

Regular Expressions Cookbook

Regular Expressions Cookbook

Jan Goyvaerts and Steven Levithan

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Regular Expressions Cookbook
by Jan Goyvaerts and Steven Levithan

Copyright © 2009 Jan Goyvaerts and Steven Levithan. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Sumita Mukherji
Copyeditor: Genevieve d’Entremont
Proofreader: Kiel Van Horn

Indexer: Seth Maislin
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
May 2009: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Regular Expressions Cookbook, the image of a musk shrew and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-52068-7

[M]

1242318889

Table of Contents

Preface . ix

1. Introduction to Regular Expressions . 1
Regular Expressions Defined 1
Searching and Replacing with Regular Expressions 5
Tools for Working with Regular Expressions 7

2. Basic Regular Expression Skills . 25
2.1 Match Literal Text 26
2.2 Match Nonprintable Characters 28
2.3 Match One of Many Characters 30
2.4 Match Any Character 34
2.5 Match Something at the Start and/or the End of a Line 36
2.6 Match Whole Words 41
2.7 Unicode Code Points, Properties, Blocks, and Scripts 43
2.8 Match One of Several Alternatives 55
2.9 Group and Capture Parts of the Match 57

2.10 Match Previously Matched Text Again 60
2.11 Capture and Name Parts of the Match 62
2.12 Repeat Part of the Regex a Certain Number of Times 64
2.13 Choose Minimal or Maximal Repetition 67
2.14 Eliminate Needless Backtracking 70
2.15 Prevent Runaway Repetition 72
2.16 Test for a Match Without Adding It to the Overall Match 75
2.17 Match One of Two Alternatives Based on a Condition 81
2.18 Add Comments to a Regular Expression 83
2.19 Insert Literal Text into the Replacement Text 85
2.20 Insert the Regex Match into the Replacement Text 87
2.21 Insert Part of the Regex Match into the Replacement Text 88
2.22 Insert Match Context into the Replacement Text 92

v

3. Programming with Regular Expressions . 95
Programming Languages and Regex Flavors 95

3.1 Literal Regular Expressions in Source Code 100
3.2 Import the Regular Expression Library 106
3.3 Creating Regular Expression Objects 108
3.4 Setting Regular Expression Options 114
3.5 Test Whether a Match Can Be Found Within a Subject String 121
3.6 Test Whether a Regex Matches the Subject String Entirely 127
3.7 Retrieve the Matched Text 132
3.8 Determine the Position and Length of the Match 138
3.9 Retrieve Part of the Matched Text 143

3.10 Retrieve a List of All Matches 150
3.11 Iterate over All Matches 155
3.12 Validate Matches in Procedural Code 161
3.13 Find a Match Within Another Match 165
3.14 Replace All Matches 169
3.15 Replace Matches Reusing Parts of the Match 176
3.16 Replace Matches with Replacements Generated in Code 181
3.17 Replace All Matches Within the Matches of Another Regex 187
3.18 Replace All Matches Between the Matches of Another Regex 189
3.19 Split a String 195
3.20 Split a String, Keeping the Regex Matches 203
3.21 Search Line by Line 208

4. Validation and Formatting . 213
4.1 Validate Email Addresses 213
4.2 Validate and Format North American Phone Numbers 219
4.3 Validate International Phone Numbers 224
4.4 Validate Traditional Date Formats 226
4.5 Accurately Validate Traditional Date Formats 229
4.6 Validate Traditional Time Formats 234
4.7 Validate ISO 8601 Dates and Times 237
4.8 Limit Input to Alphanumeric Characters 241
4.9 Limit the Length of Text 244

4.10 Limit the Number of Lines in Text 248
4.11 Validate Affirmative Responses 253
4.12 Validate Social Security Numbers 254
4.13 Validate ISBNs 257
4.14 Validate ZIP Codes 264
4.15 Validate Canadian Postal Codes 265
4.16 Validate U.K. Postcodes 266
4.17 Find Addresses with Post Office Boxes 266

vi | Table of Contents

4.18 Reformat Names From “FirstName LastName” to “LastName,
FirstName” 268

4.19 Validate Credit Card Numbers 271
4.20 European VAT Numbers 278

5. Words, Lines, and Special Characters . 285
5.1 Find a Specific Word 285
5.2 Find Any of Multiple Words 288
5.3 Find Similar Words 290
5.4 Find All Except a Specific Word 294
5.5 Find Any Word Not Followed by a Specific Word 295
5.6 Find Any Word Not Preceded by a Specific Word 297
5.7 Find Words Near Each Other 300
5.8 Find Repeated Words 306
5.9 Remove Duplicate Lines 308

5.10 Match Complete Lines That Contain a Word 312
5.11 Match Complete Lines That Do Not Contain a Word 313
5.12 Trim Leading and Trailing Whitespace 314
5.13 Replace Repeated Whitespace with a Single Space 317
5.14 Escape Regular Expression Metacharacters 319

6. Numbers . 323
6.1 Integer Numbers 323
6.2 Hexadecimal Numbers 326
6.3 Binary Numbers 329
6.4 Strip Leading Zeros 330
6.5 Numbers Within a Certain Range 331
6.6 Hexadecimal Numbers Within a Certain Range 337
6.7 Floating Point Numbers 340
6.8 Numbers with Thousand Separators 343
6.9 Roman Numerals 344

7. URLs, Paths, and Internet Addresses . 347
7.1 Validating URLs 347
7.2 Finding URLs Within Full Text 350
7.3 Finding Quoted URLs in Full Text 352
7.4 Finding URLs with Parentheses in Full Text 353
7.5 Turn URLs into Links 356
7.6 Validating URNs 356
7.7 Validating Generic URLs 358
7.8 Extracting the Scheme from a URL 364
7.9 Extracting the User from a URL 366

7.10 Extracting the Host from a URL 367

Table of Contents | vii

7.11 Extracting the Port from a URL 369
7.12 Extracting the Path from a URL 371
7.13 Extracting the Query from a URL 374
7.14 Extracting the Fragment from a URL 376
7.15 Validating Domain Names 376
7.16 Matching IPv4 Addresses 379
7.17 Matching IPv6 Addresses 381
7.18 Validate Windows Paths 395
7.19 Split Windows Paths into Their Parts 397
7.20 Extract the Drive Letter from a Windows Path 402
7.21 Extract the Server and Share from a UNC Path 403
7.22 Extract the Folder from a Windows Path 404
7.23 Extract the Filename from a Windows Path 406
7.24 Extract the File Extension from a Windows Path 407
7.25 Strip Invalid Characters from Filenames 408

8. Markup and Data Interchange . 411
8.1 Find XML-Style Tags 417
8.2 Replace Tags with 434
8.3 Remove All XML-Style Tags Except and 438
8.4 Match XML Names 441
8.5 Convert Plain Text to HTML by Adding <p> and
 Tags 447
8.6 Find a Specific Attribute in XML-Style Tags 450
8.7 Add a cellspacing Attribute to <table> Tags That Do Not Already

Include It 455
8.8 Remove XML-Style Comments 458
8.9 Find Words Within XML-Style Comments 462

8.10 Change the Delimiter Used in CSV Files 466
8.11 Extract CSV Fields from a Specific Column 469
8.12 Match INI Section Headers 473
8.13 Match INI Section Blocks 475
8.14 Match INI Name-Value Pairs 476

Index . 479

viii | Table of Contents

Preface

Over the past decade, regular expressions have experienced a remarkable rise in pop-
ularity. Today, all the popular programming languages include a powerful regular ex-
pression library, or even have regular expression support built right into the language.
Many developers have taken advantage of these regular expression features to provide
the users of their applications the ability to search or filter through their data using a
regular expression. Regular expressions are everywhere.

Many books have been published to ride the wave of regular expression adoption. Most
do a good job of explaining the regular expression syntax along with some examples
and a reference. But there aren’t any books that present solutions based on regular
expressions to a wide range of real-world practical problems dealing with text on a
computer and in a range of Internet applications. We, Steve and Jan, decided to fill that
need with this book.

We particularly wanted to show how you can use regular expressions in situations
where people with limited with regular expression experience would say it can’t be
done, or where software purists would say a regular expression isn’t the right tool for
the job. Because regular expressions are everywhere these days, they are often a readily
available tool that can be used by end users, without the need to involve a team of
programmers. Even programmers can often save time by using a few regular expressions
for information retrieval and alteration tasks that would take hours or days to code in
procedural code, or that would otherwise require a third-party library that needs prior
review and management approval.

Caught in the Snarls of Different Versions
As with anything that becomes popular in the IT industry, regular expressions come
in many different implementations, with varying degrees of compatibility. This has
resulted in many different regular expression flavors that don’t always act the same
way, or work at all, on a particular regular expression.

ix

Many books do mention that there are different flavors and point out some of the
differences. But they often leave out certain flavors here and there—particularly
when a flavor lacks certain features—instead of providing alternative solutions or
workarounds. This is frustrating when you have to work with different regular expres-
sion flavors in different applications or programming languages.

Casual statements in the literature, such as “everybody uses Perl-style regular expres-
sions now,” unfortunately trivialize a wide range of incompatibilities. Even “Perl-style”
packages have important differences, and meanwhile Perl continues to evolve. Over-
simplified impressions can lead programmers to spend half an hour or so fruitlessly
running the debugger instead of checking the details of their regular expression imple-
mentation. Even when they discover that some feature they were depending on is not
present, they don’t always know how to work around it.

This book is the first book on the market that discusses the most popular and feature-
rich regular expression flavors side by side, and does so consistently throughout the
book.

Intended Audience
You should read this book if you regularly work with text on a computer, whether that’s
searching through a pile of documents, manipulating text in a text editor, or developing
software that needs to search through or manipulate text. Regular expressions are an
excellent tool for the job. Regular Expressions Cookbook teaches you everything you
need to know about regular expressions. You don’t need any prior experience what-
soever, because we explain even the most basic aspects of regular expressions.

If you do have experience with regular expressions, you’ll find a wealth of detail that
other books and online articles often gloss over. If you’ve ever been stumped by a regex
that works in one application but not another, you’ll find this book’s detailed and equal
coverage of seven of the world’s most popular regular expression flavors very valuable.
We organized the whole book as a cookbook, so you can jump right to the topics you
want to read up on. If you read the book cover to cover, you’ll become a world-class
chef of regular expressions.

This book teaches you everything you need to know about regular expressions and then
some, regardless of whether you are a programmer. If you want to use regular expres-
sions with a text editor, search tool, or any application with an input box labeled
“regex,” you can read this book with no programming experience at all. Most of the
recipes in this book have solutions purely based on one or more regular expressions.

If you are a programmer, Chapter 3 provides all the information you need to implement
regular expressions in your source code. This chapter assumes you’re familiar with the
basic language features of the programming language of your choice, but it does not
assume you have ever used a regular expression in your source code.

x | Preface

Technology Covered
.NET, Java, JavaScript, PCRE, Perl, Python, and Ruby aren’t just back-cover buzz-
words. These are the seven regular expression flavors covered by this book. We cover
all seven flavors equally. We’ve particularly taken care to point out all the inconsisten-
cies that we could find between those regular expression flavors.

The programming chapter (Chapter 3) has code listings in C#, Java, JavaScript, PHP,
Perl, Python, Ruby, and VB.NET. Again, every recipe has solutions and explanations
for all eight languages. While this makes the chapter somewhat repetitive, you can easily
skip discussions on languages you aren’t interested in without missing anything you
should know about your language of choice.

Organization of This Book
The first three chapters of this book cover useful tools and basic information that give
you a basis for using regular expressions; each of the subsequent chapters presents a
variety of regular expressions while investigating one area of text processing in depth.

Chapter 1, Introduction to Regular Expressions, explains the role of regular expressions
and introduces a number of tools that will make it easier to learn, create, and debug
them.

Chapter 2, Basic Regular Expression Skills, covers each element and feature of regular
expressions, along with important guidelines for effective use.

Chapter 3, Programming with Regular Expressions, specifies coding techniques and
includes code listings for using regular expressions in each of the programming lan-
guages covered by this book.

Chapter 4, Validation and Formatting, contains recipes for handling typical user input,
such as dates, phone numbers, and postal codes in various countries.

Chapter 5, Words, Lines, and Special Characters, explores common text processing
tasks, such as checking for lines that contain or fail to contain certain words.

Chapter 6, Numbers, shows how to detect integers, floating-point numbers, and several
other formats for this kind of input.

Chapter 7, URLs, Paths, and Internet Addresses, shows you how to take apart and
manipulate the strings commonly used on the Internet and Windows systems to find
things.

Chapter 8, Markup and Data Interchange, covers the manipulation of HTML, XML,
comma-separated values (CSV), and INI-style configuration files.

Preface | xi

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, program elements such as variable or function names,
values returned as the result of a regular expression replacement, and subject or
input text that is applied to a regular expression. This could be the contents of a
text box in an application, a file on disk, or the contents of a string variable.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

‹Regular●expression›
Represents a regular expression, standing alone or as you would type it into the
search box of an application. Spaces in regular expressions are indicated with gray
circles, except when spaces are used in free-spacing mode.

«Replacement●text»
Represents the text that regular expression matches will be replaced with in a
search-and-replace operation. Spaces in replacement text are indicated with gray
circles.

Matched text
Represents the part of the subject text that matches a regular expression.

⋯
A gray ellipsis in a regular expression indicates that you have to “fill in the blank”
before you can use the regular expression. The accompanying text explains what
you can fill in.

CR , LF , and CRLF
CR, LF, and CRLF in boxes represent actual line break characters in strings, rather
than character escapes such as \r, \n, and \r\n. Such strings can be created by
pressing Enter in a multiline edit control in an application, or by using multiline
string constants in source code such as verbatim strings in C# or triple-quoted
strings in Python.

↵
The return arrow, as you may see on the Return or Enter key on your keyboard,
indicates that we had to break up a line to make it fit the width of the printed page.
When typing the text into your source code, you should not press Enter, but instead
type everything on a single line.

xii | Preface

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Regular Expressions Cookbook by Jan
Goyvaerts and Steven Levithan. Copyright 2009 Jan Goyvaerts and Steven Levithan,
978-0-596-2068-7.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North

Preface | xiii

Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book where we list errata, examples, and any additional
information. You can access this page at:

http://www.regexcookbook.com

or at:

http://oreilly.com/catalog/9780596520687

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Acknowledgments
We thank Andy Oram, our editor at O’Reilly Media, Inc., for helping us see this project
from start to finish. We also thank Jeffrey Friedl, Zak Greant, Nikolaj Lindberg, and
Ian Morse for their careful technical reviews, which made this a more comprehensive
and accurate book.

xiv | Preface

CHAPTER 1

Introduction to Regular Expressions

Having opened this cookbook, you are probably eager to inject some of the ungainly
strings of parentheses and question marks you find in its chapters right into your code.
If you are ready to plug and play, be our guest: the practical regular expressions are
listed and described in Chapters 4 through 8.

But the initial chapters of this book may save you a lot of time in the long run. For
instance, this chapter introduces you to a number of utilities—some of them created
by one of the authors, Jan—that let you test and debug a regular expression before you
bury it in code where errors are harder to find. And these initial chapters also show you
how to use various features and options of regular expressions to make your life easier,
help you understand regular expressions in order to improve their performance, and
learn the subtle differences between how regular expressions are handled by different
programming languages—and even different versions of your favorite programming
language.

So we’ve put a lot of effort into these background matters, confident that you’ll read it
before you start or when you get frustrated by your use of regular expressions and want
to bolster your understanding.

Regular Expressions Defined
In the context of this book, a regular expression is a specific kind of text pattern that
you can use with many modern applications and programming languages. You can use
them to verify whether input fits into the text pattern, to find text that matches the
pattern within a larger body of text, to replace text matching the pattern with other
text or rearranged bits of the matched text, to split a block of text into a list of subtexts,
and to shoot yourself in the foot. This book helps you understand exactly what you’re
doing and avoid disaster.

1

History of the Term ‘Regular Expression’
The term regular expression comes from mathematics and computer science theory,
where it reflects a trait of mathematical expressions called regularity. Such an expres-
sion can be implemented in software using a deterministic finite automaton (DFA). A
DFA is a finite state machine that doesn’t use backtracking.

The text patterns used by the earliest grep tools were regular expressions in the math-
ematical sense. Though the name has stuck, modern-day Perl-style regular expressions
are not regular expressions at all in the mathematical sense. They’re implemented with
a nondeterministic finite automaton (NFA). You will learn all about backtracking
shortly. All a practical programmer needs to remember from this note is that some ivory
tower computer scientists get upset about their well-defined terminology being over-
loaded with technology that’s far more useful in the real world.

If you use regular expressions with skill, they simplify many programming and text
processing tasks, and allow many that wouldn’t be at all feasible without the regular
expressions. You would need dozens if not hundreds of lines of procedural code to
extract all email addresses from a document—code that is tedious to write and hard to
maintain. But with the proper regular expression, as shown in Recipe 4.1, it takes just
a few lines of code, or maybe even one line.

But if you try to do too much with just one regular expression, or use regexes where
they’re not really appropriate, you’ll find out why some people say:*

Some people, when confronted with a problem, think “I know, I’ll use regular expres-
sions.” Now they have two problems.

The second problem those people have is that they didn’t read the owner’s manual,
which you are holding now. Read on. Regular expressions are a powerful tool. If your
job involves manipulating or extracting text on a computer, a firm grasp of regular
expressions will save you plenty of overtime.

Many Flavors of Regular Expressions
All right, the title of the previous section was a lie. We didn’t define what regular
expressions are. We can’t. There is no official standard that defines exactly which text
patterns are regular expressions and which aren’t. As you can imagine, every designer
of programming languages and every developer of text processing applications has a
different idea of exactly what a regular expression should be. So now we’re stuck with
a whole palate of regular expression flavors.

Fortunately, most designers and developers are lazy. Why create something totally new
when you can copy what has already been done? As a result, all modern regular ex-
pression flavors, including those discussed in this book, can trace their history back to

* Jeffrey Friedl traces the history of this quote in his blog at http://regex.info/blog/2006-09-15/247.

2 | Chapter 1: Introduction to Regular Expressions

the Perl programming language. We call these flavors Perl-style regular expressions.
Their regular expression syntax is very similar, and mostly compatible, but not com-
pletely so.

Writers are lazy, too. We’ll usually type regex or regexp to denote a single regular
expression, and regexes to denote the plural.

Regex flavors do not correspond one-to-one with programming languages. Scripting
languages tend to have their own, built-in regular expression flavor. Other program-
ming languages rely on libraries for regex support. Some libraries are available for mul-
tiple languages, while certain languages can draw on a choice of different libraries.

This introductory chapter deals with regular expression flavors only and completely
ignores any programming considerations. Chapter 3 begins the code listings, so you
can peek ahead to “Programming Languages and Regex Flavors” in Chapter 3 to find
out which flavors you’ll be working with. But ignore all the programming stuff for now.
The tools listed in the next section are an easier way to explore the regex syntax through
“learning by doing.”

Regex Flavors Covered by This Book
For this book, we selected the most popular regex flavors in use today. These are all
Perl-style regex flavors. Some flavors have more features than others. But if two flavors
have the same feature, they tend to use the same syntax. We’ll point out the few an-
noying inconsistencies as we encounter them.

All these regex flavors are part of programming languages and libraries that are in active
development. The list of flavors tells you which versions this book covers. Further along
in the book, we mention the flavor without any versions if the presented regex works
the same way with all flavors. This is almost always the case. Aside from bug fixes that
affect corner cases, regex flavors tend not to change, except to add features by giving
new meaning to syntax that was previously treated as an error:

Perl
Perl’s built-in support for regular expressions is the main reason why regexes are
popular today. This book covers Perl 5.6, 5.8, and 5.10.

Many applications and regex libraries that claim to use Perl or Perl-compatible
regular expressions in reality merely use Perl-style regular expressions. They use a
regex syntax similar to Perl’s, but don’t support the same set of regex features.
Quite likely, they’re using one of the regex flavors further down this list. Those
flavors are all Perl-style.

PCRE
PCRE is the “Perl-Compatible Regular Expressions” C library developed by Philip
Hazel. You can download this open source library at http://www.pcre.org. This
book covers versions 4 through 7 of PCRE.

Regular Expressions Defined | 3

Though PCRE claims to be Perl-compatible, and probably is more than any other
flavor in this book, it really is just Perl-style. Some features, such as Unicode sup-
port, are slightly different, and you can’t mix Perl code into your regex, as Perl itself
allows.

Because of its open source license and solid programming, PCRE has found its way
into many programming languages and applications. It is built into PHP and wrap-
ped into numerous Delphi components. If an application claims to support “Perl-
compatible” regular expressions without specifically listing the actual regex flavor
being used, it’s likely PCRE.

.NET
The Microsoft .NET Framework provides a full-featured Perl-style regex flavor
through the System.Text.RegularExpressions package. This book covers .NET
versions 1.0 through 3.5. Strictly speaking, there are only two versions of
System.Text.RegularExpressions: 1.0 and 2.0. No changes were made to the Regex
classes in .NET 1.1, 3.0, and 3.5.

Any .NET programming language, including C#, VB.NET, Delphi for .NET, and
even COBOL.NET, has full access to the .NET regex flavor. If an application de-
veloped with .NET offers you regex support, you can be quite certain it uses
the .NET flavor, even if it claims to use “Perl regular expressions.” A glaring ex-
ception is Visual Studio (VS) itself. The VS integrated development environment
(IDE) still uses the same old regex flavor it has had from the beginning, which is
not Perl-style at all.

Java
Java 4 is the first Java release to provide built-in regular expression support through
the java.util.regex package. It has quickly eclipsed the various third-party regex
libraries for Java. Besides being standard and built in, it offers a full-featured Perl-
style regex flavor and excellent performance, even when compared with applica-
tions written in C. This book covers the java.util.regex package in Java 4, 5, and
6.

If you’re using software developed with Java during the past few years, any regular
expression support it offers likely uses the Java flavor.

JavaScript
In this book, we use the term JavaScript to indicate the regular expression flavor
defined in version 3 of the ECMA-262 standard. This standard defines the
ECMAScript programming language, which is better known through its JavaScript
and JScript implementations in various web browsers. Internet Explorer 5.5
through 8.0, Firefox, Opera, and Safari all implement Edition 3 of ECMA-262.
However, all browsers have various corner case bugs causing them to deviate from
the standard. We point out such issues in situations where they matter.

If a website allows you to search or filter using a regular expression without waiting
for a response from the web server, it uses the JavaScript regex flavor, which is the

4 | Chapter 1: Introduction to Regular Expressions

only cross-browser client-side regex flavor. Even Microsoft’s VBScript and Adobe’s
ActionScript 3 use it.

Python
Python supports regular expressions through its re module. This book covers Py-
thon 2.4 and 2.5. Python’s regex support has remained unchanged for many years.

Ruby
Ruby’s regular expression support is part of the Ruby language itself, similar to
Perl. This book covers Ruby 1.8 and 1.9. A default compilation of Ruby 1.8 uses
the regular expression flavor provided directly by the Ruby source code. A default
compilation of Ruby 1.9 uses the Oniguruma regular expression library. Ruby 1.8
can be compiled to use Oniguruma, and Ruby 1.9 can be compiled to use the older
Ruby regex flavor. In this book, we denote the native Ruby flavor as Ruby 1.8, and
the Oniguruma flavor as Ruby 1.9.

To test which Ruby regex flavor your site uses, try to use the regular expression
‹a++›. Ruby 1.8 will say the regular expression is invalid, because it does not support
possessive quantifiers, whereas Ruby 1.9 will match a string of one or more a
characters.

The Oniguruma library is designed to be backward-compatible with Ruby 1.8,
simply adding new features that will not break existing regexes. The implementors
even left in features that arguably should have been changed, such as using (?m) to
mean “the dot matches line breaks,” where other regex flavors use (?s).

Searching and Replacing with Regular Expressions
Search-and-replace is a common job for regular expressions. A search-and-replace
function takes a subject string, a regular expression, and a replacement string as input.
The output is the subject string with all matches of the regular expression replaced with
the replacement text.

Although the replacement text is not a regular expression at all, you can use certain
special syntax to build dynamic replacement texts. All flavors let you reinsert the text
matched by the regular expression or a capturing group into the replacement. Recipes
2.20 and 2.21 explain this. Some flavors also support inserting matched context into
the replacement text, as Recipe 2.22 shows. In Chapter 3, Recipe 3.16 teaches you how
to generate a different replacement text for each match in code.

Many Flavors of Replacement Text
Different ideas by different regular expression software developers have led to a wide
range of regular expression flavors, each with different syntax and feature sets. The
story for the replacement text is no different. In fact, there are even more replacement
text flavors than regular expression flavors. Building a regular expression engine
is difficult. Most programmers prefer to reuse an existing one, and bolting a

Searching and Replacing with Regular Expressions | 5

search-and-replace function onto an existing regular expression engine is quite easy.
The result is that there are many replacement text flavors for regular expression libraries
that do not have built-in search-and-replace features.

Fortunately, all the regular expression flavors in this book have corresponding replace-
ment text flavors, except PCRE. This gap in PCRE complicates life for programmers
who use flavors based on it. The open source PCRE library does not include any func-
tions to make replacements. Thus, all applications and programming languages that
are based on PCRE need to provide their own search-and-replace function. Most pro-
grammers try to copy existing syntax, but never do so in exactly the same way.

This book covers the following replacement text flavors. Refer to “Many Flavors of
Regular Expressions” on page 2 for more details on the regular expression flavors that
correspond with the replacement text flavors:

Perl
Perl has built-in support for regular expression substitution via the s/regex/
replace/ operator. The Perl replacement text flavor corresponds with the Perl reg-
ular expression flavor. This book covers Perl 5.6 to Perl 5.10. The latter version
adds support for named backreferences in the replacement text, as it adds named
capture to the regular expression syntax.

PHP
In this book, the PHP replacement text flavor refers to the preg_replace function
in PHP. This function uses the PCRE regular expression flavor and the PHP re-
placement text flavor.

Other programming languages that use PCRE do not use the same replacement
text flavor as PHP. Depending on where the designers of your programming lan-
guage got their inspiration, the replacement text syntax may be similar to PHP or
any of the other replacement text flavors in this book.

PHP also has an ereg_replace function. This function uses a different regular ex-
pression flavor (POSIX ERE), and a different replacement text flavor, too. PHP’s
ereg functions are not discussed in this book.

.NET
The System.Text.RegularExpressions package provides various search-
and-replace functions. The .NET replacement text flavor corresponds with
the .NET regular expression flavor. All versions of .NET use the same replacement
text flavor. The new regular expression features in .NET 2.0 do not affect the re-
placement text syntax.

Java
The java.util.regex package has built-in search-and-replace functions. This book
covers Java 4, 5, and 6. All use the same replacement text syntax.

6 | Chapter 1: Introduction to Regular Expressions

JavaScript
In this book, we use the term JavaScript to indicate both the replacement text flavor
and the regular expression flavor defined in Edition 3 of the ECMA-262 standard.

Python
Python’s re module provides a sub function to search-and-replace. The Python
replacement text flavor corresponds with the Python regular expression flavor.
This book covers Python 2.4 and 2.5. Python’s regex support has been stable for
many years.

Ruby
Ruby’s regular expression support is part of the Ruby language itself, including the
search-and-replace function. This book covers Ruby 1.8 and 1.9. A default com-
pilation of Ruby 1.8 uses the regular expression flavor provided directly by the
Ruby source code, whereas a default compilation of Ruby 1.9 uses the Oniguruma
regular expression library. Ruby 1.8 can be compiled to use Oniguruma, and Ruby
1.9 can be compiled to use the older Ruby regex flavor. In this book, we denote
the native Ruby flavor as Ruby 1.8, and the Oniguruma flavor as Ruby 1.9.

The replacement text syntax for Ruby 1.8 and 1.9 is the same, except that Ruby
1.9 adds support for named backreferences in the replacement text. Named capture
is a new feature in Ruby 1.9 regular expressions.

Tools for Working with Regular Expressions
Unless you have been programming with regular expressions for some time, we rec-
ommend that you first experiment with regular expressions in a tool rather than in
source code. The sample regexes in this chapter and Chapter 2 are plain regular ex-
pressions that don’t contain the extra escaping that a programming language (even a
Unix shell) requires. You can type these regular expressions directly into an applica-
tion’s search box.

Chapter 3 explains how to mix regular expressions into your source code. Quoting a
literal regular expression as a string makes it even harder to read, because string es-
caping rules compound regex escaping rules. We leave that until Recipe 3.1. Once you
understand the basics of regular expressions, you’ll be able to see the forest through
the backslashes.

The tools described in this section also provide debugging, syntax checking, and other
feedback that you won’t get from most programming environments. Therefore, as you
develop regular expressions in your applications, you may find it useful to build a
complicated regular expression in one of these tools before you plug it in to your
program.

Tools for Working with Regular Expressions | 7

RegexBuddy
RegexBuddy (Figure 1-1) is the most full-featured tool available at the time of this
writing for creating, testing, and implementing regular expressions. It has the unique
ability to emulate all the regular expression flavors discussed in this book, and even
convert among the different flavors.

RegexBuddy was designed and developed by Jan Goyvaerts, one of this book’s authors.
Designing and developing RegexBuddy made Jan an expert on regular expressions, and
using RegexBuddy helped get coauthor Steven hooked on regular expressions to the
point where he pitched this book to O’Reilly.

If the screenshot (Figure 1-1) looks a little busy, that’s because we’ve arranged most of
the panels side by side to show off RegexBuddy’s extensive functionality. The default
view tucks all the panels neatly into a row of tabs. You also can drag panels off to a
secondary monitor.

To try one of the regular expressions shown in this book, simply type it into the edit
box at the top of RegexBuddy’s window. RegexBuddy automatically applies syntax
highlighting to your regular expression, making errors and mismatched brackets
obvious.

Figure 1-1. RegexBuddy

8 | Chapter 1: Introduction to Regular Expressions

The Create panel automatically builds a detailed English-language analysis while you
type in the regex. Double-click on any description in the regular expression tree to edit
that part of your regular expression. You can insert new parts to your regular expression
by hand, or by clicking the Insert Token button and selecting what you want from a
menu. For instance, if you don’t remember the complicated syntax for positive look-
ahead, you can ask RegexBuddy to insert the proper characters for you.

Type or paste in some sample text on the Test panel. When the Highlight button is
active, RegexBuddy automatically highlights the text matched by the regex.

Some of the buttons you’re most likely to use are:

List All
Displays a list of all matches.

Replace
The Replace button at the top displays a new window that lets you enter replace-
ment text. The Replace button in the Test box then lets you view the subject text
after the replacements are made.

Split (The button on the Test panel, not the one at the top)
Treats the regular expression as a separator, and splits the subject into tokens based
on where matches are found in your subject text using your regular expression.

Click any of these buttons and select Update Automatically to make RegexBuddy keep
the results dynamically in sync as you edit your regex or subject text.

To see exactly how your regex works (or doesn’t), click on a highlighted match or at
the spot where the regex fails to match on the Test panel, and click the Debug button.
RegexBuddy will switch to the Debug panel, showing the entire matching processes
step by step. Click anywhere on the debugger’s output to see which regex token
matched the text you clicked on. Click on your regular expression to highlight that part
of the regex in the debugger.

On the Use panel, select your favorite programming language. Then, select a function
to instantly generate source code to implement your regex. RegexBuddy’s source code
templates are fully editable with the built-in template editor. You can add new functions
and even new languages, or change the provided ones.

To test your regex on a larger set of data, switch to the GREP panel to search (and
replace) through any number of files and folders.

When you find a regex in source code you’re maintaining, copy it to the clipboard,
including the delimiting quotes or slashes. In RegexBuddy, click the Paste button at
the top and select the string style of your programming language. Your regex will then
appear in RegexBuddy as a plain regex, without the extra quotes and escapes needed
for string literals. Use the Copy button at the top to create a string in the desired syntax,
so you can paste it back into your source code.

Tools for Working with Regular Expressions | 9

As your experience grows, you can build up a handy library of regular expressions on
the Library panel. Make sure to add a detailed description and a test subject when you
store a regex. Regular expressions can be cryptic, even for experts.

If you really can’t figure out a regex, click on the Forum panel and then the Login
button. If you’ve purchased RegexBuddy, the login screen appears. Click OK and you
are instantly connected to the RegexBuddy user forum. Steven and Jan often hang out
there.

RegexBuddy runs on Windows 98, ME, 2000, XP, and Vista. For Linux and Apple fans,
RegexBuddy also runs well on VMware, Parallels, CrossOver Office, and with a few
issues on WINE. You can download a free evaluation copy of RegexBuddy at http://
www.regexbuddy.com/RegexBuddyCookbook.exe. Except for the user forum, the trial
is fully functional for seven days of actual use.

RegexPal
RegexPal (Figure 1-2) is an online regular expression tester created by Steven Levithan,
one of this book’s authors. All you need to use it is a modern web browser. RegexPal
is written entirely in JavaScript. Therefore, it supports only the JavaScript regex flavor,
as implemented in the web browser you’re using to access it.

Figure 1-2. RegexPal

10 | Chapter 1: Introduction to Regular Expressions

To try one of the regular expressions shown in this book, browse to http://www.regexpal
.com. Type the regex into the box that says “Enter regex here.” RegexPal automatically
applies syntax highlighting to your regular expression, which immediately reveals any
syntax errors in the regex. RegexPal is aware of the cross-browser issues that can ruin
your day when dealing with JavaScript regular expressions. If certain syntax doesn’t
work correctly in some browsers, RegexPal will highlight it as an error.

Now type or paste some sample text into the box that says “Enter test data here.”
RegexPal automatically highlights the text matched by your regex.

There are no buttons to click, making RegexPal one of the most convenient online
regular expression testers.

More Online Regex Testers
Creating a simple online regular expression tester is easy. If you have some basic web
development skills, the information in Chapter 3 is all you need to roll your own.
Hundreds of people have already done this; a few have added some extra features that
make them worth mentioning.

regex.larsolavtorvik.com

Lars Olav Torvik has put a great little regular expression tester online at http://regex
.larsolavtorvik.com (see Figure 1-3).

