norms used for Rn and R
m

respectively. Induced matrix norms satisfy the submultiplicative property,

‖AB‖ ≤ ‖A‖ ‖B‖. (2.5)

However, there are applications in which A does not represent a linear map,
for example in data analysis, where the matrix is simply an array of data
values. In such cases, we may choose to use a norm that is not an induced
matrix norm, such as the norm

‖A‖Δ = max
i,j

|aij |,

or the Frobenius norm (see below). Such norms may or may not be submul-
tiplicative: for instance, the Frobenius norm is submultiplicative, but ‖ · ‖Δ
is not.

26 FINITE PRECISION ARITHMETIC

For the vector norms we have introduced before, the corresponding in-
duced matrix norms are

The spectral norm or 2-norm : (see Chapter 6)

‖A‖2 := sup
‖x‖2=1

‖Ax‖2.

It can be shown (see Problem 2.6) that ‖A‖22 is equal to the largest
eigenvalue of ATA (or, equivalently, to the square of the largest singular
value of A, see Chapter 6). It follows that the 2-norm is invariant under
orthogonal transformations, i.e., we have ‖QA‖2 = ‖AQ‖2 = ‖A‖2
whenever Q�Q = I.

The infinity norm or maximum row sum norm :

‖A‖∞ := sup
‖x‖∞=1

‖Ax‖∞ ≡ max
1≤i≤n

n∑
j=1

|aij |.

The last identity comes from the observation that the vector x which
maximizes the supremum is given by x = (±1,±1, . . . ,±1)� with the
sign of the entries chosen according to the sign of the entries in the row
of A with the largest row sum.

The 1-norm or maximum column sum norm:

‖A‖1 := sup
‖x‖1=1

‖Ax‖1 ≡ max
1≤j≤n

n∑
i=1

|aij |.

The last identity holds because the supremum is attained for the value
x = (0, 0, . . . , 0, 1, 0, . . . , 0)� with 1 at the column position of A with
the largest column sum.

Note that all induced norms, including the ones above, satisfy ‖I‖ = 1, where
I is the identity matrix. There is another commonly used matrix norm, the
Frobenius norm, which does not arise from vector norms; it is defined by

‖A‖F :=

√√√√ n∑
i,j=1

|aij |2. (2.6)

The square of the Frobenius norm is also equal to the sum of squares of the
the singular values of A, see Chapter 6.

In the finite dimensional case considered here, all norms are equivalent,
which means for any pair of norms ‖ · ‖a and ‖ · ‖b, there exist constants C1

and C2 such that

C1‖x‖a ≤ ‖x‖b ≤ C2‖x‖a ∀x ∈ R
n. (2.7)

Condition of a Problem 27

We are therefore free to choose the norm in which we want to measure dis-
tances; a good choice often simplifies the argument when proving a result,
even though the result then holds in any norm (except possibly with a dif-
ferent constant). Note, however, that the constants may depend on the di-
mension n of the vector space, which may be large, see Problem 2.27.

2.5.2 Big- and Little-O Notation

When analyzing roundoff errors, we would often like to keep track of terms
that are very small, e.g., terms that are proportional to eps2, without explic-
itly calculating with them. The following notations, due to Landau, allows
us to do just that.

Definition 2.3. (Big-O, Little-O) Let f(x) and g(x) be two functions.
For a fixed L ∈ R ∪ {±∞}, we write

1. f(x) = Ox→L(g(x)) if there is a constant C such that |f(x)| ≤ C|g(x)|
for all x in a neighborhood of L. This is equivalent to

lim sup
x→L

∣∣∣∣f(x)g(x)

∣∣∣∣ < ∞.

2. f(x) = ox→L(g(x)) if limx→L |f(x)|/|g(x)| = 0.

When the limit point L is clear from the context, we omit the subscript x → L
and simply write O(g(x)) or o(g(x)).

The following properties of O(·) and o(·) are immediate consequences of
the definition (see Problem 2.7), but are used frequently in calculations.

Lemma 2.1. For a given limit point L ∈ R ∪ {±∞}, we have

1. O(g1)±O(g2) = O(|g1|+ |g2|).
2. O(g1) ·O(g2) = O(g1g2).

3. For any constant C, C ·O(g) = O(g).

4. For a fixed function f , O(g)/f = O(g/f).

The same properties hold when O(·) is replaced by o(·).
Note carefully that we do not have an estimate for O(g1)/O(g2): if f1 =

O(g1) and f2 = O(g2), it is possible that f2 is much smaller than g2, so it is
not possible to bound the quotient f1/f2 by g1 and g2.

Example 2.1. Let p(x) = cd(x− a)d+ cd+1(x− a)d+1+ · · ·+ cD(x− a)D

be a polynomial with d < D. If cd and cD are both nonzero, then we have

p(x) = O
(
xD
)
, as x → ±∞,

p(x) = O
(
(x− a)d

)
, as x → a.

28 FINITE PRECISION ARITHMETIC

Thus, it is essential to know which limit point L is implied by the the big-O
notation.

Example 2.2. Let f : U ⊂ R → R be n times continuously differentiable
on an open interval U . Then for any a ∈ U and k ≤ n, Taylor’s theorem
with the remainder term tells us that

f(x) = f(a) + f ′(a)(x− a) + · · · + f (k−1)(a)

(k − 1)!
(x− a)k−1 +

f (k)(ξ)

k!
(x− a)k

with |ξ − a| ≤ |x− a|. Since f (k) is continuous (and hence bounded), we can
write

f(x) = f(a) + · · ·+ f (k−1)(a)

(k − 1)!
(x− a)k−1 +O

(
(x− a)k

)
where the implied limit point is L = a. For |h| � 1, this allows us to write

f(a+ h) = f(a) + f ′(a)h+ f ′′(a)
h2

2
+O(h3),

f(a− h) = f(a)− f ′(a)h+ f ′′(a)
h2

2
+O(h3).

Then it follows from Lemma 2.1 that

f(a+ h)− f(a− h)

2h
= f ′(a) +O(h2)

whenever f is at least three times continuously differentiable.
In Maple, Taylor series expansions can be obtained using the command

taylor, both for generic functions f and for built-in functions such as sin:

>p1:=taylor(f(x),x=a,3);

p1 := f(a) + D(f)(a)(x− a) +
1

2
(D(2))(f)(a)(x− a)2 +O((x− a)3)

> p2:=taylor(sin(x),x=0,8);

p2 := x− 1

6
x3 +

1

120
x5 − 1

5040
x7 +O(x8)

> p3:=taylor((f(x+h)-f(x-h))/2/h, h=0, 4);

p3 := D(f)(x) +
1

6
(D(3))(f)(x)h2 +O(h3)

> subs(f=sin,x=0,p3);

D(sin)(0) +
1

6
(D(3))(sin)(0)h2 +O(h3)

Condition of a Problem 29

> simplify(%);

1− 1

6
h2 +O(h3)

Here, the O(·) in Maple should be interpreted the same way as in Definition
2.3, with the limit point L given by the argument to taylor, i.e., x → a in the
first command, x → 0 in the second and h → 0 for the remaining commands.

2.5.3 Condition Number

Definition 2.4. (Condition Number) The condition number κ of a prob-
lem P : Rn → R

m is the smallest number such that

|x̂i − xi|
|xi| ≤ ε for 1 ≤ i ≤ n =⇒ ‖P(x̂)− P(x)‖

‖P(x)‖ ≤ κε+ o(ε), (2.8)

where o(ε) represents terms that are asymptotically smaller than ε.

A problem is well conditioned if κ is not too large; otherwise the problem
is ill conditioned. Well-conditioned means that the solution of the problem
with slightly perturbed data does not differ much from the solution of the
problem with the original data. Ill-conditioned problems are problems for
which the solution is very sensitive to small changes in the data.

Example 2.3. We consider the problem of multiplying two real numbers,
P(x1, x2) := x1x2. If we perturb the data slightly, say

x̂1 := x1(1 + ε1), x̂2 := x2(1 + ε2), |εi| ≤ ε, i = 1, 2,

we obtain

x̂1x̂2 − x1x2

x1x2
= (1 + ε1)(1 + ε2)− 1 = ε1 + ε2 + ε1ε2,

and since we assumed that the perturbations are small, ε � 1, we can neglect
the product ε1ε2 compared to the sum ε1 + ε2, and we obtain

|x̂1x̂2 − x1x2|
|x1x2| ≤ 2ε.

Hence the condition number of multiplication is κ = 2, and the problem of
multiplying two real numbers is well conditioned.

Example 2.4. Let A be a fixed, non-singular n × n matrix. Consider
the problem of evaluating the matrix-vector product P(x) = Ax for x =
(x1, . . . , xn)

�. Suppose the perturbed vector x̂ satisfies x̂i = xi(1 + εi), |εi| <
ε. Then considering the infinity norm, we have ‖x̂− x‖∞ ≤ ε‖x‖∞, so that

‖Ax̂− Ax‖∞
‖Ax‖∞

≤ ‖A‖∞‖x̂− x‖∞
‖Ax‖∞

≤ ε‖A‖∞‖x‖∞
‖Ax‖∞

.

30 FINITE PRECISION ARITHMETIC

Since ‖x‖ = ‖A−1Ax‖ ≤ ‖A−1‖ ‖Ax‖, we in fact have

‖Ax̂− Ax‖∞
‖Ax‖∞

≤ ε‖A‖∞‖A−1‖∞,

so the condition number is κ∞ = ‖A‖∞‖A−1‖∞. We will see in Chapter
3 that κ∞ also plays an important role in the solution of linear systems of
equations.

Example 2.5. Let us look at the condition number of subtracting two real
numbers, P(x1, x2) := x1 − x2. Perturbing again the data slightly as in the
previous example, we obtain

|(x̂1 − x̂2)− (x1 − x2)|
|x1 − x2| =

|x1ε1 − x2ε2|
|x1 − x2| ≤ |x1|+ |x2|

|x1 − x2| ε.

We see that if sign(x1) = − sign(x2), which means the operation is an addi-
tion, then the condition number is κ = 1, meaning that the addition of two
numbers is well conditioned. If, however, the signs are the same and x1 ≈ x2,

then κ = |x1|+|x2|
|x1−x2| becomes very large, and hence subtraction is ill conditioned

in this case.
As a numerical example, taking x1 = 1

51 and x1 = 1
52 , we obtain for the

condition number κ =
1
51+

1
52

1
51

− 1
52

= 103, and if we compute with three significant

digits, we obtain x̂1 = 0.196e−1, x̂2 = 0.192e−1, and x̂1 − x̂2 = 0.400e−3,
which is very different from the exact result x1 − x2 = 0.377e−3; thus, the
large condition number reflects the fact that the solution is prone to large
errors due to cancellation.

In our decimal example above, the loss of accuracy is easily noticeable,
since the lost digits appear as zeros. Unfortunately, cancellation effects are
rarely as obvious when working with most modern computers, which use bi-
nary arithmetic. As an example, let us first compute in Maple

> Digits:=30;

> a:=1/500000000000001;

1

500000000000001

> b:=1/500000000000002;

1

500000000000002

> ce:=a-b;

1

250000000000001500000000000002

> c:=evalf(a-b);

Condition of a Problem 31

3.99999999999997600000000000011× 10−30 (2.9)

This is the exact difference, rounded to thirty digits. We round the operands
to 16-digit machine numbers:

> bm:=evalf[16](b);

1.999999999999992× 10−15

> am:=evalf[16](a);

1.999999999999996× 10−15

Now we calculate the difference to 30-digit precision

> c16:=am-bm;

4.0× 10−30

and also the difference to 16-digit precision to emulate floating point opera-
tions:

> cf16:=evalf[16](am-bm);

4.0× 10−30

which agrees with to the standard model a−̃b = (a− b)(1 + r) with r = 0. In
Maple, we see that the precision in this difference is reduced to two digits.
Only two digits are displayed, which indicates a serious loss of precision due
to cancellation.

Performing the same operations in Matlab, we get:

format long

>> a=1/500000000000001

a =

1.999999999999996e-15

>> b=1/500000000000002

b =

1.999999999999992e-15

>> c=a-b

c =

3.944304526105059e-30

Comparing with the exact difference in Equation (2.9), we see again that only
the first two digits are accurate. The apparently random digits appearing in
the difference stem from binary-to-decimal conversion, and it would be hard
to guess that they are meaningless. Had we looked at the same computation
in hexadecimal format in Matlab,

format hex

>> a=1/500000000000001

a =

3ce203af9ee7560b

32 FINITE PRECISION ARITHMETIC

>> b=1/500000000000002

b =

3ce203af9ee75601

>> c=a-b

c =

39d4000000000000

we would have seen that Matlab also completes the result by zeros, albeit in
binary.

Example 2.6. Consider once again the problem of evaluating the deriva-
tive of f numerically via the formula

f ′(x0) ≈ Dx0,h(f) =
f(x0 + h)− f(x0)

h
.

Here, the function f acts as data to the problem. We consider perturbed data
of the form

f̂(x) = f(x)(1 + εg(x)), |g(x)| ≤ 1,

which models the effect of roundoff error on a machine with precision ε. The
condition number then becomes∣∣∣∣∣Dx0,h(f̂)−Dx0,h(f)

Dx0,h(f)

∣∣∣∣∣ =
∣∣∣∣f(x0+h)(1+ε g(x0+h))− f(x0)(1 + ε g(x0))

f(x0 + h)− f(x0)
− 1

∣∣∣∣
≤ ε(|f(x0)|+ |f(x0 + h)|)

|f(x0 + h)− f(x0)| ≈ 2ε|f(x0)|
|hf ′(x0)| .

Thus, we have κ ≈ 2|f(x0)|/|hf ′(x0)|, meaning that the problem becomes
more and more ill-conditioned as h → 0. In other words, if h is too small
relative to the perturbation ε, it is impossible to evaluate Dx0,h(f) accurately,
no matter how the finite difference is implemented.

A related notion in mathematics is well- or ill-posed problems, introduced
by Hadamard [60]. Let A : X → Y be a mapping of some space X to Y .
The problem Ax = y is well posed if

1. For each y ∈ Y there exists a solution x ∈ X.

2. The solution x is unique.

3. The solution x is a continuous function of the the data y.

If one of the conditions is not met, then the problem is said to be ill posed.
For example, the problem of calculating the derivative f ′ based on the values
of f alone is an ill-posed problem in the continuous setting, as can be seen
from the fact that κ → ∞ as h → 0 in Example 2.6. A sensible way of
choosing h to obtain maximum accuracy is discussed in Chapter 5.

Stable and Unstable Algorithms 33

If a problem is ill-posed because condition 3 is violated, then it is also
ill conditioned. But we can also speak of an ill-conditioned problem if the
problem is well posed but if the solution is very sensitive with respect to small
changes in the data. A good example of an ill-conditioned problem is finding
the roots of the Wilkinson polynomial, see Chapter 5. It is impossible to
“cure” an ill-conditioned problem by a good algorithm, but one should avoid
transforming a well-conditioned problem into an ill-conditioned one by using
a bad algorithm, e.g. one that includes ill-conditioned subtractions that are
not strictly necessary.

2.6 Stable and Unstable Algorithms

An algorithm for solving a given problem P : Rn −→ R is a sequence of
elementary operations,

P(x) = fn(fn−1(. . . f2(f1(x)) . . .)).

In general, there exist several different algorithms for a given problem.

2.6.1 Forward Stability

If the amplification of the error in the operation fi is given by the corre-
sponding condition number κ(fi), we naturally obtain

κ(P) ≤ κ(f1) · κ(f2) · . . . · κ(fn).

Definition 2.5. (Forward Stability) A numerical algorithm for a
given problem P is forward stable if

κ(f1) · κ(f2) · . . . · κ(fn) ≤ Cκ(P), (2.10)

where C is a constant which is not too large, for example C = O(n).

Example 2.7. Consider the following two algorithms for the problem
P(x) := 1

x(1+x)
:

1. x
↗
↘

x

1 + x

↘
↗ x(1 + x) → 1

x(1+x)

2. x
↗
↘

1
x

1 + x → 1
1+x

↘
↗

1
x
− 1

1+x
→ 1

x(1+x)

In the first algorithm, all operations are well conditioned, and hence the algo-
rithm is forward stable. In the second algorithm, however, the last operation

34 FINITE PRECISION ARITHMETIC

is a potentially very ill-conditioned subtraction, and thus this second algo-
rithm is not forward stable.

Roughly speaking, an algorithm executed in finite precision arithmetic is
called stable if the effect of rounding errors is bounded ; if, on the other hand,
an algorithm increases the condition number of a problem by a large amount,
then we classify it as unstable.

Example 2.8. As a second example, we consider the problem of calcu-
lating the values

cos(1), cos(
1

2
), cos(

1

4
), . . . , cos(2−12),

or more generally,

zk = cos(2−k), k = 0, 1, . . . , n.

By considering perturbations of the form ẑk = cos(2−k(1+ ε)), we can calcu-
late the condition number for the problem using Definition 2.4:∣∣∣∣cos(2−k(1 + ε))− cos(2−k)

cos(2−k)

∣∣∣∣ ≈ 2−k tan(2−k)ε ≈ 4−kε =⇒ κ(P) ≈ 4−k.

We consider two algorithms for recursively calculating zk:

1. double angle: we use the relation cos 2α = 2 cos2 α− 1 to compute

yn = cos(2−n), yk−1 = 2y2k − 1, k = n, n− 1, . . . , 1.

2. half angle: we use cos α
2
=
√

1+cosα
2

and compute

x0 = cos(1), xk+1 =

√
1 + xk

2
, k = 0, 1, . . . , n− 1.

The results are given in Table 2.3. We notice that the yk computed by Algo-
rithm 1 are significantly affected by rounding errors while the computations
of the xk with Algorithm 2 do not seem to be affected. Let us analyze the
condition of one step of Algorithm 1 and Algorithm 2. For Algorithm 1, one
step is f1(y) = 2y2 − 1, and for the condition of the step, we obtain from

f1(y(1 + ε))− f1(y)

f1(y)
=

f1(y) + f ′
1(y) · yε+O(ε2)− f1(y)

f1(y)
=

4y2ε+O(ε2)

2y2 − 1
,

(2.11)
and from the fact that ε is small, that the condition number for one step is

κ1 = 4y2

|2y2−1| . Since all the yk in this iteration are close to one, we have

κ1 ≈ 4. Now to obtain yk, we must perform n−k iterations, so the condition

Stable and Unstable Algorithms 35

2−k yk − zk xk − zk
1 -0.0000000005209282 0.0000000000000000

5.000000e-01 -0.0000000001483986 0.0000000000000000
2.500000e-01 -0.0000000000382899 0.0000000000000001
1.250000e-01 -0.0000000000096477 0.0000000000000001
6.250000e-02 -0.0000000000024166 0.0000000000000000
3.125000e-02 -0.0000000000006045 0.0000000000000000
1.562500e-02 -0.0000000000001511 0.0000000000000001
7.812500e-03 -0.0000000000000377 0.0000000000000001
3.906250e-03 -0.0000000000000094 0.0000000000000001
1.953125e-03 -0.0000000000000023 0.0000000000000001
9.765625e-04 -0.0000000000000006 0.0000000000000001
4.882812e-04 -0.0000000000000001 0.0000000000000001
2.441406e-04 0.0000000000000000 0.0000000000000001

Table 2.3. Stable and unstable recursions

number becomes approximately 4n−k. Thus, the constant C in (2.10) of the
definition of forward stability can be estimated by

C ≈ 4n−k

κ(P)
≈ 4n−k

4−k
= 4n.

This is clearly not a small constant, so the algorithm is not forward stable.

For Algorithm 2, one step is f2(x) =
√

1+x
2 . We calculate the one-step

condition number similarly:

f2(y + ε)− f2(y)

f2(y)
=

1

2(1 + x)
ε+O(ε2).

Thus, for ε small, the condition number of one step is κ2 = 1
2|1+x| ; since all

xk in this iteration are also close to one, we obtain κ2 ≈ 1
4 . To compute

xk, we need k iterations, so the overall condition number is 4−k. Hence the
stability constant C in (2.10) is approximately

C ≈ 4−k

κ(P)
≈ 1,

meaning Algorithm 2 is stable.
We note that while Algorithm 1 runs through the iteration in an unstable

manner, Algorithm 2 performs the same iteration, but in reverse. Thus, if
the approach in Algorithm 1 is unstable, inverting the iteration leads to the
stable Algorithm 2. This is also reflected in the one-step condition number
estimate (4 and 1

4 respectively), which are the inverses of each other.
Finally, using for n = 12 a perturbation of the size of the machine preci-

sion ε = 2.2204e−16, we obtain for Algorithm 1 that 412ε = 3.7e−9, which

36 FINITE PRECISION ARITHMETIC

is a good estimate of the error 5e−10 of y0 we measured in the numerical
experiment.

Example 2.9. An important example of an unstable algorithm, which
motivated the careful study of condition and stability, is Gaussian elimina-
tion with no pivoting (see Example 3.5 in Chapter 3). When solving linear
systems using Gaussian elimination, it might happen that we eliminate an
unknown using a very small pivot on the diagonal. By dividing the other
entries by the small pivot, we could be introducing artificially large coeffi-
cients in the transformed matrix, thereby increasing the condition number
and transforming a possibly well-conditioned problem into an ill-conditioned
one. Thus, choosing small pivots makes Gaussian elimination unstable — we
need to apply a pivoting strategy to get a numerically satisfactory algorithm
(cf. Section 3.2).

Note, however, that if we solve linear equations using orthogonal transfor-
mations (Givens rotations, or Householder reflections, see Section 3.5), then
the condition number of the transformed matrices remains constant. To see
this, consider the transformation

Ax = b ⇒ QAx = Qb

where Q�Q = I. Then the 2-norm condition number of QA (as defined in
Theorem 3.5) satisfies κ(QA) = ‖(QA)−1‖2 ‖QA‖2 = ‖A−1Q�‖2 ‖QA‖2 =
‖A−1‖2‖A‖2 = κ(A), since the 2-norm is invariant under multiplication with
orthogonal matrices.

Unfortunately, as we can see in Example 2.8, it is generally difficult and
laborious to verify whether an algorithm is forward stable, since the condition
numbers required by (2.10) are often hard to obtain for a given problem and
algorithm. A different notion of stability, based on perturbations in the initial
data rather than in the results of the algorithm, will often be more convenient
to use in practice.

2.6.2 Backward Stability

Because of the difficulties in verifying forward stability, Wilkinson introduced
a different notion of stability, which is based on the Wilkinson principle we
have already seen in Section 2.4:

The result of a numerical computation on the computer is the
result of an exact computation with slightly perturbed initial data.

Definition 2.6. (Backward Stability) A numerical algorithm for a
given problem P is backward stable if the result ŷ obtained from the algorithm
with data x can be interpreted as the exact result for slightly perturbed data
x̂, ŷ = P(x̂), with

|x̂i − xi|
|xi| ≤ Ceps, (2.12)

Stable and Unstable Algorithms 37

where C is a constant which is not too large, and eps is the precision of the
machine.

Note that in order to study the backward stability of an algorithm, one
does not need to calculate the condition number of the problem itself.

Also note that a backward stable algorithm does not guarantee that the
error ‖ŷ−y‖ is small. However, if the condition number κ of the problem is
known, then the relative forward error can be bounded by

‖ŷ − y‖
‖y‖ =

‖P(x̂)− P(x)‖
‖P(x)‖ ≤ κ(P)max

i

|x̂i − xi|
|xi| ≤ κ(P) ·C eps.

Thus, a backward stable algorithm is automatically forward stable, but not
vice versa.

Example 2.10. We wish to investigate the backward stability of an algo-
rithm for the scalar product x�y := x1y1+x2y2. We propose for the algorithm
the sequence of operations

(x1, x2, y1, y2)
↗
↘

x1y1

x2y2

↘
↗ x1y1 + x2y2.

Using the fact that storing a real number x on the computer leads to a rounded
quantity x(1 + ε), |ε| ≤ eps, and that each multiplication and addition again
leads to a roundoff error of the size of eps, we find for the numerical result
of this algorithm

(x1(1+ε1)y1(1+ε2)(1+η1)+x2(1+ε3)y2(1+ε4)(1+η2))(1+η3) = x̂1ŷ1+x̂2ŷ2,

where |εi|, |ηi| ≤ eps, and

x̂1 = x1(1 + ε1)(1 + η1), ŷ1 = y1(1 + ε2)(1 + η3),

x̂2 = x2(1 + ε3)(1 + η2), ŷ2 = y2(1 + ε4)(1 + η3).

Hence the backward stability condition (2.12) is satisfied with the constant
C = 2, and thus this algorithm is backward stable.

Example 2.11. As a second example, we consider the product of two
upper triangular matrices A and B,

A =

(
a11 a12
0 a22

)
, B =

(
b11 b12
0 b22

)
.

If we neglect for simplicity of presentation the roundoff error storing the en-
tries of the matrix in finite precision arithmetic, we obtain using the standard
algorithm for computing the product of A and B on the computer(

a11b11(1 + ε1) (a11b12(1 + ε2) + a12b22(1 + ε3))(1 + ε4)
0 a22b22(1 + ε5)

)
,

38 FINITE PRECISION ARITHMETIC

where |εj | ≤ eps for j = 1, . . . , 5. If we define the slightly modified matrices

Â =

(
a11 a12(1 + ε3)(1 + ε4)
0 a22(1 + ε5)

)
,

B̂ =

(
b11(1 + ε1) b12(1 + ε2)(1 + ε4)

0 b22

)
,

their product is exactly the matrix we obtained by computing AB numerically.
Hence the computed product is the exact product of slightly perturbed A and
B, and this algorithm is backward stable.

The notion of backward stability will prove to be extremely useful in
Chapter 3, where we use the same type of analysis to show that Gaussian
elimination is in fact stable when combined with a pivoting strategy, such as
complete pivoting.

2.7 Calculating with Machine Numbers:
Tips andTricks

2.7.1 Associative Law

Consider the associative law for exact arithmetic:

(a+ b) + c = a+ (b+ c).

This law does not hold in finite precision arithmetic. As an example, take
the three numbers

a = 1.23456e−3, b = 1.00000e0, c = −b.

Then it is easy to see that, in decimal arithmetic, we obtain (a + b) + c =
1.23000e−3, but a + (b + c) = a = 1.23456e−3. It is therefore important to
use parentheses wisely, and also to consider the order of operations.

Assume for example that we have to compute a sum
∑N

i=1 ai, where the
terms ai > 0 are monotonically decreasing, i.e., a1 > a2 > · · · > an. More
concretely, consider the harmonic series

S =

N∑
i=1

1

i
.

For N = 106, we compute an “exact” reference value using Maple with
sufficient accuracy (Digits:=20):

Digits:=20;

s:=0;

for i from 1 to 1000000 do

s:=s+1.0/i:

od:

s;

14.392726722865723804

Calculating with Machine Numbers: Tips andTricks 39

Using Matlab with IEEE arithmetic, we get

N=1e6;

format long e

s1=0;

for i=1:N

s1=s1+1/i;

end

s1

ans = 1.439272672286478e+01

We observe that the last three digits are different from the Maple result. If
we sum again with Matlab but in reverse order, we obtain

s2=0;

for i=N:-1:1

s2=s2+1/i;

end

s2

ans = 1.439272672286575e+01

a much better result, since it differs only in the last digit from the Maple

result! We have already seen this effect in the associative law example: if
we add a small number to a large one, then the least significant bits of the
smaller machine number are lost. Thus, it is better to start with the smallest
elements in the sum and add the largest elements last. However, sorting
the terms of the sum would mean more computational work than strictly
required.

2.7.2 Summation Algorithm by W. Kahan

An accurate algorithm that does not require sorting was given by W. Kahan.
The idea here is to keep as carry the lower part of the small term, which
would have been lost when added to the partial sum. The carry is then
added to the next term, which is small enough that it would not be lost.

Algorithm 2.3. Kahan’s Summation of
∑N

j=1
1
j

s=0; % partial sum

c=0; % carry

for j=1:N

y=1/j+c;

t=s+y; % next partial sum, with roundoff

c=(s-t)+y; % recapture the error and store as carry

s=t;

end

s=s+c

Doing so gives a remarkably good result, which agrees to the last digit
with the Maple result:

s = 1.439272672286572e+01

40 FINITE PRECISION ARITHMETIC

2.7.3 Small Numbers

If a+ x = a holds in exact arithmetic, then we conclude that x = 0. This is
no longer true in finite precision arithmetic. In IEEE arithmetic for instance,
1 + 1e−20 = 1 holds; in fact, we have 1 + w = 1 not only for 1e−20, but
for all positive machine numbers w with w < eps, where eps is the machine
precision.

2.7.4 Monotonicity

Assume we are given a function f which is strictly monotonically increasing
in [a, b]. Then for x1 < x2 with xi ∈ [a, b] we have f(x1) < f(x2). Take for
example f(x) = sin(x) and 0 < x1 < x2 < π

2
. Can we be sure that in finite

precision arithmetic sin(x1) < sin(x2) also holds? The answer in general is
no. For standard functions however, special care was taken when they were
implemented in IEEE arithmetic, so that at least monotonicity is maintained,
only strict monotonicity is not guaranteed. In the example, IEEE arithmetic
guarantees that sin(x1) ≤ sin(x2) holds.

As an example, let us consider the polynomial

f(x) = x3 − 3.000001x2 + 3x− 0.999999.

This function is very close to (x− 1)3; it has the 3 isolated roots at

0.998586, 1.00000, 1.001414.

Let us plot the function f :

figure(1)

a=-1; b=3; h=0.1;

x=a:h:b; y=x.^3-3.000001*x.^2+3*x-0.999999;

plot(x,y)

line([a,b],[0,0])

legend(’x^3-3.000001*x^2+3*x-0.999999’)

figure(2)

a=0.998; b=1.002; h=0.0001;

x=a:h:b; y=x.^3-3.000001*x.^2+3*x-0.999999;

plot(x,y)

line([a,b],[0,0])

legend(’x^3-3.000001*x^2+3*x-0.999999’)

figure(3)

a=0.999999993; b=1.000000007; h=0.000000000005;

x=a:h:b; y=x.^3-3.000001*x.^2+3*x-0.999999;

axis([a b -1e-13 1e-13])

plot(x,y)

line([a,b],[0,0])

legend(’x^3-3.000001*x^2+3*x-0.999999’)

Calculating with Machine Numbers: Tips andTricks 41

figure(4) % using Horner’s rule

a=0.999999993; b=1.000000007; h=0.000000000005;

x=a:h:b; y=((x-3.000001).*x+3).*x-0.999999;

axis([a b -1e-13 1e-13])

plot(x,y)

line([a,b],[0,0])

legend(’((x-3.000001)*x+3)*x-0.999999’)

0.998 0.9985 0.999 0.9995 1 1.0005 1.001 1.0015 1.002 1.0025
−5

−4

−3

−2

−1

0

1

2

3

4
x 10

−9

x3−3.000001*x2+3*x−0.999999

0.998 0.9985 0.999 0.9995 1 1.0005 1.001 1.0015 1.002 1.0025
−5

−4

−3

−2

−1

0

1

2

3

4
x 10

−9

x3−3.000001*x2+3*x−0.999999

1 1 1 1 1 1 1 1 1 1
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−14

x3−3.000001*x2+3*x−0.999999

1 1 1 1 1 1 1 1 1 1
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−14

((x−3.000001)*x+3)*x−0.999999

Figure 2.4.
Close to the middle root, monotonicity is lost in finite precision arithmetic. Using

Horner’s rule in the last graph, we see that the result is slightly better.

If we zoom in to the root at 1, we see in Figure 2.4 that f behaves like a step
function and we cannot ensure monotonicity. The steps are less pronounced
if we use for the evaluation Horner’s rule, see Equation (5.62).

2.7.5 Avoiding Overflow

To avoid overflow, it is often necessary to modify the way quantities are com-
puted. Assume for example that we wish to compute the polar coordinates of
a given point (x, y) in the plane. To compute the radius r > 0, the textbook
approach is to use

r =
√
x2 + y2.

42 FINITE PRECISION ARITHMETIC

However, if |x| or |y| is larger than
√
realmax, then x2 or y2 will overflow

and produce the result Inf and hence also r = Inf. Consider for example
x = 1.5e200 and y = 3.6e195. Then

r2 = 2.25e400 + 12.96e390 = 2.250000001296e400 > realmax,

but r = 1.500000000432e200 would be well within the range of the machine
numbers. To compute r without overflowing, one remedy is to factor out the
large quantities:

>> x=1.5e200

x = 1.500000000000000e+200

>> y=3.6e195

y = 3.600000000000000e+195

>> if abs(x)>abs(y),

r=abs(x)*sqrt(1+(y/x)^2)

elseif y==0,

r=0

else

r=abs(y)*sqrt((x/y)^2+1)

end

r = 1.500000000432000e+200

A simpler program (with more operations) is the following:

m=max(abs(x),abs(y));

if m==0,

r=0

else

r=m*sqrt((x/m)^2+(y/m)^2)

end

Note that with both solutions we also avoid possible underflow when com-
puting r.

2.7.6 Testing for Overflow

Assume we want to compute x2 but we need to know if it overflows. With
the IEEE standard, it is simple to detect this:

if x^2==Inf

Without IEEE, the computationmight haltwith an errormessage. A machine-
independent test that works in almost all cases for normalized numbers is

if (1/x)/x==0 % then x^2 will overflow

In the case we want to avoid working with denormalized numbers, the test
should be

if (eps/x)/x==0 % then x^2 will overflow

Calculating with Machine Numbers: Tips andTricks 43

It is however difficult to guarantee that such a test catches overflow for all
machine numbers.

In the IEEE standard, realmin and realmax are not quite symmetric,
since the equation

realmax× realmin = c ≈ 4

holds with some constant c which depends on the processor and/or the version
of Matlab. In an ideal situation, we would have c = 1 in order to obtain
perfect symmetry.

2.7.7 Avoiding Cancellation

We have already seen in Subsection 2.4.2 how to avoid cancellation when
calculating the area of a circle. Consider as a second example for cancellation
the computation of the exponential function using the Taylor series:

ex =

∞∑
j=0

xj

j!
= 1 + x+

x2

2
+

x3

6
+

x4

24
+ . . .

It is well known that the series converges for any x. A naive approach is
therefore (in preparation of the better version later, we write the computation
in the loop already in a particular form):

Algorithm 2.4. Computation of ex, Naive Version

function s=ExpUnstable(x,tol);

% EXPUNSTABLE computation of the exponential function

% s=ExpUnstable(x,tol); computes an approximation s of exp(x)

% up to a given tolerance tol.

% WARNING: cancellation for large negative x.

s=1; term=1; k=1;

while abs(term)>tol*abs(s)

so=s; term=term*x/k;

s=so+term; k=k+1;

end

For positive x, and also small negative x, this program works quite well:

>> ExpUnstable(20,1e-8)

ans = 4.851651930670549e+08

>> exp(20)

ans = 4.851651954097903e+08

>> ExpUnstable(1,1e-8)

ans = 2.718281826198493e+00

>> exp(1)

ans = 2.718281828459045e+00

44 FINITE PRECISION ARITHMETIC

>> ExpUnstable(-1,1e-8)

ans = 3.678794413212817e-01

>> exp(-1)

ans = 3.678794411714423e-01

But for large negative x, e.g. for x = −20 and x = −50, we obtain

>> ExpUnstable(-20,1e-8)

ans = 5.621884467407823e-09

>> exp(-20)

ans = 2.061153622438558e-09

>> ExpUnstable(-50,1e-8)

ans = 1.107293340015503e+04

>> exp(-50)

ans = 1.928749847963918e-22

which are completely incorrect. The reason is that for x = −20, the terms in
the series

1− 20

1!
+

202

2!
− · · · + 2020

20!
− 2021

21!
+ · · ·

become large and have alternating signs. The largest terms are

2019

19!
=

2020

20!
= 4.3e7.

The partial sums should converge to e−20 = 2.06e−9. But because of the
growth of the terms, the partial sums become large as well and oscillate as
shown in Figure 2.5. Table 2.4 shows that the largest partial sum has about
the same size as the largest term. Since the large partial sums have to be

0 2 4 6 8 10 12 14 16 18 20
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

7

number of terms summed

pa
rt

ia
l s

um

Figure 2.5. Partial sum of the Taylor expansion of e−20

diminished by additions/subtractions of terms, this cannot happen without

Calculating with Machine Numbers: Tips andTricks 45

cancellation. Neither does it help to first sum up all positive and negative
parts separately, because when the two sums are subtracted at the end, the
result would again suffer from catastrophic cancellation. Indeed, since the
result

e−20 ≈ 10−17 20
20

20!

is about 17 orders of magnitude smaller than the largest intermediate partial
sum and the IEEE Standard has only about 16 decimal digits of accuracy,
we cannot expect to obtain even one correct digit!

number of partial sum
terms summed

20 −2.182259377927747e+ 07
40 −9.033771892137873e+ 03
60 −1.042344520180466e− 04
80 6.138258384586164e− 09
100 6.138259738609464e− 09
120 6.138259738609464e− 09

exact value 2.061153622438558e-09

Table 2.4. Numerically Computed Partial Sums of e−20

2.7.8 Computation of Mean and Standard Deviation

A third example for cancellation is the recursive computation of the mean
and the standard deviation of a sequence of numbers. Given the real numbers
x1, x2, . . . , xn, the mean is

μn =
1

n

n∑
i=1

xi. (2.13)

One definition of the variance is

var(x) =
1

n

n∑
i=1

(xi − μn)
2. (2.14)

The square-root of the variance is the standard deviation

σn =
√
var(x). (2.15)

Computing the variance using (2.14) requires two runs through the data
xi. By manipulating the variance formula as follows, we can obtain a new
expression allowing us to compute both quantities with only one run through
the data. By expanding the square bracket we obtain from (2.14)

var(x) =
1

n

n∑
i=1

(x2
i − 2μnxi + μ2

n) =
1

n

n∑
i=1

x2
i − 2μn

1

n

n∑
i=1

xi + μ2
n

1

n

n∑
i=1

1,

46 FINITE PRECISION ARITHMETIC

which simplifies to

σ2
n =

1

n

n∑
i=1

x2
i − μ2

n. (2.16)

This relation leads to the classical recursive computation of mean, variance
and standard deviation. In the following test, we use the values

x=100*ones(100,1)+1e-5*(rand(100,1)-0.5)

and compare the results with the Matlab functions mean, var and std,
which perform two runs through the data:

Algorithm 2.5.
Mean, Standard Deviation – Classical Unstable

Computation

format long

x=100*ones(100,1)+1e-5*(rand(100,1)-0.5);

s=0; sq=0; n=0;

while n<length(x),

n=n+1;

s=s+x(n);

sq=sq+x(n)^2;

mu=s/n;

end

means=[mu mean(x)]

sigma2=sq/n-mu^2;

variances=[sigma2 var(x,1)]

sigma=sqrt(sigma2);

standarddev=[sigma std(x,1)]

Each execution of these statements will be different since we use the func-
tion rand to generate the xi. However, we typically get results like

means =

1.0e+02 *

1.00000000308131 1.00000000308131

variances =

1.0e-11 *

0.90949470177293 0.81380653750974

standarddev =

1.0e-05 *

0.30157829858478 0.28527294605513

which show that the classical formulas are numerically unstable. It may even
happen that the standard deviation becomes complex because the variance
becomes negative! Of course, this is a numerical effect due to severe cancel-
lation, which can occur when using (2.16).

Calculating with Machine Numbers: Tips andTricks 47

A better updating formula, which avoids cancellation, can be derived as
follows:

nσ2
n =

n∑
i=1

(xi − μn)
2

=

n−1∑
i=1

(xi − μn)
2 + (xn − μn)

2

=
n−1∑
i=1

((xi − μn−1)− (μn − μn−1))
2
+ (xn − μn)

2

=

n−1∑
i=1

(xi − μn−1)
2 − 2(μn − μn−1)

n−1∑
i=1

(xi − μn−1)

+(n− 1)(μn − μn−1)
2 + (xn − μn)

2

= (n− 1)σ2
n−1 + 0 + (n− 1)(μn − μn−1)

2 + (xn − μn)
2.

For the mean we have the relation

nμn = (n− 1)μn−1 + xn,

which implies

μn−1 =
n

n− 1
μn − 1

n− 1
xn,

and therefore

(n− 1) (μn − μn−1)
2
= (n− 1)

(
μn − n

n− 1
μn +

1

n− 1
xn

)2

=
(xn − μn)

2

n− 1
.

Using this in the recursion for σ2
n, we obtain

nσ2
n = (n− 1)σ2

n−1 +
n

n− 1
(xn − μn)

2
,

and finally

σ2
n =

n− 1

n
σ2
n−1 +

1

n− 1
(xn − μn)

2
. (2.17)

This leads to the new algorithm

Algorithm 2.6.
Mean, Standard Deviation – Stable Computation

format long

x=100*ones(100,1)+1e-5*(rand(100,1)-0.5);

s=x(1);mu=s;sigma2=0;n=1;

while n<length(x),

48 FINITE PRECISION ARITHMETIC

n=n+1;

s=s+x(n);

mu=s/n;

sigma2=(n-1)*sigma2/n+(x(n)-mu)^2/(n-1);

end

means=[mu mean(x)]

variances=[sigma2 var(x,1)]

sigma=sqrt(sigma2);

standarddev=[sigma std(x,1)]

With this new algorithm, we now obtain significantly better results. A
typical run gives

means =

1.0e+02 *

1.00000000308131 1.00000000308131

variances =

1.0e-11 *

0.81380653819342 0.81380653750974

standarddev =

1.0e-05 *

0.28527294617496 0.28527294605513

2.8 Stopping Criteria

An important problem when computing approximate solutions using a com-
puter is to decide when the approximation is accurate enough. When com-
puting in finite precision arithmetic, the properties discussed in the previous
sections can often be exploited to design elegant algorithms that work be-
cause of (and not in spite of) rounding errors and the finiteness of the set of
machine numbers.

2.8.1 Machine-independent Algorithms

Consider again as an example the computation of the exponential function
using the Taylor series. We saw that we obtained good results for x > 0.
Using the Stirling Formula n! ∼ √

2π
(
n
e

)n
, we see that for a given x, the

n-th term satisfies

tn =
xn

n!
∼ 1√

2π

(xe
n

)n
→ 0, n → ∞.

The largest term in the expansion is therefore around n ≈ |x|, as one can
see by differentiation. For larger n, the terms decrease and converge to zero.
Numerically, the term tn becomes so small that in finite precision arithmetic
we have

sn + tn = sn, with sn =
n∑

i=0

xi

i!
.

Stopping Criteria 49

This is an elegant termination criterion which does not depend on the details
of the floating point arithmetic but makes use of the finite number of digits
in the mantissa. This way the algorithm is machine-independent ; it would
not work in exact arithmetic, however, since it would never terminate.

In order to avoid cancellation when x < 0, we use a property of the
exponential function, namely ex = 1/e−x: we first compute e|x|, and then
ex = 1/e|x|. We thus get the following stable algorithm for computing the
exponential function for all x:

Algorithm 2.7. Stable Computation of ex

function s=Exp(x);

% EXP stable computation of the exponential function

% s=Exp(x); computes an approximation s of exp(x) up to machine

% precision.

if x<0, v=-1; x=abs(x); else v=1; end

so=0; s=1; term=1; k=1;

while s~=so

so=s; term=term*x/k;

s=so+term; k=k+1;

end

if v<0, s=1/s; end;

We now obtain very good results also for large negative x:

>> Exp(-20)

ans = 2.061153622438558e-09

>> exp(-20)

ans = 2.061153622438558e-09

>> Exp(-50)

ans = 1.928749847963917e-22

>> exp(-50)

ans = 1.928749847963918e-22

Note that we have to compute the terms recursively

tk = tk−1
x

k
and not explicitly tk =

xk

k!

in order to avoid possible overflow in the numerator or denominator.
As a second example, consider the problem of designing an algorithm to

compute the square root. Given a > 0, we wish to compute

x =
√
a ⇐⇒ f(x) = x2 − a = 0.

Applying Newton’s iteration (see Section 5.2.5), we obtain

x− f(x)

f ′(x)
= x− x2 − a

2x
=

1

2
(x+

a

x
)

50 FINITE PRECISION ARITHMETIC

and the quadratically convergent iteration (also known as Heron’s formula)

xk+1 = (xk + a/xk)/2. (2.18)

When should we terminate the iteration? We could of course test to see if
successive iterations are identical up to some relative tolerance. But here we
can develop a much nicer termination criterion. The geometric interpretation
of Newton’s method shows us that if

√
a < xk then

√
a < xk+1 < xk. Thus if

we start the iteration with
√
a < x0 then the sequence {xk} is monotonically

decreasing toward s =
√
a. This monotonicity cannot hold forever on a

machine with finite precision arithmetic. So when it is lost we have reached
machine precision.

To use this criterion, we must ensure that
√
a < x0. This is easily

achieved, because one can see geometrically that after the first iteration start-
ing with any positive number, the next iterate is always larger than

√
a. If

we start for example with x0 = 1, the next iterate is (1 + a)/2 ≥ √
a. Thus

we obtain Algorithm 2.8.

Algorithm 2.8. Computing
√
x machine-independently

function y=Sqrt(a);

% SQRT computes the square-root of a positive number

% y=Sqrt(a); computes the square-root of the positive real

% number a using Newton’s method, up to machine precision.

xo=(1+a)/2; xn=(xo+a/xo)/2;

while xn<xo

xo=xn; xn=(xo+a/xo)/2;

end

y=(xo+xn)/2;

Notice the elegance of Algorithm 2.8: there is no tolerance needed for
the termination criterion. The algorithm computes the square root on any
computer without knowing the machine precision by simply using the fact
that there is always only a finite set of machine numbers. This algorithm
would not work on a machine with exact arithmetic — it relies on finite
precision arithmetic. Often these are the best algorithms one can design.

Another example of a fool-proof and machine-independent algorithm is
given in Chapter 5. The bisection algorithm for finding a simple root makes
use of the fact that there is only a finite set of machine numbers. Bisection is
continued as long as there is a machine number in the interval (a, b). When
the interval consists only of the endpoints then the iteration is terminated in
a machine-independent way. See Algorithm 5.2 for details.

Machine-independent algorithms are not easy to find. We show in the
next subsections two generic stopping criteria that are often used in practice
when no machine-independent criterion is available.

Stopping Criteria 51

2.8.2 Test Successive Approximations

If we are interested in the limit s of a convergent sequence xk, a commonly
used stopping criterion is to check the absolute or relative difference of two
successive approximations

|xk+1 − xk| < tol absolute or |xk+1 − xk| < tol|xk+1| relative “error”.

The test involves the absolute (or relative) difference of two successive iter-
ates, to which one often refers somewhat sloppily as absolute or relative error.
It is of course questionable whether the corresponding errors |xk+1 − s| and
|xk+1 − s|/|s| are indeed small. This is certainly not the case if convergence
is very slow (see Chapter 5 , Equation (5.101)), since we can be far away
from the solution s and making very small steps toward it. In that case, the
above stopping criterion will terminate the iteration prematurely.

Consider as an example the equation xe10x = 0.001. A fixed point itera-
tion is obtained by adding x an both sides and dividing by 1 + e10x,

xk+1 =
0.001 + xk

1 + e10xk
. (2.19)

If we start the iteration with x0 = −10, we obtain the iterates

x1 = −9.9990, x2 = −9.9980, x3 = −9.9970.

It would be incorrect to conclude that we are close to the solution s ≈ −9.99,
since the only solution of this equation is s = 0.0009901473844.

We will see in Chapter 5 that for fixed point iterations the Banach Fixed
Point Theorem often allows us to derive a stopping criterion based on the
difference of consecutive iterates, which guarantees asymptotically that the
current approximation is within a given tolerance of the solution, see Equa-
tion (5.102).

2.8.3 Check the Residual

Another possibility to check whether an approximate solution is good enough
is to insert this approximation into the equation to be solved, so that one can
measure the amount by which the approximation fails to satisfy the equation.
This discrepancy is called the residual r. For example, in case of the square
root above, one might want to check if r = x2

k − a is small in absolute value.
In the case of a system of linear equations, Ax = b, one checks how small
the residual

r = b− Axk

becomes in some norm for an approximate solution xk.
Unfortunately, a small residual does not guarantee that we are close to a

solution either ! Take as an example the linear system

Ax = b, A =

(
0.4343 0.4340
0.4340 0.4337

)
b =

(
1

0

)
.

52 FINITE PRECISION ARITHMETIC

The exact solution is

x =
1

9

(−43370000

43400000

)
=

(−4.81888 . . .

4.82222 . . .

)
106.

The entries of the matrix A are decimal numbers with 4 digits. The best
4-digit decimal approximation to the exact solution is

x4 =

(−4819000

4822000

)
.

Now if we compute the residual of that approximation we obtain the rather
large residual

r4 = b− Ax4 =

(
144.7

144.6

)
;

We can easily guess solutions with smaller residuals, but which clearly are
not better solutions. For example, we could have proposed as solution

x1 =

(−1

1

)
⇒ r1 = b− Ax1 =

(
1.0003

0.0003

)
,

which clearly has a smaller residual. In fact, the residual of x = (0, 0)� is
r = b = (1, 0)�, which is even smaller! Thus, we cannot trust small residuals
to always imply that we are close to a solution.

2.9 Problems

Problem 2.1. Verify with some examples the standard model of arith-
metic (2.2). For this purpose, write a Maple program and use extended
arithmetic for the exact operations. Truncate the operands to “machine num-
bers” by using a statement like am:=evalf[7](a) to get a 7-digit number. Do
the same for the machine operation.

Problem 2.2. Single precision numbers can be defined in Matlab with
the function single. Run the statements

>> format hex

>> y=single(6.5)

Convert the hexadecimal number to the corresponding binary number by ex-
panding each hexadecimal digit into 4 binary digits (bits). Finally, interpret
the 32 bits as a single precision floating point number. Verify that it really
represents the decimal number 6.5.

Problems 53

Problem 2.3. Try to compute the parameters that define the finite arith-
metic in Matlab. Compare your results with the machine constants of the
IEEE standard. Write Matlab programs to compute

1. the machine precision eps. Hint: Use the definition that eps is the
smallest positive machine number such that numerically 1 + eps > 1
holds. Compare your result with the Matlab constant eps.

2. the smallest positive normalized machine number α. Compare your
result with realmin.

3. the smallest positive denormalized number. How can this number be
computed by the IEEE constants?

4. the largest positive machine number γ. This is not easy to compute. An
approximation is given by 1/α. Compare this value with the Matlab

constant realmax.

Problem 2.4. Do the same as in the previous problem but for the finite
precision arithmetic used in Maple. Use the standard value for the precision
Digits:=10.

1. Explain first why the following Maple program to compute the machine
precision

eps:=1.0;

for i from 1 while 1.0+eps>1.0 do

eps:=eps/2.0;

end do;

does not work. Change the program and make it work! Recall that
Maple uses decimal rather than binary arithmetic.

2. Hint: To find the Maple realmin use in your loop the statement

realmin:=realmin/1.0e100000000;

otherwise you will wait too long! Then refine your guess iteratively by
dividing with smaller factors. Convince yourself by an experiment that
there are no denormalized numbers in Maple.

3. Verify that realmax = 1/realmin = 1.0× 102147483646.

Problem 2.5. (IEEE Quadruple Precision Arithmetic) In prob-
lems where more precision is needed, the IEEE standard provides a specifica-
tion for quadruple precision numbers, which occupy 128 bits of storage. Look
up this specification on the web, such as the number of bits attributed to the

54 FINITE PRECISION ARITHMETIC

mantissa and exponent, the machine precision eps, the range of representable
numbers, etc. Give the sequence of bits representing the real number 11.25
in quadruple precision.

Problem 2.6. (Matrix 2-norm) In this exercise, we will show that
‖A‖2 is the square root of the largest eigenvalue of A�A.

1. A�A is clearly a square symmetric matrix. By the spectral theorem,
there exists a complete set of orthonormal eigenvectors v1, . . . ,vn with
corresponding eigenvalues λ1, . . . , λn. Show that λi ≥ 0 for all i.

2. Let x =
∑n

i=1 civi be an arbitrary nonzero vector in R
n, expressed in

the basis of eigenvectors. Show that

‖Ax‖22 = x�A�Ax =

n∑
i=1

c2iλi. (2.20)

3. Assume without loss of generality that the eigenvalues are arranged in
descending order, i.e., λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Deduce from (2.20)
that

‖Ax‖22 ≤ λ1

n∑
i=1

c2i = λ1‖x‖22.

Conclude that ‖A‖2 ≤ √
λ1.

4. Give an example of a vector x satisfying ‖Ax‖22 = λ1. Conclude that
‖A‖2 =

√
λ1.

Problem 2.7. (Big- and Little-O Notation) Prove the properties of
O(·) and o(·) given in Lemma 2.1. Hint: For the first property, let f1 =
O(g1) and f2 = O(g2) be two functions. Then use the definition of O(·) to
show that |f1 + f2| ≤ C(|g1| + |g2|) for some constant C. Proceed similarly
for the other properties.

Problem 2.8. Determine the condition number of the elementary oper-
ations / and

√
.

Problem 2.9. (Condition Number and Derivatives) Consider the
problem P : x �→ f(x), in which f : U ⊂ R → R is a differentiable function
on the open subset U . Give a formula for the condition number κ in terms
of the function f(x) and its derivative f ′(x). Hint: You may find (2.11)
helpful.

Problem 2.10. Consider the problem

P : D ⊂ R
2 → R

2 :

(
a
b

)
�→
(
x1

x2

)
, (2.21)

Problems 55

where x1 and x2 are the roots of the second degree polynomial p(x) = x2 +
2ax + b and D = {(a, b) ∈ R

2 | b < a2}. Is this problem well conditioned?
Use the infinity norm to calculate the condition number κ.

Problem 2.11. Study the forward and backward stability of the algorithm

x1,2 = −a±
√

a2 − b

for solving the problem (2.21). Also study the forward and backward stability
of the improved algorithm in Problem 2.14 that uses Vieta’s formula, and
explain why the latter algorithm is preferable.

Problem 2.12. (Monotonicity) Suppose we are operating in a base-10
finite precision arithmetic with two significant digits in the mantissa. Let M
be the set of machine numbers. Show that the function f : M → M defined by
x �→ x2 is not strictly monotonic by finding two machine numbers a, b ∈ M

such that a 	= b, but a×̃a = b×̃b.

Problem 2.13. Write a Matlab function [r,phi] = topolar(x,y) to
convert the Cartesian coordinates of a point (x, y) to polar coordinates (r, φ).
In other words, the function should solve the equations

x = r cosφ
y = r sinφ

for r and φ. Hint: study the Matlab function atan2 and avoid under- and
overflow.

Problem 2.14. Write a fool-proofMatlab program to solve the quadratic
equation

x2 + px+ q = 0,

where p and q can be arbitrary machine numbers. Your program has to com-
pute the solutions x1 and x2 if they lie in the range of machine numbers.

Hints: consider the well-known formula

x1,2 = −p

2
±
√(p

2

)2
− q.

If |p| is large, you might get overflow when you square it. Furthermore, there
is cancellation if |p| � |q| for x1.

Avoid overflow by rewriting of the formula appropriately. Avoid cancella-
tion by using the relation: x1x2 = q (Vieta’s formula).

Problem 2.15. (Law of Cosines) Given one angle γ and the two ad-
jacent sides a and b of a triangle, the opposite side can be determined using
the law of cosines:

c =
√

a2 + b2 − 2ab cos γ.

56 FINITE PRECISION ARITHMETIC

1. Numerically we can expect problems for a small angle γ and if a � b �
c. The result c will be affected by cancellation in this case.

Change the formula to avoid cancellation by introducing −2ab+2ab in
the square root and using the half angle formula

sin2
(α
2

)
=

1− cosα

2
.

You should obtain the new and more reliable expression

c =

√
(a− b)2 + 4ab sin2

(γ
2

)

2. Simulate on a pocket computer a 2-decimal-digit arithmetic by rounding
the result after each operation to 2 decimal digits. Use the values a =
5.6, b = 5.7 and γ = 5◦ and compute the side c with the two formulas
for the Law of Cosines.

Problem 2.16. The law of cosines can be used to compute the circum-
ference of an ellipse.

1. Represent the ellipse in polar coordinates

r(φ) =
b√

1− ε2 cos2 φ
, ε2 =

a2 − b2

a2
, a ≥ b.

2. Consider now a partition φn = 2π
n and the triangle with angle φn and

the two adjacent sides r(kφn) and r((k + 1)φn).

Compute the third side of this triangle (a chord on the ellipse) using
the law of cosines. Sum up all the n chords to obtain this way an
approximation of the ellipse circumference.

3. Compare your approximation as n → ∞ with the “exact” value, which
you can obtain by numerically integrating the elliptic integral

U = a

∫ 2π

0

√
1− ε2 cos2 t dt ε2 =

a2 − b2

a2
, a ≥ b.

Notice the difference that you obtain using the textbook formula and the
stable formula for the law of cosines.

4. Implement the Matlab function

function [U,n]=Circumference(a,b)

% CIRCUMF computes the circumference of an ellipse

% [U,n]=circumf(a,b) computes the circumference U of the ellipse

% with semiaxes a and b and returns the number n of chords used to

% approximate the circumference.

Problems 57

Use the stable formula and an elegant machine-independent termination
criterion: start with n = 4 and double n in each step. The sequence of
approximations should increase monotonically. Stop the iteration when
the monotonicity is lost. Be careful to implement this algorithm effi-
ciently — it takes a large number of operations. Avoid recomputations
as much as possible.

Problem 2.17. The function ln(1+x) is evaluated inaccurately for small
|x|.

1. Evaluate this function in Matlab for x = 0.1, 0.01, . . . , 10−11.

2. Check the obtained values by computing the same in Maple using
Digits := 20.

3. Program now in Matlab and evaluate for the same arguments the
function

ln(1 + x) =

⎧⎪⎨
⎪⎩

x if 1 + x = 1 numerically,

x ln(1 + x)
(1 + x)− 1

if 1 + x 	= 1 numerically.

Comment on your results. Can you explain why this works? This
transformation is another clever idea by W. Kahan.

Problem 2.18. We have seen that computing f(x) = ex using its Tay-
lor series is not feasible for x = −20 because of catastrophic cancellation.
However, the series can be used without problems for small |x| < 1.

1. Try therefore the following idea:

ex =
(
· · · (e x

2m
)2 · · ·)2 .

This means that we first compute a number m such that

z =
x

2m
, with |z| < 1.

The we use the series to compute ez and finally we get the result by
squaring m times.

Write a Matlab function function y=es(x) that computes ex this
way and compare the results with the Matlab function exp.

2. Perform an error analysis of this algorithm.

58 FINITE PRECISION ARITHMETIC

Problem 2.19. The function

f(x) = ln((1 + x4)2 − 1)

is computed inexactly in IEEE arithmetic (the results may even be completely
wrong) for small positive values of x. Already for x ≈ 10−3, we obtain only
about 8 correct decimal digits. For x ≈ 10−4 we get in Matlab -Inf.

Write a Matlab function y=f(x) which computes the correct function
values for all realmin ≤ x < 10−3.

Problem 2.20. When evaluating

f(x) =
ex − 1− x

x2

on the computer, we observe a large relative error for values x ≈ 0.

1. Explain what happens.

2. Find a method to compute f for |x| < 1 to machine precision and write
a Matlab function for computing f .

Problem 2.21. When evaluating

f(x) =
x2

(cos(sin x))2 − 1

on the computer, we observe a large relative error for values x ≈ 0.

1. Explain what happens.

2. Find a method to compute f for |x| < 1 to machine precision and write
a Matlab function for computing f .

Problem 2.22. (Checking successive iterates as stopping cri-

terion)

Assume that the fixed-point iteration xk+1 = F (xk) yields a linearly con-
vergent sequence xk → s and that for the error ek = |xk − s|, the relation
ek+1 ≤ cek holds with 0 < c < 1. Investigate for what values of c we can
conclude that if |xk+1 − xk| ≤ ε holds, then also ek+1 < ε.

Problem 2.23. Write a Matlab function to compute the sine function
in a machine-independent way using its Taylor series. Since the series is
alternating, cancellation will occur for large |x|.

To avoid cancellation, reduce the argument x of sin(x) to the interval
[0, π

2
]. Then sum the Taylor series and stop the summation with the machine-

independent criterion sn + tn = sn, where sn denotes the partial sum and tn
the next term. Compare the exact values for [sin(−10 + k/100)]k=0,...,2000

Problems 59

with the ones you obtain from your Matlab function and plot the relative
error.

Problem 2.24. The function

f(x) =
x2

1!
+ 7

x4

2!
+ 17

x6

3!
+ · · · =

∞∑
n=1

(2n2 − 1)
x2n

n!

should be evaluated to machine precision for x in the range 0 < x < 25.
Write a Matlab function for this purpose. Pay particular attention to

a) compute the result to machine precision with an elegant stopping crite-
rion;

b) avoid any potential overflows.

Problem 2.25. We would like to compute the integrals

yn =

∫ 1

0

xn

x+ a
dx

for n = 0, 1, 2, . . . , 30 and a > 0.

1. Show that the following recurrence holds:

yn =
1

n
− ayn−1, y0 = log

(
1 + a

a

)
. (2.22)

2. Compute upper and lower bounds for the values yn by choosing x = 0,
respectively x = 1, in the denominator of the integrand.

3. Compute for a = 10 the sequence {yn} for n = 1, . . . , 30 using (2.22)
repeatedly. Print a table with the values and their bounds.

4. Solve (2.22) for yn−1 and compute again the sequence for a = 10, this
time backwards starting from n = 30. Take as starting value the lower
bound for y30.

5. Finally, check your results by computing the integrals directly using the
Matlab function quad.

Problem 2.26. Given an integer n, one often needs to compute the
function values

sk = sin(kφ), k = 1, . . . , n for φ =
2π

n
.

60 FINITE PRECISION ARITHMETIC

Instead of invoking the sine function n times to calculate sk, one could also
calculate them recursively using the trigonometric identities(

cos((k + 1)φ)
sin((k + 1)φ)

)
=

(
cosφ − sinφ
sinφ cosφ

)(
cos(kφ)
sin(kφ)

)
. (2.23)

Perform some experiments to compare the computing time versus the accu-
racy, then design a fast “mixed” algorithm.

Problem 2.27. Vector and matrix norms

1. Show that for vectors x the infinity norm ‖x‖∞ and the one norm ‖x‖1
are norms according to Definition 2.1.

2. Show that for matrices A the Frobenius norm ‖A‖F , the infinity norm
‖A‖∞ and the one norm ‖A‖1 are norms according to Definition 2.2.
Show that each norm is submultiplicative.

3. Two vector norms ‖ · ‖A and ‖ · ‖B are called equivalent if there are
positive constants C1 and C2 such that for all x we have

C1‖x‖A ≤ ‖x‖B ≤ C2‖x‖A.

Show that for x ∈ R
n,

‖x‖2 ≤ ‖x‖1 ≤ √
n‖x‖2,

‖x‖∞ ≤ ‖x‖2 ≤ √
n‖x‖∞,

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞.

(Hint: Squaring the inequalities helps for the two norm.)

Chapter 3. Linear Systems of Equations

The conversion of a general system to triangular form
via Gauss transformations is then presented, where the
“language” of matrix factorizations is introduced.

As we have just seen, triangular systems are “easy” to
solve. The idea behind Gaussian elimination is to con-
vert a given system Ax = b to an equivalent triangular
system.

Golub and Van Loan, Matrix Computations, Third Edi-
tion, Johns Hopkins University Press, 1996

Prerequisites: Sections 2.2 (finite-precision arithmetic), 2.5 (conditioning)
and 2.6 (stability) are required for this chapter.

Solving a system of linear equations is one of the most frequent tasks in nu-
merical computing. The reason is twofold: historically, many phenomena in
physics and engineering have been modeled by linear differential equations,
since they are much easier to analyze than nonlinear ones. In addition, even
when the model is nonlinear, the problem is often solved iteratively as a se-
quence of linear problems, e.g., by Newton’s method (Chapter 5). Thus, it
is important to be able to solve linear equations efficiently and robustly, and
to understand how numerical artifacts affect the quality of the solution. We
start with an introductory example, where we also mention Cramer’s rule, a
formula used by generations of mathematicians to write down explicit solu-
tions of linear systems, but which is not at all suitable for computations. We
then show in Section 3.2 the fundamental technique of Gaussian elimination
with pivoting, which is the basis of LU decomposition, the workhorse present
in all modern dense linear solvers. This decomposition approach to matrix
computations, pioneered by Householder, represents a real paradigm shift in
the solution of linear systems and is listed as one of the top ten algorithms of
the last century [27] think factorization, not solution (see the quote above).
In Section 3.3, we introduce the important concept of the condition number
of a matrix, which is the essential quantity for understanding the condition
of solving a linear system. We then use Wilkinson’s Principle to show how
the condition number influences the expected accuracy of the solution of the
associated linear system. The special case of symmetric positive definite sys-
tems is discussed in Section 3.4, where the LU factorization can be expressed
in the very special form L = UT due to symmetry, leading to the so-called

W. Gander et al., Scientific Computing - An Introduction using Maple and MATLAB,

Texts in Computational Science and Engineering 11,
DOI 10.1007/978-3-319-04325-8 3,

© Springer International Publishing Switzerland 2014

62 LINEAR SYSTEMS OF EQUATIONS

Cholesky factorization. An alternative for computing the solution of linear
systems that does not require pivoting is shown in Section 3.5, where Givens
rotations are introduced. We conclude this chapter with special factoriza-
tion techniques for banded matrices in Section 3.6. The focus of the chapter
is on direct methods; iterative methods for linear systems are discussed in
Chapter 11. Moreover, we consider in this chapter only square linear systems
(systems that have as many equations as unknowns) whose matrices are non-
singular, i.e., systems that have a unique solution. In Chapter 6, we discuss
how to solve problems with more equations than unknowns.

3.1 Introductory Example

As a simple example, we consider the geometric problem of finding the inter-
section point of three planes α, β and γ given in normal form:

α : 4x1 + x2 + x3 = 2,
β : x2 + 2x3 = 3,
γ : −5x1 + 2x3 = 5.

(3.1)

If the normal vectors of the three planes are not coplanar (i.e., do not lie on
the same plane themselves), then there is exactly one intersection point x =
(x1, x2, x3)

� satisfying the three equations simultaneously. Equations (3.1)
form a system of linear equations, with three equations in three unknowns.
More generally, a system of n equations in n unknowns written component-
wise is

a11x1 + · · · + a1nxn = b1,
a21x1 + · · · + a2nxn = b2,

...
...

...
...

an1x1 + · · · + annxn = bn.

(3.2)

The constants aij are called the coefficients and the bi form the right-hand
side. The coefficients are collected in the matrix

A =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

⎞
⎟⎟⎟⎠ . (3.3)

The right-hand side is the vector

b =

⎛
⎜⎝

b1
...
bn

⎞
⎟⎠ , (3.4)

Introductory Example 63

and we collect the xi in the vector of unknowns

x =

⎛
⎜⎝

x1

...
xn

⎞
⎟⎠ . (3.5)

In matrix-vector notation, the linear system (3.2) is therefore

Ax = b. (3.6)

For Example (3.1) we get

A =

⎛
⎝ 4 1 1

0 1 2
−5 0 2

⎞
⎠ and b =

⎛
⎝ 2

3
5

⎞
⎠ . (3.7)

Often it is useful to consider the columns of a matrix A,

A = (a : 1,a : 2, . . . ,a :n) , (3.8)

where

a : i :=

⎛
⎜⎝

a1i
...

ani

⎞
⎟⎠ (3.9)

denotes the ith column vector. In Matlab we can address a : i by the ex-
pression A(:,i). Similarly we denote by

ak : = (ak1, . . . , akn)

the kth row vector of A and thus

A =

⎛
⎜⎝

a1 :

...
an :

⎞
⎟⎠ . (3.10)

The expression in Matlab for ak : is A(k,:). Notice that in (3.1), the
normal vectors to the planes are precisely the rows of A.

An common way to test whether the three normal vectors are coplanar
uses determinants, which calculate the (signed) volume of the parallelepiped
with edges given by three vectors. The determinant is, in fact, defined for a
general n× n matrix A by the real number

det(A) :=
∑
k

(−1)δ(k)a1k1
a2k2

a3k3
. . . ankn

, (3.11)

where the vector of indices k = {k1, . . . , kn} takes all values of the permuta-
tions of the indices {1, 2, . . . , n}. The sign is defined by δ(k), which equals 0

64 LINEAR SYSTEMS OF EQUATIONS

(a) (b)
Figure 3.1.

Three planes with (a) no common intersection, (b)
infinitely many intersections along a straight line

or 1 depending on the permutation being even or odd. This formula is called
the Leibniz formula for determinants.

Example 3.1. For n = 2 we have

det

(
a11 a12
a21 a22

)
= a11a22 − a12a21, (3.12)

and for n = 3 we obtain

det

⎛
⎝ a11 a12 a13

a21 a22 a23
a31 a32 a33

⎞
⎠ = a11a22a33 − a11a23a32 + a12a23a31−a12a21a33 + a13a21a32 − a13a22a31.

(3.13)

In our geometric example, the rows of the coefficient matrix A are precisely
the normal vectors to the planes, so |det(A)| is the volume of the paral-
lelepiped generated by the three vectors. If this volume is zero, then the
parallelepiped “collapses” onto the same plane, which implies our system ei-
ther has no solution (no common intersection point, see Figure 3.1(a)), or
has infinitely many solutions (intersection along a whole line or plane, see
Figure 3.1(b)). However, if det(A) 	= 0, then there is a unique intersection
point, so the solution to (3.1) is unique.

Instead of using Definition (3.11), we can also compute the determinant
using the Laplace Expansion. For each row i we have

det(A) =

n∑
j=1

aij(−1)i+j det(Mij), (3.14)

where Mij denotes the (n − 1) × (n − 1) submatrix obtained by deleting
row i and column j of the matrix A. Instead of expanding the determinant
as in (3.14) along a row, we can also use an expansion along a column.

Introductory Example 65

The following recursive Matlab program computes a determinant using the
Laplace Expansion for the first row:

Algorithm 3.1. Determinant by Laplace Expansion

function d=DetLaplace(A);

% DETLAPLACE determinant using Laplace expansion

% d=DetLaplace(A); computes the determinant d of the matrix A

% using the Laplace expansion for the first row.

n=length(A);

if n==1;

d=A(1,1);

else

d=0; v=1;

for j=1:n

M1j=[A(2:n,1:j-1) A(2:n,j+1:n)];

d=d+v*A(1,j)*DetLaplace(M1j);

v=-v;

end

end

The following equation holds for determinants, see Problem 3.4:

det(AB) = det(A) det(B). (3.15)

This equation allows us to give an explicit expression for the solution of the
linear system (3.6). Consider replacing in the identity matrix

I =

⎛
⎜⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 · · · 0 1

⎞
⎟⎟⎟⎠

the i-th column vector ei by x to obtain the matrix

E = (e1, . . . ,ei−1,x,ei+1, . . . ,en).

The determinant is simply
det(E) = xi, (3.16)

as one can see immediately by expanding along the i-th row. Furthermore,

AE = (Ae1, . . . , Aei−1, Ax, Aei+1, . . . , Aen),

and because Ax = b and Aek = a : k, we obtain

AE = (a : 1, . . . ,a : i−1, b,a : i+1, . . . ,a :n). (3.17)

66 LINEAR SYSTEMS OF EQUATIONS

If we denote the matrix on the right hand side of (3.17) by Ai and if we
compute the determinant on both sides we get

det(A) det(E) = det(Ai).

Using Equation (3.16) we get

Theorem 3.1. (Cramer’s Rule) For det(A) 	= 0, the linear system
Ax = b has the unique solution

xi =
det(Ai)

det(A)
, i = 1, 2, . . . , n, (3.18)

where Ai is the matrix obtained from A by replacing column a : i by b.

The following Matlab program computes the solution of a linear system
with Cramer’s rule:

Algorithm 3.2. Cramer’s Rule

function x=Cramer(A,b);

% CRAMER solves a linear Sytem with Cramer’s rule

% x=Cramer(A,b); Solves the linear system Ax=b using Cramer’s

% rule. The determinants are computed using the function DetLaplace.

n=length(b);

detA=DetLaplace(A);

for i=1:n

AI=[A(:,1:i-1), b, A(:,i+1:n)];

x(i)=DetLaplace(AI)/detA;

end

x = x(:);

Cramer’s rule looks simple and even elegant, but for computational pur-
poses it is a disaster, as we show in Figure 3.2 for the Hilbert matrices, see
Problem 3.3. The computational effort with Laplace expansion is O(n!) (see
Problem 3.5), while with Gaussian elimination (introduced in the next sec-
tion), it is O(n3). Furthermore, the numerical accuracy due to finite precision
arithmetic is very poor: it is very likely that cancellation occurs within the
Laplace expansion, as one can see in Figure 3.2.

3.2 Gaussian Elimination

With Gaussian Elimination, one tries to reduce a given linear system to an
equivalent system with a triangular matrix. As we will see, such systems are
very easy to solve.

Gaussian Elimination 67

10
0.4

10
0.5

10
0.6

10
0.7

10
0.8

10
0.9

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

number of unknowns

cp
u

tim
e

Gaussian elimination
Cramer Rule
O(n3)
O(nn)

2 3 4 5 6 7 8
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

number of unknowns

re
la

tiv
e

er
ro

r

Gaussian elimination
Cramer Rule
Condition−Number*eps

Figure 3.2.
Comparison of speed (above) and accuracy (below) of

Cramer’s rule with Gaussian Elimination

68 LINEAR SYSTEMS OF EQUATIONS

Example 3.2.

3x1 + 5x2 − x3 = 2,
2x2 − 7x3 = −16,

− 4x3 = −8.
(3.19)

The matrix U of Equation (3.19) is called an upper triangular matrix,

U =

⎛
⎝ 3 5 −1

0 2 −7
0 0 −4

⎞
⎠ ,

since all elements below the main diagonal are zero. The solution of Equation
(3.19) is easily computed by back substitution: we compute x3 from the last
equation, obtaining x3 = 2. Then we insert this value into the second last
equation and we can solve for x2 = −1. Finally we insert the values for x2

and x3 into the first equation and obtain x1 = 3.
If U ∈ R

n×n and we solve the i-th equation in Ux = b for xi then

xi = (bi −
n∑

j=i+1

uijxj)/uii.

Therefore we get the following first version for back substitution

Algorithm 3.3. Back substitution

function x=BackSubstitution(U,b)

% BACKSUBSTITUTION solves a linear system by backsubstitution

% x=BackSubstitution(U,b) solves Ux=b, U upper triangular by

% backsubstitution

n=length(b);

for k=n:-1:1

s=b(k);

for j=k+1:n

s=s-U(k,j)*x(j);

end

x(k)=s/U(k,k);

end

x=x(:);

With vector operations, a second variant of back substitution can be
formulated using the scalar product, see Problem 3.8. For a third variant,
also using vector operations, we can subtract immediately after computing
xi the i-th column of U multiplied by xi from the right-hand side. This
simplifies the process to the SAXPY variant1 of back substitution:

1SAXPY, which stands for “scalar a ·x plus y”, is a basic linear algebra operation that
overwrites a vector y with the result of ax + y, where a is a scalar. This operation is
implemented efficiently in several libraries that can be tuned to the machine on which the
code is executed.

Gaussian Elimination 69

Algorithm 3.4. Back substitution, SAXPY-Variant

function x=BackSubstitutionSAXPY(U,b)

% BACKSUBSTITUTIONSAXPY solves linear system by backsubstitution

% x=BackSubstitutionSAXPY(U,b) solves Ux=b by backsubstitution by

% modifying the right hand side (SAXPY variant)

n=length(b);

for i=n:-1:1

x(i)=b(i)/U(i,i);

b(1:i-1)=b(1:i-1)-x(i)*U(1:i-1,i);

end

x=x(:);

This algorithm costs n divisions and (n−1)+(n−2)+ . . .+1 = 1
2
n2− 1

2
n

additions and multiplications, and its complexity is thus O(n2).
We will now reduce in n− 1 elimination steps the given linear system of

equations
a11x1 + a12x2 + . . .+ a1nxn = b1

...
...

...
...

ak1x1 + ak2x2 + . . .+ aknxn = bk
...

...
...

...
an1x1 + an2x2 + . . .+ annxn = bn

(3.20)

to an equivalent system with an upper triangular matrix. A linear system is
transformed into an equivalent one by adding to one equation a multiple of
another equation. An elimination step consists of adding a suitable multiple
in such a way that one unknown is eliminated in the remaining equations.

To eliminate the unknown x1 in equations #2 to #n, we perform the
operations

for k=2:n

{new Eq. # k} = {Eq. # k} −ak1
a11 {Eq.# 1}

end

We obtain a reduced system with an (n− 1)× (n− 1) matrix which contains
only the unknowns x2, . . . , xn. This remaining system is reduced again by
one unknown by freezing the second equation and eliminating x2 in equations
#3 to #n. We continue this way until only one equation with one unknown
remains. This way we have reduced the original system to a system with an
upper triangular matrix. The whole process is described by two nested loops:

for i=1:n-1

for k=i+1:n

70 LINEAR SYSTEMS OF EQUATIONS

{new Eq. # k} = {Eq. # k} −aki
aii

{Eq. # i}
end

end

The coefficients of the k-th new equation are computed as

akj := akj − aki
aii

aij for j = i+ 1, . . . , n, (3.21)

and the right-hand side also changes,

bk := bk − aki
aii

bi.

Note that the k-th elimination step (3.21) is a rank-one change of the re-
maining matrix. Thus, if we append the right hand side to the matrix A by
A=[A, b], then the elimination becomes

for i=1:n-1

A(i+1:n,i)=A(i+1:n,i)/A(i,i);

A(i+1:n,i+1:n+1)=A(i+1:n,i+1:n+1)-A(i+1:n,i)*A(i,i+1:n+1);

end

where the inner loop over k has been subsumed by Matlab’s vector notation.
Note that we did not compute the zeros in A(i+1:n,i). Rather we used these
matrix elements to store the factors necessary to eliminate the unknown xi.

Example 3.3. We consider the linear system Ax = b with A=invhilb(4),

A =

⎛
⎜⎜⎝

16 −120 240 −140
−120 1200 −2700 1680
240 −2700 6480 −4200

−140 1680 −4200 2800

⎞
⎟⎟⎠ b =

⎛
⎜⎜⎝

−4
6

−180
140

⎞
⎟⎟⎠ .

The right-hand side b was chosen in such a way that the solution is x =
(1, 1, 1, 1)�. If we apply the above elimination procedure to the augmented
matrix [A, b], then we obtain

A =

16.0000 -120.0000 240.0000 -140.0000 -4.0000

-7.5000 300.0000 -900.0000 630.0000 30.0000

15.0000 -3.0000 180.0000 -210.0000 -30.0000

-8.7500 2.1000 -1.1667 7.0000 7.0000

>> U=triu(A)

U =

16.0000 -120.0000 240.0000 -140.0000 -4.0000

0 300.0000 -900.0000 630.0000 30.0000

0 0 180.0000 -210.0000 -30.0000

0 0 0 7.0000 7.0000

Gaussian Elimination 71

Thus the equivalent reduced system is⎛
⎜⎜⎝

16 −120 240 −140
300 −900 630

180 −210
7

⎞
⎟⎟⎠x =

⎛
⎜⎜⎝

−4
30

−30
7

⎞
⎟⎟⎠ ,

and has the same solution x = (1, 1, 1, 1)�.

There is unfortunately a glitch. Our elimination process may fail if, in
step i, the i-th equation does not contain the unknown xi, i.e., if the (i, i)-th
coefficient is zero. Then we cannot use this equation to eliminate xi in the
remaining equations.

Example 3.4.

x2 + 3x3 = −6
2x1 − x2 + x3 = 10

−3x1 + 5x2 − 7x3 = 10

Since the first equation does not contain x1, we cannot use it to eliminate x1

in the second and third equation.

Obviously, the solution of a linear system does not depend on the order-
ing of the equations. It is therefore very natural to reorder the equations in
such a way that we obtain a pivot-element aii 	= 0. From the point of view
of numerical stability, aii 	= 0 is not sufficient; we also need to reorder equa-
tions if the unknown xi is only “weakly” contained. The following example
illustrates this.

Example 3.5. Consider for ε small the linear system

εx1 + x2 = 1,
x1 + x2 = 2.

(3.22)

If we interpret the equations as lines in the plane, then their graphs show a
clear intersection point near x1 = x2 = 1, as one can see for ε = 10−7 in
Figure 3.3. The angle between the two lines is about 45◦.

If we want to solve this system algebraically, then we might eliminate the
first unknown in the second equation by replacing the second equation with
the linear combination

{Eq. #2} − 1

ε
{Eq. #1}.

This leads to the new, mathematically equivalent system of equations

εx1 + x2 = 1,
(1− 1

ε
) x2 = 2− 1

ε
.

If we again interpret the two equations as lines in the plane, then we see that
this time, the two lines are almost coinciding, as shown in Figure 3.3, where

72 LINEAR SYSTEMS OF EQUATIONS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
first equation
second equation
second equation after elimination
solution

x1

x
2

Figure 3.3.
Example on how a well-conditioned problem can be
transformed into an ill-conditioned one when a small

pivot is used in Gaussian elimination

we used the circle symbol for the new second line in order to make it visible
on top of the first one. The intersection point is now very difficult to find —
the problem has become ill conditioned.

What went wrong? We eliminated the unknown using a very small pivot
on the diagonal. Doing this, we transformed a well-conditioned problem into
an ill-conditioned one. Choosing small pivots makes Gaussian elimination
unstable. If, however, we interchange the equations of (3.22) and eliminate
afterward, we get

x1 + x2 = 2
(1− ε)x2 = 1− 2ε,

(3.23)

a system for which the row vectors of the matrix are nicely linearly indepen-
dent, and so the intersection point is well defined and can be computed stably.

This observation is the motivation for introducing a pivoting strategy.
We consider partial pivoting, which means that before each elimination step,
we look in the current column for the element with largest absolute value.
This element will then be chosen as the pivot. If we cannot find a nonzero
pivot element, this means that the corresponding unknown is absent from
the remaining equations, i.e., the linear system is singular. In finite precision
arithmetic, we cannot expect in the singular case that all possible pivot el-
ements will be exactly zero, since rounding errors will produce rather small
(but nonzero) elements; these will have to be compared with the other ma-
trix elements in order to decide if they should be treated as zeros. Therefore,
we will consider in the following program a pivot element to be zero if it is
smaller than 10−14||A||1, a reasonable size in practice.

Gaussian Elimination 73

Algorithm 3.5.
Gaussian Elimination with Partial Pivoting

function x=Elimination(A,b)

% ELIMINATION solves a linear system by Gaussian elimination

% x=Elimination(A,b) solves the linear system Ax=b using Gaussian

% Elimination with partial pivoting. Uses the function

% BackSubstitution

n=length(b);

norma=norm(A,1);

A=[A,b]; % augmented matrix

for i=1:n

[maximum,kmax]=max(abs(A(i:n,i))); % look for Pivot A(kmax,i)

kmax=kmax+i-1;

if maximum < 1e-14*norma; % only small pivots

error(’matrix is singular’)

end

if i ~= kmax % interchange rows

h=A(kmax,:); A(kmax,:)=A(i,:); A(i,:)=h;

end

A(i+1:n,i)=A(i+1:n,i)/A(i,i); % elimination step

A(i+1:n,i+1:n+1)=A(i+1:n,i+1:n+1)-A(i+1:n,i)*A(i,i+1:n+1);

end

x=BackSubstitution(A,A(:,n+1));

Note that although we have to perform only n − 1 elimination steps, the
for-loop in Elimination goes up to n. This is necessary for testing whether
ann becomes zero, which would indicate that the matrix is singular. The
statements corresponding to the actual elimination have an empty index set,
and thus have no effect for i = n.

Example 3.6. If we consider A=magic(4) and b = (1, 0, 0, 0)�, then the
call x=Elimination(A,b) will return the error message matrix is singular.
This is correct, since the rank of A is 3.

In Matlab, a linear system Ax = b is solved with the statement x=A\b. If
A has full rank, the operator \ solves the system using partial pivoting.

3.2.1 LU Factorization

Gaussian elimination becomes more transparent if we formulate it using ma-
trix operations. Consider the matrix

L1 =

⎛
⎜⎜⎜⎝

1 0 0 · · · 0
−l21 1 0 · · · 0
...

...
. . .

...
−ln1 0 0 · · · 1

⎞
⎟⎟⎟⎠ , lj1 :=

aj1
a11

, j = 2, . . . , n. (3.24)

74 LINEAR SYSTEMS OF EQUATIONS

Multiplying the linear system Ax = b with L1 from the left, we obtain

L1Ax = L1b, (3.25)

and it is easy to see that this is the system that we get after the first elimi-
nation step: the first equation is unchanged and the remaining equations do
not contain x1 any more. Denoting the elements of the matrix A(1) := L1A

by a
(1)
ik , we can eliminate in the same way the unknown x2 with the matrix

L2 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 1 0 · · · 0
0 −l32 1 · · · 0
...

...
...

. . .
...

0 −ln2 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠ , lj2 :=

a
(1)
j2

a
(1)
22

, j = 3, . . . , n, (3.26)

from equations #3 to #n by multiplying the system (3.25) from the left by
L2,

L2L1Ax = L2L1b, (3.27)

and we obtain the new matrix A(2) := L2A
(1) = L2L1A. Continuing this

way, we obtain the matrices Lk and A(k) for k = 1, . . . , n− 1, and finally the
system

A(n−1)x = Ln−1 · · ·L1Ax = Ln−1 · · ·L1b, (3.28)

where we have now obtained an upper triangular matrix U ,

A(n−1) = Ln−1 · · ·L1A = U. (3.29)

The matrices Lj are all lower triangular matrices. They are easy to invert,
for instance

L−1
1 =

⎛
⎜⎜⎜⎝

1 0 0 · · · 0
+l21 1 0 · · · 0
...

...
. . .

...
+ln1 0 0 · · · 1

⎞
⎟⎟⎟⎠ . (3.30)

Thus we only have to invert the signs. Moving this way the Li to the right
hand side, we obtain

A = L−1
1 . . . L−1

n−1U. (3.31)

The product of lower triangular matrices is again lower triangular, see Prob-
lem 3.6, and therefore

L := L−1
1 . . . L−1

n−1 (3.32)

is lower triangular. More specifically, we have

L =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
l21 1 0 · · · 0
l31 l32 1 · · · 0
...

...
...

. . .
...

ln1 ln2 ln3 · · · 1

⎞
⎟⎟⎟⎟⎟⎠ , (3.33)

Gaussian Elimination 75

where lij are the multiplication factors which are used for the elimination.
Equation (3.31) then reads

A = L · U, (3.34)

and we have obtained a decomposition of the matrix A into a product of two
triangular matrices — the so-called LU decomposition. With partial pivoting,
the equations (and hence the rows of A) are permuted, so we obtain not a
triangular decomposition of the matrix A, but that of Ã = PA, where P is
a permutation matrix, so that Ã has the same row vectors as A, but in a
different order.

Theorem 3.2. (LU Decomposition) Let A ∈ R
n×n be a non-singular

matrix. Then there exists a permutation matrix P such that

PA = LU, (3.35)

where L and U are the lower and upper triangular matrices obtained from
Gaussian elimination.

Proof. At the first step of the elimination, we look for the row containing
the largest pivot, swap it with the first row, and then perform the elimination.
Thus, we have

A(1) = L1P1A,

where P1 interchanges rows #1 and #k1 with k1 > 1. In the second step, we
again swap rows #2 and #k2 with k2 > 2 before eliminating, i.e.,

A(2) = L2P2A
(1) = L2P2L1P1A.

Continuing this way, we obtain

U = A(n−1) = Ln−1Pn−1 · · ·L1P1A, (3.36)

where Pi interchanges rows #i and #ki with ki > i. Our goal is to make
all the permutations appear together, instead of being scattered across the
factorization. To do so, note that each Li contains a single column of non-zero
entries apart from the diagonal. Thus, it can be written as

Li = I − vie
�
i ,

where ei contains 1 at the i-th position and zeros everywhere else, and the
first i entries of vi are zero. By direct calculation, we see that

Pn−1 · · ·Pi+1Li = Pn−1 · · ·Pi+1(I − vie
�
i)

= Pn−1 · · ·Pi+1 − ṽie
�
i

=
[
I − ṽi(Pn−1 · · ·Pi+1ei)

�]Pn−1 · · ·Pi+1,

where ṽi = Pn−1 · · ·Pi+1vi is a permuted version of vi. But the permutation
Pn−1 · · ·Pi+1 only permutes entries i + 1 to n in a vector; entries 1 to i

76 LINEAR SYSTEMS OF EQUATIONS

remain untouched. This means the first i entries of ṽi are still zero, and ei is
unchanged by the permutation, i.e., Pn−1 · · ·Pi+1ei = ei. So we in fact have

Pn−1 · · ·Pi+1Li = L̃iPn−1 · · ·Pi+1

with L̃i = I − ṽie
�
i still lower triangular. Now (3.36) implies

U = Ln−1Pn−1Ln−2Pn−2 · · ·L2P2L1P1A

= Ln−1L̃n−2Pn−1Pn−2 · · ·L2P2L1P1A

= · · · = (Ln−1L̃n−2 · · · L̃2L̃1)(Pn−1 · · ·P1)A.

Letting P = Pn−1 · · ·P1 and L = L̃−1
1 · · · L̃−1

n−2L
−1
n−1 completes the proof. �

Note that the above proof shows that we must swap entries in both L
and U when two rows are interchanged. It also means that there exists a
row permutation such that all the pivots that appear during the elimination
are the largest in their respective columns, so for analysis purposes we can
assume that A has been “pre-permuted” this way. In practice, of course, the
permutation is discovered during the elimination and not known in advance.

A linear system can be solved by the following steps:

1. Triangular decomposition of the coefficients matrix PA = LU .

2. Apply row changes to the right hand side, b̃ = Pb, and solve Ly = b̃
by forward substitution (see Problem 3.9).

3. Solve Ux = y by back substitution.

The advantage of this arrangement is that for new right hand sides b we
do not need to recompute the decomposition. It is sufficient to repeat steps
2 and 3. This leads to substantial computational savings, since the major
cost lies in the factorization: to eliminate the first column, one needs n − 1
divisions and (n− 1)2 multiplications and additions. For the second column
one needs n− 2 divisions and (n− 2)2 multiplications and additions until the
last elimination, where one division and one addition and multiplication are
needed. The total number of operations is therefore

n−1∑
i=1

i+ i2 =
n3

3
− n

3
,

which one can obtain from Maple using sum(i+i^2,i=0..n-1). Hence the
computation of the LU decomposition costs O(n3) operations, and is much
more expensive than the forward and back substitution, for which the cost is
O(n2).

The LU decomposition can also be used to compute determinants in a
numerically sound way, since det(A) = det(L) det(U) = det(U), see Problem
3.15, and is thus a decomposition useful in its own right. The implementation
of the LU decomposition is left to the reader as an exercise in Problem 3.10.

Gaussian Elimination 77

3.2.2 Backward Stability

In order for the above algorithm to give meaningful results, we need to ensure
that each of the three steps (LU factorization, forward and back substitution)
is backward stable. For the factorization phase, we have seen in Section 3.2
that pivoting is essential for the numerical stability. One might wonder if
partial pivoting is enough to guarantee that the algorithm is stable.

Theorem 3.3. (Wilkinson) Let A be an invertible matrix, and L̂ and
Û be the numerically computed LU-factors using Gaussian elimination with
partial pivoting, |lij | ≤ 1 for all i, j. Then for the elements of Â := L̂Û , we
have

|âij − aij | ≤ 2αmin(i− 1, j)eps+O(eps2), (3.37)

where α := maxijk |â(k)ij |.
Proof. At step k of Gaussian elimination, we compute â

(k)
ij for i > k,

j > k using the update formula

â
(k)
ij = (â

(k−1)
ij − l̂ikâ

(k−1)
kj (1 + εijk))(1 + ηijk)

= â
(k−1)
ij − l̂ikâ

(k−1)
kj + μijk,

(3.38)

where |μijk| can be bounded using |εijk| ≤ eps and |ηijk| ≤ eps:

|μijk| ≤ |â(k−1)
ij − l̂ikâ

(k−1)
kj |︸ ︷︷ ︸

=â
(k)
ij +O(eps)

|ηijk|+ |l̂ik||â(k−1)
kj ||εijk|+O(eps2)

≤ 2α eps+O(eps2).

In addition, for i > j, we have â
(j)
ij = 0 and l̂ij =

â
(j−1)
ij

â
(j−1)
jj

(1 + εijj), which

implies

0 = â
(j)
ij = â

(j−1)
ij − l̂ij â

(j−1)
jj + μijj , with |μijj | = |â(j−1)

ij εijj | ≤ α eps.

Thus, (3.38) in fact holds whenever i > j ≥ k or j ≥ i > k, with

|μijk| ≤ 2α eps+O(eps2). (3.39)

By the definition of Â = L̂Û , we have

âij =

min(i,j)∑
k=1

l̂ikûkj =

min(i,j)∑
k=1

l̂ikâ
(k−1)
kj . (3.40)

For the case i > j, we obtain, using (3.38) with i > j ≥ k, a telescopic sum
for âij :

âij =

j∑
k=1

(â
(k−1)
ij − â

(k)
ij + μijk) = aij +

j∑
k=1

μijk, (3.41)

78 LINEAR SYSTEMS OF EQUATIONS

since a
(0)
ij = aij and a

(j)
ij = 0 for i > j. On the other hand, for i ≤ j, we use

(3.40) and (3.38) with j ≥ i > k to obtain

âij =

i−1∑
k=1

(â
(k−1)
ij − â

(k)
ij + μijk) + l̂iiûij = aij +

i−1∑
k=1

μijk, (3.42)

where we used l̂ii = 1 and ûij = â
(i−1)
ij . Combining (3.39), (3.41) and (3.42)

yields the desired result. �
This theorem shows that Gaussian elimination with partial pivoting is

backward stable, if the growth factor

ρ :=
α

max |aij | (3.43)

is not too large, which means that the elements a
(k)
ij encountered during the

elimination process are not growing too much.
Next, we show that the SAXPY variant of back substitution (Algorithm

3.4) is also backward stable. We show below the floating-point version of
back substitution for solving Ux = b, where the quantities εjk and ηjk all
have moduli less than eps.

b̂
(n)
k := bk
for k = n, n− 1, . . . , 1 do

x̂k =
b̂
(k)
k

ukk
(1 + εkk)

for j = 1, . . . , k − 1 do

b̂
(k−1)
j = (b̂

(k)
j − ujkx̂k(1 + εjk))(1 + ηjk)

end do
end do

Theorem 3.4. (Stability of Back Substitution) Let x̂ be the nu-
merical solution obtained when solving Ux = b using the SAXPY variant of
back substitution. Then x̂ satisfies Û x̂ = b, where

|ûjk − ujk| ≤ (n− k + 1)|ujk| eps+O(eps2).

Proof. Define

b̃
(k−1)
j =

b̂
(k−1)
j

(1 + ηjk)(1 + ηj,k+1) · · · (1 + ηjn)

for k > j. Then we can divide the update formula in the inner loop by
(1 + ηjk) · · · (1 + ηjn) to get

b̃
(k−1)
j = b̃

(k)
j − x̂k · ujk(1 + εjk)

(1 + ηj,k+1) · · · (1 + ηjn)
.

Gaussian Elimination 79

Moreover, the formula for calculating x̂k in the outer loop implies

b̃
(j)
j =

b̂
(j)
j

(1 + ηj,j+1) · · · (1 + ηjn)
=

ujj x̂j

(1 + εjj)(1 + ηj,j+1) · · · (1 + ηjn)
.

Thus, using a telescoping sum, we get

bj =

n∑
k=j+1

(b̃
(k)
j − b̃

(k−1)
j) + b̃

(j)
j

=
ujj x̂j

(1 + εjj)(1 + ηj,j+1) · · · (1 + ηjn)
+

n∑
k=j+1

ujkx̂k(1 + εjk)

(1 + ηj,k+1) · · · (1 + ηjn)
,

which shows that Û x̂ = b with |ûjk − ujk| ≤ (n − k + 1)|ujk|eps+ O(eps2),
as required. �

Since the |ujk| is bounded by α = ρ ·max(ajk), we see that back substi-
tution is also backward stable as long as the growth factor ρ is not too large.
A similar argument shows that forward substitution is also backward stable.

3.2.3 Pivoting and Scaling

To achieve backward stability, one must choose a pivoting strategy that en-
sures that the growth factor ρ remains small. Unfortunately, there are ma-
trices for which elements grow exponentially with partial pivoting during the
elimination process, for instance the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 1

−1 1
. . .

...
...

−1 −1
. . . 0 1

...
...

. . . 1 1
−1 −1 · · · −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

To start the elimination process in this matrix with partial pivoting, we have
to add the first row to all the other rows. This leads to the value 2 in the last
column of the matrix A(1), but none of the middle columns have changed.
So now adding the second row of A(1) to all the following ones leads to the
value 4 in the last column, and continuing like this, the last entry of A(n−1)

will equal 2n−1.
Partial pivoting is however used today almost universally when solving

linear equations, despite the existence of matrices that grow exponentially
during the elimination process. In fact, such matrices are rare2: a simple

2“. . . intolerable pivot-growth is a phenomenon that happens only to numerical analysts
who are looking for that phenomenon”, W. Kahan. Numerical linear algebra. Canad.
Math. Bull., 9:757–801, 1966.

80 LINEAR SYSTEMS OF EQUATIONS

10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

matrix size

gr
ow

th
 fa

ct
or

 ρ

average growth factor

0.25*n0.71

Figure 3.4.
Very slow growth of entries encountered during Gaussian

elimination with partial pivoting applied to random
matrices

Matlab experiment with random matrices shows that Gaussian elimination
with partial pivoting is a very stable process. We make use of the function
LU in Problem 3.11.

N=500;

n=[10 20 30 40 50 60 70 80 90 100];

for j=1:length(n)

m=0;

for i=1:N

A=rand(n(j));

[L,U,P,rho]=LU(A);

m=m+rho;

end;

g(j)=m/N

end;

plot(n,g,’--’,n,0.25*n.^(0.71),’-’);

legend(’average growth factor’,’0.25*n^{0.71}’,’Location’,’NorthWest’)

xlabel(’matrix size’),ylabel(’growth factor \rho’)

In Figure 3.4, we show the results obtained for a typical run of this algorithm.
In fact the elements grow sublinearly for random matrices, and thus, in this
case, Theorem 3.3 shows that Gaussian elimination with partial pivoting is
backward stable.

Partial pivoting may fail to choose the right pivot if the matrix is badly
scaled. Consider the linear system Ax = b⎛

⎝ 10−12 1 −1
3 −4 5
40 −60 0

⎞
⎠x =

⎛
⎝ 17 + 10−12

−62
−1160

⎞
⎠ . (3.44)

Gaussian Elimination 81

The exact solution is x = (1, 20, 3)�. If we multiply the first equation with
1014 we get the system By = c,⎛

⎝ 100 1014 −1014

3 −4 5
40 −60 0

⎞
⎠y =

⎛
⎝ 17 · 1014 + 100

−62
−1160

⎞
⎠ (3.45)

with of course the same solution.
With partial pivoting, for the system (3.44) the first pivot in the first

elimination will be the element a31 = 40. For the second system (3.45),
however, because of bad scaling, the element a11 = 100 will be chosen. This
has the same bad effect as if we had chosen a11 = 10−12 as pivot in system
(3.44). Indeed, we obtain with Matlab

x =

⎛
⎝ 1

20
3

⎞
⎠ , y =

⎛
⎝ 1.0025

20.003
3.0031

⎞
⎠ ,

and the second solution is not very accurate, as expected.
Solving the system (3.45) by QR decomposition (Section 3.5) does not

help either, as we can see below. But with complete pivoting, i.e., if we look for
the largest element in modulus in the remaining matrix and interchange both
rows (equations) and columns (reordering the unknowns), we get the correct
solution (see Problem 3.13 for the function EliminationCompletePivoting).
With the following Matlab statements,

fak=1e14;

A=[100/fak 1 -1

3 -4 5

40 -60 0];

xe=[1 20 3]’; b=A*xe; x1=A\b;

B=[fak*A(1,:); A(2:3,:)]; c=b; c(1)=c(1)*fak; x2=B\c;

[Q,R]=qr(B); d=Q’*c; x3=R\d;

[x4,Xh,r,U,L,B,P,Q]=EliminationCompletePivoting(B,c,1e-15);

[xe x1 x2 x3 x4]

[norm(xe-x1) norm(xe-x2) norm(xe-x3) norm(xe-x4)]

we obtain the results

exact A\b B\c QR compl.piv.
xe x1 x2 x3 x4

1.0000 1.0000 1.0025 1.0720 1.0000
20.0000 20.0000 20.0031 20.0456 20.0000
3.0000 3.0000 3.0031 3.0456 3.0000

‖xe-x1‖ ‖xe-x2‖ ‖xe-x3‖ ‖xe-x4‖
1.3323e-15 5.0560e-03 9.6651e-02 2.9790e-15

which show that only Gaussian elimination with complete pivoting leads to
a satisfactory solution in this case.

82 LINEAR SYSTEMS OF EQUATIONS

Wilkinson [149] proved that the growth factors ρcn for complete pivoting
are bound by

ρcn ≤ n1/2
(
2 · 31/2 · · · ·n1/n−1) ∼ n1/2n

1
4 logn

)
It was later conjectured that

g(n) := sup
A∈Rn×n

ρcn(A) ≤ n.

However, this was proven false (see [71]). The limit limn→∞ g(n)/n is an
open problem. Though in practical problems the growth factors for complete
pivoting turn out to be smaller than for partial pivoting, the latter is usually
preferred because it is less expensive.

3.2.4 Sum of Rank-One Matrices

Gaussian elimination without pivoting, or the computation of the LU decom-
position, may be interpreted as a sequence of rank-one changes. We consider
for that purpose the matrix product as a sum of matrices of rank one:

A = LU =
n∑

k=1

l : kuk : ,

with columns of L and rows of U

L = [l : 1, l : 2, . . . l :n], U =

⎛
⎜⎜⎜⎝

u1 :

u2 :

...
un :

⎞
⎟⎟⎟⎠ .

We define the matrices

Aj =

n∑
k=j

l : kuk : , A1 = A.

Because L and U are triangular, the first j − 1 rows and columns of Aj are
zero. Clearly

Aj+1 = Aj − l : juj :

holds. In order to eliminate row j and column j of Aj we can choose

uj : = (0, . . . , 0︸ ︷︷ ︸
j − 1 zeros

, a
(j)
j,j , a

(j)
j,j+1, . . . , a

(j)
j,n)

Gaussian Elimination 83

and

l : j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
1

a
(j)
j+1,j/a

(j)
j,j

...

a
(j)
n,j/a

(j)
j,j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The choice for uj : and l : j is not unique – we could for example divide by
the pivot the elements of uj : instead of l : j . The result of these considerations
is the Matlab function

Algorithm 3.6.
Gaussian Elimination by Rank-one Modifications

function [L,U]=LUbyRank1(A);

% LUBYRANK1 computes the LU factorization

% [L,U]=LUbyRank1(A); computes the LU-factorization of A with

% diagonal pivoting as n rank-one modifications. The implementation

% here is for didactic purposes only.

n=max(size(A));

L=[]; U=[];

for j=1:n

u=[zeros(j-1,1);1; A(j+1:n,j)/A(j,j)];

v=[zeros(j-1,1); A(j,j:n)’];

A=A-u*v’;

L=[L u]; U=[U;v’];

end

Example 3.7.

>> A=[17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9]

>> [L,U]=LUbyRank1(A)

L =

1.0000 0 0 0 0

1.3529 1.0000 0 0 0

0.2353 -0.0128 1.0000 0 0

0.5882 0.0771 1.4003 1.0000 0

0.6471 -0.0899 1.9366 4.0578 1.0000

U =

17.0000 24.0000 1.0000 8.0000 15.0000

84 LINEAR SYSTEMS OF EQUATIONS

0 -27.4706 5.6471 3.1765 -4.2941

0 0 12.8373 18.1585 18.4154

0 0 0 -9.3786 -31.2802

0 0 0 0 90.1734

>> norm(L*U-A)

ans =

3.5527e-15

We saved the vectors in separate matrices L and U . This would of course
not be necessary, since one could overwrite A with the decomposition. Fur-
thermore, we did not introduce pivoting; this function is meant for didactic
purposes and should not be used in real computations in the present form.

3.3 Condition of a System of Linear Equations

What can we say about the accuracy of the solution when we solve a system
of linear equations numerically? A famous early investigation of this question
was done by John von Neumann and H. H. Goldstine in 1947 [145]. They
conclude their error analysis (over 70 pages long!) with quite pessimistic
remarks on the size of linear systems that can be solved on a computer in finite
precision arithmetic, see Table 3.1. The number of necessary multiplications
they indicate are roughly n3, which are the operations needed for inversion.

machine precision 10−8 10−10 10−12

n < 15 50 150

multiplications 3’500 120’000 3’500’000

Table 3.1.
Pessimistic Error analysis by

John von Neumann and H. H. Goldstine

It is the merit of Jim Wilkinson who discovered first by experiment that
the bounds were too pessimistic and who developed the backward error anal-
ysis which explains much better what happens with calculations on the com-
puter.

Consider the system of linear equations

Ax = b, with A ∈ R
n×n nonsingular.

A perturbed system is Âx̂ = b̂, and we assume that âij = aij(1 + εij) and

b̂i = bi(1 + εi), with |εij | ≤ ε̃A and |εi| ≤ ε̃b. This perturbation could come
from roundoff errors in finite precision arithmetic, or from measurements,
or any other source; we are only interested in how much the solution x̂ of
the perturbed system differs from the solution x of the original system. The
element-wise perturbations imply

||Â− A|| ≤ εA||A||, ||b̂− b|| ≤ εb||b||, (3.46)

Condition of a System of Linear Equations 85

and if the norm is the 1-norm or infinity norm, we have εA = ε̃A and εb = ε̃b,
otherwise they differ just by a constant.

Theorem 3.5. (Conditioning of the Solution of Linear Sys-

tems) Consider two linear systems of equations Ax = b and Âx̂ = b̂ sat-
isfying (3.46), and assume that A is invertible. If εA · κ(A) < 1, then we
have ||x̂− x||

||x|| ≤ κ(A)

1− εAκ(A)
(εA + εB), (3.47)

where κ(A) := ||A|| ||A−1|| is the condition number of the matrix A.
Proof. From

b̂− b = Âx̂− Ax = (Â− A)x̂+A(x̂− x),

we obtain
x̂− x = A−1(−(Â− A)x̂+ b̂− b),

and therefore, using Assumption (3.46),

||x̂− x|| ≤ ||A−1||(εA||A|| ||x̂||+ εb||b||).
Now we can estimate ||x̂|| = ||x̂ − x + x|| ≤ ||x̂ − x|| + ||x||, and ||b|| =
||Ax|| ≤ ||A|| ||x||, which leads to

||x̂− x|| ≤ ||A−1|| ||A||(εA(||x||+ ||x̂− x||) + εb||x||),
and thus

||x̂− x||(1− εAκ(A)) ≤ κ(A)||x||(εA + εb),

which concludes the proof. �
This theorem shows that the condition of the problem of solving a linear

system of equations is tightly connected to the condition number of the matrix
A, regardless of whether the perturbation appears in the matrix or in the right
hand side of the linear system. An alternative derivation of the perturbed
solution when only the matrix is slightly changed is given in Section 6.4.

If κ(A) is large then the solutions x̂ and x will differ significantly. Ac-
cording to Wilkinson’s Principle (see Section 2.7), the result of a numerical
computation is the exact result with slightly perturbed initial data. Thus x̂
will be the result of a linear system with perturbed data of order eps. As a
rule of thumb, we have to expect a relative error of eps ·κ(A) in the solution.

Computing the condition number is in general more expensive than solv-
ing the linear system. For example, if we use the spectral norm, the condition
number can be computed by

κ2(A) = ||A||2||A−1||2 =
σmax(A)

σmin(A)
= cond(A) in Matlab.

86 LINEAR SYSTEMS OF EQUATIONS

Example 3.8. We consider the matrix

>> A=[21.6257 51.2930 1.5724 93.4650

5.2284 83.4314 37.6507 84.7163

68.3400 3.6422 6.4801 52.5777

67.7589 4.5447 42.3687 9.2995];

choose the exact solution and compute the right hand side

>> x=[1:4]’; b=A*x;

Now we solve the system

>> xa=A\b;

and compare the numerical solution to the exact one.

>> format long e

>> [xa x]

>> cond(A)

>> eps*cond(A)

ans =

0.999999999974085 1.000000000000000

1.999999999951056 2.000000000000000

3.000000000039628 3.000000000000000

4.000000000032189 4.000000000000000

ans =

6.014285987206616e+05

ans =

1.335439755935445e-10

We see that the numerically computed solution has about 5 incorrect decimal
digits, which corresponds very well to the predicted error due to the large
condition number of 6.014 × 105 of the matrix A. The factor eps κ(A) =
1.33× 10−10 indicates well the error after the 10th decimal digit.

Examples of matrices with a very large condition number are the Hilbert
matrix H with hij = 1/(i+ j− 1), i, j = 1, . . . , n (H = hilb(n) in Matlab)
and Vandermonde matrices, which appear for example in interpolation and
whose columns are powers of a vector v, that is aij = vn−j

i (A=vander(v) in
Matlab). Table 3.2 shows the condition numbers for n = 3, . . . , 8, where we
have used v = [1:n] for the Vandermonde matrices.

Matrices with a small condition number are for example orthogonal ma-
trices, U such that U�U = I, which gives for the spectral condition number
κ2(U) = ||U ||2||U−1||2 = ||U ||2||U�||2 = 1, since orthogonal transformations
preserve Euclidean length.

The condition number κ(A) satisfies several properties:

1. κ(A) ≥ 1, provided the matrix norm satisfies the submultiplicative
property, since 1 = ||I|| = ||A−1A|| ≤ ||A|| ||A−1||.

Condition of a System of Linear Equations 87

n cond(hilb(n)) cond(vander([1:n]))

3 5.2406e+02 7.0923e+01
4 1.5514e+04 1.1710e+03
5 4.7661e+05 2.6170e+04
6 1.4951e+07 7.3120e+05
7 4.7537e+08 2.4459e+07
8 1.5258e+10 9.5211e+08
Table 3.2. Matrices with large condition numbers

2. κ(αA) = ακ(A).

3. κ(A) =
max||y||=1 ||Ay||
min||z||=1 ||Az|| , since

||A−1|| = max
x�=0

||A−1x||
||x|| = max

z �=0

||z||
||Az|| = min

z �=0

(||Az||
||z||

)−1

.

Another useful property of the condition number is that it measures how far
A is from a singular matrix, in a relative sense.

Theorem 3.6. Let E ∈ R
n×n. If ‖E‖ < 1, then I + E is non-singular,

and we have
1

1 + ‖E‖ ≤ ‖(I +E)−1‖ ≤ 1

1− ‖E‖ . (3.48)

Proof. To show that I+E is non-singular, let us argue by contradiction
by assuming that I + E is singular. Then there exists a non-zero vector x
such that (I +E)x = 0. Then we have

x = −Ex =⇒ ‖x‖ = ‖Ex‖ ≤ ‖E‖ ‖x‖.

Since x 	= 0, we can divide both sides by ‖x‖ and conclude that ‖E‖ ≥ 1,
which contradicts the hypothesis that ‖E‖ < 1. Hence I +E is non-singular.
To show the first inequality in (3.48), we let y = (I + E)−1x. Then

x = (I + E)y =⇒ ‖x‖ ≤ (1 + ‖E‖)‖y‖,

which implies
‖(I +E)−1x‖

‖x‖ =
‖y‖
‖x‖ ≥ 1

1 + ‖E‖ .

Since this is true for all x 	= 0, we can take the maximum of the left hand
side over all x 	= 0 and obtain

‖(I + E)−1‖ ≥ 1

1 + ‖E‖ ,

88 LINEAR SYSTEMS OF EQUATIONS

as required. For the other inequality, note that

‖y‖ ≤ ‖x‖+ ‖y − x‖ ≤ ‖x‖+ ‖ − Ey‖ ≤ ‖x‖+ ‖E‖ ‖y‖,
which implies

(1− ‖E‖)‖y‖ ≤ ‖x‖.
Since 1−‖E‖ > 0, we can divide both sides by (1−‖E‖)‖x‖ without changing
the inequality sign. This yields

‖(I +E)−1x‖
‖x‖ =

‖y‖
‖x‖ ≤ 1

1− ‖E‖ .

Maximizing the left hand side over all x 	= 0 yields ‖(I+E)−1‖ ≤ 1/(1−‖E‖),
as required. �

Corollary 3.1. Let A ∈ R
n×n be a non-singular matrix, E ∈ R

n×n and
r = ‖E‖/‖A‖. If r κ(A) < 1, then A+E is non-singular and

‖(A+ E)−1‖
‖A−1‖ ≤ 1

1− r κ(A)
.

Proof. By (3.48), we have

‖(A+E)−1‖ = ‖(I + A−1E)−1A−1‖

≤ ‖(I + A−1E)−1‖ ‖A−1‖ ≤ ‖A−1‖
1− ‖A−1E‖ ≤ ‖A−1‖

1− ‖A−1‖ ‖E‖ .

Substituting ‖E‖ = r‖A‖ and dividing by ‖A−1‖ gives the required result.
�

Note that the hypothesis implies that A + E will be nonsingular pro-
vided that the perturbation E is small enough, in the relative sense, with
respect to the condition number κ(A). In other words, if κ(A) is small, i.e.,
if A is well conditioned, then a fairly large perturbation is needed to reach
singularity. On the other hand, there always exists a perturbation E with
‖E‖2 = ‖A‖2/κ2(A) such that A+ E is singular, cf. Problem 3.19.

3.4 Cholesky Decomposition

3.4.1 Symmetric Positive Definite Matrices

Definition 3.1. (Symmetric Positive Definite Matrices) A matrix is
symmetric, A = A�, and positive definite if

x�Ax > 0 for all x 	= 0. (3.49)

Cholesky Decomposition 89

Positive definite matrices occur frequently in applications, for example for
discretizations of coercive partial differential equations, or in optimization,
where the Hessian must be positive definite at a strict minimum of a function
of several variables. Positive definite matrices have rather special properties,
as shown in the following lemma.

Lemma 3.1. Let A = A� ∈ R
n×n be positive definite. Then

(a) If L ∈ R
m×n with m ≤ n has rank m, then LAL� is positive definite.

(b) Every principal submatrix of A is positive definite, i.e., for every non-
empty subset J ⊂ {1, 2, . . . , n} with |J | = m, the m×m matrix A(J, J)
is positive definite.

(c) The diagonal entries of A are positive, i.e., aii > 0 for all i.

(d) The largest entry of A in absolute value must be on the diagonal, and
hence positive.

Proof.

(a) Let z ∈ R
m be an arbitrary non-zero vector. Then the fact that L has

rank m implies y := L�z 	= 0, since the rows of L would otherwise be
linearly dependent, forcing L to have rank less than m. The positive
definiteness of A, in turn, gives

z�LAL�z = y�Ay > 0.

(b) Let J = {j1, . . . , jm} be an arbitrary subset of {1, . . . , n} and B =
A(J, J). Define the n×m matrix R with entries

rjk =

{
1, j = jk

0, otherwise.

It is then easy to see that B = R�AR. It follows by letting L = R� in
(a) that B is positive definite.

(c) This follows from (b) by choosing J to be the one-element set {i}.

(d) We argue by contradiction. Suppose, on the contrary, that the largest
entry in absolute value does not occur on the diagonal. Then there
must be a pair (i, j) with i 	= j such that |aij | is larger than any entry
on the diagonal; in particular, we have |aij | > aii and |aij | > ajj . From
(b), we know that the principal submatrix

B =

(
aii aij
aji ajj

)

90 LINEAR SYSTEMS OF EQUATIONS

must be positive definite. But taking x� = (1,−sign(aij))
� gives

x�Bx = aii + ajj − 2|aij | < 0,

which contradicts the positive definiteness of B. Hence the largest entry
in absolute value must occur on the diagonal (and hence be positive).

�
This gives another characterization of symmetric positive definite matri-

ces.

Lemma 3.2. Let A = A� ∈ R
n×n. Then A is positive definite if and only

if all its eigenvalues are positive.
Proof. Suppose A is symmetric positive definite and λ an eigenvalue of

A with eigenvector v 	= 0. Then

0 < v�Av = v�(λv) = λ‖v‖22.
We can now divide by ‖v‖22 > 0 to deduce that λ > 0.

Now suppose all eigenvalues of A are positive. Then by the spectral
theorem, we can write A = QΛQ�, where Λ is a diagonal matrix containing
the eigenvalues of A and Q�Q = I. But a diagonal matrix with positive
diagonal entries is clearly positive definite, and Q is non-singular (i.e., it has
full rank n). Hence, by Lemma 3.1(a), A is also positive definite. �

Theorem 3.7. Let A = A� ∈ R
n×n be symmetric positive definite. Then

in exact arithmetic, Gaussian elimination with no pivoting does not break
down when applied to the system Ax = b, and only positive pivots will be
encountered. Furthermore, we have U = DL� for a positive diagonal matrix
D, i.e., we have the factorization A = LDL�.

Proof. The proof is by induction. As shown before, the diagonal element
a11 > 0 and therefore can be used as pivot. We now show that after the first
elimination step, the remaining matrix is again positive definite. For the first
step we use the matrix

L1 =

⎛
⎜⎜⎜⎝

1 0 0 · · · 0
−a21

a11
1 0 · · · 0

...
...

. . .
...

−an1

a11
0 0 · · · 1

⎞
⎟⎟⎟⎠

and multiply from the left to obtain

L1A =

(
a11 b�

0 A1

)
, b� = (a12, . . . a1n).

Because of the symmetry of A, multiplying the last equation from the right
with L�

1 we obtain

L1AL�
1 =

(
a11 0�

0 A1

)
(3.50)

Cholesky Decomposition 91

and the submatrix A1 is not changed since the first column of L1A is zero
below the diagonal. This also shows that A1 is symmetric. Furthermore,
by Lemma 3.1(a), we know that L1AL�

1 is in fact positive definite, since L1

has rank n. Since A1 is a principal submatrix of L1AL�
1 , it is also positive

definite. Thus, the second elimination step can be performed again, and the
process can be continued until we obtain the decomposition

Ln−1 · · ·L1AL�
1 · · ·L�

n−1 =

⎛
⎜⎜⎝
a
(0)
11 0

. . .

0 a
(n−1)
nn

⎞
⎟⎟⎠ =: D,

where the diagonal entries a
(k−1)
kk are all positive. By letting L=L−1

1 · · ·L−1
n−1,

we obtain the decomposition A = LDL�, as required. �
Since the diagonal entries of D are positive, it is possible to define its

square root

D1/2 = diag(

√
a
(0)
11 , . . . ,

√
a
(n−1)
nn).

Then by letting R = D1/2L�, we obtain the so-called Cholesky Decomposi-
tion

A = R�R.

We can compute R directly without passing through the LU decomposition
as follows. Multiplying from the left with the unit vector e�j , we obtain

aj : = e�jR
�R = r�: jR =

j∑
k=1

rkj rk : . (3.51)

If we assume that we already know the rows r1 : , rj−1 : , we can solve
Equation (3.51) for rj : and obtain

rjj rj : = aj : −
j−1∑
k=1

rkj rk : =: v�.

The right hand side (the vector v) is known. Thus multiplying from the right
with ej we get

rjj rj : ej = r2jj = vj ⇒ rjj =
√
vj ⇒ rj : =

v�
√
vj

.

Thus we have computed the next row of R. We only need a loop over all
rows and obtain the function Cholesky:

Algorithm 3.7. Cholesky Decomposition

function R=Cholesky(A)

92 LINEAR SYSTEMS OF EQUATIONS

% CHOLESKY computes the Cholesky decomposition of a matrix

% R=Cholesky(A) computes the Cholesky decomposition A=R’R

n=length(A);

for j=1:n,

v=A(j,j:n);

if j>1,

v=A(j,j:n)-R(1:j-1,j)’*R(1:j-1,j:n);

end;

if v(1)<=0

error(’Matrix is not positive definite’)

else

h=1/sqrt(v(1));

end

R(j,j:n)=v*h;

end

To compute the Cholesky decomposition there is in Matlab the built-in
function chol. Using the Cholesky decomposition, we can write the quadratic
form defined by the matrix A as a sum of squares:

n∑
i=1

n∑
j=1

a2ijxixj = x�Ax = x�R�Rx = ||Rx||2 = y�y =
n∑

i=1

y2i , with y = Rx.

3.4.2 Stability and Pivoting

We have seen in Section 3.2.2 that for general non-symmetric matrices, pivot-
ing is essential not only to ensure that the elimination process does not break
down, but also to ensure stability. However, for symmetric positive definite
matrices, we have shown that break down cannot occur in exact arithmetic,
even when no pivoting is used. Thus, one might suspect that pivoting is also
not needed for stability. This is indeed true, provided that the matrix is not
too ill conditioned.

Theorem 3.8. Let A = A� ∈ R
n×n be positive definite. If cnκ2(A) eps <

1 with cn = 3n2 + O(eps), then Gaussian elimination (or Cholesky decom-
position) does not break down. Moreover, if L̂ and D̂ are the numerically
computed factors in the Cholesky decomposition and Â = L̂D̂L̂� is the nu-
merically computed decomposition, then we have the estimate

|âij − aij | ≤ 3αmin(i− 1, j)eps+O(eps2), (3.52)

where α = maxi,j |aij |.
Remark. The above result implies that if Cholesky breaks down, it

is either because the matrix A is not positive definite, or that it is very
ill conditioned. In practical computations, one rarely checks the condition

Cholesky Decomposition 93

cnκ2(A) eps < 1 before the actual factorization, because the condition num-
ber κ2(A) is more expensive to calculate than the Cholesky factors itself.

If one suspects that A is so ill conditioned that the hypothesis may be
violated, pivoting may help reduce the factorization errors due to rounding.
For positive definite matrices, complete pivoting reduces to diagonal pivoting,
since the largest entry always appears on the diagonal. We can then obtain
the estimates in Theorem 3.3, provided each submatrix that appears after an
elimination step remains positive definite.

Proof. Let Â(k) be the (n−k)×(n−k) submatrix Â(k) = [â
(k)
ij]k+1≤i,j≤n

for 0 ≤ k ≤ n. Just as in the proof of Theorem 3.3, we have the relation

â
(k)
ij = (â

(k−1)
ij − l̂ikâ

(k−1)
kj (1 + εijk))(1 + ηijk) = â

(k−1)
ij − â

(k−1)
ik âkj

â
(k−1)
kk︸ ︷︷ ︸

b
(k)
ij

+μijk,

where l̂ik =
â
(k−1)
ik

â
(k−1)
kk

(1 + δik), with |εijk|, |ηijk|, |δik| < eps. Here, B(k) =

[b
(k)
ij]k+1≤i,j≤n is the submatrix we would have obtained if we had performed

one step of Gaussian elimination on Â(k−1) in exact arithmetic, so that μijk

contains all the round-off errors associated with this step. Using the same
manipulation as in the proof of Theorem 3.3, we can write

|μijk| ≤ |b(k)ij |eps+
∣∣∣∣∣ â

(k−1)
ik â

(k−1)
kj

â
(k−1)
kk

∣∣∣∣∣ · 2eps+O(eps2). (3.53)

We now use the fact that B(k) is positive definite to bound the first two terms
above. By Lemma 3.1(d), we have

max
ij

|b(k)ij | = max
i

b
(k)
ii = max

i

[
â
(k−1)
ii −

k∑
j=1

(â
(k−1)
ij)2

]
≤ max

i
â
(k−1)
ii .

Moreover, we have

max
i,j

∣∣∣∣∣ â
(k−1)
ik â

(k−1)
kj

â
(k−1)
kk

∣∣∣∣∣ (∗)= max
i

(â
(k−1)
ik)2

â
(k−1)
kk

= max
i

(â
(k−1)
ii − b

(k)
ii)

(†)
≤ max

i
â
(k−1)
ii ,

where the equality (∗) is due to the symmetry of â
(k−1)
ij and the inequality

(†) is true because b
(k)
ii > 0. Thus, by letting αk = maxi,j |â(k)ij | = maxi â

(k)
ii ,

(3.53) becomes
|μijk| ≤ 3αk−1 eps+O(eps2). (3.54)

This implies Â(k) = B(k) + E(k) with

‖E(k)‖2 ≤ 3(n− k) eps‖Â(k−1)‖2 +O(eps2).

94 LINEAR SYSTEMS OF EQUATIONS

Thus, if we can show that Â(k) is positive definite with ckκ2(A
(k))eps < 1,

ck = 3(n−k)2 +O(eps), then the induction is complete and we can conclude
that the Cholesky factorization does not break down. To do so, we consider
the matrix

Ã(k−1) = Â(k−1) +

(
0 0
0 E(k)

)
= Â(k−1) + Ẽ(k).

In other words, if we perform one step of Gaussian elimination in exact arith-
metic on Ã(k−1), the result would be Â(k). We argue that all the eigenvalues
of Ã(k−1) are positive, which implies Ã(k−1) is positive definite. Assume the
contrary, i.e., that the smallest eigenvalue of Ã(k−1) is zero or negative. Then
since eigenvalues are a continuous function of the perturbation (see Chapter
7), there exists 0 < t ≤ 1 such that Â(k−1) + tẼ(k) has a zero eigenvalue, i.e.,
it is singular. But we have

‖tẼ(k)‖2κ2(Â
(k−1))

‖Â(k−1)‖2
≤ 3(n− k)t eps+O(eps2)

3(n− k + 1)2eps+O(eps2)
< 1,

so by Corollary 3.1, Â(k−1) + tE(k) must be non-singular, a contradiction.
Hence Ã(k−1) must be positive definite.

We now want to show that κ2(Â
(k)) ≤ 1

3(n− k)2eps+O(eps2)
. We have

‖Â(k)‖2 = max
‖z‖2=1

z�Â(k)z

= z�(Ã(k−1)(k : n, k : n)− (â
(k−1)
kk)−1a:,ka

�
:,k)z

≤ z�[Ã(k−1)(k : n, k : n)]z

= (0,z�)Ã(k−1)

(
0
z

)
≤ ‖Ã(k−1)‖2.

On the other hand, since (Â(k))−1 is a principal submatrix of (Ã(k−1))−1, we
automatically have ‖(Â(k))−1‖2 ≤ ‖(Ã(k−1))−1‖2. Thus, we have κ2(Â

(k)) ≤
κ2(Ã

(k−1)). It now suffices to bound ‖Ã(k−1)‖2 and ‖(Ã(k−1))−1‖2 individu-
ally:

‖Ã(k−1)‖2 ≤ ‖Â(k−1)‖2 + ‖E(k)‖2 ≤ ‖Â(k−1)‖2(1 + 3(n− k) eps),

‖(Ã(k−1))−1‖2 ≤ ‖Â(k−1)‖2
1− 3(n− k)κ2(Â(k−1)) eps+O(eps2)

≤ ‖(Â(k−1))−1‖2
1− 3(n−k)

ck−1

=
ck−1‖(Â(k−1))−1‖2
ck−1 − 3(n− k)

.

Elimination with Givens Rotations 95

Multiplying the two quantities above gives

κ2(Â
(k)) ≤ κ2(Â

(k−1))ck−1(1 + 3(n− k) eps)

ck−1 − 3(n− k)

≤ 1

eps

1 + 3(n− k) eps

ck−1 − 3(n− k)

≤ 1

eps

1 + 3(n− k) eps

3((n− k)2 + (n− k) + 1)
≤ 1

3(n− k)2 eps
,

so the induction step is complete. Finally, (3.54) implies that

αk ≤ αk−1(1 + 3eps).

Thus, using the same analysis as in Theorem 3.3, we get the estimate (3.52),
where

α = max
0≤k≤n−1

αk ≤ α0(1 + 3eps)n = max
i,j

|aij |+O(eps).

�
Note that the above theorem shows that the growth factor for the elim-

ination process is essentially ρ = 1, i.e., no entries that appear during the
elimination process can be larger than the largest entry in the original matrix
A. Thus, Cholesky factorization is backward stable, even without pivoting.

3.5 Elimination with Givens Rotations

In this section, we discuss another method for elimination that requires more
operations, but does not require pivoting and can also be used for solving
least squares problems. We discuss here a straightforward implementation –
a more sophisticated version is given in Section 6.5.3.

In the i-th step, we eliminate xi in equations i + 1 to n as follows: let

(i) : aiixi + . . .+ ainxn = bi
...

...
(k) : akixi + . . .+ aknxn = bk

...
...

(n) : anixi + . . .+ annxn = bn

(3.55)

be the reduced system. We wish to eliminate xi from equation (k). In the
case where aki = 0, nothing needs to be done because the unknown xi is
already eliminated. Otherwise, we multiply equation (i) with − sinα and
equation (k) with cosα and replace equation (k) by the linear combination

(k)new := − sinα · (i) + cosα · (k). (3.56)

Therefore, we choose α so that

anewki := − sinα · aii + cosα · aki = 0. (3.57)

96 LINEAR SYSTEMS OF EQUATIONS

Since aki 	= 0, we compute from (3.57)

cotα =
aii
aki

, (3.58)

and obtain, using well known trigonometric identities, the quantities co =
cosα and si = sinα by

cot = aii/aik; si = 1/
√
1 + cot2; co = si× cot; (3.59)

In this elimination step, in addition to replacing equation (k), we also modify
equation (i) with

(i)new := cosα · (i) + sinα · (k). (3.60)

This is done for stability purposes. Observe that pivoting now becomes un-
necessary: for the situation when aii = 0 and aki 	= 0, we get cotα = 0,
and therefore sinα = 1 and cosα = 0. The two assignments (3.56) and
(3.60) simply exchange equations (k) and (i), as we would do with pivoting!
Admittedly, however, the computational effort is doubled. This leads to the
following program:

Algorithm 3.8.
Solving Linear Systems with Givens Rotations

function x=EliminationGivens(A,b);

% ELIMINATIONGIVENS solves a linear system using Givens-rotations

% x=EliminationGivens(A,b) solves Ax=b using Givens-rotations. Uses

% the function BackSubstitutionSAXPY.

n=length(A);

for i= 1:n

for k=i+1:n

if A(k,i)~=0

cot=A(i,i)/A(k,i); % rotation angle

si=1/sqrt(1+cot^2); co=si*cot;

A(i,i)=A(i,i)*co+A(k,i)*si; % rotate rows

h=A(i,i+1:n)*co+A(k,i+1:n)*si;

A(k,i+1:n)=-A(i,i+1:n)*si+A(k,i+1:n)*co;

A(i,i+1:n)=h;

h=b(i)*co+b(k)*si; % rotate right hand side

b(k)=-b(i)*si+b(k)*co; b(i)=h;

end

end;

if A(i,i)==0

error(’Matrix is singular’);

end;

end

x=BackSubstitutionSAXPY(A,b);

Banded matrices 97

3.6 Banded matrices

A matrix is called banded if it contains nonzero elements only in a few diag-
onals next to the main diagonal. For example, consider the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 1 −1 0 0 0 0
−4 2 3 0 0 0 0
0 −12 3 1 2 0 0
0 0 −24 4 −7 0 0
0 0 0 −40 5 1 4
0 0 0 0 −60 6 −23
0 0 0 0 0 −84 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.61)

A is a banded matrix with upper bandwidth p = 2 and lower bandwidth
q = 1, thus in total there are p + q + 1 nonzero diagonals. It is easy to see
that, when computing the LU decomposition without pivoting, the factors
L and U occupy the same band, i.e., L is a lower banded matrix with q
diagonals and U an upper banded matrix with p nonzero diagonals. For the
matrix (3.61), the first Gaussian elimination step in which we eliminate x1

will only modify the elements a21, a22 and a23. Performing the complete LU
decomposition without pivoting we obtain the factors A = LU with

L =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
−2 1 0 0 0 0 0
0 −3 1 0 0 0 0
0 0 −4 1 0 0 0
0 0 0 −5 1 0 0
0 0 0 0 −6 1 0
0 0 0 0 0 −7 1

⎞
⎟⎟⎟⎟⎟⎠ U =

⎛
⎜⎜⎜⎜⎜⎝

2 1 −1 0 0 0 0
0 4 1 0 0 0 0
0 0 6 1 2 0 0
0 0 0 8 1 0 0
0 0 0 0 10 1 4
0 0 0 0 0 12 1
0 0 0 0 0 0 14

⎞
⎟⎟⎟⎟⎟⎠ .

Thus the band of matrix A might be overwritten by the LU decomposition if
we, as usual, do not store the diagonal elements of L.

3.6.1 Storing Banded Matrices

Of course, we should not store a banded matrix as a full n × n matrix,
but rather avoid storing zero elements. With lower bandwidth q and upper
bandwidth p, a matrix A could be stored as a dense matrix B of size n ×
(p+ q+1). The nonzero diagonals of A become the columns of B (cf. Figure
3.5). The price we pay for saving memory in this fashion is that accessing
the elements becomes more complicated, since the indexing requires more
integer operations. Thus, there is always a trade off between saving memory
versus saving operations. In addition, the speed of modern microprocessors
is affected by complicated memory accesses, because of cache effects.

The mapping of the banded matrix A to the matrix B is computed by
the following program

Algorithm 3.9. Transformation for Banded Matrices

function B=StoreBandMatrix(A,q,p)

% STOREBANDMATRIX stores the band of a matrix in a rectangular matrix

98 LINEAR SYSTEMS OF EQUATIONS

p
p

q
q

Band Matrix A Matrix B

Figure 3.5. Storing of banded matrices

% B=StoreBandMatrix(A) stores the band of A (with lower bandwidth p

% and upper bandwidth q) in the rectangular matrix B of dimensions

% n*p+q+1.

n=length(A);

B=zeros(n,p+q+1); % reserve space

for i=1:n

for j=max(1,i-q):min(n,i+p)

B(i,j-i+q+1)=A(i,j);

end

end

Ourexamplematrix(3.61)istransformedwithB=StoreBandMatrix(A,1,2)
to

B =

0 2 1 -1

-4 2 3 0

-12 3 1 2

-24 4 -7 0

-40 5 1 4

-60 6 -23 0

-84 7 0 0

Solving linear banded systems in this format with diagonal pivoting will be
left as an exercise (see Problem 3.17).

Banded matrices 99

3.6.2 Tridiagonal Systems

For tridiagonal systems, we will not use the above transformation, since it is
easier to denote the three diagonals with the vectors c, d and e.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d1 e1
c1 d2 e2

c2 d3 e3
. . .

. . .
. . .

cn−2 dn−1 en−1

cn−1 dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.62)

Linear systems with a tridiagonal matrix can be solved in O(n) operations.
The LU decomposition with no pivoting generates two bidiagonal matrices

L =

⎛
⎜⎜⎜⎜⎜⎝

1
l1 1

l2 1
. . .

. . .

ln−1 1

⎞
⎟⎟⎟⎟⎟⎠ and U =

⎛
⎜⎜⎜⎜⎜⎜⎝

u1 e1
u2 e2

u3
. . .

. . . en−1

un

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In order to compute L and U , we consider the elements ck and dk+1 of the
matrix A. Multiplying L ·U and comparing elements we obtain the relations

lkuk = ck therefore lk = ck/uk,
lkek + uk+1 = dk+1 therefore uk+1 = dk+1 − lkek.

The LU decomposition is thus computed by

u(1)=d(1);

for k=1:n-1

l(k)=c(k)/u(k);

u(k+1)=d(k+1)-l(k)*e(k);

end

Forward and back substitutions with L and U are straightforward. Note that
we can overwrite the vectors c and d by l and u. Furthermore, the right hand
side may also be overwritten with the solution. In the French literature, this
algorithm is known as Thomas’ Algorithm. We obtain the function

Algorithm 3.10.
Gaussian Elimination for Tridiagonal Systems: Thomas

Algorithm

function [x,a,c]=Thomas(c,a,b,x);

% THOMAS Solves a tridiagonal linear system

% [x,a,c]=Thomas(c,a,b,x) solves the linear system with a

100 LINEAR SYSTEMS OF EQUATIONS

% tridiagonal matrix A=diag(c,-1)+diag(a)+diag(b,1). The right hand

% side x is overwritten with the solution. The LU-decomposition is

% computed with no pivoting resulting in L=eye+diag(c,-1),

% U=diag(a)+diag(b,1).

n=length(a);

for k=1:n-1 % LU-decomposition with no pivoting

c(k)=c(k)/a(k);

a(k+1)=a(k+1)-c(k)*b(k);

end

for k=2:n % forward substitution

x(k)=x(k)-c(k-1)*x(k-1);

end

x(n)=x(n)/a(n); % backward substitution

for k=n-1:-1:1

x(k)=(x(k)-b(k)*x(k+1))/a(k);

end

Tridiagonal systems occur, for example, when interpolating with splines
(see Section 4.3.1) and also when solving one-dimensional boundary value
problems.

3.6.3 Solving Banded Systems with Pivoting

With partial pivoting, rows are interchanged, destroying the band structure
and introducing fill-in. If q is the lower bandwidth and p the upper band-
width, then after interchanging rows, U will become an upper banded matrix
with bandwidth p + q. In this section, we will develop a solver for banded
systems which uses the matrix B where the nonzero diagonals of A are stored
as columns.

We modify the core of the function Elimination to take advantage of
the band structure and avoid operations with zero elements. It will not be
possible to treat the right hand side as (n+ 1)st column of A. Furthermore,
we will “de-vectorize”– we cannot always use vector operations after the
transformation ai,j = bi,j−i+q+1, and therefore rewrite the statements using
loops.

The search for a pivot is limited to the lower bandwidth

maximum=0;

for k=i:min(i+q,n)

if abs(B(k,i-k+q+1))>maximum,

kmax=k; maximum=abs(B(k,i-k+q+1));

end

end

The interchange of rows for pivoting was

h=A(kmax,:); A(kmax,:)=A(i,:); A(i,:)=h;

Banded matrices 101

and now it becomes

for k=i:min(n,i+q+p)

h=B(kmax,k-kmax+q+1);

B(kmax,k-kmax+q+1)=B(i,k-i+q+1);

B(i,k-i+q+1)=h;

end

h=b(kmax); b(kmax)=b(i); b(i)=h;

This could still be vectorized to

h=B(kmax,i-kmax+q+1:min(n,i+2*q+p-kmax+1));

B(kmax,i-kmax+q+1:min(n,i+2*q+p-kmax+1))=B(i,q+1:min(n,2*q+p+1));

B(i,q+1:min(n,2*q+p+1))=h;

h=b(kmax); b(kmax)=b(i); b(i)=h;

The elimination step

A(i+1:n,i)=A(i+1:n,i)/A(i,i);

A(i+1:n,i+1:n+1)=A(i+1:n,i+1:n+1)-A(i+1:n,i)*A(i,i+1:n+1);

is rewritten with for-loops

for k=i+1:n

A(k,i)=A(k,i)/A(i,i);

end

for k=i+1:n

for j=i+1:n+1

A(k,j)=A(k,j)-A(k,i)*A(i,j);

end

end

Now observing the upper and lower bandwidth and processing the right hand
side separately, we get

for k=i+1:min(n,i+q)

B(k,i-k+q+1)=B(k,i-k+q+1)/B(i,q+1);

end

for k=i+1:min(n,i+q)

b(k)=b(k)-B(k,i-k+q+1)*b(i);

for j=i+1:min(n,i+p+q)

B(k,j-k+q+1)=B(k,j-k+q+1)-B(k,i-k+q+1)*B(i,j-i+q+1);

end

end

Putting all together, we obtain the function EliminationBandMatrix:

Algorithm 3.11.
Gaussian Elimination with Partial Pivoting for Banded

Matrices

function x=EliminationBandMatrix(p,q,B,b);

102 LINEAR SYSTEMS OF EQUATIONS

% ELIMINATIONBANDMATRIX solves a linear system with a banded matrix

% x=EliminationBandMatrix(p,q,B,b); solves the banded linear system

% Ax=b with partial pivoting. The columns of B contain the nonzero

% diagonals of the matrix A. The first q columns of B contain the

% lower diagonals of A (augmented by leading zeros) the remaining

% columns of B contain the diagonal of A and the p upper diagonals,

% augmented by trailing zeros. The vector b contains the right-hand

% side.

n=length(B);

B=[B,zeros(n,q)]; % augment B with q columns

normb=norm(B,1);

for i=1:n

maximum=0; % search pivot

for k=i:min(i+q,n)

if abs(B(k,i-k+q+1))>maximum,

kmax=k; maximum=abs(B(k,i-k+q+1));

end

end

if maximum<1e-14*normb; % only small pivots

error(’matrix is singular’)

end

if i~=kmax % interchange rows

h=B(kmax,i-kmax+q+1:min(n,i+2*q+p-kmax+1));

B(kmax,i-kmax+q+1:min(n,i+2*q+p-kmax+1))=B(i,q+1:min(n,2*q+p+1));

B(i,q+1:min(n,2*q+p+1))=h;

h=b(kmax); b(kmax)=b(i); b(i)=h;

end

for k=i+1:min(n,i+q) % elimination step

B(k,i-k+q+1)=B(k,i-k+q+1)/B(i,q+1);

end

for k=i+1:min(n,i+q)

b(k)=b(k)-B(k,i-k+q+1)*b(i);

for j=i+1:min(n,i+p+q)

B(k,j-k+q+1)=B(k,j-k+q+1)-B(k,i-k+q+1)*B(i,j-i+q+1);

end

end

end

for i=n:-1:1 % back substitution

s=b(i);

for j=i+1:min(n,i+q+p)

s=s-B(i,j-i+q+1)*x(j);

end

x(i)=s/B(i,q+1);

end

x=x(:);

Banded matrices 103

3.6.4 Using Givens Rotations

We have seen in Section 3.5 that Givens rotations can be used as an alterna-
tive to LU decomposition to solve dense linear systems. This alternative is
also available for banded systems: we show here how to proceed for tridiag-
onal systems with coefficient matrix A as shown in Equation (3.62). We use
Givens rotation matrices G(ik), which differ in only four elements from the
identity,

gii = gkk = c = cosα,
gik = −gki = s = sinα.

Multiplying the linear system from the left by G(ik) changes only two rows,
ai : and ak : :

anew
i : := cosα · aold

i : + sinα · aold
k : ,

anew
k : := − sinα · aold

i : + cosα · aold
k : .

(3.63)

We can choose the angle α to zero elements in the matrix (see Section 3.5).
We illustrate this for n = 5. In the first step we choose G(12) which combines
the two first rows, and choose α such that anew21 = 0:

G(12)

x x
x x x

x x x
x x x

x x

=

x x X
0 x x

x x x
x x x

x x

A fill-in element a13 = X is generated. In the second step we take G(23)

which changes the second and third row such that

G(23)

x x X
0 x x

x x x
x x x

x x

=

x x X
0 x x X

0 x x
x x x

x x

zeroing a32 = 0, and generating the fill-in a24 = X. The next rotation with

104 LINEAR SYSTEMS OF EQUATIONS

G(34) yields

G(34)

x x X
0 x x X

0 x x
x x x

x x

=

x x X
0 x x X

0 x x X
0 x x

x x

Finally, we obtain A transformed to an upper triangular matrix R with G(45):

G(45)

x x X
0 x x X

0 x x X
0 x x

x x

=

x x X
0 x x X

0 x x X
0 x x

0 x

The solution is then obtained by back-substitution. For the transformation
we need only the three diagonals of the matrix A. They will be overwritten
with the elements of the upper banded matrix R.

A =

d1 e1
c1 d2 e2

. . .
. . .

. . .

. . .
. . . en−1

cn−1 dn

�−→ R =

d1 e1 c1
. . .

. . .
. . .

. . .
. . . cn−2

. . . en−1

dn

The following function ThomasGivens solves a tridiagonal system using Givens
rotations. The right hand side is stored in b and overwritten with the solution.

Algorithm 3.12.
Solving Tridiagonal Systems with Givens rotations

function [b,d,e,c]=ThomasGivens(c,d,e,b);

% THOMASGIVENS solves a tridiagonal system of linear equations

% [b,d,e,c]=ThomasGivens(c,d,e,b) solves a tridiagonal linear system

% using Givens rotations. The coefficient matrix is

% A=diag(c,-1)+diag(d)+diag(e,1), and the right hand side b is

% overwritten with the solution. The R factor is also returned,

% R=diag(d)+diag(e,1)+diag(c,2).

n=length(d);

e(n)=0;

for i=1: n-1 % elimination

if c(i)~=0

t=d(i)/c(i); si=1/sqrt(1+t*t); co=t*si;

Problems 105

d(i)=d(i)*co+c(i)*si; h=e(i);

e(i)=h*co+d(i+1)*si; d(i+1)=-h*si+d(i+1)*co;

c(i)=e(i+1)*si; e(i+1)=e(i+1)*co;

h=b(i); b(i)=h*co+b(i+1)*si;

b(i+1)=-h*si+b(i+1)*co;

end;

end;

b(n)=b(n)/d(n); % backsubstitution

b(n-1)=(b(n-1)-e(n-1)*b(n))/d(n-1);

for i=n-2:-1:1,

b(i)=(b(i)-e(i)*b(i+1)-c(i)*b(i+2))/d(i);

end;

3.7 Problems

Problem 3.1. Consider the linear system Ax = b with

A =

(
1.2969 0.8648
0.2161 0.1441

)
b =

(
0.8642
0.1440

)
x =

(
2
2

)
.

a) Solve the linear system with Matlab and compare the numerical solu-
tion to the exact one. Explain the difference.

b) Now consider the perturbed linear system which is obtained by changing
the right hand side slightly:

b = b+ 10−9

(−1

1

)
.

Compute again the solution and discuss the results.

Problem 3.2. Consider the linear system Ax = b with

A =

⎛
⎜⎜⎝

1 2 −2 −6
−3 −1 −2 α
−4 3 9 16
5 7 −6 −15

⎞
⎟⎟⎠ b =

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠ .

The element a24 = α has been lost. Assume, however, that before when α
was available, the solution with Matlab turned out to be

> x=A\b

x =

1.0e+15 *

0.7993

-0.3997

1.1990

-0.3997

106 LINEAR SYSTEMS OF EQUATIONS

Can you determine with this information the missing integer matrix element
α = a24?

Problem 3.3. Plot Figure 3.2. Generate for 2 ≤ n ≤ 8 linear systems
Ax = b using A=hilb(n) and b=A*ones(n,1). Then compute the solutions
using Cramer’s rule and also Gaussian elimination. Measure the solution
time and compare the accuracy of the results. To compare the accuracy, plot
the logarithm of the relative errors of both solutions as a function of n. Also
include in your plot the quantity log(cond(A)*eps) and discuss the results.

Problem 3.4. Prove that for two square matrices A and B, det(AB) =
det(A) det(B). Hint: show first that the result holds for the elementary Gaus-
sian elimination matrices Lj and that every matrix can be represented using
products of such matrices.

Problem 3.5. (Laplace expansion) This problem shows that the
Laplace expansion formula for calculating determinants requires O(n!) op-
erations, where n is the size of the matrix.

1. Let T (n) be the number of operations required for a matrix of size n.
Show that T (n) satisfies the recurrence

T (1) = 0, T (n) = 2n+ nT (n− 1).

2. Show by induction that for n ≥ 2,

2 · n! ≤ T (n) ≤ 6(n!− (n− 1)!),

which implies T (n) grows like c · n! with 2 ≤ c ≤ 6.

Problem 3.6. Show that the product of two upper (respectively lower)
triangular matrices is again an upper (respectively lower) triangular matrix.

Problem 3.7. Determine for the linear system⎛
⎜⎜⎝

2 1 3 −1
−6 0 1 −1
4 2 0 1
2 2 2 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

5
−5
7
6

⎞
⎟⎟⎠

the three elimination matrices Li and also the triangular decomposition of the
matrix. The elimination may be performed without permutation of the rows.

Problem 3.8. Rewrite Algorithm 3.3 function BackSubstitution us-
ing Matlab’s scalar product notation for computing the xi.

Problem 3.9. Write a function x=forwards(L,b) to solve the system
Lx = b with the lower diagonal matrix L by forward substitution using the
SAXPY variant.

Problems 107

Problem 3.10. In the Matlab function Elimination (Algorithm 3.5)
we store the factors used for the elimination in the transformed matrix A
instead of the emerging zeros. Change this function and write a function
[L,U,P]=LU(A) to compute the triangular decomposition PA = LU . Com-
pare your results with the Matlab built-in function [L,U,P]=lu(X).

Problem 3.11. Modify function [L,U,P]=LU(A) from Problem 3.10 so
that with [L,U,P,alpha]=LU(A) it also computes the largest element α :=

maxijk |a(k)ij | that occurs during the elimination process. This function is used
to produce Figure 3.4.

Problem 3.12. Inverse iteration is an algorithm to compute the smallest
eigenvalue (in modulus) of a symmetric matrix A:

Choose x0

for k = 1, 2, . . . ,m (until convergence)
solve Axk+1 = xk

normalize xk+1 := xk+1/||xk+1||
end

Then λ = x�
mAxm/x�

mxm is an approximation for the smallest eigenvalue.
A simple implementation of this algorithm is

x=rand(n,1)

for k= 1:m

x=A\x;

x=x/norm(x);

end

lambda=x’*A*x

For large matrices, one can save operations if we compute the LU decomposi-
tion of the matrix A only once. The iteration is performed using the factors
L and U . This way, each iteration needs only O(n2) operations, instead of
O(n3) with the program above. Use the programs LU from Problem 3.10,
BackSubstitution from Problem 3.8, and forwards from Problem 3.9 to
implement the inverse iteration. Experiment with a few matrices and com-
pare your results with the correct eigenvalues obtained by eig(A).

Problem 3.13. Solving a linear system. We are given a linear system
Ax = b. This time the matrix A is m × n with possibly m 	= n and rank
r ≤ min(m,n). Eliminating variables will lead to a reduced system which
will show if the system has solutions. Depending on the rank there might
be infinitely many solutions, no solution or a unique solution. In order to
determine the rank we need to reorder equations and unknowns. We look
for pivot elements in the whole remaining matrix. This is called complete
pivoting.

108 LINEAR SYSTEMS OF EQUATIONS

Before an elimination step we search for the pivot with largest absolute
value in the whole remaining matrix and move it to the diagonal by inter-
changing rows and columns. If the largest pivot is very small, say if with
norma=norm(A,1) we have abs(A(i,i)) < tol*norma then the elimination
process should be terminated and the rank will be assumed to be r = i − 1.
The reduced system will then have the form(

Ur×r Br×n−r

0m−r×r 0n−r×n−r

)(
x̃1

x̃2

)
=

(
c1
c2

)
. (3.64)

We indicated the dimensions of the sub-matrices in Equation (3.64) by sub-
scripts. The right hand side is partitioned in the same way.

If now c2 	= 0 then the linear system has no solutions. If on the other
hand c2 = 0 then the variables x̃2 can be chosen arbitrarily. For each choice
of x̃2 the fist part x̃1 can be computed by back-substitution in

U x̃1 = c1 −Bx̃2.

Thus the general solution of Equation (3.64) is

(
x̃1

x̃2

)
=

(
U−1c1

0

)
+

(−U−1B

I

)
x̃2,

and we obtain finally from this the general solution of Ax = b by

x = P

(
x̃1

x̃2

)
,

where P is the permutation matrix for the reordering of the columns (un-
knowns).

Modify the function Elimination by introducing complete pivoting and
compute the general solution as described above. Your Matlab function
should follow the header

function [x, Xh,r,U,L,B,P,Q]=EliminationCompletePivoting(A,b,tol)

% ELIMINATIONCOMPLETEPIVOTING Linear system solve with complete pivoting

% [x,Xh,r,U,L,B,P,Q]=EliminationCompletePivoting(A,b,tol) computes a

% solution x to the possibly non-square linear system Ax=b using

% Gaussian elimination with complete pivoting, which produces the

% decomposition A=Q’*L*[U,B]*P’. Here Q and P are permutation

% matrices, L is r x r lower unit triangular, U is n x r upper

% triangular and B is r x (n-r), and r is the numerical rank: an

% element A(i,j) of the remaining matrix A’ during the elimination

% process is considered to be zero if abs(A’(i,j))<tol*norm(A,1). x

% is a particular solution such that Ax=b. Xh contains the

% nullspace, linear independent solutions of Ax=0.

Problems 109

The computation should stop with an error message if it turns out that
Ax = b has no solution. Check that you have computed the decomposition

A = Q�L[U,B]P�.

Check your function with the example A=magic(10), b=ones(10,1) and
b=rand(10,1).

Problem 3.14. (Diagonally dominant matrices) A matrix is said
to be column diagonally dominant if, for each column j, the absolute value
of the diagonal entry is greater than the sum of the absolute values of the
off-diagonal entries, i.e., if

|ajj | >
∑
i �=j

|aij | for j = 1, 2, . . . , n.

Show that after one step of Gaussian elimination with no pivoting, the re-
maining (n − 1) × (n − 1) submatrix is also column diagonally dominant.
Deduce that no row exchanges will occur throughout the elimination process,
even when partial pivoting is used.

Problem 3.15. Modify the Matlab function Elimination (Algorithm
3.5) to compute in a numerically stable way the determinant of a matrix.
Observe that with Gaussian elimination we obtain

PA = LU. (3.65)

Taking the determinant we get

det(P) det(A) = det(L) det(U).

Now since L has a unit diagonal, it follows that det(L) = 1. Furthermore
det(P) = ±1, depending on if the number of row changes is even or odd.
Thus we obtain

det(A) = (−1)# row changes
n∏

i=1

uii.

Problem 3.16. Write a Matlab-function BandGivens which solves
a banded linear system using Givens rotations. The coefficient matrix B
contains the non-zero diagonals as columns (see Section 3.6.1). The header
of your function should look:

function x=BandGivens(p,q,B,b);

% BANDGIVENS solves a banded system of linear equations using

% Givens rotations. The diagonals (p upper, q lower) are

% stored as columns in B.

110 LINEAR SYSTEMS OF EQUATIONS

Problem 3.17. Write a Matlab-function B=luB(p,q,B) which over-
writes the given matrix B which has as columns the nonzero diagonals of a
banded matrix (see Section 3.6.1) with the LU decomposition using diagonal
pivoting. Hint: It might be simpler if you adapt first the elimination algo-
rithm for an n × n matrix to the case of a banded matrix, and then use the
transformation StoreBandMatrix.m (Algorithm 3.9).

Problem 3.18. Compute the coefficients of a polynomial P (t) = at3 +
bt2 + ct + d such that P (1) = 17, P (−1) = 3, P (0.5) = 7.125 und P (1.5) =
34.875. Generate the linear system for the coefficients a, b, c and d and solve
the system with Matlab. What is the condition number of this system ?

Problem 3.19. Suppose A ∈ R
n×n is a nonsingular matrix. Recall that

the 2-norm condition number κ2(A) is defined as

κ2(A) = ‖A‖2‖A−1‖2.

Let y be a unit vector such that ‖A−1‖2 = ‖A−1y‖2, and define x =
A−1y

‖A−1‖2 .
Finally, let E = −AxxT .

1. Show that (A+ E)x = 0. Conclude that A+ E is singular.

2. Show that ‖E‖2 ≤ 1/‖A−1‖2. This implies the relative perturbation
satisfies

‖E‖2
‖A‖2 ≤ 1

κ2(A)
.

Problem 3.20. (Sherman-Morrison-Woodbury formula) Let A ∈ R
n×n

be an invertible matrix, and b,u,v ∈ R
n.

1. Show that if I + uv� is invertible, then there exists a σ such that

(I + uv�)−1 = I + σuv�.

What is a sufficient condition for I + uv� to be invertible? Show that
this is also a necessary condition.

2. Suppose we know the LU decomposition of A, and also the solutions of
the linear systems

Ay = b and Az = u. (3.66)

Find an efficient algorithm to solve

(A+ uv�)x = b,

which uses only the solutions of (3.66).

Problems 111

Problem 3.21. The Matlab function hilb computes the Hilbert matrix.
For instance

>> A = hilb(4)

A =

1.0000 0.5000 0.3333 0.2500

0.5000 0.3333 0.2500 0.2000

0.3333 0.2500 0.2000 0.1667

0.2500 0.2000 0.1667 0.1429

The matrix elements are given by

aij =

∫ 1

0

ti−1tj−1dt =
1

i+ j − 1
. (3.67)

Prove that for each n the matrix A=hilb(n) is positive definite. Hint: con-
sider the expression x�Ax and use Equation (3.67).

Problem 3.22. The condition number of a rectangular matrix A ∈ R
m×n

can be defined by

κ(A) :=
max||x||=1 ||Ax||
min||x||=1 ||Ax|| .

Show for the Euclidean norm || · ||2 that the equality

κ(A�A) = κ(A)2

holds. Hint: Note that the symmetric matrix A�A can be diagonalized,
A�A = Q�ΛQ with Λ = diag(λ1, λ2, . . . , λn), λ1 ≥ λ2 ≥ . . . ≥ λn, and
show that max||x||2=1 ||Ax||22 = λ1 and min||x||2=1 ||Ax||22 = λn.

Problem 3.23. Ill-conditioned systems of linear equations. To solve this
problem, you will have to write a Matlab program of about 12 lines using
the functions rand, round, diag, eye, size, triu, tril, cond. The goal
of this problem is to show that apparently harmless looking systems of linear
equations may be very difficult to solve.

a) Generate an n × n matrix B with random integer elements in the range
bij ∈ [−10, 10]. Choose for instance n = 20.

b) Remove the diagonal of B, save the upper triangular part in U and the
lower triangular part in L, and put ones on the diagonals: lii = uii = 1.

c) Compute A = L · U . What is the value of det(A) and why? Compute the
determinant with det(A) and confirm your prediction. In case that you
have doubts about the result, compute separately det(L) and det(U).

d) Choose now an exact solution, for instance xe = ones(n,1), and compute
the corresponding right hand side b = Axe.

112 LINEAR SYSTEMS OF EQUATIONS

e) Solve Ax = b using Matlab and compare the solution with the exact xe.

f) Explain the bad results by computing the condition number of A.

Chapter 4. Interpolation

The question then arises as to how we can find the val-
ues of the function log10(x) for values of the argument
x which are intermediate between the tabulated values.
The answer to this question is furnished by the theory of
interpolation, which in its most elementary aspect may
be described as the science of “reading between the lines
of a mathematical table.”

E. Whittaker and G. Robinson, The Calculus of Observa-
tions: a Treatise on Numerical Mathematics, 1924.

We wish to repeat that interpolation is only one way to
approximate data. [...] For data with significant errors,
the least squares approach is preferred.

D. Kahaner, C. Moler, S. Nash, Numerical Methods and
Software, 1988.

Prerequisites: Chapters 2 and 3 are required.

Interpolation means inserting or blending in a missing value. It is the art of
reading between the entries of a tabulated function (see first quote above).
We start this chapter with several introductory examples in Section 4.1,
through which we explain the interpolation principle. The most common
interpolation technique is to use polynomials, and we show in Section 4.2
four classical techniques: using monomials, Lagrange polynomials, Newton
polynomials, and orthogonal polynomials. The latter also leads naturally to
a least squares approximation, which is more desirable if the data points are
contaminated by errors (see second quote above, and Chapter 6). We then
show that the representation in these different bases are related by the LU
and QR factorizations of the corresponding matrices. We also explain the
barycentric formula, give an estimate for the interpolation error, and discuss
extrapolation, which is similar to interpolation, expect that the desired value
lies outside the range of the given data. Section 4.3 is devoted to piecewise
interpolation, which leads to the classical cubic splines. This section also
contains the well-known Morrison-Woodbury formula. Section 4.4 addresses
trigonometric interpolation and contains a detailed description of the fast
Fourier transform.

W. Gander et al., Scientific Computing - An Introduction using Maple and MATLAB,

Texts in Computational Science and Engineering 11,
DOI 10.1007/978-3-319-04325-8 4,

© Springer International Publishing Switzerland 2014

114 INTERPOLATION

4.1 Introductory Examples

Assume we know only some values f(xi) for i = 0, . . . , n of a function f ,

x x0, x1, . . . xi, z xi+1, . . . , xn

y = f(x) y0, y1, . . . yi, ? yi+1, . . . , yn
. (4.1)

Is there a way to compute or approximate the function value f(z) for some
given z without evaluating f? Why should we be interested in that problem?

1. An explicit formula for the function f may not be known to us, and
the tabulated values (4.1) could be the only information we have. The
values could have been obtained by some physical measurement, e.g.,
when we represent the temperature of the air outside a house during a
day:

t 8 am 9 am 11 am 1 pm 5 pm
T in ◦C 12.1 13.6 15.9 18.5 16.1

.

We might be interested in finding out what the temperature was at
10 am.

2. An important application of interpolation occurs in the processing of
digital images: when a digital picture is enlarged, we have to increase
the number of pixels. This has to be done by interpolating values for
the additional pixels.

3. Another use of interpolation (maybe not so important anymore) is to
compute intermediate values of a complicated tabulated function. Be-
fore the age of computers, tables of functions were very popular. As-
tronomers used for their computations a book with tables of the log-
arithms and trigonometric functions. Many of those tables have been
replaced today by programs that compute the values of functions when
needed.

Consider for example the function

f(x) =

x∫
0

esin tdt.

If we know the tabulated values

x 0.4 0.5 0.6 0.7 0.8 0.9
y 0.4904 0.6449 0.8136 0.9967 1.1944 1.4063

(4.2)

what is the value f(0.66)?

4. Finally, interpolation may also be used for data compression: in a large
dense table, one can store only every tenth value and interpolate to
obtain the deleted values when needed.

Introductory Examples 115

If the new value z is within the range of the interpolation points xi then we
speak of interpolation. If the desired value z is outside the range, we call
the process extrapolation. Predictions are always extrapolations; we might,
for instance, be interested in predicting what the temperature will be at
7 pm in the example above. Another nice example for extrapolation is the
census demonstration in Matlab. The task consists of estimating the pop-
ulation of the USA in the year 2010 based on census data for the years
1900, 1910, . . . , 2000. This example shows very well how sensitive the prob-
lem is. Depending on which model is used, one can obtain very different
answers.

To interpolate the data given in Table (4.1) for some desired value z, we
choose a model function g(x). Typically this interpolating function should
be easy to evaluate and have the following property:

g(xk) = f(xk) for some xk in the neighborhood of z.

If g is known then g(z) is taken as an approximation for f(z). The hope and
the aim is that the interpolation error |g(z)− f(z)| will be small.

Note that if only the values of (4.1) are given and that we do not know
anything more about the function f , then the problem of interpolation is ill
posed. Any value can be chosen as “approximation” for f(z). Consider the
function

f(x) = sin(x) + 10−3 ln
(
(x− 0.35415)2

)
.

If it is tabulated for x = 0.33, 0.34, . . . , 0.38, one would not expect the singu-
larity at z = 0.35415:

x 0.3300 0.3400 0.3500 0.3600 0.3700 0.3800
f(x) 0.3166 0.3250 0.3319 0.3420 0.3533 0.3636

.

Thus, if an interpolation procedure yields some value of f(0.35415) ≈ 0.3356,
one would probably be ready to accept this.

Often we assume that f is smooth. In that case more can be said about
the interpolation error (see Section 4.2.2).

Example 4.1. We would like to interpolate f(0.66) in table (4.2) and
choose the function

g(x) =
a

x− b
.

The two parameters a and b are determined by requiring that g interpolates
both neighbor points of z, i.e.

g(0.6) =
a

0.6− b
= 0.8136,

g(0.7) =
a

0.7− b
= 0.9967.

With the Maple-statement

> solve({a/(0.6-b)=0.8136, a/(0.7-b)=0.9967},{a,b});

116 INTERPOLATION

we obtain a = −0.4429 and b = 1.1443 thus

g(0.66) = − 0.4429

0.66− 1.1443
= 0.9145 ≈ f(0.66) = 0.9216.

By integrating esin(t) numerically one can check that the interpolation error
is |g(0.66) − f(0.66)| = 0.0071, which is rather large. Indeed, the choice
of the model function was not very clever; a better result could have been
obtained with the linear function g(x) = ax + b, in which case we would get
g(0.66) = 0.9235 and an error of 0.0019.

4.2 Polynomial Interpolation

A common choice of model functions for interpolation are polynomials, which
are easy to evaluate and smooth, i.e., infinitely differentiable. Given the n+1
points in (4.1), we are looking for a polynomial P (x) such that

P (xi) = f(xi), i = 0, . . . , n. (4.3)

Since by (4.3) we have n+ 1 constraints to satisfy, we need n+ 1 degrees of
freedom. Consider the n-th degree polynomial

Pn(x) = a0 + a1x+ . . . + an−1x
n−1 + anx

n. (4.4)

The n+1 coefficients {ai} have to be determined in such a way that (4.3) is
satisfied. This leads to the linear system of equations

a0 + a1x0 + . . . + an−1x
n−1
0 + anx

n
0 = f(x0),

a0 + a1x1 + . . . + an−1x
n−1
1 + anx

n
1 = f(x1),

...
...

...
... =

...
a0 + a1xn + . . . + an−1x

n−1
n + anx

n
n = f(xn).

Written in matrix form, the system reads⎡
⎢⎢⎢⎣

1 x0 . . . xn−1
0 xn

0

1 x1 . . . xn−1
1 xn

1
...

...
...

...
1 xn . . . xn−1

n xn
n

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸

⎛
⎜⎜⎜⎝

a0
...

an−1

an

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
=

⎛
⎜⎜⎜⎝

f(x0)
f(x1)

...
f(xn)

⎞
⎟⎟⎟⎠ ,

︸ ︷︷ ︸
V a = f .

(4.5)

The matrix V with the special structure containing the powers of the nodes
is called a Vandermonde Matrix. We shall see in the next section that if all
the nodes xi are different, then the matrix V is non-singular and therefore
there exists a unique solution to the linear system of equations.

On the other hand, Vandermonde matrices tend to be ill conditioned
(see Table 3.2 in Chapter 3) and, as we will see, there are other ways to
compute the interpolating polynomial by representing it in another basis of
polynomials rather than with monomials.

Polynomial Interpolation 117

4.2.1 Lagrange Polynomials

Instead of trying to directly interpolate the function values f(xi) at the nodes
xi with a polynomial of degree at most n, we can look for a representation
of the interpolating polynomial Pn(x) of the form

Pn(x) =

n∑
j=0

f(xj) lj(x), (4.6)

where the polynomials lj should be of degree n as well and have to be de-
termined so that Pn(x) interpolates the function f at the nodes xj . This is
clearly the case if li(xi) = 1 and li(xj) = 0 for i 	= j, because then there is
only one contribution to the sum from the i-th term if li is evaluated at xi,
namely

Pn(xi) =

n∑
j=0

f(xj) lj(xi) = f(xi) li(xi) = f(xi).

Now to determine the li(x) we have to find the polynomial which equals 1 at
xi and has n zeros at all the other nodes xj , i 	= j. Such a polynomial can
be written in factored form directly as

li(x) =

n∏
j=0
j �=i

x− xj

xi − xj
, i = 0, 1, . . . , n. (4.7)

This polynomial li(x) is clearly zero if evaluated at xj for j 	= i, because one
of the factors in the numerator vanishes there. On the other hand, when
evaluated at xi, the numerator and denominator become identical, so the
polynomial equals one there, as required. These polynomials are called La-
grange polynomials and interpolation becomes very simple once the Lagrange
polynomials are available, one simply forms the sum given in Equation (4.6).

Obviously the n + 1 Lagrange polynomials can only exist if the denom-
inators in Equation (4.7) are nonzero. This implies that the nodes must be
distinct, i.e., we must have xi 	= xj for all i 	= j.

How do we know that the interpolation polynomial expanded in powers
of x as in (4.4) and the polynomial constructed with the Lagrange basis
functions (4.6) represent the same polynomial? One possibility is to expand
(4.6) and reorder the terms and check that the expressions are indeed equal.
There is, however, a simpler argument that shows that the polynomials are
the same. Assume we have computed two interpolating polynomials Q(x)
and P (x) each of degree n such that

Q(xj) = f(xj) = P (xj), j = 0, . . . , n

holds. Then we can form the difference

d(x) = Q(x)− P (x).

118 INTERPOLATION

d is certainly a polynomial of degree less or equal n. But because of the
interpolation property of P and Q, we have

d(xj) = Q(xj)− P (xj) = 0, j = 0, . . . , n.

A non-zero polynomial of degree less than or equal to n cannot have more
than n zeros. But d has n + 1 distinct zeros; hence, it must be identically
zero, meaning that Q(x) ≡ P (x). Thus we have proved

Theorem 4.1. (Existence and Uniqueness of the Interpolation

Polynomial) Given n + 1 distinct nodes xj the Vandermonde matrix in
(4.5) is non-singular and there exists a unique interpolating polynomial Pn

of degree less or equal n with P (xj) = f(xj) for j = 0, . . . , n.

Example 4.2. We interpolate again the value f(0.66) for the function
given in (4.2). We chose n = 2 and use the three points

x 0.6 0.7 0.8
y 0.8136 0.9967 1.1944

to determine the interpolation polynomial (a quadratic function). We obtain

l0(x) =
x− 0.7

0.6− 0.7

x− 0.8

0.6− 0.8
⇒ l0(0.66) = 0.28

l1(x) =
x− 0.6

0.7− 0.6

x− 0.8

0.7− 0.8
⇒ l1(0.66) = 0.84

l2(x) =
x− 0.6

0.8− 0.6

x− 0.7

0.8− 0.7
⇒ l2(0.66) = −0.12

Thus we get

P2(0.66) = 0.28 · 0.8136 + 0.84 · 0.9967− 0.12 · 1.1944 = 0.921708.

Since the exact value is f(0.66) = 0.9216978 the interpolation error is now
−1.01 ·10−5 and the interpolated value has the same accuracy as the tabulated
values.

The following Matlab function interpolates with the Lagrange interpo-
lation polynomial.

Algorithm 4.1. Lagrange interpolation

function yy=LagrangeInterpolation(x,y,xx)

% LAGRANGEINTERPOLATION interpolation using Lagrange polynomials

% yy=LagrangeInterpolation(x,y,xx); uses the points (x,y) for the

% Lagrange Form of the interpolating polynomial P and iterpolates

% the values yy=P(xx)

Polynomial Interpolation 119

n=length(x); nn=length(xx);

for i=1:nn,

yy(i)=0;

for k=1:n

yy(i)=yy(i)+y(k)*prod((xx(i)-x([1:k-1,k+1:n])))...

/prod((x(k)-x([1:k-1,k+1:n])));

end;

end;

4.2.2 Interpolation Error

If the function f has continuous derivatives in the range of interpolation,
then an error term can be derived for the interpolation formula.

Theorem 4.2. (Interpolation Error) Let f, f ′, . . . , f (n+1) be contin-
uous in the interval [x0, xn], where x0 < x1 < · · · < xn. If the polynomial Pn

interpolates f in the nodes xj then

Rn(x) := f(x)− Pn(x) =
(x− x0)(x− x1) · · · (x− xn)

(n+ 1)!
f (n+1)(ξ), (4.8)

where ξ is some value between the nodes x0, x1, . . . , xn and x.
Proof. For x = xk the theorem trivially holds, since both sides vanish,

so let us consider a fixed x such that x 	= xk, k = 0, . . . , n. Define

L(t) =

n∏
i=0

(t− xi)

and consider the function

F (t) = f(t)− Pn(t)− cL(t), with c =
f(x)− Pn(x)

L(x)
.

Clearly

F (xk) = 0, k = 0, 1, . . . , n,

but also F (x) = 0 because of the special choice of the constant c. Thus F
has at least n + 2 distinct zeros. By Rolle’s theorem, the continuity of F ′

implies that there is a zero of F ′ between any two zeros of F . Therefore F ′

has at least n+1 distinct zeros. If we continue to take derivatives and count
the zeros we finally find that

F (n+1)(t) = f (n+1)(t)− P (n+1)
n (t)− cL(n+1)(t) (4.9)

has at least one zero ξ. Since Pn is of degree n we have

P (n+1)
n (t) ≡ 0,

120 INTERPOLATION

and, because L is a polynomial of degree n+ 1 with leading coefficient 1, we
obtain

L(n+1)(t) = (n+ 1)! .

If we insert this for t = ξ in Equation (4.9) and if we solve the equation

F (n+1)(ξ) = 0

for c then we get using the definition of c

c =
f(x)− Pn(x)

L(x)
=

f (n+1)(ξ)

(n+ 1)!
,

which is what we wanted to prove. �
To estimate the interpolation error in Example 4.2 with the expression

in (4.8), we need to compute the maximum of |f ′′′| in the interval [0.6, 0.8].
Since

f ′′′(x) = (− sin x+ cos2 x)esin x,

and since f ′′′ is monotonically decreasing in this interval with f ′′′(0.6) =
0.2050 and f ′′′(0.8) = −0.4753, we conclude

max
0.6≤x≤0.8

|f ′′′(x)| = |f ′′′(0.8)| = 0.4753.

Furthermore

max
0.6≤x≤0.8

|L(x)| = 3.849 · 10−4,

and thus for all x ∈ (0.6, 0.8) the error can be bounded by

|Rn(x)| ≤ 3.049 10−5.

For x = 0.66 we have |L(0.66)| = 3.36 · 10−4 and thus we get the sharper
bound

|Rn(0.66)| ≤ 2.6617 · 10−5.

The estimate is about twice as large as the exact interpolation error.

Remarks:

• Normally the derivative f (n+1) is not available and so it is difficult to
use the error term given above unless a bound on this derivative is
known.

• From the product L(x) in the error term, one can expect large interpo-
lation errors towards the ends of the interval in which the interpolation
is performed, since many of the terms in the product will be large. This
is especially the case if many nodes are used. An impressive example

Polynomial Interpolation 121

was given by Runge and is reproduced in Figure 4.1. The function
which is interpolated is

f(x) =
1

1 + x2
,

and the nodes are chosen to be equidistant on the interval x ∈ [−5, 5].
The polynomials indeed still interpolate the function values, but be-

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

x

f(
x)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−16

−14

−12

−10

−8

−6

−4

−2

0

2

x

f(
x)

Figure 4.1.
Runges famous example, interpolated with equidistant
nodes, on the left with a polynomial of degree four and
eight, on the right with a polynomial of degree sixteen.

tween the nodes the interpolation error is unacceptably large for higher
degree polynomials, especially near the boundary. A remedy is to use
non-equidistant nodes which are more closely spaced at the ends of the
interval, for example Chebyshev nodes, which are derived from the roots
of the Chebyshev polynomials ; see Problem 4.1. We discuss Chebyshev
polynomials in detail in Section 11.5. Another possibility is to use
piecewise polynomials, as we will see in the Section 4.3, which leads to
spline interpolation in Section 4.3.1.

4.2.3 Barycentric Formula

Interpolating with the Lagrange formula (4.6) is not very efficient, since for
every new location where we want to interpolate, we have to perform O(n2)
operations. There exists a variant called the Barycentric Formula which re-
quires only O(n) operations per interpolation point. To derive it we consider

Pn(x) =

n∑
i=0

n∏
j=0
j �=i

x− xj

xi − xj
f(xi).

We define the coefficients

λi =
1

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
, i = 0, . . . , n.

122 INTERPOLATION

Now we write for x 	= xi

Pn(x) =

n∑
i=0

λi

n∏
j=0
j �=i

(x− xj) f(xi) =

n∏
j=0

(x− xj)

n∑
i=0

λi

x− xi
f(xi).

The interpolation formula is valid for any choice of the function values f(xi).
For the constant function f(x) = 1 we obtain the relation

1 =
n∏

j=0

(x− xj)
n∑

i=0

λi

x− xi
⇒

n∏
j=0

(x− xj) =
1∑n

i=0
λi

x−xi

.

Using this expression we finally obtain the Barycentric Interpolation Formula

Pn(x) =

n∑
i=0

λi

x− xi
f(xi)

n∑
i=0

λi

x− xi

. (4.10)

To interpolate with the Barycentric Formula we compute first the coefficients
λi in O(n2) operations with the following Matlab function

Algorithm 4.2.
Coefficients for the Barycentric Representation

function lambda=BarycentricCoefficients(x)

% BARYCENTRICCOEFFICIENTS barycentric coefficients for interpolation

% lambda=BarycentricCoefficients(x); computes the coefficients for

% the barycentric representation of the interpolating polynomial

% through the points (x,.)

n=length(x); x=x(:);

for k=1:n,

lambda(k)=1/prod(x(k)-x([1:k-1,k+1:n]));

end;

For a new interpolation point z, we compute the weights μi = λi/(z−xi)
and evaluate then Pn(z) =

∑n
i=0 μif(xi)/

∑n
i=0 μi with only O(n) operations.

We obtain the following Matlab function:

Algorithm 4.3. Barycentric Formula

function yy=BarycentricInterpolation(x,y,lambda,xx)

% BARYCENTRICINTERPOLATION interpolate using the barycentric formula

% yy=BarycentricInterpolation(x,y,lambda,xx) uses the points (x,y)

% and the precalculated barycentric coefficients lambda for the

Polynomial Interpolation 123

% barycentric form of the interpolation polynomial P and iterpolates

% the values yy=P(xx)

x=x(:); y=y(:); xx=xx(:);

nn=length(xx);

for i=1:nn,

z=(xx(i)-x)+1e-30; % prevents a division by zero

mue=lambda’./z;

yy(i)=mue’*y/sum(mue);

end;

4.2.4 Newton’s Interpolation Formula

For Newton’s interpolation formula, we use the Newton polynomials which
are defined as

πk(x) =
k−1∏
j=0

(x− xj).

The interpolating polynomial becomes

Pn(x) = d0π0(x) + d1π1(x) + · · · dnπn(x). (4.11)

The interpolation condition (4.3) leads to a system of linear equations for the
coefficients di:

n∑
j=0

djπj(xi) = f(xi), i = 0, . . . n. (4.12)

The matrix of the system (4.12) is lower triangular

⎛
⎜⎜⎜⎝
π0(x0) · · · πn(x0)
π0(x1) · · · πn(x1)

... · · · ...
π0(xn) · · · πn(xn)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1
1 x1 − x0

1 x2 − x0 (x2−x0)(x2−x1)
...

...
...

. . .

1 xn − x0 (xn−x0)(xn−x1) · · · ∏n−1
j=0 (xn−xj)

⎞
⎟⎟⎟⎟⎟⎠ .

Thus the coefficients dj could be computed by forward substitution:

d0 = f(x0), di =
f(xi)−

∑i−1
j=0 djπ(xi)

πi(xi)
, i = 1, . . . , n. (4.13)

However, there is a simpler algorithm for computing these coefficients based
on divided differences. The definition is recursive:

f [xi] = f(xi), zeroth divided difference,

f [xi, xi+1, . . . , xi+k] =
f [xi+1, xi+1, . . . , xi+k]− f [xi, xi+1, . . . , xi+k−1]

xi+k − xi
.

124 INTERPOLATION

For example, the first divided difference would evaluate to

f [x0, x1] =
f [x1]− f [x0]

x1 − x0
=

f(x1)− f(x0)

x1 − x0
.

The second divided difference would amount to

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
=

f(x2)−f(x1)
x2−x1

− f(x1)−f(x0)
x1−x0

x2 − x0
.

Divided differences are best arranged in a triangular array,

x0 f(x0) = f [x0]
x1 f(x1) = f [x1] f [x0, x1]
x2 f(x2) = f [x2] f [x1, x2] f [x0, x1, x2]
...

...
...

...
. . .

xn f(xn) = f [xn] f [xn−1, xn] f [xn−2, xn−1, xn] · · · f [x0, . . . , xn].

Assume now that the point (x, f(x)) is added at the top to the table of the
divided differences:

x f(x)
x0 f(x0) f [x, x0]

x1 f(x1) f [x0, x1]
. . .

...
...

...
...

. . .

xn−1 f(xn−1) f [xn−2, xn−1] · · · · · · f [x, x0, . . . , xn−1]
xn f(xn) f [xn−1, xn] · · · · · · f [x0, . . . , xn] f [x, x0, . . . , xn].

We then have

f [x, x0] =
f [x0]− f [x]

x0 − x
⇒ f(x) = f [x0] + (x− x0)f [x, x0], (4.14)

and

f [x, x0, x1]=
f [x0, x1]− f [x, x0]

x1 − x
⇒ f [x, x0]=f [x0, x1]+ (x−x1)f [x, x0, x1].

Inserting this into (4.14) we find

f(x) = f [x0] + (x− x0) (f [x0, x1] + (x− x1)f [x, x0, x1])

= f(x0) + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x, x0, x1].

If we continue eliminating the divided differences involving x in the same
way, we obtain

f(x) = Q(x) + (x− x0)(x− x1) · · · (x− xn)f [x, x0, x1, . . . , xn], (4.15)

where

Q(x) =
n∑

k=0

f [x0, x1, . . . , xk]
k−1∏
q=0

(x− xq) (4.16)

Polynomial Interpolation 125

is a polynomial of degree n. Note that if we let x → xi in (4.15) then we get
f(xi) = Q(xi) since the second term vanishes. Therefore we conclude that
Q must be the uniquely determined interpolation polynomial. By comparing
the expression in (4.16) with (4.11), we deduce that the Newton coefficients
are the divided differences along the diagonal of the divided difference table:

di = f [x0, x1, . . . , xi], i = 0, . . . , n.

The following Matlab function computes the coefficients using the di-
vided differences scheme.

Algorithm 4.4. Newton Coefficients

function [d,D]=NewtonCoefficients(x,y)

% NEWTONCOEFFICIENTS divided differences for the Newton interpolation

% [d,D]=NewtonCoefficients(x,y); computes the divided differences

% needed for constructing the Newton form of the interpolating

% polynomial through the points (x,y)

n=length(x)-1; % degree of interpolating polynomial

for i=1:n+1 % divided differences

D(i,1)=y(i);

for j=1:i-1

D(i,j+1)=(D(i,j)-D(i-1,j))/(x(i)-x(i-j));

end

end

d=diag(D);

Note in the above algorithm that we first construct the entire divided
difference table before extracting the diagonal. It is also possible to reduce
the storage requirement of this algorithm to O(n) by successively overwriting
entries that are no longer needed, see Problem 4.2.

With the following Matlab function, we evaluate the interpolation poly-
nomial for the new arguments z in Horner form

Pn(z) = f [x0] + (z − x0) (f [x0, x1] + (z − x1) (f [x0, x1, x2] + · · ·
+(z − xn−1) (f [x0, x1, . . . , xn]) · · ·))

by using the recurrence

p := f [x0, x1, . . . , xn]

p := (z − xi)p+ f [x0, x1, . . . , xi], i = n− 1, n− 2, . . . , 0.

Algorithm 4.5. Newton Interpolation

function yy=NewtonInterpolation(x,d,xx)

126 INTERPOLATION

% NEWTONINTERPOLATION interpolate using the Newton polynomial

% yy=NewtonInterpolation(x,d,xx); uses the points (x,.)

% and the precalculated divided difference coefficients d for the

% Newton form of the interpolation polynomial P and iterpolates

% the values yy=P(xx)

n=length(x)-1;

yy=d(n+1);

for i=n:-1:1

yy=yy.*(xx-x(i))+d(i);

end;

The divided differences have many interesting properties. Comparing the
expressions in (4.15) and the interpolation error (4.8)

f(x) = Pn(x)+

n∏
k=0

(x−xk)
f (n+1)(ξ)

(n+ 1)!
= Pn(x)+

n∏
k=0

(x−xk)f [x, x0, x1, . . . , xn]

we see that the divided differences are approximations for the derivatives:

Lemma 4.1. For some ξ between the nodes x, x0, x1, . . . , xn we have

f [x, x0, x1, . . . , xn] =
f (n+1)(ξ)

(n+ 1)!
.

The analogy of Newton’s interpolation formula to Taylor expansions is now

evident: the Taylor polynomial of f expanded about x0,

Tn(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)

k,

looks very similar to the interpolation polynomial Qn(x) in (4.16).

A second useful property is the symmetry of the divided differences, e.g.,
f [x0, x1, x2] = f [x2, x1, x0] = f [x1, x0, x2].

Theorem 4.3. (Symmetry of Divided Differences) The divided dif-
ference f [xi, xi+1, . . . , xi+k] is a symmetric function of its arguments and is
given by

f [xi, xi+1, . . . , xi+k] =
i+k∑
j=i

f(xj)
i+k∏
p=i
p�=j

(xj − xp)

. (4.17)

Proof. This theorem can be proved by mathematical induction [112].
We will give here a simpler (though not quite complete) argument. The

Polynomial Interpolation 127

connection between the function values f(xi) and the divided differences is
given by Equation (4.12) which is⎛
⎜⎜⎜⎜⎝
1
1 x1 − x0

1 x2 − x0 (x2 − x0)(x2 − x1)
...

...
...

. . .

1 xn − x0 (xn − x0)(xn − x1) · · · ∏n−1
j=0 (xn − xj)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

d0
d1
d2
...
dn

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

f0
f1
f2
...
fn

⎞
⎟⎟⎟⎟⎠ .

Solving the first three of these equations by forward substitution for d0, d1
and d2 gives us⎛
⎜⎜⎜⎜⎜⎝

d0

d1

d2

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1

1
x0 − x1

1
x1 − x0

1
(x0 − x1)(x0 − x2)

1
(x1 − x0)(x1 − x2)

1
(x2 − x0)(x2 − x1)

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

f0

f1

f2

⎞
⎟⎟⎟⎟⎟⎠ .

From these first elements of the inverse matrix the general pattern is evi-
dent, and we see that the symmetric expression (4.17) holds for the divided
differences used for Newton’s interpolation. �

4.2.5 Interpolation Using Orthogonal Polynomials

In this section we consider yet another set of basis polynomials to represent
the interpolation polynomial: the set of orthogonal polynomials belonging
to the nodes xi, i = 0, . . . ,m. Orthogonal polynomials are also used in
quadrature (see Section 9.3.2).

In our case the scalar product is defined as

〈pj , pk〉 =
n∑

i=0

pj(xi)pk(xi). (4.18)

Definition 4.1. (Orthogonal Polynomials) A set of polynomials
{pj}Nj=0 is said to be orthogonal with respect to the scalar product 〈·, ·〉 if pj
has degree j for 1 ≤ j ≤ N and

〈pj , pk〉 = 0, j 	= k.

We define the norm of a polynomial by ‖p‖2 = 〈p, p〉.
Theorem 4.4. Let p−1(x) ≡ 0, p0(x) ≡ 1, β0 = 0 and

pk+1(x) = (x− αk+1)pk(x)− βkpk−1(x), k = 0, 1, 2, . . . (4.19)

with

αk+1 =
〈x pk, pk〉
‖pk‖2

and βk =
‖pk‖2

‖pk−1‖2
.

128 INTERPOLATION

Then the polynomials pj(x) are orthogonal.
Proof. The proof is constructive by induction: it is in fact the so called

Lanczos Algorithm (see Algorithm 9.4 in Section 9.3.2).

Base case: α1 = 〈xp0, p0〉 / ‖p0‖2 and p1 = (x− α1)p0. Then

〈p0, p1〉 = 〈p0, (x− α1)p0〉 = 〈p0, x p0〉 − α1 〈p0, p0〉︸ ︷︷ ︸
=〈x p0,p0〉

= 0

and thus p1 is orthogonal to p0 and the base case is established.

Induction hypothesis: Let p0, . . . , pk be orthogonal i.e. 〈pi, pj〉 = 0 holds
for i, j ≤ k and i 	= j.

Induction step: For pk+1 = (x− αk+1)pk − βkpk−1 the following holds

〈pk, pk+1〉 = 〈pk, (x− αk+1)pk − βkpk−1〉
= 〈pk, x pk〉 − αk+1 〈pk, pk〉︸ ︷︷ ︸

=〈x pk,pk〉

−βk 〈pk, pk−1〉︸ ︷︷ ︸
=0

= 0.

Solving pk = (x− αk)pk−1 − βk−1pk−2 for xpk−1 we get

xpk−1 = pk + αkpk−1 + βk−1pk−2.

Multiplying with pk we obtain

〈pk, xpk−1〉 = 〈pk−1, xpk〉 = 〈pk, pk〉+ αk · 0 + βk1 · 0 = ‖pk‖2.
We use this in

〈pk−1, pk+1〉 = 〈pk−1, (x− αk+1)pk − βkpk−1〉
= 〈pk−1, x pk〉︸ ︷︷ ︸

=‖pk‖2

−αk+1 〈pk−1, pk〉︸ ︷︷ ︸
=0

−βk 〈pk−1, pk−1〉︸ ︷︷ ︸
=‖pk‖2

= 0.

Finally, for s < k − 1,

〈ps, pk+1〉 = 〈ps, (x− αk+1)pk − βkpk−1〉
= 〈ps, x pk〉︸ ︷︷ ︸

=0, for s<k−1

−αk+1 〈ps, pk〉︸ ︷︷ ︸
=0, for s<k−1

−βk 〈ps, pk−1〉︸ ︷︷ ︸
=0, for s<k−1

= 0,

where the first term vanishes because

〈ps, x pk〉 = 〈 xps︸︷︷︸
deg<k

, pk︸︷︷︸ 〉 = 0.

Hence, pk+1 is orthogonal to ps for s ≤ k.

�

Polynomial Interpolation 129

The coefficients αk and βk depend on the nodes xi. In particular,

α1 =
〈x p0, p0〉
‖p0‖2

=
〈x, 1〉
n+ 1

=
1

n+ 1

n∑
i=0

xi,

thus α1 is the average of the nodes. In general we get

αk+1 =

n∑
i=0

xi pk(xi)
2

n∑
i=0

pk(xi)2
and βk =

n∑
i=0

pk(xi)
2

n∑
i=0

pk−1(xi)2
.

Consider now the approximation problem for k ≤ n

b0p0(xj) + b1p1(xj) + . . .+ bkpk(xj) ≈ f(xj), j = 0, . . . , n (4.20)

or in matrix notation Pb ≈ f⎛
⎜⎜⎜⎝

p0(x0) p1(x0) · · · pk(x0)
p0(x1) p1(x1) · · · pk(x1)

...
... · · · ...

p0(xn) p1(xn) · · · pk(xn)

⎞
⎟⎟⎟⎠
⎛
⎜⎝

b0
...
bk

⎞
⎟⎠ ≈

⎛
⎜⎜⎜⎝

f0
f1
...
fn

⎞
⎟⎟⎟⎠ . (4.21)

If k = n, then we have n + 1 equations for n + 1 unknowns bi. However, if
k < n, then the system Px = b cannot be satisfied exactly in general, so we
must solve (4.21) as a least squares problem to obtain the best approximation.
Since the matrix P is orthogonal due to the orthogonality of the polynomials
the solution is easily obtained with the normal equations (see Equation (6.13)
in Chapter 6):

P�Pb = P�f .

Because P�P is diagonal the solution is simply

bj =

n∑
i=0

pj(xi)fi

n∑
i=0

pj(xi)2
=

p�
j f∥∥pj

∥∥2 , j = 0, . . . , k.

The following Matlab function OrthogonalPolynomialCoefficients com-
putes the matrix P , the coefficients αk and βk and also the bi.

Algorithm 4.6. Coefficient of Orthogonal Polynomials

function [alpha,beta,b,P]=OrthogonalPolynomialCoefficients(x,y)

% ORTHOGONALPOLYNOMIALCOEFFICIENTS 3 term recurrence coefficients

% [alpha,beta,b,P]=OrthogonalPolynomialCoefficients(x,y); computes

130 INTERPOLATION

% the coefficients of the 3-term recurrence of the orthogonal

% polynomials for the set of points (x,y). P is the orthogonal

% matrix which contains as columns the values p_i(x) of the

% orthogonal polynomials, and b contains the coefficients for the

% expansion P(x)=b_1 p_1(x) + ... + b_m p_m(x).

m=length(x); x=x(:); y=y(:);

alpha(1)=sum(x)/m;

p1=ones(size(x)); p2=x-alpha(1);

P=[p1,p2];

b(1)=p1’*y/norm(p1)^2; b(2)=p2’*y/norm(p2)^2;

for k=1:m-2

p0=p1; p1=p2;

alpha(k+1)=p1’*(x.*p1)/norm(p1)^2;

beta(k)=(norm(p1)/norm(p0))^2;

p2=(x-alpha(k+1)).*p1-beta(k)*p0;

P=[P,p2];

b(k+2)=p2’*y/norm(p2)^2;

end

b=b(:);

If we wish to interpolate for new values xx we use the recurrence rela-
tion (4.19) to build up the matrix containing the values of the orthogonal
polynomials at the points xx. A linear combination of those columns with
k coefficients bi gives us the best least squares polynomial of degree k − 1
to the given points (x, y). The matrix pp in the following Matlab function
OrthogonalInterpolation contains the values of the orthogonal polynomi-
als for xx and the matrix yy holds in its columns the values of the best
approximating polynomial for the argument xx.

Algorithm 4.7.
Interpolation with Orthogonal Polynomials

function [yy,pp]=OrthogonalInterpolation(alpha,beta,b,xx)

% ORTHOGONALINTERPOLATION interpolation using orthogonal polynomials

% [yy,pp]=OrthogonalInterpolation(alpha,beta,b,xx) evaluates the

% precomputed orthogonal polynomials defined by alpha, beta, b from

% OrthogonalPolynomialCoefficients(x,y) for the values xx and

% returns their values in pp and the approximations yy(:,i)=b_1

% p_1(xx) + ... + b_i p_i(xx)

m=length(b);

p1=ones(size(xx)); p2=xx-alpha(1);

pp=[p1,p2];

yy=[p1*b(1) p1*b(1)+p2*b(2)];

for i=2:m-1

p0=p1; p1=p2;

p2=(xx-alpha(i)).*p1-beta(i-1)*p0;

Polynomial Interpolation 131

pp=[pp,p2];

yy=[yy yy(:,i)+p2*b(i+1)];

end

Example 4.3. We use 13 equidistant points of the function f(x) = esin x:

x=[0:0.5:6]’; y=exp(sin(x));

plot(x,y,’o’); hold on

axis([1,6,-1,5]); axis(’equal’)

Now we compute the coefficients αk, βk and the coefficients bi for the approx-
imating polynomials:

[alpha,beta,b,P]=OrthogonalPolynomialCoefficients(x,y);

To plot the approximating polynomials we evaluate them for xx:

xx=[-1:0.1:7]’;

yy=OrthogonalInterpolation(alpha,beta,b,xx);

Finally we plot some of the approximating polynomials (for degrees 1,4 and
7):

for k=2:3:8

plot(xx,yy(:,k))

residual=norm(y-P(:,1:k)*b(1:k))

end

and obtain Figure 4.2 and the residual values 2.1384 for k = 2, 0.5842 for
k = 5 and 0.1032 for k = 8.

0 1 2 3 4 5 6
−1

0

1

2

3

4

5

Figure 4.2.
Data Fitting with Polynomials of Degree 1,4 and 7

For data fitting problems, we often do not necessarily want to interpolate
the data, since the data usually contains measurement or round-off errors
that may be amplified by high-degree interpolation. Instead, we are usually
satisfied with an approximation, e.g. by the polynomial of degree 7 shown in

132 INTERPOLATION

Figure 4.2. Alternatively, we may know about a measurement error δ and
wish to fit the data with the polynomial of lowest degree k for which the
residual rk satisfies ‖rk‖ ≤ δ.

Let us denote by Pk = [p0,p1, . . . ,pk] the matrix containing the first k+1
columns of P . The residual for the approximating polynomial of degree k
can then be computed explicitly as

rk = y − Pkbk, b�k = (b0, b1, . . . , bk).

If we increase the degree by one, then

rk+1 = y − Pk+1bk+1 = y − Pkbk − bk+1pk+1 = rk − bk+1pk+1.

If we now compute the length, then

‖rk+1‖2 = (rk − bk+1pk+1)
�(rk − bk+1pk+1)

= ‖rk‖2 − 2bk+1p
�
k+1rk + b2k+1

∥∥pk+1

∥∥2 .
But since pk+1 is orthogonal to Pk, we get

p�
k+1rk = p�

k+1(y − Pkbk) = p�
k+1y.

Furthermore, the coefficients bk are computed by

bk =
p�
ky

‖pk‖2
.

Thus, p�
k+1rk = p�

k+1y = bk+1

∥∥pk+1

∥∥2. If we introduce this in the expres-
sion for ‖rk+1‖, we obtain an equation that allows us to compute the residuals
recursively :

‖rk+1‖2 = ‖rk‖2 − b2k+1

∥∥pk+1

∥∥2 . (4.22)

We are now ready to write a program that computes best-approximating
polynomials by increasing the degree until the residual becomes smaller than
a certain tolerance tol . It is left to the reader as an exercise (see Problem
4.3).

4.2.6 Change of Basis, Relation with LU and QR

In the last sections, we discussed different representations of the interpolation
polynomial. The first one used as polynomial basis the monomials

m(x) = [1, x, x2, . . . , xn]�.

The Lagrange interpolation formula uses the Lagrange polynomial basis

l(x) = [l0(x), l1(x), . . . , ln(x)]
�.

Polynomial Interpolation 133

For the Newton interpolation, we use the basis of the Newton polynomials

π(x) = [π0(x), π1(x), . . . , πn(x)]
� with πi(x) =

i−1∏
j=0

(x− xj),

and for the approximation in the least squares sense, we introduced the basis
of orthogonal polynomials, which also interpolates if k = n:

p(x) = [p0(x), p1(x), . . . , pn(x)]
�.

We introduce the vector of coefficients of the monomials

a = [a0, a1, . . . , an]
�,

the vector of the function values

f = [f0, f1, . . . , fn]
�,

the vector of divided differences used for Newton’s interpolation

d = [d0, d1, . . . , dn]
�,

and the vector of the coefficients of the orthogonal polynomials

b = [b0, b1, . . . , bn]
�.

With this notation, a scalar product describes the four representations of the
interpolation polynomial:

Pn(x) = a�m(x) = f�l(x) = d�π(x) = b�p(x). (4.23)

There must exist matrices which compute the transformations between
the polynomial bases. The coefficients ai used for the monomial basis are, as
we discussed before, given by the solution of the linear system V a = f with
the Vandermonde matrix V . Now using Equation (4.23) we have

f�l = a�m = (V −1f)�m = f�V −Tm.

Since the last equation is valid for all possible choices of function values f ,
we can conclude that

l = V −Tm =⇒ V�l = m.

Thus, the transposed Vandermonde matrix maps the Lagrange polynomials to
the monomials,⎛

⎜⎜⎜⎝
1 1 · · · 1
x0 x1 · · · xn

...
...

...
...

xn
0 xn

1 · · · xn
n

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

l0(x)
l1(x)
...

ln(x)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
x
...
xn

⎞
⎟⎟⎟⎠ . (4.24)

134 INTERPOLATION

Note that Equation (4.24) is just the Lagrange interpolation representation
of the monomials!

There must be a similar relationship between the Lagrange and Newton
polynomials. Let us denote by U�d = f with

U� =

⎛
⎜⎜⎜⎜⎜⎝

1
1 x1 − x0

1 x2 − x0 (x2 − x0)(x2 − x1)
...

...
...

. . .

1 xn − x0 (xn − x0)(xn − x1) · · · ∏n−1
j=0 (xn − xj)

⎞
⎟⎟⎟⎟⎟⎠

the linear system (4.12) with which the divided differences can be computed
from the function values. Using again Equation (4.23) we obtain

d�π = f�l = d�U l =⇒ U l(x) = π(x).

Thus, the upper triangular matrix U maps the Lagrange polynomials to the
Newton polynomials :⎛
⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
x1 − x0 x2 − x0 · · · xn − x0

(x2 − x0)(x2 − x1) · · · (xn − x0)(xn − x1)
. . .

...∏n−1
j=0 (xn − xj)

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

l0
l1
l2
...
ln

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

π0

π1

π2

...
πn

⎞
⎟⎟⎟⎟⎟⎠ .

(4.25)

Note again that this result is obvious since (4.25) is the Lagrange represen-
tation of the Newton polynomials!

Next we would like to find a relation between the monomials and the
Newton polynomials. We are looking for a lower triangular matrix L with
Lπ(x) = m(x). L has to be lower triangular, since the Newton polynomials
and the monomials have the same degree. To determine L we need to know
more about divided differences.

The divided differences may be interpreted as an elimination process. Let
the function Hp(x0, . . . , xk) denote the sum of all homogeneous products of
degree p of the variables x0, . . . , xk. For example we have

Hp(x0) = xp
0

H1(x0, . . . , xk) =
k∑

j=0

xj

Hp(x0, x1) =
p∑

j=0

xj
0x

p−j
1 =

p∑
j=0

Hj(x0)Hp−j(x1).

For these homogeneous products the following Lemma of Miller [91] holds:

Lemma 4.2.

Hp(x0, . . . , xk) =
Hp+1(x0, . . . , xk−1)−Hp+1(x1, . . . , xk)

x0 − xk
(4.26)

Polynomial Interpolation 135

Proof. We rewrite the right-hand side of (4.26) as

Hp+1(x0, . . . , xk−1)−Hp+1(x1, . . . , xk)

x0 − xk
=

∑p+1
s=1(x

s
0−xs

k)Hp+1−s(x1, . . . , xk−1)

x0−xk
.

But
xs
0 − xs

k

x0 − xk
=

s−1∑
q=0

xq
0x

q+1−s
k = Hs−1(x0, xk).

Thus, the right-hand side of (4.26) is equal to

p∑
s=0

Hs(x0, xk)Hp−s(x1, . . . , xk−1) = Hp(x0, . . . , xk).

�
Consider now the interpolation polynomial expanded in monomials:

Pn(x) = a0 + a1x+ · · · anxn,

and the system of linear equations (the interpolation condition) with the
Vandermonde matrix

n∑
j=0

ajx
j
i = f(xi), i = 0, . . . n. (4.27)

Theorem 4.5. The divided difference scheme eliminates the unknown
coefficients of the interpolation polynomial in (4.27). More precisely,

f [xi, . . . , xi+k] = ak +
n∑

j=k+1

ajHj−k(xi, . . . , xi+k). (4.28)

Proof. The proof is by induction on the columns. For the base case, we
have

f [xi, xi+1] =

∑n
j=0 ajx

j
i −
∑n

j=0 ajx
j
i+1

xi − xi+1
= a1 +

n∑
j=2

ajHj−1(xi, xi+1).

Thus, the theorem is valid for the second column. Assume now it holds for
the first k − 1 columns. Then

f [xi, . . . , xi+k] =
f [xi, . . . , xi+k−1]− f [xi+1, . . . , xi+k]

xi − xi+k

=

∑n
j=k aj (Hj−k+1(xi, . . . , xi+k−1)−Hj−k+1(xi+1, . . . , xi+k))

xi − xi+k
.

136 INTERPOLATION

By multiplying the denominator into the sum and by applying Lemma 4.2,
we obtain

f [xi, . . . , xi+k] = ak +

n∑
j=k+1

ajHj−k(xi, . . . , xi+k).

�
As a conclusion, if the interpolated values f(xi) are values of a polynomial

of degree n then

f [x0, . . . , xn] = an =
P

(n)
n (0)

n!
= leading coefficient of Pn (4.29)

and f [x0, . . . , xn+k] = 0 for k = 1, 2,
Furthermore, (4.28) gives us the relation between the divided differences

di and the coefficients ai. We have L�a = d where

L =

⎛
⎜⎜⎜⎜⎜⎝

1
H1(x0) 1
H2(x0) H1(x0, x1) 1

...
...

. . .
. . .

Hn(x0) Hn−1(x0, x1) · · · H1(x0, . . . , xn−1) 1

⎞
⎟⎟⎟⎟⎟⎠ .

From Equation (4.23) we obtain

a�m = d�π = a�Lπ =⇒ Lπ(x) = m(x).

Thus we obtained the result: the lower triangular matrix L maps the Newton
polynomials to the monomials.

From the relation V�l = m between the Lagrange polynomials and the
monomials and from U l = π relating the Lagrange polynomials to the New-
ton polynomials we can eliminate l and thus also obtain the connection be-
tween the Newton polynomials and the monomials

V�U−1π = m =⇒ V�U−1 = L ⇐⇒ V� = LU.

The last equation tells us that the transposed Vandermonde matrix has been
factored into the product of a lower and an upper triangular matrix. Since
the diagonal of L is one, the factorization is unique and nothing else than
the factorization obtained by applying Gaussian elimination to V�.

Theorem 4.6. The LU decomposition of the Vandermonde matrix

V =

⎛
⎜⎜⎜⎝

1 x0 . . . xn−1
0 xn

0

1 x1 . . . xn−1
1 xn

1
...

...
...

...
1 xn . . . xn−1

n xn
n

⎞
⎟⎟⎟⎠

Polynomial Interpolation 137

is V = U�L� respectively V� = LU where

L =

⎛
⎜⎜⎜⎜⎜⎝

1
H1(x0) 1
H2(x0) H1(x0, x1) 1

...
...

. . .
. . .

Hn(x0) Hn−1(x0, x1) · · · H1(x0, . . . , xn) 1

⎞
⎟⎟⎟⎟⎟⎠

and

U =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
x1 − x0 x2 − x0 · · · xn − x0

(x2 − x0)(x2 − x1) · · · (xn − x0)(xn − x1)
. . .

...∏n−1
j=0 (xn − xj)

⎞
⎟⎟⎟⎟⎟⎠ .

The coefficients of the interpolating polynomial in the basis of monomials are
the solution of V a = f . They may be computed using the LU decomposition
V = U�L� by

1. solving U�d = f by forward substitution, giving the intermediate vector
d of the divided differences and

2. solving L�a = d by back substitution.

The polynomial basis can be computed by solving V�l(x) = m(x) also
using V� = LU :

1. forward substitution for Lπ(x) = m(x), yielding as intermediate vector
the Newton polynomials.

2. backward substitution for U l(x) = π(x), giving the Lagrange polynomi-
als.

Using Maple, we can confirm that the theorem indeed holds;

with(LinearAlgebra):

V:=VandermondeMatrix([x_0,x_1,x_2,x_3]);

VT:=Transpose(V);

(p,L,U):=LUDecomposition(VT);

U:=map(factor,U);

We obtain as predicted the decomposition

L =

⎡
⎢⎢⎢⎣

1 0 0 0

x0 1 0 0

x0
2 x0 + x1 1 0

x0
3 x0

2 + x1 x0 + x1
2 x0 + x2 + x1 1

⎤
⎥⎥⎥⎦

138 INTERPOLATION

U =

⎡
⎢⎢⎢⎣

1 1 1 1

0 x1−x0 x2−x0 x3−x0

0 0 − (x2 − x1) (−x2 + x0) (−x3 + x1) (−x3 + x0)

0 0 0 − (−x3+x1) (−x3+x2) (−x3+x0)

⎤
⎥⎥⎥⎦ .

For the orthogonal polynomial basis, the interpolation condition is

b0p0(xj) + b1p1(xj) + · · · + bnpn(xj) = fj , j = 0, . . . , n.

The matrix of this linear system for the coefficients bi,

P =

⎛
⎜⎜⎜⎝

p0(x0) p1(x0) · · · pn(x0)
p0(x1) p1(x1) · · · pn(x1)

...
...

...
...

p0(xn) p1(xn) · · · pn(xn)

⎞
⎟⎟⎟⎠ ,

is orthogonal: P�P = D2 where D = diag{‖p0‖ , ‖p1‖ , . . . , ‖pn‖}. Thus, as
we have seen before, the solution is easy to compute,

b = D−2P�f .

