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Preface

Preface to the First Edition

This textbook is an introduction to Scientific Computing. We will
illustrate several numerical methods for the computer solution of cer-
tain classes of mathematical problems that cannot be faced by paper
and pencil. We will show how to compute the zeros or the integrals
of continuous functions, solve linear systems, approximate functions by
polynomials and construct accurate approximations for the solution of
differential equations.

With this aim, in Chapter 1 we will illustrate the rules of the game
that computers adopt when storing and operating with real and complex
numbers, vectors and matrices.

In order to make our presentation concrete and appealing we will
adopt the programming environment MATLAB ® 1 55 a faithful com-
panion. We will gradually discover its principal commands, statements
and constructs. We will show how to execute all the algorithms that we
introduce throughout the book. This will enable us to furnish an im-
mediate quantitative assessment of their theoretical properties such as
stability, accuracy and complexity. We will solve several problems that
will be raised through exercises and examples, often stemming from spe-
cific applications.

Several graphical devices will be adopted in order to render the read-
ing more pleasant. We will report in the margin the MATLAB command
along side the line where that command is being introduced for the first

time. The symbol 22‘ will be used to indicate the presence of exercises,
the symbol @ to indicate the presence of a MATLAB program, while

! MATLAB is a trademark of TheMathWorks Inc., 24 Prime Park Way, Nat-
ick, MA 01760, Tel: 001+508-647-7000, Fax: 001+508-647-7001.
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-
the symbol o " will be used when we want to attract the attention of
the reader on a critical or surprising behavior of an algorithm or a pro-
cedure. The mathematical formulae of special relevance are put within a

frame. Finally, the symbol & indicates the presence of a display panel
summarizing concepts and conclusions which have just been reported
and drawn.

At the end of each chapter a specific section is devoted to mentioning
those subjects which have not been addressed and indicate the biblio-
graphical references for a more comprehensive treatment of the material
that we have carried out.

Quite often we will refer to the textbook [QSS07] where many issues
faced in this book are treated at a deeper level, and where theoretical re-
sults are proven. For a more thorough description of MATLAB we refer
to [HHO5]. All the programs introduced in this text can be downloaded
from the web address

mox.polimi.it/qgs

No special prerequisite is demanded of the reader, with the exception
of an elementary course of Calculus.

However, in the course of the first chapter, we recall the principal re-
sults of Calculus and Geometry that will be used extensively throughout
this text. The less elementary subjects, those which are not so neces-
sary for an introductory educational path, are highlighted by the special

symbol

We express our thanks to Thanh-Ha Le Thi from Springer-Verlag
Heidelberg, and to Francesca Bonadei and Marina Forlizzi from Springer-
Ttalia for their friendly collaboration throughout this project. We grate-
fully thank Prof. Eastham of Cardiff University for editing the language
of the whole manuscript and stimulating us to clarify many points of our
text.

Milano and Lausanne Alfio Quarteroni
May 2003 Fausto Saleri

Preface to the Second Edition

In this second edition we have enriched all the Chapters by intro-
ducing several new problems. Moreover, we have added new methods
for the numerical solution of linear and nonlinear systems, the eigen-
value computation and the solution of initial-value problems. Another
relevant improvement is that we also use the Octave programming en-
vironment. Octave is a reimplementation of part of MATLAB which
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includes many numerical facilities of MATLAB and is freely distributed
under the GNU General Public License.

Throughout the book, we shall often make use of the expression
“MATLAB command”: in this case, MATLAB should be understood
as the language which is the common subset of both programs MAT-
LAB and Octave. We have striven to ensure a seamless usage of our
codes and programs under both MATLAB and Octave. In the few cases
where this does not apply, we shall write a short explanation notice at
the end of each corresponding section.

For this second edition we would like to thank Paola Causin for hav-
ing proposed several problems, Christophe Prud “homme, John W. Eaton
and David Bateman for their help with Octave, and Silvia Quarteroni
for the translation of the new sections. Finally, we kindly acknowledge
the support of the Poseidon project of the Ecole Polytechnique Fédérale
de Lausanne.

Lausanne and Milano Alfio Quarteroni
May 2006 Fausto Saleri

Preface to the Third Edition

This third edition features a complete revisitation of the whole book,
many improvements in style and content to all the chapters, as well as a
substantial new development of those chapters devoted to the numerical
approximation of boundary-value problems and initial-boundary-value
problems. We remind the reader that all the programs introduced in
this text can be downloaded from the web address

mox.polimi.it/qgs

Lausanne, Milano and Brescia Alfio Quarteroni
May 2010 Paola Gervasio
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1

What can’t be ignored

In this book we will systematically use elementary mathematical con-
cepts which the reader should know already, yet he or she might not
recall them immediately.

We will therefore use this chapter to refresh them and we will con-
dense notions which are typical of courses in Calculus, Linear Algebra
and Geometry, yet rephrasing them in a way that is suitable for use in
Scientific Computing. At the same time we will introduce new concepts
which pertain to the field of Scientific Computing and we will begin to ex-
plore their meaning and usefulness with the help of MATLAB (MATrix
LABoratory), an integrated environment for programming and visualiza-
tion. We shall also use GNU Octave (in short, Octave), an interpreter
for a high-level language mostly compatible with MATLAB which is
distributed under the terms of the GNU GPL free-software license and
which reproduces a large part of the numerical facilities of MATLAB.

In Section 1.1 we will give a quick introduction to MATLAB and
Octave, while we will present the elements of programming in Section 1.7.
However, we refer the interested readers to the manuals [HH05, Pal08]
for a description of the MATLAB language and to the manual [EBHO0S]
for a description of Octave.

1.1 The MATLAB and Octave environments

MATLAB and Octave are integrated environments for Scientific Com-
puting and visualization. They are written mostly in C and C++ lan-
guages.

MATLARB is distributed by The MathWorks (see the website www.
mathworks. com). The name stands for MATrixz LABoratory since origi-
nally it was developed for matrix computation.

Octave, also known as GNU Octave (see the website www.octave.
org), is a freely redistributable software. It can be redistributed and/or



>>
octave:1>
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modified under the terms of the GNU General Public License (GPL) as
published by the Free Software Foundation.

There are differences between MATLAB and Octave environments,
languages and toolboxes (i.e. a collection of special-purpose MATLAB
functions). However, there is a level of compatibility that allows us to
write most programs of this book and run them seamlessly both in MAT-
LAB and Octave. When this is not possible, either because some com-
mands are spelt differently, or because they operate in a different way,
or merely because they are just not implemented, a note will be written
at the end of each section to provide an explanation and indicate what
could be done.

Through the book, we shall often make use of the expression “MAT-
LAB command”: in this case, MATLAB should be understood as the
language which is the common subset of both programs MATLAB and
Octave.

Just as MATLAB has its toolboxes, Octave has a richful set of func-
tions available through a project called Octave-forge (see the website
octave.sourceforge.net). This function repository grows steadily in
many different areas. Some functions we use in this book don’t belong
to the Octave core, nevertheless they can be downloaded by the website
octave.sourceforge.net.

Once installed, the execution of MATLAB or Octave yield the access
to a working environment characterized by the prompt >> or octave: 1>,
respectively. For instance, when executing MATLAB on our personal
computer, the following message is generated:

<MATLAB (R >
Copyright 1984-2009 The MathWorks, Inc.
Version 7.9.0.529 (R2009b) 64-bit (glnxa64)
August 12, 2009

To get started, type one of these: helpwin, helpdesk, or demo.
For product information, visit www.mathworks.com.
>>

When executing Octave on our personal computer we read the following
text:

GNU Octave, version 3.2.3

Copyright (C) 2009 John W. Eaton and others.

This is free software; see the source code for copying
conditions. There is ABSOLUTELY NO WARRANTY; not even
for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
For details, type ‘warranty’.

Octave was configured for "x86_64-unknown-linux-gnu".
Additional information about Octave is available at
http://www.octave.org.
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Please contribute if you find this software useful.

For more information, visit
http://www.octave.org/help-wanted.html

Report bugs to <bug@octave.org> (but first, please read
http://www.octave.org/bugs.html to learn how to write a
helpful report).

For information about changes from previous versions,
type ‘news’.

octave:1>

In this chapter we will use the prompt >>, however, from Chapter 2
on the prompt will be always neglected in order to simplify notations.

1.2 Real numbers

While the set R of real numbers is known to everyone, the way in which
computers treat them is perhaps less well known. On one hand, since
machines have limited resources, only a subset [ of finite dimension of
R can be represented. The numbers in this subset are called floating-
point numbers. On the other hand, as we shall see in Section 1.2.2, F
is characterized by properties that are different from those of R. The
reason is that any real number z is in principle truncated by the machine,
giving rise to a new number (called the floating-point number), denoted
by fl(x), which does not necessarily coincide with the original number
x.

1.2.1 How we represent them

To become acquainted with the differences between R and F, let us make
a few experiments which illustrate the way that a computer deals with
real numbers. Note that whether we use MATLAB or Octave rather
than another language is just a matter of convenience. The results of
our calculation, indeed, depend primarily on the manner in which the
computer works, and only to a lesser degree on the programming lan-
guage. Let us consider the rational number z = 1/7, whose decimal
representation is 0.142857. This is an infinite representation, since the
number of decimal digits is infinite. To get its computer representation,
let us introduce after the prompt the ratio 1/7 and obtain

>> 1/7
ans =
0.1429
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which is a number with only four decimal digits, the last being different
from the fourth digit of the original number.

Should we now consider 1/3 we would find 0.3333, so the fourth dec-
imal digit would now be exact. This behavior is due to the fact that real
numbers are rounded on the computer. This means, first of all, that only
an a priori fixed number of decimal digits are returned, and moreover
the last decimal digit which appears is increased by unity whenever the
first disregarded decimal digit is greater than or equal to 5.

The first remark to make is that using only four decimal digits to
represent real numbers is questionable. Indeed, the internal representa-
tion of the number is made of as many as 16 decimal digits, and what we
have seen is simply one of several possible MATLAB output formats.
The same number can take different expressions depending upon the
specific format declaration that is made. For instance, for the number
1/7, some possible output formats are avalibale in MATLAB:

format short yields 0.1429,

format short e 7 1.4286e — 01,

format short g 7 0.14286,

format long 7 0.142857142857143,
format long e 7 1.428571428571428e — 01,
format longg 7 0.142857142857143.

The same formats are available in Octave, but the yielded results do not
necessarily coincide with those of MATLAB:

format short yields 0.14286,

format short e 7 1.4286e — 01,

format short g 7  0.14286,

format long 7 0.142857142857143,
format long e 7 1.42857142857143 — 01,
format long g 7 0.142857142857143.

Obviously, these differences, even if slight, will imply possible different
results in the treatment of our examples.

Some of these formats are more coherent than others with the internal
computer representation. As a matter of fact, in general a computer
stores a real number in the following way

r=(-1)% (0.a1as...a;) - B°= (1) -m 8" a1 #0 (1.1)

where s is either 0 or 1, 8 (a positive integer larger than or equal to 2)
is the basis adopted by the specific computer at hand, m is an integer
called the mantissa whose length ¢ is the maximum number of digits a;
(with 0 < a; < 8—1) that are stored, and e is an integral number called
the exponent. The format long e is the one which most resembles this
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representation, and e stands for exponent; its digits, preceded by the
sign, are reported to the right of the character e. The numbers whose
form is given in (1.1) are called floating-point numbers, since the position
of the decimal point is not fixed. The digits aiasz...ap (with p <t) are
often called the p first significant digits of x.

The condition a; # 0 ensures that a number cannot have multiple
representations. For instance, without this restriction the number 1/10
could be represented (in the decimal basis) as 0.1-10%, but also as 0.01-
101, etc..

The set F is therefore fully characterized by the basis £, the number
of significant digits ¢ and the range (L,U) (with L < 0 and U > 0) of
variation of the index e. Thus it is denoted as F(3, ¢, L, U). For instance,
in MATLAB we have F = F(2,53,—1021,1024) (indeed, 53 significant
digits in basis 2 correspond to the 15 significant digits that are shown
by MATLAB in basis 10 with the format long).

Fortunately, the roundoff error that is inevitably generated whenever
a real number x # 0 is replaced by its representative fl(x) in F, is small,
since

2= fiz)| = |’("’)' <o (1.2)

where €); = '~ provides the distance between 1 and its closest floating-
point number greater than 1. Note that ej; depends on § and t. For
instance, in MATLAB €); can be obtained through the command eps,
and we obtain €y = 2752 ~ 2.22-10716. Let us point out that in (1.2) we
estimate the relative error on x, which is undoubtedly more meaningful
than the absolute error |x — fl(z)|. As a matter of fact, the latter doesn’t
account for the order of magnitude of x whereas the former does.

1
The number u = =€), is the maximum relative error that the com-

puter can make while representing a real number by finite arithmetic.
For this reason, it is sometimes named roundoff unity.

Number 0 does not belong to F, as in that case we would have a; =0
in (1.1): it is therefore handled separately. Moreover, L and U being
finite, one cannot represent numbers whose absolute value is either arbi-
trarily large or arbitrarily small. Precisely, the smallest and the largest
positive real numbers of F are given respectively by

LTmin = ﬂL_ly Tmax = BU(l - ﬂ_t)~

In MATLAB these values can be obtained through the commands
realmin and realmax, yielding

Tmin = 2.225073858507201 - 107398
Tmar = 1.797693134862316 - 107308,

eps

realmin
realmax
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A positive number smaller than z,,;, produces a message of under-
flow and is treated either as 0 or in a special way (see, e.g., [QSS07],
Chapter 2). A positive number greater than ., yields instead a mes-
sage of overflow and is stored in the variable Inf (which is the computer
representation of 400).

The elements in F are more dense near Z,,;n, and less dense while
approaching Z,,q.. As a matter of fact, the number in F nearest to 4z
(to its left) and the one nearest to ;. (to its right) are, respectively

x . = 1.797693134862315 - 101308,

max

xf . =2.225073858507202 - 10308,

min

min maz = 10292 (') However,
the relative distance is small in both cases, as we can infer from (1.2).

+ ~ 10—323 : -
Thus x — ZTyin == 10 , while T4 — @

1.2.2 How we operate with floating-point numbers

Since F is a proper subset of R, elementary algebraic operations on
floating-point numbers do not enjoy all the properties of analogous op-
erations on R. Precisely, commutativity still holds for addition (that is
fl(x +y) = fl(y + x)) as well as for multiplication (fl(zy) = fl(yz)),
but other properties such as associativity and distributivity are violated.
Moreover, 0 is no longer unique. Indeed, let us assign the variable a the
value 1, and execute the following instructions:

> a = 1; b=1; while a+b “= a; b=b/2; end

The variable b is halved at every step as long as the sum of a and b
remains different (*=) from a. Should we operate on real numbers, this
program would never end, whereas in our case it ends after a finite
number of steps and returns the following value for b: 1.1102e-16=
enr/2. There exists therefore at least one number b different from 0 such
that a+b=a. This is possible since F is made up of isolated numbers; when
adding two numbers a and b with b<a and b less than €,;, we always
obtain that a+b is equal to a. The MATLAB number at+eps(a) is the
smallest number in F larger than a. Thus the sum a+b will return a for
allb < eps(a).

Associativity is violated whenever a situation of overflow or underflow
occurs. Take for instance a=1.0e+308, b=1.1e+308 and c=-1.001e+308,
and carry out the sum in two different ways. We find that

a+ (b+c)=1.0990e + 308, (a + b) + ¢ = Inf.

This is a particular instance of what occurs when one adds two num-
bers with opposite sign but similar absolute value. In this case the result
may be quite inexact and the situation is referred to as loss, or cancel-
lation, of significant digits. For instance, let us compute ((1+2z) —1)/z
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0.5[

A

Fig. 1.1. Oscillatory behavior of the function (1.3) caused by cancellation
errors

(the obvious result being 1 for any x # 0):

>> x = 1.e-15; ((1+x)-1)/x
ans =
1.1102

This result is rather imprecise, the relative error being larger than 11%!
Another case of numerical cancellation is encountered while evaluat-
ing the function

fla) =27 — 728 + 2125 — 352t + 352 — 2122 + Tz —1 (1.3

at 401 equispaced points with abscissa in [1 —2- 107814+ 2-1078]. We
obtain the chaotic graph reported in Figure 1.1 (the real behavior is that
of (z—1)7, which is substantially constant and equal to the null function
in such a tiny neighborhood of = 1). The MATLAB commands that
have generated this graph will be illustrated in Section 1.5.

Finally, it is interesting to notice that in F there is no place for
indeterminate forms such as 0/0 or co/oo. Their presence produces what
is called not a number (NaN in MATLAB or in Octave), for which the
normal rules of calculus do not apply.

Remark 1.1 Whereas it is true that roundoff errors are usually small, when
repeated within long and complex algorithms, they may give rise to catas-
trophic effects. Two outstanding cases concern the explosion of the Ariane
missile on June 4, 1996, engendered by an overflow in the computer on board,
and the failure of the mission of an American Patriot missile, during the Gulf
War in 1991, because of a roundoff error in the computation of its trajectory.

An example with less catastrophic (but still troublesome) consequences is
provided by the sequence

20=2, 2np1 =202/ 1-V1—41-722, n=23,... (1.4)

NaN
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5 10 15 20 25 30

Fig. 1.2. Relative error |7 — z,|/7 versus n

which converges to m when n tends to infinity. When MATLAB is used to
compute z,, the relative error found between 7w and z, decreases for the 16
first iterations, then grows because of roundoff errors (as shown in Figure 1.2).

|

See the Exercises 1.1-1.2.

1.3 Complex numbers

Complex numbers, whose set is denoted by C, have the form z = z + iy,
where i = y/—1 is the imaginary unit (that is i> = —1), while z = Re(z)
and y = Im(2) are the real and imaginary part of z, respectively. They
are generally represented on the computer as pairs of real numbers.

Unless redefined otherwise, MATLAB variables i as well as j denote
the imaginary unit. To introduce a complex number with real part x and
imaginary part y, one can just write x+i*y; as an alternative, one can
use the command complex(x,y). Let us also mention the exponential
and the trigonometric representations of a complex number z, that are
equivalent thanks to the Euler formula

z = pe'? = p(cos 0 + isinh); (1.5)

p = v/22 + y? is the modulus of the complex number (it can be obtained
by setting abs (z) ) while 0 is its argument, that is the angle between the
z axis and the straight line issuing from the origin and passing from the
point of coordinate x, y in the complex plane. 6 can be found by typing
angle(z). The representation (1.5) is therefore:

abs(z)*(cos (angle(z))+i*sin(angle(z))).

The graphical polar representation of one or more complex numbers
can be obtained through the command compass(z), where z is either
a single complex number or a vector whose components are complex
numbers. For instance, by typing
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Fig. 1.3. Output of the MATLAB command compass

>> z = 3+i*3; compass(z);

one obtains the graph reported in Figure 1.3.

For any given complex number z, one can extract its real part with
the command real (z) and its imaginary part with imag(z). Finally, the
complex conjugate Z = = — iy of z, can be obtained by simply writing
conj(z).

In MATLARB all operations are carried out by implicitly assuming
that the operands as well as the result are complex. We may therefore
find some apparently surprising results. For instance, if we compute the
cube root of —5 with the MATLAB command (-5)~(1/3), instead of
—1.7100. .. we obtain the complex number 0.8550 + 1.4809:. (We antic-
ipate the use of the symbol ~ for the power exponent.) As a matter of
fact, all numbers of the form pe’(®*2%7)  with k an integer, are indistin-
guishable from z = pe’®. By computing the complex roots of z of order
three, we find \'f/ﬁei(a/?’“k”/?’), that is, the three distinct roots

2 = \g/ﬁeiG/S, 29 = wei(G/SJrZﬂ/S), 23 = Wei(9/3+4ﬂ'/3).

MATLAB will select the one that is encountered by spanning the com-
plex plane counterclockwise beginning from the real axis. Since the polar
representation of z = —5 is pe'® with p = 5 and § = 7, the three roots
are (see Figure 1.4 for their representation in the Gauss plane)

21 = V/5(cos(m/3) + isin(r/3)) =~ 0.8550 + 1.48094,
2y = V/5(cos(m) +isin(m)) ~ —1.7100,

23 = v/5(cos(—n/3) + isin(—m/3)) =~ 0.8550 — 1.4809i.

real imag

conj
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Im(z)

Fig. 1.4. Representation in the complex plane of the three complex cube roots
of the real number —5

The first root is the one which is selected.
Finally, by (1.5) we obtain

sin(f) = l (ew -

cos(6) % (e +e ), 5; e Y. (1.6)

1.4 Matrices

Let n and m be positive integers. A matrix with m rows and n columns
is a set of mxn elements a;;, with¢ =1,...,m,j =1,...,n, represented
by the following table:

a11 a12 ... Qin
az1 a2 ... agn (1 7)
Am1 Am2 - .. Amn

In compact form we write A = (a;;). Should the elements of A be real
numbers, we write A € R™*" and A € C™*"™ if they are complex.

Square matrices of dimension n are those with m = n. A matrix
featuring a single column is a column vector, whereas a matrix featuring
a single row is a row vector.

In order to introduce a matrix in MATLAB one has to write the
elements from the first to the last row, introducing the character ; to
separate the different rows. For instance, the command
>> A [ 12 3; 45 6]

produces



1.4 Matrices 11

1 2 3
4 5 6

that is, a 2 x 3 matrix whose elements are indicated above. The m x n
matrix zeros(m,n) has all null entries, eye(m,n) has all null entries
unless a;;, ¢ = 1,...,min(m,n), on the diagonal that are all equal to 1.
The n x n identity matrix is obtained with the command eye (n) (which
is an abridged version of eye(n,n)): its elements are d;; = 1 if i = j,
0 otherwise, for i,7 = 1,...,n. Finally, by the command A=[ ] we can
initialize an empty matrix.