To start, select the regular expression flavor you’re working with by clicking on the
flavor’s name at the top of the page. Lars offers PHP PCRE, PHP POSIX, and JavaScript.
PHP PCRE, the PCRE regex flavor discussed in this book, is used by PHP’s preg func-
tions. POSIX is an old and limited regex flavor used by PHP’s ereg functions, which
are not discussed in this book. If you select JavaScript, you’ll be working with your
browser’s JavaScript implementation.

Type your regular expression into the Pattern field and your subject text into the Subject
field. A moment later, the Matches field displays your subject text with highlighted
regex matches. The Code field displays a single line of source code that applies your
regex to your subject text. Copying and pasting this into your code editor saves you
the tedious job of manually converting your regex into a string literal. Any string or
array returned by the code is displayed in the Result field. Because Lars used Ajax
technology to build his site, results are updated in just a few moments for all flavors.
To use the tool, you have to be online, as PHP is processed on the server rather than in
your browser.

The second column displays a list of regex commands and regex options. These depend
on the regex flavor. The regex commands typically include match, replace, and split
operations. The regex options consist of common options such as case insensitivity, as
well as implementation-specific options. These commands and options are described
in Chapter 3.

Tools for Working with Regular Expressions | 11

Nregex

http://www.nregex.com (Figure 1-4) is a straightforward online regex tester built
on .NET technology by David Seruyange. Although the site doesn’t say which flavor it
implements, it’s .NET 1.x at the time of this writing.

The layout of the page is somewhat confusing. Enter your regular expression into the
field under the Regular Expression label, and set the regex options using the checkboxes
below that. Enter your subject text in the large box at the bottom, replacing the default
If I just had $5.00 then "she" wouldn't be so @#$! mad.. If your subject is a web
page, type the URL in the Load Target From URL field, and click the Load button under
that input field. If your subject is a file on your hard disk, click the Browse button, find
the file you want, and then click the Load button under that input field.

Your subject text will appear duplicated in the “Matches & Replacements” field at the
center of the web page, with the regex matches highlighted. If you type something into

Figure 1-3. regex.larsolavtorvik.com

12 | Chapter 1: Introduction to Regular Expressions

the Replacement String field, the result of the search-and-replace is shown instead. If
your regular expression is invalid, ... appears.

The regex matching is done in .NET code running on the server, so you need to be
online for the site to work. If the automatic updates are slow, perhaps because your
subject text is very long, tick the Manually Evaluate Regex checkbox above the field
for your regular expression to show the Evaluate button. Click that button to update
the “Matches & Replacements” display.

Figure 1-4. Nregex

Tools for Working with Regular Expressions | 13

Rubular

Michael Lovitt put a minimalistic regex tester online at http://www.rubular.com (Fig-
ure 1-5), using the Ruby 1.8 regex flavor.

Figure 1-5. Rubular

Enter your regular expression in the box between the two forward slashes under “Your
regular expression.” You can turn on case insensitivity by typing an i in the small box
after the second slash. Similarly, if you like, turn on the option “a dot matches a line
break” by typing an m in the same box. im turns on both options. Though these con-
ventions may seem a bit user-unfriendly if you’re new to Ruby, they conform to
the /regex/im syntax used to specify a regex in Ruby source code.

Type or paste your subject text into the “Your test string” box, and wait a moment. A
new “Match result” box appears to the right, showing your subject text with all regex
matches highlighted.

myregexp.com

Sergey Evdokimov created several regular expression testers for Java developers. The
home page at http://www.myregexp.com (Figure 1-6) offers an online regex tester. It’s
a Java applet that runs in your browser. The Java 4 (or later) runtime needs to be
installed on your computer. The applet uses the java.util.regex package to evaluate

14 | Chapter 1: Introduction to Regular Expressions

your regular expressions, which is new in Java 4. In this book, the “Java” regex flavor
refers to this package.

Type your regular expression into the Regular Expression box. Use the Flags menu to
set the regex options you want. Three of the options also have direct checkboxes.

If you want to test a regex that already exists as a string in Java code, copy the whole
string to the clipboard. In the myregexp.com tester, click on the Edit menu, and then
“Paste Regex from Java String”. In the same menu, pick “Copy Regex for Java Source”
when you’re done editing the regular expression. The Edit menu has similar commands
for JavaScript and XML as well.

Below the regular expression, there are four tabs that run four different tests:

Find
Highlights all regular expression matches in the sample text. These are the matches
found by the Matcher.find() method in Java.

Match
Tests whether the regular expression matches the sample text entirely. If it
does, the whole text is highlighted. This is what the String.matches() and
Matcher.matches() methods do.

Figure 1-6. myregexp.com

Tools for Working with Regular Expressions | 15

Split
The second box at the right shows the array of strings returned by
String.split() or Pattern.split() when used with your regular expression and
sample text.

Replace
Type in a replacement text, and the box at the right shows the text returned by
String.replaceAll() or Matcher.replaceAll().

You can find Sergey’s other regex testers via the links at the top of the page at http://
www.myregexp.com. One is a plug-in for Eclipse, and the other is a plug-in for IntelliJ
IDEA.

reAnimator

Oliver Steele’s reAnimator at http://osteele.com/tools/reanimator (Figure 1-7) won’t
bring a dead regex back to life. Rather, it’s a fun little tool that shows a graphic repre-
sentation of the finite state machines that a regular expression engine uses to perform
a regular expression search.

Figure 1-7. reAnimator

16 | Chapter 1: Introduction to Regular Expressions

reAnimator’s regex syntax is very limited. It is compatible with all the flavors discussed
in this book. Any regex you can animate with reAnimator will work with any of this
book’s flavors, but the reverse is definitely not true. This is because reAnimator’s regular
expressions are regular in the mathematical sense. The sidebar “History of the Term
‘Regular Expression’” on page 2 explains this briefly.

Start by going up to the Pattern box at the top of the page and pressing the Edit button.
Type your regular expression into the Pattern field and click Set. Slowly type the subject
text into the Input field.

As you type in each character, colored balls will move through the state machine to
indicate the end point reached in the state machine by your input so far. Blue balls
indicate that the state machine accepts the input, but needs more input for a full match.
Green balls indicate that the input matches the whole pattern. No balls means the state
machine can’t match the input.

reAnimator will show a match only if the regular expression matches the whole input
string, as if you had put it between ‹^› and ‹$› anchors. This is another property of
expressions that are regular in the mathematical sense.

More Desktop Regular Expression Testers

Expresso

Expresso (not to be confused with caffeine-laden espresso) is a .NET application for
creating and testing regular expressions. You can download it at http://www.ultrapico
.com/Expresso.htm. The .NET framework 2.0 or later must be installed on your
computer.

The download is a free 60-day trial. After the trial, you have to register or Expresso will
(mostly) stop working. Registration is free, but requires you to give the Ultrapico folks
your email address. The registration key is sent by email.

Expresso displays a screen like the one shown in Figure 1-8. The Regular Expression
box where you type in your regular expression is permanently visible. No syntax high-
lighting is available. The Regex Analyzer box automatically builds a brief English-
language analysis of your regular expression. It too is permanently visible.

In Design Mode, you can set matching options such as “Ignore Case” at the bottom of
the screen. Most of the screen space is taken up by a row of tabs where you can select
the regular expression token you want to insert. If you have two monitors or one large
monitor, click the Undock button to float the row of tabs. Then you can build up your
regular expression in the other mode (Test Mode) as well.

In Test Mode, type or paste your sample text in the lower-left corner. Then, click the
Run Match button to get a list of all matches in the Search Results box. No highlighting
is applied to the sample text. Click on a match in the results to select that match in the
sample text.

Tools for Working with Regular Expressions | 17

The Expression Library shows a list of sample regular expressions and a list of recent
regular expressions. Your regex is added to that list each time you press Run Match.
You can edit the library through the Library menu in the main menu bar.

The Regulator

The Regulator, which you can download from http://sourceforge.net/projects/regula
tor, is not safe for SCUBA diving or cooking-gas canisters; it is another .NET application
for creating and testing regular expressions. The latest version requires .NET 2.0 or
later. Older versions for .NET 1.x can still be downloaded. The Regulator is open
source, and no payment or registration required.

The Regulator does everything in one screen (Figure 1-9). The New Document tab is
where you enter your regular expression. Syntax highlighting is automatically applied,
but syntax errors in your regex are not made obvious. Right-click to select the regex

Figure 1-8. Expresso

18 | Chapter 1: Introduction to Regular Expressions

token you want to insert from a menu. You can set regular expression options via the
buttons on the main toolbar. The icons are a bit cryptic. Wait for the tooltip to see
which option you’re setting with each button.

Figure 1-9. The Regulator

Below the area for your regex and to the right, click on the Input button to display
the area for pasting in your sample text. Click the “Replace with” button to type in the
replacement text, if you want to do a search-and-replace. Below the regex and to the
left, you can see the results of your regex operation. Results are not updated automat-
ically; you must click the Match, Replace, or Split button in the toolbar to update the
results. No highlighting is applied to the input. Click on a match in the results to select
it in the subject text.

The Regex Analyzer panel shows a simple English-language analysis of your regular
expression, but it is not automatic or interactive. To update the analysis, select Regex
Analyzer in the View menu, even if it is already visible. Clicking on the analysis only
moves the text cursor.

grep
The name grep is derived from the g/re/p command that performed a regular expres-
sion search in the Unix text editor ed, one of the first applications to support regular
expressions. This command was so popular that all Unix systems now have a dedicated
grep utility for searching through files using a regular expression. If you’re using Unix,
Linux, or OS X, type man grep into a terminal window to learn all about it.

The following three tools are Windows applications that do what grep does, and more.

Tools for Working with Regular Expressions | 19

PowerGREP

PowerGREP, developed by Jan Goyvaerts, one of this book’s authors, is probably the
most feature-rich grep tool available for the Microsoft Windows platform (Fig-
ure 1-10). PowerGREP uses a custom regex flavor that combines the best of the flavors
discussed in this book. This flavor is labeled “JGsoft” in RegexBuddy.

To run a quick regular expression search, simply select Clear in the Action menu and
type your regular expression into the Search box on the Action panel. Click on a folder
in the File Selector panel, and select “Include File or Folder” or “Include Folder and
Subfolders” in the File Selector menu. Then, select Execute in the Action menu to run
your search.

To run a search-and-replace, select “search-and-replace” in the “action type” drop-
down list at the top-left corner of the Action panel after clearing the action. A Replace
box will appear below the Search box. Enter your replacement text there. All the other
steps are the same as for searching.

PowerGREP has the unique ability to use up to three lists of regular expressions at the
same time, with any number of regular expressions in each list. While the previous two
paragraphs provide all you need to run simple searches like you can in any grep tool,

Figure 1-10. PowerGREP

20 | Chapter 1: Introduction to Regular Expressions

unleashing PowerGREP’s full potential will take a bit of reading through the tool’s
comprehensive documentation.

PowerGREP runs on Windows 98, ME, 2000, XP, and Vista. You can download a free
evaluation copy at http://www.powergrep.com/PowerGREPCookbook.exe. Except for
saving results and libraries, the trial is fully functional for 15 days of actual use. Though
the trial won’t save the results shown on the Results panel, it will modify all your files
for search-and-replace actions, just like the full version does.

Figure 1-11. Windows Grep

Windows Grep

Windows Grep (http://www.wingrep.com) is one of the oldest grep tools for Windows.
Its age shows a bit in its user interface (Figure 1-11), but it does what it says on the tin
just fine. It supports a limited regular expression flavor called POSIX ERE. For the
features that it supports, it uses the same syntax as the flavors in this book. Windows
Grep is shareware, which means you can download it for free, but payment is expected
if you want to keep it.

To prepare a search, select Search in the Search menu. The screen that appears differs
depending on whether you’ve selected Beginner Mode or Expert Mode in the Options
menu. Beginners get a step-by-step wizard, whereas experts get a tabbed dialog.

When you’ve set up the search, Windows Grep immediately executes it, presenting
you with a list of files in which matches were found. Click once on a file to see its

Tools for Working with Regular Expressions | 21

matches in the bottom panel, and double-click to open the file. Select “All Matches”
in the View menu to make the bottom panel show everything.

To run a search-and-replace, select Replace in the Search menu.

RegexRenamer

RegexRenamer (Figure 1-12) is not really a grep tool. Instead of searching through the
contents of files, it searches and replaces through the names of files. You can download
it at http://regexrenamer.sourceforge.net. RegexRenamer requires version 2.0 or later of
the Microsoft .NET framework.

Figure 1-12. RegexRenamer

Type your regular expression into the Match box and the replacement text into the
Replace box. Click /i to turn on case insensitivity, and /g to replace all matches in each
filename rather than just the first. /x turns on free-spacing syntax, which isn’t very
useful, since you have only one line to type in your regular expression.

Use the tree at the left to select the folder that holds the files you want to rename. You
can set a file mask or a regex filter in the top-right corner. This restricts the list of files
to which your search-and-replace regex will be applied. Using one regex to filter and
another to replace is much handier than trying to do both tasks with just one regex.

22 | Chapter 1: Introduction to Regular Expressions

Popular Text Editors
Most modern text editors have at least basic support for regular expressions. In the
search or search-and-replace panel, you’ll typically find a checkbox to turn on regular
expression mode. Some editors, such as EditPad Pro, also use regular expressions for
various features that process text, such as syntax highlighting or class and function lists.
The documentation with each editor explains all these features. Some popular text
editors with regular expression support include:

• Boxer Text Editor (PCRE)

• Dreamweaver (JavaScript)

• EditPad Pro (custom flavor that combines the best of the flavors discussed in this
book; labeled “JGsoft” in RegexBuddy)

• Multi-Edit (PCRE, if you select the “Perl” option)

• NoteTab (PCRE)

• UltraEdit (PCRE)

• TextMate (Ruby 1.9 [Oniguruma])

Tools for Working with Regular Expressions | 23

CHAPTER 2

Basic Regular Expression Skills

The problems presented in this chapter aren’t the kind of real-world problems that your
boss or your customers ask you to solve. Rather, they’re technical problems you’ll
encounter while creating and editing regular expressions to solve real-world problems.
The first recipe, for example, explains how to match literal text with a regular expres-
sion. This isn’t a goal on its own, because you don’t need a regex when all you want to
do is to search for literal text. But when creating a regular expression, you’ll likely need
it to match certain text literally, and you’ll need to know which characters to escape.
Recipe 2.1 tells you how.

The recipes start out with very basic regular expression techniques. If you’ve used reg-
ular expressions before, you can probably skim or even skip them. The recipes further
down in this chapter will surely teach you something new, unless you have already read
Mastering Regular Expressions by Jeffrey E. F. Friedl (O’Reilly) cover to cover.

We devised the recipes in this chapter in such a way that each explains one aspect of
the regular expression syntax. Together, they form a comprehensive tutorial to regular
expressions. Read it from start to finish to get a firm grasp of regular expressions. Or
dive right in to the real-world regular expressions in Chapters 4 through 8, and follow
the references back to this chapter whenever those chapters use some syntax you’re not
familiar with.

This tutorial chapter deals with regular expressions only and completely ignores any
programming considerations. The next chapter is the one with all the code listings. You
can peek ahead to “Programming Languages and Regex Flavors” in Chapter 3 to find
out which regular expression flavor your programming language uses. The flavors
themselves, which this chapter talks about, were introduced in “Regex Flavors Covered
by This Book” on page 3.

25

2.1 Match Literal Text
Problem
Create a regular expression to exactly match this gloriously contrived sentence: The
punctuation characters in the ASCII table are: !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~.

Solution
The●punctuation●characters●in●the●ASCII●table●are:●↵
!"#\$%&'\(\)*\+,-\./:;<=>\?@\[\\]\^_`\{\|}~

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
Any regular expression that does not include any of the dozen characters $()*+.?
[\^{| simply matches itself. To find whether Mary had a little lamb in the text you’re
editing, simply search for ‹Mary●had●a●little●lamb›. It doesn’t matter whether the
“regular expression” checkbox is turned on in your text editor.

The 12 punctuation characters that make regular expressions work their magic are
called metacharacters. If you want your regex to match them literally, you need to
escape them by placing a backslash in front of them. Thus, the regex:

\$\(\)*\+\.\?\[\\\^\{\|

matches the text:

$()*+.?[\^{|

Notably absent from the list are the closing square bracket], the hyphen -, and the
closing curly bracket }. The first two become metacharacters only after an unescaped
[, and the } only after an unescaped {. There’s no need to ever escape }. Metacharacter
rules for the blocks that appear between [and] are explained in Recipe 2.3.

Escaping any other nonalphanumeric character does not change how your regular ex-
pression works—at least not when working with any of the flavors discussed in this
book. Escaping an alphanumeric character either gives it a special meaning or throws
a syntax error.

People new to regular expressions often escape every punctuation character in sight.
Don’t let anyone know you’re a newbie. Escape judiciously. A jungle of needless back-
slashes makes regular expressions hard to read, particularly when all those backslashes
have to be doubled up to quote the regex as a literal string in source code.

26 | Chapter 2: Basic Regular Expression Skills

Variations

Block escape
The●punctuation●characters●in●the●ASCII●table●are:●↵
\Q!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~\E

Regex options: None
Regex flavors: Java 6, PCRE, Perl

Perl, PCRE and Java support the regex tokens ‹\Q› and ‹\E›. ‹\Q› suppresses the meaning
of all metacharacters, including the backslash, until ‹\E›. If you omit ‹\E›, all characters
after the ‹\Q› until the end of the regex are treated as literals.

The only benefit of ‹\Q...\E› is that it is easier to read than ‹\.\.\.›.

Though Java 4 and 5 support this feature, you should not use it. Bugs
in the implementation cause regular expressions with ‹\Q⋯\E› to match
different things from what you intended, and from what PCRE, Perl, or
Java 6 would match. These bugs were fixed in Java 6, making it behave
the same way as PCRE and Perl.

Case-insensitive matching
ascii

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

(?i)ascii
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

By default, regular expressions are case sensitive. ‹regex› matches regex but not Regex,
REGEX, or ReGeX. To make ‹regex› match all of those, you need to turn on case
insensitivity.

In most applications, that’s a simple matter of marking or clearing a checkbox. All
programming languages discussed in the next chapter have a flag or property that you
can set to make your regex case insensitive. Recipe 3.4 in the next chapter explains how
to apply the regex options listed with each regular expression solution in this book in
your source code.

If you cannot turn on case insensitivity outside the regex, you can do so within by using
the ‹(?i)› mode modifier, such as ‹(?i)regex›. This works with the .NET, Java, PCRE,
Perl, Python, and Ruby flavors.

.NET, Java, PCRE, Perl, and Ruby support local mode modifiers, which affect only part
of the regular expression. ‹sensitive(?i)caseless(?-i)sensitive› matches sensitive
CASELESSsensitive but not SENSITIVEcaselessSENSITIVE. ‹(?i)› turns on case

2.1 Match Literal Text | 27

insensitivity for the remainder of the regex, and ‹(?-i)› turns it off for the remainder
of the regex. They act as toggle switches.

Recipe 2.10 shows how to use local mode modifiers with groups instead of toggles.

See Also
Recipes 2.3 and 5.14

2.2 Match Nonprintable Characters
Problem
Match a string of the following ASCII control characters: bell, escape, form feed, line
feed, carriage return, horizontal tab, vertical tab. These characters have the hexadeci-
mal ASCII codes 07, 1B, 0C, 0A, 0D, 09, 0B.

Solution
\a\e\f\n\r\t\v

Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

\x07\x1B\f\n\r\t\v
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
Seven of the most commonly used ASCII control characters have dedicated escape
sequences. These all consist of a backslash followed by a letter. This is the same syntax
that is used for string literals in many programming languages. Table 2-1 shows the
common nonprinting characters and how they are represented.

Table 2-1. Nonprinting characters

Representation Meaning Hexadecimal representation

‹\a› bell 0x07

‹\e› escape 0x1B

‹\f› form feed 0x0C

‹\n› line feed (newline) 0x0A

‹\r› carriage return 0x0D

‹\t› horizontal tab 0x09

‹\v› vertical tab 0x0B

28 | Chapter 2: Basic Regular Expression Skills

The ECMA-262 standard does not support ‹\a› and ‹\e›. Therefore, we use a different
syntax for the JavaScript examples in this book, even though many browsers do support
‹\a› and ‹\e›.
These control characters, as well as the alternative syntax shown in the following sec-
tion, can be used equally inside and outside character classes in your regular expression.

Variations on Representations of Nonprinting Characters

The 26 control characters
\cG\x1B\cL\cJ\cM\cI\cK

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Ruby 1.9

Using ‹\cA› through ‹\cZ›, you can match one of the 26 control characters that occupy
positions 1 through 26 in the ASCII table. The c must be lowercase. The letter that
follows the c is case insensitive in most flavors. We recommend that you always use an
uppercase letter. Java requires this.

This syntax can be handy if you’re used to entering control characters on console sys-
tems by pressing the Control key along with a letter. On a terminal, Ctrl-H sends a
backspace. In a regex, ‹\cH› matches a backspace.

Python and the classic Ruby engine in Ruby 1.8 do not support this syntax. The Oni-
guruma engine in Ruby 1.9 does.

The escape control character, at position 27 in the ASCII table, is beyond the reach of
the English alphabet, so we leave it as ‹\x1B› in our regular expression.

The 7-bit character set
\x07\x1B\x0C\x0A\x0D\x09\x0B

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

A lowercase \x followed by two uppercase hexadecimal digits matches a single char-
acter in the ASCII set. Figure 2-1 shows which hexadecimal combinations from
‹\x00› through ‹\x7F› match each character in the entire ASCII character set. The table
is arranged with the first hexadecimal digit going down the left side and the second
digit going across the top.

Which characters ‹\x80› through ‹\xFF› match depends on how your regex engine in-
terprets them, and which code page your subject text is encoded in. We recommend
that you not use ‹\x80› through ‹\xFF›. Instead, use the Unicode code point token
described in Recipe 2.7.

If you’re using Ruby 1.8 or you compiled PCRE without UTF-8 support, you cannot
use Unicode code points. Ruby 1.8 and PCRE without UTF-8 are 8-bit regex engines.

2.2 Match Nonprintable Characters | 29

They are completely ignorant about text encodings and multibyte characters. ‹\xAA› in
these engines simply matches the byte 0xAA, regardless of which character 0xAA hap-
pens to represent or whether 0xAA is part of a multibyte character.

See Also
Recipe 2.7

2.3 Match One of Many Characters
Problem
Create one regular expression to match all common misspellings of calendar, so you
can find this word in a document without having to trust the author’s spelling ability.
Allow an a or e to be used in each of the vowel positions. Create another regular ex-
pression to match a single hexadecimal character. Create a third regex to match a single
character that is not a hexadecimal character.

Solution

Calendar with misspellings
c[ae]l[ae]nd[ae]r

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Hexadecimal character
[a-fA-F0-9]

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Figure 2-1. ASCII Table

30 | Chapter 2: Basic Regular Expression Skills

Nonhexadecimal character
[^a-fA-F0-9]

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
The notation using square brackets is called a character class. A character class matches
a single character out of a list of possible characters. The three classes in the first regex
match either an a or an e. They do so independently. When you test calendar against
this regex, the first character class matches a, the second e, and the third a.

Outside character classes, a dozen punctuation characters are metacharacters. Inside
a character class, only four characters have a special function: \, ^, -, and]. If you’re
using Java or .NET, the opening bracket [is also a metacharacter inside character
classes. All other characters are literals and simply add themselves to the character class.
The regular expression ‹[$()*+.?{|]› matches any one of the nine characters between
the square brackets.

The backslash always escapes the character that follows it, just as it does outside char-
acter classes. The escaped character can be a single character, or the start or end of a
range. The other four metacharacters get their special meanings only when they’re
placed in a certain position. It is possible to include them as literal characters in a
character class without escaping them, by positioning them in a way that they don’t
get their special meaning. ‹[][^-]› pulls off this trick, at least if you’re not using a
JavaScript implementation that strictly adheres to the standard. But we recommend
that you always escape these metacharacters, so the previous regex should be ‹[\]\[\^
\-]›. Escaping the metacharacters makes your regular expression easier to understand.

Alphanumeric characters cannot be escaped with a backslash. Doing so is either an
error or creates a regular expression token (something with a special meaning in a
regular expression). In our discussions of certain other regex tokens, such as in Rec-
ipe 2.2, we mention that they can be used inside character classes. All these tokens
consist of a backslash and a letter, sometimes followed by a bunch of other characters.
Thus, ‹[\r\n]› matches a carriage return (\r) or line break (\n).

The caret (^) negates the character class if you place it immediately after the opening
bracket. It makes the character class match any character that is not in the list. A negated
character class matches line break characters, unless you add them to the negated
character class.

The hyphen (-) creates a range when it is placed between two characters. The range
consists of the character class with the character before the hyphen, the character after
the hyphen, and all characters that lie between them in numerical order. To know which
characters those are, you have to look at the ASCII or Unicode character table.
‹[A-z]› includes all characters in the ASCII table between the uppercase A and the low-
ercase z. The range includes some punctuation, so ‹[A-Z\[\\\]\^_`a-z]› matches the

2.3 Match One of Many Characters | 31

same characters more explicitly. We recommend that you create ranges only between
two digits or between two letters that are both upper- or lowercase.

Reversed ranges, such as ‹[z-a]›, are not permitted.

Variations

Shorthands
[a-fA-F\d]

Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Six regex tokens that consist of a backslash and a letter form shorthand character classes.
You can use these both inside and outside character classes. ‹\d› and ‹[\d]› both match
a single digit. Each lowercase shorthand character has an associated uppercase short-
hand character with the opposite meaning. Thus ‹\D› matches any character that is
not a digit, and is equivalent to ‹[^\d]›.
‹\w› matches a single word character. A word character is a character that can occur as
part of a word. That includes letters, digits, and the underscore. The particular choice
of characters here may seem odd, but it was chosen because these are the characters
that are typically allowed in identifiers in programming languages. ‹\W› matches any
character that is not part of such a propellerhead word.

In Java, JavaScript, PCRE, and Ruby, ‹\w› is always identical to ‹[a-zA-Z0-9_]›. In .NET
and Perl, it includes letters and digits from all other scripts (Cyrillic, Thai, etc.). In
Python, the other scripts are included only if you pass the UNICODE or U flag when creating
the regex. ‹\d› follows the same rule in all these flavors. In .NET and Perl, digits from
other scripts are always included, whereas Python includes them only if you pass the
UNICODE or U flag.

‹\s› matches any whitespace character. This includes spaces, tabs, and line breaks.
In .NET, Perl, and JavaScript, ‹\s› also matches any character defined as whitespace
by the Unicode standard. Notice that JavaScript uses Unicode for ‹\s› but ASCII for
‹\d› and ‹\w›. ‹\S› matches any character not matched by ‹\s›.
Further inconsistency arises when we add ‹\b› to the mix. ‹\b› is not a shorthand char-
acter class, but a word boundary. Though you’d expect ‹\b› to support Unicode when
‹\w› does and to be ASCII-only when ‹\w› is ASCII-only, this isn’t always the case. The
subsection “Word Characters” on page 42 in Recipe 2.6 has the details.

Case insensitivity
(?i)[A-F0-9]

Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

32 | Chapter 2: Basic Regular Expression Skills

(?i)[^A-F0-9]
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Case insensitivity, whether set with an external flag (see Recipe 3.4) or a mode modifier
inside the regex (see Recipe 2.1), also affects character classes. The two regexes just
shown are equivalent to the ones in the original solution.

JavaScript follows the same rule, but it doesn’t support ‹(?i)›. To make a regular ex-
pression case-insensitive in JavaScript, set the /i flag when creating it.

Flavor-Specific Features

.NET character class subtraction
[a-zA-Z0-9-[g-zG-Z]]

This regular expression matches a single hexadecimal character, but in a roundabout
way. The base character class matches any alphanumeric character, and a nested class
then subtracts the letters g through z. This nested class must appear at the end of the
base class, preceded by a hyphen: ‹[class-[subtract]]›.
Character class subtraction is particularly useful when working with Unicode proper-
ties, blocks, and scripts. As an example, ‹\p{IsThai}› matches any character in the Thai
block. ‹\P{N}› matches any character that doesn’t have the Number property. Com-
bining them with subtraction, ‹[\p{IsThai}-[\P{N}]]› matches any of the 10 Thai
digits.

Java character class union, subtraction, and intersection
[a-f[A-F][0-9]]

[a-f[A-F[0-9]]]

Java allows one character class to be nested inside another. If the nested class is included
directly, the resulting class is the union of the two. You can nest as many classes as you
like. Both of the two regexes just shown have the same effect as the original without
the extra square brackets:

[\w&&[a-fA-F0-9\s]]

This one could win a prize in a regex obfuscation contest. The base character class
matches any word character. The nested class matches any hexadecimal digit and any
whitespace character. The resulting class is the intersection of the two, matching hex-
adecimal digits and nothing else. Because the base class does not match whitespace and
the nested class does not match ‹[g-zG-Z_]›, those are dropped from the final character
class, leaving only the hexadecimal digits:

[a-zA-Z0-9&&[^g-zG-Z]]

2.3 Match One of Many Characters | 33

This regular expression matches a single hexadecimal character, also in a roundabout
way. The base character class matches any alphanumeric character, and a nested class
then subtracts the letters g through z. This nested class must be a negated character
class, preceded by two ampersands: ‹[class&&[^subtract]]›.
Character class intersection and subtraction are particularly useful when working with
Unicode properties, blocks, and scripts. Thus, ‹\p{InThai}› matches any character in
the Thai block, whereas ‹\p{N}› matches any character that has the Number property.
In consequence, ‹[\p{InThai}&&[\p{N}]]› matches any of the 10 Thai digits.

If you’re wondering about the subtle differences in the ‹\p› regex tokens, you’ll find
those all explained in Recipe 2.7.

See Also
Recipes 2.1, 2.2, and 2.7

2.4 Match Any Character
Problem
Match a quoted character. Provide one solution that allows any single character, except
a line break, between the quotes. Provide another that truly allows any character, in-
cluding line breaks.

Solution

Any character except line breaks
'.'

Regex options: None (the “dot matches line breaks” option must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Any character including line breaks
'.'

Regex options: Dot matches line breaks
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

'[\s\S]'
Regex options: None
Regex flavor: JavaScript

34 | Chapter 2: Basic Regular Expression Skills

Discussion

Any character except line breaks

The dot is one of the oldest and simplest regular expression features. Its meaning has
always been to match any single character.

There is, however, some confusion as to what any character truly means. The oldest
tools for working with regular expressions processed files line by line, so there was
never an opportunity for the subject text to include a line break. The programming
languages discussed in this book process the subject text as a whole, no matter how
many line breaks you put into it. If you want true line-by-line processing, you have to
write a bit of code that splits the subject into an array of lines and applies the regex to
each line in the array. Recipe 3.21 in the next chapter shows how to do this.

Larry Wall, the developer of Perl, wanted Perl to retain the traditional behavior of line-
based tools, in which the dot never matched a line break (\n). All the other flavors
discussed in this book followed suit. ‹'.'› thus matches any single character except a
newline character.

Any character including line breaks

If you do want to allow your regular expression to span multiple lines, turn on the “dot
matches line breaks” option. This option masquerades under different names. Perl and
many others confusingly call it “single line” mode, whereas Java calls it “dot all” mode.
Recipe 3.4 in the next chapter has all the details. Whatever the name of this option in
your favorite programming language is, think of it as “dot matches line breaks” mode.
That’s all the option does.

An alternative solution is needed for JavaScript, which doesn’t have a “dot matches
line breaks” option. As Recipe 2.3 explains, ‹\s› matches any whitespace character,
whereas ‹\S› matches any character that is not matched by ‹\s›. Combining these into
‹[\s\S]› results in a character class that includes all characters, including line breaks.
‹[\d\D]› and ‹[\w\W]› have the same effect.

Dot abuse

The dot is the most abused regular expression feature. ‹\d\d.\d\d.\d\d› is not a good
way to match a date. It does match 05/16/08 just fine, but it also matches 99/99/99.
Worse, it matches 12345678.

A proper regex for matching only valid dates is a subject for a later chapter. But replacing
the dot with a more appropriate character class is very easy. ‹\d\d[/.\-]\d\d[/.\-]\d
\d› allows a forward slash, dot, or hyphen to be used as the date separator. This regex
still matches 99/99/99, but not 12345678.

2.4 Match Any Character | 35

It’s just a coincidence that the previous example includes a dot inside
the character classes. Inside a character class, the dot is just a literal
character. It’s worth including in this particular regular expression be-
cause in some countries, such as Germany, the dot is used as a date
separator.

Use the dot only when you really want to allow any character. Use a character class or
negated character class in any other situation.

Variations
(?s)'.'

Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python

(?m)'.'
Regex options: None
Regex flavors: Ruby

If you cannot turn on “dot matches line breaks” mode outside the regular expression,
you can place a mode modifier at the start of the regular expression. We explain the
concept of mode modifiers, and JavaScript’s lack of support for them, in the subsection
“Case-insensitive matching” on page 27 under Recipe 2.1.

‹(?s)› is the mode modifier for “dot matches line breaks” mode in .NET, Java, PCRE,
Perl, and Python. The s stands for “single line” mode, which is Perl’s confusing name
for “dot matches line breaks.”

The terminology is so confusing that the developer of Ruby’s regex engine copied it
wrongly. Ruby uses ‹(?m)› to turn on “dot matches line breaks” mode. Other than the
different letter, the functionality is exactly the same. The new engine in Ruby 1.9 con-
tinues to use ‹(?m)› for “dot matches line breaks.” Perl’s meaning for ‹(?m)› is explained
in Recipe 2.5.

See Also
Recipes 2.3, 3.4, and 3.21

2.5 Match Something at the Start and/or the End of a Line
Problem
Create four regular expressions. Match the word alpha, but only if it occurs at the very
beginning of the subject text. Match the word omega, but only if it occurs at the very
end of the subject text. Match the word begin, but only if it occurs at the beginning of
a line. Match the word end, but only if it occurs at the end of a line.

36 | Chapter 2: Basic Regular Expression Skills

Solution

Start of the subject
^alpha

Regex options: None (“^ and $ match at line breaks” must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

\Aalpha
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

End of the subject
omega$

Regex options: None (“^ and $ match at line breaks” must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

omega\Z
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Start of a line
^begin

Regex options: ^ and $ match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

End of a line
end$

Regex options: ^ and $ match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Anchors and lines

The regular expression tokens ‹^›, ‹$›, ‹\A›, ‹\Z›, and ‹\z› are called anchors. They do
not match any characters. Instead, they match at certain positions, effectively anchoring
the regular expression match at those positions.