Substituting this into (4.23), we get

Pn(x) = f�l(x) = b�p(x) = f�PD−2p(x).

Since this is true for all f , we conclude

l(x) = PD−2p(x) ⇐⇒ P�l(x) = p(x).

There must exist a lower triangular matrix G which maps the orthogonal
polynomials to the monomials

Gp(x) = m(x).

If we write this equation for x = x0, x1, . . . , xn then we get for G the matrix
equation

GP� = V� ⇐⇒ V = PG� =
(
PD−1

) (
DGT

)
.

Thus we have decomposed the Vandermonde matrix V into a product of an
orthonormal matrix Q = PD−1 and an upper triangular matrix R = DGT ,
this is the QR decomposition, which we introduced on the one hand to solve in
a very stable fashion linear systems, see Section 3.5, and also for the solution
of least squares problems, see Subsection 6.5.1.

Therefore, to compute the matrix G, we can compute the QR factoriza-
tion V = QR in a standard way using e.g. Householder reflections and then
compute G = R�D−1. Alternatively, if we know V and P , we can solve

Polynomial Interpolation 139

for G in GP� = V� to get G = V�PD−2. Since the two representations
for the interpolating polynomial p(x)�b = m(x)�a both hold, we obtain by
replacing m(x) = Gp(x) the relation

G�a = b.

Summarizing all the results we obtain the following theorem.

Theorem 4.7. Let pk(x) be the orthogonal polynomial of degree k, p(x) =
(p0(x), p1(x), . . . , pn(x))

� and P� = [p(x0),p(x1), . . . ,p(xn)]. Let D be the
diagonal matrix D = diag{‖p0‖ , ‖p1‖ , . . . , ‖pn‖} and let V = QR be the QR
decomposition of the Vandermonde matrix. Then

1. Q = PD−1 and R = D−1P�V .

2. The basis transformation between the Lagrange polynomials li(x) and
the orthogonal polynomials pi(x) is P�l(x) = p(x).

3. The basis transformation between the orthogonal polynomials pi(x) and
the monomials mi(x) = xi is Gp(x) = m(x) where G = DR� =
V�PD−2.

4. The coefficients of the monomials of the interpolating polynomial ai and
the coefficients of the orthogonal polynomials bi are related by G�a = b.

4.2.7 Aitken-Neville Interpolation

In this section we will discuss yet another algorithm for computing the in-
terpolating polynomial. It is used to interpolate the function value f(z) by
computing the sequence {Pn(z)} for n = 0, 1, 2, . . . which is obtained by us-
ing more and more interpolation points. The hope is that the sequence will
converge to the function value f(z).

Let Tij(x) be the polynomial of degree ≤ j that interpolates the data

x xi−j xi−j+1 · · · xi

y yi−j yi−j+1 · · · yi
.

We arrange these polynomials in a lower triangular matrix (the so called
Aitken-Neville scheme):

x y
x0 y0 = T00

x1 y1 = T10 T11

...
...

. . .

xi yi = Ti0 Ti1 · · · Tii

· · · · · · · · · · · · . . .

(4.30)

140 INTERPOLATION

Theorem 4.8. The polynomials Tij can be computed with the recursion

Ti0 = yi

Tij =
(xi − x)Ti−1,j−1 + (x− xi−j)Ti,j−1

xi − xi−j

j = 1, 2, . . . , i

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

i = 0, 1, 2, . . . (4.31)

Proof. The proof is by induction. Base case: Ti,0 interpolates as re-
quired. Induction hypothesis: Let

Ti,j−1 be the interpolation polynomial for xi−j+1, . . . , xi

and

Ti−1,j−1 be the interpolation polynomial for xi−j, . . . , xi−1.

If we compute Tij according to (4.31), then clearly Tij is a polynomial of
degree ≤ j. If xk is a common node of Ti−1,j−1 and Ti,j−1 then

Ti−1,j−1(xk) = Ti,j−1(xk) = yk,

and hence also

Ti,j(xk) =
(xi − xk)yk + (xk − xi−j)yk

xi − xi−j
= yk.

For the boundary xi we obtain

Tij(xi) =
0 · Ti−1,j−1(xi) + (xi − xi−j)yi

xi − xi−j
= yi

and similarly also Tij(xi−j) = yi−j holds. Tij is therefore the interpolation
polynomial as claimed in the theorem. �

Example 4.4. Given the points

x 0 5 −1 2
y −5 235 −9 19

,

the recurrence (4.31) produces the scheme

x y
0 −5

5 235 48x − 5

−1 −9 122
3
x+ 95

3
22
3
x2 + 34

3
x − 5

2 19 28
3
x + 1

3
94
9
x2 − 10

9
x − 185

9
14
9
x3 + 10

9
x2 + 32

9
x − 5,

(4.32)

which can be obtained by the Maple-statements:

with(LinearAlgebra):

Polynomial Interpolation 141

x:=vector(4,[0, 5, -1, 2]);

y:=vector(4,[-5, 235, -9, 19]);

T:=Matrix(4,4);

for i from 1 to 4 do

T[i,1]:=y[i];

for j from 1 to i-1 do

T[i,j+1]:=((x[i]-z)*T[i-1,j]+(z-x[i-j])*T[i,j])/(x[i]-x[i-j]);

od;

od;

print(collect(T,z));

Usually the scheme is not computed for a variable x but for some fixed number
x. The quantities Tik are then simply numbers.

The followingMatlab function AitkenInterpolation computes the Aitken-
Neville scheme (note that because the array indices have to start in Matlab

with 1 rather than 0, we had to adjust the loop variables):

Algorithm 4.8. Aitken-Neville Scheme

function T=AitkenInterpolation(x,y,z)

% AITKENINTERPOLATION interpolation using the Aitken Neville scheme

% T=AitkenInterpolation(x,y,z) uses the ponts (x,y) to generate

% the Aitken-Neville Scheme for the scalar interpolation value z.

n=length(x); T=zeros(n);

for i=1:n

T(i,1)=y(i);

for j=1:i-1

T(i,j+1)=((x(i)-z)*T(i-1,j)+(z-x(i-j))*T(i,j))/(x(i)-x(i-j));

end;

end;

Example 4.5. We compute the Aitken-Neville Scheme for the values of
the function f(x) =

∫ x

0
esin tdt given in Table (4.2) for x = 0.66:

x y
0.60 0.81360
0.70 0.99670 0.92346
0.80 1.19440 0.91762 0.92171
0.50 0.64490 0.93797 0.92169 0.92172
0.90 1.40630 0.94946 0.92188 0.92165 0.92171
0.40 0.49040 0.96667 0.92193 0.92189 0.92168 0.92171.

We see that we get T22 = 0.9217 . . . (T(3,3) with Matlab in Algorithm
4.8) the same value P2(0.66) as in Example 4.2 with Lagrange interpolation.

142 INTERPOLATION

4.2.8 Extrapolation

Extrapolation is the same as interpolation, only the interpolation value z is
outside the range of the given values xj . Without loss of generality we can
assume that z = 0 since we can always apply a shift of the independent
variable x′ := x− z.

Extrapolation is often used to compute limits. Let h be a discretization
parameter and T (h) an approximation of an unknown quantity a0 with the
following property:

lim
h→0

T (h) = a0. (4.33)

The usual assumption is that T (0) is difficult to compute – maybe numerically
unstable or requiring too many operations. If we compute some function
values T (hi) for hi > 0 and construct the interpolation polynomial Pn then
Pn(0) will be an approximation for a0.

The sequence {Pn(0)} for n = 0, 1, 2, . . . is given by the diagonal of the
Aitken-Neville Scheme. Thus for extrapolation with polynomials the Aitken-
Neville Scheme is the natural algorithm (in the problem section we discuss
alternatives). The hope is that the scheme will converge to a0. Indeed this
is the case if there exists an asymptotic expansion for T (h) of the form

T (h) = a0 + a1h+ · · · + akh
k +Rk(h) with |Rk(h)| < Ckh

k+1, (4.34)

and if the sequence {hi} is chosen such that

hi+1 < chi with 0 < c < 1,

i.e. if it converges sufficiently rapidly to zero. In this case, the diagonals of
the Aitken-Neville scheme converge faster to a0 than the columns [132].

Since z = 0, the recurrence (4.31) for computing the Aitken-Neville
scheme simplifies to

Tij =
hiTi−1,j−1 − hi−jTi,j−1

hi − hi−j
. (4.35)

Furthermore if we choose the special sequence

hi = h02
−i, (4.36)

then the recurrence becomes

Tij =
2−jTi−1,j−1 − Ti,j−1

2−j − 1
. (4.37)

Often in the asymptotic expansion (4.34) the odd powers of h are missing,
and

T (h) = a0 + a2h
2 + a4h

4 + · · · (4.38)

holds. Such an example is the asymptotic expansion of the trapezoidal rule,
see (9.30). In this case it is advantageous to extrapolate with a polynomial

Polynomial Interpolation 143

in the variable x = h2. This way we obtain faster approximations of (4.38)
of higher order. Instead of (4.35) we then use

Tij =
h2
iTi−1,j−1 − h2

i−jTi,j−1

h2
i − h2

i−j

. (4.39)

Moreover, if we use the sequence (4.36) for hi, we obtain the recurrence

Tij =
4−jTi−1,j−1 − Ti,j−1

4−j − 1
, (4.40)

which is used in the algorithm of Romberg for integration (see (9.34) in Chap-
ter 9).

Note that the Aitken-Neville extrapolation process is the same as Richard-
son Extrapolation (see Equation (9.35) in Chapter 9).

For the special choice of the sequence hi according to (4.36) we obtain
the following extrapolation algorithm:

Algorithm 4.9. Extrapolation with Aitken-Neville

function A=AitkenExtrapolation(T,h0,tol,factor);

% AITKENEXTRAPOLATION Aitken-Neville scheme for extrapolation

% A=AitkenExtrapolation(T,h0,tol,factor); computes the

% Aitken-Neville Scheme for the function T and h_i=h0/2^i until the

% relative error of two diagonal elements is smaller than tol. The

% parameter factor is 2 or 4, depending on the asymptotic expansion

% of the function T.

h=h0; A(1,1)=T(h);

for i=2:15

h=h/2; A(i,1)=T(h); vhj=1;

for j=2:i

vhj=vhj/factor;

A(i,j)=(vhj*A(i-1,j-1)-A(i,j-1))/(vhj-1);

end;

if abs(A(i,i)-A(i-1,i-1))<tol*abs(A(i,i)), return

end

end

warning([’limit of extrapolation steps reached. ’, ...

’Required tolerance may not be met.’]);

Example 4.6. As shown in Chapter 2 in Figure 2.3 the difference quo-
tient

T (h) =
f(x+ h)− f(x)

h
(4.41)

is an approximation for a0 = f ′(x) since limh→0 T (h) = f ′(x) . If we expand
the function f

f(x+ h) = f(x) +
f ′(x)
1!

h+
f ′′(x)
2!

h2 + · · ·

144 INTERPOLATION

and insert the series into (4.41), we obtain

T (h) = f ′(x) +
f ′′(x)
2!

h+
f ′′′(x)
3!

h2 + · · · .

All the powers of h occur in this asymptotic expansion. If we use the sequence
(4.36) for hi, we need to extrapolate with the recurrence (4.37).

However, if we use the symmetric differences quotient

T (h) =
f(x+ h)− f(x− h)

2h
,

then we get

T (h) = f ′(x) +
f ′′′(x)
3!

h2 +
f (5)(x)

5!
h4 + · · · (4.42)

and we can extrapolate using the recurrence (4.40).

4.3 Piecewise Interpolation with Polynomials

As already shown with Runge’s example (see Figure 4.1), the interpolation
polynomial may not always produce the result that one would like. The
following example demonstrates this clearly.

Example 4.7. The interpolating polynomial through the points

x 1 2.5 3 5 13 18 20
y 2 3 4 5 7 6 3

(4.43)

has the graph shown in Figure 4.3.

-4

-2

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20

o

o

o

o

o

o

o

Figure 4.3. Undesirable Interpolation Result Leading to Negative Values

If the values in Table 4.43 were points of a function that must be positive
by some physical argument, then it would not be desirable to approximate

Piecewise Interpolation with Polynomials 145

the function by its interpolation polynomial, since the latter is negative in
the interval (7, 11). If we choose to interpolate piecewise with polynomials of
lower degrees, e.g. by second degree polynomials for three consecutive points
each, then we obtain Figure 4.4. This time the graph of the interpolation

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16 18 20

o

o

oo

o

oo

o

o

Figure 4.4. Piecewise Interpolation with Parabolas

function is all positive; however, the derivative is no longer continuous at the
points where the polynomial pieces meet.

The idea of spline interpolation is to approximate piecewise with polyno-
mials of lower degree in order to obtain a non-oscillating approximation that
is also smooth (i.e., as many times differentiable as possible) at the knots
where the pieces meet.

4.3.1 Classical Cubic Splines

To avoid discontinuous derivatives, we need to prescribe not only a common
function value but also the same value for the derivative at the node where
two piecewise polynomials meet. Assume the points

x x1 x2 . . . xn

y y1 y2 . . . yn

are given. The simplest possibility is to choose each xi as node, and to
interpolate in each interval

[xi, xi+1], i = 1, 2, . . . , n− 1

by one polynomial Pi. The index i does not refer here to the degree of the
polynomial but to the number of the interval. The polynomial Pi should

146 INTERPOLATION

satisfy the following conditions:

Pi(xi) = yi, Pi(xi+1) = yi+1 interpolate

P ′
i (xi) = y′

i, P ′
i (xi+1) = y′

i+1 continuous derivative
(4.44)

Of course we still have to determine what our derivatives y′
i should be, since in

general they are not given. The polynomial Pi has to satisfy four conditions
– thus it is uniquely determined if we choose a degree of three. To simplify
computations we make a change of variables

t =
x− xi

hi
with hi = xi+1 − xi, (4.45)

where t is a local variable in the i-th interval. Now

Qi(t) = Pi(xi + thi) (4.46)

is a polynomial of degree three in t. The derivative is

Q′
i(t) = hiP

′
i (xi + thi), (4.47)

and thus the conditions (4.44) become

Qi(0) = yi, Qi(1) = yi+1,
Q′

i(0) = hiy
′
i, Q′

i(1) = hiy
′
i+1.

(4.48)

A short computation (see Problem 4.16) yields

Qi(t) = yi(1− 3t2 + 2t3) + yi+1(3t
2 − 2t3)

+hiy
′
i(t− 2t2 + t3) + hiy

′
i+1(−t2 + t3).

(4.49)

Definition 4.2. (Cubic Hermite Polynomials, Cardinal Form)

The four polynomials

H3
0 (t) = 1− 3t2 + 2t3 H3

1 (t) = t− 2t2 + t3

H3
3 (t) = 3t2 − 2t3 H3

2 (t) = −t2 + t3

are called cubic Hermite polynomials, and (4.49) is the cardinal form of the
interpolating polynomial.

Qi could be evaluated by the expression (4.49); however, a more efficient
scheme is based on Hermite interpolation. For this, one forms differences in
the following scheme by subtracting the value above from the one below:

hiy
′
i

↘
a0 = yi a2

↘ ↗ ↘
a1 a3

↗ ↘ ↗
yi+1 b

↗
hiy

′
i+1

(4.50)

Piecewise Interpolation with Polynomials 147

This way we obtain the coefficients a0, a1, a2 and a3 and we can compute

Qi(t) = a0 + (a1 + (a2 + a3t)(t− 1))t (4.51)

using only 3 multiplications and 8 additions/subtractions. The verification
that (4.51) yields the same polynomial as (4.49) is left as an exercise (see
Problem 4.17).

In the next section, we will investigate several possibilities for choosing
the derivatives y′

i. Assuming that these are known, and therefore also the
polynomials Qi for i = 1, . . . , n− 1, the composed global function g is called
a cubic spline function. To interpolate with g for a value x = z, we proceed
in three steps:

1. Determine the interval which contains z, i.e. compute the index i for
which xi ≤ z < xi+1.

2. Compute the local variable t = (z − xi)/(xi+1 − xi).

3. Evaluate g(z) = Qi(t) with (4.50) and (4.51).

To find the interval which contains z, we can use a binary search. This is
done in the following Matlab function SplineInterpolation.

Algorithm 4.10. Generic Cubic Spline

function g=SplineInterpolation(x,y,ys,z);

% SPLINEINTERPOLATION generic interpolation with cubic splines

% g=SplineInterpolation(x,y,ys,z); interpolates at the scalar

% location z the data (x,y,ys) with a cubic spline function.

% Here ys is the desired derivative at x.

n=length(x);

a=1; b=n; i=a;

while a+1~=b,

i=floor((a+b)/2);

if x(i)<z, a=i; else b=i; end

end

i=a; h=(x(i+1)-x(i));

t=(z-x(i))/h;

a0=y(i); a1=y(i+1)-a0; a2=a1-h*ys(i);

a3= h*ys(i+1)-a1; a3=a3-a2;

g=a0+(a1+(a2+a3*t)*(t-1))*t;

4.3.2 Derivatives for the Spline Function

As we saw in the previous section, we need derivatives at the nodes in order
to construct a spline function. In principle, we could prescribe any value
for them; however, it makes sense to estimate the derivatives from the given

148 INTERPOLATION

function values. A simple estimate for the derivative at point (xi, yi) is given
by the slope of the straight line through the neighboring points (see Figure
4.5),

y′
i =

yi+1 − yi−1

xi+1 − xi−1
=

yi+1 − yi−1

hi + hi−1
i = 2, 3, . . . , n− 1. (4.52)

Using (4.52), we can compute derivatives for all inner nodes. For the two

xi−1 xi xi+1

yi−1

yi

yi+1y′
i

�

Figure 4.5. Slope of the line through neighboring points

boundary points, we have several possibilities:

1. Use the slope of the line through the first two (respectively the last
two) points

y′
1 =

y2 − y1
x2 − x1

respectively y′
n =

yn − yn−1

xn − xn−1
.

With Matlab the derivatives ys for this case can be computed by

n=length(x);

ys=(y(3:n)-y(1:n-2))./(x(3:n)-x(1:n-2));

ys=[(y(2)-y(1))/(x(2)-x(1)); ys; (y(n)-y(n-1))/(x(n)-x(n-1))];

2. Natural boundary conditions : they are defined such that the second
derivative vanishes. From the equations

Q′′
1(0) = 0 and Q′′

n−1(1) = 0

we obtain

y′
1 =

3

2

y2 − y1
h1

− 1

2
y′
2 respectively y′

n =
3

2

yn − yn−1

hn−1
− 1

2
y′
n−1.

Piecewise Interpolation with Polynomials 149

3. An important special case are periodic boundary conditions. If the
function values belong to a periodic function then y1 = yn and we can
choose

y′
1 = y′

n =
y2 − yn−1

h1 + hn−1
.

This corresponds again to the slope of the line through neighboring
points.

Spline functions which are computed with these constructed derivatives
are called defective spline functions.

Let us now interpolate again the points given in Table 4.43. Using the
slopes of the neighboring points and the natural boundary conditions we
obtain the defective spline of Figure 4.6. We have also plotted the derivatives
g′ and g′′. We see that g′ (dotted line) is continuous while g′′ (dashed line)
is discontinuous.

0 2 4 6 8 10 12 14 16 18 20
−10

−5

0

5

10

15

g(x)

g’(x) ... continuous

g’’(x) −−− not continuous

Figure 4.6. Defective Spline

The question is whether it is possible to choose the derivatives y′
i in such

a way that the second derivative g′′ will also be continuous. We would like
to have

P ′′
i (xi+1) = P ′′

i+1(xi+1) for i = 1, 2, . . . , n− 2. (4.53)

Written in the local variable t with Qi(t) = Pi(xi+hit), the conditions (4.53)
become

Q′′
i (1)

h2
i

=
Q′′

i+1(0)

h2
i+1

for i = 1, 2, . . . , n− 2. (4.54)

150 INTERPOLATION

If we differentiate Qi in (4.49) we get

Q′′
i (t) = yi(−6+12t)+yi+1(6−12t)+hiy

′
i(−4+6t)+hiy

′
i+1(−2+6t), (4.55)

and if we insert this into (4.54), we obtain

6

h2
i

(yi − yi+1) +
2

hi
y′
i +

4

hi
y′
i+1 =

6

h2
i+1

(yi+2 − yi+1)− 4

hi+1
y′
i+1 −

2

hi+1
y′
i+2.

(4.56)
Equation (4.56) is a linear equation for the unknown derivatives y′

i, y′
i+1

and y′
i+2. We can write such an equation for i = 1, 2, . . . , n − 2. In matrix

notation, we get a linear system of n− 2 equations with n unknowns,

Ay′ = c, (4.57)

with y′ = (y′
1, y

′
2, . . . , y

′
n)

� being the vector of unknowns and

A =

⎛
⎜⎜⎜⎝

b1 a1 b2
b2 a2 b3

. . .
. . .

. . .

bn−2 an−2 bn−1

⎞
⎟⎟⎟⎠

a tridiagonal matrix with the elements

bi =
1

hi
and ai =

2

hi
+

2

hi+1
i = 1, 2, . . . , n− 2.

The right hand side of Equation (4.57) is

c =

⎛
⎜⎜⎜⎝

3(d2 + d1)
3(d3 + d2)

...
3(dn−1 + dn−2)

⎞
⎟⎟⎟⎠ ,

where we have used the abbreviation

di =
yi+1 − yi

h2
i

i = 1, 2, . . . , n− 1. (4.58)

Thus we have obtained n − 2 linear equations for the unknown derivatives.
We need two more equations to determine them uniquely. Just as for the
defective splines, we can ask for further boundary conditions. We consider
three possibilities:

1. Natural boundary conditions: P ′′
1 (x1) = P ′′

n−1(xn) = 0. These condi-
tions give two more equations:

2

h1
y′
1 +

1

h1
y′
2 = 3d1,

1

hn−1
y′
n−1 +

2

hn−1
y′
n = 3dn−1,

(4.59)

Piecewise Interpolation with Polynomials 151

which are obtained from Q′′
1(0) = Q′′

n−1(1) = 0 using (4.55). If we
add them to the system of equations (4.57), then we can compute the
derivatives y′

i by solving a linear system of equations with a tridiagonal
matrix. Using the tridiagonal solver Thomas (see Algorithm 3.10 in
Chapter 3), we obtain the derivatives in this case with the statements

h=x(2:n)-x(1:n-1);

a=2./h(1:n-2)+2./h(2:n-1);

b=1./h(1:n-1);

aa=[2/h(1); a; 2/h(n-1)]

bb=3*[d(1); d(2:n-1)+d(1:n-2); d(n-1)]

ys=Thomas(b,aa,b,bb)

The spline function s : [x1, xn] → R that is determined piecewise by
the Pi(x), i = 1, 2, . . . , n− 1 this way is a simplified model of the shape
of a thin wooden spline that passes through the given points, as the
following theorem shows.

Theorem 4.9. For a given set of points (xi, yi), i = 1, 2, . . . , n, let s :
[x1, xn] → R be the classical cubic spline function satisfying s(xi) = yi,
i = 1, 2, . . . , n. Then for any twice continuously differentiable function
f : [x1, xn] → R satisfying f(xi) = yi, i = 1, 2, . . . , n and

s′′(xn)(f
′(xn)− s′(xn)) = s′′(x1)(f

′(x1)− s′(x1)), (4.60)

we have that ∫ xn

x1

(s′′(x))2dx ≤
∫ xn

x1

(f ′′(x))2dx, (4.61)

i.e. the spline function s(x) minimizes the energy defined by the integral
in (4.61)1.

Proof. Let s(x) be the minimizer of
∫ xn

x1
(s′′(x))2dx. Every twice

continuously differentiable function passing through the points (xi, yi),
i = 1, 2, . . . , n can be written in the form

f(x) := s(x) + εh(x),

where ε ∈ R and h(x) is a twice continuously differentiable function
with zeros at xi, h(xi) = 0, i = 1, 2, . . . , n. The minimality condition
(4.61) becomes∫ xn

x1

(s′′(x))2dx ≤
∫ xn

x1

(s′′(x) + εh′′(x))2dx

=

∫ xn

x1

(s′′(x))2dx+2ε

∫ xn

x1

s′′(x)h′′(x)dx+ ε2
∫ xn

x1

h′′(x)2dx.

1The correct energy integral of a thin wooden spline would actually be
∫ xn
x1

s′′(x)2/(1+
s′(x)2)5/2dx, but is too difficult to treat mathematically, see [25]: “Die Extremaleigen-
schaft des interpolierenden Splines wird häufig für die grosse praktische Nützlichkeit der
Splines verantwortlich gemacht. Dies ist jedoch glatter ’Volksbetrug’.”

152 INTERPOLATION

For a fixed function h(x), this condition is satisfied for all ε if and only
if ∫ xn

x1

s′′(x)h′′(x)dx = 0, (4.62)

as one can see by differentiation. Integration by parts leads to

s′′(x)h′(x)|xn

x0
−
∫ xn

x1

s′′′(x)h′(x)dx = 0. (4.63)

Now condition (4.60) implies that the boundary term in (4.63) vanishes.
Since s′′′(x) is constant in each interval (xi−1, xi), i = 2, 3, . . . , n, say
equal to the constant Ci, the second term in (4.63) becomes

∫ xn

x1

s′′′(x)h′(x)dx=
n∑

i=2

Ci

∫ xi

xi−1

h′(x)dx =

n∑
i=2

Ci(h(xi)−h(xi−1)) = 0,

since h vanishes at the nodes, and therefore (4.62) holds, which implies
(4.61) and concludes the proof. �

We see that in addition to the natural boundary conditions s′′(x1) =
s′′(xn) = 0 from (4.60), the so called clamped boundary conditions
s′(x1) = f ′(x1) and s′(xn) = f ′(xn) also lead to an energy minimizing
spline among all interpolating functions f with these slopes at the end-
points. When interpolating a function f with a spline, it is better to
use clamped boundary conditions, since with free boundary conditions,
the approximation order is polluted from the boundary and drops from
O(h4) to O(h2). As an alternative, one can use the approach described
next, which does not require the knowledge of derivatives of f , but then
looses the energy minimizing property toward the boundaries.

2. Not-a-knot condition of de Boor: Here we want the two polynomials in
the first two and in the last two intervals to be the same:

P1(x) ≡ P2(x) and Pn−2(x) ≡ Pn−1(x). (4.64)

We get here the two equations:

1

h1
y′
1 +

(
1

h1
+

1

h2

)
y′
2 = 2d1 +

h1

h1 + h2
(d1 + d2),

(
1

hn−2
+

1

hn−1

)
y′
n−1 +

1

hn−1
y′
n = 2dn−1 +

hn−1

hn−1+hn−2
(dn−1+dn−2).

(4.65)

At first sight condition (4.64) might look strange. The motivation is
as follows. If the function values yi are equidistant with step-size h
and belong to a smooth differentiable function f , then according to the

Piecewise Interpolation with Polynomials 153

error estimate (4.8) we would expect an interpolation error ∼ h4. It
can be shown in this case for a spline function with natural boundary
conditions that the interpolation error is ∼ h2. The natural boundary
condition is not at all natural from the viewpoint of approximating a
function. In fact it is not clear why the function f that we wish to
approximate should always have a vanishing second derivative at the
endpoints. De Boor’s Condition (4.64) yields an approximation ∼ h4

[24].

To obtain (4.65), it is sufficient to demand that the first two (respec-
tively the last two) polynomials have the same third derivative. Since
the third derivative of a cubic polynomial is constant, the two polyno-
mials must be the same. For the first two polynomials, the equation

P ′′′
1 (x2) = P ′′′

2 (x2)

is equivalent to
Q′′′

1 (1)

h3
1

=
Q′′′

2 (0)

h3
2

,

which is

1

h2
1

y′
1 +

(
1

h2
1

− 1

h2
2

)
y′
2 −

1

h2
2

y′
3 = 2

(
d1
h1

− d2
h2

)
. (4.66)

Equation (4.66) can be added to the system (4.57) as its first equation.
Similarly, the second equation of (4.64) produces an equation that is
added as the last equation to the system (4.57). Thus, we obtain once
again n equations with n unknowns. Unfortunately, the matrix is no
longer tridiagonal. If we wish to solve the system with a tridiagonal
solver, we have to replace (4.66) by an equivalent one which contains
only the unknowns y′

1 and y′
2. Denote by (I) Equation (4.66) and by

(II) the first equation of system (4.57). Both equations contain the
unknowns y′

1, y
′
2 and y′

3. With the linear combination

(I) +
1

h2
(II)

we eliminate the unknown y′
3 and obtain after the division with (1

h1
+ 1

h2
)

the equation

1

h1
y′
1 +

(
1

h1
+

1

h2

)
y′
2 = 2d1 +

h1

h1 + h2
(d1 + d2), (4.67)

which we use now instead of (4.66) to preserve the tridiagonal structure.
Similarly we obtain the second equation of (4.65).

To solve a linear system with a tridiagonal matrix we make again use
of the function Thomas (see Algorithm 3.10).

154 INTERPOLATION

Note that the Matlab-function YY=spline(X,Y,XX) provides in YY,
the values of the interpolating function at XX. The spline is ordinarily
constructed using the not-a-knot end conditions.

3. Periodic boundary conditions : if yi are function values of a periodic
function, then y1 = yn. In addition, we require that the first and
second derivatives be the same:

P ′
1(x1) = P ′

n−1(xn),
P ′′
1 (x1) = P ′′

n−1(xn).
(4.68)

The first condition in (4.68) is equivalent to

y′
1 = y′

n, (4.69)

and the second, when expressed in Qi, becomes

Q′′
1(0)

h2
1

=
Q′′

n−1(1)

h2
n−1

,

which yields the equation

2

(
1

h1
+

1

hn−1

)
y′
1 +

1

h1
y′
2 +

1

hn−1
y′
n−1 = 3(d1 + dn−1). (4.70)

If we use (4.69) to eliminate the unknown y′
n, we obtain a system of

linear equations By′ = c with (n− 1) unknowns and (n− 1) equations.
The matrix has the form

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 b1 0 · · · 0 bn−1

b1 a1 b2 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0
. . .

. . . bn−2

bn−1 0 · · · 0 bn−2 an−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.71)

where we have again used the abbreviations

bi =
1

hi
, i = 1, 2, . . . , n− 1,

and

a0 =
2

hn−1
+

2

h1
,

ai =
2

hi
+

2

hi+1
, i = 1, 2, . . . , n− 2.

Piecewise Interpolation with Polynomials 155

The right hand side c of the system is computed by the coefficients di
defined in Equation (4.58),

c =

⎛
⎜⎜⎜⎝

3(d1 + dn−1)
3(d2 + d1)

...
3(dn−1 + dn−2)

⎞
⎟⎟⎟⎠ . (4.72)

Except for the two matrix elements at the bottom left and top right
the matrix would be tridiagonal. In the next section we will see how to
solve such a system efficiently.

4.3.3 Sherman–Morrison–Woodbury Formula

Let A be an n×n matrix and U , V be n×p with p ≤ n (often p � n). Then
every solution x of the linear system

(A+ UV T)x = b (4.73)

is also a solution of the augmented system

Ax + Uy = b,

V Tx − y = 0.
(4.74)

Now if we assume that the matrices in the following algebraic manipulations
are invertible, then by solving the first equation for x, we obtain

x = A−1b− A−1Uy. (4.75)

Introducing this in the second equation of (4.74), we get

y = (I + V TA−1U)−1V TA−1b, (4.76)

therefore
x = A−1b− A−1U(I + V TA−1U)−1V TA−1b.

But from (4.73) and (4.74), we also have

x = (A+ UV T)−1b

and
y = V T (A+ UV T)−1b.

Equating both expressions for x and y with the expressions (4.75) and (4.76)
we get the matrix equations:

V T (A+ UV T)−1 = (I + V TA−1U)−1V TA−1,

(A+ UV T)−1 = A−1 −A−1U(I + V TA−1U)−1V TA−1. (4.77)

156 INTERPOLATION

Equation (4.77) is called the Shermann–Morrison–Woodbury Formula. The
(small) p×pmatrix I+V TA−1U is called capacitance matrix. The Sherman–
Morrison–Woodbury formula is useful for computing the inverse of a rank-p
change of the matrix A. Let us consider a few applications:

1. If A is sparse and/or Av = b is easy to solve, then it pays to use
the Sherman–Morrison–Woodbury formula to compute the solution of
(A+ UV T)x = b. The algorithm is

(a) Solve Ay = b.

(b) Compute the n × p matrix W by solving AW = U . This can
be combined with the first step by simultaneously solving linear
systems with the same coefficient matrix A with p+ 1 right hand
sides.

(c) Form the capacitance matrix C = I +V TW ∈ R
p×p and solve the

linear system Cz = V Ty.

(d) the solution is x = y −Wz.

2. Rank-1 change of the identity matrix. The Sherman-Morrison-
Woodbury formula becomes

(I + uvT)−1 = I − 1

1− vTu
uvT .

If we have to solve a linear system Bx = b with B = I+uvT , then the
solution can be computed in O(n) operations as a linear combination
of the vectors b and u:

x = b− vTb

1− vTu
u.

3. Splines with periodic boundary conditions. The matrix B defined in
Equation (4.71) is a rank-1 change of a tridiagonal matrix. With e =
e1 + en−1 = (1, 0, . . . , 0, 1)T we have

B = A+
1

hn−1
eeT

with the tridiagonal matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

ã0 b1
b1 a1 b2

b2
. . .

. . .

. . . an−3 bn−2

bn−2 ãn−2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Piecewise Interpolation with Polynomials 157

The coefficients ai and bi are the same as given in Equation (4.71), but

ã0 =
1

hn−1
+

2

h1
, ãn−2 =

2

hn−2
+

1

hn−1
.

The solution of the linear system By′ = c for the derivatives requires
three steps. We make use of the function Thomas (Algorithm 3.10) to
solve the linear systems with tridiagonal matrices:

(a) Solve Au = e with Thomas.

(b) Solve Av = c with Thomas.

(c) y′ = v − v1 + vn−1

u1 + un−1 + hn−1
u.

4.3.4 Spline Curves

Given n points in the plane (xi, yi) for i = 1, 2, . . . , n, we would like to connect
them by a curve. The numbering of the points is crucial; reordering them
will give us another curve.

Plane curves are represented by parametric functions

(x(s), y(s)) with s1 ≤ s ≤ sn.

We can interpret the given points as function values for some (yet to be
determined) parametrization

x(si) = xi, y(si) = yi i = 1, 2, . . . , n.

The sequence {si} of the parameter values can be chosen arbitrarily, we
only have to pay attention to monotonicity that means the sequence must
be strictly increasing si < si+1. Often the parameter is chosen to be the
arc length, therefore it seems reasonable to parametrize using the distance
between successive points

s1 = 0,

si+1 = si +
√

(xi+1 − xi)2 + (yi+1 − yi)2,

i = 1, 2, . . . , n− 1.

(4.78)

After computing the sequence {si} according to (4.78) we have the data

s s1 s2 . . . sn
x x1 x2 . . . xn

for x(s)

and
s s1 s2 . . . sn
y y1 y2 . . . yn

for y(s).

158 INTERPOLATION

Both functions x(s) and y(s) can now be interpolated with any of the vari-
ants for spline interpolation and the curve can then be plotted. For closed
curves, it is important to use the periodicity condition to avoid a cusp at the
endpoints.

Example 4.8. For the points

x 1.31 2.89 5.05 6.67 3.12 2.05 0.23 3.04 1.31
y 7.94 5.50 3.47 6.40 3.77 1.07 3.77 7.41 7.94

we obtain the curve of Figure 4.7 by using defective splines with periodic
boundary conditions.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

o

o

o

o

o

o

o

o

o

Figure 4.7. Spline Curve

4.4 Trigonometric Interpolation

In signal processing, it is often useful to study the different representations
of a signal f(t). For sound signals, it is usually the case that f(t) is periodic
(or nearly periodic) with period T , i.e., when f(t + T) = f(t) for all t ∈ R.
In such cases, one often considers a frequency or Fourier decomposition of f :

f(t) ∼ a0 +

∞∑
k=1

ak cos
(2πkt

T

)
+

∞∑
k=1

bk sin
(2πkt

T

)
, (4.79)

where a0 = 1
T

∫ T

0
f(t) dt and

ak =
2

T

∫ T

0

f(t) cos
(2πkt

T

)
dt, bk =

2

T

∫ T

0

f(t) sin
(2πkt

T

)
dt

Trigonometric Interpolation 159

for k ≥ 1 are the real Fourier coefficients of f . Through the change of variable
x = 2πt/T , we can assume without loss of generality that T = 2π, i.e., we can
consider 2π-periodic functions only. Note that in (4.79), we write ∼ instead
of = since it is a formal expansion, and we have not considered for a given t
whether the infinite series converges or, when it does, whether it converges
to f(t) or to some other value.

From a practical point of view, the Fourier decomposition is useful because

(i) For sound signals, the functions sin(2πkt/T) and cos(2πkt/T) corre-
spond to harmonics of the fundamental frequency 1/T and are natu-
rally interpreted as pitch by the human ear. For other types of signals
(e.g., electric signals), sinusoids of different frequencies also have natu-
ral interpretations.

(ii) The amplitude for higher frequencies tends to be much smaller than for
low frequencies. Thus, it is possible to compress the signal by setting
the high frequency coefficients to zero without dramatically affecting
the quality of the signal.

Remark. The second point above actually has a theoretical basis: by the
Riemann–Lebesgue lemma, for any integrable function f : [a, b] → R, we
have

lim
k→∞

∫ b

a

f(t) sin(kt) dt = 0, lim
k→∞

∫ b

a

f(t) cos(kt) dt = 0.

(For a proof, see for instance [108], p. 103). This implies the Fourier co-
efficients ak and bk both decay to zero for large k, although the decay rate
depends on the smoothness properties of f . This is discussed in more detail
in Section 4.4.3.

On digital computers, signals are usually represented as a discrete se-
quence of equidistant samples, i.e., instead of having f(t) for all t ∈ R, we
instead have yj = f(tj) for tj = jh, where h > 0 is fixed and nh = T for
some integer value n. In other words, we have an n-periodic sequence {yj}
that is supposed to represent f(t) in some way. It is thus natural to ask the
following questions:

1. How does one construct a 2π-periodic function p(t) from the points
{(tj , yj)}j∈Z ?

2. Is the reconstructed function p(t) identical to f(t), and if not, how large
can the error |p(t)− f(t)| be?

3. How does one calculate the Fourier decomposition of p(t) efficiently?

4. What is the relationship between the Fourier decomposition of f(t) and
p(t)?

160 INTERPOLATION

4.4.1 Trigonometric Polynomials

Let {yj}2n−1
j=0 be an 2n-periodic sequence. We define a trigonometric polyno-

mial of degree 2n by

p2n(x) = a0 +
n∑

k=1

ak cos(kx) +
n−1∑
k=1

bk sin(kx).

We would like to know whether there exists a trigonometric polynomial of
degree 2n such that p2n(xj) = yj for xj = jπ/n, j = 0, 1, . . . , 2n − 1, and
whether such a polynomial is unique. To do so, we first rewrite the polynomial
in complex form: for −n ≤ k ≤ n, we let

ck =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2(ak − ibk), 1 ≤ k ≤ n− 1,
1
2(ak + ibk), −n+ 1 ≤ k ≤ −1,

a0, k = 0,

an, k = ±n.

Using this definition, we calculate

p2n(x) = c0 +
1

2

n∑
k=1

ak(e
ikx + e−ikx) +

1

2i

n−1∑
k=1

bk(e
ikx − e−ikx)

= c0 +
1

2
an(e

inx + e−inx) +

n−1∑
k=1

ak − ibk
2

eikx +

n−1∑
k=1

ak + ibk
2

e−ikx

=
1

2
c−ne

−inx +
n−1∑

k=−n+1

cke
ikx +

1

2
cne

inx.

For later convenience, we introduce the shorthand notation

p2n(x) =

n∑′

k=−n

cke
ikx,

where the prime indicates that a weight of 1
2
is needed for the first and last

terms. Observe that we have an interpolation problem similar to the polyno-
mial case: we would like to know whether, for any sequence y0, y1, . . . , y2n−1 ∈
C, there exists a unique set of coefficients c−n, c−n+1, . . . , cn such that

p2n(xj) = yj =

n∑′

k=−n

cke
ikxj =

n∑′

k=−n

cke
πijk/n, j = 0, 1, . . . , 2n− 1.

To answer this question, first note that eπijk/n = eπi(j+2n)k/n is a 2n-
periodic sequence and that cn = c−n. Thus, if we extend the finite sequence

Trigonometric Interpolation 161

c−n, . . . , cn−1 to a 2n-periodic sequence, then we can write

yj =
2n−1∑
k=0

cke
πijk/n,

since the terms for k = ±n are identical and can be combined. Thus, in
matrix form, we have⎛

⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1
1 ω2n · · · ω2n−1

2n

1 ω2
2n · · · ω

2(2n−1)
2n

...
...

...

1 ω2n−1
2n · · · ω

(2n−1)2

2n

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
V

⎛
⎜⎜⎜⎜⎜⎝

c0
c1
c2
...

c2n−1

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
c

=

⎛
⎜⎜⎜⎜⎜⎝

y0
y1
y2
...

y2n−1

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
y

,

or V c = y, where ω2n = eπi/n. In other words, a unique trigonometric
interpolating polynomial of degree 2n exists if and only if V is non-singular.

Theorem 4.10. Let {yj}j∈Z be an n-periodic sequence, where n is even.
Then the unique trigonometric polynomial of degree n that satisfies pn(xj) =
yj for xj = 2πj/n is given by

pn(x) =

n/2∑′

k=−n/2

cke
ikx,

where {ck}k∈Z is the n-periodic sequence given by the discrete Fourier
transform (DFT)

ck = (Fny)k =
1

n

n−1∑
j=0

yje
−2πijk/n. (4.80)

In addition, the yj can be obtained from the ck via the inverse discrete
Fourier transform (IDFT)

yj = (F−1
n c)j =

n−1∑
k=0

cke
2πijk/n. (4.81)

Proof. We show the existence and uniqueness of an interpolating trigono-
metric polynomial by explicitly producing an inverse of V . In fact, we show
that V ∗V = nI, where V ∗ is the conjugate transpose of V and I is the iden-

tity matrix. First, we note that the (j, k)th entry of V is ω
(j−1)(k−1)
n , which

means

[V ∗V]kl =
n∑

j=1

ω−(k−1)(j−1)
n ω(j−1)(l−1)

n =
n−1∑
j=0

ωj(l−k)
n for 1 ≤ k, l ≤ n.

162 INTERPOLATION

If k = l, then each term in the sum is 1, so that [V ∗V]kk = n. If k 	= l, then
ωk−l
n 	= 1 (since 1 ≤ k, l ≤ n and ωm

n = 1 if and only if m is divisible by n).
Thus, we can write

n−1∑
j=0

ωj(k−l)
n =

1− ω
n(k−l)
n

1− ωk−l
n

= 0.

This shows that V ∗V has n on the diagonal and 0 everywhere else, so V ∗V =
nI. Thus, c = 1

n
V ∗y, so that

ck =
1

n

n−1∑
j=0

ω−jk
n yj =

1

n

n−1∑
j=0

yje
−2πijk/n,

as claimed by (4.80). Equation (4.81) is simply another way of writing pn(xj)
for j = 0, 1, . . . , n− 1. �

The above proof also shows that the matrix V , when divided by the
constant

√
n, becomes an orthogonal matrix, so the problem of calculating

the DFT and IDFT are well-conditioned (see Problem 4.20).

4.4.2 Fast Fourier Transform (FFT)

A straightforward implementation of the discrete Fourier transform using
(4.80) requires O(n) operations per element in the vector c = Fny, making
a total of O(n2) operations. However, when n = 2m is a power of 2, there
are algorithms that can calculate Fny in O(n log2 n) operations only. Such
algorithms are collectively known as the “fast” Fourier transform (FFT), and
the FFT is listed as one of the top ten algorithms of the last century [27];
below we present a recursive version based on the original paper by Cooley
and Tukey [18].

We will show only the algorithm for the inverse Fourier transform (4.81),
the one for the forward transform being similar. First, let us split the sum
in (4.81) into even and odd terms:

(F−1
n y)k =

n−1∑
j=0

yje
2πijk/n

=

n/2−1∑
j=0

y2je
2πi(2j)k/n +

n/2−1∑
j=0

y2j+1e
2πi(2j+1)k/n

=

n/2−1∑
j=0

y2je
2πijk
n/2 + e2πik/n

n/2−1∑
j=0

y2j+1e
2πijk
n/2 .

Notice that the two sums have exactly the same form as the inverse Fourier
transform of length n/2. Thus, we can write

(F−1
n y)k = (F−1

n/2ye)k + e2πik/n(F−1
n/2yo)k, (4.82)

Trigonometric Interpolation 163

where ye and yo are the odd and even parts of the n-periodic sequence y
respectively. This means we can recursively call our IFFT routine on the two
smaller vectors and continue to subdivide the problem until we get a vector of
length 1, for which the vector and its inverse Fourier transform are identical.
We can then go back up the recursion tree and combine the odd and even
elements according to (4.82) until we obtain the inverse Fourier transform of
the original vector. The following Matlab code implements this:

Algorithm 4.11. Inverse Fast Fourier Transform

function y=myIFFT(x)

% MYIFFT inverse fast Fourier transform

% y=myIFFT(x); computes recursively the inverse Fourier tranform of

% the vector x whose length must be a power of 2.

n=length(x);

if n==1,

y=x;

else

w=exp(2i*pi/n*(0:n/2-1)’);

ze=myIFFT(x(1:2:n-1));

zo=myIFFT(x(2:2:n));

y=[ze+w.*zo; ze-w.*zo];

end;

To compute the forward Fourier transform, one merely needs to replace
e2πik/n by e−2πik/n and divide the end result by n (see Problem 4.18).

Example 4.9. To calculate the inverse Fourier transform of the vector
[1, 2, 3, 4], we have the following diagram:

ifft(1) = 1

����
���

���
���

ifft

(
1
3

)

�����������

���
��

��
��

�

(
1 + 1 · 3 = 4
1 − 1 · 3 = −2

)

����
���

���
��

ifft

⎛
⎜⎝
1
2
3
4

⎞
⎟⎠

����������

���
��

��
��

�

ifft(3)=3

ifft(2)=2

�������������

��	
		

		
			

		
	

⎛
⎜⎝

4 + 1 · 6 = 10
−2+i · (−2) = −2−2i

4 − 1 · 6 = −2
−2−i · (−2) = −2+2i

⎞
⎟⎠

ifft

(
2
4

)

��

		�������� (
2 + 1 · 4 = 6
2 − 1 · 4 = −2

)

����������

ifft(4) = 4

��

164 INTERPOLATION

Note that when embedding the even and odd transforms into a larger vector,
one needs to extend the shorter vectors periodically.

In the above example, the first half of the diagram contains no arithmetic
operations, since the algorithm simply subdivides the problem until vectors
of length one are obtained. The latter half of the diagram contains log2 n
columns; in each column, one must perform a total of n additions and n
multiplications. Thus, the total cost of the algorithm is O(n log2 n).

Remark. The Matlab built-in functions fft and ifft implement the
discrete Fourier transform and its inverse in compiled code. Note that unlike
the definitions (4.80) and (4.81), the FFT in Matlab puts the division by
n in the inverse transform, i.e., Matlab uses

(F̃ny)k =

n−1∑
j=0

yje
−2πijk/n, (F̃ −1

n y)j =
1

n

n−1∑
k=0

e2πijk/n.

4.4.3 Trigonometric Interpolation Error

In the previous section, we have shown how to calculate the discrete Fourier
transform of an n-periodic sequence {yj}j∈Z, from which we can construct a
trigonometric polynomial pn(x) such that

pn

(2πj
n

)
= yj , j = 0, 1, . . . , n− 1,

whenever n is even. Now suppose the yj are equidistant samples of a 2π-
periodic function f : R → C, i.e.,

pn

(2πj
n

)
= f
(2πj

n

)
= yj , j = 0, 1, . . . , n− 1.

What can one say about the interpolation error pn(x)− f(x) away from the
interpolation points? To study this, we first need to introduce the Fourier
series of f(x)

f(x) ∼
∞∑

j=−∞
f̂(k)eikx, f̂(k) =

1

2π

∫ 2π

0

f(x)e−ikx dx,

which is the complex version of (4.79). We see that if
∑

k∈Z
f̂(k) converges

absolutely, then by the Weierstrass M-test, the Fourier series converges uni-
formly and the “∼” becomes an equality, i.e.,

f(x) =
∞∑

j=−∞
f̂(k)eikx.

Trigonometric Interpolation 165

Lemma 4.3. Let f : R → C be 2π-periodic and absolutely integrable on
[0, 2π] and

f̂n(k) =
1

n

n−1∑
j=0

f
(2πj

n

)
e−2πijk/n

be the kth element of the discrete Fourier transform of samples of f . If∑
k∈Z

f̂(k) converges absolutely, then

f̂n(k) =
∑
j∈Z

f̂(k + jn).

Proof. If we write xl = 2πl/n and ωn = e2πi/n, then

f̂n(k) =
1

n

n−1∑
l=0

f(xl)ω
−kl
n

=
1

n

n−1∑
l=0

∞∑
m=−∞

f̂(m)eimxlω−kl
n =

∞∑
m=−∞

f̂(m)
[1
n

n−1∑
l=0

ω(m−k)l
n

]
.

Now if m − k is divisible by n, i.e., if m = k + jn for some j ∈ Z, then
ωm−k
n = 1, so that the term inside square brackets is equal to 1. If, on the

other hand, m − k is not divisible by n, then ωm−k
n 	= 1, and an argument

similar to the one in the proof in Theorem 4.10 shows that the inner sum
vanishes. Thus, we have

f̂n(k) =

∞∑
j=−∞

f̂(k + jn),

as required. �

Remark. The discrete Fourier transform f̂n(k) can be considered as

an approximation of f̂(k) by the trapezoidal rule (see Chapter 9, Equation
(9.14)): for a 2π-periodic function f , we have

f̂(k) =
1

2π

∫ 2π

0

f(x)e−ikx dx ≈ 1

2π
· 2π
n

n−1∑
j=0

f(xj)e
−ikxj + f(xj+1)e

−ikxj+1

2

=
1

2n
f(0) +

1

n

n−1∑
j=1

f(xj)e
−2πijk/n +

1

2n
f(2π)

=
1

n

n∑′

j=0

f(xj)e
−2πijk/n = f̂n(k).

166 INTERPOLATION

−8 −6 −4 −2 0 2 4 6 8

0

2

4

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

1

2

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

1

2

f
(x
)

f̂
(k
)

f̂ 8
(k
)

k

k

x

Figure 4.8.
Top: A 2π-periodic function f(x). Middle: Fourier

coefficients f̂(k) of f . Bottom: A comparison between
f̂(k) (blue) and the discrete Fourier transform f̂8(k)

using 8 sample points (red). The difference between the
red and blue dots is due to aliasing.

Remark. The above lemma shows that the discrete Fourier coefficients
can be obtained by adding copies of the spectrum f̂(k) translated by a multiple

of n. Since f̂(k) → 0 as |k| → ∞, one expects f̂n(k) to be a poor approxima-

tion for large k, since f̂n(k) is n-periodic. For low frequencies (small k), we
have

f̂n(k)− f̂(k) =
∑
j∈Z

j �=0

f̂(k + jn),

so the error is a sum of coefficients belonging to high frequencies (above n/2
or below −n/2). Thus, if n is large enough that the range [−n/2, n/2] con-
tains all but the smallest coefficients, the error would be small; otherwise,
there would be a large error due to “contamination” by the high frequency
components. This phenomenon is known as aliasing; see Figure 4.8.

Theorem 4.11. (Trigonometric Interpolation Error) Let f :

R → C be such that
∑

k∈Z
f̂(k) is absolutely convergent, and let pn(x) =

Trigonometric Interpolation 167

∑′
|k|≤n/2

f̂n(k)e
ikx be its interpolating trigonometric polynomial of degree

n (n even). Then

|pn(x)− f(x)| ≤ 2
∑′

|k|≥n/2

|f̂(k)|.

Proof. We have

|pn(x)− f(x)| =
∣∣∣∣∣∣
∑′

|k|≤n/2

f̂n(k)e
ikx −

∑
k∈Z

f̂(k)eikx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑′

|k|≤n/2

(f̂n(k)− f̂(k))eikx −
∑′

|k|≥n/2

f̂(k)eikx

∣∣∣∣∣∣
≤
∑′

|k|≤n/2

|f̂n(k)− f̂(k)|+
∑′

|k|≥n/2

|f̂(k)|

≤
∑′

|k|≤n/2

∑
j∈Z

j �=0

|f̂(k + jn)|+
∑′

|k|≥n/2

|f̂(k)|.

The double sum above is in fact equal to
∑′

|m|≥n/2
|f̂(m)|, since every m

that is not an odd multiple of n/2 can be written as k+jn with |k| < n/2 and
j ∈ Z in a unique way. Moreover, there are exactly two ways of writing k+jn
when m is an odd multiple of n/2 (with k = ±n/2), but the corresponding

terms have a weight of 1/2. Thus, each f̂(k + jn) corresponds to a different

f̂(m) except for k = ±n/2, when two terms double up to cancel with the half
weights. The condition j 	= 0 excludes the range m ∈ (−n/2, n/2) and leaves
the half weights intact for m = ±n/2. Hence, we conclude that

|pn(x)− f(x)| ≤ 2
∑′

|k|≥n/2

|f̂(k)|.

�
Two immediate applications of the above theorem are as follows:

1. If f is band-limited, i.e., if there exists M > 0 such that f̂(k) = 0 for
all |k| > M , then pn(x) = f(x) whenever n > 2M . In other words,
if we take enough samples of the function f(x), then it is possible to
reconstruct f(x) perfectly by interpolation. This result is known as the
sampling theorem [96].

2. If f is r times continuously differentiable, then by repeatedly integrating

168 INTERPOLATION

by parts, we get

2πf̂(k) =

∫ 2π

0

f(x)e−ikx dx =
−1

ik

∫ 2π

0

f ′(x)e−ikx dx

= · · · =
(−1

ik

)r ∫ 2π

0

f (r)(x)e−ikx dx,

so that

|f̂(k)| ≤ 1

|k|r
(

1

2π

∫ 2π

0

|f (r)(x)| dx
)

=
C

|k|r .
Hence,

|pn(x)− f(x)| ≤ 2
∑′

|k|≥n/2

|f̂(k)| ≤ 4C

∫ ∞

n/2

dy

yr
≤ C̃

nr−1
,

where C̃ is a constant that depends on the function f and on r, but is
independent of k. Thus, the smoother the function f , the faster pn(x)
converges to f(x) as we increase the number of samples n.

Remark. For many r times differentiable functions f , one can show
that the interpolation error in fact decays as O(n−r), rather than the
more pessimistic bound O(n−r+1) above.

4.4.4 Convolutions Using FFT

Let {yj}j∈Z and {zj}j∈Z be two n-periodic sequences. The convolution of y
and z is also an n-periodic sequence whose kth element is defined as

(y ∗ z)k =

n−1∑
j=0

yk−jzj . (4.83)

The convolution has many important applications in signal processing. As
an example, let {yj}j∈Z be a given n-periodic sound signal to which we would
like to add an echo effect. It is easiest to see how an echo works by looking
at how it acts on the unit impulse δ, i.e., when

δk =

{
1, k divisible by n,

0 else.

When one adds an echo to δ, the impulse is repeated after a fixed delay d,
but with an attenuation factor α after each repetition. In other words, the
transformed signal z = Hδ looks like

zk =

{
αm, k = md, m = 0, 1, . . . , �n

d
�,

0 0 ≤ k ≤ n− 1, k 	= md,

zn+k = zk.

Trigonometric Interpolation 169

−50 0 50
0

0.5

1

−50 0 50
0

0.5

1

−50 0 50
0

0.5

1

δ
E
δ

H
δ

Figure 4.9.
Top: Unit impulse δ for 16-periodic sequences. Middle:
Shifted impulse Eδ. Bottom: Impulse response of the

echo operator H, with delay d = 4 and attenuation factor
α = 1

2
.

170 INTERPOLATION

The signal z is known as the impulse response of H, since it is obtained
by applying H to the unit impulse δ, see Figure 4.9.

We now consider Hy for a general signal y. Let us introduce the shifting
operator E satisfying (Ez)k = zk−1, i.e., it takes a sequence z and shifts it
to the right by one position (see Figure 4.9). Then a general sequence y can
be written as a sum of shifted impulses

y =
n−1∑
j=0

yjE
jδ.

Assuming that H is linear and shift invariant (or time invariant in signal
processing terminology), i.e., if we assume HE = EH, then

Hy = H

n−1∑
j=0

yjE
jδ =

n−1∑
j=0

yjE
j(Hδ) =

n−1∑
j=0

yjE
jz,

where z = Hδ is the impulse response of H. The kth element of Hy then
satisfies

(Hy)k =
n−1∑
j=0

yj(E
jz)k =

n−1∑
j=0

yjzk−j .

In other words, Hy is obtained by convolving y with the impulse response z,
which completely characterizes H. Since H is a linear operator on the space
of n-periodic sequences, one can also write H in matrix form:

Hy =

⎛
⎜⎜⎜⎝

z0 zn−1 · · · z1
z1 z0 · · · z2
...

. . .
...

zn−1 zn−2 · · · z0

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

y0
y1
...

yn−1

⎞
⎟⎟⎟⎠ .

The abovematrix has constant values along each diagonal that “wraps around”
when it hits the right edge; such matrices are called circulant. Every circu-
lant matrix can be written as a convolution, and vice versa. The fundamental
relationship between convolutions and discrete Fourier transforms is given by
the following lemma.

Lemma 4.4. Let y and z be two periodic sequences. Then

Fn(y ∗ z) = n(Fn(y)�Fn(z)),

where � denotes pointwise multiplication.

Note that the lemma implies that the convolution operator is symmetric, i.e.,
y ∗ z = z ∗ y, despite the apparent asymmetry in the definition.

Problems 171

Proof. We have

(Fn(y ∗ z))k =
1

n

n−1∑
j=0

n−1∑
l=0

ylzj−le
−2πijk/n

=
1

n

n−1∑
j=0

n−1∑
l=0

ylzj−le
−2πi(j−l)k/ne−2πilk/n

=
1

n

⎛
⎝n−1∑

l=0

yle
−2πilk/n

n−1∑
j=0

zj−le
−2πi(j−l)k/n

⎞
⎠

=
1

n

⎛
⎝n−1∑

l=0

yle
−2πilk/n

n−1∑
j=0

zje
−2πijk/n

⎞
⎠

= n(Fny)k(Fnz)k.

�
A straightforward computation of the convolution using (4.83) requires

O(n2) operations, but the above lemma suggests the following algorithm
using the FFT:

Algorithm 4.12.
Computing the convolution of two n-periodic sequences

y and z

1. Use the FFT to compute ŷ = Fny and ẑ = Fnz.

2. Compute ŵ = n(ŷ � ẑ).

3. Use the IFFT to compute w = F−1
n ŵ.

Since steps 1 and 3 each cost O(n logn) and step 2 costs O(n), the overall
cost is O(n log n), which is much lower than O(n2) when n is large.

4.5 Problems

Problem 4.1. Interpolate Runge’s function in the interval [−5, 5],

f(x) =
1

1 + x2
,

using Chebyshev nodes (see Equation (11.52)). Compare the resulting inter-
polation polynomial with the one with the equidistant nodes of Figure 4.1.

172 INTERPOLATION

Problem 4.2. Rewrite Algorithm 4.4 to compute the diagonal of the
divided difference table using only O(n) storage. Hint: To see which entries
can be overwritten at which stage, consider the diagram below:

x0 f [x0]
↘

x1 f [x1]→ f [x0, x1]
↘ ↘

x2 f [x2]→ f [x1, x2]→ f [x0, x1, x2]
↘ ↘ ↘

x3 f [x3]→ f [x2, x3]→ f [x1, x2, x3]→ f [x0, . . . , x3]

Here, f [x3] can be overwritten by f [x2, x3], since it is no longer needed
after the latter has been computed.

Problem 4.3. Given the “measured points”

x=[0:0.2:7]; % generate interpolation points

y=exp(cos(x))+0.1*rand(size(x)); % with some errors

write a Matlab function

function [X,Y,n,rr]=fitpoly(x,y,delta)

% FITPOLY computes an approximating polynomial

% [X,Y,k,rr]=fitpoly(x,y,delta) computes an approximating

% polynomial of degree n to the points such that the norm of

% the residual rr <= delta. (X,Y) are interpolated points for

% plotting.

which computes the best polynomial in the least squares sense of lowest degree
using the orthogonal basis such that the residual is ‖r‖ ≤ δ.

Experiment with some values of delta. To plot the polynomial, take 10
times more equally spaced interpolation points as the given points x to evalu-
ate the approximating polynomial. Store the nodes of the interpolation points
in X and compute the corresponding values of the best polynomial and store
them in the vector Y . You then should be able to plot the points and the
approximating polynomial by

plot(x,y,’o’);

hold on

plot(X,Y)

Compare your solution with the rather simple Matlab built-in function
polyfit by using the degree n computed by fitpoly.

Problem 4.4. Solving a nonlinear equation with inverse interpolation
(see also Chapter 5).

Consider the nonlinear scalar equation f(x) = 0. Starting with two func-
tion values f(x0) and f(x1) (preferably bracketing the solution) we compute

Problems 173

the following Aitken-Neville-Scheme for the interpolation value z = 0:

f(x1) x1

f(x2) x2 x3 := T22

f(x3) x3 T32 x4 := T33

f(x4) x4 T42 T43 x5 := T44

· · · · · · · · · · · · · · ·
The extrapolated value in the diagonal xi+1 := Tii is written as new value
Ti+1,1 in the first column of the scheme. Then we compute the function
value f(xi+1) and the new row i.e. the elements Ti+1,2, . . . , Ti+1,i+1. If the
scheme converges (use good starting values!) then the diagonal entries con-
verge quadratically to a simple zero of f .

Write a program for inverse interpolation and solve the equations

a) x− cosx = 0 b) x = e
√
sin x.

Problem 4.5. Assume you need to compute not only the function value
Pn(z) but also the derivative P ′

n(z) of an interpolation polynomial.
Investigate what would be the best way to compute P ′

n(z). Consider the
following representations of the interpolation polynomial: Lagrange, Barycen-
tric, Newton, Orthogonal Polynomials, Aitken-Neville.

Problem 4.6. Use extrapolation to compute the derivative f ′(1) for

f(x) = x2 ln

(√
x3 + 1 ex

(
x3 + sin x2 + 1

)
2 (sin x+ cos2 x+ 3) + lnx

)
.

Problem 4.7. Extrapolation of π. We will approximate the circumfer-
ence of the unit circle by regular polygons. The circumference of a regular
polygon with n corners on the unit circle is

Un = 2n sin
(π
n

)
. (4.84)

We introduce the variable

h =
1

n

and the function

T (h) =
Un

2
= n sin

(π
n

)
=

sin(hπ)

h
. (4.85)

The Taylor series of T (h) is

T (h) = π − π3

3!
h2 +

π5

5!
h4 ∓ · · · (4.86)

174 INTERPOLATION

Because of limh→0 T (h) = π we can extrapolate π from the half circumfer-
ences of some regular polygons. Only even powers of h occur, therefore we
can extrapolate using (4.39).

Write a program and extrapolate π using the following table that contains
the circumferences of polygons which can be computed by elementary mathe-
matics:

n 2 3 4 5 6 8 10

Un

2 2 3
2

√
3 2

√
2 5

4

√
10− 2

√
5 3 4

√
2−√

2 5
2

(√
5− 1

)
Problem 4.8. (Euler–Mascheroni constant). The sequence

sn = 1 +
1

2
+

1

3
+ · · · + 1

n
− lnn

converges. The limit has already been computed by Leonhard Euler and is
denoted by γ. Compute an approximation for γ by extrapolation.

Problem 4.9. Compute the sum of the following series by extrapolation:

a)
∞∑
k=1

1

k2
b)

∞∑
k=0

k2 + k + 1

3k4 + 1
.

Hint: use h = 1/n and extrapolate the limit from the partial sums

T (h) = sn =

n∑
k=0

ak.

Choose the sequence (4.36) for hi.

Problem 4.10. Compute a table of the function

f(x) =

∞∏
n=1

cos(
x

n
)

for x = 0, 0.1, . . . , 1. Extrapolate each function value from partial products.

Problem 4.11. The function f(x) = sin x is approximated by a poly-
nomial of degree three P3(x) in such a way that the function values and
derivatives match for x = 0 and for x = π.

Compute the polynomial and determine the maximal interpolation error
in the interval (0, π).

Problem 4.12. Compute a polynomial of degree three that interpolates
the following data:

x 2 3
f(x) 1 2
f ′(x) 0.5 −2

Problems 175

Compute the polynomial in two ways:

1. Make an ansatz with unknown coefficients and solve the resulting linear
system.

2. Use Equation (4.49), expand and order the powers so that the result
can be compared with the coefficients above.

Problem 4.13. The following table contains equidistant function values
and derivatives of a function f(x).

x h 2h . . . nh
f(x) y1 y2 . . . yn
f ′(x) y′

1 y′
2 . . . y′

n

Compute an approximation of the integral

nh∫
h

f(x)dx

by interpolating the data with a cubic spline function and by integrating the
spline function.

What quadrature rule is obtained?

Problem 4.14. Write a Matlab program to interpolate with a defective
spline. Use it to plot a spline through the points

x 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y 2.0 1.2 0.15 1.1 0.5 2.4 2.9 0.0 1.0

Program the three variants for the boundary values of the derivatives. For
periodic boundaries set y(n) = y(1).

Problem 4.15. Write a Matlab function to compute the derivatives of
a periodic defective spline function:

% function ys=DerivativesPeriodicSpline(x,y)

% DERIVATIVESPERIODICSPLINE derivative of a periodic spline

% ys=DerivativesPeriodicSpline(x,y) computes the

% derivatives for the defective periodic spline passing

% through the data (x,y). It is assumed that y(1)=y(n)

The equations
x = sin t

y = sin(2t− π
4)

(4.87)

define a closed curve. Compute with t=linspace(0,2*pi,8) n = 8 points
of (4.87), interpolate them by a spline curve and compare the result with the
exact curve.

176 INTERPOLATION

Problem 4.16. Verify the Equation (4.49). Hint: make the ansatz

Qi(t) = a+ bt+ ct2 + dt3

and determine the coefficients a, b, c and d by solving the Equations (4.48).
Maple can help you.

Problem 4.17. Compute the difference scheme (4.50) algebraically and
verify that the expression that is obtained with Equation (4.51) is the same
as in Equation (4.49).

Problem 4.18. Modify Algorithm 4.11 to compute the forward FFT for
vectors of length 2m. Suggestion: To implement the division by n cleanly, first
create a driver program myFFT that calls the recursive algorithm myFFT rec,
then divide the result returned by myFFT rec by n in the driver program.

Problem 4.19. Generalize Algorithm 4.11 to handle vectors of length rm

for any integer r ≥ 2. Hint: To obtain a recursive algorithm, split the input
vector v into r subvectors v0, . . . ,vr−1 where vk contains all components at
positions equal to k mod r.

Problem 4.20. For a set of samples y = (y0, . . . , y2n−1)
�, consider the

problem of calculating the trigonometric interpolating polynomial p2n(x) with
p2n(xj) = yj, xj = jπ/n, j = 0, . . . , 2n− 1. Suppose the data is perturbed to
ỹ = (ỹ0, . . . , ỹ2n−1)

�, where ỹk = yk(1 + εk) with |εk| ≤ ε. The interpolating
polynomial then becomes

p̃2n(x) =
∑′

|k|≤n

c̃ke
ikx,

so that p̃2n(xj) = ỹj. The condition number of the problem is defined to
be the smallest constant κ > 0 satisfying

‖p̃2n − p2n‖L2(0,2π) ≤ κ · ε‖y‖∞,

where the L2 norm is defined as

‖f‖2L2(0,2π) =

∫ 2π

0

|f(x)|2 dx.

(a) We have seen that y = V c, where V ∗V = 2nI. Conclude that

‖c̃− c‖2 ≤ 1√
2n

‖ỹ − y‖2 ≤ ε‖y‖∞.

(b) Using the orthogonality relation

1

2π

∫ 2π

0

eikxe−ilx dx = δkl,

Problems 177

deduce that

‖p̃2n − p2n‖L2(0,2π) ≤
√
2π‖c̃− c‖2 ≤ ε

√
2π‖y‖∞.

What can one say about the conditioning of trigonometric interpolation?

Problem 4.21. Let f(x) be the 2π-periodic function shown in Figure
4.8, which satisfies

f(x) = π − |x| for |x| ≤ π.

(a) Calculate its Fourier coefficients f̂(k) for all k. Hint: you should get

f̂(k) =

⎧⎪⎨
⎪⎩

π
2
, k = 0,
2

k2π
, k odd,

0, else.

(b) Using either myFFT or the built-in Matlab function fft, calculate

f̂n(k) for several n and k, and plot the difference |f̂n(k) − f̂(k)| as
a function of n for k = 1. What is the decay rate?

(c) Verify Lemma 4.3 numerically for n = 8 and k = 1.

(d) By letting x = 0 in f(x) =
∑

k∈Z
f̂(k)eikx, show that

∞∑
k=0

1

(2k + 1)2
=

π2

8
.

Problem 4.22. Write a Matlab function to evaluate the trigonometric
interpolant pn(x) for a given set of samples y:

function yy=TrigonometricInterpolation(y,xx)

% TRIGONOMETRICINTERPOLIATION trigonometric interpolating polynomial

% yy=TrigonometricInterpolation(y,xx) computes p(x), the trigonometric

% interpolating polynomial through (x,y), x(j)=2*pi*(j-1)/length(y).

% It returns yy, the values of p evaluated at xx.

To test your program, use

f(x) = 10 cos(x)− 3 sin(3x) + 5 cos(3x)− 15 cos(10x)

and plot the maximum error max |pn(x)−f(x)| for n = 4, 8, 16, 32, 64. Verify
that the maximum error is close to machine precision for n = 32, 64. What
is the reason behind this?

Problem 4.23. Write a Matlab function to add echoes to a given signal
y:

178 INTERPOLATION

function y=Echo(x, Fs, d, alpha)

% ECHO produces an echo effect

% y=Echo(x,Fs,d,alpha) adds an echo to the sound vector x with a

% delay of d seconds. 0 < alpha < 1 is the strength of the echo

% and Fs is the sampling rate in Hz.

To test your program use one of the sound signals already available in Mat-

lab (chirp, gong, handel, laughter, splat and train). For example, to
load the train signal, use

load train

which loads the variable y containing the actual signal and Fs, the sampling
rate. To play the signal, use

sound(y,Fs)

Play the original as well as the transformed signals (with echoes) and com-
pare.

Problem 4.24. One way of compressing a sound signal is to remove
frequency components that have small coefficients, i.e., for a relative threshold
τ , we transform a given signal y of length n into w, also of length n, whose
discrete Fourier coefficients ŵn satisfy

ŵn(k) =

{
ŷn(k), |ŷn(k)| > τ ·maxj |ŷn(j)|,
0 else.

Write a Matlab function that implements this compression scheme and re-
turns a sparse version of the n-vector ŵn:

function w=Compress(y,thres)

% COMPRESS removes small frequency components and compresses the signal

% w=Compress(y,thres) removes all the frequencies whose amplitude is

% less than thres times the maximum amplitude and compresses the

% resulting sparse signal.

To play the compressed sound, use the command

sound(ifft(full(w)),Fs)

Compare the sound quality and the amount of storage required by the origi-
nal and compressed sound signals for different values of τ . To compare the
memory usage between the uncompressed and compressed signals, use the
command whos followed by a list of variable names.

Problem 4.25. Let

H =

⎛
⎜⎜⎜⎝

z0 zn−1 · · · z1
z1 z0 · · · z2
...

. . .
...

zn−1 zn−2 · · · z0

⎞
⎟⎟⎟⎠

Problems 179

be a circulant matrix. Show that every vector of the form

v = (1, e2πik/n, e4πik/n, . . . , e2πi(n−1)k/n)�

is an eigenvector of H and compute its corresponding eigenvalue. What is the
relationship between the eigenvalues of H and the discrete Fourier transform
of z = (z0, . . . , zn−1)

�?

Chapter 5. Nonlinear Equations

Nonlinear equations are solved as part of almost all sim-
ulations of physical processes. Physical models that are
expressed as nonlinear partial differential equations, for
example, become large systems of nonlinear equations
when discretized. Authors of simulation codes must ei-
ther use a nonlinear solver as a tool or write one from
scratch.

Tim Kelley, Solving Nonlinear Equations with Newton’s
Method, SIAM, 2003.

Prerequisites: This chapter requires Sections 2.5 (conditioning), 2.8 (stopping
criteria), Chapter 3 (linear equations), as well as polynomial interpolation
(§4.2) and extrapolation (§4.2.8).

Solving a nonlinear equation in one variable means: given a continuous func-
tion f on the interval [a, b], we wish to find a value s ∈ [a, b] such that
f(s) = 0. Such a value s is called a zero or root of the function f or a so-
lution of the equation f(x) = 0. For a multivariate function f : Rn → R

n,
solving the associated system of equations means finding a vector s ∈ R

n

such that f(s) = 0. After an introductory example, we show in Section
5.2 the many techniques for finding a root of a scalar function: the funda-
mental bisection algorithm, fixed point iteration including convergence rates,
and the general construction of one step formulas, where we naturally dis-
cover Newton’s method1, and also higher order variants. We also introduce
Aitken acceleration and the ε-algorithm, and show how multiple zeros have
an impact on the performance of root finding methods. Multistep iteration
methods and how root finding algorithms can be interpreted as dynamical
systems are also contained in this section. Section 5.3 is devoted to the special
case of finding zeros of polynomials. In Section 5.4, we leave the scalar case
and consider non-linear systems of equations, where fixed point iterations
are the only realistic methods for finding a solution. The main workhorse for
solving non-linear systems is then Newton’s method2, and variants thereof.

1Also called Newton-Raphson, since Newton wrote down the method only for a poly-
nomial in 1669, while Raphson, a great admirer of Newton, wrote it as a fully iterative
scheme in 1690

2First written for a system of 2 equations by Simpson in 1740

W. Gander et al., Scientific Computing - An Introduction using Maple and MATLAB,

Texts in Computational Science and Engineering 11,
DOI 10.1007/978-3-319-04325-8 5,

© Springer International Publishing Switzerland 2014

182 NONLINEAR EQUATIONS

5.1 Introductory Example

We use Kepler’s Equation as our motivating example: consider a two-body
problem like a satellite orbiting the earth or a planet revolving around the sun.
Kepler discovered that the orbit is an ellipse and the central body F (earth,
sun) is in a focus of the ellipse. If the ellipse is eccentric (i.e., not a circle),
then the speed of the satellite P is not uniform: near the earth it moves
faster than far away. Figure 5.1 depicts the situation. Kepler also discovered

a

b

P

F
A

Figure 5.1. Satellite P orbiting the earth F

the law of this motion by carefully studying data from the observations by
Tycho Brahe. It is called Kepler’s second law and says that the travel time is
proportional to the area swept by the radius vector measured from the focus
where the central body is located, see Figure 5.2. We would like to use this

t2 t1

A
F1

F2

Figure 5.2.
Kepler’s second law: if F1 = F2 then t2 = 2t1

law to predict where the satellite will be at a given time.
Assume that at t = 0 the satellite is at point A, the perihelion of the

ellipse, nearest to the earth. Assume further that the time for completing a
full orbit is T . The question is: where is the satellite at time t (for t < T)?

We need to compute the area ΔFAP that is swept by the radius vector as
a function of the angle E (see Figure 5.3). E is called the eccentric anomaly .
The equation of the ellipse with semi-axis a and b is

x(E) = a cosE,
y(E) = b sinE.

To compute the infinitesimal area dI between two nearby radius vectors, we
will use the cross product, see Figure 5.4. The infinitesimal vector of motion

Introductory Example 183

P ′

P

E
A

F

Figure 5.3. Definition of E

dI

(x(E + dE), y(E + dE))

(x′(E) dE, y′(E) dE)

(x(E), y(E))

Figure 5.4. Computing an infinitesimal area

184 NONLINEAR EQUATIONS

(x′(E) dE, y′(E) dE) can be obtained by Taylor expansion from the difference
of the two radius vectors. Taking the cross product, we get

dI =
1

2

∣∣∣∣∣∣
⎛
⎝ x(E)

y(E)
0

⎞
⎠×

⎛
⎝ x′(E)

y′(E)
0

⎞
⎠
∣∣∣∣∣∣ dE =

1

2
(x(E)y′(E)− x′(E)y(E))dE

Inserting the derivatives

x′(E) = −a sinE
y′(E) = b cosE

and integrating I =
∫ E

0
dI we obtain the simple expression for the area

I = Δ0AP =
1

2
abE.

To obtain the area ΔFAP we now have to subtract from I the area of the
triangle Δ0FP . This area is given by

aeb sinE

2
,

where e =
√
a2−b2

a
is called the eccentricity of the ellipse. Thus we obtain the

following function of S(E) for the area swept by the radius:

S(E) =
1

2
ab(E − e sinE).

Now according to Kepler’s second law, S(E) is proportional to the time t.
Thus E−e sinE ∼ t. The proportionality factor must be 2π/T , and therefore

E − e sinE =
2π

T
t, Kepler’s Equation. (5.1)

Kepler’s Equation (5.1) defines the implicit function E(t), i.e. gives the re-
lation between the location of the satellite (angle E) and the time t. If we
want to know where the satellite is for a given time t, then we have to solve
the nonlinear Equation (5.1) for E.

Some typical values for a satellite are T = 90 minutes, and e = 0.8. If we
want to know the position of the satellite for t = 9 minutes, then we have to
solve

f(E) = E − 0.8 sinE − 2π

10
= 0. (5.2)

5.2 Scalar Nonlinear Equations

Finding roots of scalar nonlinear equations is already a difficult task, and
there are many numerical methods devoted to it. We show in this section
some of the most popular ones, and not all of these methods can be gener-
alized to higher dimensional problems. We start with the simplest but also
most robust method called bisection.

Scalar Nonlinear Equations 185

5.2.1 Bisection

The first method for solving an equation f(x) = 0 which we will discuss in
this chapter is called bisection. We assume that we know an interval [a, b]
for which f(a) < 0 and f(b) > 0. If f is continuous in [a, b] then there must
exist a zero s ∈ [a, b]. To find it, we compute the midpoint x of the interval
and check the value of the function f(x). Depending on the sign of f(x),
we can decide in which subinterval [a, x] or [x, b] the zero must lie. Then we
continue this process of bisection in the corresponding subinterval until the
size of the interval containing s becomes smaller than some given tolerance:

Algorithm 5.1. Bisection – First Version

while b-a>tol

x=(a+b)/2

if f(x)<0, a=x; else b=x; end

end

At each step of Algorithm 5.1, we compute a new interval (ak, bk) con-
taining s. We have

bk − ak =
1

2
(bk−1 − ak−1) =

1

2k
(b− a).

Since the kth approximation of s is xk = (ak + bk)/2, we obtain for the error

|xk − s| ≤ bk − ak =
1

2k
(b− a) → 0, k → ∞. (5.3)

If we want the error to satisfy |xk−s| ≤ tol, then it suffices to have (b−a)/2k ≤
tol, so that

k > ln

(
b− a

tol

)
/ ln 2. (5.4)

Algorithm 5.1 can be improved. First, it does not work if f(a) > 0 and
f(b) < 0. This can easily be fixed by multiplying the function f by −1.
Second, the algorithm will also fail if the tolerance tol is too small: assume
for example that the computer works with a mantissa of 12 decimal digits
and that

ak = 5.34229982195
bk = 5.34229982200

Then ak+bk = 10.68459964395 is the exact value and the rounded value to 12
digits is 10.6845996440. Now xk = (ak + bk)/2 = 5.34229982200 = bk. Thus
there is no machine number with 12 decimal digits between ak and bk and the
midpoint is rounded to bk. Since bk−ak = 5e−11, a required tolerance of say
tol = 1e−15 would be unreasonable and would produce an infinite loop with
Algorithm 5.1.

186 NONLINEAR EQUATIONS

However, it is easy to test if there is still at least one machine number in
the interval. If for x = (a + b)/2 the condition (a<x) & (x<b) holds, then
there exists such a number, otherwise we must terminate the iteration. Thus,
we obtain the following Matlab function (Algorithm 5.2):

Algorithm 5.2. Bisection

function [x,y]=Bisection(f,a,b,tol)

% BISECTION computes a root of a scalar equation

% [x,y]=Bisection(f,a,b,tol) finds a root x of the scalar function

% f in the interval [a,b] up to a tolerance tol. y is the

% function value at the solution

fa=f(a); v=1; if fa>0, v=-1; end;

if fa*f(b)>0

error(’f(a) and f(b) have the same sign’)

end

if (nargin<4), tol=0; end;

x=(a+b)/2;

while (b-a>tol) & ((a < x) & (x<b))

if v*f(x)>0, b=x; else a=x; end;

x=(a+b)/2;

end

if nargout==2, y=f(x); end;

Algorithm 5.2 is an example of a “fool-proof” and machine-independent
algorithm (see Section 2.8.1): for any continuous function whose values have
opposite signs at the two end points, the algorithm will find a zero of this
function. With tol = 0, it will compute a zero of f to machine precision. The
algorithm makes use of finite precision arithmetic and would not work on a
computer with exact arithmetic.

Example 5.1. As a first example, we consider the function f(x) = x+ex,

>> [x,y]=Bisection(@(x) x+exp(x),-1,0)

x =

-0.567143290409784

y =

-1.110223024625157e-16

and we obtain the zero to machine precision. As a second example, we con-
sider Kepler’s Equation (5.2),

>> [E,f]=Bisection(@(E) E-0.8*sin(E)-2*pi/10,0,pi,1e-6)

E =

1.419135586110581

f =

-1.738227842773554e-07

Scalar Nonlinear Equations 187

where we asked for a precision of 1e−6.

If the assumptions for bisection are not met, i.e., f has values with the
same sign for a and b (see left figure in Figure 5.5) or f is not continuous in
(a, b) (see right figure in Figure 5.5), then Algorithm 5.2 will fail.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.05

0.1

0.15

0.2

0.25

x

f(
x)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−50

−40

−30

−20

−10

0

10

20

30

40

50

Figure 5.5.
Cases where the Bisection Algorithm 5.2 fails

5.2.2 Fixed Point Iteration

Consider the equation

f(x) = 0, (5.5)

where f(x) is a real function defined and continuous in the interval [a, b].
Assume that s ∈ [a, b] is a zero of f(x). In order to compute s, we transform
(5.5) algebraically into fixed point form,

x = F (x), (5.6)

where F is chosen so that F (x) = x ⇐⇒ f(x) = 0. A simple way to do this
is, for example, x = x+f(x) =: F (x), but other choices are possible. Finding
a zero of f(x) in [a, b] is then equivalent to finding a fixed point x = F (x) in
[a, b]. The fixed point form suggests the fixed point iteration

x0 initial guess, xk+1 = F (xk), k = 0, 1, 2, (5.7)

The hope is that iteration (5.7) will produce a convergent sequence xk → s.
For example, consider

f(x) = xex − 1 = 0. (5.8)

When trying to solve this equation in Maple, we find

solve(x*exp(x)-1,x);

188 NONLINEAR EQUATIONS

LambertW(1)

the well-known LambertW function, which we will encounter again later in
this chapter, and also in Chapter 8, in the context of Differentiation. We will
also encounter this function in Chapter 12 on Optimization when studying
how to live as long as possible.

A first fixed point iteration for computing LambertW(1) is obtained by
rearranging and dividing (5.8) by ex,

xk+1 = e−xk . (5.9)

With the initial guess x0 = 0.5 we obtain the iterates shown in Table 5.1.
Indeed xk seems to converge to s = 0.5671432...

k xk k xk k xk

0 0.5000000000 10 0.5669072129 20 0.5671424776
1 0.6065306597 11 0.5672771960 21 0.5671437514
2 0.5452392119 12 0.5670673519 22 0.5671430290
3 0.5797030949 13 0.5671863601 23 0.5671434387
4 0.5600646279 14 0.5671188643 24 0.5671432063
5 0.5711721490 15 0.5671571437 25 0.5671433381
6 0.5648629470 16 0.5671354337 26 0.5671432634
7 0.5684380476 17 0.5671477463 27 0.5671433058
8 0.5664094527 18 0.5671407633 28 0.5671432817
9 0.5675596343 19 0.5671447237 29 0.5671432953

Table 5.1. Iteration xk+1 = exp(−xk)

A second fixed point form is obtained from xex = 1 by adding x on both
sides to get x+xex = 1+x, factoring the left-hand side to get x(1+ex) = 1+x,
and dividing by 1 + ex, we obtain

x = F (x) =
1 + x

1 + ex
. (5.10)

This time the convergence is much faster — we need only three iterations to
obtain a 10-digit approximation of s,

x0 = 0.5000000000
x1 = 0.5663110032
x2 = 0.5671431650
x3 = 0.5671432904.

Another possibility for a fixed point iteration is

x = x+ 1− xex. (5.11)

This iteration function does not generate a convergent sequence. We observe
here from Table 5.2 a chaotic behavior: no convergence but also no divergence
to infinity.

Scalar Nonlinear Equations 189

k xk k xk k xk

0 0.5000000000 6 −0.6197642518 12 −0.1847958494
1 0.6756393646 7 0.7137130874 13 0.9688201302
2 0.3478126785 8 0.2566266491 14 −0.5584223793
3 0.8553214091 9 0.9249206769 15 0.7610571653
4 −0.1565059553 10 −0.4074224055 16 0.1319854380
5 0.9773264227 11 0.8636614202 17 0.9813779498

Table 5.2.
Chaotic iteration with xk+1 = xk + 1 − xke

xk

Finally we could also consider the fixed point form

x = x+ xex − 1. (5.12)

With this iteration function the iteration diverges to minus infinity:

x0 = 0.5000000000
x1 = 0.3243606353
x2 = −0.2270012400
x3 = −1.4079030215
x4 = −2.7523543838
x5 = −3.9278929674
x6 = −5.0052139570

From these examples, we can see that there is an infinite number of possi-
bilities in choosing an iteration function F (x). Hence the question is, when
does the iteration converge?

The fixed point iteration has a very nice geometric interpretation: we plot
y = F (x) and y = x in the same coordinate system (see Figure 5.6). The
intersection points of the two functions are the solutions of x = F (x). The
computation of the sequence {xk} with

x0 choose initial value
xk+1 = F (xk), k = 0, 1, 2, . . .

can be interpreted geometrically via sequences of lines parallel to the coordi-
nate axes:

x0 start with x0 on the x-axis
F (x0) go parallel to the y-axis to the graph of F
x1 = F (x0) move parallel to the x-axis to the graph y = x
F (x1) go parallel to the y-axis to the graph of F
etc.

One can distinguish four cases, two where |F ′(s)| < 1 and the algorithm
converges and two where |F ′(s)| > 1 and the algorithm diverges. An example

190 NONLINEAR EQUATIONS

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

y = xy = F (x)

x0

Figure 5.6. x = F (x)

for each case is given in Figure 5.7. A more general statement for convergence
is the theorem of Banach, Theorem 5.5, which is explained in Section 5.4. For
more information on the possibly chaotic behavior, as observed in Iteration
(5.11), see Section 5.2.9.

5.2.3 Convergence Rates

In the previous section, we have seen geometrically that a fixed point iteration
converges if |F ′(s)| < 1. We have also observed that in case of convergence,
some iterations (like Iteration (5.10)) converge much faster than others (like
Iteration (5.9)). In this section, we would like to analyze the convergence
speed. We observe already from Figure 5.7 that the smaller |F ′(s)|, the
faster the convergence.

Definition 5.1. (Iteration Error) The error at iteration step k is
defined by ek = xk − s.

Subtracting the equation s = F (s) from xk+1 = F (xk) and expanding in
a Taylor series, we get

xk+1 − s = F (xk)− F (s) = F ′(s)(xk − s) +
F ′′(s)
2!

(xk − s)2 + · · · ,

or expressed in terms of the error,

ek+1 = F ′(s)ek +
F ′′(s)
2!

e2k +
F ′′′(s)
3!

e3k + · · · . (5.13)

Scalar Nonlinear Equations 191

F (x)F (x)

F (x)F (x)

xx

xx

−1 < F ′(s) ≤ 0 F ′(s) < −1

0 ≤ F ′(s) < 1 1 < F ′(s)
Figure 5.7.

Four different scenarios for the fixed point iteration

If F ′(s) 	= 0, we conclude from (5.13), assuming that the error ek goes to
zero, that

lim
k→∞

ek+1

ek
= F ′(s).

This means that asymptotically ek+1 ∼ F ′(s)ek. Thus for large k the error
is reduced in each iteration step by the factor |F ′(s)|. This is called linear
convergence because the new error is a linear function of the previous one.
Similarly we speak of quadratic convergence if F ′(s) = 0 but F ′′(s) 	= 0,
because ek+1 ∼ (F ′′(s)/2) e2k . More generally we define:

Definition 5.2. (Convergence Rate) The rate of convergence of
xk+1 = F (xk) is

linear: if F ′(s) 	= 0 and |F ′(s)| < 1,

quadratic: if F ′(s) = 0 and F ′′(s) 	= 0,

cubic: if F ′(s) = 0 and F ′′(s) = 0, but F ′′′(s) 	= 0,

of order m: if F ′(s) = F ′′(s) = · · · = F (m−1)(s) = 0, but F (m)(s) 	= 0.

192 NONLINEAR EQUATIONS

Example 5.2.

1. Consider Iteration (5.9): xk+1 = F (xk) = e−xk . The fixed point is
s = 0.5671432904. F ′(s) = −F (s) = −s = −0.5671432904. Because
0 < |F ′(s)| < 1 we have linear convergence. With linear convergence the
number of correct digits grows linearly. For |F ′(s)| = 0.5671432904 the
error is roughly halved in each step. So in order to obtain a new decimal
digit one has to perform p iterations, where (0.5671432904)

p
= 0.1.

This gives us p = 4.01. Thus after about 4 iterations we obtain another
decimal digit, as one can see by looking at Table 5.1.

2. If we want to solve Kepler’s equation, E − e sinE = 2π
T t for E, an

obvious iteration function is

E = F (E) =
2π

T
t+ e sinE.

Because |F ′(E)| = e| cosE| < 1, the fixed point iteration always gener-
ates a linearly convergent sequence.

3. Iteration (5.10) xk+1 = F (xk) with F (x) =
1 + x

1 + ex
converges quadrati-

cally, because

F ′(x) =
1− xex

(1 + ex)
2
= − f(x)

(1 + ex)
2
,

and since f(s) = 0 we have F ′(s) = 0, and one can check that F ′′(s) 	=
0. With quadratic convergence, the number of correct digits doubles at
each step asymptotically. If we have 3 correct digits at step k, ek =
10−3, then ek+1 ≈ e2k = 10−6, and thus we have 6 correct digits in the
next step k + 1.

The doubling of digits can be seen well when computing with Maple

with extended precision (we separated the correct digits with a *):

> Digits:=59;

> x:=0.5;

> for i from 1 by 1 to 5 do x:=(1+x)/(1+exp(x)); od;

x:= .5

x:= .56*63110031972181530416491513817372818700809520366347554108

x:= .567143*1650348622127865120966596963665134313508187085567477

x:= .56714329040978*10286995766494153472061705578660439731056279

x:= .5671432904097838729999686622*088916713037266116513649733766

x:= .56714329040978387299996866221035554975381578718651250813513*

Scalar Nonlinear Equations 193

5.2.4 Aitken Acceleration and the ε-Algorithm

The ε-algorithm was invented by Peter Wynn [151] in order to accelerate the
convergence of a sequence of real numbers. Wynn’s algorithm is in turn an
ingenious generalization of the Aitken3 acceleration [2]: suppose we have a
sequence of real numbers {xn} which converges very slowly toward a limit s,
and we would like to accelerate its convergence. Often one observes that the
sequence satisfies approximately the relation (linear convergence)

xn − s ≈ ρ(xn−1 − s) ≈ ρn(x0 − s), (5.14)

or equivalently
xn ≈ s+ Cρn, (5.15)

for some unknown constants ρ, C, and s. We have already seen a typical
example in Section 5.2.2, where the fixed point iteration

xn+1 = F (xn)

was used to compute approximations to the fixed point s = F (s). If F is
differentiable, we have

xn − s = F (xn−1)− F (s) ≈ F ′(s)(xn−1 − s),

which is precisely of the form of Equation (5.14).
The idea of the Aitken acceleration, see [2], is to replace “≈” in Equa-

tion (5.15) by “=”, and then to determine ρ, C, and the limit s from three
consecutive values xn. Solving the small nonlinear system with Maple, we
obtain

> solve({x[n-1]=s+C*rho^(n-1),x[n]=s+C*rho^n,x[n+1]

=s+C*rho^(n+1)},{rho,C,s}):

> assign(%):

> simplify(s);

xn+1xn−1 − xn
2

xn+1 − 2xn + xn−1
.

If Equation (5.14) is not satisfied exactly, the value obtained for s will depend
on n. We thus obtain a new sequence {x′

n} defined by

x′
n−1 :=

xn+1xn−1 − xn
2

xn+1 − 2xn + xn−1
, (5.16)

which in general converges faster to the original limit s than the original
sequence.

3Alexander Aitken (1895–1967) was one of the best mental calculators of all time, see
for example M. L. Hunter: An exceptional talent for calculative thinking. British Journal
of Psychology Bd.53, 1962, S. 243-258

194 NONLINEAR EQUATIONS

Definition 5.3. (Shanks Transform) For a given sequence {xn}, the
Shanks transform S(xn) is defined by

S(xn) :=
xn+1xn−1 − xn

2

xn+1 − 2xn + xn−1
. (5.17)

Thus, the Shanks transform represents none other than the Aitken accelera-
tion of the sequence. We can now apply the Shanks transform again to the
already accelerated sequence, and consider S2(xn) = S(S(xn)), S3(xn) =
S(S(S(xn))) etc., and further convergence accelerations may be obtained.
As an example, we consider the sequence of partial sums

1− 1

3
+

1

5
− 1

7
+ . . . ,

which converges to π
4
, as one can see in Maple:

> sum((-1)^n/(2*n+1),n=0..infinity);

We first define the Shanks transform in Matlab,

>> S=@(x) (x(1:end-2).*x(3:end)-x(2:end-1).^2)...

./(x(3:end)-2*x(2:end-1)+x(1:end-2));

and now apply it to the example sequence

>> n=20;

>> x=cumsum(-1./(1:2:2*n).*(-1).^(1:n));

>> x1=S(x);

>> x2=S(x1);

>> x3=S(x2);

>> 4*[x(end);x1(end);x2(end);x3(end)]

ans =

3.091623806667840

3.141556330284576

3.141592555781680

3.141592651495555

This shows that clearly multiple application of the Aitken acceleration further
accelerates the convergence of this sequence.

An even better generalization is to assume a more complete model. We
suppose that the initial sequence {xn} satisfies, instead of (5.15), approxi-
mately

xn ≈ s+ C1ρ
n
1 +C2ρ

n
2 . (5.18)

We then need to determine five parameters, and thus take the formula (5.18)
for five consecutive iterates in order to obtain a nonlinear system to solve
for ρ1, ρ2, C1, C2 and s. Shanks did this computation [124], and further
generalized it.

Scalar Nonlinear Equations 195

Definition 5.4. (Generalized Shanks Transform) For a given se-
quence {xn} converging to s and satisfying approximately

xn ≈ s+

∞∑
i=1

aiρ
n
i ,

the new sequence {sn,k} obtained by solving the non-linear system of 2k + 1
equations

xn+j = sn,k +

k∑
i=1

ãiρ̃
n+j
i , j = 0, 1, . . . , 2k

for the 2k + 1 unknowns sn,k, ãi and ρ̃i is called the generalized Shanks
transform Sk(xn) of the sequence {xn}. It is often also denoted by snk or
ek(xn).

Unfortunately, the formulas obtained for the Shanks transform quickly
become unwieldy for numerical calculations. In order to find a different
characterization for the Shanks transform, let Pk(x) = c0 + c1x+ · · · + ckx

k

be the polynomial with zeros ρ̃1, . . . , ρ̃k, normalized such that
∑

ci = 1, and
consider the equations

c0(xn − sn,k) = c0

k∑
i=1

ãiρ̃
n
i

c1(xn+1 − sn,k) = c1

k∑
i=1

ãiρ̃
n+1
i

... =
...

ck(xn+k − sn,k) = ck

k∑
i=1

ãiρ̃
n+k
i .

Adding all these equations, we obtain the sum

k∑
j=0

cj(xn+j − sn,k) =

k∑
i=1

ãiρ̃
n
i

k∑
j=0

cj ρ̃
j
i

︸ ︷︷ ︸
Pk(ρ̃i)=0

,

and observing that
∑

ci = 1, the extrapolated value becomes

sn,k =
k∑

j=0

cjxn+j . (5.19)

If we knew the coefficients cj of the polynomial with roots ρ̃j , we could
directly compute sn,k as a linear combination of successive iterates. .

196 NONLINEAR EQUATIONS

P. Wynn established in 1956, see [151], the remarkable result that the
quantities sn,k can be computed recursively. This procedure is called the ε-

algorithm. Let ε
(n)
−1 = 0 and ε

(n)
0 = xn for n = 0, 1, 2, From these values,

the following table using the recurrence relation

ε
(n)
k+1 = ε

(n+1)
k−1 +

1

ε
(n+1)
k − ε

(n)
k

(5.20)

is constructed:
ε
(0)
−1

ε
(0)
0

ε
(1)
−1 ε

(0)
1

ε
(1)
0 ε

(0)
2

ε
(2)
−1 ε

(1)
1 ε

(0)
3

ε
(2)
0 ε

(1)
2 · · ·

ε
(3)
−1 ε

(2)
1 · · ·

ε
(3)
0 · · ·

ε
(4)
−1 · · ·

(5.21)

Wynn showed in 1956 that ε
(n)
2k = sn,k and ε

(n)
2k+1 = 1

Sk(Δxn)
, where Sk(Δxn)

denotes the generalized Shanks transform of the sequence of the differences
Δxn = xn+1 − xn. Thus every second column in the ε-table is in principle of
interest. For the Matlab implementation, we write the ε-table in the lower
triangular part of the matrix E, and since the indices in Matlab start at 1,
we shift appropriately:

0 = ε
(0)
−1 = E11,

0 = ε
(1)
−1 = E21 x1 = ε

(0)
0 = E22,

0 = ε
(2)
−1 = E31 x2 = ε

(1)
0 = E32 ε

(0)
1 = E33,

0 = ε
(3)
−1 = E41 x3 = ε

(2)
0 = E42 ε

(1)
1 = E43 ε

(0)
2 = E44.

(5.22)

We obtain the algorithm

Algorithm 5.3. Scalar ε-Algorithm

function [Er,E]=EpsilonAlgorithm(x,k);

% EPSILONALGORITHM epsilon algorithm of P. Wynn

% [Er,E]=EpsilonAlgorithm(x,k) is an implementation of the epsilon

% algorithm of P. Wynn. The first column of E is zero, the second

% contains the elements of the sequence x whose convergence we want

% to accelerate. 2k colums of the scheme are computed and returned

% in E, while Er is a reduced version of E, containing only the

% relevant columns (every second column).

n=2*k+1;

Scalar Nonlinear Equations 197

E=zeros(n+1,n+1);

for i=1:n

E(i+1,2)=x(i);

end

for i=3:n+1

for j=3:i

E(i,j)=E(i-1,j-2)+1/(E(i,j-1)-E(i-1,j-1));

end

end

Er=E(:,2:2:n+1);

Example 5.3. We will show the performance of the scalar ε-algorithm
by accelerating the partial sums of the series

1− 1

2
+

1

3
− 1

4
± · · · = ln 2.

With the Matlab-statements we first compute partial sums and then apply
the Epsilon Algorithm

k=5;

v=1;

for j=1:2*k+1

y(j)=v/j; v=-v;

end

x=cumsum(y)

E=EpsilonAlgorithm(x,k)

We obtain the result

x =

Columns 1 through 7

1.0000 0.5000 0.8333 0.5833 0.7833 0.6167 0.7595

Columns 8 through 11

0.6345 0.7456 0.6456 0.7365

E =

0 0 0 0 0

1.0000e+00 0 0 0 0

5.0000e-01 0 0 0 0

8.3333e-01 7.0000e-01 0 0 0

5.8333e-01 6.9048e-01 0 0 0

7.8333e-01 6.9444e-01 6.9333e-01 0 0

6.1667e-01 6.9242e-01 6.9309e-01 0 0

7.5952e-01 6.9359e-01 6.9317e-01 6.9315e-01 0

6.3452e-01 6.9286e-01 6.9314e-01 6.9315e-01 0

7.4563e-01 6.9335e-01 6.9315e-01 6.9315e-01 6.9315e-01

>> log(2)-E(10,k)

ans = -1.5179e-07

198 NONLINEAR EQUATIONS

It is quite remarkable how we can obtain a result with about 7 decimal digits
of accuracy by extrapolation using only partial sums of the first 9 terms,
especially since the last partial sum still has no correct digit!

It is possible to generalize the ε-algorithm to vector sequences, where the
entries in the ε-scheme will be vectors, as encountered in Chapter 11. To do
so, we need to simplify Algorithm 5.3 as follows: we will no longer store the
entire table in a lower triangular matrix, but store only the diagonal elements
and the last row of the matrix E of (5.22) in a vector e in reverse order. Thus,
in step 3 for instance, we will have the corresponding variables

x3 = ε
(2)
0 = E42 = e3, ε

(1)
1 = E43 = e2, ε

(0)
2 = E44 = e1.

The algorithm becomes:

Algorithm 5.4. Scalar ε-Algorithm, low storage version

function [W,e]=EpsilonAlgorithmLowStorage(x,k);

% EPSILONALGORITHMLOWSTORAGE epsilon algorithm with low storage

% [w,e]=EpsilonAlgorithmLowStorage(x,k) is an implementation of the

% epsilon algorithm of P. Wynn using only litte storage. It stores

% only the diagonal of the epsilon table in W, and the last row of

% the triangular array in e in reverse order, computing 2k steps.

e(1)=x(1);

for i=2:2*k+1

v=0; e(i)=x(i);

for j=i:-1:2

d=e(j)-e(j-1); w=v+1/d;

v=e(j-1); e(j-1)=w;

end;

W(i-1)=w;

end

Accelerating the same sequence as before, we obtain now with the call

>> [W,e]=EpsilonAlgorithmLowStorage(x,4)

the diagonal of E

W =

Columns 1 through 5

-2.0000e+00 7.0000e-01 -1.0200e+02 6.9333e-01 -3.8520e+03

Columns 6 through 8

6.9315e-01 -1.3698e+05 6.9315e-01

and the last row of E (in reverse order):

e =

Columns 1 through 5

6.9315e-01 4.9226e+05 6.9315e-01 6.5877e+04 6.9315e-01

Columns 6 through 9

2.0320e+03 6.9335e-01 9.0000e+00 7.4563e-01

Scalar Nonlinear Equations 199

5.2.5 Construction of One Step Iteration Methods

In this section we will show how to transform the equation f(x) = 0 system-
atically to a fixed point form x = F (x) with a high convergence rate. We can
construct these methods geometrically and algebraically.

Geometric Construction

The basic idea here is to approximate the function f in the neighborhood of
a zero s by a simpler function h. The equation f(x) = 0 is then replaced by
h(x) = 0 which should be easy to solve and one hopes that the zero of h is
also an approximation of the zero of f . In general h will be so simple that we
can solve h(x) = 0 analytically. If one must also solve h(x) = 0 iteratively,
then we obtain a method with inner and outer iterations.

Let xk be an approximation of a zero s of f . We choose for h a linear
function that has for x = xk the same function value and derivative as f (i.e.
the Taylor polynomial of degree one),

h(x) = f(xk) + f ′(xk)(x− xk). (5.23)

The equation h(x) = 0 can be solved analytically,

h(x) = 0 ⇐⇒ x = xk − f(xk)

f ′(xk)
.

Now the zero of h may indeed be a better approximation of s, as we can see
from Figure 5.8. We have obtained the iteration

xk+1 = F (xk) = xk − f(xk)

f ′(xk)
, (5.24)

which is called Newton’s Iteration or the Newton–Raphson Iteration4.

Example 5.4. We return to Kepler’s Equation (5.2),

f(E) = E − 0.8 sinE − 2π

10
= 0.

Applying Newton’s method, we obtain the iteration

Ek+1 = Ek − f(Ek)

f ′(Ek)
= Ek −

Ek − 0.8 sinEk − 2π
10

1− 0.8 cosEK
.

Starting this iteration with E = 1 we obtain the values

1.531027719719945

1.424291078234385

1.419147688353853

1.419135783894323

1.419135783830583

1.419135783830583

4Raphson was a great admirer of Newton, and tried to understand and generalize the
method Newton originally presented on the concrete case of one polynomial.

200 NONLINEAR EQUATIONS

x1x2x3x4
Figure 5.8.

Geometric Derivation of the Newton-Raphson Method

which clearly show quadratic convergence.

Instead of the Taylor polynomial of degree one, we can also consider the
function

h(x) =
a

x+ b
+ c. (5.25)

We would like to determine the parameters a, b and c such that again h has
the same function value and the same first, and also second derivatives as f
at xk:

f(xk) = h(xk) = a
xk + b

+ c

f ′(xk) = h′(xk) = − a
(xk + b)2

f ′′(xk) = h′′(xk) = 2a
(xk + b)3

(5.26)

We use Maple to define and solve the nonlinear system (5.26):

> h:=x->a/(x+b)+c;

> solve({h(xk)=f, D(h)(xk)=fp, D(D(h))(xk)=fpp, h(xn)=0}, {a,b,c,xn});

xn =
fpp xk f − 2 fp2xk + 2 f fp

fpp f − 2 fp2 .

Scalar Nonlinear Equations 201

Rearranging, we obtain Halley’s Iteration,

xk+1 = xk − f(xk)

f ′(xk)

1

1− 1

2

f(xk)f
′′(xk)

f ′(xk)
2

. (5.27)

Algebraic Construction

If f(x) = 0, adding x on both sides gives x = F (x) = x+ f(x). However, we
cannot expect for arbitrary f that |F ′| = |1 + f ′| is smaller than 1. But we
can generalize this idea by premultiplying f(x) = 0 first with some function
h(x) which has yet to be determined. Thus, we consider the fixed point form

x = F (x) = x+ h(x)f(x). (5.28)

Let us try to choose h(x) so to make |F ′(s)| < 1 or even better F ′(s) = 0.
We have

F ′(x) = 1 + h′(x)f(x) + h(x)f ′(x).

For quadratic convergence, we need

F ′(s) = 1 + h(s)f ′(s) = 0. (5.29)

To solve (5.29) for h, the following condition must hold

f ′(s) 	= 0. (5.30)

This gives us

h(s) = − 1

f ′(s)
. (5.31)

Condition (5.30) signifies that s must be a simple zero of f . Furthermore, the
only condition on the choice of h is that its value at x = s must be −1/f ′(s).
Since s is unknown, the simplest choice for h is

h(x) = − 1

f ′(x)
.

This choice leads to the iteration

x = F (x) = x− f(x)

f ′(x)
, (5.32)

which is again Newton’s Iteration. By the algebraic derivation, we have
proved that for simple zeros, (i.e., when f ′(s) 	= 0) Newton’s iteration gen-
erates a quadratically convergent sequence.

Every fixed point iteration x = F (x) can be regarded as a Newton iter-
ation for some function g. This observation was already made in 1870 by

202 NONLINEAR EQUATIONS

Schröder [120]. In order to determine g, we need to solve the differential
equation

x− g(x)

g′(x)
= F (x). (5.33)

Rearranging (5.33), we obtain

g′(x)
g(x)

=
1

x− F (x)
,

which we can integrate to obtain

ln |g(x)| =
∫

dx

x− F (x)
+ C,

and therefore

|g(x)| = C exp

(∫
dx

x− F (x)

)
. (5.34)

Example 5.5. We consider the second fixed point form (5.10) of (5.8).
Here we have

F (x) =
1 + x

1 + ex
,

and using the approach above, we obtain∫
dx

x− F (x)
=

∫
1 + ex

xex − 1
dx.

Dividing the numerator and denominator by ex, and integrating gives

=

∫
e−x + 1

x− e−x
dx = ln |x− e−x|.

Thus the fixed point form

x =
1 + x

1 + ex

is Newton’s iteration for f(x) = x− e−x = 0, where we dropped the absolute
value, which is not important for root finding.

We can interpret Halley’s Iteration as an “improved” Newton’s iteration,
since we can write

x = F (x) = x− f(x)

f ′(x)
G(t(x)), (5.35)

with

G(t) =
1

1− 1
2
t
, (5.36)

and

t(x) =
f(x)f ′′(x)

f ′(x)2
. (5.37)

Scalar Nonlinear Equations 203

If f has small curvature, i.e. f ′′(x) ≈ 0, then t(x) ≈ 0 which implies G(t) ≈ 1.
This shows that in the case of an f with small curvature, both methods are
similar.

Which is the corresponding function g for which we can regard Halley’s
method (applied to f(x) = 0) as a Newton iteration? Surprisingly, the dif-
ferential equation

x− g(x)

g′(x)
= F (x) = x+

2f ′(x)f(x)

f(x)f ′′(x)− 2f ′(x)2

has a simple solution. We have

g′(x)
g(x)

= −1

2

f ′′(x)
f ′(x)

+
f ′(x)
f(x)

,

and integration yields

ln |g(x)| = −1

2
ln |f ′(x)|+ ln |f(x)| = ln

∣∣∣∣∣ f(x)√
f ′(x)

∣∣∣∣∣ .
We have therefore proved the following theorem:

Theorem 5.1. Halley’s iteration (5.27) for f(x) = 0 is Newton’s itera-
tion (5.24) for the nonlinear equation

f(x)√
f ′(x)

= 0.

Let us now analyze Halley-like iteration forms

x = F (x) = x− f(x)

f ′(x)
H(x) (5.38)

and find conditions for the function H(x) so that the iteration yields se-
quences that converge quadratically or even cubically to a simple zero of f .
With the abbreviation

u(x) :=
f(x)

f ′(x)
,

we obtain for the derivatives

F = x− uH,
F ′ = 1− u′H − uH ′,
F ′′ = −u′′H − 2u′H ′ − uH ′′,

and

u′ = 1− ff ′′

f ′2 ,

u′′ = −f ′′

f ′ + 2
ff ′′2

f ′3 − ff ′′′

f ′2 .

204 NONLINEAR EQUATIONS

Because f(s) = 0 we have

u(s) = 0, u′(s) = 1, u′′(s) = −f ′′(s)
f ′(s)

. (5.39)

It follows for the derivatives of F that

F ′(s) = 1−H(s) (5.40)

F ′′(s) =
f ′′(s)
f ′(s)

H(s) − 2H ′(s). (5.41)

We conclude from (5.40) and (5.41) that for quadratic convergence, we must
have

H(s) = 1,

and for cubic convergence, we need in addition

H ′(s) =
1

2

f ′′(s)
f ′(s)

.

However, s is unknown; therefore, we need to choose H as a function of f
and its derivatives:

H(x) = G(f(x), f ′(x), . . .).

For example, if we choose H(x) = 1 + f(x), then because of H(s) = 1, we
obtain an iteration with quadratic convergence:

x = x− f(x)

f ′(x)
(1 + f(x)).

If we choose
H(x) = G(t(x)), (5.42)

with

t(x) =
f(x)f ′′(x)

f ′(x)2
, (5.43)

then because
t(x) = 1− u′(x),

we get
H ′(x) = G′(t(x))t′(x) = −G′(t(x))u′′(x).

This implies that

H(s) = G(0),

H ′(s) = −G′(0)u′′(s) = G′(0)f
′′(s)
f ′(s)

.
(5.44)

We thus have derived a theorem

Scalar Nonlinear Equations 205

Theorem 5.2. (Gander [39]) Let s be a simple zero of f , and let G be
any function with G(0) = 1, G′(0) = 1

2
and |G′′(0)| < ∞. Then the sequence

generated by the fixed point form

x = F (x) = x− f(x)

f ′(x)
G

(
f(x)f ′′(x)
f ′(x)2

)

converges at least cubically to the simple zero s of f .

Example 5.6. Many well known iteration methods are special cases of
Theorem 5.2. As we can see from the Taylor expansions of G(t), they con-
verge cubically:

1. Halley’s method

G(t) =
1

1− 1
2 t

= 1 +
1

2
t+

1

4
t2 +

1

8
t3 + · · ·

2. Euler’s Iteration (see Problem 5.28)

G(t) =
2

1 +
√
1− 2t

= 1 +
1

2
t+

1

2
t2 +

5

8
t3 + · · ·

3. Inverse quadratic interpolation (see Problem 5.30)

G(t) = 1 +
1

2
t.

5.2.6 Multiple Zeros

The quadratic convergence of Newton’s method was based on the assumption
that s is a simple zero and that therefore f ′(s) 	= 0. We will now investigate
the convergence for zeros with multiplicity greater than one.

> F:=x->x-f(x)/D(f)(x);

> dF:=D(F)(x);

F := x → x− f(x)

D(f)(x)
(5.45)

dF :=
f(x)D(2)(f)(x)

D(f)(x)2
(5.46)

Let us now assume that f(x) has a zero of multiplicity n at x = s. We
therefore define f(x) to be

> f:=x->(x-s)^n*g(x);

206 NONLINEAR EQUATIONS

f := x → (x− s)n g(x)

where g(s) 	= 0. We inspect the first derivative of F (x). If F ′(s) 	= 0, then
the iteration converges only linearly.

> dF;

(x− s)n g(x)

(
(x− s)n n2 g(x)

(x− s)2
− (x− s)n n g(x)

(x− s)2
+ 2

(x− s)n nD(g)(x)

x− s

+ (x− s)n (D(2))(g)(x)

)/(
(x− s)n n g(x)

x− s
+ (x− s)n D(g)(x)

)2

Taking the limit of the above expression for x → s we obtain:

> limit(%, x=s);

n− 1

n
We have proved that Newton’s iteration converges only linearly with factor
(n − 1)/n if f(x) has a zero of multiplicity n. Thus, e.g., for a double root
convergence is linear with factor 1/2.

In order to find a remedy, we need to modify Newton’s iteration to recover
F ′(s) = 0. We have seen that for multiple zeros, F ′(s) = n−1

n
. We therefore

have for Newton’s method

F ′(s) =
(
s− f(s)

f ′(s)

)′
=

n− 1

n
=⇒

(
f(s)

f ′(s)

)′
= 1− n− 1

n
=

1

n
.

Therefore, a possible remedy for reestablishing quadratic convergence for a
double root, i.e. F ′(s) = 0, is to take “double steps”

xk+1 = xk − 2
f(xk)

f ′(xk)
,

or, for a root of multiplicity n,

xk+1 = xk − n
f(xk)

f ′(xk)
. (5.47)

However, one seldom knows the multiplicity in advance. So we should try to
estimate n. An old proposal by Schröder of 1870 [121] is to use instead of
the factor n

f ′2

f ′2 − ff ′′ . (5.48)

The resulting iteration looks almost like Halley’s iteration (the factor 1/2 is
missing):

xk+1 = xk − f(xk)

f ′(xk)

1

1− f(xk)f
′′(xk)

f ′(xk)
2

. (5.49)

Scalar Nonlinear Equations 207

Interpreting again Iteration (5.49) as Newton’s iteration by solving the dif-
ferential equation

g(x)

g′(x)
=

f(x)

f ′(x)
1

1− f(x)f ′′(x)
f ′(x)2

we obtain

g′(x)
g(x)

=
f ′ − ff ′′

f ′

f
=

f ′

f
− f ′′

f ′

and

ln |g| = ln |f | − ln |f ′| =⇒ g(x) =
f(x)

f ′(x)
.

Thus Schröder’s method (5.49) is equivalent to applying Newton’s method to
f(x)/f ′(x) = 0, which cancels multiple roots automatically.

5.2.7 Multi-Step Iteration Methods

In the previous sections we considered one step iteration methods: xk+1 =
F (xk). Now we would like to make use of more information to compute the
new iterate. We therefore consider iterations of the form

xk+1 = F (xk, xk−1, xk−2, . . .).

The idea is again to approximate f by a simpler function h and to compute
the zero of h as an approximation of the zero s of f . Since more than one
point is involved, it is natural to use interpolation techniques, see Chapter 4.

The simplest case is to use two points (x0, f0) and (x1, f1), where f0 =
f(x0) and f1 = f(x1). If we approximate f by the linear function h(x) =
ax + b defined by the straight line through these two points, then the zero
x2 = −b/a of h will be a new approximation to the zero s of f . We compute
h and the zero x2 by the following Maple statements:

> h:=x->a*x+b;

> solve({h(x0)=f0, h(x1)=f1, h(x2)=0}, {a,b,x2});

{
a =

−f1 + f0

x0 − x1
, x2 = −−x1 f0 + f1 x0

−f1 + f0
, b =

−x1 f0 + f1 x0

x0 − x1

}
Thus we obtained the iteration

xk+1 = xk − fk
xk − xk−1

fk − fk−1
Secant Method . (5.50)

Notice that the secant method is obtained by approximating the derivative
in Newton’s method by a finite difference,

f ′(xk) ≈ f(xk)− f(xk−1)

xk − xk−1
.

208 NONLINEAR EQUATIONS

f(x)

x3 x2 x1 x0

x

The Secant method

f(x)

x3

x2

x1

x0

x

The Regula Falsi method

We determine the convergence rate of the secant method with the help of
Maple:

> F:=(u,v)->u-f(u)*(u-v)/(f(u)-f(v));

F := (u, v) → u− f(u) (u− v)

f(u)− f(v)

> x[k+1]=F(x[k],x[k-1]);

xk+1 = xk − f(xk) (xk − xk−1)

f(xk)− f(xk−1)
(5.51)

Using (5.51), we obtain the recurrence

ek+1 = F (s + ek, s+ ek−1)− s

for the error ek+1 = xk+1 − s. The right-hand side can be expanded into a
multivariate Taylor series about ek = 0 and ek+1 = 0. We assume that s is a
simple root (f ′(s) 	= 0), and also that f ′′(s) 	= 0 holds. We set f(s) = 0 and
compute the first term of the Taylor series expansion,

> f(s):=0:

> e2=normal(readlib(mtaylor)(F(s+e1,s+e0)-s,[e0,e1],4));

e2 =
1

2

e0 (D(2))(f)(s) e1

D(f)(s)

If we divide this leading coefficient by e0 and e1, we see that the limit of the
quotient e2/(e0 e1) is a constant different from zero. We make the ansatz that
the convergence exponent is p and substitute e2 = K e1

p and e1 = K e0
p,

and divide by the constant Kp.

> %/e1/e0;

e2

e1 e0
=

1

2

(D(2))(f)(s)

D(f)(s)

> simplify(subs(e2=K*e1^p,e1=K*e0^p,%/K^p),assume=positive);

Scalar Nonlinear Equations 209

e0 (p2−p−1) =
1

2

K−p (D(2))(f)(s)

D(f)(s)

This equation is valid for all errors e0. Since the right hand side is constant,
the left hand side must also be independent of e0. This is the case only if the
exponent of e0 is zero. This condition is an equation for p (it is the golden
section equation we will also encounter in Chapter 12), whose solution is

> solve(ln(lhs(%)),p);

1

2

√
5 +

1

2
,
1

2
− 1

2

√
5

and gives the convergence exponent p = (1 +
√
5)/2 for the secant method

(note that the other solution is negative). Thus we have shown that the secant
method converges superlinearly :

ek+1 ∼ f ′′(s)
2f ′(s)

e1.618k .

A variant of the secant method is called Regula Falsi. The idea here is
to start with two points in which the function values have different signs, as
with bisection. Then compute the zero of h and continue always with the
new point and the one of the older points for which the function value has a
different sign. That way the zero is always bracketed between the values kept,
as shown in Figure 5.2.7. Regula Falsi has the advantage versus the secant
method that the zero is bracketed between the two points and the iteration
will definitely converge, as with bisection. However, the convergence rate
is no longer superlinear but only linear and can sometimes be slower than
bisection.

We now consider three of the previous iteration values. In that case the
function f can be approximated by an interpolating polynomial of degree
two. Let (x0, f0), (x1, f1) and (x2, f2) be the three given previous iterations.
Interpolating them by a quadratic polynomial

h(x) = ax2 + bx+ c,

and solving the quadratic equation h(x) = 0, we obtain the two solutions ana-
lytically. Choosing for x3 the one that is closer to x2, we compute f3 = f(x3),
and continue the process with (x1, f1), (x2, f2) and (x3, f3). This method is
called Müller’s method and it is shown in Figure 5.9. The convergence is
again superlinear, see Problem 5.27.

Another possibility to approximate f with three points is by inverse in-
terpolation. This time we interpolate the data by a polynomial of degree two
in the variable y,

y f0, f1, f2
x x0, x1, x2

. (5.52)

210 NONLINEAR EQUATIONS

f(x)

x3 x2 x1 x0

x

Figure 5.9. Müller’s method

Thus x = h(y) with xk = h(fk), k = 0, 1, 2. We want to compute the new
approximation x3 = h(0). This way we do not have to solve a quadratic equa-
tion, we merely need to evaluate a polynomial of degree two, see Problem
5.31. The convergence of this method is also superlinear. The method can
be implemented using Aitken-Neville interpolation, see Section 4.2.7. Fur-
thermore it can be generalized to include all computed points, see Problem
5.31.

5.2.8 A New Iteration Formula

Having considered the Newton and the secant methods to compute roots
of a nonlinear equation, we now want to show how a new iteration method
can be derived and analyzed, following an idea proposed in [46]. The new
method is a combination of the Newton and the secant methods. It uses
function values and first derivatives at two points. These four values define
a (Hermite) interpolation polynomial (see Section 4.3.1) of degree three. A
zero of this polynomial can be taken as the next approximation of the root.
Unfortunately, the explicit expression for this zero is rather complex, so we
propose to use inverse interpolation for the given data. We then need only to
evaluate the resulting polynomial at y = 0 to obtain the new approximation
for the root. In Maple, this is done with the following commands.

> p:=x->a*x^3+b*x^2+c*x+d:

> solve({p(f(x[0]))=x[0],D(p)(f(x[0]))=1/D(f)(x[0]),

> p(f(x[1]))=x[1],D(p)(f(x[1]))=1/D(f)(x[1])},{a,b,c,d}):

> assign(%);

> p(0);

(
−f(x1)

3 D(f)(x1) f(x0) + f(x1)
3 x0 D(f)(x0)D(f)(x1)

+ f(x1)
2 D(f)(x1) f(x0)

2 − f(x0)
3 x1D(f)(x0)D(f)(x1)

− f(x1)
2 D(f)(x0) f(x0)

2 − 3 f(x1)
2 x0 D(f)(x0)D(f)(x1) f(x0)

+ f(x1) f(x0)
3 D(f)(x0) + 3 f(x1)x1 D(f)(x0)D(f)(x1) f(x0)

2
)/

(
D(f)(x0)D(f)(x1) (f(x1)− f(x0)) (f(x1)

2 − 2 f(x1) f(x0) + f(x0)
2)
)

Scalar Nonlinear Equations 211

The resulting expression is still not very simple. However, if the evaluation of
f and f ′ is very expensive, it may still pay off since the convergence exponent
is 2.73, as we will see.

For the convergence analysis we expand

ek+2 = F (s+ ek, s+ ek−1)− s.

into a multivariate Taylor series at ek = 0 and ek+1 = 0, as we have done for
the secant method:

> F:=unapply(%,x[0],x[1]):

> f(s):=0:

> e2=readlib(mtaylor)(F(s+e0,s+e1)-s,[e0,e1],8):

> eq:=normal(%);

eq := e2 =
1

24
e1 2 e0 2

(
D(f)(s)2 (D(4))(f)(s) + 15 (D(2))(f)(s)3

− 10 (D(2))(f)(s) (D(3))(f)(s)D(f)(s)
)/

D(f)(s)3

As with the Newton and Secant methods, we consider only simple roots, so
that D(f)(s) 	= 0. If this condition holds, then the above equation tells us
that in the limit,

> e2/e0^2/e1^2=const;

e2

e0 2 e1 2 = const

Let us again introduce the convergence exponent p and make the following
substitutions:

> subs(e2=K*e1^p,e1=K*e0^p,%);

(K e0 p)p

K e0 2 (e0 p)2
= const

> simplify(%,assume=positive);

K(−1+p) e0 (p2−2−2 p) = const

This equation must hold for all errors e0. Since K, p and const are all
constant, the exponent of e0 must be zero.

> solve(p^2-2*p-2=0,p);

1 +
√
3, 1−

√
3

> evalf([%]);

212 NONLINEAR EQUATIONS

[2.732050808, −.732050808]

Thus, the convergence exponent is p = 1 +
√
3 and we have super-quadratic

convergence.
Let us use Maple to demonstrate the above convergence rate with an

example. We use our algorithm to compute the zero of the function f(x) =
ex + x starting with x0 = 0 and x1 = 1. For every iteration, we print the
number of correct digits (first column) and its ratio to the number of correct
digits in the previous step (second column). This ratio should converge to
the convergence exponent p = 2.73.

> f:=x->exp(x)+x;

f := x → ex + x

> solve(f(x)=0,x);

−LambertW(1)

> Digits:=500:

> x0:=0.0: x1:=1.0:

> for i to 6 do

> x2:=evalf(F(x0,x1));

> d2:=evalf(log[10](abs(x2+LambertW(1)))):

> if i=1 then lprint(evalf(d2,20))

> else lprint(evalf(d2,20),evalf(d2/d1,20))

> fi;

> x0:=x1: x1:=x2: d1:=d2:

> od:

-2.7349672475721192576

-7.8214175487946676893 2.8597847216407742880

-23.118600850923949542 2.9558070140989569391

-63.885801375143936026 2.7633939349141321183

-176.01456902838525572 2.7551437915728687417

-481.80650538330786806 2.7373103717659224742

The super-quadratic convergence rate with exponent p = 1 +
√
3 is now

evident.

5.2.9 Dynamical Systems

We have so far shown a simplified view of fixed point iterations. A fixed point
iteration of the form

xk+1 = F (xk)

can do much more than just converge to a fixed point or diverge. The study
of all the possible behaviors of such a fixed point iteration led to a new
field in applied mathematics: dynamical systems. An interesting reference
for dynamical systems in numerical analysis is [134]. To give a glimpse of

Scalar Nonlinear Equations 213

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

g(
x)

Figure 5.10.
Neither of the fixed points attracts the solution of the

fixed point iteration. A two cycle is found.

how rich this field is, we will discuss the classical example of Mitchell Jay
Feigenbaum. We consider the fixed point equation

x = F (x) = ax− ax2, a > 0

which could have come from an attempt to solve the nonlinear equation
f(x) = ax2 − (a− 1)x = 0 using a fixed point iteration. We also assume that
the parameter a in this problem is non-negative. The solutions are

s1 = 0, s2 =
a− 1

a
.

Which of those two does the fixed point iteration find ? Looking at the
derivative

F ′(x) = a− 2ax,

we find F ′(s1) = a and F ′(s2) = 2 − a. Hence the fixed point iteration
will converge to s1 for 0 < a < 1 and it will converge to s2 for 1 < a < 3.
But what will happen if a ≥ 3 ? Figure 5.10 shows for a = 3.3 that the
trajectory is now neither attracted to s1 nor to s2. The sequence of iterates
oscillates between two values (they form a stable periodic orbit with period
two) around s2. The two values are new fixed points of the mapping obtained
when the original map is applied twice

F (F (x)) = a2x(1− x)(1− ax+ ax2).

The new fixed points representing period two solutions are

s3,4 =
a+ 1±√

a2 − 2a− 3

2a
.

214 NONLINEAR EQUATIONS

2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.11.
Period doubling and chaos in the simple fixed point

iteration xk+1 = axk − a(xk)
2.

For a = 3.3 we obtain s3 = 0.8236 and s4 = 0.4794. Evaluating the derivative
of F (F (x)) at the fixed point s3, we find

d

dx
F (F (s3)) = −a2 + 2a+ 4.

The same is true for s4. For the period two solution to be stable, we need
that this derivative is bounded in modulus by 1, which leads to 3 < a <
1 +

√
6 = 3.4495. Hence for a > 3.4495 the period two solution will not be

stable either and the trajectory will be rejected from the two fixed points
and the period two solution. What will happen next ? Figure 5.11 shows the
answer, computed with the Matlab program

N1=100; N2=400;

a=(2.5:0.01:4)’;

m=length(a);

x(1:m,1)=1/2;

for i=1:N2

x(:,i+1)=a.*x(:,i)-a.*x(:,i).^2;

end;

plot(a,x(:,N1:N2),’.k’); xlabel(’a’);

A period 4 solution is formed, which becomes unstable as well for a bigger
than a certain value, whereupon a period 8 solution is formed. This process
is called period doubling and the ratio between consecutive intervals of period
doubling approaches a universal constant, the Feigenbaum constant . Table
5.3 shows this development for our example. The ratio converges to a limit

lim
n→∞

dn−1

dn
= f = 4.6692016091 Feigenbaum constant.

Zeros of Polynomials 215

period ak difference dk ratio dk/dk+1

a1 = 3
2 d1 = 0.4495

a2 = 4.4495 d1/d2 = 4.7515
4 d2 = 0.0946

a3 = 3.5441 d2/d3 = 4.6601
8 d3 = 0.0203

a4 = 3.5644
Table 5.3. Approaching the Feigenbaum Constant

The important observation (which we do not prove) is that the Feigenbaum
constant is universal. If, instead of repeatedly iterating F (x) = ax− ax2 we
had used the function F (x) = a sin x, we would have found the exact same
constant describing the rate of bifurcation.

Because of this ratio of consecutive intervals, this period doubling will
lead to an infinite period at a certain finite value of a. Using

dn ≈ dn−1

f

we can compute an approximation for that finite value,

a∞ = a4 + d4 + d5 + · · ·
≈ a4 +

d3
f

+
d3
f2

+ · · ·

= a4 +
d3
f

(
1 +

1

f
+

1

f2
+ · · ·

)
= a4 +

d3
f

1

1− 1/f

a∞ ≈ a4 +
d3

f − 1
= 3.5699.

As one can see in Figure 5.11 something interesting happens for a > a∞: the
solution trajectory bounces back and forth without any apparent order for
certain values of a > a∞. The system behaves chaotically. For other values
of a, a new period doubling sequence is started as well, as one can see in
Figure 5.11.

5.3 Zeros of Polynomials

Zeros of polynomials used to be important topic when calculations had to
be performed by hand. Whenever possible, one tried to transform a given
equation to a polynomial equation. For example if we wish to compute a
solution of the goniomatric equation

tanα = sinα− cosα,

216 NONLINEAR EQUATIONS

then using the change of variables

t = tan
α

2
, sinα =

2t

1 + t2
, cosα =

1− t2

1 + t2
, tanα =

2t

1− t2
,

we obtain
2t

1− t2
=

2t

1 + t2
− 1− t2

1 + t2
,

or equivalently, the following algebraic equation of degree 4.

t4 + 4t3 − 2t2 + 1 = 0,

Surely this equation was easier to solve than the equivalent one involving
trigonometric functions in the old days before computers were available.

The algebraic eigenvalue problem Ax = λx can be reduced to computing
the zeros of a polynomial, since the eigenvalues are the roots of the the
characteristic polynomial :

Pn(λ) = det(A− λI).

This is however not an advisable numerical strategy for computing eigenval-
ues, as we will see soon, see also Chapter 7.

The Fundamental Theorem of Algebra states that every polynomial of
degree n ≥ 1,

Pn(x) = a0 + a1x+ · · · + anx
n, (5.53)

has at least one zero in C. If s1 is such a zero then we can factor Pn using
Horner’s scheme discussed in the next section to obtain

Pn(x) = Pn−1(x)(x− s1). (5.54)

The remaining zeros of Pn are also zeros of Pn−1. By continuing with the
polynomial Pn−1 we have deflated the zero s1 from Pn. If s2 is another zero
of Pn−1 then again we can deflate it and we obtain:

Pn−1(x) = Pn−2(x)(x− s2) ⇒ Pn(x) = Pn−2(x)(x− s1)(x− s2).

Continuing in this way, we reach finally

Pn(x) = P0(x)(x− s1) · · · (x− sn).

Since P0(x) = const, by comparing with (5.53) we must have that P0(x) = an,
and we have shown that Pn can be factored into n linear factors, and that a
polynomial of degree n can have at most n zeros.

The following theorem estimates the region in the complex plane where
the zeros of a polynomial can be.

Zeros of Polynomials 217

Theorem 5.3. All the zeros of the polynomial Pn(x) = a0 + a1x+ · · · +
anx

n with an 	= 0 lie in the disk around the origin in the complex plane with
radius

r = 2 max
1≤k≤n

k

√∣∣∣∣an−k

an

∣∣∣∣.
Proof. We want to show that if |z| > r, then |Pn(z)| > 0. Let |z| >

2 k

√∣∣∣an−k

an

∣∣∣ for all k. Then
2−k |z|k >

∣∣∣∣an−k

an

∣∣∣∣ ⇐⇒ 2−k |an| |z|n > |an−k|
∣∣zn−k

∣∣ . (5.55)

Because of the triangle inequality ||x| − |y|| ≤ |x+ y| ≤ |x|+ |y|, we conclude
that

|Pn(z)| ≥ |anzn| −
n∑

k=1

|an−k|
∣∣zn−k

∣∣ ,
and because of Equation (5.55) the right-hand side becomes

≥ |an| |zn| −
n∑

k=1

2−k |an| |zn| = |an| |zn| (1−
n∑

k=1

2−k) = |an| |zn| (1
2
)n > 0.

�
In the work of Ruffini, Galois and Abel it was proved that, in general,

explicit formulas for the zeros only exist for polynomials of degree n ≤ 4.
Maple knows these explicit formulas: for n = 3, they are known as the
Cardano formulas, and the formulas for n = 4 were discovered by Ferrari
and published in [16]. To solve a general polynomial equation of degree
4 algebraically, x4 + bx3 + cx2 + dx + e = 0, the following commands are
needed:

> solve(x^4+b*x^3+c*x^2+d*x+e=0,x);

> allvalues(%);

The resulting expressions are several pages long and maybe not very useful.

5.3.1 Condition of the Zeros

Zeros of polynomials became less popular when Jim Wilkinson discovered
that they are often very ill conditioned. As part of a test suite for a new
computer, Wilkinson constructed from the following polynomial of degree
20 (Wilkinson’s polynomial) with roots xi = 1, 2, . . . , 20 by expanding the
product:

P20(x) =
20∏
i=1

(x− i) = x20 − 210x19 + 20615x18 − · · · + 20!. (5.56)

218 NONLINEAR EQUATIONS

Then he used a numerical method to compute the zeros and he was aston-
ished to observe that his program found some complex zeros, rather than
reproducing the zeros xi = 1, 2, . . . , 20. After having checked very carefully
that there was no programming error, and that the hardware was also work-
ing correctly, he then tried to understand the results by a backward error
analysis. Let z be a simple zero of

Pn(x) = anx
n + an−1x

n−1 + · · · + a0.

Let ε be a small parameter and let g be another polynomial of degree n.
Consider the zero z(ε) (corresponding to z, i.e.,z(0) = z) of the perturbed
polynomial h,

h(x) := Pn(x) + εg(x).

We expand z(ε) in a series

z(ε) = z +

∞∑
k=1

pkε
k.

The coefficient p1 = z′(0) can be computed by differentiating

Pn(z(ε)) + εg(z(ε)) = 0

with respect to ε. We obtain

P ′
n(z(ε))z

′(ε) + g(z(ε)) + εg′(z(ε))z′(ε) = 0,

and therefore

z′(ε) = − g(z(ε))

P ′
n(z(ε)) + εg′(z(ε))

.

Thus, for ε = 0,

z′(0) = − g(z)

P ′
n(z)

. (5.57)

We now apply (5.57) to Wilkinson’s polynomial (5.56). Wilkinson perturbed
only the coefficient a19 = −210 by 2−23 (which was the machine precision for
single precision on some early computers). This modification corresponds to
the choice of g(x) = x19 and ε = −2−23, and we obtain for the zero zr = r
the perturbation

δzr ≈ 2−23 r19

|P ′
20(r)|

= 2−23 r19

(r − 1)! (20− r)!
.

For r = 16, the perturbation is maximal and becomes

δz16 ≈ 2−23 1619

15! 4!
≈ 287.

Zeros of Polynomials 219

Thus, the zeros are ill conditioned. Wilkinson computed the exact zeros using
multiple precision and found e.g. the zeros 16.730 ± 2.812 i. We can easily
reconfirm this calculation using Maple:

> Digits:=50;

> p:=1:

> for i from 1 by 1 to 20 do

> p:=p*(x-i)

> od:

> Z:=fsolve(p-2^(-23)*x^19,x,complex,maxsols=20);

> plot(map(z->[Re(z),Im(z)],[Z]),x=0..22,style=point,symbol=circle);

We do not actually need to work with 50 decimal digits; we obtain the same
results even in Matlab using standard IEEE arithmetic.

We can also use Maple to simulate the experiment of Wilkinson, using
7 decimal-digit arithmetic. For this simulation, it is important to represent
the coefficients of the expanded polynomial as 7-digit numbers:

> Digits:=7;

> p:=1:

> for i from 1 by 1 to 20 do

> p:=p*(x-i)

> od:

> PP:=expand(p);

> PPP:=evalf(PP);

> Z:=fsolve(PPP,x,complex,maxsols=20);

> plot(map(z->[Re(z),Im(z)],[Z]),x=0..28,style=point,symbol=circle);

Figure 5.12 shows how most of the zeros become complex numbers.

–8

–6

–4

–2

0

2

4

6

8

5 10 15 20 25
x

Figure 5.12. Zeros of Wilkinson’s Polynomial computed with 7 digits.

In Matlab, polynomials are represented by

Pn(x) = A(1)xn + A(2)xn−1 + · · ·+ A(n)x+ A(n+ 1),

220 NONLINEAR EQUATIONS

while in usual mathematical notation one prefers

Pn(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n.

In order to switch between the two representations, we must keep in mind
the transformation

A(i) = an+1−i, i = 1, . . . , n+ 1 ⇐⇒ aj = A(n+ 1− j), j = 0, . . . , n.

In the following Matlab script, we change the second coefficient of Wilkin-
son’s polynomial by subtracting a small perturbation: p2 := p2 − λp2 where
λ = 0 : 1e−11 : 1e−8. Note that the perturbations are cumulative; at the last
iteration, the total perturbation gives p̃2 = p2(1− μ), with μ ≈ 5.0× 10−6.

Algorithm 5.5.
Experiment with Wilkinson’s Polynomial

axis([-5 25 -10 10])

hold

P=poly(1:20)

for lamb=0:1e-11:1e-8

P(2)=P(2)*(1-lamb);

Z=roots(P);

plot(real(Z),imag(Z),’o’)

end

By computing the roots and plotting them in the complex plane, we can
observe in Figure 5.13 how the larger roots are rapidly moving away from
the real line.

We finally remark that multiple roots are always ill conditioned. To illus-
trate that, assume that we change the constant coefficient of Pn(x) = (x−1)n

by the machine precision ε. The perturbed polynomial becomes (x− 1)n − ε
and its roots are solutions of

(x− 1)n = ε ⇒ x(ε) = 1 + n
√
ε.

The new roots are all simple and lie on the circle of radius n
√
ε with center 1.

For ε = 2.2204e−16 and n = 10 we get 10
√
ε = 0.0272 which shows that the

multiple roots “explode” quite dramatically into n simple ones.

5.3.2 Companion Matrix

As we have seen in the previous section, zeros of polynomials may be ill con-
ditioned, so one had to find new methods for computing eigenvalues. New
algorithms that work directly on the matrix, instead of forming the charac-
teristic polynomial, have been successfully developed. Indeed, the QR algo-
rithm (see Section 7.6) proved to be so successful that Matlab has reversed

Zeros of Polynomials 221

−5 0 5 10 15 20 25
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 5.13. Roots of the perturbed Wilkinson polynomial

its thinking: to compute zeros of a polynomial, one should construct the com-
panion matrix, which has the zeros of the polynomial as eigenvalues. Thus,
instead of computing eigenvalues with the help of the characteristic polyno-
mial, one computes zeros of polynomials with the QR eigenvalue algorithm!
This is how the Matlab function roots works.

Definition 5.5. (Companion Matrix) The monic polynomial Pn(x) =
xn + an−1x

n−1 + · · · + a0 has the companion matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−an−1 −an−2 . . . −a1 −a0
1 0 . . . 0 0

0 1
. . . 0 0

...
. . .

. . .
. . .

...
0 . . . 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

By expanding the determinant det(λI −A), we see that Pn(λ) is the charac-

teristic polynomial of A.

222 NONLINEAR EQUATIONS

Example 5.7. Consider for n = 4 the matrix C = λI − A and compute
its determinant by the expanding the first column. We get

det

⎛
⎜⎝
λ+ a3 a2 a1 a0

−1 λ 0 0
0 −1 λ 0
0 0 −1 λ

⎞
⎟⎠ = (λ+ a3) det

(
λ 0 0
1 λ 0
0 −1 λ

)
+ 1 · det

(
a2 a1 a0
−1 λ 0
0 −1 λ

)

= λ4 + a3λ
3 + a2λ

2 + 1 · det
(

a1 a0

−1 λ

)
= λ4 + a3λ

3 + a2λ
2 + a1λ+ a0.

The Matlab function compan(a) computes this companion matrix. In

Maple we get with

> p:=z^5+2*z^4+3*z^3+4*z^2+5*z+6;

> with(LinearAlgebra);

> A:=CompanionMatrix(p);

⎡
⎢⎢⎢⎢⎣

0 0 0 0 −6
1 0 0 0 −5
0 1 0 0 −4
0 0 1 0 −3
0 0 0 1 −2

⎤
⎥⎥⎥⎥⎦

a different definition of the companion matrix, which is often used in text-
books. Both definitions are equivalent, since by computing det(λI − A) we
obtain the characteristic polynomial of A.

5.3.3 Horner’s Scheme

Often, one needs to divide a polynomial Pn(x) by a linear factor (x− z). We
obtain

Pn(x)

x− z
= Pn−1(x) +

r

x− z
, (5.58)

where Pn−1(x) is a polynomial of degree n−1 and r, a number, is the remain-
der. In secondary school, a method is taught for performing this calculation
by hand, as is shown for the example of P3(x) = 3x3+x2−5x+1 and z = 2:

(3x3 + x2 − 5x + 1) : (x− 2) = 3x2 + 7x+ 9︸ ︷︷ ︸
−3x3 + 6x2 P2(x)

7x2 − 5x
− 7x2 + 14x

9x + 1
− 9x + 18

19 = r

(5.59)

Zeros of Polynomials 223

Thus Equation (5.58) for this example is

3x3 + x2 − 5x+ 1

x− 2
= 3x2 + 7x+ 9 +

19

x− 2
.

If we generalize this process, we get

(anx
n+ an−1x

n−1+ an−2x
n−2+ · · · + a0) : (x − z) = bn−1x

n−1 + · · · + b0
−bn−1x

n+bn−1zx
n−1

bn−2x
n−1+ an−2x

n−2

− bn−2x
n−1+bn−2zx

n−2

bn−3x
n−2+an−3x

n−3

· · · · · · · · ·
b0x+ a0

− b0x+ b0z

r
(5.60)

From (5.60), we can see that the coefficients bi of Pn−1 are computed by the
recurrence

bn−1 = an
bi−1 = zbi + ai, i = n− 1, · · · , 1, (5.61)

and the remainder becomes r = zb0 + a0. For hand calculations, the recur-
rence relation (5.61) is written more conveniently as

an an−1 an−2 . . . a1 a0
bn−1z bn−2z . . . b1z b0z

x = z bn−1 bn−2 bn−3 . . . b0 | r

(5.62)

The scheme (5.62) is called simple Horner’s scheme.

The evaluation of Horner’s scheme is computed in Matlab by the fol-
lowing statements:

Algorithm 5.6. Simple Horner’s Scheme

b(1)=a(1);

for i=2:n

b(i)=b(i-1)*z+a(i)

end

r=b(n)*z+a(n+1)

For n = 3, a = [3, 1, −5, 1] and z = 2 we obtain b = [3, 7, 9] and
r = 19.

224 NONLINEAR EQUATIONS

What is the meaning of the remainder r? If we multiply Equation (5.58)
by (x− z), then we obtain

Pn(x) = Pn−1(x)(x− z) + r. (5.63)

Inserting x = z in Equation (5.63) we get Pn(z) = r, and thus

Pn(x) = Pn−1(x)(x− z) + Pn(z). (5.64)

Since the remainder is the function value Pn(z) we can also use the division
algorithm (5.60) to evaluate the polynomial! This is even an efficient way to
do it, as we will see. Straightforward evaluation of Pn(z) = anz

n+an−1z
n−1+

· · ·+a1z+a0 needs n(n+1)
2

multiplications and n additions. By factoring, we
can reduce the number of multiplications to n:

Pn(z) =
(
· · ·
((

an︸︷︷︸
bn−1

z + an−1

)
︸ ︷︷ ︸

bn−2

z + an−2

)
z + · · · + a1

)

︸ ︷︷ ︸
b0

z + a0. (5.65)

We recognize that the brackets are nothing but the coefficients of the poly-
nomial Pn−1. Thus we have shown that Horner’s scheme (5.62) can be used
to

1. divide a polynomial by a linear factor,

2. evaluate a polynomial with n multiplications.

In Maple, we can convert a polynomial into Horner’s form with the com-
mand:

> convert(3*x^3+x^2-5*x+1,horner,x);

and we obtain 1 + (−5 + (1 + 3x)x)x.
If we just want to evaluate the polynomial, there is no need to save the

coefficients bi, so the Matlab function becomes

Algorithm 5.7.
Evaluation of a Polynomial by Horner’s Rule

function y=Horner(p,x);

% HORNER Evaluates a polynomial

% y=Horner(p,x) evaluates the polynomial

% y=p(1)*x^(n-1)+p(2)*x^(n-2)+...+p(n-1)*x+p(n)

n=length(p);

y=0;

for i=1:n

y=y*x+p(i);

end

Zeros of Polynomials 225

Matlab provides a built-in function polyval(p,x) for polynomial eval-
uation. It works also when the parameter x is a matrix.

With the simple Horner’s scheme, we compute the decomposition

Pn(x) = Pn(z) + (x− z)Pn−1(x). (5.66)

Horner’s scheme can be used repeatedly to decompose the polynomials
Pn−1(x), Pn−2(x), . . ., P1(x). Doing so leads to the equations:

Pn(x) = Pn(z) + (x− z)Pn−1(x),
Pn−1(x) = Pn−1(z) + (x− z)Pn−2(x),
...

...
...

P1(x) = P1(z) + (x− z)P0(x).

(5.67)

If we stack the necessary Horner’s schemes one above the other, we obtain
the complete Horner’s scheme. For example, for P3(x) = 3x3 + x2 − 5x + 1
and z = 2, the scheme becomes

3 1 −5 | 1
6 14 | 18

3 7 9 | 19 = P3(z)
6 26 |

3 13 | 35 = P2(z)
6 |

3 | 19 = P1(z),

3 = P0(z)

(5.68)

We can read from the scheme that

P2(x) = 3x2 + 7x+ 9,
P1(x) = 3x+ 13,
P0(x) = 3.

Let us find an interpretation for the values Pi(z). For this purpose, let us
eliminate the quantities Pn−1(x), Pn−2(x), . . ., P1(x) from top to bottom in
(5.67). If we use only the first j equations, we obtain

Pn(x) =

j−1∑
k=0

(x− z)kPn−k(z) + (x− z)jPn−j(x), (5.69)

or, for j = n,

Pn(x) =
n∑

k=0

Pn−k(z)(x− z)k. (5.70)

226 NONLINEAR EQUATIONS

Since P0(x) = const = P0(z). Equation (5.70) looks very much like the
Taylor expansion of Pn(x) at x = z,

Pn(x) =

n∑
k=0

P
(k)
n (z)

k!
(x− z)k. (5.71)

Since the expansion (5.71) is unique, we must conclude by comparing with
(5.70) that

Pn−k(z) =
P

(k)
n (z)

k!
k = 0, 1, . . . , n. (5.72)

We have proved the following

Theorem 5.4. (Horner Scheme) The complete Horner’s scheme is an
algorithm to compute the Taylor expansion of a polynomial Pn(x) for x = z.

When computing the new expansion of Pn(x) we may overwrite the coef-
ficients ai by the new coefficients bi:

Pn(x) =
n∑

k=0

akx
k =

n∑
k=0

bk(x− z)k.

This is done in the following Matlab function:

Algorithm 5.8.
Taylor Expansion by Complete Horner Scheme

function a=Taylor(a,z)

% TAYLOR re-expands the polynomial

% a=Taylor(a,z) re-expands the polynomial

% P(x)=a(1)*x^(n-1) + ... + a(n-1)*x + a(n) to

% a(1)*(x-z)^(n-1) + ... + a(n-1)*(x-z) + a(n)

% the coefficients are overwritten.

n=length(a);

for j=1:n-1

for i=2:n-j+1

a(i)=a(i-1)*z+a(i);

end

end

Before step j in the function Taylor, we have (in mathematical notation):

· · · · · · a0
· · · · · a1
· · · · ·
an an−1 · · · aj aj−1

Zeros of Polynomials 227

and
Pn−j(x) = anx

n−j + an−1x
n−j−1 + · · · + aj .

Because of (5.69) we obtain

Pn(x) =

j−1∑
k=0

ak(x− z)k + (x− z)j
n∑

k=j

akx
k−j , (5.73)

and we see how the polynomial is transformed step-wise.

5.3.4 Number Conversions

Horner’s rule can be used to convert numbers to different base systems. As
an example, consider the binary number

u = 100111011012.

To compute the decimal value of u, we write

u = 1 ·210+0 ·29+0 ·28+1 ·27+1 ·26+1 ·25+0 ·24+1 ·23+1 ·22+0 ·21+1.

Thus, u is the function value for z = 2 of a polynomial of degree 10 with the
binary digits as coefficients,i.e., we have

u = P10(2) = 126110.

More generally, a number in base b is represented as a string of characters.
For instance, the string 2DFDC1C3E, interpreted as a hexadecimal number,
is the polynomial

2 · 168 +D · 167 + F · 166 +D · 165 + C · 164 + 1 · 163 + C · 162 + 3 · 16 + E.

Assuming that the capital letters represent the hexadecimal digits A = 10,
B = 11, C = 12, D = 13, E = 14 and F = 15, we have

2DFDC1C3E16 = 2 · 168 + 13 · 167 + 15 · 166 + 13 · 165
+ 12 · 164 + 1 · 163 + 12 · 162 + 3 · 16 + 14

= 1234567891010

Thus, this conversion is simply an evaluation of a polynomial. This can be
done using Horner’s rule, provided we have converted the characters of the
string to their numerical values.

In Matlab, the characters are encoded in ASCII. Noting that zero has
the ASCII code 48 and the the capital letter A has code 65, we can assign a
numerical value x to an ASCII character with code c as follows:

x =

{
c− 48 if c is a decimal digit

c− 65 + 10 = c− 55 if c is a capital letter

228 NONLINEAR EQUATIONS

This is implemented in the following function BaseB2Decimal:

Algorithm 5.9. Number Conversion: Base b to Decimal

function u=BaseB2Decimal(s,b)

% BASEBDECIMAL convert a number from and arbitrary base to decimal

% u=BaseB2Decimal(s,b) converts a string s which represents an

% integer in base b to the decimal number u using Horner’s rule.

n=length(s); u=0;

for i=1:n

if char(s(i))<=57, % Assume decimal digit

a=s(i)-48; % subtract ASCII number of zero

else % Assume capital letter

a=s(i)-55; % subtract ASCII number 65 of A and add 10

end

u=u*b+a;

end

Example 5.8.

>> s=’1011011111110111000001110000111110’;

>> u=BaseB2Decimal(s,2)

u=1.234567891000000e+10

>> s= ’2DFDC1C3E’;

>> u=BaseB2Decimal(s,16)

u=1.234567891000000e+10

>> s=’3E92HC76’;

>> u=BaseB2Decimal(s,23)

u=1.234567891000000e+10

Note that the built-in Matlab function base2dec(s,b) does the same
as BaseB2Decimal. Matlab also has the functions bin2dec and hex2dec.

If we want to convert a decimal number into a number in base b, we need
to solve an inverse problem: Given the function value u = Pn(z) and the
argument z = b, we wish to find the coefficients of the polynomial Pn(z).
This problem does not have a unique solution unless we require that u, b, di
must be integers and that u ≥ 0, b > d[i] ≥ 0.

Horner’s scheme has to be computed in reverse direction, e.g. for b = 2
and u = 57, we get

1 1 1 0 0 1
0 2 6 14 28 56
↑ ↙ ↑ ↙ ↑ ↙ ↑ ↙ ↑ ↙ ↑
1 3 7 14 28 57

(5.74)

Zeros of Polynomials 229

and thus 5710 = 1110012. Starting with the decimal number 57, we divide
the number by the base b = 2; the integer remainder is the new digit (i.e.
the coefficient of the polynomial). Thus, we obtain the following algorithm
Decimal2BaseB, which computes the digits di of a number u in the number
system with base b. Notice that the digits with value > 9 are designed
with capital letters A,B,C, The resulting number is a string s, which is
generated from the decimal representation of the digits stored in the vector
d.

Algorithm 5.10.
Number Conversions: Decimal to Base b

function [s,d]=Decimal2BaseB(u,b)

% DECIMAL2BASEB converts an integer to another base representation

% [s,d]=Decimal2BaseB(u,b) converts the integer u to base b. d

% contains the digits as decimal numbers, s is a string containing

% the digits of the base b represetation e.g. for b=16 (hexadecimal)

% the digits are 1, 2, ... 9, A, B, C, D, E, F

i=1;

while u~=0

d(i)=mod(u,b); u=floor(u/b); i=i+1;

end

n=i-1; d=d(n:-1:1); s=[]; % convert to string using char(65)=A

for i=1:n

if d(i)<10

s=[s num2str(d(i))];

else

s=[s char(65+d(i)-10)];

end

end

Example 5.9. Let’s convert the integer number u = 12345678910 to the
systems with base b = 2, 7, 16, 23

>> u=12345678910

u =

1.234567891000000e+10

>> s=Decimal2BaseB(u,2)

s=1011011111110111000001110000111110

>> s=Decimal2BaseB(u,7)

s=614636352655

>> s=Decimal2BaseB(u,16)

s=2DFDC1C3E

230 NONLINEAR EQUATIONS

>> s=Decimal2BaseB(u,23)

s=3E92HC76

Note that the built-in Matlab function dec2base(u,b) does the same
as Decimal2BaseB. There exist also the Matlab functions dec2bin and
dec2hex. Working with strings using only numbers and capital letters re-
stricts the possible values for the base b; for example, dec2base imposes the
restriction 2 ≤ b ≤ 36. The same restriction applies in Maple: the function
convert(n, decimal, b) converts a base b number (where b is an integer
from 2 through 36) to a decimal number.

We return now to the computation of the zeros of polynomials. Since
it is easy to compute the derivative of a polynomial using Horner’s rule, it
is straightforward to use Newton’s method. We will consider three different
implementations. The first one is straightforward, the second one will make
use of various Taylor expansions and the third one is a variant for real zeros
and will suppress rather than deflate zeros.

5.3.5 Newton’s Method: Classical Version

To obtain the function value and the value of the derivative at z, we need
to compute the first two rows of Horner’s scheme. Since the zeros of a real
polynomial might be complex, we have to start with a complex number for
the iteration, otherwise the iteration sequence will never become complex.
Our initial starting number will be 1 + i, and after computing the first root,
we will always take the last root as the initial value for the new root of the
deflated polynomial. The implementation in Matlab is easy, since Matlab

computes with complex numbers.
In the followingMatlab function, we stop the iteration when the function

value of the polynomial becomes small. For multiple zeros, we have seen that
Newton’s iteration converges only linearly, see Section 5.2.6, and a test on
successive iterates may not be very reliable. Near a zero x, we can expect
that the function value drops to about (with machine precision ε)

|Pn(x)| ≈ ε

n∑
i=0

|aixi|. (5.75)

We will use this equation with tolerance 10ε as a stopping criterion.

Algorithm 5.11.
Newton’s Method for Zeros of Polynomials

function z=NewtonRoots(a)

% NEWTONROOTS computes zeros of a polynomial

% z=NewtonRoots(a) computes zeros of the polynomial given by the

% coefficients in the vector a using Newton’s method

Zeros of Polynomials 231

n=length(a); degree=n-1; z=[];

y=1+sqrt(-1);

for m=degree:-1:1

p=1; h=0; % Newton iteration

while abs(p)>10*eps*h

x=y; p=0; ps=0; h=0;

for k=1:m+1

ps=p+ps*x; p=a(k)+p*x; h=abs(a(k))+h*abs(x);

end

y=x-p/ps;

end

b(1)=a(1); % deflation

for k=2:m

b(k)=b(k-1)*y+a(k);

end

z=[z; y];

a=b;

end

For the Wilkinson polynomial, we obtain results that are comparable to
the Matlab built-in function roots:

> a=poly(1:20);

> x=NewtonRoots(a); y=roots(a);

> [norm(sort(x)-[1:20]’) norm(sort(y)-[1:20]’)]

ans=

0.008482726803436 0.024155938346689

Of course we cannot expect NewtonRoots to work in all cases. Designing
reliable software is much harder than teaching numerical methods!

5.3.6 Newton Method Using Taylor Expansions

Another implementation of Newton’s method is based on expanding the poly-
nomial at new points in the complex plane. Let x be an approximation of a
zero, then

Pn(x+ h) = a0 + a1h+ · · · + anh
n.

Because a0 = Pn(x) and a1 = P ′
n(x), the Newton step simply becomes

x := x− a0/a1.

We compute a new Taylor expansion of the polynomial at the new approxima-
tion and the effect is that the new coefficient a0 decreases with each iteration.
If finally x is a root, then a0 = 0, and

Pn(x+ h) = h(a1 + a2h+ · · · + anh
n−1),

232 NONLINEAR EQUATIONS

and thus the remaining roots are zeros of

Pn−1(x+ h) = a1 + a2h+ · · · + anh
n−1.

Therefore, deflation becomes here very simple. However, at each iteration, a
complete Horner scheme must be computed, which is more work than for the
Newton implementation presented earlier.

Algorithm 5.12.
Newton for Zeros of Polynomials – Second version

function z=NewtonTaylorRoots(a)

% NEWTONTAYLORROOTS computes the zeros of a polynomial

% z=NewtonTaylorRoots(a) computes the zeros of the polynomial given

% in the vector a using Newton’s method by re-expanding the

% polynomial

n=length(a); degree=n-1;

z=[]; x=0; h=1+sqrt(-1);

for m=degree:-1:1

while abs(a(m+1))>norm(a)*eps % Newton iteration

x=x+h; a=Taylor(a,h); h=-a(m+1)/a(m);

end

a=a(1:m); % deflation

z=[z; x];

end

We again obtain a good result for Wilkinson’s polynomial, for larger de-
grees however, NewtonRoots seems to work more reliably.

>> a=poly(1:20);

>> x=NewtonTaylorRoots(a);

>> norm(sort(x)-[1:20]’)

ans=

0.019332026554334

Deflation with an approximation of a root will not deliver accurate coeffi-
cients of the deflated polynomial. Wilkinson observed that it is numerically
preferable to deflate smaller roots first.

5.3.7 Newton Method for Real Simple Zeros

The third Newton method we want to consider is useful when a polynomial is
not represented by its coefficients and when it is known that the zeros are all
real and simple. Two examples are orthogonal polynomials, as discussed in
Section 4.2.5, or the leading principal minors of the matrix λI − T , where T
symmetric and tridiagonal. Both the orthogonal polynomials and the minor-
polynomials are computed by a three-term recurrence relation.

Zeros of Polynomials 233

Let T be symmetric and tridiagonal, and consider the submatrices

Ti =

⎛
⎜⎜⎜⎜⎝

α1 β1

β1 α2
. . .

. . .
. . . βi−1

βi−1 αi

⎞
⎟⎟⎟⎟⎠ , i = 1, . . . , n.

Let pi(λ) = det(λI − Ti). By expanding the last row of the determinant, we
obtain, using p−1 ≡ 0 and p0 ≡ 1, a three-term recurrence for the polynomi-
als,

pi(λ) = (λ− αi)pi−1(λ)− β2
i−1pi−2(λ), i = 1, . . . , n. (5.76)

Thus to evaluate the determinant pn for some value of λ we can use the
recurrence (5.76). To compute zeros of pn using Newton’s method, we also
need the derivative, which is obtained by differentiating (5.76),

p′
i(λ) = pi−1(λ) + (λ− αi)p

′
i−1(λ)− β2

i−1p
′
i−2(λ). (5.77)

Algorithm 5.13 below computes directly the Newton correction pn(x
p′
n(x)

. In

order to avoid possible over- or underflow, we scale both values if they become
too large or too small. By this measure we do not compute the actual values
of the functions pn and p′

n, which we do not need since we are only interested
in the ratio.

Algorithm 5.13. Newton Correction for det(λI − T)

function r=NewtonCorrection(x,alpha,beta);

% NEWTONCORRECTION computes directly the Newton correction

% r=NewtonCorrection(x,alpha,beta) evaluates the ratio of the

% polynomial and its derivative given by the three-term

% recurrence p_i(x)=(x-alpha_i)p_{i-1}(x)-beta_{i-1}^2

% p_{i-2}(x) for the Newton correction

n=length(alpha);

p1s=0; p1=1; p2s=1; p2=x-alpha(1);

for k=1:n-1

p0s=p1s; p0=p1; p1s=p2s; p1=p2;

p2s=p1+(x-alpha(k+1))*p1s-beta(k)^2*p0s;

p2=(x-alpha(k+1))*p1-beta(k)^2*p0;

maxx=abs(p2)+abs(p2s);

if maxx>1e20; d=1e-20;

elseif maxx<1e-20; d=1e20;

else d=1;

end

p1=p1*d; p2=p2*d; p1s=p1s*d; p2s=p2s*d;

end

r=p2/p2s;

234 NONLINEAR EQUATIONS

Using Newton’s method and the function NewtonCorrection, we now can
compute a zero of pn. However, deflation is not possible in the usual way
by dividing the polynomial with the linear factor, because the polynomial is
not represented by its coefficients. We have to use a new technique, called
suppression, to avoid recomputing the same zero again. With suppression,
we implicitly deflate a computed zero. If pn is the polynomial and x1 a first
computed zero then we use

pn−1(x) =
pn(x)

x− x1

for the the next Newton iteration. We need again the derivative which is

p′
n−1(x) =

p′
n(x)

x− x1
− pn(x)

(x− x1)2
.

Thus the Newton correction becomes

−pn−1(x)

p′
n−1(x)

= − pn(x)

p′
n(x)− pn(x)

x−x1

.

Suppose now that we have already computed the zeros x1, . . . , xk. Then
consider

pn−k(x) =
pn(x)

(x− x1) · · · (x− xk)
.

Because of

d

dx

(
k∏

i=1

(x− xi)
−1

)
= −

(
k∏

i=1

(x− xi)
−1

)(
k∑

i=1

(x− xi)
−1

)
,

the derivative becomes

p′
n−k(x) =

p′
n(x)

(x− x1) · · · (x− xk)
− pn(x)

(x− x1) · · · (x− xk)

k∑
i=1

1

x− xi
.

Inserting this expression we obtain for the Newton step:

xnew = x− pn(x)

p′
n(x)

1

1− pn(x)

p′
n(x)

k∑
i=1

1

x− xi

. (5.78)

Equation (5.78) defines the Newton-Maehly iteration, which suppresses al-
ready computed zeros. It can be used for any function, not only for polyno-
mials.

Zeros of Polynomials 235

In connection with the method of Newton-Maehly, Bulirsch and Stoer
describe in [132] important details of the implementation of Newton-Maehly’s
method to compute zeros of polynomials with only real and simple zeros.
They noticed that Newton’s method for such polynomials has a bad global
behavior. We have p(x) = anx

n + · · · + a0 and p′(x) = nanx
n−1 + · · · + a1.

Now if anx
n is the dominant term, then the Newton step is approximately

xnew = x− p(x)

p′(x)
≈ x− 1

n
x = x(1− 1

n
).

Thus Bulirsch and Stoer propose to initially take double steps

xnew = x− 2
p(x)

p′(x)

to improve global convergence. It is shown in [132] that the following holds
(see Figure 5.14 for the notation): We denote by α the next local extremum

z x
w ξα

y

p(x)

Figure 5.14. Newton double step iteration

of p(x). For the usual Newton step starting from x we obtain z:

z = x− p(x)

p′(x)
.

For the double Newton step starting from x we obtain w:

w = x− 2
p(x)

p′(x)
.

For the Newton step from w we get

y = w − p(w)

p′(w)
.

The following then holds:

1. α < w: with the double step iteration we arrive before the local ex-
tremum at x = α.

236 NONLINEAR EQUATIONS

2. ξ ≤ y ≤ z: the backward Newton step lies between the zero ξ and the
simple Newton step z.

These considerations lead to the following algorithm:

1. Start with the Newton double step iteration from the right of the first
zero and iterate

x = y; y = x− 2
p(x)

p′(x)

until y ≥ x. We are then in the situation described by Figure 5.14.

2. Continue to iterate with normal Newton steps

x = y; y = x− p(x)

p′(x)

until monotonicity is again lost and y ≥ x. This time we have computed
the zero ξ = y to machine precision.

3. Suppress the new zero and continue the iteration for the next zero with
the value x < ξ found by the Newton double step iteration as initial
value.

We obtain the following Matlab function:

Algorithm 5.14.
Newton-Maehly for Zeros of Polynomials

function xi=NewtonMaehly(alpha,beta,K,x0);

% NEWTONMAEHLY computes zeros of a three term recurrence polynomial

% xi=NewtonMaehly(alpha,beta,K,x0) computes by the Newton-Maehly

% method K zeros of the polynomial defined by the three term

% recurence with coefficients alpha and beta. The initial guess x0

% must be bigger than all real zeros. Uses NewtonCorrection.m

xi=[];

for k=1:K,

y=x0; x=x0*1.1;

while y<x % Newton double step

x=y; r=NewtonCorrection(x,alpha,beta);

s=sum(1./(x-xi(1:k-1))); % Maehly correction

y=x-2*r/(1-r*s);

end

x0=x;

y=x-r/(1-r*s); x=y+10; % single backward step

while y<x % Newton single steps

x=y; r=NewtonCorrection(x,alpha,beta);

y=x-r/(1-r*sum(1./(x-xi(1:k-1))));

end

Zeros of Polynomials 237

xi(k)=y;

k,y % test output

end

xi=xi(:);

Example 5.10. We want to compute the zeros of the Legendre poly-
nomial of degree n = 20, see Section 9.3. We define the coefficients of the
corresponding tridiagonal matrix and call the function NewtonMaehly to com-
pute the 10 positive zeros:

n=20;

for i=1:n,

alpha(i)=0;

beta(i)=i/sqrt(4*i^2-1);

end

xi=NewtonMaehly(alpha,beta,10,1)

We obtain the values
0.993128599185095
0.963971927277914
0.912234428251326
0.839116971822219
0.746331906460151
0.636053680726515
0.510867001950827
0.373706088715420
0.227785851141645
0.076526521133497

which are correct to the last digit.

5.3.8 Nickel’s Method

A generalization of Newton’s method is based on the following idea of Nickel.
If we expand the polynomial at x

Pn(x+ h) = a0 + a1h+ · · · + anh
n,

and consider the equation

a0 + a1h+ · · ·+ ajh
j + · · ·+ anh

n = 0, (5.79)

then the Newton correction h is the solution of a0 + a1h = 0 and will be
only a good approximation of a solution of Equation (5.79) if the other terms
|a2h2|, . . . , |anhn| are very small in comparison with |a1h|. Nickels idea is to
replace Equation (5.79) by

a0 + ajh
j = 0, (5.80)

238 NONLINEAR EQUATIONS

where j is chosen in such a way that |ajhj | is the largest term. This is the
case if aj 	= 0 and if the solution |h| of (5.80),

h = j

√
−a0
aj

, (5.81)

is as small as possible. Thus we will choose j such that

|h| = j

√∣∣∣∣a0aj
∣∣∣∣ = min

1≤i≤n

ai �=0

i

√∣∣∣∣a0ai
∣∣∣∣. (5.82)

Notice that the Newton correction is the special case j = 1 of the Nickel
correction defined by (5.81) and (5.82). The Nickel correction prevents a
division by zero if by accident P ′

n(x) = a1 = 0. For h we can choose any of
the complex solutions of Equation (5.80). We will choose the principal value
delivered by Matlab.

Algorithm 5.15.
Nickel’s Method for Zeros of Polynomials

function z=Nickel(a)

% NICKEL computes the zeros of the polynomial

% z=Nickel(a)computes the zeros of the polynomial with coefficients

% in the vector a using Nickel’s method. Uses Taylor.m

n=length(a); degree=n-1;

z=[]; x=0; h=1+sqrt(-1);

for m=degree:-1:1

while abs(a(m+1))>norm(a)*eps % Nickel iteration

x=x+h; a=Taylor(a,h);

if m==1,

h=-a(2)/a(1);

else

[hh,j]=min(abs((-a(m+1)./a(m+1-[2:m])).^(1./[2:m])));

h=(-a(m+1)/a(m+1-j))^(1/j);

end

end

a=a(1:m); % deflation

z=[z;x];

end

The computation of the Nickel step is more expensive compared to New-
ton. The results are again comparable with the other methods if the degree
of the polynomial is not too large.

> a=poly(1:20);

> x=Nickel(a);

> norm(sort(x)-[1:20]’)

ans= 0.019332026554334

Zeros of Polynomials 239

5.3.9 Laguerre’s Method

The methods of Newton and Nickel generate quadratically convergent se-
quences of approximations for simple roots. We will now derive the method
of Laguerre, which will converge cubically. The idea of this method is to
approximate the polynomial P (x) of degree n near a zero s by the special
polynomial of the form g(x) = a(x − x1)(x− x2)

n−1. The three parameters
a, x1 an x2 are chosen in such a way that P and g have, for some value x,
the same function value and the same first and second derivatives:

P (x) = g(x),
P ′(x) = g′(x),
P ′′(x) = g′′(x).

(5.83)

Then we solve g(x) = 0 instead of Pn(x) = 0 by solving a quadratic equation,
and hope that one of the solutions x1 is a better approximation of the zero
s. If we write Equations (5.83) explicitly, we obtain

I : Pn(x) = a(x− x1)(x− x2)
n−1,

II : P ′
n(x) = a(x− x2)

n−1 + a(x− x1)(n− 1)(x− x2)
n−2,

III : P ′′
n (x) = 2a(n− 1)(x− x2)

n−2 + a(n−1)(n−2)(x− x1)(x− x2)
n−3.
(5.84)

We can eliminate the unknown a by forming the quotients

II
I :

P ′
n(x)

Pn(x)
= 1

x− x1
+ n− 1

x− x2
,

III
I :

P ′′
n (x)

Pn(x)
=

2(n− 1)
(x− x1)(x− x2)

+
(n− 1)(n− 2)

(x− x2)
2 .

Introducing the abbreviations

P = Pn(x), P ′ = P ′
n(x), P ′′ = P ′′

n (x), z =
1

x− x1
and w =

n− 1

x− x2
,

we obtain
P ′
P = z +w,

P ′′
P = 2zw + n− 2

n− 1w
2.

(5.85)

If we solve the first equation in (5.85) for w and insert the result into the
second, we obtain a quadratic equation for z,

z2 − 2P ′

nP
z +

(
(1− 1

n
)PP ′′ − (1− 2

n
)P ′2

)
1

P 2
= 0. (5.86)

The solution is

z =
P ′

nP
±
√(

P ′

nP

)2

− (1− 1

n
)
PP ′′

P 2
+ (1− 2

n
)

(
P ′

P

)2

,

240 NONLINEAR EQUATIONS

where by the root sign we mean the complex roots. Because of x− x1 = 1
z
,

we have

x− x1 =
nP

P ′ ±√(n− 1)2P ′2 − n(n− 1)PP ′′ (5.87)

=
P

P ′
n

1±
√
(n− 1)2 − n(n− 1)PP ′′

P ′2

. (5.88)

It makes sense to choose the sign in the denominator to be an addition and
to choose the square root in (5.87) for which the real part is positive. This
choice makes the absolute value of the denominator is larger, and thus the
correction smaller. Doing so, we obtain Laguerre’s method :

x1 = x− P

P ′
n

1 +

√
(n− 1)2 − n(n− 1)PP ′′

P ′2

. (5.89)

The implementation of Laguerre’s method is left as Exercise 5.37. The proof
that the method of Laguerre converges cubically is the Exercise 5.38.

5.4 Nonlinear Systems of Equations

Solving n nonlinear equations in n variables means that, for a given contin-
uous function f : Rn −→ R

n, we want to find a value x ∈ Ω ⊂ R
n such

that f (x) = 0. We use the notation x = (x1, x2, . . . , xn)
� and f(x) =

(f1(x), f2(x), . . . , fn(x))
�.

In one dimension, the measure of distance between two numbers is the
absolute value of the difference between those numbers. In several dimen-
sions we have to use norms as measures of distance (see Chapter 2, Section
2.5.1). We also need the generalization of Taylor expansions from the one-
dimensional case to multivariate, vector-valued functions f : R

n −→ R
m.

Recall that for the function g : R −→ R, a second-order Taylor expansion
(with a third-order remainder term) is given by

g(t) = g(0) + g′(0)t+
1

2!
g′′(0)t2 +

1

3!
g′′′(τ)t3, (5.90)

where 0 ≤ τ ≤ t. In order to obtain the Taylor expansion for f , we consider a
perturbation in the direction h = (h1, . . . , hn)

� and consider each component
fi separately, i.e., we consider the scalar function

g(t) := fi(x+ th).

In order to expand this scalar function using (5.90), we need the derivatives

Nonlinear Systems of Equations 241

of g,

g′(0) =
n∑

j=1

∂fi
∂xj

(x)hj

g′′(0) =

n∑
j=1

n∑
k=1

∂2fi
∂xj∂xk

(x)hjhk

g′′′(τ) =

n∑
j=1

n∑
k=1

n∑
l=1

∂3fi
∂xj∂xk∂xl

(x+ τh)hjhkhl.

Introducing these derivatives in the Taylor expansion (5.90) of g and evaluat-
ing at t = 1, we naturally arrive at the Taylor expansion of each component
fi,

fi(x+ h) = fi(x) +

n∑
j=1

∂fi
∂xj

(x)hj +
1

2!

n∑
j=1

n∑
k=1

∂2fi
∂xj∂xk

(x)hjhk

+
1

3!

n∑
j=1

n∑
k=1

n∑
l=1

∂3fi
∂xj∂xk∂xl

(x+ τih)hjhkhl.

(5.91)
Since this explicit notation with sums is quite cumbersome, one often uses the
notation of multilinear forms, and writes simultaneously for all components
of f

f(x+ h) = f(x) + f ′(x)(h) +
1

2!
f ′′(x)(h,h) +R(h), (5.92)

where the remainder term can be estimated by R(h) = O(||h||3), see Prob-
lem 5.41. Note that the first-order term can be written as a matrix-vector
multiplication

f ′(x)(h) =

⎛
⎜⎜⎜⎜⎝

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

...
∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn

⎞
⎟⎟⎟⎟⎠ · h.

The m × n matrix is often called the Jacobian matrix of f , which we will
denote by J(x). In the special case of a scalar function with many arguments,
f : Rn −→ R, which occurs often in optimization, we obtain

f(x+ h) = f(x) + f ′(x)(h) +
1

2!
f ′′(x)(h,h) +O(||h||3), (5.93)

and now in the linear term, we see the transpose of the gradient appearing,
f ′(x) = (∇f(x))�. In the quadratic term, the bilinear form f ′′(x)(h,h) can

242 NONLINEAR EQUATIONS

also be written in matrix notation as f ′′(x)(h,h) = h�H(x)h, where H(x)
is a symmetric matrix with entries

(H(x))ij =
∂2f

∂xi∂xj
(x).

This matrix is known as the Hessian matrix of f . Thus, the Taylor expansion
for the function f : Rn −→ R can be written in matrix form as

f(x+ h) = f(x) + (∇f(x))�h+
1

2!
h�H(x)h+O(||h||3). (5.94)

5.4.1 Fixed Point Iteration

A fixed point iteration in several dimensions is very similar to one dimension.
To find a zero of the function f(x) for x ∈ Ω, we need to define a continuous
function F (x) on Ω such that

f(x) = 0 ⇐⇒ x = F (x). (5.95)

For example, one could define

F (x) := x− f(x),

but again there is an infinite number of possibilities for choosing a function
F (x) which satisfies (5.95). To find a zero of f(x) in Ω is then equivalent
to finding a fixed point of F (x) in Ω. For that purpose, the following fixed
point iteration is used:

x1=initial guess;

x2=F(x1);

while norm(x2-x1)>tol*norm(x2)

x1=x2;

x2=F(x1);

end

Note that one can use any of the norms introduced in Section 2.5.1. The ques-
tion of when the above iteration converges can be answered by Theorem 5.5
in the next section: F (x) has to be a contraction.

5.4.2 Theorem of Banach

We need some definitions to state the theorem. A Banach space B is a
complete normed vector space over some number field K such as R or C.
“Normed” means that there exists a norm ‖ ‖ with the following properties:

1. ‖x‖ ≥ 0, ∀x ∈ B, and ‖x‖ = 0 ⇐⇒ x = 0

2. ‖γx‖ = |γ|‖x‖, ∀γ ∈ K and ∀x ∈ B

Nonlinear Systems of Equations 243

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x,y ∈ B (triangle inequality)

“Complete” means that every Cauchy sequence converges in B.
Let A ⊂ B be a closed subset (see [64] for a definition) and F a mapping

F : A → A. F is called Lipschitz continuous on A if there exists a constant
L < ∞ such that ‖F (x) − F (y)‖ ≤ L‖x− y‖ ∀x,y ∈ A. Furthermore, F is
called a contraction if L can be chosen such that L < 1.

Theorem 5.5. (Banach Fixed Point Theorem) Let A be a closed
subset of a Banach space B, and let F be a contraction F : A → A. Then:

a) The contraction F has a unique fixed point s, which is the unique solution
of the equation x = F (x).

b) The sequence xk+1 = F (xk) converges to s for every initial guess x0 ∈ A.

c) We have the a posteriori estimate :

‖s− xk‖ ≤ Lk−l

1− L
‖xl+1 − xl‖, for 0 ≤ l ≤ k. (5.96)

Proof. Because F is Lipschitz continuous, we have ‖xk+1 − xk‖ =
‖F (xk)− F (xk−1)‖ ≤ L‖xk − xk−1‖ and therefore

‖xk+1 − xk‖ ≤ Lk−l‖xl+1 − xl‖, 0 ≤ l < k. (5.97)

We claim that {xk} is a Cauchy sequence. We need to show that for a given
ε > 0, there exists a number K such that ∀m > 1 and ∀k ≥ K the difference
‖xk+m − xk‖ < ε. This is the case since, using the triangle inequality, we
obtain

‖xk+m − xk‖ = ‖xk+m − xk+m−1 + xk+m−1 − xk+m−2 ± · · · − xk‖

≤
k+m−1∑

i=k

‖xi+1 − xi‖
≤ (Lm−1 + Lm−2 + · · · + L+ 1)‖xk+1 − xk‖.

Thus we have

‖xk+m − xk‖ ≤ 1− Lm

1− L
‖xk+1 − xk‖. (5.98)

Using (5.97), we get

‖xk+m − xk‖ ≤ 1− Lm

1− L
Lk‖x1 − x0‖, (5.99)

and since L < 1, we can choose k so that the right hand side of (5.99) is
smaller than ε. We have proved that {xk} is a Cauchy sequence and hence
converges to some s ∈ B; since A is a closed subset of B, we deduce that
s ∈ A.

244 NONLINEAR EQUATIONS

We now show by contradiction that s is unique. If we had two fixed points
s1 = F (s1) and s2 = F (s2) then

‖s1 − s2‖ = ‖F (s1)− F (s2)‖ ≤ L‖s1 − s2‖,

thus 1 ≤ L. But since we assumed L < 1 this is a contradiction and there
cannot be two fixed points. Thus we have proved a) and b).

In order to prove c), we use (5.98) and then (5.97) to obtain

‖xk+m − xk‖ ≤ 1− Lm

1− L
Lk−l‖xl+1 − xl‖,

which holds for 0 ≤ l < k and for all m. If we let m → ∞ we finally obtain

‖s− xk‖ ≤ 1

1− L
Lk−l‖xl+1 − xl‖.

�
Consequences and remarks:

1. If we set l = 0 in Equation (5.96) we obtain an a priori error estimate:

‖s− xk‖ ≤ Lk

1− L
‖x1 − x0‖.

Using this error estimate and knowing L, we can predict how many
iteration steps are necessary to obtain an error ‖s− xk‖ < ε, namely

k >
ln
(

ε(1−L)
‖x1−x0‖

)
lnL

. (5.100)

2. We can also obtain the convenient a posteriori error estimate by sub-
stituting l = k − 1 in Equation (5.96),

‖s− xk‖ ≤ L

1− L
‖xk − xk−1‖.

If ‖xk − xk−1‖ < ε, then

‖s− xk‖ ≤ L

1− L
ε. (5.101)

Note that the bound on the right hand side of Equation (5.101) can
be much larger than ε. In fact if e.g. L = 0.9999, then ‖s − xk‖ ≤
9999ε. Thus even if successive iterates agree to 6 decimal digits, the
approximation may contain only two correct decimal digits.

Only when L ≤ 0.5 can we conclude from ‖xk − xk−1‖ ≤ ε that ‖s −
xk‖ ≤ ε (See Problem 2.22). In this case we may then terminate the

Nonlinear Systems of Equations 245

iteration by checking successive iterates and conclude that the error is
also smaller than ε.

A way to estimate L from the iteration at step k+1 is to use (5.97) for
k = l + 1, which gives

L ≈ ‖xk+1 − xk‖
‖xk − xk−1‖ .

This, together with the a posteriori estimate, leads to the stopping
criterion

‖xk − xk−1‖‖xk+1 − xk‖
‖xk − xk−1‖ − ‖xk+1 − xk‖ < tol, (5.102)

which guarantees asymptotically that the error is less than tol.

5.4.3 Newton’s Method

We want to find x such that f(x) = 0. Expanding f at some approximation
xk, we obtain

f(x) ≈ f(xk) + J(xk)h, with h = x− xk,

where J(xk) denotes the Jacobian evaluated at xk,

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

...

∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Instead of solving f(x) = 0, we solve the linearized system

f(xk) + J(xk)h = 0

for the Newton correction h, and obtain a new, hopefully better approxima-
tion

xk+1 = xk + h = xk − J(xk)
−1f (xk). (5.103)

Thus, Newton’s method is the fixed point iteration

xk+1 = F (xk) = xk − J−1(xk)f (xk).

Note that this formula is a generalization of the formula derived in the one-
dimensional case geometrically, see Subsection 5.2.5. It is important to note
that the occurrence of the inverse of the Jacobian in the formula implies that
one has to solve a linear system at each step of the Newton iteration.

246 NONLINEAR EQUATIONS

Theorem 5.6. (Quadratic Convergence of Newton’s Method)

Suppose that f : Rn → R
n is three times continuously differentiable, and that

Jacobian f ′(x) is invertible in a neighborhood of s, where f(s) = 0. Then,
for xk sufficiently close to s, the error ek := xk − s in Newton’s method
satisfies

ek+1 =
1

2
(f ′(xk))

−1f ′′(xk)(ek,ek) +O(||ek||3). (5.104)

Hence Newton’s method converges locally quadratically.
Proof. We expand f(x) in a Taylor series, see (5.92), and obtain

f(x) = f(xk) + f ′(xk)(x− xk) +
1

2
f ′′(xk)(x−xk,x− xk) +O(||x−xk||3).

Setting x := s, where f(s) = 0, and subtracting the Newton iteration formula

0 = f(xk) + f ′(xk)(xx+1 − xk),

we obtain for the error ek = xk − s the relation

0 = f ′(xk)(−ex+1) +
1

2
f ′′(xk)(ek,ek) +O(||ek||3),

which concludes the proof. �
A short Matlab implementation of Newton’s method for an arbitrary

system of nonlinear equations is given in Algorithm 5.16.

Algorithm 5.16.
Newton’s method for a system of non-linear equations

function x=Newton(f,x0,tol,maxiter,fp);

% NEWTON solves a nonlinear system of equations

% x=Newton(f,x0,tol,maxiter,fp); solves the nonlinear system of

% equations f(x)=0 using Newtons methods, starting with the initial

% guess x0 up to a tolerance tol, doing at most maxit iterations. An

% analytical Jacobian can be given in the parameter fp

numJ=nargin<5;

if nargin<4, maxit=100; end;

if nargin<3, tol=1e6; end;

x=x0; i=0; dx=ones(size(x0));

while norm(f(x))>tol & norm(dx)>tol & i<maxiter

if numJ, J=NumericalJacobian(f,x); else J=fp(x); end;

dx=-J\f(x); x=x+dx; i=i+1;

end

if i>=maxiter

error(’Newton did not converge: maximum number of iterations exceeded’);

end;

Nonlinear Systems of Equations 247

Note that in this implementation, one has the choice of giving the Ja-
cobian matrix in analytic form, or letting the procedure compute an ap-
proximate Jacobian matrix numerically. For a numerical approximation, one
usually uses a finite difference, i.e.

∂fi
∂xj

(x1, . . . , xn) ≈ fi(x1, . . . , xj + h, . . . , xn)− fi(x1, . . . , xn)

h
, (5.105)

for some discretization parameter h. A Matlab implementation of this ap-
proach is given in Algorithm 5.17.

Algorithm 5.17.
Finite difference approximation for the Jacobian

function J=NumericalJacobian(f,x);

% NUMERICALJACOBIAN computes a Jacobian numerically

% J=NumericalJacobian(f,x); computes numerically a Jacobian matrix

% for the function f at x

for i=1:length(x)

xd=x; h=sqrt(eps*(1+abs(xd(i)))); xd(i)=xd(i)+h;

J(:,i)=(f(xd)-f(x))/h;

end;

In order to determine a numerically sensible choice for the discretization
parameter h, one has to consider two approximation errors in the expression:
first, the smaller one chooses h, the more accurate the finite difference ap-
proximation will be, since in the limit, it converges mathematically to the
derivative. Numerically, however, there is a difference that needs to be com-
puted in the numerator, and we have seen that differences of quantities that
are very close in size suffer from cancellation, see Chapter 8, so h should not
be too small. In order to get more insight, assume that f is a scalar function.
Expanding using a Taylor series gives

f(x+ h)− f(x)

h
= f ′(x) +

h

2
f ′′(x) +O(h2), (5.106)

which shows clearly that h needs to be small in order to get a good approxi-
mation of the derivative f ′(x). On the other hand, let us study the roundoff
error when computing the approximation,

f((x+ h)(1 + ε1))(1 + ε2)− f(x)(1 + ε3)

h

≈ f((x+ h)− f(x)

h
+

1

h
(f ′(x+ h)(x+ h)ε1 + f(x+ h)ε2 − f(x)ε3)

248 NONLINEAR EQUATIONS

where |εi| ≤ eps, the machine precision. A good choice is to balance the two
sources of error, i.e.

h

2
(. . .) ≈ 1

h
(. . .)eps,

which indicates that a good choice for h is

h =
√
eps, or h =

√
eps(1 + |x|).

Example 5.11. We would like to compute the intersection points of
the circle of radius r = 2 centered at the origin with the ellipse with center
M = (3, 1) and semi-axes (parallel to the coordinate axes) a and b = 2.

We will solve this problem using the parametric representation of the circle
and the ellipse. The circle is given by (2 cos t, 2 sin t), 0 ≤ t < 2π. A point
on the ellipse has the coordinates (3 + a cos s, 1 + 2 sin s), 0 ≤ s < 2π.

To find an intersection point we must solve the following nonlinear system
of equations for s and t:

2 cos t = 3 + a cos s,
2 sin t = 1 + 2 sin s,

or

f(x) =

(
2 cosx1 − 3− a cosx2

2 sin x1 − 1− 2 sin x2

)
=

(
0

0

)
with x =

(
t

s

)
.

The Jacobian is

J =

(−2 sin x1 a sin x2

2 cos x1 −2 cosx2
.

)

We would like to compute the intersection points for a = 1.3 : 0.5 : 7. From
the geometry it is clear that there are two points for a specific value of a
in that range. In the following Matlab script, we compute the solutions
using Newton’s method, with two different initial guesses for the unknown
parameters x = (t, s)�. We also plot the computed intersection points, the
circle and the different ellipses (see Figure 5.15). To draw the ellipses we use
the Matlab function described in Section 6.7.2.

Algorithm 5.18. Intersection of Circle and Ellipse

PlotEllipse([0 0],2,2);

axis([-4 4, -3 5]); axis square; hold;

X1=[]; X2=[];

for a= 1.3:0.5:7

f=@(x) [2*cos(x(1))-3-a*cos(x(2));2*sin(x(1))-1-2*sin(x(2))];

fp=@(x) [-2*sin(x(1)) a*sin(x(2)); 2*cos(x(1)) -2*cos(x(2))];

x=Newton(f,[0;4],1e-10,20); % first intersection

X1=[X1; 2*cos(x(1)) 2*sin(x(1))];

plot(2*cos(x(1)),2*sin(x(1)),’o’);

Nonlinear Systems of Equations 249

x=Newton(f,[1;3],1e-10,20); % second intersection

X2=[X2; 2*cos(x(1)) 2*sin(x(1))];

plot(2*cos(x(1)),2*sin(x(1)),’o’);

PlotEllipse([3 1],a,2);

pause

end;

hold off

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

5

Figure 5.15. Computing Intersection Points with Newton’s Method

Looking at Figure 5.15 and at the computed coordinates of the intersection
points (see Table 5.4) we see that we missed one point! The convergence result
in Theorem 5.6 is a local result, meaning Newton’s method needs good starting
values to converge. In this case, our initial guesses are not good enough to
ensure that we do not converge to some other point we are not interested in.

Concerning the global convergence behavior of Newton’s method, only
very little is known. One can only completely analyze the behavior of New-
ton’s method for certain simple examples; one of the best known is the fol-
lowing.

Example 5.12. We consider f(z) = z3 − 1, with z ∈ C. The equation
f(z) = 0 has three complex roots on the unit circle. We could write this

250 NONLINEAR EQUATIONS

First points Second points
1.9845 −0.2486 1.7005 1.0528
1.9104 −0.5919 1.2685 1.5463
1.8594 −0.7367 0.8880 1.7920
1.8261 −0.8157 0.5217 1.9308
1.8038 −0.8640 0.1376 1.9953
1.7883 −0.8956 −0.3184 1.9745
1.7772 −0.9174 −1.0031 1.7302
1.7690 −0.9331 −1.7924 0.8873
1.7628 −0.9447 same! 1.7628 −0.9447
1.7580 −0.9536 −2.0000 −0.0136
1.7543 −0.9605 −1.9877 −0.2218
1.7512 −0.9660 −1.9662 −0.3662

Table 5.4. Coordinates of Intersection Points

function in real variables: if we set z := x+ iy, we obtain

f(x, y) =

(
x3 − 3xy2 − 1
3x2y − y3

)
.

It is however easier to use Newton’s method directly in the complex formula-
tion, which leads to the iteration

zk+1 = zk − z3k − 1

3z2k
.

It is interesting to find out which of the complex roots will be found by New-
ton’s method as we vary the starting values z0; the set of initial values that
lead to convergence to the same root is called the basin of attraction of that
root. The short Matlab Algorithm 5.19 computes the basin of attraction for
each root.

Algorithm 5.19.
Newton’s method applied to the complex equation

z3 − 1 = 0

n=1000; m=30;

x=-1:2/n:1;

[X,Y]=meshgrid(x,x);

Z=X+1i*Y;

for i=1:m

Z=Z-(Z.^3-1)./(3*Z.^2);

end;

image((round(imag(Z))+2)*10); % transform roots to 10,20,30

Nonlinear Systems of Equations 251

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

Figure 5.16.
Solving the complex equation z3 − 1 = 0 for many

starting values: a fractal appears

We show the result in Figure 5.16. We observe that Newton’s method does
not always converge to the root of the equation that is closest to the initial
guess. On the contrary, the basins of attraction of the roots have a very
complicated structure, and similarly for their boundaries: they are fractal.
It is worthwhile playing with the parameters in the example Algorithm 5.19
to zoom into specific regions of the Figure, or even to reduce the number of
iterations.

There are many variants of Newton’s method to address convergence
problems or irregularities of the method, mostly developed in the context
of optimization, see Chapter 12. We show in the next subsection a different
approach that can be useful when solving very difficult nonlinear problems.

5.4.4 Continuation Methods

We have seen that Newton’s method converges quadratically once it is close
enough to a root of the equation. In practice, however, it is often difficult to
find a good starting point for Newton’s method to converge to the desired
solution. In such cases, a Continuation method can be of great help: suppose
we seek a solution to f(x) = 0 and Newton’s method failed to converge to
the desired solution. A continuation method considers the problem

h(x, t) = tf(x) + (1− t)g(x),

where g(x) = 0 has a known solution. Note that for t = 0, the solution to
h(x, 0) = g(x) is known, whereas for t = 1, the solution to h(x, 1) = f(x)

252 NONLINEAR EQUATIONS

is difficult to get. Thus, the idea is to take small steps Δt and consider
neighboring problems for t := t + Δt; if Δt small enough, the neighboring
problems are close, so we can hope to use the last solution as good starting
values for the next problem.

More systematically, we note that h(x, t) describes a curve x(t) joining
the known solution x(0) to the hard-to-find solution x(1). We can trace this
curve by taking derivatives,

d

dt
h(x(t), t) = hx(x(t), t)ẋ(t) + ht(x(t), t) = 0

where hx denotes the Jacobian of h with respect to x and the dot denotes a
derivative with respect to t. Hence the ordinary differential equation

ẋ = −(hx(x, t))
−1ht(x, t)

with the known initial value x(0), describes the path from the known solution
to x(1), the solution that is unknown and hard to get. We will see in Chapter
10 how to track the path using a numerical solver for this system of ordinary
differential equations.

5.5 Problems

Problem 5.1. Solve with bisection the equations

a) xx = 50 b) ln(x) = cos(x) c) x+ ex = 0,

and describe your findings.

Problem 5.2. A goat is grazing on a circular meadow of radius r. The
farmer leashes the goat and attaches it to a pole on the boundary of the
meadow. Determine the length R of the rope so that the goat can only eat
half the grass of the meadow by finding the equation for the ratio x = R/r
and solving it using bisection.

Problem 5.3. Find x such that

x∫
0

e−t2dt = 0.5.

Hint: the integral cannot be evaluated analytically, so expand it in a series
and integrate. Then find the zero by bisection of the resulting power series.

Problem 5.4. Binary search: we are given an ordered sequence of num-
bers:

x1 ≤ x2 ≤ · · · ≤ xn

Problems 253

and a new number z. Write a program that computes an index value i such
that either xi−1 < z ≤ xi or i = 1 or i = n + 1 holds. The problem can be
solved by considering the function

f(i) = xi − z

and computing its “zero” by bisection.

Problem 5.5. Compute x where the following maximum is attained:

max
0<x<π

2

(
1

4 sin x
+

sin x

2x
− cosx

4x

)
.

Problem 5.6. Transform the following equations algebraically into a
fixed point form and try to compute solutions with the fixed point iteration. In
order to obtain an approximation for the fixed point, transform the equations
first to h(x) = g(x), where h are g well known and easy to sketch functions
and read off approximations for the intersection points.

a) 3x− cosx = 0

b) 2 sin x+ ex = 0

c) x ln x− 1 = 0

d) x+
√
x = 1 + x2

e) 3x2 + tan x = 0

Problem 5.7. Determine analytically the fixed point that is computed by
the following iterations, and examine the rate of convergence:

a) x0 = 1, xk+1 = 0.2(4xk +
a
xk

)

b) x0 = 1, xk+1 = 0.5(xk +
a
xk

)

c) x0 = 1, xk+1 = xk(x
2
k + 3a)/(3x2

k + a)

Problem 5.8. What is the numerical value of the following expressions?

a)1 +
1√

1 + 1√
1+···

b)
3

√
1 +

3

√
1 + 3

√
1 + · · ·

Problem 5.9. Sketch the polynomial P (x) = 2x3−5.2x2−4.1x+3.1 and
determine approximations for the roots graphically. By solving the equation
P (x) = 0 algebraically for the unknown in the terms with x, x2 and x3,

254 NONLINEAR EQUATIONS

respectively, one obtains three fixed point forms. Examine which of them can
be used to compute which root and compute the roots to machine precision.

Problem 5.10. The iteration

x0 = 1, xk+1 = F (xk) = cosxk, k = 0, 1, . . .

converges to s = 0.7390851332 How many steps would be necessary
to compute s to 100 decimal digits? Predict the number and check it using
multiple precision arithmetic with Maple.

Problem 5.11. The function f(x) = xex−1 has only one zero at x ≈ 0.5.
Consider the fixed point form

x = x+ kf(x) =: F (x), (5.107)

and determine k such that F ′(0.5) = 0. Then compute the zero using Iteration
(5.107).

Problem 5.12. Let x = F (x) be a fixed point form for which the sequence
{xk} diverges, because |F ′(s)| > 1. Prove that then the fixed point form

x = F [−1](x)

generates a locally convergent sequence to the fixed point s of x = F (x).
As an application, compute the first positive solution of x − tanx = 0.

The fixed point form x = tan(x) does not converge, however

x = arctan(x) + π

generates a convergent sequence.

Problem 5.13. The equation of Problem 5.3,

x∫
0

e−t2dt = 0.5,

can be solved with the fixed point form

x = x+ 0.5−
x∫

0

e−t2dt.

Why is it convergent?

Problem 5.14. The equation

x4 − 6x3 + 12x2 − 10x+ 3 = 0

Problems 255

has a solution for x = 1. Analyze the convergence of Newton’s iteration to
that zero.

Problem 5.15. Consider the fixed point iteration xk+1 = F (xk), where

F (x) = αx+ 1, 0 < α < 1.

Using (5.34), determine the function g for which Newton’s method leads to an
equivalent iteration. Does this Newton’s method not converge quadratically?
Explain.

Problem 5.16. Divide the polynomial P4(x) = 2x4 − 24x3 + 100x2 −
168x + 93 by the linear factors (x − z) for z = 1, 2, 3, 4, 5. Write down the
calculations using Horner’s scheme (Equation 5.62). What are the remain-
ders r and the resulting coefficients for the polynomial P3(x) in the equation
P4(x) = (x− z)P3(x) + r?

Problem 5.17. Solve the following equations using Newton’s and Hal-
ley’s method in multiple precision (use Digits := 1000) arithmetic using
Maple. Print consecutive iterates and observe the convergence.

a) x+ ex = 0

b) ln(x) = cos(x)

Problem 5.18. We consider again Problem 5.3: find x such that

f(x) =

∫ x

0

e−t2dt− 0.5 = 0.

Since a function evaluation is expensive (summation of the Taylor series) but
the derivatives are cheap to compute, a higher order method is appropriate.
Solve this equation with Newton’s and Halley’s methods.

Problem 5.19. In a triangle we know that the angle β is twice the angle
α. Furthermore, the height hc = 5 and the radius of the inscribed circle is
ρ = 2 (see Figure 5.17). Determine the edges of the triangle.

Figure 5.17. Problem 5.19

256 NONLINEAR EQUATIONS

Problem 5.20. We are given the area F = 12 of a right-angled triangle
and the section p = 2 of the hypotenuse (see Figure 5.18). Compute the edges
of the triangle.

F

q p

hc

Figure 5.18. Problem 5.20

Problem 5.21. A truck is pulling an oil tank that has the shape of a
cylinder with radius r = 1.2m and length l = 5m. What is the height of the
oil level when the tank is filled to one quarter?

Problem 5.22. A pipe of radius r = 4cm is suspended on a rope of
length L = 30cm (see Figure 5.19). What is the distance h of the pipe from
the ceiling?

C

h

x
B

Figure 5.19. Pipe problem

Problem 5.23. Find a such that

∫ 1

0

eatdt = 2.

Problem 5.24. Let p = 0.9 and {aj} = {0.1, 0.5, 1.0, 0.2, 5.0, 0.3, 0.8}.
We are looking for x > 0 such that

n∏
j=1

(1 + xaj) = 1 + p.

Hint: by taking the logarithm, one gets the equation

f(x) =
n∑

j=1

ln(1 + xaj)− ln(1 + p) = 0,

Problems 257

which can be solved by Newton’s method. Discuss f ′′(x) and find an elegant
termination criterion that makes use of monotonicity.

Problem 5.25. Use Halley’s method and write a Matlab function to
compute the square root of a number. Invent an elegant termination criterion.

Problem 5.26. The iteration (Newton with the wrong sign!):

xk+1 = xk +
f(xk)

f ′(xk)

strangely converges to a pole of the function f . Why?

Problem 5.27. Write aMatlab function to compute a zero with Müller’s
method. Study empirically the convergence.

Hint: Use Maple to compute the coefficients of the quadratic equations.
The naive approach will not be numerically stable! Consult [69] on page 198
for a good implementation. It is important to compute the correction for the
next iterate and not directly the new iterate.

Problem 5.28. Derive another iteration method (Euler’s method [138])
by approximating f(x) locally by a Taylor polynomial of order 2 (thus using
the function values f(xk), f

′(xk) and f ′′(xk)). Write the resulting iteration
in the form of Theorem 5.2 and, by doing, so prove that the sequence it
generates converges cubically.

Problem 5.29. Ostrowski’s method [99]: Show that the fixed point iter-
ation

xk+1 = xk − f(xk)√
f ′(xk)2 − f(xk)f ′′(xk)

also generates cubically converging sequences.

Problem 5.30. Derive yet another iteration method (quadratic inverse
interpolation) by approximating the inverse function f [−1] by a Taylor poly-
nomial of degree two in y. Use again the function values f(xk), f

′(xk) and
f ′′(xk)) and remember how they are related to the derivatives of the inverse
function.

Problem 5.31. Computing zeros with inverse interpolation: We want to
solve f(x) = 0. Let fi = f(xi), i = 0, 1, 2. Interpolate the data

y f0, f1, f2
x x0, x1, x2

(5.108)

by a polynomial p of degree two in the variable y, x = p(y) with xk = p(fk),
k = 0, 1, 2. The new iterate is x3 = p(0).

Hint: The simplest algorithm here is to use the Aitken-Neviile scheme
for the interpolation (see Section 4.2.7).

258 NONLINEAR EQUATIONS

The method can be generalized using not only three but all computed
points, thus increasing the degree of the polynomial in each iteration. See
problem 4.4 in Chapter 4.

Problem 5.32. Use bisection to create the following table:

F 0 0.1π 0.2π . . . π
h 0 ? ? . . . 2

where the function F (h) is given by

F (h) = π − 2 arccos
h

2
+ h

√
1−
(
h

2

)2

.

Problem 5.33. (Newton’s method in one dimension)

1. Implement Newton’s method in Matlab.

2. Use Newton’s method to find a root of the function f(x) = 1/x+lnx−2,
x > 0. List the correct number of digits at each iteration; notice the
rate at which these correct digits increase. What kind of convergence is
this (e.g. linear, quadratic, etc)?

3. Use Newton’s method to find the zero of the function f(x) = x3. What
kind of convergence is this? Justify your answer.

4. Use Newton’s method to find the zero of the function f(x) = arctan x.
Experiment with different starting values and notice the behavior of the
algorithm. State what values yield convergence and divergence and try
to determine a value which leads to oscillation. (Hint: Bisection can
be used for the last part.)

Problem 5.34. Number conversions: write a program to convert num-
bers given in base B1 to numbers in base B2. Hint: use the functions
BaseB2Decimal and Decimal2BaseB.

Problem 5.35. The equation cos(x)+sin(2x) = −0.5 can be transformed

using sin(2x) = 2 sin x cosx and cosx =
√

1− sin2 x with the change of vari-
able z = sin x to a polynomial equation of degree 4. Solve this equation with
one of the methods discussed and compute all the solutions of the original
equation.

Problem 5.36. In a right-angled triangle (γ = 90◦) the edge c measures
5cm. The bisector of the angle α intersects the edge a in point P . The
segment PC has length 1cm. Compute the edge lengths a and b. Transform
the equation to a polynomial equation using an appropriate substitution an
solve this equation using Matlab’s function root.

Problems 259

Problem 5.37. Write a Maple program for Laguerre’s method and
compute a root of the polynomial

−z47 + z45 + z44 + z43 + z42 + z41 − z40 + 1

to 250 digits. Start with z0 = 2

Problem 5.38. Prove that Laguerre’s method is a method that generates
cubically convergent sequences for simple zeros.

Problem 5.39. Write a Matlab function to compute all the zeros of a
polynomial using Laguerre’s method.

Problem 5.40. This problems shows what can be meant by starting
values in the neighborhood of a fixed point. Compute with Newton’s iteration
the only zero of the function

f(x) =
11
√

x11 − 1 + 0.5 + 0.05 sin(x/100).

Newton’s iteration will only converge if you choose very good starting values.
Hint: Program the function as

f(x) = sign(x11 − 1) 11
√

|x11 − 1|+ 0.5 + 0.05 sin(x/100)

and compute the zero first by bisection. Notice that the derivative is non-
negative.

Problem 5.41. For the general Taylor expansion of a function f :
R

n −→ R
m, estimate the remainder term R(h) in (5.92) using Cauchy–

Schwarz several times.

Problem 5.42. Compute the intersection points of an ellipsoid with a
sphere and a plane. The ellipsoid has the equation

(x1

3

)2
+
(x2

4

)2
+
(x3

5

)2
= 3.

The plane is given by x1 − 2x2 + x3 = 0 and the sphere has the equation
x2
1 + x2

2 + x2
3 = 49

1. How many solutions do you expect for this problem?

2. Solve the problem with the solve and fsolve commands from Maple.

3. Write a Matlab script to solve the three equations with Newton’s
method. Vary the initial values so that you get all the solutions.

Chapter 6. Least Squares Problems

A basic problem in science is to fit a model to observa-
tions subject to errors. It is clear that the more obser-
vations that are available, the more accurately will it be
possible to calculate the parameters in the model. This
gives rise to the problem of “solving” an overdetermined
linear or nonlinear system of equations. It can be shown
that the solution which minimizes a weighted sum of the
squares of the residual is optimal in a certain sense.

Åke Björck, Numerical Methods for Least Squares Prob-
lems, SIAM, 1996.