We recall the following matrix operations:

1. if A = (as5) and B = (b;;) are m x n matrices, the sum of A and B
is the matrix A + B = (ai; + bij);

2. the product of a matrix A by a real or complex number X is the
matrix AA = (Aasj);

3. the product of two matrices is possible only for compatible sizes,
precisely if A is m x p and B is p x n, for some positive integer p. In
that case C = AB is an m x n matrix whose elements are

P
Cij = E aikbr;, fori=1,....m, j=1,...,n
k=1

Here is an example of the sum and product of two matrices.

> A=[1 2 3; 4 5 6];
>> B=[7 8 9; 10 11 12];
>> C=[13 14; 15 16; 17 18];

>> A+B
ans =
8 10 12
14 16 18
>> Ax*C
ans =
94 100
229 244

Note that MATLAB returns a diagnostic message when one tries to
carry out operations on matrices with incompatible dimensions. For in-
stance:

> A=[1 2 3; 4 5 6];
>> B=[7 8 9; 10 11 12];
>> C=[13 14; 15 16; 17 18];

>> A+C

??? Error using ==> +

Matrix dimensions must agree.
>> AxB

??? Error using ==> *

Inner matrix dimensions must agree.

Zeros
eye

L]
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If A is a square matrix of dimension n, its inverse (provided it exists)
is a square matrix of dimension n, denoted by A~!, which satisfies the
matrix relation AA™! = A='A = I. We can obtain A~! through the

inv  command inv(A). The inverse of A exists iff the determinant of A, a

det number denoted by det(A) and computed by the command det (4), is
non-zero. The latter condition is satisfied iff the column vectors of A are
linearly independent (see Section 1.4.1). The determinant of a square
matrix is defined by the following recursive formula (Laplace rule):

ail if n=1,

det(A) = n (1.8)
ZAijaij, form>1, Vi=1,...,n,
j=1

where A;; = (—1)”jdet(Aij) and A;; is the matrix obtained by elim-
inating the i-th row and j-th column from matrix A. (The result is
independent of the row index i.) In particular, if A € R?*2 one has

det(A) = ai1a22 — arza21,
while if A € R3*3 we obtain
det(A) = ai1a22a33 + az1a12a23 + a21a13a32
—@a11G23032 — 421012033 — 431A13G022.

We recall that if A = BC, then det(A) = det(B)det(C).
To invert a 2 x 2 matrix and compute its determinant we can proceed
as follows:
>> A=[1 2; 3 4];
>> inv (A)
ans =
-2.0000 1.0000
1.5000  -0.5000
>> det (A)
ans =
-2
Should a matrix be singular, MATLAB returns a diagnostic message,
followed by a matrix whose elements are all equal to Inf, as illustrated
by the following example:

> A=[1 2; 0 0];

>> inv (A)
Warning: Matrix is singular to working precision.
ans =

Inf Inf

Inf Inf

For special classes of square matrices, the computation of inverses and
determinants is rather simple. In particular, if A is a diagonal matriz, i.e.
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one for which only the diagonal elements axi, k = 1,...,n, are non-zero,
its determinant is given by det(A) = aj1a22 - - - @pyp. In particular, A is
non-singular iff ax, # 0 for all k. In such a case the inverse of A is still
a diagonal matrix with elements alzl.

Let v be a vector of dimension n. The command diag(v) produces
a diagonal matrix whose elements are the components of vector v. The
more general command diag(v,m) yields a square matrix of dimension
n+abs (m) whose m-th upper diagonal (i.e. the diagonal made of elements
with indices 7,7 + m) has elements equal to the components of v, while
the remaining elements are null. Note that this extension is valid also
when m is negative, in which case the only affected elements are those of
lower diagonals.
For instance if v = [1 2 3] then:
>> A=diag(v,-1)

A =

OO O
ON OO
[‘NeNeoNe)
[eNeoNeoNe)

Other special cases are the upper triangular and lower triangular
matrices. A square matrix of dimension n is lower (respectively, upper)
triangular if all elements above (respectively, below) the main diagonal
are zero. Its determinant is simply the product of the diagonal elements.

Through the commands tril (A) and triu(A), one can extract from
the matrix A of dimension n its lower and upper triangular part. Their
extensions tril(A,m) or triu(A,m), with m ranging from -n and n,
allow the extraction of the triangular part augmented by, or deprived of,
extradiagonals.

For instance, given the matrix A =[3 1 2; -1 3 4; -2 -1 3], by the
command Li=tril(A) we obtain

L1 =
3 0 0
-1 3 0
-2 -1 3

while, by L2=tril (A, 1), we obtain

L2 =
3 1 0
-1 3 4
-2 -1 3

We recall that if A € R™*" its transpose AT € R"*™ is the matrix
obtained by interchanging rows and columns of A. When n = m and A =
AT the matrix A is called symmetric. Finally, A’ denotes the transpose
of A if A is real, or its conjugate transpose (that is, A¥) if A is complex. A
square complex matrix that coincides with its conjugate transpose AH
is called hermitian.

diag

tril
triu
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Octave 1.1 Also Octave returns a diagnostic message when one tries
to carry out operations on matrices having non-compatible dimensions.
If we repeat the previous MATLAB examples we obtain:

octave:1> A=[1 2 3; 4 5 6];

octave:2> B=[7 8 9; 10 11 12];

octave:3> C=[13 14; 15 16; 17 18];

octave:4> A+C
error: operator +: nonconformant arguments (opl is
2x3, op2 is 3x2)
error: evaluating binary operator ‘+’ near line 2,
column 2

octave:5> AxB

error: operator *: nonconformant arguments (opl is
x3, op2 is 2x3)

error: evaluating binary operator ‘*’ near line 2,
column 2

If A is singular, Octave returns a diagnostic message followed by the
matrix whose elements are all equal to Inf, as illustrated by the following
example:
octave:1> A=[1 2; 0 0];
octave:2> inv (A)
warning: inverse: matrix singular to machine
precision, rcond = 0
ans =
Inf Inf
Inf Inf =

1.4.1 Vectors

Vectors will be indicated in boldface; precisely, v will denote a column
vector whose i-th component is denoted by v;. When all components are
real numbers we can write v € R".

In MATLAB, vectors are regarded as particular cases of matrices.
To introduce a column vector one has to insert between square brackets
the values of its components separated by semi-colons, whereas for a row
vector it suffices to write the component values separated by blanks or
commas. For instance, through the instructions v .= [1;2;3] and w =
[1 2 3] we initialize the column vector v and the row vector w, both
of dimension 3. The command zeros(n,1) (respectively, zeros(1,n))
produces a column (respectively, row) vector of dimension n with null
elements, which we will denote by 0. Similarly, the command ones(n, 1)
generates the column vector, denoted with 1, whose components are all
equal to 1.
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A system of vectors {y1,...,¥m} is linearly independent if the rela-
tion

a1y1+...+amym =0

implies that all coefficients aq, ..., a,, are null. A system B = {y1,...,
yn} of n linearly independent vectors in R™ (or C") is a basis for R™ (or
C™), that is, any vector w in R™ can be written as a linear combination
of the elements of B,

n
W = E WEYk,
k=1

for a unique possible choice of the coefficients {wy, }. The latter are called
the components of w with respect to the basis B. For instance, the canon-
ical basis of R™ is the set of vectors {e1,...,e,}, where e; has its i-th
component equal to 1, and all other components equal to 0 and is the
one which is normally used.

The scalar product of two vectors v,w € R is defined as

n
(v,w) =wlv = kawk,
k=1

{vr} and {wy} being the components of v and w, respectively. The
corresponding command is w’*v or else dot (v,w), where now the apex
denotes transposition of the vector. For a vector v with complex com-
ponents, v’ denotes its conjugate transpose v, that is a row-vector
whose components are the complex conjugate U of vi. The length (or
modulus) of a vector v is given by

VI = Viv,v) = | D o
k=1

and can be computed through the command norm(v); ||v|| is also said
euclidean norm of the vector v.

The vector product between two vectors v,w € R3, v x w or v A w,
is the vector u € R? orthogonal to both v and w whose modulus is
|u| = |v| |w]|sin(a), where « is the smaller angle formed by v and w. It
can be obtained by the command cross(v,w).

The visualization of a vector can be obtained by the MATLAB com-
mand quiver in R? and quiver3 in R3.

The MATLAB command x.*y, x./y or x.”2 indicates that these
operations should be carried out component by component. For instance
if we define the vectors
> x = [1; 2; 3]; y = [4; 5; 6];

dot

norm

Cross

quiver
quiver3

A

Lk
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the instruction

>> yl*x
ans =
32

provides their scalar product, while

>> x.*y
ans =
4
10
18

returns a vector whose i-th component is equal to z;y;.
Finally, we recall that a vector v € C”, with v # 0, is an eigenvector
of a matrix A € C™*™ associated with the complex number A if

Av = v

The complex number A is called eigenvalue of A. In general, the com-
putation of eigenvalues is quite difficult. Exceptions are represented by
diagonal and triangular matrices, whose eigenvalues are their diagonal
elements.

See the Exercises 1.3-1.6.

1.5 Real functions

This section deals with manipulation of real functions. More particularly,
for a given function f defined on an interval (a,b), we aim at computing
its zeros, its integral and its derivative, as well as drawing its graph. The
command fplot(fun,lims) plots the graph of the function fun (which
is stored as a string of characters) on the interval (1ims(1), lims(2)).
For instance, to represent f(z) = 1/(1+ x?) on the interval (—5,5), we
can write

>> fun =’1/(1+x"2)’; lims=[-5,5]; fplot(fun,lims);
or, more directly,
>> fplot(’1/(1+x°2)’,[-5 51);

In MATLAB the graph is obtained by sampling the function on a
set of non-equispaced abscissae and reproduces the true graph of f with
a tolerance of 0.2%. To improve the accuracy we could use the command

>> fplot(fun,lims,tol,n,LineSpec)

where tol indicates the desired tolerance and the parameter n(> 1)
ensures that the function will be plotted with a minimum of n+ 1 points.
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LineSpec is a string specifying the style or the color of the line used for
plotting the graph. For example, LineSpec="--" is used for a dashed
line, LineSpec="r-.’ for a red dashed-dotted line, etc. To use default
values for tol, n or LineSpec one can pass empty matrices ([ 1).

By writing grid on after the command fplot, we can obtain the
background-grid as that in Figure 1.1.

The function f(x) = 1/(1+ 2?) can be defined in several different ways:
by the instruction fun=’1/(1+x~2)’ seen before;

by the command inline with the instruction

>> fun=inline(’1/(1+x°2)’,’x’);

by anonymous function and the use of a function handle @ as follows
>> fun=0(x) [1/(1+x"2)];

finally, by writing a suitable MATLAB function:

function y=fun(x)
y=1/(1+x"2);
end

The inline command, whose common syntax is

fun=inline(expr, argl, arg2, ..., argn),
defines a function fun depending on the ordered set of variables argl,
arg2, ..., argn. The string expr contains the expression of fun.

For example, fun=inline (’sin(x) *(1+cos(t))’, ’x’,’t’) defines the
function fun(z,t) = sin(x)(1+cos(t)). The brief form fun=inline (expr)
implicitely supposes that expr depends on all the variables which appear
in the definition of the function itself, by following alphabetical order.
For example, by the command fun=inline (’sin(x) *(1+cos(t))’) we
define the function fun(t,z) = sin(z)(1 4 cos(t)), whose first variable is
t, while the second one is = (by following lexicographical order).

The common syntax of an anonymous function reads

fun=0(argl, arg2,...,argn) [expr].

In order to evaluate the function fun at a point x (or at a set of
points, stored in the vector x) we can make use of the commands eval,
or feval, otherwise we can simply evaluate the function consistently with
the command used to define the function itself. Even if they produce the
same result, the commands eval and feval have a different syntax. eval
has only one input parameter (the name of the mathematical function
to be evaluated) and evaluates the function fun at the point stored in
the variable which appears inside the definition of fun (i.e., x in the
above definitions). On the contrary, the function feval has at least two
parameters; the former is the name fun of the mathematical function to
be evaluated, the latter contains the inputs to the function fun.

We report in Table 1.1 the various ways for defining, evaluating and
plotting a mathematical function. In the following, we will use one of

grid

inline

¢l

eval
feval
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Definition Evaluation Plotting
fun="1/(1+x"2)’ y=eval (fun) fplot(fun, [-2,2])
fplot(’fun’, [-2,2])

fun=inline(’1/(1+x~2)’) y=fun(x) fplot(fun, [-2,2])
y=feval(fun,x) fplot(’fun’, [-2,2])
y=feval(’fun’,x)

fun=0(x) [1/(1+x"2)] y=fun(x) fplot(fun, [-2,2])
y=feval(fun,x) fplot(’fun’, [-2,2])
y=feval(’fun’,x)

function y=fun(x) y=fun(x) fplot(’fun’, [-2,2])

y=1/(1+x"2) ; y=feval(@fun,x) fplot(@fun, [-2,2])

end y=feval(’fun’,x)

Table 1.1. How to define, evaluate and plot a mathematical function

the definitions of Table 1.1 and proceed coherently. However, the reader
could make different choices.

If the variable x is an array, the operations /, * and ~ acting on ar-
rays have to be replaced by the corresponding dot operations ./, .*
and .~ which operate component-wise. For instance, the instruction
fun=0(x) [1/(1+x"2)] is replaced by fun=0(x) [1./(1+x.~2)].

The command plot can be used as alternative to fplot, provided
that the mathematical function has been evaluated on a set of abscissa.
The following instructions

>> x=linspace(-2,3,100);
>> y=exp(x).*(sin(x)."2)-0.4;
>> plot(x,y,’c’,’Linewidth’,2); grid on

produce a graph in linear scale, precisely the command 1inspace(a,b,n)
generates a row array of n equispaced points from a to b, while the com-
mand plot(x,y,’c’,’Linewidth’,2) creates a linear piecewise curve
connecting the points (z;,y;) (for i = 1,...,n) with a cyan line width of
2 points.

1.5.1 The zeros

We recall that if f(a) = 0, « is called zero of f or root of the equation
f(x) =0. A zero is simple if f'(«) # 0, multiple otherwise.

From the graph of a function one can infer (within a certain tolerance)
which are its real zeros. The direct computation of all zeros of a given
function is not always possible. For functions which are polynomials with
real coefficients of degree n, that is, of the form
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n
pn(T) = ap + a1z + asx® + ... +apz” = Zakzk, ar €R, an #0,
k=0

we can obtain the only zero & = —ag/a1, when n =1 (i.e. p; represents
a straight line), or the two zeros, ay and a_, when n = 2 (this time py
represents a parabola) ay = (—a; + \/a? — 4apaz)/(2a2).

However, there are no explicit formulae for the zeros of an arbitrary
polynomial p,, when n > 5.

In what follows we will denote with P, the space of polynomials of
degree less than or equal to n,

pn(x) = Zakajk (1.9)
k=0

where the ay are given coefficients, real or complex.

Also the number of zeros of a function cannot in general be deter-
mined a priori. An exception is provided by polynomials, for which the
number of zeros (real or complex) coincides with the polynomial degree.
Moreover, should o = z + iy with y # 0 be a zero of a polynomial
with degree n > 2, if a; are real coefficients, then its complex conjugate
@ =z — 1y is also a zero.

To compute in MATLAB one zero of a function fun, near a given
value x0, either real or complex, the command fzero(fun,x0) can be
used. The result is an approximate value of the desired zero, and also the
interval in which the search was made. Alternatively, using the command
fzero(fun, [x0 x1]), a zero of fun is searched for in the interval whose
endpoints are x0,x1, provided f changes sign between x0 and x1.

Let us consider, for instance, the function f(z) = #?—1+e€®. Looking
at its graph we see that there are two zeros in (—1,1). To compute them
we need to execute the following commands:
>> fun=0@(x)[x"2 - 1 + exp(x)];
>> fzero(fun,-1)

ans =
-0.7146

>> fzero(fun,1)

ans =
5.4422e-18

Alternatively, after noticing from the function plot that one zero is
in the interval [—1, —0.2] and another in [—0.2, 1], we could have written
>> fzero(fun,[-1 -0.2])
ans =

-0.7146

fzero
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>> fzero(fun,[-0.2 1])

ans =
-5.2609e-17

The result obtained for the second zero is slightly different than the
one obtained previously, due to a different initialization of the algorithm
implemented in fzero. In Chapter 2 we will introduce and investigate
several methods for the approximate computation of the zeros of an
arbitrary function.

The fzero syntax is the same if the function fun is defined either by
the command inline or by a string.

Otherwise, if fun is defined by an M-file, we can choose one between
these two calls:
>> fzero(’fun’, 1)

or
>> fzero(@fun,1)

Octave 1.2 In Octave the function fzero accepts as input mathemat-
ical functions defined with either inline, anonymous function or M-file
functions. ]

1.5.2 Polynomials

Polynomials are very special functions and there is a special MATLAB
toolbox polyfun for their treatment. The command polyval is apt to
evaluate a polynomial at one or several points. Its input arguments are
a vector p and a vector x, where the components of p are the polynomial
coefficients stored in decreasing order, from a, down to ag, and the
components of x are the abscissae where the polynomial needs to be
evaluated. The result can be stored in a vector y by writing

>> y = polyval(p,x)

For instance, the values of p(z) = 27+32%—1, at the equispaced abscissae
xp = —1+k/4for k =0,...,8, can be obtained by proceeding as follows:

>p=10[1000030-1]; x = [-1:0.25:1];
>> y = polyval(p,x)
y =
Columns 1 through 5:
1.00000 0.55402 -0.25781 -0.81256 -1.00000
Columns 6 through 9:
-0.81244 -0.24219 0.82098 3.00000



1.5 Real functions 21

Alternatively, one could use the command feval. However, in such
case one should provide the entire analytic expression of the polynomial
in the input string, and not simply its coeflicients.

The program roots provides an approximation of the zeros of a poly- roots
nomial and requires only the input of the vector p. For instance, we can
compute the zeros of p(z) = 23 — 62% + 11x — 6 by writing
> p = [1 -6 11 -6]; format long;
>> roots (p)

ans =
3.00000000000000
2.00000000000000
1.00000000000000

Unfortunately, the result is not always that accurate. For instance,
for the polynomial p(z) = (x + 1)7, whose unique zero is a = —1 with
multiplicity 7, we find (quite surprisingly)

>>p =1[17 213 3 21 7 1];
>> roots(p)

ans =

-1.0101

-1.0063 + 0.00791
-1.0063 - 0.0079i
-0.9977 + 0.0099i
-0.9977 - 0.0099i
-0.9909 + 0.00441
-0.9909 - 0.00441

In fact, numerical methods for the computation of the polynomial
roots with multiplicity larger than one are particularly subject to round-
off errors (see Section 2.6.2).

The command p=conv(pl,p2) returns the coefficients of the poly- conv
nomial given by the product of two polynomials whose coefficients are
contained in the vectors p1 and p2.

Similarly, the command [q,r]=deconv(pl,p2) provides the coefficients deconv
of the polynomials obtained on dividing p1 by p2, i.e. p1 = conv(p2,q)

+ r. In other words, q and r are the quotient and the remainder of the

division.

Let us consider for instance the product and the ratio between the
two polynomials p;(z) = 2* — 1 and py(z) = 2% — 1 :
> pl = [1 000 -1];

>>p2 = [1 00 -11;
>> p=conv (pl,p2)

p:
1 0 0 -1 -1 0 0 1
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command yields

y=polyval(p,x) y = values of p(x)

z=roots(p) z = roots of p such that p(z) =0

p=conv (p1,p2) p = coefficients of the polynomial pip2

[q,r]=deconv (p1,p2) q = coeflicients of g, r = coefficients of r
such that p1 = gp2 +r

y=polyder(p) y = coefficients of p’'(x)

y=polyint (p) y = coefficients of /p(t) dt

0

Table 1.2. MATLAB commands for polynomial operations

>> [q,r]=deconv(pl,p2)
q =

r=
0 0 0 1 -1

We therefore find the polynomials p(z) = py(z)p2(z) = 27 —2* — 23 + 1,
q(z) =z and r(z) = x — 1 such that p;(z) = g(z)p2(x) + r(z).

The commands polyint (p) and polyder (p) provide respectively the
coefficients of the primitive (vanishing at 2 = 0) and those of the deriva-
tive of the polynomial whose coefficients are given by the components of
the vector p.

If x is a vector of abscissae and p (respectively, p1 and p2) is a vector
containing the coefficients of a polynomial p (respectively, p1 and ps),
the previous commands are summarized in Table 1.2.

A further command, polyfit, allows the computation of the n+ 1 poly-
nomial coefficients of a polynomial p of degree n once the values attained
by p at n + 1 distinct nodes are available (see Section 3.3.1).

1.5.3 Integration and differentiation

The following two results will often be invoked throughout this book:

1. the fundamental theorem of integration: if f is a continuous function
in [a,b), then

Flz) :/f(t) it Vzelab)

is a differentiable function, called a primitive of f, which satisfies,

F'(z) = f(x) YV € [a,b);
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2. the first mean-value theorem for integrals: if f is a continuous func-
tion in [a,b) and 21, x2 € [a,b) with z1 < 22, then 3¢ € (x1,22) such
that

i
1€ = [0 ar

Even when it does exist, a primitive might be either impossible to
determine or difficult to compute. For instance, knowing that In |z is a
primitive of 1/x is irrelevant if one doesn’t know how to efficiently com-
pute the logarithms. In Chapter 4 we will introduce several methods to
compute the integral of an arbitrary continuous function with a desired
accuracy, irrespectively of the knowledge of its primitive.

We recall that a function f defined on an interval [a, b] is differentiable
in a point T € (a,b) if the following limit exists and is finite

F(@) = lm~(f(T + h) — (7). (1.10)

The value of f'(Z) provides the slope of the tangent line to the graph
of f at the point Z.

We say that a function which is continuous together with its deriva-
tive at any point of [a, b] belongs to the space C1([a, b]). More generally,
a function with continuous derivatives up to the order p (a positive in-
teger) is said to belong to CP([a, b]). In particular, C°([a,b]) denotes the
space of continuous functions in [a, b].