A line is the part of the subject text that lies between the start of the subject and a line
break, between two line breaks, or between a line break and the end of the subject. If
there are no line breaks in the subject, then the whole subject is considered to be one
line. Thus, the following text consists of four lines, one each for one, two, an empty
string, and four:

2.5 Match Something at the Start and/or the End of a Line | 37

one
two

four

The text could be represented in a program as one LFtwo LF LFfour.

Start of the subject

The anchor ‹\A› always matches at the very start of the subject text, before the first
character. That is the only place where it matches. Place ‹\A› at the start of your regular
expression to test whether the subject text begins with the text you want to match. The
“A” must be uppercase.

JavaScript does not support ‹\A›.
The anchor ‹^› is equivalent to ‹\A›, as long as you do not turn on the “^ and $ match
at line breaks” option. This option is off by default for all regex flavors except Ruby.
Ruby does not offer a way to turn this option off.

Unless you’re using JavaScript, we recommend that you always use ‹\A› instead of
‹^›. The meaning of ‹\A› never changes, avoiding any confusion or mistakes in setting
regex options.

End of the subject

The anchors ‹\Z› and ‹\z› always match at the very end of the subject text, after the last
character. Place ‹\Z› or ‹\z› at the end of your regular expression to test whether the
subject text ends with the text you want to match.

.NET, Java, PCRE, Perl, and Ruby support both ‹\Z› and ‹\z›. Python supports only
‹\Z›. JavaScript does not support ‹\Z› or ‹\z› at all.

The difference between ‹\Z› and ‹\z› comes into play when the last character in your
subject text is a line break. In that case, ‹\Z› can match at the very end of the subject
text, after the final line break, as well as immediately before that line break. The benefit
is that you can search for ‹omega\Z› without having to worry about stripping off a trailing
line break at the end of your subject text. When reading a file line by line, some tools
include the line break at the end of the line, whereas others don’t; ‹\Z› masks this
difference. ‹\z› matches only at the very end of the subject text, so it will not match
text if a trailing line break follows.

The anchor ‹$› is equivalent to ‹\Z›, as long as you do not turn on the “^ and $ match
at line breaks” option. This option is off by default for all regex flavors except Ruby.
Ruby does not offer a way to turn this option off. Just like ‹\Z›, ‹$› matches at the very
end of the subject text, as well as before the final line break, if any.

38 | Chapter 2: Basic Regular Expression Skills

To help clarify this subtle and somewhat confusing situation, lets look at an example
in Perl. Assuming that $/ (the current record separator) is set to its default \n, the
following Perl statement reads a single line from the terminal (standard input):

$line = <>;

Perl leaves the newline on the content of the variable $line. Therefore, an expression
such as ‹end●of●input.\z› will not match the variable. But ‹end●of●input.\Z› and
‹end●of●input.$› will both match, because they ignore the trailing newline.

To make processing easier, Perl programmers often strip newlines with:

chomp $line;

After that operation is performed, all three anchors will match. (Technically, chomp
strips a string of the current record separator.)

Unless you’re using JavaScript, we recommend that you always use ‹\Z› instead of
‹$›. The meaning of ‹\Z› never changes, avoiding any confusion or mistakes in setting
regex options.

Start of a line

By default, ‹^› matches only at the start of the subject text, just like ‹\A›. Only in Ruby
does ‹^› always match at the start of a line. All the other flavors require you to turn on
the option to make the caret and dollar sign match at line breaks. This option is typically
referred to as “multiline” mode.

Do not confuse this mode with “single line” mode, which would be better known as
“dot matches line breaks” mode. “Multiline” mode affects only the caret and dollar
sign; “single line” mode affects only the dot, as Recipe 2.4 explains. It is perfectly pos-
sible to turn on both “single line” and “multiline” mode at the same time. By default,
both options are off.

With the correct option set, ‹^› will match at the start of each line in the subject text.
Strictly speaking, it matches before the very first character in the file, as it always does,
and also after each line break character in the subject text. The caret in ‹\n^› is redun-
dant because ‹^› always matches after ‹\n›.

End of a line

By default, ‹$› matches only at the end of the subject text or before the final line break,
just like ‹\Z›. Only in Ruby does ‹$› always match at the end of each line. All the other
flavors require you to turn on the “multiline” option to make the caret and dollar match
at line breaks.

With the correct option set, ‹$› will match at the end of each line in the subject text.
(Of course, it also matches after the very last character in the text because that is always
the end of a line as well.) The dollar in ‹$\n› is redundant because ‹$› always matches
before ‹\n›.

2.5 Match Something at the Start and/or the End of a Line | 39

Zero-length matches

It is perfectly valid for a regular expression to consist of nothing but one or more an-
chors. Such a regular expression will find a zero-length match at each position where
the anchor can match. If you place several anchors together, all of them need to match
at the same position for the regex to match.

You could use such a regular expression in a search-and-replace. Replace ‹\A› or ‹\Z›
to prepend or append something to the whole subject. Replace ‹^› or ‹$›, in “^ and $
match at line breaks” mode, to prepend or append something in each line in the subject
text.

Combine two anchors to test for blank lines or missing input. ‹\A\Z› matches the empty
string, as well as the string that consists of a single newline. ‹\A\z› matches only the
empty string. ‹^$›, in “^ and $ match at line breaks” mode, matches each empty line
in the subject text.

Variations
(?m)^begin

Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python

(?m)end$
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python

If you cannot turn on “^ and $ match at line breaks” mode outside the regular expres-
sion, you can place a mode modifier at the start of the regular expression. The concept
of mode modifiers and JavaScript’s lack of support for them are both explained in the
subsection “Case-insensitive matching” on page 27 under Recipe 2.1.

‹(?m)› is the mode modifier for “^ and $ match at line breaks” mode in .NET, Java,
PCRE, Perl, and Python. The m stands for “multiline” mode, which is Perl’s confusing
name for “^ and $ match at line breaks.”

As explained earlier, the terminology was so confusing that the developer of Ruby’s
regex engine copied it incorrectly. Ruby uses ‹(?m)› to turn on “dot matches line breaks”
mode. Ruby’s ‹(?m)› has nothing to do with the caret and dollar anchors. In Ruby,
‹^› and ‹$› always match at the start and end of each line.

Except for the unfortunate mix-up in letters, Ruby’s choice to use ‹^› and ‹$› exclusively
for lines is a good one. Unless you’re using JavaScript, we recommend that you copy
this choice in your own regular expressions.

Jan followed the same idea in his designs of EditPad Pro and PowerGREP. You won’t
find a checkbox labeled “^ and $ match at line breaks,” even though there is one labeled
“dot matches newlines.” Unless you prefix your regular expression with ‹(?-m)›, you’ll
have to use ‹\A› and ‹\Z› to anchor your regex to the beginning or end of your file.

40 | Chapter 2: Basic Regular Expression Skills

See Also
Recipes 3.4 and 3.21

2.6 Match Whole Words
Problem
Create a regex that matches cat in My cat is brown, but not in category or bobcat.
Create another regex that matches cat in staccato, but not in any of the three previous
subject strings.

Solution

Word boundaries
\bcat\b

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Nonboundaries
\Bcat\B

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Word boundaries

The regular expression token ‹\b› is called a word boundary. It matches at the start or
the end of a word. By itself, it results in a zero-length match. ‹\b› is an anchor, just like
the tokens introduced in the previous section.

Strictly speaking, ‹\b› matches in these three positions:

• Before the first character in the subject, if the first character is a word character

• After the last character in the subject, if the last character is a word character

• Between two characters in the subject, where one is a word character and the other
is not a word character

None of the flavors discussed in this book have separate tokens for matching only before
or only after a word. Unless you wanted to create a regex that consists of nothing but
a word boundary, these aren’t needed. The tokens before or after the ‹\b› in your regular
expression will determine where ‹\b› can match. The ‹\b› in ‹\bx› and ‹!\b› could match

2.6 Match Whole Words | 41

only at the start of a word. The ‹\b› in ‹x\b› and ‹\b!› could match only at the end of a
word. ‹x\bx› and ‹!\b!› can never match anywhere.

To run a “whole words only” search using a regular expression, simply place the word
between two word boundaries, as we did with ‹\bcat\b›. The first ‹\b› requires the
‹c› to occur at the very start of the string, or after a nonword character. The second
‹\b› requires the ‹t› to occur at the very end of the string, or before a nonword character.

Line break characters are nonword characters. ‹\b› will match after a line break if the
line break is immediately followed by a word character. It will also match before a line
break immediately preceded by a word character. So a word that occupies a whole line
by itself will be found by a “whole words only” search. ‹\b› is unaffected by “multiline”
mode or ‹(?m)›, which is one of the reasons why this book refers to “multiline” mode
as “^ and $ match at line breaks” mode.

Nonboundaries

‹\B› matches at every position in the subject text where ‹\b› does not match. ‹\B›
matches at every position that is not at the start or end of a word.

Strictly speaking, ‹\B› matches in these five positions:

• Before the first character in the subject, if the first character is not a word character

• After the last character in the subject, if the last character is not a word character

• Between two word characters

• Between two nonword characters

• The empty string

‹\Bcat\B› matches cat in staccato, but not in My cat is brown, category, or bobcat.

To do the opposite of a “whole words only” search (i.e., excluding My cat is brown
and including staccato, category, and bobcat), you need to use alternation to combine
‹\Bcat› and ‹cat\B› into ‹\Bcat|cat\B›. ‹\Bcat› matches cat in staccato and bobcat.
‹cat\B› matches cat in category (and staccato if ‹\Bcat› hadn’t already taken care of
that). Recipe 2.8 explains alternation.

Word Characters
All this talk about word boundaries, but no talk about what a word character is. A word
character is a character that can occur as part of a word. The subsection “Short-
hands” on page 32 in Recipe 2.3 discussed which characters are included in ‹\w›, which
matches a single word character. Unfortunately, the story is not the same for ‹\b›.
Although all the flavors in this book support ‹\b› and ‹\B›, they differ in which char-
acters are word characters.

42 | Chapter 2: Basic Regular Expression Skills

.NET, JavaScript, PCRE, Perl, Python, and Ruby have ‹\b› match between two char-
acters where one is matched by ‹\w› and the other by ‹\W›. ‹\B› always matches between
two characters where both are matched by ‹\w› or ‹\W›.
JavaScript, PCRE, and Ruby view only ASCII characters as word characters. ‹\w› is
identical to ‹[a-zA-Z0-9_]›. With these flavors, you can do a “whole words only” search
on words in languages that use only the letters A to Z without diacritics, such as English.
But these flavors cannot do “whole words only” searches on words in other languages,
such as Spanish or Russian.

.NET and Perl treat letters and digits from all scripts as word characters. With these
flavors, you can do a “whole words only” search on words in any language, including
those that don’t use the Latin alphabet.

Python gives you an option. Non-ASCII characters are included only if you pass the
UNICODE or U flag when creating the regex. This flag affects both ‹\b› and ‹\w› equally.

Java behaves inconsistently. ‹\w› matches only ASCII characters. But ‹\b› is Unicode-
enabled, supporting any script. In Java, ‹\b\w\b› matches a single English letter, digit,
or underscore that does not occur as part of a word in any language. ‹\bкошка\b› will
correctly match the Russian word for cat, because ‹\b› supports Unicode. But ‹\w+› will
not match any Russian word, because ‹\w› is ASCII-only.

See Also
Recipe 2.3

2.7 Unicode Code Points, Properties, Blocks, and Scripts
Problem
Use a regular expression to find the trademark sign (™) by specifying its Unicode code
point rather than copying and pasting an actual trademark sign. If you like copy and
paste, the trademark sign is just another literal character, even though you cannot type
it directly on your keyboard. Literal characters are discussed in Recipe 2.1.

Create a regular expression that matches any character that has the “Currency Symbol”
Unicode property. Unicode properties are also called Unicode categories.

Create a regular expression that matches any character in the “Greek Extended” Uni-
code block.

Create a regular expression that matches any character that, according to the Unicode
standard, is part of the Greek script.

Create a regular expression that matches a grapheme, or what is commonly thought of
as a character: a base character with all its combining marks.

2.7 Unicode Code Points, Properties, Blocks, and Scripts | 43

Solution

Unicode code point
\u2122

Regex options: None
Regex flavors: .NET, Java, JavaScript, Python

This regex works in Python only when quoted as a Unicode string: u"\u2122".

\x{2122}
Regex options: None
Regex flavors: PCRE, Perl, Ruby 1.9

PCRE must be compiled with UTF-8 support; in PHP, turn on UTF-8 support with
the /u pattern modifier. Ruby 1.8 does not support Unicode regular expressions.

Unicode property or category
\p{Sc}

Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Ruby 1.9

PCRE must be compiled with UTF-8 support; in PHP, turn on UTF-8 support with
the /u pattern modifier. JavaScript and Python do not support Unicode properties.
Ruby 1.8 does not support Unicode regular expressions.

Unicode block
\p{IsGreekExtended}

Regex options: None
Regex flavors: .NET, Perl

\p{InGreekExtended}
Regex options: None
Regex flavors: Java, Perl

JavaScript, PCRE, Python, and Ruby do not support Unicode blocks.

Unicode script
\p{Greek}

Regex options: None
Regex flavors: PCRE, Perl, Ruby 1.9

Unicode script support requires PCRE 6.5 or later, and PCRE must be compiled with
UTF-8 support. In PHP, turn on UTF-8 support with the /u pattern modifier. .NET,
JavaScript, and Python do not support Unicode properties. Ruby 1.8 does not support
Unicode regular expressions.

44 | Chapter 2: Basic Regular Expression Skills

Unicode grapheme
\X

Regex options: None
Regex flavors: PCRE, Perl

PCRE and Perl have a dedicated token for matching graphemes, but also support the
workaround syntax using Unicode properties.

\P{M}\p{M}*
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Ruby 1.9

PCRE must be compiled with UTF-8 support; in PHP, turn on UTF-8 support with
the /u pattern modifier. JavaScript and Python do not support Unicode properties.
Ruby 1.8 does not support Unicode regular expressions.

Discussion

Unicode code point

A code point is one entry in the Unicode character database. A code point is not the
same as a character, depending on the meaning you give to “character.” What appears
as a character on screen is called a grapheme in Unicode.

The Unicode code point U+2122 represents the “trademark sign” character. You can
match this with ‹\u2122› or ‹\x{2122}›, depending on the regex flavor you’re working
with.

The ‹\u› syntax requires exactly four hexadecimal digits. This means you can only use
it for Unicode code points U+0000 through U+FFFF. The ‹\x› syntax allows any num-
ber of hexadecimal digits, supporting all code points U+000000 through U+10FFFF.
You can match U+00E0 with ‹\x{E0}› or ‹\x{00E0}›. Code points U+100000 are used
very infrequently, and are poorly supported by fonts and operating systems.

Code points can be used inside and outside character classes.

Unicode property or category

Each Unicode code point has exactly one Unicode property, or fits into a single Unicode
category. These terms mean the same thing. There are 30 Unicode categories, grouped
into 7 super-categories:

‹\p{L}›
Any kind of letter from any language

‹\p{Ll}›
A lowercase letter that has an uppercase variant

2.7 Unicode Code Points, Properties, Blocks, and Scripts | 45

‹\p{Lt}›
A letter that appears at the start of a word when only the first letter of the word
is capitalized

‹\p{Lo}›
A letter or ideograph that does not have lowercase and uppercase variants

‹\p{M}›
A character intended to be combined with another character (accents, umlauts,
enclosing boxes, etc.)

‹\p{Mn}›
A character intended to be combined with another character that does not take
up extra space (e.g., accents, umlauts, etc.)

‹\p{Me}›
A character that encloses another character (circle, square, keycap, etc.)

‹\p{Z}›
Any kind of whitespace or invisible separator

‹\p{Zs}›
A whitespace character that is invisible, but does take up space

‹\p{Zl}›
The line separator character U+2028

‹\p{Zp}›
The paragraph separator character U+2029

‹\p{S}›
Math symbols, currency signs, dingbats, box-drawing characters, etc.

‹\p{Sm}›
Any mathematical symbol

‹\p{Sc}›
Any currency sign

‹\p{Sk}›
A combining character (mark) as a full character on its own

‹\p{So}›
Various symbols that are not math symbols, currency signs, or combining
characters

‹\p{N}›
Any kind of numeric character in any script

‹\p{Nd}›
A digit 0 through 9 in any script except ideographic scripts

‹\p{Nl}›
A number that looks like a letter, such as a Roman numeral

46 | Chapter 2: Basic Regular Expression Skills

‹\p{No}›
A superscript or subscript digit, or a number that is not a digit 0…9 (excluding
numbers from ideographic scripts)

‹\p{P}›
Any kind of punctuation character

‹\p{Pd}›
Any kind of hyphen or dash

‹\p{Ps}›
Any kind of opening bracket

‹\p{Pe}›
Any kind of closing bracket

‹\p{Pi}›
Any kind of opening quote

‹\p{Pf}›
Any kind of closing quote

‹\p{Pc}›
A punctuation character such as an underscore that connects words

‹\p{Po}›
Any kind of punctuation character that is not a dash, bracket, quote or
connector

‹\p{C}›
Invisible control characters and unused code points

‹\p{Cc}›
An ASCII 0x00…0x1F or Latin-1 0x80…0x9F control character

‹\p{Cf}›
An invisible formatting indicator

‹\p{Co}›
Any code point reserved for private use

‹\p{Cs}›
One half of a surrogate pair in UTF-16 encoding

‹\p{Cn}›
Any code point to which no character has been assigned

‹\p{Ll}› matches a single code point that has the Ll, or “lowercase letter,” property.
‹\p{L}› is a quick way of writing ‹[\p{Ll}\p{Lu}\p{Lt}\p{Lm}\p{Lo}]› that matches a
single code point in any of the “letter” categories.

‹\P› is the negated version of ‹\p›. ‹\P{Ll}› matches a single code point that does not
have the Ll property. ‹\P{L}› matches a single code point that does not have any of the
“letter” properties. This is not the same as ‹[\P{Ll}\P{Lu}\P{Lt}\P{Lm}\P{Lo}]›, which
matches all code points. ‹\P{Ll}› matches the code points with the Lu property (and

2.7 Unicode Code Points, Properties, Blocks, and Scripts | 47

every other property except Ll), whereas ‹\P{Lu}› includes the Ll code points. Com-
bining just these two in a code point class already matches all possible code points.

Unicode block

The Unicode character database divides all the code points into blocks. Each block
consists of a single range of code points. The code points U+0000 through U+FFFF
are divided into 105 blocks:

U+0000…U+007F ‹\p{InBasic_Latin}›
U+0080…U+00FF ‹\p{InLatin-1_Supplement}›
U+0100…U+017F ‹\p{InLatin_Extended-A}›
U+0180…U+024F ‹\p{InLatin_Extended-B}›
U+0250…U+02AF ‹\p{InIPA_Extensions}›
U+02B0…U+02FF ‹\p{InSpacing_Modifier_Letters}›
U+0300…U+036F ‹\p{InCombining_Diacritical_Marks}›
U+0370…U+03FF ‹\p{InGreek_and_Coptic}›
U+0400…U+04FF ‹\p{InCyrillic}›
U+0500…U+052F ‹\p{InCyrillic_Supplementary}›
U+0530…U+058F ‹\p{InArmenian}›
U+0590…U+05FF ‹\p{InHebrew}›
U+0600…U+06FF ‹\p{InArabic}›
U+0700…U+074F ‹\p{InSyriac}›
U+0780…U+07BF ‹\p{InThaana}›
U+0900…U+097F ‹\p{InDevanagari}›
U+0980…U+09FF ‹\p{InBengali}›
U+0A00…U+0A7F ‹\p{InGurmukhi}›
U+0A80…U+0AFF ‹\p{InGujarati}›
U+0B00…U+0B7F ‹\p{InOriya}›
U+0B80…U+0BFF ‹\p{InTamil}›
U+0C00…U+0C7F ‹\p{InTelugu}›
U+0C80…U+0CFF ‹\p{InKannada}›
U+0D00…U+0D7F ‹\p{InMalayalam}›
U+0D80…U+0DFF ‹\p{InSinhala}›
U+0E00…U+0E7F ‹\p{InThai}›
U+0E80…U+0EFF ‹\p{InLao}›
U+0F00…U+0FFF ‹\p{InTibetan}›
U+1000…U+109F ‹\p{InMyanmar}›

48 | Chapter 2: Basic Regular Expression Skills

U+10A0…U+10FF ‹\p{InGeorgian}›
U+1100…U+11FF ‹\p{InHangul_Jamo}›
U+1200…U+137F ‹\p{InEthiopic}›
U+13A0…U+13FF ‹\p{InCherokee}›
U+1400…U+167F ‹\p{InUnified_Canadian_Aboriginal_Syllabics}›
U+1680…U+169F ‹\p{InOgham}›
U+16A0…U+16FF ‹\p{InRunic}›
U+1700…U+171F ‹\p{InTagalog}›
U+1720…U+173F ‹\p{InHanunoo}›
U+1740…U+175F ‹\p{InBuhid}›
U+1760…U+177F ‹\p{InTagbanwa}›
U+1780…U+17FF ‹\p{InKhmer}›
U+1800…U+18AF ‹\p{InMongolian}›
U+1900…U+194F ‹\p{InLimbu}›
U+1950…U+197F ‹\p{InTai_Le}›
U+19E0…U+19FF ‹\p{InKhmer_Symbols}›
U+1D00…U+1D7F ‹\p{InPhonetic_Extensions}›
U+1E00…U+1EFF ‹\p{InLatin_Extended_Additional}›
U+1F00…U+1FFF ‹\p{InGreek_Extended}›
U+2000…U+206F ‹\p{InGeneral_Punctuation}›
U+2070…U+209F ‹\p{InSuperscripts_and_Subscripts}›
U+20A0…U+20CF ‹\p{InCurrency_Symbols}›
U+20D0…U+20FF ‹\p{InCombining_Diacritical_Marks_for_Symbols}›
U+2100…U+214F ‹\p{InLetterlike_Symbols}›
U+2150…U+218F ‹\p{InNumber_Forms}›
U+2190…U+21FF ‹\p{InArrows}›
U+2200…U+22FF ‹\p{InMathematical_Operators}›
U+2300…U+23FF ‹\p{InMiscellaneous_Technical}›
U+2400…U+243F ‹\p{InControl_Pictures}›
U+2440…U+245F ‹\p{InOptical_Character_Recognition}›
U+2460…U+24FF ‹\p{InEnclosed_Alphanumerics}›
U+2500…U+257F ‹\p{InBox_Drawing}›
U+2580…U+259F ‹\p{InBlock_Elements}›
U+25A0…U+25FF ‹\p{InGeometric_Shapes}›
U+2600…U+26FF ‹\p{InMiscellaneous_Symbols}›
U+2700…U+27BF ‹\p{InDingbats}›

2.7 Unicode Code Points, Properties, Blocks, and Scripts | 49

U+27C0…U+27EF ‹\p{InMiscellaneous_Mathematical_Symbols-A}›
U+27F0…U+27FF ‹\p{InSupplemental_Arrows-A}›
U+2800…U+28FF ‹\p{InBraille_Patterns}›
U+2900…U+297F ‹\p{InSupplemental_Arrows-B}›
U+2980…U+29FF ‹\p{InMiscellaneous_Mathematical_Symbols-B}›
U+2A00…U+2AFF ‹\p{InSupplemental_Mathematical_Operators}›
U+2B00…U+2BFF ‹\p{InMiscellaneous_Symbols_and_Arrows}›
U+2E80…U+2EFF ‹\p{InCJK_Radicals_Supplement}›
U+2F00…U+2FDF ‹\p{InKangxi_Radicals}›
U+2FF0…U+2FFF ‹\p{InIdeographic_Description_Characters}›
U+3000…U+303F ‹\p{InCJK_Symbols_and_Punctuation}›
U+3040…U+309F ‹\p{InHiragana}›
U+30A0…U+30FF ‹\p{InKatakana}›
U+3100…U+312F ‹\p{InBopomofo}›
U+3130…U+318F ‹\p{InHangul_Compatibility_Jamo}›
U+3190…U+319F ‹\p{InKanbun}›
U+31A0…U+31BF ‹\p{InBopomofo_Extended}›
U+31F0…U+31FF ‹\p{InKatakana_Phonetic_Extensions}›
U+3200…U+32FF ‹\p{InEnclosed_CJK_Letters_and_Months}›
U+3300…U+33FF ‹\p{InCJK_Compatibility}›
U+3400…U+4DBF ‹\p{InCJK_Unified_Ideographs_Extension_A}›
U+4DC0…U+4DFF ‹\p{InYijing_Hexagram_Symbols}›
U+4E00…U+9FFF ‹\p{InCJK_Unified_Ideographs}›
U+A000…U+A48F ‹\p{InYi_Syllables}›
U+A490…U+A4CF ‹\p{InYi_Radicals}›
U+AC00…U+D7AF ‹\p{InHangul_Syllables}›
U+D800…U+DB7F ‹\p{InHigh_Surrogates}›
U+DB80…U+DBFF ‹\p{InHigh_Private_Use_Surrogates}›
U+DC00…U+DFFF ‹\p{InLow_Surrogates}›
U+E000…U+F8FF ‹\p{InPrivate_Use_Area}›
U+F900…U+FAFF ‹\p{InCJK_Compatibility_Ideographs}›
U+FB00…U+FB4F ‹\p{InAlphabetic_Presentation_Forms}›
U+FB50…U+FDFF ‹\p{InArabic_Presentation_Forms-A}›
U+FE00…U+FE0F ‹\p{InVariation_Selectors}›
U+FE20…U+FE2F ‹\p{InCombining_Half_Marks}›
U+FE30…U+FE4F ‹\p{InCJK_Compatibility_Forms}›

50 | Chapter 2: Basic Regular Expression Skills

U+FE50…U+FE6F ‹\p{InSmall_Form_Variants}›
U+FE70…U+FEFF ‹\p{InArabic_Presentation_Forms-B}›
U+FF00…U+FFEF ‹\p{InHalfwidth_and_Fullwidth_Forms}›
U+FFF0…U+FFFF ‹\p{InSpecials}›

A Unicode block is a single, contiguous range of code points. Although many blocks
have the names of Unicode scripts and Unicode categories, they do not correspond
100% with them. The name of a block only indicates its primary use.

The Currency block does not include the dollar and yen symbols. Those are found in
the Basic_Latin and Latin-1_Supplement blocks, for historical reasons. Both do have
the Currency Symbol property. To match any currency symbol, use \p{Sc} instead of
\p{InCurrency}.

Most blocks include unassigned code points, which are covered by the property
‹\p{Cn}›. No other Unicode property, and none of the Unicode scripts, include unas-
signed code points.

The ‹\p{InBlockName}› syntax works with .NET and Perl. Java uses the
‹\p{IsBlockName}› syntax.

Perl also supports the Is variant, but we recommend you stick with the In syntax, to
avoid confusion with Unicode scripts. For scripts, Perl supports ‹\p{Script}› and
‹\p{IsScript}›, but not ‹\p{InScript}›.

Unicode script

Each Unicode code point, except unassigned ones, is part of exactly one Unicode script.
Unassigned code points are not part of any script. The assigned code points up to
U+FFFF are assigned to these scripts:

‹\p{Common}› ‹\p{Katakana}›
‹\p{Arabic}› ‹\p{Khmer}›
‹\p{Armenian}› ‹\p{Lao}›
‹\p{Bengali}› ‹\p{Latin}›
‹\p{Bopomofo}› ‹\p{Limbu}›
‹\p{Braille}› ‹\p{Malayalam}›
‹\p{Buhid}› ‹\p{Mongolian}›
‹\p{CanadianAboriginal}› ‹\p{Myanmar}›
‹\p{Cherokee}› ‹\p{Ogham}›
‹\p{Cyrillic}› ‹\p{Oriya}›
‹\p{Devanagari}› ‹\p{Runic}›
‹\p{Ethiopic}› ‹\p{Sinhala}›
‹\p{Georgian}› ‹\p{Syriac}›
‹\p{Greek}› ‹\p{Tagalog}›
‹\p{Gujarati}› ‹\p{Tagbanwa}›

2.7 Unicode Code Points, Properties, Blocks, and Scripts | 51

‹\p{Gurmukhi}› ‹\p{TaiLe}›
‹\p{Han}› ‹\p{Tamil}›
‹\p{Hangul}› ‹\p{Telugu}›
‹\p{Hanunoo}› ‹\p{Thaana}›
‹\p{Hebrew}› ‹\p{Thai}›
‹\p{Hiragana}› ‹\p{Tibetan}›
‹\p{Inherited}› ‹\p{Yi}›
‹\p{Kannada}›

A script is a group of code points used by a particular human writing system. Some
scripts, such as Thai, correspond with a single human language. Other scripts, such as
Latin, span multiple languages. Some languages are composed of multiple scripts. For
instance, there is no Japanese Unicode script; instead, Unicode offers the Hiragana,
Katakana, Han, and Latin scripts that Japanese documents are usually composed of.

We listed the Common script first, out of alphabetical order. This script contains all sorts
of characters that are common to a wide range of scripts, such as punctuation, white-
space, and miscellaneous symbols.

Unicode grapheme

The difference between code points and characters comes into play when there are
combining marks. The Unicode code point U+0061 is “Latin small letter a,” whereas
U+00E0 is “Latin small letter a with grave accent.” Both represent what most people
would describe as a character.

U+0300 is the “combining grave accent” combining mark. It can be used sensibly only
after a letter. A string consisting of the Unicode code points U+0061 U+0300 will be
displayed as à, just like U+00E0. The combining mark U+0300 is displayed on top of
the character U+0061.

The reason for these two different ways of displaying an accented letter is that many
historical character sets encode “a with grave accent” as a single character. Unicode’s
designers thought it would be useful to have a one-on-one mapping with popular legacy
character sets, in addition to the Unicode way of separating marks and base letters,
which makes arbitrary combinations not supported by legacy character sets possible.

What matters to you as a regex user is that all regex flavors discussed in this book
operate on code points rather than graphical characters. When we say that the regular
expression ‹.› matches a single character, it really matches just a single code point. If
your subject text consists of the two code points U+0061 U+0300, which can be rep-
resented as the string literal "\u0061\u0300" in a programming language such as Java,
the dot will match only the code point U+0061, or a, without the accent U+0300. The
regex ‹..› will match both.

52 | Chapter 2: Basic Regular Expression Skills

Perl and PCRE offer a special regex token ‹\X›, which matches any single Unicode
grapheme. Essentially, it is the Unicode version of the venerable dot. It matches any
Unicode code point that is not a combining mark, along with all the combining marks
that follow it, if any. ‹\P{M}\p{M}*› does the same thing using the Unicode property
syntax. ‹\X› will find two matches in the text àà, regardless of how it is encoded. If it is
encoded as "\u00E0\u0061\u0300" the first match is "\u00E0", and the second
"\u0061\u0300".

Variations

Negated variant

The uppercase ‹\P› is the negated variant of the lowercase ‹\p›. For instance, ‹\P{Sc}›
matches any character that does not have the “Currency Symbol” Unicode property.
‹\P› is supported by all flavors that support ‹\p›, and for all the properties, block, and
scripts that they support.

Character classes

All flavors allow all the ‹\u›, ‹\x›, ‹\p›, and ‹\P› tokens they support to be used inside
character classes. The character represented by the code point, or the characters in the
category, block, or script, are then added to the character class. For instance, you could
match a character that is either an opening quote (initial punctuation property), a clos-
ing quote (final punctuation property), or the trademark symbol (U+2122) with:

[\p{Pi}\p{Pf}\x{2122}]
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Ruby 1.9

Listing all characters

If your regular expression flavor does not support Unicode categories, blocks, or scripts,
you can list the characters that are in the category, block, or script in a character class.
For blocks this is very easy: each block is simply a range between two code points. The
Greek Extended block comprises the characters U+1F00 to U+1FFF:

[\u1F00-\u1FFF]
Regex options: None
Regex flavors: .NET, Java, JavaScript, Python

[\x{1F00}-\x{1FFF}]
Regex options: None
Regex flavors: PCRE, Perl, Ruby 1.9

2.7 Unicode Code Points, Properties, Blocks, and Scripts | 53

For most categories and many scripts, the equivalent character class is a long list of
individual code points and short ranges. The characters that comprise each category
and many of the scripts are scattered throughout the Unicode table. This is the Greek
script:

[\u0370-\u0373\u0375\u0376-\u0377\u037A\u037B-\u037D\u0384\u0386↵
\u0388-\u038A\u038C\u038E-\u03A1\u03A3-\u03E1\u03F0-\u03F5\u03F6↵
\u03F7-\u03FF\u1D26-\u1D2A\u1D5D-\u1D61\u1D66-\u1D6A\u1DBF\u1F00-\u1F15↵
\u1F18-\u1F1D\u1F20-\u1F45\u1F48-\u1F4D\u1F50-\u1F57\u1F59\u1F5B\u1F5D↵
\u1F5F-\u1F7D\u1F80-\u1FB4\u1FB6-\u1FBC\u1FBD\u1FBE\u1FBF-\u1FC1↵
\u1FC2-\u1FC4\u1FC6-\u1FCC\u1FCD-\u1FCF\u1FD0-\u1FD3\u1FD6-\u1FDB↵
\u1FDD-\u1FDF\u1FE0-\u1FEC\u1FED-\u1FEF\u1FF2-\u1FF4\u1FF6-\u1FFC↵
\u1FFD-\u1FFE\u2126]

Regex options: None
Regex flavors: .NET, Java, JavaScript, Python

We built this regular expression by copying the listing for the Greek script from http:
//www.unicode.org/Public/UNIDATA/Scripts.txt, searching and replacing with three
regular expressions:

1. Searching for the regular expression ‹;.*› and replacing its matches with nothing
deletes the comments. If it deletes everything, undo and turn off “dot matches line
breaks.”

2. Searching for ‹^› with “^ and $ match at line breaks” turned on, and replacing
with «\u», prefixes the code points with \u. Replacing ‹\.\.› with «-\u» corrects
the ranges.