Least squares problems appear very naturally when one would like to estimate
values of parameters of a mathematical model from measured data, which are
subject to errors (see quote above). They appear however also in other con-
texts, and form an important subclass of more general optimization problems,
see Chapter 12. After several typical examples of least squares problems, we
start in Section 6.2 with the linear least squares problem and the natural
solution given by the normal equations. There were two fundamental contri-
butions to the numerical solution of linear least squares problems in the last
century: the first one was the development of the QR factorization by Golub
in 1965, and the second one was the implicit QR algorithm for computing
the singular value decomposition (SVD) by Golub and Reinsch (1970). We
introduce the SVD, which is fundamental for the understanding of linear
least squares problems, in Section 6.3. We postpone the description of the
algorithm for its computation to Chapter 7, but use the SVD to study the
condition of the linear least squares problem in Section 6.4. This will show
why the normal equations are not necessarily a good approach for solving
linear least squares problems, and motivates the use of orthogonal transfor-
mations and the QR decomposition in Section 6.5. Like in optimization, least
squares problems can also have constraints. We treat the linear least squares
problem with linear constraints in full detail in Section 6.6, and a special
class with nonlinear constraints in Section 6.7. We then turn to nonlinear
least squares problems in Section 6.8, which have to be solved by iteration.
We show classical iterative methods for such problems, and like in the case of
nonlinear equations, linear least squares problems arise naturally at each iter-
ation. We conclude this chapter with an interesting example of least squares
fitting with piecewise functions in Section 6.9. The currently best and most
thorough reference for least squares methods is the book by Åke Björck [9].

W. Gander et al., Scientific Computing - An Introduction using Maple and MATLAB,

Texts in Computational Science and Engineering 11,
DOI 10.1007/978-3-319-04325-8 6,

© Springer International Publishing Switzerland 2014

262 LEAST SQUARES PROBLEMS

6.1 Introductory Examples

We start this chapter with several typical examples leading to least squares
problems.

Example 6.1. Measuring a road segment (Stiefel in his lectures at ETH1).

A x1 B x2 C x3 D

Assume that we have performed 5 measurements,

AD = 89m, AC= 67m, BD = 53m, AB = 35m und CD = 20m,

and we want to determine the length of the segments x1 = AB, x2 = BC und
x3 = CD.

According to the observations we get a linear system with more equations
than unknowns:

x1 + x2 + x3 = 89
x1 + x2 = 67
x2 + x3 = 53

x1 = 35
x3 = 20

⇐⇒ Ax = b, A =

⎛
⎜⎜⎜⎜⎝

1 1 1
1 1 0
0 1 1
1 0 0
0 0 1

⎞
⎟⎟⎟⎟⎠ , b =

⎛
⎜⎜⎜⎜⎝

89
67
53
35
20

⎞
⎟⎟⎟⎟⎠.

Notice that if we use the last three equations then we get the solution x1 = 35,
x2 = 33 and x3 = 20. However, if we check the first two equations by inserting
this solution we get

x1 + x2 + x3 − 89 = −1,
x1 + x2 − 67 = 1.

So the equations contradict each other because of the measurement errors,
and the over-determined system has no solution.

A remedy is to find an approximate solution that satisfies the equations
as well as possible. For that purpose one introduces the residual vector

r = b−Ax.

One then looks for a vector x that minimizes in some sense the residual
vector.

Example 6.2. The amount f of a component in a chemical reaction
decreases with time t exponentially according to:

f(t) = a0 + a1e
−bt.

1Nehmen wir an, der Meister schickt seine zwei Lehrlinge aus, Strassenstücke zu ver-
messen. . .

Introductory Examples 263

If the material is weighed at different times, we obtain a table of measured
values:

t t1 · · · tm
y y1 · · · ym

The problem now is to estimate the model parameters a0, a1 and b from these
observations. Each measurement point (ti, yi) yields an equation:

f(ti) = a0 + a1e
−bti ≈ yi, i = 1, . . . m. (6.1)

If there were no measurement errors, then we could replace the approximate
symbol in (6.1) by an equality and use three equations from the set to de-
termine the parameters. However, in practice, measurement errors are in-
evitable. Furthermore, the model equations are often not quite correct and
only model the physical behavior approximately. The equations will there-
fore in general contradict each other and we need some mechanism to balance
the measurement errors, e.g. by requiring that (6.1) be satisfied as well as
possible.

Example 6.3. The next example comes from coordinate metrology. Here
a coordinate measuring machine measures two sets of points on two orthog-
onal lines (see Figure 6.1). If we represent the line g1 by the equations

x

x

x x

x

o

o

o o

o

o

g1

g2

Figure 6.1. Measured points on two orthogonal lines.

g1 : c1 + n1x+ n2y = 0, n2
1 + n2

2 = 1, (6.2)

then n = (n1, n2)
� is the normal vector on g1. The normalizing equation

n2
1 + n2

2 = 1 ensures the uniqueness of the parameters c, n1 and n2.
If we insert the coordinates of a measured point Pi = (xi, yi) into Equation

(6.2), we obtain the residual ri = c1+n1xi+n2yi and di = |ri| is the distance
of Pi from g1. The equation of a line g2 orthogonal to g1 is

g2 : c2 − n2x+ n1y = 0, n2
1 + n2

2 = 1. (6.3)

264 LEAST SQUARES PROBLEMS

If we now insert the coordinates of q measured points Qi into (6.3) and of
p points Pi into Equation (6.2), we obtain the following system of equations
for determining the parameters c1, c2, n1 and n2:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 xP1
yP1

1 0 xP2
yP2

...
...

...
...

1 0 xPp
yPp

0 1 yQ1
−xQ1

0 1 yQ2
−xQ2

...
...

...
...

0 1 yQq
−xQq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

c1
c2
n1

n2

⎞
⎟⎟⎠ ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

subject to n2
1 + n2

2 = 1.

(6.4)
Note the difference between the least squares equations and the constraint:
whereas equations of the type g1 or g2 only need to be satisfied approximately,
the constraint n2

1 + n2
2 = 1 must be satisfied exactly by the solution.

Example 6.4. In control theory, one often considers a system like the
one in Figure 6.2. The vectors u and y are the measured input and output
signals at various points in time. Let yt+i = y(t + iΔt). A simple model
assumes a linear relationship between the output and the input signal of the
form

yt+n+an−1yt+n−1+· · ·+a0yt ≈ bn−1ut+n−1+bn−2ut+n−2+· · ·+b0ut. (6.5)

u y
S

Figure 6.2. System with input u and output y

The problem is to determine the parameters ai and bi from measurements
of u and y. For each time step we obtain a new equation of the form (6.5).
If we write them all together, we get a system of linear equations:

⎛
⎜⎜⎝

yn−1 yn−2 · · · y0 −un−1 −un−2 · · · −u0

yn yn−1 · · · y1 −un −un−1 · · · −u1

yn+1 yn · · · y2 −un+1 −un · · · −u2

...
...

...
...

...
...

...
...

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an−1

an−2

...
a0

bn−1

bn−2

...
bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≈

⎛
⎜⎜⎝

−yn
−yn+1

−yn+2

...

⎞
⎟⎟⎠

(6.6)

Introductory Examples 265

A matrix is said to be Toeplitz if it has constant elements on the diagonals.
Here in (6.6), the matrix is composed of two Toeplitz matrices. The number
of equations is not fixed, since one can generate new equations simply by
adding a new measurement.

Example 6.5. In robotics and many other applications, one often en-
counters the Procrustes problem or one of its variants (see [45], Chapter
23). Consider a given body (e.g., a pyramid like in Figure 6.3) and a copy
of the same body. Assume that we know the coordinates of m points xi on

−2

−1

0

1

2

0
1

2
3

4
5

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 6.3. Procrustes or registration problem

the first body, and that the corresponding points ξi have been measured on the
other body in another position in space. We would like to rotate and translate
the second body so that it can be superimposed onto the first one as well as
possible. In other words, we seek an orthogonal matrix Q (the product of three
rotations) and a translation vector t such that ξi ≈ Qxi + t for i = 1, . . . ,m.

The above examples are illustrations of different classes of approximation
problems. For instance, in Examples 6.1 and 6.4, the equations are linear.
However, in Example 6.2 (chemical reactions), the system of equations (6.1)
is nonlinear. In the metrology example 6.3, the equations are linear, but they
are subject to the nonlinear constraint n2

1 + n2
2 = 1. Finally, we have also

an nonlinear problem in Example 6.5, and it is not clear how to parametrize
the unknown matrix Q. Nonetheless, in all the above examples, we would
like to satisfy some equations as well as possible; this is indicated by the
approximation symbol “≈” and we have to define what we mean by that.

There are also least squares problems that are not connected with mea-
surements like in the following example:

Example 6.6. We consider two straight lines g and h in space. Assume

266 LEAST SQUARES PROBLEMS

they are given by a point and a direction vector:

g : X = P + λt
h : Y = Q+ μs

If they intersect each other, then there must exist a λ and a μ such that

P + λt = Q+ μs. (6.7)

Rearranging (6.7) yields⎛
⎝ t1 −s1

t2 −s2
t3 −s3

⎞
⎠(λ

μ

)
=

⎛
⎝ Q1 − P1

Q2 − P2

Q3 − P3

⎞
⎠ (6.8)

a system of three linear equations with two unknowns. If the equations are
consistent, then we can use two of them to determine the intersection point.
If, however, we have a pair of skew lines (i.e., if (6.8) has no solution) then
we may be interested in finding the the point X on g and Y on h which are
closest, i.e. for which the distance vector r = X − Y has minimal length
‖r‖22 −→ min. Thus, we are interested in solving (6.8) as a least squares
problem.

6.2 Linear Least Squares Problem and the Normal
Equations

Linear least squares problems occur when solving overdetermined linear sys-
tems, i.e. we are given more equations than unknowns. In general, such
an overdetermined system has no solution, but we may find a meaningful
approximate solution by minimizing some norm of the residual vector.

Given a matrix A ∈ R
m×n withm > n and a vector b ∈ R

m we are looking
for a vector x ∈ R

n for which the norm of the residual r is minimized, i.e.

‖r‖ = ‖b− Ax‖ −→ min . (6.9)

The calculations are simplest when we choose the 2-norm. Thus we will
minimize the square of the length of the residual vector

‖r‖22 = r21 + r22 + · · · + r2m −→ min . (6.10)

To see that this minimum exists and is attained by some x ∈ R
n, note that

E = {b − Ax | x ∈ R
n} is a non-empty, closed and convex subset of Rm.

Since Rm equipped with the Euclidean inner product is a Hilbert space, [108,
Thm 4.10] asserts that E contains a unique element of smallest norm, so there
exists an x ∈ R

n (not necessarily unique) such that ‖b−Ax‖2 is minimized.
The minimization problem (6.10) gave rise to the name Least Squares

Method. The theory was developed independently by Carl Friedrich

Linear Least Squares Problem and the Normal Equations 267

Gauss in 1795 and Adrien-Marie Legendre who published it first in
1805. On January 1, 1801, using the least squares method, Gauss made
the best prediction of the orbital positions of the planetoid Ceres based on
measurements of G. Piazzi, and the method became famous because of this.

We characterize the least squares solution by the following theorem.

Theorem 6.1. (Least Squares Solution) Let

S = {x ∈ R
n with ‖b− Ax‖2 −→ min}

be the set of solutions and let rx = b− Ax denote the residual for a specific
x. Then

x ∈ S ⇐⇒ A�rx = 0 ⇐⇒ rx ⊥ R(A), (6.11)

where R(A) denotes the subspace spanned by the columns of A.
Proof. We prove the first equivalence, from which the second one follows

easily.
“⇐”: Let A�rx = 0 and z ∈ R

n be an arbitrary vector. It follows that
rz = b− Az = b−Ax+ A(x− z), thus rz = rx + A(x− z). Now

‖rz‖22 = ‖rx‖22 + 2(x− z)�A�rx + ‖A(x− z)‖22.
But A�rx = 0 and therefore ‖rz‖2 ≥ ‖rx‖2. Since this holds for every z
then x ∈ S.

“⇒”: We show this by contradiction: assume A�rx = z 	= 0. We consider
u = x+ εz with ε > 0:

ru = b− Au = b−Ax− εAz = rx − εAz.

Now ‖ru‖22 = ‖rx‖22 − 2εz�A�rx + ε2‖Az‖22. Because A�rx = z we obtain

‖ru‖22 = ‖rx‖22 − 2ε‖z‖22 + ε2‖Az‖22.
We conclude that, for sufficient small ε, we can obtain ‖ru‖22 < ‖rx‖22. This
is a contradiction, since x cannot be in the set of solutions in this case. Thus
the assumption was wrong, i.e., we must have A�rx = 0, which proves the
first equivalence in (6.11). �

The least squares solution has an important statistical property which
is expressed in the following Gauss-Markoff Theorem. Let the vector b of
observations be related to an unknown parameter vector x by the linear
relation

Ax = b+ ε, (6.12)

where A ∈ R
m×n is a known matrix and ε is a vector of random errors. In

this standard linear model it is assumed that the random variables εj are
uncorrelated and all have zero mean and the same variance.

Theorem 6.2. (Gauss-Markoff) Consider the standard linear model
(6.12). Then the best linear unbiased estimator of any linear function c�x is
the least square solution of ‖Ax− b‖22 −→ min.

268 LEAST SQUARES PROBLEMS

Proof. Consult a statistics textbook, for example [94, p. 181]. �
Equation (6.11) can be used to determine the least square solution. From
A�rx = 0 it follows that A�(b−Ax) = 0, and we obtain the Normal Equations
of Gauss:

A�Ax = A�b. (6.13)

Example 6.7. We return to Example 6.1 and solve it using the Normal
Equations.

A�Ax = A�b ⇐⇒
⎛
⎝ 3 2 1

2 3 2
1 2 3

⎞
⎠
⎛
⎝ x1

x2

x3

⎞
⎠ =

⎛
⎝ 191

209
162

⎞
⎠ .

The solution of this 3× 3 system is

x =

⎛
⎝ 35.125

32.500
20.625

⎞
⎠ .

The residual for this solution becomes

r = b− Ax =

⎛
⎜⎜⎜⎜⎝

0.7500
−0.6250
−0.1250
−0.1250
−0.6250

⎞
⎟⎟⎟⎟⎠ with ‖r‖2 = 1.1726.

Notice that for the solution x = (35, 33, 20)� obtained by solving the last three
equations we obtain a larger residual ‖r‖2 =

√
2 = 1.4142.

There is also a way to understand the normal equations geometrically
from (6.11). We want to find a linear combination of columns of the matrix
A to approximate the vector b. The space spanned by the columns of A is the
range of A, R(A), which is a hyperplane in R

m, and the vector b in general
does not lie in this hyperplane, as shown in Figure 6.4. Thus, minimizing
‖b−Ax‖2 is equivalent to minimizing the length of the residual vector r, and
thus the residual vector has to be orthogonal to R(A), as shown in Figure
6.4.

The normal equations (6.13) concentrate data since B = A�A is a small
n × n matrix, whereas A is m × n. The matrix B is symmetric, and if
rank(A) = n, then it is also positive definite. Thus, the natural way to solve
the normal equations is by means of the Cholesky decomposition (cf. Section
3.4.1):

1. Form B = A�A (we need to compute only the upper triangle since B
is symmetric) and compute c = A�b.

2. Decompose B = R�R (Cholesky) where R is an upper triangular ma-
trix.

Singular Value Decomposition (SVD) 269

Ax

b
r = b−Ax

R(A)

Figure 6.4. r is orthogonal to R(A)

3. Compute the solution by forward- (R�y = c) and back-substitution
(Rx = y).

We will see later on that there are numerically preferable methods for
computing the least squares solution. They are all based on the use of or-
thogonal matrices (i.e. matrices B for which B�B = I).

Notice that when solving linear systems Ax = b with n equations and n
unknowns by Gaussian elimination, reducing the system to triangular form,
we make use of the fact that equivalent systems have the same solutions :

Ax = b ⇐⇒ BAx = Bb if B is nonsingular.

For a system of equations Ax ≈ b to be solved in the least squares sense,
it no longer holds that multiplying by a nonsingular matrix B leads to an
equivalent system. This is because the transformed residual Br may not have
the same norm as r itself. However, if we restrict ourselves to the class of
orthogonal matrices,

Ax ≈ b ⇐⇒ BAx ≈ Bb if B is orthogonal.

then the least squares problems remain equivalent, since r = b − Ax and
Br = Bb−BAx have the same length,

‖Br‖22 = (Br)�(Br) = r�B�Br = r�r = ‖r‖22.
Orthogonal matrices and the matrix decompositions containing orthogonal
factors therefore play an important role in algorithms for the solution of
linear least squares problems. Often it is possible to simplify the equations
by pre-multiplying the system by a suitable orthogonal matrix.

6.3 Singular Value Decomposition (SVD)

The singular value decomposition (SVD) of a matrix A is a very useful tool
in the context of least squares problems. It is also very helpful for analyzing
properties of a matrix. With the SVD one x-rays a matrix!

270 LEAST SQUARES PROBLEMS

Theorem 6.3. (Singular Value Decomposition, SVD) Let A ∈
R

m×n with m ≥ n. Then there exist orthogonal matrices U ∈ R
m×m and

V ∈ R
n×n and a diagonal matrix Σ = diag(σ1, . . . , σn) ∈ R

m×n with σ1 ≥
σ2 ≥ . . . ≥ σn ≥ 0, such that

A = UΣV�

holds. The column vectors of U = [u1, . . . ,um] are called the left singular
vectors and similarly V = [v1, . . . ,vn] are the right singular vectors. The
values σi are called the singular values of A. If σr > 0 is the smallest non-
zero singular value, then the matrix A has rank r.

Proof. The 2-norm of A is defined by ‖A‖2 = max‖x‖2=1 ‖Ax‖2. Thus
there exists a vector x with ‖x‖2 = 1 such that

z = Ax, ‖z‖2 = ‖A‖2 =: σ.

Let y := z/‖z‖2. This yields Ax = σy with ‖x‖2 = ‖y‖2 = 1.
Next we extend x into an orthonormal basis of R

n. If V ∈ R
n×n is

the matrix containing the basis vectors as columns, then V is an orthogonal
matrix that can be written as V = [x, V1], where V�

1 x = 0. Similarly, we can
construct an orthogonal matrix U ∈ R

m×m satisfying U = [y, U1], U
�
1 y = 0.

Now

A1 = U�AV =

[
y�

U�
1

]
A [x, V1] =

[
y�Ax y�AV1

U�
1 Ax U�

1 AV1

]
=

[
σ w�

0 B

]
,

because y�Ax = y�σy = σy�y = σ and U�
1 Ax = σU�

1 y = 0 since U1 ⊥ y.
We claim that w� := y�AV1 = 0. In order to prove this, we compute

A1

(
σ

w

)
=

(
σ2 + ‖w‖22

Bw

)

and conclude from that equation that∥∥∥∥A1

(
σ

w

)∥∥∥∥
2

2

=
(
σ2 + ‖w‖22

)2
+ ‖Bw‖22 ≥ (σ2 + ‖w‖22

)2
.

Now since V and U are orthogonal, ‖A1‖2 = ‖U�AV ‖2 = ‖A‖2 = σ holds
and

σ2 = ‖A1‖22 = max
‖x‖2 �=0

‖A1x‖22
‖x‖22

≥
∥∥A1

(
σ
w

)∥∥2
2∥∥(σ

w

)∥∥2
2

≥
(
σ2 + ‖w‖22

)2
σ2 + ‖w‖22

.

The last equation reads
σ2 ≥ σ2 + ‖w‖22,

and we conclude that w = 0. Thus we have obtained

A1 = U�AV =

[
σ 0
0 B

]
.

Singular Value Decomposition (SVD) 271

We can now apply the same construction to the sub-matrix B and thus finally
end up with a diagonal matrix. �

Although the proof is constructive, the singular value decomposition is not
usually computed in this way. An efficient numerical algorithm was designed
by Golub and Reinsch [148]. They first transform the matrix by orthogonal
Householder transformations to bidiagonal form. Then the bidiagonal matrix
is further diagonalized in a iterative process by a variant of the QR Algorithm.
For details see Section 7.7 in Chapter 7 on eigenvalues.

If we write the equation A = UΣV� in partitioned form, in which Σr

contains only the nonzero singular values, we get

A = [U1, U2]

(
Σr 0
0 0

)
[V1, V2]

� (6.14)

= U1ΣrV
�
1 (6.15)

=
r∑

i=1

σi uiv
�
i . (6.16)

Equation (6.14) is the full decomposition with square matrices U and V .
When making use of the zeros we obtain the “economy” or “reduced” version
of the SVD given in (6.15). In Matlab there are two variants to compute
the SVD:

[U S V]=svd(A) % gives the full decomposition

[U S V]=svd(A,0) % gives an m by n matrix U

The call svd(A,0) computes a version between full and economic with a non-
square matrix U ∈ R

m×n. This form is sometimes referred to as the “thin
SVD”.

Example 6.8. The matrix A has rank one and its economy SVD is given
by

A =

⎛
⎜⎜⎝

1 1 1
1 1 1
1 1 1
1 1 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
2
1
2
1
2
1
2

⎞
⎟⎟⎟⎠ (2

√
3)
(

1√
3

1√
3

1√
3

)
.

With Matlab we get the thin version

>> [U,S,V]=svd(ones(4,3),0)

U =

-0.5000 0.8660 -0.0000

-0.5000 -0.2887 -0.5774

-0.5000 -0.2887 0.7887

-0.5000 -0.2887 -0.2113

S =

3.4641 0 0

0 0.0000 0

272 LEAST SQUARES PROBLEMS

0 0 0

V =

-0.5774 0.8165 0

-0.5774 -0.4082 -0.7071

-0.5774 -0.4082 0.7071

Theorem 6.4. If A = UΣV�, then the column vectors of V are the eigen-
vectors of the matrix A�A associated with the eigenvalues σ2

i , i = 1, . . . , n.
The column vectors of U are the eigenvectors of the matrix AA�.

Proof.

A�A = (UΣV�)�UΣV� = V DV�, D = Σ�Σ = diag(σ2
1, . . . , σ

2
n). (6.17)

Thus A�AV = V D and σ2
i is an eigenvalue of A�A. Similarly

AA� = UΣV�(UΣV�)� = UΣΣ�U�, (6.18)

where ΣΣ� = diag(σ2
1, . . . , σ

2
n, 0, . . . , 0) ∈ R

m×m. �

Theorem 6.5. Let A = UΣV�. Then

‖A‖2 = σ1 and ‖A‖F =

√√√√ n∑
i=1

σ2
i .

Proof. Since U and V are orthogonal, we have ‖A‖2 = ‖UΣV�‖2 =
‖Σ‖2. Now

‖Σ‖22 = max
‖x‖2=1

‖Σx‖22 = max
‖x‖2=1

(σ2
1x

2
1 + · · ·+ σ2

nx
2
n) ≤ σ2

1(x
2
1 + · · ·+ x2

n) = σ2
1,

and since the maximum is attained for x = e1 it follows that ‖A‖2 = σ1.
For the Frobenius norm we have

‖A‖F =

√∑
i,j

a2ij =
√
tr(A�A) =

√√√√ n∑
i=1

σ2
i ,

since the trace of a matrix equals the sum of its eigenvalues. �
In (6.16), we have decomposed the matrix A as a sum of rank-one matrices

of the form uiv
�
i . Now we have

‖uiv
�
i ‖22 = max

‖x‖2=1
‖uiv

�
i x‖22 = max

‖x‖2=1
|v�

i x|2‖ui‖22 = max
‖x‖2=1

|v�
i x|2,

and since

max
‖x‖2=1

|v�
i x|2 = max

‖x‖2=1
(‖vi‖2‖x‖2 cosα)2 = cos2 α,

Singular Value Decomposition (SVD) 273

where α is the angle between the two vectors, we obtain

max
‖x‖2=1

‖v�
i x‖22 = ‖v�

i vi‖22 = 1.

We see from (6.16) that the matrix A is decomposed into a weighted sum
of matrices which have all the same norm, and the singular values are the
weights. The main contributions in the sum are the terms with the largest
singular values. Therefore we may approximate A by a lower rank matrix by
dropping the smallest singular values, i.e., replacing their values by zero. In
fact we have the

Theorem 6.6. Let A ∈ R
m×n have rank r and let A = UΣV�. Let M

denote the set of m× n matrices with rank p < r. The solution of

min
X∈M

‖A−X‖2

is given by Ap =
∑p

i=1 σiuiv
�
i and we have

min
X∈M

‖A−X‖2 = ‖A− Ap‖2 = σp+1.

Proof. We have U�ApV = diag(σ1, . . . , σp, 0, . . . , 0) thus Ap ∈ M and

‖A−Ap‖2 = σp+1.

Let B ∈ M and let the linear independent vectors x1, . . . ,xn−p span the null
space of B, so that Bxj = 0. The two sets of vectors {x1, . . . ,xn−p} and
{v1, . . . ,vp+1} contain altogether n+1 vectors. Hence, they must be linearly
dependent, so we can write

α1x1 + α2x2 + · · ·+ αn−pxn−p + β1v1 + β2v2 + · · · + βp+1vp+1 = 0.

Moreover, not all αi = 0, otherwise the vectors vi would be linearly depen-
dent! Denote by

h = −α1x1 − α2x2 − · · · − αn−pxn−p = β1v1 + β2v2 + · · ·+ βp+1vp+1 	= 0,

and form the unit vector z = h/‖h‖2 = γ1v1 + γ2v2 + · · ·+ γp+1vp+1.
Then Bz = 0, z�z = γ2

1 + · · · + γ2
p+1 = 1 and

Az = UΣV�z =

p+1∑
i=1

σiγiui.

It follows that

‖A−B‖22 ≥ ‖(A−B)z‖22 = ‖Az‖22 =

p+1∑
i=1

σ2
i γ

2
i

≥ σ2
p+1

p+1∑
i=1

γ2
i = σ2

p+1‖z‖22 = σ2
p+1.

274 LEAST SQUARES PROBLEMS

Thus, the distance from A to any other matrix in M is greater or equal to
the distance to Ap. This proves the theorem. �

6.3.1 Pseudoinverse

Definition 6.1. (Pseudoinverse) Let A = UΣV� be the singular value
decomposition with

Σ =

(
Σr

0

)
∈ R

m×n, Σr := diag(σ1, . . . , σr, 0, . . . , 0) ∈ R
n×n

with σ1 ≥ · · · ≥ σr > 0. Then the matrix A+ = V Σ+U� with

Σ+ = (Σ+
r 0) ∈ R

n×m, Σ+
r := diag(

1

σ1
, . . . ,

1

σr
, 0, . . . , 0) ∈ R

n×n (6.19)

is called the pseudoinverse of A.

We have discussed the SVD only for the case in which A ∈ R
m×n with

m ≥ n. This was mainly for simplicity, since the SVD exists for any matrix:
if A = UΣV�, then A� = V Σ�U� is the singular value decomposition of
A� ∈ R

n×m. Usually the SVD is computed such that the singular values are
ordered decreasingly. The representation A+ = V Σ+U� of the pseudoinverse
is thus already a SVD, except that the singular values 1

σ1
, · · · , 1

σr
are ordered

increasingly. By simultaneously permuting rows and columns one can reorder
the decomposition and bring it into standard form with decreasing elements
in Σ+.

Theorem 6.7. (Penrose Equations) Y = A+ is the only solution of
the matrix equations

(i) AY A = A (ii) Y AY = Y
(iii) (AY)� = AY (iv) (Y A)� = Y A

Proof. It is simple to verify that A+ is a solution: inserting the SVD
e.g. into (i), we get

AA+A = UΣV�V Σ+U�UΣV� = UΣΣ+ΣV� = UΣV� = A.

More challenging is to prove uniqueness. To do this, assume that Y is any

Singular Value Decomposition (SVD) 275

solution to (i)–(iv). Then

Y = Y AY because of (ii)

= (Y A)�Y = A�Y�Y because of (iv)

= (AA+A)�Y�Y = A�(A+)�A�Y�Y because of (i)

= A�(A+)�Y AY because of (iv)

= A�(A+)�Y = (A+A)�Y because of (ii)

= A+AY because of (iv)

= A+AA+AY because of (ii)

= A+(AA+)�(AY)� = A+(A+)�A�Y�A� because of (iii)

= A+(A+)�A� because of (i)

= A+(AA+)� = A+AA+ because of (iii)

Y = A+ because of (ii)

�

6.3.2 Fundamental Subspaces

There are four fundamental subspaces associated with a matrix A ∈ R
m×n:

Definition 6.2. (Fundamental Subspaces of a Matrix)

1. R(A) = {y|y = Ax, x ∈ R
n} ⊂ R

m is the range or column space.

2. R(A)⊥ the orthogonal complement of R(A).
If z ∈ R(A)⊥ then z�y = 0, ∀y ∈ R(A).

3. R(A�) = {z|z = A�y, y ∈ R
m} ⊂ R

n the row space.

4. N (A) = {x|Ax = 0} the null space.

Theorem 6.8. The following relations hold:

1. R(A)⊥ = N (A�). Thus R
m = R(A)⊕N (A�).

2. R(A�)⊥ = N (A). Thus R
n = R(A�)⊕N (A).

In other words, Rm can be written as a direct sum of the range of A and the
null space of A�, and an analogous result holds for R

n.
Proof. Let z ∈ R(A)⊥. Then for any x ∈ R

n, we have Ax ∈ R(A), so
by definition we have

0 = (Ax)�z = x�(A�z).

Since this is true for all x, it follows that A�z = 0, which means z ∈ N (A�)
and therefore R(A)⊥ ⊂ N (A�).

276 LEAST SQUARES PROBLEMS

On the other hand, let y ∈ R(A) and z ∈ N (A�). Then we have

y�z = (Ax)�z = x�(A�z) = x�0 = 0

which means that z ∈ R(A)⊥. Thus also N (A�) ⊂ R(A)⊥.
The second statement is verified in the same way. �
One way to understand the problem of finding least squares approxima-

tions is via projections onto the above subspaces. Recall that P : Rn → R
n is

a projector onto a subspace V ⊂ R
n if P 2 = P and R(P) = V . Additionally,

if P is symmetric, then it is an orthogonal projector. The following lemma
shows a few properties of orthogonal projectors.

Lemma 6.1. Let V 	= 0 be a non-trivial subspace of R
n. If P1 is an

orthogonal projector onto V , then ‖P1‖2 = 1 and P1v = v for all v ∈ V .
Moreover, if P2 is another orthogonal projector onto V , then P1 = P2.

Proof. We first show that P1v = v for all v ∈ V . Let 0 	= v ∈ V . Since
V = R(P1), there exists x ∈ R

n such that v = P1x. Thus,

P1v = P 2
1x = P1x = v.

Taking norms on both sides gives

‖P1v‖2 = ‖v‖2,

which implies ‖P1‖2 ≥ 1. To show that ‖P1‖2 = 1, let y ∈ R
n be arbitrary.

Then
‖P1y‖22 = y�P�

1 P1y = y�P 2
1 y = y�P1y.

The Cauchy–Schwarz inequality now gives

‖P1y‖22 ≤ ‖y‖2‖P1y‖2,
which shows, upon dividing both sides by ‖P1y‖2, that ‖P1y‖2 ≤ ‖y‖2.
Hence, we conclude that ‖P1‖2 = 1.

Now let P2 be another orthogonal projector onto V . To show equality of
the two projectors, we show that (P1 − P2)y = 0 for all y ∈ R

n. Indeed, we
have

‖(P1 − P2)y‖22 = yT (P1 − P2)
�(P1 − P2)y

= y�(P1 − P2)
2y

= y�(P1 − P1P2 − P2P1 + P2)y

= y�(I − P1)P2y + y�(I − P2)P1y. (6.20)

But for any v ∈ V , we have

(I − P1)v = v − P1v = v − v = 0,

Singular Value Decomposition (SVD) 277

and similarly for I − P2. Since P2y ∈ V , we have (I − P1)P2y = 0, so the
first term in (6.20) vanishes. Exchanging the roles of P2 and P1 shows that
the second term in (6.20) also vanishes, so P1 = P2. �

Thanks to the above lemma, we see that the orthogonal projector onto a
given V is in fact unique; we denote this projector by PV . With the help of the
pseudoinverse, we can describe orthogonal projectors onto the fundamental
subspaces of A.

Theorem 6.9. (Projectors Onto Fundamental Subspaces)

1. PR(A) = AA+ 2. PR(A�) = A+A
3. PN (A�) = I −AA+ 4. PN (A) = I − A+A

Proof. We prove only the first relation; the other proofs are similar. Be-
cause of Relation (iii) in Theorem 6.7 we have (AA+)� = AA+. Thus PR(A)

is symmetric. Furthermore (AA+)(AA+) = (AA+A)A+ = AA+ because of
(i). Thus PR(A) is symmetric and idempotent and is therefore an orthogonal
projector. Now let y = Ax ∈ R(A); then PR(A)y = AA+y = AA+Ax =
Ax = y. So elements in R(A) are projected onto themselves. Finally take
z ⊥ R(A) ⇐⇒ A�z = 0 then PR(A)z = AA+z = (AA+)�z = (A+)�A�z =
0. �

Note that the projectors can be computed using the SVD. Let U1 ∈ R
m×r,

U2 ∈ R
m×(n−r), V1 ∈ R

n×r, V2 ∈ R
n×(n−r) and Σr ∈ R

r×r in the following
SVD

A =
(
U1 U2

)(Σr 0
0 0

)(
V�
1

V�
2

)
.

Then inserting this decomposition into the expressions for the projectors of
Theorem 6.9 we obtain:

1. PR(A) = U1U
�
1 2. PR(A�) = V1V

�
1

3. PN (A�) = U2U
�
2 4. PN (A) = V2V

�
2

6.3.3 Solution of the Linear Least Squares Problem

We are now ready to describe the general solution for the linear least squares
problem. We are given a system of equations with more equations than
unknowns,

Ax ≈ b.

In general b will not be in R(A) and therefore the system will not have a
solution. A consistent system can be obtained if we project b onto R(A) :

Ax = AA+b ⇐⇒ A(x− A+b) = 0.

We conclude that x− A+b ∈ N (A). That means

x− A+b = (I − A+A)w

278 LEAST SQUARES PROBLEMS

where we have generated an element in N (A) by projecting an arbitrary
vector w onto it. Thus we have shown

Theorem 6.10. (General Least Squares Solution) The general
solution of the linear least squares problem Ax ≈ b is

x = A+b+ (I −A+A)w, w arbitrary. (6.21)

Using the expressions for projectors from the SVD we obtain for the general

solution

x = V1Σ
−1
r U�

1 b+ V2c (6.22)

where we have introduced the arbitrary vector c := V�
2 w. Notice that if we

calculate ‖x‖22 using e.g. (6.21), we obtain

‖x‖22 = ‖A+b‖22 + 2w� (I −A+A)�A+︸ ︷︷ ︸
=0

b+ ‖(I − A+A)w‖22

= ‖A+b‖22 + ‖(I − A+A)w‖22 ≥ ‖A+b‖22.

This calculation shows that any solution to the least squares problem must
have norm greater than or equal to that of A+b; in other words, the pseu-
doinverse produces the minimum-norm solution to the least squares problem
Ax ≈ b. Thus, we have obtained an algorithm for computing both the gen-
eral and the minimum norm solution of the linear least squares problem with
(possibly) rank deficient coefficient matrix:

Algorithm 6.1.
General solution of the linear least squares problem

Ax ≈ b

1. Compute the SVD: [U,S,V]=svd(A).

2. Make a rank decision, i.e. choose r such that σr > 0 and σr+1 = · · · =
σn = 0. This decision is necessary because rounding errors will prevent
the zero singular values from being exactly zero.

3. Set V1=V(:,1:r), V2= V(:,r+1:n), Sr=S(1:r,1:r), U1=U(:,1:r).

4. The solution with minimal norm is xm=V1*(Sr\U1’*b).

5. The general solution is x=xm+V2*c with an arbitrary c ∈ R
n−r.

If A has full rank (rank(A) = n) then the solution of the linear least
squares problem is unique:

x = A+b = V Σ+U�b.

Singular Value Decomposition (SVD) 279

The matrix A+ is called pseudoinverse because in the full rank case the
solution Ax ≈ b ⇒ x = A+b is the analogue of the solution x = A−1b of a
linear system Ax = b with nonsingular matrix A ∈ R

n×n .
The general least squares solution presented in Theorem 6.10 is also valid

for a consistent system of equations Ax = b where m ≤ n, i.e. an under-
determined linear system with fewer equations than unknowns. In this case
the x = V1Σ

−1
r U�

1 b solves the problem

min ‖x‖2 subject to Ax = b.

6.3.4 SVD and Rank

Consider the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1.9781 4.4460 −0.1610 −3.8246 3.8137
2.7237 −2.3391 2.3753 −0.0566 −4.1472
1.6934 −0.1413 −1.5614 −1.5990 1.7343
3.1700 −7.1943 −4.5438 6.5838 −1.1887
0.3931 −3.1482 3.1500 3.6163 −5.9936

−7.7452 2.9673 −0.1809 4.6952 1.7175
−1.9305 8.9277 2.2533 −10.1744 5.2708

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The singular values are computed by svd(A) as

σ1 = 20.672908496836218
σ2 = 10.575440102610981
σ3 = 8.373932796689537
σ4 = 0.000052201761324
σ5 = 0.000036419750608

and we can observe a gap between σ3 and σ4. The two singular values σ4

and σ5 are about 105 times smaller than σ3. Clearly the matrix A has rank
5. However, if the matrix elements comes from measured data and if the
measurement uncertainty is 5 · 10−5, one could reasonably suspect that A is
in fact a perturbed representation of a rank-3 matrix, where the perturbation
is due to measurement errors of the order of 5 · 10−5. Indeed, reconstructing
the matrix by setting σ4 = σ5 = 0 we get

[U,S,V]=svd(A);

S(4,4)=0; S(5,5)=0;

B=U*S*V’

We see no difference between A and B when using the Matlab-format short
because, according to Theorem 6.6, we have ‖A − B‖2 = σ4 = 5.2202 10−5.
Thus, in this case, one might as well declare that the matrix has numerical
rank 3.

In general, if there is a distinct gap between the singular values one can
define a threshold and remove small nonzero singular values which only occur

280 LEAST SQUARES PROBLEMS

because of the rounding effects of finite precision arithmetic or maybe because
of measurement errors in the data. The default tolerance in Matlab for the
rank command is tol=max(size(A))*eps(norm(A)). Smaller singular values
are considered to be zero.

There are full rank matrices whose singular values decrease to zero with
no distinct gap. It is well known that the Hilbert matrix is positive definite
(see Problem 7.1 in Chapter 7). The Matlab statement eig(hilb(14))
gives us as smallest eigenvalue (which is here equal to σ14) the negative value
−3.4834 10−17! With svd(hilb(14)) we get σ14 = 3.9007 10−18 which is also
not correct. Using the Maple commands

with(LinearAlgebra);

Digits:=40;

n:=14;

A:=Matrix(n,n);

for i from 1 to n do

for j from 1 to n do

A[i,j]:=1/(i+j-1);

end do;

end do;

evalm(evalf(Eigenvalues(A)));

we obtain for n = 14 the singular values

1.8306
4.1224 · 10−01

5.3186 · 10−02

4.9892 · 10−03

3.6315 · 10−04

2.0938 · 10−05

9.6174 · 10−07

3.5074 · 10−08

1.0041 · 10−09

2.2100 · 10−11

3.6110 · 10−13

4.1269 · 10−15

2.9449 · 10−17

9.8771 · 10−20

For A=hilb(14)Matlab computes rank(A)=12 which is mathematically not
correct but a reasonable numerical rank for such an ill-conditioned matrix.
The SVD is the best tool to assign numerically a rank to a matrix.

6.4 Condition of the Linear Least Squares Problem

The principle of Wilkinson states that the result of a numerical computation
is the result of an exact computation for a slightly perturbed problem (see
Section 2.7). This result allows us to estimate the influence of finite precision
arithmetic. A problem is said to be well conditioned if the results do not

Condition of the Linear Least Squares Problem 281

differ too much when solving a perturbed problem. For an ill-conditioned
problem the solution of a perturbed problem may be very different.

Consider a system of linear equations Ax = b withA ∈ R
n×n non-singular

and a perturbed system (A+ εE)x(ε) = b, where ε is small, e.g. the machine
precision. How do the solutions x(ε) and x = x(0) differ? We have already
shown one way of estimating this difference in Chapter 3 (cf. Theorem 3.5),
but here we illustrate another technique, which we will apply in the next
section to the linear least squares problem. Let us consider the expansion

x(ε) = x(0) + ẋ(0)ε+O(ε2).

The derivative ẋ(0) is obtained by differentiating:

(A+ εE)x(ε) = b

Ex(ε) + (A+ εE)ẋ(ε) = 0

⇒ ẋ(0) = −A−1Ex(0).

Thus, we get
x(ε) = x(0)− A−1Ex(0) ε+O(ε2).

Neglecting O(ε2) and taking norms, we get

‖x(ε)− x(0)‖2 ≤ ‖A−1‖2 ‖ε E‖2 ‖x(0)‖2.

From the last equation, we conclude that the relative error satisfies

‖x(ε)− x‖2
‖x‖2 ≤ ‖A−1‖2 ‖A‖2︸ ︷︷ ︸

κ
condition number

‖ε E‖2
‖A‖2 . (6.23)

If we use the 2-norm as matrix norm,

‖A‖2 := max
x�=0

‖Ax‖2
‖x‖2 = σmax(A),

then the condition number is given by

κ =
σmax(A)

σmin(A)
= cond(A) in Matlab.

Thus, if ‖E‖2 ≈ ‖A‖2, then according to the principle of Wilkinson we have
to expect that the numerical solution may deviate by about κ units in the
last digit from the exact solution.

We will now present an analogous result due to [56] for comparing the
solutions of

‖b−Ax‖2 −→ min and ‖b− (A+ εE)x(ε)‖2 −→ min .

282 LEAST SQUARES PROBLEMS

6.4.1 Differentiation of Pseudoinverses

Let A be a matrix whose elements are functions of k variables

A(α) ∈ R
m×n, α =

⎛
⎜⎝

α1

...
αk

⎞
⎟⎠ .

Definition 6.3. (Fréchet Derivative) The Fréchet derivative of the
matrix A(α) is the 3-dimensional tensor

DA(α) =

(
∂aij(α)

∂αs

)
, s = 1, . . . , k

DA(α) collects the gradients of all the matrix elements with respect to α.

We first derive some calculation rules for the operator D:

1. If A is constant then DA = 0.

2. Let A ∈ R
m×k be constant. Then D[Aα] = A.

3. Product rule:

D[A(α)B(α)] = DA(α)B(α) + A(α)DB(α).

Here, the product DA(α)B(α) means every layer of the tensor DA(α)
is multiplied by the matrix B(α). This rule is evident if we consider
one element of the product which is differentiated with respect to αs:

(D [A(α)B(α)])i,j,s =
∂

∂αs

(
n∑

t=1

aitbtj

)
=

n∑
t=1

(
∂ait
∂αs

btj + ait
∂btj
∂αs

)
.

4. Taylor expansion:

A(α+ h) = A(α) +DA(α)(h) +O(‖h‖22).

Here, DA(α)(h) is a matrix with the same size as A(α), where each
matrix element is obtained by computing the scalar product between
the gradient ∇αaij (of length k) and h, also of length k.

5. Derivative of the inverse:

D [A−1(α)
]
= −A−1(α)DA(α)A−1(α).

This results from differentiating AA−1 = I:

DA(α)A−1(α) + A(α)D [A−1(α)
]
= 0.

Condition of the Linear Least Squares Problem 283

Theorem 6.11. (Frechet Projector) Let Ω ⊂ R
k be an open set and

let A(α) ∈ R
m×n have constant rank for all α ∈ Ω. Let PR(A) = AA+ be the

projector on the range of A. Then

DPR(A) = PN (A�)DAA+ +
(
PN (A�)DAA+

)�
, ∀α ∈ Ω. (6.24)

Proof.

PR(A)A = A because of Penrose Equation (i)

⇒ DPR(A)A+ PR(A)DA = DA

DPR(A)A = (I − PR(A))DA = PN (A�)DA

Multiplying the last equation from the right with A+ and observing that
PR(A) = AA+ we get

DPR(A)PR(A) = PN (A�)DAA+. (6.25)

A projector is idempotent, therefore

DPR(A) = D
(
P 2

R(A)

)
= DPR(A)PR(A) + PR(A)DPR(A). (6.26)

Furthermore, PR(A) is symmetric, which implies each layer of the tensor
DPR(A) is also symmetric. Therefore

(DPR(A)PR(A)

)�
= PR(A)DPR(A). (6.27)

Substituting into (6.26) gives

DPR(A) = DPR(A)PR(A) +
(DPR(A)PR(A)

)�
,

which, together with (6.25), yields (6.24). �

Theorem 6.12. Consider the projector PR(A�) = A+A. With the same
assumptions as in Theorem 6.11 we have

DPR(A�) = A+DAPN (A) +
(
A+DAPN (A)

)�
. (6.28)

Proof. The proof follows from the proof of Theorem 6.11 by exchanging
A ↔ A+ and A� ↔ A. �

Theorem 6.13. Let Ω ⊂ R
k be an open set and let the matrix A(α) be

Fréchet differentiable for all α ∈ Ω, with constant rank r ≤ min(m,n). Then
for every α ∈ Ω we have

DA+(α) = −A+DAA+ +A+(A+)�(DA)� PN (A�) + PN (A)(DA)� (A+)�A+.
(6.29)

284 LEAST SQUARES PROBLEMS

Proof. First, we have by Theorem 6.9

A+PN (A�) = A+(I − AA+) = A+ − A+AA+ = 0,

where the last equality follows from Penrose Equation (ii). Differentiating
the above gives

DA+PN (A�) +A+DPN (A�) = 0

or

DA+PN (A�) = −A+DPN (A�).

But PN (A�) = I − PR(A), which implies

DPN (A�) = −DPR(A),

so by Theorem 6.11, we have

DA+PN (A�) = A+DPR(A)

= A+PN (A�)︸ ︷︷ ︸
=0

DAA+ +A+(A+)�(DA+)�PN (A�)

= A+(A+)�(DA+)�PN (A�). (6.30)

Similarly, using the relation PN (A)A
+ = 0 and Theorem 6.12, we derive

PN (A)DA+ = DPR(A�)A
+

= A+DAPN (A)A
+︸ ︷︷ ︸

=0

+PN (A)(DA)�(A+)�A+

= PN (A)(DA)�(A+)�A+ (6.31)

Finally, differentiating the relation A+ = A+AA+ gives

DA+ = (DA+)AA+ + A+(DA)A+ +A+A(DA+)

= DA+(AA+ − I) + A+(DA)A+ + (A+A− I)DA+ + 2DA+

= 2DA+ +A+(DA)A+ −DA+PN (A�) − PN (A)DA+.

Thus, after rearranging we get

DA+ = −A+DAA+ +DA+PN (A�) + PN (A)DA+. (6.32)

Substituting (6.30) and (6.31) into (6.32) yields the desired result. �

Condition of the Linear Least Squares Problem 285

6.4.2 Sensitivity of the Linear Least Squares Problem

In this section, we want to compare the solution of the least squares problem
‖b − Ax‖2 to that of the perturbed problem ‖b − (A + εE)x(ε)‖2. Define
A(ε) = A+ εE. The solution of the perturbed problem is

x(ε) = A(ε)+b =

[
A(0)+ +

dA+

d ε
ε+O(ε2)

]
b = x+ ε

dA+

d ε
b+O(ε2). (6.33)

Applying Theorem 6.13, we get

dA+

d ε
= −A+ dA

d ε
A+ +A+A+� dA�

d ε
PN (A�) + PN (A)

dA�

d ε
A+�

A+.

Multiplying from the right with b and using dA/d ε = E, A+b = x and

PN (A�)b = (I − AA+)b = b−Ax = r,

we get
dA+

d ε
b = −A+Ex+A+A+�

E�r + PN (A)E
�A+�

x.

Introducing this into (6.33), we obtain

x(ε)− x = ε
(
−A+Ex+ PN (A)E

�A+�
x+ A+A+�

E�r
)
+O(ε2).

Neglecting the term O(ε2) and taking norms, we get

‖x(ε)− x‖2 ≤ |ε|
(
‖A+‖2 ‖E‖2 ‖x‖2 + ‖PN (A)‖2 ‖E�‖2 ‖A+�‖2 ‖x‖2

+ ‖A+‖2 ‖A+�‖2 ‖E�‖2 ‖r‖2
)
.

Introducing the condition number

κ := ‖A‖2 ‖A+‖2 =
σ1(A)

σr(A)
,

and observing that ‖PN (A)‖2 = 1 we get the the estimate:

Theorem 6.14. (Golub-Pereyra 1973)

‖x(ε)− x‖2
‖x‖2 ≤

(
2κ+ κ2 ‖r‖2

‖A‖2 ‖x‖2

) ‖ε E‖2
‖A‖2 +O(ε2). (6.34)

Equation (6.34) tells us again what accuracy we can expect from the
numerical solution. Here, we have to distinguish between good and bad
models: when the model is good, the residual ‖r‖2 must be small, since it
is possible to find parameters that fit the data well. In this case, the error
in the solution may deviate by about κ units in the last digit from the exact
solution, just like for linear equations (6.23). However, when the model is
bad, i.e. when ‖r‖2 is large, the condition becomes much worse, so we must
expect a larger error in the computed solution.

286 LEAST SQUARES PROBLEMS

6.4.3 Normal Equations and Condition

If we want to solve Ax ≈ b numerically using the normal equations, we have
to expect worse numerical results than predicted by (6.34), even for good
models. Indeed, if A = UΣV� has rank n then

κ(A�A) = κ(V Σ�U�UΣV�) = κ(V Σ�ΣV�) =
σ2
1

σ2
n

= κ(A)2. (6.35)

Thus, forming A�A leads to a matrix with a squared condition number
compared to the original matrix A. Intuitively, one also sees that forming
A�A may result in a loss of information, as shown by the following famous
example by P. Läuchli:

A =

⎛
⎝ 1 1

δ 0
0 δ

⎞
⎠ , A�A =

(
1 + δ2 1

1 1 + δ2

)
.

If δ <
√
ε (with ε = machine precision) then numerically 1 + δ2 = 1 and the

matrix of the normal equations becomes singular, even though A numerically
has rank 2.

Example 6.9. We illustrate the theory with the following example. We
generate a matrix A by taking the 6×5 segment of the inverse Hilbert-matrix
divided by 35791. Next we construct a compatible right hand side y1 for the
solution

x =

(
1,

1

2
,
1

3
,
1

4
,
1

5

)�
.

Then we compare the numerical solution of Ax ≈ y1 obtained by orthogo-
nal transformations using Matlab’s \ operator with the solution of the the
normal equations.

In the second calculation we make the right hand side incompatible by
adding a vector orthogonal to R(A). The amplification factor

2κ+ κ2 ‖r‖2
‖A‖2 ‖x‖2 ,

which is in the first case essentially equal to the condition number, grows in
the second case because of the large residual and influences the accuracy of
the numerical solution.

format compact, format long e

A=invhilb(6)/35791; A=A(:,1:5); % generate matrix

y1=A*[1 1/2 1/3 1/4 1/5]’; % consistent right hand side

x11=A\y1;

K=cond(A);

factor1=K*(2+K*norm(y1-A*x11)/norm(A)/norm(x11));

x21=(A’*A)\(A’*y1); % solve with normal equations

Algorithms Using Orthogonal Matrices 287

dy=[-4620 -3960 -3465 -3080 -2772 -2520]’;

Check=A’*dy % dy is orthogonal to R(A)

y2=y1+dy/35791; % inconsistent right hand side

x12=A\y2;

factor2=K*(2+K*norm(y2-A*x12)/norm(A)/norm(x12));

x22=(A’*A)\(A’*y2); % solve with normal equations

O_solutions=[x11 x12]

factors=[factor1, factor2]

NE_solutions=[x21 x22]

SquaredCondition=K^2

We get the results

Check =

-8.526512829121202e-14

-9.094947017729282e-13

1.455191522836685e-11

1.455191522836685e-11

0

O_solutions =

9.999999999129205e-01 1.000000008577035e+00

4.999999999726268e-01 5.000000028639559e-01

3.333333333220151e-01 3.333333345605716e-01

2.499999999951682e-01 2.500000005367703e-01

1.999999999983125e-01 2.000000001908185e-01

factors =

9.393571042867742e+06 1.748388455005875e+10

NE_solutions =

1.000039250650201e+00 1.000045308718515e+00

5.000131762672949e-01 5.000152068771240e-01

3.333389969395881e-01 3.333398690463054e-01

2.500024822148246e-01 2.500028642353512e-01

2.000008837044892e-01 2.000010196590261e-01

SquaredCondition =

2.205979423052303e+13

We see that the first O_solution has about 6 incorrect decimals which cor-
respond well to the amplifying factor 9.3 106. The second O_solution with
incompatible right hand side has about 8 decimals incorrect, the factor in this
case is 1.7 1010 and would even predict a worse result.

The solutions with the normal equations, however, have about 12 incorrect
decimal digits, regardless of whether the right hand side is compatible or not.
This illustrates the influence of the squared condition number.

6.5 Algorithms Using Orthogonal Matrices

6.5.1 QR Decomposition

Consider a matrix A ∈ R
m×n with m ≥ n and rank(A) = n. Then there

exists the Cholesky decomposition of A�A = R�R where R is an upper

288 LEAST SQUARES PROBLEMS

triangular matrix. Since R is non- singular we can write R−�A�AR−1 = I
or

(AR−1)�(AR−1) = I.

This means that the matrix Q1 := AR−1 has orthogonal columns. Thus we
have found the QR decomposition

A = Q1R. (6.36)

Here, Q1 ∈ R
m×n and R ∈ R

n×n. We can always augment Q1 to an m×m
orthogonal matrix Q := [Q1, Q2] and instead consider the decomposition

A = [Q1, Q2]

(
R

0

)
. (6.37)

The decomposition (6.37) is what Matlab computes with the command
[Q,R] = qr(A). The decomposition (6.37) exists for any matrix A with full
column rank.

We have shown in Section 6.2 that for an orthogonal matrix B the prob-
lems

Ax ≈ b and BAx ≈ Bb

are equivalent. Now if A = Q
(
R
0

)
, then B = Q� is orthogonal and Ax ≈ b

and Q�Ax ≈ Q�b are equivalent. But

Q�A =

(
R

0

)

and the equivalent system becomes(
R

0

)
x ≈

(
y1

y2

)
, with

(
y1

y2

)
= Q�b.

The square of the norm of the residual,

‖r‖22 = ‖y1 −Rx‖22 + ‖y2‖22,
is obviously minimal for x̂ where

Rx̂ = y1, x̂ = R−1y1 and min ‖r‖2 = ‖y2‖2.
This approach is numerically preferable to the normal equations, since it
does not change the condition number. This can be seen by noting that
the singular values are not affected by orthogonal transformations: If A =
UΣV� = Q

(
R
0

)
then the singular value decomposition of

(
R
0

)
is(

R

0

)
= (Q�U)ΣV�,

and thus R and A have the same singular values, which leads to

κ(A) = κ(R).

In the following section we will show how to compute the QR decomposition.

Algorithms Using Orthogonal Matrices 289

6.5.2 Method of Householder

Definition 6.4. (Elementary Householder Matrix) An elementary
Householder matrix is a matrix of the form P = I −uu� with ‖u‖2 =

√
2 is

Elementary Householder matrices have the following properties:

1. P is symmetric.

2. P is orthogonal, since
P�P = (I − uu�)(I − uu�) = I − uu� − uu� + uu�u︸︷︷︸

2

u� = I.

3. Pu = −u and if x ⊥ u then Px = x. If y = αx + βu then Py =
αx− βu. Thus P is a reflection across the hyperplane u�x = 0.

P will be used to solve the following basic problem: Given a vector x, find
an orthogonal matrix P such that

Px =

⎛
⎜⎜⎜⎝

σ
0
...
0

⎞
⎟⎟⎟⎠ = σe1.

Since P is orthogonal we have ‖Px‖22 = ‖x‖22 = σ2 thus σ = ±‖x‖2. Fur-
thermore Px = (I − uu�)x = x − u(u�x) = σe1, thus u(u�x) = x − σe1
and we obtain by normalizing

u =
x− σe1

‖x− σe1‖2
√
2.

We can still choose the sign of σ, and we choose it such that no cancellation
occurs in computing x− σe1,

σ =

{ ‖x‖2, x1 < 0,
−‖x‖2, x1 ≥ 0.

For the denominator we get ‖x − σe1‖22 = (x − σe1)
�(x − σe1) = x�x −

2σe�1x+ σ2. Note that −2σe�1 = 2|x1|‖x‖2, so the calculations simplify and
we get

u =
x− σe1√‖x‖2(|x1|+ ‖x‖2)

.

In order to apply this basic construction for the computation of the QR
decomposition, we construct a sequence of n elementary matrices Pi:

Pi =

(
I 0
0 I − uiu

�
i

)
.

290 LEAST SQUARES PROBLEMS

We choose ui ∈ R
m−i+1 such that zeros are introduced in the i-th column of

A below the diagonal when multiplying PiA. We obtain after n steps

PnPn−1 · · ·P1A =

(
R

0

)

and, because each Pi is symmetric, Q becomes

Q = (PnPn−1 · · ·P1)
� = P1P2 · · ·Pn.

If we store the new diagonal elements (which are the diagonal of R) in a
separate vector d we can store the Householder vectors ui in the same location
where we introduce zeros in A. This leads to the following implicit QR
factorization algorithm:

Algorithm 6.2. Householder QR Decomposition

function [A,d]=HouseholderQR(A);

% HOUSEHOLDERQR computes the QR-decomposition of a matrix

% [A,d]=HouseholderQR(A) computes an implicit QR-decomposition A=QR

% using Householder transformations. The output matrix A contains

% the Householder vectors u and the upper triangle of R. The

% diagonal of R is stored in the vector d.

[m,n]=size(A);

for j=1:n,

s=norm(A(j:m,j));

if s==0, error(’rank(A)<n’), end

if A(j,j)>=0, d(j)=-s; else d(j)=s; end

fak=sqrt(s*(s+abs(A(j,j))));

A(j,j)=A(j,j)-d(j);

A(j:m,j)=A(j:m,j)/fak;

if j<n, % transformation of the rest of the matrix G:=G-u*(u’*G)

A(j:m,j+1:n)=A(j:m,j+1:n)-A(j:m,j)*(A(j:m,j)’*A(j:m,j+1:n));

end

end

Algorithm HouseholderQR computes an upper triangular matrix Rh which
is very similar to Rc obtained by the Cholesky decomposition A�A = R�

cRc.
The only difference is that Rh may have negative elements in the diagonal,
whereas in Rc the diagonal entries are positive. Let D be a diagonal matrix
with

dii =

{
1 rhii > 0

−1 rhii < 0

then Rc = DRh. The matrix Q is only implicitly available through the
Householder vectors ui. This is not an issue because it is often unnecessary
to compute and store the matrix Q explicitly; in many cases, Q is only

Algorithms Using Orthogonal Matrices 291

needed as an operator that acts on vectors by multiplication. Using the
implicit representation we can, for instance, compute the transformed right
hand side of the least square equations y = Q�b by applying the reflections
y = PnPn−1 · · ·P1b. This procedure is numerically preferable to forming the
explicit matrix Q and then multiplying with b.

Algorithm 6.3. Transformation z = Q�y

function z=HouseholderQTy(A,y);

% HOUSEHOLDERQTY applies Householder reflections transposed

% z=HouseholderQTy(A,y); computes z=Q’y using the Householder

% reflections Q stored as vectors in the matrix A by

% A=HousholderQR(A)

[m,n]=size(A); z=y;

for j=1:n,

z(j:m)=z(j:m)-A(j:m,j)*(A(j:m,j)’*z(j:m));

end;

If we wish to compute z = Qy then because Q = P1P2 · · ·Pn it is sufficient
to reverse the order in the for-loop:

Algorithm 6.4. Transformation z = Qy

function z=HouseholderQy(A,y);

% HOUSEHOLDERQY applies Householder reflections

% z=HouseholderQy(A,y); computes z=Qy using the Householder

% reflections Q stored as vectors in the matrix A by

% A=HousholderQR(A)

[m,n]=size(A); z=y;

for j=n:-1:1,

z(j:m)=z(j:m)-A(j:m,j)*(A(j:m,j)’*z(j:m));

end;

Example 6.10. We compute the QR decomposition of a section of the
Hilbert matrix. We also compute the explicit matrix Q by applying the House-
holder transformations to the column vectors of the identity matrix:

m=8;n=6;

H=hilb(m); A=H(:,1:n);

[AA,d]=HouseholderQR(A)

Q=[];

for i=eye(m), % compute Q explicit

z=HouseholderQy(AA,i); Q=[Q z];

end

R=triu(AA);

292 LEAST SQUARES PROBLEMS

for i=1:n, R(i,i)=d(i); end % add diagonal to R

[norm(Q’*Q-eye(m)) norm(A-Q*R)]

[q,r]=qr(A); % compare with Matlab qr

[norm(q’*q-eye(m)) norm(A-q*r)]

The resulting matrix after the statement [AA,d]=HouseholderQR(A) contains
the Householder vectors and the upper part of R. The diagonal of R is stored
in the vector d:

AA =

1.3450 -0.7192 -0.5214 -0.4130 -0.3435 -0.2947

0.3008 1.1852 -0.1665 -0.1612 -0.1512 -0.1407

0.2005 0.3840 -1.0188 0.0192 0.0233 0.0254

0.1504 0.3584 0.2452 -1.3185 0.0015 0.0023

0.1203 0.3242 0.3945 -0.4332 -1.0779 0.0001

0.1003 0.2925 0.4703 -0.2515 0.0111 -1.3197

0.0859 0.2651 0.5059 -0.0801 0.3819 -0.5078

0.0752 0.2417 0.5190 0.0641 0.8319 0.0235

d =

-1.2359 -0.1499 0.0118 0.0007 0.0000 0.0000

ans =

1.0e-15 *

0.6834 0.9272

ans =

1.0e-15 *

0.5721 0.2461

We see that the results (orthogonality of Q and reproduction of A by QR)
compare well with the Matlab function qr.

6.5.3 Method of Givens

Definition 6.5. (Elementary Givens Rotation) An elementary Givens
rotation is the matrix

G := Gi,k(α) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
cosα sinα

1
. . .

1
− sinα cosα

1
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← i

← k

Algorithms Using Orthogonal Matrices 293

Gi,k(α) differs from the identity matrix only in the two columns and rows
i and k with the elements cosα and sinα. It is an orthogonal matrix: the
columns have norm one and different columns are orthogonal to each other.
It is called a rotation matrix since if we multiply G by a vector x, the result
y = Gx is the vector x rotated in the ik-plane by the angle α.

For least squares problems, it is convenient to work with a slight modifi-
cation of these elementary matrices. This is because Givens rotation matrices
are non-symmetric: thus, if Q = G3G2G1 then Q� = G�

1G
�
2G

�
3 	= G1G2G3.

Definition 6.6. (Elementary Givens Reflection) An elementary
Givens reflection is the matrix

S := Si,k(α) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

cosα sinα
1

. . .

1
sinα − cosα

1
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Si,k(α) is a modified Givens rotation matrix: row k has been multiplied by
−1 and Si,k(α) is now symmetric. It has the following properties:

1. S is orthogonal.

2. SA changes only two rows in A:

anew
i : = c ai : + s ak :

anew
k : = s ai : − c ak :

, where c = cosα and s = sinα.

3. Connection to Householder matrices: let

u = (0, . . . , 0, sin
α

2
, 0, . . . , 0,− cos

α

2
, 0, . . . , 0)�

√
2,

then I − uu� = Si,k(α).

Givens transformations allow us to solve the following basic problem: given
a vector x, we wish to find an S that annihilates the k-th element, i.e., in
xnew := Sx, we want to rotate xnew

k to zero.
Solution: Because xnew

k = sxi − cxk = 0

⇒ cot :=
xi

xk
, s :=

1√
1 + cot2

, c := s ∗ cot.

294 LEAST SQUARES PROBLEMS

Note that we do not need to compute the angle α explicitly to determine the
matrix Si,k(α).

To compute the QR decomposition of a matrix A, we now can apply
Givens reflections to introduce zeros below the diagonal. The following
pseudo-code computes the decomposition columnwise:

for i=1:n
for k=i+1:m

A=S(i,k,alpha)*A; % annihilate A(k,i)
end;

end

Again we would like to store information about the rotation Si,k(α) at the
same place where we introduce the zero. The easiest would be to store the
angle α, but we cannot since we do not compute it! Storing c and s separately
would require space for two numbers instead of one. We could store only c
and rederive s using c2 + s2 = 1, but this is numerically unstable if |c| ≈ 1.

An elegant solution was proposed by G. W. Stewart [130]: we store the
smaller of the two numbers c and s, and retrieve the other one in a numerically
stable way from c2 + s2 = 1. In order to tell whether c or s has been stored,
Stewart proposes to store s or 1/c. More specifically, we have two possible
formulas for computing xnew

k = sxi − cxk = 0:

1. cot = c/s = xi/xk, giving s = 1/
√
1 + cot2 and c = s ∗ cot

2. tan = s/c = xk/xi, giving c = 1/
√
1 + tan2 and s = c ∗ tan.

To avoid overflow, we will choose the one that gives an answer that is smaller
than 1 for |cot| or |tan|. We thus obtain the following pseudocode for com-
puting and storing a reflection:

if x(k)==0 % nothing to do, S is the identity
c=1; s=0; Store 0

elseif abs(x(k))>=abs(x(i))
h=x(i)/x(k); s=1/sqrt(1+hˆ2); c=s*h;
if c∼=0, Store 1/c else Store 1 end;

else
h=x(k)/x(i); c=1/sqrt(1+hˆ2); s=c*h; Store s;

end

To reconstruct c and s from a stored number z we use the following pseu-
docode:

if z==1, c=0; s=1;
elseif abs(z)<1 then s=z; c=sqrt(1-sˆ2);
else c=1/z; s=sqrt(1-cˆ2)
end

Algorithms Using Orthogonal Matrices 295

We have now all the elements to write a Matlab function to compute the
QR decomposition using Givens reflections:

Algorithm 6.5. Givens QR Decomposition

function A=GivensQR(A);

% GIVENSQR Computes the QR-decomposition using Givens reflections

% A=GivensQR(A); computes the QR-decomposition of the matrix A using

% Givens reflections; after the decomposition, A contains the

% implicit QR-decomposition of A. Instead of the zeros the

% reflections are stored following a proposal of G. W. Stewart

% (cf. srotg in BLAS). The decomposition is computed column wise.

[m n]=size(A);

for i=1:n,

for k=i+1:m,

if A(k,i)==0, % Compute co and si

co=1; si=0; z=0;

else if abs(A(k,i))>=abs(A(i,i)),

h=A(i,i)/A(k,i); % cot

si=1/sqrt(1+h*h); co=si*h;

if co~=0, z=1/co; else z=1; end

else

h=A(k,i)/A(i,i); % tan

co=1/sqrt(1+h*h); si=co*h; z=si;

end;

end;

A(i,i)=A(i,i)*co+A(k,i)*si;

A(k,i)=z; % store co or si in A(k,i)

if (si~=0)&(i<n), % Apply reflection

S=[co,si;si,-co];

A(i:k-i:k,i+1:n)=S*A(i:k-i:k,i+1:n);

end;

end

end

Note that in Algorithm 6.5, we make use of the Matlab feature that allows
us to select and overwrite several rows of a matrix at the same time. In a
traditional programming language like Fortran, we would store the old rows
in auxiliary vectors and then combine them to the new rows:

h1=A(i,i+1:n); h2=A(k,i+1:n);

A(i,i+1:n)=h1*co+h2*si;

A(k,i+1:n)=h1*si-h2*co;

In Matlab, however, we can use the selection expression A(i:k-i:k,i+1:n)
to write the same computation in terms of the 2× 2-matrix S as

S=[co,si;si,-co];

A(i:k-i:k,i+1:n)=S*A(i:k-i:k,i+1:n);

296 LEAST SQUARES PROBLEMS

The function GivensQR(A) computes the QR decomposition of A. After the
function call, we have R=triu(A(1:n,1:n)) and Q is only given implicitly
as an operator. If we wish to compute y = Q�x then the following function
can be used:

Algorithm 6.6. Transformation y := Q�x

function y=GivensQTy(A,y);

% GIVENSQTY applies Givens rotations transposed

% y=GivensQTyqrgiv(A,y) computes y=Q’*y; using the Givens

% rotations Q stored in the matrix A computed by A=GivensQR(A).

% For y=Q*y the for loops must be processed in reverse order.

[m,n]=size(A);

for i=1:n, % for i=n:-1:1, for y=Q*y

for k=i+1:m, % for k=m:-1:i+1, for y=Q*y

if A(k,i)==1, % reconstruct co and si from A(k,i)

co=0; si=1;

else

if abs(A(k,i))<1,

si=A(k,i); co=sqrt(1-si*si);

else

co=1/A(k,i); si=sqrt(1-co*co);

end;

end;

if si~=0, % Apply Givens reflector

y(i:k-i:k)=[co,si;si,-co]*y(i:k-i:k);

end

end

end

Example 6.11. We compute the same example as before with House-
holder:

format compact

m=8;n=6;

H=hilb(m); A=H(:,1:n);

AA=GivensQR(A)

R=triu(AA(1:n,1:n));

Qt=[];

for y=eye(m)

z=GivensQTy(AA,y); Qt=[Qt, z];

end

Q=Qt’;

[norm(Q’*Q-eye(m)) norm(A-Q(:,1:n)*R)]

[q,r]=qr(A);

[norm(q’*q-eye(m)) norm(A-q*r)]

Algorithms Using Orthogonal Matrices 297

The orthogonality of Q and the representation of A = QR are perfect and
compare well with the Matlab built-in function qr:

AA =

1.2359 0.7192 0.5214 0.4130 0.3435 0.2947

0.4472 -0.1499 -0.1665 -0.1612 -0.1512 -0.1407

0.2857 0.6805 0.0118 0.0192 0.0233 0.0254

0.2095 0.5135 1.5948 -0.0007 -0.0015 -0.0023

0.1653 0.4116 0.6363 1.7994 0.0000 0.0001

0.1365 0.3431 0.5371 1.4204 1.9844 -0.0000

0.1162 0.2941 0.4643 0.6192 1.5366 2.1541

0.1011 0.2572 0.4086 0.5485 0.6768 1.6456

ans =

1.0e-15 *

0.3719 0.2115

ans =

1.0e-15 *

0.5721 0.2461

The method of Givens needs about twice as many operations as the
method of Householder. However, it can be efficient for sparse matrices,
where only a few zeros have to be introduced to transform the matrix into up-
per triangular form. Furthermore, the QR decomposition may be computed
row-wise, which may be advantageous for linear least squares problems where
the number of equations is not fixed and additional equations are generated
by new measurements.

Example 6.12. A matrix is said to be in upper Hessenberg form if it
has zero entries below the first subdiagonal,

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Least squares problems of the type Hy = r with an upper Hessenberg matrix
H arise naturally in the GMRES algorithm for solving linear systems itera-
tively, see Section 11.7.6. To obtain the QR decomposition of such a matrix
using Givens reflections, let us first eliminate the (2,1) entry; this is done
by choosing a reflection S1,2 := S1,2(α1) that operates on the first two rows
only, with the angle α1 chosen so that the (2,1) entry is eliminated. The

298 LEAST SQUARES PROBLEMS

transformed matrix then becomes

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

.

But now the remaining matrix H2:n,2:n is also in upper Hessenberg form, so
we can continue this process and choose S23, . . . , Sn,n+1 to transform H into
an upper triangular matrix, i.e.,

Sn,n+1 · · ·S12︸ ︷︷ ︸
Q�

H =

[
R
0

]
.

Note that the k-th step requires at most 2(n− k + 1) additions and the same
number of multiplications, so the total cost is O(n2), as opposed to O(mn2)
for a general dense matrix.

Givens rotations are also useful for updating QR decompositions, which
we will see in Section 6.5.8. Another different use of upper Hessenberg ma-
trices arise in the context of eigenvalue problems, see Section 7.5.2.

6.5.4 Fast Givens

In some architectures (particularly older ones), multiplication is a much more
costly operation than addition, so reducing the number of multiplications can
lead to faster running times. In the method of Givens, each rotation affects
two rows of the matrix and transforms

[x1, x2, . . . , xn]
[y1, y2, . . . , yn]

into
cxk + syk
sxk − cyk,

k = 1, . . . , n

which requires two multiplications per entry. The basic idea of Fast Givens
is to consider the rows in factored form and delay some of the multiplications
until the end of the algorithm, thus saving about half the multiplications in
the process.

Let us apply a Givens reflection to two “scaled rows” in which the coeffi-
cients f1, f2 have been factored out:(

c s
s −c

)
f1 [x1, x2, . . . , xn]
f2 [y1, y2, . . . , yn]

After the multiplication these rows are changed to

cf1xk + sf2yk
sf1xk − cf2yk

k = 1, . . . , n

Algorithms Using Orthogonal Matrices 299

The goal now is to update the factored coefficient in such a way that one mul-
tiplication inside the row vectors is eliminated. We consider two possibilities,
the first of which is

sf2 (β1xk + yk)
sf1 (xk + α1yk)

with β1 =
cf1
sf2

, α1 = − cf2
sf1

.

Notice that yk in the first row no longer has a coefficient multiplying it, and
neither does xk in the second row.

Now recall that the Givens reflection is chosen to annihilate one element
in the matrix, say the first element y1 of the second line. For this, c and s
have to be chosen so that sf1x1 − cf2y1 = 0, which implies

c =
f1x1√

f2
1x

2
1 + f2

2 y
2
1

, s =
f2y1√

f2
1x

2
1 + f2

2 y
2
1

.

Thus,

α1 = − c

s

f2
f1

= −f1x1

f2y1

f2
f1

= −x1

y1
, β1 =

c

s

f1
f2

=
f1x1

f2y1

f1
f2

= −α1
f2
1

f2
2

and the new scaling factors become

fnew
1 = sf2, fnew

2 = sf1.

For the effective computation of β1, we only need the squares of the factors,
so we will only store the quantities

di =
1

f2
i

, i = 1, 2.

Then using the expressions for s, α1 and β1

dnew1 =
1

s2f2
2

=
f2
1x

2
1 + f2

2 y
2
1

y21f
2
2 f

2
2

= d2

(
1 +

(
x1

y1

)2(
f1
f2

)2
)

= d2 (1− α1β1) .

Defining γ1 = −α1β1 = (f1x1)
2/(f2y1)

2 we obtain

dnew1 = d2(1 + γ1) and similarly dnew2 =
1

s2f2
1

= d1(1 + γ1). (6.38)

The second choice of factors is

cf1 (xk + β2yk)
cf2 (α2xk − yk)

with α2 =
sf1
cf2

= − 1

α1
, β2 =

sf2
cf1

=
1

β1
.

The equation ynew1 = 0 leads to the same expressions for c and s as before.
The update of di becomes

dnew1 =
1

c2f2
1

= d1
f2
1x

2
1 + f2

2 y
2
1

f2
1x

2
1

= d1(1 + γ2) with γ2 =
1

γ1
. (6.39)

300 LEAST SQUARES PROBLEMS

A similar computation yields

dnew2 =
1

c2f2
2

= d2(1 + γ2).

Which of the two choices of factors should be used? We are working with
scaled rows. Let D = diag(d1, . . . , dm) then

Q�A = D−1/2

(
R̃
0

)
, with D−1/2 =

⎛
⎜⎜⎜⎜⎝
f1 0 · · · 0

0 f2
. . .

...
...

. . .
. . . 0

0 · · · 0 fm

⎞
⎟⎟⎟⎟⎠ .

Since γi ≥ 0, the di grow after each reflection, meaning there is a danger of
overflow. Because of γ1γ2 = 1 it makes sense to choose the smaller γi ≤ 1
to minimize the growth. However, even then it might still be necessary to
monitor the growth and to multiply the equations with the factors in the
diagonal matrix D−1/2 from time to time. For simplicity, we choose not do
this in the program below: we simply reduce the system Ax ≈ b to(

R̃
0

)
x ≈

(
ỹ1

ỹ2

)

The scaling factors are given by the vector d, the diagonal of the matrix D,
and the solution is obtained by solving R̃x = ỹ1. The update of the diagonals
of D according to (6.38) and (6.39) can be combined simply by swapping the
diagonal elements in the first case.

Algorithm 6.7. Fast Givens

function [d,R,y]=FastGivens(A,b)

% FASTGIVENS reduce linear system to upper triangular form.

% [d,R,y]=FastGivens(A,b) reduces Ax=B using fast Givens reflections

% to Rx=y. d contains the scaling factors. If [q,r]=qr(A) then

% abs(diag(d)^(-0.5)*R)=abs(r)

[m n]=size(A); d=ones(m,1);

for i=1:n,

for k=i+1:m,

if A(k,i)~=0,

alpha=-A(i,i)/A(k,i); beta=-alpha*d(k)/d(i);

gamma=-alpha*beta;

if gamma<=1,

A(i,i)=A(i,i)*beta+A(k,i);

if i<n,

h=A(i,i+1:n)*beta+A(k,i+1:n);

A(k,i+1:n)=A(i,i+1:n)+A(k,i+1:n)*alpha;

Algorithms Using Orthogonal Matrices 301

A(i,i+1:n)=h;

end;

h=b(i)*beta+b(k); b(k)=b(i)+b(k)*alpha; b(i)=h;

h=d(i); d(i)=d(k); d(k)=h; % swap scaling factors

else

alpha=-1/alpha; beta=1/beta; gamma=1/gamma;

A(i,i)=A(i,i)+beta*A(k,i);

if i<n,

h=A(i,i+1:n)+A(k,i+1:n)*beta;

A(k,i+1:n)=A(i,i+1:n)*alpha -A(k,i+1:n);

A(i,i+1:n)=h;

end;

h=b(i)+b(k)*beta; b(k)=b(i)*alpha-b(k); b(i)=h;

end;

d(i)=d(i)*(1+gamma); d(k)=d(k)*(1+gamma); % update for both cases

end;

end

end

R=triu(A); y=b;

Note that in Algorithm 6.7, we did not write the row update in terms of
multiplication by a 2×2 matrix, like we did in Algorithm 6.5. This is because
want to avoid the multiplications with the factor 1. To compute one standard
Givens reflection, we need about 4n multiplications and 2n additions. Fast
Givens reduces this to 2n multiplications and 2n additions. Experiments
show that the speedup is not by a factor of 2, but only about 1.4 to 1.6.
This is due to overhead computations and also because multiplications are no
longer much more expensive than additions on newer computer architectures.

6.5.5 Gram-Schmidt Orthogonalization

Yet another algorithm for calculating the QR decomposition is based on
the idea of constructing an orthogonal basis in R(A). An overview on al-
gorithms is given in [116]. For that purpose, the column vectors of A =
[a1, . . . ,an] have to be orthogonalized. Assume that the orthonormal vec-
tors q1, . . . ,qk−1 have already been computed and that they span the same
space as a1, . . . ,ak−1. Now in order to construct the next basis vector qk,
we take ak and subtract its projections onto the previous basis vectors. If ak

was not linearly dependent from the previous vectors, the remainder will be
nonzero and orthogonal to R(a1, . . . ,ak−1), so it can be normalized to give
the new basis vector. Thus we have to perform three steps:

1. Compute the projections rikqi with rik = q�
i ak.

2. Subtract the projections:

bk := ak −
k−1∑
i=1

rikqi. (6.40)

302 LEAST SQUARES PROBLEMS

3. Normalize: rkk := ‖bk‖2 and qk = bk/rkk

If we solve (6.40) for ak then

ak =

k∑
i=1

rikqi, k = 1, . . . , n ⇐⇒ A = QR.

Thus, we obtain again the QR decomposition of A. The elements of the
upper triangular matrix R are the coefficients of the various projections. The
following algorithm ClassicalGramSchmidt computes the QR decomposition
using this classical Gram-Schmidt orthogonalization:

Algorithm 6.8. Classical Gram-Schmidt

function [Q,R]=ClassicalGramSchmidt(A)

% CLASSICALGRAMSCHMIDT classical Gram-Schmidt orthogonalization

% [Q,R]=ClassicalGramSchmidt(A); computes the classical Gram-Schmidt

% orthogonalization of the vectors in the columns of the matrix A

[m,n]=size(A); R=zeros(n);

Q=A;

for k=1:n,

for i=1:k-1,

R(i,k)=Q(:,i)’*Q(:,k);

end % remove these two lines for

for i=1:k-1, % modified-Gram-Schmidt

Q(:,k)=Q(:,k)-R(i,k)*Q(:,i);

end

R(k,k)=norm(Q(:,k)); Q(:,k)=Q(:,k)/R(k,k);

end

Note that ClassicalGramSchmidt is numerically unstable: if we take the
15× 10 section of the Hilbert matrix and try to compute an orthogonal basis
then we notice that the vectors of Q are not orthogonal at all:

>> m=15; n=10; H=hilb(m); A=H(:,1:n);

>> [Q R]=ClassicalGramSchmidt(A);

>> norm(Q’*Q-eye(n))

ans = 2.9971

>> norm(Q*R-A)

ans = 2.9535e-17

However, the relation A = QR is correct to machine precision. The reason
for the numerical instability is as follows: when computing bk using (6.40),
cancellation can occur if the vectors are almost parallel. In that case, the
result is a very small inaccurate bk which, after normalization, is no longer
orthogonal on the subspace spanned by the previous vectors because of the
inaccuracies.

Algorithms Using Orthogonal Matrices 303

An interesting modification partly remedies that problem: if we compute
the projections rik = q�

i ak and subtract the projection immediately from ak

ak := ak − rikqi

then this has no influence on the numerical value of subsequent projections
because

ri+1,k = q�
i+1(ak − rikqi) = q�

i+1ak, since q�
i+1qi = 0.

Doing so, we reduce the norm of ak with each projection and get the Modified
Gram-Schmidt Algorithm, which is obtained by just eliminating the two lines

end % remove for

for i = 1:k-1, % modified-Gram-Schmidt

in Algorithm ClassicalGramSchmidt:

Algorithm 6.9. Modified Gram-Schmidt

function [Q,R]=ModifiedGramSchmidt(A)

% MODIFIEDGRAMSCHMIDT modified Gram-Schmidt orthogonalization

% [Q,R]=ModifiedGramSchmidt(A); computes the modified Gram-Schmidt

% orthogonalization of the vectors in the columns of the matrix A

[m,n]=size(A); R=zeros(n);

Q=A;

for k=1:n,

for i=1:k-1,

R(i,k)=Q(:,i)’*Q(:,k);

Q(:,k)=Q(:,k)-R(i,k)*Q(:,i);

end

R(k,k)=norm(Q(:,k)); Q(:,k)=Q(:,k)/R(k,k);

end

Now if we run our example again, we obtain better results than with
classical Gram-Schmidt:

>> m=15; n=10; H=hilb(m); A=H(:,1:n);

>> [Q R]=ModifiedGramSchmidt(A);

>> norm(Q’*Q-eye(n))

ans = 1.7696e-05

>> norm(Q*R-A)

ans = 6.0510e-17

The approximate orthogonality of Q is now visible; however, the results are
still not as good as with the algorithms of Householder or Givens.

Note that in Algorithm ModifiedGramSchmidt, we only process the k-th
column of A in step k; the columns k + 1, . . . , n remain unchanged during

304 LEAST SQUARES PROBLEMS

this step. A mathematically and numerically identical version of modified
Gram-Schmidt, popular in many textbooks, computes the projections for
each new qk and subtracts them immediately from all the column vectors of
the remaining matrix:

Algorithm 6.10.
Modified Gram-Schmidt, version updating whole

remaining matrix

function [Q,R]=ModifiedGramSchmidt2(A);

% MODIFIEDGRAMSCHMIDT2 modified Gram-Schmidt orthogonalization version 2

% [Q,R]=ModifiedGramSchmidt2(A); computes the modified Gram-Schmidt

% orthogonalization of the vectors in the columns of the matrix A by

% immediately updating all the remaining vectors as well during the

% process

[m,n]=size(A); R=zeros(n);

for k=1:n

R(k,k)=norm(A(:,k));

Q(:,k)=A(:,k)/R(k,k);

R(k,k+1:n)=Q(:,k)’*A(:,k+1:n);

A(:,k+1:n)=A(:,k+1:n)-Q(:,k)*R(k,k+1:n);

end

In the k-th step of Algorithm ModifiedGramSchmidt2 we compute the
vector qk from ak. Then the k-th row of R is computed and the rest of A is
updated by

A(:, k + 1 : n) = (I − qkq
�
k)A(:, k + 1 : n).

But (I − qkq
�
k) is the orthogonal projector on the subspace orthogonal to

qk. This observation by Charles Sheffield in 1968 established a connection
between modified Gram-Schmidt and the method of Householder. Consider
the matrix

Ã =

(
O

A

)
,where O is the n× n zero matrix.

If we apply the first Householder transformation on Ã, i.e. we construct a
vector u with ‖u‖2 =

√
2 such that

(I − uu�)
(
O

a1

)
=

⎛
⎜⎜⎜⎝

σ
0
...
0

⎞
⎟⎟⎟⎠

then

u =
x− σe1√‖x‖2(x1 + ‖x‖2)

, with x =

⎛
⎜⎜⎜⎝

0
...
0
a1

⎞
⎟⎟⎟⎠ .

Algorithms Using Orthogonal Matrices 305

Since x1 = 0 (no cancellation in the first component) and σ = ±‖x‖2 =
±‖a1‖2 we get

u =

(
e1
a1

‖a1‖2

)
=

(
e1
q1

)

and q1 is the same vector as in modified Gram-Schmidt! The Householder
transformation is

P1

(
O

A

)
=

(
O

A

)
−
(
e1
q1

)(
e�1 q�

1

)(O
A

)
=

⎛
⎝ −q�

1 A
On−1×n

(I − q1q
�
1)A

⎞
⎠ . (6.41)

Thus we obtain the negative first row of R with −q�
1 A and the first transfor-

mation of the rest of the matrix (I − q1q
�
1)A as in modified Gram-Schmidt.

Theorem 6.15. The method of Householder applied to the matrix
(
O
A

)
is

mathematically equivalent to modified Gram-Schmidt applied to A.

After the call of [AA,d]=HouseholderQR([zeros(n);A]) the matrix has
been transformed to

AA =

(
R̃

Qh

)
, with diag(R̃) = I.

Rh is obtained by taking the negative strict upper part of R̃ and subtracting
the diagonal elements stored in d. The orthogonal matrix Qh is extracted
from the Householder-vectors stored in AA. The matrices Qh and Rh ob-
tained this way by Householder transformations are the same matrices as
computed by modified Gram-Schmidt. We illustrate this again with a sub-
matrix of the Hilbert matrix:

format compact

m=7; n=4; H=hilb(m); A=H(:,1:n);

[Q1,R1]=ModifiedGramSchmidt2(A)

[AA,d]=HouseholderQR([zeros(n); A])

Q2=AA(n+1:n+m,:);

R2=-AA(1:n,1:n);

R2=R2-diag(diag(R2))-diag(d);

[norm(Q1-Q2) norm(R1-R2)]

We get the following results which illustrate well that both processes compute
the same

Q1 =

0.8133 -0.5438 0.1991 -0.0551

0.4067 0.3033 -0.6886 0.4760

0.2711 0.3939 -0.2071 -0.4901

0.2033 0.3817 0.1124 -0.4396

0.1627 0.3514 0.2915 -0.1123

0.1356 0.3202 0.3892 0.2309

0.1162 0.2921 0.4407 0.5206

306 LEAST SQUARES PROBLEMS

R1 =

1.2296 0.7116 0.5140 0.4059

0 0.1449 0.1597 0.1536

0 0 0.0108 0.0174

0 0 0 0.0006

AA =

1.0000 -0.7116 -0.5140 -0.4059

0 1.0000 -0.1597 -0.1536

0 0 1.0000 -0.0174

0 0 0 1.0000

0.8133 -0.5438 0.1991 -0.0551

0.4067 0.3033 -0.6886 0.4760

0.2711 0.3939 -0.2071 -0.4901

0.2033 0.3817 0.1124 -0.4396

0.1627 0.3514 0.2915 -0.1123

0.1356 0.3202 0.3892 0.2309

0.1162 0.2921 0.4407 0.5206

d =

-1.2296 -0.1449 -0.0108 -0.0006

ans =

1.0e-12 *

0.1804 0.0001

6.5.6 Gram-Schmidt with Reorthogonalization

Our example indicated that modified Gram-Schmidt improves the orthogo-
nality of Q in comparison with classical Gram-Schmidt a lot — however, it
still cannot compete with Householder or Givens in that respect. In fact, for
modified Gram-Schmidt the following estimate holds (with some constants
c1 and c2, the condition number κ = κ(A) and the machine precision ε) [9]:

‖I −Q�Q‖2 ≤ c1
1− c2κε

κε.

Thus, we must expect a loss of orthogonality if the condition of the matrix A is
bad. A remedy is to reorthogonalize the vector qk if it has been constructed
from a small (an inaccurate) bk. If qk is reorthogonalized with respect to
qi, i = 1, . . . , k − 1 then for full-rank matrices one reorthogonalization is
sufficient. That “twice is enough” principle is analyzed in [50].

Note that when we reorthogonalize, we must also update R. Let us con-
sider for that purpose the QR decomposition of the matrix

B = [q1, . . . ,qk−1, b] = QR1.

Then the following holds:

Q = [q1, . . . ,qk−1,qk], R1 =

⎛
⎜⎜⎜⎝

1 d1
. . .

...
1 dk−1

‖u‖2

⎞
⎟⎟⎟⎠

Algorithms Using Orthogonal Matrices 307

with di = q�
i b, i = 1, . . . , k − 1 and u = b−∑k−1

i=1 diqi.
If we choose not to normalize the last column ofQ, then the decomposition

is B = Q̄R̄1

with Q̄ = [q1, . . . ,qk−1,u] and

R̄1 =

⎛
⎜⎜⎜⎝

1 d1
. . .

...
1 dk−1

1

⎞
⎟⎟⎟⎠ = I + de�k where d =

⎛
⎜⎜⎜⎝

d1
...
dk−1

0

⎞
⎟⎟⎟⎠ .

Now assume the QR decomposition of A = [a1, . . . ,ak] is A = BR2 and we
want to reorthogonalize the last column of B, i.e. we decompose B = Q̄R̄1,

A = BR2 = Q̄R̄1R2.

Now
R̄1R2 = (I + de�k)R2 = R2 + de�kr

(2)
kk .

Again, if we do not normalize the last column of B then r
(2)
kk = 1 i.e. R̄1R2 =

R2 + de�k and the update is simply

rik := rik + di, i = 1, . . . , k − 1.

The normalization is only performed after the reorthogonalization step. We
shall now modify our function ModifiedGramSchmidt so that each vector is
reorthogonalized. Doing so we need to compute the projections twice and
add them to the new row of R. For this purpose we introduce the auxiliary
variable V:

Algorithm 6.11.
Modified Gram-Schmidt with Reorthogonalization

function [Q,R]=ModifiedGramSchmidtTwice(A);

% MODIFIEDGRAMSCHMIDTTWICE modified Gram-Schmidt with reorthogonalization

% [Q,R]=ModifiedGramSchmidtTwice(A); applies the modified

% Gram-Schmidt procedure with reorthogonalization to the columns in

% matrix A

[m,n]=size(A); R=zeros(n);

Q=A;

for k=1:n,

for t=1:2 % reorthogonalize

for i=1:k-1,

V=Q(:,i)’*Q(:,k); % projections

Q(:,k)=Q(:,k)-V*Q(:,i);

R(i,k)=R(i,k)+V;

end

end

R(k,k)=norm(Q(:,k)); Q(:,k)=Q(:,k)/R(k,k);

end

308 LEAST SQUARES PROBLEMS

Using again our example we get this time

>> m=15; n=10; H=hilb(m); A=H(:,1:n);

>> [Q R]=ModifiedGramSchmidtTwice(A);

>> norm(Q’*Q-eye(n))

ans = 4.8199e-16

>> norm(Q*R-A)

ans = 6.7575e-17

a perfectly orthogonal matrix Q.

6.5.7 Partial Reorthogonalization

If we orthogonalize every vector twice, the number of computer operations
is doubled. Therefore, it is natural to consider reorthogonalizing only when
necessary. For this partial reorthogonalization, we need to decide when bk is
to be considered small.

In the following algorithm, which is a translation of the Algol program
ortho by Heinz Rutishauser [111], a simple criterion for reorthogonalization
is used. If bk is 10 times smaller than ak then we must expect to lose at least
one decimal digit by cancellation, thus we will reorthogonalize in that case.

If the vectors are linearly dependent (the matrix is rank deficient) then
cancellation will also occur when the vector is reorthogonalized. If with
repeated reorthogonalizing the vector shrinks to rounding error level then it
is assumed that the vector is linearly dependent and it is replaced by a zero
vector.

We obtain thus the following algorithm:

Algorithm 6.12.
Gram-Schmidt with Reorthogonalization

function [Q,R,z]=GramSchmidt(Q);

% GRAMSCHMIDT modified Gram-Schmidt with partial reorthogonalization

% [Q,R,z]=GramSchmidt(Q); computes the QR decomposition of the

% matrix Q using modified Gram-Schmidt with partial

% reorthogonalization; z is a vector that counts the

% reorthogonalization steps per column.

% Translation of the ALGOL procedure in H. Rutishauser: "Algol 60"

z=[]; [m,n]=size(Q); R=zeros(n);

for k=1:n,

t=norm(Q(:,k));

reorth=1;

u=0; % count reorthogonalizations

while reorth,

u=u+1;

for i=1:k-1,

Algorithms Using Orthogonal Matrices 309

s= Q(:,i)’*Q(:,k);

R(i,k)=R(i,k)+s;

Q(:,k)=Q(:,k)-s*Q(:,i);

end

tt=norm(Q(:,k));

if tt>10*eps*t & tt<t/10, % if length short reorthogonalize

reorth=1; t=tt;

else

reorth=0;

if tt<10*eps*t, tt=0; end % linearly dependent

end

end

z=[z u];

R(k,k)=tt;

if tt*eps~=0, tt=1/tt; else tt=0; end

Q(:,k)=Q(:,k)*tt;

end

Note that if the norm of b becomes very small, e.g., when tt<10*eps*t

in the implementation above, then GramSchmidt considers the new column
as linearly dependent and inserts a zero column in Q.

Example 6.13. The 7 column vectors of A are in R
5. So they are linearly

dependent.

A =[0 0 0 0 0 1 0

83 1 0 0 0 1 973

7 42 1 1 93 85 53

9 65 42 70 91 76 26

5 74 33 63 76 99 37]

[Q0,R0,z] = GramSchmidt(A)

[Q,R] = qr(A)

We obtain the results

Q0 =

0 0 0 0 0 1.0000 0

0.9889 -0.1388 0.0098 0.0515 0 0.0000 0

0.0834 0.3841 -0.8231 -0.4098 0 0.0000 0

0.1072 0.5977 0.5669 -0.5566 0 -0.0000 0

0.0596 0.6899 -0.0309 0.7208 0 -0.0000 0

R0 =

83.9285 15.8706 6.5532 11.3430 22.0426 22.1260 971.6480

0 105.8968 48.2545 85.6870 142.5461 146.2353 -73.5970

0 0 21.9672 36.9133 -27.3109 -29.9315 -20.4856

0 0 0 6.0398 -33.9831 -5.7251 40.5828

0 0 0 0 0 0 0

0 0 0 0 0 1.0000 -0.0000

0 0 0 0 0 0 0

z =

310 LEAST SQUARES PROBLEMS

1 1 1 2 1 2 1

Q =

0 -0.0000 -0.0000 0.0000 -1.0000

-0.9889 -0.1388 0.0098 0.0515 -0.0000

-0.0834 0.3841 -0.8231 -0.4098 -0.0000

-0.1072 0.5977 0.5669 -0.5566 -0.0000

-0.0596 0.6899 -0.0309 0.7208 0.0000

R =

-83.9285 -15.8706 -6.5532 -11.3430 -22.0426 -22.1260 -971.6480

0 105.8968 48.2545 85.6870 142.5461 146.2353 -73.5970

0 0 21.9672 36.9133 -27.3109 -29.9315 -20.4856

0 0 0 6.0398 -33.9831 -5.7251 40.5828

0 0 0 0 -0.0000 -1.0000 -0.0000

GramSchmidt discovered that the 5th vector was linearly dependent on the
first four and replaced it by a zero vector. The 7th vector is also linearly
dependent (as we would expect from the dimension of the column space) and
is also replaced by a zero vector. Notice that the 4th and 6th vector had to be
reorthogonalized. The standard Matlab function qr gives the same results
without displaying the zero rows and columns in R and Q.

1 − λ G M Singular Values

1.000e-09 3 3 8.593 2.091e-09 1.363e-09 1.543e-16 8.165e-18
1.000e-10 3 3 8.593 2.091e-10 1.363e-10 3.458e-17 2.122e-17
1.000e-11 3 3 8.593 2.091e-11 1.363e-11 5.955e-17 4.253e-17
1.000e-12 3 3 8.593 2.091e-12 1.363e-12 8.250e-17 2.081e-17
1.001e-13 3 3 8.593 2.095e-13 1.364e-13 7.927e-17 3.179e-17
1.010e-14 3 2 8.593 2.122e-14 1.383e-14 1.876e-16 4.088e-17
1.110e-15 2 1 8.593 2.398e-15 1.468e-15 1.150e-16 5.860e-17
2.220e-16 1 1 8.593 4.422e-16 3.197e-16 2.348e-16 1.697e-17
1.110e-16 1 1 8.593 5.609e-16 3.314e-16 1.055e-16 8.622e-18

Table 6.1. Rank Computation with G (Gram-Schmidt) and M (Matlab SVD)

Example 6.14. As second example, we construct the following matrix
A ∈ R

8×5 which has rank 3 if the parameter lam = λ < 1. However, for
λ = 1 the matrix has rank 1. For 1−λ ≥ 10−14 GramSchmidt finds the linear
dependencies correctly and replaces the dependent columns by zeros. If we
let λ → 1 we can see in Table 6.1 how both functions GramSchmidt and the
Matlab function rank compute the rank.

format short e

lam=0.99999999; e=0.00000001;

for i=1:9

e=e/10; lam=lam+e*9;

a=[1 lam 1 lam 1 1 1 lam]’;

b=[1 1 lam 1 1 1 lam 1]’;

c=[lam 1 1 lam 1 lam 1 1]’;

Algorithms Using Orthogonal Matrices 311

A=[a+0.1*b-0.98*c, -0.321*a+0.07*b, 0.56*c, 0.3*a-3.1*b, b];

[q,r,z]=GramSchmidt(A)

rankgs=sum(any(q));

1-lam

[rankgs rank(A)]

svd(A)’

end

6.5.8 Updating and Downdating the QR Decomposition

Suppose we have computed the QR decomposition to find the model param-
eters that best fit the given data. It often happens that more data become
available, data need to be thrown out, or the data have changed due to dif-
ferent operating conditions; in other words, the matrix has changed. Instead
of recomputing the QR factorization from scratch, it is often more efficient to
update the existing factorization. In this subsection, we show how to update
the QR factors for the following types of changes in the matrix:

1. Rank-one update,

2. Deleting a column,

3. Adding a column,

4. Adding a row,

5. Deleting a row.

Rank-one update

Given a QR decomposition of the matrix A = Q
(
R
0

)
with A ∈ R

m×n, Q ∈
R

m×m with m ≥ n and two vectors u ∈ R
m and v ∈ R

n, is there a simple
way to compute the QR decomposition of the rank-1 modified matrix A′ =
A+ uv� = Q′R′?

Multiplying with Q� we get

Q�A′ = Q�A+Q�uv� =

(
R

0

)
+wv� with w = Q�u.

The idea is to transform the vector w to a multiple of e1. Then the rank-1
correction wv� can be added to the matrix R by just changing the first row.

The algorithm consists of three steps:

1. Choose Givens rotation Gk acting on row k and k + 1 for k = m,m−

312 LEAST SQUARES PROBLEMS

1, . . . , n+ 1 such that the elements wn+2, . . . , wm are rotated to zero:

G�
n+1 . . . G

�
m−2G

�
m−1Q

�︸ ︷︷ ︸
Q�

1

A′ =
(
R

0

)
+G�

n+1 . . . G
�
m−2G

�
m−1wv�

=

(
R

0

)
+

(
w′

0

)
v�.

This process generates(
w′

0

)
= G�

n+1 . . . G
�
m−2G

�
m−1w

and Q1 = QGm−1Gm−2 . . . Gn+1.

2. We now apply more Givens rotations to map w′ to αe1. These rotations
also change Q1 to Q2 and the matrix R becomes an upper Hessenberg
matrix H1,

G�
1 . . . G

�
nQ

�
1︸ ︷︷ ︸

Q�
2

A′ =
(
H1

0

)
+

(
α

0

)
v� =

(
H

0

)
.

The transformed rank-1 correction is now added to the first row of the
matrix H1, thus the right hand side becomes a new Hessenberg matrix
H.

3. In the last step we annihilate with further Givens rotations the sub-
diagonal of H and so we obtain the QR decomposition of the modified
matrix,

G�
n . . . G

�
1Q

�
2︸ ︷︷ ︸

Q′�

A′ = G�
n . . . G�

1

(
H

0

)
=

(
R′

0

)
.

In the the following algorithm we will make use of the Matlab function
planerot, which computes a Givens rotation matrix G ∈ R

2×2. The call
[G,y]=planerot(x) computes the matrix

G =
1

‖x‖2

(
x1 x2

−x2 x1

)
and vector y =

(‖x‖2
0

)
.

Since it makes use of the Matlab built in function norm, it is safe to compute
it this way. It would not be a good idea to replace the norm computation by√

x2
1 + x2

2, see Section 2.7.5 and Problem 2.13.

Algorithm 6.13. Rank-1 Update of QR decomposition

function [Qs,Rs]=UpdateQR(Q,R,u,v)

Algorithms Using Orthogonal Matrices 313

% UPDATEQR Rank-1 update of the QR-Decomposition

% [Qs,Rs]=UpdateQR(Q,R,u,v); If As=A+u v’ and [Q,R]=qr(A) then we

% compute Qs and Rs such that As=Qs Rs. Uses Matlab’s PLANEROT.

[m,n]=size(R); Qs=Q; Rs=R; w=Q’*u;

for k=m:-1:n+2 % annihilate w(n+2:m)

G=planerot(w(k-1:k));

w(k-1:k)=G*w(k-1:k);

Qs(:,k-1:k)=Qs(:,k-1:k)*G’;

end

for k=n+1:-1:2 % annihilate w(2:n+1)

G=planerot(w(k-1:k));

w(k-1:k)=G*w(k-1:k);

Rs(k-1:k,k-1:n)=G*Rs(k-1:k,k-1:n);

Qs(:,k-1:k)=Qs(:,k-1:k)*G’;

end

Rs(1,:)=Rs(1,:)+w(1)*v’; % Add rank-1 change to first row

for k=1:n % reduce Hessenberg matrix to Rs

G=planerot(Rs(k:k+1,k));

Rs(k:k+1,k:n)=G*Rs(k:k+1,k:n);

Qs(:,k:k+1)=Qs(:,k:k+1)*G’;

end

Example 6.15. We consider the 15 × 10 section of the Hilbert-matrix
and the vectors u = (1, 2, . . . , 15)� and v = (1, 2, . . . , 10)�. The test program

m=15; n=10;

A=hilb(m); A=A(:,1:n);

[Q,R]=qr(A);

u=[1:m]’; v=[1:n]’;

[Qs,Rs,]=UpdateQR(Q,R,u,v);

As=A+u*v’;

disp(’||As-Qs*Rs||’), norm(As-Qs*Rs)

disp(’||Qs’’*Qs-eye(m)||’), norm(Qs’*Qs-eye(m))

[Qk,Rk]=qr(As);

disp(’||As-Qk*Rk||’), norm(As-Qk*Rk)

disp(’||Qk’’*Qk-eye(m)||’), norm(Qk’*Qk-eye(m))

disp(’norm(Rs-Rk)’); norm(Rs-Rk)

disp(’||abs(Rs)-abs(Rk)||’), norm(abs(Rs)-abs(Rk))

compares the updating technique with the explicit QR decomposition of the
modified matrix, and gives the output

||As-Qs*Rs||

ans =

3.8508e-13

||Qs’*Qs-eye(m)||

ans =

1.3560e-15

314 LEAST SQUARES PROBLEMS

||As-Qk*Rk||

ans =

5.1102e-13

||Qk’*Qk-eye(m)||

ans =

1.4212e-15

norm(Rs-Rk)

ans =

1.3825e+03

||abs(Rs)-abs(Rk)||

ans =

3.6950e-13

The results are the same.

Deleting a column

We first consider the partition of A ∈ R
m×n into two matrices and the cor-

responding partitioning of the QR decomposition,

A = [A1, A2] = Q

⎛
⎝ R11 R12

0 R22

0 0

⎞
⎠ .

By multiplying the block columns, we conclude that

A1 = Q

(
R11

0

)

is the QR decomposition of A1. So when removing the last column or some
of the last columns the update is trivial.

Consider now the columns A = [a1, . . . ,ak, . . . ,an] and the permutation
matrix P which moves column k to the last column

AP = [a1, . . . ,ak−1,ak+1 . . . ,an,ak]

= QRP = Q[r1, . . . , rk−1, rk+1 . . . , rn, rk].

The permuted matrix R becomes

RP =

⎛
⎜⎜⎝
R11 v R13

0 rkk w�

0 0 R33

0 0 0

⎞
⎟⎟⎠P =

⎛
⎜⎜⎝
R11 R13 v
0 w� rkk
0 R33 0
0 0 0

⎞
⎟⎟⎠

a Hessenberg matrix. With Givens rotations Gk acting on rows k and k+1,
then k + 1 and k + 2, etc., we can transform the Hessenberg block again to
upper triangular form,

G�
n−1 · · ·G�

k

(
w� rkk
R33 0

)
= R̄22.

Algorithms Using Orthogonal Matrices 315

Thus we get the decomposition

AP = Q̄R̄, with Q̄ = QḠk · · · Ḡn−1 and Ḡi =

(
I 0
0 Gi

)
,

and the last column can simply be discarded.

Algorithm 6.14. Remove a Column of QR

function [Q,R]=RemoveColumnQR(Q,R,k);

% REMOVECOLUMNQR updating QR when a column is removed

% [Q,R]=RemoveColumnQR(Q,R,k); finds a QR decomposition for the

% matrix [A(:,1),...,A(:,k-1),A(:,k+1),..A(:,n)] where

% [Q,R]=qr(A). Uses Matlab’s function PLANEROT.

[m,n]=size(R);

R=R(:,[1:k-1,k+1:n]);

for j=k:n-1,

G=planerot(R(j:j+1,j));

R(j:j+1,j:n-1)=G*R(j:j+1,j:n-1);

Q(:,j:j+1)=Q(:,j:j+1)*G’;

end

Adding a column

Denote the new column by an+1 and place it before column k forming the
matrix Ā = [a1, . . . ,ak−1,an+1,ak . . . ,an]. Using an appropriate permuta-
tion matrix P we move the new column to the end Ā = [A,an+1]P . Using
the QR decomposition

A = Q

(
R

0

)
,

we get

Q�Ā =

[(
R

0

)
, Q�an+1

]
P.

Defining

Q�an+1 =

⎛
⎝u

v
w

⎞
⎠ , u ∈ R

k, v ∈ R
n−k, w ∈ R

m−n

and reversing the permutation, we get

Q�Ā =

⎛
⎝R11 u R12

0 v R22

0 w 0

⎞
⎠ .

Now we apply Givens rotations Gj acting on rows j and j + 1 to annihi-
late elements of w and v up to v1. When annihilating elements of v, the

316 LEAST SQUARES PROBLEMS

corresponding rows of R22 are also changed and we obtain again an upper
triangular matrix.

Algorithm 6.15. QR update by Adding a Column

function [Q,R]=AddColumnQR(Q,R,k,w);

% ADDCOLUMNQR_update QR decomposition when a new column is added

% [Q,R]=AddColumnQR(Q,R,k,w); finds the QR decomposition of

% [A(:,1),A(:,2),... A(:,k-1),w,A(:,k),...A(:,n)] when [Q,R]=qr(A).

% Uses Matlab PLANEROT

[m,n]=size(R);

R=[R(:,1:k-1),Q’*w,R(:,k:n)];

for j=m-1:-1:k

G=planerot(R(j:j+1,k));

R(j:j+1,k)=G*R(j:j+1,k); % annihilate new column

if j<=n, % transform also R

R(j:j+1,j+1:n+1)=G*R(j:j+1,j+1:n+1);

end

Q(:,j:j+1)=Q(:,j:j+1)*G’; % update Q

end

Adding a row

Let A = QR be given with A ∈ R
m×n, Q ∈ R

m×p and R ∈ R
p×n. We

consider adding a w� as new last row of A,

Ā =

(
A

w�

)
.

Then (
Q� 0
0 1

)(
A
w�

)
=

(
R
w�

)
.

To eliminate the elements of vector w� we use again Givens rotations acting
on w� and a row of R. For p = n we get

G�
n · · ·G�

2G
�
1

(
R
w�

)
=

(
R̄
0

)

with G�
i changing row i of R and w�. By applying the Givens rotations to

Q we get

Q̄ =

(
Q 0
0 1

)
G1 · · ·Gn

and thus Ā = Q̄
(
R̄
0

)
.

Algorithms Using Orthogonal Matrices 317

Note that if the new row is not appended as last row but between the
rows of A, then this means simply a permutation of the rows of Q̄, since

Q̄�P�PĀ = (PQ̄)�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 :

...
ak−1 :

w�

ak :

...
am :

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and R̄ remains the same.

Algorithm 6.16. QR update by Adding a Row

function [Q,R]=AddRowQR(Q,R,k,w);

% ADDROWQR QR decomposition of modified matrix

% [Q,R]=AddRowQR(Q,R,k,w); Given [Q,R]=qr(A),computes the QR

% decomposition for [A(1,:);A(2,:), ...,A(k-1,:);w;A(k,:),...A(n,:)]

[p,n]=size(R); m=size(Q,1); % Q is (m x p)

Q=[Q(1:k-1,:), zeros(k-1,1) % add row and column to Q

zeros(1,p), 1 % and permute

Q(k:m,:), zeros(m-k+1,1)];

R=[R; w]; % augment R

k=p+1;

for j=1:min(n,p)

G=planerot(R(j:k-j:k,j));

R(j:k-j:k,j:n)=G*R(j:k-j:k,j:n); % annihilate w

Q(:,j:k-j:k)=Q(:,j:k-j:k)*G’; % update Q

end

Example 6.16. In the following example we consider a matrix A ∈ R
5×3

with rank 2:

>> A=[17 24 -43

23 5 244

4 6 -14

10 12 -2

11 18 -55];

>> [m,n]=size(A);

>> [Q,R]=qr(A)

Q =

-0.5234 0.5058 0.3869 -0.1275 -0.5517

-0.7081 -0.6966 0.0492 -0.0642 0.0826

-0.1231 0.1367 -0.6694 -0.7172 -0.0614

-0.3079 0.1911 -0.6229 0.6816 -0.1271

318 LEAST SQUARES PROBLEMS

-0.3387 0.4514 0.1089 -0.0275 0.8179

R =

-32.4808 -26.6311 -129.3073

0 19.8943 -218.8370

0 0 0.0000

0 0 0

0 0 0

>> p=rank(A)

p =

2

>> q=Q(:,1:p)

q =

-0.5234 0.5058

-0.7081 -0.6966

-0.1231 0.1367

-0.3079 0.1911

-0.3387 0.4514

>> r=R(1:p,:)

r =

-32.4808 -26.6311 -129.3073

0 19.8943 -218.8370

>> [norm(A-Q*R) norm(A-q*r)]

ans =

1.0e-13 *

0.1313 0.0775

We computed the QR decomposition with Q ∈ R
5×5 and, because A has rank

2, we also obtained the economic version with q ∈ R
5×2 and r ∈ R

2×3. Both
products QR and qr represent the matrix A well. Next, we choose a new row
w� and insert it as new third row:

>> k=3;

>> w=[1 2 3];

>> As=[A(1:k-1,:); w; A(k:m,:)]

As =

17 24 -43

23 5 244

1 2 3

4 6 -14

10 12 -2

11 18 -55

>> [Qs, Rs]=AddRowQR(Q,R,k,w)

Qs =

0.5231 0.5039 -0.0460 -0.1275 -0.5517 0.3869

0.7078 -0.6966 0.0195 -0.0642 0.0826 0.0492

0.0308 0.0592 0.9978 0 0 -0.0000

0.1231 0.1363 -0.0119 -0.7172 -0.0614 -0.6694

0.3077 0.1902 -0.0208 0.6816 -0.1271 -0.6229

0.3385 0.4500 -0.0371 -0.0275 0.8179 0.1089

Rs =

Algorithms Using Orthogonal Matrices 319

32.4962 26.6801 129.3384

0 19.9292 -218.5114

0 0 11.9733

0 0 0

0 0 0

0 0 0

>> [qs, rs]=AddRowQR(q,r,k,w)

qs =

0.5231 0.5039 0.0460

0.7078 -0.6966 -0.0195

0.0308 0.0592 -0.9978

0.1231 0.1363 0.0119

0.3077 0.1902 0.0208

0.3385 0.4500 0.0371

rs =

32.4962 26.6801 129.3384

0 19.9292 -218.5114

0 0 -11.9733

>> [norm(As-Qs*Rs) norm(As-qs*rs)]

ans =

1.0e-12 *

0.1180 0.1165

We see that in both cases the update procedure works well. The product of
the new matrices represents well the modified matrix.

Deleting a row

Let A = QR be the QR decomposition. If the k-th row should be removed,
then we perform first a permutation such that it becomes the first row:

A = QR, PA =

(
a�
k

Ā

)
= PQR.

Our aim is to compute the QR decomposition of Ā which is A with row k
removed. Using Givens rotations, we transform the first row of PQ to the
first unit vector

PQG�
m−1 · · ·G�

1 =

(±1 0
x Q̄

)

Note that by this operation the vector x must be zero! This because the
matrix is orthogonal. Thus we get(

a�
k

Ā

)
= (PQG�

m−1 · · ·G�
1) (G1 · · ·Gm−1R)

=

(±1 0
0 Q̄

)(
v�

R̄

)
. (6.42)

320 LEAST SQUARES PROBLEMS

The multiplications with the Givens rotations G1 · · ·Gm−1R transform the
matrix R into a Hessenberg matrix. Looking at (6.42), we can read off the
solution Ā = Q̄R̄ by discarding the first row.

Algorithm 6.17. QR update by Removing a Row

function [Q,R]=RemoveRowQR(Q,R,k);

% REMOVEROWQR update the QR decomposition when a row is removed

% [Q,R]=RemoveRowQR(Q,R,k); computes the QR decomposition for

% [A(1,:); A(2,:);...;A(k-1,:); A(k+1,:);...;A(n,:)] when

% [Q,R]=qr(A).

[m,n]=size(R);

Q=[Q(k,:); Q(1:k-1,:); Q(k+1:m,:)]; % permute Q

for j=m-1:-1:1 % map row to unit vector

G=planerot(Q(1,j:j+1)’);

if j<=n

R(j:j+1,j:n)=G*R(j:j+1,j:n); % update R

end;

Q(:,j:j+1)=Q(:,j:j+1)*G’; % update Q

end

Q=Q(2:m,2:m);R=R(2:m,:);

Remarks.

1. Deleting a row is a special case of a rank-one modification: u = −e1,
v = a1.

2. Matlab offers two functions to add (respectively remove) rows and
columns of a QR decomposition: qrinsert, qrdelete. They are es-
sentially the same as our functions. There is also a Matlab-built in
function qrupdate which computes a rank-one update.

6.5.9 Covariance Matrix Computations Using QR

Let A = Q

(
R

0

)
be the QR decomposition. Then A�A = R�R and thus the

covariance matrix becomes

C = (A�A)−1 = R−1R−�.

In this section, we will show how to compute elements of the covariance
matrix using a minimal number of operations.

Algorithms Using Orthogonal Matrices 321

Computing individual elements

Since the covariance matrix C is symmetric, it is sufficient to compute ele-
ments in the upper triangle. Let i ≤ j. Then

cij = e�
i R

−1R−�ej = u�
i uj where ui = R−�ei.

Thus ui can be computed by forward substitution,

R�ui = ei.

Because the elements ui = 0 for i = 1, 2, . . . , i − 1 we need to start with
forward substitution only at equation #i.

Algorithm 6.18. Computes ith-Row of R−1

function u=ui(i,R)

% UI computes a row of the inverse of a triangular matrix

% u=ui(i,R) computes the i-th row of the inverse of the upper

% triangular matrix R

n=min(size(R)); u=zeros(1,i-1);

u(i)=1/R(i,i);

for j=i+1:n,

u(j)=-u(i:j-1)*R(i:j-1,j)/R(j,j);

end

The element cij is then computed for i < j by the statements

u1=ui(i,R); u2=ui(j,R); cij=u1(j:n)*u2(j:n)’

For a diagonal element this simplifies to

u=ui(i,R); cii=u(i:n)*u(i:n)’

Calculating the whole covariance matrix

To compute C = R−1R−� we need R−1, that is the vectors u1, . . . ,un. Then
we multiply R−1R−� by using the triangular shape of R−1 and the symmetry
and computing only the upper part of C.

Algorithm 6.19. Covariance via R−1

function C=Covariance(R)

% COVARIANCE computes the covariance matrix

% C=Covariance(R) computes the upper triangle of the covariance

% matrix from the R factor of the QR-decomposition [Q,R]=qr(A)

n=min(size(R)); U=[]; % U is R^(-1)

322 LEAST SQUARES PROBLEMS

for i=1:n,

u=ui(i,R); U=[U; u];

end;

for i=1:n, % compute C=inv(R)*inv(R’)

for j=i:n,

C(i,j)=U(i,j:n)*U(j,j:n)’;

end

end

Björck’s Algorithm

Because R�R = A�A it follows that R�RC = I or

RC = R−�. (6.43)

The diagonal elements on the right hand side of Equation (6.43) are 1/rii.
Surprisingly, this information is sufficient to compute by a recurrence the
elements of the covariance matrix C.

Assume that the rows and columns k + 1, . . . , n of C are known, that is
the elements cij = cji for j = k + 1, . . . , n and i ≤ j.

Consider the k-th diagonal element in (6.43),

r�kck =
1

rkk
⇐⇒ rkkckk +

n∑
j=k+1

rkjcjk =
1

rkk
.

The elements after the summation sign are known, therefore

ckk =
1

rkk

⎛
⎝ 1

rkk
−

n∑
j=k+1

rkjcjk

⎞
⎠ .

For an element on the k-th row with i < k we have

r�
i ck = 0 ⇐⇒ riicik +

n∑
j=i+1

rijcjk = 0.

Also here the elements after the summation symbol are known according to
our assumption, thus

cik = − 1

rii

n∑
j=i+1

rijcjk, i = k − 1, . . . , 1.

Using these recurrence relations, the whole covariance matrix can be com-
puted starting with the last column. We obtain

Algorithm 6.20. Covariance Matrix, Björck Algorithm

Linear Least Squares Problems with Linear Constraints 323

function C=CovarianceBjoerck(R)

% COVARIANCEBJOERCK computes the covariance matrix by Bjoerck’s method

% C=CovarianceBjoerck(R) computes the covariance matrix from the

% R factor of A=QR by solving the system R C=R^-T

n=min(size(R));

C=zeros(n,n);

for k=n:-1:1,

C(k,k)=(1/R(k,k)-R(k,k+1:n)*C(k,k+1:n)’)/R(k,k);

for i=k-1:-1:1,

C(i,k)=-(R(i,i+1:k)*C(i+1:k,k)+R(i,k+1:n)*C(k,k+1:n)’)/R(i,i);

end

end

6.6 Linear Least Squares Problems with Linear
Constraints

Given the matrices Am×n, Cp×n and the vectors b and d, we are interested
in finding a vector x such that

‖Ax− b‖2 −→ min subject to Cx = d. (6.44)

We are interested in the case p ≤ n ≤ m. A solution exists only if the
constraints are consistent i.e. if d ∈ R(C).

A straightforward way is to eliminate the constraints and solve the re-
duced unconstrained problem. This can be done using the general solution
of Cx = d, see Section 6.3.3,

x = C+d+ PN (C)y, y arbitrary and PN (C) = I − C+C.

Now ‖Ax− b‖22 = ‖APN (C)y − (b− AC+d)‖22 −→ min is an unconstrained
linear least squares problem in y. The solution with minimal norm is

ỹ = (APN (C))
+(b− AC+d).

Thus x = C+d+PN (C)(APN (C))
+(b−AC+d). We can simplify this expres-

sion using the following lemma:

Lemma 6.2. PN (C)(APN (C))
+ = (APN (C))

+.
Proof. The matrix (APN (C))

+ is the solution of the Penrose equations
(see Theorem 6.7). We show that Y = PN (C)(APN (C))

+ is also a solution,
therefore by uniqueness they must be the same. In the proof below, we will
write P := PN (C) and use the relations PP = P and P� = P , which hold
because P is an orthogonal projector. We now substitute Y into the Penrose
equations:

(i) (AP)Y (AP) = A PP︸︷︷︸
P

(AP)+AP = AP (AP)+(AP) = AP .

324 LEAST SQUARES PROBLEMS

(ii) Y (AP)Y = P (AP)+A PP︸︷︷︸
P

(AP)+ = P ((AP)+AP (AP)+) = P (AP)+ =

Y .

(iii) (AP Y)� = (A PP︸︷︷︸
P

(AP)+)� = A P︸︷︷︸
PP

(AP)+ = AP Y .

(iv) (Y AP)� = (P (AP)+AP)� = [(AP)+AP]�P = (AP)+A PP︸︷︷︸
P

= (AP)+AP = ((AP)+AP)� = (AP)�[(AP)+]� = P︸︷︷︸
PP

A�[(AP)+]�

= P ((AP)+AP)� = P ((AP)+AP) = Y AP .

�
As a consequence of the lemma, we have PN (C)ỹ = ỹ.

Theorem 6.16. Let d ∈ R(C) and define x = x̃+ ỹ with

x̃ = C+d, ỹ = (APN (C))
+(b− Ax̃),

where PN (C) = I − C+C. Then x is a solution to the problem (6.44); this
solution is unique if and only if

rank

(
A

C

)
= n.

Moreover, if (6.44) has more than one solution, then x is the minimal norm
solution.

Proof. We have already shown by construction that x is a solution. We
note that the solution x cannot be unique if rank

(
A
C

)
< n, since there would

exist a vector w 	= 0 such that
(
A
C

)
w =

(
0
0

)
and x + w is also a solution.

Thus the condition is necessary; we will show in Section 6.6.2 that it is also
sufficient.

We now show that x has minimal norm when the solution is not unique.
Let x and x̂ be two solutions to (6.44). Since both must satisfy the constraint
Cx = d, they can be written as

x = C+d+ ỹ = x̃+ P ỹ,

x̂ = C+d+ Py = x̃+ Py,

where we use again the abbreviation P := PN (C) and the fact that P ỹ = ỹ.

Since P = P� and PC+ = (I −C+C)C+ = 0 (see Theorem 6.9), we see that
x̃ ⊥ P ỹ, so we have

‖x‖22 = ‖x̃‖22 + ‖P ỹ‖22 = ‖x̃‖22 + ‖ỹ‖22.
Similarly, for x̂ we have

‖x̂‖22 = ‖x̃‖22 + ‖Py‖22.

Linear Least Squares Problems with Linear Constraints 325

Now since ỹ is the minimal norm solution, every other solution of the reduced
unconstrained linear least squares problem has the form y = ỹ + w with
w ⊥ ỹ. Also ỹ ⊥ Pw holds since ỹ�Pw = (P ỹ)�w = ỹ�w = 0. Thus

‖x̂‖22 = ‖x̃‖22 + ‖Py‖22 = ‖x̃‖22 + ‖ỹ‖22 + ‖Pw‖22 ≥ ‖x̃‖22 + ‖ỹ‖22 = ‖x‖22.

Therefore x = x̃+ ỹ is the minimum norm solution. �

6.6.1 Solution with SVD

Problem (6.44) can be solved in an elegant and even more general way using
the SVD. We will assume that A ∈ R

m×n, C ∈ R
p×n with p < n < m, that

b /∈ R(A), that rank(C) = rc < p and d /∈ R(C). This means that Cx = d
is not consistent, but that we consider the more general problem

‖Ax− b‖2 −→ min subject to ‖Cx− d‖2 −→ min . (6.45)

Since C has a nontrivial null space, the constraint ‖Cx − d‖2 −→ min has
many solutions and we want to minimize ‖Ax − b‖2 over that set. The
algorithm that we develop can then also be used for the special case of equality
constraints when Cx = d is consistent.

In the first step we determine the general (least squares) solution of Cx ≈
d. Let C� = TSR� be the SVD with T ∈ R

n×n and R ∈ R
p×p. Since

rank(C) = rc < p, we partition the matrices accordingly into the sub-matrices
T = [T1, T2] with T1 ∈ R

n×rc , T2 ∈ R
n×(p−rc), Sr = S(1:rc, 1:rc) and R =

[R1, R2] with R1 ∈ R
p×rc and R2 ∈ R

p×(p−rc). With this partition, C =
R1SrT

�
1 and C+ = T1S

−1
r R�

1 . The general solution of ‖Cx − d‖2 −→ min
then becomes

x = xm + T2z, with z ∈ R
n−rc arbitrary and xm = T1S

−1
r R�

1d.

We now introduce this general solution into ‖Ax− b‖2 and obtain

‖AT2z − (b− Axm)‖2 −→ min, AT2 ∈ R
m×(n−rc), (6.46)

an unconstrained least squares problem for z. We compute the SVD of AT2 =
UΣV� and partition again the matrices according to the rank(AT2) = ra, for
which we will assume that ra < n − rc: U = [U1, U2], Σr = Σ(1 : ra, 1 : ra)
and V = [V1, V2]. With this partition, the general solution of (6.46) is

z = zm + V2w, with w ∈ R
n−rc−ra arbitrary, and zm = V1Σ−1

r U�
1 (b − Axm).

Thus the solution of Problem (6.45) is

x = xm + T2z = xm + T2V1Σ
−1
r U�

1 (b− Axm) + T2V2w, xm = T1S
−1
r R�

1d
(6.47)

with w ∈ R
n−rc−ra arbitrary.

326 LEAST SQUARES PROBLEMS

Example 6.17. We consider A ∈ R
9×6, rank(A) = 3, C ∈ R

3×6,

rank(C) = 2 and rank
(
A
C

)
= 5. Furthermore b /∈ R(A) and also d /∈ R(C).

The solution (6.47) will not be unique, as we will see.

>> A=[5 -1 -1 6 4 0

-3 1 4 -7 -2 -3

1 3 -4 5 4 7

0 4 -1 1 4 5

4 2 3 1 6 -1

3 -3 -5 8 0 2

0 -1 -4 4 -1 3

-5 4 -3 -2 -1 7

3 4 -3 6 7 7];

>> [m,n]=size(A);

>> b=[-4 1 -2 3 3 0 -1 3 1]’;

>> ranksa=[rank(A) rank([A,b])]

ranksa= 3 4

>> C=[1 3 -2 3 8 0

-3 0 0 1 9 4

-2 3 -2 4 17 4];

>> [p n]=size(C);

>> d=[1 2 -3]’;

>> ranksc=[rank(C) rank([C,d])]

ranksc= 2 3

Now we compute the minimal norm solution of Cx ≈ d, its norm and the
norm of the residual r = d−Cxm:

>> [T,S,R]=svd(C’);

>> rc=rank(S); Sr=S(1:rc,1:rc);

>> T1=T(:,1:rc); T2=T(:,rc+1:n);

>> R1=R(:,1:rc); R2=R(:,rc+1:p);

>> xm=T1*(Sr\(R1’*d));

>> xm’

ans=-0.0783 -0.0778 0.0519 -0.0604 -0.0504 0.0698

>> [norm(xm) norm(d-C*xm)]

ans= 0.1611 3.4641

To obtain another solution xg of Cx ≈ d, we choose e.g. z = (1, 2, 3, 4)� and
obtain

>> xg=xm+T2*[1 2 3 4]’;

>> xg’

ans= 0.1391 0.6588 -2.7590 2.0783 -1.8586 3.7665

>> [norm(xg) norm(d-C*xg)]

ans= 5.4796 3.4641

We see that xg has the same residual, but ‖xg‖2 > ‖xm‖2, as we would
expect. Note that the results for xg may differ depending on the version of
Matlab used; this is because the matrix T2 is not unique. We continue by
eliminating the constraints and solve the unconstrained problem for z:

>> As=A*T2; c=b-A*xm;

Linear Least Squares Problems with Linear Constraints 327

>> nrc=n-rc

nrc= 4

>> [U Sig V]=svd(As);

>> ra=rank(Sig)

ra= 3

>> Sigr=Sig(1:ra,1:ra);

>> U1=U(:,1:ra); U2= U(:,ra+1:nrc);

>> V1=V(:,1:ra); V2= V(:,ra+1:nrc);

>> zm=V1*(Sigr\(U1’*c));

>> zm’

ans= -0.0364 -0.1657 -0.2783 0.3797

The matrix As = AT2 is rank deficient, so the reduced unconstrained problem
has infinitely many solutions and the vector zm is the minimal norm solution.
Thus the minimal norm solution of Problem (6.45) is xmin = xm + T2zm :

>> xmin=xm+T2*zm;

>> xmin’

ans=0.1073 0.2230 0.2695 -0.1950 -0.0815 0.3126

We finally perform some checks; xa is a solution of Ax ≈ b computed by
Matlab.

>> xa=A\b;

Warning: Rank deficient, rank=3 tol= 3.0439e-14.

>> [norm(C*xm-d) norm(C*xg-d) norm(C*xmin-d) norm(C*xa-d)]

ans= 3.4641 3.4641 3.4641 6.1413

>> [norm(A*xm-b) norm(A*xg-b) norm(A*xmin-b) norm(A*xa-b)]

ans= 6.8668 93.3010 5.3106 5.3106

>> [norm(xm) norm(xg) norm(xmin) norm(xa)]

ans= 0.1611 5.4796 0.5256 0.5035

Of course, xa does not minimize ‖Cx − d‖2 and xm does not minimize
‖Ax− b‖2. However, xmin does minimize both norms as it should.

Another solution of Problem (6.45) is obtained by adding to xmin some
linear combination of the columns of the matrix T2V2: x = xmin + T2V2w.
Since T2V2 ∈ R

6×1 in our example, w is a scalar:

T2*V2

ans =

0.4656

-0.2993

-0.4989

-0.6319

0.1663

0.1330

The general solution of Problem (6.45) for our example is therefore (with

328 LEAST SQUARES PROBLEMS

arbitrary parameter λ)

x =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.1073
0.2230
0.2695

−0.1950
−0.0815
0.3126

⎞
⎟⎟⎟⎟⎟⎟⎠

+ λ

⎛
⎜⎜⎜⎜⎜⎜⎝

0.4656
−0.2993
−0.4989
−0.6319
0.1663
0.1330

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We compute two other solutions and show that they also minimize the two
norms but their own norm is larger than ‖xmin‖2:
>> x=xmin +T2*V2;

>> x’

ans= 0.5729 -0.0763 -0.2293 -0.8269 0.0848 0.4457

>> [norm(d-C*x) norm(b-A*x) norm(x)]

ans= 3.4641 5.3106 1.1297

>> x=xmin +5*T2*V2;

>> x’

ans= 2.4355 -1.2737 -2.2249 -3.3547 0.7500 0.9778

>> [norm(d-C*x) norm(b-A*x) norm(x)]

ans= 3.4641 5.3106 5.0276

Certainly, the SVD is the best method in such cases where rank decisions
have to be made. By providing explicit expressions for the projectors and or-
thogonal bases for the subspaces, this method is well suited for rank deficient
matrices and general solutions.

6.6.2 Classical Solution Using Lagrange Multipliers

Before the widespread use of the SVD as a computational tool, a classical
approach for solving Problem (6.44) uses Lagrange multipliers (see Section
12.2.2 for details). The Lagrangian is

L(x,λ) =
1

2
‖Ax− b‖22 + λ�(Cx− d).

Setting the partial derivatives to zero, we obtain

∂L

∂x
= A�(Ax− b) +C�λ = 0 and

∂L

∂λ
= Cx− d = 0.

Thus, we obtain the Normal Equations(
A�A C�

C 0

)(
x
λ

)
=

(
A�b
d

)
(6.48)

The matrix of the Normal Equations (6.48) is symmetric, but not positive
definite; for this reason, this system is also known as saddle point equations,

Linear Least Squares Problems with Linear Constraints 329

since they correspond geometrically to saddle points, i.e., points that are nei-
ther local minima nor maxima. Because of the indefiniteness, we cannot use
the Cholesky decomposition to solve (6.48); moreover, the matrix becomes
singular in the case of rank deficient matrices, like the example in Section
6.6.1, or even when only C is rank deficient.

The Normal Equations (6.48) can be used to finish the proof of Theorem
6.16. We need to prove that if rank

(
A
C

)
= n, then the solution of Problem

(6.44) is unique. Assume that we have two solutions x1 and x2. Then both
are solutions of the normal equations with some λ1 and λ2. If we take the
difference of the normal equations, we obtain(

A�A C�

C 0

)(
x1 − x2

λ1 − λ2

)
=

(
0

0

)
. (6.49)

Multiplying the first equation of (6.49) from the left with (x1 −x2)
�, we get

‖A(x1 − x2)‖22 + (C(x1 − x2)︸ ︷︷ ︸
=0

)�(λ1 − λ2) = 0.

Thus A(x1−x2) = 0 and also C(x1−x2) = 0, which means, since rank
(
A
C

)
=

n, that x1 = x2, which is what we wanted to prove.
If both A and C have full rank, we may make use of the block structure

of the matrix. Consider the ansatz(
A�A C�

C 0

)
=

(
R� 0
G −U�

)(
R G�

0 U

)
.

Multiplying the right hand side and equating terms we obtain

R�R = A�A thus R = chol(A’*A)

R�G� = C� or GR = C thus G = CR−1

and

GG� − U�U = 0 thus U = chol(G*G’).

The whole algorithm becomes:

1. Compute the Cholesky decomposition R�R = A�A.

2. Solve for G� by forward substituting R�G� = C�.

3. Compute the Cholesky decomposition U�U = GG�.

4. Solve for y1 and y2 by forward substitution,(
R� 0
G −U�

)(
y1

y2

)
=

(
A�b
d

)
.

330 LEAST SQUARES PROBLEMS

5. Solve for x and λ by backward substitution,(
R G�

0 U

)(
x
λ

)
=

(
y1

y2

)
.

Compared to solving the Normal Equations (6.48) with Gaussian elimination,
we save (n+p)3/6 multiplications using this decomposition. This saving may
be not significant for large m, because the dominant computational cost in
this case is in forming the matrix A�A, which requires mn2/2 multiplications.
Just as in the unconstrained case, the above algorithm should not be used to
solve Problem (6.44) numerically, since forming A�A and GG� is numerically
not advisable.

6.6.3 Direct Elimination of the Constraints

We will assume that C ∈ R
p×n has full rank and therefore Cx = d is con-

sistent. Applying Gaussian elimination with column pivoting, we obtain the
decomposition

CP = L[R, F]

with P a permutation matrix, L a unit lower triangular matrix, and R an
upper triangular matrix. The constraints become

CPP�x = L[R, F]y = d with y = P�x.

If we partition y = [y1,y2]
�, we obtain

[R, F]

(
y1

y2

)
= L−1d =: w

with the solution y2 arbitrary and y1 = R−1(w−Fy2). Inserting x = Py in
‖Ax−b‖2 and partitioning AP = [A1, A2], we get the unconstrained problem

(A2 − A1R
−1F)y2 ≈ b−A1R

−1w.

A compact formulation of the algorithm is the following:

1. Form the combined system (
C

A

)
x
=

≈
(
d

b

)
.

2. Eliminate p variables by Gaussian elimination with column pivoting,(
R F

0 Ã

)(
y1

y2

)
=

≈
(
w

b̃

)
.

Linear Least Squares Problems with Linear Constraints 331

3. Continue elimination of Ãy2 ≈ b̃ with orthogonal transformations
(Householder or Givens) to get⎛
⎝ R F

0 R2

0 0

⎞
⎠(y1

y2

)
=

≈

⎛
⎝ w

v1

v2

⎞
⎠ , with Ã = Q

(
R2

0

)
and

(
v1

v2

)
= Q�b̃.

4. Solve for y by back substitution(
R F
0 R2

)
y =

(
w

v1

)
and x = Py.

The algorithm is implemented in the following Matlab program

Algorithm 6.21. Linearly Constrained Least Squares

function x=LinearlyConstrainedLSQ(A,C,b,d)

% LINEARLYCONSTRAINEDLSQ solves linearly constrained least squares problem

% x=LinearlyConstrainedLSQ(A,C,b,d); solves ||Ax-b||= min s.t. Cx=d

% by direct Gaussian elimination. The reduced least squares problem

% is solved using the standard Matlab \ operator.

[p,n]=size(C); [m,n]=size(A);

CA=[C,d;A,b]; % augmented matrix

pp=[1:n]; % permutation vector

for i=1:p, % eliminate p unknowns

[h jmax]=max(abs(CA(i,i:n))); % with Gaussian elimination

jmax=i-1+jmax;

if h==0, error(’Matrix C is rank deficient’); end

if jmax~=i % exchange columns

h=CA(:,i); CA(:,i)=CA(:,jmax); CA(:,jmax)=h;

zz=pp(i); pp(i)=pp(jmax); pp(jmax)=zz;

end;

CA(i+1:p+m,i)=CA(i+1:p+m,i)/CA(i,i); % elimination

CA(i+1:p+m,i+1:n+1)=CA(i+1:p+m,i+1:n+1) ...

-CA(i+1:p+m,i)*CA(i,i+1:n+1);

end;

y2=CA(p+1:m+p,p+1:n)\CA(p+1:m+p,n+1); % solve lsq.-problem

y1=triu(CA(1:p,1:p))\(CA(1:p,n+1)-CA(1:p,p+1:n)*y2);

x(pp)=[y1;y2]; % permute solution

x=x(:);

Example 6.18. If we interpolate the following 7 points by an interpolat-
ing polynomial of degree 6,

x=[1; 2.5; 3; 5; 13; 18; 20];

y=[2; 3; 4; 5; 7; 6; 3];

332 LEAST SQUARES PROBLEMS

plot(x,y,’o’); hold;

xx=1:0.1:20;

P=polyfit(x,y,6); % fit degree 6 polynomial

plot(xx, polyval(P,xx),’:’)

pause

we obtain the dashed curve shown in Figure 6.5. The interpolation is really
not what one would like. We can obtain a smoother interpolation for example

0 2 4 6 8 10 12 14 16 18 20
−4

−2

0

2

4

6

8

10

12

14

Figure 6.5. Polynomial Interpolation

by giving up the interpolation condition, or maybe by demanding interpolation
only for a few points and using a least squares fit for the remaining ones.

In Matlab, a polynomial of degree d with coefficients p is represented as

Pd(x) = p1x
d + p2x

d−1 + · · · + pdx+ pd+1.

The interpolation and approximation conditions Pd(xi) = yi resp. Pd(xi) ≈ yi
lead to the constrained least squares problem

V p � y,

with the m× (d+ 1) Vandermonde matrix V = (vij) with vij = xd−j+1
i . We

now choose the degree d = 4 and interpolate p = 3 points, the first, the last
and the fifth:

m=length(x); n=5; % choose degree 4

V=vander(x); V=V(:,m-n+1:m);

p=3; % number of interpolating points

We reorder the equations so that the first 3 are the ones with the interpolation
conditions:

in=[1 5 7 2 3 4 6]; % permute equations

Linear Least Squares Problems with Linear Constraints 333

Vp=V(in,:); yp=y(in);

C=Vp(1:p,:); A=Vp(p+1:m,:);

d=yp(1:p); b=yp(p+1:m);

P1=LinearlyConstrainedLSQ(A,C,b,d);

plot(xx, polyval(P1,xx))

As we can see from Figure 6.5, we obtain this time a much more satisfactory
representation of the data. Comparing the function values V P1 with y, we
spot the three interpolation points and see that the others are approximated
in the least squares sense.

>> [V*P1 y]

ans =

2.0000 2.0000

3.4758 3.0000

3.8313 4.0000

4.8122 5.0000

7.0000 7.0000

5.9036 6.0000

3.0000 3.0000

6.6.4 Null Space Method

There are several possibilities to avoid the Normal Equations (6.48) by direct
elimination of the constraints. Since we assume that C has full rank p, we can
express the general solution of Cx = d using the QR decomposition instead
of the SVD as in Section 6.6.1.

We compute the QR decomposition of C�,

C� = [Q1, Q2]

(
R

0

)
, R ∈ R

p×p, Q1 ∈ R
n×p.

Then the columns of Q2 span the null space of C�: N (C) = R(Q2). With
Q = [Q1, Q2] and the new unknowns y = Q�x, the constraints become

Cx = CQy = [R�, 0]y = R�y1 = d, with y =

(
y1

y2

)
.

The general solution of the constraints is y1 = R−�d and y2 arbitrary. In-
troducing

Ax = AQQ�x = AQ

(
y1

y2

)
= A(Q1y1 +Q2y2)

into ‖Ax− b‖2, we get an unconstrained least squares problem

‖AQ2y2 − (b−AQ1y1)‖2 −→ min . (6.50)

Thus we obtain the algorithm:

1. compute the QR decomposition C� = [Q1, Q2]

(
R

0

)
.

334 LEAST SQUARES PROBLEMS

2. Compute y1 by forward substitution R�y1 = d and x1 = Q1y1.

3. Form Ã = AQ2 and b̃ = b− Ax1.

4. Solve Ãy2 ≈ b̃.

5. x = Q

(
y1

y2

)
= x1 +Q2y2.

Algorithm 6.22. Null Space Method

function x=NullSpaceMethod(A,C,b,d);

% NULLSPACEMETHOD solves a constrained least squares problem

% x=NullSpaceMethod(A,C,b,d) solves the constrained least squares

% problem ||Ax-b||=min s.t. Cx=d using the nullspace method.

[p n]=size(C);

[Q R]=qr(C’);

y1=R(1:p,1:p)’\d;

x1=Q(:,1:p)*y1;

y2=(A*Q(:,p+1:n))\(b-A*x1);

x=x1+Q(:,p+1:n)*y2;

6.7 Special Linear Least Squares Problems with
Quadratic Constraint

The SVD can be used very effectively to solve a very particular least squares
problem with a quadratic constraint, as shown in the following theorem.

Theorem 6.17. Let A = UΣV�. Then the problem

‖Ax‖2 −→ min, subject to ‖x‖2 = 1 (6.51)

has the solution x = vn and the value of the minimum is min‖x‖2=1 ‖Ax‖2 =
σn.

Proof. We make use of the fact that for orthogonal V and V�x = y we
have ‖x‖2 = ‖V V�x‖2 = ‖V y‖2 = ‖y‖2:

min
‖x‖2=1

‖Ax‖22 = min
‖x‖2=1

‖UΣV�x‖22 = min
‖V V�x‖2=1

‖UΣ(V�x)‖22
= min

‖y‖2=1
‖Σy‖22 = min

‖y‖2=1
(σ2

1y
2
1 + · · · + σ2

ny
2
n) ≥ σ2

n

The minimum is attained for y = en thus for x = V y = vn. �
Such minimization problems appear naturally in a variety of geometric

fitting problems, as we show in the following subsections.

Special Linear Least Squares Problems with Quadratic Constraint 335

6.7.1 Fitting Lines

We consider the problem of fitting lines by minimizing the sum of squares
of the distances to given points (see Chapter 6 in [45]). In the plane we can
represent a straight line uniquely by the equations

c+ n1x+ n2y = 0, n2
1 + n2

2 = 1. (6.52)

The unit vector (n1, n2) is the normal vector orthogonal to the line. A point
is on the line if its coordinates (x, y) satisfy the first equation. On the other
hand, if P = (xP , yP) is some point not on the line and we compute

r = c+ n1xP + n2yP ,

then |r| is its distance from the line. Therefore if we want to determine the
line for which the sum of squares of the distances to given points is minimal,
we have to solve the constrained least squares problem⎛
⎜⎜⎜⎝

1 xP1
yP1

1 xP2
yP2

...
...

...
1 xPm

yPm

⎞
⎟⎟⎟⎠
⎛
⎝ c

n1

n2

⎞
⎠ ≈

⎛
⎜⎜⎜⎝

0
0
...
0

⎞
⎟⎟⎟⎠ subject to n2

1 + n2
2 = 1. (6.53)

Let A be the matrix of the linear system (6.53). Using the QR decomposition
A = QR, we can multiply by Q� on the left and reduce the linear system to
Rx ≈ 0, i.e., the problem becomes⎛
⎝ r11 r12 r13

0 r22 r23
0 0 r33

⎞
⎠
⎛
⎝ c

n1

n2

⎞
⎠ ≈

⎛
⎝ 0

0
0

⎞
⎠ subject to n2

1 + n2
2 = 1. (6.54)

Since the nonlinear constraint only involves two unknowns, we only have to
solve(

r22 r23
0 r33

)(
n1

n2

)
≈
(

0
0

)
, subject to n2

1 + n2
2 = 1. (6.55)

The solution n is obtained using Theorem 6.17. We then obtain c by inserting
the values into the first equation of (6.54).

The quadratically constrained least squares problem

A

(
c

n

)
≈
(
0

0

)
, subject to ‖n‖2 = 1

is therefore solved by the following Matlab function:

Algorithm 6.23.
Quadratically Constrained Linear Least Squares

336 LEAST SQUARES PROBLEMS

function [c,n]=ConstrainedLSQ(A,dim);

% CONSTRAINEDLSQ solves a constraint least squares problem

% [c,n]=ConstrainedLSQ(A,dim) solves the constrained least squares

% problem A (c n)’ ~ 0 subject to norm(n,2)=1, dim=length(n)

[m,p]=size(A);

if p<dim+1, error(’not enough unknowns’); end;

if m<dim, error(’not enough equations’); end;

m=min(m,p);

R=triu(qr(A));

[U,S,V]=svd(R(p-dim+1:m,p-dim+1:p));

n=V(:,dim);

c=-R(1:p-dim,1:p-dim)\R(1:p-dim,p-dim+1:p)*n;

Fitting two Parallel Lines

Suppose we wish to determine two parallel lines by measuring the coordinates
of points that lie on them. The measurements are given as two sets of points
{Pi}, i = 1, . . . , p, and {Qj}, j = 1, . . . , q, and our goal is to find a pair of
parallel lines that best fit the two sets. Since the lines are parallel, their
normal vector must be the same. Thus the equations for the lines are

c1 + n1x+ n2y = 0,

c2 + n1x+ n2y = 0,

n2
1 + n2

2 = 1.

If we insert the coordinates of the two sets of points into these equations we
get the following constrained least squares problem for the four unknowns
n1, n2, c1 and c2:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 xP1
yP1

1 0 xP2
yP2

...
...

...
...

1 0 xPp
yPp

0 1 xQ1
yQ1

0 1 xQ2
yQ2

...
...

...
...

0 1 xQq
yQq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

c1
c2
n1

n2

⎞
⎟⎟⎠ ≈

⎛
⎜⎜⎜⎝

0
0
...
0

⎞
⎟⎟⎟⎠ subject to n2

1 + n2
2 = 1.

(6.56)
Again, we can use our function ConstrainedLSQ to solve this problem.

Example 6.19. In the following program some measured points are de-
fined and two parallel lines are fitted and plotted.

Px=[1:10]’

Py=[0.2 1.0 2.6 3.6 4.9 5.3 6.5 7.8 8.0 9.0]’

Special Linear Least Squares Problems with Quadratic Constraint 337

Qx=[1.5 2.6 3.0 4.3 5.0 6.4 7.6 8.5 9.9]’

Qy=[5.8 7.2 9.1 10.5 10.6 10.7 13.4 14.2 14.5]’

A=[ones(size(Px)) zeros(size(Px)) Px Py

zeros(size(Qx)) ones(size(Qx)) Qx Qy]

[c,n]=ConstrainedLSQ(A,2)

clf; hold on;

axis([-1 11 -1 17])

PlotLine(Px,Py,’o’,c(1),n,’-’)

PlotLine(Qx,Qy,’+’,c(2),n,’-’)

hold off;

We have used the function PlotLine to plot a line through given points.

Algorithm 6.24. Plot a line through points

function PlotLine(x,y,s,c,n,t)

% PLOTLINE plots a line through a set of points

% PlotLine(x,y,s,c,n,t) plots the set of points (x,y) using the

% symbol s and plots the line c+n1*x+n2*y=0 using the line type

% defined by t

plot(x,y,s)

xrange=[min(x) max(x)]; yrange=[min(y) max(y)];

if n(1)==0, % c+n2*y=0 => y=-c/n(2)

x1=xrange(1); y1=-c/n(2);

x2=xrange(2); y2=y1

elseif n(2)==0, % c+n1*x=0 => x=-c/n(1)

y1=yrange(1); x1=-c/n(1);

y2=yrange(2); x2=x1;

elseif xrange(2)-xrange(1)>yrange(2)-yrange(1),

x1=xrange(1); y1=-(c+n(1)*x1)/n(2);

x2=xrange(2); y2=-(c+n(1)*x2)/n(2);

else

y1=yrange(1); x1=-(c+n(2)*y1)/n(1);

y2=yrange(2); x2=-(c+n(2)*y2)/n(1);

end

plot([x1,x2],[y1,y2],t)

The results obtained by the program mainparallel are the two lines

0.5091− 0.7146x+ 0.6996y = 0,

−3.5877− 0.7146x+ 0.6996y = 0,

which are plotted in Figure 6.6.

6.7.2 Fitting Ellipses

We want to fit ellipses to measured points by minimizing the algebraic dis-
tance (see [146]). The solutions x = [x1, x2] of a quadratic equation

x�Ax+ b�x+ c = 0 (6.57)

338 LEAST SQUARES PROBLEMS

0 2 4 6 8 10

0

2

4

6

8

10

12

14

16

Figure 6.6. Two parallel lines through measured points

are points on an ellipse if A is symmetric and positive or negative definite
(i.e. if det(A) = a11a22−a212 > 0). For each measured point, we substitute its
coordinates xi into (6.57) to obtain an equation for the unknown coefficients
u = [a11, a12, a22, b1, b2, c]. Note that a12 = a21 because of symmetry. Since
(6.57) is homogeneous in the coefficients, we need some normalizing condition
in order to make the solution unique. A possibility that can handle all cases
is to normalize the coefficients by ‖u‖2 = 1. We then obtain a quadratically
constrained least squares problem

‖Bu‖2 −→ min subject to ‖u‖2 = 1.

If the rows of the matrix X contain the coordinates of the measured points
then the matrix B is computed by the Matlab statement

B=[X(:,1).^2 X(:,1).*X(:,2) X(:,2).^2 X(:,1) X(:,2) ones(size(X(:,1)))]

The solution u = [a11, a12, a22, b1, b2, c] is obtained using Theorem 6.17.
When the coefficients u are known, we can compute the geometric quan-
tities, the axes and the center point by a principle axis transformation. To
find a coordinate system in which the axes of the ellipse are parallel to the
coordinate axes, we compute the eigenvalue decomposition

A = QDQ�, with Q orthogonal and D = diag(λ1, λ2). (6.58)

Introducing the new variable x̄ = Q�x, (6.57) becomes

x̄�Q�AQx̄+ (Q�b)�x̄+ c = 0,

or, written in components (using b̄ = Q�b),

λ1x̄1
2 + λ2x̄2

2 + b̄1x̄1 + b̄2x̄2 + c = 0.

Special Linear Least Squares Problems with Quadratic Constraint 339

We transform this equation into its “normal form”

(x̄1 − z̄1)
2

a2
+

(x̄2 − z̄2)
2

b2
= 1.

Here, (z̄1, z̄2) is the center in the rotated coordinate system,

(z̄1, z̄2) =

(
− b̄1
2λ1

,− b̄2
2λ2

)
.

The axes are given by

a =

√
b̄21
4λ2

1

+
b̄22

4λ1λ2
− c

λ1
, b =

√
b̄21

4λ1λ2
+

b̄22
4λ2

2

− c

λ2
.

To obtain the center in the unrotated system, we have to apply the change
of coordinates z = Qz̄. We now have all the elements to write a Matlab

function that fits an ellipse to measured points:

Algorithm 6.25. Algebraic Ellipse Fit

function [z,a,b,alpha]=AlgebraicEllipseFit(X);

% ALGEBRAICELLIPSEFIT ellipse fit, minimizing the algebraic distance

% [z,a,b,alpha]=AlgebraicEllipseFit(X) fits an ellipse by minimizing

% the algebraic distance to given points P_i=[X(i,1), X(i,2)] in the

% least squares sense x’A x + bb’x + c=0. z is the center, a,b are

% the main axes and alpha the angle between a and the x-axis.

[U S V]=svd([X(:,1).^2 X(:,1).*X(:,2) X(:,2).^2 ...

X(:,1) X(:,2) ones(size(X(:,1)))]);

u=V(:,6); A=[u(1) u(2)/2; u(2)/2 u(3)];

bb=[u(4); u(5)]; c=u(6);

[Q,D]=eig(A);

alpha=atan2(Q(2,1),Q(1,1));

bs=Q’*bb; zs=-(2*D)\bs; z=Q*zs;

h=-bs’*zs/2-c; a=sqrt(h/D(1,1)); b=sqrt(h/D(2,2));

To plot an ellipse, it is best to use polar coordinates:

Algorithm 6.26. Drawing an Ellipse

function DrawEllipse(C,a,b,alpha)

% DRAWELLIPSE plots an ellipse

% DrawEllipse(C,a,b,alpha) plots ellipse with center C, semiaxis a

% and b and angle alpha between a and the x-axis

s=sin(alpha); c=cos(alpha);

Q =[c -s; s c]; theta=[0:0.02:2*pi];

u=diag(C)*ones(2,length(theta)) + Q*[a*cos(theta); b*sin(theta)];

plot(u(1,:),u(2,:));

plot(C(1),C(2),’+’);

340 LEAST SQUARES PROBLEMS

Example 6.20. We run the following program to fit an ellipse and gen-
erate Figure 6.7:

X =[-2.8939 4.1521

-2.0614 2.1684

-0.1404 1.9764

2.6772 3.0323

5.1746 5.7199

3.2535 8.1196

-0.1724 6.8398]

axis([0 10 0 10]); axis(’equal’); hold

plot(X(:,1),X(:,2),’o’);

[z,a,b,alpha]=AlgebraicEllipseFit(X)

DrawEllipse(z,a,b,alpha)

We obtain the results

z = 1.2348

4.9871

a = 2.3734

b = 4.6429

alpha = 2.0849

−4 −2 0 2 4 6
0

1

2

3

4

5

6

7

8

9

10

Figure 6.7. Fitting an Ellipse to Measured Points

6.7.3 Fitting Hyperplanes, Collinearity Test

The function ConstrainedLSQ can be used to fit an (n−1)-dimensional hyper-
plane in R

n to given points. Let the rows of the matrixX = [x1,x2, . . . ,xm]�
contain the coordinates of the given points, i.e. point Pi has the coordinates
xi = X(i, :), i = 1, . . . ,m. Then the call

[c, N] = ConstrainedLSQ ([ones(m,1) X], n);

Special Linear Least Squares Problems with Quadratic Constraint 341

determines the hyperplane in normal form c+N1y1+N2y2+ . . .+Nnyn = 0.
In this section, we show how we can also compute best-fit hyperplanes of

lower dimensions s, where 1 ≤ s ≤ n − 1. We follow the theory developed
in [127] and also published in [45]. An s-dimensional hyperplane α in R

n can
be represented in parametric form,

α : y = p+ a1t1 + a2t2 + · · · + asts = p+At. (6.59)

In this equation, p is a point on the plane and ai are linearly independent
direction vectors, thus the hyperplane is determined by the parameters p and
A = [a1, . . . ,as].

Without loss of generality, we assume that A has orthonormal columns,
i.e., A�A = Is. If we now want to fit a hyperplane to the given set of points
X, then we have to minimize the distance of the points to the plane. The
distance di of a point Pi = xi to the hyperplane is given by

di = min
t

‖p− xi +At‖2.

To determine the minimum, we solve ∇d2i = 2A�(p−xi+At) = 0 for t, and,
since A�A = Is, we obtain

t = A�(xi − p). (6.60)

Therefore the distance becomes

d2i = ‖p− xi + AA�(xi − p)‖22 = ‖P (xi − p)‖22,

where we denoted by P = I − AA� the projector onto the orthogonal com-
plement of the range of A, i.e. onto the null space of A�.

Our objective is to minimize the sum of squares of the distances of all
points to the hyperplane, i.e., we want to minimize the function

F (p, A) =

m∑
i=1

‖P (xi − p)‖22. (6.61)

A necessary condition is ∇F = 0. We first consider the first part of the
gradient, the partial derivative

∂F

∂p
= −

m∑
i=1

2P�P (xi − p) = −2P (

m∑
i=1

xi −mp) = 0,

where we made use of the property of an orthogonal projector P�P = P 2 =
P . Since P projects the vector

∑m
i=1 xi −mp onto 0, this vector must be in

the range of A, i.e.

p =
1

m

m∑
i=1

xi +Aτ . (6.62)

342 LEAST SQUARES PROBLEMS

Inserting this expression into (6.61) and noting that PA = 0, the objective
function to be minimized simplifies to

G(A) =
m∑
i=1

‖P x̂i‖22 = ‖PX̂�‖2F , (6.63)

where we put

x̂i = xi − 1

m

m∑
i=1

xi,

and where we used the Frobenius norm of a matrix, ‖A‖2F :=
∑

i,j a
2
ij , see

Subsection 2.5.1. Now since P is symmetric, we may also write

G(A) = ‖X̂P‖2F = ‖X̂(I − AA�)‖2F = ‖X̂ − X̂AA�‖2F . (6.64)

If we define Y := X̂AA�, which is a matrix of rank s, then we can consider
the problem of minimizing

‖X̂ − Y ‖2F −→ min, subject to rank(Y) = s. (6.65)

Problem (6.65) is similar to the problem solved in Theorem 6.6. The dif-
ference is that now we want to minimize the Frobenius norm and not the
2-norm.

Theorem 6.18. Let A ∈ R
m×n have rank r and let A = UΣV�. Let M

denote the set of m× n matrices with rank p < r. A solution of

min
X∈M

‖A−X‖2F

is given by Ap =
∑p

i=1 σiuiv
�
i and we have

min
X∈M

‖A−X‖2F = ‖A− Ap‖2F = σ2
p+1 + · · ·+ σ2

n.

To prove the above theorem, we first need a lemma due to Weyl [147],
which estimates the singular values of the sum of two matrices in terms of
those of its summands.

Lemma 6.3. (Weyl) Let A,B ∈ R
m×n. Let σi(A) denote the ith singu-

lar value of A in descending order, and similarly for B. Then for i + j ≤
min{m,n}+ 1, we have

σi+j−1(A+B) ≤ σi(A) + σj(B).

Proof. Let Ap denote the best rank-i approximation of A, i.e., if A has
rank r and the SVD of A is A =

∑r
k=1 σkukv

�
k , then Ap =

∑p
k=1 σkukv

�
k .

Then by Theorem 6.6, we have ‖A − Ai‖2 = σi+1. Let us now consider

Special Linear Least Squares Problems with Quadratic Constraint 343

the matrix R = Ai−1 + Bj−1, which has rank ≤ i + j − 2. By the best
approximation property in Theorem 6.6, we have

σi+j−1(A+B) = ‖A+B − (A+B)i+j−2‖2 ≤ ‖A+B −R‖2
≤ ‖A− Ai−1‖2 + ‖B −Bj−1‖2 = σi(A) + σj(B).

�
Proof. (Theorem 6.18) Let Σp = diag(σ1, . . . , σp, 0, . . . , 0), so that Ap =

UΣpV
�. Then the fact that the Frobenius norm is invariant under orthogonal

transformations implies

‖A− Ap‖2F = ‖Σ− Σp‖2F = σ2
p+1 + · · ·+ σ2

n.

To prove that the choice X = Ap minimizes ‖A−X‖2F , let X be a matrix of
rank p < r. Since σp+1(X) = 0, Lemma 6.3 implies for i+ p ≤ n

σi+p(A) = σi+p(A−X +X) ≤ σi(A−X) + σp+1(X) = σi(A−X).

Thus, we have

‖A−X‖2F =

n∑
i=1

σ2
i (A−X) ≥

n−p∑
i=1

σ2
i (A−X) ≥

n∑
i=p+1

σ2
i (A).

In other words, no other choice of rank p matrix X can lead to a lower
Frobenius norm error than Ap. �

If X̂ = UΣV�, then according to Theorem 6.18 the minimizing matrix of
Problem (6.65) is given by Y = UΣsV

�, where

Σs = diag(σ1, σ2 . . . , σs, 0, . . . , 0).

Now if Y = UΣsV
�, we have to find a matrix A with orthonormal columns

such that X̂AA� = Y . It is easy to verify that if we choose A = V1 where V1 =
V (:, 1:s), then X̂AA� = UΣsV

�. Thus, the singular value decomposition of
X̂ gives us all the lower-dimensional hyperplanes that are best fits of the
given set of points:

y = p+ V1t, with p =
1

m

m∑
i=1

xi.

Notice that V2 = V (:, s+1:n) also gives us the normal form of the hyperplane:
here, the hyperplane is described as the solution of the linear equations

V�
2 y = V�

2 p.

A measure for the collinearity is the value of the minimum σ2
s+1 + · · ·+ σ2

n.
In order to compute the hyperplanes, we therefore essentially have to

compute one singular value decomposition. This is done in Algorithm 6.27.

344 LEAST SQUARES PROBLEMS

Algorithm 6.27. Computation of Hyperplanes.

function [V,p]=HyperPlaneFit(X);

% HYPERPLANEFIT fits a hyperplane to a set of given points

% [V,p]=HyperPlaneFit(X); fits a hyperplane of dimension s<n to a

% set of given points X(i,:) in R^n. The hyperplane is given by

% y=p+V(:,1:s)*tau (Parametric Form) or by the equations

% V(:,s+1:n)’*(y-p)=0 (Normal Form)

m=max(size(X));

p=sum(X)’/m;

Xt=X-ones(size(X))*diag(p);

[U,S,V]=svd(Xt,0);

Note that the statement [U,S,V] = svd(Qt,0) computes the “economy size”
singular value decomposition. If Qt is an m-by-n matrix with m > n, then
only the first n columns of U are computed, and S is an n-by-n matrix.

6.7.4 Procrustes or Registration Problem

We consider a least squares problem in coordinate metrology (see [5], [15]):
m points of a workpiece, called the nominal points , are given by their exact
coordinates from construction plans when the workpiece is in its nominal po-
sition in a reference frame. We denote the coordinate vectors of the nominal
points in this position by

x1, . . . ,xm, xi ∈ R
n, 1 ≤ n ≤ 3.

Suppose now that a coordinate measuring machine gathers the same points
of another workpiece. The machine records the coordinates of the measured
points

ξ1, . . . , ξm, ξi ∈ R
n, 1 ≤ n ≤ 3,

which will be in a different frame than the frame of reference. The problem we
want to solve is to find a frame transformation that maps the given nominal
points onto the measured points. This problem is solved in [45].

We need to find a translation vector t and an orthogonal matrix Q with
det(Q) = 1 i.e., Q�Q = I such that

ξi = Qxi + t, for i = 1, . . . ,m. (6.66)

For m > 6 in 3D-space, Equation (6.66) is an over-determined system of
equations and is only consistent if the measurements have no errors. This is
not the case for a real machine; therefore our problem is to determine the
unknowns Q and t of the least squares problem

ξi ≈ Qxi + t. (6.67)

Special Linear Least Squares Problems with Quadratic Constraint 345

In the one-dimensional case, we are given two sets of points on the line. The
matrix Q is just the constant 1 and we have to determine a scalar t such that

ξi ≈ xi + t, i = 1, . . . ,m.

With the notation A = (1, . . . , 1)�, a = (ξ1, , . . . , ξm)� and b = (x1, . . . , xm)�

the problem becomes

At ≈ a− b. (6.68)

Using the normal equations A�At = A�(a−b) we obtain mt =
∑m

i=1(ξi−xi)
and therefore

t = ξ̄ − x̄, with ξ̄ =
1

m

m∑
i=1

ξi and x̄ =
1

m

m∑
i=1

xi. (6.69)

We can generalize this result for n > 1. Consider

ξi ≈ xi + t, i = 1, . . . ,m.

In matrix notation, this least squares problem becomes (I is the n×n identity
matrix): ⎛

⎜⎜⎜⎝
I
I
...
I

⎞
⎟⎟⎟⎠ t ≈

⎛
⎜⎜⎜⎝

ξ1 − x1

ξ2 − x2

...
ξm − xm

⎞
⎟⎟⎟⎠ .

The normal equations are mt =
∑m

i=1(ξi − xi) an thus again

t = ξ̄ − x̄, with ξ̄ =
1

m

m∑
i=1

ξi and x̄ =
1

m

m∑
i=1

xi.

Hence, we have shown that the translation t is the vector connecting the two
centers of gravity of the corresponding sets of points.

Applying this result to the least squares problem for some fixed Q

ξi ≈ Qxi + t ⇐⇒
m∑
i=1

‖Qxi + t− ξi‖22 −→ min, (6.70)

we conclude that t is the vector connecting the two centers of gravity of the
point sets ξi and Qxi, i.e.,

t = ξ̄ −Qx̄. (6.71)

Using (6.71), we eliminate t in (6.70) and consider the problem

G(Q) =
m∑
i=1

‖Q(xi − x̄)− (ξi − ξ̄)‖22 −→ min . (6.72)

346 LEAST SQUARES PROBLEMS

Introducing the new coordinates

ai = xi − x̄ and bi = ξi − ξ̄

the problem is:

G(Q) =
m∑
i=1

‖Qai − bi‖22 −→ min . (6.73)

We can collect the vectors in matrices

A = (a1, . . . ,am), and B = (b1, . . . , bm),

where A,B ∈ R
n×m and rewrite the function G using the Frobenius norm

G(Q) = ‖QA−B‖2F .

Since the Frobenius norm of a matrix is the same for the transposed matrix,
we finally obtain the Procrustes problem[51]: find an orthogonal matrix Q
such that

‖B� − A�Q�‖2F −→ min .

The standard form of the Procrustes problem is formulated as follows: given
two matrices C and D, both in R

m×n with m ≥ n, find an orthogonal matrix
P ∈ R

n×n, such that

‖C −DP‖2F −→ min . (6.74)

Thus, it suffices to let C = B� and D = A�.
To solve the Procrustes problem (6.74), we need some properties of the

Frobenius norm, which is given by

‖A‖2F =

m∑
i=1

n∑
j=1

a2i,j =

n∑
j=1

‖aj‖22, where aj is the jth column of A.

(6.75)
Note that

‖A‖2F = tr(A�A) =
n∑

i=1

λi(A
�A). (6.76)

Equation (6.76) gives us some useful relations: if P is orthogonal, then
‖PA‖F = ‖A‖F . Additionally, since ‖A‖F = ‖A�‖F , we have ‖AP‖F =
‖A‖F .

‖A+B‖2F = tr((A+B)�(A+B))

= tr(A�A+B�A+ A�B +B�B)

= tr(A�A) + 2 tr(A�B) + tr(B�B)

‖A+B‖2F = ‖A‖2F + ‖B‖2F + 2 tr(A�B) (6.77)

Special Linear Least Squares Problems with Quadratic Constraint 347

We now apply (6.77) to the Procrustes problem:

‖C −DP‖2F = ‖C‖2F + ‖D‖2F − 2 tr(P�D�C) −→ min .

Computing the minimum is equivalent to maximizing

tr(P�D�C) = max .

Using the singular value decomposition D�C = UΣV�, we obtain

tr(P�D�C) = tr(P�UΣV�).

Since U , V are orthogonal, we may write the unknown matrix P in the
following form

P = UZ�V�, with Z orthogonal.

Because similar matrices have the same trace, it follows that

tr(P�D�C) = tr(V ZU�UΣV�) = tr(V ZΣV�) = tr(ZΣ)

=

n∑
i=1

ziiσi ≤
n∑

i=1

|zii|σi ≤
n∑

i=1

σi,

where the inequality follows from |zii| ≤ 1 for any orthogonal matrix Z.
Furthermore, the bound is attained for Z = I. Notice that if D�C is rank
deficient, the solution is not unique (cf. [65]). So we have proved the following
theorem:

Theorem 6.19. The Procrustes problem (6.74) is solved by the orthog-
onal polar factor of D�C, i.e. P = UV� where UΣV� is the singular value
decomposition of D�C.

The polar decomposition of a matrix is a generalization of the polar repre-
sentation of complex numbers. The matrix is decomposed into the product of
an orthogonal times a symmetric positive (semi-)definite matrix. The decom-
position can be computed by the singular value decomposition or by other
algorithms [40]. In our case we have

D�C = UΣV� = UV�︸ ︷︷ ︸
orthogonal

V ΣV�︸ ︷︷ ︸
positive

semidefinite

.

We are now ready to describe the algorithm to solve the Procrustes prob-
lem. Given measured points ξi and corresponding nominal points xi for i =
1, . . . ,m. We want to determine t and Q orthogonal such that ξi ≈ Qxi + t.

1. Compute the centers of gravity:

ξ̄ =
1

m

m∑
i=1

ξi and x̄ =
1

m

m∑
i=1

xi.

348 LEAST SQUARES PROBLEMS

2. Compute the relative coordinates :

A = [a1, . . . ,am] , ai = xi − x̄
B = [b1, . . . , bm] , bi = ξi − ξ̄

3. The Procrustes problem becomes ‖C −DP‖2F −→ min with C = B�,
D = A� and P = Q�.

Compute the singular value decomposition AB� = UΣV�.

4. Then Q� = UV� or Q = V U� and t = ξ̄ −Qx̄.

For technical reasons, it may be important to decompose the orthogonal
matrix Q into elementary rotations. The algorithm that we developed so
far computes an orthogonal matrix, but there is no guarantee that Q can be
represented as a product of rotations and that no reflection occurs. For Q
to be representable as a product of rotations, it is necessary and sufficient to
have det(Q) = 1. Thus, if det(Q) = −1, then a reflection is necessary and
this may be of no practical use. In this case, one would like to find the best
orthogonal matrix with det(Q) = 1.

It is shown in [65] that the constrained Procrustes problem

‖C −DP‖2F −→ min, subject to det(P) = 1

has the solution
P = U diag(1, . . . , 1, μ)V�,

where D�C = UΣV� is the singular value decomposition and μ = det(UV�).
The proof is based on the fact that for a real orthogonal n×n matrix Z with
det(Z) < 1, the trace is bounded by

tr(Z) ≤ n− 2 and tr(Z) = n− 2 ⇐⇒ λi(Z) = {1, . . . , 1,−1}.
This can be seen by considering the real Schur form [51] of Z. The maximum

of tr(ZΣ) is therefore
∑n−1

i=1 σi−σn and is achieved for Z = diag(1, . . . , 1,−1).
Thus we obtain the Matlab function ProcrustesFit

Algorithm 6.28.

function [t,Q]=ProcrustesFit(xi,x);

% PROCRUSTESFIT solves the Procrustes Problem

% [t,Q]=ProcristesFit(xi,x) computes an orthogonal matrix Q and a

% shift t such that xi=Qx+t

xiq=sum(xi’)/length(xi); xiq=xiq’;

xq=sum(x’)/length(x); xq=xq’;

A=x-xq*ones(1,length(x));

B=xi-xiq*ones(1,length(xi));

[U,sigma,V]=svd(A*B’);

Q=V*diag([ones(1,size(V,1)-1) det(V*U’)])*U’;

t=xiq-Q*xq;

Special Linear Least Squares Problems with Quadratic Constraint 349

Example 6.21. As an example, we solve a Procrustes problem for n =
2. The following Matlab program defines the nominal points xk and the
measured points ξk. Then it computes and plots the fitted nominal points on
the measurements.

clf, clear

axis([0 10 0 10]), axis(’equal’) % nominal points

hold, grid

x=[-4 -4 -2 -2 -2 -4 -4

1 2 2 3 4 4 3];

plot(x(1,:),x(2,:),’-’) % measured points

plot(x(1,:),x(2,:),’x’)

xi=[-5.2572 -4.5528 -3.6564 -2.8239 -2.0555 -3.1761 -4.2007

6.1206 6.6969 5.4162 6.0886 6.6329 8.2338 7.8175];

plot(xi(1,:),xi(2,:),’o’)

pause

xiq=sum(xi,2)/length(xi); % centers of gravity

xq=sum(x,2)/length(x);

[t,Q]=ProcrustesFit(xi,x);

xx=Q*x+t*ones(1,length(x)) % transform nominal points

plot(xx(1,:), xx(2,:),’-’), plot(xx(1,:), xx(2,:),’*’)

The results are shown in Figure 6.8

−10 −8 −6 −4 −2 0 2
0

1

2

3

4

5

6

7

8

9

10

Figure 6.8. Procrustes or Registration Problem

6.7.5 Total Least Squares

The linear least squares problem Ax ≈ b has so far been solved by projecting
the vector b onto the range of A,

Ax = PR(A)b = AA+b.

350 LEAST SQUARES PROBLEMS

With “Total Least Squares”, the system of equations is made consistent by
changing both A and b: we look for a matrix Â and a vector b̂ ∈ R(Â) which
differ as little as possible from the given data

‖[A, b]− [Â, b̂]‖F −→ min, subject to b̂ ∈ R(Â).

The constraint states that Ĉ = [Â, b̂] must have rank n. Since in general
C = [A, b] will have rank n+ 1, our problem involves solving

min
rank Ĉ=n

‖C − Ĉ‖F . (6.78)

The solution of problem (6.78) is given by Theorem 6.17: let [A, b] = C =
UΣV� be the SVD. Then

[Â, b̂] = Ĉ =

n∑
i=1

σiuiv
�
i = U Σ̂V�, with Σ̂ = diag(σ1, . . . , σn, 0). (6.79)

However, the constraint b̂ ∈ R(Â) is more than just a rank condition: if

we define Ĉ = C + Δ and write the condition b̂ ∈ R(Â) as Ĉz = 0 with
z =

(
x

−1

) 	= 0, then the problem is equivalent to

‖Δ‖2F −→ min subject to ∃ x ∈ R
n : (C +Δ)

(
x

−1

)
= 0. (6.80)

This is equivalent to saying that there exists a right singular vector v cor-
responding to a zero singular value such that its last component does not
vanish. Thus, if rank(C) = n + 1 and vn+1,n+1 	= 0, then the total least

squares solution exists and is given by Ĉ in (6.79):

Âx̂ = b̂, x̂ = − 1

vn+1,n+1
v(1 : n, n+ 1).

In this case, the perturbation is given by

Δ = Ĉ −C = −σn+1un+1v
�
n+1.

This leads to the following Matlab function:

Algorithm 6.29. Total Least Squares

function [x,v,At,bt]=TLS(A,b);

% TLS total least squares

% [x,v,At,bt]=TLS(A,b) solves Ax~b by allowing changes in A and b.

C=[A,b];

[m,n]=size(C);

[U,Sigma,V]=svd(C,0);

Special Linear Least Squares Problems with Quadratic Constraint 351

v=V(:,n);

if v(n)==0

disp(’TLS Solution does not exist’)

x=[];

else

x=-v(1:n-1)/v(n);

end

Ct=C-Sigma(n)*U(:,n)*V(:,n)’;

At=Ct(:,1:n-1); bt=Ct(:,n);

Theorem 6.20. (Total Least Squares) The total least squares solu-
tion satisfies the equation

(A�A− σ2
n+1I)x̂ = A�b. (6.81)

Proof. Since C = [A, b] = UΣV� we have Cvn+1 = σn+1un+1 and
therefore

C�Cvn+1 = σn+1C
�un+1 = σ2

n+1vn+1.

Dividing the last equation by vn+1,n+1 and replacing C = [A, b] we obtain(
A�A A�b

b�A b�b

)(
x̂

−1

)
= σ2

n+1

(
x̂

−1

)
,

and the first equation is our claim. �
A variant of total least squares is given if some elements of the matrix

A have no errors and therefore should remain unchanged. Let us consider
Ax ≈ b with A = [A1, A2] ∈ R

m×n where A1 ∈ R
m×p with p < n has

no error. The total least squares problem ‖E‖2F + ‖r‖22 −→ min subject to
(A+E)x = b+ r becomes

‖Δ‖2F −→ min subject to (C +Δ)z = 0,

with C = [A1, A2, b], Δ = [0,Δ2] and Δ2 = [E2, r]. Using the QR decompo-
sition of C, we can transform the constraint by pre-multiplying with Q�,

Q�(C +Δ)z =

(
R11 R12

0 R22

)
z +

(
0 Δ̃12

0 Δ̃22

)
z = 0, (6.82)

and R11 ∈ R
p×p is upper triangular. Now ‖Δ‖2F = ‖Q�Δ‖2F = ‖Δ̃12‖2F +

‖Δ̃22‖2F is minimized if we choose Δ̃12 = 0 and minimize ‖Δ̃22‖F . So the
algorithm for constrained total least squares is:

1. Compute C = [A1, A2, b] = QR and reduce the constraint to (6.82).

2. Compute v̂ the solution of the total least squares problem (R22 +
Δ̃22)v = 0.

352 LEAST SQUARES PROBLEMS

3. Solve R11u = −R12v̂ for u.

4. z =

(
u

v̂

)
∈ R

n+1 and x = −[z1, . . . , zn]
�/zn+1.

Algorithm 6.30. Constrained Total Least Squares

function [z,x]=ConstrainedTLS(C,p);

% CONSTRAINEDTLS computes constrained total least squares solution

% [z,x]=ConstrainedTLS(C,p); computes the constrained total least

% squares solution with C=[A_1 A_2 b], where A1=C(:,1:p) is without

% errors. One therefore solves [A_1 A_2]x ~b by modifying A2 and b

% such that [A_1 A_2 b]z=0 or [A_1 A_2] x=b

[m,n]=size(C);

[Q,R]=qr(C);

R11=R(1:p,1:p); R12=R(1:p,p+1:n);

R22=R(p+1:n,p+1:n);

[m1,n1]=size(R22);

[x,v]=TLS(R22(:,1:n1-1),R22(:,n1));

u=-R11\R12*v;

z=[u;v]; x=-z(1:n-1)/z(n);

Example 6.22. We want to fit a 3-dimensional hyperplane in R
4,

z = c+ n1x1 + n2x2 + n3x3.

We shall simulate measured points, compute the coefficients c, n1, n2, n3 and
compare the results for our least squares methods.

The columns of the matrix X� contain the coordinates of the “measure-
ments” for x1, x2 and x3. For simplicity we chose a grid of integer coordi-
nates,

X� =

⎛
⎝ 1 1 1 1 2 2 2 2 3 3 3 3

1 1 2 2 1 1 2 2 1 1 2 2
1 2 1 2 1 2 1 2 1 2 1 2

⎞
⎠ .

We choose c = 3, n1 = −1, n2 = 2, n3 = 5, add a first column of ones to X
and compute the exact values

z =
(
1, X

)
⎛
⎜⎜⎝

c
n1

n2

n3

⎞
⎟⎟⎠ .

Then we add some random noise to the exact values and use the algorithms
for least squares, total least squares and constrained total least squares to
compute the coefficients from the data. With constrained total least squares

Special Linear Least Squares Problems with Quadratic Constraint 353

we compute 4 variants where we assume one to four columns of X to be
without errors.

clear, format compact

Xt=[1 1 1 1 2 2 2 2 3 3 3 3 % generate points

1 1 2 2 1 1 2 2 1 1 2 2

1 2 1 2 1 2 1 2 1 2 1 2];

X=Xt’; [m,n]=size(X);

cc=[3, -1, 2, 5]’; % z=c+n_1*x_1+n_2*x_2+n_3*x_3

X=[ones(m,1) X];

ze=X*cc; % exact values for z

z=ze+(rand(m,1)-0.5); % add noise

[ze,z]

c1=X\z; % Least squares fit

[c,N]=ConstrainedLSQ([X,z],4); % Fit plane using ConstrainedLSQ

c2=-[c N(1) N(2) N(3)]’/N(4);

[c3,v,At,bt]=TLS(X,z); % TLS

C=[X,z]; % Constrained TLS

[zz,c4]=ConstrainedTLS(C,1); % first column with no errors

[zz,c5]=ConstrainedTLS(C,2); % 2 columns with no errors

[zz,c6]=ConstrainedTLS(C,3); % 3 columns with no errors

[zz,c7]=ConstrainedTLS(C,4); % 4 columns with no errors

[c1 c2 c3 c4 c5 c6 c7]

With this program we obtained the values

exact with noise
ze z
9 9.2094

14 14.2547
11 10.7760
16 16.1797
8 8.1551

13 12.6626
10 9.6190
15 14.9984
7 7.4597

12 11.8404
9 9.0853

14 13.7238

and the computed coefficients are displayed in Table 6.2. Observe that the
least squares solution (column 1) and the total least squares solution with
all four columns without errors (last column) yield the same solution. Also
minimizing the geometric distance using ConstrainedLSQ (column 2) and
CTLS 1 (column 4) compute the same, which shows that these two methods
are mathematically equivalent.

354 LEAST SQUARES PROBLEMS

LSQ CLSQ TLS CTLS 1 CTLS 2 CTLS 3 CTLS 4

c 3.5358 3.4695 3.6021 3.4695 3.4612 3.4742 3.5358
n1 -1.0388 -1.0416 -1.0543 -1.0416 -1.0388 -1.0388 -1.0388
n2 1.8000 1.8129 1.7820 1.8129 1.8134 1.8000 1.8000
n3 4.8925 4.9275 4.8900 4.9275 4.9289 4.9336 4.8925

Table 6.2. Computed Coefficients

6.8 Nonlinear Least Squares Problems

Let us consider some (nonlinear) function f : Rn �→ R
m with n ≤ m. We

want to find a point x ∈ R
n such that f(x) ≈ 0, or written in components,

fi(x1, x2, . . . , xn) ≈ 0, i = 1, . . . ,m. (6.83)

Example 6.23. In Example 6.2 we have x = (a0, a1, b)
� ∈ R

3 and
f : R3 �→ R

m, where

fi(x) = yi − x1 − x2e
−x3ti ≈ 0, i = 1, . . . ,m.

Now by f(x) ≈ 0, we mean we should make the 2-norm of f as small as

possible:

‖f(x)‖22 =

m∑
i=1

fi(x)
2 −→ min . (6.84)

Just like for the linear least squares case, we associate to a given vector x
the residual vector r = f(x), whose 2-norm is the residual sum of squares
that we seek to minimize.

6.8.1 Notations and Definitions

In order to develop algorithms to solve Problem (6.84), we need to recall
some mathematical notations from calculus. Let f : Rn �→ R be a continuous
and differentiable function.

Definition 6.7. (Gradient) The gradient of f is the vector

grad f = ∇f =
∂f(x)

∂x
=

(
∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

)�
.

Definition 6.8. (Hessian) The Hessian of f is the n× n matrix

hess f = ∇2f =
∂2f(x)

∂x2
= H = (hij) , with hij =

∂2f(x)

∂xi∂xj
.

Note that the Hessian is a symmetric matrix (if the derivatives commute).

Nonlinear Least Squares Problems 355

level line

x1

x2

∇f(x)

Figure 6.9. Illustration of the gradient ∇f(x).

For n = 2, we can draw the function f as a set of level curves (see Figure
6.9). The gradient at a given point x is a vector that points in the direction
along which the function f increases most rapidly. It is also orthogonal to the
level curve, as one can see using the Taylor expansion seen earlier in (5.94):

f(x+ h) = f(x) +∇f(x)�h+
1

2
h�∇2f(x)h+O(‖h‖32). (6.85)

Since the a level curve is by definition a curve along which the value of f
remains constant, if we choose the direction h to be along a level curve and
only move a short distance away from x, then we must have f(x + h) =
f(x) + O(‖h‖22). Thus, we deduce that ∇f(x)�h = 0, i.e., the gradient is
orthogonal to the level curve.

For a vector function f ∈ R
m, we expand each component and obtain

f1(x+ h) = f1(x) +∇f1(x)
�h+O(‖h‖22),

...
...

...

fm(x+ h) = fm(x) +∇fm(x)�h+O(‖h‖22),

or in matrix notation

f(x+ h) ≈ f(x) + J(x)h,

where we have introduced the m× n Jacobian matrix

J(x) =

⎛
⎜⎝

∇f�
1
...

∇f�
m

⎞
⎟⎠ =

(∇f1, . . . , ∇fm
)�

=

⎛
⎜⎝

∂f1
∂x1

. . . ∂f1
∂xn

...
...

...
∂fm
∂x1

. . . ∂fm
∂xn

⎞
⎟⎠ .

356 LEAST SQUARES PROBLEMS

Notice the special case that the Hessian of the scalar function f(x) is the
same as the Jacobian of ∇f(x). In this case, the Jacobian is a square n× n
matrix.

Let us now recall Newton’s method for solving a system of nonlinear
equations, which was presented in Chapter 5. Let f(x) : Rn → R

n; we are
looking for a solution of f(x) = 0. Expanding f at some approximation xk,
we obtain

f(x) = f(xk) + J(xk)h+O(‖h‖22), with h = x− xk.

Instead of solving f(x) = 0, we solve the linearized system

f(xk) + J(xk)h = 0

for the Newton correction h and obtain a (hopefully better) approximation

xk+1 = xk + h = xk − J(xk)
−1f(xk). (6.86)

Note that computationally we would not invert the Jacobian; we would in-
stead solve by Gaussian Elimination the linear system

J(xk)h = −f(xk)

for the correction h.

6.8.2 Newton’s Method

Given m nonlinear equations with n unknowns (n ≤ m), we want to solve
f(x) ≈ 0 in the least squares sense, that is, we want

Φ(x) =
1

2
‖f(x)‖22 −→ min . (6.87)

A necessary condition for minimizing Φ(x) is ∇Φ = 0. We express this
condition in terms of f :

∂Φ(x)

∂xi
=

m∑
l=1

fl(x)
∂fl
∂xi

, i = 1, . . . , n, (6.88)

or in matrix notation
∇Φ(x) = J(x)�f(x).

Thus we obtain as a necessary condition for minimizing Φ(x) a nonlinear
system of n equations in n unknowns:

J(x)�f(x) = 0. (6.89)

We can compute a solution of (6.89) using Newton’s method (6.86). To do
so, we need the Jacobian of ∇Φ(x), which is the Hessian of Φ(x). If xk is

Nonlinear Least Squares Problems 357

an approximation then we obtain the Newton correction by solving a linear
system:

∇2Φ(xk)h = −J(xk)
�f(xk).

Let us express the Hessian in terms of the function f . From (6.88), we
compute the second derivatives,

∂2Φ(x)

∂xi∂xj
=

m∑
l=1

∂fl
∂xj

∂fl
∂xi

+

m∑
l=1

fl(x)
∂2fl

∂xi∂xj
. (6.90)

Now ∂2fl/∂xi∂xj is the (i, j) element of the Hessian of fl(x). Furthermore

m∑
l=1

∂fl
∂xj

∂fl
∂xi

= J�
: jJ : i

is the scalar product of columns i and j of the Jacobian matrix. Therefore,
we obtain in matrix notation

∇2Φ(x) = J�J +

m∑
l=1

fl(x)∇2fl(x).

The Newton iteration for the nonlinear least squares problem f(x) ≈ 0
becomes

1. solve the linear system for the correction h(
J(xk)

�J(xk) +

m∑
l=1

fl(xk)∇2fl(xk)

)
h = −J(xk)

�f(xk) (6.91)

2. iterate: xk+1 = xk + h.

Example 6.24. Let us return to Example 6.2,

fl(x) = x1 + x2e
−x3tl − yl.

The gradient and the Hessian are readily computed using Maple:

with(LinearAlgebra):

with(VectorCalculus):

BasisFormat(false):

f:=x1+x2*exp(-x3*t)-y;

Gradient(f,[x1,x2,x3]);

Hessian(f,[x1,x2,x3]);

We obtain

∇fl =
(

1 e−x3tl −x2tle
−x3tl

)�

358 LEAST SQUARES PROBLEMS

and

∇2fl =

⎛
⎝ 0 0 0

0 0 −tle
−x3tl

0 −tle
−x3tl x2t

2
l e
−x3tl

⎞
⎠

We can now write a program for the solution in Matlab:

Algorithm 6.31.
Newton Method for Nonlinear Least Squares

function [x,fv]=NewtonLSQ(x,xi,eta)

% NEWTONLSQ Curve fiting with Newton’s method

% [x,fv]=NewtonLSQ(x,xi,eta) fits the function f(t)=x1+x2*exp(-x3*t)

% to given points (xi,eta). x is the initial guess and is overwritten

% with fitted parameters x1,x2 and x3. fv contains norm(f) for

% each iteration

h=x; fv=[];

while norm(h)>100*eps*norm(x)

ee=exp(-x(3)*xi);

tee=xi.*ee;

J=[ones(size(xi)),ee,-x(2)*tee]; % Jacobian

f=x(1)+x(2)*ee-eta; % residual

s1=f’*tee; s2=x(2)*f’*(xi.*tee);

A=J’*J+[0 0 0; 0 0 -s1; 0 -s1 s2]; % Hessian of Phi

h=-A\(J’*f);

x=x+h;

xh=[x,h]

res=norm(f)

fv=[fv norm(f)];

end

In order to test the program we generate a test example:

format compact, format long

a0=1; a1=2; b=0.15;

xi=[1:0.3:7]’; etae=a0+a1*exp(-b*xi); % compute exact values

rand(’seed’,0); % perturb to simulate

% measurements

eta=etae+0.1*(rand(size(etae))-0.5);

[x1,fv1]= NewtonLSQ([1.8 1.8 0.1]’,xi,eta); % first example

plot([1:14],fv1(1:14),’-’)

pause % second example using a

[x2,fv2]= NewtonLSQ([1.5 1.5 0.1]’,xi,eta); % different initial guess

plot([1:14], fv1(1:14),’-’,[1:14], fv2(1:14),’:’)

The results are very interesting: the iterations converge to different so-
lutions. Because we print intermediate results (the matrix xh, showing the
current solution and the correction) we can observe quadratic convergence

Nonlinear Least Squares Problems 359

in both cases. In the first case with the starting values [1.8, 1.8, 0.1] we
obtain the parameters x1 = [2.1366, 0.0000, 0.0000], which means that the
fitted function is the constant f(t) = 2.1366. In the second case we obtain
x2 = [1.1481, 1.8623, 0.1702], thus f(t) = 1.1481 + 1.8623e−0.1702 t, a much
better fit. Figure 6.10 shows the residual sum of squares for both cases. We
see that in the first case (solid line) the iteration is trapped in a local mini-
mum! After 6 iteration steps both sequences have reduced the residual sum of
squares to about the final value, however, the first sequence does not converge
there but moves away to a local minimum with a higher value of the residual
sum of squares.

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Residual Sum of Squares

Iteration Steps

Figure 6.10. Residual sum of squares

There is another derivation of Newton’s method which gives a different
interpretation of the algorithm. Consider approximating Φ at a point xk near
the minimum with a quadratic form Q(h) with h = x− xk by expanding in
a Taylor series :

Φ(x) =
1

2
‖f(x)‖22 ≈ Φ(xk) +∇Φ(xk)

�h+
1

2
h�∇2Φ(xk)h =: Q(h).

Then instead of minimizing Φ we minimize the quadratic form Q:

∇Q(h) = 0 ⇐⇒ ∇2Φ(xk)h+∇Φ(xk) = 0.

But this is again Newton’s method. Thus, we have shown that applying
Newton’s method to the (nonlinear) equations ∇Φ(x) = 0 is equivalent to
approximating Φ locally by a quadratic form Q and computing its minimum.

360 LEAST SQUARES PROBLEMS

6.8.3 Gauss-Newton Method

The approximation of Φ by a quadratic form,

Φ(xk + h) ≈ Φ(xk) +∇Φ(xk)
�h+

1

2
h�∇2Φ(xk)h,

can be written in terms of f ,

Φ(xk + h) ≈ 1

2
f�f + f�Jh+

1

2
h�J�Jh+

1

2
h�

m∑
l=1

fl(xk)∇2fl(xk)h.

Rearranging yields

Φ(xk + h) ≈ 1

2
‖J(xk)h+ f(xk)‖22 +

1

2
h�

m∑
l=1

fl(xk)∇2fl(xk)h. (6.92)

The quadratic form approximating Φ consists therefore of two parts: the first
involves only the Jacobian and the second the Hessians of the functions fl. If
we approximate Φ only by the first part Φ(x) ≈ 1

2
‖J(xk)h + f(xk)‖22, then

the minimum of this quadratic form can be obtained by solving a linear least
squares problem, namely

J(xk)h+ f(xk) ≈ 0. (6.93)

Computing the correction h by solving (6.93) is one step of the Gauss-Newton
method. Another derivation of the Gauss-Newton method is obtained by
linearizing f (x),

f(x) ≈ f(xk) + J(xk)h ≈ 0.

Summarizing, we obtain the algorithm Gauss-Newton for solving f(x) ≈ 0:

1. Compute the Jacobian of f and solve the linear least squares problem
for h

J(xk)h ≈ −f(xk).

2. Iterate xk+1 = xk + h.

Convergence is in general quadratic for Newton’s method and only linear
for Gauss-Newton. However, as we saw in Example 6.24, often the global
behavior of the method is more important than local quadratic convergence.
We will therefore consider in the next section a method that has been devised
to prevent Newton’s method from taking excessively large steps. The goal is
to avoid convergence situations as shown in Example 6.24 where the residual
sum of squares increases after step six.

Nonlinear Least Squares Problems 361

6.8.4 Levenberg-Marquardt Algorithm

Definition 6.9. (Descent Direction) The vector v is called a descent
direction of Φ(x) at the point x if

∇Φ(x)�v < 0.

Let us explain this definition for n = 2: the gradient points into the
direction of largest increase of Φ(x). If the scalar product of the gradient
with a direction vector v is negative, then the angle α between the two
vectors must be larger than 90◦. Thus, v must point downhill, as shown in
Figure 6.11. An algebraic explanation is based on the Taylor expansion,

Figure 6.11. Illustration of a descent direction v

Φ(x+ λv) = Φ(x) +∇Φ(x)�v︸ ︷︷ ︸
<0

λ+O(λ2),

where we assumed that ‖v‖2 = 1. For sufficiently small λ > 0, we have
Φ(x+ λv) < Φ(x).

Let us now discuss whether the Newton and the Gauss-Newton corrections
use descent directions:

1. Newton correction: ∇2Φ(xk)h = −∇Φ(xk). If∇2Φ(xk) is nonsingular,
i.e. the linear system has a solution, then

∇Φ(xk)
�h = −∇Φ(xk)

�(∇2Φ(xk))
−1∇Φ(xk).

The matrix ∇2Φ is symmetric. If in addition it is positive definite, then
the Newton correction is a descent direction.

Now the matrix ∇2Φ must be positive semidefinite in a neighborhood
of a local minimum of Φ, as one can see as follows: if x∗ is a local
minimum, then we must have

(a) Φ(x∗) ≤ Φ(x∗ + h) for all h 	= 0 in a small neighborhood of x∗.

362 LEAST SQUARES PROBLEMS

(b) ∇Φ(x∗) = 0.

The Taylor expansion at x∗ gives

Φ(x∗ + h) = Φ(x∗) +∇Φ(x∗)�h︸ ︷︷ ︸
=0

+
1

2
h�∇2Φ(x∗)h+O(‖h‖32).

Because Φ(x∗ + h) ≥ Φ(x∗), it follows that h�∇2Φ(x∗)h ≥ 0, which
means ∇2Φ(x) must be positive semidefinite in a neighborhood of x∗.
Thus we have obtained

Theorem 6.21. If ∇2Φ(xk) is nonsingular for xk in a neighborhood of
a local minimum x∗ then the Newton correction is a descent direction.

2. Gauss-Newton correction: J(xk)
�J(xk)h=−J(xk)

�f(xk)=−∇Φ(xk).
If J(xk)

�J(xk) is nonsingular, then this matrix and its inverse are
positive definite and therefore

∇Φ(xk)
�h = −∇Φ(xk)

� (J�J
)−1 ∇Φ(xk) (6.94)

=

{
< 0 if ∇Φ(xk) 	= 0

= 0 if ∇Φ(xk) = 0
(6.95)

If ∇Φ(xk) = 0, then we have reached a solution. To summarize, we
have the result:

Theorem 6.22. If J(xk) is not rank deficient in a neighborhood of
a local minimum x∗, then the Gauss-Newton correction is a descent
direction.

Locally the best descent direction is of course the negative gradient,

h = −∇Φ(xk) = −J(xk)
�f(xk).

However, often the locally optimal minimizing direction may not be the best
for global optimization. The principal idea of Levenberg-Marquardt is a
compromise between the negative gradient and the Gauss-Newton correction,

(J(xk)
�J(xk) + λI)h = −J(xk)

�f(xk). (6.96)

In (6.96), we have to choose a parameter λ. For λ = 0, we obtain the Gauss-
Newton correction, whereas for λ � 0, the correction is along the direction
of the negative gradient. There are several interpretations of the Levenberg-
Marquardt correction:

• Tikhonov-regularization: If the matrix J(xk)
�J(xk) is singular, then

for λ > 0 the matrix J(xk)
�J(xk) + λI is again invertible and the

correction can be computed.

Nonlinear Least Squares Problems 363

• Approximation of the Hessian: We can regard λI as an approximation
of

m∑
l=1

fl(xk)∇2fl(xk).

Depending on the application on hand, one may choose to use a matrix
other than λI, such as λD with D a diagonal matrix.

• Limiting the norm of h: Consider the constrained minimization prob-
lem

‖Jh+ f‖22 −→ min subject to ‖h‖22 ≤ α2. (6.97)

The unconstrained problem has a unique minimizer h0 given by the
Gauss-Newton correction. We now have two cases:

1. if ‖h0‖2 ≤ α, then h0 also solves the constrained problem.

2. if ‖h0‖2 > α, then the solution of the constrained problem must
lie on the boundary, since there are no local minima inside the
disk ‖h‖2 ≤ α.

In the second case, the constrained problem can be solved using La-
grange multipliers as follows: consider the Lagrangian

L(h, λ) =
1

2
‖Jh+ f‖22 + λ(‖h‖22 − α2).

Setting the partial derivatives to zero, we obtain the equations

(J(xk)
�J(xk) + λI)h = −J(xk)

�f (6.98)

‖h‖22 = α2. (6.99)

Solving (6.98) gives h = −R(λ)f , where

R(λ) = (J(xk)
�J(xk) + λI)−1J(xk)

�.

To calculate the value of α corresponding to this solution, let J(xk) =
UΣV� be the SVD of J(xk). Then

R(λ) = V (Σ�Σ+ λI)−1Σ�U�,

so R(λ) has singular values

μi =
σi(J)

σi(J)2 + λ
,

and

α2 = ‖h‖22 =
n∑

i=1

μ2
i f̃

2
i ,

364 LEAST SQUARES PROBLEMS

where f̃ = U�f . Thus, we see that α = α(λ) is a strictly decreasing
function of λ, with α(0) = ‖h0‖2 and limλ→∞ α(λ) = 0. This means
for every λ > 0, there is an α(λ) < ‖h0‖2 such that the Levenberg-
Marquardt step h solves the constrained minimization problem (6.97)
with α = α(λ). In other words, the Levenberg-Marquardt method
solves the minimization problem over a reduced set of admissible so-
lutions, i.e., those that satisfy ‖h‖2 ≤ α(λ), effectively limiting the
correction step to within a region near xk; this is known as a trust
region in optimization, see Subsection 12.3.2.

Choosing a good λ is not easy. Besides trial and error, there are various
propositions in the literature, such as the one by Brown and Dennis:

λ = c‖f(xk)‖2, c =

⎧⎪⎨
⎪⎩
10 for 10 ≤ ‖f(xk)‖2
1 for 1 ≤ ‖f(xk)‖2 < 10

0.01 for ‖f(xk)‖2 < 1

The computation of the Levenberg-Marquardt correction (6.96) is equivalent
to solving the linear least squares problem(

J√
λI

)
h ≈

(−f

0

)
, (6.100)

which is the numerically preferred way.
In Matlab there exists the function nlinfit for nonlinear least squares

data fitting by the Gauss-Newton method (in newer releases like R2011a
it is in the Statistics Toolbox). The Jacobian is approximated by a finite
difference and augmented by 0.01 I (i.e. λ = 10−4). Thus, the function
in fact uses Levenberg-Marquardt-adjusted Gauss-Newton steps, which are
computed using (6.100). The step is only accepted if the new residual norm is

smaller than the previous one. Otherwise, the step is reduced by h = h/
√
10

until the condition is met. The function nlinfit therefore does not get
trapped for Example 6.24 in the local minimum and is able also to deliver
the correct answer for the starting values [1.8, 1.8, 0.1]. With the function

>> f=@(beta,x) beta(1)+beta(2)*exp(-beta(3)*x);

we obtain the same parameters as before with the Newton method:

>> beta=nlinfit(xi,eta,f,[1.8 1.8 0.1])

beta =

1.148055903080751 1.862263964120192 0.170154093666413

6.9 Least Squares Fit with Piecewise Functions

We end the chapter with a good example of a constrained least squares prob-
lem with nonlinear constraints, which is solved in [45]. Consider the data set
given in Table 6.3 and displayed in Figure 6.12. The problem is to find piece-
wise functions with free knots that best fit the data set. The choice of the

Least Squares Fit with Piecewise Functions 365

knots is in fact part of the optimization problem, since the location of these
knots may have a physical interpretation, such as phase changes. The con-
straint is that global function should be continuous in the knots that separate
them; optionally, we may also require that the derivative be continuous.

0 1 2 3 4 5 6 7 8 9
1.0815

1.082

1.0825

1.083

1.0835

1.084

Figure 6.12. Data Set

Table 6.3. Given Data Set

x y x y x y

0.288175 1.08181 4.562725 1.08204 6.794990 1.08240
0.525650 1.08174 4.800200 1.08199 6.889980 1.08235
1.000600 1.08190 5.037675 1.08195 6.984970 1.08245
1.475550 1.08193 5.275150 1.08188 7.079960 1.08245
1.713025 1.08191 5.512625 1.08193 7.174950 1.08245
1.950500 1.08199 5.750100 1.08193 7.269940 1.08251
2.187975 1.08199 5.845090 1.08197 7.364930 1.08263
2.425450 1.08201 5.940080 1.08202 7.459920 1.08282
2.662925 1.08198 6.035070 1.08203 7.554910 1.08316
2.900400 1.08205 6.130060 1.08203 7.649900 1.08340
3.137875 1.08200 6.225050 1.08207 7.744890 1.08355
3.375350 1.08202 6.320040 1.08206 7.839880 1.08361
3.612825 1.08197 6.415030 1.08214 7.934870 1.08373
3.850300 1.08201 6.510020 1.08216 8.029860 1.08376
4.087775 1.08198 6.605010 1.08229 8.219840 1.08390
4.325250 1.08203 6.700000 1.08236 8.409820 1.08391

Since the nature of the piecewise functions is not known, we will use
polynomials of low degrees. The special case where all the polynomials have
the same degree corresponds to a well-known problem called least squares
approximation by splines with free knots. Many authors have worked on this
problem; a good survey is given for example in [123].

366 LEAST SQUARES PROBLEMS

Assume we are given some data points

x x1, x2 . . . xN

y y1, y2, . . . yN
. (6.101)

where the x-coordinates are ordered: a = x1 < x2 < · · · < xN = b. We want
to partition this set by two knots ξ and η such that

x1 < · · · < xn1
< ξ ≤ xn1+1 < · · · < xn2

< η ≤ xn2+1 < · · · < xN .

These two knots define three intervals: (x1, ξ), (ξ, η) and (η, xN). We will fit
in the least squares sense three given functions f , g and h in each interval to
the data points,

f(a, xi) ≈ yfi i = 1, . . . , n1,

g(b, xi) ≈ ygi i = n1 + 1, . . . , n2,

h(c, xi) ≈ yhi i = n2 + 1, . . . , N.

(6.102)

The superscript in the y-coordinates indicates that we have also partitioned
the data points accordingly,

x =

⎛
⎝ xf

xg

xh

⎞
⎠ , y =

⎛
⎝ yf

yg

yh

⎞
⎠ .

The parameters of the functions f , g and h to be determined by the least
squares fit are denoted by a, b and c.

To enforce continuity of the global piecewise function, we have to impose
the constraints

f(a, ξ)− g(b, ξ) = 0,
g(b, η)− h(c, η) = 0.

(6.103)

If the first derivative is also required to be continuous at the knots, then the
additional constraints

f ′(a, ξ)− g′(b, ξ) = 0,
g′(b, η)− h′(c, η) = 0.

(6.104)

must also be considered.
Let us introduce the vector functions

f(a) =

⎛
⎜⎝

f(a, x1)
...

f(a, xn1
)

⎞
⎟⎠ , g(b) =

⎛
⎜⎝
g(b, xn1+1)

...
g(b, xn2

)

⎞
⎟⎠ , h(c) =

⎛
⎜⎝
h(c, xn2+1)

...
h(c, xN)

⎞
⎟⎠ ,

and the vector of unknowns

z =

⎛
⎜⎜⎜⎜⎝

a
b
c
ξ
η

⎞
⎟⎟⎟⎟⎠ , F (z) =

⎛
⎝ f(a)

g(b)
h(c)

⎞
⎠ and G(z) =

(
f(a, ξ)− g(b, ξ)
g(b, η)− h(c, η)

)
.

Least Squares Fit with Piecewise Functions 367

Then the problem of fitting a continuous global function becomes a con-
strained nonlinear least squares problem

min
z

‖F (z)− y‖2 subject to G(z) = 0. (6.105)

If we also require continuity of the derivative, then we have to replace G in
(6.105) by

G(z) =

⎛
⎜⎜⎝

f(a, ξ)− g(b, ξ)
g(b, η)− h(c, η)
f ′(a, ξ)− g′(b, ξ)
g′(b, η)− h′(c, η)

⎞
⎟⎟⎠ .

We will solve Problem (6.105) by an alternating minimization procedure:
in each iteration step, we will use the current values of ξ and η to allocate the
points to the functions f , g and h. Then we will apply the Gauss-Newton
method to solve the nonlinear least squares problem. For this, we linearize
the functions F and G to obtain a linear least squares problem with linear
constraints, from which we calculate the correction Δz. Assume z̄ is an
approximation of a solution of Problem (6.105). If we expand

F (z̄ +Δz) ≈ F (z̄) + JFΔz,

and do the same for G(z), we can replace Problem (6.105) by a constrained
linear least squares problem with the Jacobian matrices for the correction

JF Δz ≈ y − F (z̄),
JG Δz = −G(z̄) .

(6.106)

We will use the LinearlyConstrainedLSQ Algorithm 6.21 for the solution.

6.9.1 Structure of the Linearized Problem

The linearly constrained least squares problem (6.106) is structured: the
Jacobian matrix of F is block diagonal and contains the Jacobin matrices of
the three functions f , g and h,

JF =

⎡
⎢⎣

Jf 0 0 0 0

0 Jg 0
...

...
0 0 Jh 0 0

⎤
⎥⎦ .