A result that will be often used is the mean-value theorem, according
to which, if f € C'([a,b]), there exists £ € (a,b) such that

f1(&) = (f(0) = £(a))/(b - a).

Finally, it is worth recalling that a function that is continuous with
all its derivatives up to the order n in a neighborhood of zg, can be
approximated in such a neighborhood by the so-called Taylor polynomial
of degree n at the point xg:

L) = f(x0) + (2~ 20)/(@0) + .-+ (2 — 20)" [ o)

r— X k
=0l 9 )

I
M=

>
Il

0

The MATLAB toolbox symbolic provides the commands diff, int
and taylor which allow us to obtain the analytical expression of the
derivative, the indefinite integral (i.e. a primitive) and the Taylor poly-
nomial, respectively, of a given function. In particular, having defined in
the string £ the function on which we intend to operate, diff (f,n)

diff int
taylor
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Fig. 1.5. Graphical interface of the command funtool

provides its derivative of order n, int(f) its indefinite integral, and
taylor(f,x,n+1) the associated Taylor polynomial of degree n in a
neighborhood of xy = 0. The variable x must be declared symbolic by
using the command syms x. This will allow its algebraic manipulation
without specifying its value.
In order to do this for the function f(z) = (22 +2z+2)/(z? - 1), we
proceed as follows:
>> f = 7 (x"2+42*%xx+2)/(x"2-1) 7,
>> syms x
>> diff (f)
(2%x+2)/(x72-1) -2*%(x"2+2*x+2) / (x"2-1) "2%x
>> int (f)
x+5/2xlog(x-1) -1/2xlog (1+x)
>> taylor (f,x,6)
-2-2%x-3%x"2-2%x"3-3%x"4-2%x"5
We observe that using the command simple it is possible to simplify
the expressions generated by diff, int and taylor in order to make
them as simple as possible. The command funtool, by the graphical
interface illustrated in Fig. 1.5, allows a very easy symbolic manipulation
of arbitrary functions.

Octave 1.3 In Octave symbolic calculations can be performed by the
Octave-Forge Symbolic package. Note, however, that the syntax of
Octave-Forge is not in general compatible with that of the MATLAB
symbolic toolbox. ]

See the Exercises 1.7-1.8.
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Fig. 1.6. Types of errors in a computational process

1.6 To err is not only human

As a matter of fact, by re-phrasing the Latin motto errare humanum est,
we might say that in numerical computation to err is even inevitable.

As we have seen, the simple fact of using a computer to represent real
numbers introduces errors. What is therefore important is not to strive
to eliminate errors, but rather to be able to control their effect.

Generally speaking, we can identify several levels of errors that oc-
cur during the approximation and resolution of a physical problem (see
Figure 1.6).

At the highest level stands the error e,, which occurs when forcing
the physical reality (PP stands for physical problem and z,, denotes
its solution) to obey some mathematical model (M P, whose solution is
x). Such errors will limit the applicability of the mathematical model to
certain situations and are beyond the control of Scientific Computing.

The mathematical model (whether expressed by an integral as in the
example of Figure 1.6, an algebraic or differential equation, a linear or
nonlinear system) is generally not solvable in explicit form. Its resolu-
tion by computer algorithms will surely involve the introduction and
propagation of roundoff errors at least. Let’s call these errors e,.

On the other hand, it is often necessary to introduce further errors
since any procedure of the mathematical model involving an infinite
sequence of arithmetic operations cannot be performed by the computer
unless approximately. For instance the computation of the sum of a series
will necessarily be accomplished in an approximate way by considering
a suitable truncation.
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It will therefore be necessary to introduce a numerical problem, N P,
whose solution z,, differs from = by an error e; which is called trunca-
tion error. Such errors do not only occur in mathematical models that
are already set in finite dimension (for instance, when solving a linear
system). The sum of the errors e, and e; constitutes the computational
error e., the quantity we are interested in.

The absolute computational error is the difference between x, the
exact solution of the mathematical model, and 7, the solution obtained
at the end of the numerical process,

et = | 3],

while (if « # 0) the relative computational error is

et = |z —|/|al,
where | - | denotes the modulus, or other measure of size, depending on
the meaning of x.

The numerical process is generally an approximation of the math-
ematical model obtained as a function of a discretization parameter,
which we will refer to as h and suppose positive. If, as h tends to 0,
the numerical process returns the solution of the mathematical model,
we will say that the numerical process is convergent. Moreover, if the
(absolute or relative) error can be bounded as a function of h as

ec < ChP (1.11)

where C' is independent of A and p is a positive number, we will say
that the method is convergent of order p. It is sometimes even possible
to replace the symbol < with ~ in the case where, besides the upper
bound (1.11), a lower bound C'hP < e, is also available (C’ being another
constant independent of h and p).

Example 1.1 Suppose we approximate the derivative of a function f at a
point T with the incremental ratio that appears in (1.10). Obviously, if f is
differentiable at Z, the error committed by replacing f’ by the incremental
ratio tends to 0 as h — 0. However, as we will see in Section 4.2, the error can
be considered as Ch only if f € C? in a neighborhood of Z. [ ]

While studying the convergence properties of a numerical procedure
we will often deal with graphs reporting the error as a function of A in a
logarithmic scale, which shows log(h) on the abscissae axis and log(e..)
on the ordinates axis. The purpose of this representation is easy to see:
if e, = C'hP then loge, = log C' + plogh. In logarithmic scale therefore
p represents the slope of the straight line loge., so if we must compare
two methods, the one presenting the greater slope will be the one with
a higher order. (The slope will be p = 1 for first-order methods, p = 2



1.6 To err is not only human 27

0.1

ol
10° 107

10

Fig. 1.7. Plot of the same data in log-log scale (left) and in linear-linear scale
(right)

for second-order methods, and so on.) To obtain graphs in a logarithmic
scale one just needs to type loglog(x,y), x and y being the vectors
containing the abscissae and the ordinates of the data to be represented.

As an instance, in Figure 1.7, left, we report the straight lines relative
to the behavior of the errors in two different methods. The continuous
line represents a first-order approximation, while the dashed line repre-
sents a second-order one. In Figure 1.7, right, we show the same data
plotted on the left, but now using the plot command, that is a linear
scale for both z— and y— axis. It is evident that the linear representation
of these data is not optimal, since the dashed curve appears thickened on
the x—axis when z € [1075,1072], even if the corresponding ordinates
range from 10712 to 10~%, spanning 8 orders of magnitude.

There is an alternative to the graphical way of establishing the order
of a method when one knows the errors e; relative to some given values
h; of the parameter of discretization, with ¢ = 1,..., N: it consists in
conjecturing that e; is equal to Ch®, where C' does not depend on i. One
can then approach p with the values:

Pi :log(ei/ei,l)/log(hi/hi,l), i = 2,...,N. (112)

Actually the error is not a computable quantity since it depends on
the unknown solution. Therefore it is necessary to introduce computable
quantities that can be used to estimate the error itself, the so called error
estimator. We will see some examples in Sections 2.3.1, 2.4 and 4.5.
Sometimes, instead of using the log-log scale, we will use the semi-
logarithmic one, i.e. logarithmic scale on the y-axis and linear scale on
the z-axis. This representation is preferable, for instance, in plotting the
error of an iterative method versus the iterations, as done in Figure 1.2,
or in general, when the ordinates span a wider interval than abscissae.

loglog
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Let us consider the following 3 sequences, all converging to v/2:

1
l'():l, xn+1:zlmn+m7 n:071,...7
1 1
Yyo=1, Ynt1=sYn+ —, n=0,1,...,
2 Yn
3 3 1
=1 n = S5~n 5. T 4 a3 = ,1,....
20 ) An+l 8Z +22n 223 n=>0

In Figure 1.8 we plot the errors e = |z, — v/2|/v/2 (solid line), e¥ =
|y — V/2|/v/2 (dashed line) and e? = |z, — v/2|/v/2 (dashed-dotted line)
versus iterations and in semi-logarithmic scale. It is possible to prove
that

T ~, M,T y~n2y an3z

Cn = PgC0r  Cn =Py €0y Ep =Py €
where pg, py, p- € (0,1), thus, by applying the logarithm only to the
ordinates, we have

log(eZ) ~ Cy + log(pz)n,  log(e¥) ~ Ca + log(p,)n?,
log(e;,) = C3 + log(p:)n®,

i.e., a straight line, a parabola and a cubic, respectively, exactly as we
can see in Figure 1.8, left.

The MATLAB command for semi-logharitmic scale is semilogy (x,y),
where x and y are arrays of the same size.

In Figure 1.8, right, we display the errors e}, e¥ and e, versus iterations,
in linear-linear scale and by using the command plot. It is evident that
the use of semi-logarithmic instead of linear-linear scale is more appro-
priate.

0.15]

20 30 40 50

Fig. 1.8. Errors e}, (solid line), e}, (dashed line) and e, (dashed-dotted line)
in semi-logarithmic scale (left) and linear-linear scale (right)
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1.6.1 Talking about costs

In general a problem is solved on the computer by an algorithm, which
is a precise directive in the form of a finite text specifying the execution
of a finite series of elementary operations. We are interested in those
algorithms which involve only a finite number of steps.

The computational cost of an algorithm is the number of floating-
point operations that are required for its execution. Often, the speed
of a computer is measured by the maximum number of floating-point
operations which the computer can execute in one second (flops). In
particular, the following abridged notations are commonly used: Mega-
flops, equal to 10® flops, Giga-flops equal to 10° flops, Tera-flops equal
to 10'2 flops, Peta-flops equal to 10'® flops. The fastest computers
nowadays reach as many as 1.7 of Peta-flops.

In general, the exact knowledge of the number of operations required
by a given algorithm is not essential. Rather, it is useful to determine
its order of magnitude as a function of a parameter d which is related to
the problem dimension. We therefore say that an algorithm has constant
complexity if it requires a number of operations independent of d, i.e.
O(1) operations, linear complexity if it requires O(d) operations, or,
more generally, polynomial complexity if it requires O(d™) operations,
for a positive integer m. Other algorithms may have ezponential (O(c?)
operations) or even factorial (O(d!) operations) complexity. We recall
that the symbol O(d™) means “it behaves, for large d, like a constant
times d™”.

Example 1.2 (matrix-vector product) Le A be a square matrix of order
n and let v be a vector of R". The j — th component of the product Av is
given by

a;j1v1 + aj2v2 + ...+ QjnUn,

and requires n products and n — 1 additions. One needs therefore n(2n — 1)
operations to compute all the components. Thus this algorithm requires O(nQ)
operations, so it has a quadratic complexity with respect to the parameter n.
The same algorithm would require O(n3) operations to compute the product of
two square matrices of order n. However, there is an algorithm, due to Strassen,
which requires “only” O(n'°%27) operations and another, due to Winograd and
Coppersmith, requiring O(n?37®) operations. [ |

Example 1.3 (computation of a matrix determinant) As already men-
tioned, the determinant of a square matrix of order n can be computed us-
ing the recursive formula (1.8). The corresponding algorithm has a factorial
complexity with respect to n and would be usable only for matrices of small
dimension. For instance, if n = 24, a computer capable of performing as many
as 1 Peta-flops (i.e. 105 floating-point operations per second) would require 59
years to carry out this computation. One has therefore to resort to more effi-
cient algorithms. Indeed, there exists an algorithm allowing the computation of
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determinants through matrix-matrix products, with henceforth a complexity
of O(n'°827) operations by applying the Strassen algorithm previously men-
tioned (see [BB96]). |

The number of operations is not the sole parameter which matters
in the analysis of an algorithm. Another relevant factor is represented
by the time that is needed to access the computer memory (which de-
pends on the way the algorithm has been coded). An indicator of the
performance of an algorithm is therefore the CPU time (CPU stands
for central processing unit), and can be obtained using the MATLAB
command cputime. The total elapsed time between the input and output
phases can be obtained by the command etime.

Example 1.4 In order to compute the time needed for a matrix-vector mul-
tiplication we set up the following program:

>> n=10000; step=100;
>> A=rand(n,n);

>> v=rand(n,1);

> T=[ 1;

>> sizeA=[ ];

>> for k = 500:step:n

AA = A(1:k,1:k);

vv = v(1:k)’;

t = cputime;

b = AA*xvv;

tt = cputime - t;

T = [T, tt];

sizeA = [sizeA ,k];
end

The instruction a:step:b appearing in the for cycle generates all numbers
having the form a+step*k where k is an integer ranging from 0 to the largest
value kmax for which a+step*kmax is not greater than b (in the case at hand,
a=500, b=10000 and step=100). The command rand(n,m) defines an nxm ma-
trix of random entries. Finally, T is the vector whose components contain the
CPU time needed to carry out every single matrix-vector product, whereas
cputime returns the CPU time in seconds that has been used by the MAT-
LAB process since MATLAB started. The time necessary to execute a single
program is therefore the difference between the actual CPU time and the one
computed before the execution of the current program which is stored in the
variable t. Figure 1.9, which is obtained by the command plot(sizeA,T,’0’),
shows that the CPU time grows like the square of the matrix order n. |

1.7 The MATLAB language

After the introductory remarks of the previous section, we are now ready
to work in either the MATLAB or Octave environments. As said above,
from now on MATLAB should be understood as the subset of commands
which are common to both MATLAB and Octave.
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Fig. 1.9. Matrix-vector product: the CPU time (in seconds) versus the di-
mension n of the matrix (on an Intel® Core™2 Duo, 2.53 GHz processor)

After pressing the enter key (or else return), all what is written af-
ter the prompt will be interpreted.! Precisely, MATLAB will first check
whether what is written corresponds either to variables which have al-
ready been defined or to the name of one of the programs or commands
defined in MATLAB. Should all those checks fail, MATLAB returns
an error warning. Otherwise, the command is executed and an output
will possibly be displayed. In all cases, the system eventually returns the
prompt to acknowledge that it is ready for a new command. To close a
MATLAB session one should write the command quit (or else exit)
and press the enter key. From now it will be understood that to execute
a program or a command one has to press the enter key. Moreover, the
terms program, function or command will be used in an equivalent man-
ner. When our command coincides with one of the elementary structures
characterizing MATLAB (e.g. a number or a string of characters that
are put between apices) they are immediately returned in output in the
default variable ans (abbreviation of answer). Here is an example:

>> ’home’
ans =
home

If we now write a different string (or number), ans will assume this
new value.

We can turn off the automatic display of the output by writing a
semicolon after the string. Thus if we write >home’; MATLAB will
simply return the prompt (yet assigning the value *home’ to the variable
ans).

More generally, the command = allows the assignment of a value (or

! Thus a MATLAB program does not necessarily have to be compiled as
other languages do, e.g. Fortran or C.

quit
exit

ans
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a string of characters) to a given variable. For instance, to assign the
string Welcome to Milan’ to the variable a we can write

>> a=’Welcome to Milan’;

Thus there is no need to declare the type of a variable, MATLAB
will do it automatically and dynamically. For instance, should we write
a=5, the variable a will now contain a number and no longer a string
of characters. This flexibility is not cost-free. If we set a variable named
quit equal to the number 5 we are inhibiting the use of the MATLAB
command quit. We should therefore try to avoid using variables having
the name of MATLAB commands. However, by the command clear
followed by the name of a variable (e.g. quit), it is possible to cancel
this assignment and restore the original meaning of the command quit.

By the command save all the session variables (that are stored in
the so-called base workspace) are saved in the binary file matlab.mat.
Similarly, the command load restores in the current session all variables
stored in matlab.mat. A file name can be specified after save or load.
One can also save only selected variables, say v1, v2 and v3, in a given
file named, e.g., area.mat, using the command save area vl v2 v3.

By the command help one can see the whole family of commands
and pre-defined variables, including the so-called toolboxes which are sets
of specialized commands. Among them let us recall those which define
the elementary functions such as sine (sin(a)), cosine (cos(a)), square
root (sqrt(a)), exponential (exp(a)).

There are special characters that cannot appear in the name of a
variable or in a command, for instance the algebraic operators (+, -,
* and /), the logical operators and (&), or (1), not (), the relational
operators greater than (>), greater than or equal to (>=), less than (<),
less than or equal to (<=), equal to (==). Finally, a name can never begin
with a digit, and it cannot contain a bracket or any punctuation mark.

1.7.1 MATLAB statements

A special programming language, the MATLAB language, is also avail-
able enabling the users to write new programs. Although its knowledge
is not required for understanding how to use the several programs which
we will introduce throughout this book, it may provide the reader with
the capability of modifying them as well as producing new ones.

The MATLARB language features standard statements, such as con-
ditionals and loops.

The if-elseif-else conditional has the following general form:

if <condition 1>
<statement 1.1>
<statement 1.2>

elseif <condition 2>
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1>
2>

<statement
<statement

NN

else
<statement 1>
<statement n.2>

=}

end

where <condition 1>, <condition 2>, ... represent MATLAB sets of
logical expressions, with values 0 or 1 (false or true) and the entire con-
struction allows the execution of that statement corresponding to the
condition taking value equal to 1. Should all conditions be false, the ex-
ecution of <statement n.1>, <statement n.2>, ... will take place. In
fact, if the value of <condition k> is zero, the statements <statement
k.1> <statement k.2> ... are not executed and the control moves
on.

For instance, to compute the roots of a quadratic polynomial az? +
bx 4+ ¢ one can use the following instructions (the command disp(.)
simply displays what is written between brackets):

> if a =0
sq = sqrt(bxb - 4xaxc);
x(1) = 0.5%(-b + sq)/a;
x(2) = 0.5%(-b - sq)/a;

elseif b "= 0
x(1) = -c¢/b; (1.13)
elseif ¢ "=0
disp(’ Impossible equation’);
else
disp(’ The given equation is an identity’);
end

Note that MATLAB does not execute the entire construction until the
statement end is typed.

MATLAB allows two types of loops, a for-loop (comparable to a
Fortran do-loop or a C for-loop) and a while-loop. A for-loop repeats the
statements in the loop as the loop index takes on the values in a given
row vector. For instance, to compute the first six terms of the Fibonacci
sequence f; = fi—1 + fi—2, for ¢« > 3, with f; = 0 and fo = 1, one can
use the following instructions:

> £(1) = 0; £(2) = 1;
>> for i [3 4 5 6]

(i) f(i-1) + f(i-2);
end

Note that a semicolon can be used to separate several MATLAB instruc-
tions typed on the same line. Also, note that we can replace the second
instruction by the equivalent >> for i = 3:6. The while-loop repeats

disp

for
while
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as long as the given condition is true. For instance, the following set of
instructions can be used as an alternative to the previous set:

>> £(1) = 0; £(2) = 1; k = 3;

>> while k <= 6

f(k) = £(k-1) + £(k-2); k = k + 1;

end
Other statements of perhaps less frequent use exist, such as switch,
case, otherwise. The interested reader can have access to their meaning
by the help command.

1.7.2 Programming in MATLAB

Let us now explain briefly how to write MATLAB programs. A new
program must be put in a file with a given name with extension m, which
is called m-file. They must be located in one of the directories in which
MATLAB automatically searches for m-files; their list can be obtained
by the command path (see help path to learn how to add a directory
to this list). The first directory scanned by MATLAB is the current
working directory.

It is important at this level to distinguish between scripts and func-
tions. A script is simply a collection of MATLAB commands in an m-file
and can be used interactively. For instance, the set of instructions (1.13)
can give rise to a script (which we could name equation) by copying it
in the file equation.m. To launch it, one can simply write the instruc-
tion equation after the MATLAB prompt >>. We report two examples
below:

> a =1; b =1; ¢ = 1;

>> equation
>> x

x =
-0.5000 + 0.8660i -0.5000 - 0.86601
> a = 0; b =1; ¢c = 1;

>> equation
>> x

Since we have no input/output interface, all variables used in a script
are also the variables of the working session and are therefore cleared
only upon an explicit command (clear). This is not at all satisfactory
when one intends to write complex programs involving many temporary
variables and comparatively fewer input and output variables, which are
the only ones that can be effectively saved once the execution of the
program is terminated. Much more flexible than scripts are functions.
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A function is still defined in a m-file, e.g. name.m, but it has a
well defined input/output interface that is introduced by the command

function function
function [outl,...,outn]=name(inl,...,inm)
where outl, . ..,outn are the output variables and ini, ..., inm are the

input variables.

The following file, called det23.m, defines a new function called det23
which computes, according to the formulae given in Section 1.4, the
determinant of a matrix whose dimension could be either 2 or 3:
function det=det23(A)

%DET23 computes the determinant of a square matrix
% of dimension 2 or 3
[n,m]=size (A);
if n==m
if n==
det = A(1,1)%A(2,2)-A(2,1)*A(1,2);
elseif n ==
det = A(1,1)*xdet23(A([2,3],[2,3]1))-...
A(1,2)+det23(A([2,3],[1,3]))+...
A(1,3)*det23(A([2,3],[1,2]1));
else
disp(’ Only 2x2 or 3x3 matrices ’);

end
else

disp(’ Only square matrices ’);
end
return

Notice the use of the continuation characters ... meaning that the in-
struction is continuing on the next line and the character 7 to begin 9
comments. The instruction A([i,j], [k,1]) allows the construction of
a 2 x 2 matrix whose elements are the elements of the original matrix
A lying at the intersections of the i-th and j-th rows with the k-th and
1-th columns.

When a function is invoked, MATLAB creates a local workspace
(the function’s workspace). The commands in the function cannot refer
to variables from the base (interactive) workspace unless they are passed
as input.? In particular, variables used in a function are erased when the
execution terminates, unless they are returned as output parameters.

Functions usually terminate when the end of the function is reached,
however a return statement can be used to force an early return (upon return
the fulfillment of a certain condition).