3. Finally, replacing ‹\s+› with nothing removes the line breaks. Adding the brackets
around the character class finishes the regex. You may have to add \u at the start
of the character class and/or remove it at the end, depending on whether you in-
cluded any leading or trailing blank lines when copying the listing from
Scripts.txt.

This may seem like a lot of work, but it actually took Jan less than a minute. Writing
the description took much longer. Doing this for the \x{} syntax is just as easy:

1. Searching for the regular expression ‹;.*› and replacing its matches with nothing
deletes the comments. If it deletes everything, undo and turn off “dot matches line
breaks.”

2. Searching for ‹^› with “^ and $ match at line breaks” turned on and replacing with
«\x{» prefixes the code points with \x{. Replacing ‹\.\.› with «}-\x{» corrects
the ranges.

3. Finally, replacing ‹\s+› with «}» adds the closing braces and removes the line
breaks. Adding the brackets around the character class finishes the regex. You may
have to add \x{ at the start of the character class and/or remove it at the end,
depending on whether you included any leading or trailing blank lines when copy-
ing the listing from Scripts.txt.

54 | Chapter 2: Basic Regular Expression Skills

The results are:

[\x{0370}-\x{0373}\x{0375}\x{0376}-\x{0377}\x{037A}\x{037B}-\x{037D}↵
\x{0384}\x{0386}\x{0388}-\x{038A}\x{038C}\x{038E}-\x{03A1}↵
\x{03A3}-\x{03E1}\x{03F0}-\x{03F5}\x{03F6}\x{03F7}-\x{03FF}↵
\x{1D26}-\x{1D2A}\x{1D5D}-\x{1D61}\x{1D66}-\x{1D6A}\x{1DBF}↵
\x{1F00}-\x{1F15}\x{1F18}-\x{1F1D}\x{1F20}-\x{1F45}\x{1F48}-\x{1F4D}↵
\x{1F50}-\x{1F57}\x{1F59}\x{1F5B}\x{1F5D}\x{1F5F}-\x{1F7D}↵
\x{1F80}-\x{1FB4}\x{1FB6}-\x{1FBC}\x{1FBD}\x{1FBE}\x{1FBF}-\x{1FC1}↵
\x{1FC2}-\x{1FC4}\x{1FC6}-\x{1FCC}\x{1FCD}-\x{1FCF}\x{1FD0}-\x{1FD3}↵
\x{1FD6}-\x{1FDB}\x{1FDD}-\x{1FDF}\x{1FE0}-\x{1FEC}\x{1FED}-\x{1FEF}↵
\x{1FF2}-\x{1FF4}\x{1FF6}-\x{1FFC}\x{1FFD}-\x{1FFE}\x{2126}↵
\x{10140}-\x{10174}\x{10175}-\x{10178}\x{10179}-\x{10189}↵
\x{1018A}\x{1D200}-\x{1D241}\x{1D242}-\x{1D244}\x{1D245}]

Regex options: None
Regex flavors: PCRE, Perl, Ruby 1.9

See Also
http://www.unicode.org is the official website of the Unicode Consortium, where you
can download all the official Unicode documents, character tables, etc.

Unicode is a vast topic, on which entire books have been written. One such book is
Unicode Explained by Jukka K. Korpela (O’Reilly).

We can’t explain everything you should know about Unicode code points, properties,
blocks, and scripts in just one section. We haven’t even tried to explain why you should
care—you should. The comfortable simplicity of the extended ASCII table is a lonely
place in today’s globalized world.

2.8 Match One of Several Alternatives
Problem
Create a regular expression that when applied repeatedly to the text Mary, Jane, and
Sue went to Mary's house will match Mary, Jane, Sue, and then Mary again. Further
match attempts should fail.

Solution
Mary|Jane|Sue

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

2.8 Match One of Several Alternatives | 55

Discussion
The vertical bar, or pipe symbol, splits the regular expression into multiple alterna-
tives. ‹Mary|Jane|Sue› matches Mary, or Jane, or Sue with each match attempt. Only one
name matches each time, but a different name can match each time.

All regular expression flavors discussed in this book use a regex-directed engine. The
engine is simply the software that makes the regular expression work. Regex-directed*

means that all possible permutations of the regular expression are attempted at each
character position in the subject text, before the regex is attempted at the next character
position.

When you apply ‹Mary|Jane|Sue› to Mary, Jane, and Sue went to Mary's house, the
match Mary is immediately found at the start of the string.

When you apply the same regex to the remainder of the string—e.g., by clicking “Find
Next” in your text editor—the regex engine attempts to match ‹Mary› at the first comma
in the string. That fails. Then, it attempts to match ‹Jane› at the same position, which
also fails. Attempting to match ‹Sue› at the comma fails, too. Only then does the regex
engine advance to the next character in the string. Starting at the first space, all three
alternatives fail in the same way.

Starting at the J, the first alternative, ‹Mary›, fails to match. The second alternative,
‹Jane›, is then attempted starting at the J. It matches Jane. The regex engine declares
victory.

Notice that Jane was found even though there is another occurrence of Mary in the
subject text, and that ‹Mary› appears before ‹Jane› in the regex. At least in this case, the
order of the alternatives in the regular expression does not matter. The regular expres-
sion finds the leftmost match. It scans the text from left to right, tries all alternatives in
the regular expression at each step, and stops at the first position in the text where any
of the alternatives produces a valid match.

If we do another search through the remainder of the string, Sue will be found. The
fourth search will find Mary once more. If you tell the regular engine to do a fifth search,
that will fail, because none of the three alternatives match the remaining , house string.

The order of the alternatives in the regex matters only when two of them can match at
the same position in the string. The regex ‹Jane|Janet› has two alternatives that match
at the same position in the text Her name is Janet. There are no word boundaries in
the regular expression. The fact that ‹Jane› matches the word Janet in Her name is
Janet only partially does not matter.

* The other kind of engine is a text-directed engine. The key difference is that a text-directed engine visits each
character in the subject text only once, whereas a regex-directed engine may visit each character many times.
Text-directed engines are much faster, but support regular expressions only in the mathematical sense
described at the beginning of Chapter 1. The fancy Perl-style regular expressions that make this book so
interesting can be implemented only with a regex-directed engine.

56 | Chapter 2: Basic Regular Expression Skills

‹Jane|Janet› matches Jane in Her name is Janet because a regex-directed regular ex-
pression engine is eager. In addition to scanning the subject text from left to right,
finding the leftmost match, it also scans the alternatives in the regex from left to right.
The engine stops as soon as it finds an alternative that matches.

When ‹Jane|Janet› reaches the J in Her name is Janet, the first alternative, ‹Jane›,
matches. The second alternative is not attempted. If we tell the engine to look for a
second match, the t is all that is left of the subject text. Neither alternative matches
there.

There are two ways to stop Jane from stealing Janet’s limelight. One way is to put the
longer alternative first: ‹Janet|Jane›. A more solid solution is to be explicit about what
we’re trying to do: we’re looking for names, and names are complete words. Regular
expressions don’t deal with words, but they can deal with word boundaries.

So ‹\bJane\b|\bJanet\b› and ‹\bJanet\b|\bJane\b› will both match Janet in Her name
is Janet. Because of the word boundaries, only one alternative can match. The order
of the alternatives is again irrelevant.

Recipe 2.12 explains the best solution: ‹\bJanet?\b›.

See Also
Recipe 2.9

2.9 Group and Capture Parts of the Match
Problem
Improve the regular expression for matching Mary, Jane, or Sue by forcing the match to
be a whole word. Use grouping to achieve this with one pair of word boundaries for
the whole regex, instead of one pair for each alternative.

Create a regular expression that matches any date in yyyy-mm-dd format, and sepa-
rately captures the year, month, and day. The goal is to make it easy to work with these
separate values in the code that processes the match. You can assume all dates in the
subject text to be valid. The regular expression does not have to exclude things like
9999-99-99, as these won’t occur in the subject text at all.

Solution
\b(Mary|Jane|Sue)\b

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

\b(\d\d\d\d)-(\d\d)-(\d\d)\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

2.9 Group and Capture Parts of the Match | 57

Discussion
The alternation operator, explained in the previous section, has the lowest precedence
of all regex operators. If you try ‹\bMary|Jane|Sue\b›, the three alternatives are ‹\bMary›,
‹Jane›, and ‹Sue\b›. This regex matches Jane in Her name is Janet.

If you want something in your regex to be excluded from the alternation, you have to
group the alternatives. Grouping is done with parentheses. They have the highest prec-
edence of all regex operators, just as in most programming languages. ‹\b(Mary|Jane|
Sue)\b› has three alternatives—‹Mary›, ‹Jane›, and ‹Sue›—between two word bounda-
ries. This regex does not match anything in Her name is Janet.

When the regex engine reaches the J in Janet in the subject text, the first word boundary
matches. The engine then enters the group. The first alternative in the group, ‹Mary›,
fails. The second alternative, ‹Jane›, succeeds. The engine exits the group. All that is
left is ‹\b›. The word boundary fails to match between the e and t at the end of the
subject. The overall match attempt starting at J fails.

A pair of parentheses isn’t just a group; it’s a capturing group. For the Mary-Jane-Sue
regex, the capture isn’t very useful, because it’s simply the overall regex match. Cap-
tures become useful when they cover only part of the regular expression, as in
‹\b(\d\d\d\d)-(\d\d)-(\d\d)\b›.
This regular expression matches a date in yyyy-mm-dd format. The regex ‹\b\d\d\d\d-
\d\d-\d\d\b› does exactly the same. Because this regular expression does not use any
alternation or repetition, the grouping function of the parentheses is not needed. But
the capture function is very handy.

The regex ‹\b(\d\d\d\d)-(\d\d)-(\d\d)\b› has three capturing groups. Groups are
numbered by counting opening parentheses from left to right. ‹(\d\d\d\d)› is group
number 1. ‹(\d\d)› is number 2. The second ‹(\d\d)› is group number 3.

During the matching process, when the regular expression engine exits the group upon
reaching the closing parenthesis, it stores the part of the text matched by the capturing
group. When our regex matches 2008-05-24, 2008 is stored in the first capture, 05 in the
second capture, and 24 in the third capture.

There are three ways you can use the captured text. Recipe 2.10 in this chapter explains
how you can match the captured text again within the same regex match. Rec-
ipe 2.21 shows how to insert the captured text into the replacement text when doing
a search-and-replace. Recipe 3.9 in the next chapter describes how your application
can use the parts of the regex match.

58 | Chapter 2: Basic Regular Expression Skills

Variations

Noncapturing groups

In the regex ‹\b(Mary|Jane|Sue)\b›, we need the parentheses for grouping only. Instead
of using a capturing group, we could use a noncapturing group:

\b(?:Mary|Jane|Sue)\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The three characters ‹(?:› open the noncapturing group. The parenthesis ‹)› closes it.
The noncapturing group provides the same grouping functionality, but does not cap-
ture anything.

When counting opening parentheses of capturing groups to determine their numbers,
do not count the parenthesis of the noncapturing group. This is the main benefit of
noncapturing groups: you can add them to an existing regex without upsetting the
references to numbered capturing groups.

Another benefit of noncapturing groups is performance. If you’re not going to use a
backreference to a particular group (Recipe 2.10), reinsert it into the replacement text
(Recipe 2.21), or retrieve its match in source code (Recipe 3.9), a capturing group adds
unnecessary overhead that you can eliminate by using a noncapturing group. In prac-
tice, you’ll hardly notice the performance difference, unless you’re using the regex in a
tight loop and/or on lots of data.

Group with mode modifiers

In the “Case-insensitive matching” variation of Recipe 2.1, we explain that .NET,
Java, PCRE, Perl, and Ruby support local mode modifiers, using the mode toggles:
‹sensitive(?i)caseless(?-i)sensitive›. Although this syntax also involves parenthe-
ses, a toggle such as ‹(?i)› does not involve any grouping.

Instead of using toggles, you can specify mode modifiers in a noncapturing group:

\b(?i:Mary|Jane|Sue)\b
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Ruby

sensitive(?i:caseless)sensitive
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Ruby

Adding mode modifiers to a noncapturing group sets that mode for the part of the
regular expression inside the group. The previous settings are restored at the closing
parenthesis. Since case sensitivity is the default, only the part of the regex inside:

(?i:⋯)

2.9 Group and Capture Parts of the Match | 59

is case insensitive.

You can combine multiple modifiers. ‹(?ism:group)›. Use a hyphen to turn off modi-
fiers: ‹(?-ism:group)› turns off the three options. ‹(?i-sm)› turns on case insensitivity
(i), and turns off both “dot matches line breaks” (s) and “caret and dollar match at line
breaks” (m). These options are explained in Recipes 2.4 and 2.5.

See Also
Recipes 2.10, 2.11, 2.21, and 3.9

2.10 Match Previously Matched Text Again
Problem
Create a regular expression that matches “magical” dates in yyyy-mm-dd format. A
date is magical if the year minus the century, the month, and the day of the month are
all the same numbers. For example, 2008-08-08 is a magical date. You can assume all
dates in the subject text to be valid. The regular expression does not have to exclude
things like 9999-99-99, as these won’t occur in the subject text. You only need to find
the magical dates.

Solution
\b\d\d(\d\d)-\1-\1\b

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
To match previously matched text later in a regex, we first have to capture the previous
text. We do that with a capturing group, as shown in Recipe 2.9. After that, we can
match the same text anywhere in the regex using a backreference. You can reference
the first nine capturing groups with a backslash followed by a single digit one through
nine. For groups 10 through 99, use ‹\10› to ‹\99›.

Do not use ‹\01›. That is either an octal escape or an error. We don’t
use octal escapes in this book at all, because the ‹\xFF› hexadecimal
escapes are much easier to understand.

When the regular expression ‹\b\d\d(\d\d)-\1-\1\b› encounters 2008-08-08, the first
‹\d\d› matches 20. The regex engine then enters the capturing group, noting the position
reached in the subject text.

The ‹\d\d› inside the capturing group matches 08, and the engine reaches the group’s
closing parenthesis. At this point, the partial match 08 is stored in capturing group 1.

60 | Chapter 2: Basic Regular Expression Skills

The next token is the hyphen, which matches literally. Then comes the backreference.
The regex engine checks the contents of the first capturing group: 08. The engine tries
to match this text literally. If the regular expression is case-insensitive, the captured
text is matched in this way. Here, the backreference succeeds. The next hyphen and
backreference also succeed. Finally, the word boundary matches at the end of the sub-
ject text, and an overall match is found: 2008-08-08. The capturing group still holds 08.

If a capturing group is repeated, either by a quantifier (Recipe 2.12) or by backtracking
(Recipe 2.13), the stored match is overwritten each time the capturing group matches
something. A backreference to the group matches only the text that was last captured
by the group.

If the same regex encounters 2008-05-24 2007-07-07, the first time the group captures
something is when ‹\b\d\d(\d\d)› matches 2008, storing 08 for the first (and only) cap-
turing group. Next, the hyphen matches itself. The backreference, which tries to match
‹08›, fails against 05.

Since there are no other alternatives in the regular expression, the engine gives up the
match attempt. This involves clearing all the capturing groups. When the engine tries
again, starting at the first 0 in the subject, ‹\1› holds no text at all.

Still processing 2008-05-24 2007-07-07, the next time the group captures something is
when ‹\b\d\d(\d\d)› matches 2007, storing 07. Next, the hyphen matches itself. Now
the backreference tries to match ‹07›. This succeeds, as do the next hyphen, backrefer-
ence, and word boundary. 2007-07-07 has been found.

Because the regex engine proceeds from start to end, you should put the capturing
parentheses before the backreference. The regular expressions ‹\b\d\d\1-(\d\d)-\1›
and ‹\b\d\d\1-\1-(\d\d)\b› could never match anything. Since the backreference is
encountered before the capturing group, it has not captured anything yet. Unless you’re
using JavaScript, a backreference always fails if it points to a group that hasn’t already
participated in the match attempt.

A group that hasn’t participated is not the same as a group that has captured a zero-
length match. A backreference to a group with a zero-length capture always succeeds.
When ‹(^)\1› matches at the start of the string, the first capturing group captures the
caret’s zero-length match, causing ‹\1› to succeed. In practice, this can happen when
the contents of the capturing group are all optional.

JavaScript is the only flavor we know that goes against decades of back-
reference tradition in regular expressions. In JavaScript, or at least in
implementations that follow the JavaScript standard, a backreference
to a group that hasn’t participated always succeeds, just like a backre-
ference to a group that captured a zero-length match. So, in JavaScript,
‹\b\d\d\1-\1-(\d\d)\b› can match 12--34.

2.10 Match Previously Matched Text Again | 61

See Also
Recipes 2.9, 2.11, 2.21, and 3.9

2.11 Capture and Name Parts of the Match
Problem
Create a regular expression that matches any date in yyyy-mm-dd format and separately
captures the year, month, and day. The goal is to make it easy to work with these
separate values in the code that processes the match. Contribute to this goal by as-
signing the descriptive names “year”, “month”, and “day” to the captured text.

Create another regular expression that matches “magical” dates in yyyy-mm-dd format.
A date is magical if the year minus the century, the month, and the day of the month
are all the same numbers. For example, 2008-08-08 is a magical date. Capture the
magical number (08 in the example), and label it “magic.”

You can assume all dates in the subject text to be valid. The regular expressions don’t
have to exclude things like 9999-99-99, because these won’t occur in the subject text.

Solution

Named capture
\b(?<year>\d\d\d\d)-(?<month>\d\d)-(?<day>\d\d)\b

Regex options: None
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

\b(?'year'\d\d\d\d)-(?'month'\d\d)-(?'day'\d\d)\b
Regex options: None
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

\b(?P<year>\d\d\d\d)-(?P<month>\d\d)-(?P<day>\d\d)\b
Regex options: None
Regex flavors: PCRE 4 and later, Perl 5.10, Python

Named backreferences
\b\d\d(?<magic>\d\d)-\k<magic>-\k<magic>\b

Regex options: None
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

\b\d\d(?'magic'\d\d)-\k'magic'-\k'magic'\b
Regex options: None
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

62 | Chapter 2: Basic Regular Expression Skills

\b\d\d(?P<magic>\d\d)-(?P=magic)-(?P=magic)\b
Regex options: None
Regex flavors: PCRE 4 and later, Perl 5.10, Python

Discussion

Named capture

Recipes 2.9 and 2.10 illustrate capturing groups and backreferences. To be more precise:
these recipes use numbered capturing groups and numbered backreferences. Each
group automatically gets a number, which you use for the backreference.

Modern regex flavors support named capturing groups in addition to numbered groups.
The only difference between named and numbered groups is your ability to assign a
descriptive name, instead of being stuck with automatic numbers. Named groups make
your regular expression more readable and easier to maintain. Inserting a capturing
group into an existing regex can change the numbers assigned to all the capturing
groups. Names that you assign remain the same.

Python was the first regular expression flavor to support named capture. It uses the
syntax ‹(?P<name>regex)›. The name must consist of word characters matched by ‹\w›.
‹(?P<name>› is the group’s opening bracket, and ‹)› is the closing bracket.

The designers of the .NET Regex class came up with their own syntax for named capture,
using two interchangeable variants. ‹(?<name>regex)› mimics Python’s syntax, minus
the P. The name must consist of word characters matched by ‹\w›. ‹(?<name>› is the
group’s opening bracket, and ‹)› is the closing bracket.

The angle brackets in the named capture syntax are annoying when you’re coding in
XML, or writing this book in DocBook XML. That’s the reason for .NET’s alternate
named capture syntax: ‹(?'name'regex)›. The angle brackets are replaced with single
quotes. Choose whichever syntax is easier for you to type. Their functionality is
identical.

Perhaps due to .NET’s popularity over Python, the .NET syntax seems to be the one
that other regex library developers prefer to copy. Perl 5.10 has it, and so does the
Oniguruma engine in Ruby 1.9.

PCRE copied Python’s syntax long ago, at a time when Perl did not support named
capture at all. PCRE 7, the version that adds the new features in Perl 5.10, supports
both the .NET syntax and the Python syntax. Perhaps as a testament to the success of
PCRE, in a reverse compatibility move, Perl 5.10 also supports the Python syntax. In
PCRE and Perl 5.10, the functionality of the .NET syntax and the Python syntax for
named capture is identical.

Choose the syntax that is most useful to you. If you’re coding in PHP and you want
your code to work with older versions of PHP that incorporate older versions of PCRE,
use the Python syntax. If you don’t need compatibility with older versions and you also

2.11 Capture and Name Parts of the Match | 63

work with .NET or Ruby, the .NET syntax makes it easier to copy and paste between
all these languages. If you’re unsure, use the Python syntax for PHP/PCRE. People
recompiling your code with an older version of PCRE are going to be unhappy if the
regexes in your code suddenly stop working. When copying a regex to .NET or Ruby,
deleting a few Ps is easy enough.

Documentation for PCRE 7 and Perl 5.10 barely mention the Python syntax, but it is
by no means deprecated. For PCRE and PHP, we actually recommend it.

Named backreferences

With named capture comes named backreferences. Just as named capturing groups are
functionally identical to numbered capturing groups, named backreferences are func-
tionally identical to numbered backreferences. They’re just easier to read and maintain.

Python uses the syntax ‹(?P=name)› to create a backreference to the group name. Al-
though this syntax uses parentheses, the backreference is not a group. You cannot put
anything between the name and the closing parenthesis. A backreference ‹(?P=name)›
is a singular regex token, just like ‹\1›.
.NET uses the syntax ‹\k<name>› and ‹\k'name'›. The two variants are identical in func-
tionality, and you can freely mix them. A named group created with the bracket syntax
can be referenced with the quote syntax, and vice versa.

We strongly recommend you don’t mix named and numbered groups in the same regex.
Different flavors follow different rules for numbering unnamed groups that appear
between named groups. Perl 5.10 and Ruby 1.9 copied .NET’s syntax, but they do not
follow .NET’s way of numbering named capturing groups or of mixing numbered cap-
turing groups with named groups. Instead of trying to explain the differences, I simply
recommend not mixing named and numbered groups. Avoid the confusion and either
give all unnamed groups a name or make them noncapturing.

See Also
Recipes 2.9, 2.10, 2.21, and 3.9

2.12 Repeat Part of the Regex a Certain Number of Times
Problem
Create regular expressions that match the following kinds of numbers:

• A googol (a decimal number with 100 digits).

• A 32-bit hexadecimal number.

• A 32-bit hexadecimal number with an optional h suffix.

64 | Chapter 2: Basic Regular Expression Skills

• A floating-point number with an optional integer part, a mandatory fractional part,
and an optional exponent. Each part allows any number of digits.

Solution

Googol
\b\d{100}\b

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Hexadecimal number
\b[a-z0-9]{1,8}\b

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Hexadecimal number
\b[a-z0-9]{1,8}h?\b

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Floating-point number
\b\d*\.\d+(e\d+)?

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Fixed repetition

The quantifier ‹{n}›, where n is a positive number, repeats the preceding regex token
n number of times. The ‹\d{100}› in ‹\b\d{100}\b› matches a string of 100 digits. You
could achieve the same by typing ‹\d› 100 times.

‹{1}› repeats the preceding token once, as it would without any quantifier. ‹ab{1}c› is
the same regex as ‹abc›.
‹{0}› repeats the preceding token zero times, essentially deleting it from the regular
expression. ‹ab{0}c› is the same regex as ‹ac›.

Variable repetition

For variable repetition, we use the quantifier ‹{n,m}›, where n is a positive number and
m is greater than n. ‹\b[a-f0-9]{1,8}\b› matches a hexadecimal number with one to

2.12 Repeat Part of the Regex a Certain Number of Times | 65

eight digits. With variable repetition, the order in which the alternatives are attempted
comes into play. Recipe 2.13 explains that in detail.

If n and m are equal, we have fixed repetition. ‹\b\d{100,100}\b› is the same regex as
‹\b\d{100}\b›.

Infinite repetition

The quantifier ‹{n,}›, where n is a positive number, allows for infinite repetition.
Essentially, infinite repetition is variable repetition without an upper limit.

‹\d{1,}› matches one or more digits, and ‹\d+› does the same. A plus after a regex token
that’s not a quantifier means “one or more.” Recipe 2.13 shows the meaning of a plus
after a quantifier.

‹\d{0,}› matches zero or more digits, and ‹\d*› does the same. The asterisk always
means “zero or more.” In addition to allowing infinite repetition, ‹{0,}› and the asterisk
also make the preceding token optional.

Making something optional

If we use variable repetition with n set to zero, we’re effectively making the token that
precedes the quantifier optional. ‹h{0,1}› matches the ‹h› once or not at all. If there is
no h, ‹h{0,1}› results in a zero-length match. If you use ‹h{0,1}› as a regular expression
all by itself, it will find a zero-length match before each character in the subject text
that is not an h. Each h will result in a match of one character (the h).

‹h?› does the same as ‹h{0,1}›. A question mark after a valid and complete regex token
that is not a quantifier means “zero or once.” The next recipe shows the meaning of a
question mark after a quantifier.

A question mark, or any other quantifier, after an opening parenthesis
is a syntax error. Perl and the flavors that copy it use this to add “Perl
extensions” to the regex syntax. Preceding recipes show noncapturing
groups and named capturing groups, which all use a question mark after
an opening parenthesis as part of their syntax. These question marks
are not quantifiers at all; they’re simply part of the syntax for noncap-
turing groups and named capturing groups. Following recipes will show
more styles of groups using the ‹(?› syntax.

Repeating groups

If you place a quantifier after the closing parenthesis of a group, the whole group is
repeated. ‹(?:abc){3}› is the same as ‹abcabcabc›.
Quantifiers can be nested. ‹(e\d+)?› matches an e followed by one or more digits, or a
zero-length match. In our floating-point regular expression, this is the optional
exponent.

66 | Chapter 2: Basic Regular Expression Skills

Capturing groups can be repeated. As explained in Recipe 2.9, the group’s match is
captured each time the engine exits the group, overwriting any text previously matched
by the group. ‹(\d\d){3}› matches a string of two, four, or six digits. The engine exits
the group three times. When this regex matches 123456, the capturing group will hold
56, because 56 was stored by the last iteration of the group. The other two matches by
the group, 12 and 34, cannot be retrieved.

‹(\d\d){3}› captures the same text as ‹\d\d\d\d(\d\d)›. If you want the capturing group
to capture all two, four, or six digits rather than just the last two, you have to place the
capturing group around the quantifier instead of repeating the capturing group: ‹((?:
\d\d){3})›. Here we used a noncapturing group to take over the grouping function
from the capturing group. We also could have used two capturing groups: ‹((\d\d)
{3})›. When this last regex matches 123456, ‹\1› holds 123456 and ‹\2› holds 56.

.NET’s regular expression engine is the only one that allows you to retrieve all the
iterations of a repeated capturing group. If you directly query the group’s Value prop-
erty, which returns a string, you’ll get 56, as with every other regular expression engine.
Backreferences in the regular expression and replacement text also substitute 56, but if
you use the group’s CaptureCollection, you’ll get a stack with 56, 34, and 12.

See Also
Recipes 2.9, 2.13, 2.14

2.13 Choose Minimal or Maximal Repetition
Problem
Match a pair of <p> and </p> XHTML tags and the text between them. The text between
the tags can include other XHTML tags.

Solution
<p>.*?</p>

Regex options: Dot matches line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
All the quantifiers discussed in Recipe 2.12 are greedy, meaning they try to repeat as
many times as possible, giving back only when required to allow the remainder of the
regular expression to match.

This can make it hard to pair tags in XHTML (which is a version of XML and therefore
requires every opening tag to be matched by a closing tag). Consider the following
simple excerpt of XHTML:

2.13 Choose Minimal or Maximal Repetition | 67

<p>
The very first task is to find the beginning of a paragraph.
</p>
<p>
Then you have to find the end of the paragraph
</p>

There are two opening <p> tags and two closing </p> tags in the excerpt. You want to
match the first <p> with the first </p>, because they mark a single paragraph. Note that
this paragraph contains a nested tag, so the regex can’t simply stop when it en-
counters a < character.

Take a look at one incorrect solution for the problem in this recipe:

<p>.*</p>
Regex options: Dot matches line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The only difference is that this incorrect solution lacks the extra question mark after
the asterisk. The incorrect solution uses the same greedy asterisk explained in Rec-
ipe 2.12.

After matching the first <p> tag in the subject, the engine reaches ‹.*›. The dot matches
any character, including line breaks. The asterisk repeats it zero or more times. The
asterisk is greedy, and so ‹.*› matches everything all the way to the end of the subject
text. Let me say that again: ‹.*› eats up your whole XHTML file, starting with the first
paragraph.

When the ‹.*› has its belly full, the engine attempts to match the ‹<› at the end of the
subject text. That fails. But it’s not the end of the story: the regex engine backtracks.

The asterisk prefers to grab as much text as possible, but it’s also perfectly satisfied to
match nothing at all (zero repetitions). With each repetition of a quantifier beyond the
quantifier’s minimum, the regular expression stores a backtracking position. Those are
positions the engine can go back to, in case the part of the regex following the quantifier
fails.

When ‹<› fails, the engine backtracks by making the ‹.*› give up one character of its
match. Then ‹<› is attempted again, at the last character in the file. If it fails again, the
engine backtracks once more, attempting ‹<› at the second-to-last character in the file.
This process continues until ‹<› succeeds. If ‹<› never succeeds, the ‹.*› eventually runs
out of backtracking positions and the overall match attempt fails.

If ‹<› does match at some point during all that backtracking, ‹/› is attempted. If ‹/› fails,
the engine backtracks again. This repeats until ‹</p>› can be matched entirely.

So what’s the problem? Because the asterisk is greedy, the incorrect regular expression
matches everything from the first <p> in the XHTML file to the last </p>. But to correctly
match an XHTML paragraph, we need to match the first <p> with the first </p> that
follows it.

68 | Chapter 2: Basic Regular Expression Skills

That’s where lazy quantifiers come in. You can make any quantifier lazy by placing a
question mark after it: ‹*?›, ‹+?›, ‹??›, and ‹{7,42}?› are all lazy quantifiers.

Lazy quantifiers backtrack too, but the other way around. A lazy quantifier repeats as
few times as it has to, stores one backtracking position, and allows the regex to con-
tinue. If the remainder of the regex fails and the engine backtracks, the lazy quantifier
repeats once more. If the regex keeps backtracking, the quantifier will expand until its
maximum number of repetitions, or until the regex token it repeats fails to match.

‹<p>.*?</p>› uses a lazy quantifier to correctly match an XHTML paragraph. When
‹<p>› matches, the ‹.*?›, lazy as it is, initially does nothing but procrastinate. If ‹</p>›
immediately occurs after <p>, an empty paragraph is matched. If not, the engine back-
tracks to ‹.*?›, which matches one character. If ‹</p>› still fails, ‹.*?› matches the next
character. This continues until either ‹</p>› succeeds or ‹.*?› fails to expand. Since the
dot matches everything, failure won’t occur until the ‹.*?› has matched everything up
to the end of the XHTML file.

The quantifiers ‹*› and ‹*?› allow all the same regular expression matches. The only
difference is the order in which the possible matches are tried. The greedy quantifier
will find the longest possible match. The lazy quantifier will find the shortest possible
match.

If possible, the best solution is to make sure there is only one possible match. The
regular expressions for matching numbers in Recipe 2.12 will still match the same
numbers if you make all their quantifiers lazy. The reason is that the parts of those
regular expressions that have quantifiers and the parts that follow them are mutually
exclusive. ‹\d› matches a digit, and ‹\b› matches after ‹\d› only if the next character is
not a digit (or letter).

It may help to understand the operation of greedy and lazy repetition by comparing
how ‹\d+\b› and ‹\d+?\b› act on a couple of different subject texts. The greedy and lazy
versions produce the same results, but test the subject text in a different order.

If we use ‹\d+\b› on 1234, ‹\d+› will match all the digits. ‹\b› then matches, and an
overall match is found. If we use ‹\d+?\b›, ‹\d+?› first matches only 1. ‹\b› fails between
1 and 2. ‹\d+?› expands to 12, and ‹\b› still fails. This continues until ‹\d+?› matches
1234, and ‹\b› succeeds.

If our subject text is 1234X, the first regex, ‹\d+\b›, still has ‹\d+› match 1234. But then
‹\b› fails. ‹\d+› backtracks to 123. ‹\b› still fails. This continues until ‹\d+› has back-
tracked to its minimum 1, and ‹\b› still fails. Then the whole match attempt fails.

If we use ‹\d+?\b› on 1234X, ‹\d+?› first matches only 1. ‹\b› fails between 1 and 2.
‹\d+?› expands to 12. ‹\b› still fails. This continues until ‹\d+?› matches 1234, and ‹\b›
still fails. The regex engine attempts to expand ‹\d+?› once more, but ‹\d› does not
match X. The overall match attempt fails.

If we put ‹\d+› between word boundaries, it must match all the digits in the subject
text, or it fails. Making the quantifier lazy won’t affect the final regex match or its

2.13 Choose Minimal or Maximal Repetition | 69

eventual failure. In fact, ‹\b\d+\b› would be better off without any backtracking at all.
The next recipe explains how you can use a possessive quantifier ‹\b\d++\b› to achieve
that, at least with some flavors.

See Also
Recipes 2.8, 2.9, 2.12, 2.14, and 2.15

2.14 Eliminate Needless Backtracking
Problem
The previous recipe explains the difference between greedy and lazy quantifiers, and
how they backtrack. In some situations, this backtracking is unnecessary.

‹\b\d+\b› uses a greedy quantifier, and ‹\b\d+?\b› uses a lazy quantifier. They both
match the same thing: an integer. Given the same subject text, both will find the exact
same matches. Any backtracking that is done is unnecessary. Rewrite this regular ex-
pression to explicitly eliminate all backtracking, making the regular expression more
efficient.

Solution
\b\d++\b

Regex options: None
Regex flavors: Java, PCRE, Perl 5.10, Ruby 1.9

The easiest solution is to use a possessive quantifier. But it is supported only in a few
recent regex flavors.

\b(?>\d+)\b
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Ruby

An atomic group provides exactly the same functionality, using a slightly less readable
syntax. Support for atomic grouping is more widespread than support for possessive
quantifiers.