Since in our case the size of the matrix JF is small, we will not treat it
as a sparse matrix. The following function DirectSum comes in handy to
construct such block-diagonal matrices :

Algorithm 6.32. Generating Direct Sums

function A=DirectSum(A,varargin)

368 LEAST SQUARES PROBLEMS

% DIRECTSUM computes the direct sum of matrices

% A=DirectSum(A1,A2,...,An) computes the direct sum of matrices of

% arbitrary size (Peter Arbenz, May 30, 1997)

for k=1:length(varargin)

[n,m]=size(A);

[o,p]=size(varargin{k});

A=[A zeros(n,p); zeros(o,m) varargin{k}];

end

For the continuity condition, the Jacobian of G is

JG =

[
∇f(a,ξ)� −∇g(b,ξ)� 0 f ′(a,ξ)−g′(b,ξ) 0

0 ∇g(b,η)� −∇h(c,η)� 0 g′(b,η)−h′(c,η)

]
.

Note that we denote with ∇f(a, ξ) the gradient of f with respect to the
parameters a, while f ′ denotes the derivative of f with respect to the inde-
pendent variable x.

If also the derivatives should be continuous then

JG =

⎡
⎢⎣

∇f(a,ξ)� −∇g(b,ξ)� 0 f ′(a,ξ)−g′(b,ξ) 0

0 ∇g(b,η)� −∇h(c,η)� 0 g′(b,η)−h′(c,η)
∇f ′(a,ξ)� −∇g′(b,ξ)� 0 f ′′(a,ξ)−g′′(b,ξ) 0

0 ∇g′(b,η)� −∇h′(c,η)� 0 g′′(b,η)−h′′(c,η)

⎤
⎥⎦ .

(6.107)

6.9.2 Piecewise Polynomials

For polynomials, the Jacobians become Vandermonde matrices if we use the
standard representation. If f(a, x) = a1x

p + a2x
p−1 + · · ·+ apx+ ap+1, then

Jf =

⎛
⎜⎝

xp
1 xp−1

1 . . . x1 1
...

...
...

...
...

xp
n1

xp−1
n1

. . . xn1
1

⎞
⎟⎠ .

If f , g and h are polynomials of degree p, q and r, then for the continuity of
the global function, we need

JG =

(
ξp ··· ξ 1 −ξq ··· −ξ −1 0 ··· 0 0 f ′(a,ξ)−g′(b,ξ) 0
0 ··· 0 0 ηq ··· η 1 −ηr ··· −η −1 0 g′(b,η)−h′(c,η)

)
.

For the continuity of the derivative we have

f ′(a, ξ) = pa1ξ
p−1 + (p− 1)a2ξ

p−2 + · · · + ap,

and thus we use in (6.107) the expression

∇f ′(a, ξ)� = [pξp−1, (p− 1)ξp−2, . . . , 2ξ, 1, 0].

Least Squares Fit with Piecewise Functions 369

For the following main program we need to first read the data, stored in
a file xy.m. This file contains only the definition of the matrix XY:

XY = [0.288175 1.08181

0.525650 1.08174

... ...

8.219840 1.08390

8.409820 1.08391]

For the sake of brevity, we did not print all the data of Table 6.3, but we
will print intermediate results and also plot the approximations. To plot the
given points, we will use the function PlotPoints:

Algorithm 6.33. Plot the Points

function ax=PlotPoints(X)

% PLOTPOINTS plots the points X and returns the axis handle

clf; hold off;

plot(X(:,1),X(:,2),’o’);

ax=axis; hold on;

During the iterations, the breakpoints ξ and η will change, so we need to
repartition the data after each iteration. This is done with the function
Partition:

Algorithm 6.34. Partition of the Data

function [n1,n2,xf,yf,xg,yg,xh,yh]=Partition(xi,eta,XY,N)

% PARTITION Partitions the data XY into three data sets

% [n1,n2,xf,yf,xg,yg,xh,yh]=Partition(xi,eta,XY,N) partition the

% date set in XY into three subsets according to xi and eta.

n1=sum(XY(:,1)<xi); n2=sum(XY(:,1)<eta);

xf=XY(1:n1,1); yf=XY(1:n1,2);

xg=XY(n1+1:n2,1); yg=XY(n1+1:n2,2);

xh=XY(n2+1:N,1); yh=XY(n2+1:N,2);

The Jacobian matrices are Vandermonde matrices and are generated using
the function van:

Algorithm 6.35. Generate Jacobian

function J=van(p,x)

% VAN construct a Vandermonde matrix

% J=van(p,x) computes p+1 columns of the Vandermonde matrix of x

n=length(x); J=ones(n,1);

for j=1:p

J=[x.^j J];

end

370 LEAST SQUARES PROBLEMS

After each iteration, we will pause and plot the current approximation using
the function PlotFunctions:

Algorithm 6.36. Plot Functions

function PlotFunctions(xi,eta,a,b,c,ax);

% PLOTFUNCTIONS plots the three polynomials

xx=[0:0.1:xi]; plot(xx,polyval(a,xx),’r’), axis(ax)

xx=[xi:0.1:eta]; plot(xx,polyval(b,xx),’g’), axis(ax)

xx=[eta:0.1:9]; plot(xx,polyval(c,xx),’b’), axis(ax)

The initial approximations for coefficients of the polynomials are computed
using the Matlab function polyfit to fit each polynomial to the partitioned
data sets in the least squares sense. For the evaluation of a polynomial, we
use the Matlab function polyval. Finally, to compute the coefficients of
the derivative of a polynomial we use dpoly :

Algorithm 6.37. Derivative of a Polynomial

function DA=dpoly(n,A)

% DPOLY derivative of a polynomial

% DA=dpoly(n,A) computes the coefficients DA of the derivative of

% the polynomial of degree n given by the coefficients A.

DA=0;

for j=1:n, DA(j)=(n+1-j)*A(j); end

The following program main1 computes the Gauss-Newton approxima-
tions. Of course the iterations may or may not converge. Even when the
method converges, we cannot guarantee that the limit point is the global
minimumm, since the problem has many local minima.

The degrees of the polynomials can be chosen by changing the statements
for p, q and r. The variable derivative is used as a switch to decide whether
the derivative should also be continuous at the break points (derivative=1)
or not.

The iteration is stopped if no convergence has been reached after 40 iter-
ations. It is also stopped if the break points switch their order, i.e. if η < ξ.

Algorithm 6.38. Fitting Piecewise Polynomials

% Piecewise Polynomial Fit: main1.m

xy; N=max(size(XY)); % read data

ax=PlotPoints(XY) % plot given points

Least Squares Fit with Piecewise Functions 371

p=3; q=3; r=3; % choose degrees and

derivatives=1 % derivatives (1=continuos, 0=no)

xi0=6.4; eta0=8; % initialize break points

% xi < eta

xi=xi0; eta=eta0; % first partition of data

[n1,n2,xf,yf,xg,yg,xh,yh]=Partition(xi,eta,XY,N);

Jf=van(p,xf); Jg=van(q,xg); Jh=van(r,xh);

% initialize polynomial coef-

% ficients by individual least

% squares fit

a=polyfit(xf, yf,p); b=polyfit(xg,yg,q); c=polyfit(xh,yh,r);

% plot initial approximation

% functions

PlotFunctions(xi,eta,a,b,c, ax);

k=0; % count interations

dp=1; % initialize correction

while (norm(dp)>1e-5) & (k<40),

k= k+1;

JF=[DirectSum(Jf,Jg,Jh), zeros(N,2)];

gradfxi=van(p,xi); gradgxi=van(q,xi);

gradgeta=van(q,eta); gradheta=van(r,eta);

% coeffs of derivatives

da=dpoly(p,a); db=dpoly(q,b); dc=dpoly(r,c);

% constraints for continuity

JG=[gradfxi -gradgxi zeros(size(gradheta)) ...

polyval(da,xi)-polyval(db,xi) 0

zeros(size(gradfxi)) gradgeta -gradheta ...

0 polyval(db,eta)-polyval(dc,eta)]

if derivatives, % continuity of derivative

gradfsxi =[[p:-1:1].*van(p-1,xi),0];

gradgsxi=[[q:-1:1].*van(q-1,xi),0];

gradgseta=[[q:-1:1].*van(q-1,eta),0];

gradhseta=[[r:-1:1].*van(r-1,eta),0];

dda=dpoly(p-1,da); % coeffs of second derivative

ddb=dpoly(q-1,db);

ddc=dpoly(r-1,dc);

JG=[JG

gradfsxi -gradgsxi zeros(size(gradhseta))...

polyval(dda,xi)-polyval(ddb,xi) 0

zeros(size(gradfsxi)) gradgseta -gradhseta ...

0 polyval(ddb,eta)-polyval(ddc,eta)]

end

% Right hand side for lsq

z=[yf-polyval(a,xf);yg-polyval(b,xg);yh-polyval(c,xh)]

% Right hand side for constraints

mG=-[polyval(a,xi)-polyval(b,xi)

polyval(b,eta)-polyval(c,eta)]

if derivatives, % add constraints

372 LEAST SQUARES PROBLEMS

mG=-[-mG; polyval(da,xi)-polyval(db,xi)

polyval(db,eta)-polyval(dc,eta)]

end

% solve for corrections

dp=LinearlyConstrainedLSQ(JF,JG,z,mG);

a=a+dp(1:p+1)’; % update unknowns

b=b+dp(p+2:p+q+2)’; c=c+dp(p+q+3:p+q+r+3)’;

xi=xi+dp(p+q+r+4); eta=eta+dp(p+q+r+5);

if xi>eta, error(’xi > eta’); end

norm(dp) % print norm of correction

% plot current approximation

PlotFunctions(xi,eta,a,b,c, ax);

pause

% new partition of the data

[n1,n2,xf,yf,xg,yg,xh,yh]=Partition(xi,eta,XY,N);

Jf=van(p,xf); Jg=van(q,xg); Jh=van(r,xh);

end

% plot final result

ax=PlotPoints(XY); PlotFunctions(xi,eta,a,b,c, ax);

% compute residual and print

% results

rf=norm(polyval(a,xf)-XY(1:n1,2));

rg=norm(polyval(b,xg)-XY(n1+1:n2,2));

rh=norm(polyval(c,xh)-XY(n2+1:N,2));

rr=norm([rf, rg, rh]) % residuals

dpnorm=norm(dp) % norm of last correction

disp(’degrees of polynomials, derivative (yes=1), # of iterations’)

[p q r derivatives k]

disp(’breakpoints: initial, final’)

[xi0 eta0 xi eta]

6.9.3 Examples

Figure 6.13 shows an approximation by classical smoothing splines of degree
3 with free knots. Using ξ = 7.34 and η = 7.78 as initial approximations for
the breakpoints, after 9 Gauss-Newton iterations the norm of the correction
vector drops to 4.3180e−06 and the break points converge to ξ = 7.3157 and
η = 7.7275. The norm of the true residual for the three spline functions is
3.4965e−04.
However, the solution to which we converged may be only a local minimum
of the nonlinear least squares function. In fact, if we use other initial approx-
imations for the break points, we may obtain no convergence or convergence
to other solutions. Table 6.4 shows some results. There are three different so-
lutions with almost the same norm of the residual (3.4965e−04, 3.6819e−04
and 3.6499e−04). This shows that the problem is ill-conditioned.

In the next example, we choose linear functions and ask only for continuity
(see Figure 6.14). For the initial values ξ = 7.34 and η = 7.78 we obtain the

Least Squares Fit with Piecewise Functions 373

Figure 6.13.

Classical Smoothing Splines
with Free Knots

0 1 2 3 4 5 6 7 8 9
1.0815

1.082

1.0825

1.083

1.0835

1.084

Figure 6.14.

Piecewise Linear Functions
with Free Knots

0 1 2 3 4 5 6 7 8 9
1.0815

1.082

1.0825

1.083

1.0835

1.084

Table 6.4.
Different Solutions for Different Initial Breakpoints for Smoothing Splines

initial appr. norm of corr. # of inter.
final breakp. norm of res.

7.34 7.78 4.3180e-06 9
7.31570 7.72746 3.4965e-04

6.5 8 6.3398e-06 12
7.31570 7.72746 3.4965e-04

6.4 8 5.3655e-06 21
6.03633 6.98520 3.6819e-04

5 7 7.4487e-06 28
5.53910 7.04320 3.6499e-04

break points ξ = 7.1750 and η = 7.7623.

Again by choosing different initial values for the break points, the Gauss-
Newton method converges to different local minima (see Table 6.5). The ill
conditioning here is even more pronounced.

Next we choose different degrees p = 3, q = 1 and r = 2 and fit a continuous
global function, see Table 6.6. For the initial values ξ = 7.34 and η = 7.78 the
break points become ξ = 7.3552 and η = 7.6677 and we obtain in 4 iterations
Figure 6.15 with a residual norm of 3.5422e−04. However, for the initial
values ξ = 6.5 and η = 8 a better solution with break points 5.7587 and
7.3360 and a slightly reduced residual of 2.7396e-04 is obtained, see Figure
6.16. This example shows again how difficult it is to converge to a global
minimum.

Finally, we increase the degrees to p = 5, q = 3 and r = 2 and ask for the
continuity of the derivative as well, see Figure 6.17. Now the break points
are ξ = 7.3717 and η = 7.6494.

374 LEAST SQUARES PROBLEMS

Table 6.5. Solutions for Piecewise Linear Functions

initial appr. norm of corr. # of inter.
final breakp. norm of res.

7.34 7.78 7.8568e-14 4
7.17495 7.76231 7.6797e-04

3 6 2.4061e-13 6
1.97596 6.57421 8.1443e-04

5 7 4.5775e-13 7
6.12802 7.169537 6.7463e-04

Figure 6.15.

Polynomials with degrees p = 3,
q = 1 and r = 2

0 1 2 3 4 5 6 7 8 9
1.0815

1.082

1.0825

1.083

1.0835

1.084

Figure 6.16.

Polynomials with degrees p = 3,
q = 1 and r = 2, second solution

0 1 2 3 4 5 6 7 8 9
1.0815

1.082

1.0825

1.083

1.0835

1.084

Again other starting values for the break points e.g. ξ = 6 and η = 8 lead
to another solution, see Figure 6.18, with almost the same residual, see Table
6.7.

6.10 Problems

Problem 6.1. A person brings two packages to the post. One weighs 5 kg,
the other 2 kg. However, at the post office both weigh together 8 kg. Adjust
their weights using the least squares method.

Problem 6.2. Let the matrix A ∈ R
m×n with m > n and rank(A) = n.

Prove that the matrix A�A of the normal equations is positive definite.

Problem 6.3. Let the matrix A ∈ R
n×n be symmetric and positive

definite. Prove that the singular values of A are the same as its eigenvalues.
What is the relation between singular values and eigenvalues if A is symmetric
but not positive definite?

Problem 6.4. Let A,B ∈ R
m×n and let A = QBP� where Q and P are

Problems 375

Table 6.6. Solutions for p = 3, q = 1 and r = 2

initial appr. norm of corr. # of inter.
final breakp. norm of res.

7.34 7.78 3.6034e-06 4
7.3552 7.6677 3.5422e-04

6.5 8 1.4420e-08 8

5.7587 7.3360 2.7396e-04

Figure 6.17.

Polynomials with degrees p = 5,
q = 3 and r = 2

0 1 2 3 4 5 6 7 8 9
1.0815

1.082

1.0825

1.083

1.0835

1.084

Figure 6.18.

Polynomials with degrees p = 5,
q = 3 and r = 2, second solution

0 1 2 3 4 5 6 7 8 9
1.0815

1.082

1.0825

1.083

1.0835

1.084

orthogonal matrices. Prove that

‖A‖F = ‖B‖F .

Problem 6.5. Let Q ∈ R
m×n with m > n be an orthogonal matrix.

Consider the matrix P = QQ�

Is P an orthogonal projector? If yes where does it projects? Justify your
answer.

Table 6.7. Solutions for p = 5, q = 3 and r = 2, (continuous derivatives)

initial appr. norm of corr. # of inter.
final breakp. norm of res.

7.34 7.78 5.1228e-09 12
7.3717 7.6494 2.8155e-04

6 8 8.9962e-06 15
6.7139 7.4377 2.5334e-04

376 LEAST SQUARES PROBLEMS

Problem 6.6. Consider the plane in R
3 given by the equation

x1 + x2 + x3 = 0.

Construct a matrix P which projects a given point on this plane. Hint: con-
sider first the orthogonal complement of the plane.

Problem 6.7. Given the matrix

A =

⎛
⎜⎜⎝
1 2 6
1 3 7
1 4 8
1 5 9

⎞
⎟⎟⎠

Compute a Householder matrix P such that

PA =

⎛
⎜⎜⎝
σ x x
0 x x
0 x x
0 x x

⎞
⎟⎟⎠

It is sufficient to determine σ and the Householder-vector u.

Problem 6.8. Consider the plane in R
3 given by the equation

2x1 − 2x3 = 0.

Construct a matrix P ∈ R
3×3 which reflects a given point at this plane (com-

putes the mirror image).

Problem 6.9. Let the measured points (tk, yk) for i = k, . . . ,m be given.
We want to fit the function f(a, b) = aebt such that

m∑
k=1

(
aebtk − yk

)2 −→ min

using the Gauss-Newton method. Write up the system of equations for the
first iteration step.

Problem 6.10. Let b = (b1, b2, b3, b4) be the measured lengths of the sides
of a rectangle. Correct the measurements using least squares and determine
side lengths x such that ‖x− b‖22 −→ min subject to the condition that two
corresponding sides have the same length i.e. x1 = x3 and x2 = x4. Compute
the corrected values.

Problem 6.11. Let A,B ∈ R
m×n and let A = QBP� where Q and P

are orthogonal matrices. Prove that

‖A‖2 = ‖B‖2.

Problems 377

Problem 6.12. Consider the matrix

A =

⎛
⎝1
2
3

⎞
⎠

1. Compute and describe geometrically the 4 fundamental subspaces

2. Compute the 4 projectors on the fundamental subspaces.

Problem 6.13. Consider the constrained least squares problem with given
A ∈ R

m×n and b ∈ R
m and m > n:

min ‖b− y‖22 subject to y = Ax.

1. Interpret the problem geometrically.

2. Assume A has full rank, give an explicit expression for the solution y.

3. How can you compute y using the function ModifiedGramSchmidt (Al-
gorithm 6.9)?

Problem 6.14. A student wants to update the QR decomposition by
removing a column using the function UpdateQR. He has defined ek to be the
k-th unit vector.

v=-A(:,k);

[Qs,Rs]=UpdateQR(Q,R,v,ek)

What is he effectively computing?

Problem 6.15. Minimizing the length of the residual vector r = b−Ax
is equivalent of minimizing the quadratic form

Q(x) = r�r = (b− Ax)�(b− Ax) = b�b− 2x�A�b+ x�A�Ax.

By differentiating with respect to x and equating to zero show that the result-
ing equations are the normal equations.

Problem 6.16. Savitzky-Golay Filter. Noisy data often have to be fil-
tered. One way to do this is to compute a least squares fit of a polynomial
P (x) of degree d through 2N + 1 points left and right of the middle point xi

and to replace the function value yi by the smoothed value P (xi).
The smoothed value is an average of the neighboring points and thus the

process is called a moving average (see Chapter 9 in [45]).
If the abscissas xi are equidistant then the average is the same for all

points and depends only on the degree of the polynomial and the number of
points used for the average.

378 LEAST SQUARES PROBLEMS

We consider therefore the data

x −N · · · −1 0 1 · · · N
y y−N · · · y−1 y0 y1 · · · yN

We want to fit a polynomial

P (x) = bdx
d + bd−1x

d−1 + · · · + b1x+ b0

to this data. The coefficients bi are obtained as solution of

P (i) ≈ yi, for i = −N, . . . ,N

which is a linear least squares problem Ab ≈ y. The smoothed value is
P (0) = b0. Since b = A+y we obtain

b0 = e�p+1A
+y = c�y

Write a Maple script to compute the coefficient vector c.

Hint: in Maple’s CurveFitting package there is a function
LeastSquares which is useful.

Problem 6.17. A triangle has been measured, the measurements are as
follows:

x1 = α x2 = β x3 = γ x4 = a x5 = b x6 = c
67◦30′ 52◦ 60◦ 172m 146m 165m

The measurements x have errors. We would like to correct them so that the
new values x̃ = x + h are consistent quantities of a triangle. They have to
satisfy:

Sum of angles: x̃1 + x̃2 + x̃3 = 180◦

Sine theorem: x̃4 sin x̃2 − x̃5 sin x̃1 = 0
x̃5 sin x̃3 − x̃6 sin x̃2 = 0

(6.108)

Solve the constrained least squares problem ‖h‖2 −→ min subject to the
constraints (6.108). Replace the nonlinear constraints f(x̃) = 0 by the lin-
earized equations f(x)+Jh = 0 where J is the Jacobian. Solve the linearized
problem using e.g. NullSpaceMethod. Iterate the process if necessary. Hint:
Don’t forget to work in radians!

Check that for the new values also e.g. the cosine-theorem c2 = a2 + b2 −
2ab cos(γ) holds.

You will notice that the corrections will be made mainly to the angles
and much less to the lengths of the sides of the triangle. This is because
the measurements have not the same absolute errors. While the error in last
digit of the sides is about 1, the errors in radians of the angles are about 0.01.

Problems 379

Repeat your computation by taking in account with appropriate weighting the
difference in measurement errors. Minimize not simply ‖h‖2 but∥∥∥∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎜⎜⎜⎝

100h1

100h2

100h3

h4

h5

h6

⎞
⎟⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥∥
2

Problem 6.18. Prove that the following compact algorithm solves the
linear least squares problem Ax ≈ b.

1. Form the augmented matrix

Ā = [A, b] ∈ R
m×n+1.

2. Compute the augmented normal equation matrix and decompose it using
the Cholesky decomposition

Ā�Ā = R̄�R̄.

3. Partition

R̄ =

(
R y
0 ρ

)
. (6.109)

4. The least squares solution x̃ is obtained by solving Rx = y with back-
substitution.

5. The residual is ‖r‖2 = ‖b−Ax̃‖2 = ρ.

Problem 6.19. Suppose you are given the decomposition of the matrix
A = LU where L is a lower and U an upper triangular matrix. Thus you can
solve the system Ax = b in two steps

1. Solve Ly = b by forward substitution

2. Solve Ux = y by backward substitution.

Example

L =

⎛
⎜⎜⎜⎜⎝
1
9 1
1 5 1
9 10 5 1
6 10 8 10 1

⎞
⎟⎟⎟⎟⎠ , U =

⎛
⎜⎜⎜⎜⎝
8 1 2 1 7

3 10 4 0
10 9 8

8 9
7

⎞
⎟⎟⎟⎟⎠ , b =

⎛
⎜⎜⎜⎜⎝

15
138
39
211
209

⎞
⎟⎟⎟⎟⎠

380 LEAST SQUARES PROBLEMS

Write two Matlab functions y = ForwardSubstitution(L,b) and x =

BackSubstitution(U,y) so that they can be used to solve the linear system
LUx = b. Both functions can be programmed using either scalar-product-
operations or SAXPY-operations. A SAXPY is defined as a linear combina-
tion of two vectors:

s = αx+ y.

For modern processors the SAXPY variant is preferred, therefore program
these versions.

Problem 6.20. Fitting of circles. We are given the measured points
(ξi, ηi):

ξ 0.7 3.3 5.6 7.5 6.4 4.4 0.3 −1.1
η 4.0 4.7 4.0 1.3 −1.1 −3.0 −2.5 1.3

Find the center (z1, z2) and the radius r of a circle (x− z1)
2 +(y− z2)

2 = r2

that approximate the points as well as possible. Consider the two cases

1. Algebraic fit: Rearrange the equation of the circle as

2z1x+ 2z2y + r2 − z21 − z22 = x2 + y2. (6.110)

With c := r2 − z21 − z22 , we obtain with (6.110) for each measured point
a linear equation for the unknowns z1, z2 and c.

2. Geometric fit: Use the Gauss-Newton method to minimize the sum of
squares of the distances

di = |
√

(z1 − ξi)2 + (z2 − ηi)2 − r|.

Compute and plot in both cases the data points together with the circles.
As a second example do the same with the data set

ξ 1 2 5 7 9 3
η 7 6 8 7 5 7

Hint: A circle with center (c1, c2) and with radius r is best plotted using the
parametric representation:

x(t) = c1 + r cos t, y(t) = c2 + r sin t 0 ≤ t ≤ 2π.

Problem 6.21. The parametric form commonly used for the circle is
given by

x = z1 + r cosϕ

y = z2 + r sinϕ.

Problems 381

The distance di of a point Pi = (xi1, xi2) may be expressed by

d2i = min
ϕi

(xi1 − x(ϕi))
2 + (xi2 − y(ϕi))

2.

Now we want again compute a geometric fit, i.e. determine z1, z2 and r by
minimizing

m∑
i=1

d2i −→ min .

We can simultaneously minimize for z1, z2, r and {ϕi}i=1...m; i.e. find the
minimum of the quadratic function

Q(ϕ1, ϕ2, . . . , ϕm, z1, z2, r) =

m∑
i=1

(xi1 − x(ϕi))
2 + (xi2 − y(ϕi))

2.

This is equivalent to solving the nonlinear least squares problem

z1 + r cosϕi − xi1 ≈ 0
z2 + r sinϕi − xi2 ≈ 0

i = 1, 2, . . . ,m.

Solve this problem with the Gauss-Newton method. The Jacobian J is highly
structured. Taking in account the structure when solving Jh ≈ −f develop
an effective algorithm.

Problem 6.22. Write a Matlab programs to fit two orthogonal lines
by minimizing the distance of measured points to the line. Assume that two
different sets of points are given for the two lines involved.

Problem 6.23. The function

h(x) = 1− 3

x

sinh x− sin x

cosh x− cosx

should be fitted to the following data:

x 0.100 0.800 1.500 2.200 2.900 3.600 4.300 5.000 5.700 6.400

y 0.049 0.051 0.153 0.368 0.485 0.615 0.712 0.717 0.799 0.790

Find the value of the parameter a such that h(axi) ≈ yi for i = 1, . . . , 10 in
the least squares sense.

Solve the problem using the Gauss-Newton and also the Newton method.
Compute the function and the derivatives using algorithmic differentiation
(see Section 8.3).

Problem 6.24. We are given the coordinates of the points (ξi, ηi), i =
1, . . . ,m in the plane. For a new point P = (x1, x2) the distances si = |Pi−P |
from the given points have been measured:

xi 16 65 85 53 16 25
yi 56 64 37 7 3 32
si 32 35 44 30 42 16

382 LEAST SQUARES PROBLEMS

Compute the coordinates of P by solving the nonlinear least squares problem.

Problem 6.25. Fit the function f(x) = k/(1 + be−ax) to the data

x 0 2 3 4 5 6 7 8 9 10 11 12 13 14

y .145 .19 .248 .29 .78 .78 1.16 1.4 1.94 2.3 2.5 2.8 3.12 3.32

using the Matlab function nlinfit. Plot the points and the fitted curve.

Problem 6.26. Determine the parameters a and b such that the function
f(x) = aebx fits the following data

x 30.0 64.5 74.5 86.7 94.5 98.9
y 4 18 29 51 73 90

Hint: If you fit log f(x) the problems becomes very easy!

Problem 6.27. The following program fits a polynomial of degree n = 5
to given points. The points are input with the mouse using the Matlab

function ginput. After each new point the coefficients are computed and the
polynomial is plotted. The program is inefficient because it does not update
the QR decomposition – the solution is fully recalculated for every new point.

format compact

clf

axis([0 10 0 10]) % plot window

hold

degr=5; % degree of polynomial

n=degr+1; % number of coefficients

h=degr:-1:0 % to generate matrix row

t=0:0.1:10; % to plot polynomial

[x,y]=ginput(1);

plot(x,y,’*r’) % generate first row

A= x.^h; b=y; k=1;

while 1 % stop with ctrl-w in plot window

[x,y]=ginput(1); % get new point

plot(x,y,’*r’)

k=k+1; % count points

A=[A; x.^h]; % generate new row

b=[b;y]; % and right hand side

if k>=n

a=A\b; % solve for degrew coefficients

a’ % display coefficients

end

if k>degr

p=polyval(a,t); % evaluate polynomial

plot(t,p) % and plot

end

end

Problems 383

1. Study the program and run a few examples with different degrees.

2. Replace the part between the comment signs so that the solution is up-
dates with Givens rotations or -reflections. Each time when a new point
is read the matrix R is updated with n Givens transformations. These
Givens transformations annihilate the matrix-elements of the new equa-
tion and by back-substitution we obtain the new coefficients of the poly-
nomial. Use the scalar product form for back-substitution.

Problem 6.28. Assume you have decomposed a large matrix A = QR
and afterward you discover that the element ajk is wrong. Use our update-
techniques to fix the QR decomposition.

Test your Algorithm for the small matrix A= gallery(5); A=A(:,1:3)

A =

⎛
⎜⎜⎜⎜⎝

−9 11 −21
70 −69 141

−575 575 −1149
3891 −3891 7782
1024 −1024 2048

⎞
⎟⎟⎟⎟⎠

Change the element a2,3 = 141 to a2,3 = 1414 and compute the new decom-
position.

Problem 6.29. Consider the augmented matrix Ā = [A, b]. Show that
the following “compact” algorithm solves the least squares problem Ax ≈ b
and is equivalent with the method of normal equations:

1. decomposeĀĀ� = L̄L̄� (Cholesky).

2. Set R = L(1:n,1:n), y = L(n+1,1:n)’ and ρ = L(n+1,n+1).

3. Solve Rx = y by back-substitution.

4. min ‖b− Ax‖2 = ρ.

Problem 6.30. Derivation of modified Gram-Schmidt via matrix decom-
position. Let A be a m× n matrix and consider the decomposition A = QR.
If we set L = RT we can view the factorization as an outer product expansion

A = QLT =

n∑
i=1

qil
T
i

where lTi = (0, . . . , 0, rii, . . . , rin) is the ith column vector of R. Observe that
the first i − 1 columns of the rank one matrix qil

T
i consist entirely of 0’s.

Define

A(k) = A−
k−1∑
i=1

qil
T
i =

n∑
i=k

qil
T
i k = 1, . . . , n+ 1. (6.111)

384 LEAST SQUARES PROBLEMS

Clearly the recursion holds

A(1) = A, A(k+1) = A(k) − qkl
�
k , An+1 = 0.

Assume now that k−1 columns of Q and k−1 rows of L are already computed.
Multiply the recursion from the right be the unit vector ek and from the left by
q�
k to get expressions for the k-th column of Q and the k-th row of L. Write

a Matlab-program to compute this way the QR decomposition.

Problem 6.31. Consider the matrix A which is constructed by

c=4.11;

m=13;

n=13;

condA_glob=c;

B=inv(pascal(m));

B=B(:,1:n);

[A,R]=qr(B,0);

C=inv(hilb(n));

[B,R]=qr(C,0);

A=A*diag([10.^(0:condA_glob/(n-1):condA_glob)])*B;

[m,n]=size(A);

Compute the QR decomposition

1. with classical Gram-Schmidt

2. with modified Gram-Schmidt

3. via Cholesky decomposition of A�A

4. with Matlab’s function qr

In each case, test the departure from orthogonality using norm(eye(13)-Q’*Q).
(This matrix was communicated by Alicja Smoktunowicz).

Problem 6.32. We are given the following data concerning the growth
of pigs. The weight of a pig has been measured over a period of 240 days.
The values are given in the following table:

t 0 10 20 30 40 50 60 70 80
y 1.64 2.68 5.81 7.45 9.98 12.51 15.34 19.07 23.24

t 90 100 110 120 130 140 150 160 170
y 28.90 35.60 42.90 51.39 61.07 69.71 79.54 88.03 95.18

t 180 190 200 210 220 230 240
y 100.42 105.01 108.07 111.87 115.12 118.01 120.67

The data suggest an exponential growth of the weight in a first phase followed
by an exponential decrease of the growth to a final limit weight (which is not
reached since the pigs are transformed to meat before that stage).

Problems 385

Thus it seems reasonable to approximate the data by two piecewise func-
tions

F (x) =

{
f(a, t) = a0 + a1 exp(a3t) t < ξ
g(b, t) = b0 + b1 exp(b3t) t > ξ

We expect that by a least squares fit we will obtain exponents a3 > 0 and
b3 < 0. The break point ξ is a free knot and the two functions should have
the same value and the same derivatives for t = ξ.

Use the theory developed in Section 6.9 to determine the parameters by
the Gauss-Newton method.

Depending on the initial values, you may have a hard time to converge to
a solution. Use the Levenberg-Marquardt correction to avoid large correction
steps.

Chapter 7. Eigenvalue Problems

The solution of the algebraic eigenvalue problem has
for long had a particular fascination for me because
it illustrates so well the difference between what might
be termed classical mathematics and practical numeri-
cal analysis. The eigenvalue problem has a deceptively
simple formulation and the background theory has been
known for many years; yet the determination of ac-
curate solutions presents a wide variety of challenging
problems.

James Wilkinson, The Algebraic Eigenvalue Problem, Ox-
ford University Press, 1988.

The interesting differences between various eigenvalue
problems disappear when the formulation is made suffi-
ciently abstract and the practical problems reduce to the
single task of computing the eigenvalues of a square ma-
trix with real or complex entries. Nevertheless there is
one distinction worth maintaining: some matrices have
real eigenvalues and others do not. The former usu-
ally come from so-called self-adjoint problems which are
much nicer than the others.

Beresford Parlett, The Symmetric Eigenvalue Problem,
SIAM Classics in Applied Mathematics, 1998.

Eigenvalue problems are ubiquitous in science and engineering; they occur
whenever something is oscillating in a periodic motion. Historically, a very
famous eigenvalue problem is related to the beautiful Chladni figures, which
appear when fine grained sand or dust on a vibrating plate magically orga-
nizes itself to reveal the nodal lines of the vibrating plate [37]. In this same
reference, the spectacular failure of the Tacoma bridge is shown also to be
related to an eigenvalue problem. Eigenvalue problems in science and en-
gineering are often formulated at the level of the differential equation, but
the essential features of eigenvalue problems can be studied at the matrix
level, see the second quote above. We start this chapter with an introduc-
tory example in Section 7.1, where a simple mass-spring problem modeled
by a differential equation is reduced to a matrix eigenvalue problem. This
section contains a nice Matlab animation to illustrate such problems. In
Section 7.2, we introduce the classical matrix eigenvalue problem, and review
several important theoretical aspects of it. Since eigenvalues are the roots
of the characteristic polynomial of a matrix, they can only be computed it-
eratively, as there are no closed form formulas for roots of polynomials of
degree higher than four. Section 7.3 contains the oldest iterative algorithm

W. Gander et al., Scientific Computing - An Introduction using Maple and MATLAB,

Texts in Computational Science and Engineering 11,
DOI 10.1007/978-3-319-04325-8 7,

© Springer International Publishing Switzerland 2014

388 EIGENVALUE PROBLEMS

for computing eigenvalues, due to Jacobi, for the computation of planetary
motion. We explain in detail a beautiful and sophisticated implementation
due to Rutishauser. Today’s most popular eigenvalue algorithms are, how-
ever, based on a different technique: the simple power method described
in Section 7.4, together with its extension to orthogonal iterations. Mod-
ern algorithms also perform reductions to simpler form, described in Section
7.5, before starting the iteration. We then describe the QR Algorithm in
Section 7.6, which is nowadays the most widely used algorithm for dense
eigenvalue problems. We describe in detail the implicit version with shifts,
and also convergence tests and deflation, which are essential to the success of
the algorithm. The computation of the singular value decomposition (SVD)
is the topic of Section 7.7. This decomposition remained for the longest
time just a theoretical tool, until Golub and Reinsch found an efficient al-
gorithm to compute it. We conclude this chapter with the description of an
advanced version of the QD Algorithm, which is important whenever very
high accuracy is required in the eigenvalues. The most important references
for eigenvalue problems are Wilkinson [150], and Parlett for the symmetric
eigenvalue problem [104]. For very recent results, see [80].

7.1 Introductory Example

We start this chapter by considering a mechanical system. Figure 7.1 shows
three masses m connected with springs. We denote with ui(t) the displace-
ments of the masses from the positions of rest.

m m m
3K 2K K

u1 u2 u3

Figure 7.1. Mass Spring System

With the spring constants 3K, 2K and K, the equations of motion ac-
cording to Newton’s law, mu′′ = F , become

mu′′
1 = −3Ku1 − 2K(u1 − u2),

mu′′
2 = −2K(u2 − u1)−K(u2 − u3),

mu′′
3 = −K(u3 − u2).

Defining

u(t) =

⎛
⎝ u1(t)

u2(t)
u3(t)

⎞
⎠ , A =

⎛
⎝ 5 −2 0

−2 3 −1
0 −1 1

⎞
⎠ ,

Introductory Example 389

we write these equations in matrix-vector notation

L(u) := −m

K
u′′ − Au = 0. (7.1)

The operator L(u) is linear, which means that the solutions of (7.1) form a
linear space — any linear combination of solutions is again a solution.

We are looking for special solutions using the ansatz

ui(t) = vi cos(ωt) =⇒ u(t) = v cos(ωt),

where vi and ω are to be determined. Inserting the ansatz into (7.1), we
obtain

−m

K

(−v ω2 cos(ωt)
)− Av cos(ωt) = 0,

and dividing by cos(ωt) leads to

Av = λv with λ :=
m

K
ω2. (7.2)

Equation (7.2) defines an eigenvalue problem: we are looking for a vector
v 	= 0 and a scalar λ such that

Av = λv ⇐⇒ (λI − A)v = 0.

A nontrivial solution v 	= 0 can only exist if the matrix λI − A is singular,
that is, if

P (λ) = det(λI − A) = 0. (7.3)

The function P (λ) is called the characteristic polynomial of the matrix A.
A zero of P (λ) is called an eigenvalue of A and a nontrivial solution v is a
corresponding eigenvector.

In Matlab, the command poly computes the coefficients of P (λ)

>> A=[5 -2 0

-2 3 -1

0 -1 1];

>> P=poly(A)

P =

1.0000 -9.0000 18.0000 -6.0000

thus P (λ) = det(λI −A) = λ3 − 9λ2 +18λ− 6. With roots we obtain three
solutions, i.e., the three eigenvalues,

>> lambda=roots(P)

lambda =

6.2899

2.2943

0.4158

390 EIGENVALUE PROBLEMS

To each eigenvalue, the associated eigenvector v(i) is a solution of the homo-
geneous system

(A− λiI)v
(i) = 0.

For instance for λ1:

>> B=A-lambda(1)*eye(size(A))

B =

-1.2899 -2.0000 0

-2.0000 -3.2899 -1.0000

0 -1.0000 -5.2899

and we have to find a nontrivial solution of⎛
⎝ −1.2899 −2.0000 0

−2.0000 −3.2899 −1.0000
0 −1.0000 −5.2899

⎞
⎠
⎛
⎝ v1

v2
v3

⎞
⎠ =

⎛
⎝ 0

0
0

⎞
⎠ . (7.4)

Since v is only determined up to a constant factor, we may choose one com-
ponent freely. Assuming v1 = 1, we get the linear system (7.4)⎛

⎝ −2.0000 0
−3.2899 −1.0000
−1.0000 −5.2899

⎞
⎠(v2

v3

)
=

⎛
⎝ 1.2899

2.0000
0

⎞
⎠ . (7.5)

which, when solved with Matlab, gives

>> c=-B(1:2,2:3)\B(1:2,1)

c =

-0.6450

0.1219

>> c=[1;c]

c =

1.0000

-0.6450

0.1219

>> Check=B*c

Check =

1.0e-13 *

0

0

0.3764

Perfect! Continuing this way, our ansatz gives us three solutions:

u(i)(t) = v(i) cos(ωit) where ωi =

√
K

m
λi.

A second ansatz u(t) = v sin(ωt) yields three more solutions for the same
eigenvalues and eigenvectors, thus all together we have 6 linearly independent

Introductory Example 391

solutions. The general solution is a combination of all of them. In matrix-
vector notation, we get

Ω = diag(ω1, ω2, ω3) =

⎛
⎝ ω1

ω2

ω3

⎞
⎠ ,

cos(Ω) =

⎛
⎝ cosω1t

cosω2t
cosω3t

⎞
⎠ ,

and

sin(Ω) =

⎛
⎝ sinω1t

sinω2t
sinω3t

⎞
⎠ .

The general solution with arbitrary parameters

a =

⎛
⎝ α1

α2

α3

⎞
⎠ , b =

⎛
⎝ β1

β2

β3

⎞
⎠

becomes

u(t) = V (cos(Ωt)a+ sin(Ωt)b) with V = [v(1),v(2),v(3)].

The following nice Matlab program Swing.m, written by Oscar Chinellato,
shows the three different eigenmodes and the motion of the masses as a linear
combination of them.

Algorithm 7.1.
Simulation of a Mechanical System with Three Masses

close all; m=[1 1 1]’; k=[3 2 1]’; % masses and spring constants

% rest positions and initial

l0=[1 1 1]’; u0=[0.1, 0.1, 0.9]’; % displacements

A=[(-k(1)-k(2))/m(1), k(2)/m(1), 0

k(2)/m(2), (-k(2)-k(3))/m(2), k(3)/m(2)

0, k(3)/m(3), -k(3)/m(3)];

[U,l]=eig(A); l=diag(l); sl=sqrt(l); Ux=[U,u0];

w=1; % w is the box width

for sp=1:4 % draw four plots:

subplot(4,1,sp); % 1-3: eigensolutions

axis([-1,10,0,3]); % 4: composite solution

axis equal; axis off; hold on;

o(1)=l0(1); % offsets for drawing

o(2)=l0(1)+Ux(1,sp)+w+l0(2);

o(3)=l0(1)+Ux(1,sp)+w+l0(2)+Ux(2,sp)+w+l0(3);

bs(:,sp)=[% box plots

392 EIGENVALUE PROBLEMS

plot([o(1)+Ux(1,sp),o(1)+Ux(1,sp)+w,o(1)+Ux(1,sp)+w,o(1)+ ...

Ux(1,sp),o(1)+Ux(1,sp)],[0,0,w,w,0],’k-’);

plot([o(2)+Ux(2,sp),o(2)+Ux(2,sp)+w,o(2)+Ux(2,sp)+w,o(2)+ ...

Ux(2,sp),o(2)+Ux(2,sp)],[0,0,w,w,0],’k-’);

plot([o(3)+Ux(3,sp),o(3)+Ux(3,sp)+w,o(3)+Ux(3,sp)+w,o(3)+ ...

Ux(3,sp),o(3)+Ux(3,sp)],[0,0,w,w,0],’k-’);];

ss(:,sp)=[% spring plots

plot([0:(o(1)+Ux(1,sp))/10:o(1)+Ux(1,sp)], ...

[w/2+w/10,w/2+w/10*cos((1:9)*pi),w/2+w/10],’b-’);

plot([o(1)+Ux(1,sp)+w:(o(2)-o(1)+Ux(2,sp)-Ux(1,sp)-w)/10: ...

o(2)+Ux(2,sp)],[w/2+w/10,w/2+w/10*cos((1:9)*pi),w/2+w/10],’b-’);

plot([o(2)+Ux(2,sp)+w:(o(3)-o(2)+Ux(3,sp)-Ux(2,sp)-w)/10: ...

o(3)+Ux(3,sp)],[w/2+w/10,w/2+w/10*cos((1:9)*pi),w/2+w/10],’b-’);

];

tmp=plot([0,0,10],[2*w,0,0],’k-’); % draw axes

set(tmp,’LineWidth’,3);

end

drawnow; % draw initial positions

t=0; dt=0.04; % perform simulation in time

while 1

t=t+dt; % compute the new position

v=real(U*diag(exp(sl*t))*(U\Ux));

for sp=1:4

o(1)=l0(1); % update the drawing

o(2)=l0(1)+v(1,sp)+w+l0(2);

o(3)=l0(1)+v(1,sp)+w+l0(2)+v(2,sp)+w+l0(3);

set(bs(1,sp),’XData’,[o(1)+v(1,sp),o(1)+v(1,sp)+ ...

w,o(1)+v(1,sp)+w,o(1)+v(1,sp),o(1)+v(1,sp)]);

set(bs(2,sp),’XData’,[o(2)+v(2,sp),o(2)+v(2,sp)+ ...

w,o(2)+v(2,sp)+w,o(2)+v(2,sp),o(2)+v(2,sp)]);

set(bs(3,sp),’XData’,[o(3)+v(3,sp),o(3)+v(3,sp)+ ...

w,o(3)+v(3,sp)+w,o(3)+v(3,sp),o(3)+v(3,sp)]);

set(ss(1,sp),’XData’,[0:(o(1)+v(1,sp))/10:o(1)+v(1,sp)]);

set(ss(2,sp),’XData’,[o(1)+v(1,sp)+w:(o(2)-o(1)+v(2,sp) ...

-v(1,sp)-w)/10:o(2)+v(2,sp)]);

set(ss(3,sp),’XData’,[o(2)+v(2,sp)+w:(o(3)-o(2)+v(3,sp) ...

-v(2,sp)-w)/10:o(3)+v(3,sp)]);

end

drawnow; % draw updated positions

end

Figure 7.2 shows a snapshot of the animation.

7.2 A Brief Review of the Theory

7.2.1 Eigen-Decomposition of a Matrix

Let v1 be an eigenvector of A ∈ R
n×n belonging to the eigenvalue λ1. Then

Av1 = v1λ1. Assuming that A is diagonalizable, which means that there exist

A Brief Review of the Theory 393

Figure 7.2. A snapshot of the swinging masses

n linearly independent eigenvectors vj , j = 1, 2, . . . , n with corresponding
eigenvalues λj , we have analogously

A[v1,v2, . . . ,vn]=[v1λ1,v2λ2, . . . ,vnλn] = [v1,v2, . . . ,vn] diag(λ1, . . . , λn).

Therefore we get

AV = V D with V = [v1,v2, . . . ,vn] and D=

⎛
⎜⎜⎜⎝

λ1

λ2

. . .

λn

⎞
⎟⎟⎟⎠ ,

which leads to the eigen-decomposition of the matrix A,

A = V DV −1. (7.6)

In Matlab, this decomposition is computed with [V,D]=eig(A). For our
mass-spring example, the eigenmodes can be computed directly as follows:

>> A=[5 -2 0; -2 3 -1; 0 -1 1]

A =

5 -2 0

-2 3 -1

0 -1 1

>> [V,D]=eig(A)

V =

0.21493527624832 -0.50489606854382 -0.83599209744653

0.49265588101116 -0.68305360433845 0.53919194773787

0.84326330996266 0.52774779352380 -0.10192770232663

394 EIGENVALUE PROBLEMS

D =

0.41577455678348 0 0

0 2.29428036027904 0

0 0 6.28994508293748

Unfortunately, the eigen-decomposition does not exist for all matrices,
because not all matrices are diagonalizable. Take as example a Jordan block
with all zero elements except ones in the first upper diagonal:

>> n=3;

>> J=diag(ones(n-1,1),1)

J =

0 1 0

0 0 1

0 0 0

We now generate a well-conditioned matrix U and transform J to the similar
matrix A

>> rand(’state’,0); % to make the results reproducible

>> U=round(100*rand(n,n))

U =

95 49 46

23 89 2

61 76 82

>> cond(U)

ans =

4.8986

Let us form A = UJU−1 and compute its eigen-decomposition:

>> A=U*J*inv(U)

>> [V,D]=eig(A)

A =

-0.8224 0.6291 1.0435

-0.8702 -0.6191 1.5886

-0.9155 -0.0414 1.4414

V =

0.8245 0.8245 0.8245

0.1996 0.1996 + 0.0000i 0.1996 - 0.0000i

0.5294 0.5294 + 0.0000i 0.5294 - 0.0000i

D =

1.0e-05 *

0.6238 0 0

0 -0.3119 + 0.5402i 0

0 0 -0.3119 - 0.5402i

We see that the eigenvector matrix V is a rank-one matrix, so the eigen-
decomposition (7.6) does not exist. The column vectors of V are all the
same, which means that there exists only one eigenvector. A should have the
same eigenvalues as J , i.e., a triple eigenvalue zero. However, numerically

A Brief Review of the Theory 395

the eigenvalue zero has “exploded” into three simple eigenvalues of modulus
≈ 10−5. In exact arithmetic, A is a defective matrix, since it has only one
eigenvector for the multiple eigenvalue zero, just like the Jordan block.

Numerically, it can happen that a defective matrix is not detected. The
eigen-decomposition can usually be computed because, in finite precision
arithmetic, we do not compute the eigen-decomposition of A, but that of
a perturbed matrix A+E with ‖E‖ ≤ ε‖A‖. An indication that the matrix
may be defective is a high condition number for the eigenvector matrix V .
An example is the matrix gallery(5):

>> A=gallery(5)

A =

-9 11 -21 63 -252

70 -69 141 -421 1684

-575 575 -1149 3451 -13801

3891 -3891 7782 -23345 93365

1024 -1024 2048 -6144 24572

>> rank(A)

ans =

4

Thus, one eigenvalue must be zero. In fact,

>> [V,D]=eig(A);

>> V

V =

0.0000 -0.0000+0.0000i -0.0000-0.0000i 0.0000+0.0000i 0.0000-0.0000i

-0.0206 0.0206+0.0001i 0.0206-0.0001i 0.0207+0.0001i 0.0207-0.0001i

0.1398 -0.1397+0.0001i -0.1397-0.0001i -0.1397+0.0000i -0.1397-0.0000i

-0.9574 0.9574 0.9574 0.9574 0.9574

-0.2519 0.2519-0.0000i 0.2519+0.0000i 0.2519-0.0000i 0.2519+0.0000i

>> diag(D)

ans =

-0.0405

-0.0118 + 0.0383i

-0.0118 - 0.0383i

0.0320 + 0.0228i

0.0320 - 0.0228i

Again we see that A is defective (the columns of V look all the same, and the
condition number is cond(V)=1.0631e+11), so there is only one eigenvector.
A has an eigenvalue zero with multiplicity 5. If we compute the characteristic
polynomial we get

>> poly(A)

ans =

1.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000

which looks very much like P5(λ) = λ5.

396 EIGENVALUE PROBLEMS

7.2.2 Characteristic Polynomial

We already defined the characteristic polynomial, which can be written also
in factored form,

Pn(λ) = det(λI − A)

= λn + c2λ
n−1 + · · ·+ cnλ+ cn+1

= (λ− λ1)(λ− λ2) · · · (λ− λn).

Expanding the factors and comparing coefficients, we get the well-known
identities for the trace and the determinant of a matrix:

c2 =

n∑
i=1

aii =

n∑
i=1

λi = trace of A,

and
cn+1 = det(A) = λ1 · · ·λn.

As seen already, the Matlab command c=poly(A) computes the coefficients
ci. The corresponding command in Maple is

> with(LinearAlgebra);

> CharacteristicPolynomial(A,lambda);

To compute the roots of a polynomial

Pn(λ) = c1λ
n + c2λ

n−1 + · · · + cnλ+ cn+1,

Matlab uses the function roots(c). Thus we could compute the eigenvalues
of a matrix A with roots(poly(A)). As shown in Chapter 5, this is not a
good idea: small changes in the coefficients of a polynomial may change the
roots dramatically, the problem is ill-conditioned. The Matlab command
eig(A) computes the eigenvalues of the matrix A directly using similarity
transformations without computing the characteristic polynomial, and we
will see the underlying algorithm in Section 7.6.

7.2.3 Similarity Transformations

Two matrices A and B are similar if an invertible matrix T exists such that

A = TBT−1.

Similar matrices have the same characteristic polynomial, and hence the
same eigenvalues, the same determinant and the same trace. The eigen-
decomposition (7.6) is also a similarity transformation of the matrix A: solv-
ing (7.6) for D, we get

V −1AV = D.

Numerical methods like the QR Algorithm compute the eigenvalues using
a sequence of similarity transformations. The matrix is transformed into a

A Brief Review of the Theory 397

diagonal or triangular matrix, and its diagonal elements are the eigenvalues
of the original matrix A.

Every real symmetric matrix A is similar to a symmetric tridiagonal ma-
trix T . The transformation matrix can be constructed as a product of a
finite sequence of elementary orthogonal matrices, see Subsection 7.5.3. A
non-symmetric matrix can be reduced by a finite number of similarity trans-
formations to Hessenberg form (see Subsection 7.5.2).

7.2.4 Diagonalizable Matrices

Definition 7.1. (Geometric and Algebraic Multiplicity) The geo-
metric multiplicity of an eigenvalue λ is the dimension of its eigenspace, i.e.,
the dimension of the null space of λI − A. The algebraic multiplicity of an
eigenvalue λ is the multiplicity of λ as root of the characteristic polynomial.

For example, the null space of a Jordan block J = diag(ones(n-1,1),1)

consists only of the vector e1, and thus is one dimensional. The geometric
multiplicity is one. In contrast, the characteristic polynomial is det(λI−J) =
λn and therefore the algebraic multiplicity is n.

The algebraic and geometric multiplicities of a matrix A is invariant under
similarity transformations. Thus, it follows that A is diagonalizable if and
only if the algebraic multiplicity equals the geometric multiplicity for every
eigenvalue.

Next, we state a few facts regarding the diagonalizability of certain classes
of matrices. For a proof of these statements, consult a linear algebra textbook
e.g. [85]:

• Let AH denote the conjugate transpose of A. Then if A is normal, i.e.,
if AHA = AAH, then A is diagonalizable.

• Eigenvectors belonging to different eigenvalues are linearly indepen-
dent.

Therefore: if the matrix A has no multiple eigenvalues, then it is diag-
onalizable and the eigenvector matrix V is invertible: A = V DV −1.

• Real symmetric matrices have only real eigenvalues and they are always
diagonalizable. There exists an orthogonal basis of eigenvectors. Thus
the eigen-decomposition is

AV = V D ⇐⇒ A = V DV�, V�V = I orthogonal.

7.2.5 Exponential of a Matrix

For a diagonalizable matrix A = V DV −1, we have

A2 = V DV −1V DV −1 = V D2V −1.

398 EIGENVALUE PROBLEMS

Thus, if λ is an eigenvalue of A then its square, λ2, is an eigenvalue of A2

and the corresponding eigenvector is the same.
For the exponential function applied to a matrix, we can use the series

expansion of the exponential to obtain

eA = I +
A

1!
+

A2

2!
+ · · · + An

n!
+ · · ·

= I +
V DV −1

1!
+

V D2V −1

2!
+ · · · + V DnV −1

n!
+ · · ·

= V

(
I +

D

1!
+

D2

2!
+ · · ·+ Dn

n!
+ · · ·

)
V −1

= V eDV −1.

Notice that

eD =

⎛
⎜⎜⎜⎝

eλ1

eλ2

. . .

eλn

⎞
⎟⎟⎟⎠ ,

and therefore for quite general functions, e.g., those having a power series
expansion like f(x) = ex, the function applied to a matrix can be computed
by

f(A) = V diag(f(λi)) V
−1.

The exponential of the matrix eA is computed in Matlab
1 by expm(A).

The ending “m” after exp denotes a matrix function. Similarly, the com-
mand W=sqrtm(A) computes a matrix W such that W 2 = A. General matrix
functions are computed in Matlab with the function funm.

As an application of the exponential of a matrix, consider a homogeneous
linear system of differential equations with constant coefficients,

y′(t) = Ay(t), y(0) = y0.

The system has the solution

y(t) = eAty0.

7.2.6 Condition of Eigenvalues

As we have seen in Section 7.2.1, eigenvalues of non-symmetric matrices may
be ill conditioned. In order to be more precise, let us consider, for a given
matrix A, the family of matrices

A(ε) := A+ εC, (7.7)

1See ‘Nineteen Dubious Ways to Compute the Exponential of a Matrix’ [93].

A Brief Review of the Theory 399

where the matrix C satisfies ‖C‖ ≤ ‖A‖. We first show that the eigenvalues
λ(ε) of A(ε) are continuous functions of ε. Next, we show that if λ(0) is a
simple eigenvalue of A, then λ(ε) is also differentiable2 .

Theorem 7.1. (Continuity of Eigenvalues) Let PA(λ) be the char-
acteristic polynomial of A,

PA(λ) = det(A− λI) = (−1)n
k∏

j=1

(λ− λj)
mj , (7.8)

and let ρ > 0 be such that the discs Di := {λ ∈ C; |λ− λi| ≤ ρ} are disjoint.
Then for |ε| sufficiently small, and for i = 1, . . . , k, exactly mi eigenvalues of
A(ε) = A+ εC (counted with their multiplicity) are in the disc Di.

Proof. To prove this result, we can use Rouché’s Theorem, which states
that if two functions f(λ) and g(λ) are analytic in the interior of the disc
D = {λ; |λ − a| ≤ ρ}, continuous on the boundary ∂D and if they satisfy
|f(λ)− g(λ)| < |f(λ)| on the boundary ∂D, then the two functions f(λ) and
g(λ) have precisely the same number of zeros in the interior of D.

Setting f(λ) := PA(λ) and g(λ) := PA+εC(λ), we see from (7.8) that
for λ ∈ ∂Di, we have |PA(λ)| ≥ ρn > 0. We now show that the differ-
ence PA+εC(λ)− PA(λ) contains the factor ε. Using the Leibniz formula for
determinants (3.11) from Chapter 3,

det(A) =
∑
k

(−1)δ(k)
n∏

j=1

aj,kj
,

we see that det(A) is a polynomial of its arguments, so that det(A−λI+ εC)
is a polynomial in λ and ε, meaning it can be written as

det(A− λI + εC) = p(λ) + εq(λ, ε),

where p(λ) and q(λ, ε) are polynomials. Moreover, by setting ε = 0, we see
that

p(λ) = det(A− λI) = PA(λ).

thus, we have det(A−λI + εC)−det(A−λI) = εq(λ, ε). But the polynomial
q(λ, ε) is bounded on the compact set ∂Di × [−1, 1], say by C1 > 0. Hence,
for |ε| < min(ρn/C1, 1), we have

|PA+εC(λ)− PA(λ)| ≤ |ε|C1 < ρn ≤ |PA(λ)|, for λ ∈ ∂Di,

and Rouché’s Theorem therefore implies that PA+εC(λ) and PA(λ) have the
same number of zeros in Di. �

Theorem 7.2. (Differentiability of Eigenvalues) Let λ1 be a sim-
ple eigenvalue of A. Then, for |ε| sufficiently small, the matrix A(ε) := A+εC

2The formulation of these results here goes back to Ernst Hairer’s numerical analysis
course in Geneva.

400 EIGENVALUE PROBLEMS

has a unique eigenvalue λ1(ε) close to λ1. The function λ1(ε) is analytic and
has the expansion

λ1(ε) = λ1 + ε
uH
1 Cv1

uH
1 v1

+O(ε2), (7.9)

where v1 is the right eigenvector corresponding to λ1, Av1 = λ1v1, and u1

is the left eigenvector corresponding to λ1, u
H
1 A = λ1u

H
1 .

Proof. With p(λ, ε) := PA+εC(λ), we have

p(λ1, 0) = 0,
∂p

∂λ
(λ1, 0) 	= 0,

since the eigenvalue is simple. Hence the implicit function theorem gives us
a differentiable (even analytic) function λ1(ε) in a neighborhood of ε = 0,
such that λ1(0) = λ1 and p(λ1(ε), ε) = 0. Therefore there exists a vector
v1(ε) 	= 0 such that

(A(ε)− λ1(ε)I)v1(ε) = 0. (7.10)

The matrix in (7.10) has rank n− 1, which means we can fix one component
to equal 1, and then use Cramer’s rule, see Theorem 3.1, to see that the
other components of the vector v1 are rational functions of the elements in
the matrix A+ εC − λ1(ε)C, and hence differentiable.

In order to compute λ′
1(0), we differentiate equation (7.10) with respect

to ε to obtain, after setting ε to zero,

(A− λ1I)v
′
1(0) + (C − λ′

1(0)I)v1 = 0.

Now multiplying this relation with uH
1 , we obtain uH

1 (C − λ′
1(0)I)v1 = 0,

which proves (7.9). �

Definition 7.2. (Normal Matrix) A complex square matrix A is a
normal matrix if it commutes with its conjugate transpose: AHA = AAH.

A normal matrix can be converted to a diagonal matrix by a unitary trans-
formation, and every matrix that can be diagonalized by a unitary matrix is
also normal.

For a normal matrix A, there exists a unitary matrix V such that V HAV =
diag(λ1, . . . , λn), which means we have u1 = v1 in the notation of Theorem
7.2. Therefore (7.9) gives, up to O(ε2),

|λ1(ε)− λ1| ≤ ε‖C‖, (7.11)

since |vH
1 Cv1| ≤ ‖v1‖ · ‖C‖ · ‖v1‖. Hence, the computation of a simple

eigenvalue of a normal matrix (for example a symmetric or skew-symmetric
matrix) is well conditioned, using the definition of well-conditioning from
Section 2.5.

On the other hand, if the matrix is non-normal, the computation of λ1

can be very ill conditioned. Take for example the matrix

A =

(
1 a
0 2

)
.

A Brief Review of the Theory 401

The eigenvalue λ1 = 1 has the right and left normalized eigenvectors

v1 =

(
1
0

)
, u1 =

1√
1 + a2

(
1
−a

)
,

and (7.9) gives us the estimate

λ1(ε)− λ1 = ε(c11 − ac21) +O(ε2).

If we let C =

(
0 0
1 0

)
, we obtain λ1(ε)−λ1 = −aε+O(ε2), which shows that

for large values of a, the computation of λ1 = 1 is ill conditioned.
A further typical example is the following: consider again a Jordan block

>> J=diag(ones(6,1),1)

J =

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

The matrix J has an eigenvalue zero with multiplicity 7. Let us change the
element J7,1 slightly:

>> J(7,1)=1e-12

>> eig(J)

ans =

-0.0174 + 0.0084i

-0.0174 - 0.0084i

-0.0043 + 0.0188i

-0.0043 - 0.0188i

0.0193

0.0120 + 0.0151i

0.0120 - 0.0151i

We obtain a huge change in the eigenvalues. In order to understand this, let
A = λ1I + J be a matrix with a single given eigenvalue λ1. We compute the
characteristic polynomial of the perturbed matrix λ1I + J + εC:

det(λ1I + J + εC − λI) = (λ1 − λ)n − (−1)nεcn1 +O(ε2) +O(ε|λ1 − λ|).

If cn1 	= 0, the terms O(ε2) and O(ε|λ1 − λ|) are negligible with respect to
the term εcn1 and hence the eigenvalues of A + εC are approximately given
by the roots of

(λ1 − λ)n − (−1)nεcn1 = 0 =⇒ λ ≈ λ1 + (εcn1)
1
n , (7.12)

402 EIGENVALUE PROBLEMS

the multiple complex roots of 1. The eigenvalues seem to explode, as we show
in Figure 7.3 obtained with the Matlab code

J=diag(ones(6,1),1);

C=rand(7);

for i=7:14

plot(eig(eye(7)+J+10^(-i)*C),’o’);

hold on

end;

0.9 0.95 1 1.05 1.1 1.15
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 7.3.
Eigenvalues of a Jordan block are very ill conditioned

We see that for ε = 10−7, the error in the eigenvalue is about 0.1, and for
ε = 10−14 the error is about 0.01, which confirms well the estimate (7.12) for
n = 7. This is typical for non-symmetric matrices, whose eigenvalues may be
very ill-conditioned.

Let us now consider the symmetric matrix A = J + J�:

>> A=J+J’

A = 0 1 0 0 0 0 0

1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 1 0 1 0 0

0 0 0 1 0 1 0

0 0 0 0 1 0 1

0 0 0 0 0 1 0

>> eig(A)

ans =

-1.84775906502257

-1.41421356237310

-0.76536686473018

-0.00000000000000

0.76536686473018

A Brief Review of the Theory 403

1.41421356237309

1.84775906502257

Now we make a similar small change of the elements a1,7 and a7,1 in order
to preserve the symmetry:

>> A(7,1)=1e-12; A(1,7)=1e-12;

>> eig(A)

ans =

-1.84775906502250

-1.41421356237334

-0.76536686472975

-0.00000000000050

0.76536686473061

1.41421356237284

1.84775906502265

We observe almost no changes in the eigenvalues! This illustrates how well
conditioned the eigenvalues are for symmetric matrices. This is also the case
for multiple eigenvalues, as we can see by making a small change in the
identity matrix:

>> B=eye(7); B(7,1)=1e-12; B(1,7)=1e-12;

>> eig(B)

ans =

0.99999999999900

1.00000000000000

1.00000000000000

1.00000000000000

1.00000000000000

1.00000000000000

1.00000000000100

Let us analyze this case of multiple eigenvalues. We first show a very
useful result which indicates where eigenvalues of a matrix lie.

Theorem 7.3. (Gershgorin) Let A ∈ C
n×n. If λ is an eigenvalue of

A, there exists an index i such that

|λ− aii| ≤
n∑

j=1
j �=i

|aij |, (7.13)

or in other words, all the eigenvalues of A lie in the union of the discs

Di := {λ; |λ− aii| ≤
n∑

j=1
j �=i

|aij |}.

404 EIGENVALUE PROBLEMS

Proof. Let v 	= 0 be an eigenvector, and let us choose the index i such
that |vi| ≥ |vj | for all j = 1, . . . , n. Then the i-th equation of the eigenvalue
equation Av = λv gives

n∑
j=1
j �=i

aijvj = (λ− aii)vi.

Now dividing by vi and using the triangle inequality gives

|λ− aii| =
∣∣∣ n∑
j=1
j �=i

aij
vj
vi

∣∣∣ ≤ n∑
j=1
j �=i

|aij |,

which concludes the proof. �

Theorem 7.4. (Symmetric Matrices with Multiple Eigenvalues)

Let A and C be symmetric matrices, and let λ1, . . . , λn (not necessarily dis-
tinct) be the eigenvalues of A. Then the eigenvalues λj(ε) of A+ εC satisfy

λj(ε) = λj + εv�
jCvj +O(ε2), (7.14)

where v1, . . . ,vn is an orthonormal basis of Rn formed by the eigenvectors of
A, Avj = λjvj, v

T
j vj = 1, vT

j vk = 0 for j 	= k.
Proof. We first diagonalize the matrix A such that identical eigenvalues

are grouped together, i.e. we choose an orthogonal matrix W such that

WTAW =

(
λ1I 0
0 Λ

)
, WTCW =

(
C11 CT

21

C21 C22

)
, (7.15)

where Λ contains the remaining eigenvalues different from λ1 on the diagonal,
and C11 and C22 are symmetric. We now construct a matrix B(ε) such that
the similarity transformation below (which preserves eigenvalues) leads to a
block triangular matrix:(

I 0
B(ε) I

)(
λ1I + εC11 εCT

21

εC21 Λ + εC22

)(
I 0

−B(ε) I

)
=

(
D1(ε) εCT

21

0 D2(ε)

)
.

(7.16)
In order to do so, the matrix B = B(ε) needs to satisfy the equation

(λ1I − Λ)B + εBC11 + εC21 − εBCT
21B − εC22B = 0. (7.17)

Since λ1I − Λ is invertible, the implicit function theorem implies that for ε
small enough, (7.17) can be solved. We expand

B(ε) = B(0) + εB′(0) +O(ε2).

We see from (7.17) that B(0) = 0, and by differentiating this equation,
we get B′(0) = (Λ− λ1I)

−1C21. Thus, we obtain the matrix valued function

B(ε) = ε(Λ− λ1I)
−1C21 +O(ε2). (7.18)

Method of Jacobi 405

We can now compute D1(ε) in (7.16),

D1(ε) = λ1I + εC11 +O(ε2). (7.19)

Thus, the eigenvalues of A(ε) close to λ1 are in fact the eigenvalues of D1(ε).
Furthermore, note that the matrix C11 is symmetric and can be diagonalized
with an orthonormal matrix U , which leads to

(
UT 0

I

)(
I 0

B(ε) I

)
WT (A+ εC)W

(
I 0

−B(ε) I

)(
U 0

I

)

=

(
D̂1(ε) εUTCT

21

0 D2(ε)

)
,

(7.20)

where D̂1(ε) = diag(λ1 + εd1, . . . , λ1 + εdm) +O(ε2), with m being the mul-
tiplicity of the eigenvalue λ1 and dj being the eigenvalues of C11. Using now

Gershgorin’s Theorem for the matrix D̂1(ε) shows that the m eigenvalues of
A+ εC which are close to λ1 satisfy λj(ε) = λ1 + εdj +O(ε2).

Finally, we prove (7.14) by showing that the eigenvalues of C11 are given
by v�

jCvj , j = 1, . . . ,m, where vj are eigenvectors of A associated with λ1.
To do so, recall that U was chosen so that

diag(d1, . . . , dm) = U�C11U = (U�, 0)W�CW

(
U
0

)
.

Thus, if we define

(v1,v2, . . .) = V := W

(
U 0
0 I

)
,

then dj = v�
jCvj . Moreover,

V�AV =

(
λ1U

�U 0
0 Λ

)
=

(
λ1I 0
0 Λ

)
,

so the columns of V are indeed eigenvectors of A, which proves (7.14).
�

7.3 Method of Jacobi

The method we consider in this section was originally proposed for symmet-
ric eigenvalue problems in 1846 by Jacobi [74], which is one of the earliest
numerical analysis papers in the literature. In that paper, Jacobi was mo-
tivated by the problem of computing the motion of the planets in the solar
system:

406 EIGENVALUE PROBLEMS

Translated into English:

The theory of secular perturbations of small oscillations leads to
a symmetric system of linear equations in which the right hand
side is missing and in which the quantity −x is added to all di-
agonal elements. Applying the elimination process, we obtain an
equation for x. For each solution x of this equation, we then have
to determine the quotients of the unknowns. In the following I
will first derive the algebraic expression for such a system of equa-
tions, which will be used in the application. Then I will present
a very practical method for the computation, with which the nu-
merical values of the quantity x and the corresponding system of
unknowns can be easily computed and to any desired precision.
The method avoids the tedious procedure of forming and solving
the equation whose zeros are the values of x.

Heinz Rutishauser implemented this method in Algol for the Handbook
[148]3. The following listing is the original code (from punch-cards used in
the computing center RZ-ETH), and is full of numerical jewels:

"PROCEDURE" JACOBI(N,EIVEC) TRANS:(A)RES:(D,V,ROT);
"VALUE" N,EIVEC;
"INTEGER" N,ROT; "BOOLEAN" EIVEC; "ARRAY" A,D,V;

3“Apart from this it is the algorithmic genius of H. Ruthishauser which has been my
main source of inspiration” (Wilkinson, preface of the The Algebraic Eigenvalue Problem)

Method of Jacobi 407

"BEGIN"
"REAL" SM,C,S,T,H,G,TAU,THETA,TRESH;
"INTEGER" P,Q,I,J;
"ARRAY" B,Z[1:N];

PROGRAM:
"IF" EIVEC "THEN"

"FOR" P:=1 "STEP" 1 "UNTIL" N "DO"
"FOR" Q:=1 "STEP" 1 "UNTIL" N "DO"

V[P,Q]:="IF" P=Q "THEN" 1.0 "ELSE" 0.0;
"FOR" P:=1 "STEP" 1 "UNTIL" N "DO"

"BEGIN" B[P]:=D[P]:=A[P,P]; Z[P]:=0 "END";
ROT:=0;
"FOR" I:=1 "STEP" 1 "UNTIL" 50 "DO"

SWP:
"BEGIN"

SM:=0;
"FOR" P:=1 "STEP" 1 "UNTIL" N-1 "DO"

"FOR" Q:=P+1 "STEP" 1 "UNTIL" N "DO"
SM:=SM+ABS(A[P,Q]);

"IF" SM=0 "THEN""GOTO" OUT;
TRESH:="IF" I<4 "THEN" 0.2*SM/N^2 "ELSE" 0.0;
"FOR" P:=1 "STEP" 1 "UNTIL" N-1 "DO"

"FOR" Q:=P+1 "STEP" 1 "UNTIL" N "DO"
"BEGIN"

G:=100*ABS(A[P,Q]);
"IF" I>4&ABS(D[P])+G=ABS(D[P])&

ABS(D[Q])+G=ABS(D[Q]) "THEN" A[P,Q]:=0
"ELSE"

"IF" ABS(A[P,Q])>TRESH "THEN"
ROTATE: "BEGIN"

H:=D[Q]-D[P];
"IF" ABS(H)+G=ABS(H) "THEN" T:=A[P,Q]/H
"ELSE"

"BEGIN"
THETA:=0.5*H/A[P,Q];
T:=1/(ABS(THETA)+SQRT(1+THETA^2));
"IF" THETA<0 "THEN" T:=-T

"END" COMPUTING TAN OF ROTATION ANGLE;
C:=1/SQRT(1+T^2);
S:=T*C;
TAU:=S/(1+C);
H:=T*A[P,Q];
Z[P]:=Z[P]-H;
Z[Q]:=Z[Q]+H;
D[P]:=D[P]-H;
D[Q]:=D[Q]+H;
A[P,Q]:=0;
"FOR" J:=1 "STEP" 1 "UNTIL" P-1 "DO"
"BEGIN"

G:=A[J,P]; H:=A[J,Q];
A[J,P]:=G-S*(H+G*TAU);
A[J,Q]:=H+S*(G-H*TAU)

"END" OF CASE 1lJ<P;
"FOR" J:=P+1 "STEP" 1 "UNTIL" Q-1 "DO"
"BEGIN"

G:=A[P,J]; H:=A[J,Q];
A[P,J]:=G-S*(H+G*TAU);
A[J,Q]:=H+S*(G-H*TAU)

"END" OF CASE P<J<Q;
"FOR" J:=Q+1 "STEP" 1 "UNTIL" N "DO"
"BEGIN"

G:=A[P,J]; H:=A[Q,J];
A[P,J]:=G-S*(H+G*TAU);
A[Q,J]:=H+S*(G-H*TAU)

"END" OF CASE Q<JlN;
"IF" EIVEC "THEN"

"FOR" J:=1 "STEP" 1 "UNTIL" N"DO"

408 EIGENVALUE PROBLEMS

"BEGIN"
G:=V[J,P]; H:=V[J,Q];
V[J,P]:=G-S*(H+G*TAU);
V[J,Q]:=H+S*(G-H*TAU)

"END" OF CASE V;
ROT:=ROT+1;

"END" ROTATE;
"END";

"FOR" P:=1 "STEP" 1 "UNTIL" N "DO"
"BEGIN"
D[P]:=B[P]:=B[P]+Z[P];
Z[P]:=0

"END" P
"END" SWP;

OUT:
"END" JACOBI;

We will now explain the details of this implementation and also translate
the procedure to Matlab.

If A is symmetric, A = A�, the eigenvalues λi are real and the eigenvectors
vi can be chosen to be mutually orthogonal, thus we have the decomposition:

V�AV = Λ, Λ = diag(λ1, . . . , λn), V�V = I.

The Jacobi algorithm iteratively applies elementary orthogonal transforma-
tions to the matrix Ao := A,

A1 = U�
0 A0U0, A2 = U�

1 A1U1, . . .

such that the off-diagonal elements of Ak are reduced and so Ak converges
to the diagonal matrix Λ.

As measure for the deviation of Ak from a diagonal matrix, we introduce
the sum of the squares of the off-diagonal elements,

Sk = off(Ak) :=
n∑

i=1

n∑
j=1
j �=i

(
a
(k)
ij

)2
= ‖Ak‖2F − ‖diag(Ak)‖22.

The idea is to choose the transformations in such a way that the quantity
off(Ak) decreases: S0 > S1 > S2 > · · · ≥ 0. The matrix Ak is related to A
through

Ak = U�
k−1U

�
k−2 · · ·U�

0 AU0U1 · · ·Uk−1=V�
k AVk, with Vk = U0U1 · · ·Uk−1.

Therefore if off(Ak) < ε, then diag(Ak) and Vk will be approximations to the
eigenvalues and eigenvectors.

For the elementary transformations Uk, we use the Givens rotations in-
troduced in Section 3.5; in the current context, they are also called Jacobi

Method of Jacobi 409

rotations in honor of Jacobi, the inventor of this method:

Uk = U(p, q, φ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
cosφ sinφ

1
. . .

1
− sinφ cosφ

1
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← p

← q

(7.21)
The matrix Uk differs from the identity matrix only by 4 elements,

upp = uqq = cosφ, upq = −uqp = sinφ, p < q.

We now study the transformation A′′ = U�
k AUk in two steps,

A′ = U�
k A and A′′ = A′Uk.

The first transformation from the left replaces the rows p and q by the linear
combinations:

A′(p, :) = A(p, :) cosφ− A(q, :) sinφ,
A′(q, :) = A(p, :) sinφ+A(q, :) cosφ.

(7.22)

The second transformation from the right changes the columns p and q:

A′′(:, p) = A′(:, p) cosφ−A′(:, q) sin φ,
A′′(:, q) = A′(:, p) sin φ+A′(:, q) cosφ. (7.23)

We need the explicit transformation rule for the element in the pq-position.
We use Maple to compute this:

A:=Matrix([[a_pp,a_pq],[a_pq,a_qq]]):

U:=Matrix([[c,s],[-s,c]]):

with(LinearAlgebra):

B:=Transpose(U).A.U:

expand(B[1,1]);

expand(B[2,2]);

expand(B[1,2]);

We obtain
c2 app − 2 c s apq + s2 aqq,
s2 app + 2 c s apq + c2 aqq,

s c app − s2apq + c2apq − c s aqq .
(7.24)

410 EIGENVALUE PROBLEMS

In particular, for B[1, 2] = a′′
pq we get, using the multi-angle trigonometric

formula,

a′′
pq = (app − aqq) cosφ sin φ+ apq(cos

2 φ− sin2 φ)

= 1
2 (app − aqq) sin(2φ) + apq cos(2φ).

If we wish to have a′′
pq = 0, then we must choose φ so that

cot(2φ) =
aqq − app

2apq
.

Defining θ to be this quantity,

θ := cot(2φ) =
1

tan(2φ)
=

1− tan2 φ

2 tanφ
,

we obtain first t = tanφ by solving the quadratic equation

t2 + 2θt− 1 = 0. (7.25)

The above equation has two solutions, one corresponding to |φ| ≤ π/4 and
the other to |φ| ≥ π/4. In order to understand which root to choose, consider
the 2× 2 near-diagonal case

A =

(
1 ε
ε 2

)
.

Here θ = 1/2ε, so we have t1 ≈ ε and t2 ≈ −1/ε, which corresponds to
φ1 ≈ ε and φ2 ≈ −π

2
+ ε. Substituting into (7.21), we see that φ1 leads to a

Uk that is close to the identity, whereas φ2 gives one that interchanges the
diagonal elements a11 and a22. In other words, while both transformations
reduce off(Ak), the larger angle leads to oscillatory behavior in the diagonal
elements and hence should not be used.

Thus, we are interested in obtaining the smaller of the two solutions of
(7.25); we can obtain this solution numerically stably without cancellation
by the statements

theta=(A(q,q)-A(p,p))/2/A(p,q)

t=1/(abs(theta)+sqrt(1+theta^2))

if theta<0, t=-t end

Then from t = tanφ we obtain c = cosφ and s = sinφ with

c=1/sqrt(1+t^2); s=c*t;

By choosing cosφ and sinφ this way, we annihilate two off-diagonal elements
of A. What happens to the other elements? When multiplying from the left
and right by the Jacobi rotation, all elements in the rows and columns p and

Method of Jacobi 411

q are changed. Using the fact that the Frobenius norm is invariant under
orthogonal transformations, we have

‖A′′‖2F = ‖U�
k AUk‖2F = ‖A‖2F .

But this implies that

‖A′′‖2F = off(A′′) +
n∑

i=1

a′′
ii
2
= off(A) +

n∑
i=1

a2ii = ‖A‖2F

and thus
off(A′′) = off(A) + a2pp + a2qq − (a′′

pp)
2 − (a′′

qq)
2.

The first transformation A′ = U�
k A changes the elements in rows p and q as

follows (
c −s
s c

)(
api
aqi

)
=

(
a′
pi

a′
qi

)
i = 1, . . . , n.

Since the matrix is orthogonal, the sum of squares is constant,

a2pi + a2qi = a′2
pi + a′2

qi.

The same holds for the second transformation for corresponding elements in
the columns p and q. Therefore the sum of squares of the four elements in
the intersections of rows and columns p and q remains the same,

a2pp + a2qq + 2a2pq = a′′2
pp + a′′2

qq + 2a′′2
pq.

Since the rotations were chosen such that a′′
pq = 0 we obtain

a2pp + a2qq − (a′′)2pp − (a′′)2qq = −2a2pq,

and therefore
off(A′′) = off(A)− 2a2pq,

so the matrix becomes more diagonal. The classical choice for p and q pro-
posed by Jacobi4 is to choose the largest element |apq| in each step to maxi-
mize the decay of the off diagonal elements Sk = off(Ak). With this strategy,
because the largest element is larger than the average off-diagonal element

a2pq ≥ Sk

n(n− 1)
,

we obtain

Sk+1 ≤ Sk

(
1− 2

n(n− 1)

)
≤ S0

(
1− 2

n(n− 1)

)k+1

,

4“Und so wurde auch bei allen folgenden Substitutionen im Allgemeinen die Regel
befolgt, jedesmal den grössten von den ausserhalb der Diagonale vorhandnen Coëfficienten
gleich Null zu machen” (And also in all the following substitutions we followed in general
the rule of making the largest off-diagonal entry zero)

412 EIGENVALUE PROBLEMS

which implies at least monotonic linear convergence. One can show that
asymptotically the convergence of the Jacobi algorithm is quadratic [67].

Finding the largest element requires an expensive search at each itera-
tion, so sequentially annihilating each element is the preferred strategy for
automated computations. The convergence of this variant was also analyzed
by Henrici and Forsythe, but the proof of convergence is more difficult [33].
Newer variants treat several pairs p, q simultaneously and lead to naturally
parallel algorithms.

Our discussion so far produces a first version of Jacobi’s algorithm:

Algorithm 7.2. Jacobi Algorithm Version 1

function [d,V]=Jacobi1(A);

% JACOBI1 computes the eigen-decomposition of a symmetric matrix

% [d,V]=Jacobi1(A) computes the eigenvalues d and the eigenvectors V

% of the symmetric matrix A, a first version not using the symmetry

% of the matrix in the algorithm

n=length(A); V=eye(size(A));

S=1;

while S~=0 % sweep

for p=1:n-1

for q=p+1:n

theta=(A(q,q)-A(p,p))/2/A(p,q); % rotate a_pq=0

t=1/(abs(theta)+sqrt(1+theta^2));

if theta<0, t=-t; end

c=1/sqrt(1+t^2); s=c*t;

h=A(p,:)*c-A(q,:)*s; % A=U^T*A

A(q,:)=A(p,:)*s+A(q,:)*c;

A(p,:)=h;

h=A(:,p)*c-A(:,q)*s; % A=A*U

A(:,q)=A(:,p)*s+A(:,q)*c;

A(:,p)=h;

h=V(:,p)*c-V(:,q)*s; % V=V*U

V(:,q)=V(:,p)*s+V(:,q)*c;

V(:,p)=h;

end

end

A % test output

S=norm(A,’fro’)^2-norm(diag(A))^2

end

d=diag(A);

As an example, we compute the eigen-decomposition of a 4 × 4 matrix
given in the book of Schwarz [122]:

>> A=[20 -7 3 -2

-7 5 1 4

Method of Jacobi 413

3 1 3 1

-2 4 1 2];

>> S=norm(A,’fro’)^2-norm(diag(A))^2

S =

160.0000

>> [d,V]=Jacobi1(A)

A =

23.5231 -0.0091 -0.2385 0.1516

-0.0091 -0.4376 -1.3977 0.9315

-0.2385 -1.3977 6.1744 -0.0000

0.1516 0.9315 0.0000 0.7401

S =

5.8023

A =

23.5274 0.0224 -0.0054 0.0106

0.0224 -1.1601 0.0793 0.0025

-0.0054 0.0793 6.4597 -0.0000

0.0106 0.0025 0.0000 1.1731

S =

0.0139

A =

23.5274 -0.0000 -0.0000 -0.0000

-0.0000 -1.1609 -0.0000 0.0000

-0.0000 -0.0000 6.4605 0.0000

-0.0000 0.0000 0.0000 1.1730

S =

1.0940e-09

A =

23.5274 0.0000 -0.0000 0.0000

0.0000 -1.1609 0.0000 -0.0000

0.0000 -0.0000 6.4605 0.0000

-0.0000 -0.0000 0.0000 1.1730

S =

0

d =

23.5274

-1.1609

6.4605

1.1730

V =

0.9106 0.1729 0.2607 0.2699

-0.3703 0.6750 0.5876 0.2492

0.1078 -0.1168 0.5499 -0.8200

-0.1484 -0.7077 0.5333 0.4390

We can clearly see fast convergence, which seems to be even more than
quadratic in this example.

414 EIGENVALUE PROBLEMS

7.3.1 Reducing Cost by Using Symmetry

Note that a Jacobi rotation transforms the rows p and q using the same linear
combination as for the columns p and q. Since the matrix is symmetric, we
do not need to calculate the transformation on both the lower and upper
triangular part; it suffices to work only on the upper triangular part. Assume
that 1 ≤ p < q ≤ n. Then

1. the elements in the columns A(1 : p − 1, p) and A(1 : p − 1, q) are
changed by the multiplication from the right with U�

k .

2. the elements in the columns A(p + 1 : q − 1, p) and A(p+ 1 : q − 1, q)
would have to be linearly combined, and likewise for the elements in the
rows A(p, p+1 : q−1) and A(q, p+1 : q−1). However, by symmetry we
can replace the column A(p+ 1 : q − 1, p) by the same elements in the
row A(p, p+ 1 : q − 1) and omit the updates for the elements in row q
and column p. Thus, we just combine the row elements A(p, p+1 : q−1)
with the column elements A(p+ 1 : q − 1, q) in this step.

3. the elements in the rows A(p, q + 1 : n) and A(q, q + 1 : n) have to be
linearly combined.

Doing so, we save about 50% of the work. In the following second version of
our program we also skip the Jacobi rotation if the element apq = 0.

Note that we have to explicitly compute the elements app, aqq and set
apq = 0. Rutishauser recommends not to use the obvious formula

anewpp = cos2 φ app − 2 cosφ sin φ apq + sin2 φ aqq

and similarly for aqq , but to compute the correction

anewpp − app = (aqq − app) sin
2 φ− 2 cosφ sin φ apq

= tanφ
(
(aqq − app) cosφ sin φ− 2apq cos

2 φ
)

= − tanφ

(
1

2
(app − aqq) sin(2φ) + apq cos(2φ) + apq

)
= − tanφ

(
anewpq + apq

)
.

Because we choose the angle to make anewpq = 0, we obtain with t = tanφ the
simpler updating formulas

anewpp = app − tapq, anewqq = aqq + tapq. (7.26)

Note that the correction to the diagonal elements must be the same with
opposite sign, since the trace (

∑
i aii which is also the sum of the eigenvalues

=
∑

i λi) is invariant under Jacobi rotations.

Algorithm 7.3. Jacobi Algorithm Version 2

Method of Jacobi 415

function [d,V]=Jacobi2(A);

% JACOBI2 computes the eigen-decomposition of a symmetric matrix

% [d,V]=Jacobi2(A) computes the eigen-decomposition of the

% symmetric matrix A as Jacobi1, but now using the symmetry

n=length(A); V=eye(size(A));

S=1;

while S~=0, % sweep

for p=1:n-1

for q=p+1:n

if A(p,q)~=0, % rotate a_pq=0

theta=(A(q,q)-A(p,p))/2/A(p,q);

t=1/(abs(theta)+sqrt(1+theta^2));

if theta<0, t=-t; end

c=1/sqrt(1+t^2); s=c*t;

h=A(1:p-1,p)*c-A(1:p-1,q)*s; % A=U^T*A

A(1:p-1,q)=A(1:p-1,p)*s+A(1:p-1,q)*c;

A(1:p-1,p)=h;

h=A(p,p+1:q-1)*c-A(p+1:q-1,q)’*s;

A(p+1:q-1,q)=A(p,p+1:q-1)’*s+A(p+1:q-1,q)*c;

A(p,p+1:q-1)=h;

h=A(p,q+1:n)*c-A(q,q+1:n)*s; % A=A*U

A(q,q+1:n)=A(p,q+1:n)*s+A(q,q+1:n)*c;

A(p,q+1:n)=h;

h=A(p,q)*t;

A(p,p)=A(p,p)-h; % update diagonal

A(q,q)=A(q,q)+h;

A(p,q)=0;

h=V(:,p)*c-V(:,q)*s; % V=V*U

V(:,q)=V(:,p)*s+V(:,q)*c;

V(:,p)=h;

end

end

end

A % test output

S=2*(norm(triu(A),’fro’)^2-norm(diag(A))^2)

Sneu=2*norm(triu(A,1),’fro’)^2

end

d=diag(A);

The results for the Hilbert matrix for n = 5 are as follows:

>> A=hilb(5)
A =

1.0000 0.5000 0.3333 0.2500 0.2000
0.5000 0.3333 0.2500 0.2000 0.1667
0.3333 0.2500 0.2000 0.1667 0.1429
0.2500 0.2000 0.1667 0.1429 0.1250
0.2000 0.1667 0.1429 0.1250 0.1111

>> S=2*(norm(triu(A),’fro’)^2-norm(diag(A))^2)
S =

416 EIGENVALUE PROBLEMS

1.3154
>> [d,V]=Jacobi2(A)
A =

1.5651 0.0423 0.0003 -0.0302 -0.0017
0.5000 0.2097 0.0018 0.0033 -0.0029
0.3333 0.2500 0.0001 0.0002 -0.0002
0.2500 0.2000 0.1667 0.0121 0
0.2000 0.1667 0.1429 0.1250 0.0003

S =
0.0055

Sneu =
0.0055

A =
1.5671 -0.0001 -0.0000 0.0000 0.0000
0.5000 0.2085 0.0000 -0.0000 -0.0000
0.3333 0.2500 0.0000 0.0000 -0.0000
0.2500 0.2000 0.1667 0.0114 0
0.2000 0.1667 0.1429 0.1250 0.0003

S =
1.2527e-08

Sneu =
1.2527e-08

A =
1.5671 -0.0000 0.0000 0.0000 -0.0000
0.5000 0.2085 -0.0000 -0.0000 0.0000
0.3333 0.2500 0.0000 -0.0000 -0.0000
0.2500 0.2000 0.1667 0.0114 0
0.2000 0.1667 0.1429 0.1250 0.0003

S =
0

Sneu =
1.1682e-21

D =
1.5671
0.2085
0.0000
0.0114
0.0003

V =
0.7679 -0.6019 0.0062 0.2142 -0.0472
0.4458 0.2759 -0.1167 -0.7241 0.4327
0.3216 0.4249 0.5062 -0.1205 -0.6674
0.2534 0.4439 -0.7672 0.3096 -0.2330
0.2098 0.4290 0.3762 0.5652 0.5576

>> [Ve,De]=eig(A)
Ve =

-0.0062 0.0472 0.2142 -0.6019 0.7679
0.1167 -0.4327 -0.7241 0.2759 0.4458

-0.5062 0.6674 -0.1205 0.4249 0.3216
0.7672 0.2330 0.3096 0.4439 0.2534

-0.3762 -0.5576 0.5652 0.4290 0.2098
De =

0.0000 0 0 0 0
0 0.0003 0 0 0
0 0 0.0114 0 0
0 0 0 0.2085 0
0 0 0 0 1.5671

Note that we computed S = off(A) here in two ways. We see that the first
way leads to S = 0 in this example, whereas with the second, more efficient
way Sneu, the iteration would not stop at the same time. Therefore, we must
also improve the stopping criterion.

Method of Jacobi 417

7.3.2 Stopping Criterion

A theorem by Henrici [67] states the following: let di be the diagonal elements
of the matrix Ak in decreasing order, i.e., d1 ≥ d2 ≥ . . . ≥ dn. Furthermore,
let the eigenvalues of A be similarly ordered, i.e., λ1 ≥ λ2 ≥ . . . ≥ λn. Then

|dj − λj | ≤
√

S(Ak).

Thus, we know that if S(Ak) < 10−10, then the diagonal elements of Ak will
approximate the eigenvalues at least to about 5 decimal digits.

If apq is negligible compared to both diagonal elements, so that app+apq =
app and aqq + apq = aqq hold numerically, then we just assign anewpq = 0. This
is because such small numbers can no longer change the diagonal elements in
view of (7.26), and can be safely neglected as a result.

7.3.3 Algorithm of Rutishauser

Here is now a translation to Matlab of the original Algol procedure Jacobi

as published in the Handbook [148]:

Algorithm 7.4. Jacobi Algorithm

function [d,rot,Z,V]=Jacobi(A)

% JACOBI computes eigenvalues of a symmetric matrix

% [d,rot,Z,V]=Jacobi(A) computes the eigenvalues d and eigenvectors

% V of the symmetric matrix A. d=Jacobi(A) computes only the

% eigenvalues without accumulating the vectors. Only the upper

% triangular triu(A,1) of the matrix A is used. rot counts the

% rotations and Z stores the sum of the absolute values of the off

% diagonal elements after each sweep. Jacobi is a translation of

% the ALGOL 60 Procedure of H. Rutishauser from the Handbook

% Wilkinson-Reinsch: Linear Algebra.

Z=[];

n=max(size(A));

eivec=1; if nargout<4, eivec=0; end

if eivec, V=eye(n); end

d=diag(A); b=d; z=zeros(size(d));

rot=0; i =0;

sm=sum(sum(abs(triu(A,1))));

while (sm ~=0)& (i<50)

i=i+1; % sweep

if i<4, tresh=0.2*sm/n^2;

else tresh=0;

end

for p=1:n-1

for q=p+1:n

g=100*abs(A(p,q));

418 EIGENVALUE PROBLEMS

if (i>4)&(abs(d(p))+g==abs(d(p)))&(abs(d(q))+g==abs(d(q)))

A(p,q)=0;

else

if abs(A(p,q))>tresh

h=d(q)-d(p); % rotate

if abs(h)+g==abs(h), t =A(p,q)/h;

else

theta=0.5*h/A(p,q);

t=1/(abs(theta)+sqrt(1+theta^2));

if theta < 0, t =-t; end

end % end of tan calculation

c=1/sqrt(1+ t^2); s=t*c; tau=s/(1+c);

h=t*A(p,q);

z(p)=z(p)-h; z(q)=z(q)+h;

d(p)=d(p)-h; d(q)=d(q)+h;

A(p,q) =0;

g=A(1:p-1,p); h=A(1:p-1,q);

A(1:p-1,p)=g -s*(h+g*tau);

A(1:p-1,q)=h +s*(g-h*tau); % end of case 1<=j<p

g=A(p,p+1:q-1); h=A(p+1:q-1,q);

A(p,p+1:q-1)=g -s*(h’+g*tau);

A(p+1:q-1,q)=h +s*(g’-h*tau); % end of case p<j<q

g=A(p,q+1:n); h=A(q,q+1:n);

A(p,q+1:n)=g -s*(h+g*tau);

A(q,q+1:n)=h +s*(g-h*tau); % of cases q<j<=n

if eivec

g=V(:,p); h=V(:,q);

V(:,p)=g -s*(h+g*tau);

V(:,q)=h +s*(g-h*tau);

end

rot=rot + 1;

end

end

end

end

b=b+z; d=b; z=zeros(size(d));

sm=sum(sum(abs(triu(A,1))));

Z=[Z,sm];

end

We compute again the eigenvalue decomposition for the Hilbert matrix
of order 5:

>> A=hilb(5);

>> [d,rot,Z,V]=Jacobi(A)

A =

1.0000 0.0423 -0.0127 -0.0178 -0.0209

0.5000 0.3333 0.0041 0.0023 0

0.3333 0.2500 0.2000 0.0034 0.0035

Method of Jacobi 419

0.2500 0.2000 0.1667 0.1429 0.0047

0.2000 0.1667 0.1429 0.1250 0.1111

sm =

0.1117

A =

1.0000 -0.0001 -0.0000 -0.0001 0.0001

0.5000 0.3333 0.0000 0.0005 0.0006

0.3333 0.2500 0.2000 -0.0001 -0.0001

0.2500 0.2000 0.1667 0.1429 0

0.2000 0.1667 0.1429 0.1250 0.1111

sm =

0.0016

A =

1.0000 -0.0000 0.0000 0.0000 -0.0000

0.5000 0.3333 -0.0000 0.0000 0.0000

0.3333 0.2500 0.2000 -0.0000 0

0.2500 0.2000 0.1667 0.1429 -0.0000

0.2000 0.1667 0.1429 0.1250 0.1111

sm =

1.1035e-06

A =

1.0000 -0.0000 -0.0000 0.0000 0.0000

0.5000 0.3333 -0.0000 -0.0000 -0.0000

0.3333 0.2500 0.2000 0.0000 0.0000

0.2500 0.2000 0.1667 0.1429 0

0.2000 0.1667 0.1429 0.1250 0.1111

sm =

1.2645e-13

A =

1.0000 -0.0000 0.0000 -0.0000 -0.0000

0.5000 0.3333 -0.0000 -0.0000 -0.0000

0.3333 0.2500 0.2000 0.0000 0

0.2500 0.2000 0.1667 0.1429 0

0.2000 0.1667 0.1429 0.1250 0.1111

sm =

1.2053e-28

A =

1.0000 0 0 0 0

0.5000 0.3333 0 0 0

0.3333 0.2500 0.2000 0 0

0.2500 0.2000 0.1667 0.1429 0

0.2000 0.1667 0.1429 0.1250 0.1111

sm =

0

d =

1.5671

0.2085

0.0000

0.0114

420 EIGENVALUE PROBLEMS

0.0003

rot =

42

Z =

0.1117 0.0016 0.0000 0.0000 0.0000 0

V =

0.7679 -0.6019 0.0062 0.2142 -0.0472

0.4458 0.2759 -0.1167 -0.7241 0.4327

0.3216 0.4249 0.5062 -0.1205 -0.6674

0.2534 0.4439 -0.7672 0.3096 -0.2330

0.2098 0.4290 0.3762 0.5652 0.5576

The following program compares Jacobi with eig by generating 6 symmet-
ric matrices A = QDQT of order 10, 20, 40, 80, 160 and 320 with given
eigenvalues D and diagonalizing them with Jacobi and the Matlab built-in
function eig:

nn=10*2.^(0:5);

for i=1:length(nn)

n=nn(i)

ew=1000*(rand(n,1)-0.5);

Q=rand(n,n); Q=orth(Q);

A=Q*diag(ew)*Q’;

d=Jacobi(A);

[U,D]=eig(A);

eigenv(i)=norm([sort(diag(D))-sort(ew)])/norm(ew);

jac(i)=norm([sort(d)-sort(ew)])/norm(ew);

end;

A typical run of this program yields the results:

>> [eigenv’ jac’]

ans =

1.0e-14 *

0.0812 0.0688

0.1021 0.0846

0.1808 0.0690

0.2479 0.1159

0.2846 0.1470

0.3589 0.1843

We observe that the relative error of the eigenvalues computed by Jacobi is
smaller than with eig, often about half the size.

7.3.4 Remarks and Comments on Jacobi

We now explain the remaining numerical tricks in the implementation of the
method of Jacobi by Rutishauser:

1. Instead of S(A) = off(A), the sum sm of the absolute values of the
off-diagonal elements is computed. This saves some computation time

Method of Jacobi 421

because the elements need not to be squared. Note that computing S
recursively by

S(Ak+1) = S(Ak)−
(
a(k)pq

)2
is not a good idea for numerical reasons: information is lost whenever
S is large compared to an off-diagonal element.

2. The diagonal of the matrix is saved in the vector d. By this the lower
part of the matrix is untouched and A is not destroyed.

Before each sweep, the diagonal is saved in vector b: b=d. During the
sweep, the diagonal d is used. However, the changes are also accumu-
lated in vector z. The sum of all changes after the sweep is then added
as a whole to the diagonal

b=b+z; d=b; z=zeros(size(d));

This is numerically preferable and gives a more accurate diagonal than
summing each (small) correction sequentially after each rotation to d.

3. The termination criterion is sm = 0, safeguarded by a limitation of the
total numbers of sweeps: i < 50.

4. During the first three sweeps, the program only annihilates elements
above the threshold

tresh = 0.2× sm

n2
.

Thus the first three sweeps are like a compromise between always
searching for the largest element to be annihilated in the original vari-
ant of Jacobi, and systematically sweeping all elements.

5. At least three sweeps are done in all cases. In the fourth and consecutive
sweeps, if an element is small compared to the diagonal elements, it is
set to zero. More specifically,

g=100*abs(A(p,q));

if i>4 & abs(d(p))+g==abs(d(p)) & abs(d(q))+g==abs(d(q))

A(p,q)=0;

else ...

It is an important feature of Rutishauser not to set such small elements
to zero in the first four sweeps. This way, perturbed diagonal matrices
are also diagonalized correctly.

6. If an element g = 100× |apq| is small compared to the difference of the
corresponding diagonal elements h = d(q)− d(p),

if abs(h)+g==abs(h), t=A(p,q)/h;

422 EIGENVALUE PROBLEMS

then tanφ is computed as

t = tanφ ≈ 1

2
tan(2φ) =

apq
dq − dp

,

to save a few floating point operations.

7. Computing the transformed elements: Rutishauser again recommends
working with corrections. Instead of using the obvious expression

anewpj = cosφ apj − sinφ aqj ,

he considers

anewpj −apj = (cosφ−1) apj−sinφ aqj = − sin φ

(
aqj +

1− cosφ

sinφ
apj

)
.

Now since

tau := tan
φ

2
=

1− cosφ

sinφ
=

1− cos2 φ

sinφ(1 + cosφ)
=

sinφ

1 + cosφ

we obtain with s = sinφ and c = cosφ the expression

anewpj = apj − s× (aqj + tau× apj),

and similarly

anewqj = aqj − s× (apj − tau× aqj).

Summary: Jacobi is one of the very beautiful, outstanding, machine-
independent and foolproof working algorithms of Heinz Rutishauser. It has
been neglected because the QR Algorithm needs fewer operations (though
QR is not foolproof! [92]) to compute the eigenvalues of a matrix. How-
ever, with the fast hardware available today, Jacobi is again attractive as
a very reliable algorithm for medium-size eigenvalue problems, and also for
parallel architectures, since one can perform rotations in parallel for disjoint
pairs of rows and columns (p, q) and (p′, q′). For more details on parallel
implementations, see Section 8.4.6 in [51] and the references therein.

7.4 Power Methods

We now show a very different idea for computing eigenvalues and eigenvec-
tors of matrices based on the power methods. The basic method is designed
to compute only one eigenvalue-eigenvector pair, but its generalization will
later lead to the most widely used eigenvalue solver for dense matrices in
Section 7.6.

Power Methods 423

7.4.1 Power Method

The power method for a matrix A is based on the simple iteration

xk+1 = Axk, (7.27)

where one starts with an arbitrary initial vector x0. We show in the next
theorem that xk := Akx0 approaches an eigenvector of A and the Rayleigh
quotient (xH

k Axk)/(x
H
k xk) is an approximation of an eigenvalue of A.

Theorem 7.5. (Power Method Convergence) Let A ∈ C
n×n be a

diagonalizable matrix with eigenvalues λ1, . . . , λn and normalized eigenvec-
tors v1, . . . ,vn. If |λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λn|, then the vectors xk of the
power iteration (7.27) satisfy

xk = λk
1(a1v1 +O(|λ2/λ1|k), (7.28)

where a1 is defined by the initial guess x0 =
∑

j ajvj . If a1 	= 0, then the
Rayleigh quotient satisfies

xH
k Axk

xH
k xk

= λ1 +O(|λ2/λ1|k). (7.29)

If in addition, the matrix A is normal, i.e. the eigenvectors are orthogonal,
then the error in the eigenvalue (7.29) is O(|λ2/λ1|2k).

Proof. We start by expanding the initial guess in the eigenvectors,
x0 =

∑n
j=1 ajvj . By induction, we get

xk = Akx0 =

n∑
j=1

ajλ
k
j vj = λk

1

⎛
⎝a1v1 +

n∑
j=2

aj

(
λj

λ1

)k

vj

⎞
⎠ ,

which proves (7.28). Inserting this expression into the numerator and de-
nominator of the Rayleigh quotient, we obtain

xH
k Axk = xH

k Axk+1 =
n∑

j=1

|aj |2|λj |2kλj +
∑
j �=l

ājalλ̄
k
jλ

k+1
l vH

j vl,(7.30)

xH
k xk =

n∑
j=1

|aj |2|λj |2k +
∑
j �=l

ājalλ̄
k
jλ

k
l v

H
j vl. (7.31)

Now if a1 	= 0, we obtain for the Rayleigh quotient

xH
k Axk

xH
k xk

=
|a1|2|λ1|2kλ1(1 +O(|λ2/λ1|k)
|a1|2|λ1|2k(1 +O(|λ2/λ1|k) , (7.32)

which proves (7.29). If the matrix A is normal, the second sum in the
(7.30,7.31) vanishes because of orthogonality between vj and vl, so the order

424 EIGENVALUE PROBLEMS

term O(|λ2/λ1|k) can be replaced by O(|λ2/λ1|2k) in (7.32), which proves
(7.29). �

The following Matlab statements illustrate the power method:

A=[2 1 0;1 2 1;0 1 2];

x=[1 1 1]’;

for i=1:4

xn=A*x;

(x’*xn)/(x’*x)

x=xn;

end

ans =

3.3333

ans =

3.4118

ans =

3.4141

ans =

3.4142

>> eig(A)

ans =

0.5858

2.0000

3.4142

>> x

x =

116

164

116

Clearly the Rayleigh quotient converges to the largest eigenvalue, but one no-
tices also that the iteration vector xk grows during the iteration. It is there-
fore recommended to normalize the vector in each iteration, x=xn/norm(xn).

As we have seen in Theorem 7.5, the convergence of the power method
can be very slow if the first two eigenvalues are very close, i.e., if |λ2/λ1| ≈
1. In addition, one can only compute the largest eigenvalue and associated
eigenvector with the power method. This was however all that was needed
for the Page Rank Algorithm of Google, and made it into a great success!

7.4.2 Inverse Power Method (Shift-and-Invert)

Suppose we know an approximation of the eigenvalue we would like to com-
pute, say μ ≈ λ1, where λ1 now does not even have to be the largest eigen-
value of the matrix A. The idea of the inverse power method of Wielandt
is to apply the power method to the matrix (A− μI)−1. The eigenvalues of
that matrix are (λj − μ)−1, and if μ is close to λ1, then

1

|λ1 − μ| �
1

|λj − μ| for j ≥ 2.

Power Methods 425

Hence the convergence of the method will be very fast. The inverse power
iteration requires the solution of a linear system at each step, since

xk+1 = (A− μI)−1xk ⇐⇒ (A− μI)xk+1 = xk.

Hence, one has to first compute an LU factorization of A − μI, see Section
3.2.1, and then each iteration of the inverse power method costs the same as
the iteration of the original power method.

With the same example as before in Matlab, we now use as a shift
μ = 3.41 and use the long format to show all digits:

format long;

A=[2 1 0;1 2 1;0 1 2];

mu=3.41;

[L,U]=lu(A-mu*eye(size(A)));

x=[1 1 1]’;

for i=1:3

xn=U\(L\x);

1/(x’*xn)/(x’*x)+mu

x=xn/norm(xn);

end

ans =

3.410481976508708

ans =

3.414213562649597

ans =

3.414213562373096

>> eig(A)

ans =

0.585786437626905

2.000000000000000

3.414213562373095

We see that the second iteration already has 9 digits of accuracy !

7.4.3 Orthogonal Iteration

We now generalize the power method in order to compute more than one
eigenvalue-eigenvector pair. We consider a matrix A with eigenvalues satis-
fying

|λ1| > |λ2| > . . . > |λn|. (7.33)

With the power method, xk+1 = Axk, we can compute an approximation
to the largest eigenvalue, and associated eigenvector. In order to compute
simultaneously an approximation to the second largest eigenvalue and eigen-
vector, we start with two linearly independent initial vectors, say x0 and y0

with xH
0 y0 = 0, and perform the iteration

xk+1 = Axk,
yk+1 = Ayk − βk+1xk+1,

(7.34)

426 EIGENVALUE PROBLEMS

where we choose βk+1 such that the new vector pair is again orthogonal,
xH
k+1yk+1 = 0. By induction, we see that

xk = Akx0,

yk = Aky0 − γkxk,

where γk is such that xH
k yk = 0. This means that the first vector xk is simply

the vector of the power method applied to x0, and the second vector yk is
also a vector of the power method, applied to y0, but orthogonalized against
the vector xk. Expanding the initial vectors in eigenvectors of A,

x0 =

n∑
j=1

ajvj , y0 =

n∑
j=1

bjvj ,

the vectors of the iteration become

xk =

n∑
j=1

ajλ
k
j vj , yk =

n∑
j=1

(bj − γkaj)λ
k
j vj . (7.35)

While in the first vector xk the term a1λ
k
1v1 will dominate as before, provided

a1 	= 0, for the second vector yk the orthogonality condition xH
k yk = 0 implies

n∑
j=1

n∑
l=1

āj(bl − γkal)λ̄
k
jλ

k
l v

H
j vl = 0, (7.36)

which defines γk. Since the term with j = l = 1 is again dominant, we see
that γk ≈ b1/a1. We suppose in what follows that a1 	= 0 and also that
a1b2 − a2b1 	= 0. Dividing (7.36) by λ̄k

1 , we get

ā1(b1 − γka1)λ
k
1(1 +O(|λ2/λ1|k)

= −ā1(b2 − γka2)λ
k
2

(
vH
1 v2 +O(|λ2/λ1|k) +O(|λ3/λ2|k)

)
.

Inserting this result into the second equation in (7.35), we get

yk = λk
2(b2 − γka2)

(
v2 − vH

1 v2 · v1 +O(|λ2/λ1|k) +O(|λ3/λ2|k)
)
. (7.37)

Clearly, as k → ∞, the second vector yk approaches a multiple of the vector
v2 − vH

1 v2 · v1, which is the orthogonal projection of v2 on the hyperplane
v⊥
1 . For the eigenvalues, we have the following result:

Theorem 7.6. For the vectors xk, yk given by (7.34), let

Uk :=

(
xk

‖xk‖2 ,
yk

‖yk‖2

)
, (7.38)

which implies UH
k Uk = I. If the condition (7.33) on the eigenvalues holds,

then

UH
k AUk →

(
λ1 ∗
0 λ2

)
for k → ∞. (7.39)

Power Methods 427

Proof. The (1,1) element of the matrix UH
k AUk is nothing else than

the Rayleigh quotient of the power method for the first vector, and hence
converges to λ1. Using (7.37), we see that the (2,2) element satisfies

yH
k Ayk

yH
k yk

→ (v2 − vH
1 v2 · v1)

H(λ2v2 − λ1v
H
1 v2 · v1)

(v2 − vH
1 v2 · v1)H(v2 − vH

1 v2 · v1)
=

λ2(1− |vH
1 v2|2)

1− |vH
1 v2|2 = λ2.

Similarly, we obtain for the (2,1) element

yH
k Axk

‖xk‖2‖yk‖2
→ (v2 − vH

1 v2 · v1)
Hv1λ1

‖v2 − vH
1 v2 · v1‖2‖v1‖2 = 0,

and finally for the (1,2) element

xH
k Ayk

‖xk‖2‖yk‖2
→ vH

1 (λ2v2 − λ1v
H
1 v2 · v1)

‖v1‖2‖v2 − vH
1 v2 · v1‖2 =

(λ1 − λ2)v
H
1 v2√

1− |vH
1 v2|2

,

an expression which is in general non-zero. �
Using the matrix Uk from (7.38), we can rewrite the iteration (7.34) in

matrix form,
AUk = Uk+1Rk+1, (7.40)

where Rk+1 is a 2× 2 upper triangular matrix. We can now generalize this
iteration with two vectors to the case of an arbitrary number of vectors,
and even to n vectors: we choose an initial matrix U0 with n orthonormal
columns, which play the role of the initial vectors x0,y0, . . ., and then perform
Algorithm 7.5.

Algorithm 7.5. Orthogonal Iteration

for k=1,2,. . .
Zk = AUk−1;
UkRk = Zk; % QR decomposition

end

If the condition (7.33) on the eigenvalues is satisfied and the matrix U0 is
appropriately chosen (i.e. a1 	= 0, a1b2 − a2b1 	= 0, etc), a generalization of
the previous theorem shows that the quantity

Tk := UH
k AUk (7.41)

converges to a triangular matrix with the eigenvalues of the matrix A on
its diagonal. We have thus transformed A into a triangular matrix using
an orthogonal matrix, i.e. we have computed the Schur decomposition of
A. Here is an example in Matlab, where we compute the roots of the

428 EIGENVALUE PROBLEMS

polynomial (x− 1)(x− 2)(x− 3) = x3 − 6x2 + 11x− 6 using the companion
matrix:

>> A=compan([1 -6 11 -6])

>> U=orth(hilb(3));

>> for k=1:8

Z=A*U;

[U,R]=qr(Z);

U’*A*U

end

A =

6 -11 6

1 0 0

0 1 0

ans =

2.4713 -4.3980 -11.2885

-0.1939 2.2681 5.9455

0.0233 -0.0017 1.2606

ans =

2.7182 -4.6042 -11.6367

-0.1024 2.0200 5.0316

0.0119 0.0270 1.2618

ans =

2.8427 -4.8734 -11.7033

-0.0493 1.9628 4.5737

0.0052 0.0307 1.1945

ans =

2.9063 -5.1044 -11.6788

-0.0245 1.9705 4.3541

0.0021 0.0237 1.1233

ans =

2.9412 -5.2619 -11.6429

-0.0133 1.9879 4.2432

0.0008 0.0152 1.0709

ans =

2.9620 -5.3556 -11.6177

-0.0078 1.9995 4.1829

0.0003 0.0088 1.0385

ans =

2.9750 -5.4071 -11.6038

-0.0048 2.0048 4.1479

0.0001 0.0047 1.0202

ans =

2.9834 -5.4341 -11.5972

-0.0031 2.0062 4.1266

0.0000 0.0025 1.0104

We clearly see how the algorithm converges to the Schur decomposition, and
the eigenvalues start to appear on the diagonal.

Reduction to Simpler Form 429

It is interesting to note that one can directly compute Tk in (7.41) from
Tk−1: on the one hand, we obtain from (7.40) that

Tk−1 = UH
k−1AUk−1 = (UH

k−1Uk)Rk. (7.42)

On the other hand, we also have

Tk = UH
k AUk = UH

k AUk−1U
H
k−1Uk = Rk(U

H
k−1Uk). (7.43)

One can therefore simply compute a QR factorization of the matrix Tk−1

like in (7.42), and then multiply the two factors obtained in reverse order
according to (7.43) to obtain Tk. This observation leads to the most widely
used algorithm for computing eigenvalues of matrices, the QR Algorithm,
which we will see in Section 7.6, although it has not been discovered this way
historically. But first, we will introduce some useful reductions of matrices
to simpler form in the next section.

7.5 Reduction to Simpler Form

In order to simplify computations, one often transforms matrices to a simpler
form by introducing zeros. In the preceding section, we used Jacobi rotations
on both sides of the matrix to annihilate an off-diagonal element. Sometimes,
however, we only need a one-sided Givens rotation to annihilate one element.

7.5.1 Computing Givens Rotations

The standard task to annihilate an element is: given the vector (x, y)�, find
an orthogonal matrix

G =

(
c s
−s c

)

with c = cosφ and s = sinφ such that

G�
(
x

y

)
=

(
r

0

)
. (7.44)

Clearly r = ±
√

x2 + y2, since the Givens matrix G is orthogonal and pre-
serves the length of the vector. Using the orthogonality of G and (7.44), we
have

G�G =

(
c −s
s c

)(
c s
−s c

)
=

(
1 0
0 1

)
and

(
c −s
s c

)(x
r
y
r

)
=

(
1

0

)
.

Comparing columns above, we conclude that

c =
x

r
and s = −y

r
. (7.45)

430 EIGENVALUE PROBLEMS

If we do not need to fix the sign of r, the following function GivensRotation

avoids possible overflow when computing r by factoring out x or y as necessary
from the expression

√
x2 + y2.

Algorithm 7.6. Givens Rotation

function [c,s]=GivensRotation(x,y)

% GIVENSROTATION computes a Givens rotation matrix

% [c,s]=GivensRotation(x,y) computes for the given numbers x and y

% the Givens rotation matrix [c s;-s c] with s=sin(phi) and

% c=cos(phi) such that [c s;-s c]’*[x;y]=[r;0]

if y==0

c=1; s=0;

elseif abs(y)>=abs(x)

h=-x/y; s=1/sqrt(1+h*h); c=s*h;

else

h=-y/x; c=1/sqrt(1+h*h); s=c*h;

end;

Alternatively, one can use the built-in Matlab function planerot: the
statement [G,y]=planerot(x) computes a Givens matrix G such that the
vector x is transformed to y = Gx with y2 = 0. Computing G using (7.45)
and the Matlab function norm is also a good way numerically, since norm is
taking care of any possible over- or underflow as described in Section 2.7.5.

7.5.2 Reduction to Hessenberg Form

A non-symmetric matrix A can be reduced by similarity transformations to
Hessenberg form: an upper Hessenberg matrix is one that has zero entries
below the first subdiagonal,

H =

⎛
⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

⎞
⎟⎟⎟⎟⎠ .

We will discuss here the similarity transformation of a matrix to Hessenberg
form using Jacobi (also called Givens) rotations. In order to annihilate the
elements a31, a41, . . . , an1 we use Jacobi rotations in row p and column q with

p = 2, q = 3, 4, . . . , n.

The rotation angle, respectively c = cosφ and s = sinφ, is chosen so that
anewq1 = 0. Similarly, we proceed with the other columns to annihilate the
elements

anewq,p−1 = 0, q = p+ 1, . . . , n

Reduction to Simpler Form 431

using Jacobi rotations for rows and columns p and q. With each Jacobi
rotation we transform two rows and two columns of A using (7.22) and (7.23).
We obtain thus Algorithm 7.7 below.

Algorithm 7.7.
Similarity Transformation to Hessenberg Form

function [H,V]=Hessenberg1(A)

% HESSENBERG1 similarity transformation to Hessenberg form

% [H,V]=Hessenberg1(A) transforms the given matrix A into

% Hessenberg form H using the orthogonal transformations V,

% such that H=V’*A*V

n=length(A); V=eye(n);

for p=2:n-1

for q=p+1:n

[c,s]=GivensRotation(A(p,p-1), A(q,p-1)); % rotate A(q,p-1)=0

if s~=0

h=A(p,:)*c-A(q,:)*s; % A=U^T*A

A(q,:)=A(p,:)*s+A(q,:)*c;

A(p,:)=h;

h =A(:,p)*c-A(:,q)*s; % A=A*U

A(:,q)= A(:,p)*s+A(:,q)*c;

A(:,p)=h;

h=V(:,p)*c-V(:,q)*s; % V=V*U

V(:,q)=V(:,p)*s+V(:,q)*c;

V(:,p)=h;

end

end

end

H=A;

As an example, we reduce for n = 6 the magic square matrix to Hessen-
berg form:

>> A=magic(6)

A =

35 1 6 26 19 24

3 32 7 21 23 25

31 9 2 22 27 20

8 28 33 17 10 15

30 5 34 12 14 16

4 36 29 13 18 11

>> [H,U]=Hessenberg1(A)

H =

35.0000 -24.0722 -27.8661 -14.6821 -7.7773 4.2378

-44.1588 55.7395 35.9545 -2.4720 2.5076 -4.6722

-0.0000 50.9040 40.7834 -34.7565 -6.1114 5.6624

432 EIGENVALUE PROBLEMS

-0.0000 0 -27.3916 -15.7856 7.2431 -14.7543

-0.0000 0 0.0000 -4.6137 4.7703 -1.8187

-0.0000 0 -0.0000 0 2.8029 -9.5076

U =

1.0000 0 0 0 0 0

0 -0.0679 -0.4910 0.6719 0.3346 -0.4369

0 -0.7020 0.2549 0.4822 -0.1967 0.4136

0 -0.1812 -0.5147 -0.1350 -0.7991 -0.2130

0 -0.6794 0.0103 -0.5004 0.3421 -0.4135

0 -0.0906 -0.6549 -0.2179 0.3061 0.6494

>> norm(U’*U-eye(6))

ans =

3.8445e-16

>> norm(U’*A*U-H)

ans =

1.4854e-14

The results in this example (up to signs) are the same as those obtained with
the Matlab built-in function hess. Using the Matlab function planerot
and the Givens matrix G, we can program the reduction to Hessenberg form
using matrix operations. Instead of computing the two linear combinations
of the rows p and q explicitly

h=A(p,:)*c-A(q,:)*s; % A=U^T*A

A(q,:)=A(p,:)*s+A(q,:)*c;

A(p,:)=h;

we could think of writing

[A(p,:);A(q,:)]=G*[A(p,:);A(q,:)]

However, this does not work in Matlab. The right hand side would be ok,
but not the left hand side, since Matlab does not allow multiple left-hand
sides written in this way. A simple trick for picking out 2 rows in the matrix
is to use the expression A(p:q-p:q,:): the rows p to q are accessed with step
size q − p, thus there are only 2 rows addressed and we can use on the right
hand side the same expression. The statement becomes

A(p:q-p:q,:)=G*A(p:q-p:q,:); % A=U^T*A

and we obtain the function Hessenberg for which the Matlab program is
more compact:

Algorithm 7.8.
Similarity Transformation to Hessenberg Form (Version

2)

function [H,V]=Hessenberg(A)

% HESSENBERG similarity transformation to Hessenberg form

% [H,V]=Hessenberg(A) transforms the given matrix A into

% Hessenberg form H using the orthogonal transformations V,

Reduction to Simpler Form 433

% such that H=V’*A*V

n=length(A); V=eye(n);

for p=2:n-1

for q=p+1:n

G=planerot(A(p:q-p:q,p-1)); % rotate A(q,p-1)=0

if G(1,2)~=0

A(p:q-p:q,:)=G*A(p:q-p:q,:); % A=U^T*A

A(:,p:q-p:q)=A(:,p:q-p:q)*G’; % A=A*U

V(:,p:q-p:q)=V(:,p:q-p:q)*G’; % V=V*U

end

end

end

H=A;

Reducing again the matrix magic(6) we obtain this time:

>> [H2,U2]=Hessenberg(A)

H2 =

35.0000 24.0722 27.8661 -14.6821 7.7773 -4.2378

44.1588 55.7395 35.9545 2.4720 2.5076 -4.6722

0.0000 50.9040 40.7834 34.7565 -6.1114 5.6624

-0.0000 0 27.3916 -15.7856 -7.2431 14.7543

-0.0000 0 0.0000 4.6137 4.7703 -1.8187

0.0000 0 0.0000 0 2.8029 -9.5076

U2 =

1.0000 0 0 0 0 0

0 0.0679 0.4910 0.6719 -0.3346 0.4369

0 0.7020 -0.2549 0.4822 0.1967 -0.4136

0 0.1812 0.5147 -0.1350 0.7991 0.2130

0 0.6794 -0.0103 -0.5004 -0.3421 0.4135

0 0.0906 0.6549 -0.2179 -0.3061 -0.6494

>> norm(U2’*U2-eye(6))

ans =

5.3139e-16

>> norm(U2’*A*U2-H2)

ans =

1.7336e-14

The results are again the same up to a few different signs.
A matrix A can also be reduced to Hessenberg form by applying the

iterative Arnoldi Algorithm 11.17, see Chapter 11. Though theoretically the
Arnoldi Algorithm does the same reduction, numerically the Givens approach
is preferable. The merits of the Arnoldi Algorithm lie in Krylov subspace
approximations of very large matrices. By performing only a few iterations
(relative to the dimension n), the Hessenberg matrix forms a basis of the
Krylov subspace.

Another alternative is the reduction to Hessenberg form by means of
Householder-Transformations, see Problem 7.4.

434 EIGENVALUE PROBLEMS

7.5.3 Reduction to Tridiagonal Form

If we apply Algorithm 7.7 to a symmetric matrix A, then the resulting Hes-
senberg matrix is also symmetric, since the symmetry is preserved with the
Jacobi rotations. Thus, the resulting symmetric matrix H is tridiagonal.

Next, we would like to exploit the symmetry of the matrix. We will
use only the elements below the diagonal. Assume that we have already
introduced zeros in the columns 1, . . . , p−2. The working array of our matrix
becomes (the upper part is not displayed since it is untouched)

p →

q →

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11
a21 a22

0
. . .

. . .
...

. . .
. . .

0 · · · 0 ap,p−1 ap,p
...

... | . . .

0 · · · 0 aq,p−1 aqp − aqq
...

...
... | | . . .

0 · · · 0 an,p−1 anp anq ann

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In order to annihilate the element aq,p−1, we perform a Jacobi rotation, which
changes rows and columns p and q. We first consider the three elements in
the cross points. From (7.24) we have, using the fact that apq = aqp,

a′′
pp = c2 app − 2 c s aqp + s2 aqq ,
a′′
qq = s2 app + 2 c s aqp + c2 aqq ,

a′′
qp = s c app − s2aqp + c2aqp − c s aqq.

These expressions can again be simplified by working with corrections. Define

z = (app − aqq) s+ 2aqp c.

Then
a′′
pp = app − z s,
a′′
qq = aqq + z s,

a′′
qp = −aqp + z c.

On row p, there is only one element ap,p−1 to be transformed, apart from
the cross point element app. The elements ap+1,p, . . . aq−1,p in column p
are transformed using the corresponding elements on row q. Similarly, the
new elements on row q are transformed using the corresponding elements in
column p. Finally, the remaining elements q + 1, . . . , n in columns p and q
are transformed.

Algorithm 7.9.
Similarity Transformation to Tridiagonal Form

Reduction to Simpler Form 435

function [T,V]=Tridiagonalize(A)

% TRIDIAGONALIZE transforms a symmetric matrix to tridiagonal form

% [T,V]=Tridiagonalize(A) transforms the symmetric matrix A into

% tridiagonal form T using rotations such that T=V’*A*V

n=length(A); V=eye(n);

for p=2:n-1

for q=p+1:n

[c,s]=GivensRotation(A(p,p-1),A(q,p-1));

if s~=0

A(p,p-1)=A(p,p-1)*c-A(q,p-1)*s; % one element on row p

z=(A(p,p)-A(q,q))*s+2*A(q,p)*c; % corner elements

A(p,p)=A(p,p)-z*s; A(q,q)=A(q,q)+z*s;

A(q,p)=-A(q,p)+z*c;

h=A(p+1:q-1,p)*c-A(q,p+1:q-1)’*s; % colum p and row q

A(q,p+1:q-1)=A(p+1:q-1,p)*s+A(q,p+1:q-1)’*c;

A(p+1:q-1,p)=h;

h=A(q+1:n,p)*c-A(q+1:n,q)*s; % rest of colums p and q

A(q+1:n,q)=A(q+1:n,p)*s+A(q+1:n,q)*c;

A(q+1:n,p)=h;

h=V(:,p)*c-V(:,q)*s; % update V=V*U

V(:,q)=V(:,p)*s+V(:,q)*c;

V(:,p)=h;

end

end

end

c=diag(A,-1);

T=diag(diag(A))+diag(c,1)+diag(c,1)’;

As an example, we reduce for n = 6 the Hilbert matrix to tridiagonal
form

>> A=hilb(6);

>> [T,V]=Tridiagonalize(A)

T =

1.0000 0.7010 0 0 0 0

0.7010 0.8162 -0.1167 0 0 0

0 -0.1167 0.0602 0.0046 0 0

0 0 0.0046 0.0018 0.0001 0

0 0 0 0.0001 0.0000 0.0000

0 0 0 0 0.0000 0.0000

V =

1.0000 0 0 0 0 0

0 0.7133 0.6231 -0.3076 0.0903 -0.0152

0 0.4755 -0.1305 0.6780 -0.5177 0.1707

0 0.3566 -0.3759 0.2638 0.5797 -0.5708

0 0.2853 -0.4629 -0.2112 0.3447 0.7355

436 EIGENVALUE PROBLEMS

0 0.2378 -0.4890 -0.5757 -0.5186 -0.3223

>> norm(V’*A*V-T)

ans =

1.8936e-16

>> norm(V’*V-eye(6))

ans =

4.2727e-16

>> [U,H]=hess(A)

U =

-0.0074 0.0583 0.2793 0.7721 -0.5678 0

0.1280 -0.4668 -0.7248 -0.0592 -0.4867 0

-0.5234 0.6466 -0.1988 -0.2951 -0.4259 0

0.7608 0.2687 0.2466 -0.3806 -0.3785 0

-0.3616 -0.5371 0.5443 -0.4104 -0.3407 0

0 0 0 0 0 1.0000

H =

0.0000 -0.0000 0 0 0 0

-0.0000 0.0003 0.0006 0 0 0

0 0.0006 0.0138 0.0224 0 0

0 0 0.0224 0.3198 -0.3764 0

0 0 0 -0.3764 1.4534 -0.2935

0 0 0 0 -0.2935 0.0909

>> norm(U*H*U’-A)

ans =

6.3131e-16

>> norm(U’*U-eye(6))

ans =

6.4322e-16

We observe here that the result of the Matlab function hess is different
from the result of Tridiagonalize. Both are correct, since the reduction
to tridiagonal form is not unique; another possible reduction is the Lanczos
Algorithm for tridiagonalization, which is described in Section 11.7.3. Just
like the Arnoldi algorithm, the Lanczos algorithm is used to solve large sym-
metric eigenvalue problems. Note that both the algorithms of Arnoldi and
Lanczos are used in the constructive proof of Theorem 7.7 — the Implicit Q
Theorem.

7.6 QR Algorithm

The QR Algorithm is today the most widely used algorithm for computing
eigenvalues and eigenvectors of dense matrices. It allows us to compute the
roots of the characteristic polynomial of a matrix, a problem for which there
is no closed form solution in general for matrices of size bigger than 4×4, with
a complexity comparable to solving a linear system with the same matrix.

QR Algorithm 437

7.6.1 Some History

Heinz Rutishauser discovered some 50 years ago when testing a computer5

that the iteration A0 = A with A ∈ R
n×n

Ai = LiRi Gauss LU decomposition
Ai+1 = RiLi i = 1, 2, . . .

(7.46)

produces a sequence of matrices Ai which, under certain conditions, converge
to an upper triangular matrix which contains on the diagonal the eigenvalues
of the original matrix A (see [113]).

J. G. F. Francis (USA) [34] and Vera Kublanovskaya (USSR) presented
independently in 1961 a variant of this iteration, based on the QR decompo-
sition instead of the Gauss LU decomposition (called by Rutishauser at that
time the LR algorithm, because the Gauss triangular decomposition was
known in German as “Zerlegung in eine Links- und Rechtsdreieckmatrix”).
The QR Algorithm is listed as one of the top ten algorithms of the last century
[27].

7.6.2 QR Iteration

The QR Algorithm uses as a basic ingredient the orthogonal iteration we
have seen in Subsection 7.4.3 but, like in the inverse power method from
Subsection 7.4.2, shifts are used in addition to obtain faster convergence.
Given the matrix Bk and shift σk, one step of the QR Algorithm consists of

1. factoring Bk − σkI = QkRk (QR Decomposition),

2. forming Bk+1 = RkQk + σkI.

7.6.3 Basic Facts

The following basic relations are satisfied by matrices arising from the QR
Algorithm. Their proof is left as an exercise, see Problem 7.5:

1. Bk+1 = Q�
kBkQk.

2. Bk+1 = P�
k B1Pk where Pk := Q1 · · ·Qk.

3. If Sk = Rk · · ·R1 then the QR Decomposition of the matrix
∏k

i=1(B1−
σiI) is PkSk.

5He wanted to test the sustainable floating point operations per second rate of the
machine performing a clearly defined sequence of operations many times

438 EIGENVALUE PROBLEMS

7.6.4 Preservation of Form

If Bk is upper Hessenberg, then so is Bk+1, as one can see as follows: in the
QR Decomposition of

Bk = QkRk,

the orthogonal matrix Qk is also upper Hessenberg. This is evident if we
compute the decomposition with Gram-Schmidt, see Subsection 6.5.5. Hence
the product

RkQk = Bk+1

of an upper triangular matrix with an upper Hessenberg matrix is also an
upper Hessenberg matrix.

In the special case when Bk is tridiagonal and symmetric, Bk+1 is also tridi-
agonal and symmetric.

Theorem 7.7. (Implicit Q Theorem) For any square matrix B, if

B̂ = Q�BQ

is an upper Hessenberg matrix with strictly positive sub-diagonal elements,
then B̂ and Q are completely determined by B and q1, the first column of Q
(or by B and qn).

Proof. Take the columns of BQ = QB̂ in order:

Bq1 = Q

⎛
⎜⎜⎜⎜⎜⎝

b̂11
b̂21
0
...
0

⎞
⎟⎟⎟⎟⎟⎠ = q1b̂11 + q2b̂21.

By multiplying from the left with q�
1 , we obtain

q�
1Bq1 = b̂11.

Then ‖Bq1 − q1b̂11‖ = b̂21, thus q2 is also determined,

q2 =
1

b̂21
(Bq1 − q1b̂11).

The next step is to consider Bq2, and the result follows by induction. �
This constructive proof can be used as an algorithm to construct the

orthonormal basis vectors q2,q3, etc. based on q1; this is in fact the Algorithm
of Arnoldi. For a symmetric matrix, it becomes the Lanczos Algorithm.

QR Algorithm 439

7.6.5 Symmetric Tridiagonal Matrices

Let us consider the symmetric tridiagonal matrix

Bk =

⎛
⎜⎜⎜⎜⎝

a1 b1

b1 a2
. . .

. . .
. . . bn−1

bn−1 an

⎞
⎟⎟⎟⎟⎠ .

The QR Algorithm with arbitrary shifts preserves this form. Using a QR
step with explicit shift, we get

Bk − σI =

⎛
⎜⎜⎜⎜⎝

a1 − σ b1

b1 a2 − σ
. . .

. . .
. . . bn−1

bn−1 an − σ

⎞
⎟⎟⎟⎟⎠ .

We now have to choose a Givens Rotation matrix G1 such that(
c −s
s c

)(
a1 − σ

b1

)
=

(
x

0

)
.

Applying this Givens rotation, we obtain

G�
1 (Bk − σI) =

⎛
⎜⎜⎜⎜⎜⎝

x x x
0 x x

x x x
x x x

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠ ,

where x marks the fill-in. Continuing with Givens rotations to annihilate the
sub-diagonal we get the matrix

G�
n−1 · · ·G�

1︸ ︷︷ ︸
Q�

k

(Bk − σI) =

⎛
⎜⎜⎜⎜⎜⎜⎝

x x x

0 x x
. . .

. . .
. . .

. . . x
0 x x

0 x

⎞
⎟⎟⎟⎟⎟⎟⎠

= Rk.

Now for the next iteration, we get

Bk+1 = RkQk + σI = RkG1G2 · · ·Gn−1 + σI.

We illustrate this process with a numerical example. We first generate a 1-4-1
tridiagonal matrix:

>> n=7;

>> C=diag(ones(n-1,1),-1); B=4*diag(ones(n,1))+C+C’;

440 EIGENVALUE PROBLEMS

Now we perform one step of QR with Matlab and full matrix operations:

>> sigma=2 % take a shift

>> [Q,R]=qr(B-sigma*eye(n))

>> B1=R*Q+sigma*eye(n)

Q =

-0.8944 0.3586 -0.1952 0.1231 -0.0848 0.0620 0.0845

-0.4472 -0.7171 0.3904 -0.2462 0.1696 -0.1240 -0.1690

0 -0.5976 -0.5855 0.3693 -0.2544 0.1861 0.2535

0 0 -0.6831 -0.4924 0.3392 -0.2481 -0.3381

0 0 0 -0.7385 -0.4241 0.3101 0.4226

0 0 0 0 -0.7774 -0.3721 -0.5071

0 0 0 0 0 -0.8062 0.5916

R =

-2.2361 -1.7889 -0.4472 0 0 0 0

0 -1.6733 -1.9124 -0.5976 0 0 0

0 0 -1.4639 -1.9518 -0.6831 0 0

0 0 0 -1.3540 -1.9695 -0.7385 0

0 0 0 0 -1.2863 -1.9789 -0.7774

0 0 0 0 0 -1.2403 -1.9846

0 0 0 0 0 0 0.6761

B1 =

4.8000 0.7483 -0.0000 0.0000 0.0000 0.0000 0.0000

0.7483 4.3429 0.8748 0.0000 0.0000 -0.0000 0.0000

0 0.8748 4.1905 0.9250 -0.0000 0.0000 0.0000

0 0 0.9250 4.1212 0.9500 0.0000 0.0000

0 0 0 0.9500 4.0839 0.9643 -0.0000

0 0 0 0 0.9643 4.0615 -0.5451

0 0 0 0 0 -0.5451 2.4000

Next we compute the same with Givens rotations, using the short Matlab

function DirectSum we have seen in Algorithm 6.32:

>> [c,s]=GivensRotation(B(1,1)-sigma, B(2,1));

>> Gt=DirectSum([c,-s; s,c],eye(n-2));

>> Q1t=Gt;

>> R1=Gt*(B-sigma*eye(n));

>> for k=2:n-1

[c,s]=GivensRotation(R1(k,k),R1(k+1,k));

Gt=DirectSum(eye(k-1),[c,-s;s,c],eye(n-k-1));

Q1t=Gt*Q1t;

R1=Gt*R1;

end

>> Q1=Q1t’

>> R1

>> B1g=R1*Q1+sigma*eye(n)

Q1 =

0.8944 -0.3586 0.1952 0.1231 -0.0848 0.0620 -0.0845

0.4472 0.7171 -0.3904 -0.2462 0.1696 -0.1240 0.1690

QR Algorithm 441

0 0.5976 0.5855 0.3693 -0.2544 0.1861 -0.2535

0 0 0.6831 -0.4924 0.3392 -0.2481 0.3381

0 0 0 -0.7385 -0.4241 0.3101 -0.4226

0 0 0 0 -0.7774 -0.3721 0.5071

0 0 0 0 0 -0.8062 -0.5916

R1 =

2.2361 1.7889 0.4472 0 0 0 0

0 1.6733 1.9124 0.5976 0 0 0

0 -0.0000 1.4639 1.9518 0.6831 0 0

0 -0.0000 0.0000 -1.3540 -1.9695 -0.7385 0

0 0.0000 -0.0000 0.0000 -1.2863 -1.9789 -0.7774

0 -0.0000 0.0000 -0.0000 -0.0000 -1.2403 -1.9846

0 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.6761

B1g =

4.8000 0.7483 0.0000 0.0000 -0.0000 0.0000 -0.0000

0.7483 4.3429 0.8748 0.0000 -0.0000 0.0000 -0.0000

-0.0000 0.8748 4.1905 -0.9250 -0.0000 0.0000 -0.0000

-0.0000 -0.0000 -0.9250 4.1212 0.9500 0.0000 -0.0000

0.0000 0.0000 -0.0000 0.9500 4.0839 0.9643 -0.0000

-0.0000 -0.0000 0.0000 0.0000 0.9643 4.0615 0.5451

0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.5451 2.4000

B1g is essentially the same matrix as B1 – only the signs of the b3 and bn−1 el-
ements are different. We can also check the basic fact that Bk+1 = Q�

kBkQk:

>> B1a=Q1’*B*Q1

B1a =

4.8000 0.7483 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000

0.7483 4.3429 0.8748 0.0000 -0.0000 0.0000 -0.0000

0 0.8748 4.1905 -0.9250 -0.0000 0.0000 -0.0000

0 0.0000 -0.9250 4.1212 0.9500 -0.0000 0.0000

-0.0000 -0.0000 -0.0000 0.9500 4.0839 0.9643 -0.0000

0.0000 0.0000 0.0000 0.0000 0.9643 4.0615 0.5451

-0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.5451 2.4000

B1g and B1a are the same matrix.

Since

Bk+1 = G�
n−1 · · ·G�

1BkG1G2 · · ·Gn−1,

we could also compute the transformation directly on Bk by applying the
Givens rotations Gi and G�

i immediately on the matrix. Note that

G�
1BkG1 =

⎛
⎜⎜⎜⎜⎜⎝

x x x
x x x
x x x x

x x x
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠ .

442 EIGENVALUE PROBLEMS

The fill-in element x in the (1,3) and (3,1) position is called the bulge. With
another Givens rotation G̃2 = G(2, 3, φ) which annihilates x we can obtain

G̃�
2G

�
1BkG1G̃2 =

⎛
⎜⎜⎜⎜⎜⎝

x x 0
x x x x
0 x x x

x x x x
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠ ,

which means that we have chased the bulge down one row/column. If we
continue in this fashion until we have restored the tridiagonal form of the
matrix, we obtain a tridiagonal matrix B̃k+1

B̃k+1 = G̃�
n−1 · · · G̃�

2G
�
1BkG1G̃2 · · · G̃n−1.

In other words, B̃k+1 = Q̃�BkQ̃ with Q̃ = G1G̃2 · · · G̃n−1. Compare this
expression with Bk+1 = Q�

kBkQk, where Qk = G1G2 · · ·Gn−1. The first

columns of the two orthogonal matrices Q̃ and Qk are obviously the same,
as we can see from

Q̃e1 = G1G̃2 · · · G̃n−1e1 = G1e1 since G̃ie1 = e1 for i > 1,

and

Qke1 = G1G2 · · ·Gn−1e1 = G1e1 since also Gie1 = e1 for i > 1.

Therefore, using the implicit Q Theorem, we conclude that Q̃ and Qk must
be essentially the same, so B̃k+1 and Bk+1 must also be the same matrix (up
to possibly different signs in the off-diagonal elements), since both matrices
are similar to Bk via an orthogonal matrix with the same first column. The
advantage of computing Bk+1 with implicit shift this way is that we do not
need to calculate Rk as intermediate result.

Let us illustrate this with our example. This time, we chase the bulge and
apply the necessary Givens rotations G̃i also to B − σI. As we can see from
the output, we obtain up to different signs the same upper triangular matrix!
Thus, we can conclude that the Givens rotations used to chase the bulge are
essentially the same as those we need to compute the QR Decomposition of
Bk.

>> n=7;

>> C=diag(ones(n-1,1),-1); B=4*diag(ones(n,1))+C+C’;

>> sigma=2;

>> [c,s]=GivensRotation(B(1,1)-sigma,B(2,1));

>> Gt=DirectSum([c,-s; s,c],eye(n-2));

>> tildeQt=Gt;

>> R1i=Gt*(B-sigma*eye(n));

>> B1i=Gt*B*Gt’;

QR Algorithm 443

>> for k=2:n-1

[c,s]=GivensRotation(B1i(k,k-1),B1i(k+1,k-1));

Gt=DirectSum(eye(k-1),[c,-s;s,c],eye(n-k-1));

tildeQt=Gt*tildeQt;

R1i=Gt*R1i;

B1i=Gt*B1i*Gt’;

end

>> tildeQ=tildeQt’

>> R1i

>> B1i

tildeQ =

0.8944 -0.3586 0.1952 0.1231 -0.0848 0.0620 -0.0845

0.4472 0.7171 -0.3904 -0.2462 0.1696 -0.1240 0.1690

0 0.5976 0.5855 0.3693 -0.2544 0.1861 -0.2535

0 0 0.6831 -0.4924 0.3392 -0.2481 0.3381

0 0 0 -0.7385 -0.4241 0.3101 -0.4226

0 0 0 0 -0.7774 -0.3721 0.5071

0 0 0 0 0 -0.8062 -0.5916

R1i =

2.2361 1.7889 0.4472 0 0 0 0

0 1.6733 1.9124 0.5976 0 0 0

0 -0.0000 1.4639 1.9518 0.6831 0 0

0 -0.0000 0.0000 -1.3540 -1.9695 -0.7385 0

0 0.0000 -0.0000 0.0000 -1.2863 -1.9789 -0.7774

0 -0.0000 0.0000 -0.0000 -0.0000 -1.2403 -1.9846

0 0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.6761

B1i =

4.8000 0.7483 -0.0000 -0.0000 0.0000 -0.0000 0.0000

0.7483 4.3429 0.8748 0.0000 -0.0000 0.0000 -0.0000

-0.0000 0.8748 4.1905 -0.9250 0.0000 -0.0000 0.0000

-0.0000 -0.0000 -0.9250 4.1212 0.9500 -0.0000 0.0000

0.0000 0.0000 0.0000 0.9500 4.0839 0.9643 0.0000

-0.0000 -0.0000 -0.0000 -0.0000 0.9643 4.0615 0.5451

0.0000 0.0000 0.0000 0.0000 -0.0000 0.5451 2.4000

7.6.6 Implicit QR Algorithm

We are now ready to program a QR step of the implicit QR Algorithm.
Suppose we know the matrix B and a first Givens transformation G1. Let us
use Maple to compute the transformed matrix Bnew = G�

1BG1:

with(LinearAlgebra):

B:=Matrix([[a[1],b[1],0,0],[b[1],a[2],b[2],0],[0,b[2],a[3],b[3]],

[0,0,b[3],a[4]]]):

G:=Matrix([[c,-s,0,0],[s,c,0,0],[0,0,1,0],[0,0,0,1]]):

Gs:=Transpose(G):

B1:=G.B.Gs;

444 EIGENVALUE PROBLEMS

We obtain:⎡
⎢⎢⎣

(ca1 − sb1) c− (cb1 − sa2) s (ca1 − sb1) s+ (cb1 − sa2) c −sb2 0
(sa1 + cb1) c− (sb1 + ca2) s (sa1 + cb1) s+ (sb1 + ca2) c cb2 0

−sb2 cb2 a3 b3
0 0 b3 a4

⎤
⎥⎥⎦

Thus the new elements become

anew1 = (ca1 − sb1) c−(cb1 − sa2) s = c2a1−2csb1+s2a2 = a1−s(s(a1−a2)+2cb1)

bnew1 = (ca1 − sb1) s+ (cb1 − sa2) c = cs(a1 − a2) + b1(c
2 − s2)

anew2 = (sa1 + cb1) s+(sb1 + ca2) c = s2a1+2csb1+c2a2 = a2+s(s(a1−a2)+2cb1)

bnew2 = cb2

bulge = −sb2.

If we introduce the difference d = a1 − a2 and z = s(s(a1 − a2) + 2cb1) =
s(sd+2cb1), then the computation of the first Givens transformation becomes
in Matlab

[c s]=GivensRotation(a(1)-sigma, b(1)); % first transformation

d=a(1)-a(2); z=s*(s*d+2*c*b(1));

a(1)=a(1)-z;

a(2)=a(2)+z;

b(1)=c*s*d+b(1)*(c^2-s^2);

bulge=-s*b(2);

b(2)=c*b(2);

Chasing the bulge is now done with n − 2 more Givens transformations for
k = 3, . . . , n. In the k-th step, c and s are chosen such that(

c −s
s c

)(
bk−2

bulge

)
=

(
bnewk−2

0

)
.

The second equation above tells us we must choose c and s so that

s bk−2 + c bulge = 0.

The transformed elements are then

bnewk−2 = c bk−2 − s bulge,

anewk−1 = c2ak−1 − 2csbk−1 + s2ak = ak−1 − s(s(ak−1 − ak) + 2cbk−1),

bnewk−1 = cs(ak−1 − ak) + bk−1(c
2 − s2),

anewk = s2ak−1 + 2csbk−1 + c2ak = ak + s(s(ak−1 − ak) + 2cbk−1),

QR Algorithm 445

bulge = −sbk the new bulge,

bnewk = cbk.

for k=3:n % chasing the bulge

[c s]=GivensRotation(b(k-2),bulge);

d=a(k-1)-a(k); z=s*(s*d+2*c*b(k-1));

a(k-1)=a(k-1)-z;

a(k)=a(k)+z;

b(k-2)=c*b(k-2)-s*bulge;

b(k-1)=c*s*d+b(k-1)*(c^2-s^2);

if k<n

bulge=-s*b(k);

b(k)=c*b(k);

end

end

7.6.7 Convergence of the QR Algorithm

For the basic QR Iteration without shifts, if the matrix A(1) = A has distinct

eigenvalues, then the super-diagonal elements a
(k)
ij of A(k) behave asymptot-

ically like kij(λi/λj)
k, where kij is a constant (see [148]). In the presence of

p eigenvalues with equal modulus, the limiting matrix will not be diagonal,
but contain a block of order p corresponding to the same modulus |λi|. To
illustrate this fact, we consider the following example:

format short

Q=orth(hilb(6)); % we construct a symmetric matrix

A=Q*diag([1 -1.01 3 4 5 6])*Q’;

[Q,R]=qr(A); % watch the convergence

for k=1:200

clc

A=R*Q, [Q,R]=qr(A);

pause(0.1)

end

Here, we constructed a matrix with two eigenvalues that are close in in mod-
ulus (1 and −1.01). After 200 iterations, we obtain the matrix

A =

6.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000

-0.0000 5.0000 -0.0000 -0.0000 0.0000 -0.0000

-0.0000 -0.0000 4.0000 0.0000 0.0000 -0.0000

-0.0000 -0.0000 -0.0000 3.0000 0.0000 0.0000

-0.0000 -0.0000 -0.0000 -0.0000 -0.8646 0.5207

0.0000 0.0000 0.0000 0.0000 0.5207 0.8546

We see that some diagonal elements converged to the eigenvalues 3, 4, 5, 6,
but the lower 2 × 2 block has yet to converge to a diagonal matrix 1 and

446 EIGENVALUE PROBLEMS

−1.01. Nonetheless, if we perform 1000 iterations instead of only 200, then
the 2× 2 block becomes

-1.0100 0.0002

0.0002 1.0000

So we do indeed have convergence, but it is very slow. Since the speed of
convergence depends on the quotient of two successive eigenvalues |λi| >
|λi+1|, ∣∣∣∣λi+1

λi

∣∣∣∣ ,
it is a good idea to accelerate convergence by shifting the spectrum, as we
have already done in the inverse power method, see Subsection 7.4.2. Given
some shift σ, if A has the eigenvalues λ1, λ2, . . . , λn then B = A − σI has
the eigenvalues λ1 − σ, λ2 − σ, . . . , λn − σ and the convergence of the QR
Algorithm applied to B depends now on∣∣∣∣λi+1 − σ

λi − σ

∣∣∣∣ .
So for λ5 = 1 and λ6 = −1.01 in our example, a shift of σ = −0.9 would give
us∣∣∣∣λ6 − σ

λ5 − σ

∣∣∣∣ = | − 1.01 + 0.9|
1 + 0.9

= 0.0579 instead of

∣∣∣∣λ5

λ6

∣∣∣∣ = 1

1.01
= 0.9901,

i.e., much better convergence. In fact, the closer the shift is to an eigenvalue,
the better the convergence will be. A simple estimate is to take as shift the
last diagonal element

σ = ann.

The 2× 2 block after 200 iterations displayed with more digits is:

-0.864591608080753 0.520698825922572

0.520698825922576 0.854591608080752

If we continue the QR steps with our 2 × 2 block, this time with a shift of
σ = a66, we obtain after three more steps

format long

A(5:6,5:6)

for k=1:3

s =A(6,6); [Q,R]=qr(A-s*eye(6)); A=R*Q+s*eye(6) ;

A(5:6,5:6)

pause

end

QR Algorithm 447

-1.009047187652985 0.043752085277551

0.043752085277547 0.999047187652984

-1.009999999785590 0.000020759740271

0.000020759740275 0.999999999785589

-1.010000000000001 0.000000000000006

0.000000000000002 1.000000000000000

Thus, we observe a fantastic convergence that is at least quadratic! An
instructive example is the following: take the matrix

B0 = A =

(
2 a
ε 1

)
, (7.47)

where ε is a small number. Choosing for the shift σ = 1, we obtain

B0 −σI =

(
1 a
ε 0

)
=

(
1√
1+ε2

−ε√
1+ε2

ε√
1+ε2

1√
1+ε2

)(√
1 + ε2 a√

1+ε2

0 −aε√
1+ε2

)
= Q1R1,

and therefore for the next iteration

B1 − σI = R1Q1 =

(
x x

−aε2

1+ε2
x

)
.

We therefore see that when the matrix A is symmetric, i.e. a = ε, the lower
left element after the first operation is O(ε3), which means that we have cubic
convergence. This example also shows that for non-symmetric matrices, we
can still expect quadratic convergence, since the lower left element is O(ε2)
after one iteration.

7.6.8 Wilkinson’s Shift

An even better approximation the eigenvalue, which is known as Wilkinson’s
shift, is obtained by considering the last 2 × 2 block. Wilkinson’s shift is
defined to be the eigenvalue of the matrix

H =

(
an−1 bn−1

bn−1 an

)

that is closer to an. From det(H − λI) = (an−1 − λ)(an − λ)− b2n−1 = 0, we
get

λ1,2 =
an−1 + an

2
±
√

δ2 + b2n−1, where δ =
an−1 − an

2
.

Another way of writing λ1,2 is

λ1,2 = an + δ ±
√
δ2 + b2n−1 = an + x1,2,

448 EIGENVALUE PROBLEMS

where x1,2 are the two solutions of the quadratic equation

x2 − 2δx− b2n−1 = 0.

In order to obtain the shift λ closer to an, we need to compute the smaller of
the two solutions x1,2 in absolute value. Since the larger solution is given by

x1 = sign(δ)(|δ| +
√

δ2 + b2n−1) = δ + sign(δ)
√

δ2 + b2n−1.

Vieta’s theorem allows us to compute the smaller solution in a stable way by

x2 =
−b2n−1

δ + sign(δ)
√

δ2 + b2n−1

,

giving the shift σ = an + x2. In the special case of δ = 0, we get

λ1,2 = an ± |bn−1|;
we recommend take the shift that is smaller in magnitude, i.e., σ = an −
|bn−1|, so that H − σI stays positive definite whenever H is. Thus, the
Wilkinson shift is computed by

delta=(a(n)-a(n-1))/2;

if delta==0,

sigma=a(n)-abs(b(n-1));

else

sigma=a(n)-b(n-1)^2/(delta+sign(delta)*sqrt(delta^2+b(n-1)^2));

end

7.6.9 Test for Convergence and Deflation

With Wilkinson’s shift, the element bkn−1 → 0 for k → ∞. Convergence is
more than cubic, as shown by B. Parlett [104]:

b
(k+1)
n−1(

b
(k)
n−1

)3 (
b
(k)
n−2

)2 → 1

|λ2 − λ1|3|λ3 − λ1| k → ∞.

A straightforward test for convergence is to compare the off-diagonal element
to the machine precision ε, multiplied by the arithmetic mean of the moduli
of two diagonal elements:

|bn−1| ≤ ε
|an−1|+ |an|

2
=⇒ bn−1 := 0, n := n− 1.

We propose here the equivalent machine-independent criterion

an=abs(a(n))+abs(a(n-1));

if an+b(n-1)==an, n=n-1; end

QR Algorithm 449

Reducing n by one means that we consider afterward only the remaining
matrix with the last row and column removed, which is called deflation.
Each deflation step reduces n until we finally obtain for n = 2 the matrix

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

x x
x x 0

0 λ3
. . .

. . .
. . . 0
0 λn

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Once we arrive at this stage, we can simply annihilate the x-element in the
2× 2 block explicitly using one Jacobi rotation, see (7.26).

7.6.10 Unreduced Matrices have Simple Eigenvalues

A symmetric tridiagonal matrix T is unreduced if all the off-diagonal elements
are non-zero, i.e., bi 	= 0. As shown in [104], such matrices have only simple
eigenvalues, see also Problem 7.2. However, this result is only useful for
theoretical considerations: Wilkinson gave a famous example of a tridiagonal
matrix defined by

ai : [10, 9, . . . , 1, 0, 1, . . . , 10], bi = 1,

for which the eigenvalues are simple but the two largest are very close,

10.746194182903322,

10.746194182903393.

If bk = 0 for some k, then the eigenvalue problem can be reduced by splitting
it into two independent problems. Let

T=

(
T1

T2

)
, T1=

⎛
⎜⎜⎜⎜⎝
a1 b1

b1
. . .

. . .

. . .
. . . bk−1

bk−1 ak

⎞
⎟⎟⎟⎟⎠ , T2 =

⎛
⎜⎜⎜⎜⎝
ak+1 bk+1

bk+1

. . .
. . .

. . .
. . . bn−1

bn−1 an

⎞
⎟⎟⎟⎟⎠ .

If (λ,x) is an eigenpair of T1 and (μ,y) an eigenpair of T2, then(
T1

T2

)(
x
0

)
= λ

(
x
0

)
and

(
T1

T2

)(
0
y

)
= μ

(
0
y

)
,

so we have two eigenpairs of T .
The QR Algorithm described so far assumes that T is unreduced. In

general, however, this will not be the case. If T arises from the transforma-
tion of full symmetric matrix into tridiagonal form using Givens rotations or
Householder transformations, then multiple eigenvalues are likely. Further-
more, we may encounter a theoretically unreduced tridiagonal matrix which

450 EIGENVALUE PROBLEMS

numerically has multiple eigenvalues, and hence numerically reducible. It is
therefore necessary in each QR step to check if the matrix can be reduced.
If the matrix can be reduced, e.g. if

T =

(
T1

T2

)
,

then a QR Iteration can be performed first on T2 and then on T1. Alterna-
tively, in a parallel environment, one could diagonalize T1 and T2 simultane-
ously.

Putting all the parts together, we get the Matlab function ImplicitQR:

Algorithm 7.10.
Implicit QR Algorithm for Tridiagonal Matrices

function d=ImplicitQR(a,b,test)

% IMPLICITQR computes eigevalues of a symmetric tridiagonal matrix

% d=ImplicitQR(a,b) computes the eigenvalues d of the matrix

% T=diag(a)+diag(b,1)+diag(b,-1) with the QR-algorithm with implicit

% Wilkinson shift.

% If test==1 we get testoutput for didactical reasons after each sweep

if nargin<3, test=0; end

n=length(a); I=1;

while n>1;

for k=I:n-1 % Check for small b_i and

an=abs(a(k))+abs(a(k+1)); % possible deflation

if an+b(k)==an, b(k)=0; I=k+1; end

end

if I==n; % deflation

n=n-1; I=1;

elseif I+1==n

g=100*abs(b(I)); h=a(I+1)-a(I);

if abs(h)+g==abs(h), t=b(I)/h; % 2x2 block: annihilate b(I)

else % explicitly by one rotation

theta=0.5*h/b(I);

t=1/(abs(theta)+sqrt(1+theta^2));

if theta<0, t=-t; end

end

a(I)=a(I)-b(I)*t;

a(I+1)=a(I+1)+b(I)*t;

b(I)=0;

n=n-2; I=1; % deflation

else

delta=(a(n)-a(n-1))/2; % QR-step from I to n

if delta==0, % with Wilkinson shift

sigma=a(n)-abs(b(n-1));

else

QR Algorithm 451

sigma=a(n)-b(n-1)^2/(delta+sign(delta)*sqrt(delta^2+b(n-1)^2));

end

[c s]=GivensRotation(a(I)-sigma, b(I)); % first transformation

d=a(I)-a(I+1); z=s*(s*d+2*c*b(I));

a(I)=a(I)-z;

a(I+1)=a(I+1)+z;

b(I)=c*s*d+b(I)*(c^2-s^2);

bulge=-s*b(I+1);

b(I+1)=c*b(I+1);

for k= I+2:n % chasing the bulge

[c s]=GivensRotation(b(k-2), bulge);

balt= b(k-1);

d=a(k-1)-a(k); z=s*(s*d+2*c*b(k-1));

a(k-1)=a(k-1)-z;

a(k)=a(k)+z;

b(k-2)=c*b(k-2)-s*bulge;

b(k-1)=c*s*d+b(k-1)*(c^2-s^2);

if k<n

bulge=-s*b(k);

b(k)=c*b(k);

end

end

if test % test-output

clc; [’working from I=’ int2str(I) ’ to n=’ int2str(n)]

T=diag(a)+diag(b,-1)+diag(b,1); T(1:n,1:n), pause

end

end

end

d=sort(a);

7.6.11 Specific Numerical Examples

Matrix B in [148, p. 238] : We test our algorithms on the matrix B and
its mirror reflection B̃:

B =

⎛
⎜⎜⎝

1 10
10 102 103

103 104 105

105 106 107

107 108 109

109 1010 1011

1011 1012

⎞
⎟⎟⎠, B̃=

⎛
⎜⎜⎝

1012 1011

1011 1010 109

109 108 107

107 106 105

105 104 103

103 102 10
10 1

⎞
⎟⎟⎠ .

Since the two matrices are related by a permutation B̃ = P�BP , they
have the same eigenvalues.

The “exact” eigenvalues were computed withMaple using Digits:=30;
and copied into the Matlab script:

disp(’Matrix B Handbook p238’)

exact=[-946347415.646935364911244813552, ...

452 EIGENVALUE PROBLEMS

-946.346919709735030427802405636, ...

.999899020192942522041589386080, ...

1046.33721478805627415639938322, ...

1009899.03019971317042508022336, ...

1046337712.68593889208601758446, ...

1010000009803.94060266114061589]’;

a=[1 10^2 10^4 10^6 10^8 10^10 10^12];

b=[10 10^3 10^5 10^7 10^9 10^11];

B=diag(a)+diag(b,1)+diag(b,-1);

d=ImplicitQR(a,b); dj=Jacobi(B);

Eeig=norm(sort(eig(B))-exact),Ejac=norm(sort(dj)-exact),

Eqr=norm(d’-exact)

disp(’Matrix B tilde=mirror of B at antidiagonal ’)

n=length(a); aa=a(n:-1:1); bb=b(n-1:-1:1);

BB=diag(aa)+diag(bb,1)+diag(bb,-1);

dd=ImplicitQR(aa,bb); dj=Jacobi(BB);

Eeig=norm(sort(eig(BB))-exact),

Ejac=norm(sort(dj)-exact), Eqr=norm(dd’-exact)

The norm of the vector of the differences between the computed eigen-
values λ̃i and the exact ones, ‖λ−λ̃‖, is displayed in the following table.
Our two functions Jacobi and ImplicitQR compare very well with eig

of Matlab; in fact, Jacobi performs best with the matrix B̃.

Method eig Jacobi ImplicitQR

B 1.2207e-04 1.2208e-04 3.7641e-06

B̃ 1.2207e-04 6.0785e-07 1.2208e-04

Wilkinson Matrix: We consider the second matrix in [148, p. 238]. The
diagonal of this 21× 21 matrix contains the elements

100, 90, 80, . . . , 0, 10, 20, . . . , 100,

and the sub-diagonal elements are bi = 1. The exact eigenvalues (com-
puted again with Digits:=30 in Maple) are:

-.19709289103404678023365324112,

9.90049425337547750582064624658,

10.0965954385979295565941781882,

19.9995065744116445939575032389,

20.0004966232526561007845887315,

29.9999991729039722359050713976,

30.0000008284919036987965035860,

39.9999999993092515577597138748,

40.0000000006912114150393768642,

49.9999999999996543373010739619,

50.0000000000003460089969888385,

60.0000000000003456626989260381,

Computing the Singular Value Decomposition (SVD) 453

60.0000000000003458934099845950,

70.0000000006907484422402861241,

70.0000000006907484422952435018,

80.0000008270960277640949286021,

80.0000008270960277640949384194,

90.0004934255883554060424967604,

90.0004934255883554060424967618,

100.099505746624522494179353754,

100.099505746624522494179353754

This matrix is unreduced, but nevertheless has very close pairs of eigen-
values. The results are given in the following table. Again our two
functions compare well with Matlab’s eig.

Method eig Jacobi ImplicitQR

6.5164e-14 2.2258e-14 1.5264e-13

Matrix 1-4-1: For n = 20, we consider the tridiagonal matrix with diag-
onal elements 4 and sub-diagonal elements 1. The results are again
comparable.

Method eig Jacobi ImplicitQR

3.468e-15 3.468e-15 6.296e-15

7.6.12 Computing the Eigenvectors

With the implicit QR algorithm, one can also compute the eigenvectors of
the given matrix by accumulating the Givens rotations to form the matrix of
the eigenvectors. This is left as an exercise, see Problem 7.9.

7.7 Computing the Singular Value Decomposition
(SVD)

The singular value decomposition (SVD) of a matrix A is very useful in the
context of least squares problems, see Chapter 6.

Let A ∈ R
m×n be a matrix with m ≥ n. Then there exist orthog-

onal matrices U ∈ R
m×m and V ∈ R

n×n and a diagonal matrix Σ =
diag(σ1, . . . , σn) ∈ R

m×n with σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0, such that

A = UΣV�

holds. If σr > 0 is the smallest singular value greater than zero, then the
matrix A has rank r. For a proof of the existence of this decomposition see
Chapter 6.

The column vectors of U = [u1, . . . ,um] are called the left singular vectors
and similarly V = [v1, . . . ,vn] are the right singular vectors. The values σi

are called the singular values of A.

454 EIGENVALUE PROBLEMS

7.7.1 Transformations

If we already have a decomposition of A

A = PBQ�, with P and Q orthogonal,

then it is sufficient to compute the singular value decomposition of B to
obtain the SVD of A, since

B = UΣV� ⇐⇒ A = (PU)Σ(QV)�.

Thus the singular values of A and B are the same, and the singular vectors of
A are obtained by premultiplying U and V by with the orthogonal matrices
P and Q. Two special transformations are useful in this context:

Chan Transformation: Compute the QR Decomposition of A,

A = Q

(
R

0

)
.

Then compute the SVD of R = UΣV� to obtain A = (QU)ΣV�.

Bidiagonalization: Reduce A to bidiagonal form with orthogonal transfor-
mations

A = PBQ�, B = bidiagonal

then compute the SVD of B = UΣV� to obtain A = (PU)Σ(QV)�.

In both cases, the main part of the computation — the expensive iterative
part of the computation of the SVD — is executed on a smaller matrix,
especially if A ∈ R

m×n with m � n.

7.7.2 Householder-Rutishauser Bidiagonalization

For a given a matrix A ∈ R
m×n, we want to find two orthogonal matrices P

and Q and a bidiagonal matrix B such that

A = PBQ�, with B upper bidiagonal.

To do so, we apply alternating Householder transformations Pi and Qi to A
from the left and right, see Subsection 6.5.2 for a definition of Householder
transformations. The first step transforms the first column of A to a multiple
of e1,

P1A =

⎛
⎜⎜⎜⎝

x x · · · x
0 x · · · x
...

... · · · ...
0 x · · · x

⎞
⎟⎟⎟⎠ .

Computing the Singular Value Decomposition (SVD) 455

The second step annihilates elements of the first row:

P1AQ1 =

⎛
⎜⎜⎜⎝

x x 0 · · · 0
0 x x · · · x
...

...
... · · · ...

0 x x · · · x

⎞
⎟⎟⎟⎠ .

We continue in this manner until

Pn · · ·P1AQ1 · · ·Qn−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x x 0 · · · 0
0 x x · · · 0
...

. . .
. . .

. . .
...

0 0
. . . x x

0 0
. . . 0 x

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, since Pi = P�
i = P−1

i holds, we have

A = PBQ�, with P = P1 · · ·Pn, Q = Q1 · · ·Qn.

For the details of the algorithm, we follow a derivation of Rutishauser: the
matrix P = I − uu� with ‖u‖ =

√
2 is an elementary Householder matrix.

These matrices have the following properties (see Subsection 6.5.2):

1. P is symmetric.

2. P is orthogonal.

3. Pu = −u and if x ⊥ u then Px = x. Thus P is a reflection at the
hyperplane u�x = 0.

P will be used to solve the following basic problem: Given a vector x, find
an orthogonal matrix P such that

Px =

⎛
⎜⎜⎜⎝

σ
0
...
0

⎞
⎟⎟⎟⎠ = σe1.

Since P is orthogonal we have ‖Px‖2 = ‖x‖2 = σ2, and thus σ = ±‖x‖.
Furthermore

Px = (I − uu�)x = x− u(u�x) = σe1,

thus u(u�x) = x− σe1 and we obtain by normalizing

u =
x− σe1

‖x− σe1‖
√
2.

456 EIGENVALUE PROBLEMS

We have the choice for the sign of σ. We choose the sign so that no cancel-
lation occurs in computing x− σe1,

σ =

{ ‖x‖, x1 < 0,
−‖x‖, x1 ≥ 0.

So the calculations simplify to

u =
x− σe1√‖x‖(|x1|+ ‖x‖) .

In order to apply this basic construction for the bidiagonalization, we
construct a sequence of n elementary matrices Pi,

Pi =

(
I 0
0 I − uiu

�
i

)
,

where we choose ui ∈ R
m−i+1 such that zeros are introduced in the i-th

column of A below the diagonal when we form the product PiA. Analogously,
Qi will introduce zeros in row i. We obtain by this process

B = PnPn−1 · · ·P1AQ1Q2 · · ·Qn−1 ⇐⇒ A = PBQ�,

and because of the symmetry of Pi and Qi we have

P = (PnPn−1 · · ·P1)
� = P1P2 · · ·Pn and Q = Q1Q2 · · ·Qn−1.

If we store the new diagonal elements of B in vector q and the secondary
diagonal in e, then we can store the Householder vectors ui at the same
place where we introduce zeros in A. This leads to the following implicit
bidiagonalization algorithm Bidiagonalize.m:

Algorithm 7.11. Bidiagonalization

function [q,e,A]=Bidiagonalize(A)

% BIDIAGONALIZE bidiagonalizes a matrix with Householder reflections

% [q,e,A]=Bidiagonalize(A) computes B=diag(q)+diag(e(2:n),1) such

% that A=P B Q’ using Householder reflexions. A is overwritten with

% the Householder-vectors.

[m,n]=size(A);

for i=1:n

s=norm(A(i:m,i)); % transform A(i:m,i) to

% (q_i,0,...,0)

if s==0, q(i)=0;

else

if A(i,i)>0, q(i)=-s; else q(i)=s; end

fak=sqrt(s*(s+abs(A(i,i))));

A(i,i)=A(i,i)-q(i);

Computing the Singular Value Decomposition (SVD) 457

A(i:m,i)=A(i:m,i)/fak;

A(i:m,i+1:n)=A(i:m,i+1:n)-A(i:m,i)*(A(i:m,i)’*A(i:m,i+1:n));

end

if i<n,

s=norm(A(i,i+1:n)); % tranformation A(i,i+1:n) to

% (e_i,0...0)

if s==0, e(i)=0;

else

if A(i,i+1)>0, e(i)=-s; else e(i)=s; end

fak=sqrt(s*(s+abs(A(i,i+1))));

A(i,i+1)=A(i,i+1)-e(i);

A(i,i+1:n)=A(i,i+1:n)/fak;

A(i+1:m,i+1:n)=A(i+1:m,i+1:n) - ...

(A(i+1:m,i+1:n)*A(i,i+1:n)’)*A(i,i+1:n);

end

end

end % insert 0 element in e (see

e=[0 e]; % notation of bidiagonal matrix)

Note that the matrices P = P1P2 · · ·Pn and Q = Q1Q2 · · ·Qn−1 are given
implicitly by the Householder vectors of Pk and Qk. Thus, to form the prod-
uct Px, we need a procedure for applying the Householder transformations
Pk = I − uku

�
k in reverse order. We can compute y = Px using

y = x, y := (I − uku
T
k)y = y − uk(u

T
k y), k = n, n− 1, . . . , 1.

See Problem 7.13.

7.7.3 Golub-Kahan-Lanczos Bidiagonalization

If A = PBQ� with B upper bidiagonal and P,Q orthogonal, then we can
compare columns in the two equations

AQ = PB, and A�P = QB�

and derive recursion formulas to compute the bidiagonal factorization and
obtain thus the Golub-Kahan-Lanczos Algorithm, see Problem 7.14.

7.7.4 Eigenvalues and Singular Values

There is a connection between the singular values of A and the eigenvalues of
A�A and AA�. Let m ≥ n, A = UΣV�, and consider the symmetric matrices

A�A = V (Σ�Σ)V�, AA� = U(ΣΣ�)U�.

We recognize the eigendecomposition: V contains the eigenvectors of the
matrix A�A and σ2

i , i = 1, . . . , n are the corresponding eigenvalues. Similarly,

458 EIGENVALUE PROBLEMS

U are the eigenvectors of AA� for the eigenvalues σ2
i , i = 1, . . . , n plus the

eigenvalue 0 with multiplicity m− n.
If A ∈ R

n×n is symmetric, then A�A = A2 and σ2
i = λ2

i , therefore

σi = |λi|, i = 1, . . . , n.

Hence, for a symmetric positive definite matrix A, the eigenvalues and the
singular values coincide.

One can also consider the following augmented matrix : let the SVD of
A ∈ R

m×n be A = UΣV�, where Σ = diag(Σ1, 0) with Σ1 ∈ R
r×r and

r = rank(A). If we partition U = (U1, U2) with U1 ∈ R
m×r and V = (V1, V2)

with V1 ∈ R
n×r accordingly, then we have the identity

C :=

(
0 A
A� 0

)
= P

⎛
⎝ Σ1 0 0

0 −Σ1 0
0 0 0

⎞
⎠P�

with

P =
1√
2

(
U1 U1

√
2U2 0m×(n−r)

V1 −V1 0n×(m−r)

√
2V2

)
∈ R

(m+n)×(m+n).

Therefore the eigenvalues of C are ±σ1,±σ2, . . . ,±σr, and zero with multi-
plicity m+ n− 2r. The augmented matrix is the basis for the first numeri-
cally reliable algorithm for computing the singular value decomposition, due
to Golub and Kahan in 1965, see [55].

7.7.5 Algorithm of Golub-Reinsch

After the bidiagonalization of the matrix A = PBQ�, the singular values of

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

q1 e2
q2 e3

. . .
. . .

. . . en
qn

⎞
⎟⎟⎟⎟⎟⎟⎠

are computed through a variant of the implicit shift QR Algorithm for the
tridiagonal matrix

T = B�B =

⎛
⎜⎜⎜⎜⎜⎜⎝

q21 q1e2
q1e2 e22 + q22 q2e3

q2e3
. . .

. . .

. . . e2n−1 + q2n−1 qn−1en
qn−1en e2n + q2n

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Computing the Singular Value Decomposition (SVD) 459

The main idea is to avoid forming the product T = B�B and to work only
with the bidiagonal matrix B. To derive this variant, let us consider the
Implicit-shift QR Algorithm for T with shift σ. There, the first QR transfor-
mation is obtained by determining a Givens rotation G1 such that(

c s
−s c

)�(
q21 − σ

q1e2

)
=

(
r

0

)
.

As seen before

r =
√
(q21 − σ)2 + (q1e2)2, c =

q21 − σ

r
and s =

q1e2
r

.

We compute c and s numerically stably using the function GivensRotation,
see Algorithm 7.6. Applying G1 and its transpose to the matrix T yields

G�
1B

�BG1 =

⎛
⎜⎜⎜⎜⎜⎝

x x x
x x x
x x x x

x x x
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠ ,

and the subsequent transformations would chase the bulge until we have
restored the tridiagonal form.

To see how we can work only with the bidiagonal matrix B, consider the
product BG1:

BG1 =

⎛
⎜⎜⎜⎜⎜⎝

x x
x x x

x x
x x

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠ .

The bidiagonal form is destroyed by the bulge x. We can chase the bulge by
a Givens rotation P1 from the left in the (1, 2) plane:

P�
1 BG1 =

⎛
⎜⎜⎜⎜⎜⎝

x x x
x x

x x
x x

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠ ,

followed by a rotation in the (2, 3) plane from the right:

P�
1 BG1G2 =

⎛
⎜⎜⎜⎜⎜⎝

x x
x x
x x x

x x
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠ .

460 EIGENVALUE PROBLEMS

Continuing this way, we restore the bidiagonal form

B̃ = P�
n−1 · · ·P�

1 BG1 · · ·Gn−1 = P�BG.

But B̃�B̃ = G�B�BG, and since the first column of G is the same as the first
column of G1, we obtain according to Theorem 7.7 the same result as if we
had performed one QR Iteration on the matrix T . Thus, both algorithms are
mathematically equivalent; nonetheless, the Golub-Reinsch iteration on B is
numerically preferable because T is not formed and manipulated explicitly.

The following Matlab Function QRStep.m computes one QR step on the
submatrix ⎛

⎜⎜⎜⎜⎝
ql el+1

ql+1
. . .

. . . en
qn

⎞
⎟⎟⎟⎟⎠ .

Algorithm 7.12. QR Step with Bidiagonal Matrix

function [e,q]=QRStep(l,n,e,q)

% QRSTEP compute QR iteration step on a bidiagonal matrix

% [e,q]=QRStep(l,n,e,q) computes one QR iteration step on the

% bidiagonal matrix for the trailing pricipal submatrix (l:n,l:n)

an=e(n)^2+q(n)^2; % compute Wilkinson shift

an1=e(n-1)^2+q(n-1)^2; % with code from ImplicitQR.m

bn1=q(n-1)*e(n);

delta =(an-an1)/2;

if delta==0,

sigma=an-abs(bn1);

else

sigma=an-bn1^2/(delta+sign(delta)*sqrt(delta^2+bn1^2));

end

[c s]=GivensRotation(q(l)^2-sigma,q(l)*e(l+1));

h=q(l)*c-e(l+1)*s; % first transformation from the

e(l+1)=q(l)*s+e(l+1)*c; q(l)=h; % right generates bulge

bulge=-q(l+1)*s; q(l+1)=q(l+1)*c;

for i=l:n-2 % Chasing the bulge

[c s]=GivensRotation(q(i),bulge); % from left

q(i)=q(i)*c-bulge*s; h=e(i+1)*c-q(i+1)*s;

q(i+1)=e(i+1)*s+q(i+1)*c; e(i+1)=h;

bulge=-e(i+2)*s; e(i+2)=e(i+2)*c;

[c s]=GivensRotation(e(i+1),bulge); % from right

e(i+1)=e(i+1)*c-bulge*s;

h=q(i+1)*c-e(i+2)*s; e(i+2)=q(i+1)*s+e(i+2)*c;

q(i+1)=h;

bulge=-q(i+2)*s; q(i+2)=q(i+2)*c;

Computing the Singular Value Decomposition (SVD) 461

end

[c s]=GivensRotation(q(n-1),bulge); % last from left

q(n-1)=q(n-1)*c-bulge*s; h=e(n)*c-q(n)*s;

q(n)=e(n)*s+q(n)*c; e(n)=h;

We now address the issues of splitting, cancellation and convergence.

Splitting: If ei = 0, then the bidiagonal matrix splits into two blocks whose
singular values can be computed independently:

B =

(
B1 0
0 B2

)
, svd(B) = svd(B1) ∪ svd(B2).

If a split occurs, we work on the matrix B2 first. In a parallel environ-
ment B1 and B2 could be processed independently.

If the split is for i = n then B2 = qn and qn is a singular value (see
convergence below).

Cancellation: If qi = 0, then one of the singular values is zero. We can split
the matrix B with a sequence of special Givens rotations applied from
the left to zero out row i

G�
i,i+1

⎛
⎜⎜⎜⎝

q1 e2
. . .

. . .
qi−1 ei

0 ei+1
qi+1

. en
qn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

q1 e2
. . .

. . .
qi−1 ei

0 0 b
q̃i+1

. en
qn

⎞
⎟⎟⎟⎠ .

The bulge b is removed with further Givens rotations Gi,k for k = i +
2, . . . , n. Then, because ei+1 = 0, the matrix splits again into two sub-
matrices. Note that for these operations we need Givens rotations that
annihilate the first and not the second component (GivensRotation1):

(
c s
−s c

)�(
x

y

)
=

(
0

r

)
.

The function GivensRotation1 is left as an exercise (See Problem 7.15).

Test for negligibility: In finite precision arithmetic, we will of course not
obtain exactly ei = 0 or qi = 0. Thus, we need a threshold to decide
when these elements can be considered zero.

Golub and Reinsch [53] recommend

|ei+1|, |qi| ≤ εmax
i

(|qi|+ |ei|) = ε‖B‖1,

where ε = eps is the machine precision.

462 EIGENVALUE PROBLEMS

Björck [9] suggests

|ei+1| ≤ 0.5 ε (|qi|+ |qi+1|), |qi| ≤ 0.5 ε (|ei|+ |ei+1|).

Linpack [26] uses Björck’s approach, but omits the factor 0.5. How-
ever,

Stewart has effectively implemented the Linpack subroutine SSVDC,
which can be downloaded from http://www.netlib.org/. He
uses machine-independent criteria such as the one below for ei:

DO 390 LL = 1, M

L = M - LL

IF (L .EQ. 0) GO TO 400

TEST = ABS(S(L)) + ABS(S(L+1))

ZTEST = TEST + ABS(E(L))

IF (ZTEST .NE. TEST) GO TO 380

E(L) = 0.0E0

GO TO 400

380 CONTINUE

390 CONTINUE

400 CONTINUE

Convergence and deflation: When en is judged to be negligible, qn can
be accepted as singular value. The iteration then proceeds with the
leading principal submatrix of order n−1, which contains the remaining
singular values of B.

We are now ready to present the complete algorithm for computing the
SVD:

Algorithm 7.13. SVD Golub-Reinsch

function q=SVDGolubReinsch(A)

% SVDGolubReinsch singular values by the Golub Reinsch algorithm

% q=SVDGolubReinsch(A) computes the singular values of A using the

% Golub-Reinsch Algorithm and a machine independent criterium

% following G. W. Stewart.

[m,n]=size(A);

if n>m, A=A’; [m,n]=size(A);end

[q,e,A]=Bidiagonalize(A);

k=n;

while k~=1,

splitting=false;

l=k;

while ~splitting & l>1,

t=abs(q(l-1))+abs(q(l));

if t+abs(e(l))==t; % splitting: e(l) is small

splitting=true; e(l)=0;

else

t=abs(e(l))+abs(e(l-1));

Computing the Singular Value Decomposition (SVD) 463

if t+abs(q(l-1))==t, % q(l-1) is small, cancellation

splitting=true; q(l-1)=0;

bulge=e(l); e(l)=0; % introduce zero row

for kk=l:k-1

[c s]=GivensRotation1(bulge,q(kk));

q(kk)=s*bulge+c*q(kk);

bulge=-s*e(kk+1);

e(kk+1)=c*e(kk+1);

end

[c s]=GivensRotation1(bulge, q(k));

q(k)=s*bulge+c*q(k);

else

l=l-1; % check elements on row before

end

end

end

if splitting & l==k, % convergence

if q(k)<0, q(k)=-q(k); end % adapt sign, singular values >= 0

k=k-1;

else

[e,q]=QRStep(l,k,e,q);

end

end

if q(1)<0, q(1)=-q(1); end

[q]=sort(q); q=q(n:-1:1)’; % sort singular values

Example 7.1. Consider A ∈ R
n×(n+1) from page 150 of the Handbook

[148]. For n = 5 we have

A =

⎛
⎜⎜⎜⎜⎝

5 −1 −1 −1 −1 −1
0 4 −1 −1 −1 −1
0 0 3 −1 −1 −1
0 0 0 2 −1 −1
0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎠

The exact singular values are
√

k(k + 1), k = 0, . . . n.

n=200;

A=-ones(n,n+1);

A=A-tril(A);

A=A+[diag((n:-1:1)) zeros(n,1)];

k=n:-1:1;

exact=(sqrt(k.*(k+1)))’;

[norm(svd(A)-exact) norm(SVDGolubReinsch(A’)-exact)]

For n = 200, the norm of the difference between the exact and the computed
eigenvalues becomes

ans =

464 EIGENVALUE PROBLEMS

1.0e-11 *

0.111027675811923 0.424274094705328

Both Matlab’s function svd and our program show comparable accuracy for
this matrix.

7.8 QD Algorithm

The Quotient-Difference Algorithm, or the QD Algorithm, has many appli-
cations. Its inventor, Heinz Rutishauser, first used it to compute the poles
of a rational function and to transform a power series into a corresponding
continued fraction [109, 110]. The algorithm can also be interpreted as the
LR algorithm (7.46) for a tridiagonal matrix, so it can be used to calculate
eigenvalues. Although the QR Algorithm is nowadays the standard method
for solving eigenvalue problems, the QD Algorithm has been revived for that
purpose thanks to a variant called the differential QD Algorithm, developed
by K. Fernando and B. Parlett [31]. This variant proves to be very useful for
computing singular values to a high degree accuracy. Much of the material
in this section is based on lectures of Beresford Parlett given at ETH when
he was visiting in 2003.

7.8.1 Progressive QD Algorithm

In order to understand the link between the QD and LR algorithms, we first
need a few basic transformations involving tridiagonal matrices. Consider a
non-symmetric unreduced tridiagonal matrix

S =

⎛
⎜⎜⎜⎜⎝

a1 b1

c1 a2
. . .

. . .
. . . bn−1

cn−1 an

⎞
⎟⎟⎟⎟⎠ , (7.48)

which has been obtained, for instance, from the reduction of a full symmetric
matrix to tridiagonal form. A similarity transformation with the diagonal
matrix D, where

d1 = 1, di =

i−1∏
k=1

bk, i = 2, . . . , n

yields

T = DSD−1 =

⎛
⎜⎜⎜⎜⎝

a1 1

b1c1 a2
. . .

. . .
. . . 1

bn−1cn−1 an

⎞
⎟⎟⎟⎟⎠ . (7.49)

QD Algorithm 465

Thus, the eigenvalues of a tridiagonal matrix essentially depend on 2n − 1
parameters : the diagonal and the subdiagonal elements of the matrix T , i.e.
the products of the off-diagonal elements of S. Moreover, the LU factorization
of T has a special structure: we can write T = LU , where

L =

⎛
⎜⎜⎜⎝

1
e1 1

. . .
. . .

en−1 1

⎞
⎟⎟⎟⎠ , U =

⎛
⎜⎜⎜⎜⎝

q1 1

q2
. . .

. . . 1
qn

⎞
⎟⎟⎟⎟⎠ . (7.50)

This gives us an equivalent parametrization of T by the vectors q and e:

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

q1 1

e1q1 q2 + e1
. . .

. . .
. . . 1

en−1qn−1 qn + en−1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (7.51)

By equating the two parametrizations of T , (7.49) and (7.51), we obtain
Algorithm 7.14, which computes the vectors q and e of the matrix T in
(7.51) from a given non-symmetric tridiagonal matrix S, (7.48).

Algorithm 7.14.
Compute QD Line from Tridiagonal Matrix

function [q,e]=QDLine(a,b,c)

% QDLINE compute qd-line from a tridiagonal matrix

% [q,e]=QDLine(a,b,c) computes the elemente q(i) and e(i) of the

% qd-line from the tridiagonal matrix given by T =(c(i-1),a(i),b(i))

n=length(a);

e(n)=0; % convenient for performing QDStep later

q(1)=a(1);

for i=1:n-1

e(i)=b(i)*c(i)/q(i); q(i+1)=a(i+1)-e(i);

end

To get a more compact representation of T , we can collect the vectors q and
e into a QD line, defined as

Z = {q1, e1, q2, e2, . . . , qn−1, en−1, qn, 0}.

Let us now consider applying the LR algorithm (7.46) to T . The first step
involves calculating T̂ = UL, where L and U are the LU factors of T , as

466 EIGENVALUE PROBLEMS

shown in (7.50). Then the next LU decomposition T̂ = L̂Û can be obtained
by equating the elements in L̂Û = UL:

T̂ =

⎛
⎜⎝

q̂1 1

ê1 q̂1 q̂2+ê1
. . .

. . .
. . . 1

ên−1q̂n−1 q̂n+ên−1

⎞
⎟⎠ =

⎛
⎜⎝

q1+e1 1

e1q2 q2+e2
. . .

. . .
. . . 1

en−1qn qn

⎞
⎟⎠ . (7.52)

Note that since T̂ = UL = L−1TL, T and T̂ must have the same eigenvalues.
Thus, we obtain the spectrum-preserving transformation

Z = {q1, e1, q2, e2, . . . , qn−1, en−1, qn, 0}
−→Ẑ = {q̂1, ê1, q̂2, ê2, . . . , q̂n−1, ên−1, q̂n, 0},

where

ê0 = en = 0, êk−1 + q̂k = qk + ek, êkq̂k = qk+1ek, k = 1, . . . , n. (7.53)

Equations (7.53) are known as the Rhombus Rules of Stiefel. The name of
these rules comes from the QD scheme, which is obtained if we iterate the

LR steps. Denote by e
(0)
i := ei, q

(0)
i := qi and by e

(1)
i := êi, q

(1)
i := q̂i. If we

write the QD lines as diagonals, then we get the scheme

q
(0)
1

e
(0)
1

q
(1)
1 q

(0)
2

e
(1)
1 e

(0)
2

q
(2)
1 q

(1)
2 q

(0)
3

· e
(2)
1 · e

(1)
2 · ·

(7.54)

In each QD step, a new diagonal, or QD line, is computed by forming quo-
tients and differences. Depending on whether the element is a q or an e, we
apply the Q- or E-Rhombus Rule:

Quotient
E-Rule:

e
(ν+1)
k =

e
(ν)
k q

(ν)
k+1

q
(ν+1)
k

e
(ν)
k

↙ ↘
q
(ν+1)
k q

(ν)
k+1

↘ ↙
e
(ν+1)
k

Difference
Q-Rule:

q
(ν+1)
k =q

(ν)
k + e

(ν)
k − e

(ν+1)
k−1

q
(ν)
k

↙ ↘
e
(ν+1)
k−1 e

(ν)
k

↘ ↙
q
(ν+1)
k

QD Algorithm 467

These rules for computing the QD scheme (7.54) define the QD Algorithm,
which was first described by Heinz Rutishauser [109, 110]. Rutishauser de-
fines the progressive QD step for computing the next diagonal in the QD
scheme by

ProgressiveQDStep
en = 0
q̂1 = q1 + e1
for k = 2 : n

êk−1 = (ek−1/q̂k−1)qk
q̂k = (qk − êk−1) + ek

end

In Parlett’s variant, the step is defined by

ProgressiveQDStepParlett
ê0 = 0
for k = 1 : n− 1

q̂k = (qk − êk−1) + ek
êk = ek(qk+1/q̂k)

end for
q̂n = qn − ên−1

Note the different brackets in computing the e-element. Parlett’s version
avoids possible unnecessary underflow, but takes the risk that qk+1/q̂k might
become large. Rutishauser’s version is easier to implement in Matlab (no
zero index).

Although the QD algorithm bears no obvious resemblance to the matrix
eigenvalue problem, it is in fact mathematically equivalent to an LR algo-
rithm! This means it can be used to calculate the eigenvalues (but not the
eigenvectors) of a matrix, as we show in the example below.

Example 7.2. (Progressive QD Algorithm without shifts) We apply the
QD Algorithm to compute the eigenvalues of the matrix B

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 1
1 4 1

1 4 1
1 4 1

1 4 1
1 4 1

1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and perform 50 progressive QD steps. We omit the full output and print only
the last three QD Lines together with the eigenvalues computed by eig.

n=7;

a=4* ones(1,n); b=ones(1,n-1)

468 EIGENVALUE PROBLEMS

B=diag(a)+diag(b,1)+diag(b,-1)

[q,e]=QDLineSymmetric(a,b)

for it=1:50

q(1)=q(1)+e(1); % progressive qd-step without shift

for k=2:n,

e(k-1)=(e(k-1)/q(k-1))*q(k);

q(k)=(q(k)-e(k-1))+e(k);

end

q, e

end

disp(’q-line and Eigenvalues’)

sort(q), eig(B)’

q =

5.8136 5.4305 4.7762 4.0019 3.2349 2.5857 2.1524

e =

0.0024 0.0019 0.0005 0.0001 0.0000 0.0000 0

q =

5.8160 5.4301 4.7750 4.0016 3.2348 2.5857 2.1524

e =

0.0022 0.0016 0.0004 0.0001 0.0000 0.0000 0

q =

5.8182 5.4297 4.7739 4.0014 3.2348 2.5857 2.1524

e =

0.0021 0.0014 0.0003 0.0001 0.0000 0.0000 0

q-line and Eigenvalues

ans =

2.1524 2.5857 3.2348 4.0014 4.7739 5.4297 5.8182

ans =

2.1522 2.5858 3.2346 4.0000 4.7654 5.4142 5.8478

Comparing the last two lines of output, we notice that after 50 iterations we
have only about 2–4 correct decimal digits. To improve convergence, we need
to introduce shifts, just like in the QR Algorithm.

7.8.2 Orthogonal LR-Cholesky Algorithm

Let us now consider the special case of a symmetric positive definite tridiag-
onal matrix

A =

⎛
⎜⎜⎜⎜⎝

α1 β1

β1 α2
. . .

. . .
. . . βn−1

βn−1 αn

⎞
⎟⎟⎟⎟⎠ .

By Lemma 3.1(c), the diagonal elements satisfy αi > 0. Assume additionally
that A is irreducible, i.e., there exists no permutation matrix P such that
P�AP is block upper triangular. Then we can also assume without loss of

QD Algorithm 469

generality that βi > 0, since the matrix

Ã = E−1AE, E = diag(σ1, . . . , σn)

with σi =
∏i

j=1 sign(βi) is similar to A and has positive subdiagonal entries.
With these assumptions, we can conclude that the Cholesky decomposition
A = R�R exists and can make the following ansatz for R:

R =

⎛
⎜⎜⎜⎜⎝

√
q1

√
e1

√
q2

. . .

. . .
√
en−1√
qn

⎞
⎟⎟⎟⎟⎠ . (7.55)

Now R�R becomes

R�R =

⎛
⎜⎜⎜⎜⎝

q1
√
e1q1

√
e1q1 q2 + e1

. . .

. . .
. . .

√
en−1qn−1√

en−1qn−1 qn + en−1

⎞
⎟⎟⎟⎟⎠ .

Comparing this expression with A, we obtain the Algorithm 7.15 to compute
the quantities qi and ei from the αi and βi:

Algorithm 7.15.
Compute QD Line from Symmetric Tridiagonal Matrix

function [q,e]=QDLineSymmetric(a,b)

% QDLINESYMMETRIC qd-line from a s.p.d tridiagonal matrix

% [q,e]=QDLineSymmetric(a,b) computes the elemente q(i) and e(i) from

% the qd-line from the symmetric positive definite tridiagonal

% matrix given by A=(b(i-1),a(i),b(i))

n=length(a);

e(n)=0; % convenient for performing QDStep later

q(1)=a(1);

for i=1:n-1

e(i)=b(i)^2/q(i); q(i+1)=a(i+1)-e(i);

end

Note that R�R is similar to the matrix T in (7.51): let Γ = diag(γi) with

γ1 = 1, γi =

i−1∏
k=1

√
eiqi, i = 2, . . . , n.

Then R�R = Γ−1T Γ. Thus, Algorithm 7.15 is actually a special case of Algo-
rithm 7.14, since the QD line can also be computed by [q,e]=QDLine(b,a,b).

470 EIGENVALUE PROBLEMS

Let us now consider the symmetric analogue of the LR algorithm. If A is
symmetric and positive definite, then one step of the LR-Cholesky Algorithm
becomes

A = R�R, Â = RR� = R̂�R̂.

At first glance, both Cholesky decompositions are needed for the mapping
from R to R̂, but the following lemma shows that two decompositions are in
fact related.

Lemma 7.1. If any two invertible matrices M1 and M2 satisfy M�
1 M1 =

M�
2 M2, then M2 = QM1 for some orthogonal matrix Q.
Proof. Since M1 and M2 are invertible, there exists a matrix F =

M1M
−1
2 such that M1 = FM2. Substituting this relation into M�

1 M1 =
M�

2 M2 yields

M�
1 M1 = M�

2 F
�FM2 = M�

2 M2 ⇐⇒ F�F = I.

Thus F is orthogonal. �

Applying this lemma to the relation RR� = R̂�R̂, we conclude that there
exists an orthogonal matrix Q such that

R� = QR̂.

So the QR Decomposition of R� is in fact QR̂!

Example 7.3.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 1
1 4 1

1 4 1
1 4 1

1 4 1
1 4 1

1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.56)

>> R=chol(A)

R =

2.0000 0.5000 0 0 0 0 0

0 1.9365 0.5164 0 0 0 0

0 0 1.9322 0.5175 0 0 0

0 0 0 1.9319 0.5176 0 0

0 0 0 0 1.9319 0.5176 0

0 0 0 0 0 1.9319 0.5176

0 0 0 0 0 0 1.9319

>> tR=chol(R*R’)

tR =

2.0616 0.4697 0 0 0 0 0

0 1.9484 0.5121 0 0 0 0

0 0 1.9336 0.5171 0 0 0

QD Algorithm 471

0 0 0 1.9320 0.5176 0 0

0 0 0 0 1.9319 0.5176 0

0 0 0 0 0 1.9319 0.5176

0 0 0 0 0 0 1.8612

>> [Q, tR2]=qr(R’)

Q =

-0.9701 0.2339 -0.0619 0.0166 -0.0044 0.0012 0.0003

-0.2425 -0.9354 0.2477 -0.0663 0.0178 -0.0048 -0.0013

0 -0.2650 -0.9291 0.2486 -0.0666 0.0179 0.0050

0 0 -0.2677 -0.9283 0.2487 -0.0666 -0.0185

0 0 0 -0.2679 -0.9282 0.2487 0.0692

0 0 0 0 -0.2679 -0.9282 -0.2582

0 0 0 0 0 -0.2679 0.9634

tR2 =

-2.0616 -0.4697 0 0 0 0 0

0 -1.9484 -0.5121 0 0 0 0

0 0 -1.9336 -0.5171 0 0 0

0 0 0 -1.9320 -0.5176 0 0

0 0 0 0 -1.9319 -0.5176 0

0 0 0 0 0 -1.9319 -0.5176

0 0 0 0 0 0 1.8612

We see that indeed tR and tR2 are the same (up to different signs).

We are now ready to derive the recurrence relations for the orthogonal
QD Algorithm. Let us compute the matrix Q for the transformation R� �→ R̂
using Givens rotations,

Q�

⎛
⎜⎜⎜⎝

a1
b1 a2

. . .
. . .

bn−1 an

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

â1 b̂1

â2
. . .

. . . b̂n−1

ân

⎞
⎟⎟⎟⎟⎠ .

In the first step, we determine c = cosα and s = sinα such that(
c −s
s c

)(
a1 0
b1 a2

)
=

(
â1 b̂1
0 ã2

)
.

We will compute this transformation algebraically. Since â1 =
√

a21 + b21,
using Maple we obtain

> solve({c*a[1]-s*b[1]=sqrt(a[1]^2+b[1]^2),s*a[1]+c*b[1]=0},{c,s});

{
c =

a1√
a12 + b1

2
, s = − b1√

a12 + b1
2

}

> -s*a[2];

472 EIGENVALUE PROBLEMS

b1a2√
a12 + b1

2
(7.57)

> c*a[2];

a1a2√
a12 + b1

2
(7.58)

We can now obtain expressions for the three new elements â1, b̂1 and ã2
directly without invoking c and s:

â1 =
√

a21 + b21, b̂1 =
b1a2
â1

, ã2 =
a1a2
â1

.

Note that ã2 is an intermediate result, as it will become â2 after the next
Givens rotation. We have thus shown that an orthogonal QD step (the trans-
formation from R �→ R̂ can be computed as follows:

OrthogonalQDStep 6

ã = a1;
for k = 1 : n− 1

âk =
√

ã2 + b2k;

b̂k = bk(ak+1/âk);

ã = ã(ak+1/âk);
end
ân = ã;

Note that there are no subtractions in this algorithm: the elements are com-
puted by means of multiplications and divisions. This is important for high
accuracy.

7.8.3 Differential QD Algorithm

We wish to express the transformation R �→ R̂ in the q-e-quantities. In order
to do so, we need to identify the elements of R and R̂ with the representation
in (7.55),

ai =
√
qi, bi =

√
ei ⇐⇒ qi = a2i , ei = b2i .

We can now derive the differential QD step by squaring the statements in
OrthogonalQDStep (the new variable d is used for ã2):

DifferentialQDStep 7

6in [31] denoted by oqd
7in [31] denoted by dqd

QD Algorithm 473

d = q1;
for k = 1 : n− 1

q̂k = ã2 + b2k = d+ ek;
êk = ek(qk+1/q̂k);
d = d(qk+1/q̂k);

end
q̂n = d

This algorithm has already been formulated by Rutishauser in a manuscript
that was published only posthumously [112].

An interesting link with Progressive QD becomes apparent if we eliminate
the intermediate variable d: let d = dk at step k. Then from (7.58) and (7.57),
we see that

dk+1 = c2kqk+1 = qk+1 − s2kqk+1 = qk+1 − êk.

With this formulation, we get back the original progressive QD Algorithm
by Parlett (ProgressiveQDStepParlett).

Example 7.4. Algorithm DifferentialQDStep computes small eigenval-
ues to high relative precision while the precision of the smaller eigenvalues
computed by ProgressiveQDStepParlett is relative to σ2

1(B). Fernando
and Parlett show in [31] that for the matrix R ∈ R

64×64 defined by qk = 1,
k = 1, . . . , 64 and ek = 65536, k = 1, . . . , 63 the differential QD Algorithm
computes the smallest eigenvalue 3.645449756934072e−304 of B = R�R to
machine precision in two iterations; while ProgressiveQDStepParlett ob-
tains the value 0 and eig(B) of Matlab gives, even worse, a negative value
−5.420845440188925e−20 as we can see by executing Algorithm 7.16.

Algorithm 7.16. Parlett Fernando Example

format long e

n=64;

q=ones(1,n); e=65536*ones(1,n-1);

disp(’Differential QD-Algorithm’)

for p=1:3

d=q(1);

for k=1:n-1

q(k)=d+e(k);

e(k)=e(k)*(q(k+1)/q(k));

d=d*(q(k+1)/q(k));

end

q(n)=d;

p, min(q)

end

disp(’Progressive QD-Algorithm’)

q=ones(1,n); e=65536*ones(1,n-1);

for p=1:3

474 EIGENVALUE PROBLEMS

e(n)=0;

q(1)=q(1)+e(1);

for k=2:n,

e(k-1)=(e(k-1)/q(k-1))*q(k);

q(k)=(q(k)-e(k-1)) + e(k);

end

p, min(q)

end

disp(’Matlab eig’)

q=ones(1,n); e=65536*ones(1,n-1);

R=diag(q)+diag(sqrt(e),1); B=R’*R;

min(eig(B))

7.8.4 Improving Convergence Using Shifts

Rutishauser points out in [112] that e
(j)
k → 0 linearly for j → ∞ with

e
(j)
k = O

([
λk+1

λk

]j)
,

and therefore

q
(j)
k = λk +O(sj), with s = max

(∣∣∣∣λk+1

λk

∣∣∣∣ ,
∣∣∣∣ λk

λk−1

∣∣∣∣
)
,

where we define λ0 = ∞ and λn+1 = 0. As a result, convergence can be very
slow if two eigenvalues lie close together, just like with the unshifted QR
algorithm. To accelerate convergence, let us consider the following modified
progressive QD step, where a shift v has been introduced:
ProgressiveQDStepShifted 8

e′
0 = 0
for k = 1 : n− 1

q′
k = ((qk − e′

k−1)− v) + ek
e′
k = ek(qk+1/q

′
k);

end
q′
n = (qn − e′

n−1)− v

The new QD elements are associated with the matrix

T ′ =

⎛
⎜⎜⎜⎜⎝

q′
1 1

e′
1q

′
1 q′

2 + e′
1

. . .

. . .
. . . 1

e′
n−1q

′
n−1 q′

n + e′
n−1

⎞
⎟⎟⎟⎟⎠ ,

8denoted qds in [31]

QD Algorithm 475

see (7.51). Expressing the diagonal of T ′ by q′
k + e′

k−1 = qk + ek − v and
noting that e′

kq
′
k = ekqk+1, we obtain after comparing with (7.52)

T ′ =

⎛
⎜⎜⎜⎜⎝

q1 + e1 − v 1

e1q2 q2 + e2 − v
. . .

. . .
. . .

en−1qn qn − v

⎞
⎟⎟⎟⎟⎠ = T̂ − vI.

Thus, the eigenvalues of matrix T ′ are those of matrix T̂ (and also those of
T) shifted by v.

We now consider the shifted version of the orthogonal QD step. Since
A is assumed to be positive definite here, it makes sense to consider only
positive shifts, i.e., v = τ2, which has the effect of shifting the spectrum of
A closer to zero. In the orthogonal QD Algorithm, this means modifying the
statements involving the diagonal elements â and ã:

OrthogonalQDStepShifted9

ã = a1;

for k = 1 : n− 1

âk =
√

ã2 + b2k − τ2;

b̂k = bk (ak+1/âk);

ã =
√
ã2 − τ2 (ak+1/âk);

end

ân =
√
ã2 − τ2;

To keep R̂ real, the shift must satisfy τ2 ≤ λmin(R
�R) or τ ≤ σn(R). This

constraint is not necessary for DifferentialQDStep and ProgressiveQDStep

when introducing shifts. By defining d = dk = ã2k − τ2, an addition can be
saved in the algorithm

DifferentialQDStepShifted 10

d = q1 − τ2;
for k = 1 : n− 1

q̂k = d+ ek;
êk = ek(qk+1/q̂k);
d = d(qk+1/q̂k)− τ2;

end
q̂n = d;

The choice of appropriate shifts is crucial and not easy. In order to preserve
positive definiteness, the condition v = τ2 ≤ λmin(B

�B) must be guaranteed,
see [112].

9oqds in [31]
10dqds in [31]

476 EIGENVALUE PROBLEMS

Example 7.5. We perform here an experiment comparing the progressive
QD Algorithm with shifts to the differential QD Algorithm with shifts. We
choose as shifts s = qn. It turns out that for the symmetric tridiagonal
matrix with diagonal −2 and off-diagonal 1, we get convergence, with qn → 0.
Deflation is possible if qn is small compared to the sum of the shifts: if qn = 0,
then the sum of the shifts is an approximation of an eigenvalue.

This algorithm is not stable since the QD lines do not remain positive and
the eigenvalues are approximated by a sum containing positive and negative
terms. Cancellation is very likely to occur.

First we perform progressive QD steps using Algorithm 7.17.

Algorithm 7.17. Progressive QD step shifted

function [q1,e1]=ProgressiveQDStepShifted(n,q,e,s)

% PROGERSSIVEQDSTEPSHIFTED progressive qd-step with shift

% [q1,e1]=ProgressiveQDStepShifted(n,q,e,s) computes a progressive

% qd-step with shift s for the given qd-line q, e. The new qd-line

% is q1, e1.

e(n)=0;

q(1)=q(1)+e(1)-s;

for k=2:n,

e(k-1)=(e(k-1)/q(k-1))*q(k);

q(k)=(q(k)-e(k-1))+e(k) -s;

end

q1=q(1:n); e1=e(1:n);

In the following program, we define for n = 200 the (1,−2, 1) tridiagonal
matrix and compute the exact eigenvalues. Then we apply progressive QD
steps to compute the eigenvalues:

Algorithm 7.18.
Experiment: Progressive QD versus Differential QD

n=200

a=-2*ones(1,n); b=ones(1,n-1); % define tridiagonal symmetric

% matrix

B=diag(a)+diag(b,1)+diag(b,-1);

exakt=sort(-4*sin([1:n]’*pi/2/(n+1)).^2); % exact eigenvalues

[q,e]=QDLineSymmetric(a,b); % compute qd-line

lam=0; ew=[]; it=0; ss=[];

while n>0,

s=q(n);

ss=[ss s];

lam=lam+s;

% [q,e]=ProgressiveQDStepShifted(n,q,e,s);% choose here a step

[q,e]=DifferentialQDStepShifted(n,q,e,s);

QD Algorithm 477

if lam+q(n)==lam % deflation

ew=[ew;lam]; % store eigenvalue

n=n-1;

end

it=it+1;

end

it % total iterations

norm(sort(ew)-exakt)/norm(exakt) % relative error of computed

% eigenvalues

[min(ss) max(ss)] % smallest and largest shift

We obtain the results

n =

200

it =

792

ans =

1.2213e-10

ans =

-1.0050 0.5488

In this example, ProgressiveQDStepShifted produces only about 10 cor-
rect decimal digits, using approximately 4 QD iterations per eigenvalue. The
shifts were in the range [−1.0050, 0.5488], which means that cancellation has
occurred.