For instance, in order to approximate the golden section number a =
1.6180339887 ..., which is the limit for £ — oo of the quotient of two
consecutive Fibonacci numbers fi/ fr—1, by iterating until the difference

2 A third type of workspace, the so called global workspace, is available and is
used to store global variables. These variables can be used inside a function
even if they are not among the input parameters.
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between two consecutive ratios is less than 10™%, we can construct the
following function:

function [golden,k]=fibonacciO

% FIBONACCIO: Golden section number approximation
£(1) = 0; £(2) = 1; goldenold = O0;

kmax = 100; tol = 1.e-04;

for k = 3:kmax

f(k) = £(k-1) + £(k-2); golden = f(k)/£f(k-1);
if abs(golden - goldenold) < tol

return

end

goldenold = golden;

end

return

Its execution is interrupted either after kmax=100 iterations or when
the absolute value of the difference between two consecutive iterates is
smaller than tol=1.e-04. Then, we can write
>> [alpha,niter]=fibonacciO
alpha =
1.61805555555556
niter =
14
After 14 iterations the function has returned an approximate value which
shares with « the first 5 significant digits.
The number of input and output parameters of a MATLAB function
can vary. For instance, we could modify the Fibonacci function as follows:

function [golden ,k]=fibonaccil (tol,kmax)
% FIBONACCI1: Golden section number approximation

% Both tolerance and maximum number of iterations
YA can be assigned in input
if nargin == 0
kmax = 100; tol = 1.e-04; Y default values
elseif nargin == 1
kmax = 100; % default value of kmax
end

£(1) = 0; £(2) = 1; goldenold = O;
for k = 3:kmax
f(k) = f(k-1) + f(k-2);
golden = f(k)/f(k-1);
if abs(golden - goldenold) < tol
return
end
goldenold = golden;
end
return

The nargin function counts the number of input parameters (in a simi-
lar way the nargout function counts the number of output parameters).
In the new version of the fibonacci function we can prescribe a spe-
cific tolerance tol and the maximum number of inner iterations allowed
(kmax). When this information is missing the function must provide de-
fault values (in our case, tol = 1.e-04 and kmax = 100). A possible
use of it is as follows:
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>> [alpha,niter]=fibonaccil (1.e-6,200)
alpha =
1.61803381340013
niter =
19
Note that using a stricter tolerance we have obtained a new approximate
value that shares with o as many as 8 significant digits.
The nargin function can be used externally to a given function to obtain
the number of input parameters. Here is an example:
>> nargin(’fibonaccil’)
ans =
2
After this quick introduction, our suggestion is to explore MATLAB
using the command help, and get acquainted with the implementation of
various algorithms by the programs described throughout this book. For
instance, by typing help for we get not only a complete description on
the command for but also an indication on instructions similar to for,
such as if, while, switch, break and end. By invoking their help we
can progressively improve our knowledge of MATLAB.

1.7.3 Examples of differences between MATLAB and Octave
languages

As already mentioned, what has been written in the previous section
about the MATLAB language applies to both MATLAB and Octave
environments without changes. However, some differences exist for the
language itself. So programs written in Octave may not run in MATLAB
and viceversa. For example, Octave supports strings with single and
double quotes

octave:1> a="Welcome to Milan"

a = Welcome to Milan
octave:2> a=’Welcome to Milan’
a = Welcome to Milan

whereas MATLAB supports only single quotes, double quotes will result

in parsing errors.

Here we provide a list of few other incompatibilities between the two
languages:

- MATLAB does not allow a blank before the transpose operator. For
instance, [0 1]’ works in MATLAB, but [0 1] ’ does not. Octave
properly parses both cases;

- MATLAB always requires ...,
rand (1,

2)

while both
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rand (1,
2)
and
rand (1, \
2)
work in Octave in addition to ...;
- for exponentiation, Octave can use ~ or **; MATLAB requires ~;
- for ends, Octave can use end but also endif, endfor, ...; MATLAB
requires end.

See Exercises 1.9-1.14.

1.8 What we haven’t told you

A systematic discussion on floating-point numbers can be found in
[Ube97], [Hig02] and in [QSS07].

For matters concerning the issue of complexity, we refer, e.g., to
[Pan92].

For a more systematic introduction to MATLAB the interested
reader can refer to the MATLAB manual [HHO5] as well as to specific
books such as [HLRO6], [Pra06], [EKMO5], [Pal08] or [MHO03].

For Octave we recommend the manual book mentioned at the begin-
ning of this chapter.

1.9 Exercises

Exercise 1.1 How many numbers belong to the set F(2,2,—2,2)? What is
the value of €)s for such set?

Exercise 1.2 Show that the set F(3,t, L, U) contains precisely 2(3 — 1)8™*
(U — L+ 1) elements.

Exercise 1.3 Prove that i’ is a real number, then check this result using
MATLAB.

Exercise 1.4 Write the MATLAB instructions to build an upper (respec-
tively, lower) triangular matrix of dimension 10 having 2 on the main diagonal
and —3 on the second upper (respectively, lower) diagonal.

Exercise 1.5 Write the MATLARB instructions which allow the interchange
of the third and seventh row of the matrices built up in Exercise 1.4, and
then the instructions allowing the interchange between the fourth and eighth
column.



1.9 Exercises 39

Exercise 1.6 Verify whether the following vectors in R* are linearly indepen-
dent:

vi=[0101,ve=[1234,vs=[1010],va=[0011].

Exercise 1.7 Write the following functions and compute their first and sec-
ond derivatives, as well as their primitives, using the symbolic toolbox of MAT-
LAB:

flx)=+vaz2+1, g(x) = sin(z®) + cosh(z).

Exercise 1.8 For any given vector v of dimension n, using the command
c=poly(v) one can construct the n + 1 coefficients of the polynomial p(z) =

Zii c(k)z™ 7% which is equal to ITy_;(z — v(k)). In exact arithmetics,
one should find that v = roots(poly(v)). However, this cannot occur due to
roundoff errors, as one can check by using the command roots(poly([1:n])),
where n ranges from 2 to 25.

Exercise 1.9 Write a program to compute the following sequence:

1
Ip=-(e—1
0 e(e )7

Iny1=1—(n+1I,, forn=0,1,....

Compare the numerical result with the exact limit I,, — 0 for n — oo.

Exercise 1.10 Explain the behavior of the sequence (1.4) when computed in
MATLAB.

Exercise 1.11 Consider the following algorithm to compute 7. Generate n
couples {(zk,yx)} of random numbers in the interval [0, 1], then compute the
number m of those lying inside the first quarter of the unit circle. Obviously,
7 turns out to be the limit of the sequence 7, = 4m/n. Write a MATLAB
program to compute this sequence and check the error for increasing values of
n.

Exercise 1.12 Since 7 is the sum of the series

N 4 2 1 1
=N"16" - - - )
T 2;6 <£n+1 8ntd Sn+s 8n+6>

we can compute an approximation of 7 by summing up to the n-th term,
for a sufficiently large n. Write a MATLAB function to compute finite sums
of the above series. How large should n be in order to obtain an approximation
of m at least as accurate as the one stored in the variable 7?

Exercise 1.13 Write a program for the computation of the binomial coef-
ficient (}) = n!/(k!(n — k)!), where n and k are two natural numbers with
k <n.

poly
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Exercise 1.14 Write a recursive MATLAB function that computes the n-th
element f, of the Fibonacci sequence. Noting that

{fffl] - E (1)] H:;] (1.14)

write another function that computes f, based on this new recursive form.
Finally, compute the related CPU-time.
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Nonlinear equations

Computing the zeros of a real function f (equivalently, the roots of the
equation f(z) = 0) is a problem that we encounter quite often in Scien-
tific Computing. In general, this task cannot be accomplished in a finite
number of operations. For instance, we have already seen in Section 1.5.1
that when f is a generic polynomial of degree greater than four, there
do not exist explicit formulae for the zeros. The situation is even more
difficult when f is not a polynomial.

Iterative methods are therefore adopted. Starting from one or several
initial data, the methods build up a sequence of values z(*) that hopefully
will converge to a zero « of the function f at hand.

The chapter will start with the formulation of some simple problems
of practical interest, which lead to the solution of nonlinear equations.
Such problems will be solved after the presentation of several numerical
methods. This planning will be proposed in all the next chapters of the
book.

2.1 Some representative problems

Problem 2.1 (Investment fund) At the beginning of every year a
bank customer deposits v euros in an investment fund and withdraws,
at the end of the n-th year, a capital of M euros. We want to compute
the average yearly rate of interest r of this investment. Since M is related
to r by the relation

147

szzn:(l—i—r)k:v [(1+r)"—1],
k=1

we deduce that r is the root of the algebraic non-linear equation:

f(r) =0, where f(r) :M—vlJrT

[(1+7)" —1].
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This problem will be solved in Example 2.1. |

Problem 2.2 (State equation of a gas) We want to determine the
volume V occupied by a gas at temperature T and pressure p. The state
equation (i.e. the equation that relates p, V and T)) is

[p+a(N/V)?] (V — Nb) = kNT, (2.1)

where a and b are two coefficients that depend on the specific gas, N is
the number of molecules which are contained in the volume V and k is
the Boltzmann constant. We need therefore to solve a nonlinear equation
whose root is V' (see Exercise 2.2). [ ]

Problem 2.3 (Rods system) Let us consider the mechanical system
represented by the four rigid rods a; of Figure 2.1. For any admissible
value of the angle (3, let us determine the value of the corresponding
angle o between the rods a; and ay. Starting from the vector identity

a17a27a3734:0

and noting that the rod a; is always aligned with the z-axis, we can
deduce the following relationship between § and a:
ay a _a%—f—a%—ag—i—ai

— cos(f3) — — cos(a) — cos( — a) =

as ay 2a90a4

) (2'2)

where a; is the known length of the i-th rod. This is called the Freuden-
stein equation, and we can rewrite it as f(«) = 0, where

2, .2 2, 2
iﬂ _ﬂ _ _ a1+a2_a3+a}4
f(z) = = cos(f) ” cos(z) — cos(f — ) + ST .

A solution in explicit form is available only for special values of 5. We
would also like to mention that a solution does not exist for all values of
(8, and may not even be unique. To solve the equation for any given (3
lying between 0 and 7 we should invoke numerical methods (see Exercise
2.9). |

Problem 2.4 (Population dynamics) In the study of populations
(e.g. bacteria), the equation 2T = ¢(z) = xR(x) establishes a link be-
tween the number of individuals in a generation x and the number of
individuals in the following generation. Function R(z) models the vari-
ation rate of the considered population and can be chosen in different
ways. Among the most known, we can mention:

1. Malthus’s model (Thomas Malthus, 1766-1834),

R(x) = Ry (z) =, r > 0;
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as

I a— S

Fig. 2.1. System of four rods of Problem 2.3

2. the growth with limited resources model (by Pierre Francois Ver-
hulst, 1804-1849),

r

R(w) = Ry (@) = T

r>0,K >0, (2.3)
which improves on Malthus’s model in considering that the growth
of a population is limited by the available resources;

3. the predator/prey model with saturation,

rr

R =R = 1w

(2.4)

which represents the evolution of Verhulst’s model in the presence
of an antagonist population.

The dynamics of a population is therefore defined by the iterative process
2 = pz*), k>, (2.5)

where 2(%) represents the number of individuals present k generations
later than the initial generation z(°). Moreover, the stationary (or equi-
librium) states 2* of the considered population are the solutions of prob-
lem

T = d)(x*)a
or, equivalently, ©* = z*R(z*) i.e. R(z*) = 1. Equation (2.5) is an
instance of a fixed point method (see Section 2.4). |

2.2 The bisection method

Let f be a continuous function in [a, b] which satisfies f(a)f(b) < 0. Then
necessarily f has at least one zero in (a,b). (This result is known as the
theorem of zeros of continuous functions.) Let us assume for simplicity
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Fig. 2.2. A few iterations of the bisection method

that it is unique, and let us call it a. (In the case of several zeros, by
the help of the command fplot we can locate an interval which contains
only one of them.)

The strategy of the bisection method is to halve the given inter-
val and select that subinterval where f features a sign change. More
precisely, having named () = (a,b) and, more generally, I (%) the sub-
interval selected at step k, we choose as I*t1) the sub-interval of I(¥)
at whose end-points f features a sign change. Following such procedure,
it is guaranteed that every I*) selected this way will contain c. The se-
quence {z(*)} of the midpoints of these subintervals I*) will inevitably
tend to « since the length of the subintervals tends to zero as k tends to
infinity.

Precisely, the method is started by setting

a© — ¢, 5O = b, 1O — (4O pO) 20 — (4O 4 p©))/2,

At each step k > 1 we select the subinterval 1) = (a(®) b(¥)) of the
interval 7(*=1 = (g(*=1 p(E=1) as follows:

given z(#~1) = (a1 4 p(k=1)) /2,
if f(z*1) =0,
then a = (=1
and the method terminates;
otherwise,
if f(alh ) f(aD) < 0
set a®) = q—1] pk) = pk-1),
if f(20D) F(b4D) < 0
set a®) = p(E=1) pk) = pk=1),
Then we define () = (a®®) + b(*)) /2 and increase k by 1.
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For instance, in the case represented in Figure 2.2, which corresponds
to the choice f(z) = 22 — 1, by taking a(®) = —0.25 and b = 1.25, we
would obtain

10 = (-0.25,1.25), 2 =0.5,
IM = (0.5,1.25), (M) = 0.875,
I® = (0.875,1.25), 2z =1.0625,
I®) = (0.875,1.0625), 23 = 0.96875.

Notice that each subinterval I*) contains the zero . Moreover, the
sequence {z(F)} necessarily converges to a since at each step the length
[T®)| = b®) — ) of [ halves. Since [IF)| = (1/2)%|1)], the error at
step k satisfies

k+1
1 1
le®] =12 — | < §|I(k)| = (5) (b —a).

In order to guarantee that |e®)| < ¢, for a given tolerance ¢ it suffices to
carry out K, iterations, k.., being the smallest integer satisfying the
inequality

Femin > log, (b - a) —1 (2.6)

Obviously, this inequality makes sense in general, and is not confined to
the specific choice of f that we have made previously.

The bisection method is implemented in Program 2.1: fun is a func-
tion (or an inline function) specifying the function f, a and b are the
endpoints of the search interval, tol is the tolerance € and nmax is the
maximum number of allowed iterations. Besides the first argument which
represents the independent variable, the function fun can accept other
auxiliary parameters.

Output parameters are zero, which contains the approximate value
of a, the residual res which is the value of f in zero and niter which
is the total number of iterations that are carried out. The command
find (fx==0) finds those indices of the vector £x corresponding to null
components, while the command varargin allows the function fun to
accept a variable number of input parameters.

Program 2.1. bisection: bisection method

function [zero,res,niter]=bisection(fun,a,b,tol,

nmax ,varargin)
%BISECTION Finds function zeros.
% ZERO=BISECTION (FUN,A,B,TOL,NMAX) tries to find a zero
% ZERO of the continuous function FUN in the interval
% [A,B] using the bisection method. FUN accepts real

find
varargin
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% scalar input x and returns a real scalar value. If

% the search fails an error message is displayed.

% FUN can be either an inline function or an anonymous
% function or it can be defined by an external m-file.

% ZERO=BISECTION (FUN,A,B,TOL,NMAX,P1,P2,...) passes
% parameters P1,P2,... to the function FUN(X,P1,P2,...)
% [ZERO ,RES,NITER]=BISECTION(FUN,...) returns the value

% of the residual in ZERO and the iteration number at
% which ZERO was computed.
x = [a, (a+b)*0.5, bl;
fx = feval(fun,x,varargin{:3});
if fx(1)*£fx(3) > 0
error ([’ The sign of the function at the ’,.
’endpoints of the interval must be dlfferent\n 1);
elseif fx(1) == 0

zero = a; res = 0; niter = 0; return
elseif fx(3) == 0

zero = b; res = 0; niter = 0; return
end
niter = 0;

I = (b - a)*0.5;
while I >= tol & niter < nmax

niter = niter + 1;

if fx(1)*xfx(2) < 0
x(3) = x(2);
x(2) = x(1)+(x(3)-x(1))*0.5;
fx = feval(fun,x,varargin{:});

I = (x(3)-x(1))*0.5;
elseif fx(2)*fx(3) < 0

x(1) = x(2);
x(2) = x(1)+(x(3)-x(1))*0.5;
fx = feval(fun,x,varargin{:1});
I = (x(3)-x(1))*0.5;

else
x(2) = x(find (fx==0)); I = 0;

end

end

if (niter==nmax & I > tol)

fprintf ([’Bisection stopped without converging ’,...
’to the desired tolerance because the \n’,...
’maximum number of iterations was reached\n’]);

end

zero = x(2);

x = x(2);

res = feval(fun,x,varargin{:});

return

Example 2.1 (Investment fund) Let us apply the bisection method to
solve Problem 2.1, assuming that v is equal to 1000 euros and that after 5
years M is equal to 6000 euros. The graph of the function f can be obtained
by the following instructions

f=inline(’M-v*x(1+r) .*x((1+r)."5 - 1)./r’,’r’,’M’,°v’);
plot ([0.01,0.3],feval(f,[0.01,0.3],6000,1000));

(we remind the reader that the prompt is neglected in order to simplify no-
tations). We see that f has a unique zero in the interval (0.01,0.1), which
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is approximately equal to 0.06. If we execute Program 2.1 with tol= 10712,

a= 0.01 and b= 0.1 as follows

[zero,res,niter]=bisection(f,0.01,0.1,1.e-12,1000,...
6000,1000);

after 36 iterations the method converges to the value 0.06140241153618, in

perfect agreement with the estimate (2.6) according to which kmin = 36.

Thus, we conclude that the interest rate r is approximately equal to 6.14%. B

In spite of its simplicity, the bisection method does not guarantee a
monotone reduction of the error, but simply that the search interval is
halved from one iteration to the next. Consequently, if the only stopping
criterion adopted is the control of the length of I(*) one might discard
approximations of o which are quite accurate.

As a matter of fact, this method does not take into proper account
the actual behavior of f. A striking fact is that it does not converge in
a single iteration even if f is a linear function (unless the zero « is the
midpoint of the initial search interval).

See Exercises 2.1-2.5.

2.3 The Newton method

The sign of the given function f at the endpoints of the subintervals is
the only information exploited by the bisection method. A more efficient
method can be constructed by exploiting the values attained by f and
its derivative (in the case that f is differentiable). In that case,

y(@) = f®) + f' @) (z — ™)

provides the equation of the tangent to the curve (z, f(z)) at the point
(k)
A

If we pretend that 2(**1) is such that y(2**)) = 0, we obtain:

f=®)

2D — (R _ S\ ) k>0 (2.7)

EDN

provided f’(:n(k)) # 0. This formula allows us to compute a sequence of
values z(¥) starting from an initial guess z(?). This method is known as
Newton’s method and corresponds to computing the zero of f by locally
replacing f by its tangent line (see Figure 2.3).

As a matter of fact, by developing f in Taylor series in a neighborhood
of a generic point z(*) we find

F@®0) = f@®) +5® f(a®) + 0((69)), (2.8)
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Fig. 2.3. The first iterations generated by the Newton method with initial
guess =9 for the function f(z) =z +e® 4+ 10/(1 4+ 2%) — 5

where 6(F) = 2+ — 2(k) Forcing f(z(*+1) to be zero and neglecting
the term O((6%))?), we can obtain (*+1) as a function of z(¥) as stated
in (2.7). In this respect (2.7) can be regarded as an approximation of
(2.8).

Obviously, (2.7) converges in a single step when f is linear, that is
when f(x) = a1z + ao.

Example 2.2 Let us solve Problem 2.1 by Newton’s method, taking as initial
data z(® = 0.3. After 6 iterations the difference between two subsequent
iterates is less than or equal to 107 2. |

The Newton method in general does not converge for all possible
choices of z(9), but only for those values of 2(®) which are sufficiently
close to «, that is they belong to a suitable neighbourhood I(«) of a.
At first glance, this requirement looks meaningless: indeed, in order to
compute « (which is unknown), one should start from a value sufficiently
close to a!

In practice, a possible initial value z(°) can be obtained by resorting
to a few iterations of the bisection method or, alternatively, through
an investigation of the graph of f. If z©) s properly chosen and « is
a simple zero (that is, f’(a) # 0) then the Newton method converges.
Furthermore, in the special case where f is continuously differentiable
up to its second derivative one has the following convergence result (see
Exercise 2.8),

zpE+D) _ o f”(a)
lim =
k—oo (z(*) —a)2  2f'(a)

(2.9)

Consequently, if f'(«) # 0 Newton’s method is said to converge quadrat-
ically, or with order 2, since for sufficiently large values of k the error at
step (k + 1) behaves like the square of the error at step k multiplied by
a constant which is independent of k.
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0 ‘5 1‘0 1‘5 2‘0 2‘5 30
Fig. 2.4. Error in semi-logarithmic scale versus iteration number for the func-

tion of Example 2.3. The dashed line corresponds to Newton’s method (2.7),
solid line to the modified Newton’s method (2.10) (with m = 2)

In the case of zeros with multiplicity m larger than 1, i.e. if f/(a) =
0, ..., f(m(a) = 0, Newton’s method still converges, but only if (%)
is properly chosen and f'(z) # 0 Vz € I(«) \ {a}. Nevertheless, in this
case the order of convergence of Newton’s method downgrades to 1 (see
Exercise 2.15). In such case one could recover the order 2 by modifying
the original method (2.7) as follows:

(k)
(k+1) _ (k) _ f(=™)
x = m—f’(:r(k))’ k>0 (2.10)

provided that f/(z*)) # 0. Obviously, the modified Newton’s method
(2.10) requires the a-priori knowledge of m. If this is not the case, one

could develop an adaptive Newton method, still of order 2, as described
in [QSS07, Section 6.6.2].