JavaScript and Python do not support possessive quantifiers or atomic grouping. There
is no way to eliminate needless backtracking with these two regex flavors.

Discussion
A possessive quantifier is similar to a greedy quantifier: it tries to repeat as many times
as possible. The difference is that a possessive quantifier will never give back, not even
when giving back is the only way that the remainder of the regular expression could
match. Possessive quantifiers do not keep backtracking positions.

70 | Chapter 2: Basic Regular Expression Skills

You can make any quantifier possessive by placing a plus sign after it. For example,
‹*+›, ‹++›, ‹?+›, and ‹{7,42}+› are all possessive quantifiers.

Possessive quantifiers are supported by Java 4 and later, the first Java release to include
the java.util.regex package. All versions of PCRE discussed in this book (version 4
to 7) support possessive quantifiers. Perl supports them starting with Perl 5.10. Classic
Ruby regular expressions do not support possessive quantifiers, but the Oniguruma
engine, which is the default in Ruby 1.9, does support them.

Wrapping a greedy quantifier inside an atomic group has the exact same effect as using
a possessive quantifier. When the regex engine exits the atomic group, all backtracking
positions remembered by quantifiers and alternation inside the group are thrown away.
The syntax is ‹(?>regex)›, where ‹regex› is any regular expression. An atomic group is
essentially a noncapturing group, with the extra job of refusing to backtrack. The
question mark is not a quantifier; the opening bracket simply consists of the three
characters ‹(?>›.
When you apply the regex ‹\b\d++\b› (possessive) to 123abc 456, ‹\b› matches at the
start of the subject, and ‹\d++› matches 123. So far, this is no different from what
‹\b\d+\b› (greedy) would do. But then the second ‹\b› fails to match between 3 and a.

The possessive quantifier did not store any backtracking positions. Since there are no
other quantifiers or alternation in this regular expression, there are no further options
to try when the second word boundary fails. The regex engine immediately declares
failure for the match attempt starting at 1.

The regex engine does attempt the regex starting at the next character positions in the
string, and using a possessive quantifier does not change that. If the regex must match
the whole subject, use anchors, as discussed in Recipe 2.5. Eventually, the regex engine
will attempt the regex starting at the 4 and find the match 456.

The difference with the greedy quantifier is that when the second ‹\b› fails during the
first match attempt, the greedy quantifier will backtrack. The regex engine will then
(needlessly) test ‹\b› between 2 and 3, and between 1 and 2.

The matching process using atomic grouping is essentially the same. When you apply
the regex ‹\b(?>\d+)\b› (possessive) to 123abc 456, the word boundary matches at the
start of the subject. The regex engine enters the atomic group, and ‹\d+› matches 123.
Now the engine exits the atomic group. At this point, the backtracking positions re-
membered by ‹\d+› are thrown away. When the second ‹\b› fails, the regex engine is
left without any further options, causing the match attempt to fail immediately. As with
the possessive quantifier, eventually 456 will be found.

We describe the possessive quantifier as failing to remember backtracking positions,
and the atomic group as throwing them away. This makes it easier to understand the
matching process, but don’t get hung up on the difference, as it may not even exist in
the regex flavor you’re working with. In many flavors, ‹x++› is merely syntactic sugar
for ‹(?>x+)›, and both are implemented in exactly the same way. Whether the engine

2.14 Eliminate Needless Backtracking | 71

never remembers backtracking positions or throws them away later is irrelevant for the
final outcome of the match attempt.

Where possessive quantifiers and atomic grouping differ is that a possessive quantifier
applies only to a single regular expression token, whereas an atomic group can wrap a
whole regular expression.

‹\w++\d++› and ‹(?>\w+\d+)› are not the same at all. ‹\w++\d++›, which is the same as
‹(?>\w+)(?>\d+)›, will not match abc123. ‹\w++› matches abc123 entirely. Then, the regex
engine attempts ‹\d++› at the end of the subject text. Since there are no further characters
that can be matched, ‹\d++› fails. Without any remembered backtracking positions, the
match attempt fails.

‹(?>\w+\d+)› has two greedy quantifiers inside the same atomic group. Within the
atomic group, backtracking occurs normally. Backtracking positions are thrown away
only when the engine exits the whole group. When the subject is abc123, ‹\w+› matches
abc123. The greedy quantifier does remember backtracking positions. When ‹\d+› fails
to match, ‹\w+› gives up one character. ‹\d+› then matches 3. Now, the engine exits the
atomic group, throwing away all backtracking positions remembered for ‹\w+› and
‹\d+›. Since the end of the regex has been reached, this doesn’t really make any differ-
ence. An overall match is found.

If the end had not been reached, as in ‹(?>\w+\d+)\d+›, we would be in the same sit-
uation as with ‹\w++\d++›. The second ‹\d+› has nothing left to match at the end of the
subject. Since the backtracking positions were thrown away, the regex engine can only
declare failure.

Possessive quantifiers and atomic grouping don’t just optimize regular expressions.
They can alter the matches found by a regular expression by eliminating those that
would be reached through backtracking.

This recipe shows how to use possessive quantifiers and atomic grouping to make
minor optimizations, which may not even show any difference in benchmarks. The
next recipe will showcase how atomic grouping can make a dramatic difference.

See Also
Recipes 2.12 and 2.15

2.15 Prevent Runaway Repetition
Problem
Use a single regular expression to match a complete HTML file, checking for properly
nested html, head, title, and body tags. The regular expression must fail efficiently on
HTML files that do not have the proper tags.

72 | Chapter 2: Basic Regular Expression Skills

Solution
<html>(?>.*?<head>)(?>.*?<title>)(?>.*?</title>)↵
(?>.*?</head>)(?>.*?<body[^>]*>)(?>.*?</body>).*?</html>

Regex options: Case insensitive, dot matches line breaks
Regex flavors: .NET, Java, PCRE, Perl, Ruby

JavaScript and Python do not support atomic grouping. There is no way to eliminate
needless backtracking with these two regex flavors. When programming in JavaScript
or Python, you can solve this problem by doing a literal text search for each of the tags
one by one, searching for the next tag through the remainder of the subject text after
the one last found.

Discussion
The proper solution to this problem is more easily understood if we start from this naïve
solution:

<html>.*?<head>.*?<title>.*?</title>↵
.*?</head>.*?<body[^>]*>.*?</body>.*?</html>

Regex options: Case insensitive, dot matches line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

When you test this regex on a proper HTML file, it works perfectly well. ‹.*?› skips
over anything, because we turn on “dot matches line breaks.” The lazy asterisk makes
sure the regex goes ahead only one character at a time, each time checking whether the
next tag can be matched. Recipes 2.4 and 2.13 explain all this.

But this regex gets you into trouble when it needs to deal with a subject text that does
not have all the HTML tags. The worst case occurs when </html> is missing.

Imagine the regex engine has matched all the preceding tags and is now busy expanding
the last ‹.*?›. Since ‹</html>› can never match, the ‹.*?› expands all the way to the end
of the file. When it can no longer expand, it fails.

But that is not the end of the story. The other six ‹.*?› have all remembered a back-
tracking position that allows them to expand further. When the last ‹.*?› fails, the one
before expands, gradually matching </body>. That same text was previously matched
by the literal ‹</body>› in the regex. This ‹.*?› too will expand all the way to the end
of the file, as will all preceding lazy dots. Only when the first one reaches the end of
the file will the regex engine declare failure.

This regular expression has a worst-case complexity of O(n7), the length of the subject
text to the seventh power. There are seven lazy dots that can potentially expand all the
way to the end of the file. If the file is twice the size, the regex can need up to 128 times
as many steps to figure out it doesn’t match.

We call this catastrophic backtracking. So much backtracking occurs that the regex
either takes forever or crashes your application. Some regex implementations are clever

2.15 Prevent Runaway Repetition | 73

and will abort runaway match attempts early, but even then the regex will still kill your
application’s performance.

Catastrophic backtracking is an instance of a phenomenon known as a
combinatorial explosion, in which several orthogonal conditions inter-
sect and all combinations have to be tried. You could also say that the
regex is a Cartesian product of the various repetition operators.

The solution is to use atomic grouping to prevent needless backtracking. There is no
need for the sixth ‹.*?› to expand after ‹</body>› has matched. If ‹</html>› fails, ex-
panding the sixth lazy dot will not magically produce a closing html tag.

To make a quantified regular expression token stop when the following delimiter
matches, place both the quantified part of the regex and the delimiter together in an
atomic group: ‹(?>.*?</body>)›. Now the regex engine throws away all the matching
positions for ‹.*?</body>› when ‹</body>› is found. If ‹</html>› later fails, the regex
engine has forgotten about ‹.*?</body>›, and no further expansion will occur.

If we do the same for all the other ‹.*?› in the regex, none of them will expand further.
Although there are still seven lazy dots in the regex, they will never overlap. This reduces
the complexity of the regular expression to O(n), which is linear with respect to the
length of the subject text. A regular expression can never be more efficient than this.

Variations
If you really want to see catastrophic backtracking at work, try ‹(x+x+)+y› on
xxxxxxxxxx. If it fails quickly, add one x to the subject. Repeat this until the regex starts
to take very long to match or your application crashes. It won’t take many more x
characters, unless you’re using Perl.

Of the regex flavors discussed in this book, only Perl is able to detect that the regular
expression is too complex and then abort the match attempt without crashing.

The complexity of this regex is O(2n). When ‹y› fails to match, the regex engine will
try all possible permutations of repeating each ‹x+› and the group containing them. For
instance, one such permutation, far down the match attempt, is ‹x+› matching xxx, the
second ‹x+› matching x, and then the group being repeated three more times with each
‹x+› matching x. With 10 x characters, there are 1,024 such permutations. If we increase
the number to 32, we’re at over 4 billion permutations, which will surely cause any
regex engine to run out of memory, unless it has a safety switch that allows it to give
up and say that your regular expression is too complicated.

In this case, this nonsensical regular expression is easily rewritten as ‹xx+y›, which finds
exactly the same matches in linear time. In practice, the solution may not be so obvious
with more complicated regexes.

74 | Chapter 2: Basic Regular Expression Skills

Essentially, you have to watch out when two or more parts of the regular expression
can match the same text. In these cases, you may need atomic grouping to make sure
the regex engine doesn’t try all possible ways of dividing the subject text between those
two parts of the regex. Always test your regex on (long) test subjects that contain text
that can be partially but not entirely matched by the regex.

See Also
Recipes 2.13 and 2.14

2.16 Test for a Match Without Adding It to the Overall Match
Problem
Find any word that occurs between a pair of HTML bold tags, without including the
tags in the regex match. For instance, if the subject is My cat is furry, the only
valid match should be cat.

Solution
(?<=)\w+(?=)

Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

JavaScript and Ruby 1.8 support the lookahead ‹(?=)›, but not the lookbehind
‹(?<=)›.

Discussion

Lookaround

The four kinds of lookaround groups supported by modern regex flavors have the spe-
cial property of giving up the text matched by the part of the regex inside the look-
around. Essentially, lookaround checks whether certain text can be matched without
actually matching it.

Lookaround that looks backward is called lookbehind. This is the only regular expres-
sion construct that will traverse the text from right to left instead of from left to right.
The syntax for positive lookbehind is ‹(?<=text)›. The four characters ‹(?<=› form the
opening bracket. What you can put inside the lookbehind, here represented by
‹text›, varies among regular expression flavors. But simple literal text, such as
‹(?<=)›, always works.

Lookbehind checks to see whether the text inside the lookbehind occurs immediately
to the left of the position that the regular expression engine has reached. If you match
‹(?<=)› against My cat is furry, the lookbehind will fail to match until the

2.16 Test for a Match Without Adding It to the Overall Match | 75

regular expression starts the match attempt at the letter c in the subject. The regex
engine then enters the lookbehind group, telling it to look to the left. ‹› matches to
the left of c. The engine exits the lookbehind at this point, and discards any text matched
by the lookbehind from the match attempt. In other words, the match-in-progress is
back at where it was when the engine entered the lookbehind. In this case, the match-
in-progress is the zero-length match before the c in the subject string. The lookbehind
only tests or asserts that ‹› can be matched; it does not actually match it. Lookaround
constructs are therefore called zero-length assertions.

After the lookbehind has matched, the shorthand character class ‹\w+› attempts to
match one or more word characters. It matches cat. The ‹\w+› is not inside any kind of
lookaround or group, and so it matches the text cat normally. We say that ‹\w+› matches
and consumes cat, whereas lookaround can match something but can never consume
anything.

Lookaround that looks forward, in the same direction that the regular expression nor-
mally traverses the text, is called lookahead. Lookahead is equally supported by all regex
flavors in this book. The syntax for positive lookahead is ‹(?=regex)›. The three char-
acters ‹(?=› form the opening bracket of the group. Everything you can use in a regular
expression can be used inside lookahead, here represented by ‹regex›.
When the ‹\w+› in ‹(?<=)\w+(?=)› has matched cat in My cat is furry,
the regex engine enters the lookahead. The only special behavior for the lookahead at
this point is that the regex engine remembers which part of the text it has matched so
far, associating it with the lookahead. ‹› is then matched normally. Now the regex
engine exits the lookahead. The regex inside the lookahead matches, so the lookahead
itself matches. The regex engine discards the text matched by the lookahead, by re-
storing the match-in-progress it remembered when entering the lookahead. Our overall
match-in-progress is back at cat. Since this is also the end of our regular expression,
cat becomes the final match result.

Negative lookaround

‹(?!regex)›, with an explanation point instead of an equals sign, is negative look-
ahead. Negative lookahead works just like positive lookahead, except that whereas
positive lookahead matches when the regex inside the lookahead matches, negative
lookahead matches when the regex inside the lookahead fails to match.

The matching process is exactly the same. The engine saves the match-in-progress when
entering the negative lookahead, and attempts to match the regex inside the lookahead
normally. If the sub-regex matches, the lookahead fails, and the regex engine back-
tracks. If the sub-regex fails to match, the engine restores the match-in-process and
proceeds with the remainder of the regex.

Similarly, (?<!text) is negative lookbehind. Negative lookbehind matches when none
of the alternatives inside the lookbehind can be found looking backward from the po-
sition the regex has reached in the subject text.

76 | Chapter 2: Basic Regular Expression Skills

Different levels of lookbehind

Lookahead is easy. All regex flavors discussed in this book allow you to put a complete
regular expression inside the lookahead. Everything you can use in a regular expression
can be used inside lookahead. You can even nest other lookahead and lookbehind
groups inside lookahead. Your brain might get into a twist, but the regex engine will
handle everything nicely.

Lookbehind is a different story. Regular expression software has always been designed
to search the text from left to right only. Searching backward is often implemented as
a bit of a hack: the regex engine determines how many characters you put inside the
lookbehind, jumps back that many characters, and then compares the text in the look-
behind with the text in the subject from left to right.

For this reason, the earliest implementations allowed only fixed-length literal text inside
lookbehind. Perl, Python, and Ruby 1.9 take this one step further, allowing you to use
alternation and character classes to put multiple fixed-length literal strings inside the
lookbehind. Something like ‹(?<=one|two|three|forty-two|gr[ae]y)› is all they can
handle.

Internally, Perl, Python, and Ruby 1.9 expand this into six lookbehind tests. First, they
jump back three characters to test ‹one|two›, then four characters to test ‹gray|grey›,
then five to test ‹three›, and finally nine to test ‹forty-two›.
PCRE and Java take lookbehind one step further. They allow any finite-length regular
expression inside lookbehind. This means you can use anything except the infinite
quantifiers ‹*›, ‹+›, and ‹{42,}› inside lookbehind. Internally, PCRE and Java calculate
the minimum and maximum length of the text that could possibly be matched by the
part of the regex in the lookbehind. They then jump back the minimum number of
characters, and apply the regex in the lookbehind from left to right. If it fails, they jump
back one more character and try again, until either the lookbehind matches or the
maximum number of characters has been tried.

If all this sounds rather inefficient, it is. Lookbehind is very convenient, but it won’t
break any speed records. Later, we present a solution for JavaScript and Ruby 1.8,
which don’t support lookbehind at all. This solution is actually far more efficient than
using lookbehind.

The regular expression engine in the .NET framework is the only one in the world† that
can actually apply a full regular expression from right to left. .NET allows you to use
anything inside lookbehind, and it will actually apply the regular expression from right
to left. Both the regular expression inside the lookbehind and the subject text are scan-
ned from right to left.

† RegexBuddy’s regex engine also allows a full regex inside lookbehind, but does not (yet) have a feature similar
to .NET’s RegexOptions.RightToLeft to reverse the whole regular expression.

2.16 Test for a Match Without Adding It to the Overall Match | 77

Matching the same text twice

If you use lookbehind at the start of the regex or lookahead at the end of the regex, the
net effect is that you’re requiring something to appear before or after the regex match,
without including it in the match. If you use lookaround in the middle of your regular
expression, you can apply multiple tests to the same text.

In “Flavor-Specific Features” on page 33 (a subsection of Recipe 2.3), we showed how
to use character class subtra ction to match a Thai digit. Only .NET and Java support
character class subtraction.

A character is a Thai digit if it is both a Thai character (any sort) and a digit (any script).
With lookahead, you can test both requirements on the same character:

(?=\p{Thai})\p{N}
Regex options: None
Regex flavors: PCRE, Perl, Ruby 1.9

This regex works only with the three flavors that support Unicode scripts, as we explain
in Recipe 2.7. But the principle of using lookahead to match the same character more
than once works with all flavors discussed in this book.

When the regular expression engine searches for ‹(?=\p{Thai})\p{N}›, it starts by en-
tering the lookahead at each position in the string where it begins a match attempt. If
the character at that position is not in the Thai script (i.e., ‹\p{Thai}› fails to match),
the lookahead fails. This causes the whole match attempt to fail, forcing the regex
engine to start over at the next character.

When the regex reaches a Thai character, ‹\p{Thai}› matches. Thus, the ‹(?=
\p{Thai})› lookaround matches, too. As the engine exits the lookaround, it restores
the match-in-progress. In this case, that’s the zero-length match before the character
just found to be Thai. Next up is ‹\p{N}›. Because the lookahead discarded its match,
‹\p{N}› is compared with the same character that ‹\p{Thai}› already matched. If this
character has the Unicode property Number, ‹\p{N}› matches. Since ‹\p{N}› is not inside
a lookaround, it consumes the character, and we have found our Thai digit.

Lookaround is atomic

When the regular expression engine exits a lookaround group, it discards the text
matched by the lookaround. Because the text is discarded, any backtracking positions
remembered by alternation or quantifiers inside the lookaround are also discarded.
This effectively makes lookahead and lookbehind atomic. Recipe 2.15 explains atomic
groups in detail.

In most situations, the atomic nature of lookaround is irrelevant. A lookaround is
merely an assertion to check whether the regex inside the lookaround matches or fails.
How many different ways it can match is irrelevant, as it does not consume any part of
the subject text.

78 | Chapter 2: Basic Regular Expression Skills

The atomic nature comes into play only when you use capturing groups inside look-
ahead (and lookbehind, if your regex flavor allows you to). While the lookahead does
not consume any text, the regex engine will remember which part of the text was
matched by any capturing groups inside the lookahead. If the lookahead is at the end
of the regex, you will indeed end up with capturing groups that match text not matched
by the regular expression itself. If the lookahead is in the middle of the regex, you can
end up with capturing groups that match overlapping parts of the subject text.

The only situation in which the atomic nature of lookaround can alter the overall regex
match is when you use a backreference outside the lookaround to a capturing group
created inside the lookaround. Consider this regular expression:

(?=(\d+))\w+\1
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

At first glance, you may think that this regex would match 123x12. ‹\d+› would capture
12 into the first capturing group, then ‹\w+› would match 3x, and finally ‹\1› would
match 12 again.

But that never happens. The regular expression enters the lookaround and the captur-
ing group. The greedy ‹\d+› matches 123. This match is stored into the first capturing
group. The engine then exits the lookahead, resetting the match-in-progress to the start
of the string, discarding the backtracking positions remembered by the greedy plus but
keeping the 123 stored in the first capturing group.

Now, the greedy ‹\w+› is attempted at the start of the string. It eats up 123x12. ‹\1›,
which references 123, fails at the end of the string. ‹\w+› backtracks one character.
‹\1› fails again. ‹\w+› keeps backtracking until it has given up everything except the first
1 in the subject. ‹\1› also fails to match after the first 1.

The final 12 would match ‹\1› if the regex engine could return to the lookahead and
give up 123 in favor of 12, but the regex engine doesn’t do that.

The regex engine has no further backtracking positions to go to. ‹\w+› backtracked all
the way, and the lookaround forced ‹\d+› to give up its backtracking positions. The
match attempt fails.

Solution Without Lookbehind
All the preceding arcania is of no use if you’re using Python or JavaScript, because you
cannot use lookbehind at all. There’s no way to solve the problem as stated with these
regex flavors, but you can work around the need for lookbehind by using capturing
groups. This alternative solution also works with all the other regex flavors:

()(\w+)(?=)
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

2.16 Test for a Match Without Adding It to the Overall Match | 79

Instead of using lookbehind, we used a capturing group for the opening tag ‹›. We
also placed the part of the match we’re interested in, the ‹\w+›, into a capturing group.

When you apply this regular expression to My cat is furry, the overall regex
match will be cat. The first capturing group will hold , and the second, cat.

If the requirement is to match only cat (the word between the tags) because you
want to extract only that from the text, you can reach that goal by simply storing the
text matched by the second capturing group instead of the overall regex.

If the requirement is that you want to do a search-and-replace, replacing only the word
between the tags, simply use a backreference to the first capturing group to reinsert the
opening tag into the replacement text. In this case, you don’t really need the capturing
group, as the opening tag is always the same. But when it’s variable, the capturing group
reinserts exactly what was matched. Recipe 2.21 explains this in detail.

Finally, if you really want to simulate lookbehind, you can do so with two regular
expressions. First, search for your regex without the lookbehind. When it matches,
copy the part of the subject text before the match into a new string variable. Do the test
you did inside the lookbehind with a second regex, appending an end-of-string anchor
(‹\z› or ‹$›). The anchor makes sure the match of the second regex ends at the end of
the string. Since you cut the string at the point where the first regex matched, that
effectively puts the second match immediately to the left of the first match.

In JavaScript, you could code this along these lines:

var mainregexp = /\w+(?=<\/b>)/;
var lookbehind = /$/;
if (match = mainregexp.exec("My cat is furry")) {
 // Found a word before a closing tag
 var potentialmatch = match[0];
 var leftContext = match.input.substring(0, match.index);
 if (lookbehind.exec(leftContext)) {
 // Lookbehind matched:
 // potentialmatch occurs between a pair of tags
 } else {
 // Lookbehind failed: potentialmatch is no good
 }
} else {
 // Unable to find a word before a closing tag
}

See Also
Recipes 5.5 and 5.6

80 | Chapter 2: Basic Regular Expression Skills

2.17 Match One of Two Alternatives Based on a Condition
Problem
Create a regular expression that matches a comma-delimited list of the words one,
two, and three. Each word can occur any number of times in the list, but each word
must appear at least once.

Solution
\b(?:(?:(one)|(two)|(three))(?:,|\b)){3,}(?(1)|(?!))(?(2)|(?!))(?(3)|(?!))

Regex options: None
Regex flavors: .NET, JavaScript, PCRE, Perl, Python

Java and Ruby do not support conditionals. When programming in Java or Ruby (or
any other language), you can use the regular expression without the conditionals, and
write some extra code to check if each of the three capturing groups matched
something.

\b(?:(?:(one)|(two)|(three))(?:,|\b)){3,}
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
.NET, JavaScript, PCRE, Perl, and Python support conditionals using numbered cap-
turing groups. ‹(?(1)then|else)› is a conditional that checks whether the first capturing
group has already matched something. If it has, the regex engine attempts to match
‹then›. If the capturing group has not participated in the match attempt thus far, the
‹else› part is attempted.

The parentheses, question mark, and vertical bar are all part of the syntax for the con-
ditional. They don’t have their usual meaning. You can use any kind of regular expres-
sion for the ‹then› and ‹else› parts. The only restriction is that if you want to use
alternation for one of the parts, you have to use a group to keep it together. Only one
vertical bar is permitted directly in the conditional.

If you want, you can omit either the ‹then› or ‹else› part. The empty regex always finds
a zero-length match. The solution for this recipe uses three conditionals that have an
empty ‹then› part. If the capturing group participated, the conditional simply matches.

An empty negative lookahead, ‹(?!)›, fills the ‹else› part. Since the empty regex always
matches, a negative lookahead containing the empty regex always fails. Thus, the con-
ditional ‹(?(1)|(?!))› always fails when the first capturing group did not match
anything.

2.17 Match One of Two Alternatives Based on a Condition | 81

By placing each of the three required alternatives in their own capturing group, we can
use three conditionals at the end of the regex to test if all the capturing groups captured
something.

.NET also supports named conditionals. ‹(?(name)then|else)› checks whether the
named capturing group name participated in the match attempt thus far.

To better understand how conditionals work, let’s examine the regular expression
‹(a)?b(?(1)c|d)›. This is essentially a complicated way of writing ‹abc|bd›.
If the subject text starts with an a, this is captured in the first capturing group. If not,
the first capturing group does not participate in the match attempt at all. It is important
that the question mark is outside the capturing group because this makes the whole
group optional. If there is no a, the group is repeated zero times, and never gets the
chance to capture anything at all. It can’t capture a zero-length string.

If you use ‹(a?)›, the group always participates in the match attempt. There’s no quan-
tifier after the group, so it is repeated exactly once. The group will either capture a or
capture nothing.

Regardless of whether ‹a› was matched, the next token is ‹b›. The conditional is next.
If the capturing group participated in the match attempt, even if it captured the zero-
length string (not possible here), ‹c› will be attempted. If not, ‹d› will be attempted.

In English, ‹(a)?b(?(1)c|d)› either matches ab followed by c, or matches b followed by
d.

With .NET, PCRE, and Perl, but not with Python, conditionals can also use look-
around. ‹(?(?=if)then|else)› first tests ‹(?=if)› as a normal lookahead. Recipe 2.16
explains how this works. If the lookaround succeeds, the ‹then› part is attempted. If
not, the ‹else› part is attempted. Since lookaround is zero-width, the ‹then› and
‹else› regexes are attempted at the same position in the subject text where ‹if› either
matched or failed.

You can use lookbehind instead of lookahead in the conditional. You can also use
negative lookaround, though we recommend against it, as it only confuses things by
reversing the meaning of “then” and “else.”

A conditional using lookaround can be written without the conditional
as ‹(?=if)then|(?!if)else›. If the positive lookahead succeeds, the
‹then› part is attempted. If the positive lookahead fails, the alternation
kicks in. The negative lookahead then does the same test. The negative
lookahead succeeds when ‹if› fails, which is already guaranteed because
‹(?=if)› failed. Thus, ‹else› is attempted. Placing the lookahead in a
conditional saves time, as the conditional attempts ‹if› only once.

82 | Chapter 2: Basic Regular Expression Skills

See Also
Recipes 2.9 and 2.16

2.18 Add Comments to a Regular Expression
Problem
‹\d{4}-\d{2}-\d{2}› matches a date in yyyy-mm-dd format, without doing any valida-
tion of the numbers. Such a simple regular expression is appropriate when you know
your data does not contain any invalid dates. Add comments to this regular expression
to indicate what each part of the regular expression does.

Solution
\d{4} # Year
- # Separator
\d{2} # Month
- # Separator
\d{2} # Day

Regex options: Free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Discussion

Free-spacing mode

Regular expressions can quickly become complicated and difficult to understand. Just
as you should comment source code, you should comment all but the most trivial
regular expressions.

All regular expression flavors in this book, except JavaScript, offer an alternative regular
expression syntax that makes it very easy to clearly comment your regular expressions.
You can enable this syntax by turning on the free-spacing option. It has different names
in various programming languages.

In .NET, set the RegexOptions.IgnorePatternWhitespace option. In Java, pass the
Pattern.COMMENTS flag. Python expects re.VERBOSE. PHP, Perl, and Ruby use the /x flag.

Turning on free-spacing mode has two effects. It turns the hash symbol (#) into a
metacharacter, outside character classes. The hash starts a comment that runs until the
end of the line or the end of the regex (whichever comes first). The hash and everything
after it is simply ignored by the regular expression engine. To match a literal hash sign,
either place it inside a character class ‹[#]› or escape it ‹\#›.
The other effect is that whitespace, which includes spaces, tabs, and line breaks, is
also ignored outside character classes. To match a literal space, either place it inside a

2.18 Add Comments to a Regular Expression | 83

character class ‹[●]› or escape it ‹\●›. If you’re concerned about readability, you could
use the hexadecimal escape ‹\x20› or the Unicode escape ‹\u0020› or ‹\x{0020}› instead.
To match a tab, use ‹\t›. For line breaks, use ‹\r\n› (Windows) or ‹\n› (Unix/Linux/
OS X).

Free-spacing mode does not change anything inside character classes. A character class
is a single token. Any whitespace characters or hashes inside character classes are literal
characters that are added to the character class. You cannot break up character classes
to comment their parts.

Java has free-spacing character classes

Regular expressions wouldn’t live up to their reputation unless at least one flavor was
incompatible with the others. In this case, Java is the odd one out.

In Java, character classes are not parsed as single tokens. If you turn on free-spacing
mode, Java ignores whitespace in character classes, and hashes inside character classes
do start comments. This means you cannot use ‹[●]› and ‹[#]› to match these charac-
ters literally. Use ‹\u0020› and ‹\#› instead.

Variations
(?#Year)\d{4}(?#Separator)-(?#Month)\d{2}-(?#Day)\d{2}

Regex options: None
Regex flavors: .NET, PCRE, Perl, Python, Ruby

If, for some reason, you can’t or don’t want to use free-spacing syntax, you can still add
comments by way of ‹(?#comment)›. All characters between ‹(?#› and ‹)› are ignored.

Unfortunately, JavaScript, the only flavor in this book that doesn’t support free-
spacing, also doesn’t support this comment syntax. Java does not support it either.

(?x)\d{4} # Year
- # Separator
\d{2} # Month
- # Separator
\d{2} # Day

Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

If you cannot turn on free-spacing mode outside the regular expression, you can place
the mode modifier ‹(?x)› at the very start of the regular expression. Make sure there’s
no whitespace before the ‹(?x)›. Free-spacing mode begins only at this mode modifier;
any whitespace before it is significant.

Mode modifiers are explained in detail in “Case-insensitive matching” on page 27, a
subsection of Recipe 2.1.

84 | Chapter 2: Basic Regular Expression Skills

2.19 Insert Literal Text into the Replacement Text
Problem
Search and replace any regular expression match literally with the eight characters
$%*$1\1.

Solution
$%*$$1\1

Replacement text flavors: .NET, JavaScript

\$%*\$1\\1
Replacement text flavor: Java

$%*\$1\\1
Replacement text flavor: PHP

\$%*\$1\\1
Replacement text flavor: Perl

$%*$1\\1
Replacement text flavors: Python, Ruby

Discussion

When and how to escape characters in replacement text

This recipe shows you the different escape rules used by the various replacement text
flavors. The only two characters you may ever need to escape in the replacement text
are the dollar sign and the backslash. The escape characters are also the dollar sign and
the backslash.

The percentage sign and asterisk in this example are always literal characters, though
a preceding backslash may be treated as an escape instead of a literal backslash. «$1»
and/or «\1» are a backreference to a capturing group. Recipe 2.21 tells you which
flavors use which syntax for backreferences.

The fact that this problem has five different solutions for seven replacement text flavors
demonstrates that there really is no standard for replacement text syntax.

.NET and JavaScript

.NET and JavaScript always treat a backslash as a literal character. Do not escape it
with another backslash, or you’ll end up with two backslashes in the replacement.

A lone dollar sign is a literal character. Dollar signs need to be escaped only when they
are followed by a digit, ampersand, backtick, straight quote, underscore, plus sign, or
another dollar sign. To escape a dollar sign, precede it with another dollar sign.

2.19 Insert Literal Text into the Replacement Text | 85

You can double up all dollar signs if you feel that makes your replacement text more
readable. This solution is equally valid:

$$%*$$1\1
Replacement text flavors: .NET, JavaScript

.NET also requires dollar signs followed by an opening curly brace to be escaped.
«${group}» is a named backreference in .NET. JavaScript does not support named
backreferences.

Java

In Java, the backslash is used to escape backslashes and dollar signs in the replacement
text. All literal backslashes and all literal dollar signs must be escaped. If you do not
escape them, Java will throw an exception.

PHP

PHP requires backslashes followed by a digit, and dollar signs followed by a digit or
opening curly brace, to be escaped with a backslash.

A backslash also escapes another backslash. Thus, you need to write «\\\\» to replace
with two literal backslashes. All other backslashes are treated as literal backslashes.

Perl

Perl is a bit different from the other replacement text flavors: it does not really have a
replacement text flavor. Whereas the other programming languages have special logic
in their search-and-replace routines to substitute things such as «$1», in Perl that’s just
normal variable interpolation. In the replacement text, you need to escape all literal
dollar signs with a backslash, just as you would in any double-quoted string.

One exception is that Perl does support the «\1» syntax for backreferences. Thus, you
need to escape a backslash followed by a digit if you want the backslash to be a literal.
A backslash followed by a dollar sign also needs to be escaped, to prevent the backslash
from escaping the dollar sign.

A backslash also escapes another backslash. Thus, you need to write «\\\\» to replace
with two literal backslashes. All other backslashes are treated as literal backslashes.

Python and Ruby

The dollar sign has no special meaning in the replacement text in Python and Ruby.
Backslashes need to be escaped with another backslash when followed by a character
that gives the backslash a special meaning.

With Python, «\1» through «\9» and «\g<» create backreferences. These backslashes
need to be escaped.

86 | Chapter 2: Basic Regular Expression Skills

For Ruby, you need to escape a backslash followed by a digit, ampersand, backtick,
straight quote, or plus sign.

In both languages, a backslash also escapes another backslash. Thus, you need to write
«\\\\» to include two literal backslashes in replacement text. All other backslashes are
treated as literal backslashes.

More escape rules for string literals

Remember that in this chapter, we deal only with the regular expressions and replace-
ment text themselves. The next chapter covers programming languages and string
literals.