If we comment out the call to the progressive QD step with shift s in
Algorithm 7.18 and replace it by the differential QD step with shifts (thus
calling Algorithm 7.19),

Algorithm 7.19. Differential QD step shifted

function [q1,e1]=DifferentialQDStepShifted(n,q,e,s)

% DIFFERENTIALQDSTEPSHIFTED computes one differential qd-step with shift

% [q1,e1]=DifferentialQDStepShifted(n,q,e,s) computes one

% differential qd-step with shift s for the qd-line q, e. The new

% qd-line is q1, e1.

d=q(1)-s;

for k=1:n-1

q(k)=d+e(k);

h=q(k+1)/q(k);

e(k)=e(k)*h;

d=d*h-s;

end

q(n)=d;

q1=q; e1=e;

478 EIGENVALUE PROBLEMS

we get better results (about 14 correct decimal digits), even though the shifts
also have both signs:

n =

200

it =

799

ans =

6.2047e-14

ans =

-1.0050 0.8174

7.8.5 Connection to Orthogonal Decompositions

Fernando and Parlett observe in their paper [31] that an analogue of the
orthogonal connection

R� = QR̂

is missing for the algorithms with shifts. They propose therefore to compute
a 2n× 2n orthogonal matrix Q such that

RR� = R̂�R̂+ τ2I ⇐⇒ Q�
(
R�

0

)
=

(
R̂

τI

)
. (7.59)

They add: “Moreover Q may be built up by well chosen plane rotations”.
Urs von Matt describes in [144] how these “well chosen plane rotations”

should be constructed. For this purpose, we need generalized Givens trans-
formations, which are Givens rotations of the form

G =

(
c s
−s c

)
, s = sinα, c = cosα,

where the rotation angle α is chosen in such a way that

G�
(
x1

x2

)
=

(
r

σ

)

with given x1, x2 and σ (of course we must have |σ| ≤√x2
1 + x2

2, otherwise
the transformation does not exist). Solving the linear equations

> solve({c*x[1]-s*x[2]=r, s*x[1]+c*x[2]=sigma},{s,c});

we get {
c =

x2σ + rx1

x1
2 + x2

2
, s = −−x1σ + x2r

x1
2 + x2

2

}

Algorithm 7.20 avoids again overflow by appropriately factoring:

QD Algorithm 479

Algorithm 7.20. Generalized Givens Rotation

function [c,s,y]=GeneralizedGivensRotation(x,sig);

% GENERALIZEDGIVENSROTATION computes a generalized Givens rotation

% [c,s,y]=GeneralizedGivensRotation(x,sig); computes for the given

% number x(1), x(2) and sig a generalized Givens rotation to obtain

% G’x = y = [r, sig]’

scale=max(abs(x));

if scale==0,

c=1; s=0;

else

x=x/scale; sig=sig/scale;

norm2=norm(x);

r=(norm2-sig)*(norm2+sig);

if r<0, error(’rotation does not exists’); end

r=sqrt(r); norm2=norm2^2;

s=([sig -r]*x)/norm2;

c=([r sig]*x)/norm2;

y=[scale*r; sig];

end

This generalized Givens rotation allows us to compute the LR step with shift
of (7.59). We now show how to construct step-by-step an orthogonal matrix
Q to transform

Q�
(
R�

0

)
=

(
R̂√
sI

)
.

First, we use a generalized Givens rotation (acting on the two elements
marked in boldface) to introduce σ =

√
s in the (n+1, 1)-position. Next, we

annihilate the element b1 with an ordinary Givens rotation, introducing b̂1
as fill-in and overwriting a′

1:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

b1 a2
b2 a3

. . .
. . .

0
0

0
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a′
1

b1 ã2
b2 a3

. . .
. . .

σ
0

0
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

â1 b̂1
0 a2

b2 a3
. . .

. . .

σ
0

0
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is now clear how to repeat these two steps with the rest of the matrix. The
transformation is computed with Algorithm 7.21:

480 EIGENVALUE PROBLEMS

Algorithm 7.21. Orthogonal LR Step with Shift

function [aa,bb]=OrthogonalLRStepShifted(a,b,s)

% ORTHOGONALLRSTEPSHIFTED computes one orthogonal qd step with shift

% [aa,bb]=OrthogonalLRStepShifted(a,b,s) computes the LR-step

% R*R^T=Rt^T*Rt+s*I with R=diag(a)+diag(b,1) and shift s>0. The

% result is Rt=diag(aa)+diag(bb)

n=length(a);

sig=sqrt(s);

for k=1:n-1

[si,co,y]=GeneralizedGivensRotation([a(k);0], sig);

a(k)=y(1);

[co,si]=GivensRotation(a(k),b(k));

a(k)=co*a(k)-si*b(k);

b(k)=-si*a(k+1);

a(k+1)=co*a(k+1);

end

[si,co,y]=GeneralizedGivensRotation([a(n);0],sig);

a(n)=y(1);

aa=a; bb=b;

In the following example, we will compare the computation of one LR step
with the three methods: (1) direct matrix operations, (2) using von Matt’s
generalized Givens rotations and (3) using Algorithm 7.22, the orthogonal
QD Algorithm with shift.

Algorithm 7.22. Orthogonal QD step with shift

function [aa,bb]=OrthogonalQDStepShifted(a,b,s)

% ORTHOGONALQDSTEPSHIFTED computes one orthogonal QD step with shift

% [aa,bb]=OrthogonalQDStepShifted(a,b,s) computes the LR-step

% R*R^T=Rt^T*Rt+s*I with R = diag(a)+diag(b,1) and shift s>0. The

% result is Rt=diag(aa)+diag(bb)

n=length(a);

sig=sqrt(s);

for k=1:n-1

[si,co,y]=GeneralizedGivensRotation([a(k);0], sig);

a(k)=y(1);

[co,si]=GivensRotation(a(k),b(k));

a(k)=co*a(k)-si*b(k);

b(k)=-si*a(k+1);

a(k+1)=co*a(k+1);

end

[si,co,y]=GeneralizedGivensRotation([a(n);0],sig);

a(n)=y(1);

aa=a; bb=b;

QD Algorithm 481

Example 7.6. We consider again the matrix A given in (7.56) and used
in Example 7.3:

Algorithm 7.23.
Comparing Matrix QD step, Orthogonal LR Step and

Orthogonal QD step with Shifts

format long

n=7;

A=diag(4*ones(1,n))+diag(ones(1,n-1),1)+diag(ones(1,n-1),-1)

s=2;

R=chol(A); a=diag(R); b=diag(R,1); % qd-step with shift s

R1=chol(R*R’-s*eye(size(R))); % as matrix operation

a1=diag(R1);

b1=diag(R1,1);

[a2,b2]=OrthogonalLRStepShifted(a,b,s);

[a3,b3]=OrthogonalQDStepShifted(a,b,s);

[a1,a2,a3]

[b1,b2,b3]

A =

4 1 0 0 0 0 0

1 4 1 0 0 0 0

0 1 4 1 0 0 0

0 0 1 4 1 0 0

0 0 0 1 4 1 0

0 0 0 0 1 4 1

0 0 0 0 0 1 4

ans =

1.500000000000000 1.500000000000000 1.500000000000000

1.264911064067352 1.264911064067352 1.264911064067352

1.174294790062638 1.174294790062637 1.174294790062637

1.129219566043900 1.129219566043900 1.129219566043900

1.102630728275509 1.102630728275509 1.102630728275510

1.085124133798125 1.085124133798124 1.085124133798125

0.939569046115558 0.939569046115557 0.939569046115557

ans =

0.645497224367903 0.645497224367903 0.645497224367903

0.788810637746615 0.788810637746615 0.788810637746615

0.851439142005194 0.851439142005194 0.851439142005194

0.885557232074404 0.885557232074404 0.885557232074404

0.906921195399565 0.906921195399565 0.906921195399564

0.921553497750770 0.921553497750770 0.921553497750769

We see that for this example the results are the same.

482 EIGENVALUE PROBLEMS

7.9 Problems

Problem 7.1.

1. The Hilbert Matrix H has as elements hij =
1

i+j−1 , i, j = 1, . . . , n.

Prove that the Hilbert Matrix is positive definite.

Hint: Use the representation hij =
1∫
0

ti−1tj−1 dt and the definition of

positive definiteness!

2. The eigenvalues of symmetric positive definite matrices are all greater
than zero.

Prove this by considering the eigen-decomposition A = QDQ�, with Q
orthogonal and D diagonal.

3. The singular values of a matrix A can be defined as the square-roots of
the eigenvalues of A�A:

σk(A) =
√
λk(A�A).

Prove that for symmetric positive definite matrices the singular values
are equal to the eigenvalues.

4. Finally check the results above by computing the eigenvalues and singu-
lar values on the computer.

(a) use the function hilb to generate the Hilbert matrix of order n =
30.

(b) compute, compare and comment the results you get when applying
the Matlab function eig and svd and our functions Jacobi and
SVDGolubReinsch. Compute for comparison the exact eigenvalues
using Maple and Digits:=60.

Problem 7.2. (Unreduced matrices have simple eigenvalues)

Let T be a symmetric tridiagonal matrix that is unreduced, i.e., ti,i−1 	= 0
for i = 2, . . . , n. Show that T has simple eigenvalues.

Hint: Let λ be an eigenvalue of A. Show that the first n− 1 columns of the
matrix A − λI are linearly independent, and conclude that λ has geometric
multiplicity 1. Why is the symmetry assumption important?

Problem 7.3.

Consider the function [V,D]=Jacobi1(A) (Algorithm 7.2), the first ver-
sion of the algorithm of Jacobi.

1. Modify this function by choosing the largest element |apq| of the matrix
in each step to maximize the decay of the off-diagonal elements.

Problems 483

2. Compute Sk (the deviation of Ak from the diagonal matrix) with both
functions for the following matrix A:

A =

⎛
⎜⎜⎜⎜⎜⎝

0 1 2 . . . n
1 0 1 . . . n− 1
2 1 0 . . . n− 2
...

...
...

. . .
...

n n− 1 n− 2 . . . 0

⎞
⎟⎟⎟⎟⎟⎠ .

For each n = 5, 10, 20, plot on the same figure the deviations Sk ver-
sus the number of steps (i.e., number of Jacobi rotations) k for both
functions. Compare the performance of both methods.

Hints: Use the functions max and semilogy. To generate the matrix A, use
the function gallery(’fiedler’,n).

Problem 7.4. Program a reduction to Hessenberg form using House-
holder transformations.

An elementary Householder matrix is a matrix of the form

P = I − vv�

with ‖v‖ =
√
2. The matrix P is symmetric, orthogonal and has the prop-

erties Pv = −v and Px = x for any x ⊥ v. Thus P is a reflection at the
hyperplane v�x = 0.

Such matrices can be used for solving the following problem: Given a
vector x, find an orthogonal matrix P such that Px = σe1.

The Householder transformations P�AP therefore seem to be a good
method to zero out all the required elements and because they are orthogo-
nal, they will preserve the eigenvalues of our matrix A.

Implement this process in Matlab. Your function should return the ma-
trix H in the Hessenberg form and the orthogonal matrix Q such that

Q�AQ = H.

Try to save as much time and space as possible.
Hints: The original matrix can be overwritten during the process. Avoid

matrix by matrix multiplication whenever possible.)

Problem 7.5. Prove the 3 basic facts mentioned in Subsection 7.6.3:

1. Bk+1 = Q�
kBkQk.

2. Bk+1 = P�
k B1Pk where Pk := Q1 · · ·Qk.

3. If Sk = Rk · · ·R1 then the QR Decomposition of the matrix
∏k

i=1(B1−
σiI) is PkSk.

484 EIGENVALUE PROBLEMS

Problem 7.6. (Vector iteration/Power method) Compute for
A =magic(6) and v0 = e1 the sequences

w = Avk−1, vk =
w

‖w‖ , λk−1 = (vk−1)
�Avk−1

Observe the convergence and compare the result with [V,D] = eig(A).

Problem 7.7. (Inverse Iteration/Shift-and-Invert) Suppose we
would like to compute the eigenvalue of A =magic(6) that is close to μ = 10.
To do so, apply vector iteration to the matrix B = (A− μI)−1.

What is the connection between the eigenvalues and eigenvectors of the
matrices A and B? Watch the convergence for the vector iteration with B.

Problem 7.8. (QR Method without Shifts) Perform QR iterations
with the matrix A =magic(6):

Ai = QiRi, Ai+1 = RiQi.

Print after every iteration the matrices Ri and Qi. What do you see? Is the
process convergent?

Problem 7.9. Modify the Matlab function d=ImplicitQR(a,b) and
write a new function [d,V]=ImplicitQRVec(a,b,eivec) so that it computes
for eivec=1 also the eigenvectors of the symmetric tridiagonal matrix T .

Problem 7.10. Write a main program and compute the eigenvalues D
and vectors V of the Rosser matrix (see help rosser and A=rosser) and
the matrix A=hadamard(8) (see also help hadamard). Compare the results
of

1. eig, the built in function of Matlab,

2. Jacobi, our translation of Rutishauser’s ALGOL program, and

3. Reduction to tridiagonal form by Tridiagonalize followed by a call to
ImplicitQRvec.

Compute for each method the diffenrence ‖V DV� −A‖ and print the eigen-
values using format long e.

Problem 7.11. The SVD is the best numerical tool to determine the
rank of a matrix.

1. Compute the SVD of A = magic(20).

(a) Find “the gap” and reconstruct A as matrix of lower rank Ã.

(b) Check that round(Ã) should be equal to A.

2. Compute the rank of the matrix magic(21)

Problems 485

Problem 7.12. (Rank determination by the determinant?)

There is a famous example by W. Kahan:

A1 =

⎛
⎜⎜⎜⎜⎝

1 −1 · · · −1

0 1
. . .

...
...

. . .
. . . −1

0 · · · 0 1

⎞
⎟⎟⎟⎟⎠

1. Compute the determinant, the singular values, the condition number,
and the rank of A for n = 50 and interpret the results.

2. Change the minus signs in the definition of A1 to plus signs and do the
computations again with this new matrix B.

3. Compute low rank approximations of A and B by setting σi = 0 for
i = k, . . . , n.

Since the matrices have integer elements, you should round the low rank
approximation. For which k is the matrix correctly reproduced?

Problem 7.13. (Computing with Implicit Bidiagonalization)

With Algorithm 7.11, we bidiagonalize a matrix using Householder trans-
formations,

Pn · · ·P1AQ1 · · ·Qn−1 = B.

Since Pi = P�
i = P−1

i holds, we have

A = PBQ�, with P = P1 · · ·Pn, Q = Q1 · · ·Qn−1.

The matrices P and Q are not formed explicitly by [q,e,A]=Bidiagonalize

(A); they are only given implicitly by the stored Householder vectors with
which the matrix A has been overwritten.

Given vectors x ∈ R
n and y ∈ R

m, write 4 short Matlab functions to
compute after a call [q,e,A]=Bidiagonalize(A) the products

Py, P�y, Qx and Q�x.

For instance, with a function z=Py(A,y) which computes z = Py, you
could compute the matrix P explicitly by the statements:

E=eye(m); % compute P

P=[];

for k=1:n

y=E(:,k); z=Py(A,y); P=[P,z];

end

Problem 7.14. (Bidiagonalization with Golub-Kahan-Lanczos

Algorithm) We would like to bidiagonalize the matrix A ∈ R
m×n with

486 EIGENVALUE PROBLEMS

m ≥ n. In other words, we wish to find an orthogonal matrix P ∈ R
m×n, an

upper bidiagonal matrix B ∈ R
n×n and an orthogonal matrix Q ∈ R

n×n such
that A = PBQ� holds.

Consider for that the ansatz

AQ = PB, A�P = QB�, with Q = [q1, . . . ,qn] and P = [p1, . . . ,pn].

Given some unit vector q1 we compute

Step 1: AQe1 = PBe1 ⇐⇒ Aq1 = p1a1

Thus: u := Aq1, a1 := ‖u‖, p1 := u/a1.

Step 2: A�p1 = QB�e1 = a1q1 + b1q2

Thus u := A�p1 − a1q1, b1 := ‖u‖, q2 := u/b1.

Step k+ 1: Assume that we know

Qk=[q1, . . . ,qk]Pk=[p1, . . . ,pk] and Bk =

⎛
⎜⎜⎜⎜⎝

a1 b1
. . .

. . .

. . . bk−1

ak

⎞
⎟⎟⎟⎟⎠.

Then A�pk = QB�ek = akqk + bkqk+1 and

u := A�pk − akqk, bk := ‖u‖, qk+1 := u/bk.

Furthermore Aqk+1 = PBek+1 = bkpk + ak+1pk+1 thus

u := Aqk+1 − bkpk, ak+1 := ‖u‖, pk+1 := u/ak+1.

We have computed the new quantities

bk,qk+1, ak+1 and pk+1.

Write a Matlab function [a,b,P,Q]=Lanczos(A) which bidiagonal-
izes the matrix A. Compare it with Bidiagonalize by computing the
singular values of the resulting bidiagonal matrix. The bidiagonal ma-
trices are not unique!

Problem 7.15. Implement a Matlab program GivensRotation1.m

which computes for a given vector of length two the Givens rotation which
zeroes out the first element, see the end of Subsection 7.7.5.

Chapter 8. Differentiation

Es bezeichne u den Wert der gesuchten Funktion in einem
Netzpunkt und u1, u2, u3, u4 die Werte in den vier benachbarten
Netzpunkten, und es sei ferner die Seite einer Masche gleich h, so
wird die Differenzengleichung die Form annehmen1

u1 + u2 + u3 + u4 − 4u = h
2 · C.

C. Runge, Über eine Methode die partielle Differentialgleichung Δu =
Constans numerisch zu integrieren, Zeitschrift für Mathematik und
Physik, Vol. 56, page 226

Many algebraic computer languages now include facilities for the
evaluation of functions of a complex variable. Such facilities can be
effectively used for numerical differentiation. [...] Since this method
is based on numerical quadrature, it does not show the sensitivity
to roundoff error in the function evaluations that is characteristic
of finite difference methods.

J. N. Lyness and C. B. Moler, Numerical Differentiation of Analytic
Functions, SIAM J. Numer. Anal. Vol 4, No. 2, 1967.

Algorithmic, or automatic, differentiation (AD) is concerned with
the accurate and efficient evaluation of derivatives for functions
defined by computer programs. No truncation errors are incurred,
and the resulting numerical derivative values can be used for all
scientific computations that are based on linear, quadratic, or even
higher order approximations to nonlinear scalar or vector functions.

Andreas Griewank, Evaluating Derivatives - Principles and Techniques
of Algorithmic Differentiation, SIAM 2000.

Prerequisites: Notions from polynomial interpolation (§4.2) and extrapola-
tion (§4.2.8) are required. For §8.3, we use the methods of bisection (§5.2.1)
and Newton (§5.2.5), whereas for §8.3.4, Chapter 7 is needed.

In many applications, one needs to compute the derivative of some given
function f(x). If the function is an algebraic expression, then it is possi-
ble to evaluate f ′(x) analytically using differential calculus. Often, however,
the function f and its derivative may be complicated or expensive to eval-
uate. For instance, the function may be given only as a table of values, so
its derivative is not readily available. In other cases, the function f may
be the output of a simulation, so that every function evaluation is in fact a

1Let u be the value of the solution sought in a gridpoint, and let u1, u2, u3, u4 be the values
at the four neighboring gridpoints, and let h denote the mesh size, then the difference equation
will be of the form

W. Gander et al., Scientific Computing - An Introduction using Maple and MATLAB,

Texts in Computational Science and Engineering 11,
DOI 10.1007/978-3-319-04325-8 8,

© Springer International Publishing Switzerland 2014

488 DIFFERENTIATION

run of a larger program. Moreover, it is no longer obvious how one should
calculate f ′(x). The most important application of derivative approxima-
tion is, however, the numerical solution of ordinary and partial differential
equations. We start this chapter with the historically important example of
the Brachystochrone in Section 8.1. There, we give a glimpse of variational
calculus, and show how one can start from a concrete minimization problem
in integral form and obtain a differential equation, which we then solve us-
ing approximations of the derivatives. In Section 8.2, we formally introduce
finite difference approximations of derivatives, and show how one can eas-
ily generate such approximations using Maple, also for partial differential
operators. A very different approach for obtaining derivatives, namely algo-
rithmic differentiation, is explained in Section 8.3. We conclude this chapter
with two interesting examples that use algorithmic differentiation: the first
one is about circular billiards, whereas the second is about nonlinear eigen-
value problems.

8.1 Introductory Example

We start with the historical example of the Brachystochrone problem, which
was posed in 1696 by Johann Bernoulli to his brother Jacob and the world:
given two fixed points A and B in a vertical plane, find the curve from A
to B such that a body gliding along it solely under the influence of gravity
travels from A to B in the shortest possible time2, see Figure 8.1. Galileo

A

Bdx

dy
ds

x

y

a b

Figure 8.1. The Brachystochrone Problem

Galilei already knew in 1638 that the shortest path, namely the straight line
between A and B, is not the fastest; his guess was that a circle would be the
best solution, but this is incorrect.

We now present the historical formulation provided to de l’Hôpital, who
admitted in a letter to Johann Bernoulli that he needed a pure mathematics

2 In Latin: Datis in plano verticali duobus punctis A & B, assignare Mobili M viam
AMB, per quam gravitate sua descendens, & moveri incipiens a puncto A, brevissimo
tempore perveniat ad alterum punctum B.

Introductory Example 489

formulation in order to be able to understand this problem. Since the velocity
v of a free falling body satisfies v =

√
2gy (from Galileo Galilei, where g is the

constant of gravitation), the time for traveling along a small arc of length ds
is dJ = ds

v
= ds√

2gy
. We therefore have to find a function y(x) with y(a) = A,

y(b) = B such that the integral

J =

∫ b

a

√
dx2 + dy2√

2gy
=

∫ b

a

√
1 + p2√
2gy

dx (8.1)

is minimized, where p := dy
dx and we have used Pythagoras to compute ds,

see Figure 8.1. The solution is therefore obtained by solving an optimization
(minimization) problem, which could be solved by techniques from Chapter
12. Euler showed in 1744, however, that the solution of such a variational
minimization problem also satisfies a differential equation. He obtained his
result by discretization, but it was Lagrange, who provided in a letter to Euler
in 1755, the formalism we are used to today: we add to y(x) a fixed function
δy(x) with δy(a) = δy(b) = 0 (since the endpoints are fixed), multiplied by
ε, and insert the result into (8.1).3 This integral must be minimal for all

functions δy(x) at ε = 0, i.e. setting Z(x, y, p) :=

√
1+p2

√
2gy

, the derivative of

J(ε) =

∫ b

a

Z(x, y + εδy, p + εδp) dx (8.2)

with respect to ε must be zero at ε = 0. We can now simply compute
the derivative. Denoting by N(x, y, p) := ∂yZ(x, y, p) and P (x, y, p) :=
∂pZ(x, y, p) the partial derivatives that appear, we obtain

∂J(ε)

∂ε
|ε=0 =

∫ b

a

(N · δy + P · δp) dx = 0. (8.3)

Since δp is the derivative of δy, we can integrate by parts and obtain∫ b

a

(N − ∂xP) · δy · dx = 0, (8.4)

where the end point contributions vanish because δy(a) = δy(b) = 0. Since δy
is arbitrary, we conclude that the solution y(x) of our problem must satisfy4

∂yZ(x, y, y′)− ∂x∂pZ(x, y, y′) = 0, y(a) = A, y(b) = B. (8.5)

We now derive the differential equation corresponding to the Brachystochrone
problem using Maple:

3It took Euler 20 years to introduce this ε in order to explain the method to others.
4This last step, an immediate consequence for the young discoverer Lagrange, later

caused the greatest difficulties and needs a certain care.

490 DIFFERENTIATION

Algorithm 8.1.
Derivation of the Brachystochrone Equation

Z:=sqrt(1+p^2)/(sqrt(2*g*y));

N:=diff(Z,y);

P:=diff(Z,p);

P:=subs({p=p(x),y=y(x)},P);

N:=subs({p=p(x),y=y(x)},N);

de:=factor(N-diff(P,x));

de:=subs({p(x)=diff(y(x),x),diff(p(x),x)=diff(y(x),x,x)},de);

and we obtain the differential equation

de := −1/4

√
2g
(
1 +
(

d
dx
y (x)

)2
+ 2

(
d2

dx2 y (x)
)
y (x)

)
(gy (x))

3/2
(
1 +
(

d
dx
y (x)

)2)3/2 = 0. (8.6)

Maple cannot currently solve this differential equation with the given bound-
ary conditions using the command

> dsolve({de,y(a)=A,y(b)=B},y(x));

only an empty result is returned. Despite this, it is possible to obtain generic
solution formulas without the boundary conditions using the command

> dsolve(de,y(x));

{
−
√

− (y (x))2 + y (x) C1+1/2 C1 arctan

(
y(x)−1/2 C1√

−(y(x))2+y(x) C1

)
−x − C2=0

}
,{√

− (y (x))2 + y (x) C1−1/2 C1 arctan

(
y(x)−1/2 C1√

−(y(x))2+y(x) C1

)
−x − C2=0

}
.

These implicit solutions have been known since the challenge of Johann
Bernoulli.

Unfortunately, differential equations of the form (8.6) in general cannot
be solved in closed form, especially if the problem is posed in more than
one dimension, so one has to resort to numerical approximations. This is
the most important area where numerical approximations for derivatives are
needed: for the solution of partial differential equations and boundary value
problems. There are many well-established methods, such as the finite dif-
ference method, the finite volume method, the finite element method and
also spectral methods. Explaining all these approaches would fill more than
another textbook: the finite element method, for example, goes back to the
variational minimization problem, and there are several textbooks devoted
entirely to it, see for instance [133, 73, 10]. In this chapter, we focus mainly
on finite differences for approximating derivatives.

To solve the Brachystochrone problem approximately, we look for a dis-
crete approximate solution yi ≈ y(xi) at the grid points xi = ih, i =

Finite Differences 491

1, 2, . . . , n, where h = (b − a)/(n + 1). Following the quote of Runge at
the beginning of this chapter, we replace the derivatives in the numerator of
the differential equation (8.6) by finite differences, see Section 8.2, and obtain
for i = 1, 2, . . . , n the difference equation

1+

(
yi+1 − yi−1

2h

)2

+2
yi+1 − 2yi + yi−1

h2
yi = 0, y0 = A, yn+1 = B. (8.7)

This nonlinear system of equations can be solved using any of the methods
described in Chapter 5. For example using a simple fixed point iteration, we
obtain in Matlab for a = 0, b = 1, and y(a) = 0

Algorithm 8.2.
Solution of the Brachystochrone Problem

n=20; h=1/(n+1); e=ones(n,1); x=(h:h:1-h)’;

D=spdiags([-e e],[-1 1],n,n)/2/h;

D2=spdiags([e -2*e e],[-1 0 1],n,n)/h^2;

B=1/2; bc=zeros(n,1); bc(end)=B;

y=B*x;

w=0.001;

for i=1:1000

r=e+(D*y+bc/2/h).^2+2*(D2*y+bc/h^2).*y;

y=y+w*r;

plot([0;x;1],-[0;y;B],’-o’);

drawnow

end;

The solution obtained is shown in Figure 8.2. As one can see, the fastest
path in this example even dips below the target B, so that the body can pick
up a lot of speed; the last part uphill is then traversed very rapidly.

The fixed point iteration we used is clearly not the best approach, as one
can see from the number of iterations needed and from the relaxation param-
eter w, which needs to be very small for the method to converge. In Problem
8.1, we solve the equation using Newton’s method; one can then determine
for which B the Brachystochrone becomes a monotonically decreasing curve.

8.2 Finite Differences

The derivative of a function f(x) is defined as the limit of a finite difference:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

Therefore, to compute an approximation of f ′ for some argument z, we could
use one-sided finite differences

f ′(z) ≈ f(z + h)− f(z)

h
or f ′(z) ≈ f(z)− f(z − h)

h
. (8.8)

492 DIFFERENTIATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

x

y

Figure 8.2.
Finite difference approximation of the Brachysthochrone

solution

These approximations compute the slope of the straight line through the two
points (z, f(z)) and (z ± h, f(z ± h)). Therefore we can only expect a good
approximation if the step size h is small. On the other hand, for small step
sizes of h, the result will be affected by cancellation because f(z) ≈ f(z±h),
as shown in Chapter 2. One should therefore not choose h smaller than
about

√
eps, where eps is the machine precision, see Figure 2.3. One way to

overcome this dilemma is to extrapolate the value (see Chapter 4, Example
4.6).

A different idea can be used when the function has an analytic contin-
uation into the complex plane (see the quote of Moler and Lyness at the
beginning of this chapter): in the example of f(z) = ez used in Figure 2.3
in Chapter 2, this is the case. Let us expand the function in a Taylor series
along the direction ih, i =

√−1,

f(z + ih) = f(z) + ihf ′(z)− h2

2!
f ′′(z)− ih2

3!
f ′′′(z) + (8.9)

The derivative of f at z can thus also be approximated by

f ′(z) ≈ Im(f(z + ih)/h),

and this approximation is even second order accurate. In addition, there are
no subtractions of numbers of similar size, and therefore no catastrophic can-
cellation can occur. We illustrate this with the following Matlab example:

format long;

h=10.^((0:-1:-15)’);

f=@(z) exp(z);

z=1;

fp=(f(z+h)-f(z))./h;

Finite Differences 493

fp2=imag(f(z+1i*h)./h);

[exp(z)-fp exp(z)-fp2]

This results in the table of errors of the finite difference formula and the
complex approximation formula

-1.952492442012559 0.430926541280203

-0.140560126414833 0.004528205018508

-0.013636827328035 0.000045304470618

-0.001359594073736 0.000000453046949

-0.000135918619438 0.000000004530470

-0.000013591453264 0.000000000045305

-0.000001358527480 0.000000000000453

-0.000000135505796 0.000000000000005

0.000000051011672 0

0.000000228647356 0

0.000002893182615 0

0.000011774966813 0

0.000011774966812 0

0.004896756275163 0

0.053746569358670 0

0.053746569358670 0

We clearly see that the finite difference formula has an error of O(h) up
to about h =

√
eps, and then the error increases again, while the complex

approximation formula has an error of O(h2) until reaching machine preci-
sion, and then zero. More examples can be found in [128]. The underlying
idea for the numerical differentiation of analytic functions goes back to [88],
where arbitrary orders of derivatives are approximated without the danger of
catastrophic cancellation.

We have seen in the above example that the finite difference formulas
(8.8) are only first order accurate. An obvious improvement to one-sided
formulas is to use the symmetric difference

f(z + h)− f(z − h)

2h
= f ′(z) +

f (3)(z)

6
h2 +

f (5)(z)

120
h4 + · · ·

which is the slope of the straight line through the neighboring points. This
approximation of the derivative is also used when computing (defective) spline
functions, see Figure 4.5 in Section 4.3.2.

An approximation for the second derivative f ′′(z) can be obtained by first
computing two values of the first derivative

f ′(z − h/2) ≈ f(z)− f(z − h)

h
and f ′(z + h/2) ≈ f(z + h)− f(z)

h
.

Now using the difference we get

f ′′(z) ≈ f ′(z + h/2)− f ′(z − h/2)

h
≈

f(z+h)−f(z)
h

− f(z)−f(z−h)
h

h
,

494 DIFFERENTIATION

the well-known approximation

f ′′(z) ≈ f(z + h)− 2f(z) + f(z − h)

h2
. (8.10)

It is however cumbersome to derive finite difference formulas manually this
way, and we show a more convenient approach in the next subsection.

8.2.1 Generating Finite Difference Approximations

In this section, we want to develop formulas for numerical differentiation
more systematically. Assume that we are given equidistant function values
with step size h = xk+1 − xk,

x · · · −h 0 h 2h · · ·
f(x) · · · f(−h) f(0) f(h) f(2h) · · · .

To compute approximations for the derivatives of f , we first compute an
interpolating polynomial Pn(z). Then we compute the derivatives of the
polynomial and use them as approximations for the derivatives of the function
f ,

P (k)
n (z) ≈ f (k)(z), k = 1, 2, . . . n.

We will compute the derivatives at some node z = xj = jh. The change of
variables x′ = x − jh is useful for computing the discretization error with
the Taylor expansion for x′ = 0. We obtain the following Maple procedure:

Algorithm 8.3.
Generating rules for numerical differentiation

FiniteDifferenceFormula:=proc(m,k,j)

computes for m+1 equidistant points -jh, ..., -h, 0, h, ...,(m-j)h

a finite difference approximation of the kth derivative evaluated

at x=0

local i, p, dp;

p:=interp([seq(i*h,i=-j..(m-j))],[seq(f(i*h),i=-j..(m-j))],x);

dp:=diff(p,x$k);

simplify(eval(dp,x=0));

end:

The well-known symmetric difference formula for the second derivative
(8.10) is computed by

> rule:=FiniteDifferenceFormula(2,2,1);

rule :=
f(−h)− 2 f(0) + f(h)

h2

To obtain the discretization error, we expand the difference

> err:=taylor((D@@2)(f)(0)-rule,h=0,8);

Finite Differences 495

This yields

err := −1/12
(
D(4)

)
(f) (0)h2 − 1

360

(
D(6)

)
(f) (0)h4 +O

(
h6
)
.

Thus, we conclude

f ′′(0) =
f(−h)− 2 f(0) + f(h)

h2
− 1

12
f (4)(0)h2 +O(h4).

It is now easy to reproduce the entire page 914 (Coefficients for Differen-
tiation) given in the classic book of tables Abramowitz-Stegun [1] by this
Maple procedure. To illustrate this, we compute for k = 2 (second deriva-
tive) and m = 4 (using 5 points) the coefficients for the approximation of the
second derivative at the first, second and middle nodes and expand the error
term

k:=2;

m:=4;

for j from 0 to m/2 do

rule:=FiniteDifferenceFormula(m,k,j);

err:=taylor(rule-(D@@k)(f)(0),h=0,m+3);

end do;

We obtain the following output, to which we have added the corresponding
stencil (the double circle indicates where the second derivative is computed
and below the grid points the weights are given for each node. They have to
be divided by 12h2).

rule := −1/12
−35 f (0) + 104 f (h)− 114 f (2h) + 56 f (3h)− 11 f (4h)

h2

err := (5/6
(
D(5)

)
(f) (0)h3 +

119

90

(
D(6)

)
(f) (0)h4 +O

(
h5
)
)

f ′′ 35 −104 114 −56 11 12h2

rule := 1/12
11 f (−h)− 20 f (0) + 6 f (h) + 4 f (2h)− f (3h)

h2

err := −1/12
(
D(5)

)
(f) (0) h3 − 19

360

(
D(6)

)
(f) (0)h4 +O

(
h5
)

f ′′ 11 −20 6 4 −1 12h2

496 DIFFERENTIATION

rule := 1/12
−f (−2h) + 16 f (−h)− 30 f (0) + 16 f (h)− f (2h)

h2

err := − 1

90

(
D(6)

)
(f) (0) h4 +O

(
h5
)

f ′′ −1 16 −30 16 −1 12h2

8.2.2 Discrete Operators for Partial Derivatives

The Laplacian operator in two space dimensions is defined as

Δu(x, y) =
∂2u

∂x2
+

∂2u

∂y2
.

For the discrete operator, we consider the function u on a grid with mesh
size h,

ujk := u(x0 + jh, y0 + kh).

If we approximate the second partial derivative with respect to x using (8.10),
we get

∂2u

∂x2
(x0, y0) =

1

h2
(u1,0 − 2u0,0 + u−1,0) +O(h2).

This centered approximation uses the point where the derivative is to be
computed and the two neighboring points to the left and right of it. One
often uses as graphical representation a stencil as shown in Figure 8.3.

-2 11
1
h2

Figure 8.3. Stencil for ∂2u
∂x2

By discretizing in the same way the second partial derivative with respect
to y, we obtain for the Laplacian

Δu(x0, y0) =
∂2u

∂x2
+

∂2u

∂y2
=

1

h2
(u1,0 + u−1,0 + u0,1 + u0,−1 − 4u0,0) +O(h2).

(8.11)

Finite Differences 497

1

1

-4 11
1
h2

Figure 8.4. Stencil for Δu(x, y) = ∂2u
∂x2 + ∂2u

∂y2

The corresponding stencil is displayed in Figure 8.4.

Next, we will discretize the operator with two second derivatives, ∂4u
∂x2∂y2 .

In order to compute the second derivative with respect to y using the approx-
imation (8.10), we need to know the partial second derivatives with respect
to x at the points (0, h), (0, 0) and (0,−h). We can approximate these values
again using (8.10):

∂2u

∂x2
(0, h) =

1

h2
(u−1,1 − 2u0,1 + u1,1) +O(h2), (8.12)

∂2u

∂x2
(0, 0) =

1

h2
(u−1,0 − 2u0,0 + u1,0) +O(h2), (8.13)

∂2u

∂x2
(0,−h) =

1

h2
(u−1,−1 − 2u0,−1 + u1,−1) +O(h2). (8.14)

Now, combining linearly the equations (8.12), (8.13) and (8.14) according to
(8.10), we obtain

∂4u

∂x2∂y2
=

1

h4
(u1,1 + u−1,1 + u1,−1 + u−1,−1

−2u1,0 − 2u−1,0 − 2u0,−1 − 2u0,1 + 4u0,0) +O(h2)

(8.15)

and the corresponding stencil is displayed in Figure 8.5.

-2

-2

4 -2-2

1 1

11

1
h4

Figure 8.5. Stencil for the operator ∂4u
∂x2∂y2

Note that the stencil matrix is computed by the outer product vv� for

v =

⎛
⎝ 1
−2
1

⎞
⎠ .

498 DIFFERENTIATION

For the operator ∂4u
∂x4 we will use 5 points. Using Algorithm 8.3, we get

with the call

rule:=FiniteDifferenceFormula(5,4,2);

err:=taylor(rule-(D@@4)(f)(0),h=0,10);

the expressions

rule:=
f (2h)− 4 f (h) + 6 f (0) + f (−2h)− 4 f (−h)

h4 ,

err:= (1/6
(
D(6)

)
(f) (0)h2 + 1

80

(
D(8)

)
(f) (0)h4 +O

(
h6
)
),

which means

∂4u

∂x4
(0, 0) =

1

h4
(u−2,0 − 4u−1,0 + 6u0,0 − 4u1,0 + u2,0) +O(h2). (8.16)

We are now ready to compute the biharmonic operator

Δ2u(x, y) =
∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+

∂4u

∂y4

by combining (8.16), its analogue for y and (8.15). We obtain

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+

∂4u

∂y4
=

1

h4
(20u0,0 − 8(u1,0 + u−1,0 + u0,1 + u0,−1)

+2(u1,1 + u−1,1 + u1,−1 + u−1,−1)

+u0,2 + u0,−2 + u2,0 + u−2,0) +O(h2).

(8.17)

The stencil for the biharmonic operator (8.17) is shown in Figure 8.6.

-8

-8

-8-8 20

2 2

22

1

1

11
1
h4

Figure 8.6.
Biharmonic operator: Δ2u(x, y) = ∂4u

∂x4 + 2 ∂4u
∂x2∂y2 + ∂4u

∂y4

This stencil for the biharmonic operator can also be obtained differently,
using the fact that the biharmonic operator is the Laplacian squared,

Δ2u = (
∂2

∂x2
+

∂2

∂y2
)2u =

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+

∂4u

∂y4
.

Algorithmic Differentiation 499

Thus, we can also compute the finite difference discretization of the bihar-
monic operator by computing the square of the finite difference stencil of the
Laplacian, i.e. the product of the stencil with itself:

× =

Proceeding similarly to the Kronecker product of matrices, one has to place
one times the entire stencil to the left, the right, at the top and below, and
subtract four times the stencil in the center, to obtain the stencil for the
biharmonic operator.

8.3 Algorithmic Differentiation

Algorithmic differentiation or automatic differentiation is a technique for
automatically augmenting computer programs, including very complex sim-
ulations, with statements for the computation of derivatives, also known as
sensitivities. A good reference for this technique is the book by Griewank
and Walther [58]. Software is available on the web-page www-unix.mcs.anl.
gov/autodiff/ADIFOR/.

8.3.1 Idea Behind Algorithmic Differentiation

The key idea is that the results of a computer program that performs nu-
merical computations are in fact functions of the input parameters. In order
to simplify our exposition, we assume that the program begins by reading a
value for the variable x and that, when the program terminates, the computed
quantities y1, y2, . . ., y10 are printed.

x−→ P

−→ y1
−→ y2
· · ·
−→ y10

Assume for a moment that the computer can represent all real numbers in
the range of computation [−realmax, realmax]. The results yi are functions
of x. Since the program P has to terminate in a finite number of steps and
the computer can only perform the 4 basic operations +,−,×, /, it is obvious

www-unix.mcs.anl.gov/autodiff/ADIFOR/
www-unix.mcs.anl.gov/autodiff/ADIFOR/

500 DIFFERENTIATION

that the results yi must be piecewise rational functions of x:

yi(x) = ri(x), i = 1, . . . , 10.

One can differentiate these functions ri piecewise, so the derivative exists
almost everywhere. The situation is essentially the same if we consider a
computer that computes only with a finite set of numbers, although in this
case, it is possible to have an interval of the rational function containing only
one single number.

We will show how we can compute derivatives of these piecewise rational
functions by algorithmic differentiation. There exist compilers, as well as
products for Matlab in Matlab Central, that compute these derivatives
without human intervention. We have to distinguish two cases:

1. The results yi of program P are also in theory rational functions of x.
In this case, algorithmic differentiation delivers the exact result.

2. The results yi are theoretically not rational functions of x, but are only
approximated (maybe very accurately) by rational functions. In this
case, one has to analyze how well the derivative of the rational function
approximates the correct derivative, and whether it can be used instead.

There are many problems for which the results are indeed rational functions of
the input variables. Thus, it already pays to study algorithmic differentiation
just for rational functions. In the second case, algorithmic differentiation is
often superior to other approximations and therefore also useful. Admittedly,
one has to be careful as we will show in the following example.

Example 8.1. We want to write a program that computes the exponential
function f(x) = ex in the interval [−0.1, 0.1]. Using the partial sum

g(x) = 1 +
x

1!
+

x2

2!
+

x3

3!
. (8.18)

We have the approximation error

|g(x)− ex| ≤ 4.25 · 10−6 for x ∈ [−0.1, 0.1],

which might be accurate enough for certain applications. If we compute the
derivative of the rational function (8.18), which is just a polynomial in our
example, we get

g′(x) = 1 +
x

1!
+

x2

2!
,

and hence for this derivative

|g′(x)− ex| ≤ 1.7 · 10−4 for x ∈ [−0.1, 0.1],

which may or may not be accurate enough, since we might want to have the
same precision as for the function value.

Algorithmic Differentiation 501

To better illustrate the relation between the exact derivative and the
derivative of the rational function, we consider a program that computes
the inverse function using a method for computing zeros. We are given the
function f and a value x. We are looking for a value y such that f(y) = x,
that is y = f−1(x). If we assume for simplicity that f is monotonically
increasing in [a, b] and if f(a) < x and f(b) > x, then we can solve the
equation with bisection (see Section 5.2.1).

Example 8.2. We compute the inverse function of x = f(y) = y+ey for
tol = 0.1 using Algorithm 5.1. We get an implementation of the LambertW
function:

Algorithm 8.4.
LambertW function computed with bisection

function y=LambertW(x)

% LAMBERTW implementation of the LambertW function

% y=LambertW(x) computes the solution of x=y+exp(y) using

% bisection

f=@(y) y+exp(y);

tol=1e-1;

a=-2; b=2;

y=(a+b)/2;

while (b-a)>tol,

if f(y)<x, a=y; else b=y; end;

y=(a+b)/2;

end;

The bisection is terminated in Algorithm LambertW when the interval becomes
smaller than tol= 0.1. We have deliberately chosen a large value for tol
in this example. When plotting the LambertW function, we notice that the
approximation g of the inverse function is piecewise constant, see Figure 8.7.
The plot was generated with the Matlab-statements:

x=[-2:0.01:2];

y=[];

for z=x

y=[y LambertW(z)];

end

plot(x,y)

Choosing tol smaller makes the intervals smaller (this is also the case
for the machine independent criterion) but the behavior remains the same.
Because the rational function approximating the LambertW function is piece-
wise constant, algorithmic differentiation would give us here g′(x) = 0, which
is completely incorrect. This is a situation where the piecewise rational func-
tion can approximate the desired function f−1(x) very well, but the derivative
has nothing to do with the exact derivative.

502 DIFFERENTIATION

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

y

x

Figure 8.7. LambertW function with bisection

If we choose another algorithm for computing the zero, the resulting func-
tion g may approximate the derivative much better. Let us study the approx-
imation we get when we apply Newton’s method instead of bisection. Here
we compute the sequence

yn+1 = yn − f(yn)− x

f ′(yn)
, n = 0, 1, 2, (8.19)

Every element yn of the sequence is a function of x; in addition, we assume
a constant initial guess, i.e., y0(x) = y0 = const. If we now differentiate the
recurrence (8.19), we obtain

y′
n+1 = y′

n − f ′(yn) (f ′(yn)y′
n − 1)− f ′′(yn)y′

n (f(yn)− x)

f ′(yn)2
,

or, after some simplifications,

y′
n+1 =

1

f ′(yn)
+

f ′′(yn)y′
n

f ′(yn)2
(f(yn)− x) . (8.20)

Thus, y′
n satisfies another recurrence, with initial guess y′

0 = 0. Now, as
n → ∞, we have yn → y, where y is the solution of f(y) = x, so that
y = f−1(x). Hence, (8.20) implies

lim
n→∞ y′

n =
1

f ′(y)
=

1

f ′ (f−1(x))
. (8.21)

Algorithmic Differentiation 503

The expression on the right hand side of (8.21) is indeed the derivative of the
inverse function, as we can verify by differentiating the identity

f
(
f−1(x)

)
= x.

We now consider the following function LambertW2 to compute the se-
quence (8.19) for Example 8.2. We denote the derivative f ′(x) = 1 + ex by
fs.

Algorithm 8.5.
LambertW function computed with Newton’s method

function y=LambertW2(x)

% LAMBERTW2 second implementation of the LambertW function

% y=LambertW2(x) computes the solution of x=y+exp(y) using

% Newton’s method

f=@(y) y+exp(y); fs=@(y) 1+exp(y);

tol=1e-12;

ya=1; yn=0;

while abs(ya-yn)>=tol

ya=yn;

yn=ya-(f(ya)-x)/fs(ya);

end

y=yn;

To differentiate algorithmically the function LambertW2 with respect to x, we
have to introduce new variables, e.g. yns for the quantity yn. Furthermore,
we need the function f ′′(x) = ex, which we will denote by fss. The differ-
entiated statement is inserted before the relating statement. Doing so we get
the function LambertW2P:

Algorithm 8.6.
Algorithmic differentiated LambertW function

function [yn,yns]=LambertW2P(x)

% LAMBERTW2P compute LambertW function and its derivative

% y=LambertW2P(x) computes the solution of x=y+exp(y) using

% Newton’s method, and also the derivative of the LambertW

% function using algorithmic differentiation

f=@(y) y+exp(y); fs=@(y) 1+exp(y); fss=@(y) exp(y);

tol=1e-6; % enough because of extra iteration

ya=1; yns=0; yn=0; % where Newton doubles accuracy

while abs(ya-yn)>=tol

yas=yns;ya=yn;

yns=yas-(fs(ya)*(fs(ya)*yas-1)-fss(ya)*yas*(f(ya)-x))/fs(ya)^2;

yn=ya-(f(ya)-x)/fs(ya);

504 DIFFERENTIATION

end

yas=yns;ya=yn; % one extra iteration

yns=yas-(fs(ya)*(fs(ya)*yas-1)-fss(ya)*yas*(f(ya)-x))/fs(ya)^2;

yn=ya-(f(ya)-x)/fs(ya);

Note that when the termination criterion is met and thus abs(ya-yn)<tol

holds, we use yn as the “limit value”. However, the value of the derivative
yns has been computed with the previous value of yn and, therefore, does
not have the same accuracy as yn. In order to achieve the same accuracy, it
is necessary to perform one more iteration step (rule of Joss [76]).

The following program computes the LambertW function and its deriva-
tive in two ways: by algorithmic differentiation and exactly by (8.21).

fs=@(x) 1+exp(x);

algdiff=[]; exact=[];

for x=-2:0.1:2

[y,ys]=LambertW2P(x);

algdiff=[algdiff; ys];

exact=[exact; 1/fs(LambertW2(x))];

end

norm(algdiff-exact)

ans =

3.2841e-16

We observe a perfect match of the values of the derivatives obtained by algo-
rithmic differentiation with the “exact” ones. This example shows that the
derivative of the rational function that approximates a non-rational function
may indeed deliver reasonable and useful results.

A technique related to algorithmic differentiation, which has already been
used a long time ago, is to compute derivatives by differentiating recurrence
relations. This technique has been used, for instance, to compute derivatives
of orthogonal polynomials defined by three-term recurrence relations (see
Section 5.3.7).

8.3.2 Rules for Algorithmic Differentiation

The following rules can be used to introduce algorithmic differentiation sys-
tematically into any program that computes a function of the input variables:

1. Introduce new variables for the derivatives

2. Differentiate every statement according to the usual rules of calculus

(u± v)′ = u′ ± v′,
(u · v)′ = u′v + v′u,(u

v

)′
=

u′v − v′u
v2

,

(u(v))
′

= u′(v) · v′.

Algorithmic Differentiation 505

For the standard functions, use the usual rules like:

(sin(u))
′
= cos(u) · u′,

if u > 0 then (abs(u))′ = u else (abs(u))′ = −u.

3. Insert the differentiated statement before the statement to be differen-
tiated.

Example 8.3. Evaluating a polynomial

P (x) = p1x
n−1 + p2x

n−2 + · · · pn−1x+ pn

using Horner’s scheme (see Section 5.3.3) is done using Algorithm 5.7:

y=0;

for i=1:n

y=y*x+p(i);

end

With algorithmic differentiation we get

ys=0; y=0;

for i=1:n

ys=ys*x+y;

y=y*x+p(i);

end

We see that with the modified program we compute the first and second row
of Horner’s scheme. As shown in Section 5.3, the variable ys is the exact
derivative P ′(x).

8.3.3 Example: Circular Billiard

We consider a circular billiard table and two balls located at the points P
and Q, see Figure 8.8. In which direction must the ball at point P be hit,
if it is to bounce off the boundary of the table exactly once and then hit
the other ball located at Q? This problem has been discussed in [44], see
also [28], where its solution is shown to be related to the caustic curves that
appear inside partially illuminated coffee mugs.

The problem does not depend on the size of the circle. Therefore, without
loss of generality, we may assume the radius of the table to be 1, i.e., we will
consider the unit circle. Also, the problem remains the same if we rotate the
table. Thus, we may assume that one ball (e.g. Q) is located on the x-axis.

The problem can now be stated as follows: In the unit circle, two arbitrary
points P = (px, py) and Q = (a, 0) are given. We are looking for a reflection
point X = (cosx, sin x) (see Figure 8.9) on the circumference of the circle,
such that a billiard ball traveling from P to X will hit Q after it bounces off

506 DIFFERENTIATION

P

Q

Figure 8.8. Billiard table

the edge. The problem is solved if we know the point X, which means that
we are looking for the angle x.

The condition that must be satisfied is that the two reflection angles are
equal, i.e., α1 = α2 in Figure 8.9. This is the case if the pointX is the bisector
of the angle QXP . Thus if, eXQ is the unit vector in the direction XQ, and
if eXP is defined similarly, then the direction of the bisector is given by the
sum eXQ + eXP . This vector must be orthogonal to the direction vector of
the tangent g,

r =

(
sin x

− cosx

)
.

Therefore we obtain for the angle x the equation

f(x) = (eXQ + eXP)
�r = 0. (8.22)

Using Maple, we can give an explicit expression for the function f :

xp1:=px-cos(x);

xp2:=py-sin(x);

lp:=sqrt((xp1)^2+(xp2)^2);

ep1:=xp1/lp; ep2:=xp2/lp; # unit vector XP

xq1:=a-cos(x);

xq2:=-sin(x);

lq:=sqrt((xq1)^2+(xq2)^2);

eq1:=xq1/lq; eq2:=xq2/lq; # unit vector XQ

f:=(ep1+eq1)*sin(x)-(ep2+eq2)*cos(x);

Algorithmic Differentiation 507

x

r

X

P

Q

2

1

α

α

x

g

py

pxa

Figure 8.9. Billiard problem

Maple computes the function:

f(x) :=

⎛
⎝ px − cosx√

(px − cosx)
2
+ (py − sin x)

2
+

a− cosx√
(a− cosx)

2
+ sin x2

⎞
⎠ sin x

−
⎛
⎝ py − sin x√

(px − cosx)
2
+ (py − sin x)

2
− sin x√

(a− cosx)
2
+ sin x2

⎞
⎠ cosx.

(8.23)

We want to solve the equation f(x) = 0 for the unknown angle x. This can
be done using Newton’s method (see Equation (5.24) in Chapter 5). For this
we need the derivative of f . The Maple statement diff(f,x) returns for f ′

the complicated expression

(
sin(x)√

(px−cos(x))2+(py−sin(x))2
− 1

2
(px− cos(x))(2 (px−cos(x)) sin(x)−2 (py−sin(x)) cos(x))

((px−cos(x))2+(py−sin(x))2)3/2
+

sin(x)√
(a−cos(x))2+(sin(x))2

− 1
2

(a−cos(x))(2 (a−cos(x)) sin(x)+2 sin(x) cos(x))

((a−cos(x))2+(sin(x))2)
3/2

)
sin(x)

+

(
px−cos(x)√

(px−cos(x))2+(py−sin(x))2
+ a−cos(x)√

(a−cos(x))2+(sin(x))2

)
cos(x)

508 DIFFERENTIATION

(
cos(x)√

(px−cos(x))2+(py−sin(x))2
+ 1

2
(py−sin(x))(2 (px−cos(x)) sin(x)−2 (py−sin(x)) cos(x))

((px−cos(x))2+(py−sin(x))2)
3/2

+ cos(x)√
(a−cos(x))2+(sin(x))2

− 1
2

sin(x)(2 (a−cos(x)) sin(x)+2 sin(x) cos(x))

((a−cos(x))2+(sin(x))2)
3/2

)
cos(x)

+

(
py−sin(x)√

(px−cos(x))2+(py−sin(x))2
− sin(x)√

(a−cos(x))2+(sin(x))2

)
sin(x).

Using these explicit expressions for the function f and the derivative f ′ to
compute a Newton iteration step is probably not the right way to go. A
much better approach here is to use algorithmic differentiation. Algorithm
8.7 contains the Matlab version of the Maple statements to compute the
function f . Using algorithmic differentiation, the newly added, differenti-
ated statements allow us to compute the function value and the derivative
simultaneously.

Algorithm 8.7.
Algorithmic differentiation of the Billiard function

function [f,fs]=BilliardFunction(x)

% BILLIARDFUNCTION evaluates the billiard function and its derivative

% [f,fs]=BilliardFunction(x) evaluates the billiard function and

% its derivative at x using algorithmic differentiation

global px py a

cs=-sin(x); c=cos(x);

ss=cos(x); s=sin(x);

xp1s=-cs; xp1=px-c;

xp2s=-ss; xp2=py-s;

xq1s=-cs; xq1=a-c;

xq2s=-ss; xq2=-s;

hs=(xp1*xp1s+xp2*xp2s)/sqrt(xp1^2+xp2^2); h=sqrt(xp1^2+xp2^2);

ep1s=(h*xp1s-xp1*hs)/h^2; ep1=xp1/h;

ep2s=(h*xp2s-xp2*hs)/h^2; ep2=xp2/h;

hs=(xq1*xq1s+xq2*xq2s)/sqrt(xq1^2+xq2^2); h=sqrt(xq1^2 + xq2^2);

eq1s=(h*xq1s-xq1*hs)/h^2; eq1=xq1/h;

eq2s=(h*xq2s-xq2*hs)/h^2; eq2=xq2/h;

fs=(ep1s+eq1s)*s+(ep1+eq1)*ss-(ep2s+eq2s)*c-(ep2+eq2)*cs;

f=(ep1+eq1)*s-(ep2+eq2)*c;

We can now use Newton’s algorithm to compute a zero of the function f .
With the ball positions P = (0.5, 0.5) and Q = (−0.6, 9) and the initial
approximation for the angle x = 0.8, we obtain with the following program
the reflection point X = (0.5913, 0.8064):

global px py a

px=0.5; py=0.5; a=-0.6; % ball positions

tol=1e-9; h=2*tol; x=0.8;

while abs(h)>tol

Algorithmic Differentiation 509

[y,ys]=BilliardFunction(x);

h=-y/ys; x=x+h; % Newton step

end

angle=x

X=[cos(x) sin(x)]

angle =

0.9381

X =

0.5913 0.8064

Using other starting values x0 for the angle, we get four solutions for the angle
x and the reflection point X = (X1,X2), which are displayed in Table 8.1.
The fact that we obtain four solutions can be explained by a transformation

x0 x X1 X2

0.8 0.9381 0.5913 0.8064
1.6 2.2748 -0.6473 0.7623
3.0 2.7510 -0.9247 0.3808
5.0 5.0317 0.3139 -0.9494

Table 8.1. Solutions for the billiard problem

of the billiard equation into a fourth degree polynomial equation, see Problem
8.7. The number of real roots can then be related to the caustic curve one
sees in a coffee mug, by imagining light rays entering the coffee mug from
above, reflected like a billiard ball off the wall of the coffee mug, and arriving
at the bottom of the mug. Moreover, the number of solutions are related to
the light intensity, see [28].

The trajectories corresponding to the four solutions are displayed in Fig-
ure 8.10.

8.3.4 Example: Nonlinear Eigenvalue Problems

In this section, we will give another application of algorithmic differentiation.
We follow the presentation given in [42]. Consider a matrix C(λ) whose
elements are functions of a parameter λ. In the case of an ordinary eigenvalue
problem, we have C(λ) = λI −A. A quadratic eigenvalue problem is defined
by

det(C(λ)) = 0, with C(λ) = λ2M + λH +K.

If det(M) 	= 0, it is possible to write an equivalent linear eigenvalue problem
as follows: det(C(λ)) = 0 means there exists a vector v 	= 0 such that

C(λ)v = λ2Mv + λHv +Kv = 0. (8.24)

Introducing the vector w := λv, we see that (8.24) has a non-zero solution if
and only if the system

Mw = λMv,

λMw = −λHv −Kv,

510 DIFFERENTIATION

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

 P

 Q

 R1 R2

 R3

 R4

Figure 8.10. Solutions for the billiard problem

has a non-zero solution; this leads to the equivalent generalized eigenvalue
problem with dimension 2n

det

([
M 0
0 K

]
− λ

[
0 M

−M −H

])
= 0. (8.25)

Instead of solving this equivalent linear eigenvalue problem, we will consider
an alternative approach, which computes the zeros of det(C(λ)) using a New-
ton iteration.

A good way to compute the determinant of a matrix is via its LU de-
composition (see Exercise 3.15 in Chapter 3). The idea is to decompose the
matrix C using Gaussian elimination, and then to compute the determinant
of the factors:

C = PLU =⇒ det(C) = det(P) det(L) det(U) = ±1

n∏
k=1

ukk,

since the determinant of the permutation matrix P is ±1 and the determinant
of the unit lower triangular matrix L is 1. Algorithm 8.8 computes the
determinant of a matrix:

Algorithmic Differentiation 511

Algorithm 8.8.
Computing a Determinant by Gaussian Elimination

function f=Determinant(C)

% DETERMINANT computes the determinant of a matrix

% f=Determinant(C) computes the determinant of C via

% LU-decomposition with partial pivoting

n=length(C);

f=1;

for i=1:n

[cmax,kmax]=max(abs(C(i:n,i)));

if cmax==0 % Matrix singular

error(’Matrix is singular’)

end

kmax=kmax+i-1;

if kmax~=i

h=C(i,:); C(i,:)=C(kmax,:); C(kmax,:)=h;

f=-f;

end

f=f*C(i,i); % elimination step

C(i+1:n,i)=C(i+1:n,i)/C(i,i);

C(i+1:n,i+1:n)=C(i+1:n,i+1:n)-C(i+1:n,i)*C(i,i+1:n);

end

We would like to use Newton’s method to compute the zeros of P (λ) =
det(C(λ)) = 0. For this, we need the derivative P ′(λ), which can be computed
by algorithmic differentiation as discussed before, i.e., by differentiating each
statement of the program that computes P (λ). For instance, the statement
that updates the determinant f=f*C(i,i); will be preceded by the statement
for the derivative, i.e.

fs=fs*C(i,i)+f*Cs(i,i); f=f*C(i,i);

where we used the variable Cs for the matrix C ′(λ) and fs for the derivative
of the determinant.

For larger matrices, however, there is the danger that the value of the de-
terminant over- or underflows. To avoid this, notice that Newton’s method
does not require the values f = det(C(λ)) and fs = d

dλ
det(C(λ)) individu-

ally; it is sufficient to compute the ratio

P (λ)

P ′(λ)
=

f

fs
.

Overflows can be reduced by working with the logarithm. Thus, instead
of computing f=f*C(i,i) we can compute lf=lf+log(C(i,i)). It is even
better to compute the derivative of the logarithm

lfs :=
d

dλ
log(f) =

fs

f
,

512 DIFFERENTIATION

which directly yields the inverse Newton correction.
Thus, instead of updating the logarithm lf = lf + log(cii), we directly

compute the derivative

lfs = lfs+
(cs)ii
cii

.

These considerations lead to Algorithm 8.9 below.

Algorithm 8.9.
Computing the Determinant and the Derivative

function ffs=DeriveDeterminant(C,Cs)

% DERIVEDETERMINANT Newton correction for Determinant root finding

% ffs=DeriveDeterminant(C,Cs) computes for the two given matrices

% C(lambda) and its derivative C’(lambda), lambda being a real

% parameter, the Newton correction ffs=f/fs for the determinant

% function f(C(lambda))=0.

n=length(C); lfs=0;

for i=1:n

[cmax,kmax]=max(abs(C(i:n,i)));

if cmax==0 % Matrix singular

error(’Matrix is singular’)

end

kmax=kmax+i-1;

if kmax~=i

h=C(i,:); C(i,:)=C(kmax,:); C(kmax,:)=h;

h=Cs(kmax,:); Cs(kmax,:)=Cs(i,:); Cs(i,:)=h;

end

lfs=lfs+Cs(i,i)/C(i,i);

Cs(i+1:n,i)=(Cs(i+1:n,i)*C(i,i)-Cs(i,i)*C(i+1:n,i))/C(i,i)^2;

C(i+1:n,i)=C(i+1:n,i)/C(i,i);

Cs(i+1:n,i+1:n)=Cs(i+1:n,i+1:n)-Cs(i+1:n,i)*C(i,i+1:n)- ...

C(i+1:n,i)*Cs(i,i+1:n);

C(i+1:n,i+1:n)=C(i+1:n,i+1:n)-C(i+1:n,i)*C(i,i+1:n);

end

ffs=1/lfs;

Consider the mass-spring system example from [137]. The matrix for the
non-overdamped case is

C(λ) = λ2M + λH +K (8.26)

with

M = I, H = τ tridiag(−1, 3,−1), K = κ tridiag(−1, 3,−1)

and with κ = 5, τ = 3 and n = 50.

Algorithmic Differentiation 513

The following Matlab script computes 3 eigenvalues. We use different
initial values for Newton’s iteration and converge to different eigenvalues.
The results are given in Table 8.2.

n=50; tau=3; kappa=5;

e=ones(n-1,1);

H=diag(-e,-1)+diag(-e,1)+3*eye(n);

K=kappa*H; H=tau*H;

for lam=[1, -1.7-1.6*i, -2-i]

ffs=1;

while abs(ffs)>1e-14

C=lam*(lam*eye(n)+H)+K; Cs=2*lam*eye(n)+H;

ffs=DeriveDeterminant(C,Cs);

lam=lam-ffs;

end

lam, C=lam*(lam*eye(n)+H)+K; det(C)

end

initial value Eigenvalue λ f(λ) = det(Q)
1 −1.9101 1.6609e−18

−1.7− 1.6i −1.5906− 1.6649i 7.6365e21− 1.3528e22i
−2− i −2.0142− 1.7035e−38i 3.7877e−13 + 3.1863e−35i

Table 8.2.
Three Eigenvalues of the Mass-Spring System

Notice the function value of f(λ) = det(Q) for the second (complex)
eigenvalue: instead of being close to zero, it is huge! Did our computation
of an approximate zero fail? Let us examine what happened by looking at
function values of f(λ) at neighboring points λ. We stop the program above
after the second step, and then execute the Matlab commands

L=[real(lam)*(1+10*eps)+1i*imag(lam) % grid around lambda

real(lam)*(1-10*eps)+1i*imag(lam)

real(lam)+1i*imag(lam)*(1+10*eps)

real(lam)+1i*imag(lam)*(1-10*eps)

real(lam)*(1+10*eps)+1i*imag(lam)*(1+10*eps)

real(lam)*(1+10*eps)+1i*imag(lam)*(1-10*eps)

real(lam)*(1-10*eps)+1i*imag(lam)*(1+10*eps)

real(lam)*(1-10*eps)+1i*imag(lam)*(1-10*eps)

lam];

for k=1:9 % evaluate determinant

Q=L(k)*(L(k)*eye(n)+H)+K;

Qd(k)=det(Q)

end

QdIm=[Qd(7) Qd(3) Qd(5) % create image

Qd(2) Qd(9) Qd(1)

Qd(8) Qd(4) Qd(6)]

figure(1)

514 DIFFERENTIATION

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1.5

−1

−0.5

0

0.5

1

1.5

x 10
23

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1.5

−1

−0.5

0

0.5

1

1.5

x 10
23

Figure 8.11.
Real part of the value of the determinant around

λ = −1.5906 − 1.6649i on the left, and imaginary part on
the right

mesh(-1:1,-1:1,real(QdIm));

figure(2)

mesh(-1:1,-1:1,imag(QdIm));

We obtain the two figures shown in 8.11. We clearly see that there is a zero
in the area found by our program, but in the vicinity the function is huge.
This is because a polynomial of degree 100 grows very rapidly, so the machine
number next to the zero may very well have a function value of 1022!

Note that the computational effort for solving the quadratic eigenvalue
problem by computing the determinant as described here is enormous. How-
ever, modern laptop computers are very powerful and the proposed way is nu-
merically sound; consequently, this method can still be used to solve medium-
sized nonlinear eigenvalue problems, despite the large number of operations
(see Problem 8.8). One could also execute such a program in parallel, once
for each eigenvalue.

8.4 Problems

Problem 8.1. Solve the discretized Brachystochrone problem (8.7) using
Newton’s method. Then find the value of B such that the solution of the
Brachystochrone problem is monotonically decreasing.

Problem 8.2. When deriving the discrete operator (8.15) we first com-

puted approximations for ∂2u
∂x2 and then combined them for ∂4u

∂x2∂y2 . Convince
yourself that we get the same expression by interchanging the role of x and y.

Problem 8.3. In [1], page 883, we also find formulas for numerical
differentiation where the derivative is not evaluated at an interpolation point
but at x = ph with variable p. Change Algorithm 8.3 to a Maple function

Problems 515

FiniteDifferenceFormulaP:=proc(m,k,j)

computes for m+1 equidistant points -jh, ..., -h, 0, h, ...,(m-j)h

a finite difference approximation of the kth derivative evaluated

at x=p*h

and reproduce the formulas 25.3.4, 25.3.5 and 25.3.6 of [1].

Problem 8.4. Derive the 9-point Laplacian with error term. Hint: Use
5 points for the second derivatives.

Problem 8.5. Derive the operator for the discrete biharmonic operator
with error term O(h4).

Problem 8.6. Write a Matlab program and compute the solution to the
billiard problem. Fix the position of the point P (e.g. choose P = (0.5, 0.5))
and let the ball Q move on the x-axis in steps h from −1 to 1 Compute the
solutions for each position of Q. Display them as in Figure 8.10 and plot also
the function f in another graphical window.

Problem 8.7. Consider Equation (8.23) for the billiard problem. This is
a goniometric equation (the unknown appears only as argument of trigono-
metric functions). Such equations can be “rationalized” by introducing the
new variable t = tan(x/2) and replacing

sin(x) =
2t

1 + t2
, cos(x) =

1− t2

1 + t2
.

Make this change of variable in Maple and generate the new equation for t.
Although the new equations looks more complicated, Maple is able to solve
it. Compute the solutions this way and interpret the result.

Problem 8.8. Compute for n = 50 all the eigenvalues of the quadratic
eigenvalue problem det(C(λ)) = 0 with C defined by (8.26). Hints:

1. Use Algorithm 8.9 to compute the zeros of the determinant by Newton’s
method.

2. Start the iteration with a complex number, since some of the eigenvalues
are complex.

3. When you have computed an eigenvalue λk, store it and suppress it to
avoid recomputing it. Suppression leads to the Newton-Maehly itera-
tion, see (5.78) in Section 5.3.

4. After suppressing λk, use some nearby value as starting point for the
next Newton iteration, e.g. λk(1 + 0.01i).

5. Finally, plot the eigenvalues as points in the complex plane.

Compare your results with those obtained from eig with the equivalent
linear problem (8.25).

Chapter 9. Quadrature

Differentiation and integration are infinitary concepts
of calculus; that is, they are defined by means of a
limit process - the limit of the difference quotient in the
first instance, the limit of Riemann sums in the second.
Since limit processes cannot be carried out on the com-
puter, we must replace them by finite processes. The
tools to do so come from the theory of polynomial inter-
polation.

W. Gautschi, Numerical Analysis, 2012.

In General, the user provides only the limits of integra-
tion A and B, the desired tolerance ε, and a subroutine
FUN(X) which calculates the integrand.

J. N. Lyness, Notes on the Adaptive Simpson Quadrature
Routine, 1969.

No program of this type can rigorously guarantee that
either its integral or error estimate have any accuracy.
[. . .] On a total interval length 400’000, the integrand
is essentially zero on all but one hundredth of one per-
cent. Unless serendipity comes to our aid the automatic
quadrature algorithm will not sample there. There is no
substitute for an alert user !

D. Kahaner, C. Moler and S. Nash, Numerical Methods
and Software, 1989.

Prerequisites: Interpolation and extrapolation (§4.2, 4.2.8) are required. For
Gauss quadrature (§9.3), we also need the Newton–Maehly method (§5.3.7)
and eigenvalue solvers from Chapter 7.

In the context of scientific computing, quadrature means the approximate
evaluation of a definite integral

I =

b∫
a

f(x) dx.

The word “quadrature” stems from a technique used by ancient Greeks to
measure areas in the plane by transforming them with straight edge and
compass into a square using area-preserving transformations. Finding an
area-preserving transformation that maps a circle into a square (quadrature
of the circle) became a famous unsolved problem until the 19th century, when
it was proved using Galois theory that the problem cannot be solved using

W. Gander et al., Scientific Computing - An Introduction using Maple and MATLAB,

Texts in Computational Science and Engineering 11,
DOI 10.1007/978-3-319-04325-8 9,

© Springer International Publishing Switzerland 2014

518 QUADRATURE

straight edge and compass. Since the definite integral measures the area
between the graph of a function and the x-axis, it is natural to use the word
“quadrature” to denote the approximation of this integral.

There are now very good algorithms to approximate definite integrals,
and we will see two programs in this chapter that are used as a basis for
the quadrature functions in Matlab. But such algorithms cannot be com-
pletely foolproof, see the last quote above; we illustrate this with a well-
known argument due to Kahan in Section 9.1. We also compare symbolic
integration, which has made tremendous progress over the last decades, to
numerical approximations of integrals. We then show in Section 9.2 the clas-
sical Newton-Cotes formulas, which one can easily derive nowadays with the
help ofMaple. We also present the Euler-Maclaurin summation formula and
Romberg integration. Section 9.3 contains the major innovation of Gauss,
which is to use the location of the quadrature nodes in addition to the weights
to obtain more accurate quadrature formulas, which now bear his name. We
explain the relation of these Gauss quadrature formulas to the theory of or-
thogonal polynomials, and give two highly efficient algorithms to compute
such quadrature rules, the first using the more classical techniques of root
finding, and the second due to Golub and Welsch. More information can
be found in the standard reference on orthogonal polynomials and quadra-
ture [48]. As for many numerical algorithms, adaptivity is a key ingredient,
and this is the topic of Section 9.4, where we develop two locally adaptive
quadrature algorithms. They are used as basis for the quadrature function
quad and quadl in Matlab and one of them is also used in GNU Octave.1

9.1 Computer Algebra and Numerical Approximations

If F (x) is an antiderivative of f(x), then

I =

b∫
a

f(x) dx = F (b)− F (a).

Unlike computing derivatives, finding antiderivatives is often an art. One has
to lookup tables or use various tricks and transformations like integration by
parts

b∫
a

f ′(x)g(x) dx = f(x)g(x)
∣∣∣b
a
−

b∫
a

f(x)g′(x) dx

to obtain a result. In addition, an explicit expression for the antiderivative
often does not exist, e.g., for

F (x) =

∫ x

0

e−t2 dt. (9.1)

1http://www.gnu.org/software/octave/

http://www.gnu.org/software/octave/

Computer Algebra and Numerical Approximations 519

Today, computer algebra systems help us a great deal in finding antideriva-
tives and have replaced integration tables as a tool for this purpose. Such
systems use sophisticated algorithms (for instance the Risch Algorithm, see
[12]) to find out if an antiderivative exists for certain classes of functions. In
Maple, the function int is used for computing integrals. For the integral
(9.1) we obtain the antiderivative expressed in terms of the error function:

int(exp(-x^2),x);

1/2
√
πerf (x),

and for the definite integral
∫∞
0

e−x2

ln x dx

int(exp(-x^2)*ln(x),x=0..infinity);

we get the expression
−1/4

√
π (γ + 2 ln(2)) ,

which may give us more insight than just the number −.8700577268.2 On
the other hand, even if an analytical expression for the antiderivative exists,
it may be very complicated (several pages long) and thus be of little help for
numerical calculations: try e.g.

int(exp(-x)*cos(6*x)^5*sin(5*x)^6,x);

From calculus, we know that a Riemann sum can be used to approximate
a definite integral. To form a Riemann sum, we partition the interval [a, b]
into n subintervals a = x0 < x1 < · · · < xn = b and approximate

I =

b∫
a

f(x) dx ≈ In :=

n∑
i=1

wif(ξi), (9.2)

with wi = xi−xi−1 and ξi ∈ [xi−1, xi]. For example, we can choose ξi = xi as
shown in Figure 9.1. By refining the subdivision of the interval of integration
(or by letting n → ∞) one can prove (e.g., for continuous functions) that
limn→∞ In = I. Every rule for numerical quadrature has the form (9.2),
but for practical computations, we can only use a finite number of function
values to approximate the limit. The key problem in numerical quadrature
is to determine the nodes ξi and the weights wi to obtain the best possible
approximation of an integral I with the least amount of work.

Because we cannot do better than invent clever “Riemann sums”, we will
never succeed in writing a program that will integrate every function cor-
rectly. W. Kahan gave the following argument: given a quadrature program,
say int(f,a,b), we first integrate the constant function f(x) ≡ 1 say on
[0, 1] and save the nodes ξk that int used for obtaining hopefully the result

2It appears that newer versions of Maple can no longer compute this integral.
However, Wolfram Alpha computes the result when given the command integrate

exp(-x^2)*ln(x) dx from x=0 to infinity.

520 QUADRATURE

f(x)

x
a = x0 x1 x2 xn−2 xn−1 xn = b

Figure 9.1.
The Riemann sum as an approximation to the integral

In = 1. Then we construct the function (with some appropriate constant
M > 0)

g(x) = 1 +M

n∏
k=1

(x− ξk)
2.

and compute int(g,0,1). Because g(ξk) = 1 we will obtain again the result
In = 1, which will be wrong this time. This argument may not be valid if
the program chooses different nodes ξk in every run. However, the point we
want to make is that by computing a finite sum (9.2), we are sampling the
function at a finite set of points. The resulting approximation can be wrong
because the sampling may easily miss a large thin peak of the function that
makes an essential contribution to the integral. Plot for instance the function

f(x) = sin(x) +
10−14

x− .54159265358979

for the interval [0, 1]. It will look like sin(x), even though the integral∫ 1

0
f(x) dx does not exist.
The value for the integral computed by a Riemann sum can be interpreted

as follows: we approximate the function f by a piecewise constant function

g(x) = f(ξi), xi−1 ≤ x ≤ xi, i = 1, . . . , n

and compute
b∫

a

g(x) dx ≈
b∫

a

f(x) dx.

Newton–Cotes Rules 521

Any other approximation of f by a simpler function g which can be integrated
analytically will lead to a quadrature rule.

9.2 Newton–Cotes Rules

One obvious way to approximate f is by polynomial interpolation. Here the
nodes ξi, i = 0, . . . , n are supposed to be given. We only need to compute
the weights. We construct the interpolation polynomial Pn(x) for the data

x ξ0, . . . , ξn
f(x) y0, . . . , yn

and by integration, obtain a quadrature rule:

b∫
a

Pn(x) dx =

n∑
i=0

wiyi.

For example, if we take n = 1 and as nodes the two end points ξ1 = a and
ξ2 = b, then the interpolating polynomial is of degree one,

P1(x) =
y2 − y1
b− a

(x− b) + y2,

and we obtain the Trapezoidal Rule

b∫
a

P1(x) dx =
h

2
(y1 + y2), h = b− a. (9.3)

In general for the distinct nodes ξi, i = 0, . . . , n we can represent the inter-
polating polynomial using Lagrange interpolation (see Chapter 4)

Pn(x) =

n∑
i=0

li(x)yi, li(x) =

n∏
j=0
j �=i

x− ξj
ξi − ξj

, i = 0, . . . , n.

Integrating Pn we obtain Newton–Cotes Quadrature Rules

b∫
a

Pn(x) dx =

n∑
i=0

wiyi, with wi =

b∫
a

li(x) dx. (9.4)

The weights are the integrals of the Lagrange polynomials. In the literature,
Newton–Cotes rules are always computed for equidistant nodes, but we do
not need to restrict ourselves to the equidistant case. Thus we will refer to
Newton–Cotes quadrature rules when the nodes are prescribed and the rule
is obtained by integrating the interpolating polynomial.

522 QUADRATURE

With a computer algebra system likeMaple, we can generate such formu-
las with just a few statements: there exists a function interp for computing
the interpolating polynomial. Furthermore, integrals of polynomials can be
computed exactly with every computer algebra system.

As an example, let us compute the classical Newton–Cotes rules for
equidistant nodes of which two kinds are discussed in the literature: closed
and open rules. If the interval (a, b) is divided into sub-intervals of length
h = (b− a)/n, then the closed rules use the nodes ξi = ih for i = 0, 1, . . . , n.
The open rules use only the interior points ξi = ih for i = 1, . . . , n− 1:

nh∫
0

f(x) dx ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
i=0

wi f(ih) closed rule,

n−1∑
i=1

wi f(ih) open rule.

With the function

ClosedNewtonCotesRule:=n->factor(int(interp([seq(i*h,i=0..n)],

[seq(f(i*h),i=0..n)],z),z=0..n*h)):

we can thus generate the Trapezoidal Rule (n = 1), Simpson’s Rule (n = 2),
Boole’s Rule (n = 4) and the Weddle Rule (n = 6):

TrapezoidalRule:=ClosedNewtonCotesRule(1);

h

2
(f(0) + f(h))

SimpsonsRule:=ClosedNewtonCotesRule(2);

h

3
(f(0) + 4 f(h) + f(2h))

MilneRule:=ClosedNewtonCotesRule(4);

2

45
h (7 f(0) + 32 f(h) + 12 f(2h) + 32 f(3h) + 7 f(4h))

WeddleRule:=ClosedNewtonCotesRule(6);

1

140
h (41 f(0) + 216 f(h) + 27 f(2h) + 272 f(3h)

+27 f(4h) + 216 f(5h) + 41 f(6h))

For n = 8 we obtain the following equidistant 9-point rule which is the first
Newton–Cotes quadrature rule with negative weights:

ClosedNewtonCotesRule(8);

Newton–Cotes Rules 523

4

14175
h (989 f(0) + 5888 f(h)− 928 f(2h) + 10496 f(3h)

−4540 f(4h) + 10496 f(5h)− 928 f(6h)+5888 f(7h)+989 f(8h))

Negative weights are not favored in quadrature rules because they may lead
to unnecessary loss of accuracy due to cancellation.

Open equidistant Newton–Cotes rules can be obtained similarly with the
function:

OpenNewtonCotesRule:=n->factor(int(interp([seq(i*h,i=1..n-1)],

[seq(f(i*h),i=1..n-1)],z),z=0..n*h)):

For n = 2, 3, 4 and 5 we obtain the rules

2h∫
0

f(x) dx = 2hf(h) mid-point rule,

3h∫
0

f(x) dx =
3h

2
(f(h) + f(2h)),

4h∫
0

f(x) dx =
4h

3
(2f(h)− f(2h) + 2f(3h)),

5h∫
0

f(x) dx =
5h

24
(11f(h) + f(2h) + f(3h) + 11f(4h)).

.

We observe that the 3-point open rule already has a negative weight; the
same is true for five or more points. Hence, these rules should be used with
caution.

A second kind of open Newton–Cotes rules, which are not so popular
in the literature, can also be derived easily. Such open rules are handy for

integrating functions with a singularity at the end points, such as
1∫
0

1/
√
x dx.

Consider the same partition of the integration interval into n subintervals
as for the closed rule: xi = ih, i = 0, . . . , n. This time, our nodes will be the
midpoints of the intervals,

ξi =
xi−1 + xi

2
= (i− 1

2
) h, i = 1, . . . , n. (9.5)

Using the function

MidpointOpenNewtonCotesRule:=n->factor(int(interp([seq((i-1/2)*h,

i=1..n)], [seq(f((i-1/2)*h),i=1..n)],z),z=0..n*h)):

we obtain this time open Newton–Cotes rules of higher order which have no
negative coefficients. Notice that for n = 1 the resulting rule is the midpoint
rule, which is well known in the literature:

MidpointOpenNewtonCotesRule(1);

524 QUADRATURE

f (1/2h)h

MidpointOpenNewtonCotesRule(2);

h (f (3/2h) + f (1/2h))

MidpointOpenNewtonCotesRule(3);

3
8h
(
3 f
(
1
2h
)
+ 2 f

(
3
2h
)
+ 3 f

(
5
2h
))

MidpointOpenNewtonCotesRule(4);

1
12h
(
13 f

(
1
2h
)
+ 11 f

(
3
2h
)
+ 11 f

(
5
2h
)
+ 13 f

(
7
2h
))

MidpointOpenNewtonCotesRule(5);

5
1152h

(
275 f

(
1
2h
)
+ 100 f

(
3
2h
)
+ 402 f

(
5
2h
)
+ 100 f

(
7
2h
)
+ 275 f

(
9
2h
))

MidpointOpenNewtonCotesRule(6);

3

640
h
(
247 f1/2 + 139 f3/2 + 254 f5/2 + 254 f7/2 + 139 f9/2 + 247 f11/2

)
To save space, we abbreviate f

(
1
2h
)
as f1/2, and similarly for the other

function values. (Note that this abbreviation is not appropriate for the com-
putation of the error term, see next section). Finally,

MidpointOpenNewtonCotesRule(8);

1

241920
h
(
295627 f1/2 + 71329 f3/2 + 471771 f5/2 + 128953 f7/2 + 128953 f9/2

+ 471771 f11/2 + 71329 f13/2 + 295627 f15/2
)

Once again, the 7-point formula (as well as higher order rules) have negative
coefficients.

Any other Newton–Cotes rule can be easily generated this way using
Maple. In [131] we find one-sided formulas: for example, given four equidis-
tant function values (three intervals), we can find an approximation for the
integral over the third interval:

factor(int(interp([0,h,2*h,3*h],[f[0],f[1],f[2],f[3]],t),t=2*h..3*h));

h

24
(f0 − 5 f1 + 19 f2 + 9 f3).

Newton–Cotes Rules 525

9.2.1 Error of Newton–Cotes Rules

In [132], the authors cite an old result from Steffensen that gives an expression
in the order p for the error of Newton–Cotes rules for equidistant function
values: if the integrand f has sufficiently many continuous derivatives and
Pn is the interpolating polynomial of degree n, then

b∫
a

Pn(x) dx−
b∫

a

f(x) dx = hp+1Kf (p)(ξ), ξ ∈ (a, b). (9.6)

Here, h = (b− a)/n is the distance of the function values, and the constants
p and K depend only on n and not on the integrand f . As an example, we
will compute the error of the trapezoidal rule. We consider the function

E(z) =

m+ z
2∫

m− z
2

f(x) dx− z

2

(
f(m+

z

2
) + f(m− z

2
)
)
, (9.7)

where m = (a+b)/2 is the midpoint of the integration interval. For z = b−a,
the function value

E(b− a) =

b∫
a

f(x) dx− b− a

2
(f(b) + f(a)) (9.8)

is the error which we are interested in. The first derivative of E is

E′(z) = −z

4

(
f ′(m+

z

2
)− f ′(m− z

2
)
)
. (9.9)

According to the mean value theorem for derivatives, there exists a number
ξz such that

f ′(m+
z

2
)− f ′(m− z

2
) = zf ′′(m+ ξz) with − z

2
< ξz <

z

2
.

Thus

E′(z) = −z2

4
f ′′(m+ ξz). (9.10)

From (9.7), we see that E(0) = 0 and therefore

E(z) =

z∫
0

E′(t)dt = −1

4

z∫
0

t2f ′′(m+ ξt) dt.

Applying now the mean value theorem for integrals, we get

E(z) = −1

4
f ′′(ξ)

z∫
0

t2dt = −z3

12
f ′′(ξ), (9.11)

526 QUADRATURE

with a ≤ m− z
2
< ξ < m+ z

2
≤ b. Letting z = h = b− a, we obtain the error

of the trapezoidal rule for one interval :

E(b− a) =

b∫
a

f(x)dx− b− a

2
(f(b) + f(a)) = −h3

12
f ′′(ξ), (9.12)

with a < ξ < b. Thus, p = 2 and K = 1
12
.

Definition 9.1. (Order of a Quadrature Formula) A numerical
quadrature formula with nodes ξi and weights wi is of order p, if it computes
the exact integral value for all polynomials pk up to degree k ≤ p− 1, i.e.

b∫
a

pk(x) dx =
n∑

i=0

wipk(ξi), k = 0, 1, . . . , p− 1. (9.13)

Looking at the error formula (9.12) we derived for the trapezoidal rule, we
see that polynomials up to degree one, i.e. linear functions, are integrated
exactly, since their second derivatives vanish, and thus trapezoidal rule is a
quadrature formula of order p = 2 according to Definition 9.1. One might be
wondering why the order is one lower than the error term in (9.12): this is
because quadrature rules are usually applied not on a single interval, but on
many, which leads to composite quadrature rules, and we will see later that
their use over many intervals will lower the error term by one order.

Computing the Error by Taylor Expansion

It is much easier to compute the constants p and K by a Taylor expansion
with Maple than by hand, like we did in (9.7)–(9.12). We start with the
closed rules:

for i from 1 to 4 do

rule:=ClosedNewtonCotesRule(i);

err:=taylor(rule-int(f(x),x=0..i*h),h=0,i+4);

od;

We list below the first term of the Taylor series for each quadrature rule.

i rule error

1 Trapezoidal 1
12 f

′′(0)h3

2 Simpson 1
90

f (4)(0)h5

3 3
8
-Rule 3

80
f (4)(0)h5

4 Boole 8
945 f

(6)(0)h7

Of course the error is not equal to the first terms of the Taylor series – we
have to replace the value 0 with some ξ in the integration interval to obtain

Newton–Cotes Rules 527

a correct expression for the error. However, the two constants p and K are
computed correctly.

Similarly, we can compute the error for the open rules by

for i from 2 to 5 do

rule:=OpenNewtonCotesRule(i);

err:=taylor(rule-int(f(x),x=0..i*h),h=0,i+2);

od;

9.2.2 Composite Rules

Applying a quadrature rule to
b∫
a

f(x) dxmay not yield an approximation with

the desired accuracy. To increase the accuracy, one can partition the interval
[a, b] into subintervals and apply the quadrature rule to each subinterval. The
resulting formula is known as a composite rule.

Trapezoidal Rule: Assume the interval [a, b] is partitioned into n equidis-
tant subintervals (xi, xi+1) of lengths h = xi+1 − xi = (b − a)/n. If
yi = f(xi), then by applying the trapezoidal rule (9.3) to each subin-
terval we obtain the composite trapezoidal rule

T (h) = h

(
1

2
y0 + y1 + · · · + yn−1 +

1

2
yn

)
. (9.14)

The integration error for this rule is the sum of the errors on each
subinterval:

n−1∑
i=0

⎛
⎝ xi+1∫

xi

f(x)dx− Ti(h)

⎞
⎠ = −h3

12

n−1∑
i=0

f ′′(ξi). (9.15)

If we form the average

M =
1

n

n−1∑
i=0

f ′′(ξi)

and if f ′′ is continuous, then there must again exist some ξ ∈ [a, b] such
that M = f ′′(ξ). So using nh = b− a, (9.15) simplifies and we obtain
for the error of the composite trapezoidal rule :

b∫
a

f(x)dx− T (h) = −h3

12
nf ′′(ξ) = − (b− a)h2

12
f ′′(ξ), ξ ∈ [a, b].

(9.16)
Basically, (9.16) tells us that if we halve the step size h := h/2 (and
thus double the number of function evaluations), then the error will

528 QUADRATURE

decrease by a factor of (1/2)2 = 1/4. This now explains why the order
of a quadrature rule is defined as in Definition 9.1: the error of the
corresponding composite quadrature rule is of the order in the definition
(here p = 2 for the trapezoidal rule), whereas the error over a single
interval is one order higher, see (9.12) for the trapezoidal rule.

Suppose we wish to compute an integral to a certain accuracy given by
a relative tolerance tol. Here, (9.16) is of little help, since it requires
an estimate of the second derivative of the integrand. In this case,
rather than estimating the error and predicting the necessary step size
in advance, one should compute successive approximations {T (hi)} by
halving the step size hi+1 = hi/2, until two approximations match to
the desired tolerance. As we refine the grid, it is essential to avoid re-
computing function values, since the main cost of quadrature programs
is the number of function evaluations they need for a certain accuracy.

To illustrate this, consider once again the composite trapezoidal rule.
When we halve the step size h, the function values required are the
ones on the coarser grid, plus the new function values located halfway
between the old ones. For example, when n = 4, we have h2 = (b−a)/4
and

h3 =
h2

2
=

b− a

8
.

If we denote the sum of the function values in (9.14) by si, then we can
write

s2 =
1

2
f(a) + f(a+ h2) + f(a+ 2h2) + f(a+ 3h2) +

1

2
f(b).

If we now halve the step size, the sum is updated by the new values

s3 = s2 + f(a+ h3) + f(a+ 3h3) + f(a+ 5h3) + f(a+ 7h3). (9.17)

We see from (9.17) that the new sum of function values emerges from
the old ones by adding the new function values. This leads to the
following Matlab function:

Algorithm 9.1. Trapezoidal Rule

function t=TrapezoidalRule(f,a,b,tol);

%TRAPEZOIDALRULE composite quadrature using the trapezoidal rule

% t=TrapezoidalRule(f,a,b,tol); computes an approximation of

% int_a^b f(x) dx to a relative tolerance tol using the

% composite trapezoidal rule.

h=b-a; s=(f(a)+f(b))/2;

t=h*s; zh=1; told=2*t;

while abs(told-t)>tol*abs(t),

Newton–Cotes Rules 529

told=t; zh=2*zh; h=h/2;

s=s+sum(f(a+[1:2:zh]*h));

t=h*s;

end;

Example 9.1.

1∫
0

xex

(x+ 1)2
dx =

e− 2

2
= 0.3591409142 . . .

The table below shows the intermediate approximations t when calcu-
lated by TrapezoidalRule(@(x) x.*exp(x)./(x+1).^2,0,1,1e-4):

i hi T (hi)
T (hi)− I

T (hi−1)− I

0 1 0.339785228

1 1
2 0.353083866 0.31293

2 1
4 0.357515195 0.26840

3 1
8 0.358726477 0.25492

4 1
16

0.359036783 0.25125

5 1
32

0.359114848 0.25031

6 1
64

0.359134395 0.25007

From the error law (9.16), we see that if f ′′ does not vary too much, then
the error should decrease by the factor 0.25 at each step. By comparing
the quotients of consecutive errors, we see that the results are in good
agreement with the theory, and the order is indeed 2.

Simpson’s Rule: For the composite Simpson Rule, we need to partition
the interval [a, b] into 2n subintervals. Let h = b−a

2n
, xi = a + ih and

yi = f(xi) for i = 0, 1, 2, . . . , 2n. Applying Simpson’s Rule to two
consecutive subintervals

xi+1∫
xi−1

f(x) dx ≈ h

3
(yi−1 + 4yi + yi+1), (9.18)

we obtain the Composite Simpson Rule

S(h) =
h

3
(y0 + 4y1 + 2y2 + 4y3 + · · · + 2y2n−2 + 4y2n−1 + y2n) .

(9.19)

530 QUADRATURE

The integration error is

∣∣∣∣∣∣
b∫

a

f(x)dx− S(h)

∣∣∣∣∣∣ =
(b− a)h4

180

∣∣∣f (4)(ξ)
∣∣∣ , (9.20)

with a ≤ ξ ≤ b. Equation (9.20) is obtained by summing the integration
errors for two subintervals and again replacing the sum of the fourth
derivatives by the mean value.

Again we would like to write a Matlab function which will compute
approximations to the integral by halving the integration step until a
given tolerance is met. In Simpson’s rule (9.19), the function values
are summed with alternating weights 2 and 4 (and weight one for the
endpoints). When we halve the step size, the new function values are
evaluated between the old ones. All these new function values will be
multiplied with weight 4. If we now introduce variables for sums of
function values with the same weight — s1, s2 and s4 — then we have
the following update formula to compute the new Simpson approxima-
tion:

S(h) =
h

3
(s1 + 4s4 + 2s2)

snew1 = s1
snew2 = s2 + s4
snew4 = sum of new function values

S(h/2) =
h/2

3
(snew1 + 4snew4 + 2snew2)

.

This leads to the following Matlab function:

Algorithm 9.2. Simpson’s Rule

function s=SimpsonsRule(f,a,b,tol);

% SIMPSONSRULE composite quadrature using Simpson’s rule

% s=SimpsonsRule(f,a,b,tol); computes an approximation of

% int_a^b f(x) dx to a relative tolerance tol using the

% composite Simpson’s rule.

h=(b-a)/2; s1=f(a)+f(b); s2=0;

s4=f(a+h); s=h*(s1+4*s4)/3;

zh=2; sold=2*s;

while abs(sold-s)>tol*abs(s),

sold=s; zh=2*zh; h=h/2; s2=s2+s4;

s4=sum(f(a+[1:2:zh]*h));

s=h*(s1+2*s2+4*s4)/3;

end

Newton–Cotes Rules 531

Example 9.2. If we again compute the integral

1∫
0

xex

(x+ 1)2
dx =

e− 2

2
= 0.3591409142 . . .

with SimpsonsRule(@(x) x.*exp(x)./(x+1).^2,0,1,1e-8) we obtain

i hi S(hi)
S(hi)− I

S(hi−1)− I

0 1 0.357516745

1 1
2 0.358992305 0.09149

2 1
4 0.359130237 0.07184

3 1
8 0.359140219 0.06511

4 1
16 0.359140870 0.06317

5 1
32 0.359140911 0.06267

6 1
64 0.359140914 0.06254

From (9.20), we expect that if we halve the step size then the error
should decrease by (1/2)4 = 0.0625. We see that this is the case for this
example, so Simpson’s rule is indeed a fourth order method.

9.2.3 Euler–Maclaurin Summation Formula

The problem we would like to consider in this section is the summation of
equidistant function values:

β∑
i=α

f(i).

Our goal is to find a “simple” expression for such sums. For instance, we
know that

n∑
i=1

i =
n

2
(n+ 1).

The idea comes from the calculus of differences, which was very popular
before the age of computers. If we were given a function s(x) with the
property that

Δs(x) := s(x+ 1)− s(x) = f(x), (9.21)

(s is called a summation function) then the summation problem would be
solved since

β−1∑
i=α

f(i) =

β−1∑
i=α

(s(i+ 1)− s(i)) = s(β) − s(α).

532 QUADRATURE

The summation function is the analog of antiderivatives, but for sums instead
of integrals.

Example 9.3. Consider f(x) = x and the ansatz for the summation
function s(x) = ax2 + bx + c. The constant c is actually redundant and
can be taken to be zero, since we use only differences of s. Now equating
coefficients in

s(x+ 1)− s(x) = a((x+ 1)2 − x2) + b((x+ 1)− x) = 2ax+ a+ b
= f(x) = x,

we see that 2a = 1 and a+ b = 0 must hold. Thus we obtain

a =
1

2
, b = −1

2
and s(x) =

x

2
(x− 1),

and
n∑

i=1

i = s(n+ 1)− s(1) =
n+ 1

2
n

as before.

In the following, we will develop an expression for Δf(x) = f(x+1)−f(x)
using formal power series. Formal means that we are not concerned with
whether or not the power series converge. Consider the Taylor series for
f(x+ h) for h = 1,

f(x+ 1) =

∞∑
k=0

f (k)(x)
1

k!
.

Then

Δf(x) = f(x+ 1)− f(x) =
∞∑
k=1

f (k)(x)
1

k!
. (9.22)

A similar relation holds for the derivatives of f :

Δf (i)(x) =

∞∑
k=1

f (k+i)(x)
1

k!
. (9.23)

The integral F (x) =
∫
f(x) dx =: f (−1)(x) can also be represented in this

way:

ΔF (x) =

x+1∫
x

f(x) dx =
∞∑
k=1

F (k)(x)
1

k!
=

∞∑
k=1

f (k−1)(x)
1

k!
. (9.24)

We now introduce the two infinite vectors

f =

⎛
⎜⎜⎜⎜⎜⎜⎝

f(x)
f ′(x)
...

f (m)(x)
...

⎞
⎟⎟⎟⎟⎟⎟⎠

and Δf =

⎛
⎜⎜⎜⎜⎜⎜⎝

ΔF (x)
Δf(x)

...

Δf (m−1)(x)
...

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Newton–Cotes Rules 533

Because of (9.22), (9.23) and (9.24), we have the relation

Δf = Af (9.25)

with the upper triangular Toeplitz matrix

A =

⎛
⎜⎜⎜⎜⎜⎝

1
1!

1
2!

1
3!

· · ·
1
1!

1
2!

· · ·
1
1!

. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠ .

We would like to solve (9.25) for f . The inverse of the matrix A is also a
Toeplitz matrix of the same structure

A−1 =

⎛
⎜⎜⎜⎜⎝

b1 b2 b3 · · ·
b1 b2 · · ·

b1
. . .

. . .

⎞
⎟⎟⎟⎟⎠ ,

and its entries are best computed using generating functions: letting b(x) :=
b1+ b2x+ b3x

2+ . . . and a(x) := 1
1!
+ 1

2!
x+ 1

3!
x2+ . . ., the relation A−1A = I

is equivalent to saying that b(x)a(x) = 1, and therefore the coefficients bi can
be computed simply by dividing 1/a(x),

b1 + b2x+ b3x
2 + · · · = 1

1
1!
+ 1

2!
x+ 1

3!
x2 + · · · =

1
ex − 1

x

=
x

ex − 1
. (9.26)

The coefficients bi are now obtained by expanding the function x/(ex − 1) in
a Taylor series, which can be done with Maple,

series(x/(exp(x)-1),x=0,10);

1− 1

2
x+

1

12
x2 − 1

720
x4 +

1

30240
x6 − 1

1209600
x8 +O

(
x9
)
.

Traditionally this series is written as

x

ex − 1
=

∞∑
k=0

Bk

k!
xk,

where the Bk are the Bernoulli numbers :

k 0 1 2 3 4 5 6 7 8

Bk 1 − 1
2

1
6 0 − 1

30 0 1
42 0 1

30

Bk

k! 1 − 1
2

1
12 0 − 1

720 0 1
30240 0 − 1

1209600

534 QUADRATURE

The Bernoulli numbers can be computed in Maple by the function
bernoulli(k). For k ≥ 3 every Bernoulli number with odd index is zero.
Thus we have found

A−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

B0

0!
B1

1!
B2

2! · · ·
B0

0!
B1

1!
· · ·

B0

0!

. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Now Δf = Af can be solved by f = A−1Δf = Δ(A−1f) or, when written
component-wise,

f (p)(x) = Δ

(∞∑
k=0

Bk

k!
f (k−1+p)(x)

)
, p = 0, 1, 2,

Specifically, for p = 0 we get an expression for the summation function:

f(x) = Δs(x), with s(x) =

∞∑
k=0

Bk

k!
f (k−1)(x). (9.27)

Using the expression for s(x) from (9.27), we obtain

β−1∑
i=α

f(i) = s(β)− s(α) =
B0

0!
(f (−1)(β)− f (−1)(α))

+
B1

1!
(f(β)− f(α)) +

B2

2!
(f ′(β)− f ′(α)) + · · ·

Adding f(β) on both sides yields the Euler–Maclaurin summation formula:

β∑
i=α

f(i) =

β∫
α

f(x) dx+
f(α) + f(β)

2
+

∞∑
j=1

B2j

(2j)!
(f (2j−1)(β)− f (2j−1)(α)).

(9.28)
To use this result for quadrature, we need to generalize the

Euler–Maclaurin summation formula for a sum of function values with a
step size h instead of one. We choose first α = 0 and β = n. Then we
introduce the function g and the interval (a, b) with

f(x) = g(a+ xh), h =
b− a

n
, b = a+ nh.

For the derivatives and the integral, we get

f (2j−1)(x) = g(2j−1)(a+ xh) h2j−1,

n∫
0

f(x) dx =
1

h

b∫
a

g(t) dt.

Newton–Cotes Rules 535

After inserting g in (9.28), subtracting (g(a) + g(b))/2 on both sides and
multiplying with h, we obtain an asymptotic expansion for the trapezoidal
rule:

T (h) =

b∫
a

g(t) dt+

∞∑
j=1

B2j

(2j)!
h2j

(
g(2j−1)(b)− g(2j−1)(a)

)
. (9.29)

Recall that we have not taken convergence into account when deriving the
Euler–Maclaurin summation formula. Indeed, the sums on the right-hand
side in (9.28) and (9.29) often do not converge.

A rigorous derivation of the error term that does not assume g is infinitely
differentiable is given in [132]. It has the form

T (h) =

b∫
a

g(t) dt+
m∑
j=1

B2j

(2j)!
h2j

(
g(2j−1)(b)− g(2j−1)(a)

)
+Rm, (9.30)

where the error term is given by

Rm =
B2m+2

(2m+ 2)!
h2m+2 (b− a)g(2m+2)(ξ), with ξ ∈ (a, b).

Thus, for a fixed number of terms m, the error between T (h) and the partial
sum in (9.29) behaves like O(h2m+2) as h → 0.

Example 9.4. The Riemann Zeta function is defined for Re(z) > 1 by

ζ(z) =
∞∑
k=1

1

kz
,

and is extended to the rest of the complex plane (except for the point z = 1)
by analytic continuation. The point z = 1 is a simple pole.

Some values like

ζ(2) =
∞∑
k=1

1

k2
=

π2

6
, ζ(4) =

∞∑
k=1

1

k4
=

π4

90

are known, and that Maple knows them is revealed either with Zeta(2) or
with

sum(’1/k^2’,’k’=1..infinity);

An open problem is to identify (not compute numerically!) the values for odd
integers ζ(3), ζ(5) etc.

We will apply the Euler–Maclaurin summation formula to

∞∑
k=n

1

k2
.

536 QUADRATURE

We have f(x) = 1/x2, and for the derivatives we obtain

f (2j−1)(x) = − (2j)!

x2j+1
.

Thus

∞∑
k=n

1

k2
=

∞∫
k=n

dx

x2
+

1

2

(
1

n2
+ 0

)
+

∞∑
j=1

B2j

(2j)!

(
0−
(
− (2j)!

n2j+1

))
,

which simplifies to

∞∑
k=n

1

k2
=

1

n
+

1

2n2
+

∞∑
j=1

B2j

n2j+1
.

We could have obtained this expansion also with the Maple command

assume(n>0);

series(sum(’1/k^2’,’k’=n..infinity),n=infinity,11);

n−1 + 1/2n−2 + 1/6n−3 − 1/30n−5 + 1/42n−7 − 1/30n−9 +O(n−11).

Using this expression in

n−1∑
k=1

1

k2
=

π2

6
−

∞∑
j=n

1

k2
,

we obtain after adding 1/n2 on both sides

n∑
k=1

1

k2
=

π2

6
− 1

n
+

1

2n2
− 1

6n3
+ · · · , (9.31)

a summation formula for f(k) = 1/k2. Assume we want to compute the sum
for n = 105. Since 1/(6n3) = 1.666e−16 it is sufficient to compute

π2

6
− 1

n
+

1

2n2
= 1.64492406689823

to obtain the correct value of
∑100000

k=1
1
k2 to 15 digits.

For general z 	= 1, the expansion

m−1∑
k=1

1

kz
+

1

2

1

mz
= ζ(z)− 1

z − 1

∞∑
j=0

(
1− z

2j

)
B2j

mz−1+2j
(9.32)

holds. Equation (9.31) is the special case for z = 2.

Newton–Cotes Rules 537

9.2.4 Romberg Integration

The asymptotic expansion for the approximation of an integral by the trape-
zoidal rule given by the Euler–Maclaurin summation formula (9.30),

T (h) =

b∫
a

g(t) dt+ c1h
2 + c2h

4 + · · · + cmh2m +Rm,

leads to another algorithm for quadrature. The idea here is to extrapolate
to the limit T (0) by interpolating the values T (hi) for some hi > 0 by a
polynomial. If the error term Rm is small, then the values T (hi) are close to
the values of the polynomial

P2m(h) = c0 + c1h
2 + c2h

4 + · · · + cmh2m, with c0 =

b∫
a

g(t) dt.

To make use of the fact that only even powers of h occur, we consider a
polynomial in the variable x = h2. Thus, we wish to extrapolate to x = 0
the following data:

x h2
0 h2

1 · · · h2
i · · ·

y T (h0) T (h1) · · · T (hi) · · ·

We will use the Aitken–Neville Scheme for extrapolation (see Chapter 4).
Since we do not know the value of m or the degree of the polynomial, we will
keep adding new points by computing new trapezoidal rule approximations
and hope that the Aitken–Neville scheme will converge to the desired integral
value.

T (h0) = T00

T (h1) = T10 T11

...
...

...
. . .

T (hi) = Ti0 Ti1 · · · Tii .

(9.33)

An obvious choice for the sequence hi is hi = hi−1/2, which was also used
in the function TrapezoidalRule. By this choice, the amount of function
evaluations (and thus the computational effort) doubles with each new row
in the Aitken–Neville scheme. In [132], the authors discuss alternative choices
for hi, for which the number of function evaluations grows less rapidly.

If (xi, yi) are the given interpolation points and z is the argument at
which the interpolation polynomial is to be evaluated, then the Aitken–
Neville scheme is computed by the recursion

Tij =
(xi − z)Ti−1,j−1 + (z − xi−j)Ti,j−1

xi − xi−j

538 QUADRATURE

for j = 1, 2, . . . , i and i = 1, 2, 3, In our case, z = 0 and xi = h2
i , and thus

Tij =
h2
iTi−1,j−1 − h2

i−jTi,j−1

h2
i − h2

i−j

.

A further simplification occurs if we choose hi = hi−1/2 = h0/2
i:

Tij =

(
h0

2i

)2
Ti−1,j−1 −

(
h0

2i−j

)2
Ti,j−1(

h0

2i

)2 − (h0

2i−j

)2 =
4−jTi−1,j−1 − Ti,j−1

4−j − 1
.

This specialized scheme is called the Romberg scheme. The first column is
computed by the trapezoidal rule Ti0 = T (hi) for the step sizes hi = hi−1/2,
and the other rows and columns of the triangular scheme are computed by

Tij =
4−j Ti−1,j−1 − Ti,j−1

4−j − 1
, j = 1, 2, . . . , i, i = 0, 1, 2, . . . (9.34)

The columns, rows and diagonals of the Romberg scheme all converge to the
value of the integral; for smooth functions, the diagonal converges the fastest.

Theorem 9.1. The Romberg scheme computed by (9.34) contains in its
first column the values of the trapezoidal rule, in its second column the values
of Simpson’s rule, and in its third column the approximations obtained by
Boole’s rule.

The proof is simply a verification and is left as an exercise, see Problem
9.14. The further columns are no longer related to the Newton–Cotes rules.

Extrapolation with the Romberg scheme can also be interpreted as an
algorithm for elimination of lower order error terms by taking the appro-
priate linear combinations. This process is called Richardson Extrapolation
and is the same as Aitken–Neville Interpolation. Consider the asymptotic
expansion of the trapezoidal rule,

T (h) = I + c1h
2 + c2h

4 + c3h
6 + · · · ,

T
(
h
2

)
= I + c1

(
h
2

)2
+ c2

(
h
2

)4
+ c3

(
h
2

)6
+ · · · ,

T
(
h
4

)
= I + c1

(
h
4

)2
+ c2

(
h
4

)4
+ c3

(
h
4

)6
+ · · · .

(9.35)

Forming the quantities

T11 =
4T
(
h
2

)− T (h)

3
and T21 =

4T
(
h
4

)− T
(
h
2

)
3

,

we obtain
T11 = I − 1

4c2h
4 − 5

16c3h
6 + · · · ,

T21 = I − 1
64c2h

4 − 5
1024c3h

6 + · · · .

Newton–Cotes Rules 539

Thus we have eliminated the term with h2. Continuing with the linear com-
bination

T22 =
16T21 − T11

15
= I +

1

64
c3h

6 + · · ·

we eliminate the next term with h4.

The following Matlab function computes the Romberg scheme row by
row until the relative difference of two consecutive diagonal elements is
smaller than some given tolerance.

Algorithm 9.3. Romberg Integration

function [I,T]=Romberg(f,a,b,tol);

% ROMBERG quadrature using the Romberg scheme

% [I,T]=Romberg(f,a,b,tol) computes an approximation of int_a^b f(x)

% dx to a relative tolerance tol using the Romberg scheme.

h=b-a; intv=1; s=(f(a)+f(b))/2;

T(1,1)=s*h;

for i=2:15

intv=2*intv; h=h/2;

s=s+sum(f(a+[1:2:intv]*h));

T(i,1)=s*h;

vhj=1;

for j=2:i

vhj=vhj/4;

T(i,j)=(vhj*T(i-1,j-1)-T(i,j-1))/(vhj-1);

end;

if abs(T(i,i)-T(i-1,i-1))<tol*abs(T(i,i)),

I=T(i,i); return

end

end

warning([’limit of extrapolation steps reached. ’,...

’Required tolerance may not be met.’]);

I=T(i,i);

Example 9.5. If we use again as example the integral

1∫
0

xex

(x+ 1)2
dx =

e− 2

2
= 0.35914091422952 . . .

we obtain with [I,T]=Romberg(@(x) x.*exp(x)./(x+1).^2,0,1,1e-8) the

540 QUADRATURE

following results:

Romberg scheme columns 0 to 3

0.33978522855738
0.35308386657870 0.35751674591915
0.35751519587192 0.35899230563633 0.35909067628414
0.35872647716421 0.35913023759497 0.35913943305888 0.35914020697594
0.35903678355577 0.35914021901962 0.35914088444793 0.35914090748585
0.35911484861929 0.35914087030714 0.35914091372630 0.35914091419104
0.35913439576246 0.35914091147685 0.35914091422149 0.35914091422935

columns 4 to 6

0.35914091023295
0.35914091421734 0.35914091422123
0.35914091422950 0.35914091422951 0.35914091422952

If we compare the last value in the first column T6,0 = 0.35913439576246 with
the exact value we see that only 4 decimal digits are correct. On the other
hand the diagonal value T6,6 = 0.35914091422952 is correct to all 14 printed
digits. Romberg extrapolation works very well for this example. Furthermore,
if we look at the second column of the Romberg scheme, we observe that the
values are the same as those obtained with the function SimpsonsRule!

Example 9.6. As a second example, we integrate
∫ 1

0

√
x dx = 2/3 by

the Romberg scheme. The call [I,T]=Romberg(@sqrt,0,1,1e-8) generates
a warning message that 15 extrapolation steps were not sufficient to meet the
tolerance of 10−8. The values of the first column and the diagonal values are
given in Table 9.1. We see from Table 9.1 that extrapolation does not work
for this example. The extrapolated values are hardly better than the values
obtained by trapezoidal rule. The reason is that the function f(x) =

√
x is

not differentiable for x = 0 and therefore the asymptotic expansion (9.30)
does not hold.

To compute the asymptotic expansion, we introduce z = −1/2 in Equation
(9.32) and get

m−1∑
k=1

√
k +

1

2

√
m = ζ

(
−1

2

)
+

2

3

∞∑
j=0

(
3/2

2j

)
B2j

m−3/2+2j
. (9.36)

If we integrate
∫ 1

0

√
x dx with the trapezoidal rule and choose h = 1/m then

T (h) = h

(
1

2

√
0 +

√
h+

√
2h+ · · ·+

√
(m− 1)h+

1

2

√
1

)
.

Thus
T (h)

h3/2
=

√
1 +

√
2 + · · · +√

m− 1 +
1

2

√
m.

Gauss Quadrature 541

T(:,1) diag(T)
0.50000000000000 0.50000000000000
0.60355339059327 0.63807118745770
0.64328304624275 0.65775660328156
0.65813022162445 0.66360756911229
0.66358119687723 0.66559286512947
0.66555893627894 0.66628769903384
0.66627081137851 0.66653274119989
0.66652565729683 0.66661932214828
0.66661654897653 0.66664992831868
0.66664888154995 0.66666074880826
0.66666036221898 0.66666457439141
0.66666443359297 0.66666592693598
0.66666587612718 0.66666640513240
0.66666638691157 0.66666657420034
0.66666656769401 0.66666663397489

Table 9.1. First column and diagonal of the Romberg scheme for
∫ 1

0

√
x dx

Using Equation (9.36) we obtain after multiplying by h3/2 the asymptotic
expansion

T (h) = ζ

(
−1

2

)
h3/2 +

2

3

∞∑
j=0

(
3/2

2j

)
B2j h

2j . (9.37)

The term ζ
(− 1

2

)
h3/2 is disturbing the expansion in even powers of h and

responsible for the bad convergence shown in Table 9.1.

9.3 Gauss Quadrature

In the quadrature rules discussed so far, we have used a fixed location for
the nodes (ξi = a+ ih) at which the function was evaluated. The key idea of
Gauss quadrature rules is to allow the nodes to vary as well; the additional
freedom we gain can be used to increase the accuracy of the quadrature rule.

Without loss of generality, we consider functions which need to be inte-
grated on the interval [−1, 1]. By the change of variables

x =
b− a

2
t+

a+ b

2
⇐⇒ t =

2x− b− a

b− a
, (9.38)

we can always transform a general finite interval [a, b] to [−1, 1], and thus

b∫
a

f(x) dx =
b− a

2

1∫
−1

f

(
b− a

2
t+

a+ b

2

)
dt.

542 QUADRATURE

For a given number of nodes n, we want to find the location of nodes ξk and
the weights wk in the quadrature rule

1∫
−1

f(x) dx ≈
n∑

k=1

wkf(ξk), (9.39)

which allows us to integrate exactly a polynomial of as high a degree as
possible. Recall the order p of a quadrature rule in Definition 9.1, which
stated that p− 1 equals the highest degree of polynomials that it integrates
exactly.

Theorem 9.2. (Order Bound) The order p of an n-point quadrature
rule (9.39) is bounded by 2n, i.e. an n-point quadrature rule can at most
integrate a polynomial of degree 2n− 1 exactly.

Proof. It is sufficient to give an example of a polynomial of degree 2n
that cannot be integrated exactly by (9.39). Consider the polynomial which
has the nodes as zeros,

Q(x) =

n∏
k=1

(x− ξk)
2.

The degree of Q is 2n and
1∫

−1

Q(x) dx > 0 because Q(x) ≥ 0. However, since

the ξk are the nodes of the rule, the right hand side of (9.39) becomes 0 and
the rule does not integrate Q exactly. �

Very high order quadrature rules have in addition the very desirable prop-
erty that their weights are positive:

Theorem 9.3. (Positivity of Weights) If an n-point quadrature rule
(9.39) is of order p ≥ 2n−1, then the weights wk, k = 1, 2, . . . , n, are positive.

Proof. Consider the Lagrange polynomials li(x) :=
∏

k �=i
x−ξk
ξi−ξk

of degree

n − 1, which satisfy li(ξk) = 0 for i 	= k and li(ξi) = 1. Using this fact and
that the quadrature rule is exact for polynomials of degree up to 2n− 2, we
get

wi =
n∑

k=1

wkl
2
i (ξk) =

∫ 1

−1

l2i (ξ)dξ > 0.

�
Since every polynomial can be written as a sum of monomials,

p(x) = a0 + a1x+ a2x
2 + . . . + amxm,

and because the integral is a linear operator,

1∫
−1

p(x) dx = a0

1∫
−1

dx+ a1

1∫
−1

x dx+ . . . + am

1∫
−1

xm dx,

Gauss Quadrature 543

it is sufficient to integrate all monomials exactly up to some degree m to
obtain a rule that will integrate any polynomial exactly of degree less than
or equal to m.

To derive conditions on the nodes and weights, consider the case n = 2.
Then we have four degrees of freedom (two nodes and two weights) and thus
we can satisfy 4 equations. We can therefore derive a quadrature rule which
is exact for polynomials up to degree 2n − 1 = 3 by solving the system of
four equations obtained for the monomials 1, x, x2 and x3,

1∫
−1

1 dx = 2 = 1w1 + 1w2,

1∫
−1

x dx = 0 = ξ1w1 + ξ2w2,

1∫
−1

x2 dx =
2

3
= ξ21w1 + ξ22w2,

1∫
−1

x3 dx = 0 = ξ31w1 + ξ32w2.

Using Maple to solve the system of nonlinear equations, we find

eqns:={seq(int(x^k,x=-1..1)=w[1]*xi[1]^k+w[2]*xi[2]^k,k=0..3)};

sols:=solve(eqns,indets(eqns,name)):

convert(sols,radical);

{
w2 = 1, w1 = 1, ξ1 = 1/3

√
3, ξ2 = −1/3

√
3
}
.

We have thus computed the Gauss–Legendre rule for n = 2,

1∫
−1

f(x) dx ≈ f

(
1√
3

)
+ f

(
− 1√

3

)
. (9.40)

Note that the node location is symmetric (ξ1 = −ξ2 = 1√
3
) and the weights

are equal (w1 = w2 = 1).
Similarly, for n = 3 we obtain 6 equations for 6 unknowns which we can

solve in the same way,

eqns:={seq(int(x^k,x=-1..1)=w[1]*xi[1]^k+w[2]*xi[2]^k+w[3]*xi[3]^k,

k=0..5)};

sols:=solve(eqns,indets(eqns,name)):

convert(sols[1],radical);

544 QUADRATURE

We obtain{
w1 =

8

9
, w2 = 5/9, w3 = 5/9, ξ1 = 0, ξ2 = 1/5

√
5
√
3, ξ3 = −1/5

√
5
√
3

}
.

(9.41)
Notice again the symmetry ξ2 = −ξ3 and w2 = w3. By exploiting this
symmetry, we can halve the number of unknowns by making the ansatz for
instance for n = 2

1∫
−1

f(x) dx ≈ w1(f(ξ1) + f(−ξ1))

with 2 parameters ξ1, w1 instead of 2n = 4. For n = 3 we consider

1∫
−1

f(x) dx ≈ w0f(0) +w1(f(ξ1) + f(−ξ1))

with 3 parameters w0, w1, ξ1 instead of 2n = 6. These symmetric rules are
always exact for monomials with odd degree. Therefore we only need to ask
for exactness for the monomials with even exponents. For n = 2, e.g., we
want the rule to be exact for 1 and x2:

eqns:={int(1,x=-1..1)=2*w[1],int(x^2,x=-1..1)=2*xi[1]^2*w[1]};

sols:=solve(eqns,{xi[1],w[1]});

convert(sols, radical);

We obtain the same result as above:{
w1 = 1, ξ1 = 1/3

√
3
}
.

For n = 3 we can ask the rule to be exact for the monomials 1, x2 and
x4. It will be exact for polynomials of degree 5. The following Maple

procedure gauss generates and solves the system of equations for Gauss–
Legendre quadrature rules for a given n.

Gauss:=proc(n) local w,xi,i,j,firsteq,eqns,sols,m; global res;

m:=trunc(n/2); w:=array(0..m); xi:=array(1..m);

firsteq:=2*sum(w[i],i=1..m);

if irem(n,2)=1 then firsteq:=firsteq+w[0] fi;

eqns:={2=firsteq};

for j from 2 by 2 to 2*(n-1) do

eqns:=eqns union{int(x^j,x=-1..1)=2*sum(w[i]*xi[i]^j,i=1..m)};

od;

if irem(n,2)=1 then sols:={w[0]}

else sols:={}

fi;

for j from 1 to m do

Gauss Quadrature 545

sols:=sols union {w[j],xi[j]};

od;

res:=solve(eqns,sols);

evalf(res);

end:

The procedure Gauss works well for n ≤ 6. For larger n, the system of
equations becomes too difficult for Maple to solve. Also the analytical ex-
pressions grow enormously. The call

Digits:=20; Gauss(6);

computes the values

ξ1 = −0.23861918608319690851, w1 = 0.46791393457269104747,
ξ2 = −0.66120938646626451369, w2 = 0.36076157304813860749,
ξ3 = −0.93246951420315202781, w3 = 0.17132449237917034509,

and the 6 point Gauss quadrature rule (which by construction will be exact
for polynomials up to degree 11) becomes

1∫
−1

f(x) dx ≈ w1(f(ξ1)+ f(−ξ1)) +w2(f(ξ2)+ f(−ξ2))+w3(f(ξ3) + f(−ξ3)).

With the procedure Gauss(n), we generate n-point Gauss quadrature rules
which are exact for polynomials of degree 2n−1. This is the maximum degree
for a rule with n points because of Theorem 9.2.

9.3.1 Characterization of Nodes and Weights

The brute force approach is only feasible for small values of n. For larger n,
the system of nonlinear equations becomes too hard to solve for Maple, so
one must resort to additional theory to compute the rules.

Our goal is to find nodes and weights to get an exact rule for polynomials
of degree up to 2n− 1,

1∫
−1

P2n−1(x) dx =
n∑

i=1

wiP2n−1(ξi). (9.42)

We argue as follows (see [46]): consider the decomposition of the polynomial
P2n−1 obtained by dividing by some other polynomial Qn(x) of degree n:

P2n−1(x) = Hn−1(x)Qn(x) +Rn−1(x).

Then Hn−1(x) and the remainder Rn−1(x) are polynomials of degree n − 1
and ∫ 1

−1

P2n−1(x) dx =

1∫
−1

Hn−1(x)Qn(x) dx+

∫ 1

−1

Rn−1(x) dx.

546 QUADRATURE

Applying rule (9.42) on both sides for the integrals and subtracting both
equations yields for the error the expression

1∫
−1

P2n−1(x) dx−
n∑

i=1

wiP2n−1(ξi) =

1∫
−1

Hn−1(x)Qn(x) dx

−
n∑

i=1

wiHn−1(ξi)Qn(ξi) +

1∫
−1

Rn−1(x) dx−
n∑

i=1

wiRn−1(ξi).

Now we see that we can make the error zero by the following choices:

First, take Qn(x) to be the orthogonal polynomial (see Section 9.3.2) on the
interval [−1, 1] corresponding to the scalar product

(f, g) =

1∫
−1

f(x)g(x) dx. (9.43)

By this choice and by the definition of orthogonal polynomials, the

first term in the error vanishes:
∫ 1

−1
Hn−1(x)Qn(x) dx = 0. Qn is a

Legendre Polynomial (see the next section) and available in Maple as
orthopoly[P](n,x).

Second, choose as the nodes the (real) zeros of Qn. Then the second term
in the error will also vanish:

∑n
i=1wiHn−1(ξi)Qn(ξi) = 0.

Third, having fixed the nodes we can compute weights according to Newton–
Cotes by integrating the interpolation polynomial. By construction, the
rule will integrate every polynomial of degree n− 1 exactly, so that

1∫
−1

Rn−1(x) dx =

n∑
i=1

wiRn−1(ξi)

and the last two error terms cancel.

We summarize our considerations in the following theorem.

Theorem 9.4. (Gauss Quadrature) The quadrature rule (9.39) has
order 2n if the nodes ξi are the zeros of the orthogonal polynomial Qn corre-
sponding to the scalar product (9.43), and if the weights wi are the integrals
of the Lagrange polynomials of the interpolating polynomial. The rule of
maximal order thus obtained is called the Gauss quadrature rule of order 2n.

So, we can compute a Gauss-Legendre quadrature rule, e.g. for n = 20,
with the following Maple statements:

n:=20;

X:=sort([fsolve(orthopoly[P](n,x)=0,x)]);

Q:=int(interp(X,[seq(y[i],i=1..n)],z),z=-1..1);

Gauss Quadrature 547

We obtain the nodes

−0.9931285992 −0.9639719273 −0.9122344283 −0.8391169718
−0.7463319065 −0.6360536807 −0.5108670020 −0.3737060887
−0.2277858511 −0.07652652113 0.07652652113 0.2277858511
0.3737060887 0.5108670020 0.6360536807 0.7463319065
0.8391169718 0.9122344283 0.9639719273 0.9931285992

and the weights

Q := 0.01640269573 y1 +0.01754850817 y20
+0.03905195696 y2 +0.04058452479 y19
+0.06184138764 y3 +0.06276883444 y18
+0.08488117231 y4 +0.08217103415 y17
+0.1133350868 y5 +0.1019128119 y16
+0.1160385455 y6 +0.1170817403 y15
+0.1314402339 y7 +0.1299214090 y14
+0.1492030646 y8 +0.1419790993 y13
+0.1602786570 y9 +0.1482908069 y12
+0.1542562513 y10 +0.1529135858 y11

We note by comparing the two columns in this display that large numerical
errors have occurred (the weights should be symmetric!). We are computing
the rules in a notoriously unstable way. However, Maple offers us more pre-
cision by increasing the value of Digits. Another run of the above statements
preceded by Digits:=25 yields the weights

Q := 0.01761400713915211987489804 y1 +0.01761400713915211834122067 y20
+0.04060142980038694332863786 y2 +0.04060142980038694132710636 y19
+0.06267204833410906228130736 y3 +0.06267204833410906279818190 y18
+0.08327674157670473984157893 y4 +0.08327674157670474749240521 y17
+0.1019301198172404396734028 y5 +0.1019301198172404347134974 y16
+0.1181945319615184115291584 y6 +0.1181945319615184185321909 y15
+0.1316886384491766392639297 y7 +0.1316886384491766275831639 y14
+0.1420961093183820380256461 y8 +0.1420961093183820529433995 y13
+0.1491729864726037542769121 y9 +0.1491729864726037461858007 y12
+0.1527533871307258470856468 y10 +0.1527533871307258476714246 y11

Comparing the two columns again we see that they match to about 16 digits,
sufficient for numerical calculations. Even if the rules were not symmetric,
with two runs of the Maple statements with different precision we are able
to obtain rules correct to the number of decimal digits we want.

9.3.2 Orthogonal Polynomials

We have seen in the last section that orthogonal polynomials play a key role
in Gauss quadrature. Orthogonal polynomials are also used to approximate
functions by interpolation (see Section 4.2.5). Here we use a different scalar

548 QUADRATURE

product. Given the scalar product (9.43), the polynomials pk(x) of degree
k = 0, 1, 2, . . . are said to be orthonormal on the interval [−1, 1] if

(pi, pk) =

1∫
−1

pi(x)pk(x) dx = δik.

Such polynomials can be constructed using the Gram-Schmidt procedure
discussed for computing the QR decomposition in Chapter 6. One starts
with the constant polynomial of degree zero

p0(x) = const. =
1√
2
,

whose value is determined by the normalizing condition

(p0, p0) =

1∫
−1

p20(x) dx = 1.

For the next polynomial, which is linear, we make the ansatz

p1(x) = a1x+ b1

and determine the constants a and b by solving the two equations

1∫
−1

p21(x) dx = 1 and

1∫
−1

p1(x)p0(x) dx = 0.

Using Maple, we find

p0:=1/sqrt(2): p1:=a1*x+b1:

sols:=solve({int(p1^2,x=-1..1)=1,int(p0*p1,x=-1..1)=0},{a1,b1});

convert(sols,radical);

{
b1 = 0, a1 = 1/2

√
3
√
2
}

and get thus

p1(x) =

√
3

2
x.

For the next polynomial we make the ansatz

p2(x) = a2x
2 + b2x+ c2

and determine the coefficients by solving the three equations

1∫
−1

p22(x) dx = 1,

1∫
−1

p2(x)p1(x) dx = 0 and

1∫
−1

p2(x)p0(x) dx = 0.

Gauss Quadrature 549

Continuing with Maple to do the calculations, we find

p2:=a2*x^2+b2*x+c2:

sols:=solve({int(p2^2,x=-1..1)=1,int(p2*p1,x=-1..1)=0,

int(p2*p0,x=-1..1)=0},{a2,b2,c2});

convert(sols,radical);{
b2 = 0, c2 = 1/4

√
5
√
2, a2 = −3/4

√
5
√
2
}
.

Taking the leading coefficient to be positive, we find

p2(x) =
3

2

√
5

2
x2 − 1

2

√
5

2
.

Continuing in this fashion, we can construct the orthogonal polynomials on
the interval [−1, 1], which are multiples of the Legendre polynomials (see
Equation (9.49)). The Legendre polynomials Pi are normalized by Pi(1) = 1
while the polynomials pi are orthonormal and normalized by (pi, pi) = 1.

There is, however, an easier way to compute orthogonal polynomials. As
we will see, they satisfy a three-term recurrence relation,

xpk−1(x) = βk−1pk−2(x) + αkpk−1(x) + βkpk(x), k = 1, 2, . . .

with the initial conditions p−1(x) = 0 and β0 = 0.
To see why this is true, we first note that every polynomial qk of degree

k can be written as a linear combination of the orthogonal polynomials p0,
p1 up to pk,

qk(x) =
k∑

j=0

cjpj(x). (9.44)

Since the orthogonal polynomials form an orthonormal basis, the coefficients
cj are given by the scalar product

cj = (pj , qk).

Now for the special choice qk(x) := xpk−1(x) we get

cj = (pj , xpk−1) = (xpj , pk−1) = 0, for j ≤ k − 3,

since pk−1 is orthogonal to all polynomials of degree less than k − 1. Thus
the sum (9.44) reduces to only three terms, namely

xpk−1(x) =

k∑
j=0

cjpj(x) = ck−2pk−2(x) + ck−1pk−1(x) + ckpk(x), (9.45)

and the coefficients are given by

ck−2 = (xpk−2, pk−1) = βk−1,
ck−1 = (xpk−1, pk−1) = αk,

ck = (xpk, pk−1) = (pk, xpk−1) = βk.
(9.46)

550 QUADRATURE

Equations (9.45) and (9.46) give us a direct iterative method, the Lanc-
zos Algorithm, to compute the orthogonal polynomials without having to go
through the Gram-Schmidt procedure. We summarize our discussion in the
following theorem.

Theorem 9.5. (Three Term Recurrence of Orthogonal Poly-

nomials) The orthogonal polynomials p0(x), p1(x), . . . satisfy the three-term
recurrence relation

xpk−1 = βk−1pk−2 + αkpk−1 + βkpk, k = 1, 2, . . . (9.47)

with αk = (xpk−1, pk−1), βk = (xpk−1, pk) and with the initialization β0 := 0,
p−1(x) := 0, and p0(x) := 1/

√
2.

The followingMaple procedure Lanczos computes the orthonormal poly-
nomials pk for [−1, 1] using Theorem 9.5:

Algorithm 9.4.
Lanczos Algorithm to Generate Orthogonal Polynomials

Lanczos:=proc(p,alpha,beta,n)

local k,q,x; p:=array(0..n); alpha:=array(1..n); beta:=array(1..n-1);

p[0]:=1/sqrt(2);

alpha[1]:=int(x*p[0]*p[0],x=-1..1);

q:=(x-alpha[1])*p[0];

for k from 2 to n do

beta[k-1]:=sqrt(int(q*q,x=-1..1));

p[k-1]:=expand(q/beta[k-1]);

alpha[k]:=int(x*p[k-1]*p[k-1],x=-1..1);

q:=(x-alpha[k])*p[k-1]-beta[k-1]*p[k-2];

od;

RETURN(NULL); # results are returned in the variables passed in

end;

If we compute the first 10 polynomials and the coefficients of the recur-
rence relation (9.47)

N:=10; Lanczos(p,a,b,N);

for i from 0 to N-1 do print(simplify(p[i])); od;

for i from 1 to N-1 do print(b[i]); od;

for i from 1 to N do print(a[i]); od;

we obtain αk = 0 for all k and for βk:

[

√
3

3
,
2
√
15

15
,
3
√
35

35
,
4
√
7

21
,
5
√
11

33
,
6
√
143

143
,
7
√
195

195
,
8
√
255

255
,
9
√
323

323
].

A closer look reveals the rule for the sequence βk:

β0 = 0, β1 =
1√
3
=

1√
4 − 1

, β2 =
2√
15

=
2√

16 − 1
, β3 =

3√
35

=
3√

36 − 1
, . . .

Gauss Quadrature 551

so that we can guess the general rule

βk =
k√

4k2 − 1
.

Thus the recursion for the orthonormal polynomials on [−1, 1] simplifies (with
p−1 = 0, p0 = 1/

√
2) to

x pk−1(x) =
k − 1√

4(k − 1)2 − 1
pk−2(x) +

k√
4k2 − 1

pk(x), k = 1, 2, . . .

(9.48)
As already said, the polynomial pk(x) is a multiple of the Legendre poly-
nomial Pk(x). For Legendre polynomials, the three-term recurrence (with
P0(x) = 1 and P1(x) = x) is:

x Pk(x) =
k

2k + 1
Pk−1(x) +

k + 1

2k + 1
Pk+1(x). (9.49)

We have shown in this subsection how to compute the coefficients of the
three-term recurrence for the orthonormal polynomials for the interval [−1, 1].
It is straightforward to generalize the Maple procedure Lanczos to compute
orthogonal polynomials for an interval [a, b] for the scalar product

(f, g) =

∫ b

a

w(x)f(x)w(x) dx (9.50)

with some weight function w(x) ≥ 0. For this and other generalizations, we
refer to Chapter 18 written by Urs von Matt in [45].

If the coefficients αk and βk of the three-term recurrence (9.47) are known,
then we can compute the polynomials and their zeros, which are then used
as nodes for Gauss quadrature rules.

In principle, any of the root-finding methods discussed in Section 5.3 can
be used to compute the zeros. However, it is not recommended to compute
the coefficients of pn(x) explicitly in order to use a numerical method, since,
as we have seen in Section 5.3.1, the zeros are very sensitive to changes
in the coefficients of a polynomial. A much better way is to use the three-
term recurrence (9.47) directly to compute the function value and derivatives
of pn(x). As discussed in Section 5.3.7, the method of Newton–Maehly is
designed for polynomials which have only simple and real zeros. This is the
case for orthogonal polynomials:

Theorem 9.6. (Zeros of Orthogonal Polynomials) The zeros of
an orthogonal polynomial pn with respect to the scalar product (9.50) on (a, b)
are all real with multiplicity one and contained in (a, b).

Proof. Let ξ1, . . . , ξm be the real and distinct zeros of pn with odd
multiplicities in [a, b]. Clearly 0 ≤ m ≤ n holds. We form the polynomial

qm(x) = (x− ξ1) · · · (x− ξm), (qm = 1 if m = 0),

552 QUADRATURE

and consider the integral

b∫
a

pn(x)qm(x)w(x) dx. (9.51)

This integral is different from zero, since pn(x)qm(x) does not change signs
on the interval (a, b). On the other hand, since pn is orthogonal to all polyno-
mials of degree ≤ n− 1, (9.51) can only be non-zero if m ≥ n. Therefore we
must have m = n and thus all zeros must be simple and contained in (a, b).
�

9.3.3 Computing the Weights

If the nodes ξj are known, then the weights can be computed by integrating
the Lagrange polynomials,

wi =

b∫
a

li(x) dx, with li(x) =

n∏
j=1
j �=i

x− ξj
ξi − ξj

.

Since the nodes are known, a first simplification is obtained by factoring the
orthogonal polynomial,

pn(x) = an

n∏
j=1

(x− ξj).

Now, because of pn(ξi) = 0,

p′
n(ξi) = lim

x→ξi

pn(x)− pn(ξi)

x− ξi
= lim

x→ξi

an
∏n

j=1(x− ξj)

x− ξi
= an

n∏
j=1
j �=i

(ξi − ξj).

Thus, p′
n(ξi) is essentially the denominator of the Lagrange polynomial, so

we can write

li(x) =
pn(x)

p′
n(ξi)(x− ξi)

.

The weights then become

wi =
1

p′
n(ξi)

b∫
a

pn(x)

(x− ξi)
dx.

Theorem 9.7. (Quadrature Weights) Define Φ0(x) = 0 and

Φi(x) =

b∫
a

pi(t)− pi(x)

t− x
dt, i = 1, 2, . . . , n.

Gauss Quadrature 553

Then the functions Φi(x) satisfy the same three-term recurrence as the or-
thogonal polynomials

xΦi−1 = βi−1Φi−2 + αiΦi−1 + βiΦi, i = 2, 3, . . . , n,

and the weights are computed by

wi =
Φn(ξi)

p′
n(ξi)

, i = 1, 2, . . . , n. (9.52)

Proof. Using the recurrence relation for the orthogonal polynomials

βnpn(x) = (x− αn)pn−1 − βn−1pn−2

in

βnΦn(x) =

b∫
a

βnpn(t)− βnpn(x)

t− x
dt,

we obtain

βnΦn(x) =

b∫
a

(t − αn)pn−1(t) − βn−1pn−2(t) − (x − αn)pn−1(x) + βn−1pn−2(x)

t − x

= −βn−1Φn−2(x) +

b∫
a

(t − αn)pn−1(t) − (x − αn)pn−1(x)

t − x
dt.

Replacing t− αn by (t− x) + (x− αn) we obtain

= −βn−1Φn−2(x) +

b∫
a

pn−1(t) dt

︸ ︷︷ ︸
=0

+(x− αn)Φn−1(x).

�
Using Theorem 9.7 and the Newton–Maehly method to compute the nodes

(see Section 5.3.7), we can write a Matlab function to compute Gauss–
Legendre quadrature rules. We use the coefficients

αk = 0, βk =
k√

4k2 − 1
, k = 1, . . . , n.

Furthermore p0(x) = 1/
√
2 and

Φ1(x) =

b∫
a

p1(t)− p1(x)

t− x
dt = p1(x)

′(b− a) =

√
3

2
(b− a).

554 QUADRATURE

The weights and nodes are adapted to the integration interval (a, b) using
the change of variables (9.38).

Algorithm 9.5.
Gauss-Legendre Quadrature with Newton–Maehly

function [xi,w]=GaussByNewtonMaehly(a,b,n);

% GAUSSBYNEWTONMAEHLY Gauss nodes and weights using Newton Maehly

% [xi,w]=GaussByNewtonMaehly(a,b,n) computes the n nodes and weights

% for Gauss Legendre quadrature for the interval (a,b). The nodes

% are computed with the Newton-Maehly algorithm, and the weights by

% using the function Phi and the three term recurrence relation.

% Since the rule is symmetric, only half of the nodes and weights

% are computed.

xi=[];

for k= 1:n % coefficients for Gauss-Legendre

beta(k)=k/sqrt(4*k^2-1); % alpha(i)=0

end

phi=sqrt(3/2)*(b-a); % =p_1’*int_a^b

p=1/sqrt(2); % =p_0

xm=(a+b)/2; xl=(b-a)/2; % change of variables

anz=fix((n+1)/2); x0=1;

for k=1:anz,

y=x0; finished=0;

m=2; % Newton double step

while ~finished,

x=y; % evaluate polynom and derivative

p1s=0; p1=p; p2s=sqrt(3/2); p2=sqrt(3/2)*x;

for i=2:n

p0s=p1s; p0=p1; p1s=p2s; p1=p2;

p2s=(p1+x*p1s-beta(i-1)*p0s)/beta(i);

p2=(x*p1-beta(i-1)*p0)/beta(i);

end

s=sum(1./(x-xi(1:k-1))+1./(x+xi(1:k-1)));

y=x-m*p2/p2s/(1-p2/p2s*s); % Newton-Maehly step

if y>=x,

if m==1, finished=1;

end

if ~finished;

x0=x; m=1; % stop double step

y=x-p2/p2s/(1-p2/p2s*s); % Newton backstep

end

end

end

xi(k)=y;

phi1=0; phi2=phi;

for i=2:n

phi0=phi1; phi1=phi2; phi2=(y*phi1-beta(i-1)*phi0)/beta(i);

Gauss Quadrature 555

end

w(k)=xl*phi2/p2s; w(n+1-k)=w(k);

end

for k=1:anz, % backchange variables

y=xi(k); xi(k)=xm+xl*y; xi(n+1-k)=xm-xl*y;

end

xi=xi(:); w=w(:);

With the call [xi,w]=GaussByNewtonMaehly(-1,1,10), we obtain the
values

ξi wi

0.97390652851717 0.06667134430869
0.86506336668898 0.14945134915058
0.67940956829902 0.21908636251598
0.43339539412925 0.26926671931000
0.14887433898163 0.29552422471475

−0.14887433898163 0.29552422471475
−0.43339539412925 0.26926671931000
−0.67940956829902 0.21908636251598
−0.86506336668898 0.14945134915058
−0.97390652851717 0.06667134430869

which are correct to all printed digits.
In the next section, we will describe another way to compute the weights

and nodes for Gauss quadrature rules. This is the most elegant method for
computing these quantities numerically, as we will see.

9.3.4 Golub–Welsch Algorithm

If we know the coefficients αk and βk, we can write the three-term recurrence
relations (9.47) simultaneously in matrix form, namely

x

⎛
⎜⎜⎜⎝

p0(x)
p1(x)

...
pn−1(x)

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎝

α1 β1

β1 α2 β2

β2
. . .

. . .

. . . αn−1 βn−1

βn−1 αn

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

p0(x)
p1(x)

...
pn−1(x)

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

0
...
0

βnpn(x)

⎞
⎟⎟⎟⎠,

or, using vector notation,

xp(x) = Tnp(x) + enβnpn(x),

where en denotes the canonical basis vector.
If ξi is a zero of pn(x), then

ξip(ξi) = Tnp(ξi).

556 QUADRATURE

Hence, the zeros ξi of the n-th orthogonal polynomial pn(x) are the eigenvalues
of the matrix

Tn =

⎡
⎢⎢⎢⎢⎢⎢⎣

α1 β1

β1 α2 β2

β2
. . .

. . .

. . . αn−1 βn−1

βn−1 αn

⎤
⎥⎥⎥⎥⎥⎥⎦
.

As a result, we can use an algorithm for computing eigenvalues of symmetric
tridiagonal matrices in order to compute the nodes of a Gauss quadrature
rule. Note that the eigenvectors

p(ξi) =

⎛
⎜⎜⎜⎝

p0(ξi)
p1(ξi)

...
pn−1(ξi)

⎞
⎟⎟⎟⎠

are the function values of the orthogonal polynomials of lower degree evalu-
ated at the zero ξi of pn.

We have seen that the weights wi are determined by integrating the La-
grange polynomials for the interpolating polynomial. Since the Gauss quadra-
ture rule

1∫
−1

f(x) dx ≈
n∑

k=1

wkf(ξk)

is exact for any polynomial of degree up to 2n − 1, it will integrate the
orthogonal polynomials pi(x) exactly for i = 0, 1, . . . , n− 1:

1∫
−1

p0(x) dx =
√
2 =

n∑
i=1

p0(ξi)wi,

1∫
−1

p1(x) dx = 0 =
n∑

i=1

p1(ξi)wi,

...
...

...
1∫

−1

pn−1(x) dx = 0 =
n∑

i=1

pn−1(ξi)wi,

or, in matrix notation,

⎡
⎢⎢⎢⎣

p0(ξ1) p0(ξ2) . . . p0(ξn)
p1(ξ1) p1(ξ2) . . . p1(ξn)

...
...

...
pn−1(ξ1) pn−1(ξ2) . . . pn−1(ξn)

⎤
⎥⎥⎥⎦
⎛
⎜⎜⎜⎝

w1

w2

...
wn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

√
2
0
...
0

⎞
⎟⎟⎟⎠ .

Gauss Quadrature 557

So to obtain the weights, we have to solve this linear system of equations, in
matrix form

Pw =
√
2e1.

But the columns in the matrix P are the eigenvectors of the symmetric matrix
Tn, so they form an orthogonal matrix when scaled properly. To find this scal-
ing, note that p0(x) = const = 1√

2
. If we compute the eigen-decomposition

Tn = QDQ�,

using Matlab [Q,D]=eig(Tn), then the eigenvector matrix Q is orthogonal,
i.e., Q�Q = I. In order to find P , we must scale the eigenvectors so that the
first component of each eigenvector becomes 1√

2
.

If q is a column of Q, we have to scale it by dividing first by its first
component and then multiplying by 1√

2
. In matrix notation, this is done by

P = QV

where V is a diagonal matrix containing the appropriate scaling factors

V = diag

(
1√
2 q1,1

,
1√
2 q1,2

, . . . ,
1√

2 q1,n

)
.

Hence solving Pw =
√
2e1 is equivalent to solving QVw =

√
2e1 which is

simply

w =
√
2V −1Q�e1 = 2

⎛
⎜⎜⎜⎝

q21,1
q21,2
...

q21,n

⎞
⎟⎟⎟⎠ .

Thus, all the information to compute the Gauss quadrature rules is contained
in the matrix Tn. This result is the key idea of the Golub–Welsch Algorithm
for computing Gauss quadrature rules [52]. The nodes are the eigenvalues of
the matrix Tn and the weights are the first components of the eigenvectors
of Tn squared and multiplied by the factor 2. These quantities can easily be
obtained in Matlab using brute force, which leads to the following short
program for computing Gauss-Legendre quadrature rules using the Golub–
Welsch idea, as shown in Trefethen and Bau [140]:

Algorithm 9.6.
Brute Force Implementation of the Golub–Welsch

approach by Trefethen and Bau

function [x,w]=GaussByGolubWelschBruteForce(n);

% GAUSSBYGOLUBWELSCHBRUTEFORCE Golub-Welsch brute force implementation

% [x,w]=GaussByGolubWelschBruteForce(n); computes the n nodes and

558 QUADRATURE

% weights for Gauss Legendre quadrature for the interval (a,b) using

% the idea of Golub-Welsch, but in a brute force implementation.

beta=0.5./sqrt(1-(2*(1:n-1)).^(-2));

[Q,D]=eig(diag(beta,1)+diag(beta,-1));

[x,i]=sort(diag(D)); w=2*Q(1,i).^2’;

The function GaussByGolubWelschBruteForce works well, but we have
to be aware that this short program does not take into account the structure
of the problem as it is proposed in the algorithm of Golub–Welsch [52]. We
have only to solve a symmetric tridiagonal eigenvalue problem and from the
eigenvector matrix we only need the first row.

With GaussByGolubWelschBruteForce the matrix is treated as full, and
the eigenvectors are computed in their entirety, not just their first compo-
nents.

In Chapter 7, we have developed the QR Algorithm 7.10, which com-
putes the eigenvalues of a symmetric tridiagonal matrix. The Golub-Welsch
approach uses this algorithm to compute the nodes and modifies it to com-
pute the weights simultaneously. To do so, we need to apply the necessary
Jacobi rotations not only to the tridiagonal matrix, but also to a vector g that
is initialized to g = e1. The accumulation of the rotations on g is equivalent
to computing

w = Q�e1,

i.e., we obtain the first row of Q. To get the weights, the elements have to
be squared and multiplied by the factor 2. The following program results:

Algorithm 9.7.
Gauss-Quadrature: Golub-Welsch Algorithm

function [xi,w]=GaussByGolubWelsch(a,b)

% GAUSSBYGOLUBWELSCH compute Gauss nodes and weights using Golub-Welsch

% [x,w]=GaussByGolubWelsch(n); computes the n nodes and weights for

% Gauss Legendre quadrature for the interval (a,b) using the

% algorithm of Golub-Welsch.

n=length(a); w=zeros(n-1,1); w=[1;w];

I=1;

while n>1;

for k=I:n-1 % Check for small b_i and

an=abs(a(k))+abs(a(k+1)); % possible deflation

if an+b(k)==an, b(k)=0; I=k+1; end

end

if I==n; % deflation

n=n-1; I=1;

elseif I+1==n

g=100*abs(b(I)); h=a(I+1)-a(I);

Gauss Quadrature 559

if abs(h)+g==abs(h),t=b(I)/h; % 2x2 block: annihilate b(I)

else % explicitly by one rotation

theta=0.5*h/b(I);

t=1/(abs(theta)+sqrt(1+theta^2));

if theta<0, t=-t; end

end

c=1/sqrt(1+t^2); s=t*c; % rotate weights vector

hv=c*w(I)-s*w(I+1); w(I+1)=s*w(I)+c*w(I+1); w(I)=hv;

a(I)=a(I)-b(I)*t; a(I+1)=a(I+1)+b(I)*t; b(I)=0;

n=n-2; I=1; % deflation

else

delta =(a(n)-a(n-1))/2; % QR-step from I to n

if delta==0, % with Wilkinson shift

sigma=a(n)-abs(b(n-1));

else

sigma=a(n)-b(n-1)^2/(delta+sign(delta)*sqrt(delta^2+b(n-1)^2));

end

[c s]=GivensRotation(a(I)-sigma, b(I));% first transformation

d=a(I)-a(I+1); z=s*(s*d+2*c*b(I));

a(I)=a(I)-z; a(I+1)=a(I+1)+z;

b(I)=c*s*d+b(I)*(c^2-s^2);

bulge=-s*b(I+1); b(I+1)=c*b(I+1);

hv=c*w(I)-s*w(I+1); w(I+1)=s*w(I)+c*w(I+1); w(I)=hv;

for k= I+2:n % chasing the bulge

[c s]=GivensRotation(b(k-2), bulge);

balt= b(k-1);

d=a(k-1)-a(k); z=s*(s*d+2*c*b(k-1));

a(k-1)=a(k-1)-z; a(k)=a(k)+z;

b(k-2)=c*b(k-2)-s*bulge;

b(k-1)=c*s*d+b(k-1)*(c^2-s^2);

if k<n

bulge=-s*b(k); b(k)=c*b(k);

end

hv=c*w(k-1)-s*w(k); w(k)=s*w(k-1)+c*w(k); w(k-1)=hv;

end

end

end

[xi,i]=sort(a); xi=xi(:); w=2*w(i).^2;

With the statements

n=20

for k=1:n

beta(k)=k/sqrt(4*k^2-1);

alpha(k)=0;

end

[xi,w]=GaussByGolubWelsch(alpha,beta)

560 QUADRATURE

we obtain the weights and nodes:

wi ξi
0.01761400713915 −0.99312859918509
0.04060142980039 −0.96397192727791
0.06267204833411 −0.91223442825133
0.08327674157671 −0.83911697182222
0.10193011981724 −0.74633190646015
0.11819453196152 −0.63605368072652
0.13168863844918 −0.51086700195083
0.14209610931838 −0.37370608871542
0.14917298647260 −0.22778585114165
0.15275338713072 −0.07652652113350
0.15275338713073 0.07652652113350
0.14917298647260 0.22778585114165
0.14209610931838 0.37370608871542
0.13168863844918 0.51086700195083
0.11819453196152 0.63605368072651
0.10193011981724 0.74633190646015
0.08327674157670 0.83911697182222
0.06267204833411 0.91223442825133
0.04060142980039 0.96397192727791
0.01761400713915 0.99312859918509

We have presented three algorithms to compute the nodes and weights for
Gauss quadrature: GaussByNewtonMaehly, GaussByGolubWelschBruteForce
solving the full eigenvalue problem, and GaussByGolubWelsch solving the
tridiagonal eingenvalue problem and computing only the first row of the
eigenvector matrix. We cannot compare in a fair way the required com-
puting time, since eig is a Matlab built-in function and flop counts are no
longer reported in newer Matlab releases. However, we can compare the ac-
curacy of the results. For that purpose we need some exact reference values.
Therefore we first compute a Gauss quadrature rule for n = 50 using Maple

with extended precision

Algorithm 9.8.
Generate Reference Values for Gauss-Quadrature

Digits:=50;

n:=50;

X:=sort([fsolve(orthopoly[P](n,x)=0,x)]);

Q:=int(interp(X,[seq(y[i],i=1..n)],z),z=-1..1);

Now we compute the nodes and weights with the three Matlab functions
and compare the results with the exact values by computing the difference

Adaptive Quadrature 561

of the norm of the vectors. We obtain

Matlab function norm nodes norm weights

GaussByNewtonMaehly 1.77× 10−16 9.25× 10−16

GaussByGolubWelschBruteForce 1.66× 10−15 2.83× 10−15

GaussByGolubWelsch 2.91× 10−15 4.85× 10−15

and we note that Newton–Maehly is very accurate.

9.4 Adaptive Quadrature

So far, to compute an integral to a certain accuracy, we have used a compos-
ite quadrature rule in which the integration step size is constant. We control
the integration error by halving the step size until the relative difference of
two approximations is smaller than some prescribed tolerance. By doing so,
we generate equidistant subintervals and apply a quadrature rule (e.g. Simp-
son’s rule) to each subinterval. For each subinterval, there will be a different
integration error depending on the local behavior of the function. The global
error will therefore depend mainly on the largest error in a subinterval.

To minimize the number of function evaluations, we should ideally work
with a non-uniform partition of subintervals which is adapted to the local
behavior of the function. For instance, larger integration steps can be taken
where the function is flat, whereas smaller steps should be taken where the
function has sharp transitions. The partition should be chosen in such a
way that the error becomes roughly the same for each subinterval. This will
generally not be the case for an equidistant partition, which tends to have
too many points in the flat portions and not enough in the steep ones.

We will illustrate this by considering the integral

I =

1∫
0

√
x dx =

2

3
= 0.666666666666

If we compute I using the function TrapezoidalRule(@sqrt,0,1,1e-5) and

562 QUADRATURE

print consecutive approximations, we get

h T (h)
1 0.50000000000000

2−1 0.60355339059327
2−2 0.64328304624275
2−3 0.65813022162445
2−4 0.66358119687723
2−5 0.66555893627894
2−6 0.66627081137851
2−7 0.66652565729683
2−8 0.66661654897653
2−9 0.66664888154995
2−10 0.66666036221898
2−11 0.66666443359297

Thus, for a result with 5 correct decimal digits, we need a step size of about
h = 2−10 = 9.765625e−4 ≈ 10−3. We cannot estimate the error in the
first subinterval [0, h] with (9.12) because the derivative of f(x) =

√
x has

a singularity at x = 0 and the estimate is not valid. However, the estimate
is applicable for the second subinterval [h, 2h]. Since maxh≤x≤2h |f ′′(x)| =
h−3/2/4, we obtain

|I − T (h)| = |f ′′(ξ)|
12

h3 ≤ h3/2

48
= 6.357e−7 < 1e−5.

Already for the second subinterval, the step size is smaller than necessary
for the tolerance! The disparity becomes even more pronounced for the last
interval [1 − h, 1], where the error estimate gives the bound 1.94e−11. For
this example, the step size h is dictated only by the first subinterval in which
the function changes most.

How large could the step size be for the trapezoidal rule and tol = 1e−5
for the last subinterval? If we apply the error estimate (9.12) and use

max
1−h≤x≤1

|f ′′(x)| = (1− h)−
3
2

4
,

then we need to solve the equation

(1− h)−
3
2 h3

48
= 10−5

to determine h. We obtain h = 0.075, which means that we could choose
for the same error in the last subinterval a step size that is about 70 times
larger.

The idea of adaptive quadrature is to try to choose a partition of subinter-
vals automatically, such that the error is about the same in all subintervals.

Adaptive Quadrature 563

All well-known software libraries (like IMSL, NAG, Netlib) offer general pur-
pose adaptive quadrature routines. There are also such functions in Matlab.

One way to achieve this automatic partition of subintervals is by the
principle of divide and conquer. To compute

I =

b∫
a

f(x)dx,

one proceeds as follows. First, one integrates f using two different numerical
integration methods (or the same method with two different step sizes), thus
obtaining the approximations I1 and I2. Typically, one, say I1, is more
accurate than the other. If the relative difference of the two approximations
is smaller than some prescribed tolerance, one accepts I1 as the value of the
integral. Otherwise, the interval [a, b] is divided, e.g., into two equal parts
[a,m] and [m, b], where m = (a + b)/2, and the two respective integrals are
computed (conquered) independently,

I =

m∫
a

f(x)dx+

b∫
m

f(x)dx.

Next, one recursively computes two approximations for each integral and, if
necessary, continues to subdivide the smaller intervals. Using recursion is a
very obvious way to implement an adaptive quadrature algorithm. In what
follows, we will discuss one such algorithm, as described in [41] and [43].

9.4.1 Stopping Criterion

First, we need to decide when to stop the recursion. If I1 and I2 are two
estimates for the integral, a conventional stopping criterion is

if abs(i1-i2)<tol*abs(i1), (9.53)

where tol is some prescribed error tolerance. However, this criterion by itself
is not sufficient. For our example, of f(x) =

√
x integrated on [0, 1] with I1,

defined by Simpson’s rule using the step size h, and I2 defined by Simpson’s
rule for the step size h/2, and tol = 10−4 we obtain in Matlab the error
message:

??? Maximum recursion limit of 500 reached. Use set(0,’RecursionLimit’,N) to
change the limit. Be aware that exceeding your available stack space can crash
MATLAB and/or your computer.

The reason is that, in this example, the two Simpson values never agree to 4
digits in the first interval containing 0.

A better criterion for terminating the recursion is based on the observation
that it makes no sense to continue subdividing when the partial integral I1

564 QUADRATURE

or I2 becomes negligible compared to the whole integral. Therefore, we have
to add the criterion

|I1| < η

∣∣∣∣∣∣
b∫

a

f(x)dx

∣∣∣∣∣∣ , (9.54)

where η is another prescribed tolerance. Since the integral is not known in
advance, we have to use an estimate instead. When both criteria (9.53) and
(9.54) are used together with some reasonable choices of tol and η, a working
algorithm can be obtained. For instance, if we use for the above example

if abs(i1-i2)<1e-4*abs(i1) | abs(i1)<1e-4 (9.55)

as the stopping criterion, we obtain I = 0.666617217 in 41 function evalua-
tions.

The stopping criterion (9.55), however, is still not satisfactory because
the user has to choose tol and η, which depend on the machine and on the
problem. To avoid possible bad choices by the user, one should eliminate
such parameters whenever possible. To improve the criterion, we first need

a rough estimate is ≈
∣∣∣∣∣
b∫
a

f(x)dx

∣∣∣∣∣, with is 	= 0. The stopping criterion (9.54)

would then be |I1| < η ·|is|. But in order to eliminate η, we stop the recursion
in a machine-independent way by (see also Subsection 2.8.1)

if is+i1==is. (9.56)

In the same spirit, we may as well replace the criterion (9.53) by

if is+(i1-i2)==is. (9.57)

Criterion (9.57) will in general be met before Criterion (9.56), and therefore
we shall require only (9.57).

There are cases, e.g.,
∫ 1

0
1√

1−x2
dx, where, when ignoring the singularity

(this means artificially define the function value at the singularity to be equal
to zero), the subdivision will continue until an interval contains no machine
number other than the end points. In this case, we also need to terminate
the recursion. Thus, our termination criterion is

if (is+(i1-i2)==is) | (m<=a) | (m>=b), (9.58)

where m = (a + b)/2. This, in particular, guarantees termination of the
program.

Using the stopping criterion (9.58), we attempt to compute the integral
to machine precision. If we wish to compute the integral with less accuracy,
say within the tolerance tol, it suffices to magnify the estimated value is by

is=is*tol/eps,

where eps denotes the machine precision. Of course is will then no longer
be an estimate of the integral.

Adaptive Quadrature 565

9.4.2 Adaptive Simpson quadrature

As a first algorithm, we will use Simpson’s method to develop two Matlab

functions for adaptive quadrature. The first SimpsonAdaptive(f,a,b,tol)
will be used for initialization and it will call the second recursive function
SimpsonRecursion.

For the first approximation I1, we apply Simpson’s rule to a single interval
[a, b]. This requires the function values fa = f(a), fm = f(m) and fb = f(b):

i1 = h/1.5 ∗ (fa+ 4 ∗ fm+ fb);

where m = (a+ b)/2 and h = (b− a)/4. For the second approximation I2, we
apply Simpson’s rule to the two subintervals [a,m] and [m, b], which requires
two additional function values fml = f(a+ h) and fmr = f(b− h):

i2 = h/3 ∗ (fa+ 4 ∗ (fml+ fmr) + 2 ∗ fm+ fb);

Now since we have two Simpson values, we can extrapolate a better value
using the Romberg scheme and we overwrite the less accurate Simpson value
I1:

i1 = (16 ∗ i2− i1)/15;

So we will use the Simpson value for the step size h = (b − a)/4 and the
extrapolated value for the termination criterion (9.58). If we need to recur,
then, in order to avoid recomputing the function values, we will pass to the
next recursion level the function values fa, fml and fm for the interval [a,m],
and the values fm, fmr and fb for the second interval [m, b] as parameters.

Our next concern is to compute the estimated value is. What we really
need is just a rough estimate that indicates the order of magnitude of the
integral. For this, we propose a Monte Carlo estimate of the integral, in
which we also use the function values in the middle and at the end points of
the interval (those values are used for Simpson’s rule):

is =
b− a

8
(f(a) + f(m) + f(b) +

5∑
i=1

f(ξi)). (9.59)

Here m = (a + b)/2 and ξ = a + [.9501 .2311 .6068 .4860 .8913](b − a) is a
vector of random numbers in (a, b). If by accident we get is = 0, then we
use the value is = b − a, which means that for computing the estimate we
replace the function f by the constant 1. With this choice of is, we adopt
the stopping criterion (9.58).

We are now ready to present the function SimpsonAdaptive.

Algorithm 9.9.
Adaptive Quadrature using Simpson’s Rule

function Q=SimpsonAdaptive(f,a,b,tol,trace,varargin)

566 QUADRATURE

% SIMPSONADAPTIVE approximate integral using adaptive Simpson rule

% Q=SimpsonAdaptive(f,a,b) approximates the integral of F(X) from a

% to b to machine precision. f is a function handle. The function

% f must return a vector of output values if given a vector of input

% values.

% If SimpsonAdaptive finds that the integrand f has a singularity,

% i.e. encounters a function value NaN or Inf it replaces this value

% by 0 and issues a warning.

% Q=SimpsonAdaptive(f,a,b,tol) integrates to a relative error of

% tol. Q=SimpsonAdaptive(f,a,b,tol,trace) displays the left end

% point of the current interval, the interval length, and the

% partial integral. Q=SimpsonAdaptive(f,a,b,tol,trace,p1,p2,...)

% allows coefficients p1,... to be passed directly to the function

% f: G =f(x,p1,p2,...). To use default values for tol or trace, one

% may pass the empty matrix ([]).

% Walter Gander, 22.8.2000

global warn1 warn2

if (nargin<4),tol=[]; end;

if (nargin<5),trace=[]; end;

if (isempty(tol)),tol=eps; end;

if (isempty(trace)),trace=0; end;

if tol<=eps,tol=10*eps; end

warn1=0; warn2=0;

x=[a (a+b)/2 b]; y=f(x,varargin{:});

for p= 1:length(y)

if isinf(y(p)) | isnan(y(p)),

y(p)=0; warn1=1;

end

end

fa=y(1); fm=y(2); fb=y(3);

yy=f(a+[.9501 .2311 .6068 .4860 .8913]*(b-a),varargin{:});

for p= 1:length(yy)

if isinf(yy(p)) | isnan(yy(p)),

yy(p)=0; warn1=1;

end

end

is=(b-a)/8*(sum(y)+sum(yy));

is=is*tol/eps; if is==0,is=b-a; end;

Q=SimpsonRecursive(f,a,b,fa,fm,fb,is,trace,varargin{:});

if warn1==1,

warning([’Infinite or Not-a-Number function value encountered. ’,...

’Singularity likely. Required tolerance may not be met.’]);

end

if warn2==1,

warning([’Interval contains no more machine number. ’,...

’Singularity likely. Required tolerance may not be met.’]);

end

Adaptive Quadrature 567

function Q=SimpsonRecursive(f,a,b,fa,fm,fb,is,trace,varargin)

% SIMPSONRECURSIVE Recursive function used only by SIMPSONADAPTIVE

global warn1 warn2

m=(a+b)/2; h=(b-a)/4;

x=[a+h,b-h]; y=f(x,varargin{:});

for p=1:length(y)

if isinf(y(p)) | isnan(y(p)),

y(p)=0; warn1=1;

end

end

fml=y(1); fmr=y(2); i1=h/1.5*(fa+4*fm+fb);

i2=h/3*(fa+4*(fml+fmr)+2*fm+fb); i1=(16*i2-i1)/15;

if (is+(i1-i2)==is) | (m<=a) | (b<=m),

if ((m <= a) | (b<=m)), warn2=1; end;

Q=i1;

if (trace),disp([a b-a Q]),end;

else

Q=SimpsonRecursive(f,a,m,fa,fml,fm,is,trace,varargin{:})+...

SimpsonRecursive(f,m,b,fm,fmr,fb,is,trace,varargin{:});

end;

We go back to the integral that we considered at the beginning of this
section,

I =

1∫
0

√
x dx =

2

3
= 0.666666666666

To compute the integral to a tolerance of 1e−5, the composite trapezoidal
rule required an integration step size of h = 2−10, which implied about 1000
function evaluations. Using SimpsonAdaptive(@sqrt,0,1,1e-5,1) we get
the result 0.66665999490706 with only 38 function evaluations. With trace

turned on, the following intermediate values are printed:

i xi xi+1 − xi

xi+1∫
xi

√
x dx

0 0.0000000 0.0078125 0.00045420327593
1 0.0078125 0.0078125 0.00084172670019
2 0.0156250 0.0156250 0.00238076263043
3 0.0312500 0.0312500 0.00673381360150
4 0.0625000 0.0625000 0.01904610104346
5 0.1250000 0.1250000 0.05387050881198
6 0.2500000 0.2500000 0.15236880834770
7 0.5000000 0.5000000 0.43096407049588

We notice that we needed only 8 subintervals. The smallest, the first one, has

568 QUADRATURE

length 0.0078125 and the length of the last one is 0.5. We see that adaptive
quadrature is remarkably efficient for this example.

Since SimpsonAdaptive works so well, we tried to make it as user-friendly
and also as bullet-proof as possible. A tolerance of eps (the machine pre-
cision) makes SimpsonAdaptive work much harder than necessary, without
yielding any noticeable gain in accuracy compared to, say, tol = 10 · eps.
Thus we set for a required tol ≤ eps the tolerance to tol = 10 · eps.

For functions with a singularity, the integral may nevertheless exist. Con-
sider as an example the integral

1∫
0

ln(1− x)

x
dx = −π2

6
= −1.64493406684823.

For x = 0 and x = 1, the function has a singularity. One lazy way to deal
with undefined function values and singularities is just to ignore them. This
means, as we said before, to define artificially the function value to be equal
to zero. Therefore we would have to program the integrand as follows:

function y=g(x)

y=[];

for z=x,

if (z==0)

y=[y 1];

elseif z==1

y=[y 0];

else

y=[y log(1-z)/z];

end

end

However, we can detect and ignore such function values automatically in the
function SimpsonAdaptive and make life for the user more comfortable (but
also more dangerous!). In SimpsonAdaptive, we check after each function
evaluation if NaN or Inf values occur, and replace them by zeros when they
do. The user can now program the function simply as

g2=@(x) log(1-x)./x;

and with SimpsonAdaptive(g2,0,1,1e-10) we obtain −1.64493406583834
which is correct to 10 digits using 642 function evaluations. If NaN or Inf

values occur SimpsonAdaptive will warn the user with

Warning: Infinite or Not-a-Number function value encountered.

Singularity likely. Required tolerance may not be met.

The danger of such an automated approach is that users of SimpsonAdaptive
may “solve” unreasonable problems. For instance the integral

I =

1∫
0

dx

3x− 1

Adaptive Quadrature 569

does not exist. The call SimpsonAdaptive(@(x) 1./(3*x-1),0,1,1e-5) de-
livers warning messages but also a wrong integral value of 0.13072984773219
using 1406 function evaluations.

9.4.3 Adaptive Lobatto quadrature

Gauss quadrature rules achieve a high order of approximation with a min-
imal number of points. However, if we refine the integration step size it is
not possible to reuse the function values of the previous level. The goal in
this section is therefore to compromise. When we consider Gauss quadrature
rules in which some nodes are prescribed, then we speak of Gauss–Lobatto
or, more generally, of Gauss–Kronrod rules. We will use Gauss–Lobatto rules
(where the endpoints of the integration interval are used) and develop Kro-
nrod extensions for some given nodes (see [43]).

To develop the theory, we will consider the integration interval [−1, 1] and
generalize later to an interval [a, b] using a change of variables. The basic
quadrature rule, which we first determine, will use the endpoints −1 and 1
plus two interior points, which by symmetry must be −ξ1 and ξ1. Thus the
formula will be:

a (f(−1) + f(1)) + b (f(−ξ1) + f(ξ1)) . (9.60)

We want the basic formula to integrate polynomials of degrees as high as
possible. Because of symmetry the monomials with odd degree are integrated
exactly. There are three free parameters a, b and ξ1 to determine the rule
(9.60). We can require that it be exact for f(x) = 1, x2 and x4. Using Maple

we set up the equations and solve them:

u1:=2*a+2*b:

u2:=2*a+2*b*xi[1]^2:

u3:= 2*a+2*b*xi[1]^4:

solve({u1=2,u2=2/3,u3=2/5},{a,b,xi[1]});

allvalues(%);

The result is {
b = 5/6, a = 1/6, ξ1 = 1/5

√
5
}
,

and the basic rule becomes∫ 1

−1

f(x) dx ≈ I2 =
1

6
(f(−1) + f(1)) +

5

6

(
f(− 1√

5
) + f(

1√
5
)

)
. (9.61)

We now need a second approximation in order to compare the integration
error. We will add three more points (by symmetry one must be 0) and
consider the Kronrod extension

A(f(−1) + f(1)) +B(f(−ξ1) + f(ξ1)) +C

(
f(− 1√

5
) + f(

1√
5
)

)
+Df(0).

570 QUADRATURE

This time we have five parameters to determine (A, B, C, D and ξ1), so we
can require exactness for f(x) = 1, x2, x4, x6 and x8:

xi[2]:=1/sqrt(5);

u1:=2*A+2*B+2*C+D=2;

u2:=2*A+2*B*xi[1]^2+2*C*xi[2]^2=2/3;

u3:=2*A+2*B*xi[1]^4+2*C*xi[2]^4=2/5;

u4:=2*A+2*B*xi[1]^6+2*C*xi[2]^6=2/7;

u5:=2*A+2*B*xi[1]^8+2*C*xi[2]^8=2/9;

solve({u1,u2,u3,u4,u5},{A,B,C,D,xi[1]});

allvalues(%)[1];

The result is{
B =

72

245
, A =

11

210
,D =

16

35
, C =

125

294
, ξ1 = 1/3

√
6

}
,

and the rule becomes

1∫
−1

f(x) dx ≈ I1 = 11
210 [f(−1) + f(1)] + 72

245

[
f(−
√

2
3) + f(

√
2
3)
]

+ 125
294

[
f(− 1√

5
) + f(1√

5
)
]
+ 16

35f(0). (9.62)

The quadrature rule I1 (9.62) will be more accurate than I2 (9.61). In
order to estimate how much more accurate (9.62) is compared to (9.61), we
construct yet another Kronrod extension of (9.62) of the form

is = A [f(−1) + f(1)] +B [f(−ξ1) + f(ξ1)] + C

[
f(−
√

2
3) + f(

√
2
3)

]

+D [f(−ξ2) + f(ξ2)] +E
[
f(− 1√

5
) + f(1√

5
)
]
+ F [f(−ξ3) + f(ξ3)] +Gf(0)

(9.63)

by adding six more points. Using the ansatz (9.63) and requiring that it be
exact for the monomials 1, x2, x4, . . . x18, we obtain 10 nonlinear equations in
10 unknowns:

v1:=sqrt(2/3); v2:=sqrt(1/5);

u1:=2*A+2*B+2*C+2*D+2*E+2*F+G=2;

u2:=2*A+2*B*xi[1]^2+2*C*v1^2+2*D*xi[2]^2+2*E*v2^2+2*F*xi[3]^2=2/3;

u3:=2*A+2*B*xi[1]^4+2*C*v1^4+2*D*xi[2]^4+2*E*v2^4+2*F*xi[3]^4=2/5;

u4:=2*A+2*B*xi[1]^6+2*C*v1^6+2*D*xi[2]^6+2*E*v2^6+2*F*xi[3]^6=2/7;

u5:=2*A+2*B*xi[1]^8+2*C*v1^8+2*D*xi[2]^8+2*E*v2^8+2*F*xi[3]^8=2/9;

u6:=2*A+2*B*xi[1]^10+2*C*v1^10+2*D*xi[2]^10+2*E*v2^10+2*F*xi[3]^10=2/11;

u7:=2*A+2*B*xi[1]^12+2*C*v1^12+2*D*xi[2]^12+2*E*v2^12+2*F*xi[3]^12=2/13;

u8:=2*A+2*B*xi[1]^14+2*C*v1^14+2*D*xi[2]^14+2*E*v2^14+2*F*xi[3]^14=2/15;

u9:=2*A+2*B*xi[1]^16+2*C*v1^16+2*D*xi[2]^16+2*E*v2^16+2*F*xi[3]^16=2/17;

u10:=2*A+2*B*xi[1]^18+2*C*v1^18+2*D*xi[2]^18+2*E*v2^18+2*F*xi[3]^18=2/19;

sols:=solve({u1,u2,u3,u4,u5,u6,u7,u8,u9,u10},

{A,B,C,D,E,F,G,xi[1],xi[2],xi[3]});

Adaptive Quadrature 571

Maple is able to solve this system and gives a solution containing very com-
plicated expressions (several pages long). However, evaluating the expressions
as floating point numbers

Digits:=16; evalf(sols);

yields the numerical values:

A = 0.01582719197348004 ξ1 = 0.9428824156954797
B = 0.09427384478891794 ξ2 = 0.6418533423457821
C = 0.1550719873365840 ξ3 = 0.2363831996621484
D = 0.1888215739147961
E = 0.1997734052268568
F = 0.2249264653333389
G = 0.2426110719014055

with fortunately positive weights for the rule (9.63). The value obtained from
this rule, which is exact for polynomials of degree 19, will be used for the
estimated value is instead of the Monte Carlo sum, and also to determine
the error between the two rules (9.61) and (9.62).

For an arbitrary interval [a, b], the formulas (9.61) and (9.62) can be
written respectively as

I2 =
h

6
{f(a) + f(b) + 5 [f(m− βh) + f(m+ βh)]} (9.64)

and

I1 =
h

1470
{77 [f(a) + f(b)] + 432 [f(m− αh) + f(m+ αh)]

+625 [f(m− βh) + f(m+ βh)] + 672 f(m)},
(9.65)

where

h =
1

2
(b− a), m =

1

2
(a+ b), α =

√
2

3
, β =

1√
5
.

A similar reformulation holds for (9.63).
For the initial interval [a, b] we will compute the ratio

R =
|I1 − is|
|I2 − is| .

Since is is such a high order rule, it will deliver the “exact” value for smooth
functions when compared with I1 and I2. We can assume that we are in that
situation if it turns out that R < 1, and R tells us how much more accurate
I1 is compared to I2. Since we will use the value I1 in the recursive algorithm
as final value we can also relax the tolerance in this case to

tol = tol/R.

572 QUADRATURE

At each recursive level, the current interval [a, b] is subdivided into six
subintervals when the error tolerance is not met, namely the intervals [a,m−
αh], [m−αh,m−βh], [m−βh,m], [m,m+βh], [m+βh,m+αh], [m+αh, b]
determined by (9.65):

x = a+ (b− a) ∗ [0.0918 0.2764 0.5000 0.7236 0.9082]

In order to reuse function values within the recursion, the function values of
the end points of these six subintervals are passed to the six new calls of the
quadrature function LobattoAdaptive for the next recursion level.

The termination criterion is essentially the same as for SimpsonAdaptive,
with the modification that we terminate the recursion if the smaller new
interval no longer contains a machine number. Putting it all together, we
obtain the following Matlab function:

Algorithm 9.10. Adaptive Gauss–Lobatto Quadrature

function Q=LobattoAdaptive(f,a,b,tol,trace,varargin)

% LOBTTOADAPTIVE approximate integral using adaptive Lobatto rule

% Q=LobattoAdaptive(f,a,b) approximates the integral of f(x) from a

% to b to machine precision. f is a function handle. The function

% f must return a vector of output values if given a vector of input

% values.

% Q=LobattoAdaptive(f,a,b,tol) integrates to a relative error of

% tol. Q=LobattoAdaptive(f,a,b,tol,trace) displays the left end

% point of the current interval, the interval length, and the

% partial integral. Q=LobattoAdaptive(f,a,b,tol,trace,p1,p2,...)

% allows coefficients p1,... to be passed directly to the function

% f: G=f(x,p1,p2,...). To use default values for tol or trace, one

% may pass the empty matrix ([]).

% Reference: Walter Gautschi, 08/03/98

global warn1 warn2

if(nargin<4), tol=[]; end;

if(nargin<5), trace=[]; end;

if(isempty(tol)), tol=eps; end;

if(isempty(trace)), trace=0; end;

if tol <= eps, tol=10*eps; end

warn1=0; warn2=0;

m=(a+b)/2; h=(b-a)/2; alpha=sqrt(2/3); beta=1/sqrt(5);

x1=.942882415695480; x2=.641853342345781; x3=.236383199662150;

x=[a,m-x1*h,m-alpha*h,m-x2*h,m-beta*h,m-x3*h,m,m+x3*h,...

m+beta*h,m+x2*h,m+alpha*h,m+x1*h,b];

y=f(x,varargin{:});

for p=1:length(y)

if isinf(y(p)) | isnan(y(p)),

y(p)=0; warn1=1;

end

Adaptive Quadrature 573

end

fa=y(1); fb=y(13);

i2=(h/6)*(y(1)+y(13)+5*(y(5)+y(9)));

i1=(h/1470)*(77*(y(1)+y(13))+432*(y(3)+y(11))+ ...

625*(y(5)+y(9))+672*y(7));

is=h*(.0158271919734802*(y(1)+y(13))+.0942738402188500 ...

(y(2)+y(12))+.155071987336585(y(3)+y(11))+ ...

.188821573960182*(y(4)+y(10))+.199773405226859 ...

(y(5)+y(9))+.224926465333340(y(6)+y(8))+.242611071901408*y(7));

erri1=abs(i1-is); erri2=abs(i2-is);

R=1; if(erri2~=0), R=erri1/erri2; end;

if(R>0 & R<1), tol=tol/R; end;

is=is*tol/eps; if(is==0), is=b-a, end;

Q=LobattoRecursive(f,a,b,fa,fb,is,trace,varargin{:});

if warn1==1,

warning([’Infinite or Not-a-Number function value encountered. ’,...

’Singularity likely. Required tolerance may not be met.’]);

end

if warn2==1,

warning([’Interval contains no more machine number. ’,...

’Singularity likely. Required tolerance may not be met.’]);

end

function Q=LobattoRecursive(f,a,b,fa,fb,is,trace,varargin)

% LOBATTORECURSIVE Recursive function used only by LobattoAdaptive

global warn1 warn2

h=(b-a)/2; m=(a+b)/2; alpha=sqrt(2/3); beta=1/sqrt(5);

mll=m-alpha*h; ml=m-beta*h; mr=m+beta*h; mrr=m+alpha*h;

x=[mll,ml,m,mr,mrr];

y=f(x,varargin{:});

for p=1:length(y)

if isinf(y(p)) | isnan(y(p)),

y(p)=0; warn1=1;

end

end

fmll=y(1); fml=y(2); fm=y(3); fmr=y(4); fmrr=y(5);

i2=(h/6)*(fa+fb+5*(fml+fmr));

i1=(h/1470)*(77*(fa+fb)+432*(fmll+fmrr)+625*(fml+fmr)+672*fm);

m1=(a+mll)/2; m2=(b+mrr)/2;

if(is+(i1-i2)==is) | (m1<=a) | (b<=m2),

if (m1<=a) | (b<=m2), warn2 =1; end;

Q=i1;

if(trace), disp([a b-a Q]), end;

else

Q=LobattoRecursive(f,a,mll,fa,fmll,is,trace,varargin{:})+...

LobattoRecursive(f,mll,ml,fmll,fml,is,trace,varargin{:})+...

LobattoRecursive(f,ml,m,fml,fm,is,trace,varargin{:})+...

LobattoRecursive(f,m,mr,fm,fmr,is,trace,varargin{:})+...

574 QUADRATURE

LobattoRecursive(f,mr,mrr,fmr,fmrr,is,trace,varargin{:})+...

LobattoRecursive(f,mrr,b,fmrr,fb,is,trace,varargin{:});

end;

Example 9.7. We consider function No. 21 from the collection of test
functions by Kahaner [78]:

f(x) =
1

cosh2(10x− 2)
+

1

cosh4(100x− 40)
+

1

cosh6(1000x− 600)
.

This function has three maxima for x = 0.2, 0.4 and 0.6 in the interval [0, 1]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 9.2. Kahaner function No. 21

as we can see from Figure 9.2. The peak for x = 0.6 is very sharp so that
it can easily be missed (in fact Matlab’s command fplot(’g’,[0,1]) does
not plot this peak). With Digits:=30 and int(f(x),x=0..1) we obtain with
Maple the exact value of

1∫
0

f(x) dx = 0.210802735500549277375643255709.

We want to see how this function is integrated by our adaptive quadrature
functions. With “trace on” in SimpsonAdaptive(@kahaner21,0,1,1e-5,1)
we obtain the values of Table 9.2. We see from this table, SimpsonAdaptive
takes smaller steps for integrating the second peak at x = 0.4. However, the
peak at x = 0.6 is missed, the step size is 0.125 for the interval [0.5, 0.625].
If we use a higher tolerance, we obtain

tol SimpsonAdaptive # fct. evals. LobattoAdaptive # fct. evals.
10−5 0.20973780201344 94 0.20973606921941 198
10−6 0.20973611750548 134 0.21080277613987 378
10−7 0.21080274315572 306 0.21080273553093 498

Adaptive Quadrature 575

xi xi+1 − xi

xi+1∫
xi

f(x) dx

0.00000000 0.06250000 0.00842006439906
0.06250000 0.03125000 0.00932078843060
0.09375000 0.03125000 0.01514698663471
0.12500000 0.06250000 0.05107978398885
0.18750000 0.03125000 0.03096861623502
0.21875000 0.03125000 0.02767839620679
0.25000000 0.03125000 0.02088499381103
0.28125000 0.03125000 0.01383339993785
0.31250000 0.06250000 0.01321087362317
0.37500000 0.00781250 0.00086289185926
0.38281250 0.00781250 0.00131912330043
0.39062500 0.00390625 0.00177092854196
0.39453125 0.00390625 0.00332750783071
0.39843750 0.00390625 0.00407256527252
0.40234375 0.00390625 0.00297034509995
0.40625000 0.00781250 0.00201952110269
0.41406250 0.00781250 0.00050732087269
0.42187500 0.01562500 0.00062813537791
0.43750000 0.06250000 0.00122099740233
0.50000000 0.12500000 0.00045388158284
0.62500000 0.12500000 0.00003734896245
0.75000000 0.25000000 0.00000333154061

ans = 0.20973780201344
Table 9.2. Result of SimpsonAdaptive for Kahaner 21

We see that for tol = 1e−5 both SimpsonAdaptive and LobattoAdaptive

miss the peak at x = 0.6. For tol = 1e−6 SimpsonAdaptive still misses it
but not LobattoAdaptive. And for for tol = 1e−7 both functions notice the
peak and the results are much more accurate as we can see from the correct
digits printed in boldface. Notice that Romberg extrapolation does not work
well in this example. The reason is that the trapezoidal values also miss the
peak until the step size is small enough.

For tol = 10−7 the smallest step size used by LobattoAdaptive is hmin =
1.564e−04 while the largest step size is hmax = 0.184641. Thus the largest
step hmax ≈ 1180hmin, clearly a good example for adaptive quadrature.

Example 9.8. We consider as a second example an integral with an
infinite integration interval

∞∫
0

e−0.4x cos 2x

x0.7
dx.

The integrand has a singularity for x = 0. The exact value can be computed

576 QUADRATURE

using extended precision with Maple. With the statements

Digits:=30; int(exp(-0.4*x)*cos(2*x)/x^0.7,x=0..infinity);

we obtain 2.21349827627298029505612097423.
Since the value of the integrand f is decaying exponentially and f(100) =

8.24e−20 we can obtain a good approximation by integrating over the finite
interval [0, 100]. The call LobattoAdaptive(@f,0,100,1e-14) gives the re-
sult 2.21349827627297 correct to all but the last printed digits using 20’238
function evaluations.

With SimpsonAdaptive(@f,0,100,1e-14) we obtain 2.21349827627298,
a similar result, however, using 147’214 function evaluations. The higher
order approximation of LobattoAdaptive reduces the number of function
evaluations quite impressively for this example.

We can transform the integral to obtain a finite integration interval. The
change of variables

t = e−x, x = − ln t, dx = −dt

t

(with renaming of the integration variable again as x) leads to

∞∫
0

e−0.4x cos 2x

x0.7
dx =

1∫
0

x−0.6 cos(2 ln x)

(− ln x)0.7
dx.

By this transformation, we have introduced a second singularity at x = 1.
Now limx→0f(x) = limx→1f(x) = ∞. The plot of the function is shown in
Figure 9.3. Integrating the transformed integral by ignoring the singularities,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5

10

15

20

25

30

Figure 9.3. f(x) = x−0.6 cos(2 lnx)

(− ln x)0.7

Problems 577

we obtain the following results

tol LobattoAdaptive # fct. evals SimpsonAdaptive # fct. evals
10−4 2.21331986623106 618 2.21062338557919 198
10−6 2.21345478856698 1158 2.21343307090916 522
10−8 2.21345412884202 2178 2.21345143522493 1158
10−9 2.21345408916441 3048 2.21345141188071 2062
10−10 2.21345408490537 5388 2.21345141957675 3082
10−12 2.21345408204195 18318 2.21345143455330 8214
10−14 2.21345408208425 130668 2.21345143731996 18602
eps 2.21345408208246 238848 2.21345143771824 24542

We observe that, as we increase the required accuracy, the values obtained by
LobattoAdaptive and SimpsonAdaptive seem to converge to different limits.
However, both are wrong! The values are correct only to about 5 decimal
digits. Here, we clearly have an example where ignoring the singularity is not
the right way to go for high precision results.

9.5 Problems

Problem 9.1. Derive Kepler’s Barrel Rule. One would like to estimate the
content of a wooden wine barrel by measuring the circumference of the barrel
at the bottom U1 the middle U2 and the top U3. The answer should be a simple
formula containing the height H of the barrel and the three circumferences.

Problem 9.2. Use the function MidpointOpenNewtonCotesRule (see
Equation (9.5)) to generate the first 8 rules and compute the error of each
rule.

Problem 9.3. Construct a function f(x) that is integrated incorrectly by
the function SimpsonAdaptive but correctly by LobattoAdaptive.

Problem 9.4. Write a Maple function that generates Newton–Cotes
quadrature rules using the zeros

zk = cos
(π

2n
+ k

π

n

)
, k = 0, 1, . . . , n− 1

or the extremal points (augmented by the boundary points)

xk = cos

(
kπ

n

)
, k = 0, 1, . . . , n

of the Chebyshev polynomials.
As described in Waldvogel [97], we distinguish three rules:

Fejér’s first rule uses as nodes the zeros zk, k = 0, 1, . . . , n− 1.

578 QUADRATURE

Clenshaw-Curtis uses the extremal points xk, k = 0, 1, . . . , n.

Fejér’s second rule uses the extremal points xk for k = 1, . . . , n−1 without
the boundary points.

a) Write three Maple functions Fejer1, Fejer2 and ClenshawCurtis

that generate the rules. You will have to compute the weights using evalf and
accept rounding errors, since the analytical expressions become complicated.
However, the symmetry of the rules and raising Digits should help to control
the errors.

b) Generate for n = 10 the rules and compute the integral∫ 10

0

√
x5 + 1 e−0.03x2√

x dx.

Hint: you need to transform the integral to the interval [−1, 1]. Use the
function LobattoAdaptive to compute the exact value for comparison. Also
compute the integral with the rule ClosedNewtonCotesRule(10) and compare
the results.

Problem 9.5. How small do we have to choose the integration step h

so that the integral
∫ 5

2
x lnx dx is integrated with the composite trapezoidal

rule to an error of 10−8? Estimate the step size using (9.16) and check your
result with the Matlab function TrapezoidalRule.

Problem 9.6. Periodic functions that are integrated over a whole period
(such integrals occur when computing Fourier coefficients) are integrated best
with the trapezoidal rule.

To understand this, write down the asymptotic expansion with error term
for the trapezoidal rule, see (9.30).

To show this fact, compute
∫ T

0

√
1 + cos2 x dx for

a) T = π (full period) and

b) T = 4

with Romberg. Print the whole Romberg scheme and study its convergence.

Problem 9.7. Compute the integral

I =

∫ 2

0

(x3 + 2x2 − x+ 1) dx

(i) analytically, (ii) using Simpson’s rule with h = 1. What is the integra-
tion error for Simpson’s rule and why?

Problem 9.8. How small do we have to choose the integration step h to
compute

100∫
0

dx

(1 + x)2

Problems 579

using the composite Simpson rule to an absolute error smaller than 10−6? Es-
timate h using (9.20) and check your estimate by integrating with the function
SimpsonsRule.

Problem 9.9. Extend the function SimpsonsRule so that parameters
can be passed. Use it then to compute the elliptic integral

A(k, φ) =

φ∫
0

dx√
1− k2 sin2 x

for k = 0.4 and φ = π
2
.

Problem 9.10. Consider the mid-point rule

h∫
0

f(x) dx ≈ hf(h/2).

Derive the composite mid-point rule with error term. Write a Matlab func-
tion for the composite mid-point rule that computes approximations by halving
the step size until a given tolerance is met.

Problem 9.11. Use the MidpointOpenNewtonCotesRule rule (see Equa-
tion (9.5))

b− a

8

(
3 y1/2 + 2 y3/2 + 3 y5/2

)
with h =

b− a

3
, and

y1/2 = f(a+ h/2), y3/2 = f(a+ 3h/2), y5/2 = f(a+ 5h/2)

to develop a Matlab function for a composite rule that computes approxi-
mations by reducing the step size until a given tolerance is met. Avoid re-
computing function values.

Hint: Use the function SimpsonsRule as a model. Instead of halving
the step size, you will have to divide the step size by three in order to reuse
function values.

Problem 9.12. Use again the MidpointOpenNewtonCotesRule rule (see
Equation (9.5))

b− a

8

(
3 y1/2 + 2 y3/2 + 3 y5/2

)
to develop a Matlab function MidpointOpenNewtonCotesAdaptive for
adaptive quadrature. Use SimpsonAdaptive as a model. Avoid recomput-
ing function values.

Hint: Instead of halving the step size, you will have to divide the step
size by three in order to reuse function values. The extrapolation has to be
done such that in

M(h) = I + c1h
4 + c2h

6 + · · ·

580 QUADRATURE

the term with c1h
4 is eliminated by a linear combination of the values M(h)

and M(h/3).

Problem 9.13. Write a Maple script to compute

n∑
i=1

Pm(i),

where Pm is a polynomial of degree m.
Hint: make an ansatz with a polynomial of degree m + 1 as summation

function or use the Euler–Maclaurin summation formula.
As an example your program should compute the formula:

n∑
i=1

i3 =
n2

4
(n+ 1)

2
.

Problem 9.14. Show that in Romberg’s scheme the second column con-
tains the approximations of Simpson’s rule and the third column contains the
values of Boole’s rule.

Problem 9.15. We have seen that Romberg integration applied to
∫ 1

0

√
x

does not work well. The reason is that the trapezoidal rule has the expansion

T (h) =

b∫
a

g(t) dt+ ζ

(
−1

2

)
h3/2 + c1h

2 + c2h
4 + · · ·+ cmh2m +Rm

and the term ζ
(− 1

2

)
h3/2 is disturbing the convergence of the Romberg

scheme.

1. Compute the value ζ
(− 1

2

)
with the help of Maple.

2. Use this value in the modified trapezoidal rule T̃ (h)=T (h)−ζ
(− 1

2

)
h3/2

for computing the Romberg scheme (modify the Matlab function
Romberg). Does the scheme now converge faster?

Problem 9.16. Consider the interval of integration [a, b] = [−1, 1]. Sup-
pose we have an N -point quadrature rule such that the nodes are symmetric,
i.e., we have ξj = ξN−j+1 for j = 1, . . . , N . As usual, the weights are ob-
tained by integrating the corresponding Lagrange polynomials.

1. Show that the weights are also symmetric, i.e., we have wj = wN−j+1

for j = 1, . . . , N .

2. Show that the order p of this rule must be even. Hint: Suppose the
quadrature rule has order ≥ 2k − 1, i.e., it is exact with respect to all

Problems 581

polynomials of degree 2k − 2. Using the fact that

∫ 1

−1

t2k−1 dt = 0,

show that the rule is also exact for all polynomials of degree 2k − 1.
Hence, the rule has order ≥ 2k.

Problem 9.17. Integrate with the Romberg method

I =

π∫
0

dx

1 + sin2 x
.

Print the Romberg scheme and observe that the values in the first column
(trapezoidal rule) converge fastest. Why is this so?

Problem 9.18. Solve the equation

f(x) =

1∫
0

ext
2

dt− 2 = 0

using Newton’s method. Compute f and f ′ with SimpsonAdaptive.

Problem 9.19. Evaluate the integrals

π∫
0

√
1 + cos2 xdx

and
3∫

0

| cos x| dx

with TrapezoidalRule, Romberg, SimpsonAdaptive and LobattoAdaptive

using tol= 10−8. Count the function evaluations and explain why some
methods are best for these problems.

Problem 9.20. To compute integrals over an infinite interval, one tech-
nique is to make a change of variables to obtain a finite integration interval.
For instance one can use

t =
1

x
, t =

1

x+ 1
or t = e−x.

582 QUADRATURE

With such a transformation we usually introduce singularities in the inte-
grands. Ignore them and compute the following integrals:

a)

∞∫
0

x

ex + 1
dx b)

∞∫
0

arctan x

(x+ 1)2
dx

c)

∫ ∞

0

x3 + 1

1 + x2 + x5
dx d)

∞∫
1

e−x
2

x
dx

Chapter 10. Numerical Ordinary Differential

Equations

Numerical methods for ordinary differential equations
fall naturally into two classes: those which use one
starting value at each step (“one-step methods”), and
those which are based on several values of the solution
(“multistep methods” or “multi-value methods”)

E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary
Differential Equations I, Nonstiff Problems, 1993.

It is convenient to represent a Runge-Kutta method by
a partitioned tableau, of the form

c A

bT

[...] As the order being sought increases, the algebraic
conditions on the coefficients of the method become in-
creasingly complicated.

J. C. Butcher, Numerical Methods for Ordinary Differen-
tial Equations, Wiley, second edition, 2008.

The numerical approximation of solutions to differential equations is of
paramount importance in science and engineering, and there is a subclass
of problems, namely ordinary differential equations, for which the field has
reached a certain maturity. This is much less so for partial differential equa-
tions, for which the theory about existence of solutions is also much less
complete. The focus of this chapter is therefore only on the numerical solu-
tion of ordinary differential equations. We start in Section 10.1 with several
historical examples of ordinary differential equations to illustrate both how
useful differential equations are for modeling, and how one might go about
finding approximate solutions, since most differential equations cannot be
solved in closed form. We then give an introduction to the theory of ordinary
differential equations in Section 10.2, and present two basic solution meth-
ods, the power series expansion and the method of Euler. Next, we consider
in Sections 10.3 and 10.4 the two main classes of numerical methods for ordi-
nary differential equations (see the first quote above), namely Runge-Kutta
methods and linear multistep methods. For both types of methods, we derive
order conditions using Maple and prove convergence of the approximate so-
lutions to the continuous ones. We also discuss the important concept of zero
stability, which is necessary for the convergence of linear multistep methods.

W. Gander et al., Scientific Computing - An Introduction using Maple and MATLAB,

Texts in Computational Science and Engineering 11,
DOI 10.1007/978-3-319-04325-8 10,

© Springer International Publishing Switzerland 2014

584 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Many problems of practical interest can only be solved adequately by
special numerical methods, whose properties are related to the underlying
dynamics of the problem. We will consider one such class of problems, known
as stiff problems, in Section 10.5, where the concept of A-stability becomes
important. Another class of problems is the long term integration of sys-
tems that contain invariant physical quantities (momentum, energy, etc.).
Numerical methods that are able to preserve such quantities in the discrete
solution are called geometric integrators and are the subject of discussion in
Section 10.6. We briefly treat delay differential equations in Section 10.7.
The best current reference on the numerical solution of ordinary differential
equations, including stiff problems and geometric integration, are the three
monographs by Hairer, Nørsett and Wanner [62], Hairer and Wanner [63]
and Hairer, Lubich and Wanner [61]. The book by Butcher [14] also contains
a section on general linear methods, which combine Runge-Kutta and linear
multistep ideas.

10.1 Introductory Examples

Differential equations arose naturally after the invention of differential calcu-
lus by the two giants Newton and Leibniz. Newton considered in 1671 one
of the first ordinary differential equations [95],

y′ = 1− 3x+ y + x2 + xy. (10.1)

To find a function y(x) satisfying this equation, Newton assumed that both
x and y are small1, and thus deduced from (10.1) that

y′ ≈ 1 for x, y small.

Assuming equality, the above approximation can be integrated to obtain

y ≈ x.

Inserting this approximation back into (10.1) and keeping one more term,
one finds a new approximation for the derivative,

y′ ≈ 1− 3x+ x = 1− 2x,

which in turn after integration, leads to

y ≈ x− x2.

Inserting this again into (10.1) and keeping one more term leads to

y′ ≈ 1− 2x+ x2,

and after integration to

y = x− x2 +
1

3
x3.

1In modern notation, this corresponds to the initial condition y(0) = 0.

Introductory Examples 585

This process can be continued in the same fashion to obtain a series approx-
imation of the solution y(x) of (10.1); this procedure is known today as the
Taylor series approach, see Section 10.2.3.

Leibniz in turn worked on the famous “silver watch problem”, which was
first posed by Claude Perrault to Leibniz during the latter’s stay in Paris
between 1672 and 1676: suppose a silver watch with a chain attached to it
is put on a table, as shown in Figure 10.1. What trajectory will the silver

x

y

y a

a

√
a2 − y2

Figure 10.1.
Silver watch problem, solved by Leibniz and Bernoulli.

watch follow if one pulls on the chain along the x-axis? Since the watch always
moves in the direction of the chain, we obtain the differential equation

y′ = −y

c
= − y√

a2 − y2
.

To solve this problem, both Joh. Bernoulli and Leibniz invented indepen-
dently the method of separation of variables : the equation is equivalent to

−
√

a2 − y2

y
dy = dx,

which leads after integration to the implicit solution

x =

∫ √
a2 − y2

y
dy =

√
a2 − y2 − a arctanh

(
a√

a2 − y2

)
+ C, (10.2)

586 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

which can be obtained by Maple using the int command,

assume(a>0);

int(sqrt(a^2-y^2)/y,y);

√
a˜

2 − y2 − a˜arctanh

(
a˜√

a˜
2 − y2

)

In the Maple worksheet, a tilde appears after the symbol a, which shows
that assumptions have been made on a with the assume command. If we
do not use the assume command, then Maple does not simplify expressions
containing square roots of a2 and instead gives a different, but mathematically
equivalent result, as long as a is positive. Maple can also be used to solve
the differential equation directly with the dsolve command

assume(a>0);

dsolve(D(y)(x)=-y(x)/sqrt(a^2-y(x)^2),y(x));

x+

√
a˜

2 − (y (x))
2 − a˜arctanh

⎛
⎝ a˜√

a˜
2 − (y (x))

2

⎞
⎠+ C1 = 0

This simple example already shows that solutions to ODEs cannot always be
obtained in explicit form, as the solution implicitly defined by (10.2) cannot
be solved for y. Euler collected in a monumental effort all the ODEs for
which he had managed to find a closed-form solution, which can now be
found in Volumes XXII and XXIII of Euler’s Opera Omnia. He suspected
that many ODEs have no closed-form solutions, and proposed in [29] a simple
approximation to the solution, which we now call the Forward Euler method,
see Subsection 10.2.5. It took however almost a century before Liouville gave
a first proof that the ODE

y′ = x2 + y2

cannot be solved in terms of elementary functions [87]. It is instructive to
ask Maple for a solution of this equation,

dsolve(D(y)(x)=y(x)^2+x^2,y(x));

y (x) = −x
(
C1 BesselJ

(−3/4, 1/2x2
)
+ BesselY

(−3/4, 1/2x2
))

C1 BesselJ (1/4, 1/2x2) + BesselY (1/4, 1/2x2)
.

This shows that more functions are considered to be elementary nowadays
than at the time of Liouville. While neither Newton nor Euler proved that
their respective approximate solutions were converging to a solution of the
corresponding ODE, Cauchy proved rigorously in 1820 that Euler’s method
converges for general, nonlinear ODEs, and in 1835 that Newton’s series ex-
pansion was also convergent. For more information on the fascinating history
on the development of ordinary differential equations and their numerical so-
lution, see [62, 63].

Basic Notation and Solution Techniques 587

10.2 Basic Notation and Solution Techniques

After the introduction of some basic notation and terminology for differential
equations, we show in this section how solutions to differential equations can
be approximated by a series or Euler’s historical method.

10.2.1 Notation, Existence of Solutions

An ordinary differential equation (abbreviated ODE) is an equation in which
the unknown is a function of a single variable (often denoted t); it contains
the function and its derivatives of various orders. ODEs are important for
modeling time dependent processes in many disciplines, e.g. in engineering,
physics, chemistry and economics. For instance, in classical mechanics, if
the position, velocity, acceleration and various forces acting on a body are
given, Newton’s second law of motion allows us to express these variables as
a differential equation and, by solving it, to compute the position of the body
as a function of time.

A first-order differential equation for an unknown function y(t) has the
form

y′ = f(t, y), (10.3)

where the function f(t, y) is given. A function y(t) is a solution of (10.3) if

y′(t) = f(t, y(t))

is valid for all t.

Example 10.1. The differential equation

y′ = f(t, y) = y (10.4)

has y(t) = et as a solution.
In general, (10.3) will have infinitely many solutions: for instance, the

functions y(t) = C et with any C ∈ R are also solutions of (10.4). To obtain
a unique solution, one has to prescribe an initial condition, for instance by
requiring that y(0) = 1.

A differential equation of order p has the form

F (t, y, y′, . . . , y(p)) = 0. (10.5)

The general solution of (10.5) will contain in general p constants of integra-
tion. By requiring p initial or boundary conditions, a particular solution is
selected from the family of solutions.

We have an initial value problem if all p conditions are given for the same
value t = t0. However, the p conditions can also be spread over different
points t. A frequent case is to have the conditions at two values of t; in
this case, we have a two-point boundary value problem, see also Section 8.1.
A classical case stems from military applications: shooting a canon ball firing

588 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

a cannon towards a target is described by a second-order differential equation
with two boundary conditions

y′′ = f(t, y, y′), y(t0) = y0, y(t1) = y1.

From a theoretical point of view, the distinction between initial and boundary
value problems is not important. The conditions simply determine a partic-
ular solution. For the numerical methods, however, there is a big difference:
initial value problems are easier to solve.

Theorem 10.1. (Existence and Uniqueness) Let f(t, y) be defined
and continuous for −∞ < a ≤ t ≤ b < ∞ and −∞ < y < ∞ and suppose
there exists a constant L > 0 such that for all t ∈ [a, b] and all y, ỹ ∈ R, the
Lipschitz condition

|f(t, y)− f(t, ỹ)| ≤ L|y − ỹ| (10.6)

holds. Then for any given η ∈ R, there exists a unique function y(t) with

1. y is continuously differentiable for t ∈ [a, b].

2. y′ = f(t, y) ∀t ∈ [a, b].

3. y(a) = η.

Proof. See the classical books of Henrici [68] or Hairer, Nørsett and
Wanner [62]. �
Equation (10.6) holds if the partial derivative ∂f/∂y exists, but this condition
is not necessary.

Example 10.2. The function f(t, y) = |y| meets the conditions of the
Theorem 10.1.

|f(t, y)− f(t, ỹ)| = ||y| − |ỹ‖ ≤ |y − ỹ|, L = 1.

Thus we have a unique solution, namely

y(a) = η > 0 =⇒ y(t) = ηet−a, y′ = ηet−a = y = |y|,
y(a) = η < 0 =⇒ y(t) = ηea−t, y′ = −ηea−t = |y|.

As a second example, consider f(t, y) =
√|y|. This time f is still con-

tinuous but does not satisfy the Lipschitz condition (10.6). For y, ỹ > 0, let
ỹ → y. Then ∣∣∣√|y| −√|ỹ|

∣∣∣
|y − ỹ| → 1

2
√|y|

and the expression is not bounded for y → 0. To compute the solutions, we
distinguish three cases:

a) if y > 0, we can use the separation of variables technique from Section
10.1 to obtain

y′ =
√
y =⇒ 2

dy

2
√
y
= dt =⇒ √

y =
t

2
+C =⇒ y =

(
t

2
+ C

)2

.