Example 2.3 The function f(xz) = (z — 1) log(z) has a single zero o = 1 of
multiplicity m = 2. Let us compute it by both Newton’s method (2.7) and by
its modified version (2.10). In Figure 2.4 we report the error obtained using the
two methods versus the iteration number. Note that for the classical version
of Newton’s method the convergence is only linear. |

2.3.1 How to terminate Newton’s iterations

In theory, a convergent Newton’s method returns the zero a only after an
infinite number of iterations. In practice, one requires an approximation
of a. up to a prescribed tolerance . Thus the iterations can be terminated
at the smallest value of k,,;, for which the following inequality holds:

‘e(kmzn)| — |a _ x(km7n)| < e.
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Fig. 2.5. Two situations in which the residual is a poor error estimator:
|f'(z)] > 1 (left), |f' (x)| < 1 (right), with = belonging to a neighborhood of
Q@

This is a test on the error. Unfortunately, since the error is unknown, one
needs to adopt in its place a suitable error estimator, that is, a quantity
that can be easily computed and through which we can estimate the
real error. At the end of Section 2.4, we will see that a suitable error
estimator for Newton’s method is provided by the difference between
two successive iterates. This means that one terminates the iterations at
step kmin as soon as

|$(km7.n) _ x(kmin_1)| < e (211)

This is a test on the increment. We will see in Section 2.4.1 that the test
on the increment is satisfactory when « is a simple zero of f. Alterna-
tively, one could use a test on the residual at step k, r®) = f(z(®)) (note
that the residual is null when z(*) is a zero of the function f).
Precisely, we could stop the iteration at the first k,,;, for which

|T(kmin)| = |f(m(kmln))| <€ (212)

The test on the residual is satisfactory only when |f’(x)| ~ 1 in a neigh-
borhood I, of the zero « (see Figure 2.5). Otherwise, it will produce
an over estimation of the error if |f/(z)| > 1 for z € I, and an under
estimation if | f'(z)| < 1 (see also Exercise 2.6).

In Program 2.2 we implement Newton’s method (2.7). Its modified
form can be obtained simply by replacing f’ with f//m. The input pa-
rameters fun and dfun are the strings which define function f and its
first derivative, while x0 is the initial guess. The method will be termi-
nated when the absolute value of the difference between two subsequent
iterates is less than the prescribed tolerance tol, or when the maximum
number of iterations nmax has been reached.
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Program 2.2. newton: Newton method

function [zero,res,niter]=newton(fun,dfun,x0,tol,...
nmax ,varargin)

%NEWTON Finds function zeros.

% ZERO=NEWTON (FUN,DFUN,X0,TOL,NMAX) tries to find the

% zero ZERO of the continuous and differentiable

% function FUN nearest to X0 using the Newton method.

% FUN and its derivative DFUN accept real scalar input

% x and return a real scalar value. If the search

% fails an error message is displayed. FUN and DFUN

% can be either inline functions or anonymous

% functions or they can be defined by external m-files.

% ZERO=NEWTON (FUN ,DFUN,X0,TOL,NMAX,P1,P2,...) passes

% parameters P1,P2,... to functions: FUN(X,P1,P2,...)

% and DFUN(X,P1,P2,...).

% [ZERO ,RES,NITER]=NEWTON(FUN,...) returns the value of

% the residual in ZERO and the iteration number at

% which ZERO was computed.

x = x0;

fx = feval(fun,x,varargin{:1});

dfx = feval(dfun,x,varargin{:});

niter = 0; diff = tol+1;

while diff >= tol & niter < nmax

niter = niter + 1; diff = - fx/dfx;
x = x + diff; diff = abs(diff);
fx = feval(fun,x,varargin{:});
dfx = feval(dfun,x,varargin{:});

end

if (niter==nmax & diff > tol)
fprintf ([’Newton stopped without converging to’,
> the desired tolerance because the maximum\n ’,...
’number of iterations was reached\n’]);

end

zero = x; res = fx;

return

2.3.2 The Newton method for systems of nonlinear equations

Let us consider a system of nonlinear equations of the form

f1(x1,x2, .. .,.'Z?n) = 0,
f2($1,x2, e ,.'Z?n) = 0,
(2.13)
fo(x1, 22, ..., 20) =0,
where f1,..., fn are nonlinear functions. Setting £ = (f1,..., f»)? and
X = (21,...,2,)7, system (2.13) can be written in a compact way as
f(x) = 0. (2.14)

An example is given by the following nonlinear system
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fi(z,20) = 2 + 23 =1,
(2.15)
fo(z1,2) = sin(mrw1/2) + 23 = 0.

In order to extend Newton’s method to the case of a system, we replace
the first derivative of the scalar function f with the Jacobian matriz J¢
of the vectorial function f whose components are

afi

(Je)ij = o’

ij=1,...,n.
The symbol Jf;/0x; represents the partial derivative of f; with respect
to x; (see definition (8.3)). With this notation, Newton’s method for
(2.14) then becomes: given x(9) € R™ for k = 0,1, ..., until convergence

solve Jp(x(M)dx(k) = —£(x(*))

2.16
set X(k+1) = X(k) + 5X(k‘) ( )

Therefore, Newton’s method applied to a system requires at each step
the solution of a linear system with matrix Jg(x*)).

Program 2.3 implements this method by using the MATLAB com-
mand \ (see Section 5.8) to solve the linear system with the jacobian
matrix. In input we must define a column vector x0 representing the
initial datum and two functions, Ffun and Jfun, which compute (re-
spectively) the column vector F containing the evaluations of f for a
generic vector x and the jacobian matrix Jg, also evaluated for a generic
vector x. The method stops when the difference between two consecu-
tive iterates has an euclidean norm smaller than tol or when nmax, the
maximum number of allowed iterations, has been reached.

Program 2.3. newtonsys: Newton method for nonlinear systems

function [x,F,niter] = newtonsys (Ffun,Jfun,x0,tol,...
nmax , varargin)

%ANEWTONSYS Finds a zero of a nonlinear system

% [ZERO ,F,NITER]=NEWTONSYS (FFUN,JFUN,X0,TOL,NMAX)

% tries to find the vector ZERO, zero of a nonlinear

% system defined in FFUN with jacobian matrix defined

% in the function JFUN, nearest to the vector XO.

% The variable F returns the residual in ZERO

% while NITER returns the number of iterations needed

% to compute ZERO. FFUN and JFUN are MATLAB functions

% defined in M-files.

niter = 0; err = tol + 1; x = x0;
while err >= tol & niter < nmax
J = feval(Jfun,x,varargin{:});
F = feval(Ffun,x,varargin{:});
delta = - J\F;
X = X + delta;

err = norm(delta);
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niter = niter + 1;
end
F = norm(feval(Ffun,x,varargin{:}));
if (niter==nmax & err> tol)
fprintf ([’ Fails to converge within maximum °’,...
’number of iterations.\n’,...
’The iterate returned has relative ’,...
’residual %e\n’],F);
else
fprintf ([’The method converged at iteration ’,...
>%i with residual %e\n’],niter ,F);
end
return

Example 2.4 Let us consider the nonlinear system (2.15) which allows the
two (graphically detectable) solutions (0.4761, —0.8794) and (—0.4761, 0.8794)
(where we only report the four first significant digits). In order to use Program
2.3 we define the following functions

function J=Jfun (x)
pi2 = 0.5%pi;

J(1,1) = 2xx(1);

J(1,2) = 2*%x(2);

J(2,1) = pi2*cos(pi2*x(1));
J(2,2) = 3xx(2)72;

return

function F=Ffun (x)
x(1)"2 + x(2)°2 - 1;
F(2,1) sin(pi*x(1)/2) + x(2)°3;
return
Starting from an initial datum of x0=[1;1] Newton’s method, launched
with the command
x0=[1;1]; tol=1e-5; nmax=10;
[x,F,niter] = newtonsys (Q@Ffun,@Jfun,x0,tol,nmax);
converges in 8 iterations to the values

4.760958225338114e-01
-8.793934089897496e-01

(The special character @ tells newtonsys that Ffun and Jfun are functions de-
fined by M-files.) Notice that the method converges to the other root starting
from x0=[-1;-1]. In general, exactly as in the case of scalar functions, con-
vergence of Newton’s method will actually depend on the choice of the initial
datum x© and in particular we should guarantee that det(J¢(x(?)) #0. H

Let us summarize

1. Methods for the computation of the zeros of a function f are usually
of iterative type;

2. the bisection method computes a zero of a function f by generating
a sequence of intervals whose length is halved at each iteration. This
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method is convergent provided that f is continuous in the initial
interval and has opposite signs at the endpoints of this interval,

3. Newton’s method computes a zero « of f by taking into account
the values of f and of its derivative. A necessary condition for con-
vergence is that the initial datum belongs to a suitable (sufficiently
small) neighborhood of «;

4. Newton’s method is quadratically convergent only when « is a simple
zero of f, otherwise convergence is linear;

5. the Newton method can be extended to the case of a nonlinear system
of equations.

See Exercises 2.6-2.14.

2.4 Fixed point iterations

Playing with a pocket calculator, one may verify that by applying repeat-
edly the cosine key to the real value 1, one gets the following sequence
of real numbers:

() = cos(1) = 0.54030230586814,
3 = cos(z(V)) = 0.85755321584639,

2(10) = cos(x(9)) = 0.74423735490056,

2(20) = cos(x(19)) = 0.73918439977149,

which should tend to the value o = 0.73908513. ... Since, by construc-
tion, z(*+Y) = cos(z(®) for k = 0,1,... (with 2(®) = 1), the limit «
satisfies the equation cos(at) = «. For this reason « is called a fixed
point of the cosine function. We may wonder how such iterations could
be exploited in order to compute the zeros of a given function. In the
previous example, « is not only a fixed point for the cosine function,
but also a zero of the function f(xz) = x — cos(z), hence the previously
proposed method can be regarded as a method to compute the zeros of
f. On the other hand, not every function has fixed points. For instance,
by repeating the previous experiment using the exponential function and
2(©) = 1 one encounters a situation of overflow after 4 steps only (see
Figure 2.6).

Let us clarify the intuitive idea above by considering the following
problem. Given a function ¢ : [a,b] — R, find « € [a, ] such that

a = ¢(a).
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B oo

Fig. 2.6. The function ¢(x) = cos z admits one and only one fixed point (left),
whereas the function ¢(z) = e® does not have any (right)

If such an « exists it will be called a fized point of ¢ and it could be
computed by the following algorithm:

) = ¢(z®), k>0 (2.17)

where 2(9) is an initial guess. This algorithm is called fized point itera-
tions and ¢ is said to be the iteration function. The introductory example
is therefore an instance of fixed point iterations with ¢(z) = cos(x).

A geometrical interpretation of (2.17) is provided in Figure 2.7 (left).
One can guess that if ¢ is a continuous function and the limit of the
sequence {x(®)} exists, then such limit is a fixed point of ¢. We will
make this result more precise in Propositions 2.1 and 2.2.

Example 2.5 The Newton method (2.7) can be regarded as an algorithm of
fixed point iterations whose iteration function is
f(x)
olx) =z — . (2.18)
f'(x)
From now on this function will be denoted by ¢n (where N stands for Newton).
This is not the case for the bisection method since the generic iterate PRy
depends not only on z® but also on z*~1). |

As shown in Figure 2.7 (right), fixed point iterations may not con-
verge. Indeed, the following result holds.
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Fig. 2.7. Representation of a few fixed point iterations for two different iter-
ation functions. At left, the iterations converge to the fixed point «, whereas
the iterations on the right produce a divergence sequence

Proposition 2.1 Let us consider the sequence (2.17).

1. Let us suppose that ¢(x) is continuous in [a,b] and such that
o(x) € [a,b] for every x € [a,b]; then there exists at least a fixed
point o € [a, b].

2. Moreover, if

AL < 1 s.t. |p(x1)—¢(x2)| < Llxy—zo| Yy, 22 € [a,b], (2.19)

then there exists a unique fized point o € [a,b] of ¢ and the
sequence defined in (2.17) converges to «, for any choice of
intial guess z(°) in [a,D].

Proof. 1. We start by proving existence of fixed points for ¢. The
function g(x) = ¢(z) —z is continuous in [a, b] and, thanks to assumption
made on the range of ¢, it holds g(a) = ¢(a) —a > 0 and g(b) =
¢(b) — b < 0. By applying the theorem of zeros of continuous functions,
we can conclude that g has at least one zero in [a,b], i.e. ¢ has at least
one fixed point in [a, b]. (See Figure 2.8 for an instance.)

2. Uniqueness of fixed points follows from assumption (2.19). Indeed,
should two different fixed points a; and as exist, then

|y — az| = [p(a1) — Pp(a2)| < Llag — az| < |y — azl,

which cannot be.

We prove now that the sequence z(*) defined in (2.17) converges to the
unique fixed point o when k — oo, for any choice of initial guess z(©) €
[a, b]. Tt holds
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Fig. 2.8. At left, an iteration function ¢ featuring 3 fixed points, at right, an
iteration function satisfying the assumption (2.19) and the first elements of
sequence (2.21) converging to the unique fixed point «

0 < [z —af = |p(a®) — ¢(a)]

< Llz®™ —a] < ... < LF20) — ¢,

ie., Vk >0,

|55(k) — o k

— < L". 2.20
Passing to the limit as k — oo, we obtain limy . |2} — a| = 0, which
is the desired result. [ ]

In practice it is often very difficult to choose a priori an interval [a, b]
for which the assumptions of Proposition 2.1 are fulfilled; in such cases
the following local convergence result will be useful. We refer to [OR70]
for a proof.

Theorem 2.1 (Ostrowski’s theorem) Let o be a fized point of
a function ¢ which is continuous and continuously differentiable in
a suitable neighbourhood J of a. If |¢'(a)| < 1, then there exists
6 > 0 for which {x(k)} converges to «, for every x(% such that
|20 — a| < 8. Moreover, it holds

(k+1) _
.z oy
B e ) e

Proof. We limit ourselves to verify property (2.21). Thanks to Lagrange
theorem, for any k > 0, there exists a point &, between z(*) and a such
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that z*+1) — a = ¢(z®)) — p(a) = ¢ (&)(z® — a), that is
(@Y —a)/ (2" —a) = ¢/ (&). (2.22)

Since z®) — « and &k lies between z®) and «, it holds limg_, o & = a.
Finally, passing to the limit in both terms of (2.22) and recalling that ¢’
is continuous in a neighbourhood of «, we obtain (2.21). [ |

From both (2.20) and (2.21) one deduces that the fixed point iterations
converge at least linearly, that is, for k sufficiently large the error at
step k£ 4+ 1 behaves like the error at step k£ multiplied by a constant
(which concides with either L in (2.20) and ¢'(«) in (2.21)) which is
independent of £ and whose absolute value is strictly less than 1. For this
reason, this constant is named asymptotic convergence factor. Finally, we
remark that the smaller the asymptotic convergence factor, the faster the
convergence.

Remark 2.1 When |¢(a)| > 1, it follows from (2.22) that if z*) is sufficiently
close to a, such that |¢/(z¥))] > 1, then |a — z**Y| > |a — z*)|, and the
sequence cannot converge to the fixed point. On the contrary, when |¢'(a)| = 1,
no conclusion can be drawn since either convergence or divergence could take
place, depending on properties of the iteration function ¢(z). |

Example 2.6 The function ¢(z) = cos(z) satisfies all the assumptions of
Theorem 2.1. Indeed, |¢'(a)| = |sin(a)| ~ 0.67 < 1, and thus by continuity
there exists a neighborhood I, of a such that |¢'(z)| < 1 for all z € I,. The
function ¢(z) = z? — 1 has two fixed points a+ = (1 £ v/5)/2, however it
does not satisfy the assumption for either since |¢(as)| = |1 % /5| > 1. The
corresponding fixed point iterations will not converge. |

Example 2.7 (Population dynamics) Let us apply the fixed point itera-
tions to the function ¢y (z) = rz/(1 + xK) of Verhulst’s model (2.3) and to
the function ¢p(x) = ra?/(1 + (z/K)?), for r = 3 and K = 1, of the preda-
tor/prey model (2.4). Starting from the initial point (%) = 1, we find the fixed
point & = 2 in the first case and o = 2.6180 in the second case (see Figure
2.9). The fixed point @ = 0, common to either ¢v and ¢p, can be obtained
using the fixed point iterations on ¢p but not those on ¢v. In fact, ¢’p(a) = 0,
while ¢y, (@) = 7 > 1. The third fixed point of ¢p, @ = 0.3820..., cannot be
obtained by fixed point iterations since ¢’»(a) > 1. [ |

The Newton method is not the only iterative procedure featuring
quadratic convergence. Indeed, the following general property holds.



2.4 Fixed point iterations 59

o 1 2 s 2 5
Fig. 2.9. Two fixed points for two different population dynamics: Verhulst’s
model (solid line) and predator/prey model (dashed line)

Proposition 2.2 Assume that all hypotheses of Theorem 2.1 are
satisfied. In addition assume that ¢ is twice continuously differen-
tiable and that

¢'(@) = 0, ¢"(a) 0.

Then the fized point iterations (2.17) converge with order 2 and

x(k+1) —a 1

e ® )2 39"(a) (2.23)

Proof. In this case it suffices to prove that there exists a point n*) lying
between z(*) and « such that
¢" (n'*))

) — o = g(aM) = 6(a) = ¢ (@) (¥ — a) + ST (@) —a)?.

Example 2.5 shows that the fixed point iterations (2.17) could also be
used to compute the zeros of the function f. Clearly for any given f the
function ¢ defined in (2.18) is not the only possible iteration function.
For instance, for the solution of the equation log(x) = +, after setting
f(x) =log(x) — =, the choice (2.18) could lead to the iteration function

¢n(z) = (1 —log(z) + 7).

Another fixed point iteration algorithm could be obtained by adding
x to both sides of the equation f(z) = 0. The associated iteration func-
tion is now ¢1(x) = z+log(x)—~. A further method could be obtained by
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choosing the iteration function ¢o(z) = xlog(x)/v. Not all these meth-
ods are convergent. For instance, if v = —2, the methods corresponding
to the iteration functions ¢ and ¢o are both convergent, whereas the
one corresponding to ¢; is not since |¢}(x)| > 1 in a neighborhood of
the fixed point a.

2.4.1 How to terminate fixed point iterations

In general, fixed point iterations are terminated when the absolute value
of the difference between two consecutive iterates is less than a prescribed
tolerance €.

Since o = ¢(a) and z*+1) = ¢(z(*)), using the mean value theorem
(see Section 1.5.3) we find

a— 2+t = g(a) — p(z®)) = ¢'(€F) (o — ™)) with £F) € Iy 200
1, ,) being the interval with endpoints a and 2(®) | Using the identity
o —z® = (o — 2FFD) 4 (pk+D) _ (),

it follows that

1
B ) B S 1 Co D B )
a—zt = PIGEGE) (z ). (2.24)

Consequently, if ¢’ (x) ~ 0 in a neighborhood of «, the difference between
two consecutive iterates provides a satisfactory error estimator. This
is the case for methods of order 2, including Newton’s method. This
estimate becomes the more unsatisfactory the more ¢’ approaches 1.

Example 2.8 Let us compute with Newton’s method the zero oo = 1 of the
function f(z) = (z —1)™ ' log(z) for m = 11 and m = 21, whose multiplicity
is equal to m. In this case Newton’s method converges with order 1; moreover,
it is possible to prove (see Exercise 2.15) that ¢y () = 1—1/m, ¢ being the
iteration function of the method, regarded as a fixed point iteration algorithm.
As m increases, the accuracy of the error estimate provided by the difference
between two consecutive iterates decreases. This is confirmed by the numerical
results in Figure 2.10 where we compare the behavior of the true error with
that of our estimator for both m = 11 and m = 21. The difference between
these two quantities is greater for m = 21. |

2.5 Acceleration using Aitken’s method
In this paragraph we will illustrate a technique which allows to accel-

erate the convergence of a sequence obtained via fixed point iterations.
Therefore, we suppose that z(*) = qﬁ(x(k’l)), k > 1. If the sequence
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Fig. 2.10. Absolute values of the errors (solid line) and absolute values of the
difference between two consecutive iterates (dashed line), plotted versus the
number of iterations for the case of Example 2.8. Graphs (1) refer to m = 11,
graphs (2) to m = 21

{z(®} converges linearly to a fixed point « of ¢, we have from (2.21)
that, for a given k, there must be a value A (to be determined) such that

p(z®) —a = Az® — ), (2.25)

where we have deliberately avoided to identify ¢(z(*)) with z(*+1) In-
deed, the idea underlying Aitken’s method consists in defining a new
value for z(*+1) (and thus a new sequence) which is a better approxima-
tion for o than that given by ¢(z(*)). As a matter of fact, from (2.25)
we have that

1—X B 1-A

o =

or

a=z® + (pz®) —z®)/(1-N) (2.26)

We must now compute . To do so, we introduce the following sequence

A®) — P(p(x*))) — p(x*))
=T @™ —2®

(2.27)

and verify that the following property holds:

Lemma 2.1 If the sequence of elements x*+1) = ¢(x(F)) converges
to a, then klim AR = ¢ ().
— 00
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Proof. If 2(F*D) = (M), then (*+2) = ¢(4(2*))) and from (2.27),
we obtain that \(®) = (x(F+2) — g (k+1)) /(g (k+1) _ 2(k)) op

z(k+2) ¢
R e W e
2D~ — (2 — ) g
TGS

from which, computing the limit and recalling (2.21), we find

Jim A0 = 2@ 1

A X = T gy — ¢ @)

|
Thanks to Lemma 2.1 we can conclude that, for a given k, A(*) can be

considered as an approximation of the previously introduced unknown
value \. Thus, we use (2.27) in (2.26) and define a new 2**+1) as follows:

($(z®) — 52
o =2 — )~z 3o F2O[ (2%)

This expression is known as Aitken’s extrapolation formula and it can be
considered as a new fixed point iteration for the new iteration function

zp(¢(z)) — [¢(x)]*
$(d(x)) — 2¢(z) + =

This method is sometimes called Steffensen’s method. Clearly, function
¢ A is undetermined for x = « as the numerator and denominator vanish.
However, by applying de ’'Hopital’s formula and assuming that ¢ is
differentiable with ¢'(«) # 1 one finds

lim 6 (z) = 200(@) + 9 (6(2))¢ (@) = 26(0)¢ ()
e F0(@)d (@) — 20/(@) + 1
_ a+al¢/()P — 200/(a) _

[¢'(a)]? = 2¢/(a) +1

Consequently, ¢ (z) can be extended by continuity to x = « by setting
da(a) =a.