The replacement texts shown earlier will work when the actual string variable you’re
passing to the replace() function holds this text. In other words, if your application
provides a text box for the user to type in the replacement text, these solutions show
what the user would have to type in order for the search-and-replace to work as inten-
ded. If you test your search-and-replace commands with RegexBuddy or another regex
tester, the replacement texts included in this recipe will show the expected results.

But these same replacement texts will not work if you paste them directly into your
source code and put quote characters around them. String literals in programming
languages have their own escape rules, and you need to follow those rules on top of the
replacement text escape rules. You may indeed end up with a mess of backslashes.

See Also
Recipe 3.14

2.20 Insert the Regex Match into the Replacement Text
Problem
Perform a search-and-replace that converts URLs into HTML links that point to the
URL, and use the URL as the text for the link. For this exercise, define a URL as
“http:” and all nonwhitespace characters that follow it. For instance, Please visit
http://www.regexcookbook.com becomes Please visit <a href="http://www.regexcook
book.com">http://www.regexcookbook.com.

Solution

Regular expression
http:\S+

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

2.20 Insert the Regex Match into the Replacement Text | 87

Replacement
<a●href="$&">$&

Replacement text flavors: .NET, JavaScript, Perl

<a●href="$0">$0
Replacement text flavors: .NET, Java, PHP

<a●href="\0">\0
Replacement text flavors: PHP, Ruby

<a●href="\&">\&
Replacement text flavor: Ruby

<a●href="\g<0>">\g<0>
Replacement text flavor: Python

Discussion
Inserting the whole regex match back into the replacement text is an easy way to insert
new text before, after, or around the matched text, or even between multiple copies of
the matched text. Unless you’re using Python, you don’t have to add any capturing
groups to your regular expression to be able to reuse the overall match.

In Perl, «$&» is actually a variable. Perl stores the overall regex match in this variable
after each successful regex match.

.NET and JavaScript have adopted the «$&» syntax to insert the regex match into the
replacement text. Ruby uses backslashes instead of dollar signs for replacement text
tokens, so use «\&» for the overall match.

Java, PHP, and Python do not have a special token to reinsert the overall regex match,
but they do allow text matched by capturing groups to be inserted into the replacement
text, as the next section explains. The overall match is an implicit capturing group
number 0. For Python, we need to use the syntax for named capture to reference group
zero. Python does not support «\0».

.NET and Ruby also support the zeroth capturing group syntax, but it doesn’t matter
which syntax you use. The result is the same.

See Also
“Searching and Replacing with Regular Expressions” in Chapter 1, and Recipe 3.15

2.21 Insert Part of the Regex Match into the Replacement Text
Problem
Match any contiguous sequence of 10 digits, such as 1234567890. Convert the sequence
into a nicely formatted phone number, for example, (123) 456-7890.

88 | Chapter 2: Basic Regular Expression Skills

Solution

Regular expression
\b(\d{3})(\d{3})(\d{4})\b

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Replacement
($1)●$2-$3

Replacement text flavors: .NET, Java, JavaScript, PHP, Perl

(${1})●${2}-${3}
Replacement text flavors: .NET, PHP, Perl

(\1)●\2-\3
Replacement text flavors: PHP, Python, Ruby

Discussion

Replacements using capturing groups

Recipe 2.10 explains how you can use capturing groups in your regular expression to
match the same text more than once. The text matched by each capturing group in
your regex is also available after each successful match. You can insert the text of some
or all capturing groups—in any order, or even more than once—into the replacement
text.

Some flavors, such as Python and Ruby, use the same «\1» syntax for backreferences
in both the regular expression and the replacement text. Other flavors use Perl’s «$1»
syntax, using a dollar sign instead of a backslash. PHP supports both.

In Perl, «$1» and above are actually variables that are set after each successful regex
match. You can use them anywhere in your code until the next regex match. .NET,
Java, JavaScript, and PHP support «$1» only in the replacement syntax. These pro-
gramming languages do offer other ways to access capturing groups in code. Chap-
ter 3 explains that in detail.

$10 and higher

All regex flavors in this book support up to 99 capturing groups in a regular expression.
In the replacement text, ambiguity can occur with «$10» or «\10» and above. These
can be interpreted as either the 10th capturing group, or the first capturing group fol-
lowed by a literal zero.

2.21 Insert Part of the Regex Match into the Replacement Text | 89

.NET, PHP, and Perl allow you to put curly braces around the number to make your
intention clear. «${10}» is always the 10th capturing group, and «${1}0» is always the
first followed by a literal zero.

Java and JavaScript try to be clever with «$10». If a capturing group with the specified
two-digit number exists in your regular expression, both digits are used for the cap-
turing group. If fewer capturing groups exist, only the first digit is used to reference the
group, leaving the second as a literal. Thus «$23» is the 23rd capturing group, if it exists.
Otherwise, it is the second capturing group followed by a literal «3».

.NET, PHP, Perl, Python, and Ruby always treat «$10» and «\10» as the 10th capturing
group, regardless of whether it exists. If it doesn’t, the behavior for nonexistent groups
comes into play.

References to nonexistent groups

The regular expression in the solution for this recipe has three capturing groups. If you
type «$4» or «\4» into the replacement text, you’re adding a reference to a capturing
group that does not exist. This triggers one of three different behaviors.

Java and Python will cry foul by raising an exception or returning an error message. Do
not use invalid backreferences with these flavors. (Actually, you shouldn’t use invalid
backreferences with any flavor.) If you want to insert «$4» or «\4» literally, escape the
dollar sign or backslash. Recipe 2.19 explains this in detail.

PHP, Perl, and Ruby substitute all backreferences in the replacement text, including
those that point to groups that don’t exist. Groups that don’t exist did not capture any
text and therefore references to these groups are simply replaced with nothing.

Finally, .NET and JavaScript leave backreferences to groups that don’t exist as literal
text in the replacement.

All flavors do replace groups that do exist in the regular expression but did not capture
anything. Those are replaced with nothing.

Solution Using Named Capture

Regular expression
\b(?<area>\d{3})(?<exchange>\d{3})(?<number>\d{4})\b

Regex options: None
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

\b(?'area'\d{3})(?'exchange'\d{3})(?'number'\d{4})\b
Regex options: None
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

90 | Chapter 2: Basic Regular Expression Skills

\b(?P<area>\d{3})(?P<exchange>\d{3})(?P<number>\d{4})\b
Regex options: None
Regex flavors: PCRE 4 and later, Perl 5.10, Python

Replacement
(${area})●${exchange}-${number}

Replacement text flavor: .NET

(\g<area>)●\g<exchange>-\g<number>
Replacement text flavor: Python

(\k<area>)●\k<exchange>-\k<number>
Replacement text flavor: Ruby 1.9

(\k'area')●\k'exchange'-\k'number'
Replacement text flavor: Ruby 1.9

($1)●$2-$3
Replacement text flavors: .NET, PHP, Perl 5.10

(${1})●${2}-${3}
Replacement text flavors: .NET, PHP, Perl 5.10

(\1)●\2-\3
Replacement text flavors: PHP, Python, Ruby 1.9

Flavors that support named capture

.NET, Python, and Ruby 1.9 allow you to use named backreferences in the replacement
text if you used named capturing groups in your regular expression.

With .NET and Python, the syntax for named backreferences works equally with
named and numbered capturing groups. Simply specify the name or number of the
group between the curly braces or angle brackets.

Ruby uses the same syntax for backreferences in the replacement text as it does in
the regular expression. For named capturing groups in Ruby 1.9, this syntax is
«\k<group>» or «\k'group'». The choice between angle brackets and single quotes is
merely a notational convenience.

Perl 5.10 and PHP (using PCRE) support named capturing groups in regular expres-
sions, but not in the replacement text. You can use numbered backreferences in the
replacement text to named capturing groups in the regular expression. Perl 5.10 and
PCRE assign numbers to both named and unnamed groups, from left to right.

.NET, Python, and Ruby 1.9 also allow numbered references to named groups. How-
ever, .NET uses a different numbering scheme for named groups, as Recipe 2.11 ex-
plains. Mixing names and numbers with .NET, Python, or Ruby is not recommended.
Either give all your groups names or don’t name any groups at all. Always use named
backreferences for named groups.

2.21 Insert Part of the Regex Match into the Replacement Text | 91

See Also
“Searching and Replacing with Regular Expressions” in Chapter 1, and Recipes 2.9,
2.10, 2.11, and 3.15

2.22 Insert Match Context into the Replacement Text
Problem
Create replacement text that replaces the regex match with the text before the regex
match, followed by the whole subject text, followed by the text after the regex match.
For example, if Match is found in BeforeMatchAfter, replace the match with BeforeBefore
MatchAfterAfter, yielding the new text BeforeBeforeBeforeMatchAfterAfterAfter.

Solution
$`$_$'

Replacement text flavors: .NET, Perl

\`\`\&\'\'
Replacement text flavor: Ruby

$`$`$&$'$'
Replacement text flavor: JavaScript

Discussion
The term context refers to the subject text that the regular expression was applied to.
There are three pieces of context: the subject text before the regex match, the subject
text after the regex match, and the whole subject text. The text before the match is
sometimes called the left context, and the text after the match is correspondingly the
right context. The whole subject text is the left context, the match, and the right context.

.NET and Perl support «$`», «$'», and «$_» to insert all three forms of context into
the replacement text. Actually, in Perl these are variables set after a successful regex
match and are available in any code until the next match attempt. Dollar backtick is
the left context. You can type the backtick on a U.S. keyboard by pressing the key to
the left of the 1 key in the top-left corner of your keyboard. Dollar straight quote is the
right context. The straight quote is the usual single quote. On a U.S. keyboard, it sits
between the semicolon and Enter keys. Dollar underscore is the whole subject text.
Like .NET and Perl, JavaScript uses «$`» and «$'» for left and right context. However,
JavaScript does not have a token for inserting the entire subject text. You can recompose
the subject text by inserting the whole regex match with «$&» between the left and right
context.

92 | Chapter 2: Basic Regular Expression Skills

Ruby supports left and right context via «\`» and «\'», and uses «\&» to insert the
whole regex match. Like JavaScript, there is no token for the whole subject text.

See Also
“Searching and Replacing with Regular Expressions” in Chapter 1, and Recipe 3.15

2.22 Insert Match Context into the Replacement Text | 93

CHAPTER 3

Programming with Regular
Expressions

Programming Languages and Regex Flavors
This chapter explains how to implement regular expressions with your programming
language of choice. The recipes in this chapter assume you already have a working
regular expression at your disposal; the previous chapters can help in that regard. Now
you face the job of putting a regular expression into your source code and actually
making it do something.

We’ve done our best in this chapter to explain exactly how and why each piece of code
works the way it does. Because of the level of detail in this chapter, reading it from start
to finish may get a bit tedious. If you’re reading Regular Expression Cookbook for the
first time, we recommend you skim this chapter to get an idea of what can or needs to
be done. Later, when you want to implement one of the regular expressions from the
following chapters, come back here to learn exactly how to integrate the regexes with
your programming language of choice.

Chapters 4 through 8 use regular expressions to solve real-world problems. Those
chapters focus on the regular expressions themselves, and many recipes in those chap-
ters don’t show any source code at all. To make the regular expressions you find in
those chapters work, simply plug them into one of the code snippets in this chapter.

Because the other chapters focus on regular expressions, they present their solutions
for specific regular expression flavors, rather than for specific programming languages.
Regex flavors do not correspond one-on-one with programming languages. Scripting
languages tend to have their own regular expression flavor built-in, and other pro-
gramming languages rely on libraries for regex support. Some libraries are available for
multiple languages, while certain languages have multiple libraries available for them.

95

“Many Flavors of Regular Expressions” on page 2 describes all the regular expression
flavors covered in this book. “Many Flavors of Replacement Text” on page 5 lists the
replacement text flavors, used for searching and replacing with a regular expression.
All of the programming languages covered in this chapter use one of these flavors.

Languages Covered in This Chapter
This chapter covers seven programming languages. Each recipe has separate solutions
for all seven programming languages, and many recipes also have separate discussions
for all seven languages. If a technique applies to more than one language, we repeat it
in the discussion for each of those languages. We’ve done this so you can safely skip
the discussions of programming languages that you’re not interested in:

C#
C# uses the Microsoft .NET framework. The System.Text.RegularExpressions
classes use the “.NET” regular expression and replacement text flavor. This book
covers C# 1.0 through 3.5, or Visual Studio 2002 until 2008.

VB.NET
This book uses VB.NET and Visual Basic.NET to refer to Visual Basic 2002 and
later, to distinguish these versions from Visual Basic 6 and earlier. Visual Basic now
uses the Microsoft .NET framework. The System.Text.RegularExpressions classes
use the “.NET” regular expression and replacement text flavor. This book covers
Visual Basic 2002 until 2008.

Java
Java 4 is the first Java release to provide built-in regular expression support through
the java.util.regex package. The java.util.regex package uses the “Java” regular
expression and replacement text flavor. This book covers Java 4, 5, and 6.

JavaScript
This is the regex flavor used in the programming language commonly known as
JavaScript. All modern web browsers implement it: Internet Explorer (as of version
5.5), Firefox, Opera, Safari, and Chrome. Many other applications also use
JavaScript as a scripting language.

Strictly speaking, in this book we use the term JavaScript to indicate the program-
ming language defined in version 3 of the ECMA-262 standard. This standard
defines the ECMAScript programming language, which is better known through
its implementations JavaScript and JScript in various web browsers.

ECMA-262v3 also defines the regular expression and replacement text flavors used
by JavaScript. Those flavors are labeled as “JavaScript” in this book.

PHP
PHP has three sets of regular expression functions. We strongly recommend using
the preg functions. Therefore, this book only covers the preg functions, which are
built into PHP as of version 4.2.0. This book covers PHP 4 and 5. The preg functions
are PHP wrappers around the PCRE library. The PCRE regex flavor is indicated as

96 | Chapter 3: Programming with Regular Expressions

“PCRE” in this book. Since PCRE does not include search-and-replace function-
ality, the PHP developers devised their own replacement text syntax for
preg_replace. This replacement text flavor is labeled “PHP” in this book.

The mb_ereg functions are part of PHP’s “multibyte” functions, which are designed
to work well with languages that are traditionally encoded with multibyte character
sets, such as Japanese and Chinese. In PHP 5, the mb_ereg functions use the Oni-
guruma regex library, which was originally developed for Ruby. The Oniguruma
regex flavor is indicated as “Ruby 1.9” in this book. Using the mb_ereg functions is
recommended only if you have a specific requirement to deal with multibyte code
pages and you’re already familiar with the mb_ functions in PHP.

The ereg group of functions is the oldest set of PHP regex functions, and are offi-
cially deprecated as of PHP 5.3.0. They don’t depend on external libraries, and
implement the POSIX ERE flavor. This flavor offers only a limited feature set,
and is not discussed in this book. POSIX ERE is a strict subset of the Ruby 1.9 and
PCRE flavors. You can take the regex from any ereg function call and use it with
mb_ereg or preg. For preg, you have to add Perl-style delimiters (Recipe 3.1).

Perl
Perl’s built-in support for regular expressions is the main reason why regexes are
popular today. The regular expression and replacement text flavors used by Perl’s
m// and s/// operators are labeled as “Perl” in this book. This book covers Perl 5.6,
5.8, and 5.10.

Python
Python supports regular expressions through its re module. The regular expression
and replacement text flavor used by this module are labeled “Python” in this book.
This book covers Python 2.4 and 2.5.

Ruby
Ruby has built-in support for regular expressions. This book covers Ruby 1.8 and
Ruby 1.9. These two versions of Ruby have different default regular expression
engines. Ruby 1.9 uses the Oniguruma engine, which has more regex features than
the classic engine in Ruby 1.8. “Regex Flavors Covered by This Book” on page 3
has more details on this.

In this chapter, we don’t talk much about the differences between Ruby 1.8 and
1.9. The regular expressions in this chapter are very basic, and they don’t use the
new features in Ruby 1.9. Because the regular expression support is compiled into
the Ruby language itself, the Ruby code you use to implement your regular ex-
pressions is the same, regardless of whether you’ve compiled Ruby using the classic
regex engine or the Oniguruma engine. You could recompile Ruby 1.8 to use the
Oniguruma engine if you need its features.

Programming Languages and Regex Flavors | 97

More Programming Languages
The programming languages in the following list aren’t covered by this book, but they
do use one of the regular expression flavors in this book. If you use one of these lan-
guages, you can skip this chapter, but all the other chapters are still useful:

ActionScript
ActionScript is Adobe’s implementation of the ECMA-262 standard. As of version
3.0, ActionScript has full support for ECMA-262v3 regular expressions. This regex
flavor is labeled “JavaScript” in this book. The ActionScript language is also very
close to JavaScript. You should be able to adapt the JavaScript examples in this
chapter for ActionScript.

C
C can use a wide variety of regular expression libraries. The open source PCRE
library is likely the best choice out of the flavors covered by this book. You can
download the full C source code at http://www.pcre.org. The code is written to
compile with a wide range of compilers on a wide range of platforms.

C++
C++ can use a wide variety of regular expression libraries. The open source PCRE
library is likely the best choice out of the flavors covered by this book. You can
either use the C API directly or use the C++ class wrappers included with the PCRE
download itself (see http://www.pcre.org).

On Windows, you could import the VBScript 5.5 RegExp COM object, as ex-
plained later for Visual Basic 6. That could be useful for regex consistency between
a C++ backend and a JavaScript frontend.

Delphi for Win32
At the time of this writing, the Win32 version of Delphi does not have any built-
in support for regular expressions. There are many VCL components available that
provide regular expression support. I recommend that you choose one based on
PCRE. Delphi has the ability to link C object files into your applications, and many
VCL wrappers for PCRE use such object files. This allows you to keep your appli-
cation as a single .exe file.

You can download my own TPerlRegEx component at http://www.regexp.info/del
phi.html. This is a VCL component that installs itself onto the component palette,
so you can easily drop it into a form. Another popular PCRE wrapper for Delphi
is the TJclRegEx class part of the JCL library at http://www.delphi-jedi.org.
TJclRegEx descends from TObject, so you can’t drop it into a form.

Both libraries are open source under the Mozilla Public License.

Delphi Prism
In Delphi Prism, you can use the regular expression support provided by the .NET
framework. Simply add System.Text.RegularExpressions to the uses clause of any
Delphi Prism unit in which you want to use regular expressions.

98 | Chapter 3: Programming with Regular Expressions

Once you’ve done that, you can use the same techniques shown in the C# and
VB.NET code snippets in this chapter.

Groovy
You can use regular expressions in Groovy with the java.util.regex package, just
as you can in Java. In fact, all of the Java solutions in this chapter should work with
Groovy as well. Groovy’s own regular expression syntax merely provides nota-
tional shortcuts. A literal regex delimited with forward slashes is an instance of
java.lang.String and the =~ operator instantiates java.util.regex.Matcher. You
can freely mix the Groovy syntax with the standard Java syntax—the classes and
objects are all the same.

PowerShell
PowerShell is Microsoft’s shell-scripting language, based on the .NET framework.
PowerShell’s built-in -match and -replace operators use the .NET regex flavor and
replacement text as described in this book.

R
The R Project supports regular expressions via the grep, sub, and regexpr functions
in the base package. All these functions take an argument labeled perl, which is
FALSE if you omit it. Set it to TRUE to use the PCRE regex flavor as described in this
book. The regular expressions shown for PCRE 7 work with R 2.5.0 and later. For
earlier versions of R, use the regular expressions marked as “PCRE 4 and later” in
this book. The “basic” and “extended” flavors supported by R are older and limited
regex flavors not discussed in this book.

REALbasic
REALbasic has a built-in RegEx class. Internally, this class uses the UTF-8 version
of the PCRE library. This means that you can use PCRE’s Unicode support, but
you have to use REALbasic’s TextConverter class to convert non-ASCII text into
UTF-8 before passing it to the RegEx class.

All regular expressions shown in this book for PCRE 6 will work with REALbasic.
One caveat is that in REALbasic, the “case insensitive” and “caret and dollar match
at line breaks” (“multi line”) options are on by default in REALbasic. If you want
to use a regular expression from this book that does not tell you to turn on these
matching modes, you have to turn them off explicitly in REALbasic.

Scala
Scala provides built-in regex support through the scala.util.matching package.
This support is built on the regular expression engine in Java’s java.util.regex
package. The regular expression and replacement text flavors used by Java and
Scala are labeled “Java” in this book.

Visual Basic 6
Visual Basic 6 is the last version of Visual Basic that does not require the .NET
framework. That also means Visual Basic 6 cannot use the excellent regular ex-
pression support of the .NET framework. The VB.NET code samples in this chap-
ter won’t work with VB 6 at all.

Programming Languages and Regex Flavors | 99

Visual Basic 6 does make it very easy to use the functionality provided by ActiveX
and COM libraries. One such library is Microsoft’s VBScript scripting library,
which has decent regular expression capabilities starting with version 5.5. The
scripting library implements the same regular expression flavor used in JavaScript,
as standardized in ECMA-262v3. This library is part of Internet Explorer 5.5 and
later. It is available on all computers running Windows XP or Vista, and previous
versions of Windows if the user has upgraded to IE 5.5 or later. That includes
almost every Windows PC that is used to connect to the Internet.

To use this library in your Visual Basic application, select Project|References in the
VB IDE’s menu. Scroll down the list to find the item “Microsoft VBScript Regular
Expressions 5.5”, which is immediately below the “Microsoft VBScript Regular
Expressions 1.0” item. Make sure to tick the 5.5 version, not the 1.0 version. The
1.0 version is only provided for backward compatibility, and its capabilities are less
than satisfactory.

After adding the reference, you can see which classes and class members the library
provides. Select View|Object Browser in the menu. In the Object Browser, select
the “VBScript_RegExp_55” library in the drop-down list in the upper-left corner.

3.1 Literal Regular Expressions in Source Code
Problem
You have been given the regular expression ‹[$"'\n\d/\\]› as the solution to a problem.
This regular expression consists of a single character class that matches a dollar sign,
a double quote, a single quote, a line feed, any digit between 0 and 9, a forward slash,
or a backslash. You want to hardcode this regular expression into your source code as
a string constant or regular expression operator.

Solution

C#

As a normal string:

"[$\"'\n\\d/\\\\]"

As a verbatim string:

@"[$""'\n\d/\\]"

VB.NET
"[$""'\n\d/\\]"

100 | Chapter 3: Programming with Regular Expressions

Java
"[$\"'\n\\d/\\\\]"

JavaScript
/[$"'\n\d\/\\]/

PHP
'%[$"\'\n\d/\\\\]%'

Perl

Pattern-matching operator:

/[\$"'\n\d\/\\]/

m![\$"'\n\d/\\]!

Substitution operator:

s![\$"'\n\d/\\]!!

Python

Raw triple-quoted string:

r"""[$"'\n\d/\\]"""

Normal string:

"[$\"'\n\\d/\\\\]"

Ruby

Literal regex delimited with forward slashes:

/[$"'\n\d\/\\]/

Literal regex delimited with punctuation of your choice:

%r![$"'\n\d/\\]!

Discussion
When this book shows you a regular expression by itself (as opposed to as part of a
larger source code snippet), it always shows regular expressions unadorned. This recipe
is the only exception. If you’re using a regular expression tester such as RegexBuddy
or RegexPal, you would type in the regex this way. If your application accepts a regular
expression as user input, the user would type it in this way.

3.1 Literal Regular Expressions in Source Code | 101

But if you want to hardcode the regular expression into your source code, you have
extra work. Carelessly copying and pasting regular expressions from a regular expres-
sion tester into your source code—or vice versa—will often leave you scratching your
head as to why the regular expression works in your tool but not in your source code,
or why the tester fails on a regex you’ve copied from somebody else’s code. All pro-
gramming languages discussed in this book require literal regular expressions to be
delimited in a certain way, with some languages requiring strings and some requiring
a special regex constant. If your regex includes the language’s delimiters or certain other
characters with special meanings in the language, you have to escape them.

The backslash is the most commonly used escape character. That’s why most of the
solutions to this problem have far more backslashes in them than the four in the original
regular expression.

C#

In C#, you can pass literal regular expressions to the Regex() constructor, and to various
member functions in the Regex class. The parameter that takes the regular expression
is always declared as a string.

C# supports two kinds of string literals. The most common kind is the double-quoted
string, well-known from languages such as C++ and Java. Within double-quoted
strings, double quotes and backslashes must be escaped with a backslash. Escapes for
nonprintable characters, such as ‹\n›, are also supported in strings. There is a difference
between "\n" and "\\n" when using RegexOptions.IgnorePatternWhitespace (see Rec-
ipe 3.4) to turn on free-spacing mode, as explained in Recipe 2.18. "\n" is a string with
a literal line break, which is ignored as whitespace. "\\n" is a string with the regex token
‹\n›, which matches a newline.

Verbatim strings start with an at sign and a double quote, and end with a double quote
on its own. To include a double quote in a verbatim string, double it up. Backslashes
do not need to be escaped, resulting in a significantly more readable regular expression.
@"\n" is always the regex token ‹\n›, which matches a newline, even in free-spacing
mode. Verbatim strings do not support ‹\n› at the string level, but can span multiple
lines instead. That makes verbatim strings ideal for free-spacing regular expressions.

The choice is clear: use verbatim strings to put regular expressions into your C# source
code.

VB.NET

In VB.NET, you can pass literal regular expressions to the Regex() constructor, and to
various member functions in the Regex class. The parameter that takes the regular ex-
pression is always declared as a string.

Visual Basic uses double-quoted strings. Double quotes within the string must be dou-
bled. No other characters need to be escaped.

102 | Chapter 3: Programming with Regular Expressions

Java

In Java, you can pass literal regular expressions to the Pattern.compile() class factory,
and to various functions of the String class. The parameter that takes the regular ex-
pression is always declared as a string.

Java uses double-quoted strings. Within double-quoted strings, double quotes and
backslashes must be escaped with a backslash. Escapes for nonprintable characters,
such as ‹\n›, and Unicode escapes such as ‹\uFFFF› are also supported in strings.

There is a difference between "\n" and "\\n" when using Pattern.COMMENTS (see Rec-
ipe 3.4) to turn on free-spacing mode, as explained in Recipe 2.18. "\n" is a string with
a literal line break, which is ignored as whitespace. "\\n" is a string with the regex token
‹\n›, which matches a newline.

JavaScript

In JavaScript, regular expressions are best created by using the special syntax for de-
claring literal regular expressions. Simply place your regular expression between two
forward slashes. If any forward slashes occur within the regular expression itself, escape
those with a backslash.

Although it is possible to create a RegExp object from a string, it makes little sense to
use the string notation for literal regular expressions in your code. You would have to
escape quotes and backslashes, which generally leads to a forest of backslashes.

PHP

Literal regular expressions for use with PHP’s preg functions are a curious contraption.
Unlike JavaScript or Perl, PHP does not have a native regular expression type. Regular
expressions must always be quoted as strings. This is true for the ereg and mb_ereg
functions as well. But in their quest to mimic Perl, the developers of PHP’s wrapper
functions for PCRE added an additional requirement.

Within the string, the regular expression must be quoted as a Perl-style literal regular
expression. That means that where you would write /regex/ in Perl, the string for PHP’s
preg functions becomes '/regex/'. As in Perl, you can use any pair of punctuation
characters as the delimiters. If the regex delimiter occurs within the regex, it must be
escaped with a backslash. To avoid this, choose a delimiter that does not occur in the
regex. For this recipe, I used the percentage sign, because the forward slash occurs in
the regex but the percentage sign does not. If the forward slash does not occur in the
regex, use that, as it’s the most commonly used delimiter in Perl and the required
delimiter in JavaScript and Ruby.

PHP supports both single-quoted and double-quoted strings. Both require the quote
(single or double) and the backslash within a regex to be escaped with a backslash. In
double-quoted strings, the dollar sign also needs to be escaped. For regular expressions,

3.1 Literal Regular Expressions in Source Code | 103

you should use single-quoted strings, unless you really want to interpolate variables in
your regex.

Perl

In Perl, literal regular expressions are used with the pattern-matching operator and the
substitution operator. The pattern-matching operator consists of two forward slashes,
with the regex between it. Forward slashes within the regular expression must be es-
caped with a backslash. There’s no need to escape any other characters, except perhaps
$ and @, as explained at the end of this subsection.

An alternative notation for the pattern-matching operator puts the regular expression
between any pair of punctuation characters, preceded by the letter m. If you use any
kind of opening and closing punctuation (parentheses, braces, or brackets) as the de-
limiter, they need to match up: for example, m{regex}. If you use other punctuation,
simply use the same character twice. The solution for this recipe uses the exclamation
point. That saves us having to escape the literal forward slash in the regular expression.
Only the closing delimiter needs to be escaped with a backslash.

The substitution operator is similar to the pattern-matching operator. It starts with s
instead of m, and tacks on the replacement text. When using brackets or similar punc-
tuation as the delimiters, you need two pairs: s[regex][replace]. For all other punc-
tuation, use it three times: s/regex/replace/.

Perl parses the pattern-matching and substitution operators as double-quoted strings.
If you write m/I am $name/ and $name holds "Jan", you end up with the regular expression
‹I●am●Jan›. $" is also a variable in Perl, so we have to escape the literal dollar sign in
the character class in our regular expression in this recipe.

Never escape a dollar sign that you want to use as an anchor (see Recipe 2.5). An escaped
dollar sign is always a literal. Perl is smart enough to differentiate between dollars used
as anchors, and dollars used for variable interpolation, due to the fact that anchors can
be used sensibly only at the end of a group or the whole regex, or before a newline. You
shouldn’t escape the dollar in ‹m/^regex$/› if you want to check whether “regex”
matches the subject string entirely.

The at sign does not have a special meaning in regular expressions, but it is used for
variable interpolation in Perl. You need to escape it in literal regular expressions in Perl
code, as you do for double-quoted strings.

Python

The functions in Python’s re module expect literal regular expressions to be passed as
strings. You can use any of the various ways that Python provides to quote strings.
Depending on the characters that occur in your regular expression, different ways of
quoting it may reduce the number of characters you need to escape with backslashes.

104 | Chapter 3: Programming with Regular Expressions

Generally, raw strings are the best option. Python raw strings don’t require any char-
acters to be escaped. If you use a raw string, you don’t need to double up the backslashes
in your regular expression. r"\d+" is easier to read than "\\d+", particularly as your
regex gets long.

The only situation where raw strings aren’t ideal is when your regular expression in-
cludes both the single quote and double quote characters. Then you can’t use a raw
string delimited with one pair of single or double quotes, because there’s no way to
escape the quotes inside the regular expression. In that case, you can triple-quote the
raw string, as we did in the Python solution for this recipe. The normal string is shown
for comparison.

If you want to use the Unicode features explained in Recipe 2.7 in your regular expres-
sion, you need to use Unicode strings. You can turn a string into a Unicode string by
preceding it with a u.

Raw strings don’t support nonprintable character escapes such as \n. Raw strings treat
escape sequences as literal text. This is not a problem for the re module. It supports
these escapes as part of the regular expression syntax, and as part of the replacement
text syntax. A literal \n in a raw string will still be interpreted as a newline in your
regular expressions and replacement texts.

There is a difference between the string "\n" on one side, and the string "\\n" and the
raw string r"\n" on the other side when using re.VERBOSE (see Recipe 3.4) to turn on
free-spacing mode, as explained in Recipe 2.18. "\n" is a string with a literal line break,
which is ignored as whitespace. "\\n" and r"\n" are both strings with the regex token
‹\n›, which matches a newline.

When using free-spacing mode, triple-quoted raw strings such as r"""\n""" are the best
solution, because they can span multiple lines. Also, ‹\n› is not interpreted at the string
level, so it can be interpreted at the regex level to match a line break.

Ruby

In Ruby, regular expressions are best created by using the special syntax for declaring
literal regular expressions. Simply place your regular expression between two forward
slashes. If any forward slashes occur within the regular expression itself, escape those
with a backslash.

If you don’t want to escape forward slashes in your regex, you can prefix your regular
expression with %r and then use any punctuation character of your choice as the
delimiter.

Although it is possible to create a Regexp object from a string, it makes little sense to
use the string notation for literal regular expressions in your code. You then would have
to escape quotes and backslashes, which generally leads to a forest of backslashes.

3.1 Literal Regular Expressions in Source Code | 105

Ruby is very similar to JavaScript in this respect, except that the name
of the class is Regexp as one word in Ruby, whereas it is RegExp with
camel caps in JavaScript.

See Also
Recipe 2.3 explains how character classes work, and why two backslashes are needed
in the regular expression to include just one in the character class.

Recipe 3.4 explains how to set regular expression options, which is done as part of
literal regular expressions in some programming languages.

3.2 Import the Regular Expression Library
Problem
To be able to use regular expressions in your application, you want to import the regular
expression library or namespace into your source code.

The remainder of the source code snippets in this book assume that you
have already done this, if needed.

Solution

C#
using System.Text.RegularExpressions;

VB.NET
Imports System.Text.RegularExpressions

Java
import java.util.regex.*;

Python
import re

Discussion
Some programming languages have regular expressions built-in. For these languages,
you don’t need to do anything to enable regular expression support. Other languages

106 | Chapter 3: Programming with Regular Expressions

provide regular expression functionality through a library that needs to be imported
with an import statement in your source code. Some languages don’t have regex support
at all. For those, you’ll have to compile and link in the regular expression support
yourself.

C#

If you place the using statement at the top of your C# source file, you can reference
the classes that provide regular expression functionality directly, without
having to fully qualify them. For instance, you can write Regex() instead of
System.Text.RegularExpressions.Regex().

VB.NET

If you place the Imports statement at the top of your VB.NET source file, you can
reference the classes that provide regular expression functionality directly, without
having to fully qualify them. For instance, you can write Regex() instead of
System.Text.RegularExpressions.Regex().

Java

You have to import the java.util.regex package into your application to be able to
use Java’s built-in regular expression library.

JavaScript

JavaScript’s regular expression support is built-in and always available.

PHP

The preg functions are built-in and always available in PHP 4.2.0 and later.

Perl

Perl’s regular expression support is built-in and always available.

Python

You have to import the re module into your script to be able to use Python’s regular
expression functions.

Ruby

Ruby’s regular expression support is built-in and always available.