Basic Notation and Solution Techniques 589

b) if y < 0, we can proceed similarly and get

y′ =
√
|y| = √−y =⇒ −2

dy

2
√−y

= −dt =⇒ √−y = − t

2
+ C

Thus y = − (t− a)2

4
with a = 2C.

c) Also y(t) = 0 is a particular solution.

We now construct for the initial condition y(2) = −1 the solution

y(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− (t− 4)2

4
2 ≤ t < 4,

0 4 ≤ t ≤ a, (a > 0)

(t− a)2

4
t > a.

This solution is continuously differentiable and not unique, since it is a family
of solutions for every a.

10.2.2 Analytical and Numerical Solutions

Maple can solve differential equations analytically. For instance, for y′ =√|y|, y(2) = −1 we get

g(t):=rhs(dsolve({diff(y(t),t)=sqrt(abs(y(t))),y(2)=1},y(t)));

factor(g(t));

the function

g(t) = − (t− 4)2

4
,

so just the part of the solution in the neighborhood of t = 2. One can verify
that this g(t) no longer satisfies the ODE for t > 4.

As with antiderivatives, it is often impossible to solve a differential equa-
tion analytically, that is, by algebraic manipulations only. The equation

y′ = t2 + y2

fulfills the condition of Theorem 10.1 and thus has a unique solution for
y(0) = 1. However, as we have seen in Section 10.1, it took almost a century
before Liouville gave a first proof that this differential equation cannot be
solved in terms of elementary functions.

Even when an analytical solution is available, it may be of questionable
usefulness. The linear differential equation

y′′ = t2y + t+ 1− 1

t

is solved in Maple with

dsolve(diff(y(t),t$2)=t^2*y(t)+t+1-1/t,y(t));

590 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

The result is a long complicated expression that may not be very informative.
The two independent solutions of the homogeneous equation are constructed
with a BesselI and a BesselK function, and the particular solution also con-
tains includes StruveL and hypergeometric functions, in addition to the above
mentioned BesselI and BesselK functions. (Note: with Maple 15, it might
be necessary to write

dsolve(diff(y(t),t$2)=t^2*y(t)+t+1-1/t);

to get the result!)
Another example is the linear differential equation

y′′ + 5y′ + 4y = 1− et, y(0) = y′(0) = 0.

It has the solution

de:=diff(y(t),t$2)+5*diff(y(t),t)+4*y(t)=1-exp(t);

dsolve({de,y(0)=0,D(y)(0)=0},y(t));

f:=unapply(rhs(%),t);

f := t �→ −1

6
e−t +

1

60
e−4 t + 1/4− 1

10
et.

We can solve this equation also using the series option

dsolve({de,y(0)=0, D(y)(0)=0},y(t),series,order=8);

g:=unapply(convert(rhs(%),polynom),t);

and get

g := t �→ −1

6
t3 +

1

6
t4 − 17

120
t5 +

17

180
t6 − 13

240
t7.

If we now want to evaluate the solution for small values of t, we obtain with
Maple the following table.

for t from 1e-3 by 1e-3 to 1e-2 do

[t,f(t),g(t)]

od;

t f analytical g series
0.001 −1.0× 10−10 −1.665001416× 10−10

0.002 −1.3× 10−9 −1.330671193× 10−9

0.003 −4.5× 10−9 −4.486534356× 10−9

0.004 −1.07× 10−8 −1.062414468× 10−8

0.005 −2.07× 10−8 −2.072960789× 10−8

0.006 −3.58× 10−8 −3.578509721× 10−8

0.007 −5.67× 10−8 −5.676886992× 10−8

0.008 −8.47× 10−8 −8.465528415× 10−8

0.009 −1.205× 10−7 −1.204148154× 10−7

0.010 −1.650× 10−7 −1.650140728× 10−7

As we can see, the analytical solution suffers from cancellation, while the
approximate series solution is correct to 8 decimal digits. Thus, we should
be aware that when an analytical solution is evaluated numerically, the result
is not necessarily more accurate than an approximate solution obtained by a
numerical method.

Basic Notation and Solution Techniques 591

10.2.3 Solution by Taylor Expansions

Following Newton’s footsteps from Section 10.1, we now discuss methods for
finding the solution of a differential equation in series form. The basic idea is
to expand both sides of the differential equation y′ = f(t, y) in a Taylor series
and compare coefficients. Let (t0, y0) be the expansion point and consider
the ansatz

y(t0 + h) =

∞∑
k=0

akh
k with ak =

y(k)(t0)

k!
. (10.7)

Let us consider two methods for computing the coefficients of the series and
demonstrate the procedure for the model problem

y′ = t2 + y2, y(0) = 1. (10.8)

The first method computes derivatives by differentiating the differential equa-
tion. With the initial condition y(t0) = y0, we get

y′ = f(t0, y0) =⇒ y′(t0) is known,

y′′ = ft + y′fy =⇒ y′′(t0) is known,

y′′′ = ftt + 2y′fty + (y′)2 fyy + fyy
′′ =⇒ y′′′(t0) is known.

The expressions soon get complicated in the general case.
For a specific differential equation, the computations are usually simpler.

By differentiating (10.8), we get

y′ = t2 + y2,
y′′ = 2t+ 2yy′,
y′′′ = 2 + 2y′2 + 2yy′′,
y(4) = 6y′y′′ + 2yy′′′.

(10.9)

Using the initial condition t0 = 0 and y(t0) = 1 in (10.9), we obtain

y′(0) = 1, y′′(0) = 2, y′′′(0) = 8 and y(4)(0) = 28

and therefore

y(t) = 1 + t+
2

2!
t2 +

8

3!
t3 +

28

4!
t4 + · · · = 1 + t+ t2 +

4

3
t3 +

7

6
t4 + · · ·

The same result we obtain with Maple using the series option

dsolve({diff(y(t),t)=t^2+y(t)^2,y(0)=1},y(t),series);

y (t) = 1 + t+ t2 +
4

3
t3 +

7

6
t4 +

6

5
t5 +O

(
t6
)
.

The idea is now to expand the solution locally by choosing a small step size
Δt and then to advance to a next point of the solution,

tn+1 = tn +Δt

yn+1 = y(tn +Δt) = y(tn) +
y′(tn)
1!

Δt+
y′′(tn)
2!

Δt2 + · · ·

592 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

We now solve our model problem (10.8) using (10.9) and compare the results
with the Matlab integrator ode45

Algorithm 10.1.
Solving y′ = t2 + y2, y(0) = 1 by Taylorseries

t=0; y=1; dt=0.01; T=[t,y];

while t<0.8

y1=t^2+y^2;

y2=2*t+2*y*y1;

y3=2+2*y1^2+2*y*y2;

y4=6*y1*y2+2*y*y3;

y=y+y1*dt+y2/2*dt^2+y3/6*dt^3+y4/24*dt^4;

t=t+dt;

T=[T;t,y];

end;

[t,Y]=ode45(@(t,y)t^2+y^2,[0:dt:0.8],1);

norm(T(:,2)-Y)

When we execute this program, we see that the norm of the difference of the
function values is 4.7643e-04, which shows good agreement between the two
methods.

The second method is a power series approach: we use here the ansatz

y(t+Δt) =

∞∑
i=0

ai+1Δti. (10.10)

We have shifted the index of the coefficients by one because Matlab does
not allow zero indices. Introducing this series into the differential equation

y′ = t2 + y2,

we obtain with

y′(t+Δt) =
∞∑
i=1

iai+1Δti−1 =
∞∑
k=0

(k + 1)ak+2Δtk

and

y(t+Δt)2 =

∞∑
i=0

ai+1Δti
∞∑
j=0

aj+1Δtj =

∞∑
k=0

⎛
⎝k+1∑

j=1

ajak+2−j

⎞
⎠Δtk

the equation

∞∑
k=0

(k + 1)ak+2Δtk = (t+Δt)2 +

∞∑
k=0

⎛
⎝k+1∑

j=1

ajak+2−j

⎞
⎠Δtk.

Basic Notation and Solution Techniques 593

Comparing the coefficients on both sides, we get with a1 = y(t0) the equa-
tions:

k = 0 : a2 = t2 + a21
k = 1 : 2a3 = 2t+ a1a2 + a2a1 = 2t+ 2a1a2

k = 2 : 3a4 = 1 + a1a3 + a2a2 + a3a1 = 1 + 2a1a3 + a22

k > 2 : (k + 1)ak+2 =
∑k+1

j=1 ajak+2−j .

Thus, we can solve each equation sequentially for a new coefficient. The
Matlab function below computes the coefficients of (10.10)

Algorithm 10.2.
Taylorseries for y′ = t2 + y2 using ansatz for y(t+ t)

function a=DEQseries(t,y,n);

% DEQSERIES taylor series for a particular differential equation

% a=DEQseries(t,y,n); computes n coefficients of the Taylor series

% y(t+dt)=sum_{k=0} a_{k+1} dt^k of the solution of the differential

% equation y’=t^2+y^2 using the power series ansatz

a=zeros(1,n);

a(1)=y;

a(2)=t^2+a(1)^2;

a(3)=t+a(1)*a(2);

a(4)=(1+2*a(1)*a(3)+a(2)^2)/3;

for k=4:n-1

a(k+1)=a(1:k)*a(k:-1:1)’/(k);

end

We can choose the order n of the expansion, e.g. n = 7:

>> a=DEQseries(0,1,7)

a =

1.0000 1.0000 1.0000 1.3333 1.1667 1.2000 1.2333

For n = 5, we obtain the same coefficients as with Maple using the series
option.

10.2.4 Computing with Power Series

We need to manipulate power series when inserting an ansatz of the form
(10.10) into a differential equation. We consider some basic operations. Let

r(t) =

n∑
i=0

rit
i, p(t) =

n∑
i=0

pit
i, q(t) =

n∑
i=0

qit
i.

a) Addition: r(t) = p(t)± q(t), ri = pi ± qi

594 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

b) Multiplication: r(t) = p(t)q(t), ri =
∑i

j=0 pjqi−j

c) Division: r(t) = p(t)/q(t) ⇐⇒ r(t)q(t) = p(t) thus
∑i

j=0 rjqi−j = pi.
If we solve the equation for ri we get

ri =
1

q0

⎛
⎝pi −

i−1∑
j=0

rjqi−j

⎞
⎠ (10.11)

This formula reminds us very much of back substitution! Indeed, if we
connect a power series

p(t) = p0 + p1t+ · · ·
to its Toeplitz matrix

P =

⎛
⎜⎜⎜⎜⎜⎝

p0 p1 p2 p3 · · ·
p0 p1 p2 · · ·

p0 p1 · · ·
p0 · · ·

. . .

⎞
⎟⎟⎟⎟⎟⎠ ,

then the series operations correspond to the matrix operations.

r = p± q ⇐⇒ R = P ±Q
r = pq ⇐⇒ R = PQ
r = p/q ⇐⇒ R = Q−1P ⇐⇒ QR = P.

Now let P , Q and R be n×n Toeplitz matrices. Consider only the last
column of R in the equation QR = P . We multiply by en and obtain
QRen = Pen:⎛

⎜⎜⎜⎝
q0 q1 · · · qn

q0 · · · qn−1

. . .
...
q0

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

rn
rn−1

...
r0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

pn
pn−1

...
p0

⎞
⎟⎟⎟⎠ .

It is now evident that the formula (10.11) is equivalent to solving for
r0, . . . , rn by back substitution.

d) Exponential function: The trick here is to solve the differential equa-
tion for the exponential by differentiating r(t) = ep(t):

r′(t) = p′(t)ep(t) = p′(t)r(t). (10.12)

Inserting the series expansion into (10.12), we get

n−1∑
i=0

(i+ 1)ri+1t
i =

n−1∑
i=0

(i+ 1)pi+1t
i

n∑
k=0

rkt
k =

n∑
i=0

(
i∑

j=0

(j + 1)pj+1ri−j

)
ti,

Basic Notation and Solution Techniques 595

so comparing coefficients gives

(i+ 1)ri+1 =

i∑
j=0

(j + 1)pj+1ri−j .

By letting i := i−1 and performing the change of variables k = i−j−1,
we obtain Miller’s formula

r0 = ep0 , ri =
1

i

i−1∑
k=0

(i− k)pi−krk, i = 1, 2, . . . , n. (10.13)

Example 10.3. We consider p(t) = −1 + t + 2t2 + 4t3 − 2t4 + t5,
compute ep(t) using Miller’s formula (10.13) and compare the result
we get with the corresponding Toeplitz matrix using Matlab’s matrix
function expm(P).

p=[-1 1 2 4 -2 1]

n=length(p)-1; % Miller for exponential

r=exp(p(1));

for i=1:n

s=0;

for k=0:i-1

s=s+(i-k)*p(i-k+1)*r(k+1);

end

r=[r s/i];

end

P=triu(toeplitz(p));

R=expm(P); % exponential matrix

[R(:,n+1) r(end:-1:1)’] % compare results

p =

-1 1 2 4 -2 1

ans =

4.1724 4.1724

1.8547 1.8547

2.2686 2.2686

0.9197 0.9197

0.3679 0.3679

0.3679 0.3679

We get with both methods the same results

r(t) = ep(t) = 0.3679+0.3679t+0.9197t2+2.2686t3+1.8547t4+4.1724t5.

Using Maple for the same computation,

p:=-1+t+2*t^2+4*t^3-2*t^4+t^5;

series(exp(p),t=0);

evalf(%);

596 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

we obtain the same

.3678794412 + .3678794412 t+ .9196986030 t2+

2.268589888 t3 + 1.854725516 t4 + 4.172365997 t5 +O(t6).

e) Trigonometric functions c(t) = cos(p(t)) and s(t) = sin(p(t)): Here,
we use the differential equations simultaneously for both series. For
t = 0, we have the initial coefficients c0 = cos(p0) and s0 = sin(p0).
Applying Miller’s formula (10.13), we get

ci = −1

i

i−1∑
k=0

(i− k)pi−ksk,

si =
1

i

i−1∑
k=0

(i− k)pi−kck.

The coefficients of the series for cos(p(t)) and sin(p(t)) can thus be
computed by running these two recurrences simultaneously.

f) Composition of series: Given the two series

p(t) = p0 + p1t+ p2t
2 + · · · ,

q(t) = q0 + q1t+ q2t
2 + · · · ,

we want to compute the series for p(q(t)). If we simply insert the series
we get

p(q(t)) = p0 + p1(q0 + q1t+ q2t
2 + · · ·)1

+ p2(q0 + q1t+ q2t
2 + · · ·)2

+ p3(q0 + q1t+ q2t
2 + · · ·)3

+ · · · .

Assume we have expanded q(t)n and computed the coefficients

q(t)n = q
(n)
0 + q

(n)
1 t+ q

(n)
2 t2 + · · · ,

then we would have

p(q(t)) =p0 + p1q
(1)
0 + p2q

(2)
0 + p3q

(3)
0 + · · ·

+ (p1q
(1)
1 + p2q

(2)
1 + · · ·)t

+ (p1q
(1)
2 + p2q

(2)
2 + · · ·)t2

+ · · · .

Basic Notation and Solution Techniques 597

The new coefficients above are all infinite sums that may or may not be
convergent, so the coefficients may not actually exist! Therefore, the
composition of series is only possible for series q(t) with q0 = 0 (these
are non-unit series). In this case, the powers become

q(t)n = q(n)n tn + q
(n)
n+1t

n+1 + q
(n)
n+2t

n+2 + · · ·

and all the new coefficients are finite sums:

p(q(t)) =p0 + p1q
(1)
1 t+ (p1q

(1)
2 + p2q

(2)
2)t2

+ (p1q
(1)
3 + p2q

(2)
3 + p3q

(3)
3)t3

+ · · · .

Example 10.4.

e(e
t) = e1+t+ t2

2! +
t3

3! +··· = e1et+
t2

2! +
t3

3! +···.

By separating the first term, we obtain a non-unit series and thus

e(e
t) = e

(
1 + t+ t2 +

5

6
t3 +

5

8
t4 +

13

30
t5 + · · ·

)
.

10.2.5 Euler’s Method

Differential equations are a powerful tool for modeling, as we have already
seen in the silver watch example. We now present another example that
shows how easily one can model complicated problems using ODEs, and how
quickly one can run into problems that cannot be solved analytically.

Suppose you are jogging along a given path described by your position
in time, (ξ(t), η(t)), and suddenly a dog in a neighbor’s garden sees you and
starts chasing you at maximal speed w, as shown in Figure 10.2. What is the
trajectory of the dog if we assume it is always running directly toward you?

Since the speed of the dog is constant, we have

ẋ2 + ẏ2 = w2, (10.14)

where we denote the time derivative by a dot above the variable. Since the dog
is always running toward you, its direction is proportional to (ξ− x, η− y)T ,
which implies (

ẋ(t)
ẏ(t)

)
= λ(t)

(
ξ(t)− x(t)
η(t)− y(t)

)
, (10.15)

598 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

jogger

dog

x

y

(x, y)

w

(ξ, η)

Figure 10.2. Dog chasing a jogger

where λ is a constant of proportionality. To find this constant, we substitute
(10.15) into (10.14) to obtain

λ2(t) =
w2

(ξ(t)− x(t))2 + (η(t)− y(t))2
.

The trajectory of the dog is therefore described by the system of ordinary
differential equations(

ẋ(t)
ẏ(t)

)
=

w√
(ξ(t)− x(t))2 + (η(t)− y(t))2

(
ξ(t)− x(t)
η(t)− y(t)

)
(10.16)

with initial conditions given by the initial position of the dog, (x(0), y(0))
= (x0, y0). To find the trajectory of the dog, it remains to solve this initial
value problem. While for the special case of the silver watch problem, an
implicit, closed-form solution exists, there is no hope of finding a closed-form
solution for a general jogging path (ξ(t), η(t)), so we need to resort to a
numerical method.

A very natural and simple approach to obtain a numerical solution is
the Forward Euler method, which was invented when Euler realized that
probably not all ODEs can be solved in closed form. Instead of trying to
solve the differential equation (10.16) directly, we use it to determine the
direction the dog will choose initially, at position (x0, y0). This direction is
given by the differential equation to be(

ẋ(0)
ẏ(0)

)
=

w√
(ξ0 − x0)2 + (η0 − y0)2

(
ξ0 − x0

η0 − y0

)
,

where we denote the initial position of the jogger by (ξ0, η0) := (ξ(0), η(0)).
Note that all quantities on the right hand side are known. Euler’s idea was

Basic Notation and Solution Techniques 599

jogger

dog

x, ξ

y, η

(ẋ(0), ẏ(0))

(x0, y0)

(x1, y1)

(x2, y2)
(x3, y3)

(ξ0, η0)

(ξ1, η1) (ξ2, η2)

(ξ3, η3)

Figure 10.3.
The Forward Euler (FE) method applied to the

dog-jogger problem.

to advance in this direction for a short time Δt1, as shown in Figure 10.3.
Then the new position (x1, y1) at time t1 = Δt1 is an approximation of the
exact position (x(t1), y(t1)), and one can repeat the same procedure starting
with position (x1, y1) and going for a short time Δt1 along the direction(

ẋ(t1)
ẏ(t1)

)
=

w√
(ξ(t1)− x1)2 + (η(t1)− y1)2

(
ξ(t1)− x1

η(t1)− y1

)
,

where (ξ1, η1) := (ξ(t1), η(t1)) in Figure 10.3. Again the right hand side
is known, so one can advance again over a short time interval Δt2 to find
a new position (x2, y2), which approximates the exact position of the dog
(x(t2), y(t2)) at t2 = t1 +Δt2, and so on.

If one applies this procedure to a general system of ordinary differential
equations,

y′ = f(t,y), y(t0) = y0, (10.17)

one obtains the Forward Euler method

yk+1 = yk +Δtf(tk,yk). (10.18)

A Matlab implementation of this method for a general system of ordinary
differential equations is

Algorithm 10.3. Forward Euler ODE Solver

function [t,y]=ForwardEuler(f,tspan,y0,n);

600 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

% FORWARDEULER solves system of ODEs using the Forward Euler method

% [t,y]=ForwardEuler(f,tspan,y0,n) solves dy/dt=f(t,y) with initial

% value y0 on the time interval tspan doing n steps of Forward Euler

dt=(tspan(2)-tspan(1))/n;

t=tspan(1):dt:tspan(2);

y(:,1)=y0(:); % colon to make column vector

for i=1:n,

y(:,i+1)=y(:,i)+dt*f(t(i),y(:,i));

end;

t=t’;y=y’; % to return results in columns

If we implement the right hand side function for the dog-and-jogger problem
in the Matlab function

Algorithm 10.4. ODE for Dog Trajectory

function xp=Dog(t,x);

% DOG ODE right hand side modeling the dog hunts jogger problem

% xp=Dog(t,x); computes the right hand side of the ODE modeling the

% dog hunts the jogger problem at time t and position x.

w=10;

xi=[8*t; 0];

xp=w/norm(xi-x)*(xi-x);

we obtain with the command

[t,x]=ForwardEuler(@Dog,[0,12],[60; 70],50);

an approximate solution path in the two columns of the variable x at time
values in the vector t. To display the results, one can use the Matlab

commands

plot(x(:,1),x(:,2),’-’,8*t, 0*t,’--’);

hold on

plot(x(end,1),x(end,2),’k+’,’MarkerSize’,20,’Linewidth’,3);

hold off

axis([0 100 -10 70]);

legend(’dog’,’jogger’);

xlabel(’x’);

ylabel(’y’);

We show the results of this first experiment in Figure 10.4 on the top left.
On the top right, we show using similar commands in Matlab a jogger that
notices the dog and tries to run back, on the bottom left a jogger running
on a circular track, and on the right the same situation, but with an old and
slow dog.

Basic Notation and Solution Techniques 601

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

20

30

40

50

60

70

x

y

dog
jogger

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

20

30

40

50

60

70

x

y

dog
jogger

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

20

30

40

50

60

70

x

y

dog
jogger

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

20

30

40

50

60

70

x

y

dog
jogger

Figure 10.4.
Several jogging path, and the numerically computed

trajectory of the dog chasing the jogger.

As we have seen in the example with the dog and the jogger, it is easy to
obtain approximate solutions, but how accurate are they when compared with
the exact solution? Intuitively, making the time steps smaller should improve
the accuracy of the approximation in Euler’s method. Let us perform the
following experiment in Matlab to investigate this issue, using the programs
developed above:

N=[5 10 20 40 80];

for i=1:length(N)

[t,x]=ForwardEuler(@Dog,[0,10],[60; 70],N(i));

plot(x(:,1),x(:,2),’-’);

hold on

end;

plot(8*t, 0*t,’--’);

hold off

axis([0 100 -10 70]);

legend(’5 Euler steps’,’10 Euler steps’,’20 Euler steps’, ...

’40 Euler steps’,’80 Euler steps’,’jogger’);

xlabel(’x’);

ylabel(’y’);

The result is shown in the graph on the left of Figure 10.5. One can see that

602 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

20

30

40

50

60

70

x

y

5 Euler steps
10 Euler steps
20 Euler steps
40 Euler steps
80 Euler steps
jogger

10
1

10
2

10
0

10
1

10
2

number of points on the trajectory

Difference at the endpoint
O(Δ t)

Figure 10.5.
Computing the trajectory of the dog with Forward Euler
using 5, 10, 20, 40 and 80 time steps on the left, and
difference at the end of the dog path between these

different approximations and one with a very small time
step on the right.

the more one refines the time step, the more accurate the trajectory becomes,
and it seems to converge to a limiting trajectory. To better understand this
convergence, we calculate the limiting trajectory using a highly refined Euler
approximation with 8000 steps, and compute the difference between the end
point of this trajectory and those of the various approximations. The result is
shown on the right of Figure 10.5. From this plot, we can see that apparently
the Euler approximation of the solution of the ODE is of order Δt. Let us look
at how accurate Euler’s method is over one step. To do so, we compare one
step of Euler’s method (10.18) to the Taylor expansion of the exact solution
of the system of ODEs (10.17) about the initial point t0. We obtain

y(t0 +Δt)− y1 = y(t0) + Δty′(t0) +O(Δt2)− y0 −Δtf (t0,y0) = O(Δt2),
(10.19)

where we have used the differential equation (10.17), which implies y′(t0) =
f(t0,y0), and the fact that the initial condition states y(t0) = y0. Hence the
difference between the Euler approximation and the exact solution is O(Δt2)
over one step, whereas at the end after many steps, the approximation is only
of O(Δt), as we measured in Figure 10.5. In this figure, we can also see that
using 80 Euler steps leads to an error of about 1

2
, and we can estimate that

for a standard precision of 1e − 6, one would need to double the number of
steps n times, where n satisfies the equation

1

2

(
1

2

)n

= 1e− 6 =⇒ n =
log(2e− 6)

log(0.5)
≈ 18.93,

which gives approximately 80×218.93 ≈ 40 000 000 time steps. Euler’s method
is therefore of limited practical interest, and one needs higher order methods,
which we will develop later in this chapter.

Basic Notation and Solution Techniques 603

10.2.6 Autonomous ODE, Reduction to First Order System

To simplify the Taylor expansions in the error analysis, we may assume with-
out loss of generality that the right hand side in the system of ordinary
differential equations (10.17) is autonomous, i.e. f(t,y) = f(y). If not, the
explicit dependence on the time variable t can be removed by introducing an
additional variable: letting z = t, we obtain

ỹ(t) =

(
y
z

)
, ỹ(t0) =

(
y0

t0

)
,

and the differential system y′ = f(t,y) becomes autonomous,

ỹ′ = f̃(ỹ) =

(
f(z,y)

1

)
.

Numerical algorithms require as input a first-order system

y′ = f(t,y) with initial condition y(t0) = y0,

where

y =

⎛
⎜⎝
y1(t)
...

yn(t)

⎞
⎟⎠ , f(t,y) =

⎛
⎜⎝
f1(t,y)

...
fn(t,y)

⎞
⎟⎠ .

Differential equations of higher order are transformed into a first-order
system by introducing additional unknowns, as we now show with the follow-
ing example. Consider

y′′′ + 5y′′ + 8y′ + 6y = 10e−t, y(0) = 2, y′(0) = y′′(0) = 0,

a linear inhomogeneous third-order differential equation with constant coef-
ficients. To transform this equation to a first order system, we perform the
following steps:

1. Solve the differential equation for the highest derivative,

y′′′ = −5y′′ − 8y′ − 6y + 10e−t.

2. Introduce new functions

z1 = y, z2 = y′, z3 = y′′.

3. Differentiate the new functions, replace the y functions and write the
new system

z′
1 = y′ = z2

z′
2 = y′′ = z3

z′
3 = y′′′ = −5z3 − 8z2 − 6z1 + 10e−t.

604 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Since the differential equation is linear, we can use matrix-vector nota-
tion

z′ = Az +

⎛
⎝ 0

0
10e−t

⎞
⎠ with A =

⎛
⎝ 0 1 0

0 0 1
−6 −8 −5

⎞
⎠ and z(0) =

⎛
⎝2
0
0

⎞
⎠

Note that Maple can often solve such linear differential equations analyt-
ically without requiring the user to transform it into a first-order system.
Here, the statement

dsolve(diff(y(t),t$3)+5*diff(y(t),t$2)+8*diff(y(t),t)+6*y(t)=10*exp(-t),y(t));

gives the explicit general solution

y (t) = 5
(
et
)−1

+ C1 e−3 t + C2 e−t cos (t) + C3 e−t sin (t) .

10.3 Runge-Kutta Methods

The Forward Euler method presented in Subsection 10.2.5 can be interpreted
as an approximation of an integral. Integrating the differential equation
(10.17) in time, we obtain

y(t0 +Δt)− y(t0) =

∫ t0+Δt

t0

f(τ, y(τ))dτ,

and Forward Euler is a simple approximation of the area under the curve by
a rectangle, like in a Riemann sum with one term,

∫ t0+Δt

t0

f(τ, y(τ))dτ ≈ Δtf(t0, y0),

as shown in Figure 10.6. Runge-Kutta methods are based on the same idea,
except one uses another (and generally better) approximation of this area.

10.3.1 Explicit Runge-Kutta Methods

Clearly, a better approximation would be to use the midpoint rule to approx-
imate the integral, also indicated in Figure 10.6,

∫ t0+Δt

t0

f(τ, y(τ))dτ ≈ Δtf(t0 +
Δt

2
,y(t0 +

Δt

2
)).

Unfortunately, the midpoint value y(t0+
Δt
2
) is unknown; nonetheless, it can

be approximated by an Euler step over half the interval,

y(t0 +
Δt

2
) ≈ y0 +

Δt

2
f(t0,y0),

Runge-Kutta Methods 605

t
t0 t1Δt

f(t, y(t))

Figure 10.6. Approximation of the integral.

which leads to the new method

y1 = y0 +Δtf(t0 +
Δt

2
,y0 +

Δt

2
f(t0,y0)).

This is known as Runge’s method. Like Euler’s method, one step is performed
using only data from the previous step, but now two function evaluations are
needed per step. In general, a one-step method is of the form

yk+1 = yk +Δtk+1φf (tk,yk,Δtk+1) (10.20)

together with an initial condition y0 at time t0, for example

φf (t0,y0,Δt) = f(t0,y0) =⇒ Euler’s method
φf (t0,y0,Δt) = f(t0 +

Δt
2
,y0 +

Δt
2
f(t0,y0)) =⇒ Runge’s method

A systematic generalization of Runge’s second order method yields the
Runge-Kutta methods: An explicit s-stage Runge-Kutta method is given by

k1 = f(t0,y0)
k2 = f(t0 +Δtc2,y0 +Δta21k1)
k3 = f(t0 +Δtc3,y0 +Δt(a31k1 + a32k2))
...

...
...

ks = f(t0 +Δtcs,y0 +Δt(as1k1 + as2k2 + . . .+ as,s−1ks−1))
y1 = y0 +Δt(b1k1 + b2k2 + . . . + bsks),

(10.21)
where kj are called the stage values, and the coefficients ci, aij and bj are
chosen to obtain a good method. J. C. Butcher, during his investigation
into higher order Runge-Kutta methods, introduced the following compact

606 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

notation to represent these coefficients. This notation, which first appeared
in [13], is now known as a Butcher tableau:

0
c2 a21
c3 a31 a32
...

...
. . .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

So far we have only considered aij = 0 for j ≥ i; the associated Runge
Kutta methods are called explicit methods, since each stage value kj can
be evaluated explicitly from the previously calculated values. The Butcher
tableau, however, suggests that one could also consider aij 	= 0 for j ≥ i,
and then the stage values kj would be coupled by a system of equations.
Such Runge-Kutta methods are called implicit methods and are useful for
stiff problems, as we will show in Section 10.5.

The Forward Euler method is a one-stage explicit Runge-Kutta method,

k1 = f (t0,y0)
y1 = y0 +Δtk1

0
1

andRunge’s second ordermethod is a two-stage explicit Runge-Kutta method,

k1 = f(t0,y0)

k2 = f(t0 +
1
2Δt,y0 +

1
2Δtk1)

y1 = y0 +Δtk2

0

1
2

1
2

0 1

10.3.2 Local Truncation Error

In order to compare these new methods, we have to analyze their approxi-
mation qualities.

Definition 10.1. (Local Truncation Error) The local truncation
error τ for a one-step method of the form (10.20) approximating the system
of ODEs (10.17) is defined by the difference between the exact solution and
the numerical approximation after one step, i.e.

τ := y(t0 +Δt)− (y0 +Δtφf (y0,Δt)).

We have already seen in (10.19) that the local truncation error for Euler’s

method is O(Δt2). To find the local truncation error for Runge’s method,
we also use Taylor expansions, but this time both for the exact solution and

Runge-Kutta Methods 607

the numerical method,

y(t0 +Δt) = y(t0) + Δty′(t0) +
Δt2

2
y′′(t0) +O(Δt3)

y1 = y0 +Δtf(t0,y0) +
Δt2

2

(
f t(t0,y0) + fy(t0,y0)y

′(t0)
)
+O(Δt3).

As for Euler’s method, we can identify the first two terms in the two expan-
sions because of the initial condition y(t0) = y0 and the differential equation
y′(t0) = f(t0,y0). For the third term, we need to differentiate the differential
equation (10.17) to obtain

y′′(t0) =
d

dt
f(t0,y0) = f t(t0,y0) + fy(t0,y0)y

′(t0),

and hence the third term is also identical in both expansions. Therefore, the
local truncation error of Runge’s method is τ = y(t0 +Δt)− y1 = O(Δt3),
which is better than for Euler’s method.

Here is an implementation of Runge’s method in Matlab:

Algorithm 10.5. Runge’s Method for ODE

function [t,y]=Runge(f,tspan,y0,n);

% RUNGE solves system of ODEs using Runge’s method

% [t,y]=Runge(f,tspan,y0,n) solves dy/dt=f(t,y) with initial

% value y0 on the time interval tspan doing n steps of Runge’s method.

dt=(tspan(2)-tspan(1))/n;

t=tspan(1):dt:tspan(2);

y(:,1)=y0(:); % colon to make column vector

for i=1:n,

y(:,i+1)=y(:,i)+dt*f(t(i)+dt/2,y(:,i)+dt/2*f(t(i),y(:,i)));

end;

t=t’;y=y’; % to return results in columns

Applying Runge’s method to the dog-and-jogger problem, also using 5, 10,
20, 40 and 80 steps, we obtain the results in Figure 10.7. One can see on the
left that the trajectories converge more rapidly than for Euler’s method, and
on the right that the error at the end of the dog trajectory is O(Δt2). This
method is hence known as Runge’s second order method. With 80 steps, the
approximation error is now only about 1

100
, and to reach a standard precision

of 1e − 6, one would need to double the number of steps n times, where n
satisfies the equation

1

100

(
1

4

)n

= 1e− 6 =⇒ n =
log(100e− 6)

log(0.25)
≈ 6.64,

which gives approximately 80 × 26.64 = 8000 time steps. Even though each
step of Runge’s second order method is about twice as costly as an Euler step,

608 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

20

30

40

50

60

70
5 Runge steps
10 Runge steps
20 Runge steps
40 Runge steps
80 Runge steps
jogger

x

y

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

10
2

Difference at the endpoint
O(Δ t2)

number of points on the trajectory

Figure 10.7.
Computing the trajectory of the dog with Runge’s

method using 5, 10, 20, 40 and 80 time steps on the left,
and difference at the end of the dog path between these
different approximations and one with a very small time

step on the right.

since one needs to evaluate the function twice, this number of steps compares
very favorably with the 40 000 000 steps needed by Euler’s method for the
same precision. It is therefore of great interest to construct even higher order
methods.

10.3.3 Order Conditions

To find more Runge-Kutta methods, we need to introduce the concept of
order for a one-step method.

Definition 10.2. (Order) The one-step method (10.20) approximating
the system of ODEs (10.17) is of order p if, for all sufficiently differentiable
functions f in (10.17), the local truncation error satisfies

τ = O(Δtp+1), as Δt −→ 0.

Before justifying this definition with a convergence analysis, we investigate
whether a different choice of coefficients in the general two-stage explicit
Runge-Kutta method can yield a better method than Runge’s. We assume
in what follows that

c1 = 0, ci =

i−1∑
j=1

aij , i = 2, . . . , s, (10.22)

which implies that all stage values ki are at least second order approximations
of the time derivative of the solution at the corresponding time point t0+ciΔt.

Runge-Kutta Methods 609

This can be seen from

ki = f(t0 + ciΔt,y0 +Δt
i−1∑
j=1

aijkj)

= f(t0,y0) + ft(t0,y0)ciΔt+ fy(t0,y0)

i−1∑
j=1

aijkjΔt

= f(t0,y0) +

⎛
⎝ft(t0,y0)ci + fy(t0,y0)

i−1∑
j=1

aij(y
′(t0) +O(Δt)

⎞
⎠Δt

= y′(t0) + ciΔty′′(t0,y0) +O(Δt2) = y′(t0 + ciΔt) +O(Δt2).

The conditions (10.22) are not necessary, but they greatly simplify the deriva-
tion of higher order methods, and they do not have a significant influence
on the quality of the method, see Problem 10.6. The Butcher tableau of a
two-stage explicit Runge-Kutta method then becomes

0
a21 a21

b1 b2

To simplify the Taylor expansions in the analysis of the local truncation error,
we use Maple:

k[1]:=f(t0,y(t0));

k[2]:=taylor(f(t0+c[1]*dt,y(t0)+dt*a[2,1]*k[1]),dt,4);

y1:=taylor(y(t0)+dt*sum(b[j]*k[j],j=1..2),dt,4);

tau:=taylor(y(t0+dt),dt,4)-y1;

which gives as a result

τ := y(t0) + D (y) (t0) dt +
1

2

(
D(2)

)
(y) (t0) dt2 +

1

6

(
D(3)

)
(y) (t0) dt3 +O(dt4)

− (y(t0) (b1f (t0 , y (t0)) + b2f (t0 , y (t0))) dt

− b2 (D1 (f) (t0 , y (t0)) c1 +D2 (f) (t0 , y (t0))a2,1f (t0 , y (t0))) dt2

− b2

(
1

2
(D1,1) (f) (t0 , y (t0)) c1

2 + c1 (D1,2) (f) (t0 , y (t0)) a2,1f (t0 , y (t0))

+
1

2
a2,1

2 (f (t0 , y (t0)))2 (D2,2) (f) (t0 , y (t0))

)
dt3 +O(dt4)

)
.

This is however less convenient to read for the human eye, both because of
the generic D operator notation for the derivative, and the fact that Maple

does not know to substitute the derivatives of y with respect to t using the
differential equation. If we tell Maple that D applied to y is a function that
maps t into f(t, y(t)) with the command

D(y):=t->f(t,y(t));

610 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

and also to substitute the lengthy notation for the derivatives of f by the
more compact notation

alias(f=f(t0,y(t0)),f[t]=D[1](f)(t0,y(t0)),f[y]=D[2](f)(t0,y(t0)));

alias(f[tt]=D[1,1](f)(t0,y(t0)),f[ty]=D[1,2](f)(t0,y(t0)));

alias(f[yy]=D[2,2](f)(t0,y(t0)));

then looking at the result τ again in Maple with

p:=collect(convert(tau,polynom),dt,factor);

gives

(
1

6
ftt +

1

3
ftyf +

1

6
fyyf

2 +
1

6
fyft +

1

6
f2
y f − 1

2
b2fttc

2
1 − b2c1ftya2,1f

− 1

2
b2a

2
2,1f

2fyy)dt
3 + (

1

2
ft +

1

2
fyf − b2ftc1 − b2fya2,1f)dt

2

− f(−1 + b1 + b2)dt

which is now very readable. From this expansion, we see that by choosing
b1 + b2 = 1, the local truncation error becomes O(Δt2). How can we make
the next coefficient zero as well ? Using Maple to simplify,

collect(op(2,%),f,factor);

we obtain

−1

2
fy(−1 + 2b2a2,1)dt

2f − 1

2
ft(−1 + 2b2c1)dt

2,

and we now see the use of the simplifying assumption c1 = a2,1, as the choice
b2a21 = 1/2 now leads to a local truncation error a local truncation error
of O(Δt3). We also see that the coefficient of the O(Δt3) term cannot be
made zero for a general function f , so the highest order one can achieve
with an explicit two-stage Runge-Kutta method is two. This calculation,
however, reveals a free parameter: for example, we can choose b1 as we wish
and still get a local truncation error of order three. Three different choices
have historically been used, leading to the methods

b1 = 1
2

=⇒ b2 = 1
2

, a21 = 1,
b1 = 0 =⇒ b2 = 1 , a21 = 1

2
,

b1 = 1
4

=⇒ b2 = 3
4

, a21 = 2
3
.

Unfortunately the terminology used in the literature is not uniform for these
methods. The names Heun, improved Euler and modified Euler are used for

Runge-Kutta Methods 611

different Butcher tableaus. Here is a summary:

Heun or
modified Euler or
improved Euler

0

1 1

1 1
2

1
2

Runge or
improved Euler

0

1
2

1
2

1 0 1

Heun

0

2
3

2
3

1 1
4

3
4

The general difficulty in finding Runge-Kutta methods is that one must
solve a nonlinear system of equations, which may or may not have a so-
lution. For the loert order cases, these systems can still be studied using
Maple: one has to extract the so-called order conditions, which are the
coefficients in the Taylor expansion, and then solve the associated nonlin-
ear system of equations. Dominik Gruntz gave in [45] a Maple program to
compute Runge-Kutta formulas.

Algorithm 10.6.
Deriving Runge-Kutta Methods with Maple

RK:=proc(s,p)

local TaylorPhi,RungeKuttaPhi,d,vars,eqns,k,i,j,dt;

global a,b,c;

D(y):=t->f(t,y(t)): # Taylor series

TaylorPhi:=convert(taylor(y(t+dt),dt=0,p+1),polynom):

TaylorPhi:=normal((TaylorPhi-y(t))/dt);

c[1]:=0: # RK-ansatz

for i from 1 to s do

k[i]:=taylor(f(t+c[i]*dt,y(t)+sum(a[i,j]*k[j],j=1..i-1)*dt),dt=0,p):

od:

RungeKuttaPhi:=sum(b[j]*k[j],j=1..s):

RungeKuttaPhi:=series (RungeKuttaPhi,dt,p):

RungeKuttaPhi:=convert(RungeKuttaPhi,polynom);

d:=expand(TaylorPhi-RungeKuttaPhi):

vars:={seq(c[i],i=2..s), seq(b[i],i=1..s),

seq((seq(a[i,j],j=1..i-1)),i = 2..s)};

eqns:={coeffs(d,indets(d) minus vars)};

612 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

simplifying assumptions:

eqns:=eqns union {seq(sum(a[i,’j’],’j’=1..i-1)-c[i],i=2..s)};

solve(eqns,vars);

end;

For s = 3 stages, we do not even need the simplifying equations, as Maple

manages to solve the nonlinear system without them. So we comment them
out:

eqns:=eqns union {seq(sum(a[i,’j’],’j’=1..i-1)-c[i],i=2..s)};

Using RK, we compute the general three-stage Runge-Kutta methods:

RK3:=RK(3,3);{
a2,1 = 1/6

1

b3a3,2
, a3,1 = 1/2

RootOf
(
1 − 4 b3a3,2 − Z + 3 Z 2a3,2

)− 2 b3a3,2

b3
,

a3,2 = a3,2, b1 = 1 − b3 + 3 b3a3,2RootOf
(
1 − 4 b3a3,2 − Z + 3 Z 2a3,2

)− 3 b3a3,2,

b2 = −3 b3a3,2RootOf
(
1 − 4 b3a3,2 − Z + 3 Z 2a3,2

)
+ 3 b3a3,2, b3 = b3,

c2 = 1/6
1

b3a3,2
, c3 = 1/2

RootOf
(
1 − 4 b3a3,2 − Z + 3 Z 2a3,2

)
b3

}

The solutions contains two free parameters, a3,2 and b3. A historically well-
known method can be obtained by setting a3,2 = 2

3 and b3 = 3
4 . To evaluate

the RootOf expressions, which represent in each case the same root of a
second degree polynomial, one can use the Maple commands

assign(%);

a[3,2]:=2/3;

b[3]:=3/4;

b1:=allvalues(b[1]);

b2:=allvalues(b[2]);

a31:= allvalues(a[3,1]);

a22:=a[2,2];

We obtain two solutions: the first is the well-known method of Heun of order
three, given on the left in Table 10.1, and on the right we show a second
possible solution, which is further investigated in Problem 10.7.

Runge-Kutta methods are very easy to implement: here is Heun’s method
in Matlab:

Algorithm 10.7. Heun’s Order 3 ODE solver

function [t,y]=Heun(f,tspan,y0,n);

% HEUN solves system of ODEs using Heun’s method

% [t,y]=Heun(f,tspan,y0,n) solves dy/dt=f(t,y) with initial

% value y0 on the time interval tspan doing n steps of Heun’s

% method.

Runge-Kutta Methods 613

0

1
3

1
3

2
3

0 2
3

1
4 0 3

4

0

1
3

1
3

− 1
3

−1 2
3

−2 9
4

3
4

Table 10.1.
Heun’s Method (order 3) on the left, and an unknown
third order three stage explicit Runge Kutta method on

the right.

dt=(tspan(2)-tspan(1))/n;

t=tspan(1):dt:tspan(2);

y(:,1)=y0(:); % colon to make column vector

for i=1:n,

k1=f(t(i),y(:,i));

k2=f(t(i)+dt/3,y(:,i)+dt/3*k1);

k3=f(t(i)+2*dt/3,y(:,i)+2*dt/3*k2);

y(:,i+1)=y(:,i)+dt*(1/4*k1+3/4*k3);

end;

t=t’;y=y’; % to return results in columns

Without the simplifying assumptions, Maple cannot solve the Runge-Kutta
equations for s = 4. The computation is interrupted with the error message

[Length of output exceeds limit of 1000000].

However, using the simplifying assumptions, we obtain with

> RK4:=RK(4,4);

a set with four solutions. Choosing the third solution

> RK4[3];

we get

{
a2,1 =

1

2
, a3,1 = −a3,2 +

1

2
, a3,2 = a3,2, a4,1 = 0, a4,2 =

1

2

2 a3,2 − 1

a3,2
, a4,3 =

1

2a3,2
,

b1 =
1

6
, b2 =

1

6

−1 + 4 a3,2

a3,2
, b3 =

1

6a3,2
, b4 =

1

6
, c2 =

1

2
, c3=

1

2
, c4 = 1

}

614 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

With λ = 2a3,2, this solution represents the tableau

0

1

2

1

2
1

2

1− λ

2

λ

2

1 0
λ− 1

λ

1

λ

1

6

2λ− 1

3λ

1

3λ

1

6

0

1
2

1
2

1
2

0 1
2

1 0 0 1

1
6

2
6

2
6

1
6

Table 10.2.
The classical Runge-Kutta method is a four stage fourth

order method.

Note that for λ = 1, we obtain the classical Runge-Kutta algorithm given
in Table 10.2. A Matlab implementation of this classical Runge-Kutta
method is

Algorithm 10.8. Classical Runge-Kutta Method

function [t,y]=RK4(f,tspan,y0,n);

% RK4 solves system of ODEs using classical 4th order Runge Kutta

% [t,y]=RK4(f,tspan,y0,dt) solves dy/dt=f(t,y) with initial

% value y0 on the time interval tspan doing n steps of the

% classical 4th order Runge Kutta method.

dt=(tspan(2)-tspan(1))/n;

t=tspan(1):dt:tspan(2);

y(:,1)=y0(:); % colon to make column vector

for i=1:n,

k1=f(t(i),y(:,i));

k2=f(t(i)+0.5*dt,y(:,i)+0.5*dt*k1);

k3=f(t(i)+0.5*dt,y(:,i)+0.5*dt*k2);

k4=f(t(i)+dt,y(:,i)+dt*k3);

y(:,i+1)=y(:,i)+dt*((k1+k4)/6+(k2+k3)/3);

end;

t=t’;y=y’; % to return results in columns

Runge-Kutta Methods 615

We show in Figure 10.8 how the four explicit Runge-Kutta methods we con-
sidered in this section compare when applied to the dog-and-jogger problem.
These results clearly show the superiority of high order methods.

10
1

10
2

10
3

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

number of function evaluations

er
ro

r
at

 th
e

en
dp

oi
nt

Forward Euler
O(Δ t)
Runge
O(Δ t2)
Heun
O(Δ t3)
Runge−Kutta 4
O(Δ t4)

Figure 10.8.
Error at the end point of the approximate trajectory of
the dog computed with various Runge-Kutta methods as

a function of the number of right hand side function
evaluations f needed to compute the approximate

trajectory. The higher order methods are clearly superior.

Butcher investigated the best possible local truncation error one can get
with a given number of function evaluations per step, see Table 10.3. This
led to the analysis of Runge-Kutta methods using B-series; for a complete
treatment, see [62].

f-evals 2 3 4, 5 6 7, 8 9, 10

Best τk O(Δt2) O(Δt3) O(Δt4) O(Δt5) O(Δt6) O(Δt7)

Table 10.3.
Butcher’s results about the best obtainable local
truncation error with a given number of function

evaluations in a Runge Kutta method

10.3.4 Convergence

We now turn our attention to the fact that the global truncation error is one
order lower than the local truncation error, which we have observed in all
our numerical experiments. This is no coincidence, as the following theorem
shows.

616 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Theorem 10.2. (Convergence of One Step Methods) Let y(t) be
the solution of (10.17) on the interval [t0, tn], and let yj , j = 0, 1, . . . , n be
the numerical approximation of y(t) by the general one-step method (10.20)
at time t0, t1, . . . , tn, Δtj := tj −Δtj−1, j = 1, 2, . . . n. If

1. the local truncation error of the one-step method (10.20) satisfies for
all t ∈ [t0, tn−1] and Δt ≤ Δtmax := max1≤j≤n Δtj

‖y(t+Δt)− y(t)−Δtφf (t,y(t),Δt)‖ ≤ CΔtp+1, (10.23)

2. the function φf (t,y,Δt) of the one-step method (10.20) is locally
Lipschitz in y, i.e., there exists a constant L > 0 such that

‖φf (t,y,Δt)− φf (t,z,Δt)‖ ≤ L‖y − z‖ (10.24)

whenever Δt ≤ Δtmax and (t,y), (t,z) are in the neighborhood of the
solution,

then the global truncation error satisfies for Δtmax small enough

‖y(tn)− yn‖ ≤ Δtpmax

C

L
(eL(tn−t0) − 1). (10.25)

Proof. Adding and subtracting y(tn−1) and Δtnφf (t,y(tn−1),Δtn), we
obtain

‖y(tn)− yn‖ ≤ ‖y(tn)− y(tn−1)−Δtnφf (t,y(tn−1),Δtn)‖
+‖y(tn−1)− yn−1‖
+‖Δtnφf (t,y(tn−1),Δtn)−Δtnφf (t,yn−1,Δtn)‖

≤ CΔtp+1
n + (1 + LΔtn)‖y(tn−1)− yn−1‖

≤ CΔtp+1
n + eΔtnL‖y(tn−1)− yn−1‖.

Now we can apply this inequality again at step n− 1 to obtain

‖y(tn)− yn‖ ≤ CΔtp+1
n + eΔtnLCΔtp+1

n−1 + e(tn−tn−2)L‖y(tn−2)− yn−2‖.
We thus obtain by induction

‖y(tn)− yn‖ ≤ C

n−1∑
j=0

Δtp+1
j+1e

(tn−tj)L ≤ CΔtpmax

n−1∑
j=0

Δtj+1e
(tn−tj)L.

Now note that the right hand side is in fact the Riemann sum approximating
the integral of e(tn−t)L from below on the interval [t0, tn]. Thus, the sum can
be bounded above by

‖y(tn)− yn‖ ≤ CΔtpmax

∫ tn

t0

e(tn−t)Ldt = Δtpmax

C

L
(e(tn−t0)L − 1),

which concludes the proof. �

Runge-Kutta Methods 617

To apply this convergence result to Runge-Kutta methods, one has to
show that the one-step method

φf (t,y,Δt) :=

s∑
i=1

biki(y) (10.26)

defined by the Runge-Kutta coefficients is Lipschitz. This is true whenever
the right hand side function f of (10.17) is itself Lipschitz: suppose f is

Lipschitz with constant L̃ in the neighborhood of the solution,

‖f(t,y)− f(t,z)‖ ≤ L̃‖y − z‖.

Then we find that the first stage k1(y) is also Lipschitz with the same con-
stant, since k1(y) = f(t,y). For the second stage, we obtain

‖k2(y)− k2(t,z)‖ ≤ L̃‖y +Δta21k1(y)− (z +Δta21k1(z))‖
≤ L̃(1 + Δt|a21|L̃)‖y − z)‖.

Proceeding in the same fashion, we find for the third stage

‖k3(y)− k3(t,z)‖ ≤ L̃(1 + ΔtL̃(|a31|+ |a32|) + Δt2L̃2|a32a21|)‖y − z)‖.

Inserting these estimates into (10.26), we deduce that φf is indeed Lipschitz
for Runge-Kutta methods,

‖φf (t,y,Δt)− φf (t,y,Δt)‖ ≤ L‖y − z‖,

where L is given by

L = L̃
(∑

i

|bi|+ΔtL̃
∑
ij

|biaij |+ (ΔtL̃)2
∑
ijk

|biaijajk|+ · · ·
)
.

10.3.5 Adaptive Integration

So far we have not addressed the question of how to choose the time step Δt.
To illustrate the paramount importance of this, we consider a problem from
celestial mechanics, namely to compute the Arenstorf orbit of the Restricted
Three Body Problem. In this problem, a small body (with negligible mass)
is moving in the gravitational fields of two large bodies. As an example,
imagine a satellite between the earth and the moon. We make the following
assumptions:

1. The Earth, moon and satellite move in the same plane.

2. The Earth and the moon revolve around the common center of gravity,
which is essentially that of the earth, since the mass M of the earth is
80.45 times larger than the mass m of the the moon.

618 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

3. The satellite has no influence on the earth and the moon, since its mass
is too small.

To solve this problem, we choose a rotating coordinate system in which the
two large bodies are fixed at the origin (earth) and at the point (1, 0) (moon).
The length unit is the distance of the moon from the earth, and the time unit
is chosen such that 2π corresponds to one month.

With r = M/m = 80.45 as the mass ratio between the earth and the
moon, we define

a =
1

1 + r
= 0.012277471 and b = 1− a = 0.987722529.

The equations describing the position (x(t), y(t)) of the satellite under the
gravitation forces are derived in [135]. They are

x′′ = x+ 2y′ − b
x+ a

D1(x, y)
− a

x− b

D2(x, y)
,

y′′ = y − 2x′ − b
y

D1(x, y)
− a

y

D2(x, y)
,

(10.27)

where D1(x, y) =
(
(x+ a)2 + y2

) 3
2 and D2(x, y) =

(
(x− b)2 + y2

) 3
2 . With

the initial conditions

x(0) = 0.994, x′(0) = 0, y(0) = 0 and y′(0) = −2.00158510637908,

the solution is a periodic orbit with period t = 17.06521656015796 (corre-
sponding to 2.71 months), known as the Arenstorf orbit.

To apply the integrators we have developed so far, we need to convert
the governing equations (10.27) into a system of first order equations, which
is easily done by introducing two new variables x̃ := x′ and ỹ := y′, see
Subsection 10.2.6. This leads to the right hand side function in Matlab

Algorithm 10.9. ODE for Arenstorf orbit

function yp=Arenstorf(t,y);

% ARENSTORF ODE right hand side for the Arenstorf orbit problem

% yp=Arenstorf(t,y); describes a system of ODEs which model the

% flight of a light object between the earth and the moon.

a=0.012277471; b=1-a;

D1=((y(1)+a)^2+y(2)^2)^(3/2);

D2=((y(1)-b)^2+y(2)^2)^(3/2);

yp(1,1)=y(3);

yp(2,1)=y(4);

yp(3,1)=y(1)+2*y(4)-b*(y(1)+a)/D1-a*(y(1)-b)/D2;

yp(4,1)=y(2)-2*y(3)-b*y(2)/D1-a*y(2)/D2;

yp=yp(:); % make a column vector

Runge-Kutta Methods 619

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Euler 24000 steps
Runge 12000 steps
Heun 8000 steps
RK4 6000 steps
ode12 898 steps

x

y

Figure 10.9.
Approximations of an Arenstorf orbit computed with
fixed step Runge-Kutta methods and a new low order

adaptive method.

Using the methods we have developed so far for this problem, we obtain
the results in Figure 10.9, where care was taken to choose the number of
steps such that the number of function evaluations for each method is the
same. While higher order methods perform better than low order methods,
none of them is able to find the closed orbit. However, a new method called
ode12 finds the closed orbit with excellent accuracy, using only two function
evaluations per step and thus more than thirteen times cheaper than the
other methods in terms of function evaluations. This is possible because the
new method locally adapts its time step using an error estimator, so it uses
a fine time step only where necessary to achieve the desired accuracy.

In order to determine a suitable time step Δt for the current integration
step, we need to estimate the truncation error that will be made for this
time step choice. Since the analytic formulas for the local truncation error
τ are not very practical, one estimates the local truncation error using two
approximations of different order (this can even be done taking into account
components of the vector valued solution individually, see [62]),

ỹ1 such that ‖τ‖ = ‖y(Δt)− ỹ1‖ = CΔtp+1 +O(Δtp+2)
y1 such that ‖τ̃‖ = ‖y(Δt)− y1‖ = O(Δtp+2).

(10.28)

620 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Taking the difference of the two computed values y1 and ỹ1, we find

‖y1 − ỹ1‖ = CΔtp+1 +O(Δtp+2), (10.29)

which is a good approximation of the local truncation error ‖τ‖ in ỹ1. To
obtain a local truncation error of the size of a given tolerance tol, the best
time step choice, Δtopt should satisfy

tol = CΔtp+1
opt +O(Δtp+2

opt). (10.30)

Dividing (10.29) by (10.30) and neglecting higher order terms, we find an
equation for the optimal time step,

‖y1 − ỹ1‖
tol

=

(
Δt

Δtopt

)p+1

,

which upon solving for Δtopt gives

Δtopt = Δt

(
tol

‖y1 − ỹ1‖
) 1

p+1

. (10.31)

Thus, using the two estimates y1 and ỹ1 of different orders, it is possible
to estimate not only the truncation error, but also the optimal time step
one should have used for the prescribed tolerance. An adaptive integration
method computes the two estimates using the current time step Δt, and then
checks whether the local truncation error is small enough using (10.29): if
so, the integration step is accepted and the method advances, otherwise the
step is rejected. In both cases, a new Δtopt is computed using (10.31) to
continue the process, which means either recomputing the rejected step, or
computing the next one. In the latter case, one assumes that the time step
estimate from the previous integration step is not too far from the optimal
choice for the new step.

To compute the two approximations y1 and ỹ1 simultaneously, embedded
Runge-Kutta methods are ideally suited. They contain a second set of pa-
rameters b̃j , which give an approximation of a different order using the same
stage values, so that no additional function evaluation are required.

0

c2 a2,1

c3 a3,1 a3,2
...

...
. . .

. . .

cs as,1 as,2 . . . as,s−1

1 b1 b2 . . . bs−1 bs

b̃1 b̃2 . . . b̃s−1 b̃s

y1 = y0 + h
∑s

i=1 biki with order p

ỹ1 = y0 + h
∑s

i=1 b̃iki with order q

Usually we have q = p± 1.

Runge-Kutta Methods 621

As a first example, we consider Runge’s method derived earlier,

0

1
2

1
2

y1 0 1

ỹ1 b̃1 b̃2

Since we only need b̃1 + b̃2 = 1 for a first-order method, we can choose any
pair of values satisfying this equation except b̃1 = 0 and b̃2 = 1, since then
the methods would be identical and no error estimation would be possible.
A simple choice is b̃1 = 1 and b̃2 = 0, which gives Forward Euler for the lower
order method.

In a real code, one also adds some safeguards. First, the optimal time
step derived in (10.31) is multiplied by a factor less than one, αs ∈ [0.8, 0.95].
To prevent the time step from decreasing or increasing too much, one also
puts bounds on the maximum possible increase with a factor αmax ∈ [1.5, 5]
and the maximum possible decrease with a factor αmin ∈ [0, 0.5]. This leads
to our first adaptive method in Matlab:

Algorithm 10.10. Simple Adaptive ODE Solver

function [t,y,H]=ode12(f,tspan,y0,tol);

% ode12 solves system of ODEs using adaptive integration

% [t,y]=ode12(f,tspan,y0,tol) solves dy/dt=f(t,y) with initial

% value y0 on the time interval tspan using adaptive integration

% with Euler and Runge’s method and error tolerance tol.

% For didactical reasons we store the used stepsizes in H.

dt=(tspan(2)-tspan(1))/10; H=dt;

y(:,1)=y0;

t(1)=tspan(1);

as=0.8; amin=0.2; amax=5; % heuristic parameters

i=1;

while t(i)<tspan(2),

k1=f(t(i),y(:,i));

k2=f(t(i)+dt/2,y(:,i)+dt/2*k1);

yn=y(:,i)+dt*k2; % Runge step

yt=y(:,i)+dt*k1; % Euler step

toli=max([norm(yn,inf) norm(y(:,i),inf)]);

toli=tol*(1+toli); % abs. and relative tol

errest=norm(yn-yt);

if errest<toli, % accept the step

i=i+1;

y(:,i)=yn;

t(i)=t(i-1)+dt;

end;

622 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

dtopt=as*(dt*sqrt(toli/errest)); % estimate the new time step

if dtopt<amin*dt,

dt=amin*dt;

elseif dtopt>amax*dt,

dt=amax*dt;

else

dt=dtopt;

end;

if t(i)+dt>tspan(2),

dt=tspan(2)-t(i);

end;

H=[H;dt];

end;

t=t’;

y=y’;

The program returns y1, the higher order approximation, as the result,
even though the error was estimated for the lower order approximation ỹ1,
since this higher order approximation is available for free; this is usually
called local extrapolation. The program starts with a rather arbitrary first
time step Δt equal to one tenth of the time interval over which the integration
is performed. If this time step is too big, it is quickly reduced by the error
estimator. For better estimates on the initial time step, see [62]. The last
time step is adapted so that the integration does not overrun the end of the
time interval.

With the following program we integrate the system requiring two differ-
ent tolerances τ1 = 0.005 and τ2 = τ1/10 = 0.0005.

Algorithm 10.11. Computing Arenstorf Orbit

tol1=0.005;tol2=tol1/10;

tspan=[0,17.06521656015796];

y0=[0.994;0;0;-2.00158510637908];

figure(1),clf(1)

[t1,y1,h1]=ode12(@Arenstorf,tspan,y0,tol1);

plot(y1(:,1),y1(:,2)); % plot orbit

axis([-1.5 1.5 -1.5 1.5]); hold

plot(0,0,’o’) % position of earth

plot(1,0,’o’) % position of moon

figure(2),clf(2)

axis([0,length(h1)+10,0,0.3]); hold

plot(h1) % plot stepsizes

NumberOfSteps=length(t1)

RepeatedSteps=length(h1)-length(t1)

figure(3),clf(3)

[t2,y2,h2]=ode12(@Arenstorf,tspan,y0,tol2);

plot(y2(:,1),y2(:,2));

Runge-Kutta Methods 623

axis([-1.5 1.5 -1.5 1.5]); hold

plot(0,0,’o’), plot(1,0,’o’)

figure(4),clf(4)

axis([0,length(h2)+10,0,0.1]); hold

plot(h2)

NumberOfSteps=length(t2)

RepeatedSteps=length(h2)-length(t2)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

orbit for τ1 = 0.005 using 244 steps

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

0 100 200 300 400 500 600 700 800 900
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

closed orbit for τ2 = 0.0005 using 931 steps
Figure 10.10.

Approximations of Arenstorf orbit with two tolerances

The results of the two computations are shown in Figure 10.10. We notice
that for τ1 = 0.005, we do not get the periodic orbit; we need to integrate
with more precision, as we can see from the second plot of Figure 10.10. For
τ1, the integrator performed 244 integration steps, and 5 steps had to be
repeated. For the lower tolerance τ2 = 0.0005, the integrator needed 931
steps and 6 times steps had to be repeated.

In fact, these repetitions occurred at the beginning of the integration.
The statement dt=(tspan(2)-tspan(1))/10; for the first step in Algorithm
10.10 computes Δt = 1.7065, which is much too large for the required toler-
ance. For the tolerance τ1, the first step has to be reduced five times to reach
0.00054609. After that, the error estimates works fine without repetitions.
Note in Figure 10.10 that the step sizes become larger when the small body
is far away.

624 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Two commonly used embedded Runge-Kutta methods of higher order are
the Runge-Kutta-Fehlberg method, and the Dormand-Prince method. Both
are based on an embedding of a fourth order method inside a fifth order
method. The Runge-Kutta-Fehlberg method has six stages, and the corre-
sponding Butcher tableau is

0

1
4

1
4

3
8

3
32

9
32

12
13

1932
2197

− 7200
2197

7296
2197

1 439
216 −8 3680

513 − 845
4104

1
2 − 8

27 2 − 3544
2565

1859
4104 − 11

40

y1
16
135 0 6656

12825
28561
56430 − 9

50
2
55

ỹ1
25
216

0 1408
2565

2197
4104

− 1
5

0

Fehlberg intended to continue the integration with the lower order approx-
imation, since the error estimate is only valid for this approximation, and
therefore chose the coefficients to minimize the error constant of the lower
order approximation. The Dormand-Prince method is based on minimizing
the error constant of the higher order approximation. It has seven stages,
and the Butcher tableau is

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45 − 56

15
32
9

8
9

19372
6561

− 25360
2187

64448
6561

− 212
729

1 9017
3168 − 355

33
46732
5247

49
176 − 5103

18656

1 35
384

0 500
1113

125
192

− 2187
6784

11
84

y1
35
384

0 500
1113

125
192

− 2187
6784

11
84

ỹ1
5179
57600

0 7571
16695

393
640

− 92097
339200

187
2100

1
40

As one can see from the table, Dormand and Prince used the lower order
approximation also as the seventh stage of the Runge-Kutta method, a tech-
nique called FSAL (First Same As Last), which has the advantage that for
accepted steps, there is no extra work, since the function has to be evaluated
anyway for the following step. Implementations of these two methods are
very similar to the program ode12, and are left as an exercise, see Problems
10.8 and 10.9.

Runge-Kutta Methods 625

10.3.6 Implicit Runge-Kutta Methods

Implicit Runge-Kutta (IRK) methods are obtained by allowing a complete
Butcher tableau, including non-zero entries on and above the diagonal, i.e.

c1 a11 a12 . . . a1,s−1 a1,s
c2 a21 a22 . . . a2,s−1 a2,s

c3 a31 a32
...

...
...

...
. . .

...
...

cs as1 as2 . . . as,s−1 as,s
b1 b2 . . . bs−1 bs

If only the diagonal entries are non-zero, one calls the method a diagonally
implicit Runge-Kutta method (DIRK), and if all the the elements on the
diagonal are the same, it is a singly diagonally implicit Runge-Kutta method
(SDIRK). The numerical method associated with the complete Butcher
tableau is

ki = f(t0 +Δtci,y0 +Δt
∑s

j=1 ai,jkj), i = 1, 2, . . . , s

y1 = y0 +Δt
∑s

j=1 bjkj .
(10.32)

This formulation immediately reveals a difficulty that was absent in the ex-
plicit methods: one cannot compute the stage value k1 without knowing
all the other stage values, and the same is true for the other stage values.
Hence, at each time step, an implicit system of nonlinear equations needs to
be solved. The following theorem shows that for Δt small enough, there is
always a solution of this nonlinear system, and the solution can be computed
using a simple fixed point iteration.

Theorem 10.3. Let f : R×R
n −→ R

n be continuous and satisfy for all
t the Lipschitz condition

‖f(t,y1)− f(t,y2)‖ ≤ L‖y1 − y2‖. (10.33)

If the time step Δt satisfies

Δt <
1

Lmaxi
∑s

j=1 |aij |
, (10.34)

then there exists a unique solution of (10.32), which can be obtained by a
fixed-point iteration.

Proof. We prove existence using the fixed-point iteration

km+1
i = f(t0 +Δtci,y0 +Δt

s∑
j=1

ai,jk
m
j), i = 1, 2, . . . , s.

626 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Collecting the stage vectors ki into the big vector K := (kT
1 , . . . ,k

T
s)

T , the
fixed-point iteration becomes

Km+1 = F (Km), F i(K
m) = f(t0 +Δtci,y0 +Δt

s∑
j=1

aijk
m
j).

Now using the norm ‖K‖ := maxi(‖ki‖) and the Lipschitz condition (10.33),
repeated application of the triangle inequality leads to

‖F (K1)− F (K2)‖ ≤ ΔtLmax
i

s∑
j=1

|aij |‖K1 −K2‖,

and thus, with (10.34), the fixed-point iteration is a contraction, and hence
converges to a unique fixed point. �

Implicit methods are of great interest for stiff problems, as we will show
in Section 10.5. The simplest implicit Runge Kutta method is the Backward
Euler method, which one obtains by simply approximating the integral in the
integrated differential equation (10.17),

y(t1)− y(t0) =

∫ t1

t0

f(τ, y(τ))dτ,

by a Riemann sum with one term,∫ t1

t0

f(τ, y(τ))dτ ≈ Δtf(t1, y(t1)),

as shown in Figure 10.11. This leads to the Backward Euler method

y1 = y0 +Δtf(t1,y1). (10.35)

If we want to write Backward Euler as an implicit Runge-Kutta method, the
formula for advancing one step must be of the form

y1 = y0 +Δtk1 (10.36)

and k1 = f(t1,y1), which together with (10.36) gives

k1 = f(t1,y0 +Δtk1).

The Backward Euler method in the general Runge-Kutta notation is thus
given by

k1 = f(t1,y0 +Δtk1)
y1 = y0 +Δtk1

1 1
1

(10.37)

Using Definition 10.1, the local truncation error for the Backward Euler
method is

τ = y(t1)− y0 −Δtf(t1,y1). (10.38)

Runge-Kutta Methods 627

t
t0 t1Δt

f(t, y(t))

Figure 10.11.
Approximation of the integral by an area which requires

knowledge of the function at the right end point.

The first term on the right can be expanded in a Taylor series as in the case
of explicit methods,

y(t1) = y(t0) + Δty′(t0) +O(Δt2),

but the second term contains now y1, because the method is implicit. To
proceed, the key observation is that in the definition of Backward Euler
in (10.35), y1 on the left is defined implicitly by a function on the right
depending on y1, but the term depending on y1 on the right is multiplied by
Δt. We can therefore substitute y1 on the right in (10.38) using (10.35), and
obtain

τ = y(t1)− y0 −Δtf(t1,y0 +Δtf(t1,y1)). (10.39)

Expanding now for Δt small, the implicit dependence on y1 will show up
only in higher order terms, and if we repeat this substitution recursively, we
can always reach a level at which the implicit dependence no longer affects
the calculation of the truncation error. For Backward Euler, we obtain when
expanding (10.39)

τ = y(t0) + Δty′(t0)− y0 −Δtf(t1,y0) +O(Δt2) = O(Δt2),

where we used y(0) = y0 and the fact that the exact solution satisfies the
differential equation. Thus, the local truncation error is of order two and, ac-
cording to Theorem 10.2, the Backward Euler method is a first-order method,
just like Forward Euler.

A better method can be obtained if we use the trapezoidal rule to ap-
proximate the integral,∫ t1

t0

f(τ, y(τ))dτ ≈ Δt

2
(f(t0,y(t0)) + f(t1,y(t1))).

628 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

This leads to the implicit numerical method

y1 = y0 +
Δt

2
(f(t0,y0) + f(t1,y1)).

To write the trapezoidal method as an implicit Runge-Kutta method, the
formula for advancing one step is

y1 = y0 +
Δt

2
(k1 + k2), (10.40)

where k1 = f(t0,y0) an k2 = f(t1,y1), which together with (10.40) gives

k2 = f(t1,y0 +
Δt

2
(k1 + k2)).

The Implicit Trapezoidal Method in the general Runge-Kutta notation is thus
given by

k1 = f(t0,y0)

k2 = f(t1,y0 +
Δt
2 (k1 + k2))

y1 = y0 +
Δt
2
(k1 + k2)

0 0 0

1 1
2

1
2

1
2

1
2

(10.41)

and this is a second-order method, see Exercise 10.13.
Another implicit Runge-Kutta method can be obtained by using the mid-

point rule to approximate the integral,

∫ t0+Δt

t0

f(τ, y(τ))dτ ≈ Δtf(t0 +
Δt

2
,y(t0 +

Δt

2
)).

Since the value y(t0 +
Δt
2) is not known, we approximate it by an average of

y0 and y1. The associated numerical method becomes

y1 = y0 +Δtf(t0 +
Δt

2
,
y0 + y1

2
).

Thus, the formula can be written as y1 = y0 + Δtk1, where k1 = f(t0 +
Δt
2
, y0+y1

2
) = f(t0+

Δt
2
,y0+

Δt
2
k1), which leads in the Runge-Kutta notation

to

k1 = f(t0 +
Δt
2 ,y0 +

Δt
2 k1)

y1 = y0 +Δtk1

1
2

1
2

1
(10.42)

and this is also a second-order method, see Exercise 10.14, even though it
uses only one stage, compared to the implicit trapezoidal method (10.41).

This raises the question, as in the case of explicit Runge-Kutta methods,
as to what the highest attainable order is for an implicit Runge-Kutta method

Runge-Kutta Methods 629

with s stages. As in the case of explicit Runge-Kutta methods, we use Taylor
expansions, but the implicit dependence of the ki on themselves means we
cannot expand them in a straightforward way for small Δt. Instead, we need
to substitute the ki recursively, as in the Backward Euler example, until
the dependence enters only in the higher order terms, which can then be
neglected for the truncation error analysis.

Let us see how this works for a general one-step implicit Runge-Kutta
method in Maple. For simplicity, we work with an autonomous ODE. A
first expansion is obtained with

k[1]:=f(y(t0)+dt*a[1,1]*K[1]);

D(y):=t->f(y(t));

alias(f=f(y(t0)),f[y]=D(f)(y(t0)),f[yy]=(D@@2)(f)(y(t0)));

y1:=taylor(y(t0)+dt*sum(b[j]*k[j],j=1..1),dt,3);

which leads to

y1 := y(t0) + b1 f dt + b1 fy a1, 1 K1 dt
2 +O(dt3),

We see that the stage value k1 is still present in the expansion, in the term
of order Δt2. If we substitute once more and expand,

k[1]:=subs(K[1]=k[1],k[1]);

y1:=taylor(y(t0)+dt*sum(b[j]*k[j],j=1..1),dt,3);

we obtain

y1 := y(t0) + b1 f dt + b1 fy a1, 1 f dt2 +O(dt3),

and the dependency on the stage value has disappeared from the expansion.
We can now proceed as in the case of explicit Runge-Kutta methods,

tau:=taylor(y(t0+dt),dt,3)-y1;

p:=collect(convert(series(tau,dt,3),polynom),dt);

eqns:={coeffs(expand(p),[dt,f,f[y]])};

vars:=indets(eqns);

solve(eqns,vars);

to obtain the unique solution

{b1 = 1, a1, 1 =
1

2
},

which gives the implicit midpoint method, and we just showed that this is
the only one-stage implicit Runge-Kutta method with local truncation error
O(Δt3).

Similarly, we can derive the best two-stage implicit Runge-Kutta method
using the following Maple program (to obtain the same level of recursive
substitution, we use the intermediate variables kn)

630 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Algorithm 10.12. Generating Two Stage RK-Method

for i from 1 to 2 do

k[i]:=f(y(t0)+h*sum(a[i,j]*K[j],j=1..2));

od;

for i from 1 to 2 do

kn[i]:=subs({K[1]=k[1],K[2]=k[2]},k[i]);

od;

for i from 1 to 2 do

k[i]:=subs({K[1]=kn[1],K[2]=kn[2]},kn[i]);

od;

D(y):=t->f(y(t));

y1:=y(t0)+h*sum(b[j]*k[j],j=1..2);;

p:=collect(convert(taylor(y(t0+h)-y1,h,5),polynom),h);

vars:={a[1,1],a[1,2],a[2,1],a[2,2],b[1],b[2]};

eqns:={coeffs(expand(p),indets(p) minus vars)};

sols:=solve(eqns,vars);

allvalues(sols);

We obtain the results{
a1,1 =

1

4
, a1,2 =

1

4
+

√
3

6
, a2,1 =

1

4
−

√
3

6
, a2,2 =

1

4
, b1 =

1

2
, b2 =

1

2

}

{
a1,1 =

1

4
, a1,2 =

1

4
−

√
3

6
, a2,1 =

1

4
+

√
3

6
, a2,2 =

1

4
, b1 =

1

2
, b2 =

1

2

}

This is the implicit two-stage Runge-Kutta method of order four invented
by Hammer and Hollingsworth, which is known today as the Gauss-Legendre
Runge-Kutta Method of order four. Its Butcher tableau is

1
2
±

√
3
6

1
4

1
4
±

√
3
6

1
2 ∓

√
3
6

1
4 ∓

√
3
6

1
4

1
2

1
2

The nodes τ1,2 = 1
2 ±

√
3
6 are precisely the Gauss Quadrature nodes for the

interval (0, 1). Transforming these two nodes to the interval (−1, 1), we
obtain

ξ1,2 = 2 τ1,2 − 1 = ±
√
3

3

which are the nodes of the Gauss-Legendre Quadrature rule for n = 2 (see
Section 9.3).

Linear Multistep Methods 631

A three-stage implicit Runge-Kutta method of order six found by Kuntz-
mann and Butcher is

1
2
∓

√
15
10

5
36

2
9
∓

√
15
15

5
36

∓
√
15
30

1
2

5
36 ±

√
15
24

2
9

5
36 ∓

√
15
24

1
2
±

√
15
10

5
36

−
√
15
30

2
9
±

√
15
15

5
36

5
18

4
9

5
18

The computation of the coefficients of the sixth order method currently rep-
resents the limit of feasibility in Maple. However, by noticing the link be-
tween the coefficients and Gauss quadrature in these methods, Kuntzmann
and Butcher managed to systematically derive s-stage implicit Runge-Kutta
methods of order 2s, see [62].

10.4 Linear Multistep Methods

Linear multistep methods are fundamentally different from Runge-Kutta
methods, since they use solution values from previous time steps to compute
the value of the next step. There are two simple ways to derive special classes
of linear multistep methods, using either the approximations of derivatives in
Chapter 8, or the approximations of integrals in Chapter 9. The combination
of both approaches then leads to general linear multistep methods.

We start by approximating the derivative in the ordinary differential equa-
tion

y′ = f(y), y(0) = y0. (10.43)

Applying a forward finite difference,

y(Δt)− y(0)

Δt
≈ y′(0),

we obtain the numerical method

y1 − y0

Δt
= f(y0), or y1 = y0 +Δtf(y0),

which is again the familiar Forward Euler method.
Applying a backward finite difference, we get

y1 − y0

Δt
= f(y1) or y1 = y0 +Δtf(y1),

which is the Backward Euler method, i.e., the first order implicit Runge-Kutta
method we had seen already earlier.

To obtain a higher order method, one can use a centered finite difference
to approximate the derivative in (10.43),

y(2Δt)− y(0)

2Δt
≈ y′ = f(y),

632 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

which leads to the numerical method

y2 − y0

2Δt
= f(y1). (10.44)

This method, known as the Explicit Midpoint Rule, is very different from
all the methods we have seen so far, since it links approximations over two
steps instead of one y2, y1 and y0. This methods uses two previous values
to compute the next one, so it also needs two values to get started, y0 and
y1. While y0 is given by the initial condition, y1 needs to be computed
separately, for example using a Runge-Kutta method.

Numerical methods for ordinary differential equations based on approx-
imating the derivative are called backward differentiation formulas (BDFs),
which are a special case of Algorithm 8.3 in Section 8.2.1. They were intro-
duced and studied by Gear, and can be computed with the simple Maple

program

Algorithm 10.13.
Generating Backward Differentiation Formulas

BDF:=proc(k,q)

local p,i,t;

p:=interp([seq(i*dt,i=0..k)],[seq(y[i],i=0..k)],t);

simplify(subs(t=q*dt,diff(p,t)))=f(y[q]);

end:

The Maple command

BDF(2,1);

gives the result

−1

2

−y2 + y0
dt

= f (y1)

the centered finite difference formula we have introduced above, and

BDF(2,2);

BDF(3,2);

BDF(3,3);

give the results
1

2

3 y2 − 4 y1 + y0
dt

= f (y2)

1

6

2 y3 + 3 y2 − 6 y1 + y0
dt

= f (y2)

−1

6

−11 y3 + 18 y2 − 9 y1 + 2 y0
dt

= f (y3)

In general, by approximating the derivative with a finite difference, one finds
a method of the form

k∑
i=0

aiyi = Δtf (tq,yq), 0 ≤ q ≤ k. (10.45)

Linear Multistep Methods 633

Such a method is implicit if q = k, otherwise it is explicit.
Instead of approximating the derivative in the differential equation, one

can integrate it and then use a numerical quadrature formula to approximate
the integral, as we did already for Runge-Kutta methods. Integrating (10.43)
in time, we obtain

y(t1)− y(t0) =

∫ t1

t0

f (y(t))dt,

and the two simplest approximations of the integral by a rectangle lead to
the Forward and Backward Euler method. Using the trapezoidal rule leads
to the implicit trapezoidal method we have seen in (10.41). This formulation,
however, can also lead to new methods. For instance, one could use known
values from the previous integration step to construct an approximate tangent
for the approximate integral evaluation, as shown in Figure 10.12. This leads

tktk−1 tk+1

t

Δt

f(y(t))

Figure 10.12.
Using information from previous function evaluations to

construct an approximate tangent for the integral
evaluation

to the numerical method

yk+1 − yk = Δt

(
f(yk−1) + f(yk)

2
+ f (yk)− f(yk−1)

)

=
Δt

2
(3f(yk)− f(yk−1)),

which is known as the Adams–Bashforth two-step method.
Using not only the previous point tk−1, but also tk−2, tk−3, . . ., and using

a higher order interpolation polynomial, one can obtain an entire family of
Adams-Bashforth methods, which can be computed with the Maple program

634 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Algorithm 10.14.
Generating Adams-Bashforth Methods

AdamsBashforth:=proc(k)

local p,i,dt,t;

p:=interp([seq(i*dt,i=0..k)],[seq(f[i],i=0..k)],t);

y[k+1]-y[k]=factor(int(p,t=k*dt..(k+1)*dt));

end;

Using the Maple commands

AdamsBashforth(1);

AdamsBashforth(2);

AdamsBashforth(3);

we obtain the Adams-Bashforth methods

y2 − y1 = −1

2
dt (−3 f1 + f0)

y3 − y2 =
1

12
dt (23 f2 − 16 f1 + 5 f0)

y4 − y3 = − 1

24
dt (−55 f3 + 59 f2 − 37 f1 + 9 f0)

All Adams-Bashforth methods are explicit, but we have seen in Chapter
4 that the interpolation polynomial is not very useful for approximations
outside the interval of interpolation points. If one is willing to use an implicit
method, one could include the point to be calculated for the construction of
the interpolation polynomial, which leads to the class of Adams-Moulton
methods, computed by the Maple program

Algorithm 10.15.
Generating Adams-Moulton Methods

AdamsMoulton:=proc(k)

local p,i,dt,t;

p:=interp([seq(i*dt,i=0..k)],[seq(f[i],i=0..k)],t);

y[k]-y[k-1]=factor(int(p,t=(k-1)*dt..k*dt));

end:

Using the Maple commands

AdamsMoulton(1);

AdamsMoulton(2);

AdamsMoulton(3);

Linear Multistep Methods 635

we obtain the Adams-Moulton methods

y1 − y0 =
1

2
dt (f1 + f0)

y2 − y1 = − 1

12
dt (−5 f2 − 8 f1 + f0)

y3 − y2 =
1

24
dt (9 f3 + 19 f2 − 5 f1 + f0)

Note that for k = 0, we obtain with AdamsMoulton(0); the result y0−y−1 =
dtf0, which is the Backward Euler Method, except it is not formulated as
y1 − y0 = dtf1, as one would like to have it.

In general, when we approximate the integral using a quadrature formula
involving past integration steps, we get a numerical method of the form

yk − yk−1 = Δt

k∑
i=0

bif(yi), (10.46)

and the method is explicit if bk = 0, otherwise it is implicit.
Comparing methods based on approximating the derivative (10.45) and

those based on approximating the integral (10.46), it is natural to combine
the two, which leads to the general linear multistep method

k∑
i=0

aiyi = Δt

k∑
i=0

bif(yi). (10.47)

If bk = 0, we have an explicit method, otherwise the method is implicit. The
linear multistep method (10.47) can be scaled without changing it, so one
often fixes ak = 1.

10.4.1 Local Truncation Error

The fact that method (10.47) for k > 1 goes over more than one step makes
it impossible to use the Definition 10.1 for the local truncation error of the
method. We therefore need to generalize that definition.

Definition 10.3. (Local Truncation Error for Linear Multi-

step Methods) Let y(t) be the solution of the system of ordinary differen-
tial equations (10.43), and let yn be the approximation obtained by (10.47)
using the exact solution for the previous values, yi = y(ti), i = 0, 1, . . . , k−1.
Then the local truncation error τ for the linear multistep method (10.47) is
defined by

τ := y(tk)− yk.

636 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Definition 10.3 coincides with the earlier Definition 10.1 in the case of
one-step methods.

We start by computing the local truncation error of the explicit centered
finite difference method (explicit Midpoint Rule) (10.44),

y2 − y0

2Δt
= f(y1).

We obtain

τ = y(t2)− (y(t0) + 2Δtf(y(t1))

= y(t1) + Δty′(t1) + Δt2

2 y′′(t1) +O(Δt3)

−(y(t1)−Δty′(t1) + Δt2

2
y′′(t1) +O(Δt3) + 2Δtf(y(t1))

= O(Δt3),
(10.48)

where we used the differential equation in the last step. This shows that the
local truncation error of the explicit centered finite difference method is of
order three.

Definition 10.4. (Consistency) A linear multistep method (10.47) is
consistent of order p if the local truncation error τ = O(Δtp+1).

10.4.2 Order Conditions

A great advantage of linear multistep methods, already indicated by our
constructions of Adams and Gear methods, is that one can easily construct
methods of high order, in contrast to the Runge-Kutta methods, where the
order conditions lead to nonlinear systems that are difficult to solve. The
order conditions linear multistep methods are given in the following theorem:

Theorem 10.4. (Order Conditions of Linear Multistep Meth-

ods) The linear multistep method (10.47) is consistent of order p if and only
if the coefficients ai and bi, i = 0, 1, . . . k satisfy

k∑
i=0

ai = 0,
k∑

i=0

aii
j = j

k∑
i=0

bii
j−1 for j = 1, 2, . . . , p. (10.49)

Proof. We first compute the defect d defined by inserting the exact
solution into the linear multistep method (10.47),

d :=

k∑
i=0

aiy(ti)−Δt

k∑
i=0

bif(y(ti)). (10.50)

Expanding d in a Taylor series for Δt small, we obtain

d =
k∑

i=0

aiy(t0 + iΔt)−Δt
k∑

i=0

biy
′(t0 + iΔt)) =

∞∑
j=0

dj
Δtj

j!
y(j)(t0), (10.51)

Linear Multistep Methods 637

where the dj are given by

d0 =

k∑
i=0

ai, dj =

k∑
i=0

aii
j − j

k∑
i=0

bii
j−1.

Now in Definition 10.3 of the local truncation error, the exact solution is used
for the previously computed steps, yi = y(ti), i = 0, 1, . . . , k − 1, and hence
yk satisfies the equation

akyk +
k−1∑
i=0

aiy(ti)−Δtbkf(yk)−Δt
k−1∑
i=0

biy
′(ti) = 0.

Subtracting this from (10.51) leads to

ak(y(tk)− yk)−Δtbk(f (y(tk))− f(yk)) =
∞∑
j=0

dj
Δtj

j!
y(j)(t0),

and hence τ = y(tk)−yk = O(Δtp+1) if and only if dj = 0 for j = 0, 1, . . . , p,
which concludes the proof. �

Thus, we see that the order conditions for linear multistep methods are
linear in ai and bi, so we can readily solve for them to obtain methods of
maximal order. Using the small Maple program

Algorithm 10.16.
Generating Implicit Linear Multistep Methods

ImplicitLMM:=proc(k)

local i,j,a,b,eqns;

a[k]:=1;

eqns:={sum(a[i],i=0..k),seq(sum(a[i]*i^j,i=0..k)=

j*sum(b[i]*i^(j-1),i=0..k),j=1..2*k)};

solve(eqns,indets(eqns)); assign(%);

sum(a[k-j]*y[k-j],j=0..k)= dt*sum(b[k-j]*f[k-j],j=0..k);

end:

the command

for i from 1 to 4 do ImplicitLMM(i) od;

gives the first four implicit linear multistep methods of maximal order,

y1 − y0 = dt

(
1

2
f1 +

1

2
f0

)

y2 − y0 = dt (1/3 f2 + 4/3 f1 + 1/3 f0)

638 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

y3 +
27

11
y2 − 27

11
y1 − y0 = dt

(
3/11 f3 +

27

11
f2 +

27

11
f1 + 3/11 f0

)

y4 +
32

5
y3 − 32

5
y1 − y0 = dt

(
6

25
f4 +

96

25
f3 +

216

25
f2 +

96

25
f1 +

6

25
f0

)
Similarly, the Maple program

Algorithm 10.17.
Generating Explicit Linear Multistep Methods

ExplicitLMM:=proc(k)

local i,j,a,b,eqns;

a[k]:=1;b[k]:=0;

eqns:={sum(a[i],i=0..k),seq(sum(a[i]*i^j,i=0..k)=

j*sum(b[i]*i^(j-1),i=0..k),j=1..2*k-1)};

solve(eqns,indets(eqns)); assign(%);

sum(a[k-j]*y[k-j],j=0..k)= dt*sum(b[k-j]*f[k-j],j=0..k);

end:

leads after the Maple command

for i from 1 to 4 do ExplicitLMM(i) od;

to the first four explicit linear multistep methods of maximal order,

y1 − y0 = dt f0

y2 + 4 y1 − 5 y0 = dt (4 f1 + 2 f0)

y3 + 18 y2 − 9 y1 − 10 y0 = dt (9 f2 + 18 f1 + 3 f0)

y4 +
128

3
y3 + 36 y2 − 64 y1 − 47

3
y0 = dt (16 f3 + 72 f2 + 48 f1 + 4 f0)

Despite the ease of deriving high order methods, linear multistep methods
can have serious stability problems, which unfortunately render many of them
useless, as we will see in the next section.

10.4.3 Zero Stability

Even though possible stability problems in linear multistep methods were al-
ready pointed out by Rutishauser in [114], it was Dahlquist [21] who first sys-
tematically studied such phenomena. We use his historical example, namely
the second of the explicit linear multistep methods with maximal order we
derived in the previous paragraph,

yn+2 + 4yn+1 − 5yn = Δt(4f(yn+1) + 2f(yn)), (10.52)

and test how it performs on a simple test problem,

y′ = y, y(0) = 1 =⇒ y(t) = et. (10.53)

Linear Multistep Methods 639

The Maple program

Algorithm 10.18.
Solving y′ = f(y) with the Linear Multistep Method

(10.52)

ExplicitLMM2:=proc(f,y0,y1,dt,n)

local y,Y,i;

y[0]:=y0; y[1]:=y1;

Y:=[[0,y[0]],[dt,y[1]]];

for i from 1 to n-1 do

y[i+1]:=-4*y[i]+5*y[i-1]+dt*(4*f(y[i])+2*f(y[i-1]));

Y:=[op(Y),[dt*(i+1),y[i+1]]];

od;

return Y;

end;

leads, after the Maple commands

f:=y->y;

y1:=ExplicitLMM2(f,1,exp(1/10),1/10,10):

y2:=ExplicitLMM2(f,1,exp(1/20),1/20,14):

y3:=ExplicitLMM2(f,1,exp(1/40),1/40,16):

y4:=ExplicitLMM2(f,1,exp(1/80),1/80,18):

y5:=ExplicitLMM2(f,1,exp(1/160),1/160,20):

y:=[seq([t/20,exp(t/20)],t=0..20)]:

plot({y,y1,y2,y3,y4,y5},t=0..1,0..3,color=black,axes=boxed);

to the results shown in Figure 10.13. Even though this method has a very
small local truncation error, the approximation to the solution is not good,
and it gets worse when one refines the discretization: the method is unstable.
Note that this instability is not due to roundoff errors here, since we started
with the exact values y(0) = 1 and y(Δt) = eΔt, and the computations
in Maple were performed in exact arithmetic, as one can verify with the
Maple command

print(y1);

which shows the results of the Maple computation to be

[[0, 1], [
1

10
, e(1/10)], [

1

5
, −18

5
e(1/10) +

26

5
], [

3

10
,
454

25
e(1/10) − 468

25
],

[
2

5
, −10512

125
e(1/10) +

11804

125
], [

1

2
,
248236

625
e(1/10) − 273312

625
],

[
3

5
, −5834808

3125
e(1/10) +

6454136

3125
], [

7

10
,
137297224

15625
e(1/10) − 151705008

15625
],

[
4

5
, −3229875072

78125
e(1/10) +

3569727824

78125
], [

9

10
,
75986390416

390625
e(1/10) − 83976751872

390625
],

[1, −1787638786848

1953125
e(1/10) +

1975646150816

1953125
]]

640 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

0

0.5

1

1.5

2

2.5

3

0.2 0.4 0.6 0.8 1

t

Figure 10.13.
Instability of the second explicit linear multistep methods

with maximal order for the model problem y′ = y.

In order to understand what has gone wrong in this computation, we analyze
the recurrence relation obtained from (10.52) when applied to the simple
model problem (10.53),

yn+2 + 4(1−Δt)yn+1 − (5 + 2Δt)yn = 0.

Inserting the trial solution yn = λn, we obtain for λ the characteristic equa-
tion

λ2 + 4(1−Δt)λ− (5 + 2Δt) = 0,

with the two roots

λ1 = 2Δt− 2 +
√
9− 6Δt+ 4Δt2

λ2 = 2Δt− 2−
√
9− 6Δt+ 4Δt2.

The general solution of the recurrence relation is

yn = C1λ
n
1 + C2λ

n
2 ,

where the constants are determined by the initial conditions

y0 = 1 = C1 + C2

y(Δt) = eΔt = C1λ1 + C2λ2.

> solve({exp(dt)=C[1]*lambda[1]+C[2]*lambda[2],1=C[1]+C[2]},{C[1],C[2]});

> assign(%);

Linear Multistep Methods 641

C1 =
edt − λ2

λ1 − λ2
, C2 = −edt − λ1

λ1 − λ2

We expand the two roots in the Taylor series

> R:=solve(lambda^2+4*(1-dt)*lambda-(5+2*dt)=0,lambda):

> lambda[1]:=R[1];lambda[2]:=R[2];

> series(lambda[1],dt=0);

> series(lambda[2],dt=0)

1 + dt+
1

2
dt2 +

1

6
dt3 +

1

72
dt4 − 5

216
dt5 +O

(
dt6
)

> series(lambda[2],dt=0);

−5 + 3 dt− 1

2
dt2 − 1

6
dt3 − 1

72
dt4 +

5

216
dt5 +O

(
dt6
)

If C2 does not vanish, the solution yn will be dominated by λn
n for large n,

since λ2 is much larger in modulus than λ1; thus, the solution will exhibit
oscillations like (−5)n. We have started the linear multistep method with the
exact values y0 = 1 and y1 = eΔt, which gives for the constants the values

> series(C[1],dt=0);

1 +
1

216
dt4 +

11

1620
dt5 +O

(
dt6
)

> series(C[2],dt=0);

− 1

216
dt4 − 11

1620
dt5 +O

(
dt6
)

and since C2 	= 0, the oscillations eventually dominate and destroy the ap-
proximation. Notice that the first term C1λ1

> series(C[1]*lambda[1],h=0);

1 + dt +
1

2
dt2 +

1

6
dt3 +

1

54
dt4 − 19

1620
dt5 +O

(
dt6
)

approximates eΔt to O(Δt4), while the second term

> series(C[2]*lambda[2],h=0);

5

216
dt4 +

13

648
dt5 +O

(
dt6
)

is zero to O(Δt4).
In theory, one could have chosen the second initial value y1 = λ2 for this

simple problem (which makes C2 = 0) and obtain a useful approximation in
exact arithmetic, as shown in Figure 10.14 on the left, which was obtained
with the Maple commands

dt:=1/10;

y1:=ExplicitLMM2(f,1,2*dt-2+(9-6*dt+4*dt^2)^(1/2),dt,10):

y:=[seq([t/10,exp(t/10)],t=0..20)]:

plot({y,y1},t=0..2,0..7,color=black,axes=boxed);

642 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Figure 10.14.
Exact arithmetic on the left, with appropriate starting

steps to cancel the oscillatory mode, and on the right the
same experiment in floating point arithmetic: the

method fails again!

But when the solution is computed in floating point, roundoff errors suffice
to excite the parasitic solution, as shown in Figure 10.14 on the right; that
solution can be computed by adding an evalf command in ExplicitLMM2

for each floating point assignment. We see that despite its very small local
truncation error, this linear multistep method is completely useless! A useful
method would at least be able to solve the test equation

y′ = 0, y(0) = 1, (10.54)

which has the constant solution y(t) = 1.

Definition 10.5. (Zero-Stability) A method is defined to be zero-
stable if, when applied to the test equation (10.54), all the roots of the char-
acteristic equation are inside the unit circle, |λi| ≤ 1 and if |λi| = 1, λi must
be a simple root.

Looking at the Forward Euler method, we find

yk+1 − yk = 0

with the characteristic equation

λ− 1 = 0,

and thus the only root is λ = 1. The Forward Euler method is thus zero-
stable. The same is true for Backward Euler, since the characteristic equation
is the same. Adams-Bashforth and Adams-Moulton methods are also zero-
stable. For BDF(6), we get the characteristic equation

49

20
λ6 − 6λ5 +

15

2
λ4 − 20

3
λ3 +

15

4
λ2 − 6

5
λ+

1

6
= 0

Linear Multistep Methods 643

which has the roots

>> p=[49/20, -6, 15/2,-20/3, 15/4, -6/5, 1/6]

>> roots(p)

ans =

0.1453 + 0.8511i

0.1453 - 0.8511i

1.0000

0.3762 + 0.2885i

0.3762 - 0.2885i

0.4061

>> abs(ans)

ans =

0.8634

0.8634

1.0000

0.4740

0.4740

0.4061

and thus is also zero-stable.
If we take however the linear multistep method (10.52), we obtain the

characteristic equation
λ2 + 4λ− 5 = 0

with the two roots λ1 = 1 and λ2 = −5 and clearly this method is not zero-
stable. We see that the simple test equation (10.54) seems to be precisely the
right tool for detecting whether a method has potential stability problems.

10.4.4 Convergence

The observation in the previous subsection leads to one of the most funda-
mental results in the numerical solution of differential equations, namely that
stability and consistency imply convergence (in fact, this is an equivalence),
and is proved for the case of ODEs in the following theorem.

Theorem 10.5. (Stabililty and Consistency Imply Convergence)

A linear multistep method

yn+k +

k−1∑
j=0

ajyn+j = Δt

k∑
j=0

bjf(yn+j), n = 0, 1, 2, . . . (10.55)

with starting values satisfying

‖ek−1‖ =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
⎛
⎜⎝
y(tk−1)− yk−1

...
y(t0)− y0

⎞
⎟⎠
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ CΔtp (10.56)

644 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

is convergent of order p if it is zero-stable and consistent of order p.
Proof. From the definition of the linear multistep method (10.47), we

obtain an implicit equation for yn+k, namely

yn+k = −
k−1∑
j=0

aj yn+j +Δt
k∑

j=0

bj f(yn+j), n = 0, 1, · · · . (10.57)

Define the vector zn := (yn+k−1, yn+k−2, . . . , yn)
�, and denote the solution

of (10.57) by yn+k = Φ(zn). We then obtain

yn+k = −
k−1∑
j=0

aj yn+j +Δt

⎛
⎝k−1∑

j=0

bjf(yn+j) + bkf(Φ(zn))

⎞
⎠

︸ ︷︷ ︸
=:g(zn)

. (10.58)

We can therefore write the linear multistep method in matrix form,

zn+1 =

⎛
⎜⎜⎜⎝

yn+k

yn+k−1

...
yn+1

⎞
⎟⎟⎟⎠ = A

⎛
⎜⎜⎜⎝

yn+k−1

yn+k−2

...
yn

⎞
⎟⎟⎟⎠+Δt

⎛
⎜⎜⎜⎝

g(zn)
0
...
0

⎞
⎟⎟⎟⎠ , (10.59)

with

A =

⎛
⎜⎜⎜⎝

−ak−1 −ak−2 · · · −a0
1 0

. . .
. . .

1 0

⎞
⎟⎟⎟⎠

The method (10.59) is now a one-step method of the form zn+1 = Azn +
Δtg(zn), n = 0, 1, · · · . With z(tn+1) = (y(tn+k), y(tn+k−1), . . . , y(tn+1))

� we
define the local error as for one-step methods to be en+1 = z(tn+1) − zn+1

and get by adding and subtracting

en+1 = z(tn+1) − Azn − Δtg(zn) + Az(tn) + Δtg(z(tn)) − Az(tn) − Δtg(z(tn))

= A (z(tn) − zn) + Δt (g(z(tn)) − g(zn)) + z(tn+1) − Az(tn)−Δtg(z(tn)).

Now we have

z(tn+1) − Az(tn) − Δtg(z(tn))

=

⎛
⎜⎜⎜⎝
y(tn+k) −∑k−1

j=0 ajy(tn+j) − Δtg(z(tn))

0
...
0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
y(tn+k) − yn+k

0
...
0

⎞
⎟⎟⎟⎠

so consistency implies

‖z(tn+1)−Az(tn)−Δtg(z(tn))‖ = τ ≤ CτΔtp+1.

Linear Multistep Methods 645

Since g is a finite sum of function values of f , it is Lipschitz whenever f is,
and with the same constant L. Thus we get the estimate

‖en+1‖ ≤ τ +‖A‖ ‖z(tn)−zn‖+ΔtL ‖z(tn)−zn‖ = (‖A‖+ΔtL) ‖en‖+ τ.

By induction on n, we can sum the geometric series and obtain

‖en‖ ≤ (‖A‖+ΔtL)n−k+1 ‖ek−1‖+ (‖A‖+ΔtL)n−k+1 − 1

‖A‖+ΔtL− 1
τ. (10.60)

We now need to estimate the norm of A. If λ is a root of the characteristic
equation λk + ak−1λ

k−1 + ak−2λ
k−2 + . . . + a0 = 0, then

A

⎛
⎜⎜⎜⎜⎜⎝

λk−1

λk−2

...
λ
1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

−ak−1λ
k−1 − ak−2λ

k−2 − . . . − a0
λk−1

...
λ2

λ

⎞
⎟⎟⎟⎟⎟⎠ = λ

⎛
⎜⎜⎜⎜⎜⎝

λk−1

λk−2

...
λ
1

⎞
⎟⎟⎟⎟⎟⎠ .

(10.61)
Thus, we obtain an eigenvalue-eigenvector pair of A. Because we assumed
that the method is zero-stable, we know that all eigenvalues of A are within
the unit disk, and the ones on the boundary are simple. Let λ1, . . . , λr be
the eigenvalues of modulus one, which have to be simple by assumption, and
denote by T−1AT = J a Jordan decomposition of the matrix A, with J of
the form (see [51])

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1

. . .

λr

λr+1 εr+1

. . .
. . .

. . . εk−1

λk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (10.62)

with εj such that |λj | + |εj | ≤ 1 for j = r + 1, . . . , k. Such a Jordan decom-
position can always be obtained by diagonal scaling. We then choose as the
norm in our estimate (recall that all norms in this finite dimensional setting
are equivalent) ‖x‖ := ‖T−1x‖∞

=⇒ ‖A‖ = sup
x �=0

‖Ax‖
‖x‖ = sup

x�=0

‖T−1ATT−1x‖∞
‖T−1x‖∞

= sup
y �=0

‖Jy‖∞
‖y‖∞

= 1.

In this norm, we therefore have ‖A‖ = 1, and thus obtain from (10.60) using
(10.56)

‖en‖ ≤ (1 + ΔtL)n−k+1CΔtp +
(1 +ΔtL)n−k+1 − 1

ΔtL
CτΔtp+1. (10.63)

646 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Now for a given time interval (0, T) and time step Δt, we have n ≤ N := T
Δt

,

and therefore (1 + ΔtL)n−k+1 ≤ eLΔt(n−k+1) ≤ eLΔt(N−k+1) ≤ eLT , since
k ≥ 1, which gives for n = k, k + 1, . . . , N the final estimate

‖en‖ ≤ eLT (C +
Cτ

L
)Δtp (10.64)

and hence the method is convergent of order p. �

Remark. All consistent one-step methods are automatically zero-stable.
This is easily seen for Runge-Kutta methods, for example from (10.32): since
f = 0 when such a method is applied to the test equation (10.54), the only root
of the characteristic equation is 1, and hence the method is zero-stable. The
concept of zero-stability was therefore not needed in the convergence Theorem
10.2 for one-step methods.

A very important result for linear multistep methods is the first Dahlquist
barrier [21]: for p even, the best order attainable by a zero-stable linear p-step
method is q = p+2. For p odd, it is q = p+1. If the linear multistep method
is explicit, the best order attainable is only q = p. As we have seen, it is very
easy to construct high order linear multistep methods, since one just has to
satisfy the order conditions in Theorem 10.4. However, many of them are
not convergent, since they are not zero-stable.

It is also much more difficult to construct adaptive linear multistep meth-
ods, since changing the step size locally for a new step means that equidistant
function values are no longer available for the next time step. But it is pos-
sible to design such methods, see [63] (“Des war a harter Brockn, des . . . ”).

10.5 Stiff Problems

It is difficult (and not necessarily helpful) to give a precise definition for when
a problem is stiff. However, a good working definition is that a problem is
stiff if the time step used by an explicit method in order to achieve a certain
accuracy is much smaller than the time step one would need to use to resolve
the shape of the solution2. Let us look at a simple example to illustrate this:
we consider the model problem

y′ = −10y, y(0) = 1,

which has the closed form solution

y(t) = e−10t.

This solution decays rapidly to zero. Suppose we approximate the solution
with the backward differentiation formula,

yk+1 − yk−1

2Δt
= −10yk,

2“Stiff equations are problems for which explicit methods don’t work.” [63]

Stiff Problems 647

for which we have seen that the local truncation error is O(Δt3), see (10.48).
The method is also zero-stable, as one readily verifies, see Problem 10.10.
The method is therefore convergent, according to Theorem 10.5. However,
as Figure 10.15 shows, the method does not converge well to the solution.
Although we used a very fine time step of Δt = 1/100 (the figure was pro-

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

y

Figure 10.15.
Oscillation of a backward differentiation formula

approximation for a simple model problem. Clearly this
oscillating approximation does not faithfully reproduce

the monotonically decaying physical solution.

duced using the starting values y0 = 1 and the Euler approximation for
y1 = y0−10Δty0), the solution starts to oscillate about the true solution and
fails to reproduce the physically correct result, which is very smooth; only a
few points would suffice to represent it accurately. This is a typical case of a
problem due to stiffness.

In order to understand this phenomenon, we consider, as in the case of
zero stability, a test equation, namely

y′ = ay, y(0) = 1, a ∈ C, (10.65)

which has the solution y(t) = eat. Note that if the real part of a is negative,
Re(a) < 0, then y(t) goes to zero as t goes to infinity. This property holds for
many physical systems, for example for all diffusive problems, such as heat
diffusion.

Applying the Explicit Midpoint Method to the test equation (10.65), we
find

yk+1 − yk−1 = 2Δtayk.

To find the discrete solutions yk, we solve again the characteristic equation

λ2 − 2Δtaλ− 1 = 0,

648 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

which has the roots
λ1,2 = Δta±

√
Δt2a2 + 1.

Thus the general solution for yk is

yk = Aλk
1 +Bλk

2 .

In the numerical example we showed in Figure 10.15, we had a = −10, so we
find

|λ1| = | − 10Δt+
√

100Δt2 + 1| < 1,

|λ2| = | − 10Δt−
√

100Δt2 + 1| > 1,

Since Δt > 0, λ2 will yield a growing numerical approximation, even though
the exact solution y(t) = e−10t decays exponentially quickly to zero. It
is precisely this growing solution which leads to the unfavorable oscillation
properties of this method for stiff problems, and forces the time step to be
unnaturally small in order to obtain a good approximate solution. In fact,
if we integrate the same problem with Δt = 1/1000, then we obtain Figure
10.16, which shows that the oscillations are no longer visible. However, to

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 10.16.
With a smaller step size the oscillations have

disappeared.

achieve this, we would need 500 integration steps for such a smooth function,
which shows that the method is not suited for integrating stiff equations.

Let us look at a second example which, when implemented in Matlab,
even seems to contradict Theorem 10.5. Consider the ODE

y′′ + 101y′ + 100y = 0, y(0) = 1, y′(0) = −1. (10.66)

The solution with the given initial conditions is y(t) = e−t. We want to
solve this equation using again the Explicit Midpoint Rule. For this, we first

Stiff Problems 649

transform the ODE to a first order system by introducing the variables z1 = y
and z2 = y′, see Subsection 10.2.6,

z′ = Az, A =

(
0 1

−100 −101

)
, z(0) =

(
1
−1

)

and run the following Matlab program

Algorithm 10.19.
Solving Equation (10.66) with the Explicit Midpoint Rule

Steps=[0.04,0.02,0.01,0.005];

for dt=Steps

tend=0.6;

Y=[];

t=0; y0=[1;-1]; % exact initial conditions

Y=[t,y0’]; % save results

t=dt; y1=[exp(-dt);-exp(-dt)];

Y=[Y;t,y1’];

while t<tend

y=y0+2*dt*[0 1;-100 -101]*y1;

t=t+dt; Y=[Y;t y’];

y0=y1;y1=y;

end

T=Y(:,1);

steps=max(size(Y)) % number of integration steps

error=norm(exp(-T)-Y(:,2)) % compare with exact solution

plot(T,[Y(:,2),exp(-T)])

pause

end

The result for the four integration step sizes are displayed in the following
table

dt # steps error
0.04 16 2.2673e-04
0.02 31 0.2924
0.01 61 9.9013e+03
0.005 121 6.2028e+04

and in Figure 10.17. In this example, the solution gets worse when the step
size is refined! This behavior seems to indicate an instability, which histori-
cally was called “weak instability” and started Dahlquist’s career. However,
according to Theorem 10.5 this method is convergent, but only if the step
size is made much, much smaller, see Problem 10.17.

650 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.4

0.5

0.6

0.7

0.8

0.9

1

dt = 0.04 dt = 0.02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−10000

−8000

−6000

−4000

−2000

0

2000

4000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−4

−3

−2

−1

0

1

2

3

4

5
x 10

4

dt = 0.01 dt = 0.005
Figure 10.17.

Solving Equation (10.66) using the Explicit Mid Point
Rule

10.5.1 A-Stability

In order to find good methods for such types of problems, we need to in-
troduce the concepts of a region of absolute stability and A-stability. As we
noticed in the previous paragraph, the roots of the characteristic equation
obtained when applying the method to the test equation (10.65) depend on
the parameter μ := aΔt, λi = λi(aΔt) = λi(μ). This observation leads to
the following definition.

Definition 10.6. (Region of Absolute Stability) The region of
absolute stability R for a numerical method for solving an ODE is defined by

R := {μ : |λi(μ)| < 1 ∀λi(μ)} ,

where λi(μ), μ = aΔt are the roots of the characteristic equation when the
method is applied to the test equation y′ = ay, a ∈ C.

We see that if Δt for a given method is chosen such that aΔt is in the
region of absolute stability, then the numerical solution decays to zero.

Definition 10.7. (A-Stability) A method is called A-stable if its region
of absolute stability R contains the left half of the complex plane {z ∈ C :
Re(z) < 0}.

A-stability is a desirable property for a method, because if the method
is A-stable, then the numerical approximations obtained from the method
decays to zero whenever the exact solution of the test equation (10.65) does

Stiff Problems 651

Re(μ)

Im(μ)

−1

Figure 10.18.
Region of absolute stability for the Forward Euler

method

as well. Hence, one obtains physically meaningful solutions independent of
the step size used.

It is best to look at some examples to understand the concept of A-
stability. We start with the Forward Euler method, which gives, when applied
to the test equation (10.65), the method

yk+1 = yk +Δt ayk = (1 + Δt a)yk.

The only root of its characteristic equation is therefore

λ1 = 1 +Δt a =: 1 + μ.

The region of absolute stability for the Forward Euler method is therefore

|λ1(μ)| = |1 + μ| < 1

as shown in Figure 10.18. It becomes clear now why this region is so impor-
tant: as soon as Δt is small enough for the Forward Euler method, aΔt for
Re(a) < 0 will lie inside its region of absolute stability, and the numerical
approximation to the solution will decay to zero, as does the exact solution.

For the Backward Euler method applied to the test equation (10.65), we
find

yk+1 − yk
Δt

= ayk+1,

and thus the characteristic equation has the only root

λ1 =
1

1− aΔt
=:

1

1− μ
.

652 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Re(μ)

Im(μ)

1

Figure 10.19.
Region of absolute stability for the Backward Euler

method

The values of μ for which

|λ1(μ)| = 1

|1− μ| < 1

are thus the values for which

|1− μ| > 1.

Hence the region of absolute stability for Backward Euler lies outside the
circle centered at 1 with unit radius, as shown in Figure 10.19. Since the
region of absolute stability contains the left half of the complex plane, Back-
ward Euler is the first method we encounter that is A-stable. When using
the Backward Euler method for the test equation (10.65), numerical approx-
imations will decay whenever the exact solution also decays, i.e. whenever
Re(a) < 0, regardless of the time step Δt chosen. In other words, in order for
Backward Euler to produce a physically correct decaying solution, the time
step Δt does not have to be small; thus, unlike for Forward Euler, the size
of Δt is only determined by the desired accuracy, and not by the artificial
requirement that the solution should be physically correct.

One also sees that Backward Euler is in fact overstable, since there are
values for a with positive real part for which the Backward Euler approxima-
tion decays to zero, even though the exact solutions eat grow exponentially.
This is however less of a problem in applications, since few physically relevant
problems have exponentially growing solutions.

Stiff Problems 653

0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

5

30 steps

u

0 0.5 1 1.5
−100

−50

0

50

100

150

u

35 steps
0 0.5 1 1.5

−3

−2

−1

0

1

2

3

u

37 steps

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

u

40 steps
0 0.5 1 1.5

0

0.5

1

1.5

u

50 steps

Figure 10.20.
Forward Euler approximation of a stiff model problem by

Curtiss and Hirschfelder, using 30, 35, 37, 40 and 50
integration steps.

10.5.2 A Nonlinear Example

We have so far only looked at the linear test equation (10.65). We show now
a second, stiff and nonlinear example from the historical paper by Curtiss
and Hirschfelder [20], written as a system

ẋ = −50(x− cos(y))
ẏ = 1

(10.67)

in order to explain why the concept of A-stability is still relevant. We show
in Figure 10.20 the x-component approximation obtained from Forward Eu-
ler for various values of Δt. We clearly see that the approximate solutions
obtained by Forward Euler are very inaccurate, even for a small Δt that re-
quires a large number of time steps to integrate; the approximations at the
beginning of the time interval are especially inaccurate.

Similarly, we show in Figure 10.21 the x-component approximation ob-
tained from Backward Euler for various values of Δt. Even for only 10 time
steps, the physical behavior of the solution is already correct, and for 30
time steps, shown in the second panel of Figure 10.21, the approximation is
quite accurate. This is in contrast to Forward Euler with 30 time steps, the
first panel in Figure 10.20, which gives a completely useless approximation.
Clearly, these two first-order methods perform very differently on this model
problem.

To understand why A-stability is still the important concept for this non-
linear example, we linearize the general nonlinear system of ordinary differ-

654 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 steps

u

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

30 steps
0 0.5 1 1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 steps

u

Figure 10.21.
Backward Euler approximation of the same stiff model

problem by Curtiss and Hirschfelder, using 10, 30 and 50
integration steps.

ential equations
y′ = f(y), (10.68)

and look for a nearby solution. We expand the right hand side

(y +Δy)′ = f(y +Δy)
= f(y) +∇f(y)Δy +O(‖Δy‖2), (10.69)

where ∇f (y) denotes the Jacobian of f at y. If the solution is close by,
we can neglect the term O(‖Δy‖2), and taking the difference between the
original equation (10.68) and the expanded one (10.69), we find the difference
to be

(Δy)′ = ∇f(y)Δy, (10.70)

which is now a linear differential equation. If, furthermore, the Jacobian
matrix ∇f is diagonalizable, ∇f = SΛS−1, Λ = diag(μ1, μ2, . . .), then we
can also diagonalize (10.70) (otherwise one can continue the argument with
a Jordan decomposition). Denoting by z := S−1y, we get for zi the scalar
differential equations

żi = μizi, i = 1, 2, . . .

which are now of the form of the simple test equation (10.65) used to deter-
mine the region of absolute stability of a numerical method (although the μi

in general still depend on time). For our nonlinear example, we obtain

∇f (y) =

(−50 0
0 0

)
,

and thus the eigenvalues are a1 = 0 and a2 = −50. Since Backward Euler is
A-stable, it will only produce decaying solutions, and the eigenvalue a2 = −50
will not affect the quality of the approximation. In contrast, the Forward
Euler method needs to satisfy the condition |1 + aiΔt| < 1, i = 1, 2 to be in
the region of absolute stability, which corresponds for a2 = −50 to Δt ≤ 2

50
,

or 38 or more time steps in the example in Figure 10.20. The comparison with
the two approximate solutions for Forward Euler with 37 and 40 time steps

Stiff Problems 655

Re(μ)

Im(μ)

α

α

Figure 10.22.
Region that must be included in the region of absolute
stability of a method in order for the method to be

A(α)-stable

in Figure 10.20 illustrates why the concept of A-stability is very important
for stiff problems.

A very important general result is the second Dahlquist barrier [22]: an
A-stable linear multistep method cannot have an order higher than two. To
circumvent this barrier, the slightly weaker condition of A(α)-stability has
been introduced: a method is A(α)-stable if its region of absolute stability
includes the region depicted in Figure 10.22.

10.5.3 Differential Algebraic Equations

Stiff equations are often obtained from singular perturbation problems. As an
example, we consider the system of ordinary differential equations

ẏ = f(y, z),
εż = g(y, z),

(10.71)

Such problems often occur in chemical reaction simulations, where there are
slow and fast reactions, and also in circuit simulation and fluid dynamics.
When ε becomes small, these equations become very stiff: computing the
Jacobian of the right hand side function in (10.71) after division by ε yields

J =

(
fy fz
1
ε
gy

1
ε
gz

)
.

The eigenvalues of J are

λ1,2 =
fy + 1

ε
gz ±

√
(fy +

1
ε
gz)2 − 4

ε
(fygz − fzgy)

2
.

656 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

The two eigenvalues behave very differently when ε becomes small: one of
the eigenvalues will behave like 1

ε
, whereas the other will be of order one; as

a result, the system becomes very stiff.

What happens in the limit as ε −→ 0? In that case, the singularly
perturbed system (10.71) becomes

ẏ = f(y, z),
0 = g(y, z),

(10.72)

which is called a differential algebraic equation (DAE). Solutions of such
equations must satisfy the algebraic constraint g(y(t), z(t)) = 0, i.e., they
have to lie on the manifold defined by this equation.

In order to solve (10.71) for small values of ε, one is interested in methods
that have robust convergence estimates independent of ε. Such methods can
then also be used to solve (10.72) directly. There is a large body of literature
available that considers such problems, see [63] and the references therein;
specialized methods for (10.72) can for example be obtained by applying a
Runge-Kutta method or a linear multistep method to the original problem
(10.71), and then letting ε go to zero in the definition of the method. Alter-
natively, one can differentiate the algebraic constraint equation g(y, z) = 0
in order to obtain

gyẏ + gz ż = 0 =⇒ ż = −g−1
z gyf,

which is again a differential equation and can be solved together with the first
differential equation by any method we have seen. DAEs for which this is
possible are called index-1 DAEs. Not all DAEs have index 1, as the following
example shows:

ẏ = f(y, z),
0 = g(y).

(10.73)

Computing a derivative of the constraint equation g(y) = 0, we obtain
gy(y)f(y, z) = 0, which is still an algebraic constraint. However, differen-
tiating once more works, which is why (10.73) is called an index-2 DAE.
In general, methods are developed for index-1 DAEs, just as most methods
were developed for first order ODEs; higher index DAEs must be reduced to
index-1 before standard methods can be applied. A comprehensive treatment
of numerical methods for such problems can be found in [63].

10.6 Geometric Integration

Geometric integration has established itself as a mature field of research over
the last decade, and comprehensive monographs are available [61, 84]. A ge-
ometric integrator is a numerical method that preserves geometric properties
of the exact flow of a differential equation. We illustrate two important

Geometric Integration 657

concepts of geometric integration on the non-trivial example of the Lotka-
Volterra Equations [143]. We consider a predator species y and its prey x.
The Lotka-Volterra system of differential equations describes the evolution
of x and y by

ẋ = x − xy ; x(0) = x̂,
ẏ = −y + xy ; y(0) = ŷ,

(10.74)

where we denote the time derivative on the left by a dot. The growth rate
of the prey population ẋ is proportional to the current population x minus
the number of prey-predator encounters, proportional to xy. This is quite
intuitive, since if there is more prey, they will produce more offspring, but
prey-predator encounters are potentially fatal for the prey. In the other
equation, the growth rate of the predator population ẏ is proportional to
the predator-prey encounters xy minus the current population y. This is also
quite natural, since predator-prey encounters are potentially beneficial for the
predator, and a large predator population will rapidly be reduced when there
is little prey. In order to simplify the exposition, we have not introduced the
biologically important constants of proportionality here.

It is well known that the solution to (10.74) is cyclic for all initial values x̂,
ŷ in the first quadrant of the xy plane. The cycles are around the equilibrium
point x̄ = 1 , ȳ = 1, which is obtained by setting the time derivatives on the
left hand side of (10.74) to zero. An explicit solution can be obtained in
parametric form [129], see also Problem 10.18, namely

x = 1
2τ ± 1

2

√
τ2 − 4Ceτ ,

y = 1
2
τ ∓ 1

2

√
τ2 − 4Ceτ ,

(10.75)

where the constant C is given by

C = x̂ŷex̂+ŷ.

Figure 10.23 on the left shows the solution for initial values x̂ = 0.5 and
ŷ = 0.5.

We now apply a very simple numerical method to solve the Lotka-Volterra
equations approximately, namely the Forward Euler method. This leads to
the discrete iteration formula with approximations at time tn,

xn+1 − xn

Δt = xn − xnyn ; x0 = x̂,
yn+1 − yn

Δt = −yn + xnyn ; y0 = ŷ.
(10.76)

This is an explicit iteration formula. The solution obtained with a time step
Δt = 0.1 and initial values x̂ = 0.5, ŷ = 0.5 is shown in Figure 10.23 on the
right, together with the exact solution. The numerical solution obtained by
Forward Euler spirals outwards, which is physically incorrect. In fact, most
classical methods we have seen exhibit spiraling: explicit methods typically
spiral outward, and implicit methods inward, see Problems 10.19 and 10.20.

658 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

x

y

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

x
y

Figure 10.23.
Exact solution of the Lotka-Volterra System on the left,
and outward spiraling approximate solution computed

with Forward Euler on the right

10.6.1 Symplectic Methods

We now show how a simple modification of the Forward Euler method leads
to a numerical approximation that does not exhibit any spiraling: We replace
xn in the product term of the second equation of (10.76) by its newest value
xn+1 to get

xn+1 − xn

Δt
= xn − xnyn ; x0 = x̂,

yn+1 − yn
Δt

= −yn + xn+1yn ; y0 = ŷ.
(10.77)

This modification has an analogue in numerical linear algebra, where one
calls the iteration in (10.76) the Jacobi iteration, see Section 11.3.2, and the
modified one in (10.77) the Gauss-Seidel iteration, see Section 11.3.3. Figure
10.24 shows the solution obtained with the modified Forward Euler method
with time step Δt = 0.1 and initial values x̂ = 0.5, ŷ = 0.5. The exact
solution is plotted as a dashed curve. Note that the modified Forward Euler
method is still explicit.

We now explain why this modification in Euler’s method removes the
physically incorrect behavior of the original Forward Euler method. We first
rewrite the Lotka-Volterra equations (10.74) as

ẋ = −xy∂H
∂y

; x(0) = x̂,

ẏ = xy∂H
∂x

; y(0) = ŷ,
(10.78)

with the so-called Hamiltionian function

H(x, y) = x+ y − lnx− ln y.

Geometric Integration 659

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

x

y

Figure 10.24.
Cyclic solution obtained with the modified Euler method

A system of the form (10.78) is known as a Poisson system; (if the factor xy
were not present in (10.78), it would be a Hamiltonian system; See [61] for
a comprehensive treatment of the numerical approximation of Hamiltonian
and Poisson systems). Hamiltonian systems are symplectic, which means
area-preserving in our two-dimensional example. In other words, the flow
preserves the infinitesimal quantity defined by the wedge product dx∧ dy. It
is therefore desirable for a numerical approximation to be symplectic as well,
i.e. to have a flow which also preserves that same quantity dx ∧ dy. In our
case of a Poisson system, a similar quantity is preserved, as we show in the
following theorem.

Theorem 10.6. The system (10.78) preserves the weighted area (dx ∧
dy)/xy.

Proof. Let Ω0 be a subset of R2 at time t0 and Ω1 the set into which
Ω0 is mapped by (10.78) at time t1, as shown in Figure 10.25. Preservation
of (dx ∧ dy)/xy is equivalent to

∫
Ω0

1

xy
dxdy =

∫
Ω1

1

xy
dxdy.

We now look at the domain D in x, y, t space with the boundary ∂D given
by Ω0 at t0, Ω1 at t1 and the set of trajectories emerging from the boundary

660 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

x

y

t

D

n1

n0

Ω0

Ω1

∂D

Figure 10.25. Area preserving mapping

of Ω0 and ending on the boundary of Ω1. Consider the vector field

v :=
1

xy

⎛
⎝ ẋ

ẏ
1

⎞
⎠

in x, y, t space. Integrating this vector field over the boundary ∂D of D, we
obtain∫

∂D

v · n =

∫
Ω0

v · n0 +

∫
Ω1

v · n1 =

∫
Ω1

1

xy
dxdy −

∫
Ω0

1

xy
dxdy ,

where n0 = (0, 0,−1)T and n1 = (0, 0, 1)T denote the outward unit normal
of Ω0 and Ω1. There is no other contribution to the surface integral, because
the vector field v is by construction parallel to the trajectories, which form
the rest of the boundary ∂D. Applying the divergence theorem to the left
hand side of the same equation, we get∫

∂D

v · n =

∫
D

∇ · v =

∫
D

− ∂H2

∂x∂y
+

∂H2

∂x∂y
+ 0 = 0 ,

which concludes the proof. �
We now show that the modified Euler method also preserves the same

quantity.

Theorem 10.7. The modified Euler scheme (10.77) preserves the
weighted area (dx ∧ dy)/xy.

Proof. To simplify notation, we rewrite one step of (10.77) as

X = Δtx+ x−Δtxy,
Y = −Δty + y +ΔtXy,

(10.79)

Geometric Integration 661

where we have set X := xn+1, Y := yn+1, x := xn and y := yn, and solved
for the unknowns X and Y . Taking derivatives of both sides, we get

dX = Δtdx+ dx−Δtdx y −Δtxdy,

dY = −Δtdy + dy +ΔtdX y +ΔtXdy.

Now we can compute the wedge product dX ∧ dY . We obtain, after some
manipulations and using the fact that dX ∧ dX = 0 and dY ∧ dY = 0,

dX ∧ dY = dx ∧ dy
(
Δt3(x− 2xy + xy2) + Δt2(−1 + 2x+ y − 2xy)

+Δt(x− y) + 1
)
.

But the product of X and Y is

XY = xy
(
Δt3(x− 2xy + xy2) + Δt2(−1 + 2x+ y − 2xy)

+Δt(x− y) + 1
)
,

and therefore, we have

1

XY
dX ∧ dY =

1

xy
dx ∧ dy,

and our scheme preserves the weighted area. �
By KAM theory [119], a numerical method does not spiral if it preserves

(weighted) area, and therefore the modified Euler method will produce phys-
ically correct “closed” trajectories. For more information, see the compre-
hensive treatment in [61].

10.6.2 Energy Preserving Methods

By looking at the Lotka-Volterra system written in the form (10.78), one
notices that the direction of the derivatives is orthogonal to the gradient of
H. Therefore the solution curve is identical to the level set of H that passes
through the initial data. In other words, the Hamiltonian H is preserved
and does not vary over time. For a numerical method not to spiral, we can
require the method to preserve H as well. A simple calculation shows that
for the modified Euler Method (10.79), the Hamiltonian H is not preserved
in general:

H(X,Y)−H(x, y) = − ln(x+Δt(−x+ xy))− ln(y +Δt(y − xy))

+x+Δt(−x+ xy) + y +Δt(y − xy)

+ln(x) + ln(y)− x− y

= − ln(1−Δt+Δty)− ln(1 + Δt−Δtx)

−Δtx+Δty

	= 0.

662 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

.

x

y

corrector step

predictor step

level set of H(x, y)

Figure 10.26.
Corrector step to get back onto the level set of H

However, if we add a small correction to the Euler step, we can make it
H-preserving. We take Euler’s Method as a predictor

Xp = Δtx+ x−Δtxy,

Yp = −Δty + y +ΔtXpy

and we do a corrector step to get back on the level set, as shown in Figure
10.26. A good direction for the correction is the gradient of H, which we use
to project the predicted value back onto the level set of H. This leads to the
corrector step

X = Xp + α
∂H

∂x
(X,Y).

Y = Yp + α
∂H

∂y
(X,Y),

where α has to be determined such that H is preserved. Note that these
equations are implicit in X and Y , but we can replace the values on the
right hand side by the predicted values Xp and Yp, which only perturbs the
projection direction slightly,

X = Xp + α
∂H

∂x
(Xp, Yp),

Y = Yp + α
∂H

∂y
(Xp, Yp).

(10.80)

Geometric Integration 663

To determine α, we have to solve the nonlinear equation

H(X(x, y,Δt, α), Y (x, y,Δt, α)) −H(x, y) = 0.

We are interested in a root close to zero, because we expect the error of the
predicted values to be small. In most cases, searching within the interval
[−Δt,Δt] is a good choice. It remains to prove that the order of accuracy of
the predictor method is not changed by the corrector step.

Theorem 10.8. The order of accuracy of the corrected H-preserving
method is O(Δt).

Proof. The local truncation error τ(x, y, t) is defined by the equation

X − x

Δt
− α

Δt

(
1− 1

x+Δt
(−x+ xy)

)
= ẋ+ τ(x, y, t).

Since we know that Euler has a local truncation error of order Δt2, it suffices
to show that the correction is also of order Δt2, or equivalently that α =
α(Δt) is of order O(Δt2). Define

F (x, y, α,Δt) := H(X,Y)−H(x, y)
= − ln

(
XP + α

(
1− 1

XP

))− ln
(
Y P + α

(
1− 1

Y P

))
+XP + α

(
1− 1

XP

)
+ Y P + α

(
1− 1

Y P

)
+ ln x+ ln y − x− y,

(10.81)
where X and Y are given by (10.80). We expand α(x, y,Δt) in a Taylor series
about Δt = 0,

α(x, y,Δt) = α(x, y, 0) + Δt
∂α

∂Δt
(x, y, 0) +O(Δt2).

Setting Δt in (10.81) to zero gives α(x, y, 0) = 0. To compute the first
derivative, we can apply implicit differentiation

∂α

∂Δt
= −FΔt

Fα
.

After a longer computation, we find ∂α
∂Δt

(x, y, 0) = 0, and we have shown that

α(x, y,Δt) = O(Δt2),

which concludes our proof. �
Figure (10.27) shows the solution obtained with the H-preserving scheme.

The trajectory is identical with the trajectory of the exact solution, and the
only error is a time shift in this simple two-dimensional example.

The simple example of the Lotka-Volterra equations only gives a glimpse
of the rich area of geometric numerical integration. For a complete treatment
of Hamiltonian and Poisson systems and symplectic integrators, integration
methods on manifolds, geometric properties of symmetric integration meth-
ods and reversibility, and highly oscillatory problems, see the reference book
[61].

664 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

0 2.521.510.50
0

2.5

2

1.5

1

0.5

0

Figure 10.27.
Numerical result of an H preserving numerical method

10.7 Delay Differential Equations

Differential equations are obtained when one assumes that the rate of change
of a physical system only depends on its present state and not on the past.
This is often only an approximation; in some instances, a more realistic equa-
tion would also take into account the value of the solution with a certain delay,
i.e.

ẏ(t) = f(y(t), y(t− τ)), τ ≥ 0. (10.82)

Such a problem does not only need an initial condition, y(0) = y0, but an
entire initial function y(t) = y0(t) for t ∈ [−τ, 0]. Typical examples of such
equations occur in models with feedback, or in biology, because the size of a
new generation depends on the size of the past generation, and procreation
is rarely possible instantaneously. A well-studied example is the blow fly
equation, which models the density of blow flies:

u̇ = −δu+ νΔu+ ρu(t− τ)e−αu(t−τ).

Here, δ > 0 is the death rate of the blow fly, ν > 0 is the diffusion rate at
which the blow fly migrates randomly, and α, ρ > 0 are growth rates. This
equation contains partial derivatives and is too complex for illustrating the
essential properties of delay differential equations, so we instead consider the
much simpler model problem from [62],

ẏ(t) = −y(t− 1), y(t) = 1 for −1 ≤ t ≤ 0.

This means that ẏ = −1 for 0 ≤ t ≤ 1, and we can simply integrate to obtain
y(t) = −t + C with C some constant. (If the right hand side depended on

Delay Differential Equations 665

Figure 10.28.
Analytical solution of a simple delay equation

y(t) as well, one would have to solve the corresponding ODE.) Using the
initial condition y(0) = 1, we find C = 1, and therefore y(t) = 1 − t for
0 ≤ t ≤ 1. We can now proceed the same way for 1 ≤ t ≤ 2, and obtain
y(t) = 1

2
t2 − 2t + 3

2
for 1 ≤ t ≤ 2. We see that solving a delay differential

equation with a delay bounded away from zero amounts to solving differential
equations on time intervals defined by the delay. We show in Figure 10.28
the solution obtained with the Maple commands

Algorithm 10.20.
Analytical solution of a simple delay equation

N:=10;

y[-1]:=t->1;

for i from 0 to N do

c:=’c’;r:=int(-y[i-1](t-1),t)+c;

rr:=unapply(r,t);

c:=solve(rr(i)=y[i-1](i),c);

y[i]:=unapply(r,t);

od;

for i from -1 to N do

P[i]:=plot(y[i](t),t=i..i+1);

od;

plots[display](seq(P[j],j=-1..N));

The first few lines of the result obtained are

y0 := t �→ −t+ 1

666 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

y1 := t �→ 1/2 t2 − 2 t+ 3/2

y2 := t �→ −1/6 (t− 1)
3
+ t2 − 7/2 t+ 8/3

y3 := t �→ 1/24 (t− 2)
4 − 1/3 (t− 1)

3
+ 7/4 t2 − 37

6
t+

125

24

y4 := t �→ − 1

120
(t− 3)

5
+ 1/12 (t− 2)

4 − 7

12
(t− 1)

3
+

37

12
t2 − 91

8
t+

54

5

Note that the solution has discontinuities in the derivatives at the points
where it is connected, but it becomes increasingly smooth as time progresses.

This example shows that it is also easy to solve delay differential equations
with a fixed delay τ numerically when using a method with a fixed time step
Δt: it suffices to align the time steps with the delay, and then to proceed like
in the above Maple program, with the only difference being that one now
solves numerically over each time window.

Things get substantially more complicated when the time delay is variable,
τ = τ(t), or if one wants to use a variable step size Δt. In that case, one
also needs approximations of the function at earlier time points where the
solution has not necessarily been computed by the numerical method. For a
fully general method, one needs a global approximation of the solution, such
as one provided by linear multistep methods or by modern Runge-Kutta
methods with dense output, see [62].

10.8 Problems

Problem 10.1. Solve the differential equation by the Taylor expansion
method:

y′′′ − x2y =
2

x+ 1
, y(0) = 2, y′(0) = 0, y′′(0) = 1.

Compute the first 6 coefficients of y(x) =
∑

k akx
k. Check your result using

Maple.

Problem 10.2. Transform the following system of differential equations
into a first order system.

r′′ − rΘ2 = − 2

r2
rΘ′′ + 2r′Θ′ = 0

Problem 10.3. A dog would like to cross a river of width b. He starts at
point (b, 0) with the goal to swim to (0, 0) where he has found a sausage. He
swims at a constant speed vD and his nose always points to the sausage. The

Problems 667

river flows north in direction of the y-axis at a velocity vR that is constant
everywhere.

a) Derive the differential equation describing the trajectory z(t) = (x(t), y(t))
�

of the dog.

b) Program a Matlab function zp=dog(t,z) describing the differential equa-
tion. The velocities vD and vR may be declared as global variables.

c) Use the built-in Matlab function quiver and plot the slope field for
b = 1, vR = 1 and for the different swimming speeds vD = 0.8, 1.0 and
1.5.

Note: quiver(X,Y,Xp,Yp) needs 4 matrices. X and Y contain the coor-
dinates of the points and Xp and Yp the two components of the velocity
at that point. To compute these you can use the function dog e.g.

z=dog(0,[X(k,j),Y(k,j)]); Xp(k,j)=z(1); Yp(k,j)=z(2);

d) Develop a Matlab integrator for the method of Heun of order 2

function y=OdeHeun(f,y0,tend,n)

% ODEHEUN solve ODE using Heun’s method

% y=OdeHeun(f,y0,tend,n) integrates y’=f(t,y),

% y(0)=y0 with Heun from t=0 to tend using a fixed

% step size h=tend/n

which integrates a given system of differential equations y′ = f(t,y)
and stores the results in the matrix Y .The i-th row of the matrix Y
contains the values

[ti, y1(ti), . . . , yn(ti)].

Compute and plot the trajectories for the three swimming speeds. You
may want to stop the integration before executing all n steps when the
dog arrives close to the origin or, in the case of vD < vR, when the dog
is near the y-axis.

Problem 10.4. Apply the method

0

1 1
1
2

1
4

1
4

1
6

1
6

4
6

to the differential equation

y′(t) = Ay(t), y(0) = y0

668 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Compute the expression F (Ah) one obtains when integrating one step with
step size h:

y1 = F (Ah)y0.

Problem 10.5. The differential equation

y′(t) = g(t), y(t0) = 0 (10.83)

has the solution

y(t) =

∫ t

t0

g(t) dt.

Which quadrature rules do you get when integrating (10.83) by the methods
of Euler, Heun (order2) and classical Runge Kutta? Perform one step with
step size h with the three methods.

Problem 10.6. Determine the conditions for an explicit Runge Kutta
method to be second order without the assumption (10.22) on the coefficients
c1 and c2. Discuss the utility of this extra degree of freedom.

Problem 10.7. Implement Heun’s method as well as the second possibility
found in Table 10.1, and compare their performance on the Arenstorf problem
in Section 10.3.5. Compute on finer and finer meshes and plot the error in
loglog scale. Which method is better? Are there other advantages/disadvan-
tages for the two methods?

Problem 10.8. Implement the Runge-Kutta-Fehlberg adaptive integra-
tion method from Section 10.3.5, and test it on the Arenstorf orbit model
problem. How many function evaluations do you need to reach the same
accuracy as with ode12?

Problem 10.9. Implement the Dormand-Prince adaptive integration
method from Section 10.3.5, and test it on the Arenstorf orbit model problem.
Is this method more accurate than the Runge-Kutta-Fehlberg method?

Problem 10.10. Show that for the second backward differentiation for-
mula

yk+1 − yk−1

2Δt
= −10yk,

the local truncation error is O(Δt3), and that the method is zero-stable.

Problem 10.11. Let A be a matrix with the Jordan decomposition
T−1AT = J ,

J =

⎛
⎝ λ 1

λ 1
λ

⎞
⎠ .

Problems 669

Show that for any given ε > 0, there exists a diagonal scaling matrix D such
that (TD)−1ATD = J̃ is a new Jordan decomposition of A with

J̃ =

⎛
⎝ λ ε

λ ε
λ

⎞
⎠ .

Problem 10.12. Prove that the second and third Taylor methods are
convergent of second and third order respectively.

Problem 10.13. Prove that the the implicit trapezoidal method (10.41)
is second order accurate.

Problem 10.14. Prove that the the implicit midpoint method (10.42) is
second order accurate.

Problem 10.15. For the Backward Euler method, the Trapezoidal method
and the Adams-Moulton two step method do the following:

1. Compute the local truncation error.

2. Check if the method is zero-stable.

3. Compute the region of absolute stability (Note: For the Adams-Moulton
two-step method, it is hard to determine the region of absolute stability
analytically from the formula for the roots of the characteristic polyno-
mial. Instead, to find the region of absolute stability numerically, you
can use the following program, which tries points in the complex plane
and then gives you a picture of the area where all the roots given by the
function f have magnitude less than one:

function A=RAS(f,X,Y,n);

% RAS computes the region of absolute stability

% y=RAS(f,X,Y,n); computes the region of absolute stability

% where f is a vector valued function giving the values of

% all the roots. The area [X]x[Y] is scanned with nxn points

% and the point is ploted gray if all the roots for that

% value are less than 1 in magnitude.

dx=(X(2)-X(1))/n;

dy=(Y(2)-Y(1))/n;

A=zeros(n+1,n+1);

for j=1:n+1;

for k=1:n+1;

mu=X(1)+(j-1)*dx+i*(Y(1)+(k-1)*dy); % i=sqrt(-1)

la=feval(f,mu);

if max(abs(la))<1,

A(k,j)=1;

670 NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

else

A(k,j)=0;

end;

end;

end;

x=(X(1):dx:X(2));

y=(Y(1):dy:Y(2));

colormap([0 0 0;0.5 0.5 0.5]);

image(x,y,A*2);

You may also use this program for the other two methods to check if
your analytic reasoning is correct.

4. Is the method A-stable?

Problem 10.16.

Implement the following methods to solve a system of ordinary differential
equations:

• Forward Euler. Use as header

function [t,u]=Euler(f,T0,Tfinal,u0,dt);

% EULER solves ordinary differential equation using Forward Euler

% [t,u]=Euler(f,T0,Tfinal,u0,dt) solves the differential

% equation du/dt=f(u), u(T0)=u0 with the Forward Euler method

% up to time Tfinal using the time step dt

• Adams-Bashforth two step method. To get the second starting value,
use one Euler step.

• Heun’s method

1. Apply the above methods to the problem of the jogger and the dog to
find the trajectory of the dog. The differential equation for this problem
is:

ẋ =
w√

(ξ0 + tv − x)2 + y2
(ξ0 + tv − x)

ẏ =
w√

(ξ0 + tv − x)2 + y2
(−y).

Use as initial condition for the dog x0 = 60 and y0 = 70 and as speed of
the dog w = 10. The jogger starts running at ξ0 = 0 at constant speed
v = 8.

Problems 671

2. Compare your results for Δt = 1 and Δt = 0.1 with the highly accurate
solution obtained from the built-in solver for ordinary differential equa-
tions ode45 (type help ode45) in Matlab. Which method is closest to
the Matlab solution ?

3. Why would it be much harder to implement Backward Euler and use it
to solve the above problem ?

Problem 10.17. Discretize the system of differential equations

z′ = Az, A =

(
0 1

−100 −101

)
, z(0) =

(
1
−1

)

using the explicit midpoint rule. Solve the recurrence relation you obtain
analytically, and determine the step size needed in order for the method to
have an error smaller than 0.01 at z(0.6). Could you have run the method in
Matlab with such a small step size ?

Problem 10.18. Solve the Lotka-Volterra system of ordinary differen-
tial equations (10.74) in parametric form to obtain (10.75). Hint: use the
approach shown in [129].

Problem 10.19. Apply the Runge and Heun methods to approximately
solve the Lotka-Volterra system of ordinary differential equations (10.74).
Plot the solution in phase space. What do you observe?

Problem 10.20. Apply the Backward Euler method to approximately
solve the Lotka-Volterra system of ordinary differential equations (10.74).
Plot the solution in phase space. What do you observe?

Chapter 11. Iterative Methods for Linear

Systems

Schwerlich werden Sie je wieder direct eliminieren, wenigstens nicht,
wenn Sie mehr als 2 Unbekannte haben. Das indirecte Verfahren lässt
sich halb im Schlaf ausführen, oder man kann während desselben an
andere Dinge denken1.

C. F. Gauss, in a letter to his friend Gerling, 1823.

With the growth in speed and complexity of modern digital computers
has come an increase in the use of computers by those who wish to find
or approximate the solutions of partial differential equations in several
variables. [...] The author was fortunate to have been associated with
the Mathematics Group of the Bettis Atomic Power Laboratory where
very large matrix problems (of order 20’000 in two dimensions!) are
solved on fast computers in the design of nuclear reactors.

R. Varga, Matrix Iterative Analysis, Prentice-Hall, 1962.

Until recently, direct solution methods were often preferred to iterative
methods in real applications because of their robustness and predictable
behavior. However, a number of efficient iterative solvers were discov-
ered and the increased need for solving very large linear systems trig-
gered a noticeable and rapid shift toward iterative techniques in many
applications. [...] It was found that the combination of precondition-
ing and Krylov subspace iterations could provide efficient and simple
general- purpose procedures that could compete with direct solvers.

Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2003.

Quite frequently in life, the most elegant solution to a problem also turns
out to be the most efficient one for practical purposes. This heuristical
observation certainly applies to Krylov subspace methods.

J. Liesen and Z. Strakos, Krylov Subspace Methods, Principles and Anal-
ysis, Oxford University Press, 2012.

Prerequisites: Chapter 3 is required, in particular the section on symmetric
positive definite matrices (§3.4). Some properties of eigenvalues (§7.2) are
also needed.

The solution of sparse linear systems by iterative methods has become one
of the core application and research areas of high performance computing.
The size of systems that are solved routinely has increased tremendously
over time, see the quotes by Gauss and Varga above. This is because the
discretization of partial differential equations can lead to systems that are

1You will in the future hardly ever eliminate directly anymore, at least not when you have
more than two unknowns. The indirect procedure can be done while one is half asleep, or one
can think about other things while doing it.

W. Gander et al., Scientific Computing - An Introduction using Maple and MATLAB,

Texts in Computational Science and Engineering 11,
DOI 10.1007/978-3-319-04325-8 11,

© Springer International Publishing Switzerland 2014

674 ITERATIVE METHODS FOR LINEAR SYSTEMS

arbitrarily large. Iterative methods for solving linear systems can be divided
into the older class of stationary iterative methods, and the more modern
class of non-stationary methods. The class of stationary iterative methods,
the first of which was invented by Gauss, are nowadays rarely used as stan-
dalone solvers, although they remain core components of more sophisticated
algorithms, such as multi-grid or domain decomposition methods. They are
also important for preconditioning the newer class of non-stationary itera-
tive methods, in particular Krylov methods. We start in Section 11.1 with
an introductory example on the propagation of heat in an enclosed space.
Using approximation techniques for derivatives from Chapter 8, we obtain a
large sparse linear system that one has to solve at each time step, and such
systems are best solved by iterative methods. We then show in Section 12.2
how matrix splittings can be used to derive fixed point iterations of the same
type as those seen in Section 5.2.2 for nonlinear problems. We introduce the
basic concepts of residual, error and difference of iterates, and present the
classical convergence criteria for such methods. In Section 11.3 we introduce
the reader to the general theory of regular splittings, and present the clas-
sical methods of Jacobi, Gauss-Seidel, SOR and Richardson. This method
of Richardson is actually much simpler than the one originally proposed by
Richardson, which is a non-stationary iterative method; we will see this in
Section 11.4, along with two other non-stationary methods, those of Conju-
gate Residuals and Steepest Descent. Each of the above methods tries to do
the locally optimal thing at each step; while this seems to be a good tac-
tic, it is generally not the best strategy2. Instead, a better strategy would
be to optimize convergence globally over many steps, based on information
known a priori or gathered during the iterations. A global optimization strat-
egy based on a priori spectral information uses Chebyshev polynomials; the
resulting Chebyshev semi-iterative method, which we show in Section 11.5,
realizes the dream Richardson had when he presented his method, unaware
of the results of Chebyshev. In general, global strategies can be formulated
using extrapolation techniques, which we show in Section 11.6 following the
approach of Brezinski [11]. This leads naturally to the Krylov subspace meth-
ods in Section 11.7, which are the best iterative methods for linear systems
known today. We briefly mention the fundamental idea of preconditioning in
Section 11.8; a complete treatment of this important topic would easily fill
an entire textbook by itself.

The authoritative book on stationary iterative methods is still the book
‘Matrix Iterative Analysis’ by Varga [142]. Both stationary and non-
stationary iterative methods are treated in the comprehensive book by Saad
[118], and an excellent, recent research monograph on Krylov subspace meth-
ods is the book by Strakos and Liesen [86].

2According to Eduard Stiefel, who was professor at ETH but also a colonel in the Swiss
Army.

Introductory Example 675

11.1 Introductory Example

The solution of partial differential equations by discretization often leads to
large and sparse linear systems of equations. To illustrate this, let us consider
the propagation of heat in an enclosed space, e.g., a room in a building. The
temperature is a function of time t and space x, which we denote by u(t,x).
Heat evolves from some initial distribution to an equilibrium for t → ∞. This
evolution is described by the heat equation,

ut = cΔu in some domain Ω,

together with appropriate initial and boundary conditions, for example u(0,x)
= u0(x), a given initial temperature, and u = g on the boundary ∂Ω.

If we are only interested in the stationary equilibrium, then for t → ∞
we have ut = 0 and the equation simplifies to

Δu = 0 in Ω, (11.1)

together with the boundary condition u = g on ∂Ω.

x

y

jΔy

b

iΔx a
u = 0

u = 0

u = 0

u = 1
Δu = 0

Figure 11.1. Heat equation

Let us consider a simple two dimensional example, where the domain
Ω is a rectangle with sides a and b and the stationary heat distribution
is a function of two variables u(x, y), see Figure 11.1, where the boundary
conditions are also displayed. We discretize by choosing the mesh sizes

Δx =
a

m+ 1
, Δy =

b

n+ 1

and search for an approximation uij ≈ u(iΔx, jΔy). The Laplace operator
in two dimensions,

Δu =
∂2u

∂x2
+

∂2u

∂y2
,

676 ITERATIVE METHODS FOR LINEAR SYSTEMS

is discretized using finite differences, see Chapter 8, Equation (8.11):

∂2u

∂x2
≈ u(x+Δx, y)− 2u(x, y) + u(x−Δx, y)

Δx2
,

and similarly

∂2u

∂y2
≈ u(x, y +Δy)− 2u(x, y) + u(x, y −Δy)

Δy2
.

Introducing these approximations into (11.1) and multiplying with Δx2Δy2,
we obtain for the approximation at point (iΔx, jΔy) the equation

ui−1,jΔy2 − 2Δy2ui,j +Δy2ui+1,j + ui,j−1Δx2 − 2Δx2ui,j +Δx2ui,j+1 = 0.
(11.2)

We now introduce the vectors

uj =

⎛
⎜⎝

u1,j

...
um,j

⎞
⎟⎠ ,

which contain the values ui,j for i = 1, . . . ,m on a horizontal line corre-
sponding to j. Writing the equation (11.2) for each point i on the line, we
obtain

i = 1 :− 2(Δx2 +Δy2)u1,j + u2,jΔy2 + u1,j−1Δx2 + u1,j+1Δx2 = −u0,jΔy2

i = 2 :u1,jΔy2 − 2(Δx2 +Δy2)u2,j +Δy2u3,j + u2,j−1Δx2 + u2,j+1Δx2 = 0

· · ·
Dividing by Δx2 and writing this for i = 1, . . . ,m as a vector equation,

we get

uj−1 + Tuj + uj+1 = −
(
Δy

Δx

)2

e1, (11.3)

where we have the unit vector e1 because of the left boundary condition,
where u = 1, and the tridiagonal matrix T is given by

T =

⎛
⎜⎜⎜⎜⎝

−2γ δ

δ −2γ
. . .

. . .
. . . δ
δ −2γ

⎞
⎟⎟⎟⎟⎠ with δ =

(
Δy

Δx

)2

and γ = 1 + δ.

If we now introduce the vector of all unknowns

u =

⎛
⎜⎝

u1

...
un

⎞
⎟⎠ ,

Solution by Iteration 677

and write the equations (11.3) all stacked on top of one another, then we
obtain a large sparse system of linear equations with m × n equations for
m× n unknowns,

Au = f ,

with the block tridiagonal matrix

A =

⎡
⎢⎢⎢⎢⎣

T I

I T
. . .

. . .
. . . I
I T

⎤
⎥⎥⎥⎥⎦ , (11.4)

and the right hand side vector f containing the boundary conditions. The
matrix A is sparse, with only 5 nonzero elements per row! Moreover, A has a
regular structure. If we assume e.g. that m = 100 and n = 50 then we have
5’000 unknowns and 25 million matrix entries, of which only 25’000 (1%) are
nonzero.

The basic idea of an iterative method is to generate a sequence of iterates

u(k+1) = Fk(u
(k)), k = 0, 1, 2, . . . (11.5)

such that u(k) → u, the solution ofAu = f . In contrast to the direct methods
we have seen in Chapter 3, iterative methods do not need to manipulate the
matrix A explicitly; it is sufficient to have a rule that computes the product
y = Ax for any given vector x. Thus, the user of an iterative method is not
required to store the matrix A in the memory of the computer; instead, he
only needs to provide a program for the operator y = multiply(A,x), which
returns the result for a given vector x after transformation by A.

11.2 Solution by Iteration

Like the fixed point iteration we encountered in the solution of non-linear
equations in Section 5.2.2, linear systems can be solved by fixed point iter-
ation. To do so, one has to transform the system of linear equations into
fixed point form, which is achieved in general by splitting the matrix into
two parts.

11.2.1 Matrix Splittings

One way to derive an iterative method for solving the linear system of equa-
tions

Ax = b, A ∈ R
n×n, b ∈ R

n,

is to split the matrix into A = M −N . Assuming that M is invertible, this
splitting induces an iterative method as follows. Starting with some initial
approximation x0, we iterate by solving for xk+1

Mxk+1 = Nxk + b, k = 0, 1, 2, . . . , (11.6)

678 ITERATIVE METHODS FOR LINEAR SYSTEMS

and hope that xk will converge to the desired solution. This is equivalent to
letting Fk(x) = M−1Nx + M−1b in (11.5) for all k. An iterative method
is called stationary if it can be expressed in the simple form (11.6), where
neither M nor N depends on the iteration count k. Iteration (11.6) is a
single-stage iteration, since xk+1 depends only on one former iterate xk.

Of course, to obtain an efficient method, the matrix splitting must be such
that solving linear systems with the matrix M requires fewer operations than
for the original system. On the other hand, we would like to minimize the
number of iterations. In the extreme case where we chose M = A, and thus
N = 0, we converge in one iteration to the solution. Therefore, the choice of
the splitting should be such that

• M is a good approximation of A,

• Mx = y is easy and cheap to solve.

The fact that we have two generally conflicting criteria means that a com-
promise is usually required.

11.2.2 Residual, Error and the Difference of Iterates

We will write iterative methods based on the splitting A = M − N in the
standard form

Mxk+1 = Nxk + b ⇐⇒ xk+1 = M−1Nxk +M−1b. (11.7)

Definition 11.1. (Iteration Matrix) For any matrix splitting A =
M − N with M invertible, the matrix G := M−1N is called the iteration
matrix.

Since

M−1Nxk +M−1b = M−1(M − A)xk +M−1b = xk +M−1(b− Axk),

we can also write the iteration in the correction form

xk+1 = xk +M−1rk, (11.8)

where rk = b−Axk is called the residual. The residual is a measure of how
good the approximation xk is, see Subsection 2.8.3. The matrix M is called
a preconditioner, since by iterating with (11.8), if xk → x∞, then x∞ is the
solution of the preconditioned system

M−1Ax = M−1b.

Subtracting the iteration from the split system,

Mx = Nx+ b
Mxk+1 = Nxk + b

}
⇒ M(x− xk+1) = N(x− xk),

Solution by Iteration 679

and introducing the error ek := x−xk, we obtain a recurrence for the error,

Mek+1 = Nek ⇐⇒ ek+1 = M−1Nek. (11.9)

From (11.8), it follows that

b−Axk+1︸ ︷︷ ︸
rk+1

= b− Axk︸ ︷︷ ︸
rk

−AM−1rk,

and we get a recurrence for the residual vectors,

rk+1 = (I − AM−1)rk = (I − AM−1)kr0. (11.10)

Note that M − A = N , and therefore

I − AM−1 = NM−1 = M(M−1N)M−1,

which shows that the iteration matrices I −AM−1 in (11.10) and M−1N in
(11.9) are similar, and thus have the same eigenvalues.

Consider the difference of consecutive iterates,

uk = xk+1 − xk.

Using the iteration (11.7), we get

uk = xk+1 − xk = M−1Nxk +M−1b−M−1Nxk−1 −M−1b

= M−1N(xk − xk−1)

= M−1Nuk−1.

Hence the differences between consecutive iterates obey the same recurrence
as the error. Furthermore, from

uk = M−1N(xk − x+ x− xk−1)

= M−1N(−ek + ek−1) = −M−1Nek + ek

= (I −M−1N)ek,

we see that the difference between consecutive iterates and the true error are
related by

uk = M−1Aek.

Finally, from (11.8) we have Muk = rk, a connection between the difference
of consecutive iterates and the residual. We summarize these results in the
following theorem.

Theorem 11.1. (Error, Residual and Difference of Iterates)

For a non-singular matrix A ∈ R
n×n and b ∈ R

n, let x ∈ R
n be the solution

of Ax = b, and let A = M −N be a splitting with M non-singular. Choose
x0 and compute the sequence of iterates xk+1 = M−1Nxk + M−1b. Let

680 ITERATIVE METHODS FOR LINEAR SYSTEMS

ek := x− xk be the error and rk := b− Axk be the residual at step k, and
let uk := xk+1 −xk be the difference of two consecutive iterates. Then these
vectors can be computed by the recurrences

ek+1 = M−1Nek, (11.11)

uk+1 = M−1Nuk, (11.12)

rk+1 = (I − AM−1)rk = NM−1rk, (11.13)

and we have the relation

Muk = rk = Aek. (11.14)

Equation (11.14) has a simple interpretation. The solution of Ax = b can be

obtained by solving Aek = rk with x = xk + ek. However, we cannot solve
systems with the matrix A directly because we assume that A is too large to
be stored and factored. Therefore we replace the problem by an easier one
and solve Muk = rk, and then iterate using xk+1 = xk + uk.

11.2.3 Convergence Criteria

We turn now to the question of when an iteration of the form (11.7) or (11.8)
converges. Assume that Ax = b has a unique solution and consider the
splitting A = M − N with an invertible matrix M . Then for any vector
norm ‖ · ‖ : Rn → R

+ and the corresponding induced matrix norm ‖A‖ :=
sup‖x‖=1 ‖Ax‖ (see Section 2.5.1), we conclude by taking norms for the error
recurrence (11.9) that

‖ek+1‖ ≤ ‖M−1N‖ ‖ek‖ ≤ . . . ≤ ‖M−1N‖k+1‖e0‖.

Thus, we have convergence if we have ‖M−1N‖ < 1 for the chosen norm. This
is a sufficient, but not a necessary, condition for convergence: a triangular
matrix R with zero diagonal may have a norm ‖R‖ > 1, but since R is
nilpotent, we have Rk → 0 for k → ∞. Therefore we need another property
that describes convergence.

Definition 11.2. (Spectral Radius) The spectral radius of a matrix
A ∈ R

n×n is
ρ(A) := max

j=1,...,n
|λj(A)|,

where λj(A) denotes the j-th eigenvalue of A.

Lemma 11.1. For all induced matrix norms (see Section 2.5.1, Equation
(2.4)), ρ(A) ≤ ‖A‖ holds.

Proof. Let (λ,x) be an eigenpair of A. From the eigenvector-eigenvalue
relation Ax = λx, we conclude that

|λ|‖x‖ = ‖λx‖ = ||Ax|| ≤ ‖A‖ ‖x‖.

Solution by Iteration 681

Now since ‖x‖ 	= 0, we obtain |λ| ≤ ‖A‖, and since this holds for any
eigenvalue λ, we also get ρ(A) := maxj=1...n |λj(A)| ≤ ‖A‖. �

Theorem 11.2. (Convergence of Stationary Iterative Meth-

ods) Let A ∈ R
n×n be non-singular, A = M −N with M non-singular and

b ∈ R
n. The stationary iterative method

Mxk+1 = Nxk + b

converges for any initial vector x0 to the solution x of the linear system
Ax = b if and only if ρ(M−1N) < 1.

Proof. We first show the ‘only if’ part with a proof by contrapositive
and assume that |λm| = ρ(M−1N) ≥ 1. Choosing x0 such that e0 = x− x0

is a corresponding eigenvector, and applying the error recurrence (11.9), we
get

ek+1 = M−1Nek = · · · = (M−1N)k+1e0 = λk+1
m e0.

Thus, if |λm| > 1, then |λk+1
m | → ∞, so the error cannot converge to zero. If

|λm| = 1, then we also have no convergence since the error does not decrease.

For the ‘if’ part, we assume that ρ(M−1N) < 1. We then consider the
Jordan decomposition (see [51], page 317)

M−1N = V JV −1, with V, J ∈ C
n×n and V nonsingular.

The matrix J is block-diagonal

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jm1
(λ1) 0 0 · · · 0

0 Jm2
(λ2) 0 · · · 0

...
. . .

. . .
. . .

...

0 · · · 0 Jms−1
(λs−1) 0

0 · · · · · · 0 Jms
(λs)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with

Jmi
(λi) =

⎡
⎢⎢⎢⎢⎢⎣

λi 1 0 · · · 0
0 λi 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · λi 1
0 0 · · · 0 λi

⎤
⎥⎥⎥⎥⎥⎦ ∈ C

mi×mi , i = 1, . . . , s.

682 ITERATIVE METHODS FOR LINEAR SYSTEMS

Now (M−1N)k = V JkV −1, and since J is block diagonal, we get

Jk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jk
m1

(λ1) 0 0 · · · 0

0 Jk
m2

(λ2) 0 · · · 0

...
. . .

. . .
. . .

...

0 · · · 0 Jk
ms−1

(λs−1) 0

0 · · · · · · 0 Jk
ms

(λs)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is easy to verify with the following Maple script

with(LinearAlgebra):

J:=Matrix([[lambda,1,0,0,0],

[0,lambda,1,0,0],

[0,0,lambda,1,0],

[0,0,0,lambda,1],

[0,0,0,0,lambda]]);

J.J;

J.J.J;

J.J.J.J;

J.J.J.J.J;

the well-known expression for the powers of a Jordan block

Jk
mi

(λi) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λk
i

(
k
1

)
λk−1
i

(
k
2

)
λk−2
i · · · (

k
mi−1

)
λk−mi+1
i

0 λk
i

(
k
1

)
λk−1
i · · · (

k
mi−2

)
λk−mi+2
i

...
...

. . .
. . .

...

0 0 · · · λk
i

(
k
1

)
λk−1
i

0 0 · · · 0 λk
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11.15)

Therefore, if ρ(M−1N) < 1, then |λi| < 1 for all i, so that

lim
k→∞

Jk
mi

(λi) = 0.

for all Jordan blocks. It follows that limk→∞ Jk = 0. But this implies

lim
k→∞

(M−1N)k = lim
k→∞

V JkV −1 = V (lim
k→∞

Jk)V −1 = 0.

�

Solution by Iteration 683

Remark. One can wonder whether there is a relation between the spectral
radius and the norm of a matrix. For symmetric matrices, the two concepts
are definitely related:

Lemma 11.2. For symmetric matrices A ∈ R
n×n, the spectral radius

equals the 2-norm, ρ(A) = ‖A‖2.
Proof. Using the definition of the 2-norm in Section 2.5.1, we obtain

‖A‖22 = λmax(A
�A) = λmax(A

2) = max |λ(A)|2 = ρ(A)2.

�
However, in general, the spectral radius is not a norm! For norms, it

follows from ‖A‖ = 0 that A = 0. Not so for the spectral radius: for an
upper triangular matrix R with zero diagonal (thus all eigenvalues are zero)
we have ρ(R) = 0 but R 	= 0. Furthermore, the triangle inequality

ρ(A+B) ≤ ρ(A) + ρ(B)

does not hold: take for example

A =

(
0 1
0 0

)
B =

(
0 0
1 0

)
.

Then ρ(A + B) = 1 but ρ(A) = ρ(B) = 0. Nonetheless, the following result
holds:

Theorem 11.3. Let A ∈ R
n×n. Then for any given ε > 0, there exists a

norm ‖ · ‖, which depends on A and ε, such that

‖A‖ ≤ ρ(A) + ε.

For a proof, see Problem 11.4.

11.2.4 Singular Systems

Iterative methods can often be used to solve the system Ax = b even when
A is singular, as long as a solution exists. For instance, the matrix A could
come from the normal equations

C�Cx = C�b, C ∈ R
m×n,

which always have a solution. If rank(C) < n, then A = C�C is singular,
so the system (which is consistent) has infinitely many solutions. In that
case, for any splitting A = M −N with M non-singular, the iteration matrix
M−1N must necessarily have 1 as an eigenvalue, since Av = 0, v 	= 0 implies
M−1Nv = v. This necessarily means ρ(M−1N) ≥ 1.

What can we say about the convergence of the method? Let m be such
that |λm| = ρ(M−1N). We have seen that if |λm| = 1, then the error ek does

684 ITERATIVE METHODS FOR LINEAR SYSTEMS

not decrease. However, this does not imply non-convergence in the singular
case, since the solution x is not unique; it is very well possible that the
iteration converges to some x̃ with Ax̃ = b, but x̃ 	= x, so ek 	→ 0. Let us
consider once again the recurrence

ek = (M−1N)ke0 (11.16)

and the Jordan decomposition M−1N = V JV −1. Multiplying (11.16) by
V −1 from the left on both sides, we get

V −1ek = JkV −1e0.

From (11.15), we see that Jk
mi

(λi) does not converge if either |λi| > 1 or
|λi| = 1 but λi 	= 1. For λi = 1, we also have divergence if mi > 1, i.e., if the
Jordan block is non-trivial. However, if

1. all eigenvalues other than λ = 1 have modulus strictly less than 1, and

2. if λ = 1 has as many linearly independent eigenvectors as its algebraic
multiplicity,

then

lim
k→∞

Jk =

[
I 0
0 0

]
=: P,

with the size of I equal to the algebraic multiplicity of λ = 1. This means

lim
k→∞

ek = lim
k→∞

V JkV −1e0 = V PV −1e0 	= 0,

so x̃ = x− limk→∞ ek exists. Moreover, we have

A(x− x̃) = M(I −M−1N)V PV −1e0 = MV (I − J)PV −1e0.

But

I − J =

[
0 0

0 J̃

]
, P =

[
I 0
0 0

]
,

so (I − J)P = 0, which implies

A(x− x̃) = 0 =⇒ Ax̃ = Ax = b.

Thus, the iteration converges to another solution x̃, which depends on the
initial error e0!

11.2.5 Convergence Factor and Convergence Rate

Let us return to the case where A is non-singular and consider the error
recurrence (11.11). By induction, we get

ek = (M−1N)ke0,

Solution by Iteration 685

and taking norms yields a bound for the error reduction over k steps,

‖ek‖
‖e0‖ ≤ ‖(M−1N)k‖.

We are interested in knowing how many iterations are needed for the error
reduction to reach some given tolerance ε,

‖ek‖
‖e0‖ ≤ ‖(M−1N)k‖ < ε,

so let us write the right-hand side as

‖(M−1N)k‖ =
(∥∥(M−1N)k

∥∥ 1
k

)k
< ε.

Taking the logarithm, we get

k >
ln(ε)

ln
(
‖(M−1N)k‖ 1

k

) . (11.17)

This equation does not seem very useful at first glance, since the number of
necessary iterations k also appears on the right hand side. However, for large
k, we can get a good estimate using the following lemma:

Lemma 11.3. For any matrix G ∈ R
n×n with spectral radius ρ(G) and

any induced matrix norm, we have

lim
k→∞

‖Gk‖ 1
k = ρ(G).

Proof. Let x and λ be an eigenpair of G. Then

Gx = λx =⇒ Gkx = λkx

and using ||Gkx|| ≤ ||Gk|| ||x||, we find

|λ|k‖x‖ ≤ ‖Gk‖ ‖x‖ =⇒ |λ| ≤ ‖Gk‖ 1
k ,

which implies that ρ(G) ≤ ‖Gk‖ 1
k .

On the other hand, let ε > 0 be given and consider the matrix

G(ε) =
1

ρ(G) + ε
G.

If λ is an eigenvalue of G, then G(ε) has the eigenvalue λ/(ρ(G) + ε), and
therefore

ρ(G(ε)) =
ρ(G)

ρ(G) + ε
< 1.

686 ITERATIVE METHODS FOR LINEAR SYSTEMS

Hence limk→∞ ‖G(ε)k‖ = 0, which means that for all fixed ε > 0, we have
for k sufficiently large

‖G(ε)k‖ =
‖Gk‖

(ρ(G) + ε)k
< 1 ⇐⇒ ‖Gk‖ 1

k < ρ(G) + ε.

Combining both bounds, we get any ε > 0, we have

ρ(G) ≤ ‖Gk‖ 1
k < ρ(G) + ε

for large enough k, which completes the proof. �

Definition 11.3. (Convergence Factor) The mean convergence fac-
tor of an iteration matrix G over k steps is the number

ρk(G) = ‖Gk‖ 1
k . (11.18)

The asymptotic convergence factor is the spectral radius

ρ(G) = lim
k→∞

ρk(G). (11.19)

Definition 11.4. (Convergence Rate) The mean convergence rate
of an iteration matrix G over k steps is the number

Rk(G) = − ln
(
‖Gk‖ 1

k

)
= − ln(ρk(G)). (11.20)

The asymptotic convergence rate is

R∞(G) = − ln(ρ(G)). (11.21)

We now return to the question of how many iteration steps k are neces-
sary until the error reduction reaches a given tolerance ε, or until the error
decreases by a factor δ, with ε = 1/δ. The answer is

k � − ln ε

R∞(M−1N)
=

ln δ

R∞(M−1N)
.

As an example, suppose ρ(M−1N) = 0.8. Then, to obtain another decimal
digit of the solution, we need to take δ = 10 or ε = 0.1 to get

ln 10

− ln 0.8
= 10.31.

Thus, we need about 10 iterations.

Classical Stationary Iterative Methods 687

11.3 Classical Stationary Iterative Methods

We have seen in Subsection 11.2 that the iterative solution of linear systems
can be achieved by splitting the associated matrix into two parts and iterat-
ing. We will see in this section the classical approaches for splitting a matrix,
and study the convergence behavior of the associated methods.

11.3.1 Regular Splittings and M-Matrices

In the 1960s, substantial research was devoted to finding general criteria for
matrices and their associated splittings that lead to convergent stationary
iterative methods. We follow in this subsection the pioneering work of Varga
[142].

Definition 11.5. (Non-Negative Matrix) A matrix A ∈ R
n×n is

said to be non-negative (non-positive) if aij ≥ 0 (respectively aij ≤ 0) for
i, j = 1, . . . , n.

Non-negative matrices have a very interesting property, which was dis-
covered by Perron and Frobenius.

Theorem 11.4. (Perron-Frobenius (1907/1912)) Let A ∈ R
n×n be

a non-negative matrix. Then A has a non-negative real eigenvalue λ which
equals the spectral radius of A, λ = ρ(A), and a corresponding eigenvector
which is non-negative.

Proof. See [142], Theorem 2.7. �
The original result of Perron and Frobenius is slightly stronger: it requires

also that the matrix A be irreducible (i.e. there exists no permutation matrix
P such that P�AP is block upper triangular), and then ‘non-negative’ can
be replaced by ‘positive’ in Theorem 11.4.

We now introduce a particular class of splittings for matrices, for which
one can obtain very general convergence results.

Definition 11.6. (Regular Splitting) A splitting A = M −N is said
to be regular if M is invertible and if both M−1 and N are non-negative.

Theorem 11.5. Let A ∈ R
n×n be a given matrix, and A = M −N be a

regular splitting. Then

ρ(M−1N) < 1 ⇐⇒ A is invertible and A−1 is non-negative.

Proof. If ρ(M−1N) < 1, then A = M−N = M(I−M−1N) is invertible.
Furthermore, using the Neumann series, we obtain

A−1 = (I −M−1N)−1M−1 =

∞∑
j=0

(M−1N)jM−1,

which shows that A−1 is non-negative.

688 ITERATIVE METHODS FOR LINEAR SYSTEMS

On the other hand, suppose A is invertible and A−1 is non-negative.
Since M is invertible, we obtain from A = M − N = M(I − M−1N) that
(I −M−1N) is also invertible. Thus

A−1N = (M(I −M−1N))−1N = (I −M−1N)−1M−1N. (11.22)

By assumption, both matrices M−1 and N are non-negative, and thus their
product is also non-negative. Using Theorem 11.4, there exists a non-negative
vector x such that

M−1Nx = λx, λ = ρ(M−1N). (11.23)

Using (11.22), we obtain

A−1Nx = (I −M−1N)−1M−1Nx =
ρ(M−1N)

1− ρ(M−1N)
x.

Now because A−1N and x are non-negative, we get

ρ(M−1N)

1− ρ(M−1N)
≥ 0 =⇒ 1− ρ(M−1N) ≥ 0 =⇒ 0 ≤ ρ(M−1N) ≤ 1.

Finally, we need to exclude the possibility that ρ(M−1N) = 1. If the latter
were to hold, then by (11.23), we would have

M−1Nx = ρ(M−1N)x = x =⇒ (I −M−1N)x = 0, x 	= 0,

which would in turn contradict the invertibility of I−M−1N . Thus, we must
have ρ(M−1N) < 1, as required. �

Definition 11.7. (M-Matrix) The matrix A ∈ R
n×n is an M-matrix

if each of the following conditions holds:

1. aii > 0 for i = 1, . . . , n,

2. aij ≤ 0 for i 	= j, i, j = 1, . . . , n,

3. A is invertible,

4. A−1 ≥ 0.

Example 11.1. Consider the boundary value problem

−u′′(x) = f(x), u(0) = u(1) = 0.

After discretizing with step size h = 1/(n + 1), xk = kh, uk = u(xk) and
approximating

u′′(xk) ≈ uk−1 − 2uk + uk+1

h2

Classical Stationary Iterative Methods 689

we obtain the linear system⎛
⎜⎜⎜⎜⎝

2 −1

−1 2
. . .

. . .
. . . −1
−1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

u1

u2

...
un

⎞
⎟⎟⎟⎠ = h2

⎛
⎜⎜⎜⎝

f1
f2
...
fn

⎞
⎟⎟⎟⎠ .

Since the matrix of the system A has the the positive inverse B = A−1, where
B is computed explicitly with the Matlab statements

B=diag([n:-1:1])*tril(ones(n)*diag([1:n]));

B=(B+tril(B,-1)’)/(n+1);

we conclude that A is a M-matrix. This can also be proved analytically, see
Problem 11.6.

As a consequence of Theorem 11.5, we obtain the following general con-
vergence result.

Corollary 11.1. Let A ∈ R
n×n be an M-matrix and A = M −N be a

regular splitting. Then the stationary iteration Mxk+1 = Nxk + b converges
to the solution of Ax = b.

A further result, which is attributed to Householder [72] and John [75],
is the following theorem (see also [8]).

Theorem 11.6. (Householder-John (1955/1956)) Let A ∈ R
n×n be

symmetric and non-singular. Let A = M − N be a splitting with a real,
non-singular matrix M and assume that N +M� is positive definite. Then

ρ(M−1N) < 1 ⇐⇒ A is positive definite.

Proof. We first prove that if A is positive definite, then ρ(M−1N) < 1.
Let (λ,x) be a possibly complex eigenpair of the matrix M−1N , M−1Nx =
λx. Then

A = M(I −M−1N)

=⇒ Ax = (1− λ)Mx

=⇒ xHAx = (1− λ)xHMx,

which shows that λ 	= 1, since A is positive definite. If we take the conjugate
transpose of the last equation, we get

(xHAx)H = xHAHx = xHAx = (1− λ̄)xHMHx.

Since M is real, we have MH = M�. Let Q = N + M� = M + M� − A,
which is by assumption positive definite. Dividing both equations by the

690 ITERATIVE METHODS FOR LINEAR SYSTEMS

factor inside the parentheses (which cannot vanish, since λ 	= 1) and adding
them, we get (

1

1− λ
+

1

1− λ̄

)
︸ ︷︷ ︸

2Re
1

1− λ

xHAx = xH(M +MH︸ ︷︷ ︸
Q+A

)x

=⇒ 2Re
1

1− λ
=

xHQx+ xHAx

xHAx
= 1 +

xHQx

xHAx
> 1

since both Q and A are positive definite. We therefore have

2Re
1

1− λ
> 1,

which, by letting λ = α+ iβ with α, β ∈ R, gives

2Re
1

1− λ
=

2(1− α)

(1− α)2 + β2
>1 ⇐⇒ |λ|2 = α2+β2 < 1 =⇒ ρ(M−1N) < 1,

which concludes the proof in this direction.
To prove the other direction, namely that if ρ(M−1N) < 1 then A is

positive definite, we first need the following lemma:

Lemma 11.4. Under the same conditions as in Theorem 11.6, the follow-
ing identity holds

A− (M−1N)�A(M−1N) = (I −M−1N)�(M� +N)(I −M−1N).

To prove this lemma, we replace A = M − N and expand the left and the

right hand sides and show that they are the same. The expansion of the right
hand side gives

= (I −N�M−�)(M� +N)(I −M−1N)

= (M� +N −N� −N�M−�N)(I −M−1N)

Because of the symmetry A� = A ⇐⇒ M� −N� = M −N , we get

= (M −N�M−�N)(I −M−1N)

= M −N�M−�N −N +N�M−�NM−1N.

Expanding the left hand side, we obtain

= M −N −N�M−�(M −N)M−1N

= M −N − (N�M−�M −N�M−�N)M−1N

= M −N − (N�M−�N −N�M−�NM−1N)

Classical Stationary Iterative Methods 691

the same expression as for the right hand side, which concludes the proof of
the lemma.

Continuing with the proof of Theorem 11.6, we now prove the second
part by showing the contrapositive, i.e., we suppose that A is not positive
definite and show that this implies ρ(M−1N) ≥ 1. Let x0 ∈ R

n be given.
We consider the sequence of vectors

xk+1 = M−1Nxk.

Applying the lemma, we obtain

Axk − (M−1N)�A (M−1N)xk︸ ︷︷ ︸
xk+1

= (I −M−1N)� (M� +N)︸ ︷︷ ︸
Q

(I −M−1N)xk︸ ︷︷ ︸
xk−xk+1

.

Multiplying the last equation from the left with x�
k yields

x�
kAxk − x�

k+1Axk+1 = (xk − xk+1)
�Q(xk − xk+1) ≥ 0,

since Q is positive definite. Therefore the sequence x�
kAxk satisfies

x�
kAxk ≥ x�

k+1Axk+1,

and is thus non increasing. Since A is assumed to be non-singular but not
positive definite, we can find an initial vector x0 such that

0 > x�
0Ax0 ≥ x�

1Ax1 ≥ · · · .
This means that xk cannot converge to 0. Thus ρ(M−1N) ≥ 1. �

In the following sections, we present some classical stationary iterative
methods. These classical methods are defined in terms of the matrices ob-
tained by splitting A into the strictly lower triangular part L, the diagonal
part D = diag(A), and the strictly upper triangular part U ,

A = L+D + U.

11.3.2 Jacobi

The Jacobi method (or Point-Jacobi method) is based on solving for every
variable locally, with the other variables frozen at their old values. One
iteration (or sweep) corresponds to solving for every variable once:

Algorithm 11.1. Point-Jacobi Iteration Step

for i=1:n

tmp(i)=(b(i)-A(i,[1:i-1 i+1:n])*x([1:i-1 i+1:n]))/A(i,i);

end

x=tmp(:);

692 ITERATIVE METHODS FOR LINEAR SYSTEMS

This corresponds to the splitting A = M −N with

M = D, N = −L− U =⇒ Dxk+1 = −(L+ U)xk + b. (11.24)

A classical convergence result for the Jacobi method is the following:

Theorem 11.7. (Convergence of Jacobi) If the matrix A ∈ R
n×n is

strictly diagonally dominant , i.e.

|aii| >
∑
j �=i

|aij | for i = 1, . . . , n, (11.25)

then the Jacobi iteration (11.24) converges.
Proof. The iteration matrix of the Jacobi method is GJ = −D−1(L+U),

and with Condition (11.25), we obtain that

||GJ||∞ = max
i={1,...,n}

1

|aii|
∑
j �=i

|aij | < 1.

Now using Lemma 11.1, we obtain

ρ(GJ) ≤ ||GJ||∞ < 1,

which, together with Theorem 11.2, concludes the proof. �
We now apply Theorem 11.6 to the method of Jacobi.

Theorem 11.8. Let A ∈ Rn×n be symmetric and non-singular, and
consider the splitting A = D+L+L� with L strictly lower triangular and D
diagonal and positive definite, dii > 0. Then the Jacobi iteration converges
if and only if A and 2D −A are positive definite.

Proof. If A and Q := 2D − A are positive definite, then according to
Theorem 11.6 Jacobi converges: it suffices to set M = D and N = −(L+L�),
which implies that N +M� = 2D − A.

For the converse, we assume now that Jacobi is convergent, and we want
to show that A and Q are positive definite. Consider an eigenpair of the
iteration matrix

M−1Nx = −D−1(L+ L�)︸ ︷︷ ︸
GJ

x = λx. (11.26)

Since D is positive definite, we can take its square-root, D = D
1
2D

1
2 . The

matrix GJ is then similar to the symmetric matrix D
1
2GJD

− 1
2 , therefore the

eigenvalues of the iteration matrix are real, and since we suppose that Jacobi
is convergent, we have |λ| < 1. Furthermore, from the eigenvalue equation
(11.26), we have

(L+ L�)x = −λDx, (11.27)

Classical Stationary Iterative Methods 693

and adding Dx on both sides gives

Ax = (1− λ)Dx

⇐⇒ D− 1
2AD− 1

2︸ ︷︷ ︸
Ã

D
1
2x︸ ︷︷ ︸
y

= (1− λ)D
1
2x︸ ︷︷ ︸
y

.

This means that 1 − λ > 0 is an eigenvalue of Ã with the corresponding
eigenvector y. Thus Ã is positive definite, which means that 0 < y�Ãy =
x�Ax for all y 	= 0, and hence also for all x = D− 1

2y 	= 0. Therefore, A is
also positive definite.

A similar argument holds for Q: Multiplying (11.27) by −1 and adding
Dx on both sides yields

(D − (L+ L�))︸ ︷︷ ︸
Q

x = (1 + λ)Dx.

As before,
D− 1

2QD− 1
2y = (1 + λ)y,

and since 1 + λ > 0, we conclude that Q is also positive definite. �
For the block tridiagonal matrix A given in the introduction in (11.4),

A =

⎡
⎢⎢⎢⎢⎣

T I

I T
. . .

. . .
. . . I
I T

⎤
⎥⎥⎥⎥⎦ ,

it is natural to use a block splitting A = D + L+ L�, where

D =

⎡
⎢⎢⎢⎣

T
T

. . .

T

⎤
⎥⎥⎥⎦ and L =

⎡
⎢⎢⎢⎣

0
I 0

. . .
. . .

I 0

⎤
⎥⎥⎥⎦ .

We then get a Block Jacobi Iteration, which is sometimes also called the Line
Jacobi Iteration, because each block corresponds to a line of unknowns in the
grid.

By modifying Theorem 11.8 slightly, we can show that Block Jacobi con-
verges for this matrix. Indeed, we know that −A is a positive definite matrix
(see Problem 11.14), so according to Theorem 11.8, it suffices to show that

A− 2D =

⎡
⎢⎢⎢⎢⎣
−T I

I −T
. . .

. . .
. . . I
I −T

⎤
⎥⎥⎥⎥⎦

694 ITERATIVE METHODS FOR LINEAR SYSTEMS

is also positive definite. But −A and A− 2D are related by

A− 2D = −SAS�, S = diag(I,−I, I,−I, . . .).

Hence A−2D is positive definite as well. Now Theorem 11.8 implies that the
block Jacobi splitting M = −D, N = (L+L�) leads to a convergent method.

11.3.3 Gauss-Seidel

The Gauss-Seidel method is similar to the Jacobi method, except that it uses
updated values as soon as they are available. Thus, in Algorithm 11.1, we
just replace the variable tmp by the column vector x.

Algorithm 11.2. Gauss-Seidel Iteration Step

for i=1:n

x(i)=(b(i)-A(i,[1:i-1 i+1:n])*x([1:i-1 i+1:n]))/A(i,i);

end

This corresponds to the splitting

M = D + L, N = −U ⇒ (D + L)xk+1 = −Uxk + b. (11.28)

Since Gauss-Seidel uses the updated values as soon as they are available, one
can expect that convergence will be faster than with Jacobi. This is often
the case, e..g. for the model problem Δu = 0, one can show that only half
of the iteration steps are needed for the same accuracy. However, here is an
example where Jacobi converges and Gauss-Seidel does not. Consider the
matrix

A =

⎛
⎝ −1 0 −1

−1 1 0
1 2 −3

⎞
⎠ .

The Jacobi iteration matrix is

GJ = −D−1(L+ U) =

⎛
⎝ 0 0 −1

1 0 0
1
3

2
3 0

⎞
⎠ ,

and has the eigenvalues 0.37± 0.86i and −0.74. Thus ρ(GJ) = 0.944 and the
iteration converges.

On the other hand, the iteration matrix of Gauss-Seidel is

GGS = −(D + L)−1U =

⎛
⎝ 0 0 −1

0 0 −1
0 0 −1

⎞
⎠ ,

which has the eigenvalues 0, 0, −1 with ρ(GGS) = 1. The iteration therefore
does not converge in general.

Instead of analyzing the convergence of the Gauss-Seidel method, we now
show an important generalization with improved convergence behavior. The
convergence analysis of the generalization then also contains Gauss-Seidel as
a special case.

Classical Stationary Iterative Methods 695

11.3.4 Successive Over-relaxation (SOR)

The successive over-relaxation method (SOR) is derived from the Gauss-
Seidel method by introducing an “extrapolation” parameter ω. The compo-
nent xi is computed as for Gauss-Seidel but then averaged with its previous
value.

Algorithm 11.3. SOR Iteration Step

for i=1:n

x(i)=omega*(b(i)-A(i,[1:i-1 i+1:n])*x([1:i-1 i+1:n]))/...

A(i,i)+(1-omega)*x(i);

end

SOR can also be derived by considering the Gauss-Seidel iteration form

(D + L)x = −Ux+ b. (11.29)

Multiplying (11.29) by ω and adding on both sides the expression (1−ω)Dx,
we obtain the SOR iteration

(D + ωL)xk+1 = (−ωU + (1− ω)D)xk + ωb. (11.30)

SOR is therefore based on the splitting A = M −N with

M =
1

ω
D + L and N = −U +

(
1

ω
− 1

)
D, (11.31)

where we divided (11.30) by ω in order to remove the factor ω in front of the
right hand side term b and obtain the stationary iterative method in standard
form (11.7). Notice that for ω = 1, we get as a special case the Gauss-Seidel
method.

We first show that one cannot choose the relaxation parameter arbitrarily
if one wants to obtain a convergent method. This general, very elegant result
is due to Kahan from his PhD thesis [77].

Theorem 11.9. (Kahan (1958)) Let A ∈ R
n×n and A = L + D + U

with D invertible. If

GSOR = (D + ωL)−1(−ωU + (1− ω)D) (11.32)

is the SOR iteration matrix, then the inequality

ρ(GSOR) ≥ |ω − 1| (11.33)

holds for all ω ∈ R.
Proof. The key idea is to insert DD−1 between the factors of GSOR,

GSOR = (D + ωL)−1DD−1(−ωU + (1− ω)D)

= (I + ωD−1L)−1(−ωD−1U + (1− ω)I).

696 ITERATIVE METHODS FOR LINEAR SYSTEMS

Now the determinant of (I +ωD−1L) equals 1, since this matrix is lower tri-
angular with unit diagonal, which implies that the determinant of its inverse
also equals 1. Therefore

det(GSOR) = det(−ωD−1U + (1− ω)I) = (1− ω)n,

since this second factor is upper triangular with 1− ω on the diagonal. The
determinant of a matrix is equal to the product of its eigenvalues, which in
our case yields

n∏
j=1

λj(GSOR) = (1−ω)n =⇒ |1−ω|n ≤
(
max

j
|λj(GSOR)|

)n

=ρ(GSOR)
n,

and this implies the result after taking the n-th root. �
From this elegant result, we can conclude that

ρ(GSOR) < 1 =⇒ 0 < ω < 2,

and thus for convergence of SOR it is necessary to choose 0 < ω < 2.
The next result is a general convergence result for SOR, due to Ostrowski

[98] and Reich [105]. It is for a restricted class of matrices, and does not
answer the question yet on how to choose ω in order to obtain a fast method.

Theorem 11.10. (Ostrowski-Reich (1954/1949)) Let A ∈ R
n×n be

symmetric and invertible, with positive diagonal elements, D > 0. Then SOR
converges for all 0 < ω < 2 if and only if A is positive definite.

Proof. Since A is symmetric, the SOR iteration is(
1

ω
D + L

)
︸ ︷︷ ︸

M

xk+1 =

(
1− ω

ω
D − L�

)
︸ ︷︷ ︸

N

xk + b.

M is non-singular, since D > 0. Consider

Q = N +M� =
2− ω

ω
D.

Q is positive definite because D > 0 and 0 < ω < 2. Now we can apply
Theorem 11.6 to conclude the proof. �

An important question, which remained unanswered so far, is how to
choose the parameter ω in SOR in order to obtain a fast method. The
pioneer in this area was David Young, who answered this question for a large
class of matrices in his PhD thesis [153] 3.

Definition 11.8. (Property A) A matrix A ∈ R
n×n has Property A

if there exists a permutation matrix P such that

P�AP =

(
D1 F
E D2

)
, with D1 and D2 diagonal.

3An electronic version is available at http://www.ma.utexas.edu/CNA/DMY/

http://www.ma.utexas.edu/CNA/DMY/

Classical Stationary Iterative Methods 697

Example 11.2. If we discretize the one-dimensional Laplacian ∂2

∂x2 by
finite differences on a regular grid, the discrete operator becomes

A =
1

h2

⎡
⎢⎢⎢⎢⎢⎢⎣

−2 1
1 −2 1

1
. . .

. . .

. . .
. . . 1
1 −2

⎤
⎥⎥⎥⎥⎥⎥⎦
∈ R

n×n.

If n is even, then A can be permuted as required for Property A,

P�AP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1
. . . 1

. . .

. . .
. . .

. . .

−2 1 1
1 1 −2

. . .
. . .

. . .

. . . 1
. . .

1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with P constructed from the unit vectors ej as follows:

P = [e1,e3, . . . en−1,e2,e4, . . . ,en].

For matrices with Property A, a useful relation exists between the eigen-
values of the associated Jacobi and SOR iteration matrices. We first need

Lemma 11.5. Let B have a zero diagonal and the block structure

B =

[
0 F
E 0

]
= L+ U,

where L and U are the strictly lower and upper triangular parts. If μ is an
eigenvalue of B, then so is −μ. Furthermore, B and αL + 1

α
U are similar,

and thus have the same eigenvalues for all α 	= 0.

Proof. Consider the diagonal matrix

S =

[
I 0
0 αI

]
=⇒ SBS−1 =

[
0 1

αF
αE 0

]
= αL +

1

α
U.

698 ITERATIVE METHODS FOR LINEAR SYSTEMS

Furthermore, if
(
u
v

)
is an eigenvector of B,

B

(
u

v

)
= μ

(
u

v

)
,

then
(

u
−v

)
is an eigenvector with eigenvalue −μ, because

B

(
u

−v

)
=

(−Fv

Eu

)
=

(−μu

μv

)
= −μ

(
u

−v

)
.

�

Theorem 11.11. Let A ∈ R
n×n have Property A, and let

Ã = P�AP =

[
D1 F
E D2

]
= L+D + U,

with all diagonal elements of D1 and D2 nonzero. Let

GSOR = (D + ωL)−1(−ωU + (1− ω)D)

be the SOR iteration matrix for Ã and

GJ = −D−1(L+ U)

the Jacobi iteration matrix. Then for ω 	= 0, we have that λ is a nonzero
eigenvalue of GSOR if and only if μ, the solution of

(λ+ ω − 1)2 = λω2μ2,

is an eigenvalue of GJ.
Proof. As before, we have

GSOR = (D + ωL)−1DD−1(−ωU + (1− ω)D)

= (I + ωD−1L)−1(−ωD−1U + (1− ω)I),

therefore λ is an eigenvalue if and only if

det((I + ωD−1L)−1(−ωD−1U + (1− ω)I)− λI) = 0

⇐⇒ det(−ωD−1U + (1− ω)I − λ(I + ωD−1L)) = 0

⇐⇒ det
(
(λ+ ω − 1)I + ωD−1(λL + U)

)
= 0.

Now factoring out ω
√
λ (which is non-zero by assumption) in the determi-

nant, we get

⇐⇒ det

(
λ+ ω − 1

ω
√
λ

I +D−1(
√
λL+

1√
λ
U)

)
= 0. (11.34)

Classical Stationary Iterative Methods 699

This equation means that λ+ω−1
ω

√
λ

is an eigenvalue of −D−1(
√
λL + 1√

λ
U).

Using Lemma 11.5, we obtain

−D−1(
√
λL+

1√
λ
U) = −(

√
λD−1L+

1√
λ
D−1U) is similar to GJ = −D−1(L+U),

therefore they have the same eigenvalues. Since μ and −μ are eigenvalues of
GJ, we get

± μ =
λ+ ω − 1

ω
√
λ

⇐⇒ (λ+ ω − 1)2 = λω2μ2. (11.35)

�
We are now ready to prove the most important result for SOR methods:

the optimal choice of the relaxation parameter ω, given by Young in his thesis
[153].

Theorem 11.12. (Optimal SOR Parameter (Young 1950)) Let A,
Ã and GJ be defined as in Theorem 11.11. If the eigenvalues μ(GJ) are real
and ρ(GJ) < 1, then the optimal SOR parameter ω for Ã is

ωopt =
2

1 +
√
1− ρ(GJ)2

.

Proof. From (11.35), we obtain

± μ
√
λ =

λ+ ω − 1

ω
. (11.36)

For μ fixed, the left hand side of (11.36) is the equation of a parabola, whereas
the right hand side is that of a straight line passing through the point (1,1)
with slope 1/ω. Figure 11.2 shows the roots of this equation. We see that
the roots can be real or complex, depending on ω. If the roots are real, λ1 is
always bigger in modulus than λ2, and λ1 is increasing in μ, and decreasing
in ω. Solving for λ, we obtain the quadratic equation

λ2 + (2(ω − 1)− ω2μ2)λ+ (ω − 1)2 = 0 (11.37)

with the solutions

λ1,2 =
1

2

(
ω2μ2 − 2(ω − 1)±

√
ω2μ2(ω2μ2 − 4(ω − 1))

)
.

With the discriminant d(ω, μ) := ω2μ2 − 4(ω − 1), we have that d(0, μ) = 4
and d(2, μ) = −4 + 4μ2 < 0, and d becomes zero if

4− 4ω + ω2μ2 = 0 ⇐⇒ ω1,2 =
2± 2

√
1− μ2

μ2
.

700 ITERATIVE METHODS FOR LINEAR SYSTEMS

1

1

λ

λ1

λ2

+μ
√
λ

−μ
√
λ

1 + 1
ω
(λ− 1)

Figure 11.2.
Relation between the roots of Jacobi and SOR

1

1

2

ω

λ1(ω, μ)

λ1(ω, μ̃), μ̃ > μ
|λ1| = ω − 1

Figure 11.3.
Larger eigenvalue in modulus as functions of ω

Of the two possible values for ω, we only have to consider the smaller one,

ω1(μ) =
2− 2

√
1− μ2

μ2
=

2

1 +
√

1− μ2
,

since the second value ω2 > 2 cannot lead to a convergent method, see
Theorem 11.9. Thus for ω ∈ (0, ω1), the eigenvalues are real and λ1 is the
larger one in modulus.

For larger values ω ∈ (ω1, 2), the discriminant is negative and λ1,2 are
complex conjugates. From (11.37), we see that λ1λ2 = (ω − 1)2, so that in
the complex case we have |λ1| = |ω − 1|. We thus obtain for each eigenvalue
μ of the Jacobi method the corresponding curve shown in Figure 11.3, and

Classical Stationary Iterative Methods 701

since in the real case λ1 is increasing with μ, we obtain

ρ(GSOR) =

⎧⎪⎪⎨
⎪⎪⎩

1
2

(
ω2ρ(GJ)

2 − 2(ω − 1) +
√

ω2ρ(GJ)2(ω2ρ(GJ)2 − 4(ω − 1))
)
,

for ω ∈ (0, ω1), decreasing,

|ω − 1|, for ω ∈ (ω1, 2), linearly increasing.

The minimum of ρ(GSOR) is thus reached for ωopt = ω1(ρ(GJ)). �
For ωopt, the optimized convergence factor of SOR becomes

ρ(GSOR)min = ωopt − 1 =

(
ρ(GJ)

1 +
√

1− ρ(GJ)2

)2

=
1−√1− ρ(GJ)2

1 +
√

1− ρ(GJ)2
.

(11.38)

In general, we do not know in advance the spectral radius ρ(GJ), so we
cannot compute ωopt for SOR and have to rely on estimates. The rule of
thumb is to try to overestimate ω, because of the steeper slope on the left,
see Figure 11.4. To illustrate this, we consider the function

Algorithm 11.4. SOR Spectral Radius

function r=Rho(omega,mu);

% RHO computes spectral radius for SOR

% r=Rho(omega,mu) computes the spectral radius of the iteration

% matrix for SOR, given the spectral radius mu of the Jacobi

% iteration matrix and the relaxation parameter omega

if omega<2/(1+sqrt(1-mu^2))

r=((omega*mu)^2-2*(omega-1)+sqrt((omega*mu)^2*...

((omega*mu)^2-4*(omega-1))))/2;

else

r=abs(omega-1);

end;

and plot it for various values of μ using the commands

axis([0,2,0,1])

hold on

xx=[0:0.01:2];

for mu=0.1:0.1:0.9

yy=[];

for x=xx

yy=[yy rho(x,mu)];

end

plot(xx,yy)

end

702 ITERATIVE METHODS FOR LINEAR SYSTEMS

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 11.4.
ρ(GSOR) as function of ω for μ = 0.1 : 0.1 : 0.9

We can see that for μ = 0.9, the choice of ω ≈ 1.4 yields a convergence factor
of about 0.4. This is a drastic improvement over Jacobi, leading to about 8
to 9 times fewer iterations, since μ8.5 ≈ 0.4.

The optimal choice of the relaxation parameter ω also improves the con-
vergence factor asymptotically: one gains a square root, as one can see when
setting ρ(GJ) = 1 − ε, and then expanding the corresponding optimized
ρ(GSOR) for small ε. Using the Maple commands

rho:=mu^2/(1+sqrt(1-mu^2))^2;

mu:=1-epsilon;

series(rho,epsilon,1);

we obtain ρ(GSOR) = 1 − 2
√
2ε + O(ε), which shows that indeed the im-

provement is a square root.

11.3.5 Richardson

In order to explain the Richardson iteration, we consider the correction form
(11.8) of the stationary iterative method,

xk+1 = xk +M−1rk.

If we choose M−1 = αI, which corresponds to the splitting M = 1
αI and

N = 1
α
I −A, we obtain the Method of Richardson,4

xk+1 = xk + α(b− Axk) = (I − αA)xk + αb. (11.39)

4It is important to state here that in the original paper of Richardson [106], a different
value of α was used at each iteration step, α = αk, which leads to a much more sophisticated
method, as we will see later in Section 11.4.

Classical Stationary Iterative Methods 703

Theorem 11.13. (Convergence of Richardson) Let A ∈ R
n×n be

symmetric and positive definite. Then

a) Richardson converges if and only if 0 < α < 2
ρ(A)

.

b) Convergence is optimal for αopt =
2

λmax(A) + λmin(A)
.

c) The asymptotic convergence factor is

ρ(I − αoptA) =
κ(A)− 1
κ(A) + 1

, where κ(A) :=
λmax(A)
λmin(A)

.

Proof. Since A is positive definite, we have

0 < λmin(A) ≤ λj(A) ≤ λmax(A) = ρ(A).

The iteration matrix M−1N = I − αA has the eigenvalues 1− αλj(A), so

ρ(I − αA) < 1 ⇐⇒ 1− αλmin(A) < 1 and 1− αλmax(A) > −1.

Thus we have convergence for

0 < α <
2

λmax(A)
.

To minimize ρ(I − αA), we consider Figure 11.5, which shows the curves
|1−αλmax| and |1−αλmin|. We see that the optimal α is determined by the

α

ρ(I − αA)

1
λmax

|1− αλmax|

αopt αmax
1

λmin

|1− αλmin|
1

Figure 11.5.
Determining an optimal α for the Richardson iteration

intersection point between the two lines, since the curves |1− αλj | for other
j lie in between these two lines. This means

αλmax(A)− 1 = 1− αλmin(A) =⇒ αopt =
2

λmax + λmin
.

704 ITERATIVE METHODS FOR LINEAR SYSTEMS

For the optimal α, we get

ρopt = ρ(I − αoptA) =
λmax − λmin

λmax + λmin
=

κ(A)− 1

κ(A) + 1
with κ(A) =

λmax

λmin
.

(11.40)
�

11.4 Local Minimization by Nonstationary Iterative
Methods

In contrast to the stationary iterative methods, the increment xk+1−xk cho-
sen by non-stationary iterative methods varies from one iteration to the next.
We assume throughout this section that the matrix A ∈ R

n×n symmetric is
positive definite unless otherwise stated. To start, we consider the method
of Richardson in its original form in [106], where the parameter α is allowed
to change in each iteration,

xk+1 = xk + αk(b−Axk). (11.41)

We consider for μ ∈ R the norm (it is a norm since A is positive definite)

‖r‖2A−μ = r�A−μr, (11.42)

and, following Ritz’s idea5, we want to determine the value of αk that mini-
mizes

Q(αk) := ‖rk+1‖2A−μ . (11.43)

Differentiating with respect to αk and noting that iteration (11.41) can be
written as a recurrence for residuals,

rk+1 = (I − αkA)rk, (11.44)

we get

dQ

dαk
= 0 = 2r�

k+1A
−μ d

dαk
rk+1 = 2((I − αkA)rk)

�A−μ(−Ark).

Solving for αk, we obtain

αk =
r�
kA

1−μrk
r�
kA

2−μrk
. (11.45)

Useful choices for μ are 0 and 1, since otherwise we would have to solve
equations with the matrix A, or perform more than one multiplication with
A in order to determine αk.

5It was Ritz who first proposed in 1908 to find approximate solutions to minimization
problems by searching in a small, well-chosen subspace.

Local Minimization by Nonstationary Iterative Methods 705

11.4.1 Conjugate Residuals

For μ = 0, (11.45) gives

αk =
r�
kArk

‖Ark‖22
, (11.46)

so in this case we are minimizing locally

‖rk+1‖22 = ‖Aek+1‖22 = ‖ek+1‖2A2 −→ min .

Using (11.44) for rk+1 and (11.46) for αk, a short calculation shows that

r�
k+1Ark = 0,

which means that the residuals are conjugate, and therefore this method is
called the conjugate residuals algorithm.

Algorithm 11.5. Conjugate Residuals Algorithm

k = 0; x = x0 ;
r = b− Ax;
while not converged

k = k + 1;
ar = Ar;

α =
r�ar

‖ar‖2 ;
x = x+ αr;

r = r − αar;

end

11.4.2 Steepest Descent

Another method, called the Steepest Descent method, can be derived by choos-
ing μ = 1; then (11.45) gives

αk =
‖rk‖2
r�
kArk

. (11.47)

Theorem 11.14. (Steepest Descent Properties) Let A ∈ R
n×n be

symmetric and positive definite. With the choice of αk given by (11.47), the
following functionals are being minimized by the method (11.41):

a) ‖rk+1‖2A−1 = r�
k+1A

−1rk+1.

b) Q(xk + αrk) as a function of α, where Q(x) = 1
2
x�Ax− b�x.

706 ITERATIVE METHODS FOR LINEAR SYSTEMS

c) ‖ek+1‖2A = e�k+1Aek+1.

Proof. Statement a) holds by construction. Statement c) follows from
Equation (11.14), which states that Aek+1 = rk+1.

For statement b), Q(x) is a quadratic form whenever A is symmetric
and positive definite, and it attains its unique minimum at x = A−1b. The
gradient of Q is

∇Q = Ax− b = −r,

which means that the residual points into the direction of steepest descent.
Minimizing Q(x+αr) with respect to α for fixed x and r means to descend
in the direction of steepest descent. In order to determine α, we expand Q,

Q(x+ αr) =
1

2
(x+ αr)�A(x+ αr)− b�(x+ αr),

and compute the derivative with respect to α and set it to zero,

dQ

dα
= r�Ax+ αr�Ar − b�r = 0,

which leads with r�Ax− r�b = −r�r to α = r�r
r�Ar

, as required by (11.47).
�

The pairs of consecutive residuals obtained by the this method of steepest
descent are not conjugate but orthogonal, as one can see by a short calculation
evaluating the scalar product r�

k+1rk.

Algorithm 11.6. Steepest Descent Algorithm

k = 0; x = x0 ;
r = b− Ax;
while not converged

k = k + 1;
ar = Ar;

α =
r�r
r�ar

;

x = x+ αr;

r = r − αar;

end

Theorem 11.15. (Steepest Descent Convergence) Let A ∈ R
n×n

be symmetric and positive definite. Then the method of steepest descent con-
verges.

Local Minimization by Nonstationary Iterative Methods 707

Proof. The idea is to show that the sequence of ||rk||A−1 goes to zero
as k goes to infinity. We compute

‖rk+1‖2A−1 = r�
k+1A

−1rk+1

= (rk − αkArk)
�A−1rk+1

= r�
kA

−1rk+1 − αkr
�
kA

�A−1rk+1

= r�
kA

−1rk+1,

where we have used the fact that A�A−1 = I (A is symmetric) and the
consecutive residuals are orthogonal. Replacing rk+1 in the last expression,
we obtain

‖rk+1‖2A−1 = r�
kA

−1(rk − αkArk) = ‖rk‖2A−1 − αk‖rk‖22.
Inserting now the value of αk and dividing by ‖rk‖2A−1 , we get

‖rk+1‖2A−1

‖rk‖2A−1

= 1− ‖rk‖42
(r�

kArk)(r�
kA

−1rk)
.

By the Kantorovitch inequality, see Theorem 11.16 below, the right hand side
can be bounded using κ := κ(A), the condition number of A, and we obtain

‖rk+1‖2A−1

‖rk‖2A−1

≤ 1− 4

(
√
κ+ 1√

κ
)2

=

(
κ− 1

κ+ 1

)2

< 1.

Therefore ‖rk‖A−1 → 0 for k → ∞. �

Theorem 11.16. (Kantorovitch Inequality) Let A ∈ R
n×n be sym-

metric and positive definite. Then for all x ∈ R
n, x 	= 0, we have

1 ≤ x�Ax · x�A−1x

(x�x)2
≤

(√
κ(A) +

(√
κ(A)

)−1
)2

4
, (11.48)

where κ(A) := λmax(A)
λmin(A)

is the condition number of A.