When ¢(x) = x — f(x), the case ¢'(a) = 1 corresponds to a root
with multiplicity of at least 2 for f (since ¢'(a) = 1 — f'(«)). In such
situation however, we can once again prove by evaluating the limit that
¢ a(a) = . Moreover, we can also verify that the fixed points of ¢4 are
all and exclusively the fixed points of ¢.

da(z) =
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Aitken’s method can thus be applied for any fixed point method.
Indeed, the following theorem holds:

Theorem 2.2 Let z*+t1) = ¢(2®)) be the fized point iterations
(2.17) with ¢(x) = x — f(x) for computing the roots of f. Then if
f s sufficiently reqular we have:

- if the fized point iterations converge linearly to a simple root of f,
then Aitken’s method converges quadratically to the same root;

- if the fized point iterations converge with order p > 2 to a simple
root of f, then Aitken’s method converges to the same root with
order 2p — 1;

- if the fized point iterations converge linearly to a root with mul-
tiplicity m > 2 of f, then Aitken’s method converges linearly
to the same root with an asymptotic convergence factor of
C=1-1/m.

In particular, if p = 1 and the root of f is simple, Aitken’s ex-
trapolation method converges even if the corresponding fixed point
iterations diverge.

In Program 2.4 we report an implementation of Aitken’s method.
Here phi is a function (or an inline function) which defines the expres-
sion of the iteration function of the fixed point method to which Aitken’s
extrapolation technique is applied. The initial datum is defined by the
variable x0, while tol and nmax are the stopping criterion tolerance (on
the absolute value of the difference between two consecutive iterates)
and the maximum number of iterations allowed, respectively. If unde-
fined, default values nmax=100 and tol=1.e-04 are assumed.

Program 2.4. aitken: Aitken method

function [x,niter]=aitken(phi,x0,tol,nmax,varargin)
%AITKEN Aitken’s method.
% [ALPHA ,NITER]=AITKEN(PHI,X0) computes an
% approximation of a fixed point ALPHA of function PHI
% starting from the initial datum XO using Aitken’s
% extrapolation method. The method stops after 100
% iterations or after the absolute value of the
% difference between two consecutive iterates is
% smaller than 1.e-04. PHI can be defined either
% as an inline function or an anonymous function or
% by an M-file.
% [ALPHA ,NITER]=AITKEN(PHI,X0,TOL,NMAX) allows to
% define the tolerance on the stopping criterion and
% the maximum number of iterations.
if nargin ==

tol = 1.e-04;

nmax = 100;
elseif nargin ==
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nmax = 100;
end
x = x0;
diff = tol + 1;
niter = 0;

while niter < nmax & diff >= tol
gx = feval(phi,x,varargin{:3});
ggx = feval(phi,gx,varargin{:1});
xnew = (x*xggx-gx~2)/(ggx-2*xgx+x);

diff = abs(x-xnew);
X = Xnew;
niter = niter + 1;

end
if (niter==nmax & diff>tol)
fprintf ([’Fails to converge within maximum ’,...
’number of iterations\n’]);
end
return

Example 2.9 In order to compute the single root a =1 for function f(z) =
€”(x — 1) we apply Aitken’s method starting from the two following iteration
functions

¢o(x) = log(ze®), $1(z) =

We use Program 2.4 with tol=1.e-10, nmax=100, x0=2 and we define the two
iteration functions as follows:

phi0
phil

inline (’log(x*exp(x))’,’x’);
inline (’ (exp(x)+x)/(exp(x)+1)’,’x’);

We now run Program 2.4 as follows:

[alpha,niter]=aitken(phi0,x0,tol,nmax)

alpha =

1.0000 + 0.0000i
niter =

10

[alpha,niter]=aitken(phil ,x0,tol,nmax)

alpha =
1

niter =
4

As we can see, the convergence is extremely rapid. For comparison the fixed
point method with iteration function ¢, and the same stopping criterion would
have required 18 iterations, while the method corresponding to ¢o would not
have been convergent as |¢y(1)] = 2. |
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Let us summarize

1. A number « satisfying ¢(«) = « is called a fixed point of ¢. For its
computation we can use the so-called fixed point iterations: z(*+1) =
$(a));

2. fixed point iterations converge under suitable assumptions on the
iteration function ¢ and its first derivative. Typically, convergence is
linear, however, in the special case when ¢'(a) = 0, the fixed point
iterations converge quadratically;

3. fixed point iterations can also be used to compute the zeros of a
function;

4. given a fixed point iteration z(*t1) = ¢(2(¥)), it is always possible to
construct a new sequence using Aitken’s method, which in general
converges faster.

See Exercises 2.15-2.18.

2.6 Algebraic polynomials

In this section we will consider the case where f is a polynomial of
degree n > 0 of the form (1.9). As already anticipated, the space of all
polynomials (1.9) is denoted by the symbol P,,. We recall that if p,, € P,,,
n > 2, is a polynomial whose coefficients aj are all real, if « € C is a
complex root of p,, then & (the complex conjugate of «) is a root of p,
too.

Abel’s theorem guarantees that there does not exist an explicit form
to compute all the zeros of a generic polynomial p,, when n > 5. This
fact further motivates the use of numerical methods for computing the
roots of p,,.

As we have previously seen for such methods it is important to choose
an appropriate initial datum z(©) or a suitable search interval [a, b] for
the root. In the case of polynomials this is sometimes possible on the
basis of the following results.

Theorem 2.3 (Descartes’s sign rule) Let us denote by v the
number of sign changes of the coefficients {a;} and with k the num-
ber of real positive roots of a given polynomial p,, € P,,, each counted
with its own multiplicity. Then k < v and v — k is even.

Example 2.10 The polynomial ps(x) = 2® — 22° + 52 — 62° + 22% 4 8z — 8
has zeros {£1,+2i,1 + i} and thus has 1 real positive root (k = 1). Indeed,
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the number of sign changes v of its coefficients is 5 and thereafter £ < v and
v—k=4Iis even. |

Theorem 2.4 (Cauchy) All of the zeros of p, are included in the
circle I' in the complex plane

F={z€C: || <1+n}, wheren= max lax/an|- (229)

This property is barely useful when 7 > 1 (for polynomial pg in Example
2.10 for instance, we have n = 8, while all of the roots are in circles with
clearly smaller radii).

2.6.1 Horner’s algorithm

In this paragraph we will illustrate a method for the effective evaluation
of a polynomial (and its derivative) in a given point z. Such algorithm
allows to generate an automatic procedure, called deflation method, for
the progressive approximation of all the roots of a polynomial.

From an algebraic point of view, (1.9) is equivalent to the following
representation

pn(x) =ap+x(ar +x(az + ...+ x(apn_1 + anz)...)). (2.30)

However, while (1.9) requires n sums and 2n — 1 products to evaluate
pn(z) (for a given ), (2.30) only requires n sums and n products. The
expression (2.30), also known as the nested product algorithm, is the
basis for Horner’s algorithm. This method allows to effectively evaluate
the polynomial p,, in a point z by using the following synthetic division
algorithm

bn = Qn,
(2.31)
b :ak+bk+1z, k=n—1,n—2,...,0

In (2.31) all of the coefficients by with & < n — 1 depend on z and we
can verify that by = p,(z). The polynomial

Gn-1(z;2) = by + box + ... + byl = Zbkmkfl, (2.32)
k=1

of degree n — 1 in z, depends on the z parameter (via the by coeflicients)
and is called the associated polynomial of p,. Algorithm (2.31) is im-
plemented in Program 2.5. The a; coefficients of the polynomial to be
evaluated are stored in vector a starting from a, up to ag.
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Program 2.5. horner: synthetic division algorithm

function [y,b] = hormer(a,z)
%HORNER Hormer algorithm
% Y=HORNER(A,Z) computes
A Y = A(L)*Z°N + A(2)*Z°(N-1) + ... + A(N)*Z + A(N+1)
% using Horner’s synthetic division algorithm.
n = length(a)-1;
b = zeros(n+1,1);
b(1) = a(1);
for j=2:n+1
b(j) = a(j)+b(j-1)*z;
end
y = b(n+1);
b = b(l:end-1);
return

We now want to introduce an effective algorithm which, knowing the
root of a polynomial (or its approximation), is able to remove it and
then to allow the computation of the following one until all roots are
determinated.

In order to do this we should recall the following property of polyno-
maal division:

Proposition 2.3 Given two polynomials h, € P, and g, € P,
with m < n, there are a unique polynomial 6 € P,,_,, and a unique
polynomial p € Pp,—1 such that

ha(@) = g (@)3(x) + p(a). (2.33)

Thus, by dividing a polynomial p,, € P, by x — z, one deduces by (2.33)
that

Pn(z) = bo + (. — 2)qn_1(z; 2),

having denoted by ¢,_1 the quotient and by by the remainder of the
division. If z is a root of p,, then we have by = p,,(z) = 0 and therefore
prn(x) = (2 —2)gn—1(z; 2). In this case the algebric equation g,—1(z;2) =
0 provides the n — 1 remaining roots of p,(z). This remark suggests to
adopt the following deflation criterion to compute all the roots of p,.
Form=nn-1,...,1:

1. find a root ry, for p,, with an appropriate approximation method;
. compute ¢m_1(z;7m) using (2.31)-(2.32) (having set z = 1 );
3. set pm—1 = Qm—1-

[\V]

In the following paragraph we propose the most widely known
method in this group, which uses Newton’s method for the approxi-
mation of the roots.
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2.6.2 The Newton-Horner method

As its name suggests, the Newton-Horner method implements the defla-
tion procedure using Newton’s method to compute the roots r,,. The
advantage lies in the fact that the implementation of Newton’s method
conveniently exploits Horner’s algorithm (2.31).

As a matter of fact, if ¢, is the polynomial associated to p,, defined
in (2.32), since

Pu(®) = gn1 (25 2) + (& = 2)g, 1 (25 2),

one has

P (2) = qn-1(z; 2).

Thanks to this identity, the Newton-Horner method for the approxima-
tion of a (real or complex) root r; of p, (j = 1,...,n) takes the following
form:

given an initial estimation r§0) of the root, compute for each £ > 0 until
convergence

k k
(k+1) _ (k) _ Pn“’ﬁ ) _ (k) Pn(r§' )
Tj =T RO N (k).

—_— (2.34)
CAG IO ARG T

We now use the deflation technique, exploiting the fact that p,(z) =
(x —7j)pn—1(z). We can then proceed to the approximation of a zero of
Pn—1 and so on until all the roots of p,, are processed.

Consider that when r; € C, it is necessary to perform the computa-
(0)
J

tion in complex arithmetics, taking 73’ as the non-null imaginary part.

Otherwise, the Newton-Horner method would generate a sequence {r§-k)}
of real numbers.

The Newton-Horner method is implemented in Program 2.6. The
coefficients a; of the polynomial for which we intend to compute the
roots are stored in vector a starting from a, up to ag. The other input
parameters, tol and nmax, are the stopping criterion tolerance (on the
absolute value of the difference between two consecutive iterates) and
the maximum number of iterations allowed, respectively. If undefined,
the default values nmax=100 and tol=1.e-04 are assumed. As an out-
put, the program returns in vectors roots and iter the computed roots
and the number of iterations required to compute each of the values,
respectively.
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Program 2.6. newtonhorner: Newton-Horner method

function [roots,iter]=newtonhorner (a,x0,tol,nmax)
NEWTONHORNER Newton-Horner method

% [ROOTS,ITER]=NEWTONHORNER (A,X0) computes the roots of
% polynomial

% P(X)= A(L)*X"N + A(2)*X~(N-1) + ... + A(N)*X + A(N+1)
% using the Newton-Horner method starting from the

% initial guess X0. The method stops for each root

% after 100 iterations or after the absolute value of

% the difference between two consecutive iterates is

% smaller than 1.e-04.

% [ROOTS,ITER]=NEWTONHORNER (A,X0,TOL,NMAX) allows to

% define the tolerance on the stopping criterion and

% the maximum number of iterations.

if nargin == 2
tol = 1.e-04; nmax = 100;
elseif nargin == 3
nmax = 100;
end
n=length(a)-1; roots = zeros(n,1); iter = zeros(n,1);

for k = 1:n

% Newton iterations

niter = 0; x = x0; diff = tol + 1;

while niter < nmax & diff >= tol
[pz,b] = hormer(a,x); [dpz ,b] = horner(b,x);
xnew = x - pz/dpz; diff = abs(xnew-x);
niter = niter + 1; X = Xnew;

end

if (niter==nmax & diff> tol)
fprintf ([’ Fails to converge within maximum ’,...

’number of iterations\n ’]);

end

% Deflation

[pz,a]l] = hormer(a,x); roots(k) = x; iter(k) = niter;
end

Remark 2.2 In order to minimize the propagation of roundoff errors, during
the deflation process it is better to first approximate the root r; with smallest
absolute value and then to proceed to the computation of the following roots
r2,T3,..., until the one with the largest absolute value is reached (to learn
more, see for instance [QSS07]). ]

Example 2.11 To compute the roots {1,2,3} of the polynomial ps(z) =
z® — 622 4+ 11z — 6 we use Program 2.6
a=[1 -6 11 -6]; [x,niter]l=newtonhorner(a,0,1.e-15,100)

x =
1
2
3

niter =
8
8
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The method computes all three roots accurately and in few iterations. As
pointed out in Remark 2.2 however, the method is not always so effective. For
instance, if we consider the polynomial ps(x) = xt — 723 + 1522 — 13z + 4
(which has the root 1 of multiplicity 3 and a single root with value 4) we find
the following results

a=[1 -7 15 -13 4]; format long;
[x,niter]=newtonhorner (a,0,1.e-15,100)

x =
1.000006935337374
0.999972452635761
1.000020612232168
3.999999999794697

niter =
61
100
6
2

The loss of accuracy is quite evident for the computation of the multiple root,
and becomes as more relevant as the multiplicity increases. More in general, it
can be shown (see [QSS07]) that the problem of root-finding for a function f
becomes ill-conditioned (that is, very sensitive to perturbations on the data)
as the derivative f’ gets small at the roots. For an instance, see Exercise 2.6.

|

2.7 What we haven’t told you

The most sophisticated methods for the computation of the zeros of
a function combine different algorithms. In particular, the MATLAB
function fzero (see Section 1.5.1) adopts the so called Dekker-Brent
method (see [QSS07], Section 6.2.3). In its basic form fzero(fun,x0)
computes the zero of the function fun starting from x0; fun can be either
a string which is a function of x, the name of an inline function, the name
of an anonymous function, or the name of a m-file.

For instance, we could solve the problem in Example 2.1 also by
fzero, using the initial value x0=0.3 (as done by Newton’s method) via
the following instructions:

Rfunc=inline (’6000-1000*(1+r)/r*x((1+r)~5-1)’);

x0=0.3;
[alpha,res,flag,infol=fzero(Rfunc,x0);

We find the root alpha=0.06140241153653 after 7 iterations and 29
evaluations of the function Rfunc, with a residual res=-1.8190e-12.

The variable info is a structure with 5 subfields. Precisely the fields
info.iterations and info.funcCount contain number of iterations
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and global number of function evaluations performed during the call,
respectively. We note that when output parameter flag assumes a neg-
ative occurrence, then the function fzero failed in searching the zero.
For a comparison, Newton method converges in 6 iterations to the value
0.06140241153653 with a residual equal to 9.0949e-13, but it requires
the knowledge of the first derivative of f and a total of 12 function
evaluations.

In order to compute the zeros of a polynomial, in addition to the
Newton-Horner method, we can cite the methods based on Sturm se-
quences, Miiller’s method, (see [Atk89] or [QSS07]) and Bairstow’s
method ([RRO1], page 371 and following). A different approach con-
sists in characterizing the zeros of a function as the eigenvalues of a
special matrix (called the companion matriz) and then using appropri-
ate techniques for their computation. This approach is adopted by the
MATLARB function roots which has been introduced in Section 1.5.2.

We have mentioned in Section 2.3.2 how to set up a Newton method
for a nonlinear system, like (2.13). More in general, any fixed point iter-
ation can be easily extended to compute the roots of nonlinear systems.
Other methods exist as well, such as the Broyden and quasi-Newton
methods, which can be regarded as generalizations of Newton’s method
(see [DS96], [Deu04], [SM03] and [QSS07, Chapter 7]).

The MATLARB instruction

zero=fsolve(’fun’,x0)

allows the computation of one zero of a nonlinear system defined via
the user function fun starting from the vector x0 as initial guess. The
function fun returns the n values f;(Z1,...,Z,), ¢ = 1,...,n, for any
given input vector (Zy,...,7,)%.

For instance, in order to solve the nonlinear system (2.15) us-
ing fsolve the corresponding MATLAB user function, which we call
systemnl, is defined as follows:

function fx=systemnl (x)
fx (1) x(1)"2+x(2)"2-1;
£x(2) sin(pi*0.5*xx(1))+x(2)"3;

The MATLARB instructions to solve this system are therefore:

x0 = [1 1];
alpha=fsolve(’systemnl’,x0)

alpha =
0.4761 -0.8794

Using this procedure we have found only one of the two roots. The other
can be computed starting from the initial datum -x0.

Octave 2.1 The commands fzero and fsolve have exactly the same
purpose in MATLAB and Octave, however their interface differ slightly

fsolve
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in what concerns the optional arguments. We encourage the reader to
study the help documentation of both commands in each environment.
|

2.8 Exercises

Exercise 2.1 Given the function f(z) = coshx +cosx —~, for v = 1,2, 3 find
an interval that contains the zero of f. Then compute the zero by the bisection
method with a tolerance of 1071°.

Exercise 2.2 (State equation of a gas) For carbon dioxide (COz) the co-
efficients ¢ and b in (2.1) take the following values: a = 0.401Pa m°,
b =42.7-10"%m? (Pa stands for Pascal). Find the volume occupied by 1000
molecules of CO5 at a temperature T = 300K and a pressure p = 3.5 - 107 Pa
by the bisection method, with a tolerance of 10™'? (the Boltzmann constant
is k = 1.3806503 - 107%* Joule K™1).

Exercise 2.3 Consider a plane whose slope varies with constant rate w, and
a dimensionless object which is steady at the initial time ¢ = 0. At time ¢t > 0
its position is

s(t,w) = %[sinh(wt) — sin(wt)],

where g = 9.8 m/s? denotes the gravity acceleration. Assuming that this object
has moved by 1 meter in 1 second, compute the corresponding value of w with
a tolerance of 107°.

Exercise 2.4 Prove inequality (2.6).

Exercise 2.5 Motivate why in Program 2.1 the instruction x(2) = x(1)+
(x(3)-x(1))*0.5 has been used instead of the more natural one x(2)=(x(1)+
x(3))*0.5 in order to compute the midpoint.

Exercise 2.6 Apply Newton’s method to solve Exercise 2.1. Why is this
method not accurate when v = 27

Exercise 2.7 Apply Newton’s method to compute the square root of a pos-
itive number a. Proceed in a similar manner to compute the cube root of
a.

Exercise 2.8 Assuming that Newton’s method converges, show that (2.9)
is true when « is a simple root of f(z) = 0 and f is twice continuously
differentiable in a neighborhood of a.
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,/7

l2

Fig. 2.11. The problem of a rod sliding in a corridor

Exercise 2.9 (Rods system) Apply Newton’s method to solve Problem 2.3
for 3 € [0,2m/3] with a tolerance of 10™°. Assume that the lengths of the rods
are a1 = 10 cm, a2 = 13 cm, a3 = 8 cm and a4 = 10 cm. For each value of 8
consider two possible initial data, (®) = —0.1 and z(® = 27/3.

Exercise 2.10 Notice that the function f(z) = e® — 222 has 3 zeros, a1 < 0,
o and a3 positive. For which value of (% does Newton’s method converge
to ap?

Exercise 2.11 Use Newton’s method to compute the zero of f(z) = z® —
322277 4+ 324" — 8 % in [0, 1] and explain why convergence is not quadratic.

Exercise 2.12 A projectile is ejected with velocity vo and angle « in a tunnel
of height h and reaches its maximum range when « is such that sin(a) =
/2gh/vZ, where g = 9.8 m/s? is the gravity acceleration. Compute « using
Newton’s method, assuming that vo = 10 m/s and h = 1 m.

Exercise 2.13 (Investment fund) Solve Problem 2.1 by Newton’s method
with a tolerance of 107'2, assuming M = 6000 euros, v = 1000 euros and
n = 5. As an initial guess take the result obtained after 5 iterations of the
bisection method applied on the interval (0.01,0.1).

Exercise 2.14 A corridor has the form indicated in Figure 2.11. The maxi-
mum length L of a rod that can pass from one extreme to the other by sliding
on the ground is given by

L=1/(sin(m — v —«a)) + li/sin(a),
where « is the solution of the nonlinear equation

cos(m —y—a) , cos(a) _
®sin2 (mr—v—a) h sin? () 0 (2:35)

Compute a by Newton’s method when I = 10, [; = 8 and v = 37/5.

Exercise 2.15 Let ¢n be the iteration function of Newton’s method when
regarded as a fixed point iteration. Show that ¢y(a) = 1 — 1/m where «
is a zero of f with multiplicity m. Deduce that Newton’s method converges
quadratically if « is a simple root of f(z) = 0, and linearly otherwise.
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Exercise 2.16 Deduce from the graph of f(z) = 2® 4+ 42? — 10 that this
function has a unique real zero a.. To compute «a use the following fixed point
iterations: given 2z define 1 such that

S _ 2@®) 4+ 4(@™)? + 10

3 fa 0 P20

and analyze its convergence to a.