3.2 Import the Regular Expression Library | 107

3.3 Creating Regular Expression Objects
Problem
You want to instantiate a regular expression object or otherwise compile a regular
expression so you can use it efficiently throughout your application.

Solution

C#

If you know the regex to be correct:

Regex regexObj = new Regex("regex pattern");

If the regex is provided by the end user (UserInput being a string variable):

try {
 Regex regexObj = new Regex(UserInput);
} catch (ArgumentException ex) {
 // Syntax error in the regular expression
}

VB.NET

If you know the regex to be correct:

Dim RegexObj As New Regex("regex pattern")

If the regex is provided by the end user (UserInput being a string variable):

Try
 Dim RegexObj As New Regex(UserInput)
Catch ex As ArgumentException
 'Syntax error in the regular expression
End Try

Java

If you know the regex to be correct:

Pattern regex = Pattern.compile("regex pattern");

If the regex is provided by the end user (userInput being a string variable):

try {
 Pattern regex = Pattern.compile(userInput);
} catch (PatternSyntaxException ex) {
 // Syntax error in the regular expression
}

108 | Chapter 3: Programming with Regular Expressions

To be able to use the regex on a string, create a Matcher:

Matcher regexMatcher = regex.matcher(subjectString);

To use the regex on another string, you can create a new Matcher, as just shown, or
reuse an existing one:

regexMatcher.reset(anotherSubjectString);

JavaScript

Literal regular expression in your code:

var myregexp = /regex pattern/;

Regular expression retrieved from user input, as a string stored in the variable
userinput:

var myregexp = new RegExp(userinput);

Perl
$myregex = qr/regex pattern/

Regular expression retrieved from user input, as a string stored in the variable
$userinput:

$myregex = qr/$userinput/

Python
reobj = re.compile("regex pattern")

Regular expression retrieved from user input, as a string stored in the variable
userinput:

reobj = re.compile(userinput)

Ruby

Literal regular expression in your code:

myregexp = /regex pattern/;

Regular expression retrieved from user input, as a string stored in the variable
userinput:

myregexp = Regexp.new(userinput);

Discussion
Before the regular expression engine can match a regular expression to a string, the
regular expression has to be compiled. This compilation happens while your applica-
tion is running. The regular expression constructor or compile function parses the

3.3 Creating Regular Expression Objects | 109

string that holds your regular expression and converts it into a tree structure or state
machine. The function that does the actual pattern matching will traverse this tree or
state machine as it scans the string. Programming languages that support literal regular
expressions do the compilation when execution reaches the regular expression
operator.

.NET

In C# and VB.NET, the .NET class System.Text.RegularExpressions.Regex holds one
compiled regular expression. The simplest constructor takes just one parameter: a
string that holds your regular expression.

If there’s a syntax error in the regular expression, the Regex() constructor will throw
an ArgumentException. The exception message will indicate exactly which error was
encountered. It is important to catch this exception if the regular expression is provided
by the user of your application. Display the exception message and ask the user to
correct the regular expression. If your regular expression is a hardcoded string literal,
you can omit catching the exception if you use a code coverage tool to make sure the
line is executed without throwing an exception. There are no possible changes to state
or mode that could cause the same literal regex to compile in one situation and fail to
compile in another. Note that if there is a syntax error in your literal regex, the exception
will occur when your application is run, not when your application is compiled.

You should construct a Regex object if you will be using the regular expression inside
a loop or repeatedly throughout your application. Constructing the regex object in-
volves no extra overhead. The static members of the Regex class that take the regex as
a string parameter construct a Regex object internally anyway, so you might just as well
do it in your own code and keep a reference to the object.

If you plan to use the regex only once or a few times, you can use the static members
of the Regex class instead, to save a line of code. The static Regex members do not throw
away the internally constructed regular expression object immediately; instead, they
keep a cache of the 15 most recently used regular expressions. You can change the cache
size by setting the Regex.CacheSize property. The cache lookup is done by looking up
your regular expression string in the cache. But don’t go overboard with the cache. If
you need lots of regex objects frequently, keep a cache of your own that you can look
up more efficiently than with a string search.

Java

In Java, the Pattern class holds one compiled regular expression. You can create objects
of this class with the Pattern.compile() class factory, which requires just one param-
eter: a string with your regular expression.

110 | Chapter 3: Programming with Regular Expressions

If there’s a syntax error in the regular expression, the Pattern.compile() factory will
throw a PatternSyntaxException. The exception message will indicate exactly which
error was encountered. It is important to catch this exception if the regular expression
is provided by the user of your application. Display the exception message and ask the
user to correct the regular expression. If your regular expression is a hardcoded string
literal, you can omit catching the exception if you use a code coverage tool to make
sure the line is executed without throwing an exception. There are no possible changes
to state or mode that could cause the same literal regex to compile in one situation and
fail to compile in another. Note that if there is a syntax error in your literal regex, the
exception will occur when your application is run, not when your application is
compiled.

Unless you plan to use a regex only once, you should create a Pattern object instead of
using the static members of the String class. Though it takes a few lines of extra code,
that code will run more efficiently. The static calls recompile your regex each and every
time. In fact, Java provides static calls for only a few very basic regex tasks.

A Pattern object only stores a compiled regular expression; it does not do any actual
work. The actual regex matching is done by the Matcher class. To create a Matcher, call
the matcher() method on your compiled regular expression. Pass the subject string as
the only argument to matcher().

You can call matcher() as many times as you like to use the same regular expression on
multiple strings. You can work with multiple matchers using the same regex at the same
time, as long as you keep everything in a single thread. The Pattern and Matcher
classes are not thread-safe. If you want to use the same regex in multiple threads, call
Pattern.compile() in each thread.

If you’re done applying a regex to one string and want to apply the same regex to another
string, you can reuse the Matcher object by calling reset(). Pass the next subject string
as the only argument. This is more efficient than creating a new Matcher object.
reset() returns the same Matcher you called it on, allowing you to easily reset and use
a matcher in one line of code, e.g., regexMatcher.reset(nextString).find().

JavaScript

The notation for literal regular expressions shown in Recipe 3.2 already creates a new
regular expression object. To use the same object repeatedly, simply assign it to a
variable.

If you have a regular expression stored in a string variable (e.g., because you asked the
user to type in a regular expression), use the RegExp() constructor to compile the regular
expression. Notice that the regular expression inside the string is not delimited by
forward slashes. Those slashes are part of JavaScript’s notation for literal RegExp objects,
rather than part of the regular expression itself.

3.3 Creating Regular Expression Objects | 111

Since assigning a literal regex to a variable is trivial, most of the
JavaScript solutions in this chapter omit this line of code and use the
literal regular expression directly. In your own code, when using the
same regex more than once, you should assign the regex to a variable
and use that variable instead of pasting the same literal regex multiple
times into your code. This increases performance and makes your code
easier to maintain.

PHP

PHP does not provide a way to store a compiled regular expression in a variable.
Whenever you want to do something with a regular expression, you have to pass it as
a string to one of the preg functions.

The preg functions keep a cache of up to 4,096 compiled regular expressions. Although
the hash-based cache lookup is not as fast as referencing a variable, the performance
hit is not as dramatic as having to recompile the same regular expression over and over.
When the cache is full, the regex that was compiled the longest ago is removed.

Perl

You can use the “quote regex” operator to compile a regular expression and assign it
to a variable. It uses the same syntax as the match operator described in Recipe 3.1,
except that it starts with the letters qr instead of the letter m.

Perl is generally quite efficient at reusing previously compiled regular expressions.
Therefore, we don’t use qr// in the code samples in this chapter. Only Recipe 3.5
demonstrates its use.

qr// is useful when you’re interpolating variables in the regular expression or when
you’ve retrieved the whole regular expression as a string (e.g., from user input). With
qr/$regexstring/, you can control when the regex is recompiled to reflect the new
contents of $regexstring. m/$regexstring/ would recompile the regex every time,
whereas m/$regexstring/o never recompiles it. Recipe 3.4 explains /o.

Python

The compile() function in Python’s re module takes a string with your regular expres-
sion, and returns an object with your compiled regular expression.

You should call compile() explicitly if you plan to use the same regular expression
repeatedly. All the functions in the re module first call compile(), and then call the
function you wanted on the compiled regular expression object.

The compile() function keeps a reference to the last 100 regular expressions that it
compiled. This reduces the recompilation of any of the last 100 used regular expressions
to a dictionary lookup. When the cache is full, it is cleared out entirely.

112 | Chapter 3: Programming with Regular Expressions

If performance is not an issue, the cache works well enough that you can use the func-
tions in the re module directly. But when performance matters, calling compile() is a
good idea.

Ruby

The notation for literal regular expressions shown in Recipe 3.2 already creates a
new regular expression object. To use the same object repeatedly, simply assign it to a
variable.

If you have a regular expression stored in a string variable (e.g., because you asked the
user to type in a regular expression), use the Regexp.new() factory or its synonym
Regexp.compile() to compile the regular expression. Notice that the regular expression
inside the string is not delimited by forward slashes. Those slashes are part of Ruby’s
notation for literal Regexp objects and are not part of the regular expression itself.

Since assigning a literal regex to a variable is trivial, most of the Ruby
solutions in this chapter omit this line of code and use the literal regular
expression directly. In your own code, when using the same regex more
than once, you should assign the regex to a variable and use the variable
instead of pasting the same literal regex multiple times into your code.
This increases performance and makes your code easier to maintain.

Compiling a Regular Expression Down to CIL

C#
Regex regexObj = new Regex("regex pattern", RegexOptions.Compiled);

VB.NET
Dim RegexObj As New Regex("regex pattern", RegexOptions.Compiled)

Discussion
When you construct a Regex object in .NET without passing any options, the regular
expression is compiled in the way we described in “Discussion” on page 109. If you
pass RegexOptions.Compiled as a second parameter to the Regex() constructor, the
Regex class does something rather different: it compiles your regular expression down
to CIL, also known as MSIL. CIL stands for Common Intermediate Language, a low-
level programming language that is closer to assembly than to C# or Visual Basic.
All .NET compilers produce CIL. The first time your application runs, the .NET frame-
work compiles the CIL further down to machine code suitable for the user’s computer.

The benefit of compiling a regular expression with RegexOptions.Compiled is that it can
run up to 10 times faster than a regular expression compiled without this option.

3.3 Creating Regular Expression Objects | 113

The drawback is that this compilation can be up to two orders of magnitude slower
than simply parsing the regex string into a tree. The CIL code also becomes a permanent
part of your application until it is terminated. CIL code is not garbage collected.

Use RegexOptions.Compiled only if a regular expression is either so complex or needs
to process so much text that the user experiences a noticeable wait during operations
using the regular expression. The compilation and assembly overhead is not worth it
for regexes that do their job in a split second.

See Also
Recipes 3.1, 3.2, and 3.4

3.4 Setting Regular Expression Options
Problem
You want to compile a regular expression with all of the available matching modes:
free-spacing, case insensitive, dot matches line breaks, and caret and dollar match at
line breaks.

Solution

C#
Regex regexObj = new Regex("regex pattern",
 RegexOptions.IgnorePatternWhitespace | RegexOptions.IgnoreCase |
 RegexOptions.Singleline | RegexOptions.Multiline);

VB.NET
Dim RegexObj As New Regex("regex pattern",
 RegexOptions.IgnorePatternWhitespace Or RegexOptions.IgnoreCase Or
 RegexOptions.Singleline Or RegexOptions.Multiline)

Java
Pattern regex = Pattern.compile("regex pattern",
 Pattern.COMMENTS | Pattern.CASE_INSENSITIVE | Pattern.UNICODE_CASE |
 Pattern.DOTALL | Pattern.MULTILINE);

JavaScript

Literal regular expression in your code:

var myregexp = /regex pattern/im;

Regular expression retrieved from user input, as a string:

114 | Chapter 3: Programming with Regular Expressions

var myregexp = new RegExp(userinput, "im");

PHP
regexstring = '/regex pattern/simx';

Perl
m/regex pattern/simx;

Python
reobj = re.compile("regex pattern",
 re.VERBOSE | re.IGNORECASE |
 re.DOTALL | re.MULTILINE)

Ruby

Literal regular expression in your code:

myregexp = /regex pattern/mix;

Regular expression retrieved from user input, as a string:

myregexp = Regexp.new(userinput,
 Regexp::EXTENDED or Regexp::IGNORECASE or
 Regexp::MULTILINE);

Discussion
Many of the regular expressions in this book, and those that you find elsewhere, are
written to be used with certain regex matching modes. There are four basic modes that
nearly all modern regex flavors support. Unfortunately, some flavors use inconsistent
and confusing names for the options that implement the modes. Using the wrong
modes usually breaks the regular expression.

All the solutions in this recipe use flags or options provided by the programming lan-
guage or regular expression class to set the modes. Another way to set modes is to use
mode modifiers within the regular expression. Mode modifiers within the regex always
override options or flags set outside the regular expression.

.NET

The Regex() constructor takes an optional second parameter with regular expressions
options. You can find the available options in the RegexOptions enumeration.

Free-spacing: RegexOptions.IgnorePatternWhitespace
Case insensitive: RegexOptions.IgnoreCase
Dot matches line breaks: RegexOptions.Singleline
Caret and dollar match at line breaks: RegexOptions.Multiline

3.4 Setting Regular Expression Options | 115

Java

The Pattern.compile() class factory takes an optional second parameter with regular
expressions options. The Pattern class defines several constants that set the various
options. You can set multiple options by combining them with the bitwise inclusive or
operator |.

Free-spacing: Pattern.COMMENTS
Case insensitive: Pattern.CASE_INSENSITIVE | Pattern.UNICODE_CASE
Dot matches line breaks: Pattern.DOTALL
Caret and dollar match at line breaks: Pattern.MULTILINE

There are indeed two options for case insensitivity, and you have to set both for full
case insensitivity. If you set only Pattern.CASE_INSENSITIVE, only the English letters A
to Z are matched case insensitively. If you set both options, all characters from all scripts
are matched case insensitively. The only reason not to use Pattern.UNICODE_CASE is
performance, in case you know in advance you’ll be dealing with ASCII text only. When
using mode modifiers inside your regular expression, use ‹(?i)› for ASCII-only case
insensitivity and ‹(?iu)› for full case insensitivity.

JavaScript

In JavaScript, you can specify options by appending one or more single-letter flags to
the RegExp literal, after the forward slash that terminates the regular expression. When
talking about these flags in documentation, they are usually written as /i and /m, even
though the flag itself is only one letter. No additional slashes are added to specify regex
mode flags.

When using the RegExp() constructor to compile a string into a regular expression, you
can pass an optional second parameter with flags to the constructor. The second pa-
rameter should be a string with the letters of the options you want to set. Do not put
any slashes into the string.

Free-spacing: Not supported by JavaScript.
Case insensitive: /i
Dot matches line breaks: Not supported by JavaScript.
Caret and dollar match at line breaks: /m

PHP

Recipe 3.1 explains that the PHP preg functions require literal regular expressions to
be delimited with two punctuation characters, usually forward slashes, and the whole
lot formatted as a string literal. You can specify regular expression options by appending
one or more single-letter modifiers to the end of the string. That is, the modifier letters
come after the closing regex delimiter, but still inside the string’s single or double
quotes. When talking about these modifiers in documentation, they are usually written

116 | Chapter 3: Programming with Regular Expressions

as /x, even though the flag itself is only one letter, and even though the delimiter be-
tween the regex and the modifiers doesn’t have to be a forward slash.

Free-spacing: /x
Case insensitive: /i
Dot matches line breaks: /s
Caret and dollar match at line breaks: /m

Perl

You can specify regular expression options by appending one or more single-letter
modifiers to the end of the pattern-matching or substitution operator. When talking
about these modifiers in documentation, they are usually written as /x, even though
the flag itself is only one letter, and even though the delimiter between the regex and
the modifiers doesn’t have to be a forward slash.

Free-spacing: /x
Case insensitive: /i
Dot matches line breaks: /s
Caret and dollar match at line breaks: /m

Python

The compile() function (explained in the previous recipe) takes an optional second
parameter with regular expression options. You can build up this parameter by using
the | operator to combine the constants defined in the re module. Many of the other
functions in the re module that take a literal regular expression as a parameter also
accept regular expression options as a final and optional parameter.

The constants for the regular expression options come in pairs. Each option can be
represented either as a constant with a full name or as just a single letter. Their func-
tionality is equivalent. The only difference is that the full name makes your code easier
to read by developers who aren’t familiar with the alphabet soup of regular expression
options. The basic single-letter options listed in this section are the same as in Perl.

Free-spacing: re.VERBOSE or re.X
Case insensitive: re.IGNORECASE or re.I
Dot matches line breaks: re.DOTALL or re.S
Caret and dollar match at line breaks: re.MULTILINE or re.M

Ruby

In Ruby, you can specify options by appending one or more single-letter flags to the
Regexp literal, after the forward slash that terminates the regular expression. When
talking about these flags in documentation, they are usually written as /i and /m, even
though the flag itself is only one letter. No additional slashes are added to specify regex
mode flags.

3.4 Setting Regular Expression Options | 117

When using the Regexp.new() factory to compile a string into a regular expression, you
can pass an optional second parameter with flags to the constructor. The second pa-
rameter should be either nil to turn off all options, or a combination of constants from
the Regexp class combined with the or operator.

Free-spacing: /r or Regexp::EXTENDED
Case insensitive: /i or Regexp::IGNORECASE
Dot matches line breaks: /m or Regexp::MULTILINE. Ruby indeed uses “m” and
“multi line” here, whereas all the other flavors use “s” or “single line” for “dot
matches line breaks”.
Caret and dollar match at line breaks: The caret and dollar always match at line breaks in
Ruby. You cannot turn this off. Use ‹\A› and ‹\Z› to match at the start or end of
the subject string.

Additional Language-Specific Options

.NET

RegexOptions.ExplicitCapture makes all groups, except named groups, noncapturing.
With this option, ‹(group)› is the same as ‹(?:group)›. If you always name your cap-
turing groups, turn on this option to make your regular expression more efficient with-
out the need to use the ‹(?:group)› syntax. Instead of using RegexOptions.Explicit
Capture, you can turn on this option by putting ‹(?n)› at the start of your regular ex-
pression. See Recipe 2.9 to learn about grouping. Recipe 2.11 explains named groups.

Specify RegexOptions.ECMAScript if you’re using the same regular expression in
your .NET code and in JavaScript code, and you want to make sure it behaves in the
same way. This is particularly useful when you’re developing the client side of a web
application in JavaScript and the server side in ASP.NET. The most important effect is
that with this option, \w and \d are restricted to ASCII characters, as they are in
JavaScript.

Java

An option unique to Java is Pattern.CANON_EQ, which enables “canonical equivalence.”
As explained in the discussion in “Unicode grapheme” on page 52, Unicode provides
different ways to represent characters with diacritics. When you turn on this option,
your regex will match a character, even if it is encoded differently in the subject string.
For instance, the regex ‹\u00E0› will match both "\u00E0" and "\u0061\u0300", because
they are canonically equivalent. They both appear as “à” when displayed on screen,
indistinguishable to the end user. Without canonical equivalence, the regex ‹\u00E0›
does not match the string "\u0061\u0300". This is how all other regex flavors discussed
in this book behave.

118 | Chapter 3: Programming with Regular Expressions

Finally, Pattern.UNIX_LINES tells Java to treat only ‹\n› as a line break character for the
dot, caret, and dollar. By default, all Unicode line breaks are treated as line break
characters.

JavaScript

If you want to apply a regular expression repeatedly to the same string—e.g., to iterate
over all matches or to search and replace all matches instead of just the first—specify
the /g or “global” flag.

PHP

/u tells PCRE to interpret both the regular expression and the subject string as UTF-8
strings. This modifier also enables Unicode regex tokens such as ‹\p{FFFF}› and
‹\p{L}›. These are explained in Recipe 2.7. Without this modifier, PCRE treats each
byte as a separate character, and Unicode regex tokens cause an error.

/U flips the “greedy” and “lazy” behavior of adding an extra question mark to a quan-
tifier. Normally, ‹.*› is greedy and ‹.*?› is lazy. With /U, ‹.*› is lazy and ‹.*?› is greedy.
I strongly recommend that you never use this flag, as it will confuse programmers who
read your code later and miss the extra /U modifier, which is unique to PHP. Also, don’t
confuse /U with /u if you encounter it in somebody else’s code. Regex modifiers are
case sensitive.

Perl

If you want to apply a regular expression repeatedly to the same string (e.g., to iterate
over all matches or to search-and-replace all matches instead of just the first one),
specify the /g (“global”) flag.

If you interpolate a variable in a regex—e.g., m/I am $name/—Perl will recompile the
regular expression each time it needs to be used, because the contents of $name may
have changed. You can suppress this with the /o modifier. m/I am $name/o is compiled
the first time Perl needs to use it, and then reused the way it is after that. If the contents
of $name change, the regex will not reflect the change. See Recipe 3.3 if you want to
control when the regex is recompiled.

Python

Python has two extra options that change the meaning of word boundaries (see Rec-
ipe 2.6) and the shorthand character classes ‹\w›, ‹\d›, and ‹\s›, as well as their negated
counterparts (see Recipe 2.3). By default, these tokens deal only with ASCII letters,
digits, and whitespace.

The re.LOCALE or re.L option makes these tokens dependent on the current locale. The
locale then determines which characters are treated as letters, digits, and whitespace
by these regex tokens. You should specify this option when the subject string is not a

3.4 Setting Regular Expression Options | 119

Unicode string and you want characters such as letters with diacritics to be treated as
such.

The re.UNICODE or re.U makes these tokens dependent on the Unicode standard. All
characters defined by Unicode as letters, digits, and whitespace are then treated as such
by these regex tokens. You should specify this option when the subject string you’re
applying the regular expression to is a Unicode string.

Ruby

The Regexp.new() factory takes an optional third parameter to select the string encoding
your regular expression supports. If you do not specify an encoding for your regular
expression, it will use the same encoding as your source file. Most of the time, using
the source file’s encoding is the right thing to do.

To select a coding explicitly, pass a single character for this parameter. The parameter
is case-insensitive. Possible values are:

n
This stands for “None.” Each byte in your string is treated as one character. Use
this for ASCII text.

e
Enables the “EUC” encoding for Far East languages.

s
Enables the Japanese “Shift-JIS” encoding.

u
Enables UTF-8, which uses one to four bytes per character and supports all lan-
guages in the Unicode standard (which includes all living languages of any
significance).

When using a literal regular expression, you can set the encoding with the modifi-
ers /n, /e, /s, and /u. Only one of these modifiers can be used for a single regular
expression. They can be used in combination with any or all of the /x, /i, and /m
modifiers.

Do not mistake Ruby’s /s for that of Perl, Java, or .NET. In Ruby, /s
forces the Shift-JIS encoding. In Perl and most other regex flavors, it
turns on “dot matches line breaks” mode. In Ruby, you can do that
with /m.

See Also
The effects of the matching modes are explained in detail in Chapter 2. Those sections
also explain the use of mode modifiers within the regular expression.

120 | Chapter 3: Programming with Regular Expressions

Free-spacing: Recipe 2.18
Case insensitive: “Case-insensitive matching” on page 27 in Recipe 2.1
Dot matches line breaks: Recipe 2.4
Caret and dollar match at line breaks: Recipe 2.5

Recipes 3.1 and 3.3 explain how to use literal regular expressions in your source code
and how to create regular expression objects. You set the regular expression options
while creating a regular expression.

3.5 Test Whether a Match Can Be Found Within a Subject String
Problem
You want to check whether a match can be found for a particular regular expression
in a particular string. A partial match is sufficient. For instance, the regex
‹regex●pattern› partially matches The regex pattern can be found. You don’t care
about any of the details of the match. You just want to know whether the regex matches
the string.

Solution

C#

For quick one-off tests, you can use the static call:

bool foundMatch = Regex.IsMatch(subjectString, "regex pattern");

If the regex is provided by the end user, you should use the static call with full exception
handling:

bool foundMatch = false;
try {
 foundMatch = Regex.IsMatch(subjectString, UserInput);
} catch (ArgumentNullException ex) {
 // Cannot pass null as the regular expression or subject string
} catch (ArgumentException ex) {
 // Syntax error in the regular expression
}

To use the same regex repeatedly, construct a Regex object:

Regex regexObj = new Regex("regex pattern");
bool foundMatch = regexObj.IsMatch(subjectString);

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

bool foundMatch = false;
try {

3.5 Test Whether a Match Can Be Found Within a Subject String | 121

 Regex regexObj = new Regex(UserInput);
 try {
 foundMatch = regexObj.IsMatch(subjectString);
 } catch (ArgumentNullException ex) {
 // Cannot pass null as the regular expression or subject string
 }
} catch (ArgumentException ex) {
 // Syntax error in the regular expression
}

VB.NET

For quick one-off tests, you can use the static call:

Dim FoundMatch = Regex.IsMatch(SubjectString, "regex pattern")

If the regex is provided by the end user, you should use the static call with full exception
handling:

Dim FoundMatch As Boolean
Try
 FoundMatch = Regex.IsMatch(SubjectString, UserInput)
Catch ex As ArgumentNullException
 'Cannot pass Nothing as the regular expression or subject string
Catch ex As ArgumentException
 'Syntax error in the regular expression
End Try

To use the same regex repeatedly, construct a Regex object:

Dim RegexObj As New Regex("regex pattern")
Dim FoundMatch = RegexObj.IsMatch(SubjectString)

The IsMatch() call should have SubjectString as the only parameter, and the call should
be made on the RegexObj instance rather than the Regex class:

Dim FoundMatch = RegexObj.IsMatch(SubjectString)

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

Dim FoundMatch As Boolean
Try
 Dim RegexObj As New Regex(UserInput)
 Try
 FoundMatch = Regex.IsMatch(SubjectString)
 Catch ex As ArgumentNullException
 'Cannot pass Nothing as the regular expression or subject string
 End Try
Catch ex As ArgumentException
 'Syntax error in the regular expression
End Try

122 | Chapter 3: Programming with Regular Expressions

Java

The only way to test for a partial match is to create a Matcher:

Pattern regex = Pattern.compile("regex pattern");
Matcher regexMatcher = regex.matcher(subjectString);
boolean foundMatch = regexMatcher.find();

If the regex is provided by the end user, you should use exception handling:

boolean foundMatch = false;
try {
 Pattern regex = Pattern.compile(UserInput);
 Matcher regexMatcher = regex.matcher(subjectString);
 foundMatch = regexMatcher.find();
} catch (PatternSyntaxException ex) {
 // Syntax error in the regular expression
}

JavaScript
if (/regex pattern/.test(subject)) {
 // Successful match
} else {
 // Match attempt failed
}

PHP
if (preg_match('/regex pattern/', $subject)) {
 # Successful match
} else {
 # Match attempt failed
}

Perl

With the subject string held in the special variable $_:

if (m/regex pattern/) {
 # Successful match
} else {
 # Match attempt failed
}

With the subject string held in the variable $subject:

if ($subject =~ m/regex pattern/) {
 # Successful match
} else {
 # Match attempt failed
}

3.5 Test Whether a Match Can Be Found Within a Subject String | 123

Using a precompiled regular expression:

$regex = qr/regex pattern/;
if ($subject =~ $regex) {
 # Successful match
} else {
 # Match attempt failed
}

Python

For quick one-off tests, you can use the global function:

if re.search("regex pattern", subject):
 # Successful match
else:
 # Match attempt failed

To use the same regex repeatedly, use a compiled object:

reobj = re.compile("regex pattern")
if reobj.search(subject):
 # Successful match
else:
 # Match attempt failed

Ruby
if subject =~ /regex pattern/
 # Successful match
else
 # Match attempt failed
end

This code does exactly the same thing:

if /regex pattern/ =~ subject
 # Successful match
else
 # Match attempt failed
end

Discussion
The most basic task for a regular expression is to check whether a string matches the
regex. In most programming languages, a partial match is sufficient for the match
function to return true. The match function will scan through the entire subject string
to see whether the regular expression matches any part of it. The function returns true
as soon as a match is found. It returns false only when it reaches the end of the string
without finding any matches.

124 | Chapter 3: Programming with Regular Expressions

The code examples in this recipe are useful for checking whether a string contains
certain data. If you want to check whether a string fits a certain pattern in its entirety
(e.g., for input validation), use the next recipe instead.

C# and VB.NET

The Regex class provides four overloaded versions of the IsMatch() method, two of
which are static. This makes it possible to call IsMatch() with different parameters. The
subject string is always the first parameter. This is the string in which the regular ex-
pression will try to find a match. The first parameter must not be null. Otherwise,
IsMatch() will throw an ArgumentNullException.

You can perform the test in a single line of code by calling Regex.IsMatch() without
constructing a Regex object. Simply pass the regular expression as the second parameter
and pass regex options as an optional third parameter. If your regular expression has
a syntax error, an ArgumentException will be thrown by IsMatch(). If your regex is valid,
the call will return true if a partial match was found, or false if no match could be
found at all.

If you want to use the same regular expression on many strings, you can make your
code more efficient by constructing a Regex object first, and calling IsMatch() on that
object. The first parameter, which holds the subject string, is then the only required
parameter. You can specify an optional second parameter to indicate the character
index at which the regular expression should begin the check. Essentially, the number
you pass as the second parameter is the number of characters at the start of your subject
string that the regular expression should ignore. This can be useful when you’ve already
processed the string up to a point, and you want to check whether the remainder should
be processed further. If you specify a number, it must be greater than or equal to zero
and less than or equal to the length of the subject string. Otherwise, IsMatch() throws
an ArgumentOutOfRangeException.

The static overloads do not allow for the parameter that specifies where the regex at-
tempt should start in the string. There is no overload that allows you to tell
IsMatch() to stop before the end of the string. If you want to do that, you could call
Regex.Match("subject", start, stop) and check the Success property of the returned
Match object. See Recipe 3.8 for details.

Java

To test whether a regex matches a string partially or entirely, instantiate a Matcher object
as explained in Recipe 3.3. Then call the find() method on your newly created or newly
reset matcher.

Do not call String.matches(), Pattern.matches(), or Matcher.matches(). Those all re-
quire the regex to match the whole string.

3.5 Test Whether a Match Can Be Found Within a Subject String | 125

JavaScript

To test whether a regular expression can match part of a string, call the test() method
on your regular expression. Pass the subject string as the only parameter.

regexp.test() returns true if the regular expression matches part or all of the subject
string, and false if it does not.

PHP

The preg_match() function can be used for a variety of purposes. The most basic way
to call it is with only the two required parameters: the string with your regular expres-
sion, and the string with the subject text you want the regex to search through.
preg_match() returns 1 if a match can be found and 0 when the regex cannot match the
subject at all.

Later recipes in this chapter explain the optional parameters you can pass to
preg_match().

Perl

In Perl, m// is in fact a regular expression operator, not a mere regular expression con-
tainer. If you use m// by itself, it uses the $_ variable as the subject string.

If you want to use the matching operator on the contents of another variable, use the
=~ binding operator to associate the regex operator with your variable. Binding the
regex to a string immediately executes the regex. The pattern-matching operator returns
true if the regex matches part of the subject string, and false if it doesn’t match at all.

If you want to check whether a regular expression does not match a string, you can
use !~, which is the negated version of =~.

Python

The search() function in the re module searches through a string to find whether the
regular expression matches part of it. Pass your regular expression as the first parameter
and the subject string as the second parameter. You can pass the regular expression
options in the optional third parameter.

The re.search() function calls re.compile(), and then calls the search() method on
the compiled regular expression object. This method takes just one parameter: the
subject string.

If the regular expression finds a match, search() returns a MatchObject instance. If the
regex fails to match, search() returns None. When you evaluate the returned value in
an if statement, the MatchObject evaluates to True, whereas None evaluates to False.
Later recipes in this chapter show how to use the information stored by MatchObject.

126 | Chapter 3: Programming with Regular Expressions

Don’t confuse search() with match(). You cannot use match() to find a
match in the middle of a string. The next recipe uses match().

Ruby

The =~ operator is the pattern-matching operator. Place it between a regular expression
and a string to find the first regular expression match. The operator returns an integer
with the position at which the regex match begins in the string. It returns nil if no
match can be found.

This operator is implemented in both the Regexp and String classes. In Ruby 1.8, it
doesn’t matter which class you place to the left and which to the right of the operator.
In Ruby 1.9, doing so has a special side effect involving named capturing groups.
Recipe 3.9 explains this.

In all the other Ruby code snippets in this book, we place the subject
string to the left of the =~ operator and the regular expression to the
right. This maintains consistency with Perl, from which Ruby borrowed
the =~ syntax, and avoids the Ruby 1.9 magic with named capturing
groups that people might not expect.

See Also
Recipes 3.6 and 3.7

3.6 Test Whether a Regex Matches the Subject String Entirely
Problem
You want to check whether a string fits a certain pattern in its entirety. That is, you
want to check that the regular expression holding the pattern can match the string from
start to end. For instance, if your regex is ‹regex●pattern›, it will match input text
consisting of regex pattern but not the longer string The regex pattern can be found.

Solution

C#

For quick one-off tests, you can use the static call:

bool foundMatch = Regex.IsMatch(subjectString, @"\Aregex pattern\Z");

3.6 Test Whether a Regex Matches the Subject String Entirely | 127

To use the same regex repeatedly, construct a Regex object:

Regex regexObj = new Regex(@"\Aregex pattern\Z");
bool foundMatch = regexObj.IsMatch(subjectString);

VB.NET

For quick one-off tests, you can use the static call:

Dim FoundMatch = Regex.IsMatch(SubjectString, "\Aregex pattern\Z")

To use the same regex repeatedly, construct a Regex object:

Dim RegexObj As New Regex("\Aregex pattern\Z")
Dim FoundMatch = RegexObj.IsMatch(SubjectString)

The IsMatch() call should have SubjectString as the only parameter, and the call should
be made on the RegexObj instance rather than the Regex class:

Dim FoundMatch = RegexObj.IsMatch(SubjectString)

Java

If you want to test just one string, you can use the static call:

boolean foundMatch = subjectString.matches("regex pattern");

If you want to use the same regex on multiple strings, compile your regex and create a
matcher:

Pattern regex = Pattern.compile("regex pattern");
Matcher regexMatcher = regex.matcher(subjectString);
boolean foundMatch = regexMatcher.matches(subjectString);

JavaScript
if (/^regex pattern$/.test(subject)) {
 // Successful match
} else {
 // Match attempt failed
}

PHP
if (preg_match('/\Aregex pattern\Z/', $subject)) {
 # Successful match
} else {
 # Match attempt failed
}

128 | Chapter 3: Programming with Regular Expressions

Perl
if ($subject =~ m/\Aregex pattern\Z/) {
 # Successful match
} else {
 # Match attempt failed
}

Python

For quick one-off tests, you can use the global function:

if re.match(r"regex pattern\Z", subject):
 # Successful match
else:
 # Match attempt failed

To use the same regex repeatedly, use a compiled object:

reobj = re.compile(r"regex pattern\Z")
if reobj.match(subject):
 # Successful match
else:
 # Match attempt failed

Ruby
if subject =~ /\Aregex pattern\Z/
 # Successful match
else
 # Match attempt failed
end

Discussion
Normally, a successful regular expression match tells you that the pattern you want is
somewhere within the subject text. In many situations you also want to make sure it
completely matches, with nothing else in the subject text. Probably the most common
situation calling for a complete match is validating input. If a user enters a phone num-
ber or IP address but includes extraneous characters, you want to reject the input.