Proof. Let A = QΛQ� be the eigen-decomposition of A, with Q or-
thogonal and Λ = diag(λ1, . . . , λn), where 0 < λ1 ≤ · · · ≤ λn because A is
positive definite. Then defining Λ1/2 = diag(

√
λ1, . . . ,

√
λn), we can write

x�x = x�QQ�x (Q is orthogonal)

= x�QΛ1/2Λ−1/2Q�x

≤ ‖Λ1/2Q�x‖2‖Λ−1/2Q�x‖2 (Cauchy–Schwarz)

= (x�QΛQ�x)1/2(x�QΛ−1Q�x)1/2

= (x�Ax)1/2(x�A−1x)1/2.

708 ITERATIVE METHODS FOR LINEAR SYSTEMS

Squaring and dividing by (x�x)2 then yields the first inequality.
For the second inequality, let c > 0 be a constant (to be chosen later) and

let Ã := cA. Then

(x�Ax)1/2(x�A−1x)1/2 = (x�(cA)x)1/2(xT (cA)−1x)1/2

≤ 1

2
(x�Ãx+ x�Ã−1x)

=
1

2
x�Q(Λ̃ + Λ̃−1)Q�x,

where we have used the arithmetic-geometric mean inequality
√
ab ≤ 1

2
(a+b)

for a, b > 0. If we now define the function f(λ) = λ+ 1
λ , then the inequality

above becomes

(x�Ax)1/2(x�A−1x)1/2 ≤ 1

2
(Q�x)�f(Λ̃)(Q�x)

≤ 1

2
‖f(Λ̃)‖2‖Q�x‖22 =

1

2
max

j
|f(λ̃j)|x�x.

But f(λ) > 0 and f ′′(λ) = 2/λ3 > 0 for λ > 0, so f is a positive convex
function over the interval [λ̃1, λ̃n]. Thus, we have

max
j

|f(λ̃j)| = max{f(λ̃1), f(λ̃n)},

so picking c = 1/
√
λ1λn gives

λ̃1 =

√
λ1

λn
, λ̃n =

√
λn

λ1
,

which in turn yields

max
j

|f(λ̃j)| = f(λ̃1) = f(λ̃n) =

√
λ1

λn
+

√
λn

λ1
.

Finally, noting that κ(A) = λn/λ1, we obtain

(x�Ax)1/2(x�A−1x)1/2 ≤ 1

2

(√
κ(A) +

1√
κ(A)

)
x�x,

which, upon squaring and dividing by (x�x)2, gives the second inequality.
�

11.5 Global Minimization with Chebyshev Polynomials

The choice of αk in the previous section such that ‖rk+1‖2A−μ −→ min means
that we want to do the best for the current iteration. This is the best tactic,
but perhaps not the best overall strategy. To illustrate this, we consider the

Global Minimization with Chebyshev Polynomials 709

2468101214161820

5

10

15

20

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

10
1

10
2

iteration

er
ro

r
in

 th
e

A
−

no
rm

Jacobi
Gauss−Seidel
Steepest Descent
Conjugate Gradients

Figure 11.6.
Solution of the Poisson equation on an L-shaped domain
on the left, and reduction of the error, measured in the
A-norm, by Jacobi, Gauss-Seidel, Steepest Descent and
Conjugate Gradients on the right, starting with a zero

initial guess

numerical solution of a Poisson equation on an L-shaped domain shown in
Figure 11.6 on the left. To obtain the system matrix and exact solution for
this problem, we use the Matlab commands

n=20;

G=numgrid(’L’,n);

A=delsq(G);

b=ones(size(A,1),1);

u=A\b;

U=G;

U(G>0)=u(G(G>0));

mesh(U);

axis([1 n 1 n 0 max(u)])

view([200,30])

When solving this discretized problem using the methods of Jacobi (§11.3.2),
Gauss-Seidel (§11.3.3) and Steepest Descent (§11.4.2), starting with an initial
guess of zero, we obtain the convergence curves shown in Figure 11.6 on the
right. We observe that Gauss-Seidel converges faster than Jacobi, about
twice as fast. Steepest descent converges even faster initially, but it then
seems to slow down, eventually becoming even slower than Gauss-Seidel.
This slow convergence behavior of stationary iterative methods and locally
optimal methods is typical. In Figure 11.7, we show for each method the
approximation obtained after the first, fifth, tenth and twentieth iterations.
Clearly, doing the best locally, as in steepest descent, is not beneficial for the
overall performance. The performance of the Conjugate Gradient method,
which we will explain later in Subsection 11.7.1, is also shown in Figure 11.7
on the right, and in the last row of Figure 11.7. This method performs much
better than all the others. In order to get some more insight, we show in

710 ITERATIVE METHODS FOR LINEAR SYSTEMS

2468101214161820

5

10

15

20

0

2

4

6

8

10

12

14

Jacobi

2468101214161820

5

10

15

20

0

2

4

6

8

10

12

14

Jacobi

2468101214161820

5

10

15

20

0

2

4

6

8

10

12

14

Jacobi

2468101214161820

5

10

15

20

0

2

4

6

8

10

12

14

Jacobi

2468101214161820

5

10

15

20

0

2

4

6

8

10

12

14

Gauss−Seidel

2468101214161820

5

10

15

20

0

2

4

6

8

10

12

14

Gauss−Seidel

2468101214161820

5

10

15

20

0

2

4

6

8

10

12

14

Gauss−Seidel

2468101214161820

5

10

15

20

0

2

4

6

8

10

12

14

Gauss−Seidel

2468101214161820

5

10

15

20

0

2

4

6

8

10

12

14

Steepest Descent

2468101214161820

5

10

15

20

0

2

4

6

8

10

12

14

Steepest Descent

2468101214161820

5

10

15

20

0

2

4

6

8

10

12

14

Steepest Descent

2468101214161820

5

10

15

20

0

2

4

6

8

10

12

14

Steepest Descent

2468101214161820

5

10

15

20

0

2

4

6

8

10

12

14

Conjugate Gradients

2468101214161820

5

10

15

20

0

2

4

6

8

10

12

14

Conjugate Gradients

2468101214161820

5

10

15

20

0

2

4

6

8

10

12

14

Conjugate Gradients

2468101214161820

5

10

15

20

0

2

4

6

8

10

12

14

Conjugate Gradients

Figure 11.7.
Iteration 1, 5, 10, and 20 of Jacobi (top row),

Gauss-Seidel, Steepest Descent and Conjugate gradients
(bottom row) to approximate the solution shown in

Figure 11.6 on the left

Global Minimization with Chebyshev Polynomials 711

x

y

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4
Quadratic Form
Jacobi
Gauss−Seidel
Steepest Descent
Conjugate Gradients

Figure 11.8.
Convergence paths of Jacobi, Gauss-Seidel, Steepest

Descent and Conjugate Gradients for a two dimensional
model problem

Figure 11.8 the results obtained for a much simpler problem, namely the
matrix A obtained from the Matlab commands

V=[1 1

1 -1]/sqrt(2);

E=[1 0

0 20];

A=V’*E*V;

As we can see in Figure 11.8, we try in this example to compute the zero
solution. Each method starts from a different initial guess, but because of
symmetry, these initial guesses are equivalent, and are only chosen to be
different for the sake of better visibility of the approximations computed by
the different iterative methods. We clearly see that Jacobi, Gauss-Seidel and
Steepest Descent search over and over again into the same directions, whereas
Conjugate Gradients search each direction only once, and thus finds the so-
lution in two steps in this two-dimensional example. Conjugate Gradients is
trying to do the best globally at each step, in contrast to Steepest Descent,
which tries to do the best locally at each step. The remainder of this chapter
focuses on how to obtain such globally best methods and approximations
thereof.

Let us consider again the method of Richardson with variable parameters
αk. The recurrence for the residuals is

rk+1 = (I − αkA)rk.

Because of rk = Aek, we have the same recurrence also for the error

ek+1 = (I − αkA)ek.

712 ITERATIVE METHODS FOR LINEAR SYSTEMS

Thus, the error after k steps is

ek = (I − αk−1A)(I − αk−2A) · · · (I − α0A)e0 = Pk(A)e0. (11.49)

Definition 11.9. (Residual Polynomial) The polynomial Pk in
(11.49), which satisfies Pk(0) = 1, is called the residual polynomial.

The residual polynomial is determined by the choice of αk; its zeros are
zj = 1/αj . The parameters αk should be chosen so that the global error is
minimized.

If we could choose αk = 1/λk, where λk is the k-th eigenvalue of A,
then, because of the Cayley-Hamilton Theorem, we would have Pn(A) = 0
after at most n steps, since every matrix is annihilated by its characteristic
polynomial. In fact, we might even reach the solution earlier, since it is
sufficient to iterate until Pk(A)e0 = 0.

Definition 11.10. (Minimal Polynomial) The minimal polynomial
of a matrix A ∈ R

n×n is the polynomial P̃m(x) with smallest degree m such
that P̃m(A) = 0.

By the Cayley-Hamilton Theorem, we know that the minimal polynomial
is a divisor of the characteristic polynomial, so m ≤ n.

Definition 11.11. (Minimal Polynomial with Respect to a Vec-

tor) The minimal polynomial of a matrix A ∈ R
n×n with respect to a vector

v is the polynomial Pm(x) with smallest degree m such that Pm(A)v = 0.

Note that the degree of the minimal polynomial with respect to a vector
might be lower than the minimal polynomial of the matrix. For instance, if
v is the linear combination of two eigenvectors with distinct eigenvalues λ1

and λ2, then Pm(x) = (1 − x/λ1)(1 − x/λ2) satisfies Pm(A)v = 0, so the
minimal polynomial with respect to v has degree two.

For optimal convergence, we would ideally like to use the minimal poly-
nomial with respect to e0, but unfortunately this is not known in general.
However, since the inequality

‖ek‖ = ‖Pk(A)e0‖ ≤ ‖Pk(A)‖‖e0‖
holds for any polynomial Pk, one can try to choose Pk in order to minimize
the upper bound ‖Pk(A)‖. For symmetric positive definite matrices, the
eigen-decomposition A = QΛQ� gives

‖Pk(A)‖ = ‖QPk(Λ)Q
�‖ ≤ ‖Q‖‖Q�‖‖Pk(Λ)‖ = κ(Q)‖Pk(Λ)‖,

where ‖Pk(Λ)‖ is a diagonal matrix with elements Pk(λj). Moreover, if the
spectral norm ‖·‖2 is used, then κ(Q) = 1, since the spectral norm is invariant
under orthogonal transformations. Thus, to minimize the bound, we would
like to choose the polynomial Pk so that it is small on the spectrum of A.
In general, the spectrum of A will not be known, but it may be possible to

Global Minimization with Chebyshev Polynomials 713

estimate the interval [a, b] within which the eigenvalues lie in the case where
A has only real eigenvalues:

a ≤ λ1 ≤ λ2 ≤ · · · ≤ λn ≤ b.

In this case we have

max
i

|Pk(λi)| ≤ max
a≤x≤b

|Pk(x)|.

Therefore we consider the following minimization problem: given a degree k,
we want to determine a polynomial Pk with Pk(0) = 1 such that

max
a≤x≤b

|Pk(x)| −→ min .

For indefinite A, i.e., when the interval [a, b] contains zero, the minimum is
necessarily greater than or equal to one because of the constraint Pk(0) = 1;
however, for positive definite A, i.e., when a > 0, a good choice of Pk will
lead to a minimum strictly less than 1, and hence will give rise to useful
algorithms. As we will see, the polynomials that are closest to zero in a given
interval are given by the Chebyshev polynomials.

Definition 11.12. (Chebyshev Polynomials) The Chebyshev poly-
nomials are defined by

Ck(t) := cos(k arccos t), −1 ≤ t ≤ 1, k = 0, 1, . . . (11.50)

We show in Figure 11.9 the first seven Chebyshev polynomials, which we

plotted using the Maple commands

> with(orthopoly);

> plot([seq(T(i,t),i=0..6)],t=-1..1);

Why is Ck a polynomial? Let t = cosα, so that

Ck(cosα) = cos(kα).

The function cos(kα) for multiple angles can be represented as a polynomial
in cosα, for example

k = 0 : C0(cosα) = cos(0) = 1 =⇒ C0(t) = 1,
k = 1 : C1(cosα) = cos(α) =⇒ C1(t) = t,
k = 2 : C2(cosα) = cos(2α) = 2 cos(α)2 − 1 =⇒ C2(t) = 2t2 − 1,
k = 3 : C3(cosα) = cos(3α) = 4 cos(α)3 − 3 cos(α) =⇒ C3(t) = 4t3 − 3t.

We now state some properties of the Chebyshev polynomials:

1. Summing the trigonometric identities

cos(k + 1)α = cos(kα+ α) = cos kα cosα− sin kα sinα,

714 ITERATIVE METHODS FOR LINEAR SYSTEMS

Figure 11.9. The first seven Chebyshev polynomials

cos(k − 1)α = cos(kα− α) = cos kα cosα+ sin kα sinα,

we get
cos(k + 1)α+ cos(k − 1)α = 2 cos kα cosα,

which translates into the well-known three-term recurrence relation for
Chebyshev polynomials,

C0 = 1, C1 = t, Ck+1(t) = 2tCk(t)−Ck−1(t), k = 1, 2, . . .
(11.51)

2. From the recurrence relation, we see that Ck is a polynomial of degree
k with integer coefficients and leading coefficient 2k−1,

Ck(t) = 2k−1tk + . . .

3. For k even, Ck is an even function, i.e., Ck(t) = Ck(−t) for all t. This
can be proved by induction from the recurrence relation. Similarly,
for k odd, we have Ck(t) = −Ck(−t). These properties can also be
observed in Figure 11.9.

4. From Definition 11.12, we see that |Ck(t)| ≤ 1 for |t| ≤ 1, see also
Figure 11.9.

5. The trigonometric identity for k > l,

cos(k + l)α+ cos(k − l)α = 2 cos lα cos kα,

translates into the abbreviated recurrence relation

Ck+l = 2ClCk −Ck−l.

Global Minimization with Chebyshev Polynomials 715

6. The zeros tj of Ck are the solutions of Ck(cosα) = cos kα = 0, that is,
kα = −π/2 + jπ for j = 1, 2 . . . , k, and thus

tj = cos

(
− π

2k
+

jπ

k

)
, j = 1, 2 . . . , k. (11.52)

7. The extrema ξj of Ck are solutions of | cos kα| = 1, that is kα = jπ for
j = 0, . . . , k (including the boundary values for t = 1,−1), and thus

ξj = cos
jπ

k
, j = 0, . . . , k.

Moreover, we have a maximum for even j and a minimum for odd j,
i.e.,

Ck(ξj) = (−1)j .

In particular, Ck(1) = 1 and Ck(−1) = (−1)k, see also Figure 11.9.

8. The Chebyshev polynomials are orthogonal polynomials for the scalar
product

(f, g) :=

∫ 1

−1

f(t)g(t)√
1− t2

dt.

Proof. With the variable transformation t = cosα, we get

∫ 1

−1

Ci(t)Cj(t)√
1− t2

dt =

∫ π

0

cos iα cos jα dα

=

∫ π

0

1

2
(cos(i + j)α+ cos(i− j)α) dα

=

⎧⎨
⎩

π, i = j = 0,
π
2 , i = j 	= 0,
0, i 	= j.

�

9. Ck has the smallest deviation from zero:

Theorem 11.17. (Smallest Deviation from Zero of Chebyshev

Polynomials) The Chebyshev polynomials have in the interval [−1, 1]
the smallest deviation from zero among all polynomials of the same
degree k with leading coefficient 2k−1.

Proof. Let Qk be a polynomial with leading coefficient 2k−1, and
suppose that

max
−1≤t≤1

|Qk(t)| ≤ max
−1≤t≤1

|Ck(t)| = 1. (11.53)

716 ITERATIVE METHODS FOR LINEAR SYSTEMS

We now use the extremal points 1 = ξ0, . . . , ξk where |Ck(ξi)| = 1. The
difference function

Rk−1(t) = Ck(t)−Qk(t)

is a polynomial of degree k − 1, since the leading coefficient of Ck and
Qk is the same. Using (11.53), we conclude that

Rk−1(ξ0) ≥ 0,
Rk−1(ξ1) ≤ 0,

...
...

...
Rk−1(ξk)(−1)k ≥ 0.

It follows that the polynomial Rk−1(t) has at least one zero in each
closed interval [ξ0, ξ1], [ξ1, ξ2], . . . [ξk−1, ξk]. If a zero t is on the bound-
ary of an interval, it has to be counted twice, since at such a point we
have C ′

k(t) = 0 and Q′
k(t) = 0, and hence also the derivative R′

k−1(t)
vanishes, which indicates at least a double root. In total, the number
of zeros is therefore greater than or equal to k. But since the degree
of Rk−1(t) is k− 1, this can only happen if Rk−1(t) ≡ 0, and therefore
Qk ≡ Ck. �

10. Scaling and normalization: by a change of variables, we can define the
Chebyshev polynomials for the interval [a, b] as follows. If −1 ≤ t ≤ 1,
we consider a ≤ x ≤ b with

x =
a+ b

2
+

b− a

2
t ⇐⇒ t = −1 + 2

x− a

b− a
,

and

C̃k(x) := Ck

(
−1 + 2

x− a

b− a

)
.

We want to normalize the polynomials so that the function value for
x = 0 is 1. The normalized Chebyshev polynomial is then

Qk(x) =
Ck

(
−1 + 2x−a

b−a

)
Ck

(
a+b
a−b

) . (11.54)

We can now translate the result of Theorem 11.17 to the interval [a, b].

Theorem 11.18. (Minimizing Property of Chebyshev Polyno-

mials) Let Π1
k := {Qk polynomial of degree k with Qk(0) = 1}. Then

min
Rk∈Π1

k

max
a≤x≤b

|Rk(x)| = max
a≤x≤b

∣∣∣∣∣∣
Ck

(
−1 + 2x−a

b−a

)
Ck

(
a+b
a−b

)
∣∣∣∣∣∣ =

1∣∣∣Ck

(
a+b
a−b

)∣∣∣ .

Global Minimization with Chebyshev Polynomials 717

Often, instead of Qk(0) = 1, the normalization at x = 1 is used, which

leads to the polynomials

Pk(x) =
Ck

(
−1 + 2x−a

b−a

)
Ck

(
2−b−a
b−a

) , with Pk(1) = 1.

11. Bound for Ck

(
a+b
a−b

)
: the Chebyshev polynomials have been defined

for |t| = | cosα| ≤ 1 by the formula Ck(cosα) = cos kα, and we have
seen in 2. that this indeed defines a polynomial, whose domain is not
restricted to −1 ≤ t ≤ 1. The following lemma gives a convenient
formula for evaluating Chebyshev polynomials when |t| > 1.

Lemma 11.6. For t ∈ R, the Chebyshev polynomial Ck is given by

Ck(t) =
1

2

((
t+
√
t2 − 1

)k
+
(
t−
√

t2 − 1
)k)

. (11.55)

Proof. For t = cosα with |t| ≤ 1, the Chebyshev polynomial is by
definition (11.50)

Ck(t) = cos kα =
1

2

(
eikα + e−ikα

)
=

1

2

((
eiα
)k

+
(
e−iα

)k)
=

1

2

(
(cosα+ i sinα)k + (cosα− i sinα)k

)
.

Now using that sinα =
√
1− t2, we obtain the polynomial as a function

of t,

Ck(t) =
1

2

((
t+ i

√
1− t2

)k
+
(
t− i

√
1− t2

)k)

=
1

2

((
t+
√
t2 − 1

)k
+
(
t−
√

t2 − 1
)k)

,

and hence the last expression defines the same polynomial. �

Note that when expanding the parentheses in (11.55) using the binomial
theorem, we obtain

Ck(t) =
1

2

k∑
j=0

(
k

j

)
(tk−j(t2 − 1)j/2 + (−1)jtk−j(t2 − 1)j/2)

=

�k/2�∑
j=0

(
k

2j

)
tk−2j(t2 − 1)j ,

718 ITERATIVE METHODS FOR LINEAR SYSTEMS

so the expression indeed represents a polynomial. Moreover, when t >
1, then each term in the sum is positive, so we have the simple bound
Ck(t) ≥ tk for t > 1. The next theorem gives a more refined bound for
the case t = a+b

a−b
.

Theorem 11.19. (Growth Estimate of Chebyshev Polynomi-

als) The maximum of the shifted and scaled Chebyshev polynomial Qk

in (11.54) can be bounded by

1∣∣∣Ck

(
a+b
a−b

)∣∣∣ ≤ 2

∣∣∣∣∣
√
b−√

a√
b+

√
a

∣∣∣∣∣
k

. (11.56)

Proof. Applying Lemma 11.6 with t = a+b
a−b yields

t±
√

t2 − 1 =
a+ b

a− b
±
√

b2 + 2ab+ a2 − b2 + 2ab− a2

(a− b)2

=
a+ b± 2

√
ab

a− b
=

(
√
a±√

b)2

(
√
a+

√
b)(

√
a−√

b)
.

We therefore find the value of the Chebyshev polynomial to be

Ck

(
a+ b

a− b

)
=

1

2

⎡
⎣
(√

a+
√
b√

a−√
b

)k

+

(√
a−√

b√
a+

√
b

)k
⎤
⎦ .

Moreover, we have inside the square brackets the sum of an expression
and its inverse, which have the same sign. We can therefore estimate
the modulus of Ck from below by the larger of the two expressions,
namely ∣∣∣∣Ck

(
a+ b

a− b

)∣∣∣∣ ≥ 1

2

∣∣∣∣∣
√
a+

√
b√

a−√
b

∣∣∣∣∣
k

,

which leads to the desired estimate. �

Combining Theorems 11.18 and 11.19, the global strategy of minimizing
the error over all iterations yields an error of

ek = Qk(A)e0 with Qk(x) =
Ck

(
−1 + 2x−a

b−a

)
Ck

(
a+b
a−b

) ,

and if the bounds on the spectrum are tight, i.e., if a = λmin(A) and b =
λmax(A), then the estimate can be related to the condition number κ(A) of

Global Minimization with Chebyshev Polynomials 719

the matrix A,

‖ek‖ ≤ 2

⎛
⎝
√

b
a − 1√
b
a + 1

⎞
⎠

k

‖e0‖ = 2

(√
κ(A)− 1√
κ(A) + 1

)k

‖e0‖.

The algorithm that results from these considerations is to choose first
the degree k of the polynomial, and then apply Richardson’s method with
variable parameters αj according to the zeros of the Chebyshev polynomial,

1

αj
=

a+ b

2
+

b− a

2
cos

(
2j − 1

k

π

2

)
, j = 1, 2, . . . , k

in a cyclic fashion. Unfortunately, this algorithm can have numerical insta-
bilities if the αj are not used in appropriate order, see for example [3], and
references therein.

11.5.1 Chebyshev Semi-Iterative Method

In this section, a beautiful algorithm from the PhD thesis of Gene Golub [54]
is described. The convergence rate of this algorithm is the same as the one
obtained with the strategy described in the previous section, but the method
is for a general splitting and has an elegant, compact implementation. We
consider again a splitting A = M −N and the basic stationary iteration

Mxi+1 = Nxi + b, i = 1, . . . , k.

Note that M and N need not be symmetric; for instance, the Gauss–Seidel
splitting can be used. We would like to accelerate convergence by computing
a linear combination of the iterates,

yk =

k∑
j=0

γjxj .

Clearly if all xj are equal to the exact solution x, then we would like to get
y = x also. Therefore, we need the normalization

k∑
j=0

γj = 1.

Our goal will be to choose the coefficients γj such that yk converges to x as
fast as possible.

With ej = x− xj = (M−1N)je0 and x =
∑

γjx, the error becomes

x− yk =
k∑

j=0

γj(x− xj) =
k∑

j=0

γj(M
−1N)je0 = Pk(M

−1N)e0.

720 ITERATIVE METHODS FOR LINEAR SYSTEMS

Therefore the error x− yk becomes zero if the γj are the coefficients of the
minimal polynomial of the iteration matrix G = M−1N with respect to e0,
with the normalization Pk(1) =

∑k
j=0 γj = 1 and γk 	= 0.

We are again looking for polynomials which are small, but this time on
the spectrum of the iteration matrix M−1N . For the special case of a sym-
metric iteration matrix M−1N , the method is convergent if and only if the
eigenvalues λi(M

−1N) satisfy

−1 < a = λ1 ≤ λ2 ≤ · · · ≤ λn = b < 1.

Therefore
‖Pk(M

−1N)‖2 = max
λi

|Pk(λi)| ≤ max
a≤λ≤b

|Pk(λ)|,
and the bound is minimized, as shown in the previous section, for

Pk(x) =
Ck

(
−1 + 2x−a

b−a

)
Ck

(
2−b−a
b−a

) . (11.57)

In the resulting algorithm, as we will see, it is not necessary to save the vectors
xi to compute the yk. The recurrence relation for Chebyshev polynomials
will allow us to compute the sequence yk without even computing the xi!

We use the polynomials Pk from (11.57), which are normalized to satisfy
Pk(1) = 1. Let

t = −1 + 2
x− a

b− a
and μ =

2− b− a

b− a
.

Then, using the Chebyshev recurrence, (11.57) becomes

Ck(μ)Pk(x) = Ck(t) (11.58)

= 2tCk−1(t)− Ck−2(t). (11.59)

Using (11.58) for k − 1 and k − 2 in (11.59), we obtain

Ck(μ)Pk(x) = 2tCk−1(μ)Pk−1(x)− Ck−2(μ)Pk−2(x),

and thus

Pk(x) = 2t
Ck−1(μ)

Ck(μ)
Pk−1(x)− Ck−2(μ)

Ck(μ)
Pk−2(x). (11.60)

The quotients of Ck(μ) can be simplified using the Chebyshev recurrence:

Ck(μ) = 2μCk−1(μ)− Ck−2(μ)

=⇒ 1 = 2μ
Ck−1(μ)

Ck(μ)
− Ck−2(μ)

Ck(μ)

=⇒ Ck−2(μ)

Ck(μ)
= 2μ

Ck−1(μ)

Ck(μ)︸ ︷︷ ︸
=: ωk

−1,

Global Minimization with Chebyshev Polynomials 721

and the recurrence (11.60) simplifies to

Pk(x) = t
ωk

μ
Pk−1(x) + (1− ωk)Pk−2(x).

Writing

t
ωk

μ
=

2x− a− b

b− a

b− a

2− a− b
ωk =

(
2

2− a− b
x− a+ b

2− a− b

)
ωk

= (γx+ 1− γ)ωk, with γ :=
2

2− a− b
,

we can simplify the recurrence even more,

Pk(x) = (γx+ 1− γ)ωkPk−1(x) + (1− ωk)Pk−2(x). (11.61)

Finally, it is even possible to compute the coefficients ωk recursively. Using
the Chebyshev recurrence again, we get

ωk = 2μ
Ck−1(μ)

Ck(μ)
= 2μ

Ck−1(μ)

2μCk−1(μ)−Ck−2(μ)

=
2μ

2μ− Ck−2(μ)
Ck−1(μ)

=
4μ2

4μ2 − 2μ
Ck−2(μ)

Ck−1(μ)︸ ︷︷ ︸
ωk−1

and the recurrence for the ωk is therefore for k = 2, 3, . . .

ωk =
4μ2

4μ2 − ωk−1
, ω1 = 2. (11.62)

Let us show that the sequence ωk converges and determine its limit. First,
we show that μ > 1. In fact, if −1 < a < b < 1, then

b− a < 1− a | +1
1 + b− a < 2− a | −b

b− a < 1− a < 2− a− b | : b− a

1 < 1− a
b− a

< 2− a− b
b− a

= μ.

The fixed points s of the iteration (11.62), see also Section 5.2.2, are solutions
of the equation

s = F (s) =
4μ2

4μ2 − s
, s1,2 = 2μ2 ± 2μ

√
μ2 − 1.

To determine which fixed point is attractive, let us compute the interval over
which |F ′(s)| < 1. We have

F ′(s) =
4μ2

(4μ2 − s)2
> 0,

722 ITERATIVE METHODS FOR LINEAR SYSTEMS

so |F ′(s)| < 1 is satisfied if and only if

4μ2 < (4μ2 − s)2 ⇐⇒ (4μ2 − 2μ− s)(4μ2 + 2μ− s) > 0.

So F ′(s) < 1 if s ∈ (−∞, 4μ2 − 2μ) =: I1 or s ∈ (4μ2 + 2μ,∞) =: I2. Now
since

F ′(s1) =
1

(μ−
√

μ2 − 1)2
= (μ+

√
μ2 − 1)2 > 1,

we see that s1 /∈ I1 ∪ I2, so this fixed point is not attractive. But

s2 = 2μ2 − 2μ
√
μ2 − 1 = 4μ2 − 2μ (μ+

√
μ2 − 1)︸ ︷︷ ︸

>1

< 4μ2 − 2μ,

so s2 ∈ I1. Moreover, for any s ∈ I1, we have

F (s) =
4μ2

4μ2 − s
<

4μ2

2μ
= 2μ < 2μ (2μ− 1)︸ ︷︷ ︸

>1

= 4μ2 − 2μ,

which means F maps I1 into I1. Thus, by Banach’s fixed point theorem
(Theorem 5.5), the sequence ωk with starting point ω1 = 2 ∈ I1 converges to
the unique fixed point s2 ∈ I1, i.e.,

ωk → s2 = 2μ2 − 2μ
√

μ2 − 1 =
2

1 +
√

1− 1
μ2

. (11.63)

Now we go back to the convergence acceleration. As we have seen, the
error is

x− yk = Pk(M
−1N)e0. (11.64)

We use the recurrence relation (11.61) to replace Pk(M
−1N),

x−yk = (γM−1N +(1−γ)I)ωk Pk−1(M
−1N)e0︸ ︷︷ ︸

x−yk−1

+(1−ωk)Pk−2(M
−1N)e0︸ ︷︷ ︸

x−yk−2

.

We multiply with −1 and expand,

yk − x = γωkM
−1Nyk−1 + (1− γ)ωkyk−1 + (1− ωk)yk−2

− γωkM
−1Nx− (1− γ)ωkx− (1− ωk)x.

If we replace M−1Nx by x−M−1b, which holds because of Mx = Nx+ b,
we see that all the terms involving x cancel, and we are left with

yk = γωkM
−1Nyk−1 + (1− γ)ωkyk−1 + (1− ωk)yk−2 + γωkM

−1b

= ωkγ
[
(M−1N − I)yk−1 +M−1b

]
+ ωkyk−1 + (1− ωk)yk−2.

Global Minimization with Chebyshev Polynomials 723

Notice that the expression in brackets can be simplified,

(M−1N−I)yk−1+M−1b=−M−1Ayk−1+M−1b=M−1(b−Ayk−1) =: zk−1,

where zk−1 is the preconditioned residual.
We are now ready for the first variant of the algorithm. This algorithm

accelerates the basic stationary iteration Mxk+1 = Nxk + b. The interval
[a, b] ⊂ (−1, 1) contains the spectrum of the iteration matrix M−1N , and at
step k the error is bounded by

‖x− yk‖ ≤ 1

|Ck(μ)|‖x− y0‖.

Algorithm 11.7. Chebyshev-Semi-iterative Method I

w = 2; μ = 2−a−b
b−a

; γ = 2
2−a−b

;
choose y0;
r = b− Ay0;
Solve Mz = r;
y1 = y0 + γz;
k = 1; c = 4μ2;
while not converged

w = c/(c− w);
r = b− Ayk;
Solve Mz = r;
k = k + 1;
yk = w(γz + yk−1 − yk−2) + yk−2;

end

Remarks

1. The larger μ = 2−a−b
b−a

= 1 + 2 1−b
b−a

is, the smaller 1/|Ck(μ)| becomes,
and the better the iteration converges.

2. In the special case of b = ρ(M−1N) = −a < 1, we have

γ = 1, μ =
1

ρ
and the error is bounded by

1

|Ck(
1
ρ
)| ≤ ρk.

Thus, if the basic iteration converges rapidly, then the accelerated it-
eration converges even faster.

3. A drawback of the method is that we need to know the parameters a
and b or ρ.

724 ITERATIVE METHODS FOR LINEAR SYSTEMS

4. In deriving the method, we have assumed that the iteration matrix
M−1N is symmetric. However, for our arguments to hold, it is sufficient
for the iteration matrix to have only real eigenvalues smaller than one
in modulus. For non-symmetric matrices, this is unfortunately rarely
the case: for example if we choose SOR as the basic iteration,

GSOR = (D + ωL)−1((1− ω)D − ωU),

the matrix is non-symmetric and we will in general have complex eigen-
values. A symmetrized version is therefore of interest, as we will see
shortly.

We now rewrite the semi-iterative method in slightly different form, when
the iteration matrix is only known as G,

xk+1 = M−1Nxk +M−1b =: Gxk + d.

With M and N , the method was given by

yk = ωkγ
[
(M−1N − I)yk−1 +M−1b

]
+ ωkyk−1 + (1− ωk)yk−2,

which becomes, when using G and d,

yk = ωk

[
γ(Gyk−1 + d) + (1− γ)yk−1

]
+ (1− ωk)yk−2. (11.65)

The following algorithm accelerates the basic stationary iteration xk+1 =
Gxk + d, when the interval [a, b] ⊂ (−1, 1) contains the spectrum of the
iteration matrix G.

Algorithm 11.8. Chebyshev-Semi-iterative Method II

w = 2; μ = 2−a−b
b−a

; γ = 2
2−a−b

;
choose y0;
y1 = Gy0 + d;
k = 1; c = 4μ2;
while not converged

w = c/(c− w);
z = Gyk + d;
k = k + 1;
yk = w(γz + (1− γ)yk−1) + (1− w)yk−2;

end

11.5.2 Acceleration of SSOR

As mentioned before, the iteration matrix of SOR is in general non-symmetric
and may have complex eigenvalues. It is however possible to symmetrize
SOR by performing an additional backward step. By doing so we obtain the

Global Minimization with Chebyshev Polynomials 725

symmetric successive over relaxation iteration, or SSOR. One iteration step
consist of two parts:

Forward half step: (D + ωL)xk+ 1
2
= ωb+ (1− ω)Dxk − ωUxk,

Backward half step: (D + ωU)xk+1 = ωb+ (1− ω)Dxk+ 1
2
− ωLxk+ 1

2
.

Theorem 11.20. Let A be symmetric with positive diagonal D > 0. Then
the eigenvalues of the iteration matrix of SSOR are real and non-negative.

Proof. Without loss of generality, we can assume that D = I, since
otherwise we can transform the system Ax = b and consider the equivalent
system D− 1

2AD− 1
2 (D

1
2x) = D− 1

2 b, whose matrix is symmetric with unit
diagonal.

Let U = L� and A = I + L+ L�; the iteration matrix is then

GSSOR = (I + ωU)−1 ((1− ω)I − ωL) (I + ωL)−1 ((1− ω)I − ωU) .

Factoring out ω, we get

GSSOR =

(
1

ω
I + U

)−1(
1− ω

ω
I − L

)(
1

ω
I + L

)−1(
1− ω

ω
I − U

)
.

Now observe that the matrices
(
1−ω
ω I − L

) (
1
ω I + L

)−1
commute, therefore

(
1

ω
I + U

)
GSSOR

(
1

ω
I + U

)−1

= H(ω)H(ω)�

with

H(ω) =

(
1

ω
I + L

)−1(
1− ω

ω
I − L

)
.

The matrix GSSOR is thus similar to the symmetric positive (semi)-definite
matrix HH�, and therefore the eigenvalues are real and non-negative. �

The following algorithm accelerates SSOR using the Chebyshev Semi-
Iterative method, when the eigenvalues of the iteration operator GSSOR sat-
isfy 0 ≤ a ≤ λ(GSSOR) ≤ b < 1. We denote the overrelaxation parameter in
SSOR by ωSSOR, since the Chebyshev semi-iterative method uses the variable
ω already.

Algorithm 11.9. Chebyshev Acceleration of SSOR

w = 2; μ = 2−a−b
b−a

; γ = 2
2−a−b

;
choose y0;
y1 = SSOR(y0, ωSSOR); k = 1; c = 4μ2;
while not converged

w = c/(c− w);

726 ITERATIVE METHODS FOR LINEAR SYSTEMS

z = SSOR(yk, ωSSOR);
k = k + 1;
yk = w(γz + (1− w)yk−1) + (1−w)yk−2;

end

11.6 Global Minimization by Extrapolation

This section is based on the theory developed by Sidi [126, 125] and Brezinski
[11]. We consider the linear system Ax = b with A ∈ R

n×n and b ∈ R
n, a

splitting A = M −N , and the basic stationary iteration in the two forms

Mxi+1 = Nxi + b (11.66)

xi+1 = Gxi + d, G := M−1N, d := M−1b. (11.67)

Here, we do not assume that A is symmetric, but we do require A to be
non-singular. This is equivalent to assuming that 1 is not an eigenvalue of
G, i.e., that the system

(I −G)x = d,

has a unique solution.
The idea of extrapolation methods is the same as with the acceleration

by Chebyshev polynomials: one tries to form a clever linear combination of
the iterates xi in order to converge more quickly to the desired solution. We
denote as before the weights of the linear combination by γi for i = 0, 1, . . . , k,
with the normalization condition

∑k
i=0 γi = 1. We have

xi = x− ei =⇒
k∑

i=0

γixi

︸ ︷︷ ︸
yk

= x

k∑
i=0

γi

︸ ︷︷ ︸
1

−
k∑

i=0

γiei,

and therefore

yk = x−
k∑

i=0

γiei. (11.68)

For yk to be a good approximation, we would like to have

k∑
i=0

γiei ≈ 0. (11.69)

Because of the error recurrence (11.9), we have ei = Gei−1, which means

k∑
i=0

γiG
ie0 = Pk(G)e0 ≈ 0. (11.70)

Again, as in the previous section, we conclude that yk = x if the polynomial
Pk is the minimal polynomial of G with respect to the vector e0.

Global Minimization by Extrapolation 727

Lemma 11.7. If Pk(G)e0 = 0, then Pk(G)em = 0 and Pk(G)um = 0 for
m ≥ 0, where um := xm+1 − xm.

Proof. Using Equations (11.12) and (11.14), we get

um = Gum−1, and um = (I −G)em, (11.71)

and since polynomials in G commute, we obtain from Pk(G)e0 = 0 that

0 = GmPk(G)e0 = Pk(G)Gme0 = Pk(G)em,

and similarly

0 = (I −G)Pk(G)em = Pk(G)(I −G)em = Pk(G)um.

�
As a consequence of this lemma, we could try to obtain Pk(G)u0 ≈ 0.

Written in terms of the coefficients of the polynomial, this expression becomes

Pk(G)u0 = γ0u0 + γ1 Gu0︸︷︷︸
u1

+ · · · + γk G
ku0︸ ︷︷ ︸
uk

= [u0,u1, . . . ,uk]γ. (11.72)

Introducing the matrix Uk ∈ R
n×(k+1) defined by

Uk := [u0,u1, . . . ,uk], (11.73)

we would like to determine the coefficients γi in the vector γ ∈ R
k+1 such

that

Ukγ ≈ 0, subject to the constraint

k∑
i=0

γi = 1. (11.74)

In order to remove the constraint, we parametrize the γi by k parameters ξi,

γ0 = 1− ξ0
γ1 = ξ0 − ξ1

· · ·
γi = ξi−1 − ξi

· · ·
γk = ξk−1,

which leads to6 γ = Sξ + e1, ξ ∈ R
k, with the matrix

S =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1
1 −1

1
. . .

. . . −1
1

⎤
⎥⎥⎥⎥⎥⎥⎦
, S ∈ R

(k+1)×k. (11.75)

6In this chapter, we use ei to denote the i-th standard basis vector, in order to distin-
guish it from ei, the i-th error vector.

728 ITERATIVE METHODS FOR LINEAR SYSTEMS

With this new parametrization, Equation (11.74) becomes

Ukγ = UkSξ + Uke1 ≈ 0.

The matrix UkS consists of the columns

UkS = [−u0 + u1,−u1 + u2, . . . ,−uk−1 + uk].

We set wj = uj+1 − uj and define

Wk := [w0, . . . ,wk] ∈ R
n×(k+1).

With this notation, Equation (11.74) becomes

Wk−1ξ ≈ −u0. (11.76)

We also introduce the matrix

Xk = [x0, . . . ,xk] ∈ R
n×(k+1).

Then once the coefficients γi or ξi have been computed, the extrapolated
vector is obtained from the formula

yk = Xkγ = XkSξ +Xke1 = Uk−1ξ + x0.

We therefore obtain two forms for the extrapolation algorithm:

Algorithm 11.10. Generic Extrapolation Algorithms

First Form: Choose k and solve

Ukγ ≈ 0 s.t.

k∑
j=0

γj = 1, (11.77)

yk = Xkγ. (11.78)

Second Form: Choose k and solve

Wk−1ξ + u0 ≈ 0, (11.79)

yk = x0 + Uk−1ξ. (11.80)

Definition 11.13. (Krylov Space) Let A ∈ R
n×n and r ∈ R

n. The
associated Krylov space of dimension k is

Kk(A, r) = span{r, Ar, A2r, . . . , Ak−1r}. (11.81)

From (11.80), it follows that

Global Minimization by Extrapolation 729

yk − x0 = [u0,u1, . . . ,uk−1]ξ = [u0, Gu0, . . . , G
k−1u0]ξ,

and therefore this difference lies in a Krylov space,

yk − x0 ∈ Kk(G,u0). (11.82)

If we choose x0 = 0, we have x1 = Gx0+d = d, and thus u0 = x1−x0 = d,
which implies

yk ∈ Kk(G,d). (11.83)

Notice that in the case x0 = 0 we also have

xk ∈ Kk(G,d) = Kk(M
−1N,M−1b), (11.84)

since

x1 = d

x2 = Gx1 + d

. . .

xk =

k−1∑
j=0

Gjd.

11.6.1 Minimal Polynomial Extrapolation (MPE)

We consider the first form of the generic extrapolation algorithm,

Ukγ ≈ 0 s.t.
k∑

j=0

γj = 1,

and we now have to define what we mean by solving Ukγ ≈ 0 approximately.
The idea of Minimal Polynomial Extrapolation (MPE) is to fix the last coef-
ficient to equal one, and then to solve

Uk−1c ≈ −uk (11.85)

as a least squares problem, see Section 6.2. This leads to the polynomial

Pk(G) = c0 + c1G+ · · · + ck−1G
k−1 +Gk, (11.86)

which is an approximation of the minimal polynomial. With ck = 1, we then
obtain the scaled coefficients

γj =
cj∑k
i=0 ci

, j = 0, . . . , k. (11.87)

However, these coefficients can only be computed if
∑k

i=0 ci 	= 0. Otherwise,
the extrapolated value yk does not exist.

730 ITERATIVE METHODS FOR LINEAR SYSTEMS

If we solve the least squares problem (11.85) using the normal equations,
see (6.13) in Chapter 6, we obtain

U�
k−1Uk−1c = −U�

k−1uk.

With ck = 1, moving the right hand side to the left and dividing by
∑k

j=0 cj ,
we get

U�
k−1Ukγ = 0, s.t.

k∑
j=0

γj = 1. (11.88)

Theorem 11.21. Let the coefficients γ be determined by (11.88). Let
yk = Xkγ be the extrapolated approximation and consider the preconditioned
residual

rk = d− (I −G)yk = M−1(b− Ayk).

Then
rk = Ukγ and rk ⊥ Kk(G,u0).

Proof. Since the coefficients γi sum up to one, we have

d = [d,d, . . . ,d]γ =: Dγ.

Using this relation, we obtain for the residual

rk = d−(I−G)yk = d−(I−G)Xkγ = Dγ−(I−G)Xkγ = (D+GXk−Xk)γ.
(11.89)

Now since Xk = [x0,x1, . . . ,xk] and xk+1 = Gxk + d, we have D +GXk =
[x1,x2, . . . ,xk+1] and from (11.89) we obtain

rk = ([x1, . . . ,xk+1]− [x0, . . . ,xk])γ = Ukγ.

For the second result, by (11.88), we have U�
k−1rk = 0, which shows that

rk ⊥ Kk(G,u0). �
The following Matlab function MPE is meant to illustrate the theory

presented. It can be optimized for the purpose of just solving linear equations,
in which case a few operations can be saved, see [125].

Algorithm 11.11. MPE

function [Y,X,U,Gamma]=MPE(G,d,x0,n)

% MPE Minimal Polynomial Extrapolation

% [Y,X,U,Gamma]=MPE(G,d,x0,n) performs n number of iteration steps

% x(j+1)=G*x(j)+d starting with x0 and computes an extrapolated

% vector y at each iteration, stored in the matrix Y. The basic

% iteration steps and their differences are stored in X and U

% respectively, and Gamma contains the coefficients of the

Global Minimization by Extrapolation 731

% polynomial at each step.

n=length(d);

Y=[]; U=[]; Gamma=zeros(n+1,n+1);

xk=x0; X=xk;

for k=0:n

xk1=G*xk+d; X=[X,xk1];

uk=xk1-xk; U=[U,uk];

c=[-U(:,1:k)\uk;1];

y=X(:,1:k+1)*c/sum(c);

Gamma(:,k+1)=[c/sum(c); zeros(n-k,1)];

Y=[Y,y];

xk=xk1;

end;

Example 11.3. We consider the linear system with the non-symmetric
matrix

A =

⎛
⎜⎜⎝

0 −4 −8 −2
−4 −7 −7 −8
−9 −5 −4 −5
0 −5 −9 −6

⎞
⎟⎟⎠ . (11.90)

and with the right hand side b such that the solution vector x is x=[1, 2, . . . , n]:

>> A=[0 -4 -8 -2

-4 -7 -7 -8

-9 -5 -4 -5

0 -5 -9 -6];

>> n=max(size(A)); x=(1:n)’; b=A*x;

>> x0=x-5 ; % Starting vector

>> G=eye(size(A))-A;

>> [Y,X,U,Gamma]=MPE(G,b,x0,4);

We first note that the basic iteration xi+1 = Gxi + b diverges:

>> X

X =

-4 -74 -1784 -38804 -873794 -19498334

-3 -133 -3058 -68863 -1539508 -34438633

-2 -117 -2472 -56187 -1249542 -27984777

-1 -101 -2486 -55001 -1235066 -27588941

The extrapolated solutions, however, converge:

>> Y

Y =

-4.0000 -0.7314 0.2662 1.0638 1.0000

-3.0000 3.0703 3.1914 1.6232 2.0000

-2.0000 3.3698 1.8713 3.1228 3.0000

-1.0000 3.6694 4.6950 4.1728 4.0000

732 ITERATIVE METHODS FOR LINEAR SYSTEMS

According to Theorem 11.21, the residual is given by rk = Ukγ. We obtain
for the residuals of all approximations

>> U*Gamma

ans =

-70.0000 6.5787 -2.8739 -0.1797 0

-130.0000 0.5106 3.0638 -0.1411 0

-115.0000 -10.4047 -1.6869 0.0451 0.0000

-100.0000 6.6965 -0.0313 0.2573 -0.0000

This should be compared to the explicitly computed true residuals for verifi-
cation: for the norm of the difference, we indeed get

>> R=b*ones(1,5)-A*Y;

>> norm(R-U*Gamma)

ans =

8.6075e-12

We can also verify that the new residual is orthogonal to the Krylov space,
rk ⊥ Kk(G,u0):

>> u0=U(:,1);

>> K=[u0, G*u0, G^2*u0, G^3*u0]

K =

-70 -1710 -37020 -834990

-130 -2925 -65805 -1470645

-115 -2355 -53715 -1193355

-100 -2385 -52515 -1180065

>> K’*R

ans =

4.5025e+04 -1.6485e-11 2.9985e-11 -2.0119e-10 1.8503e-10

1.0093e+06 -4.2113e+03 7.0391e-10 -4.5384e-09 4.8380e-09

2.2575e+07 -6.9924e+04 -2.9673e+03 -1.0101e-07 1.0288e-07

5.0488e+08 -1.7299e+06 -5.6105e+04 3.8879e+01 2.3325e-06

The result is a lower triangular matrix. The upper triangle is essentially
zero, which shows the orthogonality rk ⊥ uj for j = 0, 1, . . . , k− 1 (up to the
accuracy possible, given the size of the elements in the matrix K, which is
naturally not well conditioned, κ(K) ≈ 5.8294e+09).

Finally, the coefficients c are approximations of the coefficients of the
minimal polynomial Pk, see Equation (11.86). We compare the coefficients
obtained in the last step with the coefficients of the characteristic polynomial
of G:

>> poly(G)

ans =

1.0000 -21.0000 -57.0000 637.0000 -984.0000

>> coeff=Gamma(:,5)’/Gamma(5,5);

>> coeff(5:-1:1)-poly(G)

ans =

1.0e-08 *

0 0.0007 -0.0139 -0.0733 0.3246

Global Minimization by Extrapolation 733

and we observe a good match.

11.6.2 Reduced Rank Extrapolation (RRE)

We consider now the second form of the generic extrapolation algorithm (see
Algorithm 11.10). In this case we solve approximately

Wk−1ξ ≈ −u0 (11.91)

as a least squares problem. The extrapolated vector then becomes

yk = x0 + Uk−1ξ. (11.92)

The normal equations for (11.91) are

W�
k−1Wk−1ξ = −W�

k−1u0. (11.93)

Now since Wk−1 = UkS and u0 = Uke1 it follows that

0 = W�
k−1UkSξ +W�

k−1u0 = W�
k−1Uk(Sξ + e1) = W�

k−1Ukγ.

This gives us an alternative formulation for determining the coefficients for
RRE,

W�
k−1Ukγ = 0, s.t.

k∑
j=0

γj = 1. (11.94)

On the other hand, let e = (1, 1, . . . , 1)� be the vector of all ones, and
consider the least squares problem with a linear constraint,

Ukγ ≈ 0, s.t.
k∑

j=0

γj = e�γ = 1.

Writing the normal equations for the constrained minimization problem (see
Equation (6.48)), we obtain

U�
k Ukγ = λe
e�γ = 1.

(11.95)

By subtracting consecutive equations, we can eliminate the unknown λ. This
is done by multiplying the matrix S� from (11.75) from the left. The reduced
system becomes

S�U�
k Ukγ = W�

k−1Ukγ = 0, e�γ = 1. (11.96)

So we obtain the same equation as (11.94). These results show again an
orthogonality relation, which is summarized in the following theorem.

Theorem 11.22. Let the coefficient vector γ be determined by (11.94), let
yk = Xkγ be the extrapolated approximation, and consider the preconditioned
residual

rk = d− (I −G)yk = M−1(b− Ayk) = Ukγ.

734 ITERATIVE METHODS FOR LINEAR SYSTEMS

Then this residual is orthogonal to a Krylov space,

rk ⊥ Kk(G,w0).

Notice that for MPE and RRE, the preconditioned residuals for the ex-
trapolated values are orthogonal to different Krylov spaces, since the initial
vector is different. However, Krylov spaces are invariant with respect to

Scaling: Kk(A, r) = Kk(σA, τr),

Translation: Kk(A, r) = Kk(A− σI, r)
(11.97)

for any matrix A and vector r. In our case, since w0 = (G − I)u0 =
−M−1Au0 and M−1N = I −M−1A, it follows that

Kk(G,w0) = Kk(M
−1N,w0) = Kk(M

−1A,M−1Au0)

= M−1AKk(M
−1A,u0),

and thus we have for

MPE: rk ⊥ Kk(M
−1A,u0)

RRE: rk ⊥ M−1AKk(M
−1A,u0) .

11.6.3 Modified Minimal Polynomial Extrapolation (MMPE)

We now discuss a variant of MPE. To approximate the coefficients γi of the
minimal polynomial, we wish to solve approximately

Ukγ ≈ 0 s.t.
k∑

j=0

γj = 1.

Instead of solving this as a least squares problem, one can also use a Galerkin
approach. Let Qk−1 = [q0,q1, . . . ,qk−1] ∈ R

n×k be any matrix with full rank
k. MMPE determines the coefficients by solving

Q�
k−1Ukγ = 0,∑k

j=0 γj = 1.
(11.98)

Now rk is orthogonal to S = span{q0,q1, . . . ,qk−1}. The space S is so far

arbitrary, but one can find a matrix G̃ for which it is a Krylov space. To
this end, we augment Qk−1 to a full n × n matrix by adding n − k linearly
independent columns,

Q̃ = [q0,q1, . . . ,qk−1, q̃k, q̃k+1, . . . , q̃n−1],

Global Minimization by Extrapolation 735

and denote by q̃i := qi the first columns i = 0, . . . , k − 1. We want to
determine a matrix G̃ such that

q̃i+1 = G̃q̃i

holds. This means that, with some vector x to be chosen, the matrix equation

[q̃1, . . . , q̃n−1,x] = G̃Q̃

must hold, and thus
G̃ = [q̃1, . . . , q̃n−1,x]Q̃

−1.

How should one choose the vectors qi? A simple choice is to take randomly
selected linearly independent unit vectors ej . Doing so means to choose k
equations randomly from the linear system

Ukγ = 0,

and to solve them together with the normalization condition
∑k

j=0 γj = 1.
There are however many other choices for qi; one particular choice is dis-
cussed next.

11.6.4 Topological ε-Algorithm (TEA)

This extrapolation variant is the same as MMPE but with a specific matrix
Qk−1 ∈ R

n×k. We choose some vector q ∈ R
n and define

Qk−1 := [q, G�q, . . . , (G�)k−1q],

where G = M−1N . With this matrix, we solve as before the linear system

∑k
j=0 γj = 1,

Q�
k−1Ukγ = 0.

(11.99)

Note that using the recurrence uk+1 = Guk, the product matrix Q�
k−1Uk

becomes

Q�
k−1Uk =

⎛
⎜⎜⎜⎝

q�u0 q�u1 · · · q�uk

q�u1 q�u2 · · · q�uk+1

...
... · · · ...

q�uk−1 q�uk · · · q�u2k−1

⎞
⎟⎟⎟⎠ . (11.100)

As a consequence, we do not need to compute Qk−1 explicitly; however, more
basic iteration steps are necessary to compute the entire matrix, since we need
the vectors ui up to i = 2k − 1.

In the following program, we compute approximations γ for k = 1, 2, . . . , n
by updating the matrix of the linear system (11.99).

736 ITERATIVE METHODS FOR LINEAR SYSTEMS

Algorithm 11.12. TEA

function [Y,X,U]=TEA(G,d,x0,q,n)

% TEA Topological Epsilon Algorithm

% [Y,X,U]=mpe(G,d,x0,n) performs n number of iteration

% steps x(j+1)=G * x(j) + d starting with x0 and computes an

% extrapolated vector y at each iteration, stored in the matrix

% Y. The basic iteration steps and their differences are stored

% in X and U respectively.

X=[x0]; Y=[x0]; U=[]; xk=x0; QU=1;

for k=1:n

m=k+1; % size of linear system

xk1=G*xk+d; X=[X,xk1]; % compute two basic iterations

xk2=G*xk1+d; X=[X,xk2];

uk1=xk1-xk; uk2=xk2-xk1; % form the new differences

U=[U,uk1, uk2];

QU(1,m)=1; % update the matrix for gamma

for j=2:m-2 % copy elements in new column m

QU(j,m)=QU(j+1,m-1);

end

for j=1:m-2 % copy elements for new row m

QU(m,j)=QU(m-1,j+1);

end

QU(m,m-1)=q’*uk1; % update elements in corner

if m>2,

QU(m-1,m)=QU(m,m-1);

end

QU(m,m)=q’*uk2;

ee=zeros(m,1); ee(1)=1; % right hand side

gamma=QU\ee;

y=X(:,1:k+1)*gamma;

Y=[Y,y];

xk=xk2;

end;

Example 11.4. We consider the linear system Ax = b with the non-
symmetric matrix (11.90). As basic iteration we use xk+1 = (I − A)xk + b.
As vector q we choose the starting vector q = x0.

A=[0 -4 -8 -2

-4 -7 -7 -8

-9 -5 -4 -5

0 -5 -9 -6];

n=max(size(A)); x=(1:n)’; b=A*x;

x0=x-5; % Starting vector

q=x0;G=eye(size(A))-A;

Global Minimization by Extrapolation 737

[Y,X]=TEA(G,b,x0,x0,n);

Y, format short e, X

We obtain the following results: the basic iteration diverges,

X =

Columns 1 through 6

-4.0000e+00 -7.4000e+01 -1.7840e+03 -3.8804e+04 -8.7379e+05 -1.9498e+07

-3.0000e+00 -1.3300e+02 -3.0580e+03 -6.8863e+04 -1.5395e+06 -3.4439e+07

-2.0000e+00 -1.1700e+02 -2.4720e+03 -5.6187e+04 -1.2495e+06 -2.7985e+07

-1.0000e+00 -1.0100e+02 -2.4860e+03 -5.5001e+04 -1.2351e+06 -2.7589e+07

Columns 7 through 9

-4.3631e+08 -9.7555e+09 -2.1817e+11

-7.7011e+08 -1.7222e+10 -3.8514e+11

-6.2555e+08 -1.3991e+10 -3.1287e+11

-6.1718e+08 -1.3801e+10 -3.0864e+11

However, the extrapolated values converge:

Y =

-4.0000 -0.7757 0.1403 3.2917 1.0000

-3.0000 2.9880 3.1933 -2.3914 2.0000

-2.0000 3.2971 2.0914 5.9430 3.0000

-1.0000 3.6062 4.5696 3.0331 4.0000

11.6.5 Recursive Topological ε-Algorithm

Given a sequence of vectors, one could attempt to apply the scalar ε-algorithm
seen in Section 5.2.4 to each component. This turns out not to be very
successful.

In order to generalize the ε-scheme for a vector sequence {xj}, we have
to give a meaning to the “inverse of a vector” used in the recursion (5.20).
One possibility proposed by Wynn [152] is to use the pseudo-inverse (also
called Samelson inverse in the case of a vector), defined by

y−1 :=
1

||y||2 y
�. (11.101)

It has been conjectured by Wynn and proved by McLeod in [90] that if the
sequence {xj} with limit x has the property that for some βi ∈ R,

k∑
i=0

βi(xm+i − x) = 0, m = 0, 1, . . .

then ε
(m)
2k defined by the ε-Algorithm satisfy ε

(m)
2k = x if

∑k
i=0 βi 	= 0. This

is however all that one knows about this method, called the vector epsilon
algorithm (VEA).

738 ITERATIVE METHODS FOR LINEAR SYSTEMS

A second generalization for vector sequences is based on a different inter-
pretation of “inverse” [11]. Brezinski defines the inverse of an ordered pair
(a, b) of vectors satisfying a�b 	= 0 to be the ordered pair (b−1,a−1), where

b−1 =
a

b�a
, a−1 =

b

b�a
.

For real sequences {xj}, two algorithms result with this interpretation [136].

The first one is TEA1 (note that the difference in Δε
(n)
m is with respect to

n):

Algorithm 11.13. Topological ε-Algorithm TEA1

Choose an arbitrary vector q and set

ε
(n)
−1 = 0, ε

(n)
0 = xn, n = 0, 1, 2, . . .

ε
(n)
2m+1 = ε

(n+1)
2m−1 +

q

q�Δε
(n)
2m

ε
(n)
2m+2 = ε

(n+1)
2m +

Δε
(n)
2m

(Δε
(n)
2m+1)

�Δε
(n)
2m

m,n = 0, 1 . . .

To update ε
(n)
2m+1, we use the inverse of Δε

(n)
2m with respect to q, whereas to

update ε
(n)
2m+2, the inverse of ε

(n)
2m+1 with respect to Δε

(n)
2m is used. A second

variant, TEA2, uses the difference in the numerator of the last line of the
algorithm at step n+ 1, see Problem 11.33.

For the Matlab implementation, we rewrite Algorithm 5.4 to work for
vectors. As stated in Algorithm 11.13, we have to distinguish between even
and odd columns.

Algorithm 11.14. Matlab implementation of TEA1

function [x,W,E]=TEA1(A,b,x0,n);

% TEA1 topological epsilon algorithm, first variant

% [x,W,E]=TEA1(A,b,x0,n); topological epsilon algorithm to

% accelerate the convergence of the sequence x_{j+1}=(I-A)*x_j+b

% starting with x0. Returns the last result in x, the accelerated

% vectors on the diagonal of the epsilon table in W, and the vectors

% in the last row of the epsilon table in reverse order in E.

W=[]; r0=b-A*x0;

y=r0/norm(r0)^2; E(:,1)=x0;

for i=2:2*n+1

v=zeros(size(x0));

E(:,i)=(eye(size(A))-A)*E(:,i-1)+b;

Krylov Subspace Methods 739

for j=i:-1:2

if rem(i+j,2) == 0, % i+j even

de(:,j-1) = E(:,j)-E(:,j-1);

w=v+y/(y’*de(:,j-1));

else % i+j odd

w=v+de(:,j-1)/(de(:,j-1)’*(E(:,j)-E(:,j-1)));

end;

v=E(:,j-1);

E(:,j-1)=w;

end;

W=[W w];

end

x=E(:,1);

It is shown in [11] that TEA1 computes a generalized Shanks transform
and yields the same extrapolated values as those obtained from the “normal
equations” with the TEA algorithm described in Section 11.6.4. This is the
case if we choose

q = r0 = b− Ax0.

We will verify this in the following example.

Example 11.5.

A=[0 -4 -8 -2

-4 -7 -7 -8

-9 -5 -4 -5

0 -5 -9 -6];

n=length(A); x=(1:n)’; b=A*x;

x0=x-5; % Starting vector

[s,W]=TEA1(A,b,x0,4); te=W(:,2:2:8)

q=b-A*x0; G=eye(size(A))-A;

[Y,X]=TEA(G,b,x0,q,n); Y

We indeed get the same extrapolated vectors:

te =

-0.7314 -26.5624 0.8810 1.0000

3.0703 -0.0670 1.6982 2.0000

3.3698 42.1720 3.2542 3.0000

3.6694 -22.8856 4.0633 4.0000

Y =

-4.0000 -0.7314 -26.5624 0.8810 1.0000

-3.0000 3.0703 -0.0670 1.6982 2.0000

-2.0000 3.3698 42.1720 3.2542 3.0000

-1.0000 3.6694 -22.8856 4.0633 4.0000

11.7 Krylov Subspace Methods

Krylov subspace methods are non-stationary methods that search for an ap-
proximate solution of Ax = b in some lower dimensional Krylov subspace.

740 ITERATIVE METHODS FOR LINEAR SYSTEMS

11.7.1 The Conjugate Gradient Method

The Conjugate Gradient Method (CG) is a method for solving linear sys-
tems of equations with symmetric and positive definite coefficient matrices.
The preconditioned conjugate gradient method is used nowadays as a stan-
dard method in many software libraries, and CG is the starting point of
Krylov methods, which are listed among the top ten algorithms of the last
century [27].

Let A ∈ R
n×n be a symmetric positive definite matrix. Then solving the

linear system Ax = b is equivalent to finding the minimum of the quadratic
form

Q(x) =
1

2
x�Ax− x�b, (11.102)

as one can see by differentiation, see Problem 11.20. The conjugate gradient
method belongs to the class of descent methods , see Section 11.4, and also
Section 12.3.1 in the chapter on optimization. Such methods compute the
minimum of the quadratic form (11.102) iteratively: at step k,

1. a direction vector pk is chosen, and

2. the new vector xk+1 = xk+αkpk is computed, where αk is chosen such
that

Q(xk + αkpk) −→ min .

An interesting class of methods is obtained if we choose conjugate directions ,
that is if

p�
i Apj = 0, for i 	= j. (11.103)

Conjugate directions have the following properties:

Theorem 11.23. Let A ∈ R
n×n be a symmetric positive definite matrix,

let x0 ∈ R
n be given, and let the direction vectors pi 	= 0, i = 0, 1, . . . , n− 1

be conjugate. Then the sequence xk defined by

xk+1 = xk + αkpk, with αk =
p�
krk

p�
kApk

and rk = b− Axk

converges in at most n steps to the solution of Ax = b.
Proof. We will give two proofs for this theorem: the first proof will

illustrate the meaning of the parameter α. Let xk+1 = xk + αp. Then
minimizing

Q(xk+1) =
1

2
x�
k+1Axk+1 − b�xk+1

with respect to α yields the equation

∂Q

∂α
= p�Axk+1 − b�p = p�A(xk + αp)− b�p = 0,

Krylov Subspace Methods 741

and we get the solution

α =
p�rk

p�Ap
.

Thus, by this choice of α, we are minimizing the quadratic form Q along the
line xk + αp.

Before continuing the proof for the general case, we first look at the case
where the matrix A is diagonal, which will be helpful later. In that case we
have

Q(x) =
1

2

∑
i

aiix
2
i − b�x,

and as conjugate direction we can take the unit vectors ei, since e�i Aej =
aij = 0 for i 	= j. In this special case, Q is minimal for xi = bi/aii. Now let
x0 be some initial vector. Then

x1 = x0 + α0e1 with α0 =
e�1 (b− Ax0)

e�1Ae1
=

b1 − a11x0,1

a11
.

Thus, in the first iteration step, only the first element of the initial vector is
changed, and we obtain

x1 =

⎛
⎜⎜⎜⎝

b1
a11

x0,2

...
x0,n

⎞
⎟⎟⎟⎠ .

In the second iteration step, we obtain

x2 =

⎛
⎜⎜⎜⎜⎜⎝

b1
a11
b2
a22

x0,3

...
x0,n

⎞
⎟⎟⎟⎟⎟⎠ ,

and so on, so after n steps we do get the exact solution xn = x.
Now let A be a general symmetric positive definite matrix, and P =

[p0, . . . ,pn−1] be the conjugate directions. Then P�AP = D withD diagonal
and dii = p�

i Api > 0 (note this is not the eigenvalue decomposition, since P
is not orthogonal!). With the change of variables x = Py, we get

Q(x) =
1

2
(Py)�APy − b�Py =

1

2
y�Dy − (P�b)�y =: R(y).

Minimizing this quadratic form with respect to y is equivalent to solving the
diagonal linear system Dy = P�b. Using the unit vectors ei as conjugate
directions, we see that the coefficients are

αk =
e�k(P

�b−Dyk)

e�kDek
=

p�
k(b− Axk)

p�
kApk

,

742 ITERATIVE METHODS FOR LINEAR SYSTEMS

and thus they are the same as for the original variable x. As shown before
in the special case, the iteration

yk+1 = yk + αkek (11.104)

converges in n steps. Multiplying (11.104) from the left by P , we see that

xk+1 = xk + αkpk

also converges in n steps, which concludes the first proof.
The second proof shows and uses the orthogonality between the residuals

and the direction vectors. Using xk+1 = xk +αpk and observing that the pj

are conjugate, we get

(b− Axk+1)
�pj = (b− Axk − αkApk)

�pj = (b−Axk)
�pj , j < k.

Since this relation holds for all k > j, we see by induction that

(b−Axk+1)
�pj = (b−Axk)

�pj = (b−Axk−1)
�pj = · · · = (b−Axj+1)

�pj ,

i.e. all these scalar products have the same value. The last product is

(b−Axj+1)
�pj = (b−Axj−αjApj)

�pj = (b−Axj)
�pj−

p�
j rj

p�
jApj

p�
jApj = 0,

So this means that all products are zero, and that the residuals for k > j are
orthogonal to the direction vectors

pj ⊥ rk, k > j. (11.105)

If we consider in particular rn, then

rn ⊥ P = [p0,p1, . . . ,pn−1].

Now P�AP = D implies det(P)2 det(A) = det(D), and thus rank(P) = n,
which implies that rn = 0. �

The previous theorem shows that conjugate directions can be used to
construct an iterative method that converges in a finite number of steps. As
a result, we are interested in finding conjugate directions for a given matrix
A. One possibility is to use the eigenvectors of A: if

AQ = QD, Q�Q = I, D = diag(λ1, . . . , λn)

is the eigen-decomposition of A, then the eigenvectors Q are conjugate:

Q�AQ = D.

However, computing the eigen-decomposition is too expensive for our pur-
pose, as it is more expensive than solving the linear system, see Chapter 7.

Krylov Subspace Methods 743

Stiefel and Hestenes [70] found a much more efficient algorithm to construct
such directions, now known as the conjugate gradient algorithm:

Algorithm 11.15.
Conjugate Gradient Algorithm: CGHS

choose x0, p0 = r0 := b− Ax0; ;
for k = 0 : n− 1

αk =
r�
kpk

p�
kApk

; (11.106)

xk+1 = xk + αkpk; (11.107)

rk+1 = rk − αkApk; (11.108)

βk = −p�
kArk+1

p�
kApk

; (11.109)

pk+1 = rk+1 + βkpk; (11.110)

end

Theorem 11.24. Let A ∈ R
n×n be symmetric and positive definite. Then

the direction vectors pj in Algorithm 11.15 are conjugate, and pj 	= 0 if xj

is not the exact solution. Furthermore the residual vectors rj are orthogonal,
r�
j ri = 0 for i 	= j, and ri ⊥ pj , i > j.
Proof. The proof is the same as with BiCG, see the proof of Theorem

11.39. �
In Algorithm 11.15, each iteration seemingly requires two matrix-vector

multiplications, Apk and Ark+1. However, it is possible to avoid the second
one as follows. Using Statements (11.108) and (11.110), we get, because of
the conjugacy and the orthogonality,

r�k+1pk+1 = (rk − αkApk)
�pk+1 = r�kpk+1 = r�

k(rk+1 + βkpk) = βkr
�
kpk.

Solving for βk, and using again Statement (11.110) and that the residuals are
orthogonal to the direction vectors, Equation (11.105), we get

βk =
r�k+1pk+1

r�
kpk

=
r�
k+1(rk+1 + βkpk)

r�
k(rk + βk−1pk−1)

=
‖rk+1‖2
‖rk‖2 .

Because of r�kpk = ‖rk‖2, the computation of αk simplifies also to

αk =
‖rk‖2
p�
kApk

. (11.111)

With these observations, we obtain a version of CG which uses only one
matrix-vector multiplication per iteration step:

744 ITERATIVE METHODS FOR LINEAR SYSTEMS

Algorithm 11.16. Conjugate Gradients

function [X,R,P,alpha,beta]=CG(A,b,x0,m);

% CG conjugate gradient method

% [X,R,P,alpha,beta]=CG(A,b,x0,m) computes an approximation for the

% solution of the linear system Ax=b performing m steps of the

% conjugate gradient method starting with x0, and returns in the

% matrix X the iterates, in the matrix R the residuals, in P the

% conjugate directions and the coefficients alpha and beta.

x=x0; r=b-A*x; p=r;

R =r; P=p; X=x;

oldrho=r’*r;

for k=1:m

Ap=A*p;

alpha(k)=oldrho/(p’*Ap);

x=x+alpha(k)*p; r=r-alpha(k)*Ap;

rho=r’*r;

beta(k)=rho/oldrho; oldrho=rho;

p=r+beta(k)*p;

X=[X,x]; R=[R,r]; P=[P,p];

end

Theorem 11.25. For the vectors generated by the Conjugate Gradient
Algorithm 11.15, we have for i = 0, 1, 2, . . .

Api ∈ span{p0, . . . ,pi+1}, (11.112)

ri ∈ span{p0, . . . ,pi} = Ki+1(A,p0) = Ki+1(A, r0). (11.113)

Proof. The proof is by induction, and we start by showing the first two
statements, without the Krylov spaces. Using (11.110), (11.108) and r0 = p0,
we have

p1 = r1 + β0p0 = p0 − α0Ap0 + β0p0,

and solving for Ap0, we obtain

Ap0 =
1

α0
(1 + β0)p0 −

1

α0
p1 ∈ span{p0,p1},

and with r0 = p0 ∈ span{p0}, the statement holds for i = 0. We now assume
that the statement holds for i = 0, . . . , k. Then using (11.108), we obtain

rk+1 = rk − αkApk =
k∑

j=0

νjpj − αk

k+1∑
j=0

ηjpj ,

Krylov Subspace Methods 745

and thus rk+1 ∈ span{p0, . . . ,pk+1}. Furthermore, using again (11.110) and
(11.108), we get

pk+2 = rk+2 + βk+1pk+1 = rk+1 − αk+1Apk+1 + βk+1pk+1,

and therefore

Apk+1 =
1

αk+1
(rk+1 + βk+1pk+1 − pk+2) ∈ span{p0, . . . ,pk+2},

which concludes the induction step. It remains to prove that the vectors are
members of Krylov subspaces, which we also do by induction. For i = 0,
there is nothing to prove, so assume that

span{p0, . . . ,pk} = Kk+1{A,p0} for k < n− 1.

This implies that Akp0 ∈ span{p0, . . . ,pk}, and using (11.112) we get

Ak+1p0 = A

⎛
⎝ k∑

j=0

νjpj

⎞
⎠ =

k∑
j=0

νjApj ∈ span{p0, . . . ,pk+1}. (11.114)

In order to show that Kk+2(A,p0) ⊂ span{p0, . . . ,pk+1}, we take an element
from the Krylov space, and using (11.114) and the induction hypothesis, we
obtain

k+1∑
j=0

ηjA
jp0 = ηk+1A

k+1p0︸ ︷︷ ︸
∈span{p0,...,pk+1}

+
k∑

j=0

ηjA
jp0

︸ ︷︷ ︸
∈span{p0,...,pk}

,

and thus Kk+2(A,p0) ⊂ span{p0, . . . ,pk+1}.
To show the converse, span{p0, . . . ,pk+1} ⊂ Kk+2(A,p0), we consider

k+1∑
j=0

ηjpj = ηk+1pk+1︸ ︷︷ ︸
I

+
k∑

j=0

ηjpj

︸ ︷︷ ︸
II

.

The second term II is in Kk+1(A,p0) ⊂ Kk+2(A,p0) by induction hypothesis.
For the first term I, using the statements (11.110) and (11.108), we get

ηk+1pk+1 = ηk+1(rk+1 + βkpk) = ηk+1(rk − αkApk + βkpk).

Now again by induction hypothesis rk,pk ∈ Kk+1(A,p0), and since

Apk = A

⎛
⎝ k∑

j=0

νjA
jp0

⎞
⎠ ∈ Kk+2(A,p0),

746 ITERATIVE METHODS FOR LINEAR SYSTEMS

also the first term I is in Kk+2(A,p0), which concludes the proof. �
The convergence analysis of CG is most naturally performed in a norm

associated to the system matrix: let A ∈ R
n×n be a symmetric (A� = A) and

positive definite (x�Ax > 0,∀x 	= 0) matrix. Then one can define a vector
norm associated with A, the so called A-norm or energy norm,

‖x‖A :=
√
x�Ax.

Theorem 11.26. (Optimality of CG) Let x be the solution of Ax =
b, with A ∈ R

n×n symmetric and positive definite. Then, for each k, the
approximation xk+1 obtained by CG minimizes the A-norm of the error,

‖x− xk+1‖A = min
x̃∈Sk

‖x− x̃‖A,

where the affine Krylov subspace Sk is defined by

Sk = x0 +Kk+1(A, r0).

Proof. We compute the minimum of the norm of the error over the
space Sk and show that we obtain the same vector with CG. Each vector
x̃ ∈ Sk can be written as

x̃ = x0 +
k∑

j=0

νjpj .

Because r0 = b− Ax0 = Ae0 = A(x− x0), it follows that

x− x̃ = x− x0︸ ︷︷ ︸
A−1r0

−
k∑

j=0

νjpj ,

and therefore we obtain

‖x− x̃‖2A = (A−1r0 −
k∑

j=0

νjpj)
�A(A−1r0 −

k∑
j=0

νjpj)

= r�
0A

−1r0 − 2r�0
k∑

j=0

νjpj +

k∑
j=0

ν2j p
�
jApj , (11.115)

where all other products are zero because of the conjugacy of the direction
vectors pj . Equation (11.115) is a quadratic form in the νj with a diagonal

matrix containing p�
jApj on the diagonal, so the minimum is easy to compute,

∂‖x− x̃‖2A
∂νj

= −2r�
0pj+2νjp

�
jApj = 0 =⇒ νj =

r�
0pj

p�
jApj

, j = 0, . . . , k.

Krylov Subspace Methods 747

On the other hand, by Statement (11.108), we have

rj = rj−1 − αj−1Apj−1

= rj−2 − αj−2Apj−2 − αj−1Apj−1

...

rj = r0 −
j−1∑
i=0

αiApi,

and it follows that p�
j rj = p�

j r0. Using this relation in the result for νj , we
get

νj =
r�0pj

p�
jApj

=
r�
j pj

p�
jApj

= αj .

Now using Statement (11.107), we see that

xk+1 = xk + αkpk

= xk−1 + αk−1pk−1 + αkpk

...

= x0 +

k∑
i=0

αipi = x0 +

k∑
i=0

νipi,

which shows that xk+1 indeed minimizes ‖x− x̃‖A for all x̃ ∈ Sk. �
We are now ready to give a different interpretation of Theorem 11.26.

Since we chose p0 = r0, the approximation xk ∈ Sk−1 is

xk = x0 +
k−1∑
j=0

cjA
jr0.

Hence it follows that

rk = b− Axk = r0 −
k−1∑
j=0

cjA
j+1r0 = Rk(A)r0

where the polynomial Rk with Rk(0) = 1 is the residual polynomial. Using
Equation (11.14), A−1rk = x− xk, we can write

‖x− xk‖2A = r�
kA

−1AA−1rk = r�
kA

−1rk = ‖Rk(A)r0‖2A−1 .

Note that since A is symmetric and positive definite, A−1 is also symmetric
and positive definite, so it can be used to define a norm as well. Theorem
11.26 now becomes

748 ITERATIVE METHODS FOR LINEAR SYSTEMS

Theorem 11.27. Let xk be the approximation obtained by CG at the
k-th step. Let Rk be a polynomial of degree k with Rk(0) = 1. Then

‖ek‖A = ‖x− xk‖A = min
Rk(0)=1

‖Rk(A)r0‖A−1 .

As an immediate corollary, we have

Corollary 11.2. If A has only m ≤ n different eigenvalues, then CG
converges in at most m steps.

Proof. This theorem follows immediately from Theorem 11.27, since the
minimal polynomial for A has degree m. �

We notice also a relation to the semi-iterative method described in Section
11.5.1, see (11.64), which states that the error for the simple splitting A =
M −N with M = I and N = I − A satisfies the relation

x− yk = Pk(I −A)e0, Pk(1) = 1,

and the semi-iterative method minimizes a bound of the the 2-norm ‖Pk(I −
A)‖2 over the spectrum of the iteration matrix I − A. The minimization
problem solved implicitly by the conjugate gradient method is very similar
— the minimization is for a polynomial in A, which explains why the polyno-
mials have a different normalization. In addition, it is the A−1-norm rather
than the 2-norm that we seek to minimize. The advantage of CG is that no
parameters have to be estimated. In addition, CG finds the best polynomial
for the given spectrum of A, which explains why in practice the CG algorithm
converges better if the eigenvalues are clustered.

Let us derive a general error estimate. Here, it is impossible to take
into account all the various spectra possible, so we again assume that the
spectrum of A is contained in an interval and use Chebyshev polynomials.
Using the eigen-decomposition

A = QDQ�, Q�Q = I, D = diag(λ1, . . . , λn),

we obtain

‖Rk(A)r0‖2A−1 = r�
0QRk(D)2D−1Q�r0.

Let t := Q�r0, then

‖Rk(A)r0‖2A−1 = t�Rk(D)2D−1t =

n∑
i=1

t2i
Rk(λi)

2

λi

≤ max
i

Rk(λi)
2

n∑
i=1

t2i
λi

.

Krylov Subspace Methods 749

Now with r0 = A(x− x0), we observe that

n∑
i=1

t2i
λi

= r�
0Q

�D−1Qr0 = r�
0A

−1r0

= (x− x0)
�A(x− x0)

= ‖x− x0‖2A = ‖e0‖2A.

Assume that 0 < a = λ1 ≤ λ2 ≤ · · · ≤ λn = b, then

max
i

Rk(λi)
2 ≤ max

a≤λ≤b
|Rk(λ)|2.

Using the results of Theorem 11.18 and 11.19,

min
Rk(0)=1

max
a≤λ≤b

|Rk(λ)| = 1∣∣∣Ck

(
a+b
a−b

)∣∣∣ ≤ 2

(√
κ− 1√
κ+ 1

)k

,

together with Theorem 11.27, we get:

Theorem 11.28. (Convergence Estimate for CG) Let xk be the
approximation at the k-th step of the CG algorithm. Then the error ek :=
x− xk satisfies the estimate

‖ek‖A ≤ 2

(√
κ− 1√
κ+ 1

)k

‖e0‖A,

where κ = λn/λ1 is the condition number of the matrix A.

The Rayleigh quotient is bounded by the extremal eigenvalues, so that

λ1 ≤ x�Ax

x�x
=

‖x‖2A
‖x‖22

≤ λn =⇒
√

λ1‖x‖2 ≤ ‖x‖A ≤
√
λn‖x‖2.

From this inequality, we get the error estimate of Theorem 11.28 in the 2-
norm,

‖ek‖2 ≤ 2

(√
κ− 1√
κ+ 1

)k √
κ‖e0‖2. (11.116)

This error estimate does not necessarily imply that the error decreases mono-
tonically in each step, since it is just an upper bound. However, we also have
the following result:

Theorem 11.29. (Monotonicity of CG)With each CG step, the error
decreases. More specifically, if xk−1 	= x, then

‖x− xk‖2 < ‖x− xk−1‖2.

750 ITERATIVE METHODS FOR LINEAR SYSTEMS

Proof. Taking the difference on the right, and adding and subtracting
xk, we obtain the estimate

x− xk−1 = (x− xk) + (xk − xk−1)

=⇒ ‖x− xk−1‖22 = ‖x− xk‖22 + ‖xk − xk−1‖22 + 2(xk − xk−1)
�(x− xk).

Thus the theorem holds if we can show that 2(xk − xk−1)
�(x − xk) > 0.

Assuming that x = xm with m ≤ n, we obtain from Statement (11.107) that

xm = xm−1 + αm−1pm−1

= xm−2 + αm−2pm−2 + αm−1pm−1 etc.

=⇒ xm = xk + αkpk + · · · + αm−1pm−1.

It therefore follows that

x− xk = xm − xk = αkpk + · · · + αm−1pm−1.

With xk − xk−1 = αk−1pk−1, we obtain

(xk − xk−1)
�(x− xk) = αk−1(αkp

�
k−1pk + · · ·+ αm−1p

�
k−1pm−1).

Now all αj > 0 because of (11.111) and the positive definiteness of A. Thus,
the result holds if we can show that

p�
k−1pj > 0, j ≥ k.

By Statement (11.110), we have

pj = rj + βj−1pj−1

= rj + βj−1(rj−1 + βj−2pj−2) etc.

=⇒ pj = rj + βj−1rj−1 + · · · + (βj−1 · · · βk)rk + (βj−1 · · · βk−1)pk−1.

Using (11.105) that p�
k−1rj = 0 for j ≥ k, we get

p�
k−1pj = (βj−1 · · · βk−1)p

�
k−1pk−1 = (βj−1 · · · βk−1)‖pk−1‖2 > 0,

since βi = ‖ri+1‖2/‖ri‖2 > 0. �
Often CG is considered as a convergence accelerator for a stationary it-

erative method. To see this, we first rewrite the conjugate gradient iteration
as a three-term recurrence by eliminating the direction vectors pk. We have

xk+1 = xk + αkpk = xk + αk(rk + βk−1pk−1).

If we replace pk−1 by using xk = xk−1 + αk−1pk−1, we obtain

xk+1 = xk + αk

(
rk +

βk−1

αk−1
(xk − xk−1)

)

=

(
1 +

αkβk−1

αk−1

)
︸ ︷︷ ︸

=:ρk+1

xk + αkrk − αkβk−1

αk−1︸ ︷︷ ︸
1−ρk+1

xk−1

xk+1 = ρk+1xk + αkrk + (1− ρk+1)xk−1 (11.117)

Krylov Subspace Methods 751

With δk+1 := αk/ρk+1 and substituting b− Axk for rk, we get

xk+1 = ρk+1 (xk + δk+1(b− Axk))︸ ︷︷ ︸
δk+1((I−A)xk+b)+(1−δk+1)xk

+(1− ρk+1)xk−1,

and finally

xk+1 = ρk+1 [δk+1 ((I − A)xk + b) + (1− δk+1)xk] + (1− ρk+1)xk−1.
(11.118)

Notice the similarity with the second variant (the fixed point version) of the
semi-iterative method (11.65) applied to the simple splitting A = M − N ,
M = I and N = I − A,

yk+1 = ωk+1 [γ((I − A)yk + b) + (1− γ)yk] + (1− ωk+1)yk−1.

We see the corresponding quantities

ρk+1 =̂ωk+1, δk+1 =̂ γ = const,

which shows that CG also accelerates the basic iteration

xk+1 = (I − A)xk + b.

In the semi-iterative method, we defined

γ =
2

2− a− b
,

where [−1, 1] ⊃ [a, b] contained the spectrum of the iteration matrix I − A.
With CG, we do not need to estimate the parameters a and b, since they are
computed by the algorithm.

We now show that CG also computes a reduction of the original matrix
to a tridiagonal matrix, with interesting spectral properties. We will see this
reduction again in form of the symmetric Lanczos algorithm in Section 11.7.3.
By multiplying Equation (11.117) with −A, and adding b = ρk+1b + (1 −
ρk+1)b on both sides, we obtain a recurrence for the residual vectors,

rk+1 = (ρk+1I − αkA)rk + (1− ρk+1)rk−1. (11.119)

Because of rk = Aek, this three term recurrence is also valid for the error.
Solving for Ark, we obtain

Ark =
1− ρk+1

αk
rk−1 +

ρk+1

αk
rk − 1

αk
rk+1 (11.120)

for k = 1, 2, . . . , n− 1, with rn = 0. For k = 0, using Equation (11.108), we
obtain

r1 = r0 − α0Ap0,

752 ITERATIVE METHODS FOR LINEAR SYSTEMS

and since p0 = r0 in CG, we get

Ar0 =
1

α0
r0 − 1

α0
r1.

Defining the coefficients for k = 1, . . . , n− 1

ck :=
1− ρk+1

αk
= −βk−1

αk−1

ak+1 :=
ρk+1

αk
=

1

αk
+

βk−1

αk−1
, a1 =

1

α0

bk := − 1

αk−1

(11.121)

and the matrix of the residuals

Rk := [r0, . . . , rk−1],

Equation (11.120) becomes

ARn = RnTn, Tn =

⎡
⎢⎢⎢⎢⎣

a1 c1

b1 a1
. . .

. . .
. . . cn−1

bn−1 an

⎤
⎥⎥⎥⎥⎦ , (11.122)

and we obtain the following theorem:

Theorem 11.30. CG transforms the matrix A to the similar tridiagonal
matrix Tn (11.122). The coefficients are given by Equations (11.121).

Note that the transformation matrix Rn has orthogonal (but not or-
thonormal) columns,

R�
nRn = D2, Dn = diag(d0, d1, . . . , dn−1), di = ‖ri‖.

Theorem 11.31. Let A ∈ R
n×n, R ∈ R

n×p with full rank p and F ∈
R

p×p with p < n. Assume that the matrix decomposition AR = RF holds.
Then each eigenvalue of F is also an eigenvalue of A.

Proof. Let λ and y be an eigenpair of F : Fy = λy . Then x = Ry 	= 0,
since R has full rank, and

Ax = ARy = RFy = Rλy = λx,

and thus λ and x is an eigenpair of A. �
If we perform fewer than n CG steps, we get the decomposition

ARk = RkTk + bkrke
�
k . (11.123)

Krylov Subspace Methods 753

Note that because

e�k =
1

d2k−1

r�
k−1Rk

the correction can also be written as

ARk = RkTk +
bk

d2k−1

rkr
�
k−1Rk

or (
A− bk

d2k−1

rkr
�
k−1

)
Rk = RkTk. (11.124)

Corollary 11.3. If we perform k < n CG steps and obtain the matrix
decomposition (11.123), then the eigenvalues of Tk are eigenvalues of the
rank-one modified matrix

A− bk
d2k−1

rkr
�
k−1.

Example 11.6. We want to demonstrate the properties of the CG algo-
rithm with a numerical example. We construct a positive definite matrix with
given eigenvalues, choose an exact solution and compute the corresponding
right hand side.

>> n=6

>> d=[1 2 3 4 5 6]; % construct positive

>> Q=orth(hilb(n)); % definite matrix

>> A=Q’*diag(d)*Q;

>> xexact=(1:n)’; % choose exact solution

>> b=A*xexact; % compute right hand side

>> x0=xexact-5; % choose starting vector

We now perform n CG steps and construct the tridiagonal matrix Tn

>> k=n; % number of iterations

>> [X,P,R,alpha,beta]=CG(A,b,x0,k)

>> c=-beta(1:k-1)./alpha(1:k-1); % construct

>> a=[1/alpha(1) 1./alpha(2:k)-c]; % tridiagonal matrix

>> b=-1./alpha(1:k-1);

>> T=diag(a)+diag(c,1)+diag(b,-1)

T =

4.8074 -0.0590 0 0 0 0

-4.8074 3.4322 -0.3802 0 0 0

0 -3.3732 3.2222 -1.0030 0 0

0 0 -2.8420 3.9367 -0.7171 0

0 0 0 -2.9337 3.1342 -0.2641

0 0 0 0 -2.4170 2.4673

754 ITERATIVE METHODS FOR LINEAR SYSTEMS

For the the decomposition we obtain a good match

>> RR=R(:,1:k);

>> norm(A*RR-RR*T)

ans =

3.2710e-14

And because the matrices A and Tn are similar, i.e., R−1
n ARn = Tn, they

have the same eigenvalues:

>> [eig(A) eig(T)]

ans =

1.0000 6.0000

2.0000 5.0000

6.0000 1.0000

3.0000 4.0000

4.0000 3.0000

5.0000 2.0000

Next, we illustrate the statements of Theorem 11.24: we show by computing
R�

kRk that the residual vectors are orthogonal, and by computing P�
k APk that

the direction vectors are conjugate. Furthermore, as shown in (11.105), we
see that pj ⊥ rk for k > j because the matrix R�

kPk is upper triangular:

>> disp(’Residuals are orthogonal’)

>> format short e

>> RR’*RR

>> disp(’and directions conjugate’)

>> PP=P(:,1:k);

>> PP’*A*PP

>> disp(’p_j orth r_k for k>j’)

>> RR’*PP

Residuals are orthogonal

ans =

3.1826e+03 -2.8422e-14 0 -7.1054e-15 -1.4211e-14 9.5479e-15

-2.8422e-14 3.9090e+01 4.4409e-15 -1.1935e-15 -1.2212e-15 1.0270e-15

0 4.4409e-15 4.4059e+00 9.5757e-16 2.2204e-16 -1.8041e-16

-7.1054e-15 -1.1935e-15 9.5757e-16 1.5549e+00 3.2439e-16 -1.4311e-16

-1.4211e-14 -1.2212e-15 2.2204e-16 3.2439e-16 3.8009e-01 1.2143e-16

9.5479e-15 1.0270e-15 -1.8041e-16 -1.4311e-16 1.2143e-16 4.1531e-02

and directions conjugate

ans =

1.5300e+04 -1.7053e-13 0 -1.0658e-14 -7.1054e-14 3.5527e-14

-5.6843e-14 1.3186e+02 1.7764e-14 -1.3323e-15 -6.2172e-15 3.4417e-15

-4.2633e-14 1.4211e-14 1.2522e+01 2.6645e-15 1.1102e-16 -8.3267e-17

2.4869e-14 -8.8818e-16 1.4433e-15 4.5615e+00 9.4369e-16 -6.4185e-16

-7.1054e-14 -6.6613e-15 1.1102e-16 1.3600e-15 9.1868e-01 3.0878e-16

3.4639e-14 3.4417e-15 -1.2490e-16 -6.2103e-16 3.0531e-16 9.1501e-02

p_j orth r_k for k>j

ans =

3.1826e+03 3.9090e+01 4.4059e+00 1.5549e+00 3.8009e-01 4.1531e-02

-2.8422e-14 3.9090e+01 4.4059e+00 1.5549e+00 3.8009e-01 4.1531e-02

0 4.4409e-15 4.4059e+00 1.5549e+00 3.8009e-01 4.1531e-02

-7.1054e-15 -1.6653e-15 8.8818e-16 1.5549e+00 3.8009e-01 4.1531e-02

-1.4211e-14 -1.4433e-15 5.5511e-17 3.5388e-16 3.8009e-01 4.1531e-02

9.5479e-15 1.1657e-15 -4.1633e-17 -1.5786e-16 8.3267e-17 4.1531e-02

Krylov Subspace Methods 755

Looking at the iterates stored in the columns of X, we note as stated in
Corollary 11.2 that we reach the exact solution in n steps. Furthermore, the
error decreases at each step, as stated in Theorem 11.29:

>> format short

>> disp(’reach exact solution in n steps’)

>> Solution=X

>> disp(’norm of error is monotonically decreasing’)

>> Errors=X-xexact*ones(1,k+1);

>> ErrorNorms=diag(Errors’*Errors)’

reach exact solution in n steps

Solution =

-4.0000 -0.3176 0.3744 0.5204 0.7403 0.9183 1.0000

-3.0000 2.5718 2.9425 2.4399 2.1744 2.0063 2.0000

-2.0000 1.9671 2.5428 2.6852 3.0159 3.0464 3.0000

-1.0000 2.4707 3.6503 4.1187 4.0319 4.0181 4.0000

0 5.8627 5.1656 4.9925 4.8873 5.0184 5.0000

1.0000 6.5633 5.7554 6.0088 6.0782 5.9834 6.0000

norm of error is monotonically decreasing

ErrorNorms =

150.0000 6.5302 1.6982 0.5369 0.1179 0.0098 0.0000

As second example, we use the same matrix but we perform only k < n
iteration steps.

Example 11.7.

>> n=6

>> d=[1 2 3 4 5 6]; % construct positive

>> Q=orth(hilb(n)); % definite matrix

>> A=Q’*diag(d)*Q;

>> xexact=(1:n)’; % choose exact solution

>> b=A*xexact; % compute right hand side

>> x0=xexact-5; % choose starting vector

>> k=n-2 % number of iterations

>> [X,R,P,alpha,beta]=CG(A,b,x0,k);

>> c=-beta(1:k-1)./alpha(1:k-1); % construct

>> a=[1/alpha(1) 1./alpha(2:k)-c]; % tridiagonal matrix

>> b=-1./alpha(1:k-1);

>> T=diag(a)+diag(c,1)+diag(b,-1)

n =

6

k =

4

T =

4.8074 -0.0590 0 0

-4.8074 3.4322 -0.3802 0

0 -3.3732 3.2222 -1.0030

0 0 -2.8420 3.9367

756 ITERATIVE METHODS FOR LINEAR SYSTEMS

>> RR=R(:,1:k);

>> disp(’A*R-R*T’)

>> A*RR-RR*T

>> disp(’b(k)*R(:,k+1)*e’)

>> b(k)=-1/alpha(k);

>> e=zeros(1,k); e(k)=1;

>> b(k)*R(:,k+1)*e

A*R-R*T

ans =

0 -0.0000 0.0000 -0.7992

-0.0000 -0.0000 0.0000 0.6336

-0.0000 -0.0000 0.0000 0.4801

-0.0000 -0.0000 0.0000 -0.0846

0 0 -0.0000 -1.1510

0 0.0000 0 0.8177

b(k)*R(:,k+1)*e

ans =

0 0 0 -0.7992

0 0 0 0.6336

0 0 0 0.4801

0 0 0 -0.0846

0 0 0 -1.1510

0 0 0 0.8177

We see here with only k = 4 iterations that the difference AR4−R4T4 is given
as stated in Equation (11.123) by the matrix bkrke

�
k . As stated in Corollary

11.3, the eigenvalues of the small matrix Tk are eigenvalues of a rank-one
modification of the matrix A.

>> EigOfA=sort(eig(A))

>> D2=diag(R’*R);

>> Rank1Matrix=b(k)/D2(k)*R(:,k+1)*R(:,k)’;

>> EigOfRank1Mod=sort(eig(A-Rank1Matrix))

>> EigOfT=sort(eig(T))

EigOfA =

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

EigOfRank1Mod =

1.4225

1.9350

3.4399

3.6665

4.9187

5.6173

Krylov Subspace Methods 757

EigOfT =

1.4225

3.4399

4.9187

5.6173

We see that the eigenvalues of matrix T indeed match eigenvalues of the rank
one modification of A.

Finally, we illustrate Corollary 11.2, which says that if the matrix A has only
m distinct eigenvalues, then CG converges in m steps. We construct a matrix
of order n = 6 with three double eigenvalues. After m = 3 iterations, the
Conjugate Gradient method computes the exact solution. Furthermore, the
eigenvalues of the matrix T are precisely the three diffenrent eigenvalues of
A.

Example 11.8.

>> n=6

>> d=[2 2 3 3 5 5]; % construct positive

>> Q=orth(hilb(n)); % definite matrix

>> A=Q’*diag(d)*Q;

>> xexact=(1:n)’; % choose exact solution

>> b=A*xexact; % compute right hand side

>> x0=xexact-5; % choose starting vector

>> k=3 % number of iterations

>> [X,R,P,alpha,beta] = CG(A,b,x0,k);

>> c=-beta(1:k-1)./alpha(1:k-1); % construct

>> a=[1/alpha(1) 1./alpha(2:k)-c]; % tridiagonal matrix

>> b=-1./alpha(1:k-1);

>> T=diag(a)+diag(c,1)+diag(b,-1)

>> Solutions=X

>> R

>> EigOfT=sort(eig(T))

n =

6

k =

3

T =

4.7524 -0.0984 0

-4.7524 3.0497 -0.0590

0 -2.9514 2.1978

Solutions =

-4.0000 -0.1696 0.9336 1.0000

-3.0000 2.0224 2.3796 2.0000

-2.0000 2.0933 2.6702 3.0000

-1.0000 1.9694 3.9136 4.0000

0 5.3463 5.0693 5.0000

1.0000 7.2356 5.9136 6.0000

R =

758 ITERATIVE METHODS FOR LINEAR SYSTEMS

18.2038 2.8792 0.0769 0.0000

23.8686 0.5602 -0.8330 0.0000

19.4531 1.2999 0.6714 0.0000

14.1117 5.4462 0.0700 -0.0000

25.4077 -1.3433 -0.1319 0.0000

29.6341 -4.5149 0.2627 0.0000

EigOfT =

2.0000

3.0000

5.0000

11.7.2 Arnoldi Process

The Arnoldi process constructs an orthogonal basis of the Krylov space

Kk(A, r0) = span{r0, Ar0, A
2r0, . . . , A

k−1r0}

using Gram-Schmidt orthogonalization. It computes the QR decomposition
of the matrix Kk ∈ R

n×k,

Kk := [r0, Ar0, . . . , A
k−1r0] = QkRk, (11.125)

with Qk ∈ R
n×k orthogonal and Rk ∈ R

k×k upper triangular. In the j-th
step, the vector Ajr0 is orthonormalized to produce qj+1. This is done using
the Gram-Schmidt process, by first computing the projections on the vectors
q1, . . . ,qj which have already been constructed,

ri,j+1 = q�
i A

jr0, i = 1, . . . , j.

Then the corresponding components are subtracted,

u = Ajr0 −
j∑

i=1

ri,j+1qi, (11.126)

and the result is normalized

rj+1,j+1 = ‖u‖, qj+1 =
1

rj+1,j+1
u. (11.127)

Idea of Arnoldi: If we are only interested in the orthogonal basis defined
by the matrix Qk, then we can replace the vector Ajr0 by Aqj . This is
justified because as long as the Krylov matrix Kk has full rank, it follows
from Kk = QkRk that Qk = KkR

−1
k , and thus with α = R−1

k ej , we obtain

qj = α0r0 + α1Ar0 + · · ·+ αj−1A
j−1r0, with αj−1 =

1

rj,j
	= 0.

Krylov Subspace Methods 759

So qj contains a component which points in the direction of Aj−1r0, and

therefore Aqj can be used instead of Ajr0. With this modification, the
orthogonalization step becomes

hj+1,jqj+1 = Aqj −
j∑

i=1

hijqi, (11.128)

where hij = q�
i Aqj are the projections and hj+1,j is the normalizing factor.

Note that we could have obtained a similar relation by inserting the rela-
tion qj+1 = u/rj+1,j+1 (cf. (11.127)) into (11.126):

rj+1,j+1qj+1 = Ajr0 −
j∑

i=1

ri,j+1qi, (11.129)

Comparing (11.128) with (11.129), we see that we have shifted the second
index in hij by one relative to the rij . The reason is that we want to write
(11.128) now in matrix form as

Aqj =

j+1∑
i=1

hijqi, j = 1, . . . , k, (11.130)

where the first vector q1 no longer appears on the left hand side. Using the
matrices Qk = [q1, . . . ,qk] ∈ R

n×k and

H̃k =

⎡
⎢⎢⎢⎢⎢⎢⎣

h11 h12 · · · h1k

h21 h22 · · · h2k

. . .
. . .

...
. . . hk,k

hk+1,k

⎤
⎥⎥⎥⎥⎥⎥⎦
∈ R

(k+1)×k,

(11.130) can now be written as

AQk = Qk+1H̃k.

If we define the upper Hessenberg matrix Hk ∈ R
k×k to contain the first

k rows of H̃k, then, after k < n steps of the Arnoldi process, we have the
equation

AQk = QkHk + hk+1,kqk+1e
�
k . (11.131)

Since the column vectors qj of Qk are orthonormal, it follows from Equation
(11.131) that

Q�
jAQj = Hj , j = 1, . . . , k. (11.132)

The matrices Hj are often called the projections of the matrix A onto the
Krylov subspace. It can happen that for some k we get hk+1,kqk+1 = 0. In

760 ITERATIVE METHODS FOR LINEAR SYSTEMS

this case, AQk = QkHk holds, which means we have computed an invariant
subspace spanned by the columns of Qk; this event is therefore called a
“lucky breakdown”. In this case, if λ and x is an eigenpair of Hk, then λ
and y = Qkx is an eigenpair of A.

In the special case of k = n, we have qn+1 = 0, and thus

AQn = QnHn ⇐⇒ Q�
nAQn = Hn,

which means that A has been transformed by an orthogonal similarity trans-
formation to upper Hessenberg form. This is usually done as shown in Chap-
ter 7 by using elementary orthogonal matrices. The Arnoldi process is an-
other way of computing this transformation, but it is less stable numerically
because it uses a Gram-Schmidt process. Using the more stable modified
Gram-Schmidt process (cf. Section 6.5.5), we get the algorithm

Algorithm 11.17.
Arnoldi algorithm to compute A = QTQ�

function [H,Q,v]=Arnoldi(A,r,k);

% ARNOLDI Arnoldi process

% [H,Q,v]=Arnoldi(A,r,k) applies k<=n steps of the Arnoldi process to

% the matrix A starting with the vector r. Computes Q orthogonal and

% H upper Hessenberg such that AQ=QH+ve_k^T, with Q(:,1)=r/norm(r).

ninf=norm(A,inf);

Q(:,1)=r/norm(r);

for j=1:k

v=A*Q(:,j);

for i = 1:j

H(i,j)=Q(:,i)’*v;

v=v-H(i,j)*Q(:,i);

end

if j<k

H(j+1,j)=norm(v);

if abs(H(j+1,j))+ninf==ninf

disp(’lucky breakdown occured!’);

H=H(1:end-1,:);

break;

end

Q(:,j+1)=v/H(j+1,j);

end

end

As an example, we consider for n = 4 the magic square matrix from
Matlab:

>> A=magic(4);

>> r=(1:4)’;

Krylov Subspace Methods 761

>> [H,Q,v]=Arnoldi(A,r,4)

H =

28.3333 13.2567 -4.1306 -1.3734

12.7550 3.7347 12.9021 3.9661

0 3.8955 -2.2508 1.9173

0 0 9.9142 4.1827

Q =

0.1826 0.7539 0.4895 0.3984

0.3651 0.4628 -0.2153 -0.7785

0.5477 0.0573 -0.6830 0.4798

0.7303 -0.4628 0.4975 -0.0702

v =

1.0e-15 *

-0.2220

0.8882

0.4441

-0.1110

>> norm(A*Q-Q*H)

ans =

2.0368e-15

If we start however with a vector of all ones, we obtain

>> r=ones(4,1);

>> [H,Q,v]=Arnoldi(A,r,3)

lucky breakdown occured!

H =

34

Q =

0.5000

0.5000

0.5000

0.5000

v =

0

0

0

0

and Arnoldi found that the vector of all ones is an eigenspace, as expected
for a magic square.

11.7.3 The Symmetric Lanczos Algorithm

If we apply the Arnoldi process to a symmetric matrix, A = A�, then the
matrix Q�

kAQk = Hk is also symmetric, which means it is tridiagonal,

762 ITERATIVE METHODS FOR LINEAR SYSTEMS

Tk =

⎡
⎢⎢⎢⎢⎣

α1 β1

β1 α2
. . .

. . .
. . . βk−1

βk−1 αk

⎤
⎥⎥⎥⎥⎦

The recurrence relation (11.128) simplifies to the symmetric Lanczos itera-
tion,

βjqj+1 = Aqj − αjqj − βj−1qj−1. (11.133)

To obtain qj+1 in the next iteration step, we compute

1. v := Aqj .

2. To obtain αj , we multiply (11.133) from the left by q�
j and get, using

orthogonality of the qi, that αj := q�
j v.

3. The right hand side of (11.133) then becomes ṽ := v−αjqj−βj−1qj−1.

4. We now compute βj = ‖ṽ‖, and store the coefficients αj and βj in T .
The new vector qj+1, a Lanczos vector, is then given by qj+1 := ṽ/βj .

In order to obtain an elegant algorithm, it is convenient to assume that
β0 = 0. Unfortunately, Matlab arrays cannot be indexed with 0, so we
need an if-statement for the first iteration. We refrain from testing if βj = 0,
since orthogonality of the Lanczos vectors qj is lost more quickly than with
Arnoldi. We thus obtain the Lanczos algorithm

Algorithm 11.18.
Lanczos algorithm to compute A = QTQ� for a

symmetric A

function [alpha,beta,Q,v]=Lanczos(A,r,k)

% LANCZOS Symmetric Lanczos process

% [alpha,beta,Q,r]=Lanczos(A,r,k) applies k<=n steps of the

% symmetric Lanczos process to the symmetric matrix A starting with

% the vector r. Computes Q orthogonal and a symmetric tridiagonal

% matrix given by the diagonal in the vector alpha, and the super-

% and subdiagonal in the vector beta.

Q(:,1)=r/norm(r);

if k==1, beta=[]; end;

for j=1:k

v=A*Q(:,j);

alpha(j)=Q(:,j)’*v;

v=v-alpha(j)*Q(:,j);

if j>1

v=v-beta(j-1)*Q(:,j-1);

end

Krylov Subspace Methods 763

if j<k

beta(j)=norm(v);

Q(:,j+1)=v/beta(j) ;

end

end

Example 11.9. We consider the symmetric matrix

>> A=[8 6 8 2 11 2

6 2 17 13 11 1

8 17 6 10 8 1

2 13 10 6 20 5

11 11 8 20 16 15

2 1 1 5 15 20];

and the initial vector

>> r=[1 2 3 4 5 6]’;

and first check the relation (11.131) for k = 3,

AQk = QkHk + hk+1,kqk+1e
�
k .

>> [alpha,beta,Q,v2]=Lanczos(A,r,3)

alpha =

50.7692 14.7761 1.3219

beta =

14.7045 14.5237

Q =

0.1048 0.4864 0.0702

0.2097 0.5166 -0.2150

0.3145 -0.0450 0.7933

0.4193 0.0636 0.3545

0.5241 0.3789 -0.2845

0.6290 -0.5890 -0.3359

v2 =

-4.6316

7.4022

2.2040

-1.3569

-2.8748

0.5028

>> T=diag(alpha)+diag(beta,-1)+diag(beta,1);

>> A*Q-Q*T

ans =

0 0 -4.6316

0 0.0000 7.4022

0 0.0000 2.2040

0 0 -1.3569

0 0.0000 -2.8748

0 0 0.5028

764 ITERATIVE METHODS FOR LINEAR SYSTEMS

The products AQk and QkTk differ indeed by the vector v2= hk+1,kqk+1.
Next, we apply the Arnoldi process to the symmetric matrix A and com-

pare the resulting decompositions and the orthogonality of the matrix Q with
the decompositions obtained using Householder transformations, as imple-
mented in the the Matlab function hess.

>> [Q,T]=hess(A);

>> HES=[norm(A*Q-Q*T) norm(Q’*Q-eye(6))]

>> [T,Q,v3]=Arnoldi(A,r,6);

>> ARN=[norm(A*Q-Q*T) norm(Q’*Q-eye(6))]

>> [alpha,beta,Q,v2]=Lanczos(A,r,6);

>> T=diag(alpha)+diag(beta,-1)+diag(beta,1);

>> LAN=[norm(A*Q-Q*T) norm(Q’*Q-eye(6))]

The results are summarized in the following table, and show the discrepancy
between AQ and QT as well as the loss of orthogonality of Q.

‖AQ−QT‖ ‖Q�Q− I‖
Householder 0.1214e−13 0.0048e−13

Arnoldi 0.9668e−13 0.0766e−13
Sym. Lanczos 0.4655e−9 0.0067e−9

We see already with this small example that Arnoldi is not quite as good as the
reduction by elementary Householder matrices. But Arnoldi is much better
than symmetric Lanczos, where we observe substantial loss of orthogonality.

It is interesting to study how well for k < n the eigenvalues of the projected
matrix

Q�
kAQk = Hk (or Tk)

approximate the eigenvalues of the original matrix A. With

for k=1:6

[alpha,beta,Q,v2]=Lanczos(A,r,k);

T=diag(alpha)+diag(beta,-1)+diag(beta,1);

if k>1

D(1:k,k)=sort(eig(T));

else

D(1,1)=alpha;

end;

end

D

we get the results

exact k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
−13.9139 50.7692 9.5327 −9.0918 −13.8082 −13.9068 −13.9139
−13.1962 56.0127 19.4813 2.7841 1.4462 −13.1962

1.4648 56.4777 21.0970 5.9899 1.4648
6.0244 56.4927 21.1281 6.0244

21.1282 56.4927 21.1282
56.4927 56.4927

Krylov Subspace Methods 765

We see nicely how the eigenvalues of the matrices Tk approximate first the
eigenvalues with largest modulus |λi(A)|.

After n Arnoldi or Lanczos steps, we would expect that hn+1,kqn+1 = 0.
However, we get with

>> [alpha,beta,Q1,v1]=Lanczos(A,r,6);

>> T=diag(alpha)+diag(beta,-1)+diag(beta,1);

>> [T2,Q2,v2]=Arnoldi(A,r,6);

>> [v1 v2]

ans =

1.0e-09 *

-0.1256 -0.0000

-0.1727 -0.0000

-0.1651 0.0000

-0.2067 0.0000

-0.2751 0.0000

-0.1595 0.0001

The vector hk+1,kqn+1 is much smaller with Arnoldi than with Lanczos; the
Lanczos process does not terminate and it is interesting to see what happens to
the eigenvalues of the tridiagonal matrix when we continue with the iteration:

D=[];

for k=7:10

[alpha,beta,Q,v2]=Lanczos(A,r,k);

T=diag(alpha)+diag(beta,-1)+diag(beta,1);

D(1:k,k-6)=sort(eig(T));

end

D

k = 7 k = 8 k = 9 k = 10
−13.9139 −13.9139 −13.9139 −13.9139
−13.1962 −13.1962 −13.1962 −13.1962

1.4648 1.4648 0.5184 −12.5049
6.0244 6.0244 1.4648 1.4648
21.1282 20.6959 6.0244 4.0302
56.4917 21.1282 21.0941 6.0244
56.4927 56.4927 21.1282 21.1265

56.4927 56.4927 21.1282
56.4927 56.4927

56.4927

We observe the well-known effect [103], cf. [86], that multiple copies of the
eigenvalues, also called ghost eigenvalues, are produced.

If we are only interested in the tridiagonal matrix, i.e. we wish to compute
only the coefficients αi and βi, then, with a careful implementation, we need
only two vectors for the Lanczos process. Two observations help for that
purpose: first, we can compute new values for v and w in the same for-loop

766 ITERATIVE METHODS FOR LINEAR SYSTEMS

(see Statement (1) in Algorithm 11.19), and second, αj can be computed (see
Statement (2)) by

αj = q�
jAqj = q�

j (Aqj − βj−1qj−1).

This is possible because of q�
j qj−1 = 0.

Algorithm 11.19. Economic Lanczos

[α,β] = EconomicLanczos(A, r, k)

w = 0; % w = q0 = 0
v = r0;
β0 = ‖r0‖;
for j = 1 : k

(1)

(
w
v

)
:=

(
v/βj−1

βj−1w

)
% w = qj

% v = βj−1qj−1

v = Aw − v; % v = Aqj − βj−1qj−1

(2) αj = w�v % = q�
j (Aqj − βj−1qj−1)

v = v − αjw % = Aqj − αjqj − βj−1qj−1

βj = ‖v‖
end

11.7.4 Solving Linear Equations with Arnoldi

We consider the linear system Ax = b. Let x0 be an initial approximation to
the solution and r0 = b − Ax0 the corresponding residual. After k Arnoldi
steps, we have a matrix Qk whose column vectors form an orthonormal basis
of the Krylov subspace Kk(A, r0). For an approximate solution, we make the
ansatz

xk = x0 +Qky. (11.134)

One way to determine the vector y is to impose a Galerkin condition and to
require the residual rk = b− Axk to be orthogonal to the Krylov subspace.
This method is known under the name of Full Orthogonalization Method or
FOM. Requiring orthogonality means

rk ⊥ Kk(A, r0)

⇐⇒ 0 = Q�
krk = Q�

k(b−Axk)

= Q�
k(b− Ax0 −AQky) = Q�

k(r0 −AQky)

⇐⇒ Q�
kAQky = Q�

kr0.

Using (11.131) and Q�
kr0 = ‖r0‖e1, which is true since q1 = r0

‖r0‖ and q�
j q1 =

0, j > 1, we obtain
Hky = ‖r0‖e1. (11.135)

Thus, we have to solve this small k × k linear system with the Hessenberg
matrix Hk to get the approximation xk = x0 +Qky.

Krylov Subspace Methods 767

The approximation xk may be computed after each Arnoldi step. But for
a large system, one might want to do so only every once in a while. Note
that the new residual is an element of the next Krylov space, since

xk = x0 +Qky =⇒ rk = b−Axk = r0 −AQky ∈ Kk+1(A, r0).
(11.136)

Furthermore,

rk = r0 −AQky = r0 −Qk+1H̃ky

= r0 −QkHky − hk+1,kqk+1yk

= Qk (‖r0‖e1 −Hky)︸ ︷︷ ︸
0

−hk+1,kqk+1yk,

which shows that rk and qk+1 are collinear.
In the following algorithm, we compute the new solution in each iteration

step.

Algorithm 11.20. FOM for Solving Linear Systems

function [X,R,H,Q]=FOM(A,b,x0);

% FOM full orthogonalization method

% [X,R,H,Q]=FOM(A,b,x0) computes the decomposition A=QHQ’,

% Q orthogonal and H upper Hessenberg, Q(:,1)=r/norm(r),

% using Arnoldi in order to solve the system Ax=b with the

% full orthogonalization method. X contains the iterates

% and R the residuals

n=length(A); X=x0;

r=b-A*x0; R=r; r0norm=norm(r);

Q(:,1)=r/r0norm;

for k=1:n

v =A*Q(:,k);

for j=1:k

H(j,k)=Q(:,j)’*v; v=v-H(j,k)*Q(:,j);

end

e0=zeros(k,1); e0(1)=r0norm; % solve system

y=H\e0; x= x0+Q*y;

X=[X x];

R=[R b-A*x];

if k<n

H(k+1,k)=norm(v); Q(:,k+1)=v/H(k+1,k);

end

end

We are now ready to state and prove a first equivalence theorem between
a Krylov subspace method and an extrapolation method.

768 ITERATIVE METHODS FOR LINEAR SYSTEMS

Theorem 11.32. (Equivalence of MPE and FOM) Let A ∈ R
n×n

be an invertible matrix, A = M − N be a splitting of A with M invertible,
and b ∈ R

n. Then for any given starting vector x0, applying FOM to the
preconditioned system M−1Ax = M−1b or applying MPE to the stationary
iterative method Mxk+1 = Nxk + b lead to identical iterates.

Proof. As we have seen, FOM discussed above determines its iterates
xFOM
k such that

rFOM
k ⊥ Kk(M

−1A, r0),

where r0 := M−1b−M−1Ax0 is the preconditioned residual, and also rFOM
k

denotes preconditioned residuals. Theorem 11.21 shows that MPE deter-
mines its iterates yMPE

k such that

rMPE
k ⊥ Kk(M

−1N,u0).

We first show that these two Krylov spaces are the same: from M−1N =
M−1(M − A) = I − M−1A, and using the translation and scaling invari-
ance, see (11.97), we can replace M−1N by M−1A without changing the
Krylov space. We now look at the initial vector: by the definition of u0 (see
statement of Lemma 11.7) and that of the stationary iterative method, we
have

u0 = x1 − x0 = M−1Nx0 +M−1b− x0

= M−1b+ (M−1N − I)x0 = M−1b−M−1Ax0 = r0.
(11.137)

Thus, the initial vector of the Krylov spaces is the same, which implies that
the Krylov spaces are identical for the two methods.

We now look at the residuals. For FOM, (11.134) says that xFOM
k − x0

can be written as a linear combination of the columns of Qk. Since Qk also
contains a basis for the Krylov subspace Kk(M

−1A, r0), we deduce that

xFOM
k = x0 +

k−1∑
j=0

δj(M
−1A)jr0

for some coefficients δj . The residual is therefore

rFOM
k = M−1b−M−1AxFOM

k = r0 −M−1A

k−1∑
j=0

δj(M
−1A)jr0

= PFOM
k (M−1A)r0,

where PFOM
k is a polynomial of degree k with PFOM

k (0) = 1. For MPE, we
have from Theorem 11.21 and u0 = r0 that

rMPE
k = Ukγ = [u0,u1, . . . ,uk]γ

= [u0,M
−1Nu0, . . . , (M

−1N)ku0]γ

= [r0,M
−1Nr0, . . . , (M

−1N)kr0]γ

= qk(M
−1N)r0

Krylov Subspace Methods 769

for some polynomial qk of degree k with qk(1) = 1, since the γj sum up to 1.
This can be rewritten as

rMPE
k = qk(M

−1N)r0 = qk(I −M−1A)r0 = PMPE
k (M−1A)r0,

where PMPE
k is a polynomial of degree k with PMPE

k (0) = 1. Hence both
residuals have the same polynomial form, and the coefficients are determined
by the same orthogonality condition, which implies that the residuals are the
same, rFOM

k = rMPE
k , and thus the iterates must coincide. �

Example 11.10. We illustrate this equivalence with a small example:

A=[0 -4 -8 -2

-4 -7 -7 -8

-9 -5 -4 -5

0 -5 -9 -6];

n=length(A); x=(1:n)’; b=A*x;

x0=x-5; % Starting vector

[X,R,H,Q]=FOM(A,b,x0);

disp(’Solutions with FOM’); X

[Y,X,U,Gamma]=MPE(eye(size(A))-A,b,x0,n);

disp(’Solutions with MPE’); Y

Solutions with FOM

X =

-4.0000 -0.7314 0.2662 1.0638 1.0000

-3.0000 3.0703 3.1914 1.6232 2.0000

-2.0000 3.3698 1.8713 3.1228 3.0000

-1.0000 3.6694 4.6950 4.1728 4.0000

Solutions with MPE

Y =

-4.0000 -0.7314 0.2662 1.0638 1.0000

-3.0000 3.0703 3.1914 1.6232 2.0000

-2.0000 3.3698 1.8713 3.1228 3.0000

-1.0000 3.6694 4.6950 4.1728 4.0000

11.7.5 Solving Linear Equations with Lanczos

With a symmetric matrix A, it is possible to compute xk from xk−1 using
the Lanczos algorithm and a short recurrence. The Lanczos vectors Qk need
not to be stored.

We first study the LDU decomposition of the symmetric tridiagonal matrix
Tk,

Tk =

⎡
⎢⎢⎢⎢⎣

α1 β1

β1 α2
. . .

. . .
. . . βk−1

βk−1 αk

⎤
⎥⎥⎥⎥⎦ = LkDkL

�
k , (11.138)

770 ITERATIVE METHODS FOR LINEAR SYSTEMS

with Dk = diag(d1, . . . , dk) and

Lk =

⎡
⎢⎢⎢⎢⎣

1

μ1
. . .

. . .
. . .

μk−1 1

⎤
⎥⎥⎥⎥⎦ .

By comparing the matrix elements of the product

LkDkL
�
k =

⎡
⎢⎢⎢⎢⎣

d1 d1μ1

d1μ1 d1μ
2
1 + d2 d2μ2

d2μ2 d2μ
2
2 + d3

. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎦

with Tk, we get the equations required to compute this decomposition,

d1 = α1, μ1 =
β1

d1
,

d2 = α2 − d1μ
2
1 = α2 − β1μ1, μ2 =

β2

d2
,

and for i ≥ 2

di = αi − βi−1μi−1, μi =
βi

di
. (11.139)

Notice that (11.139) can be used for i = k to update the decomposition from
Tk to Tk+1.

With the ansatz xk = x0 + Qky, we need to solve (11.135), which now
reads

Tky = Q�
kr0 = ‖r0‖e1 ⇒ y = T−1

k Q�
kr0.

Using this and the decomposition (11.138) in the expression for xk, we obtain

xk = x0 +Qky

= x0 +QkT
−1
k Q�

kr0

= x0 +Qk(LkDkL
�
k)

−1Q�
kr0

= x0 + Fkz,

where we defined

Fk = QkL
−�
k , and z = D−1

k L−1
k Q�

kr0 ⇐⇒ LkDkz = Q�
kr0.

It follows from the definition of Fk that FkL
�
k = Qk, written more explicitly

as
FkL

�
k = [f 1, μ1f1 + f2, . . . , μk−1fk−1 + fk] = Qk.

Krylov Subspace Methods 771

Thus, comparing the last column leads to the relation

fk = qk − μk−1fk−1.

Since the matrix LkDk of the linear system LkDkz = Q�
kr0, which defines

z, is lower bi-diagonal and the vector on the right hand side is zero except
for the first element, we can update the last component zk of z by

μk−1dk−1zk−1 + dkzk = 0 =⇒ zk = − 1

dk
μk−1dk−1zk−1.

Putting all this together, we obtain

xk = x0 + Fkz

= x0 + Fk−1(z1, . . . , zk−1)
�︸ ︷︷ ︸

xk−1

+fkzk.

By inserting a few additional statements into the k-th Lanczos step, we ob-
tain an algorithm which computes recursively at each iteration step a new
approximation for the solution of the linear system. It turns out that the
resulting algorithm computes the same approximations as the conjugate gra-
dient method, see Section 11.7.1!

Algorithm 11.21.
Symmetric Lanczos: Conjugate Gradient Step

The k-th iteration step of Algorithm 11.18 is augmented by the statements
to solve linear equations.

compute qk+1, βk and αk+1 with Algorithm 11.18;

μk =
βk
dk

;

dk+1 = αk+1 − βkμk;

fk+1 = qk+1 − μkfk;

zk+1 = − 1
dk+1

μkdkzk;

xk+1 = xk + fk+1zk+1;

Example 11.11. In this example, we solve a linear system using Algo-
rithm 11.21 and compare the solution with the results obtained by Conjugate
Gradient. The program is more complicated than necessary because Matlab

does not allow indices smaller than 1 for arrays. The example demonstrates
the equivalence of Algorithm 11.21 with the Conjugate Gradient Method.

disp(’Solving linear Equations with sym Lanczos is the same as CG’)

772 ITERATIVE METHODS FOR LINEAR SYSTEMS

clear, clc, format compact

A=[8 6 8 2 11 2

6 2 17 13 11 1

8 17 6 10 8 1

2 13 10 6 20 5

11 11 8 20 16 15

2 1 1 5 15 20];

n=length(A); xexact=(1:n)’; b=A*xexact;

x0=xexact-5; x=x0; XX=x; r=b-A*x;

Q(:,1)=r/norm(r);

for k=1:n

v=A*Q(:,k);

alpha(k)=Q(:,k)’*v;

if k==1,

d(1)=alpha(1);

F(:,1)=Q(:,1);

z(1)=norm(r)/d(1);

x=x+r/alpha(1); XX=[XX, x];

v=v-alpha(1)*Q(:,1);

else

d(k)=alpha(k)-beta(k-1)*mue(k-1);

F(:,k)=Q(:,k)-mue(k-1)*F(:,k-1);

z(k)=-mue(k-1)*d(k-1)*z(k-1)/d(k);

x=x+z(k)*F(:,k); XX=[XX,x];

v=v-alpha(k)*Q(:,k)-beta(k-1)*Q(:,k-1);

end

beta(k)=norm(v);

Q(:,k+1)=v/beta(k) ;

mue(k)=beta(k)/d(k);

end

XX

X=CG(A,b,x0,n)

disp(’Check that the vectors in F are conjugate F’’*A*F’)

F’*A*F

XX =

-4.0000 -0.7205 -0.7533 0.3889 1.3119 0.9069 1.0000

-3.0000 1.4318 1.5185 1.7551 1.5332 1.8937 2.0000

-2.0000 2.4318 1.2991 2.1021 2.2058 3.4478 3.0000

-1.0000 3.9636 6.0616 5.1314 4.3583 3.9727 4.0000

0 7.1795 5.8986 5.8365 5.7317 4.7367 5.0000

1.0000 4.9000 5.4587 4.7593 5.3541 6.2149 6.0000

X =

-4.0000 -0.7205 -0.7533 0.3889 1.3119 0.9069 1.0000

-3.0000 1.4318 1.5185 1.7551 1.5332 1.8937 2.0000

-2.0000 2.4318 1.2991 2.1021 2.2058 3.4478 3.0000

-1.0000 3.9636 6.0616 5.1314 4.3583 3.9727 4.0000

0 7.1795 5.8986 5.8365 5.7317 4.7367 5.0000

1.0000 4.9000 5.4587 4.7593 5.3541 6.2149 6.0000

Krylov Subspace Methods 773

As we can see, with this implementation of the Symmetric Lanczos Algo-
rithm, we obtain the same approximation vectors as those computed by the
Conjugate Gradient Algorithm. The vectors fk are direction vectors and
indeed conjugate:

Check that the vectors in F are conjugate F’*A*F

ans =

56.4103 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000

-0.0000 -9.9583 -0.0000 0.0000 0.0000 0.0000

-0.0000 -0.0000 15.5937 -0.0000 -0.0000 -0.0000

-0.0000 0.0000 -0.0000 10.1442 0.0000 -0.0000

-0.0000 0.0000 -0.0000 0.0000 1.1705 0.0000

-0.0000 0.0000 -0.0000 -0.0000 0.0000 -18.5937

11.7.6 Generalized Minimum Residual: GMRES

The Generalized Minimum Residual method, proposed by Saad and Schulz
[117], constructs an approximation xk ∈ Kk(A, b) not by making the new
residual orthogonal to the current Krylov subspace, but by requiring that
‖rk‖ = ‖b− Axk‖ be minimized.

We will assume in the following that we start the iteration with x0 = 0.
Then r0 = b and xk = Qky ∈ Kk(A, b).

After k Arnoldi steps, we have the decomposition

AQk = Qk+1H̃k.

With the ansatz xk = Qky, we get for the residual

rk = b− Axk = b−AQky = b−Qk+1H̃ky = Qk+1

(
‖b‖e1 − H̃ky

)
,

(11.140)
since q1 = b/‖b‖. Because Qk+1 is orthogonal, we have ‖Qk+1z‖ = ‖z‖, as
we can see from

‖Qk+1z‖2 = z�Q�
k+1Qk+1z = z�z = ‖z‖2, ∀z.

So the length of the residual (11.140) is minimized for the solution y of the
least squares problem

H̃ky ≈ ‖b‖e1. (11.141)

Theorem 11.33. (Foundation of GMRES) Let A ∈ R
n×n, b ∈ R

n

and let AQk = Qk+1H̃k be the decomposition computed by the Arnoldi itera-
tion at step k. Then the minimizer xk of

min
x∈Kk(A,b)

‖b− Ax‖2 = ‖b− Axk‖2

is given by xk = Qky, where y ∈ R
k is the solution of the least squares

problem (11.141).

774 ITERATIVE METHODS FOR LINEAR SYSTEMS

The least squares problem (11.141) has a special structure: the matrix
H̃k is upper Hessenberg and there are (k + 1) equations and k unknowns.
Such problems are best solved by applying k Givens rotations to reduce the
system to an equivalent system with an upper triangular matrix, see Section
3.5.

GMRES solves implicitly a polynomial approximation problem. Since
xk ∈ Kk(A, b), it is a linear combination of the basis vectors Ajb, j = 1, . . . , k,

xk =

k−1∑
j=0

αjA
jb.

For the residual rk = b− Axk, we get

rk = b−
k−1∑
j=0

αjA
j+1b =

k∑
j=0

βjA
jb, β0 = 1, βj = αj−1.

With the residual polynomial

pk(A) =

k∑
j=0

βjA
j , p(0) = 1,

and denoting the set of all polynomials of degree k by Pk, the minimization
problem can also be stated as

min
x∈Kk(A,b)

‖b− Ax‖2 = min
αj∈R

‖rk‖2 = min
p∈Pk
p(0)=1

‖p(A)b‖2. (11.142)

This polynomial approximation problem allows us to obtain a convergence
bound for GMRES.

Theorem 11.34. Let A ∈ R
n×n be diagonalizable, A = SΛS−1, with the

diagonal matrix Λ = diag(λ1, . . . , λn) and b ∈ R
n. Then at the k-th step of

the GMRES iteration, we have

‖b− Axk‖2
‖b‖2 ≤ κ(S) min

p∈Pk
p(0)=1

max
i

|p(λi)|.

Proof. Since A is not assumed to be symmetric, the eigenvectors S and
eigenvalues λj may be complex. The approximation problem (11.142) is

min
x∈Kk(A,b)

‖b− Ax‖2 = min
p∈Pk
p(0)=1

‖p(A)b‖2 = min
p∈Pk
p(0)=1

‖p(SΛS−1)b‖2

= min
p∈Pk
p(0)=1

‖S p(Λ)S−1b‖2

≤ ‖S‖2‖S−1‖2︸ ︷︷ ︸
κ(S)

‖b‖2 min
p∈Pk
p(0)=1

max
i

|p(λi)|.

�

Krylov Subspace Methods 775

Therefore, in order to estimate the convergence rate of GMRES, we need
to find polynomials that are small on a given set of complex numbers. The
following lemma will be helpful in finding such polynomials:

Lemma 11.8. Let C(0, r) denote the circle of radius r centered at the
origin. Let γ ∈ C with |γ| > r, and denote by Pk the set of polynomials pk
of degree k. Then

min
p∈Pk
p(γ)=1

max
z∈C(0,r)

|p(z)| =
(

r

|γ|
)k

,

and the minimum is attained for p̂(z) =
(

z
γ

)k
.

Proof. The polynomial p̂(z) =
(

z
γ

)k
satisfies p̂(γ) = 1 and

max
z∈C(0,r)

|p̂(z)| =
(

r

|γ|
)k

.

Thus, it is sufficient to show that no polynomial with the same normalization
is smaller. Consider any polynomial pk of degree k and its normalized version,

gk(z) =
pk(z)

pk(γ)
.

Assume that

|gk(z)| =
∣∣∣∣ pk(z)pk(γ)

∣∣∣∣ <
∣∣∣∣
(
z

γ

)∣∣∣∣
k

∀z ∈ C(0, r)

holds. By the Theorem of Rouché, if for two analytic functions f, g we have
|g(z)| < |f(z)| for all z ∈ C(0, r), then f and f − g have the same number of

zeros inside C(0, r). Now
(

z
γ

)k
has a zero of multiplicity k at 0 and

(
z

γ

)k

− pk(z)

pk(γ)
= (z − γ)qk−1(z),

with some polynomial qk−1 of degree k − 1 with at most k − 1 zeros in the
interior of C(0, r). Since γ is outside of C(0, r), we have a contradiction to
the theorem of Rouché, and therefore no such polynomial exists. �

Note that with a change of variables, we get

min
p∈Pk
p(γ)=1

max
z∈C(c,r)

|p(z)| =
(

r

|γ − c|
)k

.

As a next ingredient in our search for small polynomials, we will need the
conformal mapping

J(w) =
w + w−1

2
,

776 ITERATIVE METHODS FOR LINEAR SYSTEMS

which is called the Joukowski transformation. It maps the circle C(0, r)
defined by w = reiΘ to

z =
1

2

(
reiΘ +

1

r
e−iΘ

)
=

1

2

(
r cosΘ + ir sinΘ +

1

r
cosΘ− i

r
sinΘ

)

=
1

2

((
r +

1

r

)
cosΘ + i

(
r − 1

r

)
sinΘ

)
,

an ellipse with foci at −1 and 1 and principal axes a =
(
r + 1

r

)
/2 and b =(

r − 1
r

)
/2. Without loss of generality, we may assume r > 1, since r and 1/r

produce the same ellipse. For r = 1 the ellipse is degenerate: the circle is
mapped to the real interval [−1, 1].

The Joukowski transformation can be used for expressing the Chebyshev
polynomials, which are defined by the recurrence relation (11.51):

Lemma 11.9. Let w ∈ C and z = (w + w−1)/2. Then the Chebyshev
polynomials are

Ck(z) =
wk + w−k

2
. (11.143)

Proof. We verify by induction that the quantities Ck(z) defined by
(11.143) obey the three-term recurrence relation (11.51). For k = 0, we have
C0(z) = (w0+w−0)/2 = 1, and for k = 1, we obtain C1(z) = (w1+w−1)/2 =
z as required. Assume now that (11.143) holds for j ≤ k. Then

Ck+1(z) = 2zCk(z)−Ck−1(z)

= (w +w−1)
wk +w−k

2
− wk−1 + w−(k−1)

2

=
wk+1 + w−k+1 + wk−1 + w−k−1 − wk−1 − w−(k−1)

2

=
wk+1 + w−(k+1)

2
,

which concludes the proof. �
Note that if we solve the equation

z = (w +w−1)/2 ⇐⇒ w2 − 2zw + 1 = 0

for w, we get

w1 = z +
√
z2 − 1, w2 = z −

√
z2 − 1 =

1

w1
.

Inserting w1 or w2 into (11.143), we find

Ck(z) =

(
z +

√
z2 − 1

)k
+
(
z −√

z2 − 1
)k

2
,

Krylov Subspace Methods 777

the same expression for the Chebyshev polynomials as in Lemma 11.6.

Theorem 11.35. Let E denote the ellipse obtained from the circle C(0, r)
using the Joukowski transformation J(w), and let γ be a point outside E. Let
wγ be the solution with larger modulus of J(w) = γ. Then

rk

|wγ |k ≤ min
p∈Pk
p(γ)=1

max
z∈E

|p(z)| ≤ rk + r−k

|wk
γ + w−k

γ | . (11.144)

Proof. Every polynomial p ∈ Pk with p(γ) = 1 can be written as

p(z) =

∑k
j=0 αjz

j∑k
j=0 αjγj

.

Using the Joukowski transformation z = J(w), this becomes

p(z) =

∑k
j=0 α̃j(w

j + w−j)∑k
j=0 α̃j(w

j
γ + w−j

γ)
. (11.145)

In particular, for α̃k = 1 and α̃j = 0, j = 0, 1, . . . , k − 1, we obtain a
normalized Chebyshev polynomial,

p∗(z) =
wk + w−k

wk
γ + w−k

γ

=
Ck(z)

Ck(γ)
.

Letting w = reiΘ, we get∣∣∣∣rkeikΘ +
1

rk
e−ikΘ

∣∣∣∣ ≤ ∣∣rkeikΘ∣∣+
∣∣∣∣ 1rk e−ikΘ

∣∣∣∣ = rk +
1

rk
,

and the maximum is attained for Θ = 0. Thus the upper bound in (11.144)
is proved.

In order to prove the lower bound, we rewrite (11.145) as

p(z) =
w−k

w−k
γ

∑k
j=0 α̃j(w

k+j + wk−j)∑k
j=0 α̃j(w

k+j
γ + wk−j

γ)
.

The absolute value becomes

|p(z)| = r−k

|wγ |−k
|q2k(w)|,

where q2k(w) is a polynomial of degree 2k, with q2k(wγ) = 1. By Lemma
11.8, we have

|q2k(w)| ≥ r2k

|wγ |2k =⇒ max
z∈E

|p(z)| ≥ r−k

|wγ |−k

r2k

|wγ |2k =
rk

|wγ |k ,

778 ITERATIVE METHODS FOR LINEAR SYSTEMS

which concludes the proof. �
Since the difference between the two expressions

rk

|wγ |k and
rk + r−k

|wk
γ + w−k

γ |
converges to zero for k → ∞, we conclude that for large k the complex
Chebyshev polynomial

p∗(z) =
wk + w−k

wk
γ + w−k

γ

=
Ck(z)

Ck(γ)

is optimal. But p∗(z) is only optimal asymptotically for k large, which is
different from the real case, where the Chebyshev polynomials are optimal
for all k.

c c+ dc− dc− a c+ a

Figure 11.10. Ellipse

As in the real case, an ellipse E(c, d, a) with center c ∈ R, major axis a
and distance of focal points d, see Figure 11.10, is obtained by a change of
variables,

Ĉk(z) =
Ck

(
z−c
d

)
Ck

(
γ−c
d

) .
The maximum is attained at z = c + a, as we have seen in the proof of
Theorem 11.35, and hence

max
z∈E(c,d,a)

|Ĉk(z)| =
∣∣∣∣∣ Ck

(
a
d

)
Ck

(
γ−c
d

)
∣∣∣∣∣ = Ck

(
a
d

)
|Ck

(
γ−c
d

) | ,
where we removed the modulus in the numerator, since a > d and thus a

d > 1,
which means Ck(

a
d
) > 0.

Krylov Subspace Methods 779

Theorem 11.36. (Convergence Estimate for GMRES) Let A ∈
R

n×n be diagonalizable, A = SΛS−1 with Λ = diag(λ1, . . . , λn), and assume
that all λj ∈ E(c, d, a) and that the origin is not contained in the ellipse.
Then at the k-th iteration of GMRES, we have

‖b− Axk‖2
‖b‖2 ≤ κ(S)

Ck

(
a
d

)
|Ck

(
c
d

) | .
Proof. From Theorem 11.34 we know that

‖b− Axk‖2
‖b‖2 ≤ κ(S) min

p∈Pk
p(0)=1

max
i

|p(λi)|.

Then Theorem 11.35, the change of variables, and setting γ = 0 show that

min
p∈Pk
p(0)=1

max
z∈E(c,d,a)

|p(λ)| ≤ Ck

(
a
d

)
|Ck

(− c
d

) | = Ck

(
a
d

)
|Ck

(
c
d

) | ,
since |Ck(−z)| = |Ck(z)|. �

For c > a > d, we get

Ck

(
a
d

)
|Ck

(
c
d

) | =
(

a
d +

√(
a
d

)2 − 1

)k

+

(
a
d +

√(
a
d

)2 − 1

)−k

∣∣∣∣∣
(

c
d
+

√(
c
d

)2 − 1

)k

+

(
c
d
+

√(
c
d

)2 − 1

)−k
∣∣∣∣∣

≈
⎛
⎝ a

d
+

√(
a
d

)2 − 1

c
d
+

√(
c
d

)2 − 1

⎞
⎠

k

=

(
a+

√
a2 − d2

c+
√
c2 − d2

)k

for large k. (11.146)

If the spectrum of GMRES does not lie in an ellipse excluding the origin,
more refined estimates can be found in the research literature.

In exact arithmetic, we can make another statement about the conver-
gence of GMRES.

Theorem 11.37. Let A ∈ R
n×n be invertible, b ∈ R

n and pm be the
minimal polynomial of A. Then GMRES applied to the linear system Ax = b
converges to the exact solution in at most m iterations.

Proof. Since A is invertible, the minimal polynomial pm(A) has the
constant coefficient α0 	= 0. Thus the polynomial

p∗(A) =
1

α0
pm(A)

satisfies p∗(0) = 1 and p∗(A) = 0. GMRES minimizes the residual, which is
equivalent to the polynomial approximation problem

min
xk∈Kk(A,b)

‖b− Axk‖2 = min
p∈Pk
p(0)=1

‖p(A)b‖2 = ‖p∗(A)b‖2 = 0, when k = m.

�

780 ITERATIVE METHODS FOR LINEAR SYSTEMS

We make three final remarks about GMRES:

1. The iterates of FOM and GMRES are related: in FOM, ones solves at
each iteration the system of linear equations Hkyk = ||b||2e1, whereas
GMRES solves the least squares problem ||H̃kyk − ||b||2e1||2 −→ min.
Using Givens rotations both for the least squares problem and the linear
system, we see that in FOM, only the last Givens rotation is not applied.

2. Each iteration generates a new vector, which has to be stored in mem-
ory. For large (but sparse) matrices, this can quickly use up the avail-
able memory and lead to problems. Therefore, one often uses GM-
RES with restarts: after m iterations, the vectors q1,q2, . . . ,qm are
discarded, the best approximation xm found so far is retained, and
GMRES is restarted in order to solve the following system for the cor-
rections x̃:

Ax̃ = b− Axm = rm.

3. When A is symmetric, A = A�, GMRES, which uses the Arnoldi al-
gorithm to construct the orthogonal basis of Kk(A, b), requires many
more operations than necessary. It is more efficient to use the Lanczos
iteration in this case. We obtain then the MINRES algorithm, proposed
by Paige and Saunders in 1975, see [101].

11.7.7 Classical Lanczos for Non-Symmetric Matrices

The symmetric Lanczos algorithm, see Section 11.7.3, which is mathemati-
cally equivalent to the Arnoldi Algorithm when applied to a symmetric matrix
A ∈ R

n×n, computes in n steps the decomposition

AQn = QnTn,

with Tn tridiagonal and Qn orthogonal. If A is non-symmetric, then it is
no longer possible to have a tridiagonal matrix Tn together with an orthog-
onal Qn. To extend the Lanczos algorithm to non-symmetric matrices, one
possibility is to insist on reducing A to tridiagonal form, but using a simi-
larity transformation with a non-singular matrix V instead of an orthogonal
matrix,

V −1AV =

⎛
⎜⎜⎜⎜⎝

α1 γ1

β1
. . .

. . .

. . .
. . . γn−1

βn−1 αn

⎞
⎟⎟⎟⎟⎠ := T. (11.147)

With the definitions

V = [v1, . . . ,vn], W = V −� = [w1, . . . ,wn],

Krylov Subspace Methods 781

the two matrices are said to be biorthogonal, since W�V = I holds. Compar-
ing coefficients of the equations AV = V T and A�W = WT� by multiplying
from the right with ej , we find

AV ej = V T ej (11.148)

=⇒ Avj = γj−1vj−1 + αjvj + βjvj+1, with γ0v0 := 0, (11.149)

and similarly

A�wj = βj−1wj−1 + αjwj + γjwj+1, with β0w0 := 0. (11.150)

Multiplying (11.149) by w�
j and using bi-orthogonality, we have

w�
jAvj = αj ,

and thus the αj are determined. For βj and γj , we obtain from (11.149) and
(11.150)

βjvj+1 = (A− αjI)vj − γj−1vj−1 =: rj , (11.151)

γjwj+1 = (A� − αjI)wj − βj−1wj−1 =: pj . (11.152)

Here the choice of symbol for rj and pj is not arbitrary; we will see later that
rj is related to the residual when using the non-symmetric Lanczos process
for solving linear systems. Using again that W�V = I, we get

1 = v�
j+1wj+1 =

1

βj

1

γj
r�j pj ⇐⇒ βjγj = r�

j pj . (11.153)

This is the only condition for βj and γj , and we obtain the generic non-
symmetric Lanczos process:

Algorithm 11.22. Non-symmetric Lanczos Process

choose v1 and w1 such that v�
1w1 = 1;

γ0 = 0; β0 = 0;
for j = 1 : n

αj = w�
jAvj ;

rj = (A− αjI)vj − γj−1vj−1;
pj = (A� − αjI)wj − βj−1wj−1;
choose βj and γj such that βjγj = r�

j pj ;
vj+1 = rj/βj ;
wj+1 = pj/γj ;

end

782 ITERATIVE METHODS FOR LINEAR SYSTEMS

In the original publication of Lanczos [82], the choice βj = 1 is made, which
implies that γj = r�

j pj , but Rutishauser [115] observed already7 that this
choice leads to vectors vj and wj with bigger and bigger elements. To avoid
this growth, one can use βj and γj to scale these vectors. A “canonical
choice” according to Golub and van Loan [51] is to choose

βj = ‖rj‖ ⇒ vj+1 =
rj

‖rj‖ , (11.154)

which then implies that

γj =
1

βj
r�
j pj = v�

j+1pj .

A different choice for βj and γj was proposed by Saad in [118], namely

βj =
√
|r�

j pj | =⇒ γj = βj sign(r
�
j pj). (11.155)

In this case, the matrix T has the property that tj+1,j = ±tj,j+1, which
means it is symmetric in modulus. A third variant analyzed by Gutknecht
in [59] is given by

βj = −αj − γj−1, γj =
1

βj
r�
j pj , (11.156)

which leads to an interesting property we will see later when solving linear
systems.

If we perform only j < n iteration steps of the non-symmetric Lanczos
process, we obtain the matrices

Vj = [v1, . . . ,vj], Wj = [w1, . . . ,wj], Tj =

⎛
⎜⎜⎜⎜⎝

α1 γ1

β1
. . .

. . .

. . .
. . . γj−1

βj−1 αj

⎞
⎟⎟⎟⎟⎠ ,

and the relations

AVj = VjTj + βjvj+1e
�
j = VjTj + rje

�
j ,

A�Wj = WjT
�
j + γjwj+1e

�
j = WjT

�
j + pje

�
j .

Because of bi-orthogonality, we have W�
j Vj = I and W�

j vj+1 = 0, which
implies that

W�
j AVj = Tj .

7Im allgemeinen wird man beobachten, dass die Grössenordnung der iterierten Vek-
toren xk, yk mit fortschreitendem k rasch unbequem wird.

Krylov Subspace Methods 783

Algorithm 11.23.
Matlab implementation: Non-Symmetric Lanczos

Process

function [V,W,T,r,p] = NonSymmetricLanczos(A,v,n,variant)

% NONSYMMETRICLANCZOS Non-symmetric Lanczos process

% [V,W,T,r,p]=NonSymmetricLanczos(A,v,n,variant) generates

% biorthogonal vectors in the matrices V and W and a tridiagonal

% matrix T with the starting vector v using the non-symmetric

% Lanczos process, where the variant parameter can be either

% ’GolubVanLoan’,’Saad’ or ’Gutknecht’. The auxiliary vectors r and

% p are also returned.

V=v; W=v/norm(v)^2;

beta=0; gamma=0;

alpha=W(:,1)’*A*V(:,1); T(1,1)=alpha;

for j=1:n,

if j==1,

r=A*V(:,j)-alpha*V(:,j);

p=A’*W(:,j)-alpha*W(:,j);

else

r=A*V(:,j)-alpha*V(:,j)-gamma*V(:,j-1);

p=A’*W(:,j)-alpha*W(:,j)-beta*W(:,j-1);

end

switch variant

case ’GolubVanLoan’

beta=norm(r); gamma=r’*p/beta;

case ’Saad’

beta=sqrt(abs(r’*p));gamma=beta*sign(r’*p);

case ’Gutknecht’

beta=-alpha-gamma; gamma=r’*p/beta;

end

T(j+1,j)=beta; T(j,j+1)=gamma;

V=[V,r/beta]; W=[W,p/gamma];

alpha=W(:,j+1)’*A*V(:,j+1); T(j+1,j+1)=alpha;

end;

Example 11.12. We show here with a small example the results of the
three previously presented variants for the non-symmetric Lanczos process.
Consider again the linear system with the non-symmetric matrix (11.90).

In the program above, the three choices of βj are obtained by choosing the
appropriate variant in the function NonSymmetricLanczos. For the choice of
βj according to Golub/van Loan, we obtain

>> A=[0 -4 -8 -2

-4 -7 -7 -8

-9 -5 -4 -5

784 ITERATIVE METHODS FOR LINEAR SYSTEMS

0 -5 -9 -6]

>> n=max(size(A)); b=A*[1:n]’;

>> disp(’Golub, van Loan’)

>> [V,W,T,r,p]=NonSymmetricLanczos(A,b,4,’GolubVanLoan’)

Golub, van Loan

V =

-4.0000e+01 -1.6353e-01 -8.8595e-01 -5.2322e-02 3.5472e-01

-7.1000e+01 1.8505e-02 4.5684e-01 -4.9383e-01 6.1695e-01

-5.1000e+01 7.9721e-01 7.8243e-02 -2.6143e-01 4.9710e-01

-6.1000e+01 -5.8083e-01 -1.6201e-02 8.2767e-01 4.9642e-01

W =

-3.0857e-03 -2.4368e-01 -9.1984e-01 -4.1643e-01 3.6955e-01

-5.4771e-03 -6.7756e-01 4.2378e-01 -8.7086e-01 4.8720e-01

-3.9343e-03 1.1877e+00 -7.3598e-02 5.4206e-01 6.2768e-01

-4.7057e-03 -4.4536e-02 1.7146e-01 8.3350e-01 5.1632e-01

T =

-2.1107e+01 3.2058e-02 0 0 0

1.8509e+02 3.0348e+00 7.2491e+00 0 0

0 3.9635e+00 1.2989e+00 -2.7085e+00 0

0 0 1.6194e+00 -2.2699e-01 -5.7562e-13

0 0 0 2.3336e-12 -2.1361e+01

r =

8.2778e-13

1.4397e-12

1.1600e-12

1.1585e-12

p =

-2.1272e-13

-2.8044e-13

-3.6131e-13

-2.9721e-13

Note that after n = 4 steps we should get r = 0, and thus we expect V (:, 5) =
0. However, rounding errors prevent this from happening, and we obtain
instead V (:, 5) = r/‖r‖ 	= 0. Similarly, p should also be zero but is not.
Checking bi-orthogonality and the tridiagonal matrix, we find

>> V=V(1:n,1:n); W=W(1:n,1:n); T=T(1:n,1:n);

>> disp(’Check bi-orthogonality: norm(V’’*W)=’)

>> norm(V’*W-eye(n))

>> disp(’Check decomposition with V: norm(A*V-V*T)=’);

>> norm(A*V-V*T)

>> disp(’and decomposition with W: norm(A’’W-W*T’’)=’);

>> norm(A’*W-W*T’)

Check bi-orthogonality: norm(V’*W)=

ans =

3.0741e-12

Check decomposition with V: norm(A*V-V*T)=

ans =

2.3336e-12

Krylov Subspace Methods 785

and decomposition with W: norm(A’W-W*T’)=

ans =

5.8546e-13

For the Saad variant, we get comparable results, with a bit more accuracy for
p but less for r,

Saad

V =

-4.0000e+01 -1.2425e+01 -4.9777e+01 -2.2731e+00 3.1378e+01

-7.1000e+01 1.4061e+00 2.5668e+01 -2.1455e+01 5.4971e+01

-5.1000e+01 6.0576e+01 4.3961e+00 -1.1358e+01 4.4348e+01

-6.1000e+01 -4.4134e+01 -9.1027e-01 3.5959e+01 4.4071e+01

W =

-3.0857e-03 -3.2070e-03 -1.6372e-02 -9.5852e-03 3.9859e-03

-5.4771e-03 -8.9171e-03 7.5426e-03 -2.0045e-02 5.5094e-03

-3.9343e-03 1.5630e-02 -1.3099e-03 1.2477e-02 7.1128e-03

-4.7057e-03 -5.8612e-04 3.0516e-03 1.9185e-02 5.8233e-03

T =

-2.1107e+01 2.4359e+00 0 0 0

2.4359e+00 3.0348e+00 5.3602e+00 0 0

0 5.3602e+00 1.2989e+00 -2.0943e+00 0

0 0 2.0943e+00 -2.2699e-01 -1.2047e-12

0 0 0 1.2047e-12 -2.1363e+01

r =

3.7801e-11

6.6223e-11

5.3426e-11

5.3092e-11

p =

-4.8017e-15

-6.6371e-15

-8.5687e-15

-7.0152e-15

Check bi-orthogonality: norm(V’*W)=

ans =

7.2457e-14

Check decomposition with V: norm(A*V-V*T)=

ans =

1.0718e-10

and decomposition with W: norm(A’W-W*T’)=

ans =

1.3773e-14

Note that the tridiagonal matrix is symmetric up to signs. Finally, for the
Gutknecht variant, we obtain

Gutknecht

V =

-4.0000e+01 -1.4340e+00 9.2866e+00 1.2058e-01 -2.4168e-12

786 ITERATIVE METHODS FOR LINEAR SYSTEMS

-7.1000e+01 1.6228e-01 -4.7887e+00 1.1381e+00 -4.2392e-12

-5.1000e+01 6.9911e+00 -8.2016e-01 6.0247e-01 -3.4282e-12

-6.1000e+01 -5.0936e+00 1.6982e-01 -1.9074e+00 -3.4025e-12

W =

-3.0857e-03 -2.7788e-02 8.7754e-02 1.8070e-01 -5.3222e+10

-5.4771e-03 -7.7264e-02 -4.0429e-02 3.7789e-01 -7.1131e+10

-3.9343e-03 1.3543e-01 7.0213e-03 -2.3522e-01 -9.1392e+10

-4.7057e-03 -5.0786e-03 -1.6357e-02 -3.6168e-01 -7.5392e+10

T =

-2.1107e+01 2.8113e-01 0 0 0

2.1107e+01 3.0348e+00 -8.6649e+00 0 0

0 -3.3159e+00 1.2989e+00 -5.9546e-01 0

0 0 7.3660e+00 -2.2699e-01 -1.5374e-24

0 0 0 8.2245e-01 -2.1362e+01

r =

-1.9877e-12

-3.4865e-12

-2.8195e-12

-2.7984e-12

p =

8.1823e-14

1.0936e-13

1.4051e-13

1.1591e-13

Check bi-orthogonality: norm(V’*W)=

ans =

1.1837e-12

Check decomposition with V: norm(A*V-V*T)=

ans =

5.6469e-12

and decomposition with W: norm(A’W-W*T’)=

ans =

2.2766e-13

These results are again comparable to the previous ones.

Saad proposed in [118] to use the non-symmetric Lanczos process for
solving linear systems. Let x0 be a given approximation to the solution of
Ax = b and r0 = b− Ax0 be the corresponding residual. Choosing v1 = r0

and w1 = r0/‖r0‖2, we search for an approximate solution in the space
spanned by Vj , xj := x0 + Vjz. This choice leads to the residual

rj = b− Axj = r0 − AVjz.

In order to determine the approximate solution, we impose a Galerkin con-
dition, but now on the space spanned by Wj ,

0 = W�
j rj = W�

j r0 −W�
j AVjz = e1 − Tjz. (11.157)

This idea of using two different spaces, one for approximating the solution and

Krylov Subspace Methods 787

one for imposing orthogonality, is often called the Petrov-Galerkin method,
due to its historical origins in finite element methods.

We see from (11.157) that in order to determine z, we must solve the
tridiagonal system

Tjz = e1, (11.158)

from which we obtain xj = x0+Vjz. Note that it is not necessary to compute
xj in each step: we can compute the residual independently, since

rj = r0 − AVjz = r0 − (VjTj + βjvj+1e
�
j)z

= r0 − VjTjz − βjvj+1e
�
j z

= −βjvj+1e
�
j z,

where we used on the second line that VjTjz = Vje1 = r0, from (11.158) and
the definition of r0. Therefore,

rj = −βjvj+1zj =⇒ ‖rj‖ = |βj ||zj |‖vj+1‖. (11.159)

We can thus compute the residual from the solution z in (11.158), which
means we can decide to compute the approximation xj only when the residual
is sufficient small.

The followingMatlab function Saad computes a fixed number of Lanczos
steps and stores the approximation vectors together with the norm of the
corresponding residuals. It is meant as an implementation for educational
purposes: for example, it is not necessary to store the W matrix if we only
want to solve linear systems of equations.

Algorithm 11.24.
Non-Symmetric Lanczos for Linear Systems: Saad

Variant

function [X,res,V,W,T]=Saad(A,b,x0,n);

% SAAD Non-symmetric Lanczos for linear systems

% [X,res,V,W,T]=Saad(A,b,x0,n) computes an approximate solution of

% the linear system Ax=b performing n non-symmetric Lanczos

% iterations starting with the initial vector x0. The matrix X

% contains the approximate solutions and the vector res the norms of

% the corresponding residuals. The method also returns the

% biorthogonal vectors in V and W and the tridiagonal matrix T

X=x0; r0=b-A*x0; res=norm(r0);

V=r0; W=r0/norm(r0)^2;

beta=0; gamma=0; r=r0;

alpha=W(:,1)’*A*V(:,1);

T(1,1)=alpha;

for j=1:n,

z=T\eye(j,1);

788 ITERATIVE METHODS FOR LINEAR SYSTEMS

x=x0+V*z;

X=[X x];

if j==1,

r=A*V(:,j)-alpha*V(:,j);

p=A’*W(:,j)-alpha*W(:,j);

else

r=A*V(:,j)-alpha*V(:,j)-gamma*V(:,j-1);

p=A’*W(:,j)-alpha*W(:,j)-beta*W(:,j-1);

end

beta=sqrt(abs(r’*p)); gamma=beta*sign(r’*p);

res=[res norm(r)*abs(z(j))];

T(j+1,j)=beta; T(j,j+1)=gamma;

V=[V, r/beta]; W=[W, p/gamma];

alpha=(W(:,j+1)’*A*V(:,j+1));

T(j+1,j+1)=alpha;

end;

Example 11.13. As a first example, we consider again the system with
the matrix A from (11.90):

A=[0 -4 -8 -2

-4 -7 -7 -8

-9 -5 -4 -5

0 -5 -9 -6];

x=[1:4]’; b=A*x;

x0=zeros(4,1);

[X,res]=Saad(A,b,x0,4)

X =

0 1.8951 1.3020 0.7390 1.0000

0 3.3639 3.1276 4.0556 2.0000

0 2.4163 4.3198 2.1920 3.0000

0 2.8901 1.1090 3.1811 4.0000

res =

113.8552 8.7694 10.4821 2.3045 0.0000

The norm of the residuals is not monotonically decreasing, as we can see
already in this small example, but we nonetheless obtain the exact solution
after n = 4 steps, as predicted by the theory. However, this will no longer be
the case for larger n because of rounding errors. To see this, run the following
Matlab program, which solves randomly generated 50 × 50 linear systems.
Observe the plots of the norm of residuals:

for k=1:30

clf

A=rand(50);

condition=cond(A)

b=A*[1:50]’;

x0=zeros(50,1);

Krylov Subspace Methods 789

0 50 100 150 200 250
−20

−15

−10

−5

0

5

10

Figure 11.11.
Non-symmetric Lanczos for solving linear systems: norm

of residuals

[X,res]=Saad(A,b,x0,200);

plot(log10(res));

pause

end

A typical plot of the logarithms of the norm of the residuals is shown in
Figure 11.11. We see with this larger example that we do not obtain the
exact solution after n = 50 steps. Convergence does occur, but only after
about 200 = 4n steps. Again convergence is not monotonic.

In order to avoid having to solve a small linear system at each iteration,
one can proceed like in Subsection 11.7.5 to obtain an updating formula for
the iterates xk. In [59], Gutknecht chooses the starting vectors like in the
Saad variant, v1 = r0 and w1 = r0/‖r0‖2, but uses the choice of coefficients
(11.156), which is different from Saad. That choice leads to the updating
formula

xj+1 = −(vj + αjxj + γj−1xj−1)/βj . (11.160)

In the special case of a symmetric matrix, the algorithm thus obtained be-
comes the conjugate gradient algorithm, see Section 11.7.1.

Lemma 11.10. Let V = [v1, . . . ,vj] be the Lanczos vectors obtained from
j steps of the non-symmetric Lanczos process with initial vectors v1 = r0,
w1 = r0/‖r0‖2 and the choice of βj according to (11.156). If the approximate
solutions xj are calculated using the recurrence (11.160), then the vj are
precisely the residual vectors with respect to xj , i.e.,

vj = b− Axj .

790 ITERATIVE METHODS FOR LINEAR SYSTEMS

Proof. The proof is by induction. We first have b − Ax0 = r0 =
v1 because of the initialization. Assume now that the statement holds for
1, . . . , j. Then, using b− vj = Axj , we get

b−Axj+1 = b+ (Avj + αjAxj + γj−1Axj−1)/βj

= b+ (Avj + αj(b− vj) + γj−1(b− vj−1))/βj

= b+ (Avj − αjvj − γj−1vj−1)︸ ︷︷ ︸
βjvj+1, see (11.151)

/βj + b(αj + γj−1)/βj .

Because of (11.156), we have βj = −αj − γj−1, and the vector b cancels,
which leads to

b−Axj+1 = vj+1.

�

Algorithm 11.25.
Non-Symmetric Lanczos for Linear Systems: BiORES of

Gutknecht

function [X,res,V,W,T]=BiORES(A,b,x0,n);

% BIORES Non-symmetric Lanczos for linear equations

% [X,res,V,W,T]=BiORES(A,b,x0,n) computes an approximate solution of

% the linear system Ax=b performing n non-symmetric Lanczos

% iterations starting with the initial vector x0. X contains the

% successive approximations computed by the proposal of Gutknecht,

% and the vector res contains the norms of the corresponding

% residuals. The method also returns the biorthogonal vectors in V

% and W and the tridiagonal matrix T

X=x0;

r0=b-A*x0; res=norm(r0);

V=r0; W=r0/norm(r0)^2;

beta=0; gamma=0; r=r0;

alpha=(W(:,1)’*A*V(:,1));

T(1,1)=alpha;

for j=1:n,

if j==1

r=A*V(:,j)-alpha*V(:,j);

p=A’*W(:,j)-alpha*W(:,j);

else

r=A*V(:,j)-alpha*V(:,j)-gamma*V(:,j-1);

p=A’*W(:,j)-alpha*W(:,j)-beta*W(:,j-1);

end

beta=-alpha-gamma;

if j==1

x=-(V(:,j)+alpha*X(:,j))/beta;

Krylov Subspace Methods 791

else

x=-(V(:,j)+alpha*X(:,j)+gamma*X(:,j-1))/beta;

end

X=[X x];

gamma=r’*p/beta;

res=[res norm(r/beta)];

T(j+1,j)=beta; T(j,j+1)=gamma;

V=[V,r/beta]; W=[W,p/gamma];

alpha=(W(:,j+1)’*A*V(:,j+1));

T(j+1,j+1)=alpha;

end

Example 11.14. With the matrix A from (11.90), we obtain the same
results as with Saad’s variant:

>> A=[0 -4 -8 -2

-4 -7 -7 -8

-9 -5 -4 -5

0 -5 -9 -6];

>> x=[1:4]’; b=A*x;

>> x0=zeros(4,1);

>> [X,res]=BiORES(A,b,s0,4)

X =

0 1.8951 1.3020 0.7390 1.0000

0 3.3639 3.1276 4.0556 2.0000

0 2.4163 4.3198 2.1920 3.0000

0 2.8901 1.1090 3.1811 4.0000

res =

113.8552 8.7694 10.4821 2.3045 0.0000

Like in the case of MPE and FOM, we can now prove an equivalence
result between TEA and Non-Symmetric Lanczos (NSL) for solving linear
systems.

Theorem 11.38. (Equivalence of TEA and NSL) Let A ∈ R
n×n

be an invertible matrix, A = M − N be a splitting of A with M invertible,
and b ∈ R

n. Then, for any given starting vector v0, applying non-symmetric
Lanczos (NSL) to the preconditioned system M−1Av = M−1b and applying
TEA to the stationary iterative method Mvk+1 = Nvk+b, with the particular
choice in TEA of q := r0 = M−1b−M−1Av0, lead to identical iterates.

Proof. The proof is similar to the proof of Theorem 11.32. TEA is a
special minimum polynomial extrapolation method, and as such determines
its iterates vTEA

k such that rTEA
k = Ukγ, with the matrix Uk defined in

(11.73),
Uk = [u0, (I −M−1A)u0, . . . , (I −M−1A)ku0].

Proceeding as in (11.137) in the proof of Theorem 11.32, we can show that
u0 = r0, and hence

rTEA
k ∈ Kk+1(M

−1A, r0).

792 ITERATIVE METHODS FOR LINEAR SYSTEMS

Non-symmetric Lanczos applied to the linear system M−1Av = M−1b gen-
erates the subspace

span{Vk} = Kk(M
−1A, r0),

and the residual satisfies

rNSL
k = M−1b−M−1AvNSL

k

= M−1b−M−1A(v0 + Vkz)

= r0 −M−1AVkz ∈ Kk+1(M
−1A, r0).

Hence both residuals lie in the same Krylov space, and are determined by k
coefficients, since the initial residual is the same. For TEA, the coefficients
are determined by the orthogonality condition Q�

k−1r
TEA
k = 0, see (11.98),

where the assumption q = r0 implies

Qk−1 := [q, G�q, . . . , (G�)k−1q] with G = I −M−1A.

The coefficients for NSL are determined by W�
k r

NSL
k = 0 (the orthogonality

condition) and
span{Wk} = Kk((M

−1A)�, r0).

Therefore the coefficients in both cases are determined by the same orthogo-
nality condition, which means that the residuals, and thus the iterates must
coincide. �

Example 11.15. The following example illustrates the equivalence.

A =[0 -4 -8 -2

-4 -7 -7 -8

-9 -5 -4 -5

0 -5 -9 -6];

n=length(A); x=(1:n)’; b=A*x;

x0=x-5; % Starting vector

[X,res,V,W,T]=BiORES(A,b,x0,n);

[x,W,E]=TEA1(A,b,x0,4);

disp(’Solutions with BiORES’); X

disp(’Solutions with TEA1’); W(:,2:2:8)

Solutions with BiORES

X =

-4.0000 -0.7314 -26.5624 0.8810 1.0000

-3.0000 3.0703 -0.0670 1.6982 2.0000

-2.0000 3.3698 42.1720 3.2542 3.0000

-1.0000 3.6694 -22.8856 4.0633 4.0000

Solutions with TEA1

ans =

-0.7314 -26.5624 0.8810 1.0000

3.0703 -0.0670 1.6982 2.0000

3.3698 42.1720 3.2542 3.0000

3.6694 -22.8856 4.0633 4.0000

Krylov Subspace Methods 793

11.7.8 Biconjugate Gradient Method (BiCG)

Based on the non-symmetric Lanczos process, Lanczos already developed the
Biconjugate Gradient Method in [83], see also Fletcher [32]. The following
algorithm computes approximations xj of the solution of the linear system
Ax = b. In total, five vectors are used: two direction vectors pj , p̃j , two
residual vectors rj , r̃j and the approximation of the solution xj . All these
vectors are updated at each iteration step by two-term recurrences.

Algorithm 11.26. Biconjugate Gradient

r0 = b− Ax0; r̃0 = r0;
p−1 = p̃−1 = 0;
ρ−1 = 1;
for j = 0 : n

ρj = r̃�
j rj ; βj =

ρj
ρj−1

;

pj = rj + βjpj−1; (1)
p̃j = r̃j + βjp̃j−1; (2)

σj = p̃�
jApj ;

αj =
ρj
σj

rj+1 = rj − αjApj ; (3)
r̃j+1 = r̃j − αjA

�p̃j ; (4)
xj+1 = xj + αjpj ; (5)

end

Note that

αj =
r̃�
j rj

p̃�
jApj

, βj =
r̃�j rj

r̃�j−1rj−1

.

Theorem 11.39. (Properties of BiCG) The following relations hold
for the vector sequences generated by the BiCG-algorithm:

a) Bi-orthogonality: r̃�
i rj = r�i r̃j = 0 for j < i.

b) Bi-conjugacy: p̃�
i Apj = p�

i A
�p̃j = 0 for j < i.

c) r̃�
i pj = r�i p̃j = 0 for j < i.

Proof. The proof is by induction, and we need to prove a) and b)
simultaneously. We start with the base case for a): Since p0 = r0, we have

r1 = r0 − α0Ap0 = r0 − α0Ar0,

794 ITERATIVE METHODS FOR LINEAR SYSTEMS

and since r̃0 = p̃0 from (2), we have α0 =
r̃�
0r0

r̃�
0Ar0

, and thus

r�
1 r̃0 = r̃�

0r1 = r̃�0r0 − α0r̃
�
0Ar0 = r̃�

0r0 − r̃�
0r0

r̃�
0Ar0

r̃�
0Ar0 = 0.

Similarly, we find that r̃�
1r0 = 0. The base case for b) also holds, since

p�
0A

�p̃−1 = 0 and p̃�
0Ap−1 = 0 by the initialization p−1 = p̃−1 = 0.

We assume now that a) and b) hold for j < i, from which we want to
deduce that a) and b) also hold for j < i+ 1. Using Statement (4) in BiCG,
we get

r̃�i+1rj = (r̃i − αiA
�p̃i)

�rj = r̃�i rj − αip̃
�
i Arj . (11.161)

Now we use Statement (1) and solve for rj in order to replace the second
occurrence of rj on the right in (11.161),

r̃�i+1rj = r̃�
i rj − αip̃

�
i A(pj − βjpj−1)

= r̃�
i rj︸ ︷︷ ︸
I

−αip̃
�
i Apj︸ ︷︷ ︸
II

+αiβj p̃
�
i Apj−1︸ ︷︷ ︸
III

.

By the induction hypothesis, the term III is zero for j < i+1, and for j < i,
both terms I and II are also zero. For j = i, the terms I and II cancel, since

αi =
r̃�
i ri

p̃�
i Api

.

Therefore r̃�
i+1rj = 0 for j < i + 1. Similarly, one can also show that

r�
i+1r̃j = 0, which completes the induction step of a). To complete the

induction step of b), we use Statement (1) of BiCG to get

p�
i+1A

�p̃j = (ri+1 + βi+1pi)
�A�p̃j

= r�
i+1A

�p̃j + βi+1p
�
i A

�p̃j .

With Statement (4) from BiCG, this becomes

p�
i+1A

�p̃j =
1

αj

(
r�
i+1r̃j − r�i+1r̃j+1

)
+ βj+1p

�
i A

�p̃j , (11.162)

and for j < i every term on the right is zero, since we have already shown
that r�

i+1r̃j = 0 for j < i + 1. Similarly, for j = i, we have already shown
that r�

i+1r̃i = 0, so replacing αj in (11.162) gives

p�
i+1A

�p̃i = − r�
i+1r̃i+1

r̃�
i ri︸ ︷︷ ︸

βi+1

p̃�
i Api + βi+1 p

�
i A

�p̃i︸ ︷︷ ︸
p̃�
i Api

= 0,

Krylov Subspace Methods 795

since the two terms cancel. We can verify by a similar calculation that
also p̃�

i+1Apj = 0 and thus the induction step for b) is also proved, which
completes the proof by induction for a) and b).

For c), using Statement (2) of BiCG to replace p̃j , we get

r�
i p̃j = r�i (r̃j + βjp̃j−1)

= r�i (r̃j + βj(r̃j−1 + βj−1p̃j−2))

= r�i (r̃j + βj r̃j−1 + βjβj−1r̃j−2 + · · ·)
= 0 for j < i.

Similarly, one can also show that r̃�
i pj = 0, which concludes the proof. �

The following Matlab implementation of BiCG is for educational pur-
poses only: we store non-essential vectors in order to illustrate the relations
stated in Theorem 11.39. For solving the linear system, it would be sufficient
to return only the solution x.

Algorithm 11.27. Matlab implementation of BiCG

function [X,res,R,Rt,P,Pt]=BiCG(A,b,x0,n);

% BICG Bi-Conjugate Gradient Method

% [X,res,R,Rt,P,Pt]=BiCG(A,b,x0,n); computes an approximate solution

% of the linear system Ax=b performing n steps of the Bi-Cojugate

% Gradient algorithm starting with the initial vector x0. The matrix

% X contains the approximate solutions and the vector res the norms

% of the corresponding residuals. The matrices R, Rt and P, Pt

% contain the residuals and directions.

x=x0;r=b-A*x0; rt=r;

p=zeros(size(b)); pt=p;

rho=1; res=norm(r);

X=x0; P=[]; Pt=[]; R=r; Rt=rt;

for j=1:n

rhoold=rho; rho=rt’*r;

beta=rho/rhoold;

p=r+beta*p; pt=rt+beta*pt;

P=[P p]; Pt=[Pt pt]; % not needed

Ap=A*p;

alpha=rho/(pt’*Ap);

r=r-alpha*Ap; rt=rt-alpha*A’*pt;

R=[R r]; Rt=[Rt rt]; % not needed

x=x+alpha*p;

X=[X x]; % not needed

res=[res norm(r)];

end;

796 ITERATIVE METHODS FOR LINEAR SYSTEMS

For a symmetric matrix A, this algorithm results in the two-term recurrence
version of CG called Orthomin. One can also show that BiCG is equivalent
to BiORES based on the non-symmetric Lanczos algorithm, see Algorithm
11.25. By comparing the two algorithms, one sees that the only difference is
the left starting vector, which is normalized in BiORES. We illustrate this
now by the following example:

Example 11.16. We use again our matrix A (11.90).

clc,format short e

format compact

A=[0 -4 -8 -2

-4 -7 -7 -8

-9 -5 -4 -5

0 -5 -9 -6];

n=length(A); x=(1:n)’; b=A*x;

x0=x-5; % Starting vector

[X1,res,V,W,T]=BiORES(A,b,x0,4);

[X2,res,R,Rt,P,Pt]=BiCG(A,b, x0,4);

disp(’Bi-orthogonality of residuals R’’*Rt’);

R(:,1:4)’*Rt(:,1:4)

disp(’Bi-conjugacy of directions: P’’*A’’*Pt respectively Pt’’*A*P’)

P’*A’*Pt

format short

disp(’Orthogonality of residuals and directions R’’*Pt’)

disp(’respectively Rt’’*P for i>j’)

R(:,1:4)’*Pt

Rt(:,1:4)’*P

pause

clc,format short e

disp(’Tridiagonal matrix by BiCG’)

P\A*P

% Pt\A’*Pt

disp(’Tridiagonal matrix by Lanczos’)

T(1:4,1:4)

disp(’are not the same, but similar, the eigenvalues are’)

[eig(P\A*P) eig(T(1:4,1:4))]

pause

clc

disp(’BiORES approximations ’); X1

disp(’BiCG approximations’); X2

disp(’Solutions are the same’)

disp(’right Lanczos vectors V’); V

disp(’BiCG residual vectors R’); R

disp(’component wise quotient of left Lanczos vectors W ’)

disp(’and BiCG vectors Rt’)

W(:,1:4)./Rt(:,1:4)

We obtain the following results: we first check the orthogonality,

Bi-Orthogonality of residuals R’*Rt

Krylov Subspace Methods 797

ans =

4.5025e+04 3.4106e-12 -3.0923e-10 -1.2506e-10

9.0949e-13 -1.0686e+02 -2.9559e-12 -5.9686e-13

-6.9122e-11 2.2737e-13 -2.2676e+04 -8.4583e-11

-2.1743e-11 3.5705e-13 -1.0877e-10 1.4832e+01

Bi-conjugacy of directions: P’*A’*Pt respectively Pt’*A*P

ans =

-9.6425e+05 -7.2760e-11 -1.2107e-08 2.6776e-09

-1.8190e-11 2.7904e+01 -1.4552e-11 -2.1828e-11

-2.7940e-09 -4.3656e-11 -1.3902e+06 -5.1805e-09

4.7524e-10 -2.8411e-11 -6.6534e-09 -1.8344e+01

which confirms Statement a) and b) of Theorem 11.39. Next, we verify

Orthogonality of residuals and directions R’*Pt

respectively Rt’*P for i>j

ans =

1.0e+04 *

4.5025 -0.0107 -2.2676 0.0015

0.0000 -0.0107 -2.2676 0.0015

-0.0000 -0.0000 -2.2676 0.0015

-0.0000 0.0000 -0.0000 0.0015

ans =

1.0e+04 *

4.5025 -0.0107 -2.2676 0.0015

0.0000 -0.0107 -2.2676 0.0015

-0.0000 -0.0000 -2.2676 0.0015

-0.0000 -0.0000 -0.0000 0.0015

and see that the two matrices are upper triangular, which confirms Statement
c) of Theorem 11.39, namely that r̃�

i pj = r�
i p̃j = 0 for j < i.

The projected matrix T = P−1AP = P̃−1A�P̃ becomes

Tridiagonal matrix by BiCG

ans =

-2.1365e+01 -6.1974e-04 2.8422e-14 1.0550e-14

2.1416e+01 -5.5667e+01 -1.3009e+04 -6.8472e-12

-2.6645e-15 2.6111e-01 6.1269e+01 -8.0895e-04

-2.5580e-13 -2.6645e-13 -6.1309e+01 -1.2367e+00

Tridiagonal matrix by Lanczos

ans =

-2.1416e+01 -5.0830e-02 0 0

2.1416e+01 -2.1028e-01 5.5406e+01 0

0 2.6111e-01 5.9030e+00 4.0103e-02

0 0 -6.1309e+01 -1.2768e+00

The two tridiagonal matrices are not the same, but they have the same eigen-
values

ans =

798 ITERATIVE METHODS FOR LINEAR SYSTEMS

-2.1363e+01 -2.1363e+01

7.4918e+00 7.4918e+00

-1.5644e+00 + 4.4941e-01i -1.5644e+00 + 4.4941e-01i

-1.5644e+00 - 4.4941e-01i -1.5644e+00 - 4.4941e-01i

So these matrices are similar.
Finally, we compare the approximations for the solutions. With BiORES,

we get

BiORES approximations

X1 =

-4.0000e+00 -7.3140e-01 -2.6562e+01 8.8103e-01 1.0000e-00

-3.0000e+00 3.0703e+00 -6.6986e-02 1.6982e+00 2.0000e+00

-2.0000e+00 3.3698e+00 4.2172e+01 3.2542e+00 3.0000e+00

-1.0000e+00 3.6694e+00 -2.2886e+01 4.0633e+00 4.0000e+00

and with BiCG, the approximations are the same,

BiCG approximations

X2 =

-4.0000e+00 -7.3140e-01 -2.6562e+01 8.8103e-01 1.0000e+00

-3.0000e+00 3.0703e+00 -6.6986e-02 1.6982e+00 2.0000e+00

-2.0000e+00 3.3698e+00 4.2172e+01 3.2542e+00 3.0000e+00

-1.0000e+00 3.6694e+00 -2.2886e+01 4.0633e+00 4.0000e+00

If we compare the right Lanczos vectors obtained by the non-symmetric Lanc-
zos process

right Lanczos vectors V

V =

-7.0000e+01 6.5787e+00 2.5134e+02 9.5342e-01 -6.1963e-12

-1.3000e+02 5.1063e-01 -6.5599e+01 -3.0242e-01 -1.0725e-11

-1.1500e+02 -1.0405e+01 -2.3614e+02 -1.2463e+00 -8.6352e-12

-1.0000e+02 6.6965e+00 1.8090e+02 1.1590e+00 -8.6963e-12

to the vectors rj obtained by BiCG, we see that they are also the same,

BiCG residual vectors R

R =

-7.0000e+01 6.5787e+00 2.5134e+02 9.5342e-01 7.3446e-12

-1.3000e+02 5.1063e-01 -6.5599e+01 -3.0242e-01 -2.6455e-12

-1.1500e+02 -1.0405e+01 -2.3614e+02 -1.2463e+00 -9.1305e-12

-1.0000e+02 6.6965e+00 1.8090e+02 1.1590e+00 5.1730e-12

This is not the case for the left Lanczos vectors W , because the initial one
was normalized in BiORES, in contrast to BiCG. However, the vectors r̃j of
BiCG are just multiples of the left Lanczos vectors, as we can see by dividing
component-wise both matrices:

component wise quotient of left Lanczos vectors and und BiCG vectors

ans =

2.2210e-05 -9.3576e-03 -4.4100e-05 6.7420e-02

Krylov Subspace Methods 799

2.2210e-05 -9.3576e-03 -4.4100e-05 6.7420e-02

2.2210e-05 -9.3576e-03 -4.4100e-05 6.7420e-02

2.2210e-05 -9.3576e-03 -4.4100e-05 6.7420e-02

As shown in Theorem 11.38, the non-symmetric Lanczos algorithm for
solving linear systems and the Topological ε-Algorithm are equivalent, and we
have also seen that they are equivalent to BiCG. In the following example, we
show that TEA1 gives the same approximation solutions xk as those shown
above, up to differences due to finite precision arithmetic.

Example 11.17. We use again our matrix A (11.90) as in Example
11.16:

A=[0 -4 -8 -2

-4 -7 -7 -8

-9 -5 -4 -5

0 -5 -9 -6];

format long

clc

n=length(A); x=(1:n)’; b=A*x;

x0=x-5; % Starting vector

[X,res,R,Rt,P,Pt]=BiCG(A,b,x0,n);

[x,W,E]=TEA1(A,b,x0,4);

disp(’Solutions with BiCG’)

X(:,2:n+1)

disp(’Solutions with TEA1’)

W(:,2:2:8)

disp(’Eigenvalues of basic iteration matrix’)

eig(eye(size(A))-A)

rho=max(abs(ans))

format short e

disp(’last x_j used for extrapolation’)

E(:,9)

disp(’Basic iterations’)

G=eye(size(A))-A;

x=x0; xx=[];

for k=1:8

x=G*x+b;

xx=[xx x];

end

xx

The results, the vectors of consecutive approximations, are as predicted the
same:

Solutions with BiCG

ans =

-0.731397459165154 -26.562405416410403 0.881029980440719 0.999999999998884

800 ITERATIVE METHODS FOR LINEAR SYSTEMS

3.070261861550428 -0.066986452894987 1.698228789336742 2.000000000000207

3.369847031371532 42.171996268315795 3.254246071134837 3.000000000001025

3.669432201192636 -22.885556136309262 4.063267002656218 3.999999999999152

Solutions with TEA1

ans =

-0.731397459165152 -26.562405418626817 0.881029980719667 0.999999983283914

3.070261861550421 -0.066986453163246 1.698228789299351 1.999999943830457

3.369847031371535 42.171996271646179 3.254246070822271 3.000000040378477

3.669432201192635 -22.885556138588385 4.063267002885153 4.000000016511125

We note that the values of BiCG are more precise. One reason is that the
basic iteration for TEA1, xj+1 = (I − A)xj + b, diverges for this example.
In fact, the spectral radius of I − A is larger than one:

Eigenvalues of basic iteration matrix

ans =

22.363100417299790

-6.491823701736879

2.564361642218540 + 0.449408785422842i

2.564361642218540 - 0.449408785422842i

rho =

22.363100417299790

so the “approximations” of the basic iterations do not converge, but grow
quickly. We obtain x8 as final vector with a norm of ≈ 1011:

last x_j used for extrapolation

ans =

-2.1817e+11

-3.8514e+11

-3.1287e+11

-3.0864e+11

It is amazing that even from these divergent approximations, the ε-algorithm
TEA1 manages to extract a result with about 8 correct digits. Experiments
show, however, that even when the basic iteration converges, the results of
TEA1 seem to be more affected by rounding errors than BiCG.

11.7.9 Further Krylov Methods

Any linear system with a non-singular matrix A can be reduced to an equiv-
alent system with a symmetric and positive definite matrix.

Definition 11.14. (Gauss Transformation) Let Ax = b be a linear
system with A ∈ R

n×n non-singular. Then

1. A�Ax = A�b is called the first Gauss transformation.

2. AA�y = b with x = A�y is called the second Gauss transformation.

The coefficient matrices A�A and AA� are symmetric and positive def-
inite, so CG can be applied to the transformed systems. The only serious

Preconditioning 801

drawback is that the condition number is squared, and hence the convergence
is slowed down and errors due to the finite precision arithmetic are increased.

Gauss transformations are useful for linear systems with rectangular ma-
trices. If A ∈ R

m×n with m > n, then we have more equations than un-
knowns and the system is overdetermined, which means it has no solution
in general. Using the first Gauss transformation A�Ax = A�b, we get the
normal equations, and the solutions are the least squares solutions minimiz-
ing the residual ‖b− Ax‖2, see Chapter 6. For A ∈ R

m×n with m < n with
full rank, we have more unknowns than equations, so there are in general
many solutions. In this case, the second Gauss transformation AA�y = b
with x = A�y computes the solution with minimal norm.

With the first Gauss transformation, followed by the application of CG,
we obtain the CGNR-Method (conjugate gradient on normal equations). This
method minimizes the residuals, since

‖x−xk‖2A�A = (x−xk)
�A�A(x−xk) = ‖A(x−xk)‖22 = ‖b−Axk‖22. = ‖rk‖22

Therefore, this algorithm is similar to CR, Algorithm 11.5, or GMRES, but
the minimization is done over a different Krylov space (x0 + Kk(A

�A, r0)
rather than x0 +Kk(A, r0)).

Applying the conjugate gradient method after the second Gauss transfor-
mation, we obtain the CGNE-Method, which is also called Craig’s Method.

As we mentioned before, these two methods are only useful in connection
with a good preconditioner, since the condition number is squared before the
CG method is applied. One way to avoid squaring the condition number is
to use the Biconjugate Gradient (BiCG) method, which has been discussed
in the previous section. One drawback, however, is that the convergence
of BiCG is often erratic, and the algorithm can suffer from breakdowns. A
stabilized version, called BiCGStab, was developed by van der Vorst [141]
and is currently widely used.

A different idea, proposed by Freund and Nachtigal [35], is to only approx-
imately minimize the residual in the Krylov space in a least squares sense.
This leads to the so-called quasi minimum residual (QMR) method.

There are many more variants than we have discussed in this chapter, for
example special methods for symmetric but indefinite systems, like MINRES
and SYMMLQ developed by Paige and Saunders in [101] and [102], or flex-
ible Krylov methods, where the preconditioner can change from iteration to
iteration (e.g. FGMRES). For an overview, see the Templates book [7], and
for further reading, we recommend the excellent book by Saad [118].

11.8 Preconditioning

Historically, the CG method generated great interest as a method for com-
puting the solution of a linear system of equations in at most n iteration
steps. When it was realized that this is no longer true in finite precision
arithmetic, interest quickly faded, until one realized that CG is much more

802 ITERATIVE METHODS FOR LINEAR SYSTEMS

interesting as an iterative method, because it minimizes at each step the er-
ror over the current Krylov subspace, as stated in Theorem 11.26. Theorem
11.28 shows that the rate of convergence depends on the condition number
of the matrix — convergence is improved if the condition number is smaller.
Also, by Corollary 11.2, convergence is faster if A has multiple eigenvalues.

The idea of preconditioning is to replace the linear system Ax = b by a
new system Âx̂ = b̂ with a smaller condition number or a better clustered
spectrum. More specifically, we wish to find a non-singular matrix S such
that

Âx̂ = b̂, with Â = SAS�, x̂ = S−Tx, b̂ = Sb,

and determine S such that the condition number is reduced, i.e., κ(Â) <
κ(A).

The best choice for S would be S = A− 1
2 , because then Â = I, but

computing this S is a more difficult problem than solving the given system
of equations. Obviously solving equations with the matrix S must be easy
and the transformation A → Â = SAS� must be done implicitly, since we
do not want to destroy any possible sparsity pattern of A. Therefore, we will
reformulate the CG algorithm for the transformed system such that only the
original variables A, x, b and the new matrix S are used.

CG algorithm for the transformed system:
choose x̂0, p̂0 = r̂0 := b̂− Âx̂0;
for k = 0 : n− 1

α̂k =
‖r̂k‖2
p̂�
k Âp̂k

; (11.163)

x̂k+1 = x̂k + α̂kp̂k; (11.164)

r̂k+1 = r̂k − α̂kÂp̂k; (11.165)

β̂k =
‖r̂k+1‖2
‖r̂k‖2 ; (11.166)

p̂k+1 = r̂k+1 + β̂kp̂k; (11.167)
end

We start with a relation between the preconditioned and unpreconditioned
residuals: for k = 0, 1, . . . , we have

r̂k = b̂− Âx̂k = Sb− SAS�S−Txk = Srk. (11.168)

By definition, we also have xk = S�x̂k, and we define two new vectors
pk := S�p̂k and r̃k := S�Srk. Replacing Â = SAS� and r̂k from (11.168)
in Statement (11.163), we obtain

α̂k =
r̃�
krk

p�
kApk

,

Preconditioning 803

and multiplying Statement (11.164) by S�, we get

xk+1 = S�x̂k+1 = S�x̂k + α̂kS
�p̂k = xk + α̂kpk.

We then multiply Statement (11.165) by S−1, and replacing Â = SAS� we
get

rk+1 = rk − α̂kApk.

Substituting (11.168) into Statement (11.166) and using the definition of r̃k,
we get

β̂k =
r̃�
k+1rk+1

r̃�
krk

,

and finally, we transform the last statement by multiplying (11.167) by S�,

pk+1 = S�p̂k+1 = S�r̂k+1 + β̂kS
�p̂k = S�Srk+1 + β̂kpk = r̃k+1 + β̂kpk.

Comparing these transformed statements with the original CG Algorithm
11.15, we see that very few modifications are necessary in order to obtain
the preconditioned version: only three instances of rk need to be replaced by
r̃k, and r̃k needs to be computed from r̃k = S�Srk =: M−1rk, where M is
the symmetric and positive definite preconditioner, and the matrix S itself is
not needed. This leads to the following Matlab implementation, where we
renamed α̂ and β̂ again to α and β.

Algorithm 11.28.
Preconditioned Conjugate Gradient Algorithm

function [X,R,P,alpha,beta]=PCG(A,b,x0,M,m);

% CG preconditioned conjugate gradient method

% [X,R,P,alpha,beta]=PCG(A,b,x0,M,m) computes an approximation for

% the solution of the linear system Ax=b performing m steps of the

% preconditioned conjugate gradient method with preconditioner M,

% starting with x0, and returns in the matrix X the iterates, in the

% matrix R the residuals, and in a and b the coefficients alpha and

% beta.

x=x0; r=b-A*x;

rt=M\r; p=rt;

R=r; P=p; X=x;

oldrho=rt’*r;

for k=1:m

Ap=A*p;

alpha(k)=oldrho/(p’*Ap);

x=x+alpha(k)*p;

r=r-alpha(k)*Ap;

rt=M\r;

rho=rt’*r;

804 ITERATIVE METHODS FOR LINEAR SYSTEMS

beta(k)=rho/oldrho;

oldrho=rho;

p=rt+beta(k)*p;

X=[X,x];

R=[R,r];

P=[P,p];

end;

How should we choose the preconditioning matrix M = (S�S)−1? We
have

Â = SAS� ⇐⇒ S�ÂS−T = S�SA,

and thus Â is similar to (S�S)A = M−1A. Now Â is well conditioned if

(S�S)A ≈ I ⇐⇒ M ≈ A.

The preconditioning matrix M has to be symmetric positive definite and a
good approximation to A, but it must be easy to solve systems of linear
equations involving M , since we need to compute r̃k in every step. For
M = I, we are back to the classical conjugate gradient algorithm.

The quest for effective preconditioners M is currently a major research
area in numerical analysis. If one has an effective matrix M from a stationary
iterative method with the splitting A = M−N , it is a good candidate for pre-
conditioning CG, since in the symmetric positive definite case, ρ(M−1N) � 1
implies that the real eigenvalues are clustered around zero, and thus the eigen-
values of the preconditioned system matrix M−1A = I−M−1N are clustered
around one, which implies a small condition number. As we have seen, a small
condition number guarantees rapid convergence for CG.

Two rather different types of preconditioners are currently being devel-
oped and analyzed: the first type are algebraic preconditioners, which are
based on the information contained in the matrix alone; examples include
incomplete LU decompositions (ILU), sparse approximate inverses (SPAI,
AINV) and algebraic multigrid methods. The second type are geometric pre-
conditioners, which also use information from the underlying physical prob-
lem that gives rise to the discrete linear system; preconditioners of this kind
include domain decomposition methods and geometric multigrid methods. Al-
gebraic preconditioners are very easy to use, since they are available as black
boxes, but geometric preconditioners are often more effective. An excellent
introduction to this subject can be found in Saad [118].

11.9 Problems

Problem 11.1. Verify the Theorem of Perron–Frobenius for the matrix
A=magic(19).

Problem 11.2. Equation (11.15) was verified with Maple for n = 5.
Prove this in general.

Problems 805

Problem 11.3. By applying the power series to a Jordan block, prove
that

f

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

λ 1 0 . . . 0
0 λ 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 λ 1
0 . . . 0 0 λ

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(λ)
0!

f ′(λ)
1!

f ′′(λ)
2! . . . f(m)(λ)

m!

0 f(λ)
0!

f ′(λ)
1!

. . . f(m−1)(λ)
(m−1)!

...
. . .

. . .
. . .

...

0 . . . 0 f(λ)
0!

f ′(λ)
1!

0 . . . 0 0 f(λ)
0!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Problem 11.4. For a given matrix A and a tolerance ε > 0, construct
an induced matrix norm ‖ · ‖ such that ‖A‖ ≤ ρ(A) + ε.

(a) Let V ∈ R
n×n be non-singular, and define ‖x‖ := ‖V x‖∞. Show that

‖ · ‖ is a vector norm that induces the matrix norm

‖A‖ = ‖V AV −1‖∞.

(b) Show that there exists a diagonal matrix D such that

DJmi
(λ)D−1 =

⎡
⎢⎢⎢⎣
λ ε

. . .
. . .

λ ε
λ

⎤
⎥⎥⎥⎦ .

Hint: The diagonal entries of D can be chosen to be decreasing powers
of ε.

(c) Find an induced norm ‖ · ‖ such that ‖A‖ ≤ ρ(A) + ε.

Problem 11.5. Write a Matlab function y=multiply(A,x) which com-
putes efficiently the multiplication y = Ax with the matrix A of Equation
(11.4).

Choose a = 2, b = 1, m = 100 and n = 50.
Multiply y = Ax for some random vector x and measure the time with

the Matlab commands tic and toc.

Problem 11.6. It is well known that

B =

⎛
⎜⎜⎜⎜⎝

2 −1

−1 2
. . .

. . .
. . . −1
−1 2

⎞
⎟⎟⎟⎟⎠ ∈ R

n×n (11.169)

806 ITERATIVE METHODS FOR LINEAR SYSTEMS

has the eigenvalues λi and eigenvectors Q with

qij =

√
2

n+ 1
sin

ijπ

n+ 1
, λi = 2− 2 cos

iπ

n+ 1
. (11.170)

(a) Consider the Jacobi splitting B = M−N and prove that the eigenvalues
of the iteration matrix M−1N are real.

(b) Use (11.170) to compute the eigenvalues of the iteration matrix.

(c) Use Theorem 11.5 to conclude that B is an M-matrix.

Problem 11.7. Consider the linear system of equations Ax = b with the
matrix

A =

⎛
⎜⎜⎜⎜⎝

2 −1

−1 2
. . .

. . .
. . . −1
−1 2

⎞
⎟⎟⎟⎟⎠

and choose b such that the exact solution is the vector [1:n].
Write an experimental program for n = 1000 using first the Jacobi method.

Perform 100 Jacobi iteration steps and estimate the spectral radius using
uk+1 = M−1Nuk and ρ ≈ ‖uk+1‖/‖uk‖.

Compare the estimated spectral radius to the true one.
Then compute with the estimated spectral radius according to the theory of

David Young the optimal over-relaxation parameter ω and continue for 100
more iteration steps with SOR.

Compute in each step the true error ek = x − xk and store its norm in
a vector. Finally use semilogy and plot the error norm as a function of the
iteration steps. You should notice a better convergence with SOR.

Problem 11.8. Following the same approach as in the introduction, de-
rive a linear system which approximates the three dimensional Poisson equa-
tion

Δu = f in Ω = (0, 1)3

with homogeneous boundary conditions, u = 0 on ∂Ω.

Problem 11.9. Write the classical iteration methods Jacobi, Gauss-
Seidel, SOR and Richardson in the correction form (11.8).

Problem 11.10. Recall that for x in R
n and 1 ≤ p < +∞ the following

vector norms can be defined:

‖u‖p =

(
n∑

i=1

|ui|p
) 1

p

, ‖u‖∞ = max
1|eqi≤n

{|ui|}.

Problems 807

For a matrix A in R
n×m, we define the norms ‖ ‖pq by

‖A‖pq = sup
x�=0

‖Ax‖p
‖x‖q ,

for 1 ≤ p, q ≤ +∞. The norm ‖ ‖pp is simply denoted by ‖ ‖p. We also
define the Frobenius norm:

‖A‖2F =

n∑
i=1

m∑
j=1

aij
2.

1. Show that

‖A‖1 = max
j=1,...,m

n∑
i=1

|aij |, ‖A‖∞ = max
i=1,...,n

m∑
j=1

|aij |,

‖A‖2 = [ρ(AHA)]
1
2 , ‖A‖F = [tr(AHA)]

1
2 = [tr(AAH)]

1
2 .

2. Show that the Frobenius norm has the submultiplicative property

‖AB‖F ≤ ‖A‖F‖B‖F .

Problem 11.11. Let p ∈ N
+. Show that

1. if 0 < ρ < 1, then lim
k→∞

(
k
p

)
ρk = 0.

2. lim
k→∞

(
k
p

) 1
k = 1.

Problem 11.12. Let A ∈ C
n×n be a square matrix whose spectral radius

ρ(A) satisfies ρ(A) < 1. Show that I − A is invertible and that

(I −A)−1 =
∞∑
j=0

Aj .

This series is a particular case of the Neumann series (generalization of the
geometric series to matrices).

Problem 11.13.

1. Let A ∈ R
n×n be a normal matrix, and suppose that the spectrum of A,

denoted by λ(A), is real. Show that A = AH.

2. Let A = M − N , and suppose that M−1N is normal. Show that the
error of the stationary iterative method associated with this splitting
satisfies

‖ek‖2 ≤ (ρ(M−1N))k‖e0‖2.

808 ITERATIVE METHODS FOR LINEAR SYSTEMS

Problem 11.14. Let us consider the matrix A given in (11.4), which
arises from the discretization of the 2D Laplacian:

A =

⎡
⎢⎢⎢⎢⎣
T I

I T
. . .

. . .
. . . I
I T

⎤
⎥⎥⎥⎥⎦ , T =

⎡
⎢⎢⎢⎢⎣
−2γ δ

δ −2γ
. . .

. . .
. . . δ
δ −2γ

⎤
⎥⎥⎥⎥⎦ ,

with δ = (Δy/Δx)2, γ = 1+ δ. We wish to show that −A is positive definite.

(a) Find the coefficients α and β such that T = αI + βB, where B is the
tridiagonal matrix defined in (11.169). Calculate the eigenvalues of T
explicitly to conclude that −T is positive definite.

(b) Let T = UΛU� be the eigenvalue decomposition of T , where Λ =
diag(λ1, . . . , λm) and U�U = I. Show that

⎡
⎢⎢⎢⎣
U�

U�

. . .

U�

⎤
⎥⎥⎥⎦A
⎡
⎢⎢⎢⎣
U

U
.. .

U

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
Λ I

I Λ
. . .

. . .
. . . I
I Λ

⎤
⎥⎥⎥⎥⎦ .

(c) Show that there is a permutation P such that

P

⎡
⎢⎢⎢⎢⎣
Λ I

I Λ
. . .

. . .
. . . I
I Λ

⎤
⎥⎥⎥⎥⎦P� =

⎡
⎢⎢⎢⎣
T1

T2

. . .

Tm

⎤
⎥⎥⎥⎦ ,

where

Tj =

⎡
⎢⎢⎢⎢⎣
λj 1

1 λj
. . .

. . .
. . . 1
1 λj

⎤
⎥⎥⎥⎥⎦ .

Hint: Instead of grouping the unknowns in the 2D domain horizontally,
group them vertically.

(d) Diagonalize the Tj and show that their eigenvalues are all negative.
Conclude that −A is positive definite.

Problem 11.15. For nx, ny ∈ N and h ∈ R
+, with n = nxny, we define

the square matrix A ∈ R
n×n representing the discretized Laplacian by (see

Problems 809

also Section 11.1)

A =
1

h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 1 1

1 −4
. . . 1

. . .
. . . 1

. . .

1 −4 1

1 −4 1
. . .

1 1 −4
. . .

. . .
. . .

. . . 1
1 1 −4

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that the submatrices are of size nx × nx. We say that a square matrix
B has Property A (see Definition 11.8), if there exists a permutation matrix
P such that

P�BP =

[
D1 F
E D2

]
,

where D1, D2 are diagonal matrices. Show that the discrete Laplacian matrix
A above has property A.

Problem 11.16.

1. Implement the methods of Jacobi and Gauss-Seidel in Matlab, using
as header

[x,res]=Jacobi(A,b,x0,tol,maxiter)

% JACOBI Method of Jacobi to solve linear systems

% [x,res]=Jacobi(A,b,x0,tol,maxiter) solves the system of

% linear equations Ax=b using the method of Jacobi,

% starting with the initial guess x0. The algorithm stops

% when either maxiter number of iterations have been

% performed, or the 2-norm of the relative residual

% is smaller than tol. The result is returned in x, and

% res contains the history of the relative residual norms.

and similarly for Gauss-Seidel and SOR.

2. Apply your methods to the discretized Laplacian of Problem 11.15 with
right hand side b = [1, 1, . . . , 1]�.

3. Test your codes on the discretized advection-diffusion operator B defined
by

B = A+ αC,

810 ITERATIVE METHODS FOR LINEAR SYSTEMS

where α ∈ R
+ (for example α = 1) and C is the discretized advection

operator given by

C =
1

h

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1

−1
. . .

. . . 1
−1

−1 1

−1
. . .

. . . 1
−1

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Problem 11.17. Show that if a matrix A has property A, then Gauss-
Seidel converges two times as fast as Jacobi. Hint: Use from Theorem 11.11
the relation (λ+ ω − 1)2 = λω2μ2, where λ is an eigenvalue of the iteration
matrix of SOR, μ is an eigenvalue of the iteration matrix of Jacobi and ω is
the relaxation parameter of SOR.

Problem 11.18.

1. Show that the eigenvalues of the matrix A describing the discretized
Laplacian in Problem 11.15 are

λi,j = − 4

h2
(sin2(

i

2(nx + 1)
)π) + sin2(

j

2(ny + 1)
)π))

for the natural numbers 1 ≤ i ≤ nx, 1 ≤ j ≤ ny when the matrix
blocks are of size nx × nx and the whole matrix is of size nxny × nxny

(nx represents the number of lines in the grid and ny the number of
columns, and the nodes are enumerated column-wise).

2. Compute the optimal parameter for Richardson’s method applied to the
matrix A.

3. Compute the optimal parameter for SOR applied to the matrix A.

Problem 11.19.

1. Implement Richardson and SOR using the header

function [x,res]=Richardson(A,b,alpha,x0,tol,maxiter)

% RICHARDSON Method of Richardson to solve linear systems

% [x,res]=Richardson(A,b,x0,alpha,tol,maxiter) solves

Problems 811

% the system of linear equations Ax=b using the method

% of Richarson with relaxation parameter alpha, starting

% with the initial guess x0. The algorithm stops when

% either maxiter number of iterations have been performed,

$ or the 2-norm of the relative residual is smaller than

% tol. The result is returned in x, and res contains the

% history of the relative residual norms.

and similarly for SOR.

2. Test Richardson and SOR on the discretized Laplacian using various
parameters and the optimal ones.

3. Refine the mesh in order to obtain bigger and bigger matrices A and
compare the convergence of Jacobi, Gauss-Seidel (see Problem 11.16)
with Richardson and SOR using the optimal parameter. Represent the
logarithm of the residual as a function of the logarithm of the mesh size.

Problem 11.20. Show by differentiation that if A ∈ R
n×n is a symmetric

positive definite matrix, and b ∈ R
n, then solving the linear system Ax = b is

equivalent to finding the minimum of the quadratic form Q(x) := 1
2x

�Ax−
x�b.

Problem 11.21. It is well known that

B =

⎛
⎜⎜⎜⎜⎝

2 −1

−1 2
. . .

. . .
. . . −1
−1 2

⎞
⎟⎟⎟⎟⎠ ∈ R

m×m

has the eigenvalues λi eigenvectors Q with

qij =

√
2

m+ 1
sin

ijπ

m+ 1
, λi = 2− 2 cos

iπ

m+ 1
. (11.171)

Generalize this result and relate the eigenvalues and eigenvectors of ma-
trices of the form

C =

⎛
⎜⎜⎜⎜⎝

a b

b a
. . .

. . .
. . . b
b a

⎞
⎟⎟⎟⎟⎠

to the eigenvalues and eigenvectors of the matrix B.

Problem 11.22. Solve the same equation as in Problem 11.7. You can
reuse your experimental program for n = 1000. Perform again 100 Jacobi

812 ITERATIVE METHODS FOR LINEAR SYSTEMS

iteration steps and estimate the spectral radius ρ using uk+1 = M−1Nuk and
ρ ≈ ‖uk+1‖/‖uk‖.

Then switch to the semi-iterative method. Use the fact that the spectrum
of the iteration matrix M−1N is real and symmetric so that you can use
μ = 1/ρ and γ = 1 in Algorithm 2.3. Plot again the error history using
semilogy.

Experiment with different values of ρ to get a feeling how sensitive the
choice of this parameter is.

Problem 11.23. The linear system with the matrix

A =

⎛
⎜⎜⎜⎜⎝

2 −1

−1 2
. . .

. . .
. . . −1
−1 2

⎞
⎟⎟⎟⎟⎠ ∈ R

n×n

could be preconditioned with the matrix

M =

⎛
⎜⎜⎜⎜⎝

1 −1

−1 2
. . .

. . .
. . . −1
−1 2

⎞
⎟⎟⎟⎟⎠ = FF� with F =

⎛
⎜⎜⎜⎜⎝

1

−1 1
. . .

. . .
. . .

−1 1

⎞
⎟⎟⎟⎟⎠

Suppose you are solving the preconditioned system M−1Ax = M−1b with
GMRES. How many iteration steps are necessary in the worst case? Justify
your claim.

Problem 11.24. Change Algorithm 11.18 to

[alpha,beta,v]=Lanczos22(A,v)

so that only two vectors for your computation are used, and do not store the
matrix Q. Eliminate the if-statements in the loop to please modern processors!

Problem 11.25. Show that any matrix A ∈ R
n×n can be transformed

into upper Hessenberg form using a sequence of Householder reflections

A = QHQ�, Q = P1 · · ·Pn,

where Pi = I − 2ww� with ‖w‖2 = 1.

Problem 11.26. Let A be a real invertible m × m matrix, and let
b be a real vector in R

m. Suppose that for all k ≥ 1 we have Kk :=
span(b, Ab, . . . , Ak−1b). We define the algorithm of Arnoldi, see Subsection
11.7.2, by

q1 = b/‖b‖

Problems 813

for n = 1, 2, 3, . . .,
v = Aqn

for j = 1, . . . , n
hj,n = qT

j v
v = v − hj,nqj

end;
hn+1,n = ‖v‖
qn+1 = v/hn+1,n

end;

We suppose there exists n ≤ m such that hn+1,n = 0.

1. Show that Aqn is in Kn+1.

2. Deduce that Kp+1 = Kn+1 for all integer p ≥ n.

3. Using the concept of minimal polynomial of a matrix, show that the
solution x of the system of linear equations Ax = b is in Kn+1.