Exercise 2.17 Analyze the convergence of the fixed point iterations

(k) 1((k))2
JROSEV (') —|—3a]’ k>0,
3(z)2 +a

for the computation of the square root of a positive number a.
Exercise 2.18 Repeat the computations carried out in Exercise 2.11 this time

using the stopping criterion based on the residual. Which result is the more
accurate?



3

Approximation of functions and data

Approximating a function f consists of replacing it by another function
f of simpler form that may be used as its surrogate. This strategy is
used frequently in numerical integration where, instead of computing
f: f(z)dz, one carries out the exact computation of f: f(z)dz, f being
a function simple to integrate (e.g. a polynomial), as we will see in the
next chapter. In other instances the function f may be available only
partially through its values at some selected points. In these cases we
aim at constructing a continuous function f that could represent the
empirical law which is behind the finite set of data. We provide some
examples which illustrate this kind of approach.

3.1 Some representative problems

Problem 3.1 (Climatology) The air temperature near the ground de-
pends on the concentration K of the carbon acid (HoCO3) therein. In
Table 3.1 (taken from Philosophical Magazine 41, 237 (1896)) we report
for different latitudes on the Earth and for four different values of K,
the variation dx = 0x — 07 of the average temperature with respect
to the average temperature corresponding to a reference value K of K.
Here K refers to the value measured in 1896, and is normalized to one.
In this case we can generate a function that, on the basis of the available
data, provides an approximate value of the average temperature at any
possible latitude and for other values of K (see Example 3.1). |

Problem 3.2 (Finance) In Figure 3.1 we report the price of a stock
at the Zurich stock exchange over two years. The curve was obtained by
joining with a straight line the prices reported at every day’s closure. This
simple representation indeed implicitly assumes that the prices change
linearly in the course of the day (we anticipate that this approximation
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0K
Latitude K =067 K=15 K=20 K =30
65 -3.1 3.52 6.05 9.3
55 -3.22 3.62 6.02 9.3
45 -3.3 3.65 5.92 9.17
35 -3.32 3.52 5.7 8.82
25 -3.17 3.47 5.3 8.1
15 -3.07 3.25 5.02 7.52
5 -3.02 3.15 4.95 7.3
-5 -3.02 3.15 4.97 7.35
-15 -3.12 3.2 5.07 7.62
-25 -3.2 3.27 5.35 8.22
-35 -3.35 3.52 5.62 8.8
-45 -3.37 3.7 5.95 9.25
-55 -3.25 3.7 6.1 9.5

Table 3.1. Variation of the average yearly temperature on the Earth for four
different values of the concentration K of carbon acid at different latitudes

is called composite linear interpolation). We ask whether from this graph
one could predict the stock price for a short time interval beyond the
time of the last quotation. We will see in Section 3.6 that this kind of
prediction could be guessed by resorting to a special technique known as
least-squares approximation of data (see Example 3.11). |

Problem 3.3 (Biomechanics) We consider a mechanical test to es-
tablish the link between stresses and deformations of a sample of biolog-
ical tissue (an intervertebral disc, see Figure 3.2). Starting from the data
collected in Table 3.2 (taken from P.Komarek, Chapt. 2 of Biomechan-
ics of Clinical Aspects of Biomedicine, 1993, J.Valenta ed., Elsevier) in

L L L |
nov00 may01 nov01 may02

Fig. 3.1. Price variation of a stock over two years
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oc=F/A
F e=AL/L

ALT L

Fig. 3.2. A schematic representation of an intervertebral disc

test stress o stress € test stress o stress e
1 0.00 0.00 5 0.31 0.23
2 0.06 0.08 6 0.47 0.25
3 0.14 0.14 7 0.60 0.28
4 0.25 0.20 8 0.70 0.29

Table 3.2. Values of the deformation for different values of a stress applied
on an intervertebral disc

Example 3.12 we will estimate the deformation corresponding to a stress
o = 0.9 MPa (MPa= 100 N/cm?). [ |

Problem 3.4 (Robotics) We want to approximate the planar trajec-
tory followed by a robot (idealized as a material point) during a working
cycle in an industry. The robot should satisfy a few constraints: it must
be steady at the point (0,0) in the plane at the initial time (say, t = 0),
transit through the point (1,2) at ¢ = 1, get the point (4,4) at t = 2,
stop and restart immediately and reach the point (3,1) at ¢t = 3, return
to the initial point at time ¢ = 5, stop and restart a new working cycle.
In Example 3.9 we will solve this problem using the splines functions. B

3.2 Approximation by Taylor’s polynomials

A function f in a given interval can be replaced by its Taylor polynomial,
which was introduced in Section 1.5.3. This technique is computationally
expensive since it requires the knowledge of f and its derivatives up to
the order n (the polynomial degree) at a given point xg. Moreover, the
Taylor polynomial may fail to accurately represent f far enough from
the point zy. For instance, in Figure 3.3 we compare the behavior of
f(x) = 1/ with that of its Taylor polynomial of degree 10 built around
the point g = 1. This picture also shows the graphical interface of
the MATLAB function taylortool which allows the computation of
Taylor’s polynomial of arbitrary degree for any given function f. The
agreement between the function and its Taylor polynomial is very good

taylortool
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T = = 1)2—x—(x= 1%+ (x=1) = (x=1)°+ (x=1)° .+ 2

fix)

Help Reset | Close |

Fig. 3.3. Comparison between the function f(z) = 1/z (solid line) and its
Taylor polynomial of degree 10 related to the point zo = 1 (dashed line). The
explicit form of the Taylor polynomial is also reported

in a small neighborhood of 2y = 1 while it becomes unsatisfactory when
x — g gets large. Fortunately, this is not the case of other functions such
as the exponential function which is approximated quite nicely for all
x € R by its Taylor polynomial related to x¢p = 0, provided that the
degree n is sufficiently large.

In the course of this chapter we will introduce approximation methods
that are based on alternative approaches.

Octave 3.1 taylortool is not available in Octave. ]

3.3 Interpolation

As seen in Problems 3.1, 3.2 and 3.3, in several applications it may
happen that a function is known only through its values at some given
points. We are therefore facing a (general) case where n + 1 couples
{zi,y;}, i = 0,...,n, are given; the points x; are all distinct and are
called nodes.

For instance in the case of Table 3.1, n is equal to 12, the nodes x; are
the values of the latitude reported in the first column, while the y; are
the corresponding values (of the temperature variation) in the remaining
columns.

In such a situation it seems natural to require the approximate func-
tion f to satisfy the set of relations



3.3 Interpolation 79

f(xi):yiyi:0717"'an (31)

Such an f is called interpolant of the set of data {y;} and equations (3.1)
are the interpolation conditions.
Several kinds of interpolants could be envisaged, such as:

- polynomial interpolant:
f(x) =ag+ a1z + asz® + ...+ apx™;

- trigonometric interpolant:

f@)=a_pe ™™ 4 dag+...+apye™®

where M is an integer equal to n/2 if n is even, (n+1)/2 if n is odd,
and ¢ is the imaginary unit;
- rational interpolant:

~ . ao—l—alx—l—...—i—akmk
Ak41 + Q422 + ...+ Qpgp+1 2"

For simplicity we only consider those interpolants which depend lin-
early on the unknown coefficients a;. Both polynomial and trigonometric
interpolation fall into this category, whereas the rational interpolant does
not.

3.3.1 Lagrangian polynomial interpolation

Let us focus on the polynomial interpolation. The following result holds:

Proposition 3.1 For any set of couples {z;,y;}, i =0,...,n, with
distinct nodes x;, there exists a unique polynomial of degree less
than or equal to n, which we indicate by II,, and call interpolating
polynomial of the values y; at the nodes x;, such that

m,(z;) =v,1=0,...,n (3.2)

In the case where the {y;, i = 0,...,n} represent the values of a
continuous function f, I, is called interpolating polynomial of f
(in short, interpolant of f) and will be denoted by IT,, f.
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0 0.5 1 15 2

Fig. 3.4. The polynomial po € P4 associated with a set of 5 equispaced nodes

To verify uniqueness we proceed by contradiction and suppose that
there exist two distinct polynomials of degree n, II,, and II%, both sat-
isfying the nodal relation (3.2). Their difference, II,, — IT%, would be a
polynomial of degree n which vanishes at n + 1 distinct points. Owing
to a well known theorem of Algebra, such a polynomial should vanish
identically, and then II} must coincide with IT,,.

In order to obtain an expression for II,, we start from a very special
case where y; vanishes for all 7 apart from ¢ = k (for a fixed k) for which
yr = 1. Then setting ¢y (x) = IT,(z), we must have (see Figure 3.4)

ok € Pp, or(5) = 051 = {0 otherwise,

where d;; is the Kronecker symbol.
The functions ¢y have the following expression:

n
T — Ty
x) = _— k=0,...,n. 3.3
o () .llzk —2; (3.3)
i
ik
We move now to the general case where {y;,i = 0,...,n} is a set of

arbitrary values. Using an obvious superposition principle we can obtain
the following expression for I1,

,(x) = Y yrpr() (3.4)
k=0

Indeed, this polynomial satisfies the interpolation conditions (3.2), since

n n
o) =Y ykpr(w) = yrdie =i, i=0,...,n.
k=0 k=0
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Due to their special role, the functions ¢y are called Lagrange char-
acteristic polynomials, and (3.4) is the Lagrange form of the interpolant.
In MATLAB we can store the n+1 couples {(x;,y;)} in the vectors x
and y, and then the instruction c=polyfit(x,y,n) will provide the coef-
ficients of the interpolating polynomial. Precisely, ¢ (1) will contain the
coefficient of 2", c(2) that of 2”71, ... and c(n+1) the value of I1,,(0).
(More on this command can be found in Section 3.6.) As already seen
in Chapter 1, we can then use the instruction p=polyval(c,z) to com-
pute the value p(j) attained by the interpolating polynomial at z(j),
j=1,...,m, the latter being a set of m arbitrary points.

In the case when the explicit form of the function f is available, we
can use the instruction y=eval(f) (or y=feval(f), or again y=f (x)) in
order to obtain the vector y of values of £ at some specific nodes (which
should be stored in a vector x).

Example 3.1 (Climatology) To obtain the interpolating polynomial for the
data of Problem 3.1 relating to the value K = 0.67 (first column of Table 3.1),
using only the values of the temperature for the latitudes 65, 35, 5, -25, -55,
we can use the following MATLAB instructions:

x=[-55 -25 5 35 65]; y=[-3.26 -3.2 -3.02 -3.32 -3.1];
format short e; c=polyfit(x,y,4)

c =
8.2819e-08 -4.5267e-07 -3.4684e-04 3.7757e-04 -3.0132e+00

The graph of the interpolating polynomial can be obtained as follows:
z=linspace(x (1) ,x(end) ,100);

p=polyval(c,z);

plot(z,p,x,y,’0’);grid on;

In order to obtain a smooth curve we have evaluated our polynomial at 101
equispaced points in the interval [—55, 65] (as a matter of fact, MATLAB plots
are always constructed on piecewise linear interpolation between neighboring
points). Note that the instruction x (end) picks up directly the last component
of the vector x, without specifying the length of the vector. In Figure 3.5 the
filled circles correspond to those values which have been used to construct the
interpolating polynomial, whereas the empty circles correspond to values that
have not been used. We can appreciate the qualitative agreement between the
curve and the data distribution. |

Using the following result we can evaluate the error obtained by re-
placing f with its interpolating polynomial I7T,, f:

polyfit
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Fig. 3.5. The interpolating polynomial of degree 4 introduced in Example 3.1

Proposition 3.2 Let I be a bounded interval, and consider n + 1
distinct interpolation nodes {x;,i =0,...,n} in I. Let f be contin-
wously differentiable up to order n+1 in I. Then Vx € I 3¢ € I
such that

FoE) T
WH(CC - ;) (3.5)

!
i=0

Enf<x) = f(l‘) - an(x) =

Obviously, E, f(x;) =0,i=0,...,n. Result (3.5) can be better specified
in the case of a uniform distribution of nodes, that is when x; = x;_1 +h
fori=1,...,n, for a given h > 0 and a given xy. As stated in Exercise
3.1, Va € (20, xy) one can verify that

n hn+1
H(m —z;)| <nl (3.6)
i=0
and therefore
max| f* V(@)
E, < = A" .
max B, /() < = 1)

Unfortunately, we cannot deduce from (3.7) that the error tends to
0 when n — oo, in spite of the fact that h"*1/[4(n + 1)] tends to 0. In
fact, as shown in Example 3.2, there exist functions f for which the limit
can even be infinite, that is
lim max|E, f(z)| = oco.
n—oo xel
This striking result indicates that by increasing the degree n of the

interpolating polynomial we do not necessarily obtain a better recon-
struction of f. For instance, should we use all data of the second column



3.3 Interpolation 83

of Table 3.1, we would obtain the interpolating polynomial IIys f repre-
sented in Figure 3.6, left, whose behavior in the vicinity of the left-hand
of the interval is far less satisfactory than that obtained in Figure 3.5
using a much smaller number of nodes. An even worse result may arise
for a special class of functions, as we report in the next example.

Example 3.2 (Runge) If the function f(z) = 1/(1 4 z?) is interpolated
at equispaced nodes in the interval I = [—5,5], the error maxser |Enf(z)|
tends to infinity when n — oo. This is due to the fact that if n — co the
order of magnitude of max,er |f™ Y ()| outweighs the infinitesimal order of
Rt /[4(n+1)]. This conclusion can be verified by computing the maximum of
f and its derivatives up to the order 21 by means of the following MATLAB
instructions:

syms x; n=20; f=1/(1+x"2); df=diff (f,1);

cdf = char (df);

for i = 1:n+1, df = diff(df,1); cdfn = char (df);

x = fzero(cdfn,0); M(i) = abs(eval(cdf)); cdf = cdfn;
end

The maximum of the absolute values of the functions f, n=1,...,21,
are stored in the vector M. Notice that the command char converts the symbolic
expression df into a string that can be evaluated by the function fzero. In
particular, the absolute values of f(™ for n =3, 9, 15, 21 are:

format short e; M([3,9,15,21])

ans =
4.6686e+00 3.2426e+05 1.2160e+12 4.8421e+19

while the corresponding values of the maximum of H(a: —x;)/(n+ 1)! are

i=0

z = linspace (-5,5,10000);

for n=0:20; h=10/(n+1); x=[-5:h:5];
c=poly(x); r(mn+1l)=max(polyval(c,z));
r(n+1)=r(n+1)/prod ([1:n+1]);

end

r([3,9,15,21])

ans =
1.1574e+01 5.1814e-02 1.3739e-05 4.7247e-10

where c=poly(x) is a vector whose components are the coefficients of that
polynomial whose roots are the elements of the vector x. It follows that
maxzer |Enf(z)| attains the following values:

5.4034e+01 1.6801e+04 1.6706e+07 2.2877e+10

for n =3, 9, 15, 21, respectively. The lack of convergence is also indicated by
the presence of severe oscillations in the graph of the interpolating polynomial
with respect to the graph of f, especially near the endpoints of the interval
(see Figure 3.6, right). This behavior is known as Runge’s phenomenon. R

Besides (3.7), the following inequality can also be proved:

max| ' (x) = (I, ) («)| < Ch"max| /") ()],

poly
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%0 20 20 0 20 20 50 80 -5 = = 1 3 5
Fig. 3.6. Two examples of Runge’s phenomenon: at left, I7;2 computed for
the data of Table 3.1, column K = 0.67; at right, IT12f (solid line) computed
on 13 equispaced nodes for the function f(z) = 1/(1 + 22) (dashed line)

where C' is a constant independent of h. Therefore, if we approximate
the first derivative of f by the first derivative of I, f, we loose an order
of convergence with respect to h.

In MATLAB, (II,,f)’ can be computed using the instruction [d]=
polyder (c), where c is the input vector in which we store the coefficients
of the interpolating polynomial, while d is the output vector where we
store the coefficients of its first derivative (see Section 1.5.2).

3.3.2 Stability of polynomial interpolation

What happens to the interpolating polynomials if, instead of consid-
ering exact values f(x;) we consider perturbed ones, say f(ml), with
i =0,...,n7 Note that perturbations arise because of either rounding
errors or uncertainty in measuring data themselves.

Let I, f be the exact polynomial interpolating the values f (2;). De-
noting by x the vector whose components are the interpolation nodes
{z;}, we have

i=0

< 49 gnex,

I — I, f(x)| =
max |1 f(2) — I f(x)| = max

(3.8)
fai) = fx)

where

xel 4

A(x) = max Y~ |p;(z)] (3.9)
=0

is the so-called Lebesgue’s constant which depends on interpolation
nodes. Small variations on the nodal values f(z;) yield small changes
on the interpolating polynomial, provided that the Lebesgue’s constant



3.3 Interpolation 85

Fig. 3.7. The effect of instability on equispaced Lagrange interpolation. Il f
(solid line) and Il21 f (dashed line) represent the exact and perturbed inter-
polation polynomials, respectively, for the Example 3.3

is small. A,, can therefore be regarded as a condition number of the inter-
polation problem. For Lagrange interpolation at equispaced nodes one
has

2n+1

) 2 (3.10)

where e ~ 2.71834 is the Napier (or Euler) number, while v ~ 0.547721
is the Euler constant (see [Hes98] and [Nat65]).

For large values of n, Lagrange interpolation on equispaced nodes
can therefore be unstable, as we can deduce from the following example.
(See also the Exercise 3.8.)

Example 3.3 To interpolate f(x) = sin(27x) at 22 equispaced nodes in the
interval [—1,1], let us generate the values f(z;) by a random perturbation of
the exact values f(z;), such that

max_ |f(xs) — fzi)] ~9.5-107%

In Figure 3.7 the two interpolating polynomials I12; f and I12; f are com-
pared, the difference between the two polynomials is much larger than the
perturbations on data, precisely max I, f(z) — I, f(x)| ~ 3.1342, and the

e

gap is especially severe near the endpoints of the interval. Note that in this
example the Lebesgue’s constant is very high, being A21(x) ~ 20574. |

See the Exercises 3.1-3.4.

oz
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3.3.3 Interpolation at Chebyshev nodes

Runge’s phenomenon can be avoided if a suitable distribution of nodes
is used. In particular, in an arbitrary interval [a, b], we can consider the
so called Chebyshev-Gauss-Lobatto nodes (see Figure 3.8, right):

b b—a. . . ,
By = a;— + Tasr:i, where 7; = — cos(mi/n), i =0,...,n | (3.11)
Obviously, ; = Z;, ¢ = 0,...,n, when [a,b] = [—1,1]. Indeed, for this

special distribution of nodes it is possible to prove that, if f is a contin-
uous and differentiable function in [a, b], IT,, f converges to f as n — oo
for all z € [a, b].

The Chebyshev-Gauss-Lobatto nodes, which are the abscissas of eq-
uispaced nodes on the unit semi-circumference, lie inside [a, b] and are
clustered near the endpoints of this interval (see Figure 3.8, right).

Another non-uniform distribution of nodes in the interval (a, b), shar-
ing the same convergence properties is provided by the Chebyshev-Gauss
nodes:

a+b b—a 2i+1m
i: —_ - 7‘: g eeey .].2
i@ 5 5 cos<n+12> i=0 n (3.12)

Fig. 3.8. The left side picture shows the comparison between the function
f(z) = 1/(1+22) (thin solid line) and its interpolating polynomials of degree 8
(dashed line) and 12 (solid line) at the Chebyshev-Gauss-Lobatto nodes. Note
that the amplitude of spurious oscillations decreases as the degree increases.
The right side picture shows the distribution of Chebyshev-Gauss-Lobatto
nodes in the interval [—1, 1]
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n 5 10 20 40
E, 0638  0.1322  0.0177  0.0003

Table 3.3. The interpolation error for Runge’s function f(z) = 1/(1 + z?)
when the Chebyshev-Gauss-Lobatto nodes (3.11) are used

Example 3.4 We consider anew the function f of Runge’s example and com-
pute its interpolating polynomial at Chebyshev-Gauss-Lobatto nodes. The lat-
ter can be obtained through the following MATLAB instructions:

xc = -cos(pi*[0:n]/n); x = (a+b)*0.5+(b-a)*xc*0.5;

where n+1 is the number of nodes, while a and b are the endpoints of the
interpolation interval (in the sequel we choose a=-5 and b=5). Then we compute
the interpolating polynomial by the following instructions:

f= ’1./(1+x.72)°; y = eval(f); c = polyfit(x,y,n);

Now let us compute the absolute values of the differences between f and
its interpolant relative to Chebyshev-Gauss-Lobatto nodes at as many as 1000
equispaced points in the interval [—5, 5] and take the maximum error values:
x = linspace(-5,5,1000); p=polyval(c,x);
fx = eval(f); err = max(abs(p-£fx));

As we see in Table 3.3, the maximum of the error decreases when n in-
creases. |

When the Lagrange interpolant is defined at the Chebyshev-Gauss-
Lobatto nodes (3.11), then the Lebesgue’s constant can be bounded as
follows ([Hes98])

™

+ (3.13)

2 8
Ap(x) < = <logn + v + log —>
T ™
while when interpolation is carried out on the Chebyshev-Gauss nodes
(3.12), then

™

TRV (3.14)

2 8
Ap(x) < - (log(n +1) 4+~ +1log ;) +
As usual, v ~ 0.57721 denotes the Euler constant.

By comparing (3.13) and (3.14) with the estimate (3.10), we can
conclude that the Lagrange interpolation at Chebyshev nodes is much
less sensitive to perturbation errors than interpolation at equispaced
nodes.

Example 3.5 Let us use now interpolation at the Chebyshev nodes, either

(3.11) and (3.12). Starting from the same data perturbations considered in

Example 3.3, when n = 21 we have max |IT,, f(x) — IT,, f (x)| ~ 1.0977-10" for

nodes (3.11), while max [T f () — I, f(z)] ~ 1.1052 - 10~° for nodes (3.12).
EIS

This result is in good agreement with the estimates (3.13) and (3.14) which,
for n = 21 yield A, (x) < 2.9008 and A, (x) < 2.9304, respectively. |
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3.3.4 Trigonometric interpolation and FFT

We want to approximate a periodic function f : [0,27] — C, i.e. one
satisfying f(0) = f(27), by a trigonometric polynomial f which inter-
polates f at the equispaced n + 1 nodes z; = 27j/(n+1),j=0,...,n

i.e.
f(x;) = f(x;), for j =0,...,n. (3.15)

The trigonometric interpolant f is obtained by a linear combination of
sines and cosines.
Let us consider at first the case n even. Precisely we seek a function

M
flz) = C;—O + > [ag cos(kx) + by sin(kx)], (3.16)
k=1

with M = n/2, whose unknowns are the complex coefficients ay, k =
0,...,M and by, k = 1,..., M. By recalling the Euler formula e*** =
cos(kx) + isin(kz), the trigonometric polynomial (3.16) can be written
as

M .
= > e, (3.17)
k=—M

where i is the imaginary unit and the coefficients ¢, for k = 0, ..., M,
are related to the coefficient a, and by through the formulas

ak = ¢ + c—g, b = i(ck — C_k). (3.18)

As a matter of fact, thanks to the parity properties of sine and cosine
functions, it holds

M

M
Z cpett® = Z ¢k (cos(kx) + isin(kx))
k=—

k=—M

[ek(cos(kx) + isin(kx)) + c_g(cos(kx) — isin(kz))]

[(ck + c—g) cos(kx) + i(ck — c—i) sin(kx))] .

i

When n is odd, the trigonometric polynomial f can be defined as

M+1

flay="Y_ e, (3.19)

k=—(M+1)
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where M = (n — 1)/2. Note that these are n + 2 unknown coefficients in
(3.19), while the interpolation conditions (3.15) are only n+1. A possible
remedy consists of imposing c¢_(ar41) = ¢(ar41), as done by MATLAB
in the function interpft.
Even when n is odd we can write f as a sum of sine and cosine functions,
obtaining a formula similar to (3.16) in which the index % of the sum
ranges now from 1 to M + 1. Coefficients ¢ in (3.19) are still related
to coefficients ay and by through the formulas (3.18), however now k =
0,...,M + 1. Precisely, for k = M + 1 we have a(yr41) = 2¢(ar41) and
bivi1y =0.

For the sake of generalization, we introduce a parameter p that we set
to 0, if n is even, and to 1, if n is odd. Then the interpolation polynomial
can be written in a more general way as

M+p

fay=">_ et (3.20)

k=—(M+p)

Because of its analogy with Fourier series, f is also named discrete
Fourier series of f. By imposing interpolation conditions at nodes x; =

jh, with h = 27 /(n + 1), we find

M+p

S ™t = f(zy), j=0,....n. (3.21)

k=—(M+p)

In order to compute the coefficients {cx} we multiply equation (3.21)
by e”¥"%i = ¢~"I" where m is an integer ranging between 0 and n, and
then sum with respect to j

n M+p

Z Z cpeikihg=imih — Zf(xj)e*imjh. (3.22)
J=0 k=— (M) =0
Let us consider the identity

Zeijh(k—m) — (n + 1)6]“7“

§=0

which is obviously true if & = m. When k& # m, it follows from the
property

n 1ih(em) _ 1— (ei(kfm)h)n+1
Ze T 1 — ei(k—m)h

and the remark that the numerator on the right hand side is null, since
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1— ei(kfm)h(nJrl) —1— ei(kfm)27r

=1—cos((k —m)2n) — isin((k — m)2n).

From (3.22) we draw the following explicit expression for the coefficients
of f

o= ——3"f@)e ™", k=—(M+p)... M4p | (323)

We deduce from (3.23) that, if f is a real valued function, then c_j =

e, for k= —(M +p),..., M + p (this follows from e’*7" = e—ikih) that
is ag, by € R (for k =0,...,M + p), thus f is a real valued function,
too.
The computation of all the coefficients {c;} can be accomplished with
an order nlog, n operations by using the Fast Fourier Transform (FFT),
which is implemented in the MATLAB program fft (see Example 3.6).
Similar conclusions hold for the inverse transform through which we
obtain the values {f(z;)} from the coeflicients {cy}. The inverse fast
Fourier transform is implemented in the MATLAB program ifft.

Example 3.6 Consider the function f(z) = z(x — 27w)e™" for z € [0, 27]. To
use the MATLAB program fft we first compute the values of f at the nodes
x; = gn/b for j = 0,...,9 by the following instructions (recall that .* is the
component-by-component vector product):

n=9; x=2*%pi/(n+1)*[0:n]; y=x.*(x-2%pi).*exp(-x);

Now we compute by the FFT the vector of Fourier coefficients, with the
following instructions:
Y=£f£ft (y);
C=fftshift(Y)/(n+1)
C =
Columns 1 through 2
0.0870 0.0926 - 0.0214i
Columns 3 through 4
0.1098 - 0.0601i 0.1268 - 0.1621i
Columns 5 through 6
-0.0467 - 0.4200i -0.6520

Columns 7 through 8

-0.0467 + 0.4200i 0.1268 + 0.1621i

Columns 9 through 10

0.1098 + 0.0601i 0.0926 + 0.0214i

Elements of Y are related to coefficients ¢ defined in (3.23) by the following re-
lation: Y= (n+1)[co,...,cM,C—(M4p), - - - > C—1]. When n is odd, the coefficient
¢(m+1) (which coincides with ¢_(pr41y) is neglected. The command fftshift
sorts the elements of the input array, so that C= [c_(ar4u),---,C=1,¢0,.-.,CMm].

Note that the program ifft achieves the maximum efficiency when n is a
power of 2, even though it works for any value of n. |
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0.5

2% 1 2 3 . 5 6 7
Fig. 3.9. The function f(z) = x(x —2n)e™* (dashed line) and the correspond-
ing trigonometric interpolant (solid line) relative to 10 equispaced nodes

The command interpft provides the trigonometric interpolant of
a set of real data. It requires in input an integer m and a vector of
values which represent the values taken by a function (periodic with
period p) at the set of points z; = jp/(n+ 1), j = 0,...,n. interpft
returns the m real values of the trigonometric interpolant, obtained by
the Fourier transform, at the nodes ¢; = ip/m, i = 0,...,m — 1. For
instance, let us reconsider the function of Example 3.6 in [0,27] and
take its values at 10 equispaced nodes z; = jn/5, j = 0,...,9. The
values of the trigonometric interpolant at, say, the 100 equispaced nodes
t; = 2im/100, ¢ = 0,...,99 can be obtained as follows (see Figure 3.9)
n=9; x=2%pi/(n+1)*[0:n]; y=x.*(x-2xpi).*exp(-x);
z=interpft (y,100);

In some cases the accuracy of trigonometric interpolation can dra-
matically downgrade, as shown in the following example.

Example 3.7 Let us approximate the function f(z) = fi(z) + fo(z), with
fi(z) = sin(z) and fo(z) = sin(5z), using nine equispaced nodes in the interval
[0, 27]. The result is shown in Figure 3.10, left. Note that in some intervals the
trigonometric approximant shows even a phase inversion with respect to the
function f. |

This lack of accuracy can be explained as follows. At the nodes con-
sidered, the function f5 is indistinguishable from f5(z) = — sin(3x) which
has a lower frequency (see Figure 3.10, right). The function that is ac-
tually approximated is therefore F'(z) = fi(z) + fs(z) and not f(z) (in
fact, the dashed line of Figure 3.10, left, does coincide with F).

This phenomenon is known as aliasing and may occur when the func-
tion to be approximated is the sum of several components having differ-
ent frequencies. As soon as the number of nodes is not enough to resolve
the highest frequencies, the latter may interfere with the low frequen-
cies, giving rise to inaccurate interpolants. To get a better approximation

interpft
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Fig. 3.10. The effects of aliasing. At left, comparison between the function
f(z) = sin(z) + sin(5z) (solid line) and its trigonometric interpolant (3.16)
with M = 3 (dashed line). At right, the functions sin(5z) (dashed line) and
—sin(3z) (solid line) take the same values at the interpolation nodes. This
circumstance explains the severe loss of accuracy shown at left

for functions with higher frequencies, one has to increase the number of
interpolation nodes.

A real life example of aliasing is provided by the apparent inversion
of the sense of rotation of spoked wheels. Once a certain critical velocity
is reached the human brain is no longer able to accurately sample the
moving image and, consequently, produces distorted images.

Let us summarize

1. Approximating a set of data or a function f in [a, b] consists of finding
a suitable function f that represents them with enough accuracy;

2. the interpolation process consists of determining a function f such
that f(z;) = yi, where the {z;} are given nodes and {y;} are either
the values {f(z;)} or a set of prescribed values;

3. if the n+1 nodes {z;} are distinct, there exists a unique polynomial
of degree less than or equal to n interpolating a set of prescribed
values {y;} at the nodes {z;};

4. for an equispaced distribution of nodes in [a,b] the interpolation
error at any point of [a, b] does not necessarily tend to 0 as n tends
to infinity. However, there exist special distributions of nodes, for
instance the Chebyshev nodes, for which this convergence property
holds true for all continuously differentiable functions;

5. trigonometric interpolation is well suited to approximate periodic
functions, and is based on choosing f as a linear combination of sine
and cosine functions. The FFT is a very efficient algorithm which
allows the computation of the Fourier coefficients of a trigonometric



3.4 Piecewise linear interpolation 93

80

-2 6 é z‘t é 8
Fig. 3.11. The function f(z) = 2® + 10/(sin(z) + 1.2) (solid line) and its
piecewise linear interpolation polynomial I7{ f (dashed line)

interpolant from its node values and admits an equally fast inverse,
the IFFT.

3.4 Piecewise linear interpolation

The interpolant at Chebyshev nodes provides an accurate approximation
of any smooth function f whose expression is known. In the case when
f is nonsmooth or when f is only known through its values at a set of
given points (which do not coincide with the Chebyshev nodes), one can
resort to a different interpolation method which is called linear composite
interpolation.

More precisely, given a distribution (not necessarily uniform) of nodes
o < x1 < ...< Tp, we denote by I; the interval [z;, xz;11]. We approx-
imate f by a continuous function which, on each interval, is given by
the segment joining the two points (x;, f(x;)) and (ziy1, f(ziy1)) (see
Figure 3.11). This function, denoted by IT1{ f, is called piecewise linear
interpolation polynomial of f and its expression is:

f($i+1) - f(mi)(x

I @) = fleg) + S

— ;) for x € I;.

The upper-index H denotes the maximum length of the intervals I;.
The following result can be inferred from (3.7) setting n = 1 and
h=H:
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Proposition 3.3 If f € C?(I), where I = [xq,x,], then

H H2 "
max| (¢) - 1T}’ f ()] < ~g-max| " (2)].

Consequently, for all z in the interpolation interval, II¥ f(z) tends to
f(z) when H — 0, provided that f is sufficiently smooth.

Through the instruction si=interpl(x,y,z) one can compute the
values at arbitrary points, which are stored in the vector z, of the piece-
wise linear polynomial that interpolates the values y(i) at the nodes
x(i), for i = 1,...,n+1. Note that z can have arbitrary dimension. If
the nodes are in increasing order (i.e. x(i+1) > x(i), for i=1,...,n)
then we can use the quicker version interplq (q stands for quickly).
Notice that interplq is quicker than interpl on non-uniformly spaced
data because it does not make any input checking, nevertheless, we note
that all input variables of interplq must be column vectors.

It is worth mentioning that the command fplot, which is used to
display the graph of a function f on a given interval [a,b], does in-
deed replace the function by its piecewise linear interpolant. The set of
interpolating nodes is generated automatically from the function, follow-
ing the criterion of clustering these nodes around points where f shows
strong variations. A procedure of this type is called adaptive.

Octave 3.2 interplqis available in Octave starting from Release 3.2.0.
|

3.5 Approximation by spline functions

As done for piecewise linear interpolation, piecewise polynomial interpo-
lation of degree n > 2 can be defined as well. For instance, the piece-
wise quadratic interpolation ITH f is a continuous function that on each
interval I; replaces f by its quadratic interpolation polynomial at the
endpoints of I; and at its midpoint. If f € C3(I), the error f — ITH f in
the maximum norm decays as H® if H tends to zero.

The main drawback of this piecewise interpolation is that IT{ f with
k > 1, is nothing more than a global continuous function. As a matter of
fact, in several applications, e.g. in computer graphics, it is desirable to
get approximation by smooth functions which have at least a continuous
derivative.
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With this aim, we can construct a function sz with the following
properties:

1. on each interval I; = [x;, 2;41], for i = 0,...,n—1, s3 is a polynomial
of degree 3 which interpolates the pairs of values (z;, f(z;)) for j =
i,i+ 1 (s3 is therefore a globally continuous function);

2. s3 has continuous first and second derivatives in the nodes xz;, ¢ =
1,....,n—1.

For its complete determination, we need four conditions on each in-
terval, therefore a total of 4n equations, which we can provide as follows:

- n+ 1 conditions arise from the interpolation requirement at the nodes

zi,1=0,...,n;
- n — 1 further equations follow from the requirement of continuity of
the polynomial at the internal nodes x1,...,Tp—1;

- 2(n — 1) new equations are obtained by requiring that both first and
second derivatives be continuous at the internal nodes.

We still lack two further equations, which we can e.g. choose as
s5(z0) = 0, s5(zn) = 0. (3.24)

The function sz which we obtain in this way, is called a natural interpo-
lating cubic spline.

By suitably choosing the unknowns (see [QSS07, Section 8.7]) to rep-
resent s3 we arrive at a (n + 1) x (n 4+ 1) system with a tridiagonal
matrix whose solution can be accomplished by a number of operations
proportional to n (see Section 5.6) whose solutions are the values s”(x;)
fori=0,...,n.

Using Program 3.1, this solution can be obtained with a number of
operations equal to the dimension of the system itself (see Section 5.6).
The input parameters are the vectors x and y of the nodes and the data
to interpolate, plus the vector zi of the abscissae where we want the
spline s3 to be evaluated.

Other conditions can be chosen in place of (3.24) in order to close
the system of equations; for instance we could prescribe the value of the
first derivative of s3 at both endpoints x¢ and x,.

Unless otherwise specified, Program 3.1 computes the natural inter-
polation cubic spline. The optional parameters type and der (a vec-
tor with two components) serve the purpose of selecting other types
of splines. With type=0 Program 3.1 computes the interpolating cubic
spline whose first derivative is given by der(1) at xp and der(2) at
Zp. With type=1 we obtain the interpolating cubic spline whose values
of the second derivative at the endpoints is given by der (1) at zy and
der (2) at x,,.
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Program 3.1. cubicspline: interpolating cubic spline
function s=cubicspline(x,y,zi,type,der)

%C

UBICSPLINE Computes a cubic spline
S=CUBICSPLINE(X,Y,ZI) computes the value at the
abscissae ZI of the natural interpolating cubic
spline that interpolates the values Y at the nodes X.
S=CUBICSPLINE(X,Y,ZI,TYPE,DER) if TYPE=0 computes the
values at the abscissae ZI of the cubic spline
interpolating the values Y with first derivative at
the endpoints equal to the values DER(1) and DER(2).
If TYPE=1 the values DER(1) and DER(2) are those of
the second derivative at the endpoints.

[n,m]=size(x);
if n == 1
X = x7; y =y’ n = m,;
end
if nargin == 3
der0 = 0; dern = 0; type = 1;
else
der0 = der(1); dern = der(2);
end
h = x(2:end)-x(1:end-1);
e = 2x[h(1); h(l:end-1)+h(2:end); h(end)];
A = spdiags([[h; 0] e [0; h]],-1:1,n,n);
d = (y(2:end)-y(1:end-1))./h;
rhs = 3*%(d(2:end)-d(1:end-1));
if type == 0
A(1,1) = 2%xh(1); A(1,2) = h(1);
A(n,n) = 2%h(end); A(end,end-1) = h(end);
rhs = [3%¥(d(1)-der0); rhs; 3*(dern-d(end))];
else
AC1,:) = 0; A(1,1) = 1;
A(n,:) = 0; A(n,n) = 1;
rhs = [der0O; rhs; dern];
end
S = zeros(n,4);
S(:,3) = A\rhs;
for m = 1:n-1
S(m,4) = (S(m+1,3)-S(m,3))/3/h(m);
S(m,2) = d(m) - h(m)/3*x(S(m + 1,3)+2*S(m,3));
S(m,1) = y(m);
end
S = S(1:n-1, 4:-1:1);
pp = mkpp(x,8); s = ppval(pp,zi);
return

The MATLAB command spline (see also the toolbox splines) en-

forces the third derivative of s3 to be continuous at 1 and x,_1. To this
condition is given the curious name of not-a-knot condition. The input
parameters are the vectors x and y and the vector zi (same meaning as
before). The commands mkpp and ppval that are used in Program 3.1
are useful to build up and evaluate a composite polynomial.

Example 3.8 Let us reconsider the data of Table 3.1 corresponding to the
column K = 0.67 and compute the associated interpolating cubic spline s3.
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Fig. 3.12. Comparison between the interpolating cubic spline (solid line) and
the Lagrange interpolant (dashed line) for the case considered in Example 3.8

The different values of the latitude provide the nodes x;,i = 0, ..., 12. If we are
interested in computing the values s3(z;), where z; = —55+14,4=0,...,120,
we can proceed as follows:

X [-55:10:65];

= [-3.26 -3.37 -3.35 -3.2 -3.12 -3.02 -3.02
-3.07 -3.17 -3.32 -3.3 -3.22 -3.1];
zi = [-55:1:65];
s = spline(x,y,zi);
The graph of s3, which is reported in Figure 3.12, looks more plausible than
that of the Lagrange interpolant at the same nodes. |

Example 3.9 (Robotics) To find the trajectory in the zy plane of the robot
satisfying the given constraints (see Problem 3.4), we split the time interval
[0, 5] in the two subintervals [0, 2] and [2,5]. Then in each subinterval we look
for two splines, z = x(t) and y = y(¢), that interpolate the given values and
have null derivative at the endpoints. Using Program 3.1 we obtain the desired
result by the following instructions:

x1 = [0 1 4]; y1 = [0 2 4];

t1 = [0 1 2]; ti1 = [0:0.01:2];

x2 = [0 3 4]; y2 = [0 1 4];

t2 = [0 2 3]; ti2 = [0:0.01:3]; d=[0,0];

sixl = cubicspline (t1,x1,ti1,0,d);

siyl = cubicspline (tl,yl1,til1,0,4d);

six2 = cubicspline (t2,x2,ti2,0,4d);

siy2 = cubicspline (t2,y2,ti2,0,d);

The trajectory obtained is drawn in Figure 3.13. |

The error that we obtain in approximating a function f (continuously
differentiable up to its fourth derivative) by the natural interpolating
cubic spline s3 satisfies the following inequalities ([dB01]):

max|f(7')(m) — sér)(x)| < C,.H4_7'max|f(4)(33)|, r=0,1,2,
x€el xzel
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Fig. 3.13. The trajectory in the xy plane of the robot described in Problem

3.4. Circles represent the position of the control points through which the
robot should pass during its motion

and
3 (p) — D ()| < O H "
mez\?;i).(..,%ﬂf () =55 (2)] < Cs filg«;df (z)],
where I = [z9,2,] and H = max;—q._n 1(zis1 — 2;), while C, (for
r =0,...,3) is a suitable constant depending on r, but independent of

H. It is then clear that not only f, but also its first, second and third
derivatives are well approximated by s3 when H tends to 0.

Remark 3.1 In general cubic splines do not preserve monotonicity between
neighbouring nodes. For instance, by approximating the unitary circumference
in the first quarter using the points (zr = sin(kn/6),yr = cos(kn/6)), for
k=0,...,3, we would obtain an oscillatory spline (see Figure 3.14). In these
cases, other approximation techniques can be better suited. For instance, the
MATLAB command pchip provides the Hermite piecewise cubic interpolant
([Atk89]) which is locally monotone and interpolates the function as well as
its first derivative at the nodes {z;,% = 1,...,n — 1} (see Figure 3.14). The
Hermite interpolant can be obtained by using the following instructions:

t = linspace(0,pi/2,4);
x = sin(t);
y = cos(t);

xx = linspace(0,1,40);
plot(x,y,’0’ ,xx, [pchip(x,y,xx);spline(x,y,xx)])

See the Exercises 3.5-3.8.
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Fig. 3.14. Approximation of the first quarter of the circumference of the
unitary circle using only 4 nodes. The dashed line is the cubic spline, while
the solid line is the piecewise cubic Hermite interpolant

3.6 The least-squares method

As already noticed, a Lagrange interpolation does not guarantee a bet-
ter approximation of a given function when the polynomial degree gets
large. This problem can be overcome by composite interpolation (such
as piecewise linear polynomials or splines). However, neither are suitable
to extrapolate information from the available data, that is, to generate
new values at points lying outside the interval where interpolation nodes
are given.

Example 3.10 (Finance) On the basis of the data reported in Figure 3.1,
we would like to predict whether the stock price will increase or diminish in
the coming days. The Lagrange polynomial interpolation is impractical, as it
would require a (tremendously oscillatory) polynomial of degree 719 which
will provide a completely erroneous prediction. On the other hand, piecewise
linear interpolation, whose graph is reported in Figure 3.1, provides extrapo-
lated results by exploiting only the values of the last two days, thus completely
neglecting the previous history. To get a better result we should avoid the in-
terpolation requirement, by invoking least-squares approximation as indicated
below. |

Assume that the data {(x;,y;),7 = 0,...,n} are available, where now
y; could represent the values f(x;) attained by a given function f at the
nodes z;. For a given integer m > 1 (usually, m < n) we look for a
polynomial f € P, which satisfies the inequality

n

S 