Problem 11.27.

1. Construct an algorithm to compute the QR decomposition of an upper
Hessenberg matrix H of size k × k using Givens rotations and only
O(k2) operations.

2. Suppose that we know already the QR decomposition of the matrix given
by the first k − 1 × k − 1 block of H. How can this knowledge be used
to compute the new QR decomposition of H in O(k) operations?

Problem 11.28. Implement Algorithm 11.19 and combine it with Al-
gorithm 11.21, so that you get an implementation of the conjugate gradient
algorithm to solve linear equations.

Problem 11.29. GMRES searches for an approximate solution xn of
the linear system of equations Ax = b in the Krylov space Kn(A, b) =
span(b, . . . , An−1b). We suppose that we know a good initial approximation
x0 of the solution. How could one modify the problem Ax = b in order to
incorporate this information in Kn?

Problem 11.30. We want to apply GMRES to linear systems of equa-
tions Ax = b with system matrices of the form

A =

[
I B
0 I

]
.

In how many iterations at most will GMRES converge, independently of the
choice of right hand side b ?

814 ITERATIVE METHODS FOR LINEAR SYSTEMS

Problem 11.31. Implement the Arnoldi Algorithm 11.17 and the sym-
metric Lanczos Algorithm 11.18 in Matlab, and test them on the matrix
obtained from discretizing the Laplacian on an L-shaped region,

>> G=numgrid(‘L‘,14);

>> A=delsq(G);

Compute the first few eigenvectors v, which model the lowest few vibration
modes of a drum, and visualize them using

>> u=G;

>> u(G>0)=v(G(G>0));

and then the commands surfc or mesh on u. Try also other region shapes,
type help numgrid for more information.

Problem 11.32. a) Implement GMRES in Matlab using the header

function x=GMRES(A,b,tol)

% GMRES approximate solutions of linear systems of equations

% x=GMRES(A,b,tol) solves approximately the linear system

% of equations Ax=b by computing approximations x in the

% Krylov subspace spanned by the vectors (b,...,A^(k-1)b)

% such that norm(b-A*x,2) is minimized. The algorithms

% stops when this norm is smaller than tol, or after

% size(A,1) iterations.

b) Test GMRES applied to the discretized Laplacian (see Problem 11.31)
with right hand side b = [1, . . . , 1]. Compare the convergence speed with
Jacobi, Gauss-Seidel and SOR from Problem 11.16 using a semilogy plot
with the number of iterations on the x axis and the norm of the residuals on
the y axis.

c) Verify numerically your answer in Problem 11.23.

Problem 11.33. Implement the second variant of the topological ε-
algorithm TEA2,

Algorithm 11.29. Topological ε-Algorithm TEA2

Choose an arbitrary vector q and set

ε
(n)
−1 = 0, ε

(n)
0 = xn, n = 0, 1, 2, . . .

ε
(n)
2m+1 = ε

(n+1)
2m−1 +

q

q�Δε
(n)
2m

ε
(n)
2m+2 = ε

(n+1)
2m +

Δε
(n+1)
2m

(Δε
(n)
2m+1)

�Δε
(n+1)
2m

m,n = 0, 1 . . .

Problems 815

using as a model the Matlab implementation of TEA1, see Algorithm
11.14.

Problem 11.34. Show that the direction vector pk determined by the
conjugate gradient method is the residual vector of the least squares problem

APk−1z ≈ rk−1.

Chapter 12. Optimization

The solution of nonlinear optimization problems - that
is the minimization or maximization of an objective
function involving unknown parameters/variables in
which the variables may be restricted by constraints -
is one of the core components of computational math-
ematics. Nature (and man) loves to optimize, and the
world is far from linear.

N. I. M. Gould and S. Leyffer, An introduction to algo-
rithms for nonlinear optimization, 2003.

An optimization problem begins with a set of indepen-
dent variables or parameters, and often includes con-
ditions or restrictions that define acceptable values of
the variables. Such restrictions are termed the con-
straints of the problem. The other essential component
of an optimization problem is a single measure of “good-
ness”, termed the objective function, which depends in
some way on the variables. The solution of an optimiza-
tion problem is a set of allowed values of the variables
for which the objective function assumes an “optimal”
value.

P. E. Gill, W. Murray and M. H. Wright, Practical Opti-
mization, Academic Press, 1981.

Optimization problems are ubiquitous in science and engineering, and
even in our daily lives, when we try to optimize our way to go to work,
when we choose the line we stand in at the supermarket, or when we make
decisions on the education of our children. As mentioned in the first quote
above, men and nature love to optimize! In a mathematical formulation,
optimization problems always consist of a scalar objective function, which
should be minimized or maximized over a set of parameters, which might
be constrained (see the second quote above). We begin this chapter in Sec-
tion 12.1 with several simple examples, which show the breadth of problems
that fall into the category of optimization problems, and give a classifica-
tion of optimization problems, explaining which types of problems will be
treated in this chapter, and which ones will not. We then present the clas-
sical mathematical treatment of optimization problems in Section 12.2 and
give the necessary and sufficient conditions for a point to be a local opti-
mum. Constraints are included using Lagrange multipliers, and we will also
see the well-known Karush-Kuhn-Tucker conditions. Section 12.3 is then
dedicated to the numerical solution of unconstrained optimization problems.

W. Gander et al., Scientific Computing - An Introduction using Maple and MATLAB,

Texts in Computational Science and Engineering 11,
DOI 10.1007/978-3-319-04325-8 12,

© Springer International Publishing Switzerland 2014

818 OPTIMIZATION

We introduce and present elementary convergence proofs for two widely-used
methods, namely line search and trust region methods, both of which use
derivative information from the objective function. We also explain the very
popular direct method of Nelder–Mead, which does not use any derivative
information, but instead uses a discrete set of rules to move a simplex along
the function to be minimized. In Section 12.4, we present methods for con-
strained optimization. We start with the famous simplex algorithm for linear
programming due to Dantzig in 1951, and then present for the general case
methods based on penalty and barrier functions, interior point methods, and
also sequential quadratic optimization. A substantial part of this chapter
was greatly inspired by the excellent lecture notes of Gould and Leyffer from
the Durham summer school 2002, see [57] and the first quote above. Another
good standard reference is the book by Gill, Murray and Wright [49].

12.1 Introductory Examples

Optimization problems come in many different forms. We show in this section
several examples, and also give a characterization of optimization problems
we will treat in this chapter, and of problems that will be left out.

12.1.1 How much daily exercise is optimal ?

In his John von Neumann lecture at the annual SIAM meeting, Joe Keller
asked the following question and proposed a very simple model to answer it:
suppose at birth, every human being is given a fixed number of heartbeats,
and once these heartbeats are used up, life ends. How should one optimally
use these heartbeats to have as long a life as possible? A first immediate
idea is to stay in bed and rest, so the heart rate stays low, and one uses the
heartbeats as economically as possible. Another idea, however, comes from
the fact that a well-trained heart beats much more slowly when the person is
at rest than the heart of an untrained person. So exercise could increase the
lifespan. Unfortunately, during exercise, the heart beats faster, so that one
uses up the heartbeats faster, in the hope to gain them back during rest. So
is there an optimum?

Suppose that the untrained heart beats 80 times a minute when a person
is at rest, and that during exercise, it beats 120 times per minute. If a person
spends a fraction x of his time exercising, then this person uses on average

f(x) := 120x+ g(x)(1− x)

heartbeats per minute, where the unknown function g should be close to
80 for x small, meaning the person hardly does any exercise, and probably
around 50 for x approaching 1, when the person is extremely well trained.
Since it is known that a little exercise every day decreases the resting heart
rate considerably, a simple model for g would be exponential decay, i.e.

g(x) := 50 + 30e−100x,

Introductory Examples 819

where the choice −100 is quite arbitrary here, and should be much more
carefully researched with the help of a medical doctor. Figure 12.1 shows the
function f for this example, and there is clearly a minimum, which means

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

50

60

70

80

90

100

110

120

x

f

Figure 12.1.
A simple model of the average heart beat of a person

which exercises the fraction x of time.

there is an optimal choice of x that minimizes the average use of heartbeats,
and which leads to the longest life possible. From calculus, we know that we
need to set the derivative to zero to find the minimum, which with Maple

is easily achieved by

> f:=120*x+(50+30*exp(-100*x))*(1-x);

> fp:=diff(f,x);

> solve(fp,x);

− 1

100
LambertW(

7

3
e101) +

101

100

It is interesting to see that the closed-form solution of this problem involves
the LambertW function we have already encountered in Chapter 5 on the
numerical solution of nonlinear equations. To obtain a numerical value in
Maple , we type

> evalf(%);

and Maple returns 0.0373019079, which means that one should exercise a
bit over 50 minutes every day. If there had been no closed-form solution
in Maple , one could have used any of the nonlinear equation solvers from
Chapter 5 to find the solution, or the Maple command fsolve.

Is it also possible to find the minimum directly without knowing the
derivative? For this one-dimensional problem, an algorithm like Algorithm
5.2 (Bisection) in Chapter 5 would be nice, but it is not possible to tell
from the midpoint of an initial interval [a, b] if the minimum lies in the left or
right half of the interval. However, if one computes the function value for two
distinct points x1 and x2 in [a, b], x1 < x2, and if f(x1) is smaller than f(x2),
as in the example in Figure 12.2, then a minimum must lie in the interval

820 OPTIMIZATION

x

x1 x2a b

f(x)

Figure 12.2.
Example of a minimum search algorithm similar to
bisection, using two points x1 and x2 in the search

interval [a, b].

[a, x2]. On the other hand, if f(x1) is bigger than f(x2), then a minimum
must lie in the interval [x1, b], and hence one can continue to search for the
minimum in a smaller interval, as in bisection. A simple choice for x1 and
x2 is to choose one third and two thirds of the interval [a, b], but this choice
has the big disadvantage that one needs to evaluate f twice in each step of
the algorithm, since in the new interval, neither x1 in the former, nor x2 in
the latter case lies at one third or two thirds of the new interval. A better
strategy is to set

x1 = λa+ (1− λ)b, x2 = (1− λ)a+ λb, (12.1)

and to choose λ that allows one to reuse function values that have already
been computed. This means that in the former case, the old x1 would need
to become the new x2 in the interval [a, x2], i.e.

x1 = (1− λ)a+ λx2.

Substituting the values from equation (12.1) and solving for λ yields

λ =
−1 +

√
5

2
≈ 0.6180, (12.2)

where we have chosen the positive root. In the latter case, the posibility of
reuse implies

x2 = λx1 + (1− λ)b,

which leads after substitution from equation (12.1) to the same value of λ.
This choice of λ corresponds to the golden section (see also Chapter 5), and
leads to the following golden section minimization algorithm in Matlab:

Introductory Examples 821

Algorithm 12.1. Golden Section Minimization

function x=Minimize(f,a,b)

% MINIMIZE finds a minimum of a scalar function

% x=Minimize(f,a,b) searches for a minimum of the scalar function f

% in the interval [a,b]

fa=f(a); fb=f(b);

l=(-1+sqrt(5))/2;

x1=l*a+(1-l)*b; x2=(1-l)*a+l*b;

fx1=f(x1); fx2=f(x2);

while a<x1 & x1<x2 & x2<b

if fx1>fx2

a=x1;

x1=x2; fx1=fx2;

x2=(1-l)*a+l*b; fx2=f(x2);

else

b=x2;

x2=x1; fx2=fx1;

x1=l*a+(1-l)*b; fx1=f(x1);

end;

end;

x=x1;

Running the algorithm above on the daily exercise example leads to the same
result as before

>> f=@(x) 120*x+(50+30*exp(-100*x))*(1-x);

>> x=Minimize(f,0,1)

x =

0.037301908030998

12.1.2 Mobile Phone Networks

Mobile phone systems can be used almost everywhere because there is a dense
network of base stations to which the mobile phone can connect. Each base
station covers a certain neighborhood, and when the mobile phone moves
from one neighborhood into another during a call, the call is automatically
transferred from the old station to the new one. The dense covering of areas
with base stations causes problems: if two base stations use the same fre-
quency to connect to two different mobile phones simultaneously, the signals
may interfere and the quality of the communication deteriorates. This is the
case in particular if the two base stations are physically close to each other.
Therefore, one would like to assign different frequencies to different base sta-
tions. However, in practice, there are fewer frequencies available than there
are base stations, so the frequencies have to be reused. A natural question is
how one should assign frequencies to base stations so that interference among

822 OPTIMIZATION

simultaneous calls is minimized. This problem is known as the frequency as-
signment problem, see for example [36].

We derive a mathematical formulation of the frequency assignment prob-
lem: consider n base stations Si, i = 1, 2, . . . , n. We first assume that each

g̃ii

Si

g̃ji

g̃ij g̃jj

Sj

Figure 12.3.
Two base stations and positions of worst reception and

interference

station Si sends signals with the same frequency and at a power level pi. To
describe how the power level affects interference, we consider pairs of base
stations Si and Sj , as shown in Figure 12.3. We define the entries of the link

gain matrix G̃ = [g̃ij] as follows:

• g̃iipi is the minimum signal power received by a phone when connected
to the station Si (sending with power pi) within the area of Si.

• g̃ijpj is the maximum interference power received by a phone within
the area of station Si that is emitted by the station Sj (sending with
power pj).

For simplicity, we neglect natural noise from other sources. The worst pos-
sible signal-to-noise ratio qi of a phone connected to station Si can now be
defined as the ratio between the minimum signal power from the station Si

and the sum of the interference powers g̃ijpj of the other stations Sj , j 	= i,

qi :=
g̃iipi∑
j �=i g̃ijpj

=
pi∑

j �=i
g̃ij
g̃ii

pj
=

pi(∑
j

g̃ij
g̃ii

pj

)
− pi

. (12.3)

Defining the normalized link gain matrix G = [gij] by

gij :=

{ g̃ij
g̃ii

i 	= j,

0 otherwise,
(12.4)

the worst signal-to-noise ratio from (12.3) becomes

qi =
pi∑

j gijpj
. (12.5)

Introductory Examples 823

In the simple example with one frequency, we can only choose the sending
power pi at each station Si to maximize the smallest signal-to-noise ratio qi
over all stations. The optimum is obtained when the signal-to-noise ratio is
the same for all stations, as one can see as follows: starting with all the qi
equal and decreasing the sending power pj of station Sj , we necessarily de-
crease the signal-to-noise ratio qj since gjj = 0. On the other hand, increasing
the power pj of station Sj would necessarily decrease the signal-to-noise ratio
of coupled neighboring stations, because gjk ≥ 0.

Since the matrix G is non-negative, we have by the Perron–Frobenius
Theorem 11.4 that the eigenvalue with largest modulus of G, λmax, is real
positive, and the corresponding eigenvector φmax is non-negative. Using this
eigenvector as our power distribution, p := φmax, we obtain for the signal-
to-noise ratio

qi =
pi∑

j gijpj
=

pi
λmaxpi

=
1

λmax
, (12.6)

and thus every station can guarantee at least a signal to noise ratio of 1
λmax

,
the best possible solution with one frequency. If several frequencies are avail-
able, the goal is to collect stations in groups so that for each group 1

λmax
is

maximized, or in other words, the largest eigenvalue of the link gain matrix
G for each group is minimized.

Suppose we are given a normalized link gain matrix G ∈ R
n×n which has

zeros on the diagonal and non-negative entries otherwise,

G =

⎛
⎜⎜⎜⎝

0 g12 g13 . . . g1n
g21 0 g23 . . . g2n
...

. . .
...

gn1 gn2 0

⎞
⎟⎟⎟⎠ , gij ≥ 0, 1 ≤ i, j ≤ n,

and we have two frequencies to be assigned. In this case, we need to find a
decomposition of a permutation Π of the matrix G into four subblocks,

Π�GΠ =

(
A B
C D

)
,

A ∈ R
p×p, B ∈ R

p×(n−p),

C ∈ R
(n−p)×p, D ∈ R

(n−p)×(n−p),

such that the maximum of the largest eigenvalues of the submatrices on the
diagonal is minimized,

min
Π,p

(max(λmax(A), λmax(D))). (12.7)

An exhaustive search to solve this minimax problem is performed by the
Matlab function

824 OPTIMIZATION

Algorithm 12.2.
Exhaustive Search for Best Partition of Link Gain

Matrix G

function s=BruteForcePartition(G);

% BRUTEFORCEPARTITION find best two-frequency partition

% s=BruteForcePartition(G); finds for a given link gain matrix G the

% best partition into four submatrices, such that the maximum of the

% largest eigenvalues of the two diagonal blocks is minimized. The

% result is given by the binary index s for one of the submatrices.

n=size(G,1);

for k=1:2^(n-1)-1

s=logical(double(dec2bin(k,n))-’0’);

r(k)=max([max(eig(G(s,s))) max(eig(G(~s,~s)))]);

end

[rmin,k]=min(r);

disp(rmin)

s=logical(double(dec2bin(k,n))-’0’);

To test this function, we need various configurations of base stations.
Since base stations are usually intelligently distributed, we use for testing
purposes base stations on a rectangular grid with random perturbations, as
in the Matlab code

Algorithm 12.3. Generate Link Gain Matrix

function [A,x,y]=GenerateProblem(n,m,de);

% GENERATEPROBLEM generates organized random set of base stations

% [A,x,y]=GenerateProblem(n,m,de); generates n x m base station

% locations on a rectangular unitary grid, each at a random location

% in a square of side 2*de centered at the corresponding gridpoint,

% and computes the corresponding link gain matrix using the fact

% that the signal decays like 1/r^3. The output is the link gain

% matrix A and the coordinates of the base stations (x,y).

[X,Y]=meshgrid(1:n,1:m);

X=X+de*(rand(size(X))-1/2);

Y=Y+de*(rand(size(Y))-1/2);

x=X(:);

y=Y(:);

for i=1:n*m-1,

for j=i+1:n*m,

A(i,j)=1/(sqrt((x(i)-x(j))^2+(y(i)-y(j))^2)^3);

A(j,i)=A(i,j);

end;

end;

plot(x,y,’o’,’MarkerSize’,12,’LineWidth’,2)

Introductory Examples 825

We show on the left of Figure 12.4 the result of the commands

>> [A,x,y]=GenerateProblem(4,3,0.3);

>> s=BruteForcePartition(A);

>> plot(x(s),y(s),’*’,x(~s),y(~s),’o’);

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.5

1

1.5

2

2.5

3

3.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.5

1

1.5

2

2.5

3

3.5

Figure 12.4.
Two configurations of base stations, and the best

two-frequency assignment found by exhaustive search.

The minimum of the largest eigenvalue was found to be 1.2026, and one can
see intuitively why this solution is optimal: frequencies are assigned in order
to separate the base stations’ regions of influence. On the right of Figure
12.4, we show the result when the randomness parameter has been increased
to 0.7. In this case, the minimum of the largest eigenvalue was found to be
2.9017, and it is already less evident why this partition should be optimal.

The exhaustive search is currently feasible for matrices of size up to 20×
20, for which one has to try 219 configurations. Since the matrices arising
in radio communication problems are on the order of 100 × 100, a feasible
strategy to compute approximations to the best solution is needed.

To do so, we first relate (12.7) to a problem involving norms: suppose
the normalized link gain matrix G is symmetric, which would hold in many
situations. Then G is diagonalizable, G = Q�ΛQ, where Q is orthogonal and
Λ is diagonal with the eigenvalues of G on the diagonal. Thus

‖G‖2 = ‖Q�ΛQ‖2 = ‖Λ‖2 = λmax(G)

and the min-max problem in (12.7) can be written equivalently using the
spectral norm,

min
Π,p

(max(‖A‖2, ‖D‖2)). (12.8)

Often the spectral norm is ideal for minimization problems, but in this case
different norms are easier to handle. One could for example approximately
minimize the one or infinity norm,

‖A‖1 = max
j

∑
i

|aij |, ‖A‖∞ = max
i

∑
j

|aij |,

826 OPTIMIZATION

or the Frobenius norm,

‖A‖F =

√∑
i,j

|aij |2.

The physical intuition behind the use of different norms is the following: If
we manage to keep only weak links (small link gain) in the sub-matrices A
and D and put strong links (large link gain) into the off-diagonal blocks B
and C, then the strong links lose their importance, because they link stations
with different frequencies. So physically minimizing norms of A and D is still
meaningful, even in the non-symmetric case.

Suppose we want to minimize the Frobenius norm of the two sub-blocks
A and D,

min
Π,p

(max(‖A‖2F , ‖D‖2F)). (12.9)

Let p ∈ R
n be a partitioning vector, pi ∈ {−1, 1}. Then the sum of the

Frobenius norms of A and D can be written as

‖A‖2F + ‖D‖2F =
1

4

∑
i,j

g2ij(pi + pj)
2

=
1

4

∑
i,j

g2ij(p
2
i + p2j) +

1

2

∑
i,j

g2ijpipj

=
1

2
(‖G‖2F + p�(G�G)p),

where the Hadamard product G � G denotes the component-wise product,
i.e. in our case the matrix containing the elements of G squared (computed
in Matlab by G.^ 2). Since the term ‖G‖2F is independent of p, minimizing
the sum of the two Frobenius norms ‖A‖2F+‖D‖2F is equivalent to minimizing

min
pi∈{−1,1}

p�(G�G)p. (12.10)

This formulation corresponds to the spectral bisection problem in graph par-
titioning, which has been shown to be NP-hard in the literature.

To find an approximation to the solution of (12.10), one can relax the
constraint on p to contain only elements +1 or −1 and allows arbitrary p.
Thus the minimum is obtained for p being the eigenvector of G�G associated
with the smallest eigenvalue λmin(G�G). Such a search is performed by the
Matlab code

Algorithm 12.4.
Best Partition of Link Gain Matrix G using Eigenvector

of G
 G

function s=SpectralPartition(G);

% SPECTRALPARTITION find approximate two frequency partition

Introductory Examples 827

% s=SpectralPartition(G); finds for a given link gain matrix G an

% approximation to the best partition into four submatrices, such

% that the maximum of the largest eigenvalues of the two diagonal

% blocks is minimized. The result is given by the binary index s

% for one of the submatrices.

n=size(G,1);

G2=G.^2;

[V,E]=eig(G2);

[dummy,k]=min(diag(E));

[v,id]=sort(V(:,k));

for p=1:n-1

r(p)=max([max(eig(G(id(1:p),id(1:p))))...

max(eig(G(id(p+1:n),id(p+1:n))))]);

end

[rmin,p]=min(r);

disp(rmin)

s=zeros(1,n);

s(id(1:p))=1;

s=logical(s);

It remains to assign frequencies to individual stations based on the values
in the vector p. A simple way is to assign the same frequency to all stations
i for which pi has the same sign. A more elaborate approach is used in the
algorithm above: the link gain matrix G is first permuted symmetrically in
increasing order of pi. We then try the n− 1 possible partitions obtained by
grouping stations {1, . . . , k} for k = 1, . . . , n − 1. The partition that gives
the smallest eigenvalues is chosen for the assignment. Similar techniques are
employed for the graph coloring problem, see [4] and [6] for details.

Using the same configuration as in Figure 12.4, the spectral approximate
optimization yields the results shown in Figure 12.5. On the left, with the
randomness parameter equal to 0.3, the approximate minimum of the largest
eigenvalue was found to be 1.2026, and is identical to the result of the ex-
haustive search. On the right in Figure 12.5, we show the results when the
randomness parameter has been increased to 0.7, and now the approximate
minimum of the largest eigenvalue was found to be 3.0173, which is not the
optimal partition found by the exhaustive search in Figure 12.4 on the right.
On the other hand, with the approximate optimization, we can find approx-
imate solutions to much larger problems. The commands

>> [A,x,y]=GenerateProblem(6,6,0.3);

>> s=SpectralPartition(A);

>> plot(x(s),y(s),’*’,x(~s),y(~s),’o’);

lead to the result in Figure 12.6 on the left, and on the right with the increased
randomness parameter 0.7.

There are many other techniques that can be applied to solve the fre-
quency assignment problem approximately, see for example [66] for the use
of genetic search algorithms.

828 OPTIMIZATION

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.5

1

1.5

2

2.5

3

3.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.5

1

1.5

2

2.5

3

3.5

Figure 12.5.
Two configurations of base stations, and the best two
frequency assignment found by approximate spectral

search.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

Figure 12.6.
Two larger configurations of base stations, and the best
two frequency assignment found by approximate spectral

optimization.

12.1.3 A Problem from Operations Research

A construction company specialized in transport has two offices at different
locations, O1 and O2, with 8 trucks available at O1 and 6 trucks available
at O2. The company is currently servicing two construction sites C1 and
C2. The site C1 needs 4 trucks to be operational, and the site C2 needs 7
trucks. The distances from office O1 to construction site C1 is 8 kilometers,
and to construction site C2 it is 9 kilometers. The distances from office O2

to construction site C1 is 3 kilometers, and to construction site C2 it is 5
kilometers, as illustrated in Figure 12.7. The construction company would
like to minimize fuel cost and hence send trucks to the construction sites such
that the overall distance the trucks have to travel is minimized. If we denote
by x1 the number of trucks sent from O1 to C1, by x2 the number of trucks

Introductory Examples 829

9km

8km 3km

5km

office O1 office O2

construction site C1

construction site C2

8 trucks 6 trucks

Figure 12.7.
A construction company specialized in transport wants

to optimize the use of their trucks.

sent from O1 to C2, by x3 the number of trucks sent from O2 to C1, by x4 the
number of trucks sent from O2 to C2, the company needs to make a choice
satisfying the following conditions:

x1 + x2 ≤ 8 no more than 8 trucks at O1,
x3 + x4 ≤ 6 no more than 6 trucks at O2,
x1 + x3 = 4 need 4 trucks at C1,
x2 + x4 = 7 need 7 trucks at C2,

xi ≥ 0 number of trucks need to be non-negative.

(12.11)

In addition, the choice of xi, i = 1, 2, 3, 4 needs to be such that the fuel use
is minimized, i.e. the objective function

8x1 + 9x2 + 3x3 + 5x4 −→ min .

To simplify this problem, one can first eliminate the variables x3 and x4 using
the equalities in (12.11),

x3 = 4− x1, x4 = 7− x2,

830 OPTIMIZATION

which leads to the simpler optimization problem

5x1 + 4x2 + 47 −→ min
x1 + x2 ≤ 8

−x1 − x2 ≤ −5
x1 ≤ 4
x2 ≤ 7
x1 ≥ 0
x2 ≥ 0.

(12.12)

Since we have now only two variables left, one can solve this problem graph-
ically, as shown in Figure 12.8. The inequalities in (12.12) determine the

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

x1

x2

8

8

5

5

x1 + x2 = 8

x1 + x2 = 5

x1 = 4

x2 = 7

line with slope − 5
4

solution

Figure 12.8.
Graphical solution of the operations research problem of

the construction company.

region shown in Figure 12.8, which contains all admissible solutions of the
optimization problem. Minimizing 5x1+4x2+47 is equivalent to minimizing
the function f(x1, x2) = 5x1 + 4x2 over the region of admissible solutions.
The geometric interpretation of f is a plane that intersects the x1-x2 plane
along the line 5x1 + 4x2 = 0. Minimizing f means looking for the lowest
point on the plane in the admissible region. This is equivalent to finding the
point in the admissible region which has the smallest distance from the line
5x1 + 4x2 = 0. By moving this line with slope − 5

4 parallel till it hits the
admissible region, we find the solution x1 = 0 and x2 = 5, which implies

Introductory Examples 831

x3 = 4 and x4 = 2. This solution leads to 4 trucks at construction site C1

and 7 trucks at construction site C2, as required, and the trucks drive the
overall distance

8x1 + 9x2 + 3x3 + 5x4 = 67km,

which is the smallest distance possible. The solution is interesting, since 5
trucks drive the longest distance in the network at the optimal solution which
minimizes the overall distance, whereas an intuitive, less carefully chosen
solution could have sent only one truck for the longest distance, which would
have led to a worse overall solution of 71 km.

12.1.4 Classification of Optimization Problems

In general, an optimization problem at the mathematical level is given by
an objective function f : K −→ R, and one searches for x∗ ∈ K, such that
f(x∗) ≤ f(x) for all x ∈ K. Often, K is a subset of Rn defined by constraints,
and the optimization problem is formulated as

f(x) −→ min x ∈ R
n,

cj(x) ≥ 0 j ∈ I,
cj(x) = 0 j ∈ E,

(12.13)

where I is an index set denoting the inequality constraints, and E is an index
set denoting the equality constraints of the problem, whose sizes we denote
by mI = |I| and mE = |E|, and cj : R

n −→ R are the constraints.
One can roughly divide optimization problems into the following cate-

gories:

1. Optimization problems without constraints: mI = mE = 0

(a) Quadratic optimization problems: the objective function f is qua-
dratic, i.e. f(x) = x�Ax− b�x, where A ∈ R

n×n is a symmetric
matrix. Such problems require the solution of a linear system, as
shown in Chapters 3, 11, and the conjugate gradient algorithm
can be conveniently used for its solution.

(b) General nonlinear optimization problems without constraints: f
is neither quadratic nor linear.

2. Optimization problems with linear constraints: the functions cj are
affine.

(a) Problems with equality constraints only, mI = 0.

(b) Problems with inequality constraints:

i. Linear programming, if f is linear.

ii. Quadratic-linear optimization problems, if f is quadratic.

iii. Nonlinear optimization problems with linear constraints, if f
is neither linear nor quadratic.

832 OPTIMIZATION

(c) Nonlinear optimization problems:

i. Nonlinear optimization problems with equality constraints.

ii. General nonlinear optimization problems.

3. Optimal control problems, where x is a function of one or several pa-
rameters.

4. Combinatorial optimization problems, where the setK ⊂ R
n is discrete,

or even finite.

We will not address the combinatorial optimization problems beyond the
example in Section 12.1.2 on mobile phone networks. The techniques used
for such problems are substantially different from the techniques used for all
the other cases. Optimal control problems, however, can be handled by the
techniques of this chapter after discretization.

12.2 Mathematical Optimization

Definition 12.1. (Local and Global Minima) A function f : K −→ R

with K ⊂ R
n has a local minimum at the point x∗ ∈ K if there exists a

neighborhood U of x∗ such that

f(x∗) ≤ f(x), ∀x ∈ K ∩ U. (12.14)

The function f has a global minimumat the point x∗ ∈ K if

f(x∗) ≤ f(x), ∀x ∈ K. (12.15)

We say that the minimum is strict if we have f(x∗) < f(x) for all x 	= x∗

in (12.14) or (12.15).

Note that to obtain results for maxima, it suffices to simply change the
sign and replace f by −f .

Definitions (12.14) and (12.15) are not very useful in practice, so the topic
of this section is to establish other, more easily verifiable conditions that are
necessary or sufficient for the occurrence of local minima. Only in rare cases
can one make a statement about global minima.

12.2.1 Local Minima

We start with a simple one-dimensional example: let f : R −→ R be given
by f(x) = 1

2
x5 − 3

40
x4 − 3

5
x3 + 3

10
, a function shown in Figure 12.9, obtained

by the Maple commands

> f:=1/2*x^5-3/40*x^4-3/5*x^3+3/10;

> plot(f,x=-1.1..1.2,axes=boxed);

Mathematical Optimization 833

0.15

0.2

0.25

0.3

0.35

0.4

–1 –0.5 0 0.5 1
x

Figure 12.9.
The function f(x) = 1

2
x5 − 3

40
x4 − 3

5
x3 + 3

10
.

Clearly the function has a maximum on the left, and a minimum on the right.
We know from calculus that if f is twice continuously differentiable, then{

f ′(x∗) = 0
f ′′(x∗) > 0

}
=⇒

{
f has a local

minimum at x∗

}
=⇒

{
f ′(x∗) = 0
f ′′(x∗) ≥ 0

}
.

(12.16)
The conditions on the left are sufficient conditions for f to have a minimum,
and the conditions on the right are necessary conditions for f to have a
minimum: if they are not satisfied, there cannot be a minimum. For the
example, we can verify with the Maple commands

> fp:=diff(f,x);

> fpp:=diff(f,x,x);

> sols:=solve(fp,x);

sols := 0, 0,
3

50
+

3
√
201

50
,

3

50
− 3

√
201

50

> x:=sols[1];

> evalf([f,fp,fpp]);

[.3000000000, 0., 0.]

> x:=sols[3];

> evalf([f,fp,fpp]);

[.1084415149, 0., 3.527111813]

> x:=sols[4];

> evalf([f,fp,fpp]);

834 OPTIMIZATION

[.4127585747, 0.,−2.658791812]

The example also shows that the vanishing derivative at x = 0 does not imply
an extremum, since the second derivative vanishes there as well. The fact
that a strict minimum does not imply a strictly positive second derivative is
easily seen by looking at the function f(x) = x4 for example.

To generalize the result (12.16) to n dimensions, we use Taylor’s theorem
with remainder: for f : Rn −→ R twice continuously differentiable, we have

f(x∗ + x) = f(x∗) + f ′(x∗)x+
1

2
f ′′(x∗)(x,x) + r(x)‖x‖2, (12.17)

where r(x) → 0 as x → 0. In (12.17), f ′ is the transpose of the gradient of
f

(f ′(x∗))� = ∇f(x∗) =

⎛
⎜⎜⎜⎜⎝

∂f
∂x1

(x∗)
∂f
∂x2

(x∗)
...

∂f
∂xn

(x∗)

⎞
⎟⎟⎟⎟⎠ ,

and f ′′ is the bilinear form defined by the Hessian of f ,

f ′′(x∗)(x,x) = x�∇2f(x∗)x = x�H(x∗)x,

where the symmetric Hessian matrix is given by

H(x∗) =

⎛
⎜⎜⎜⎜⎜⎝

∂2f
∂x2

1
(x∗) ∂2f

∂x1∂x2
(x∗) · · · ∂2f

∂x1∂xn
(x∗)

∂2f
∂x1∂x2

(x∗) ∂2f
∂x2

2
(x∗) · · · ∂2f

∂x2∂xn
(x∗)

...
. . .

...
∂2f

∂x1∂xn
(x∗) ∂2f

∂x2∂xn
(x∗) · · · ∂2f

∂x2
n
(x∗)

⎞
⎟⎟⎟⎟⎟⎠ .

Theorem 12.1. (Unconstrained Sufficient and Necessary Opti-

mality Conditions) Let f : Rn −→ R be twice continuously differentiable,
and let x∗ ∈ R

n. Then⎧⎨
⎩

∇f(x∗) = 0

x�H(x∗)x > 0
for all x ∈ R

n, x �= 0

⎫⎬
⎭ =⇒

⎧⎨
⎩

f has a
local minimum

at x∗

⎫⎬
⎭ =⇒

⎧⎨
⎩

∇f(x∗) = 0

x�H(x∗)x ≥ 0
for all x ∈ R

n

⎫⎬
⎭ .

(12.18)

Proof. To show the sufficient condition, let λmin be the smallest eigen-
value of H(x∗). Then

x�H(x∗)x ≥ λminx
�x ∀x ∈ R

n.

The Taylor series (12.17) with ∇f(x∗) = 0 then implies

f(x∗ + x)− f(x∗) ≥
(
1

2
λmin + r(x)

)
‖x‖2.

Mathematical Optimization 835

Now if x�H(x∗)x > 0, λmin > 0, and hence f(x∗+x) > f(x∗) for sufficiently
small but nonzero x, which means x∗ is a strict local minimum.

To show the necessary condition, we apply the one-dimensional result
(12.16) to the function g(t) = f(x∗ + tx). If f has a local minimum at x∗,
then g also has a local minimum at t = 0, and hence (12.16) implies on the
one hand

g′(0) = 0 =⇒ (f(x∗))�x = 0 ∀x ∈ R
n =⇒ ∇f(x∗) = 0,

and on the other hand

g′′(0) ≥ 0 =⇒ x�H(x∗)x ≥ 0 ∀x ∈ R
n,

which concludes the proof. �

12.2.2 Constrained minima and Lagrange multipliers

We start again by an example: suppose we want to minimize f = x1x2 on
the manifold M = {(x1, x2)|c(x1, x2) = x2

1 + x2
2 − 1 = 0}. The manifold

is a circle, and it is instructive to look at the contours of f together with
the circle, as shown in Figure 12.10, which was obtained with the Maple

–1.5

–1

–0.5

0

0.5

1

1.5

–1.5 –1 –0.5 0 0.5 1 1.5
x1

x2

Figure 12.10.
Minimization of f = x1x2 on the unit circle.

commands

> f:=x1*x2;

> c:=x1^2+x2^2-1;

> with(plots):

> P1:=contourplot(f,x1=-1.5..1.5,x2=-1.5..1.5,contours=40,axes=boxed):

> P2:=contourplot(c,x1=-1.5..1.5,x2=-1.5..1.5,contours=[0],axes=boxed):

> display([P1,P2]);

836 OPTIMIZATION

Since f is positive and increasing in the first and third quadrant, and negative
and decreasing in the second and fourth, we can see from the plot that the
minima on the circle are attained at (x1, x2) = (− 1√

2
, 1√

2
) and (x1, x2) =

(1√
2
,− 1√

2
).

We now present a geometric and an algebraic argument for finding these
points. Geometrically, we see from Figure 12.10 that the extremal points of
the constrained optimization problem are characterized by tangent level set
curves of f to the constraint curve defined by c. To understand this, we note
that the gradient of a function is always orthogonal to its level sets, as one
can see for example from the Taylor expansion,

f(x0 + x)− f(x0) = (∇f(x0))
�x+O(‖x‖2).

Now the minimum cannot be at a non-tangential intersection of the level sets
of f and c, since one could then immediately decrease f by continuing a bit on
the zero level set of c. Hence the level sets must be tangential at a minimum,
which implies that the gradient of f must be parallel to the gradient of c.
In other words, at the solutions of this problem, there must be a parameter
λ ∈ R such that

∇f(x∗) = λ∇c(x∗). (12.19)

In addition, we must be on the manifold, i.e. g(x∗) = 0, which together
with (12.19) forms a system of equations for the unknowns x∗ and λ. In our
example, we obtain with the Maple commands

> with(VectorCalculus):

> fp:=Gradient(f,[x1,x2]);

> gp:=Gradient(c,[x1,x2]);

> sols:=solve({seq(fp[i]-lambda*gp[i],i=1..2),c},{x1,x2,lambda});

> allvalues(sols[1]);

> allvalues(sols[2])

the solutions{
λ =

1

2
, x1 =

1

2

√
2, x2 =

1

2

√
2

}
,

{
λ =

1

2
, x1 = −1

2

√
2, x2 = −1

2

√
2

}
{
λ = −1

2
, x1 = −1

2

√
2, x2 =

1

2

√
2

}
,

{
λ = −1

2
, x1 =

1

2

√
2, x2 = −1

2

√
2

}

as expected. Note that from these first order conditions, we cannot infer
which of the solutions represent actual minima.

To find an algebraic argument, it is easiest to start with a parametric
representation of the manifold. In our example, the circle can be represented
by the function

ϕ(t) =

(
cos(t)
sin(t)

)
.

Mathematical Optimization 837

Now the optimization problem becomes an unconstrained optimization prob-
lem by substituting the parametrization into the function and then minimiz-
ing, i.e. we minimize the function

F (t) := f(ϕ(t)) = sin(t) cos(t) =
1

2
sin(2t).

Computing the first and second derivatives, we find

F ′(t) = cos(2t), F ′′(t) = −2 sin(2t),

and hence the minima are at 3π
4 and 7π

4 , as expected.
For a general function f : R2 −→ R and a one-dimensional manifold M

given by the parametrization ϕ : R −→ R
2, we obtain at the extrema

F ′(t) = (f(ϕ(t)))′ = (∇f(ϕ(t)))�ϕ′(t) = 0.

At a minimum x∗, we therefore have

∇f(x∗) ⊥ ϕ′(t∗),

where ϕ′(t∗) is the tangent to the manifold M at x∗.

Theorem 12.2. (Constrained Sufficient And Necessary Opti-

mality Conditions 1) Let f : Rn −→ R be twice continuously differen-
tiable, and let ϕ : Rk −→ R

n be a local parametrization of the manifold M
in a neighborhood of x∗ ∈ R

n, ϕ(z∗) = x∗. Then⎧⎨
⎩

(∇f(x∗))�ϕ′(z∗) = 0
z�H(z∗)z > 0

for all z ∈ R
k, z 	= 0

⎫⎬
⎭ =⇒

⎧⎨
⎩

f |M has a
local minimum

at x∗

⎫⎬
⎭

=⇒
⎧⎨
⎩

(∇f(x∗))�ϕ′(z∗) = 0
z�H(z∗)z ≥ 0
for all z ∈ R

k

⎫⎬
⎭ , (12.20)

where H(z) is the Hessian matrix of z �→ f(ϕ(z)).
Proof. It suffices to apply Theorem 12.1 for the unconstrained case to

the function F (z) := f(ϕ(z)). �
The condition (∇f(x∗))�ϕ′(z∗) = 0 means that ∇f(x∗) is orthogonal to

the tangent space of the manifold M at x∗, Tx∗M. If the manifold is given
by a set of equations c(x) = 0, the tangent space Tx∗M is ker(c′(x∗)), where
c′ denotes the Jacobian matrix of c and ker(c′) is its null space. Now

x ∈ kerA ⇐⇒ Ax = 0 ⇐⇒ y�Ax = 0, ∀y
⇐⇒ x ⊥ A�y ⇐⇒ x ⊥ range(A�),

where range(A�) is the range of A�, and hence

∇f(x∗) ⊥ ker(c′(x∗)) ⇐⇒ ∇f(x∗) ∈ range((c′(x∗))�),

838 OPTIMIZATION

or in other words, there exists a vector λ = (λ1, . . . , λm)� such that

∇f(x∗) = (c′(x∗))�λ. (12.21)

The λj , j = 1, . . . ,m are called Lagrange multipliers. Defining the Lagrangian
as

L(x,λ) := f(x)− (c(x))�λ, (12.22)

Equation (12.21) is equivalent to ∇xL(x,λ) = 0, while c(x) = 0 is equivalent
to ∇λL(x,λ) = 0. We therefore have the necessary condition ∇L(x,λ) = 0
for a minimum of f on the manifold defined by c(x) = 0.

Theorem 12.3. (Constrained Sufficient and Necessary Opti-

mality Conditions 2) Let f : Rn −→ R be twice continuously differen-
tiable, and let M = {x ∈ R

n|c(x) = 0} be a manifold, x∗ ∈ M. Then, with
the Lagrangian (12.22), we have⎧⎪⎪⎨
⎪⎪⎩

There exists λ ∈ R
m s.t.

∇L(x∗,λ) = 0 and
w�H(x∗,λ)w > 0

for all w ∈ Tx∗M, w 	= 0

⎫⎪⎪⎬
⎪⎪⎭ =⇒

⎧⎨
⎩

f |M has a
local minimum

at x∗

⎫⎬
⎭

=⇒

⎧⎪⎪⎨
⎪⎪⎩

There exists λ ∈ R
m s.t.

∇L(x∗,λ) = 0 and
w�H(x∗,λ)w ≥ 0
for all w ∈ Tx∗M

⎫⎪⎪⎬
⎪⎪⎭ ,

(12.23)

where H is the Hessian of L with respect to the variable x only.
Proof. See Problem 12.10. �

12.2.3 Equality and Inequality Constraints

For continuously differentiable functions f : Rn −→ R, cE : Rn −→ R
m and

cI : Rn −→ R
k, we look for local minima of the problem

f(x) −→ min,
cE(x) = 0,
cI(x) ≥ 0.

(12.24)

While such a problem is difficult to solve analytically in general, we show in
the following example that in principle it could be treated analytically.

Example 12.1. Let f(x) = x2
1 + x2

2 + x2
3, cE(x) = x1 − x2 − x3 and

cI(x) = (x1−x2+
1
10
, x2−(x3+x2−1)2)�. We first use the equality constraint

to eliminate the variable x3 = x1 − x2, which leads to the simplified problem
with f(x) = 2(x2

1 − x1x2 + x2
2) and cI(x) = (x1 − x2 +

1
10 , x2 − (x1 − 1)2)�.

Using the Maple commands

> f:=x1^2+x2^2+x3^2;

Mathematical Optimization 839

> cE:=x1-x2-x3;

> cI1:=x1-x2+1/10;

> cI2:=x2-(x3+x2-1)^2;

> x3:=solve(cE,x3);

> with(plots):

> P1:=contourplot(f,x1=0..3,x2=0..3,contours=20,axes=boxed):

> P2:=contourplot(cI1,x1=0..3,x2=0..3,contours=[0],axes=boxed):

> P3:=contourplot(cI2,x1=0..3,x2=0..3,contours=[0],axes=boxed):

> display([P1,P2,P3]);

we obtain Figure 12.11.

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3
x1

x2

Figure 12.11.
Level sets of the function to minimize, and zero level sets

of the two inequality constraints in Example 12.1.

From this figure, we can see that in the interior of the domain bounded by
the inequality constraints, f does not have any extrema, as one can readily
test with the Maple commands

> with(VectorCalculus):

> fp:=Gradient(f,[x1,x2]);

> solve({fp[1],fp[2]},{x1,x2});

which gives only the zero solution. We therefore need to search for extrema
on the boundary of the compact set. Using Lagrange multipliers, we obtain
with Maple on the straight line constraint

> L1:=f-lambda*cI1;

> L1p:=Gradient(L1,[x1,x2,lambda]);

> solve({seq(L1p[i],i=1..3)},{x1,x2,lambda});

840 OPTIMIZATION

which gives the only solution (x1, x2) = (− 1
20
, 1
20
), outside of the compact

set, which is also easily identified by looking at Figure 12.11, slightly outside
on the left. On the second inequality constraint, we obtain

> L2:=f-lambda*cI2;

> L2p:=Gradient(L2,[x1,x2,lambda]);

> solve({seq(L2p[i],i=1..3)},{x1,x2,lambda});

> sols:=allvalues(%);

> evalf(sols[1]);

> assign(%);

> f;

and hence there is an extrema at (x1, x2) ≈ (0.3929927044, 0.368457857),
which is indeed a minimum, on the boundary of the compact set, and the
value of f at this point is .2908064168. Using the commands evalf
(sols[2]); and evalf(sols[3]); one readily checks that the two solu-
tions are complex. We finally need to check the corners of the boundary of
the compact set,

> x1:=’x1’;x2:=’x2’;

> x2c1:=solve(cI1,x2);

> x2c2:=solve(cI2,x2);

> x1sols:=solve(x2c2=x2c1,x1);

> x1:=x1sols[1];x2:=x2c1;

> evalf(f);

> x1:=x1sols[2];x2:=x2c1;

> evalf(f);

which gives 14.72374902 and 0.3162509758 for the function values at the
corners. We conclude that the local minimum found earlier on the boundary
is indeed the global minimum, and hence the solution of the optimization
problem.

As one can see from this simple example, an analytical treatment of such
optimization problems is hopeless for realistic high-dimensional problems.
We will therefore in the sequel consider numerical techniques for finding local
minima.

As we have seen in subsection 12.2.2, equality constraints can be dealt
with using Lagrange multipliers, and Theorem 12.2 gave necessary and suf-
ficient conditions for optimality in that case. It is natural, for a problem
with inequality constraints, that only the constraints active at a local opti-
mum play a role in the optimality conditions, i.e the constraints for which
the relation (cI)i(x

∗) = 0 holds at the optimum x∗ . We call the set
A = {i | (cI)i(x∗) = 0} the active set for the local optimum x∗.

Theorem 12.4. (Karush-Kuhn-Tucker (KKT)) Suppose that f :
R

n −→ R and c : Rn −→ R
m are twice continuously differentiable and that

x∗ ∈ R
n is a local minimum of

f(x) −→ min

c(x) ≥ 0.

Mathematical Optimization 841

Then there exists λ ∈ R
m such that

c(x∗) ≥ 0,

∇f(x∗)− (∇c(x∗))�λ = 0, with λ ≥ 0

ci(x
∗)λi = 0, ∀i.

Proof. We consider a perturbation around x∗ that satisfies the con-
straints. Since any constraint that is inactive at x∗, i.e. ci(x

∗) > 0, re-
mains inactive in a neighborhood of x∗, it suffices to consider the active
constraints only, ci(x

∗) = 0 for i ∈ A. If ci(x
∗) > 0, i 	= A is an inactive

constraint, then we put λi = 0 to remove its contribution from the equation
∇f(x∗)− (∇c(x∗))�λ = 0. Thus, it remains to show the positivity of λi for
active constraints, i.e., for i ∈ A.

Let x(α), α ≥ 0 be a twice continuously differentiable path with x(0) =
x∗, i.e.

x(α) = x∗ + αs+
1

2
α2p+O(α3),

along which the active constraints remain satisfied, i.e. ci(x(α)) ≥ 0 for
i ∈ A. This implies that

0 ≤ ci(x(α))

= ci(x
∗ + αs+

1

2
α2p+O(α3))

= ci(x
∗) + (αs+

1

2
α2p)�∇ci(x

∗) +
1

2
α2s�Hi(x

∗)s+O(α3)

= αs�∇ci(x
∗) +

1

2
α2
(
p�∇ci(x

∗) + s�Hi(x
∗)s
)
+O(α3),

where Hi(x) denotes the Hessian of ci(x). Hence for α small, we must either
have

s�∇ci(x
∗) > 0,

or, if s�∇ci(x
∗) = 0, we must have

p�∇ci(x
∗) + s�Hi(x

∗)s ≥ 0

for all i ∈ A. If we expand the function f(x(α)), we obtain

f(x(α)) = f(x∗ + αs+
1

2
α2p+O(α3))

= f(x∗) + (αs+
1

2
α2p)�∇f(x∗) +

1

2
α2s�H(x∗)s+O(α3)

= f(x∗) + αs�∇f(x∗) +
1

2
α2
(
p�∇f(x∗) + s�H(x∗)s

)
+O(α3),

842 OPTIMIZATION

where H(x) denotes the Hessian of f(x). Therefore, x∗ can only be a local
minimum if the set

S := {s | s�∇f(x∗) < 0 and s�∇ci(x
∗) ≥ 0 for i ∈ A}

is empty. Using now Farkas’ Lemma below, the result follows. �

Lemma 12.1. (Farkas) Let u ∈ R
n, vi ∈ R

n for i ∈ A. Then the set

S := {s | s�u < 0 and s�vi ≥ 0 for i ∈ A}
is empty if and only if there exist λi ≥ 0, i ∈ A such that

u =
∑
i∈A

λivi.

Proof. See Problem 12.13. �

12.3 Unconstrained Optimization

For a function f : Rn −→ R, we want to find a local minimum,

f(x) −→ min .

We have seen that mathematically, one simply searches for zeros of the gra-
dient and verifies that the Hessian is positive definite in order to find local
minima. However, finding a zero of a nonlinear system of equations is already
a highly non-trivial task, as we have seen in Chapter 5, and the numerical
methods can have severe convergence problems. In optimization, instead of
simply trying to solve a nonlinear system of equations given by ∇f(x) = 0,
one immediately tries to use the fact that one searches for a minimum of a
function by requiring the value of the objective function to decrease at each
iteration. In general, these methods only converge to a local minimum of f ,
except if f satisfies certain stringent requirements.

12.3.1 Line Search Methods

Line search methods construct a sequence of iterates xk by the formula

xk+1 = xk + αkpk,

where pk is a search direction, and the scalar parameter αk > 0 is a step
length. Typically, one requires p�

k∇f(xk) < 0 to guarantee that it is a
descent direction.

A first idea for determining the step length αk is to simply minimize f
in the search direction pk, which is a one-dimensional minimization problem,
i.e. we compute a zero of the derivative with respect to α,

d

dα
f(xk + αpk) = p�

k∇f(xk + αpk) = 0.

Unconstrained Optimization 843

We have seen this approach already in Chapter 11, when we introduced the
method of steepest descent to solve a symmetric positive definite system of
linear equations Ax = b. Unfortunately this method was not very good, so we
introduced the method of conjugate gradients, a Krylov method, with much
better performance. Conjugate gradients can be considered as an optimiza-
tion algorithm for unconstrained problems of the form f(x) = 1

2x
�Ax−b�x,

whose first order optimality condition is given by the linear system Ax = b.

Minimizing with respect to α is called an exact line search, and is in
general far too expensive to perform. Today, there are many inexact line
search methods whose goal is to find a step size αk that is neither too short
nor too long. This is critical, as one can see with the following two examples.

Example 12.2. Suppose we need to minimize f(x) = x2 using a line
search algorithm starting at x0 = 2. If we choose the descent direction to
be pk = (−1)k+1, and the step length αk = 2 + 3

2k+1 , the result is shown in
Figure 12.12 on the left, which was obtained with the Matlab commands

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

iterates
sqr(x)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

iterates
sqr(x)

Figure 12.12.
On the left a case where the step length in the line search
is too long, and on the right one where the step length is
too short. In both cases, the line search methods do not

converge to a minimum.

x(1)=2;

for k=1:10

x(k+1)=x(k)+(2+3/(2^k))*(-1)^k;

end

xx=-2.2:0.1:2.2;

plot(x,x.^2,’-o’,xx,xx.^2,’-’);

xlabel(’x’);

legend(’iterates’,’sqr(x)’);

where we needed to pay attention to the fact that array indices in Matlab al-
ways start at 1. Clearly the method fails, since the step length is too large, and

844 OPTIMIZATION

the method becomes trapped in a two-cycle. The cycle can easily be computed
using the Maple recurrence relation solver,

> rsolve({x(k+1)=x(k)+(2+3/2^(k+1))*(-1)^(k+1),x(0)=2},{x});

{x(k) = (−1)k + (
−1

2
)k}

and thus shows convergence to an oscillation between 1 and −1.

Example 12.3. Suppose we need to minimize the same function f(x) =
x2, but now we choose the descent direction pk = −1, and the step length
αk = 1

2k+1 . The result is shown in Figure 12.12 on the right, obtained with
the Matlab commands

x(1)=2;

for k=1:10

x(k+1)=x(k)-1/(2^k);

end

xx=-2.2:0.1:2.2;

plot(x,x.^2,’-o’,xx,xx.^2,’-’);

xlabel(’x’);

legend(’iterates’,’sqr(x)’);

Again the method fails: this time the step length is too short, and the method
stagnates before reaching the minimum. We can also solve this recurrence
relation with Maple,

> rsolve({x(k+1)=x(k)-1/2^(k+1),x(0)=2},{x});

{x(k) = 1 + (
1

2
)k}

which shows convergence to 1.

These two examples illustrate how important it is to choose a line search
parameter that is neither too large nor too small.

Armijo Backtracking Line Search

Among the many line search techniques, one of the most successful ones is
the Armijo backtracking line search, which starts with a reasonably large line
search parameter αinit, and then reduces it until the function value at the
new position is sufficiently reduced relative to the value at the old position:

Algorithm 12.5. Generic line search method

for x and p given;
α = αinit;
while f(x+ αp) > f(x) + αβp�∇f(x)

α = τα;
end;

Unconstrained Optimization 845

Here αinit is an initial guess for the line search parameter, for example
αinit = 1, β ∈ (0, 1) is a parameter to control the required amount of decrease
of the function (note that p�∇f(x) < 0 for a descent direction), and τ ≤
1 is the factor by which α is diminished each time, for example one half.
The Armijo backtracking line search avoids steps that are too small, since
the method accepts the first step that gives the required decrease in the
function value. Overly large steps are also avoided, since one requires a
sufficient decrease in the function value. Naturally, one might wonder if the
Armijo backtracking strategy always finds a suitable value for the line search
parameter α. The following theorem and its corollary give an affirmative
answer.

Theorem 12.5. Let f : Rn −→ R be continuously differentiable, and let
∇f be locally Lipschitz continuous at xk with Lipschitz constant L(xk),

‖∇f(xk + x)−∇f(xk)‖2 ≤ L(xk)‖x‖2. (12.25)

If β ∈ (0, 1) and pk is a descent direction of f at xk, then the Armijo
condition

f(xk + αpk) ≤ f(xk) + αβp�
k∇f(xk) (12.26)

is satisfied for all α ∈ [0, αmax(xk,pk)], where

αmax(xk,pk) =
2(β − 1)p�

k∇f(xk)

L(xk)‖pk‖22
. (12.27)

Proof. Using integration, we find

f(xk + αpk)− f(xk)− αp�
k∇f(xk)

=

∫ 1

0

αp�
k∇f(xk + ταpk)dτ −

∫ 1

0

αp�
k∇f(xk)dτ

= α

∫ 1

0

p�
k(∇f(xk + ταpk)−∇f(xk))dτ

≤ α‖pk‖2
∫ 1

0

‖∇f(xk + ταpk)−∇f(xk)‖2dτ

≤ α2‖pk‖22L(xk)

∫ 1

0

τdτ

=
α2

2
L(xk)‖pk‖22,

where we used the Cauchy–Schwarz inequality for vectors in the first inequal-
ity, and the Lipschitz condition (12.25) in the second one. Now using that
α ≤ αmax, we can replace one factor α in the α2 on the right hand side to
obtain

f(xk + αpk) ≤ f(xk) + αp�
k∇f(xk) + α(β − 1)p�

k∇f(xk)

= f(xk) + αβp�
k∇f(xk),

846 OPTIMIZATION

which concludes the proof. �

Corollary 12.1. Under the conditions of the previous theorem, the
backtracking Armijo line search terminates with

αk ≥ min(αinit,
2τ(β − 1)p�

k∇f(xk)

L(xk)‖pk‖22
). (12.28)

Proof. Either αinit already satisfies the Armijo condition, or there is a
second-to-last step in the Armijo backtracking algorithm which does not yet
satisfy the Armijo condition. In this case, the next step will multiply this
second-to-last one by τ , which then satisfies the Armijo condition, and the
algorithm stops with αk satisfying (12.28). �

In general, it would be very difficult to get an estimate of the local Lips-
chitz constant L(xk), so the backtracking Armijo search is precisely the tool
that finds a suitable line search parameter without knowing this quantity.

Generic Line Search Method with Armijo Backtracking

A generic minimization procedure with the Armijo backtracking line search
is

Algorithm 12.6.
Generic minimization with Armijo line search

x = x0;
k = 0;
while not converged

find a suitable descent direction p;
α = αinit;
while f(x+ αp) > f(x) + αβp�∇f(x)

α = τα;
end;
x = x+ αp;
k = k + 1;

end;

Theorem 12.6. Let f : Rn −→ R be continuously differentiable, and
let ∇f be locally Lipschitz at xk with Lipschitz constant L(xk). Then the
generic minimization algorithm with backtracking Armijo line search leads to
one of the following results:

1. ∇f(xk) = 0 for some k ≥ 0.

2. limk→∞ f(xk) = −∞.

Unconstrained Optimization 847

3. limk→∞ min(|p�
k∇f(xk)|, |p�

k∇f(xk)|
‖pk‖2

) = 0.

Proof. Case 1 is a lucky hit of a stationary point, and Case 2 can happen
when the function is not bounded from below. Assuming that neither of these
cases happen, i.e. ∇f(xk) 	= 0 for all k ≥ 0, and limk→∞ f(xk) > −∞, the
Armijo condition gives for all k ≥ 0

f(xk+1)− f(xk) ≤ αkβp
�
k∇f(xk),

and summing over k, we obtain

f(xk+1)− f(x0) ≤
k∑

j=0

αjβp
�
j∇f(xj),

which shows that the sum remains bounded from below, since f(xk+1) >
−∞. Now all the terms in the sum are negative, since the pj are descent
directions, and therefore the terms must converge to zero,

lim
k→∞

αkp
�
k∇f(xk) = 0.

We now define the two sets

K1 := {k|αinit >
2τ(β − 1)p�

k∇f(xk)

L(xk)‖pk‖2
2

}, K2 := {k|αinit ≤ 2τ(β − 1)p�
k∇f(xk)

L(xk)‖pk‖2
2

}.

If k ∈ K1, we have from the corollary

αk ≥ 2τ(β − 1)p�
k∇f(xk)

L(xk)‖pk‖22
and therefore

αkp
�
k∇f(xk) ≤ 2τ(β − 1)

L(xk)

(
p�
k∇f(xk)

‖pk‖2

)2

< 0,

which implies

lim
k∈K1→∞

|p�
k∇f(xk)|
‖pk‖2

= 0.

For k ∈ K2, we have from the corollary

αk ≥ αinit,

which implies
lim

k∈K2→∞
|p�

k∇f(xk)| = 0,

and hence concludes the proof. �
Unfortunately, this first convergence result does not imply that the algo-

rithm converges to a stationary point where the gradient vanishes, since in
Case 3, the gradient can simply become more and more orthogonal to the
search direction. For a successful algorithm, one therefore needs to demand
more from the search direction than simply that it be a descent direction.

848 OPTIMIZATION

Steepest Descent

The classical choice is to go along the direction of steepest descent, i.e. pk :=
−∇f(xk), which leads to a convergent algorithm:

Corollary 12.2. Let f : Rn −→ R be continuously differentiable, and let
∇f be locally Lipschitz at xk with Lipschitz constant L(xk). Then the generic
minimization algorithm with backtracking Armijo line search and steepest de-
scent search direction leads to one of the following results:

1. ∇f(xk) = 0 for some k ≥ 0.

2. limk→∞ f(xk) = −∞.

3. limk→∞ ∇f(xk) = 0.

Proof. The two special cases 1 and 2 are as in Theorem 12.6. For Case
3, we obtain from Theorem 12.6 that

lim
k→∞

min(|p�
k∇f(xk)|, |p

�
k∇f(xk)|
‖pk‖2

)= lim
k→∞

min(‖∇f(xk)‖22, ‖∇f(xk)‖2) = 0,

which concludes the proof. �
Here is a Matlab implementation of the optimization algorithm with

Armijo line search and steepest descent direction:

Algorithm 12.7. Minimization with Steepest Descent

function [x,xk]=SteepestDescent(f,fp,x0,tol,maxiter,tau,be,alinit)

% STEEPESTDESCENT steepest descent min. search with Armijo line search

% [x,xk]=SteepestDescent(f,fp,x0,tol,maxiter,tau,be,alinit) finds an

% approximate minimum of the function f with gradient fp, starting

% at the initial guess x0. The remaining parameters are optional and

% default values are used if they are omited. xk contains all the

% iterates of the method.

if nargin<8, alinit=1; end;

if nargin<7, be=0.1; end;

if nargin<6, tau=0.5; end;

if nargin<5, maxiter=100; end;

if nargin<4, tol=1e-6; end;

x=x0;

xk=x0;

p=-feval(fp,x);

k=0;

while norm(p)>tol & k<maxiter

al=alinit;

while feval(f,x+al*p)>feval(f,x)-al*be*p’*p

Unconstrained Optimization 849

al=tau*al;

end;

x=x+al*p

p=-feval(fp,x);

k=k+1;

xk(:,k+1)=x;

end;

As we have seen in Chapter 11 on linear equations, steepest descent is
not necessarily the best choice, and the same holds true for optimization, as
the example in Figure 12.13 shows, which was generated using the Matlab

commands

f=@(x) 10*(x(2)-x(1)^2)^2+(x(1)-1)^2;

fp=@(x) [-40*(x(2)-x(1)^2)*x(1)+2*(x(1)-1); 20*(x(2)-x(1)^2)];

[x,xk]=SteepestDescent(f,fp,[-1.2;1])

F=@(x,y) 10*(y-x.^2).^2+(x-1).^2; % for plotting purposes

Fp1=@(x,y) -40*(y-x.^2).*x+2*(x-1);

Fp2=@(x,y) 20*(y-x.^2);

[X,Y]=meshgrid(-1.5:0.1:1,-0.5:0.1:1.5);

contour(X,Y,F(X,Y),50)

hold on

quiver(X,Y,Fp1(X,Y),Fp2(X,Y),5)

plot(xk(1,:),xk(2,:),’-o’)

hold off

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

Figure 12.13.
Steepest Descent method for a model problem showing

convergence problems of the method.

However, even though there are better choices than steepest descent for the
search direction, as we will see in what follows, many modern codes resort to
steepest descent as the search direction if convergence problems are detected
in the code.

850 OPTIMIZATION

Newton Search Direction

To obtain a better search direction, we first notice that for any symmetric
positive definite matrix Bk, the search direction

pk := −B−1
k ∇f(xk)

is a descent direction, since

p�
k∇f(xk) = −(∇f(xk))

�B−�
k ∇f(xk) < 0,

because the fact that Bk is positive definite implies that B−�
k is positive

definite as well. In addition, this particular search direction leads directly to
a stationary point of the quadratic problem

g(xk + p) := f(xk) + p�∇f(xk) +
1

2
p�Bkp,

which can be considered as a quadratic approximation of the function f in
the neighborhood of xk. In particular, if Bk = H(xk), the Hessian of f
at xk, then g is none other than a second-order Taylor approximation of f
about xk. In this case, one calls the search direction pk = −H(xk)

−1∇f(xk)
the Newton direction, because this is the step the classical Newton method
(c.f. Chapter 5, Section 5.4.3) would take when trying to find a root of the
equation ∇f(x) = 0. However, in optimization, this direction is only useful
if the Hessian H(xk) is positive definite, since the Newton direction could
otherwise be an ascent direction.

Theorem 12.7. Let f : Rn −→ R be continuously differentiable and ∇f
be Lipschitz in R

n. Suppose the generic minimization algorithm with the back-
tracking Armijo line search is used with descent direction pk = −Bk∇f(xk),
where the Bk are symmetric positive definite matrices with λmax(Bk) ≤
λmax < ∞ and λmin(Bk) ≥ λmin > 0 for all k. Then the iterates xk sat-
isfy one of the following statements:

1. ∇f(xk) = 0 for some k ≥ 0.

2. limk→∞ f(xk) = −∞.

3. limk→∞ ∇f(xk) = 0.

Proof. The points 1 and 2 are as in Theorem 12.6. For 3, we have for
all x 	= 0 that

λmin ≤ λmin(Bk) ≤ x�Bkx

‖x‖2 ≤ λmax(Bk) ≤ λmax,

and therefore the two estimates

|p�
k∇f(xk)| = |∇f(xk)

�B−T
k ∇f(xk)| ≥ λmin(B

−1
k)‖∇f(xk)‖2

2 ≥ 1

λmax
‖∇f(xk)‖2

2

Unconstrained Optimization 851

and

‖pk‖22 = ∇f(xk)
�B−T

k B−1
k ∇f(xk)

= ∇f(xk)
�B−2

k ∇f(xk)

≤ λmax(B
−2
k)‖∇f(xk)‖22

≤ 1

λ2
min

‖∇f(xk)‖22

hold. Using them together leads to

|p�
k∇f(xk)|
‖pk‖2

≥ λmin

λmax
‖∇f(xk)‖2.

Therefore, the important quantity converging to zero in Theorem 12.6 is an
upper bound,

min(|p�
k∇f(xk)|, |p

�
k∇f(xk)|
‖pk‖2

) ≥ 1

λmax
‖∇f(xk)‖2 min(‖∇f(xk)‖2, λmin),

and since λmin > 0 and λmax is finite, ‖∇f(xk)‖2 must converge to zero as k
goes to infinity, which concludes the proof. �

Here is a Matlab implementation of the Armijo backtracking line search
using the Newton search direction:

Algorithm 12.8. Minimization with Newton Direction

function [x,xk]=Newton(f,fp,fpp,x0,tol,maxiter,tau,be,alinit)

% NEWTON Minimization with Newton descent and Armijo line search

% [x,xk]=Newton(f,fp,fpp,x0,tol,maxiter,tau,be,alinit) finds an

% approximate minimum of the function f with gradient fp and Hessian

% fpp, starting at the initial guess x0. The remaining parameters are

% optional and default values are used if they are omited. xk

% contains all the iterates of the method.

if nargin<9, alinit=1; end;

if nargin<8, be=0.1; end;

if nargin<7, tau=0.5; end;

if nargin<6, maxiter=100; end;

if nargin<5, tol=1e-6; end;

x=x0;

xk=x0;

p=-feval(fpp,x)\feval(fp,x);

k=0;

while norm(feval(fp,x))>tol & k<maxiter

al=alinit;

while feval(f,x+al*p)>feval(f,x)-al*be*p’*p

852 OPTIMIZATION

al=tau*al;

end;

x=x+al*p

p=-feval(fpp,x)\feval(fp,x);

k=k+1;

xk(:,k+1)=x;

end;

For the same example as in Figure 12.13, we show in Figure 12.14 how
much better the Newton step performs on this problem. The following the-

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

Figure 12.14.
Backtracking Armijo line search with Newton search
direction for a model problem showing much better

convergence behavior than the steepest descent direction
from Figure 12.13.

orem gives a convergence estimate for the backtracking Armijo line search
with Newton direction.

Theorem 12.8. Let f : Rn −→ R be twice continuously differentiable,
and its Hessian matrix H : Rn −→ R

n×n be Lipschitz in R
n with Lipschitz

constant L. If the sequence {xk}, k = 1, 2, . . . generated by the generic
minimization algorithm with backtracking Armijo line search and αinit = 1,
β ∈ (0, 1

2
) and

pk =

{ −H(xk)
−1∇f(xk) if H(xk) is positive definite

−B−1
k ∇f(xk) Bk as in Theorem 12.7,

has a limit point x∗ with H(x∗) positive definite, then

1. αk = 1 for k large,

2. the entire sequence {xk} converges to x∗, and

Unconstrained Optimization 853

3. the convergence rate is quadratic, i.e.

lim
k→∞

‖xk+1 − x∗‖2
‖xk − x∗‖22

≤ C, C > 0 a constant.

Proof. We start by considering a subsequence {xk′} that converges to
x∗. By continuity, H(xk′) is positive definite for k′ large enough, and there
exists a k′

0 such that for all k′ ≥ k′
0 we have

p�
k′H(xk′)pk′ ≥ 1

2
λmin(H(x∗))‖pk′‖22. (12.29)

This implies with the Newton step H(xk′)pk′ = −∇f(xk′)

|p�
k′∇f(xk′)| = −p�

k′∇f(xk′) = p�
k′H(xk′)pk′ ≥ 1

2
λmin(H(x∗))‖pk′‖22,

(12.30)
and limk′→∞ pk′ = 0 by Theorem 12.8.

Now from Taylor’s Theorem with integral remainder term, we obtain

f(xk + pk) = f(xk) + p�
k∇f(xk) +

∫ 1

0

(1− t)p�
kH(xk + tpk)pkdt

= f(xk) + p�
k∇f(xk) + p�

kH(xk + τpk)pk

∫ 1

0

(1−t)dt, 0 ≤ τ ≤ 1

= f(xk) + p�
k∇f(xk) +

1

2
p�
kH(xk + τpk)pk

and we can therefore estimate

f(xk + pk)− f(xk)− 1

2
p�
k∇f(xk) =

1

2

(
p�
k∇f(xk) + p�

kH(xk + τpk)pk

)
=

1

2

(
p�
k∇f(xk) + p�

kH(xk)pk

)
+

1

2

(
p�
k(H(xk + τpk)−H(xk))pk

)
,

and since H(xk)pk = −∇f(xk), the first term on the right hand side is
identically zero. Using the Lipschitz condition H(xk) satisfies, and that
0 ≤ τ ≤ 1, we obtain

f(xk + pk)− f(xk)− 1

2
p�
k∇f(xk) ≤ 1

2
L‖pk‖32. (12.31)

Hence, choosing k′ large enough so that

L‖pk′‖2 ≤ 1

2
λmin(H(x∗))(1− 2β),

854 OPTIMIZATION

we obtain first using (12.31) and then (12.29) that

f(xk′ + pk′)− f(xk′) ≤ 1

2
p�
k′∇f(xk′) +

1

4
λmin(H(x∗))(1− 2β)‖pk′‖22

≤ 1

2
(1− (1− 2β))p�

k′∇f(xk′) = βp�
k′∇f(xk′),

which shows that for k′ large enough, the Armijo condition is satisfied with
α = 1. In addition, we have for k′ large enough ‖H(xk)

−1‖2 ≤ 2
λmin(H(x∗)) ,

and

xk′+1 − x∗ = xk′ − H(xk′)−1∇f(xk′) − x∗

= xk′ − H(xk′)−1(∇f(xk′) − ∇f(x∗)) − x∗ (note ∇f(x∗) = 0)

= H(xk′)−1(∇f(xk′) − ∇f(x∗) − H(xk′)(x∗ − xk′)),

which allows us to estimate the difference in norm,

‖xk′+1 − x∗‖2 ≤ ‖H(xk′)−1‖2‖(∇f(xk′) − ∇f(x∗) − H(xk′)(x∗ − xk′))‖2

= ‖H(xk′)−1‖2‖
∫ 1

0

H(xk′ + τ(x∗ − xk′))(x∗ − xk′)dτ − H(xk′)(x∗ − xk′)‖2

≤ ‖H(xk′)−1‖2

∫ 1

0

‖H(xk′ + τ(x∗ − xk′)) − H(xk′)‖2‖x∗ − xk′‖2dτ

≤ ‖H(xk′)−1‖2
1

2
L‖x∗ − xk′‖2

2,

and hence for k′ large enough, we have

‖xk′+1 − x∗‖2
‖xk′ − x∗‖22

≤ L

2
‖H(xk′)−1‖2 ≤ L

λmin(H(x∗))

which proves item 3 for k = k′ with C = L
λmin(H(x∗)) . In addition, this implies

that for k′ large enough, k′+1 is also an index in the convergent subsequence,
which proves item 2, and thus item 1 and 3 for all k large enough. �

Modified Newton Methods

In modified Newton methods, one replaces the Newton search direction deter-
mined by

H(xk)pk = −∇f(xk)

by a modified search direction determined by

(H(xk) +Mk)pk = −∇f(xk),

where the matrix Mk is chosen to guarantee that the matrix H(xk) +Mk is
sufficiently positive definite. There are several possibilities to obtain such a
matrix Mk:

1. If one has an eigenvalue decomposition of the Hessian, H(xk)=Q�
kΛkQk,

one can choose

H(xk) +Mk = Q�
k max(εI,Λk)Qk,

Unconstrained Optimization 855

i.e., one shifts the eigenvalues that are too small or negative to ε >
0. The computation of the eigendecomposition can however be very
expensive at each step.

2. If one has an estimate of λmin(H(xk)), the smallest eigenvalue of the
Hessian, one can choose

Mk = max(0, ε− λmin(H(xk))) · I,
which shifts the whole spectrum whenever small or negative eigenval-
ues are present. This has the disadvantage that one large negative
eigenvalue can distort the entire problem.

3. One can try to compute the Cholesky decomposition of the Hessian,
which is needed anyway to solve the system defining the search direction
pk, see Subsection 3.4. If the Cholesky decomposition fails due to small
or negative eigenvalues, there are techniques to adapt it to obtain a
decomposition of the form (see for example [30])

H(xk) +Mk = LkL
�
k .

Quasi-Newton Methods

Quasi-Newton methods were developed in order to reduce the cost of com-
puting the Hessian, which is nowadays less of an issue. There are two main
techniques:

1. Approximation of the Hessian by finite differences, i.e. for the i-th unit
vector ei, one computes

H(xk)ei ≈ ∇f(xk + hei)−∇f(xk)

h

and h is chosen approximately to be the square root of macheps to
balance roundoff and approximation errors, see Section 8.2.

2. Using a secant approximation: one searches for a matrix Bk satisfying
the so-called secant condition,

Bk+1(xk+1 − xk) = ∇f(xk+1)−∇f(xk),

which is motivated by the fact that the real Hessian matrix satisfies
the secant condition approximately by Taylor’s theorem. One has a lot
of freedom in choosing a matrix Bk that satisfies the secant condition.
Two of the most successful choices are

Symmetric rank-one method: Starting with a given matrix B0, one
computes recursively the rank-one updates

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)

�

s�k(yk −Bksk)
,

856 OPTIMIZATION

where yk := ∇f(xk+1) − ∇f(xk) and sk := xk+1 − xk. This
approach can unfortunately lead to indefinite matrices Bk, or even
fail with a division by zero.

Broyden–Fletcher–Goldfarb–Shanno (BFGS) method: One
computes recursively

Bk+1 = Bk +
yky

�
k

s�kyk

− Bksks
�
kBk

s�kBksk
.

It is easy to show (see Problem 12.18) that if one starts with
a matrix B0 which is symmetric and positive definite, then all
the Bk are symmetric and positive definite, provided the s�kyk

are positive. This latter condition can be guaranteed by a slight
modification, see for example [19].

In general, the finite difference approximations of the Hessian in 1 are more
expensive than the secant condition updates in 2.

Truncated Newton Methods

Truncated Newton methods are especially useful if the problem is of very high
dimension. In that case, solving for the Newton direction using the linear
system

H(xk)pk = −∇f(xk)

can be prohibitively expensive. The idea of truncated Newton methods is to
solve the linear system approximately using the conjugate gradient method,
see Section 11.7.1. If one starts the conjugate gradient method with the
zero vector, the first iteration gives an approximate search direction pk that
is identical to steepest descent. If one iterates with the conjugate gradient
method to convergence, one obtains the Newton search direction. Stopping
anywhere in between gives an approximate search direction between steepest
descent and the Newton direction.

12.3.2 Trust Region Methods

Trust region methods construct a local model m(s) of the function f(xk + s)
and then accept a step xk+1 = xk +sk, if f(xk +sk) gives a similar decrease
compared to the decrease predicted by the local model m(sk). The two most
commonly used models are

Linear model: ml(s) := f(xk) + s�∇f(xk)

Quadratic model: mq(s) := f(xk) + s�∇f(xk) +
1
2s

�Bks, where the ma-
trix Bk is an approximation to the Hessian at xk.

Unconstrained Optimization 857

Since these models cannot be accurate for large s (the linear model is not
even bounded from below), one imposes in addition the so-called trust region
constraint,

‖s‖ ≤ Rk, (12.32)

and one computes at each step of the trust region algorithm

min
‖s‖≤Rk

m(s).

A generic trust region algorithm has the following form:

Algorithm 12.9. Generic trust region algorithm

For given x0 and R0;
k = 0;
while not converged

sk = argmin
‖s‖≤Rk

m(s);

ρ = (f(xk)− f(xk + sk))/(f(xk)−m(sk));
if ρ ≥ ρs

xk+1 = xk + sk;
if ρ ≥ ρv

Rk+1 = γiRk;
else

Rk+1 = Rk;
end;

else
xk+1 = xk;
Rk+1 = γdRk;

end;
k = k + 1;

end

After solving the trust region subproblem, the algorithm computes ρ, the
ratio between the actual and predicted decrease. If this ratio is bigger than
ρs, e.g. ρs = 0.1, a threshold for success, then the step is accepted. If the
ratio is even bigger than ρv, 0 < ρs < ρv < 1, e.g. ρv = 0.9, then the step
was very successful, and we increase the trust region by the factor γi ≥ 1,
for example γi = 2. Otherwise, the size of the trust region is kept the same.
If, however, the step was not a success, then we stay at the present position
and decrease the trust region size by the factor γd, e.g. γd = 0.5.

One can show under certain hypotheses that the Trust Region Algorithm
12.9 leads to one of the following results, just like the line search algorithm:

1. ∇f(xk) = 0 for some k ≥ 0.

858 OPTIMIZATION

2. limk→∞ f(xk) = −∞.

3. limk→∞ ∇f(xk) = 0.

To solve the trust region problem at each step, one can simply use an analyt-
ical solution in the case of the linear model, whereas for the quadratic model,
there exist elegant numerical solutions, see for example [107].

Here is a Matlab implementation of the trust region algorithm with a
linear model:

Algorithm 12.10.
Trust Region Algorithm with a Linear Model

function [x,xk,Rk]=TrustRegionLinear(f,fp,x0,tol,maxiter,R0,rs,rv,gi,gd)

% TRUSTREGIONLINEAR trust region method with linear model

% [x,xk,Rk]=TrustRegionLinear(f,fp,x0,tol,maxiter,r0,rs,rv,gi,gd)

% finds an approximate minimum of the function f with gradient fp,

% starting at the initial guess x0. The remaining parameters are

% optional and default values are used if they are omited. xk

% contains all the iterates of the method and rk the trust region

% radii of all iterations.

if nargin<10, gd=0.5; end;

if nargin<9, gi=2; end;

if nargin<8, rv=0.9; end;

if nargin<7, rs=0.1; end;

if nargin<6, R0=1; end;

if nargin<5, maxiter=100; end;

if nargin<4, tol=1e-6; end;

x=x0;

xk=x0;

R=R0;

Rk=R0;

p=-feval(fp,x);

k=0;

while norm(p)>tol & k<maxiter

s=R*p/norm(p);

r=(feval(f,x)-feval(f,x+s))/(s’*p);

if r>=rs

x=x+s;

p=-feval(fp,x);

if r>-rv

R=gi*R;

end

else

R=gd*R

end

k=k+1;

Unconstrained Optimization 859

xk(:,k+1)=x;

Rk(:,k+1)=R;

end;

The results for the same model problem as in Figure 12.13 are shown in
Figure 12.15 on the left. We observe that the trust region method with a

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

Figure 12.15.
Trust region method with a linear model for an example,

showing that the method with the linear model has
similar problems as line search with steepest descent.

linear model has a similar behavior to a line search method with steepest
descent: the search can slow down dramatically in the bottom of a valley.
On the right in Figure 12.15, we show for the first three steps how the trust
region was adjusted to find an acceptable step.

12.3.3 Direct Methods

Direct optimization methods are methods that do not use derivative infor-
mation, either explicitly or implicitly. We have seen an example of such a
method in the introduction: Algorithm 12.1 uses the golden section to find
the minimum of a scalar function, in the same way bisection is used for finding
the zero of a scalar function.

Probably the most successful direct method is the Nelder–Mead Algo-
rithm, invented in 1965. This algorithm uses a simplex, or a triangle in two
dimensions, to explore the function f : Rn → R to be minimized. To start the
algorithm, an initial simplex given by its corner points xj , j = 1, 2, . . . , n+1
is needed. The first step in each iteration of the algorithm is to sort the
corners such that x1 is the corner with the smallest, and xn+1 is the corner
with the largest function value. Then the algorithm computes the center of
gravity on the hypersurface described by all but xn+1,

x̄ =
1

n

n∑
j=1

xj ,

860 OPTIMIZATION

and then the reflected point

xr = x̄+ ρ(x̄− xn+1),

where ρ is a parameter, usually ρ = 1. An example for n = 2 is shown in
Figure 12.16. Now the algorithm makes a first decision: if f(xr) < f(x1),

x1

x2
x3

xr

xe

xi

xo

x̄

Figure 12.16.
The center of gravity x̄, the reflection point xr, the
expansion point xe and the two contraction points xi

and xo, computed by the Nelder–Mead algorithm.

the direction xr seems very promising, and the expansion point

xe = x̄+ χ(xr − x̄)

is computed, with the parameter χ = 2 usually, as shown in Figure 12.16.
Now if f(xe) < f(xr), then the expansion is accepted, and xe replaces the
worst point xn+1 to obtain a new simplex for the next iteration. Otherwise,
if f(xr) < f(xn), then the reflected point xr is accepted and replaces the
worst point xn+1 to form a new simplex for the next iteration. Finally,
if f(xr) ≥ f(xn), the reflected point is not such a good direction, and a
contraction step is tried. To do so, an inner and outer contraction point is
computed,

xi = x̄− γ(xr − x̄), xo = x̄+ γ(xr − x̄),

with the usual parameter choice γ = 1
2 . This leads to the two points shown in

Figure 12.16. Now if f(xr) < f(xn+1) and f(xo) < f(xr), then xo replaces
xn+1 for a new simplex, and if f(xr) ≥ f(xn+1) and f(xi) < f(xn+1), then
xi replaces xn+1 for a new simplex to restart the iteration. If neither of these
conditions holds, a shrinking step is performed, in which all the vertices get
closer to x1, i.e.

xj = x1 + σ(xj − x1), j = 2, . . . , n+ 1,

with the parameter σ usually chosen to be 1
2
.

Here is a Matlab implementation of the Nelder–Mead algorithm:

Unconstrained Optimization 861

Algorithm 12.11. Optimization with Nelder–Mead

function x=NelderMead(f,x0,tol,maxiter,r,c,g,s)

% NELDERMEAD direct minimization algorithm by Nelder Mead

% x=NelderMead(f,x0,tol,maxiter,r,c,g,s) tries to find a minimum of

% f, starting at x0. The remaining parameters r, c, g, and s are

% optional, and correspond to the parameters rho, chi, gamma, and

% sigma; defaults are chosen, if they are not given.

if nargin<8, s=0.5; end;

if nargin<7, g=0.5; end;

if nargin<6, c=2; end;

if nargin<5, r=1; end;

if nargin<4, maxiter=100; end;

if nargin<3, tol=1e-6; end;

x=x0; k=0; fk=feval(f,x);

while k<maxiter

[fk,id]=sort(fk); x=x(id,:);

xb=mean(x(1:end-1,:)); xr=xb+r*(xb-x(end,:));

fr=feval(f,xr);

if fr>=fk(1) & fr<fk(end-1) % reflection step

x(end,:)=xr; fk(end)=fr;

elseif fr<fk(1)

xe=xb+c*(xr-xb); fe=feval(f,xe);

if fe<fr

x(end,:)=xe; fk(end)=fe;

else

x(end,:)=xr; fk(end)=fr;

end;

else % contraction step

xi=xb-g*(xr-xb); fi=feval(f,xi);

xo=xb+g*(xr-xb); fo=feval(f,xo);

if fr<fk(end) & fo<fr

x(end,:)=xo; fk(end)=fo;

elseif fr>=fk(end) & fi<fk(end)

x(end,:)=xi; fk(end)=fi;

else % shrinking step

for j=2:size(x,1)

x(j,:)=x(1,:)+s*(x(j,:)-x(1,:)); fk(j)=feval(f,x(j,:));

end;

end;

end;

k=k+1;

end;

862 OPTIMIZATION

Figure 12.17 shows how the Nelder–Mead algorithm approaches the mini-
mum in the model problem of the previous sections. It is impressive how well

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

Figure 12.17. Nelder–Mead algorithm for an example.

the algorithm works on the model problem, and it has proved to work very
well for innumerable applications. There is however no mathematical foun-
dation for the Nelder–Mead algorithm: the only convergence result known is
for strictly convex functions in one (!) dimension (see [81]). For two dimen-
sional problems, there exist examples due to McKinnon (1998), that even in
the strictly convex case, the Nelder–Mead algorithm can fail and converge
to a degenerate simplex which does not indicate a minimum of the func-
tion. One does not even know if there exists a function in two dimensions for
which Nelder–Mead works for arbitrary initial guesses. It currently remains
a mystery why Nelder–Mead is so successful for so many practical problems.

12.4 Constrained Optimization

Constraint optimization problems contain a special subclass of problems,
namely linear problems with linear constraints, for which Dantzig invented
in 1951 a very elegant solution algorithm [23]. We start this section by
explaining this well known simplex algorithm. We then treat the general case
of constrained optimization problems with penalty and barrier functions, and
also explain the revolutionary interior point methods, invented by Karmarkar
in 1984 first for linear programming problems [79]. We close this section with
sequential quadratic programming.

12.4.1 Linear Programming

Linear programming refers to the solution of constrained optimization prob-
lems in which both the objective function and the equality and inequality

Constrained Optimization 863

constraints in (12.13) are linear (or more precisely affine). After elimination
of the equality constraints, we obtain the so-called linear program

c̃1x̃1 + c̃2x̃2 + . . . + c̃ñx̃ñ −→ min,
ã11x̃1 + ã12x̃2 + . . . + ã1ñx̃ñ ≤ b1,
ã21x̃1 + ã22x̃2 + . . . + ã2ñx̃ñ ≤ b2,

...
...

...
...

ãm1x̃1 + ãm2x̃2 + . . . + ãmñx̃ñ ≤ bm,
x̃i ≥ 0,

(12.33)

which one can write in more compact matrix notation,

c̃�x̃ −→ min,

Ãx̃ ≤ b,
x̃ ≥ 0.

(12.34)

If some of the x̃i do not need to satisfy a sign constraint, one can artificially
introduce two new variables x̃+

i ≥ 0 and x̃−
i ≥ 0 and decompose x̃i = x̃+

i −x̃−
i

to fit the framework above. Dantzig invented in 1951 an elegant algorithm
[23], the simplex algorithm, to solve problems of the form (12.34), which led
to a real boom and the formation of entire operations research departments
at universities. The simplex algorithm is listed as one of the top ten algo-
rithms of the last century [27]. We now derive the simplex algorithm and
illustrate it with the model problem from the introduction, subsection 12.1.3
on operations research.

The first step is the introduction of slack variables yi, to transform the
inequality constraints in (12.34) into equality constraints. This is achieved
by setting y = b − Ax̃, and the inequality constraint in (12.34) shows that
the slack variables satisfy yi ≥ 0. This leads to the new equivalent problem

c̃�x̃ −→ min,

Ãx̃+ y = b,
x̃ ≥ 0,
y ≥ 0.

(12.35)

It is worthwhile to interpret this problem before continuing: if one of the
slack variables is zero, the corresponding underlying inequality constraints in
(12.33) holds with equality, which implies that we are on the boundary of
the region of admissible values of x̃; refer to Figure 12.8 for the example in
the introduction. In this example, one would have four slack variables, and
setting one of them equal to zero gives one of the four lines that form the
boundaries of the region of admissible solution points. Two more lines are
obtained by looking at x̃i = 0 from the inequality constraints on x̃i. Hence
the slack variables and the real variables play a very similar role: setting one
equal to zero gives a hyperplane which can be part of the boundary of the
set of admissible solution points. If we combine in (12.35) the two vectors

864 OPTIMIZATION

x̃ ∈ R
ñ and y ∈ R

m into the larger vector x ∈ R
n, n = ñ +m, extend c̃ by

zeros to obtain c ∈ R
n, and form a new matrix A ∈ R

m×n from Ã and the
identity matrix of size m×m, we obtain in the new, more compact notation

c�x −→ min,
Ax = b,
x ≥ 0.

(12.36)

Again, setting any of the components xi equal to zero means we are on a
hyperplane which can be part of the boundary of the set of admissible solu-
tions, and setting ñ components equal to zero yields a corner point, provided
the hyperplanes all intersect. This is the case when the remaining matrix
after deleting the corresponding columns in A is invertible, so that the linear
system in (12.36) has a unique solution after the corresponding xi have been
set to zero. Furthermore, if this solution is non-negative, it is a corner on
the boundary of the set of admissible solutions, and thus a candidate for the
solution of the optimization problem.

For our model problem (12.12) from Subsection 12.1.3, we need to intro-
duce four slack variables: x3, x4, x5 and x6. The problem then becomes

(5, 4, 0, 0, 0, 0)�x → min,⎛
⎜⎜⎝

1 1 1 0 0 0
−1 −1 0 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1

⎞
⎟⎟⎠x =

⎛
⎜⎜⎝

8
−5
4
7

⎞
⎟⎟⎠ ,

xi ≥ 0.

(12.37)

Choosing for example x3 = x5 = 0 leads to an invertible linear system for
the remaining variables,⎛

⎜⎜⎝
1 1 0 0

−1 −1 1 0
1 0 0 0
0 1 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

x1

x2

x4

x6

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

8
−5
4
7

⎞
⎟⎟⎠ , (12.38)

whose solution is (x1, x2, x4, x6) = (4, 4, 3, 3) ≥ 0, and hence is the upper
right-hand corner (4, 4) on the Figure 12.8, the intersection of the hyperplanes
x3 = x5 = 0.

Without loss of generality, we assume in the sequel that A has full rank,
since otherwise there is either no solution, or one can eliminate equations
from the linear system in (12.36) without changing the solutions. Moti-
vated by the previous interpretation of (12.36) when setting some compo-
nents equal to zero, we introduce the partitioning of the columns of the
matrix A into matrices AB and AR using the index sets B = {b1, . . . , bm}
and R = {r1, . . . , rn−m}, B ∪R = {1, 2, . . . , n}, B ∩R = ∅,
A = (A1, A2, · · · , An) , AB = (Ab1 , Ab2 , · · · , Abm), AR = (Ar1 , Ar2 , · · · , Arn−m),

Constrained Optimization 865

and similarly we also partition the vectors,

xB =

⎛
⎜⎜⎜⎝

xb1

xb2
...

xbm

⎞
⎟⎟⎟⎠ , xR =

⎛
⎜⎜⎜⎝

xr1

xr2
...

xrn−m

⎞
⎟⎟⎟⎠ , cB =

⎛
⎜⎜⎜⎝

cb1
cb2
...

cbm

⎞
⎟⎟⎟⎠ , cR =

⎛
⎜⎜⎜⎝

cr1
cr2
...

crn−m

⎞
⎟⎟⎟⎠ .

In this new notation, the linear program (12.36) becomes

c�BxB + c�RxR −→ min,
ABxB + ARxR = b,

xB ≥ 0,
xR ≥ 0,

(12.39)

and setting xR equal to zero corresponds to choosing a corner of the set of
admissible solutions, provided that AB is invertible, and A−1

B b ≥ 0. This
observation motivates the following definition:

Definition 12.2. (Basis) The set B is a basis if AB is invertible, and
the associated vector

x =

(
xB

xR

)
=

(
A−1

B b
0

)

is called the basis solution. It is an admissible basis if x ≥ 0.

If the matrix AB is invertible, we can eliminate the unknowns xB from
the problem (12.39) using the relation xB = A−1

B (b−ARxR), which leads to
the new problem

u�xR + z −→ min,
SxR ≤ t,
xR ≥ 0,

(12.40)

where u� = c�R − c�BA
−1
B AR, z = c�BA

−1
B b, S = A−1

B AR and t = A−1
B b.

Dantzig collected all the relevant quantities in the simplex table

R
B S t

u� z

. (12.41)

Theorem 12.9. (Simplex Criterion) Let B be a basis of the linear
program (12.36) and let (12.41) be the associated simplex table. If t ≥ 0 and
u ≥ 0, then xB = t and xR = 0 is the solution of the linear program (12.36).

Proof. The basis B is admissible, since t = A−1
B b ≥ 0. In addition,

u ≥ 0 for a point x which satisfies Ax = b and x ≥ 0 implies that

c�x = u�xR + z ≥ z = c�
(

t
0

)
,

866 OPTIMIZATION

which shows that there is no other solution with a smaller objective function
value, and hence concludes the proof. �

The simplex algorithm by Dantzig is a directed search along the edges of
the set of admissible solutions to find the corner which minimizes the objec-
tive function. It starts with an admissible basis solution and its associated
simplex table, and then constructs iteratively new admissible basis solutions
and simplex tables with smaller and smaller values of the objective function,
until the simplex criterion is satisfied. To transform one simplex table into
another, the following theorem is useful.

Theorem 12.10. (Simplex Table Transform) Let B be a basis, R =
{1, . . . , n}\B, k ∈ B and l ∈ R, with the associated simplex table

R
B S t

u� z

=

l j
k skl skj tk
i sil sij ti

ul uj z

, i ∈ B\{k}, j ∈ R\{l}.

(12.42)
If the so-called pivot sk,l is non-zero, then

1. B̃ := (B ∪ {l})\{k} is also a basis,

2. the corresponding new simplex table is

R̃

B̃ S̃ t̃

ũ� z̃

=

k j

l 1
skl

skj

skl

tk
skl

i − sil
skl

sij − skjsil
skl

ti − tksil
skl

− ul

skl
uj − skjul

skl
z + tkul

skl

.

(12.43)

Proof. The k-th component of the equation xB + SxR = t is

xk +
∑
j∈R

skjxj = tk.

Since the pivot skl 	= 0, we can solve this equation for xl for l ∈ R, and obtain

xl +
1

skl
xk +

∑
j∈R\{l}

skj
skl

xj =
tk
skl

, (12.44)

which corresponds to the l-th row in the new simplex table (12.43). Replacing
now xl from (12.44) into the i-th component of the equation xB + SxR = t,
i ∈ B\{k}, we obtain

xi + sil

⎛
⎝− 1

skl
xk −

∑
j∈R\{l}

skj
skl

xj +
tk
skl

⎞
⎠+

∑
j∈R\{l}

sijxj = ti,

Constrained Optimization 867

which becomes after rearranging

xi − sil
skl

xk +
∑

j∈R\{l}

(
sij − silskj

skl

)
xj = ti − tksil

skl
,

which corresponds to the i-th row in the new simplex table (12.43). Similarly,
one also obtains the last row of the new simplex table, which concludes the
proof. �

Theorem 12.10 allows us to easily compute a new simplex table from a
previous one:

while there exists l in R with u(l)<0

if s(i,l)<=0 for all i in B

error(’no solution, the objective function is unbounded’);

else

choose k in B such that t(k)/s(k,l) is minimal

for k in B with s(k,l)>0

exchange k and l using the Theorem

end;

end;

We explain each line in the simplex algorithm separately:

• The algorithm stops as soon as the simplex criterion from Theorem
12.9 is satisfied, u ≥ 0, which means the solution has been found.

• If for some l ∈ R, we have ul < 0, and if sil ≤ 0 for all i ∈ B, then the
objective function is unbounded from below on the set of admissible
points, as one can see as follows: let xR(α) be defined by xl(α) = α for
α ≥ 0, and xj(α) = 0 for j ∈ R\{l}. Then xR(α) ≥ 0 and

SxR(α) = α

⎛
⎜⎜⎜⎝

s1l
s2l
...

sml

⎞
⎟⎟⎟⎠ ≤ 0 ≤ t.

Hence, the points xR(α) are admissible for all α ≥ 0. However, the
objective function can then be made arbitrarily large negative, since

u�xR(α) + z = ulα+ z → −∞, for α → ∞,

so there is no minimum.

• The particular choice of l and k in the algorithm leads to a new ad-
missible simplex table, t̃ ≥ 0, with improved objective −z̃ ≤ −z, as
one can see as follows: the new components of t for i ∈ B\{k} are
t̃i = ti − tksil

skl
, which are bigger than or equal to ti > 0 if sil ≤ 0, since

868 OPTIMIZATION

tk ≥ 0 and skl > 0. If sil > 0, then t̃i = sil(
ti
sil

− tk
skl

) ≥ 0, since k has
been chosen such that the ratio was the smallest in the algorithm.

Now for the objective, we have z̃ = z + tkul

skl
≤ z, since ul < 0, tk ≥ 0

and skl > 0, and thus the new objective is at least as good or better
than the old one.

Here is an implementation of the simplex algorithm in Matlab:

Algorithm 12.12.
Simplex Algorithm to Solve Linear Programming

Problem

function R=Simplex(B,R,S,t,u,z);

% SIMPLEX Simplex algorithm starting with a simplex table

% R=Simplex(B,R,S,t,u,z); implements the simplex algorithm starting

% with a given simplex table consisting of B,R,S,t,u and z and finds

% the optimal solution.

l=find(u<0);

while length(l)>0

l=l(1);

i=find(S(:,l)>0);

if length(i)<1

error(’solution is unbounded’);

else

[d,k]=min(t(i)./S(i,l));k=i(k);

t([1:k-1 k+1:end])=t([1:k-1 k+1:end])-...

t(k)*S([1:k-1 k+1:end],l)/S(k,l);

z=z+t(k)*u(l)/S(k,l);

t(k)=t(k)/S(k,l);

u([1:l-1 l+1:end])=u([1:l-1 l+1:end])-...

S(k,[1:l-1 l+1:end])*u(l)/S(k,l);

u(l)=-u(l)/S(k,l);

S([1:k-1 k+1:end],[1:l-1 l+1:end])=...

S([1:k-1 k+1:end],[1:l-1 l+1:end])...

-S([1:k-1 k+1:end],l)*S(k,[1:l-1 l+1:end])/S(k,l);

S(k,[1:l-1 l+1:end])=S(k,[1:l-1 l+1:end])/S(k,l);

S([1:k-1 k+1:end],l)=-S([1:k-1 k+1:end],l)/S(k,l);

S(k,l)=1/S(k,l);

d=R(l);R(l)=B(k);B(k)=d;

l=find(u<0);

[0 R 0

B’ S t

0 u z]

pause

end;

end;

Constrained Optimization 869

The three lines before the command pause display the simplex tables
generated and are for illustrative purposes only. To see how the simplex
algorithm works, we apply it to the model problem (12.12) from Subsection
12.1.3. From the reformulation in (12.37), we define in Matlab

A=[1 1 1 0 0 0

-1 -1 0 1 0 0

1 0 0 0 1 0

0 1 0 0 0 1];

b=[8;-5;4;7];

c=[5;4;0;0;0;0];

and to start with the admissible basis solution found in (12.38), we define
the sets B and R to be

B=[1 2 4 6]; R=[3 5];

We can now compute the corresponding simplex table, take a look at it, and
then start the simplex algorithm:

S=A(:,B)\A(:,R);

t=A(:,B)\b;

u=c(R)’-c(B)’*(A(:,B)\A(:,R));

z=c(B)’*(A(:,B)\b);

[0 R 0

B’ S t

0 u z]

Simplex(B,R,S,t,u,z);

The algorithm computes from the starting simplex table two new ones and
then stops:

0 3 5 0 0 4 5 0 0 4 1 0

1 0 1 4 1 0 1 4 5 0 1 4

2 1 -1 4 2 -1 -1 1 2 -1 1 5

4 1 0 3 3 1 0 3 3 1 0 3

6 -1 1 3 6 1 1 6 6 1 -1 2

0 -4 -1 36 0 4 -1 24 0 4 1 20

Finding an admissible basis solution

The program Simplex will find the optimal solution provided the initial ba-
sis B yields an admissible solution. Unfortunately, the choice of this initial
basis is not always obvious. For instance, if we had chosen R = [1,2], B =

[3,4,5,6], the solution would not be admissible: indeed, looking at Figure
12.8, we see that (x1, x2) = (0, 0) is not within the shaded area, and hence is
not an admissible solution. In other cases, an admissible basis may not even
exist, e.g., if the set defined by the constraints turns out to be empty. The
question becomes: how can one decide whether an admissible basis exists,
and if it does, how can one compute it?

870 OPTIMIZATION

Consider once again the linear program whose constraints are

SxR ≤ t,

xR ≥ 0
⇐⇒ y + SxR = t,

xR ≥ 0, y ≥ 0.

Here, we have omitted the objective function, since it does not affect
whether a basis is admissible or not. If t ≥ 0, i.e., if all components of t
are non-negative, then setting xR = 0 yields an admissible solution, so the
basis xB = y is admissible. On the other hand, if ti < 0 for some i, then the
i-th constraint renders the basis inadmissible. To make the basis admissible
again, we consider a modified problem in which we introduce one gap variable
zi ≥ 0 per negative ti, and replace the offending constraint by

yi +
∑
j∈R

sijxj = ti + zi, whenever ti < 0,

i.e., we replace ti by ti + zi. Thus, zi is the gap between the original and
modified constraints. Notice that for large enough zi, we have ti + zi ≥ 0,
so it suffices to choose zi instead of yi as the basis variable to obtain an
admissible solution. To see if the original problem has an admissible solution
(and a corresponding basis), we want to minimize the gap. Thus, we obtain
the modified problem ∑

ti<0

zi −→ min,

yi +
∑
j∈R

sijxj = ti, if ti ≥ 0,

zi − yi −
∑
j∈R

sijxj = −ti, if ti < 0,

for which B = {yi | ti ≥ 0} ∪ {zi | ti < 0} is an admissible basis. After
solving this linear program, if we obtain

∑
zi = 0, then the zi must be zero

individually. In other words, the zi are redundant, and the corresponding
basis is in fact an admissible basis for the original problem. If, on the other
hand, we have

∑
zi > 0, then at least one of the gap variables is essential

to the existence of a solution, so the original problem has no solution. The
following algorithm computes an admissible basis for a given linear program.

Algorithm 12.13. Computing an Admissible Basis

function [B,R]=AdmissibleBasis(B,R,S,t)

% ADMISSIBLEBASIS Finds an admissible basis for a linear program

% [B,R]=AdmissibleBasis(B,R,S,t) computes the sets of basis and

% slack variables that yield an admissible basis solution. This is

% done by solving an auxiliary linear program using SIMPLEX. The

% result can then be used by SIMPLEX to find the minimum of the

Constrained Optimization 871

% original linear program. A warning is produced if no admissible

% solution exists.

u=find(t>=0);

l=find(t<0);

A=zeros(length(t),length(B)+length(R)+length(l));

[m,n]=size(A);

A(:,R)=S;

A(:,B)=eye(length(B));

A(l,:)=-A(l,:);

A(l,n-length(l)+1:end)=eye(length(l));

t(l)=-t(l);

Ba=[B(u),n-length(l)+1:n];

Ra=setdiff(1:n,Ba);

Sa=A(:,Ba)\A(:,Ra);

ta=A(:,Ba)\t;

ca=[zeros(n-length(l),1);ones(length(l),1)];

ua=ca(Ra)’-ca(Ba)’*(A(:,Ba)\A(:,Ra));

za=ca(Ba)’*(A(:,Ba)\t);

[0 Ra 0

Ba’ Sa ta

0 ua za]

Ra=Simplex(Ba,Ra,Sa,ta,ua,za);

Ba=setdiff(1:n,Ra);

z=ca(Ba)’*(A(:,Ba)\t);

if (z>0),

warning(’no admissible solution exists’);

else

R=setdiff(Ra,(n-length(l)+1:n));

B=Ba;

end;

Consider once again the linear program

A=[1 1 1 0 0 0

-1 -1 0 1 0 0

1 0 0 0 1 0

0 1 0 0 0 1];

b=[8;-5;4;7];

c=[5;4;0;0;0;0];

This time, assume that we have not yet found an admissible basis, so we
choose the slack variables instead as a basis:

B=[3 4 5 6]; R=[1 2];

Now the call

[Ba,Ra]=AdmissibleBasis(B,R,A(:,R),b)

872 OPTIMIZATION

uses Simplex as a subroutine to produce the basis

Ba =

1 2 3 6

Ra =

4 5

which also appears as a basis in the output of Simplex (specifically, in the
middle table) on page 869.

12.4.2 Penalty and Barrier Functions

The simplex algorithm is a very elegant method that marches along the edges
of the polytope described by the linear constraints toward the node with the
smallest value of the objective function. The method can however be very
slow, as illustrated in the example in Figure 12.18. Clearly it would be more

objective function

x1

x2

x1 x2
x3

x4

x5

x6x7x8

Figure 12.18.
An example where the simplex method could take many

steps.

efficient to follow a more direct path, as indicated by the bold arrow. Kar-
markar from the AT&T Bell Labs revolutionized linear programming in 1984,
when he presented a so-called interior point method which precisely followed
a straighter path in the interior of the domain bounded by the constraints,
instead of moving a long the boundary as the simplex algorithm does. Sub-
sequently, AT&T developed the KORBX system, a hardware-software imple-
mentation of various interior point methods, and offered it for sale in 1989 for
$8.9 million. Public domain versions of such interior point methods quickly
followed, since their complexity is provably better than the worst-case com-
plexity of the simplex algorithm.

Nonetheless, the fundamental idea of interior point methods is not new:
in an optimization problem with equality constraints,

f(x) −→ min

cE(x) = 0,

Constrained Optimization 873

we can replace the constraint by a penalty function, and then solve the un-
constrained optimization problem

φ(x) := f(x) +
1

2μ
‖cE(x)‖22 −→ min,

for smaller and smaller values of the parameter μ > 0. The penalty function
we used here is quadratic, but there are many other possibilities. One can
show that as μ converges to zero from above, some of the minima of φ converge
to solutions of the constrained optimization problem. Unfortunately, it is also
possible that φ has other stationary points as μ tends towards zero.

Similarly, in the optimization problem with inequality constraints

f(x) −→ min

cI(x) ≥ 0,

we can replace the constraint by a barrier function, and then solve the un-
constrained optimization problem

φ(x) := f(x)− μ

m∑
i=1

log((cI)i(x)) −→ min, (12.45)

for smaller and smaller values of the parameter μ > 0. The log barrier func-
tion is the one most often used. One can again show that as μ approaches
zero from above, some of the minima of φ converge to solutions of the con-
strained optimization problem, but once again it is possible that φ has other
stationary points when μ converges to zero. Figure 12.19 shows two simple
examples of the sequence of unconstrained problems obtained from a con-
strained one using the log barrier function: on the left, we want to minimize
f(x) = x under the constraint x ≥ 0, and on the right f(x) = x2

1 + x2
2 un-

der the constraint x1 + x2
2 ≥ 1. One can clearly see in these two examples

how the minimum of the unconstrained problem with the log barrier func-
tion approaches the minimum of the constrained problem. The graphs on the
right in Figure 12.19 were obtained for various values of μ with the Maple

commands

f:=x1^2+x2^2;

phi:=f-mu*log(x1+x2^2-1);

mu:=1;

P1:=plots[contourplot](phi,x1=0..2,x2=

max(0,sign(1-x1^2)*sqrt(abs(1-x1^2)))..2,

axes=boxed,contours=[seq(i/4,i=4..36)],grid=[200,200]):

P2:=plot(sqrt(1-x1),x1=0..2):

plots[display](P1,P2);

12.4.3 Interior Point Methods

A generic interior point method uses a barrier function to convert a minimiza-
tion problem with inequality constraints into a sequence of unconstrained

874 OPTIMIZATION

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2

x2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x1

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

x

0

0.5

1

1.5

2

x2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x1

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2

x2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x1

Figure 12.19.
Minimizing f(x) = x under the constraint x ≥ 0 using
the log barrier function with μ = 0.1, 0.03, 0.01 on the

left, and f(x) = x2
1 + x2

2 under the constraint x1 + x2
2 ≥ 1

with the log barrier function and μ = 1, 0.1, 0.01 on the
right.

Constrained Optimization 875

minimization problems, which are then solved to get better and better ap-
proximations of the original problem:

Algorithm 12.14. Generic interior point method

For given μ0 > 0;
k = 0;
while not converged

find xs
k with c(xs

k) > 0; % e.g. xs
k = x∗

k−1

starting with xs
k, compute an approximate minimum

xk of φ(x, μk);
compute μk+1 > 0 smaller than μk,
s.t. limk→∞ μk = 0; e.g. μk+1 = 0.1μk or μk+1 = μ2

k

k = k + 1;
end

The following theorem shows that under suitable conditions, algorithm
12.14 produces a better and better approximations to a point satisfying the
first order optimality conditions of the original problem, given in Theorem
12.4.

Theorem 12.11. For f : Rn → R and c : Rn → R
m twice continuously

differentiable, let

(λk)i :=
μk

ci(xk)
i = 1, 2, . . . ,m, (12.46)

and assume that

‖∇xφ(xk, μk)‖2 ≤ εk, (12.47)

where εk, μk → 0 as k → ∞. Assume further that xk −→ x∗ and that the
vectors ∇ci(x

∗), corresponding to the set A of active constraints at x∗, are
linearly independent. Then x∗ satisfies the first order optimality conditions
of Theorem 12.4, and λk → λ, the associated Lagrange multipliers.

Proof. Let I be the complement of A at x∗, and let G(x) := ∇c(x)�

be the Jacobian of c, with GA(x) being the rows of ∇ci(x)
� with i ∈ A

and GI(x) the rows ∇ci(x)
� with i ∈ I. By the assumption that GA(x

∗)
has full rank, we have that in a neighborhood of x∗, the pseudo-inverse (see
Subsection 6.3.1)

G+
A(x) := (GA(x)GA(x)

�)−1GA(x)

is well defined. Now let λA := G+
A(x

∗)∇f(x∗) and λI := 0. If the set I is not

876 OPTIMIZATION

empty, then using the definition (12.46), we can estimate for k large enough

‖(λk)I‖2 =

√∑
i∈I

(
μk

ci(xk)

)2
≤ μk

√∑
i∈I

(
1

minj∈I |cj(xk)|
)2

= μk

minj∈I |cj(xk)|
√|I|

≤ 2μk

√
|I|

minj∈I |cj(x∗)| .

(12.48)

Here, we have replaced cj(xk) by cj(x
∗) in the denominator on the last

line and added a factor 2. The inequality then follows from the fact that
|cj(x∗)| ≥ 1

2 |cj(xk)| for k large enough, since the cj are continuous and
xk → x∗.

Next, we estimate

‖∇f(xk)−G�
A(xk)(λk)A‖2 ≤ ‖∇f(xk)−G�(xk)λk‖2 + ‖G�

I (xk)(λk)I‖2.
(12.49)

Now, by the definition of λk, we have

(∇f(xk)−G�(xk)λk)i =
∂f

∂xi
−

m∑
j=1

(λk)j
∂cj
∂xi

(xk)

=
∂f

∂xi
−

m∑
j=1

μk

cj(xk)

∂cj
∂xi

(xk),

which we recognize as ∂φ
∂xi

(xk) from (12.45). Thus, assumption (12.47) shows
that

‖∇f(xk)−G�(xk)λk‖2 ≤ εk. (12.50)

Next, we combine this estimate, (12.48) and (12.49) to obtain

‖∇f(xk) − G�
A(xk)(λk)A‖2 ≤ ‖∇f(xk) − G�(xk)λk‖2 + ‖G�

I (xk)(λk)I‖2

≤ εk +
2μk‖G�

I (xk)‖2

√|I|
minj∈I |cj(x∗)| =: ε̃k.

(12.51)

Now, since G+
A(xk)G

�
A(xk) = I, we have

‖G+
A(xk)∇f(xk)− (λk)A‖2 = ‖G+

A(xk)(∇f(xk)−G�
A(xk)(λk)A)‖2

≤ 2‖G+
A(x

∗)‖2ε̃k
(12.52)

for k big enough, again using the fact that ∇c is continuous and xk → x∗.
This allows us to estimate the convergence of the active λi using

‖λA−(λk)A‖2 ≤ ‖G+
A(x

∗)∇f(x∗)−G+
A(xk)∇f(xk)‖+‖G+

A(xk)∇f(xk)−(λk)A‖2.

The first norm tends to zero as xk → x∗ because of the continuity of ∇f
and ∇c. For the second norm, we observe from (12.51) that both εk and

Constrained Optimization 877

μk approach zero as k → ∞, meaning ε̃k → 0 as well. Thus, by (12.52),
the second norm tends to zero as well. In addition, (λk)I → 0 because of
(12.48) and λI is defined to be zero. Thus, both the active and inactive
parts converge to the exact λ, i.e., we have shown that λk → λ as k → ∞.
Furthermore, continuity of the gradients and (12.50) imply that

∇f(x∗)−∇c�(x∗)λ = 0,

and since c(xk) > 0 for all k, we have c(x∗) ≥ 0. Finally, the definition of
λk in (12.46) gives

ci(xk)(λk)i = μk,

and with λk → λ, we obtain

ci(x
∗)λi = 0,

which concludes the proof. �
It is remarkable that the generic interior point method also computes

an estimate for the Lagrange multipliers, as shown in the previous theorem.
While this theorem establishes a basic convergence result for the generic
interior point method, there are several issues that need to be addressed to
make this a useful algorithm:

1. A fundamental problem in the algorithm is that the Hessian of the un-
constrained problem to be solved in each iteration becomes more and
more ill conditioned as the algorithm progresses: One can show that
its condition number is proportional to 1

μk
. The ill-conditioning is evi-

dent for the example on the right in Figure 12.19, where the curvature
is becoming extreme in the direction where the minimum is squeezed
toward the boundary, whereas in the other direction, the curvature
remains small.

2. Another important problem is the starting point xs
k. Using x∗

k−1 can
be a very unlucky choice, since one can show that from this point, a
Newton step becomes asymptotically infeasible if μk+1 < 1

2μk.

These two problems can however be addressed using a perturbation argument
in the optimality conditions, which leads to the powerful class of primal-
dual interior point methods with both excellent theoretical and practical
properties.

12.4.4 Sequential Quadratic Programming

Sequential quadratic programming (SQP) are methods for solving optimiza-
tion problems with equality (or sometimes inequality) constraints based on
Lagrange multipliers. The general minimization problem

f(x) → min f : Rn → R,
c(x) = 0 c : Rn → R

m,
(12.53)

878 OPTIMIZATION

has the Lagrangian
L(x,λ) = f(x)− c�(x)λ.

The system of first-order optimality conditions

∇xL(x,λ) = ∇f(x)− (∇c(x))�λ = 0
c(x) = 0

(12.54)

has m+n equations for m+n unknowns in x and λ. Using Newton’s method
to compute an approximate solution of (12.54), we obtain the iteration

(
xk+1

λk+1

)
=

(
xk

λk

)
−
(

H(xk,λk) −∇c(xk)�

∇c(xk) 0

)−1(∇xL(xk,λk)
c(xk)

)
,

where H(x,λ) denotes the Hessian with respect to x of the Lagrangian.
Therefore, at each iteration of Newton’s method, one has to solve the linear
system of equations(

H(xk,λk) −∇c(xk)�

∇c(xk) 0

)(
Δx
Δλ

)
= −

(∇xL(xk,λk)
c(xk)

)
.

This system can easily be symmetrized, by writing it in the form(
H(xk,λk) ∇c(xk)�

∇c(xk) 0

)(
Δx
−Δλ

)
= −

(∇xL(xk,λk)
c(xk)

)
,

and there are special techniques to solve such saddle point problems, see [89].
By linearity, we obtain from the first part of the system,

H(xk,λk)Δx−∇c(xk)�Δλ = −∇xL(xk,λk) = −∇f(xk) + (∇c(xk))�λk,

or an equivalent form,

H(xk,λk)Δx− (∇c(xk))�(λk +Δλ) = −∇f(xk),

and hence with the new variable λ̄ = λk + Δλ, the system in Newton’s
method is also equivalent to(

H(xk,λk) ∇c(xk)�

∇c(xk) 0

)(
Δx
−λ̄

)
= −

(∇f(xk)
c(xk)

)
, (12.55)

which will be useful later. Finally, one would often use an approximation Bk

of the Hessian H(xk,λk), and thus solve the system(
Bk ∇c(xk)�

∇c(xk) 0

)(
Δx
−λ̄

)
= −

(∇f(xk)
c(xk)

)
. (12.56)

If Bk is invertible, one can solve (12.56) by using a Schur complement ap-
proach.

Constrained Optimization 879

Where in all this does the name SQP come from? To understand this, we
need to consider the quadratic programming problem with linear constraint

1
2s

�Bks+ s�∇f(x) −→ min,
∇c(x)s = −c(x)

(12.57)

where Bk is a symmetric matrix. If Bk ≈ H(x), this is a quadratic model of
the original problem (12.53)

f(x+ s) −→ min,

c(x+ s) = 0,

since we can approximate the objective function by truncating the Taylor
expansion

f(x+ s) = f(x) + s�∇f(x) +
1

2
s�Bks+ . . . ,

and the constraint c(x+ s) = 0 can be approximated to first order by

c(x+ s) = c(x) + (∇c(x))�s+

which means an approximation of our original problem The Lagrangian for
the model (12.57) is

La(s, λ̄) =
1

2
s�Bks+ s�∇f(x)− (∇c(x)s+ c(x))�λ̄,

and the first-order optimality conditions are

Bks+∇f(x)−∇(c(x))�λ̄ = 0

∇c(x)s = −c(x),

which is precisely the system (12.56) solved at each iteration by Newton’s
methods applied to the first order optimality conditions of the original prob-
lem (12.53), provided Bk is an approximation of the Hessian of the La-
grangian, and not of the objective function only. One can therefore interpret
Newton’s method as a method that solves a sequence of quadratic optimiza-
tion problems with linear constraints, which explains the name sequential
quadratic programming. A generic SQP method is thus given by

Algorithm 12.15. Generic interior point method

For given x0 and λ0;
k = 0;
while not converged

compute Bk ≈ H(xk,λk);
sk = argmins s.t. ∇c(xk)s=−c(xk)

1
2s

�Bks+ s�∇f(xk);

xk+1 = xk + sk;
k=k+1;

end

880 OPTIMIZATION

This method is simple and fast: if Bk = H(xk,λk), then convergence is
ultimately quadratic, as in Newton’s method.

If the underlying problem had been an optimization problem with inequal-
ity constraints, the subproblem in the generic SQP algorithm would simply
have to be replaced by a subproblem of the form

1
2s

�Bks+ s�∇f(x) → min, (Bk)� = Bk,
∇c(x)s ≥ −c(x).

(12.58)

To obtain a more robust method, one adds in general a line search method,

xk+1 = xk + αksk,

and chooses the line search parameter αk such that a penalty function

φ(x, μ) := f(x) +
1

μ
‖c(x)‖

satisfies a criterion of sufficient decrease. As an alternative, one can also use
a trust region approach.

12.5 Problems

Problem 12.1.

1. Implement the minimization algorithm with golden section search.

2. Use both the bisection algorithm from Section 5.2.1 in Chapter 5 and
the function Minimize to solve the following problems:

• Find the minimum of the cosine function between 2.5 and 4. Which
of the two algorithms is more precise ? Explain why.

• Solve the problem from the introduction on how much daily exer-
cise is optimal.

• An enterprise wants to maximize the income from the sale of a

product. We assume that if p is the price of the product, C e−p

1+e−p

units of the product will be sold, where C is a constant, which
means the income is

Cp
e−p

1 + e−p
.

• A simple model of how to maximize halieutic resources (fishing).
We suppose that the evolution of a fish population p(t) is governed
by

dp

dt
= a(1− δ)p − bp2,

Problems 881

where a and b are given constants, and δ represents the fishing
rate, δ ∈ [0, 1]. Solve the differential equation by separation of
variables, which gives for the total amount of fish being fished over
a time period [0, T] the quantity∫ T

0

aδp(t)dt =

∫ T

0

aδ(1− δ)dt

bp0 + (a(1− δ)− bp0) exp(−a(1− δ)t)
.

Maximize this function using δ, for p0 = 1, a = 0.34, b = 0.01 and
T = 20.
(Hint: Use a quadrature rule from the Chapter 9 in order to in-
tegrate the total amount numerically)

Problem 12.2. Let A ∈ C
n×n be a Hermitian matrix, i.e A∗ = A. Show

that all eigenvalues λ of A are real.

Problem 12.3. Let Q be a unitary matrix in C
n, i.e. Q∗Q = I. Prove

that

‖Qx‖2 = ‖x‖2, ‖Q∗BQ‖2 = ‖B‖2.
for any vector x in C

n and any matrix B in C
n×n.

Problem 12.4. A wine farmer produces two different types of wine: a
white wine of very good quality, and a red wine of regular quality. The white
wine sells for $15 a bottle, and the red for $11. The wine farmer possesses
400 hectares of land, and can produce on each hectare either 50 liters of white
wine or 75 liters of red wine. The maximum demand for red wine in his shop
is 25000 liters. With all the seasonal helpers, the wine farmer has in total
4200 man-hours of labor available. To produce 100 liters of red wine, 12
man-hours are needed, whereas the same quantity of white wine requires 28
man-hours. The wine farmer would like to maximize his revenue. Solve this
optimization problem graphically.

Problem 12.5. A mobile phone network operator has a collection of fixed
antennas with interference matrix G = (gij), gij ≥ 0 for all i, j, gii = 0. He
also owns two specific frequencies on which he can operate his network. As
shown in Subsection 12.1.2, he tries to assign frequencies to his antennas in
order to minimize interference, i.e. he is looking for a permutation matrix Π
and an integer p,

ΠTGΠ =

[
A B
C D

]
A ∈ R

p×p,

such that max(λmax (A), λmax (D)) is minimized.

1. Implement the brute force search strategy to find the optimum in Mat-

lab, as shown in Subsection 12.1.2.

882 OPTIMIZATION

2. Implement the approximate minimization algorithm using the Frobenius
norm, as shown in Subsection 12.1.2.

3. Test the two algorithms on the matrices G1 and G2 obtained by

>> rand(’seed’,900);

>> [G1,x1,y1]=GenerateProblem(4,4,0.1);

>> [G2,x2,y2]=GenerateProblem(4,4,0.4);

Problem 12.6. For each of the following functions from R
2 to R, com-

pute the location (x, y) of the global minimum:

1. f1(x, y) = x2 + y2 − xy.

2. f2(x, y) = x4 + y4 − 3
2x

2y2.

3. f3(x, y) = 3x2 − 3y2 + 8xy.

4. f4(x, y) = exp(sin(50x))+sin(60 exp(y))+sin(70 sin(x))+sin(sin(80y))−
sin(10(x+y))+ x2+y2

4
(this last one from Nick Trefethen is challenging)

Problem 12.7. For n cities in a flat country, we want to build the
shortest possible road network to connect them. This problem goes back to
a problem Gauss had worked on, namely to connect four important cities
in Germany by the shortest possible railroad network; but it is even older,
see [38]. For a given network, let p be the number of cross points (a point
different from a city where at least two roads come together), so that the
network contains a total of n+p nodes (a node can be either a city or a cross
point).

1. Between two nodes, what is the form of the shortest road network con-
necting them ?

2. Prove that at a cross point, at least three roads must come together.
(Hint: Show that if not, the cross point can be eliminated)

3. Using the previous result, show that the number of roads must be larger
than 3p+n

2
.

4. Prove that if there are p + n nodes, the shortest network has at most
p+ n− 1 roads.

5. Conclude from the previous result that the shortest network between n
cities has at most n− 2 cross points, i.e p ≤ n− 2.

6. Consider now 4 cities placed in the corners of a square:

(a) Find the shortest road network with p = 0 (easy).

(b) Find the shortest road network with p = 1 (less easy).

Problems 883

(c) What is the shortest road network you can imagine with p = 2?

(d) What is the shortest road network?

Problem 12.8. We would like to build a window frame in the form of
a rectangle, with a semi-circle on top. Suppose we have a total length l of
wood available. Compute the height h of the rectangle and the radius r of the
semi-circle such that the window lets the most light into the house, i.e. the
surface of the window is maximal, using all the available wood for the rim of
the window.

Problem 12.9. A financial investor wants to invest $1000 into three
different types of investment portfolios, which have a return given by the
random variables Ra, Rb and Rc. The expectations are E[Ra] = μa, E[Rb] =
μb and E[Rc] = μc, and suppose the covariances σij = E[(Ri − E[Ri])(Rj −
E[Rj])] are also known.

The investor wants to invest his $1000 in $1000πa ≥ 0 of portfolio a, in
$1000πb ≥ 0 of portfolio b, and in $1000πc ≥ 0 of portfolio c, πa+πb+πc = 1,
such that his expected return is at least 2%, minimizing the associated risk,

i.e. Var(
∑

i=a,b,c πiRi) =
√∑

i,j=a,b,c σijπiπj .

With the given data μa = 0.01 (1%), μb = 0.022 (2.2%), μc = 0.027
(2.7%) and

(σij)i,j=a,b,c =

⎡
⎣ 0.001 0.0002 0.0005
0.0002 0.005 0.0008
0.0005 0.0008 0.02

⎤
⎦ ,

compute the optimal choice of πa, πb, πc for which the minimum return is 2%.

Problem 12.10. Let f : Rn → R be twice continuously differentiable,
and let M be the sub-manifold of Rn with dimension n−m defined by M =
{x, g(x) = 0}, g : Rn → R

m. Let x∗ ∈ M and λ ∈ R
m. The Lagrangian L

is then defined by L(x, λ) = f(x)− gT (x)λ.
Using a parametrization ψ of the sub-manifold M, prove that

∃λ ∈ R
m

{ ∇L(x∗, λ) = 0
wTH(x∗, λ)w > 0 ∀w ∈ Tx∗M, w 	= 0

=⇒ f has a local minimum x∗ on M
=⇒ ∃λ ∈ R

m

{ ∇L(x∗, λ) = 0
wTH(x∗, λ)w ≥ 0 ∀w ∈ Tx∗M

where H is the Hessian of L with respect to the variable x only.

Problem 12.11.

1. Show that for a matrix to be positive definite, it is necessary, but not
sufficient that all the diagonal elements are strictly positive.

884 OPTIMIZATION

2. Show that the matrix

A =

⎡
⎣ 3 −2 0
−2 2 1
0 1 2

⎤
⎦ ,

is positive definite by

• computing explicitly the eigenvalues,

• only computing determinants of sub-matrices.

Problem 12.12.

1. Prove the Taylor formula with integral remainder term: for all f in
Cn+1(R) with values in R,

f(x+ h) =

n∑
j=0

f (j)(x)
hj

j!
+

∫ h

0

(h− t)n

n!
f (n+1)(x+ t)dt.

(Hint: Use integration by parts with a well chosen constant in the
integration)

2. Let g : Rn → R be in Cn+1. Show that

g(x+h) =
∑

|α|≤n

∂αg(x)
hα

α!
+
∑

|α|=n+1

∫ 1

0

n+ 1

α!
(1−t)n∂αg(x+th)hαdt,

where α represents a multi-index (α1, α2, . . . , αn) ∂
α = ∂α1

x1
∂α2
x2

. . . ∂αn
xn

,
hα = hα1

1 hα2
2 . . . , hαn

n , |α| =∑i|αi|, and α! =
∏n

i=1 αi!.

(Hint: Consider f : R → R, t �→ g(x+ th))

3. Let S be an open set of Rn. Let s ∈ R
n be such that x+ θs is in S for

all θ in [0, 1]:

(a) Let f : Rn → R be continuously differentiable on S. We suppose
that ∇f is Lipschitz continuous in x with Lipshitz constant L(x).
Prove that

|f(x+ s)− f(x)−∇f(x) · s| ≤ 1

2
L(x)‖s‖22.

(b) Let f : Rn → R be twice continuously differentiable on S. We
suppose that the Hessian matrix of f , denoted by H, is Lipschitz
continuous in x with Lipshitz constant L2(x). Prove that

|f(x+ s)− f(x)−∇f(x) · s− 1

2
(s,H(x)s)| ≤ 1

6
L2(x)‖s‖32.

Problems 885

Problem 12.13. Prove Farkas’ Lemma, see the end of Subsection 12.2.3.

Problem 12.14. Let β be in (0, 1). Let f : Rn → R be in C1 such that
∇f is Lipschitz with constant L(xk) for xk. Let pk be a descent direction
corresponding to the gradient. Prove that the step obtained by the Armijo
line search backtracking algorithm verifies

αk ≥ min(αinit,
2τ(β − 1)pTk∇f(xk)

L(xk)p
T
k pk

).

Problem 12.15.

1. Implement the steepest descent algorithm with Armijo line search back-
tracking shown in Subsection 12.3.1.

2. Test your algorithm on the function from Problem 12.6. What do you
observe ?

Problem 12.16.

1. Show that for a square invertible matrix A

(AT)−1 = (A−1)T.

2. Prove that if the matrix A est symmetric, then AT, A−1 and (AT)−1

are also symmetric.

3. Let A be a symmetric matrix, and b a vector. We define the function

f : Rn → R,

x �→ 1

2
xTAx+ xTb+ c.

Prove that ∇f(x) = Ax+ b.

4. Prove that if A is symmetric, then

λmin (A) ≤ xTAx

‖x‖22
≤ λmax (A).

5. Prove that if A is symmetric, then

λmin (A
−1) =

1

λmax (A−1)

λmax (A
−2) =

1

λmin (A−1)

886 OPTIMIZATION

Problem 12.17. Implement Newton’s method for optimization as de-
scribed in Subsection 12.3.1.

Problem 12.18. Consider the BFGS update

Bk+1 = Bk +
yky

�
k

s�kyk

− Bksks
�
kBk

s�kBksk

Show that if Bk is positive definite and s�kyk > 0, then Bk+1 is also positive
definite. Hint: Expand vTBk+1v using the update formula, then notice that
a Cauchy–Schwarz inequality holds for the inner product 〈v,w〉 := v�Bkw
when Bk is positive definite.

Problem 12.19. Solve the trust region sub-problems for the linear and
quadratic models:

1. Let R > 0, x0 be a point in R
m, y be in R and d be a vector of Rm.

Let

flin : Rm → R

x �→ y + d�(x− x0).

Compute the point x where flin attains its minimum in the closed ball
B(x0, R).

2. Let R > 0, x0 be a point in R
m, y be in R, d be a vector in R

m and H
be a square symmetric matrix in R

m×m. Let

fquad : Rm → R

x �→ y + d�(x− x0) + (x− x0)
�H(x− x0).

Devise a numerical method to compute the point x where fquad attains
its minimum in the closed ball B(x0, R).

Problem 12.20.

1. Implement the trust region methods described in Subsection 12.3.2 with
a linear model using the exact solution of the sub problem from Problem
12.19.

2. Implement the trust region methods described in Subsection 12.3.2 with
a quadratic model.

3. Compare the performance of the trust region methods with the line
search algorithms steepest descent of Problem 12.15. What do you ob-
serve ?

Bibliography

[1] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Func-
tions with Formulas, Graphs, and Mathematical Tables. Dover, 1970.

[2] Alexander Aitken. On Bernoulli’s numerical solution of algebraic equations.
Proceedings of the Royal Society of Edinburgh, 46:289–305, 1926.

[3] Robert S. Anderssen and Gene H. Golub. Richardson’s non-stationary ma-
trix iterative procedure. Technical Report CS-TR-72-304, Computer Science
Department, Stanford University, 1972.

[4] Bengt Aspvall and John R. Gilbert. Graph coloring using eigenvalue decom-
position. SIAM J. Alg. Disc. Meth., 5(4), 1984.

[5] Forbes A. B. Geometric tolerance assessment. TR DITC 210/92, National
Physical Laboratory,Teddington, 1992.

[6] Pierre Baldi and Edward Posner. Graph coloring bounds for cellular radio.
Computers Math. Applic., 19(10):91–97, 1990.

[7] Richard Barrett, Michael Berry, Tony F. Chan, James Demmel, June Donato,
Jack Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk
van der Vorst. Templates for the Solution of Linear Systmes: Buliding Blocks
for Iterative Methods. SIAM, 1994.

[8] M. Benzi. Splittings of symmetric matrices and a question of Ortega. Linear
Algebra and its Applications, 429:2340–2343, 2008.

[9] Å. Björck. Numerical Methods for Least Squares Problems. SIAM, 1996.

[10] Susanne C Brenner and Larkin Ridgway Scott. The mathematical theory of
finite element methods, volume 15. Springer, 2008.

[11] C. Brezinski. Accélération de la Convergence en Analyse Numérique. Number
584 in Lecture notes in Mathematics 584. Springer, 1977.

[12] M. Bronstein. Symbolic Integration I : Transcendental Functions, volume 1 of
Algorithms and Computation in Mathematics. Springer, 1996.

[13] J. C. Butcher. On runge-kutta processes of high order, part 2. J. Austral.
Math. Soc., IV:179–194, 1964.

[14] John C Butcher. Numerical methods for ordinary differential equations. John
Wiley & Sons, 2008.

W. Gander et al., Scientific Computing - An Introduction using Maple and MATLAB,

Texts in Computational Science and Engineering 11,
DOI 10.1007/978-3-319-04325-8,

© Springer International Publishing Switzerland 2014

888 BIBLIOGRAPHY

[15] B. P. Butler, A. B. Forbes, and P. M. Harris. Algorithms for geometric toler-
ance assessment. TR DITC 228/94, National Physical Laboratory,Teddington,
1994.

[16] G. Cardano. Ars Magna or The Rules of Algebra, 1545. MIT, 1968.

[17] I. B. Cohen. Howard Aiken : Portrait of a Computer Planner. MIT
Press, 1999.

[18] James W. Cooley and John W. Tukey. An algorithm for the machine calcu-
lation of complex fourier series. Math. Comput., 19:297–301, 1965.

[19] I.D. Coope and C.J. Price. A modified BFGS formula maintaining posi-
tive definiteness with Armijo-Goldstein steplengths. Journal of Compuational
Mathematics, 13:156–160, 2008.

[20] C.F. Curtiss and J.O. Hirschfelder. Integration of stiff equations. Proc. Nat.
Acad. Sci. U.S.A., 38:235–243, 1952.

[21] Germund Dahlquist. Convergence and stability in the numerical integration
of ordinary differential equations. Math. Scand., 4:33–53, 1956.

[22] Germund Dahlquist. A special stability problem for linear multistep methods.
BIT, 3:27–43, 1963.

[23] G.B. Dantzig. Maximization of a linear function of variables subject to linear
inequalities. In T.C. Koopmans, editor, Activity Analysis of Production and
Allocation, pages 339–347. Wiley, New York, 1951.

[24] C. de Boor. A Practical Guide to Splines. Springer, 1978.

[25] Carl de Boor. Splinefunktionen. Birkhäuser, 1990.

[26] J. Dongarra, C. Moler, J. Bunch, and G. W. Stewart. LINPACK Users’
Guide. SIAM, 1979.

[27] J. Dongarra and F. Sullivan. The top 10 algorithms. Computing in Science
and Engineering, 2(1):22–23, 2000.

[28] Michael Drexler and Martin J Gander. Circular billiard. SIAM review,
40(2):315–323, 1998.

[29] L. Euler. Institutionum Calculi Integralis. Volumen Primum, volume XI of
Opera OMNIA. Birkhäuser, 1768.

[30] Haw-ren Fang and Dianne P. O’Leary. Modified Cholesky algorithms: a cat-
alog with new approaches. Math. Program., Ser. A, 115:319–349, 2008.

[31] K. Fernando and B. Parlett. Accurate singular values and differential qd
algorithms. Numerische Mathematik, 67:191–229, 1994.

[32] R. Fletcher. Conjugate gradient methods for indefinite systems. In G. Alistair
Watson, editor, Numerical Analysis– Dundee 1975, volume 506, pages 73–89.
Lecture Notes in Mathematics, Springer-Verlag, Heidelberg, 1976.

[33] G. Forsysthe and P. Henrici. The cyclic jacobi method for computing the
principal values of acomplex matrix. Trans. Amer. Math. Soc., 94:1–23, 1960.

[34] J. G. F. Francis. The qr transformation, a unitary analoque to the lr trans-
formation – part 1. The Computer Journal, 4:265–271, 1961.

[35] Roland Freund and Noël Nachtigal. QMR: A quasi-minimal residual method
for non-Hermitian linear systems. Numerische Mathematik, 60:315–339, 1991.

Bibliography 889

[36] A. Gamst and W. Rave. On the frequency assignment in mobile automatic
telephone systems. In Proc. of GLOBECOM 82, pages 309–315, 1982.

[37] Martin J. Gander and Felix Kwok. Chladni figures and the Tacoma bridge:
motivating PDE eigenvalues problems via vibrating plates. SIAM Rev.,
54:573–596, 2012.

[38] M.J. Gander, K. Santugini, and A. Steiner. La rete stradale piu breve che
collega le citta (shortest road network connecting cities). Bolettino dei docenti
di matematica, 56:9–19, 2008.

[39] W. Gander. On Halley’s iteration method. The American Mathematical
Monthly, 92(2), 1985.

[40] W. Gander. Algorithms for the polar decomposition. SIAM J. on Sci. and
Stat. Comp., 11(6), 1990.

[41] W. Gander. Computermathematik. Birkhäuser, 1992.

[42] W. Gander. Zeros of determinants of λ-matrices. In Proceedings in Applied
Mathematics and Mechanics, volume 8, pages 10811–10814. Wiley, 2008.

[43] W. Gander and W. Gautschi. Adaptive quadrature - revisited. BIT, 40(1):84–
101, 2000.

[44] W. Gander and D. Gruntz. The billiard problem. International Journal of
Mathematical Education in SCIENCE and Technology, 23(6):825–830, 1992.

[45] W. Gander and J. Hřeb́ıček. Solving Problems in Scientific Computing using
Maple AND Matlab. Springer, 3rd edition, 1997.

[46] Walter Gander and Dominik Gruntz. Derivation of numerical methods using
computer algebra. SIAM Review, 41(3), 1999.

[47] Garbow, Boyle, Dongarra, and Moler. EISPACK Guide Extension. Lecture
Notes in Computer Science. Springer, 1977.

[48] Walter Gautschi, Ronald S FRIEDMAN, Jonathan BURNS, Rajan DAR-
JEE, and Andrew MCINTOSH. Orthogonal Polynomials: Computation and
Approximation, Numerical Mathematics and Scientific Computation Series.
Oxford University Press, Oxford, 2004.

[49] Philip E Gill, Walter Murray, and Margaret HWright. Practical optimization.
1981.

[50] L. Giraud, J. Langou, M. Rozlǒzńık, and J. van den Eshof. Rounding error
analysis of the classical gram-schmidt orthogonalization process. Numerische
Mathematik, 101:87–100, 2005.

[51] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Stud-
ies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore,
MD, 1996.

[52] G. H. Golub and J. H. Welsch. Calculation of gauss quadrature rules. Math.
Comp., 23:221–230, 1969.

[53] Gene Golub and Christian Reinsch. Singular value decomposition and least
squares solutions. Numerische Mathematik, 14:403–420, 1970.

[54] Gene H. Golub. The Use of Chebyshev Matrix Polynomials in the ITERA-
TIVE Solution of Linear Equations Compared to THE Method of Successive

890 BIBLIOGRAPHY

Overrelaxation. PhD thesis, University of Illionis at Urbana-Champaign,
1959.

[55] Gene H. Golub and William Kahan. Calculating the singular values and
pseudo-inverse of a matrix. SIAM J. Numer. Anal., 2:205—224, 1965.

[56] Gene H. Golub and Victor Pereyra. The differentiation of pseudoinverses
and nonlinear least squares problems whose variables separate. SIAM J.
Numer. Anal., 10:416–432, 1973.

[57] N. I. M. Gould and S. Leyffer. An introduction to algorithms for nonlinear
optimization. In Frontiers in Numerical Analysis, pages 109–197. Springer
Verlag, 2003.

[58] Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles
and Techniques of ALGORITHMIC Differentiation. SIAM, 2008.

[59] Martin Gutknecht. Lanczos-type solvers for nonsymmetric linear systems of
equations. Acta Numerica, pages 271–397, 1997.

[60] J. Hadamard. Sur les problèmes aux dérivées partielles et leur signification
physique. Princeton University Bulletin, 13:49–52, 1902.

[61] E. Hairer, Ch. Lubich, and G. Wanner. Geometric Numerical Integra-
tion: Structure-Preserving Algorithms for Ordinary Differential Equations.
Springer-Verlag, 2002.

[62] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equa-
tions I, Nonstiff PROBLEMS. Springer-Verlag, 2nd revised edition, 1993.

[63] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II, the
Stiff CASE. Springer-Verlag, 2nd revised edition, 1994.

[64] E. Hairer and G. Wanner. Analysis by Its History. Springer, New York, 1996.

[65] R. Hanson and M. Norris. Analysis of measurements based on the singular
value decomposition. SIAM J. on Sci. and Stat. Comp., 2(3), 1981.

[66] Jin-Kao Hao and Raphaël Dorne. Study of genetic search for the frequency
assignment problem. In Artificial Evolution European Conference, pages
333–344. Springer-Verlag, 1996.

[67] P. Henrici. On the speed of convergence of cyclic and quasicyclic jacobi
methods for computing eigenvalues of hermitian matrices. J. Soc. Indust.
Appl. Math., 6:144–162, 1958.

[68] P. Henrici. Discrete variable methods in ordinary differential equations.
Wiley, 1962.

[69] P. Henrici. Elements of Numerical Analysis. Wiley, 1964.

[70] M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. J. Research Nat. Bur. Standards, 49:409–436, 1952.

[71] Nicholas J. Higham. Accuracy and stability of numerical algorithms. SIAM,
2002.

[72] A.S. Householder. On the convergence of matrix iterations. Technical Report
1883, Oak Ridge National Laboratory, 1955.

[73] Thomas JR Hughes. The finite element method: linear static and dynamic
finite element analysis. DoverPublications. com, 2012.

Bibliography 891

[74] C. G. J. Jacobi. über ein leichtes verfahren, die in der theorie der
säkularstörungen vorkommenden gleichungen numerisch aufzulösen. Crelle’s
Journal, 30:51–94, 1846.

[75] F. John. Advanced Numerical Methods. Lecture Notes, Department of
Mathematics, 1956.

[76] Johan Joss. Algorithmishes Differenzieren. PhD thesis, Eidgenoessische
Technische Hochschule, Zürich, Switzerland, 1976.

[77] William Kahan. Gauss-Seidel Methods of Solving Large Systems of Linear
EQUATIONS. PhD thesis, University of Toronto, 1958.

[78] D. K. Kahaner. Comparison of numerical quadratur formulas. Mathematical
Software, pages 229–269, 1971.

[79] Narendra Karmarkar. A new polynomial-time algorithm for linear program-
ming. In Proceedings of the sixteenth annual ACM symposium on Theory of
computing, pages 302–311. ACM, 1984.

[80] Daniel Kressner. Numerical methods for general and structured eigenvalue
problems, volume 46. Springer, 2005.

[81] Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, and Paul E.
Wright. Convergence properties of the Nelder-Mead simplex method in low
dimensions. SIAM Journal of Optimization, 9:112–147, 1998.

[82] Cornelius Lanczos. An iterative method for the solution of the eigenvalue
problem of linear differential and integral operators. J. Res. Nat. Bur.
Standards, Sect. B., 45:225–280, 1950.

[83] Cornelius Lanczos. Solution of systems of linear equations by minimized
iterations. J. Res. Nat. Bur. Standards, Sect. B., 49:33–53, 1952.

[84] Ben Leimkuhler and Sebastian Reich. Simulating Hamiltonian Dynamics.
Cambridge University Press, 2005.

[85] Steven J. Leon. Linear Algebra with Applications. Pearson, 2010.

[86] Jörg Liesen and Zdenek Strakos. Krylov subspace methods: principles and
analysis. Oxford University Press, 2012.

[87] J. Liouville. Remarques nouvelles sur l’équation de riccati. J. des Math.
pures et appl., 6:1–13, 1841.

[88] James N Lyness and Cleve B Moler. Numerical differentiation of analytic
functions. SIAM Journal on Numerical Analysis, 4(2):202–210, 1967.

[89] J. Liesen M.Benzi, G.H.Golub. Numerical solution of saddle point problems.
Acta Numerica, 14:1–137, 2005.

[90] JB McLeod. A note on the ε-algorithm. Computing, 7(1-2):17–24, 1971.

[91] J. C. P. Miller. Neville’s and Romberg’s Processes: A fresh Appraisal with
Extensions, volume 263 of Series A, Mathematical and Physical Sciences.
Philosophical Transactions of the Royal Society of London, 1969.

[92] C. Moler. The qr algorithm – striving for infallibility. MathWorks Newsletter,
1995.

[93] Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute the
exponential of a matrix. SIAM Review, 20(4), 1978.

892 BIBLIOGRAPHY

[94] A. M. Mood and F. A. Graybill. Introduction to the Theory of Statistics.
McGraw-Hill Book Company, New York, 2nd edition, 1963.

[95] I. Newton. Methodus Fluxionum et Serierum INFINITARUM, volume 1 of
Opuscula mathematica. edita Londini, 1736. Traduit en franç ais par M. de
Buffon, Paris MDCCXL.

[96] Alan V. Oppenheim and Alan S. Willsky. Signals & Systems. Prentice Hall,
1996.

[97] J örg Waldvogel. Fast construction of the fejér and clenshaw-curtis
quadrature rules. BIT, 46(1):195–202, 2006.

[98] AM Ostrowski. On the linear iteration procedures for symmetric matrices.
Rend. Mat. Appl, 14:140–163, 1954.

[99] A.M. Ostrowski. Solution of Equations and Systems of Equations. Academic
Press, 1973.

[100] M. L. Overton. Numerical Computing with IEEE Floating Point Arithmetic.
SIAM, 2001.

[101] Chris C. Paige and Michael A. Saunders. Solution of sparse indefinite
systems of linear equations. SIAM J. Numer. Anal., 12:617–629, 1975.

[102] Chris C. Paige and Michael A. Saunders. LSQR: An algorithm for sparse
linear equations and sparse least squares. ACM Trans. Math. Soft., 8:43–71,
1982.

[103] Christopher Conway Paige. The computation of eigenvalues and eigenvectors
of very large sparse matrices. PhD thesis, University of London, 1971.

[104] B. N. Parlett. The Symmetric Eigenvalue Problem. Classics in Applied
Mathematics. SIAM, 2nd edition, 1998.

[105] Edgar Reich. On the convergence of the classical iterative method of solving
linear simultaneous equations. The Annals of Mathematical Statistics,
20(3):448–451, 1949.

[106] Lewis Fry Richardson. On the approximate arithmetical solution by finite
differences of physical problems involving differential equations, with an
application to the stresses in a masonry dam. Proceedings of the Royal
Society of London. Series A, 83(563):335–336, 1910.

[107] M. Rojas, S.A. Santos, and D.C. Sorensen. A new matrix-free algorithm
for the large-scale trust-region subproblem. SIAM J. Optim., 11(3):611–646,
2000.

[108] Walter Rudin. Real and Complex Analysis. McGraw-Hill, International
Edition, 1987.

[109] H. Rutishauser. Der quotienten-differenzen-algorithmus. Z. Angew. Math.
Physik, 5(1):233–251, 1954.

[110] H. Rutishauser. Der Quotienten-Differenzen-Algorithmus. Birkhäuser, 1957.

[111] H. Rutishauser. Description of ALGOL 60. Springer, 1967.

[112] H. Rutishauser. Lectures on Numerical Mathematics. Birkhäuser, 1990.

[113] H. Rutishauser and H. R. Schwarz. The lr transformation method for
symmetric matrices. Numerische Mathematik, 5:273–289, 1963.

Bibliography 893

[114] Heinz Rutishauser. Über die Instabilität von Methoden zur Integration
gewöhnlicher Differentialgleichungen. ZAMP, 3:65–74, 1952.

[115] Heinz Rutishauser. Beiträge zur kenntnis des biorthogonalisierungs- algo-
rithmus von lanczos. Zeitschrift für angewandte Mathematik und Physik
(ZAMP), 4(1):35–56, 1953.

[116] W. Gander S. J. Leon, Å. Björck. Gram-schmidt orthogonalization: 100
years and more. Numer. Linear Algebra Appl., 20:492–532, 2013.

[117] M. H. Saad, Y. & Schultz. Gmres: A generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput.,
7:856–869, 1986.

[118] Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.

[119] J. M. Sanz-Serna. Two topics on nonlinear stability. Advances in Numerical
Analysis (W. Light ed.), I:147–174, 1991.

[120] Ernst Schröder. über iterirte functionen. Mathematische Annalen, 3(2):296–
322, 1870.

[121] Ernst Schröder. Über unendlich viele algorithmen zur auflösung der
gleichungen. Mathematische Annalen, 2(2):317–365, 1870.

[122] H. R. Schwarz. Numerik symmetrischer Matrizen. Teubner, 1972.

[123] H. Schwetlik and T. Schütze. Least squares approximation by splines with
free knots. BIT, 35(3):361–384, 1995.

[124] Daniel Shanks. Non-linear transformation of divergent and slowly convergent
sequences. Journal of Mathematics and Physics, 34:1–42, 1955.

[125] Avram Sidi. Efficient implementation of minimal polynomial and reduced
rank extrapolation methods. J. of Comp. and Appl. Math., 36:305–337, 1991.

[126] Avram Sidi and Jacob Bridger. Convergence and stability analyses for some
vector extrapolation methods in the presence of defective iteration matrices.
J. of Comp. and Appl. Math., 22:35–61, 1988.

[127] H. Späth. Orthogonal least squares fitting with linear manifolds. Numer.
Math., 48:441–445, 1986.

[128] William Squire and George Trapp. Using complex variables to estimate
derivatives of real functions. Siam Review, 40(1):110–112, 1998.

[129] A. Steiner and M. Arrigoni. Die lösung gewisser räuber-beute-systeme.
Studia Biophysica, 123(2), 1988.

[130] G. W. Stewart. The economical storage of plane rotations. Numerische
Mathematik, 25:137–138, 1976.

[131] E. Stiefel. Einführung in die numerische Mathematik. Teubner, 1976.

[132] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer, 1991.

[133] Gilbert Strang and George J Fix. An analysis of the finite element method,
volume 212. Prentice-Hall Englewood Cliffs, 1973.

[134] A.M. Stuart and A.R. Humphries. Dynamical Systems and Numerical
Analysis. Mathematics. Cambridge University Press, 1998.

894 BIBLIOGRAPHY

[135] V. Szebehely. Theory of Orbits, The restricted problem of three BODIES.
Acad. Press, New York, 1967.

[136] R.C.E. Tan. Implementation of the topological ε-algorithm. SIAM J. Sci.
Stat. Comput., 9(5), 1988.

[137] F. Tisseur and K. Meerbergen. The quadratic eigenvalue problem. SIAM.
Rev, 43:234–286, 2001.

[138] Joseph F. Traub. Iterative Methods for the Solution of Equations. Algorithms
and Computation in Mathematics. Prentice Hall, 1964.

[139] L. N. Trefethen. The definition of numerical analysis. SIAM News, November
1992. Available online at http://people.maths.ox.ac.uk/trefethen/

publication/PDF/1992_55.pdf.

[140] L. N. Trefethen and D. Bau III. Numerical Linear Algebra. SIAM, 1997.

[141] Henk van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of
Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist.
Comput., 13:631–644, 1992.

[142] Richard S. Varga. Matrix Iterative Analysis. Prentice Hall, first edition, 1962.

[143] Vito Volterra. Leçon sur la théorie mathématique de la lutte pour la vie.
Cahiers Scientifiques, Paris, 1931.

[144] Urs von Matt. The orthogonal qd-algorithm. SIAM Journal on Scientific
Computing, 18:1163–1186, 1997.

[145] J. von Neumann and H.H. Goldstine. Numerical inverting of matrices of
high order. Bull. Amer. Math. Soc., 53:479–557, 1947.

[146] Gene H. Golub Walter Gander and Rolf Strebel. Least-squares fitting of
circles and ellipses. BIT, 34:558–578, 1994.

[147] H. Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer
partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der
Hohlraumstrahlung). Mathematische Annalen, 71:441–479, 1912.

[148] J. Wilkinson and C. Reinsch. Linear Algebra. Springer, 1971.

[149] J. H. Wilkinson. Error analysis of direct methods of matrix inversion. Journal
of the ACM (JACM), Volume 8 Issue 3:281–330, 1961.

[150] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Monographs on
Numerical Analysis. Oxford Science Publications, 1965.

[151] P. Wynn. On a device for computing the em(sn)-transformation. MTAC,
10:91–96, 1956.

[152] P. Wynn. General purpose vector epsilon algorithm algol procedures.
Numerische Mathematik, 6:22–36, 1964.

[153] David M. Young. Iterative Methods for Solving Partial Difference EQUA-
TIONS of Elliptic Type. PhD thesis, Harvard University, May 1950.

[154] K. Zuse. The computer, my life. Springer, 1993.

http://people.maths.ox.ac.uk/trefethen/publication/PDF/1992_55.pdf
http://people.maths.ox.ac.uk/trefethen/publication/PDF/1992_55.pdf

Index

A-norm, 746
A(α)-stability, 655

A-Stability, 650
Adams-Bashforth method, 633
Adaptive Integration, 617
Adaptive Quadrature, 563
Admissible Basis, 870
Affine Krylov subspace, 746
Aitken acceleration, 193
Aitken–Neville Scheme, 537
Algorithm

ε-algorithm, 196
Arnoldi, 433, 438, 760
BiCG-stab, 801
Biconjugate Gradient (BiCG), 793
BiORES, 790
Björck Algorithm for Covariance

Matrix, 322
classical Gram-Schmidt, 302
classical Runge-Kutta method, 614
conjugate gradients CGHS, 743
conjugate residuals, 705
FOM for Solving Linear Systems,

767
Golden Section Minimization, 820
Golub–Welsch quadrature, 557
Golub-Kahan-Lanczos, 457
Gram-Schmidt, 301, 548
Heun’s Order 3 ODE solver, 612
implicit QR Algorithm, 443
Jacobi, 405
Laguerre’s Method, 240
Lanczos, 438

Lanczos for Solving Linear Sys-
tems, 769

Lanczos tridiagonalization, 436
LR-Cholesky, 470
machine-independent, 21, 48, 50,

186, 422, 564
MINRES, 780
modified Gram-Schmidt, 303
Nelder–Mead, 859
Newton-Maehly, 232
Orthogonal LR-Cholesky, 468
Orthomin, 796
Preconditioned Conjugate Gradi-

ent, 803
QD Algorithm, 464, 467
QMR, 801
QR Algorithm, 429, 436
quotient-difference, 464
Romberg, 537
Simplex, 862
SOR, 695
SSOR, 724
stable, 34
SVD of Golub-Reinsch, 458
Thomas, 99
Trust Region, 857
unstable, 34

Algorithmic Differentiation, 499
Approximation

by polynomial, 129
data fitting, 131

Arenstorf orbit, 618
Arithmetic

standard model, 19

W. Gander et al., Scientific Computing - An Introduction using Maple and MATLAB,

Texts in Computational Science and Engineering 11,
DOI 10.1007/978-3-319-04325-8,

© Springer International Publishing Switzerland 2014

896 INDEX

Armijo Backtracking Line Search, 844
Arnoldi process, 758
ASCII code, 227
Automatic Differentiation, 499
Autonomous ODE, 603

Back substitution, 68, 76
Backward differentiation formulas

(BDF), 632
Backward stability, 36
Banach space, 242
Barrier Function, 873
Base, 13
Bernoulli number, 533
BFGS Method, 856
Biconjugate Gradient Method, 793,

801
Bidiagonalization, 454
Big-O notation, 27
Biharmonic Operator, 498
Binary search, 147, 252
Binary system, 13
Biorthogonal matrices, 781
Bisection method, 185
Block-Jacobi, 693
Boole’s Rule, 522

error, 526
Boundary conditions

clamped, 152
natural, 148, 150
not a knot, 152
periodic, 149, 154, 158

Boundary value problem, 587
Brachystochrone Problem, 488
Butcher tableau, 606

Cancellation, 45, 46
avoiding, 43, 47, 49, 493

Cardano formulas, 217
Chan-Transformation, 454
Chaos, 215
Characteristic equation, 640
Characteristic polynomial, 5, 389
Chebyshev

nodes, 121

polynomials, 121, 713
Semi-Iterative Method, 719
three term recurrence, 714

Chladni figures, 387
Cholesky decomposition, 91, 268
Choosing a time step, 620
Circular Billiard, 505
Compression of a signal, 178
Computation of π

stable, 21
unstable, 11

Computation of limits, 142
Computation range, 18
Computing

2-norm, 272
exponential function, 48
logarithm function, 57
covariance matrix, 320
determinant, 510
exponential function, 43
exponential function stable, 49
Frobenius norm, 272
sine function, 58
singular value decomposition,

453
square root, 49
Standard deviation, 45
with power series, 593

Condition, 24
ill-conditioned problem, 29
linear equations, 84
number, 29, 285
of Eigenvalues, 398
well-conditioned problem, 29

Conjugate directions, 740
Conjugate Gradient, 743, 771, 843

as convergence accelerator, 750
Craig’s Method (CGNE), 801
Method, 740
on Normal Equations (CGNR),

801
reduction to tridiagonal matrix,

751
three term recurrence, 750

Conjugate residuals, 705

Index 897

Consistency, 636
Continuation method, 251
Convergence

cubic, 205
linear, 191
multiple zeros, 205
QR Algorithm, 445
quadratic, 246
rate, 191
secant method, 209
super-quadratic, 212
superlinear, 209

Convergence factor
asymptotic, 686
mean, 686

Convergence rate
asymptotic, 686
mean, 686

Convolution, 168, 170
Coordinate metrology, 344
Covariance Matrix

Björck Algorithm, 322
Covariance matrix, 320
Cramer’s Rule, 66

Dahlquist barrier
first, 646
second, 655

Data fitting problems, 131
Decomposition

LU Factorization, 73
Cholesky, 91

Definite integral, 517
Delay Differential Equations, 664
Denormalized numbers, 17
Derivative

finite difference, 491
Descent method, 740
Determinant, 63, 76

Laplace Expansion, 64
Leibniz formula, 64

Diagonalizing
circulant matrices, 178

Difference
absolute, 51

relative, 51
Differential algebraic equation

(DAE), 656
Differential equations

homogeneous linear system, 398
Differentiation

Algorithmic, 499
numerical, 21, 494

Digit, 13
Discretization, 675
Divide and conquer principle, 563
Divided differences, 123, 134
Double precision, 15
Dynamical systems, 212

Eccentric anomaly, 182
Eigenvalue

algebraic multiplicity, 397
condition, 398
deflation, 449
geometric multiplicity, 397
orthogonal iteration, 425
Power Method, 422
Schur decomposition, 427
shift-and-Invert, 424

Eigenvalue problem, 5, 389
Elimination

with Givens rotations, 95
Ellipse, 56

eccentricity, 184
Elliptic integral, 56
Embedded Runge-Kutta methods,

620
Energy norm, 746
Energy Preserving Methods, 661
Equation

goniometric, 515
nonlinear, 6, 181, 240
quadratic, 55

ERMETH, 14
Error

a posteriori error estimate, 243
a priori error estimate, 244
absolute, 51
discretization, 494

898 INDEX

global truncation, 615
iteration, 190
local truncation for one step method,

606
measurement, 132
relative, 51
trigonometric interpolation, 164

Error vector, 679
Euler–Maclaurin Summation Formula,

531, 534
Explicit Linear Multistep Methods, 638
Exponent, 13
Exponential function

computing, 43
Extrapolation, 115, 142

Aitken-Neville, 143
Richardson, 143, 538
Romberg, 143

Extrapolation methods for linear sys-
tems, 726

Factorization
LU Factorization, 73

Farkas Lemma, 842
Fast Givens, 298
Feigenbaum constant, 214
Finite difference, 23, 28

one-sided, 491
symmetric, 493

Finite precision arithmetic, 13
First Dahlquist barrier, 646
First order system, 603
Fixed point

Banach theorem, 242
contraction, 243
form, 187
iteration, 187, 242

Fixed point iteration, 58
Floating point number, 13
Formal Power Series, 532
Forward Euler method, 599
Forward stability, 33, 36
Forward substitution, 76
Fourier

aliasing, 166

coefficients, 159
conditioning, 176
convolution, 168
Cooley–Tukey Algorithm, 163
decomposition, 158
discrete transform, 161
fast transform (FFT), 162
FFT and convolution, 171
harmonics, 159
impulse response, 168
inverse discrete transform, 161
series, 158
unit impulse, 168

Fréchet derivative, 282
Fractal, 250
Fractals, 251
Frobenius Norm, 807
Frobenius norm, 342, 346
Full Orthogonalization Method

(FOM), 766
Function

gradient,Hessian, 834
LambertW, 188, 819
minimum, maximum, 832
multiple zeros, 205
root, 181
zero, 181

Fundamental Subspaces, 275
Fundamental subspaces, 275

Galerkin condition, 766
Gauss Quadrature Rule, 541
Gauss transformations, 800
Gauss–Kronrod Rule, 569
Gauss–Legendre Quadrature Rule,

543
Gauss–Lobatto Rule, 569
Gauss–Newton method, 6
Gauss-Markoff Theorem, 267
Gauss-Newton method, 360, 367
Gauss-Seidel Method, 694
Gaussian Elimination, 66

column pivoting, 330
rank-one changes, 82

Gaussian elimination, 3

Index 899

General linear multistep method, 635
General solution of ODE, 587
general system of linear equations, 107
Generalized Minimum Residual method

(GMRES), 773
Geometric integration, 656
Ghost eigenvalues, 765
Givens reflection, 293
Givens rotation, 292
Givens rotations, 103, 408
Givens transformations

generalized, 478
Global error, 712
Global truncation error, 615
Golden Section, 820
Golden section equation, 209
Golub–Welsch Algorithm, 557
Gradient, 241, 354
Gram-Schmidt procedure, 548
Gram-Schmidt with Reorthogonaliza-

tion, 306
Growth factor, 78, 82

Hadamard Product, 826
Heat equation, 675
Heron’s formula, 50
Hessenberg matrix, 297, 759
Hessian, 354
Hexadecimal, 17
Hilbert matrix, 111
Horner’s scheme

complete, 226
simple, 223

Householder matrix, 289

IEEE floating point standard, 14
Ignore a singularity, 564
Implicit Linear Multistep Methods,

637
Implicit Midpoint Method, 629
Implicit trapezoidal method, 633
Infinity, Inf, 15, 17
Initial condition, 587
Initial or boundary conditions, 587
Initial value problem, 587

Integral
definite, 517

Integration
Romberg, 143, 537
trapezoidal rule, 165

Interior Point Method, 872, 873
Interpolating

function, 115
Interpolation, 113

Aitken-Neville, 139, 210
Aitken-Neville scheme, 139
Barycentric Formula, 121, 122
by polynomials, 116
Chebyshev nodes, 121
data fitting, 131
divided differences, 123
error, 115, 119
Hermite, 146
inverse, 210
Lagrange, 117
Newton, 123
Runge’s example, 121
spline cardinal form, 146
splines, 145
trigonometric polynomial, 161

interpolation principle, 113
Inverse iteration, 107
Inverse Power Method, 424
Iteration

correction form, 678
Halley, 201
inner and outer, 199
inverse interpolation, 209
Müller’s method, 209
multi-step methods, 207
Newton, 199
one step method, 199
Regula Falsi, 209
Schröder’s method, 207
secant method, 207
single stage, 678
successive iterates, 245

Iteration matrix, 678
Iterative method

non-stationary, 704

900 INDEX

Iterative Methods
stationary, 678

Jacobi Method, 691
Jacobi rotations, 409
Jacobian, 355
Jacobian matrix, 837
Jordan block, 394
Joukowski transformation, 776

Kahan’s Summation Algorithm, 39
Kantorovitch inequality, 707
Karush-Kuhn-Tucker Theorem, 840
Kepler

equation, 182, 184, 199
second law, 182

Krylov Space, 728
Krylov subspace methods, 739

Lagrange
polynomial, 117

Lagrange multipliers, 838
Lagrangian, 838
Lanczos Algorithm, 550
Lanczos Bidiagonalization Process, 457
Lanczos for non-symmetric matrices,

780
Lanczos vector, 762
Lanczos-Algorithm, 128, 550
Laplace operator, 675
Laplacian, 496
Law of cosines, 55
Least squares

algebraic distance, 337
condition, 285
constrained, 335, 336
constrained linear, 367
constrained nonlinear, 367
ellipse fitting, 337
fit hyperplane, 343
fit parallel lines, 336, 337
fit with piecewise functions, 364
linear constraints, 323
linear problem, 266
metrology, 344

minimum-norm solution, 278
nonlinear problem, 354
normal equations, 129
problem, 129, 261
solution by QR, 287
special quadratic constraint, 334

Least-squares problem, 6
Line fitting, 335
Line-Jacobi, 693
Linear Equation

extrapolation algorithms, 728
Linear multistep methods, 631
Linear system

backward error analysis, 84
banded, 97
full matrices, 66
Gaussian Elimination, 66
general, 107
iterative methods, 4, 673
rank p change, 156
symmetric matrices, 88
time-invariant (LTI), 170
tridiagonal, 99, 103
under-determined, 279

Lipschitz, 243
Little-O notation, 27
Local Truncation Error

Multistep Methods, 635
Local truncation error for one step

method, 606
Lotka-Volterra Equations, 657
LU decomposition, 4

M-matrix, 688
Machine constants, 53
Machine number, 11

range, 13
Machine precision, 13, 17, 53
Mantissa, 13
MARK 1, 14
Matrix

permutation, 75
augmented, 70, 458
augmented system, 155
band, 4

Index 901

banded, 97
block-diagonal, 367
capacitance, 156
Cholesky decomposition,factorization,

91
circulant, 170
coefficients, 62
column, 63
companion, 221
condition number, 85, 86
conjugate transpose, 400
defective, 395
determinant, 396
diagonalizable, 392, 397
diagonally dominant, 692
eigen-decomposition, 393
eigenvalue, 389
eigenvector, 389
elementary Householder, 455
exponential, 397
functions, 398
fundamental subspaces, 275
Golub-Kahan-Lanczos bidiagonal-

ization, 457
Hessenberg, 430
Hessian, 242, 834
Hilbert matrix, 86
implicit bidiagonalization, 456
irreducible, 468, 687
Jacobian, 241, 245, 367, 837
Jacobian numerically, 247
Jordan decomposition, 681
LDU decomposition of symmet-

ric matrix, 769
LU decomposition, 75
non-negative, 687
non-positive, 687
normal, 400
null space, 275, 837
operator, 291
orthogonal, 269
positive definite, 89
projection on Krylov subspace,

759
pseudo-inverse, 737

range, 837
range or column space, 275
rank, numerical rank, 279
rank-one change, 70
rank-p change, 156
reduction to bidiagonal form, 454
reduction to Hessenberg form,

430
reduction to tridiagonal form,

434
row space, 275
rows, 63
similar, 396
sparse, 4
symmetric tridiagonal, 232
Toeplitz, 265, 533
trace, 396
transformation, 133
triangular decomposition, 75, 76
tridiagonal, 150, 151
unreduced, 449
upper triangular, 68
Vandermonde, 116, 368
Vandermonde matrices, 86

Matrix norm
induced, 680

Matrix splitting, 677
Method

Adams–Bashforth two-step, 633
Adams-Bashforth, 633
Adams-Moulton, 634
Backward Euler, 631
Dormand-Prince, 624
explicit s-stage Runge-Kutta,

605
Explicit Linear Multistep, 638
Explicit Midpoint Rule, 632
Forward Euler, 631
Gauss-Legendre Runge Kutta,

630
general one step method for

ODE, 605
Hammer and Hollingsworth

Runge-Kutta, 630
Heun, 611

902 INDEX

Implicit Linear Multistep, 637
Implicit Midpoint Method, 629
implicit Runge-Kutta, 625
Implicit Trapezoidal Method, 628
improved or modified Euler, 611
Kuntzmann and Butcher Runge-

Kutta, 631
linear multistep, 635
Runge, 611
Runge-Kutta-Fehlberg, 624

Method of Householder, 289
Method of Richardson, 702, 704
Mid-Point Rule, 579
Minimal norm solution, 278
Minimal polynomial, 712
Minimal Polynomial Extrapolation

(MPE), 729
Minimization

with Armijo backtracking line
search, 846

Minimum
global, 370
local, 370

Modified Minimal Polynomial Extrap-
olation (MMPE), 734

Modified Newton Methods, 854
Moving average, 377

Nelder–Mead algorithm, 859
Newton

for systems, 245
Newton correction, 245
Newton Search Direction, 850
Newton’s Iteration, 49
Newton’s method, 6
Newton–Cotes Rule, 521

closed type, 522
error, 525
open type, 523
second kind, 523

Newton–Maehly Method, 551
Newton-Maehly Method, 234
Non-Symmetric Lanczos Process,

783
Nonlinear Eigenvalue Problem, 509

Nonlinear equations, 6
Nonlinear System, 240
Norm, 24

1-norm, 25, 26
2-norm, 24, 26, 272
polynomial, 127
equivalent, 26
Euclidean, 24
Frobenius, 26, 272, 826
induced matrix norm, 26
infinity, 25, 26, 825
matrix, 25
maximum, 25
maximum column sum norm, 26
maximum row sum norm, 26
one norm, 825
spectral, 24, 26, 825
submultiplicative property, 25
vector, 24

Normal Equations, 268
Normal equations, 129, 345
Normed vector space, 242
Not a number, NaN, 15, 17
Null Space, 837
Null space method, 333
Number

conversions, 227
denormalized, 15, 17, 18, 53
double precision, 15, 16
floating point, 13
hexadecimal, 15
normalized, 13, 53
single precision, 14
subnormal, 15, 17

Numerical differentiation, 21, 32

Operations Research, 828
Operator principle, 677
Optimality Conditions, 838
Optimization

active set for the local optimum,
840

constraint, 862
constraints, 831
direct method, 859

Index 903

line search methods, 842
problem, 831
problem classification, 831

Optimization algorithms, 6
Order

ODE solver, 608
Order Conditions

for linear multistep methods, 636
Order conditions

for one step methods, 611
Ordinary differential equation (ODE),

587
Orthogonal Polynomial, 546
Orthogonal projector, 276
Orthogonal QD Step, 472
Overflow, 18, 55

avoiding, 41
test for, 42

Parasitic solution, 642
Partial reorthogonalization, 308
Penalty Function, 873
Penrose Equations, 274
Perron–Frobenius Theorem, 823
Petrov-Galerkin Condition, 787
Pivot

banded system, 100
complete pivoting, 81, 82, 107
diagonal pivoting, 90, 93
element, 71
no pivoting, 92, 99
partial pivoting, 72
strategy, 72

Pivoting strategy, 36
Point-Jacobi Method, 691
Polar decomposition, 347
Polynomial

approximation, 129
basis, 132
characteristic, 5, 216, 389, 396
Chebyshev, 713, 717
deflation, 216
Hermite, 146
Lagrange, 117, 132
Laguerre’s Method, 239

Legendre, 546, 549
monomials, 132
Newton, 133
Newton polynomials, 123
Newton’s Method, 230
Nickel’s Method, 237
orthogonal, 127, 133, 232, 546,

547, 550, 715
suppression of zeros, 234
Taylor expansion, 226
trigonometric, 160
Wilkinson’s polynomial, 217
zeros, 215

Preconditioned system, 678
Preconditioner, 678
Preconditioning, 802
Principle axis transformation, 338
Problem

ill-conditioned, 32, 372
ill-posed, 32
well-posed, 32

Procrustes problem, 346–348
Projector on subspace, 341
Projectors on subspaces, 276
Property A, 696
Pseudoinverse, 274

QD Algorithm
differential, 464
progressive, 464
Rhombus Rules, 466

QD Line, 465
QD Rhombus-Rules, 466
QD Scheme, 466
QD Step

differential, 472
orthogonal, 472
progressive, 467

QR decomposition, 288
QR factorization

implicit by Givens
transformations, 296

implicit by Householder transfor-
mations, 290

updating, 311

904 INDEX

QR Iteration, 437
chasing the bulge, 442

QR with implicit shift, 442
Quadratic Programming Problem,

879
Quadrature, 517
Quadrature of the circle, 10, 517
Quadrature Rule

composite, 527
order, 526

Quasi minimum residual, 801
Quasi-Newton Methods, 855

Radix, 13
Range, 837
Rayleigh quotient, 423, 749
Recurrence

error, 679
residuals, 679

Recurrence for residuals, 704
Recurrence relation

three-term, 550
Reduced Rank Extrapolation (RRE),

733
Region of absolute stability, 650
Regular splitting, 687
Residual, 51, 678
Residual polynomial, 712, 747, 774
Residual vector, 262, 354
Restricted Three Body Problem,

617
Richardson Extrapolation, 538
Richardson extrapolation, 143
Riemann sum, 3, 519
Riemann Zeta function, 535
Riemann–Lebesgue lemma, 159
Romberg Scheme, 538
Rounding error

absolute, 19
associative law, 38
avoiding cancellation, 21
cancellation, 20, 24, 30, 55
relative, 19

Rounding Errors, 19
Runge’s method, 605

Runge-Kutta
derivation with Maple, 611
embedded methods, 620
implicit methods, 625

Saddle point problem, 878
Sampling theorem, 167
Satellite, 182
Savitzky-Golay Filter, 377
SAXPY, 68
Schur decomposition, 427
Second Dahlquist barrier, 655
Separation of variables, 585
Sequential Quadratic Programming,

877
Shanks transform, 194

generalized, 195
Sherman-Morrison-Woodbury

Formula, 110, 156
Shift-and-Invert, 424
Signal compressing, 159
Significant, 13
Simplex Algorithm, 862
simplex table, 865
Simpson’s Rule, 522

composite, 529
error, 526
error composite rule, 530

Singular linear systems, 683
Singular perturbation problems,

655
Singular value

decomposition (SVD), 270
Singular values, 270, 453
Singular vectors, 270, 453
Spectral radius, 680
Spline

cubic, 147
curves, 157
defective spline, 149

Squaring of a circle, 10
SSOR, symmetric successive over

relaxation, 724
Stability, 33

backward, 36

Index 905

forward, 33
Standard linear model, 267
Steepest Descent, 705, 843, 848
Stencil, 495, 496
Stiff problem, 646
Stirling Formula, 48
Stopping criterion, 48, 51

machine-independent, 49, 50, 57,
186, 448, 462, 564

monotonicity, 50
successive approximations, 51
successive iterates, 58

Submultiplicative property, 807
Subnormal numbers, 17
Successive over-relaxation (SOR), 695
Summation Algorithm by W. Kahan,

39
Summation function, 531
Suspension bridge, 1
Symmetric Lanczos iteration, 762
Symplectic Methods, 658
System

nonlinear, 491
System of ordinary differential equa-

tions, 598

Tacoma bridge, 387
Tacoma Narrows bridge, 4
Taylor

multivariate expansion, 240, 241
Taylor expansion, 28
TEA, 735
Termination criterion, 21, 49

monotonicity, 40
Test equation, 642
Theorem

Gershgorin, 403
ImplicitQ-Theorem, 438

Thomas Algorithm, 99
Three term recurrence relation, 714
Three-term recurrence relation, 549
Toeplitz matrix, 265
Topological ε-Algorithm, 735

recursive, 737
Total least squares, 349

constrained, 351
Transformation

elementary similarity, 408
Similarity, 396
to Hessenberg form, 430
to tridiagonal form, 434

Transformation to Hessenberg-form,
760

Trapezoidal Rule, 521, 522
asymptotic expansion, 535
composite, 527
error, 526
error composite rule, 527

Trapezoidal rule
asymptotic expansion, 142

Triangle inequality, 24
Truncated Newton Methods, 856
Trust region, 364
Trust Region Methods, 856
Two point boundary value problem,

587
Two-body problem, 182

Underflow range, 18
Unstable method, 639
Updating the QR Decomposition,

311

Vandermonde
LU decomposition, 136
QR decomposition, 138

Vandermonde matrix, 116
Vector epsilon algorithm (VEA),

737
Vieta’s formula, 55

Weddle’s Rule, 522
Weighting of measurement errors,

379
Wilkinson Matrix, 452
Wilkinson’s Principle, 20
Wilkinson’s principle, 36
Wilkinson’s shift, 447

Zero-Stability, 642
Zuse Z3, 14

Editorial Policy

1. Textbooks on topics in the field of computational science and engineering will be
considered. They should be written for courses in CSE education. Both graduate
and undergraduate textbooks will be published in TCSE. Multidisciplinary topics
and multidisciplinary teams of authors are especially welcome.

2. Format: Only works in English will be considered. For evaluation purposes,
manuscripts may be submitted in print or electronic form, in the latter case,
preferably as pdf- or zipped ps-files. Authors are requested to use the LaTeX style
files available from Springer at: http://www.springer.com/authors/book+authors/
helpdesk?SGWID=0-1723113-12-971304-0 (Click on → Templates → LaTeX
→ monographs)

Electronic material can be included if appropriate. Please contact the publisher.

3. Those considering a book which might be suitable for the series are strongly
advised to contact the publisher or the series editors at an early stage.

General Remarks

Careful preparation of manuscripts will help keep production time short and ensure
a satisfactory appearance of the finished book.

The following terms and conditions hold:

Regarding free copies and royalties, the standard terms for Springer mathematics
textbooks hold. Please write to martin.peters@springer.com for details.

Authors are entitled to purchase further copies of their book and other Springer
books for their personal use, at a discount of 33.3% directly from Springer-Verlag.

http://www.springer.com/authors/book+authors/helpdesk?SGWID=0-1723113-12-971304-0

Series Editors

Timothy J. Barth
NASA Ames Research Center
NAS Division
Moffett Field, CA 94035, USA
barth@nas.nasa.gov

Michael Griebel
Institut für Numerische Simulation
der Universität Bonn
Wegelerstr. 6
53115 Bonn, Germany
griebel@ins.uni-bonn.de

David E. Keyes
Mathematical and Computer Sciences
and Engineering
King Abdullah University of Science
and Technology
P.O. Box 55455
Jeddah 21534, Saudi Arabia
david.keyes@kaust.edu.sa

and

Department of Applied Physics
and Applied Mathematics
Columbia University
500 W. 120th Street
New York, NY 10027, USA
kd2112@columbia.edu

Risto M. Nieminen
Department of Applied Physics
Aalto University School of Science
and Technology
00076 Aalto, Finland
risto.nieminen@aalto.fi

Dirk Roose
Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 200A
3001 Leuven-Heverlee, Belgium
dirk.roose@cs.kuleuven.be

Tamar Schlick
Department of Chemistry
and Courant Institute
of Mathematical Sciences
New York University
251 Mercer Street
New York, NY 10012, USA
schlick@nyu.edu

Editor for Computational Science
and Engineering at Springer:
Martin Peters
Springer-Verlag
Mathematics Editorial IV
Tiergartenstrasse 17
69121 Heidelberg, Germany
martin.peters@springer.com

Texts in Computational Science and Engineering

1. H. P. Langtangen, Computational Partial Differential Equations. Numerical
Methods and Diffpack Programming, 2nd Edition.

2. A. Quarteroni, F. Saleri, P. Gervasio, Scientific Computing with MATLAB and
Octave, 3rd Edition.

3. H. P. Langtangen, Python Scripting for Computational Science, 3rd Edition.

4. H. Gardner, G. Manduchi, Design Patterns for e-Science.

5. M. Griebel, S. Knapek, G. Zumbusch, Numerical Simulation in Molecular Dy-
namics.

6. H. P. Langtangen, A Primer on Scientific Programming with Python, 3rd Edition.

7. A. Tveito, H. P. Langtangen, B. F. Nielsen, X. Cai, Elements of Scientific Com-
puting.

8. B. Gustafsson, Fundamentals of Scientific Computing.

9. M. Bader, Space-Filling Curves.

10. M.G. Larson, F. Bengzon, The Finite Element Method: Theory, Implementation,
and Applications.

11. W. Gander, M.J. Gander, F. Kwok, Scientific Computing. An Introduction using
Maple and MATLAB.

For further information on these books please have a look at our mathematics catalogue at
the following URL: www.springer.com/series/5151

Monographs in Computational Science and Engineering

1. J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.-A. Mardal, A. Tveito, Computing
the Electrical Activity in the Heart.

For further information on this book, please have a look at our mathematics catalogue at the
following URL: www.springer.com/series/7417

Lecture Notes in Computational Science and Engineering

1. D. Funaro, Spectral Elements for Transport-Dominated Equations.

2. H.P. Langtangen, Computational Partial Differential Equations. Numerical
Methods and Diffpack Programming.

3. W. Hackbusch, G. Wittum (eds.), Multigrid Methods V.

4. P. Deuflhard, J. Hermans, B. Leimkuhler, A.E. Mark, S. Reich, R.D. Skeel
(eds.), Computational Molecular Dynamics: Challenges, Methods, Ideas.

www.springer.com/series/5151
www.springer.com/series/7417

5. D. Kröner, M. Ohlberger, C. Rohde (eds.), An Introduction to Recent Develop-
ments in Theory and Numerics for Conservation Laws.

6. S. Turek, Efficient Solvers for Incompressible Flow Problems. An Algorithmic
and Computational Approach.

7. R. von Schwerin, Multi Body System SIMulation. Numerical Methods, Algo-
rithms, and Software.

8. H.-J. Bungartz, F. Durst, C. Zenger (eds.), High Performance Scientific and
Engineering Computing.

9. T.J. Barth, H. Deconinck (eds.), High-Order Methods for Computational
Physics.

10. H.P. Langtangen, A.M. Bruaset, E. Quak (eds.), Advances in Software Tools for
Scientific Computing.

11. B. Cockburn, G.E. Karniadakis, C.-W. Shu (eds.), Discontinuous Galerkin
Methods. Theory, Computation and Applications.

12. U. van Rienen, Numerical Methods in Computational Electrodynamics. Linear
Systems in Practical Applications.

13. B. Engquist, L. Johnsson, M. Hammill, F. Short (eds.), Simulation and Visual-
ization on the Grid.

14. E. Dick, K. Riemslagh, J. Vierendeels (eds.), Multigrid Methods VI.

15. A. Frommer, T. Lippert, B. Medeke, K. Schilling (eds.), Numerical Challenges
in Lattice Quantum Chromodynamics.

16. J. Lang, Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems.
Theory, Algorithm, and Applications.

17. B.I. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain
Decomposition.

18. U. van Rienen, M. Günther, D. Hecht (eds.), Scientific Computing in Electrical
Engineering.

19. I. Babuška, P.G. Ciarlet, T. Miyoshi (eds.), Mathematical Modeling and Nu-
merical Simulation in Continuum Mechanics.

20. T.J. Barth, T. Chan, R. Haimes (eds.), Multiscale and Multiresolution Methods.
Theory and Applications.

21. M. Breuer, F. Durst, C. Zenger (eds.), High Performance Scientific and Engi-
neering Computing.

22. K. Urban, Wavelets in Numerical Simulation. Problem Adapted Construction
and Applications.

23. L.F. Pavarino, A. Toselli (eds.), Recent Developments in Domain Decomposi-
tion Methods.

24. T. Schlick, H.H. Gan (eds.), Computational Methods for Macromolecules:
Challenges and Applications.

25. T.J. Barth, H. Deconinck (eds.), Error Estimation and Adaptive Discretization
Methods in Computational Fluid Dynamics.

26. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential
Equations.

27. S. Müller, Adaptive Multiscale Schemes for Conservation Laws.

28. C. Carstensen, S. Funken, W. Hackbusch, R.H.W. Hoppe, P. Monk (eds.), Com-
putational Electromagnetics.

29. M.A. Schweitzer, A Parallel Multilevel Partition of Unity Method for Elliptic
Partial Differential Equations.

30. T. Biegler, O. Ghattas, M. Heinkenschloss, B. van Bloemen Waanders (eds.),
Large-Scale PDE-Constrained Optimization.

31. M. Ainsworth, P. Davies, D. Duncan, P. Martin, B. Rynne (eds.), Topics in
Computational Wave Propagation. Direct and Inverse Problems.

32. H. Emmerich, B. Nestler, M. Schreckenberg (eds.), Interface and Transport
Dynamics. Computa- tional Modelling.

33. H.P. Langtangen, A. Tveito (eds.), Advanced Topics in Computational Partial
Differential Equations. Numerical Methods and Diffpack Programming.

34. V. John, Large Eddy Simulation of Turbulent Incompressible Flows. Analytical
and Numerical Results for a Class of LES Models.

35. E. Bänsch (ed.), Challenges in Scientific Computing - CISC 2002.

36. B.N. Khoromskij, G. Wittum, Numerical Solution of Elliptic Differential Equa-
tions by Reduction to the Interface.

37. A. Iske, Multiresolution Methods in Scattered Data Modelling.

38. S.-I. Niculescu, K. Gu (eds.), Advances in Time-Delay Systems.

39. S. Attinger, P. Koumoutsakos (eds.), Multiscale Modelling and Simulation.

40. R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Wildlund, J. Xu (eds.),
Domain Decomposition Methods in Science and Engineering.

41. T. Plewa, T. Linde, V.G. Weirs (eds.), Adaptive Mesh Refinement – Theory and
Applications.

42. A. Schmidt, K.G. Siebert, Design of Adaptive Finite Element Software. The
Finite Element Toolbox ALBERTA.

43. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential
Equations II.

44. B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Methods in Science and
Engineering.

45. P. Benner, V. Mehrmann, D.C. Sorensen (eds.), Dimension Reduction of Large-
Scale Systems.

46. D. Kressner, Numerical Methods for General and Structured Eigenvalue Prob-
lems.

47. A. Boriçi, A. Frommer, B. Joó, A. Kennedy, B. Pendleton (eds.), QCD and
Numerical Analysis III.

48. F. Graziani (ed.), Computational Methods in Transport.

49. B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C.
Schütte, R. Skeel (eds.), New Algorithms for Macromolecular Simulation.

50. M. Bücker, G. Corliss, P. Hovland, U. Naumann, B. Norris (eds.), Automatic
Differentiation: Applications, Theory, and Implementations.

51. A.M. Bruaset, A. Tveito (eds.), Numerical Solution of Partial Differential Equa-
tions on Parallel Computers.

52. K.H. Hoffmann, A. Meyer (eds.), Parallel Algorithms and Cluster Computing.

53. H.-J. Bungartz, M. Schäfer (eds.), Fluid-Structure Interaction.

54. J. Behrens, Adaptive Atmospheric Modeling.

55. O. Widlund, D. Keyes (eds.), Domain Decomposition Methods in Science and
Engineering XVI.

56. S. Kassinos, C. Langer, G. Iaccarino, P. Moin (eds.), Complex Effects in Large
Eddy Simulations.

57. M. Griebel, M.A Schweitzer (eds.), Meshfree Methods for Partial Differential
Equations III.

58. A.N. Gorban, B. Kégl, D.C. Wunsch, A. Zinovyev (eds.), Principal Manifolds
for Data Visualization and Dimension Reduction.

59. H. Ammari (ed.), Modeling and Computations in Electromagnetics: A Volume
Dedicated to Jean-Claude Nédélec.

60. U. Langer, M. Discacciati, D. Keyes, O. Widlund, W. Zulehner (eds.), Domain
Decomposition Methods in Science and Engineering XVII.

61. T. Mathew, Domain Decomposition Methods for the Numerical Solution of Par-
tial Differential Equations.

62. F. Graziani (ed.), Computational Methods in Transport: Verification and Vali-
dation.

63. M. Bebendorf, Hierarchical Matrices. A Means to Efficiently Solve Elliptic
Boundary Value Problems.

64. C.H. Bischof, H.M. Bücker, P. Hovland, U. Naumann, J. Utke (eds.), Advances
in Automatic Differentiation.

65. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential
Equations IV.

66. B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Modeling and Simula-
tion in Science.

67. I.H. Tuncer, Ü. Gülcat, D.R. Emerson, K. Matsuno (eds.), Parallel Computa-
tional Fluid Dynamics 2007.

68. S. Yip, T. Diaz de la Rubia (eds.), Scientific Modeling and Simulations.

69. A. Hegarty, N. Kopteva, E. O’Riordan, M. Stynes (eds.), BAIL 2008 – Bound-
ary and Interior Layers.

70. M. Bercovier, M.J. Gander, R. Kornhuber, O. Widlund (eds.), Domain Decom-
position Methods in Science and Engineering XVIII.

71. B. Koren, C. Vuik (eds.), Advanced Computational Methods in Science and
Engineering.

72. M. Peters (ed.), Computational Fluid Dynamics for Sport Simulation.

73. H.-J. Bungartz, M. Mehl, M. Schäfer (eds.), Fluid Structure Interaction II –
Modelling, Simulation, Optimization.

74. D. Tromeur-Dervout, G. Brenner, D.R. Emerson, J. Erhel (eds.), Parallel Com-
putational Fluid Dynamics 2008.

75. A.N. Gorban, D. Roose (eds.), Coping with Complexity: Model Reduction and
Data Analysis.

76. J.S. Hesthaven, E.M. Rønquist (eds.), Spectral and High Order Methods for
Partial Differential Equations.

77. M. Holtz, Sparse Grid Quadrature in High Dimensions with Applications in
Finance and Insurance.

78. Y. Huang, R. Kornhuber, O. Widlund, J. Xu (eds.), Domain Decomposition
Methods in Science and Engineering XIX.

79. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential
Equations V.

80. P.H. Lauritzen, C. Jablonowski, M.A. Taylor, R.D. Nair (eds.), Numerical Tech-
niques for Global Atmospheric Models.

81. C. Clavero, J.L. Gracia, F. Lisbona (eds.), BAIL 2010 – Boundary and Interior
Layers, Computational and Asymptotic Methods.

82. B. Engquist, O. Runborg, Y.R. Tsai (eds.), Numerical Analysis and Multiscale
Computations.

83. I.G. Graham, T.Y. Hou, O. Lakkis, R. Scheichl (eds.), Numerical Analysis of
Multiscale Problems.

84. A. Logg, K.-A. Mardal, G. Wells (eds.), Automated Solution of Differential
Equations by the Finite Element Method.

85. J. Blowey, M. Jensen (eds.), Frontiers in Numerical Analysis - Durham 2010.

86. O. Kolditz, U.-J. Gorke, H. Shao, W. Wang (eds.), Thermo-Hydro-Mechanical-
Chemical Processes in Fractured Porous Media - Benchmarks and Examples.

87. S. Forth, P. Hovland, E. Phipps, J. Utke, A. Walther (eds.), Recent Advances in
Algorithmic Differentiation.

88. J. Garcke, M. Griebel (eds.), Sparse Grids and Applications.

89. M. Griebel, M. A. Schweitzer (eds.), Meshfree Methods for Partial Differential
Equations VI.

90. C. Pechstein, Finite and Boundary Element Tearing and Interconnecting Solvers
for Multiscale Problems.

91. R. Bank, M. Holst, O. Widlund, J. Xu (eds.), Domain Decomposition Methods
in Science and Engineering XX.

92. H. Bijl, D. Lucor, S. Mishra, C. Schwab (eds.), Uncertainty Quantification in
Computational Fluid Dynamics.

93. M. Bader, H.-J. Bungartz, T. Weinzierl (eds.), Advanced Computing.

94. M. Ehrhardt, T. Koprucki (eds.), Advanced Mathematical Models and Numeri-
cal Techniques for Multi-Band Effective Mass Approximations.

95. M. Azaı̈ez, H. El Fekih, J.S. Hesthaven (eds.), Spectral and High Order Meth-
ods for Partial Differential Equations ICOSAHOM 2012.

96. M.P. Desjarlais, F. Graziani, R. Redmer, S.B. Trickey (eds.), Frontiers and
Challenges in Warm Dense Matter.

97. J. Garcke, D. Pflüger (eds.), Sparse Grids and Applications - Munich 2012.

98. J. Erhel, M. Gander, L. Halpern, G. Pichot, T. Sassi, O. Widlund (eds.), Domain
Decomposition Methods in Science and Engineering XXI.

99. R. Abgrall, H. Beaugendre, P.M. Congedo, C. Dobrzynski, M. Ricchiuto,
V. Perrier (eds.), High Order Nonlinear Numerical Methods for Evolutionary
PDEs - HONOM 2013.

For further information on these books please have a look at our mathematics catalogue at the following
URL: www.springer.com/series/3527

www.springer.com/series/3527

	Preface
	Contents
	Chapter 1. Why Study Scientific Computing?
	1.1 Example: Designing a Suspension Bridge
	1.1.1 Constructing a Model
	1.1.2 Simulating the Bridge
	1.1.3 Calculating Resonance Frequencies
	1.1.4 Matching Simulations with Experiments

	1.2 Navigating this Book: Sample Courses
	1.2.1 A First Course in Numerical Analysis
	1.2.2 Advanced Courses
	1.2.3 Dependencies Between Chapters

	Chapter 2. Finite Precision Arithmetic
	2.1 Introductory Example
	2.2 Real Numbers and Machine Numbers
	2.3 The IEEE Standard
	2.3.1 Single Precision
	2.3.2 Double Precision

	2.4 Rounding Errors
	2.4.1 Standard Model of Arithmetic
	2.4.2 Cancellation

	2.5 Condition of a Problem
	2.5.1 Norms
	2.5.2 Big- and Little-O Notation
	2.5.3 Condition Number

	2.6 Stable and Unstable Algorithms
	2.6.1 Forward Stability
	2.6.2 Backward Stability

	2.7 Calculating with Machine Numbers: TipsandTricks
	2.7.1 Associative Law
	2.7.2 Summation Algorithm by W. Kahan
	2.7.3 Small Numbers
	2.7.4 Monotonicity
	2.7.5 Avoiding Overflow
	2.7.6 Testing for Overflow
	2.7.7 Avoiding Cancellation
	2.7.8 Computation of Mean and Standard Deviation

	2.8 Stopping Criteria
	2.8.1 Machine-independent Algorithms
	2.8.2 Test Successive Approximations
	2.8.3 Check the Residual

	2.9 Problems

	Chapter 3. Linear Systems of Equations
	3.1 Introductory Example
	3.2 Gaussian Elimination
	3.2.1 LU Factorization
	3.2.2 Backward Stability
	3.2.3 Pivoting and Scaling
	3.2.4 Sum of Rank-One Matrices

	3.3 Condition of a System of Linear Equations
	3.4 Cholesky Decomposition
	3.4.1 Symmetric Positive Definite Matrices
	3.4.2 Stability and Pivoting

	3.5 Elimination with Givens Rotations
	3.6 Banded matrices
	3.6.1 Storing Banded Matrices
	3.6.2 Tridiagonal Systems
	3.6.3 Solving Banded Systems with Pivoting
	3.6.4 Using Givens Rotations

	3.7 Problems

	Chapter 4. Interpolation
	4.1 Introductory Examples
	4.2 Polynomial Interpolation
	4.2.1 Lagrange Polynomials
	4.2.2 Interpolation Error
	4.2.3 Barycentric Formula
	4.2.4 Newton's Interpolation Formula
	4.2.5 Interpolation Using Orthogonal Polynomials
	4.2.6 Change of Basis, Relation with LU and QR
	4.2.7 Aitken-Neville Interpolation
	4.2.8 Extrapolation

	4.3 Piecewise Interpolation with Polynomials
	4.3.1 Classical Cubic Splines
	4.3.2 Derivatives for the Spline Function
	4.3.3 Sherman–Morrison–Woodbury Formula
	4.3.4 Spline Curves

	4.4 Trigonometric Interpolation
	4.4.1 Trigonometric Polynomials
	4.4.2 Fast Fourier Transform (FFT)
	4.4.3 Trigonometric Interpolation Error
	4.4.4 Convolutions Using FFT

	4.5 Problems

	Chapter 5. Nonlinear Equations
	5.1 Introductory Example
	5.2 Scalar Nonlinear Equations
	5.2.1 Bisection
	5.2.2 Fixed Point Iteration
	5.2.3 Convergence Rates
	5.2.4 Aitken Acceleration and the -Algorithm
	5.2.5 Construction of One Step Iteration Methods
	5.2.6 Multiple Zeros
	5.2.7 Multi-Step Iteration Methods
	5.2.8 A New Iteration Formula
	5.2.9 Dynamical Systems

	5.3 Zeros of Polynomials
	5.3.1 Condition of the Zeros
	5.3.2 Companion Matrix
	5.3.3 Horner's Scheme
	5.3.4 Number Conversions
	5.3.5 Newton's Method: Classical Version
	5.3.6 Newton Method Using Taylor Expansions
	5.3.7 Newton Method for Real Simple Zeros
	5.3.8 Nickel's Method
	5.3.9 Laguerre's Method

	5.4 Nonlinear Systems of Equations
	5.4.1 Fixed Point Iteration
	5.4.2 Theorem of Banach
	5.4.3 Newton's Method
	5.4.4 Continuation Methods

	5.5 Problems

	Chapter 6. Least Squares Problems
	6.1 Introductory Examples
	6.2 Linear Least Squares Problem and the NormalEquations
	6.3 Singular Value Decomposition (SVD)
	6.3.1 Pseudoinverse
	6.3.2 Fundamental Subspaces
	6.3.3 Solution of the Linear Least Squares Problem
	6.3.4 SVD and Rank

	6.4 Condition of the Linear Least Squares Problem
	6.4.1 Differentiation of Pseudoinverses
	6.4.2 Sensitivity of the Linear Least Squares Problem
	6.4.3 Normal Equations and Condition

	6.5 Algorithms Using Orthogonal Matrices
	6.5.1 QR Decomposition
	6.5.2 Method of Householder
	6.5.3 Method of Givens
	6.5.4 Fast Givens
	6.5.5 Gram-Schmidt Orthogonalization
	6.5.6 Gram-Schmidt with Reorthogonalization
	6.5.7 Partial Reorthogonalization
	6.5.8 Updating and Downdating the QRDecomposition
	6.5.9 Covariance Matrix Computations Using QR

	6.6 Linear Least Squares Problems with Linear Constraints
	6.6.1 Solution with SVD
	6.6.2 Classical Solution Using Lagrange Multipliers
	6.6.3 Direct Elimination of the Constraints
	6.6.4 Null Space Method

	6.7 Special Linear Least Squares Problems with Quadratic Constraint
	6.7.1 Fitting Lines
	6.7.2 Fitting Ellipses
	6.7.3 Fitting Hyperplanes, Collinearity Test
	6.7.4 Procrustes or Registration Problem
	6.7.5 Total Least Squares

	6.8 Nonlinear Least Squares Problems
	6.8.1 Notations and Definitions
	6.8.2 Newton's Method
	6.8.3 Gauss-Newton Method
	6.8.4 Levenberg-Marquardt Algorithm

	6.9 Least Squares Fit with Piecewise Functions
	6.9.1 Structure of the Linearized Problem
	6.9.2 Piecewise Polynomials
	6.9.3 Examples

	6.10 Problems

	Chapter 7. Eigenvalue Problems
	7.1 Introductory Example
	7.2 A Brief Review of the Theory
	7.2.1 Eigen-Decomposition of a Matrix
	7.2.2 Characteristic Polynomial
	7.2.3 Similarity Transformations
	7.2.4 Diagonalizable Matrices
	7.2.5 Exponential of a Matrix
	7.2.6 Condition of Eigenvalues

	7.3 Method of Jacobi
	7.3.1 Reducing Cost by Using Symmetry
	7.3.2 Stopping Criterion
	7.3.3 Algorithm of Rutishauser
	7.3.4 Remarks and Comments on Jacobi

	7.4 Power Methods
	7.4.1 Power Method
	7.4.2 Inverse Power Method (Shift-and-Invert)
	7.4.3 Orthogonal Iteration

	7.5 Reduction to Simpler Form
	7.5.1 Computing Givens Rotations
	7.5.2 Reduction to Hessenberg Form
	7.5.3 Reduction to Tridiagonal Form

	7.6 QR Algorithm
	7.6.1 Some History
	7.6.2 QR Iteration
	7.6.3 Basic Facts
	7.6.4 Preservation of Form
	7.6.5 Symmetric Tridiagonal Matrices
	7.6.6 Implicit QR Algorithm
	7.6.7 Convergence of the QR Algorithm
	7.6.8 Wilkinson's Shift
	7.6.9 Test for Convergence and Deflation
	7.6.10 Unreduced Matrices have Simple Eigenvalues
	7.6.11 Specific Numerical Examples
	7.6.12 Computing the Eigenvectors

	7.7 Computing the Singular Value Decomposition(SVD)
	7.7.1 Transformations
	7.7.2 Householder-Rutishauser Bidiagonalization
	7.7.3 Golub-Kahan-Lanczos Bidiagonalization
	7.7.4 Eigenvalues and Singular Values
	7.7.5 Algorithm of Golub-Reinsch

	7.8 QD Algorithm
	7.8.1 Progressive QD Algorithm
	7.8.2 Orthogonal LR-Cholesky Algorithm
	7.8.3 Differential QD Algorithm
	7.8.4 Improving Convergence Using Shifts
	7.8.5 Connection to Orthogonal Decompositions

	7.9 Problems

	Chapter 8. Differentiation
	8.1 Introductory Example
	8.2 Finite Differences
	8.2.1 Generating Finite Difference Approximations
	8.2.2 Discrete Operators for Partial Derivatives

	8.3 Algorithmic Differentiation
	8.3.1 Idea Behind Algorithmic Differentiation
	8.3.2 Rules for Algorithmic Differentiation
	8.3.3 Example: Circular Billiard
	8.3.4 Example: Nonlinear Eigenvalue Problems

	8.4 Problems

	Chapter 9. Quadrature
	9.1 Computer Algebra and Numerical Approximations
	9.2 Newton–Cotes Rules
	9.2.1 Error of Newton–Cotes Rules
	9.2.2 Composite Rules
	9.2.3 Euler–Maclaurin Summation Formula
	9.2.4 Romberg Integration

	9.3 Gauss Quadrature
	9.3.1 Characterization of Nodes and Weights
	9.3.2 Orthogonal Polynomials
	9.3.3 Computing the Weights
	9.3.4 Golub–Welsch Algorithm

	9.4 Adaptive Quadrature
	9.4.1 Stopping Criterion
	9.4.2 Adaptive Simpson quadrature
	9.4.3 Adaptive Lobatto quadrature

	9.5 Problems

	Chapter 10. Numerical Ordinary Differential Equations
	10.1 Introductory Examples
	10.2 Basic Notation and Solution Techniques
	10.2.1 Notation, Existence of Solutions
	10.2.2 Analytical and Numerical Solutions
	10.2.3 Solution by Taylor Expansions
	10.2.4 Computing with Power Series
	10.2.5 Euler's Method
	10.2.6 Autonomous ODE, Reduction to First OrderSystem

	10.3 Runge-Kutta Methods
	10.3.1 Explicit Runge-Kutta Methods
	10.3.2 Local Truncation Error
	10.3.3 Order Conditions
	10.3.4 Convergence
	10.3.5 Adaptive Integration
	10.3.6 Implicit Runge-Kutta Methods

	10.4 Linear Multistep Methods
	10.4.1 Local Truncation Error
	10.4.2 Order Conditions
	10.4.3 Zero Stability
	10.4.4 Convergence

	10.5 Stiff Problems
	10.5.1 A-Stability
	10.5.2 A Nonlinear Example
	10.5.3 Differential Algebraic Equations

	10.6 Geometric Integration
	10.6.1 Symplectic Methods
	10.6.2 Energy Preserving Methods

	10.7 Delay Differential Equations
	10.8 Problems

	Chapter 11. Iterative Methods for Linear Systems
	11.1 Introductory Example
	11.2 Solution by Iteration
	11.2.1 Matrix Splittings
	11.2.2 Residual, Error and the Difference of Iterates
	11.2.3 Convergence Criteria
	11.2.4 Singular Systems
	11.2.5 Convergence Factor and Convergence Rate

	11.3 Classical Stationary Iterative Methods
	11.3.1 Regular Splittings and M-Matrices
	11.3.2 Jacobi
	11.3.3 Gauss-Seidel
	11.3.4 Successive Over-relaxation (SOR)
	11.3.5 Richardson

	11.4 Local Minimization by Nonstationary Iterative Methods
	11.4.1 Conjugate Residuals
	11.4.2 Steepest Descent

	11.5 Global Minimization with Chebyshev Polynomials
	11.5.1 Chebyshev Semi-Iterative Method
	11.5.2 Acceleration of SSOR

	11.6 Global Minimization by Extrapolation
	11.6.1 Minimal Polynomial Extrapolation (MPE)
	11.6.2 Reduced Rank Extrapolation (RRE)
	11.6.3 Modified Minimal PolynomialExtrapolation (MMPE)
	11.6.4 Topological -Algorithm (TEA)
	11.6.5 Recursive Topological -Algorithm

	11.7 Krylov Subspace Methods
	11.7.1 The Conjugate Gradient Method
	11.7.2 Arnoldi Process
	11.7.3 The Symmetric Lanczos Algorithm
	11.7.4 Solving Linear Equations with Arnoldi
	11.7.5 Solving Linear Equations with Lanczos
	11.7.6 Generalized Minimum Residual: GMRES
	11.7.7 Classical Lanczos for Non-Symmetric Matrices
	11.7.8 Biconjugate Gradient Method (BiCG)
	11.7.9 Further Krylov Methods

	11.8 Preconditioning
	11.9 Problems

	Chapter 12. Optimization
	12.1 Introductory Examples
	12.1.1 How much daily exercise is optimal ?
	12.1.2 Mobile Phone Networks
	12.1.3 A Problem from Operations Research
	12.1.4 Classification of Optimization Problems

	12.2 Mathematical Optimization
	12.2.1 Local Minima
	12.2.2 Constrained minima and Lagrange multipliers
	12.2.3 Equality and Inequality Constraints

	12.3 Unconstrained Optimization
	12.3.1 Line Search Methods
	12.3.2 Trust Region Methods
	12.3.3 Direct Methods

	12.4 Constrained Optimization
	12.4.1 Linear Programming
	12.4.2 Penalty and Barrier Functions
	12.4.3 Interior Point Methods
	12.4.4 Sequential Quadratic Programming

	12.5 Problems

	Bibliography
	Index