The solutions that use the anchors ‹$› and ‹\Z› also work when you’re processing a file
line by line (Recipe 3.21), and the mechanism you’re using to retrieve the lines leaves
the line breaks at the end of the line. As Recipe 2.5 explains, these anchors also match
before a final line break, essentially allowing the final line break to be ignored.

In the following subsections, we explain the solutions for various languages in detail.

3.6 Test Whether a Regex Matches the Subject String Entirely | 129

C# and VB.NET

The Regex() class in the .NET framework does not have a function for testing whether
a regex matches a string entirely. The solution is to add the start-of-string anchor ‹\A›
to the start of your regular expression, and the end-of-string anchor ‹\Z› to the end of
your regular expression. This way, the regular expression can only match a string either
in its entirety or not at all. If your regular expression uses alternation, as in ‹one|two|
three›, make sure to group the alternation before adding the anchors: ‹\A(?:one|two|
three)\Z›.
With your regular expression amended to match whole strings, you can use the same
IsMatch() method as described in the previous recipe.

Java

Java has three methods called matches(). They all check whether a regex can match a
string entirely. These methods are a quick way to do input validation, without having
to enclose your regex with start-of-string and end-of-string anchors.

The String class has a matches() method that takes a regular expression as the only
parameter. It returns true or false to indicate whether the regex can match the whole
string. The Pattern class has a static matches() method, which takes two strings: the
first is the regular expression, and the second is the subject string. Actually, you can
pass any CharSequence as the subject string to Pattern.matches(). That’s the only reason
for using Pattern.matches() instead of String.matches().

Both String.matches()and Pattern.matches()recompile the regular expression each
time by calling Pattern.compile("regex").matcher(subjectString).matches(). Be-
cause the regex is recompiled each time, you should use these calls only when you want
to use the regex only once (e.g., to validate one field on an input form) or when efficiency
is not an issue. These methods don’t provide a way to specify matching options outside
of the regular expression. A PatternSyntaxException is thrown if your regular expres-
sion has a syntax error.

If you want to use the same regex to test many strings efficiently, you should compile
your regex and create and reuse a Matcher, as explained in Recipe 3.3. Then call
matches() on your Matcher instance. This function does not take any parameters, be-
cause you’ve already specified the subject string when creating or resetting the matcher.

JavaScript

JavaScript does not have a function for testing whether a regex matches a string entirely.
The solution is to add ‹^› to the start of your regular expression, and ‹$› to the end of
your regular expression. Make sure that you do not set the /m flag for your regular
expression. Only without /m do the caret and dollar match only at the start and end of
the subject string. When you set /m, they also match at line breaks in the middle of the
string.

130 | Chapter 3: Programming with Regular Expressions

With the anchors added to your regular expression, you can use the same
regexp.test() method described in the previous recipe.

PHP

PHP does not have a function for testing whether a regex matches a string entirely. The
solution is to add the start-of-string anchor ‹\A› to the start of your regular expression,
and the end-of-string anchor ‹\Z› to the end of your regular expression. This way, the
regular expression can only match a string either in its entirety or not at all. If your
regular expression uses alternation, as in ‹one|two|three›, make sure to group the al-
ternation before adding the anchors: ‹\A(?:one|two|three)\Z›.
With your regular expression amended to match whole strings, you can use the same
preg_match() function as described in the previous recipe.

Perl

Perl has only one pattern-matching operator, which is satisfied with partial matches. If
you want to check whether your regex matches the whole subject string, add the
start-of-string anchor ‹\A› to the start of your regular expression, and the end-of-string
anchor ‹\Z› to the end of your regular expression. This way, the regular expression can
only match a string either in its entirety or not at all. If your regular expression uses
alternation, as in ‹one|two|three›, make sure to group the alternation before adding
the anchors: ‹\A(?:one|two|three)\Z›.
With your regular expression amended to match whole strings, use it as described in
the previous recipe.

Python

The match() function is very similar to the search() function described in the previous
recipe. The key difference is that match() evaluates the regular expression only at the
very beginning of the subject string. If the regex does not match at the start of the string,
match() returns None right away. The search() function, however, will keep trying the
regex at each successive position in the string until it either finds a match or reaches
the end of the subject string.

The match() function does not require the regular expression to match the whole string.
A partial match is accepted, as long as it begins at the start of the string. If you want to
check whether your regex can match the whole string, append the end-of-string anchor
‹\Z› to your regular expression.

Ruby

Ruby’s Regexp class does not have a function for testing whether a regex matches a
string entirely. The solution is to add the start-of-string anchor ‹\A› to the start of your
regular expression, and the end-of-string anchor ‹\Z› to the end of your regular

3.6 Test Whether a Regex Matches the Subject String Entirely | 131

expression. This way, the regular expression can only match a string either in its entirety
or not at all. If your regular expression uses alternation, as in ‹one|two|three›, make
sure to group the alternation before adding the anchors: ‹\A(?:one|two|three)\Z›.
With your regular expression amended to match whole strings, you can use the same
=~ operator as described in the previous recipe.

See Also
Recipe 2.5 explains in detail how anchors work.

Recipes 2.8 and 2.9 explain alternation and grouping. If your regex uses alternation
outside of any groups, you need to group your regex before adding the anchors. If your
regex does not use alternation, or if it uses alternation only within groups, then no extra
grouping is needed to make the anchors work as intended.

Follow Recipe 3.7 when partial matches are acceptable.

3.7 Retrieve the Matched Text
Problem
You have a regular expression that matches a part of the subject text, and you want to
extract the text that was matched. If the regular expression can match the string more
than once, you want only the first match. For example, when applying the regex
‹\d+› to the string Do you like 13 or 42?, 13 should be returned.

Solution

C#

For quick one-off matches, you can use the static call:

string resultString = Regex.Match(subjectString, @"\d+").Value;

If the regex is provided by the end user, you should use the static call with full exception
handling:

string resultString = null;
try {
 resultString = Regex.Match(subjectString, @"\d+").Value;
} catch (ArgumentNullException ex) {
 // Cannot pass null as the regular expression or subject string
} catch (ArgumentException ex) {
 // Syntax error in the regular expression
}

To use the same regex repeatedly, construct a Regex object:

132 | Chapter 3: Programming with Regular Expressions

Regex regexObj = new Regex(@"\d+");
string resultString = regexObj.Match(subjectString).Value;

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

string resultString = null;
try {
 Regex regexObj = new Regex(@"\d+");
 try {
 resultString = regexObj.Match(subjectString).Value;
 } catch (ArgumentNullException ex) {
 // Cannot pass null as the subject string
 }
} catch (ArgumentException ex) {
 // Syntax error in the regular expression
}

VB.NET

For quick one-off matches, you can use the static call:

Dim ResultString = Regex.Match(SubjectString, "\d+").Value

If the regex is provided by the end user, you should use the static call with full exception
handling:

Dim ResultString As String = Nothing
Try
 ResultString = Regex.Match(SubjectString, "\d+").Value
Catch ex As ArgumentNullException
 'Cannot pass Nothing as the regular expression or subject string
Catch ex As ArgumentException
 'Syntax error in the regular expression
End Try

To use the same regex repeatedly, construct a Regex object:

Dim RegexObj As New Regex("\d+")
Dim ResultString = RegexObj.Match(SubjectString).Value

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

Dim ResultString As String = Nothing
Try
 Dim RegexObj As New Regex("\d+")
 Try
 ResultString = RegexObj.Match(SubjectString).Value
 Catch ex As ArgumentNullException
 'Cannot pass Nothing as the subject string
 End Try

3.7 Retrieve the Matched Text | 133

Catch ex As ArgumentException
 'Syntax error in the regular expression
End Try

Java

Create a Matcher to run the search and store the result:

String resultString = null;
Pattern regex = Pattern.compile("\\d+");
Matcher regexMatcher = regex.matcher(subjectString);
if (regexMatcher.find()) {
 resultString = regexMatcher.group();
}

If the regex is provided by the end user, you should use full exception handling:

String resultString = null;
try {
 Pattern regex = Pattern.compile("\\d+");
 Matcher regexMatcher = regex.matcher(subjectString);
 if (regexMatcher.find()) {
 resultString = regexMatcher.group();
 }
} catch (PatternSyntaxException ex) {
 // Syntax error in the regular expression
}

JavaScript
var result = subject.match(/\d+/);
if (result) {
 result = result[0];
} else {
 result = '';
}

PHP
if (preg_match('/\d+/', $subject, $groups)) {
 $result = $groups[0];
} else {
 $result = '';
}

Perl
if ($subject =~ m/\d+/) {
 $result = $&;
} else {

134 | Chapter 3: Programming with Regular Expressions

 $result = '';
}

Python

For quick one-off matches, you can use the global function:

matchobj = re.search("regex pattern", subject)
if matchobj:
 result = matchobj.group()
else:
 result = ""

To use the same regex repeatedly, use a compiled object:

reobj = re.compile("regex pattern")
matchobj = reobj.search(subject)
if match:
 result = matchobj.group()
else:
 result = ""

Ruby

You can use the =~ operator and its magic $& variable:

if subject =~ /regex pattern/
 result = $&
else
 result = ""
end

Alternatively, you can call the match method on a Regexp object:

matchobj = /regex pattern/.match(subject)
if matchobj
 result = matchobj[0]
else
 result = ""
end

Discussion
Extracting the part of a longer string that fits the pattern is another prime job for regular
expressions. All programming languages discussed in this book provide an easy way to
get the first regular expression match from a string. The function will attempt the reg-
ular expression at the start of the string and continue scanning through the string until
the regular expression matches.

3.7 Retrieve the Matched Text | 135

.NET

The .NET Regex class does not have a member that returns the string matched by the
regular expression. But it does have a Match() method that returns an instance of the
Match class. This Match object has a property called Value, which holds the text matched
by the regular expression. If the regular expression fails to match, it still returns a
Match object, but the Value property holds an empty string.

A total of five overloads allows you to call the Match() method in various ways. The
first parameter is always the string that holds the subject text in which you want the
regular expression to find a match. This parameter should not be null. Otherwise,
Match() will throw an ArgumentNullException.

If you want to use the regular expression only a few times, you can use a static call. The
second parameter is then the regular expression you want to use. You can pass regex
options as an optional third parameter. If your regular expression has a syntax error,
an ArgumentException will be thrown.

If you want to use the same regular expression on many strings, you can make your
code more efficient by constructing a Regex object first and then calling Match() on that
object. The first parameter with the subject string is then the only required parameter.
You can specify an optional second parameter to indicate the character index at which
the regular expression should begin to search. Essentially, the number you pass as the
second parameter is the number of characters at the start of your subject string that the
regular expression should ignore. This can be useful when you’ve already processed
the string up to a point and want to search the remainder of the string. If you specify
this number, it must be in the range from zero to the length of the subject string. Oth-
erwise, IsMatch() throws an ArgumentOutOfRangeException.

If you specify the second parameter with the starting position, you can specify a third
parameter that indicates the length of the substring the regular expression is allowed
to search through. This number must be greater than or equal to zero and must not
exceed the length of the subject string (first parameter) minus the starting offset (second
parameter). For instance, regexObj.Match("123456", 3, 2) tries to find a match in
"45". If the third parameter is greater than the length of the subject string, Match()
throws an ArgumentOutOfRangeException. If the third parameter is not greater than the
length of the subject string, but the sum of the second and third parameters is greater
than the length of the string, then another IndexOutOfRangeException is thrown. If you
allow the user to specify starting and ending positions, either check them before calling
Match() or make sure to catch both out-of-range exceptions.

The static overloads do not allow for the parameters that specify which part of the string
the regular expression can search through.

136 | Chapter 3: Programming with Regular Expressions

Java

To get the part of a string matched by a regular expression, you need to create a
Matcher, as explained in Recipe 3.3. Then call the find() method on your matcher,
without any parameters. If find() returns true, call group() without any parameters to
retrieve the text matched by your regular expression. If find() returns false, you should
not call group(), as all you’ll get is an IllegalStateException.

Matcher.find() takes one optional parameter with the starting position in the subject
string. You can use this to begin the search at a certain position in the string.
Specify zero to begin the match attempt at the start of the string. An IndexOutOf
BoundsException is thrown if you set the starting position to a negative number, or to
a number greater than the length of the subject string.

If you omit the parameter, find() starts at the character after the previous match found
by find(). If you’re calling find() for the first time after Pattern.matcher() or
Matcher.reset(), then find() begins searching at the start of the string.

JavaScript

The string.match() method takes a regular expression as its only parameter. You can
pass the regular expression as a literal regex, a regular expression object, or as a string.
If you pass a string, string.match() creates a temporary regexp object.

When the match attempt fails, string.match() returns null. This allows you to differ-
entiate between a regex that finds no matches, and a regex that finds a zero-length
match. It does mean that you cannot directly display the result, as “null” or an error
about a null object may appear.

When the match attempt succeeds, string.match() returns an array with the details of
the match. Element zero in the array is a string that holds the text matched by the regular
expression.

Make sure that you do not add the /g flag to your regular expression. If you do,
string.match() behaves differently, as Recipe 3.10 explains.

PHP

The preg_match() function discussed in the previous two recipes takes an optional third
parameter to store the text matched by the regular expression and its capturing groups.
When preg_match() returns 1, the variable holds an array of strings. Element zero in
the array holds the overall regular expression match. The other elements are explained
in Recipe 3.9.

3.7 Retrieve the Matched Text | 137

Perl

When the pattern-matching operator m// finds a match, it sets several special variables.
One of those is the $& variable, which holds the part of the string matched by the regular
expression. The other special variables are explained in later recipes.

Python

Recipe 3.5 explains the search() function. This time, we store the MatchObject instance
returned by search() into a variable. To get the part of the string matched by the regular
expression, we call the group() method on the match object without any parameters.

Ruby

Recipe 3.8 explains the $~ variable and the MatchData object. In a string context, this
object evaluates to the text matched by the regular expression. In an array context, this
object evaluates to an array with element number zero holding the overall regular ex-
pression match.

$& is a special read-only variable. It is an alias for $~[0], which holds a string with the
text matched by the regular expression.

See Also
Recipes 3.5, 3.8, 3.9, 3.10, and 3.11

3.8 Determine the Position and Length of the Match
Problem
Instead of extracting the substring matched by the regular expression, as shown in the
previous recipe, you want to determine the starting position and length of the match.
With this information, you can extract the match in your own code or apply whatever
processing you fancy on the part of the original string matched by the regex.

Solution

C#

For quick one-off matches, you can use the static call:

int matchstart, matchlength = -1;
Match matchResult = Regex.Match(subjectString, @"\d+");
if (matchResult.Success) {
 matchstart = matchResult.Index;
 matchlength = matchResult.Length;
}

138 | Chapter 3: Programming with Regular Expressions

To use the same regex repeatedly, construct a Regex object:

int matchstart, matchlength = -1;
Regex regexObj = new Regex(@"\d+");
Match matchResult = regexObj.Match(subjectString).Value;
if (matchResult.Success) {
 matchstart = matchResult.Index;
 matchlength = matchResult.Length;
}

VB.NET

For quick one-off matches, you can use the static call:

Dim MatchStart = -1
Dim MatchLength = -1
Dim MatchResult = Regex.Match(SubjectString, "\d+")
If MatchResult.Success Then
 MatchStart = MatchResult.Index
 MatchLength = MatchResult.Length
End If

To use the same regex repeatedly, construct a Regex object:

Dim MatchStart = -1
Dim MatchLength = -1
Dim RegexObj As New Regex("\d+")
Dim MatchResult = Regex.Match(SubjectString, "\d+")
If MatchResult.Success Then
 MatchStart = MatchResult.Index
 MatchLength = MatchResult.Length
End If

Java
int matchStart, matchLength = -1;
Pattern regex = Pattern.compile("\\d+");
Matcher regexMatcher = regex.matcher(subjectString);
if (regexMatcher.find()) {
 matchStart = regexMatcher.start();
 matchLength = regexMatcher.end() - matchStart;
}

JavaScript
var matchstart = -1;
var matchlength = -1;
var match = /\d+/.exec(subject);
if (match) {
 matchstart = match.index;

3.8 Determine the Position and Length of the Match | 139

 matchlength = match[0].length;
}

PHP
if (preg_match('/\d+/', $subject, $groups, PREG_OFFSET_CAPTURE)) {
 $matchstart = $groups[0][1];
 $matchlength = strlen($groups[0][0]);
}

Perl
if ($subject =~ m/\d+/g) {
 $matchlength = length($&);
 $matchstart = length($`);
}

Python

For quick one-off matches, you can use the global function:

matchobj = re.search(r"\d+", subject)
if matchobj:
 matchstart = matchobj.start()
 matchlength = matchobj.end() - matchstart

To use the same regex repeatedly, use a compiled object:

reobj = re.compile(r"\d+")
matchobj = reobj.search(subject)
if matchobj:
 matchstart = matchobj.start()
 matchlength = matchobj.end() - matchstart

Ruby

You can use the =~ operator and its magic $~ variable:

if subject =~ /regex pattern/
 matchstart = $~.begin()
 matchlength = $~.end() - matchstart
end

Alternatively, you can call the match method on a Regexp object:

matchobj = /regex pattern/.match(subject)
if matchobj
 matchstart = matchobj.begin()
 matchlength = matchobj.end() - matchstart
end

140 | Chapter 3: Programming with Regular Expressions

Discussion

.NET

To get the match index and length, we use the same Regex.Match() method described
in the previous recipe. This time, we use the Index and Length properties of the Match
object returned by Regex.Match().

Index is the index in the subject string at which the regex match begins. If the regex
match begins at the start of the string, Index will be zero. If the match starts at the
second character in the string, Index will be one. The maximum value for Index is
the length of the string. That can happen when the regex finds a zero-length match at
the end of the string. For example, the regex consisting solely of the end-of-string anchor
‹\Z› always matches at the end of the string.

Length indicates the number of characters that were matched. It is possible for a valid
match to be zero characters long. For example, the regex consisting only of the word
boundary ‹\b› will find a zero-length match at the start of the first word in the string.

If the match attempt fails, Regex.Match() still returns a Match object. Its Index and
Length properties will both be zero. These values can also happen with a successful
match. The regex consisting of the start-of-string anchor ‹\A› will find a zero-length
match at the start of the string. Thus, you cannot rely on Match.Index
or Match.Length to indicate whether the match attempt was successful. Use
Match.Success instead.

Java

To get the position and length of the match, call Matcher.find() as described in the
previous recipe. When find() returns true, call Matcher.start() without any parame-
ters to obtain the index of the first character that is part of the regex match. Call
end() without any parameters to get the index of the first character after the match.
Subtract the start from the end to get the length of the match, which can be zero. If you
call start() or end() without a prior call to find(), you’ll get an IllegalStateException.

JavaScript

Call the exec() method on a regexp object to get an array with details about the match.
This array has a few additional properties. The index property stores the position in
the subject string at which the regex match begins. If the match begins at the start of
the string, index will be zero. Element zero in the array holds a string with the overall
regex match. Get the length property of that string to determine the length of the match.

If the regular expression cannot match the string at all, regexp.exec() returns null.

Do not use the lastIndex property of the array returned by exec() to determine the
ending position of the match. In a strict JavaScript implementation, the lastIndex does
not exist in the returned array at all, but only in the regexp object itself. You shouldn’t

3.8 Determine the Position and Length of the Match | 141

use regexp.lastIndex either. It is unreliable, due to cross-browser differences (see Rec-
ipe 3.11 for more details). Instead, simply add up match.index and match[0].length to
determine where the regex match ended.

PHP

The previous recipe explains how you can get the text matched by the regular expres-
sion by passing a third parameter to preg_match(). You can get the position of the match
by passing the constant PREG_OFFSET_CAPTURE as a fourth parameter. This parameter
changes what preg_match() stores in the third parameter when it returns 1.

When you either omit the fourth parameter or set it to zero, the variable passed as the
third parameter receives an array of strings. When you pass PREG_OFFSET_CAPTURE as the
fourth parameter, the variable receives an array of arrays. Element zero in the overall
array is still the overall match (see the preceding recipe), and elements one and beyond
are still capturing groups one and beyond (see the next recipe). But instead of holding
a string with the text matched by the regex or a capturing group, the element holds an
array with two values: the text that was matched and the position in the string at which
it was matched.

To get the details of the overall match, subelement zero of element zero gives us the
text matched by the regex. We pass this to the strlen() function to calculate its length.
Subelement one of element zero holds an integer with the position in the subject string
at which the match starts.

Perl

To get the length of the match, we simply calculate the length of the $& variable, which
holds the overall regular expression match. To get the start of the match, we calculate
the length of the $` variable, which holds the text in the string before the regex match.

Python

The start() method of MatchObject returns the position in the string at which the
regular expression match begins. The end() method returns the position of the first
character after the match. Both methods return the same value when a zero-length
regular expression match is found.

You can pass a parameter to start() and end() to retrieve the range of text matched by
one of the capturing groups in the regular expressions. Call start(1) for the first cap-
turing group, end(2) for the second group, and so on. Python supports up to 99 cap-
turing groups. Group number 0 is the overall regular expression match. Any number
other than zero up to the number of capturing groups in the regular expression (with
99 being the ceiling) causes start() and end() to raise an IndexError exception. If the
group number is valid but the group did not participate in the regex match, start()
and end() both return -1 for that group.

142 | Chapter 3: Programming with Regular Expressions

If you want to store both the starting and ending positions in a tuple, call the span()
method on the match object.

Ruby

Recipe 3.5 uses the =~ operator to find the first regex match in a string. A side effect of
this operator is that it fills the special $~ variable with an instance of the MatchData class.
This variable is thread-local and method-local. That means you can use the contents
of this variable until your method exits or until the next time you use the =~ operator
in your method, without worrying that another thread or another method in your
thread will overwrite it.

If you want to keep the details of multiple regex matches, call the match() method on
a Regexp object. This method takes a subject string as its only parameter. It returns a
MatchData instance when a match can be found, or nil otherwise. It also sets the =~
variable to the same MatchObject instance, but does not overwrite other MatchObject
instances stored in other variables.

The MatchData object stores all the details about a regular expression match. Recipes
3.7 and 3.9 explain how to get the text matched by the regular expression and by
capturing groups.

The begin() method returns the position in the subject string at which the regex match
begins. end() returns the position of the first character after the regex match.
offset() returns an array with the beginning and ending positions. These three meth-
ods take one parameter. Pass 0 to get the positions of the overall regex match, or pass
a positive number to get the positions of the specified capturing group. For example,
begin(1) returns the start of the first capturing group.

Do not use length() or size() to get the length of the match. Both these methods return
the number of elements in the array that MatchData evaluates to in array context, as
explained in Recipe 3.9.

See Also
Recipes 3.5 and 3.9

3.9 Retrieve Part of the Matched Text
Problem
As in Recipe 3.7, you have a regular expression that matches a substring of the subject
text, but this time you want to match just one part of that substring. To isolate the part
you want, you added a capturing group to your regular expression, as described in
Recipe 2.9.

3.9 Retrieve Part of the Matched Text | 143

For example, the regular expression ‹http://([a-z0-9.-]+)› matches http://
www.regexcookbook.com in the string Please visit http://www.regexcookbook.com for
more information. The part of the regex inside the first capturing group matches
www.regexcookbook.com, and you want to retrieve the domain name captured by the first
capturing group into a string variable.

We’re using this simple regex to illustrate the concept of capturing groups. See Chap-
ter 7 for more accurate regular expressions for matching URLs.

Solution

C#

For quick one-off matches, you can use the static call:

string resultString = Regex.Match(subjectString,
 "http://([a-z0-9.-]+)").Groups[1].Value;

To use the same regex repeatedly, construct a Regex object:

Regex regexObj = new Regex("http://([a-z0-9.-]+)");
string resultString = regexObj.Match(subjectString).Groups[1].Value;

VB.NET

For quick one-off matches, you can use the static call:

Dim ResultString = Regex.Match(SubjectString,
 "http://([a-z0-9.-]+)").Groups(1).Value

To use the same regex repeatedly, construct a Regex object:

Dim RegexObj As New Regex("http://([a-z0-9.-]+)")
Dim ResultString = RegexObj.Match(SubjectString).Groups(1).Value

Java
String resultString = null;
Pattern regex = Pattern.compile("http://([a-z0-9.-]+)");
Matcher regexMatcher = regex.matcher(subjectString);
if (regexMatcher.find()) {
 resultString = regexMatcher.group(1);
}

JavaScript
var result = "";
var match = /http:\/\/([a-z0-9.-]+)/.exec(subject);
if (match) {
 result = match[1];
} else {

144 | Chapter 3: Programming with Regular Expressions

 result = '';
}

PHP
if (preg_match('%http://([a-z0-9.-]+)%', $subject, $groups)) {
 $result = $groups[1];
} else {
 $result = '';
}

Perl
if ($subject =~ m!http://([a-z0-9.-]+)!) {
 $result = $1;
} else {
 $result = '';
}

Python

For quick one-off matches, you can use the global function:

matchobj = re.search("http://([a-z0-9.-]+)", subject)
if matchobj:
 result = matchobj.group(1)
else:
 result = ""

To use the same regex repeatedly, use a compiled object:

reobj = re.compile("http://([a-z0-9.-]+)")
matchobj = reobj.search(subject)
if match:
 result = matchobj.group(1)
else:
 result = ""

Ruby

You can use the =~ operator and its magic numbered variables, such as $1:

if subject =~ %r!http://([a-z0-9.-]+)!
 result = $1
else
 result = ""
end

Alternatively, you can call the match method on a Regexp object:

matchobj = %r!http://([a-z0-9.-]+)!.match(subject)
if matchobj

3.9 Retrieve Part of the Matched Text | 145

 result = matchobj[1]
else
 result = ""
end

Discussion
Recipe 2.10 and Recipe 2.21 explain how you can use numbered backreferences in the
regular expression and the replacement text to match the same text again, or to insert
part of the regex match into the replacement text. You can use the same reference
numbers to retrieve the text matched by one or more capturing groups in your code.

In regular expressions, capturing groups are numbered starting at one. Programming
languages typically start numbering arrays and lists at zero. All programming languages
discussed in this book that store capturing groups in an array or list use the same
numbering for capturing groups as the regular expression, starting at one. The zeroth
element in the array or list is used to store the overall regular expression match. This
means that if your regular expression has three capturing groups, the array storing their
matches will have four elements. Element zero holds the overall match, and elements
one, two, and three store the text matched by the three capturing groups.

.NET

To retrieve details about capturing groups, we again resort to the Regex.Match() mem-
ber function, first explained in Recipe 3.7. The returned Match object has a property
called Groups. This is a collection property of type GroupCollection. The collection
holds the details for all the capturing groups in your regular expression. Groups[1] holds
the details for the first capturing group, Groups[2] the second group, and so on.

The Groups collection holds one Group object for each capturing group. The Group class
has the same properties as the Match class, except for the Groups property.
Match.Groups[1].Value returns the text matched by the first capturing group, in the
same way that Match.Value returns the overall regex match. Match.Groups[1].Index and
Match.Groups[1].Length return the starting position and length of the text matched by
the group. See Recipe 3.8 for more details on Index and Length.

Groups[0] holds the details for the overall regex match, which are also held by the match
object directly. Match.Value and Match.Groups[0].Value are equivalent.

The Groups collection does not throw an exception if you pass an invalid group number.
For example, Groups[-1] still returns a Group object, but the properties of that Group
object will indicate that the fictional capturing group -1 failed to match. The best way
to test this is to use the Success property. Groups[-1].Success will return false.

To determine how many capturing groups there are, check Match.Groups.Count. The
Count property follows the same convention as the Count property for all collection
objects in .NET: it returns the number of elements in the collection, which is the highest

146 | Chapter 3: Programming with Regular Expressions

allowed index plus one. In our example, the Groups collection holds Groups[0] and
Groups[1]. Groups.Count thus returns 2.

Java

The code for getting either the text matched by a capturing group or the match details
of a capturing group is practically the same as that for the whole regex match, as shown
in the preceding two recipes. The group(), start() and end(), methods of the Matcher
class all take one optional parameter. Without this parameter, or with this parameter
set to zero, you get the match or positions of the whole regex match.

If you pass a positive number, you get the details of that capturing group. Groups are
numbered starting at one, just like backreferences in the regular expression itself. If you
specify a number higher than the number of capturing groups in your regular expres-
sion, these three functions throw an IndexOutOfBoundsException. If the capturing group
exists but did not participate in the match, group(n) returns null, whereas start() and
end() both return -1.

JavaScript

As explained in the previous recipe, the exec() method of a regular expression object
returns an array with details about the match. Element zero in the array holds the overall
regex match. Element one holds the text matched by the first capturing group, element
two stores the second group’s match, etc.

If the regular expression cannot match the string at all, regexp.exec() returns null.

PHP

Recipe 3.7 explains how you can get the text matched by the regular expression by
passing a third parameter to preg_match(). When preg_match() returns 1, the parameter
is filled with an array. Element zero holds a string with the overall regex match.

Element one holds the text matched by the first capturing group, element two the text
from the second group, and so on. The length of the array is the number of capturing
groups plus one. Array indexes correspond to backreference numbers in the regular
expression.

If you specify the PREG_OFFSET_CAPTURE constant as the fourth parameter, as explained
in the previous recipe, then the length of the array is still the number of capturing groups
plus one. But instead of holding a string at each index, the array will hold subarrays
with two elements. Subelement zero is the string with the text matched by the overall
regex or the capturing group. Subelement one is an integer that indicates the position
in the subject string at which the matched text starts.

3.9 Retrieve Part of the Matched Text | 147

Perl

When the pattern-matching operator m// finds a match, it sets several special variables.
Those include the numbered variables $1, $2, $3, etc., which hold the part of the string
matched by the capturing groups in the regular expression.

Python

The solution to this problem is almost identical to the one in Recipe 3.7. Instead of
calling group() without any parameters, we specify the number of the capturing group
we’re interested in. Call group(1) to get the text matched by the first capturing group,
group(2) for the second group, and so on. Python supports up to 99 capturing
groups. Group number 0 is the overall regular expression match. If you pass a number
greater than the number of capturing groups in your regular expression, then group()
raises an IndexError exception. If the group number is valid but the group did not
participate in the regex match, group() returns None.

You can pass multiple group numbers to group() to get the text matched by several
capturing groups in one call. The result will be a list of strings.

If you want to retrieve a tuple with the text matched by all the capturing groups, you
can call the groups() method of MatchObject. The tuple will hold None for groups that
did not participate in the match. If you pass a parameter to groups(), that value is used
instead of None for groups that did not participate in the match.

If you want a dictionary instead of a tuple with the text matched by the capturing
groups, call groupdict() instead of groups(). You can pass a parameter to
groupdict() to put something other than None in the dictionary for groups that did not
participate in the match.

Ruby

Recipe 3.8 explains the $~ variable and the MatchData object. In an array context, this
object evaluates to an array with the text matched by all the capturing groups in your
regular expression. Capturing groups are numbered starting at 1, just like backrefer-
ences in the regular expression. Element 0 in the array holds the overall regular ex-
pression match.

$1, $2, and beyond are special read-only variables. $1 is a shortcut to $~[1], which holds
the text matched by the first capturing group. $2 retrieves the second group, and so on.

Named Capture
If your regular expression uses named capturing groups, you can use the group’s name
to retrieve its match in your code.

148 | Chapter 3: Programming with Regular Expressions

C#

For quick one-off matches, you can use the static call:

string resultString = Regex.Match(subjectString,
 "http://(?<domain>[a-z0-9.-]+)").Groups["domain"].Value;

To use the same regex repeatedly, construct a Regex object:

Regex regexObj = new Regex("http://(?<domain>[a-z0-9.-]+)");
string resultString = regexObj.Match(subjectString).Groups["domain"].Value;

In C#, there’s no real difference in the code for getting the Group object for a named
group compared with a numbered group. Instead of indexing the Groups collection with
an integer, index it with a string. Also in this case, .NET will not throw an exception if
the group does not exist. Match.Groups["nosuchgroup"].Success merely returns false.

VB.NET

For quick one-off matches, you can use the static call:

Dim ResultString = Regex.Match(SubjectString,
 "http://(?<domain>[a-z0-9.-]+)").Groups("domain").Value

To use the same regex repeatedly, construct a Regex object:

Dim RegexObj As New Regex("http://(?<domain>[a-z0-9.-]+)")
Dim ResultString = RegexObj.Match(SubjectString).Groups("domain").Value

In VB.NET, there’s no real difference in the code for getting the Group object for a named
group compared with a numbered group. Instead of indexing the Groups collection with
an integer, index it with a string. Also in this case, .NET will not throw an exception if
the group does not exist. Match.Groups("nosuchgroup").Success merely returns False.

PHP
if (preg_match('%http://(?P<domain>[a-z0-9.-]+)%', $subject, $groups)) {
 $result = $groups['domain'];
} else {
 $result = '';
}

If your regular expression has named capturing groups, then the array assigned to
$groups is an associative array. The text matched by each named capturing group is
added to the array twice. You can retrieve the matched text by indexing the array with
either the group’s number or the group’s name. In the code sample, $groups[0] stores
the overall regex match, whereas both $groups[1] and $groups['domain'] store the text
matched by the regular expression’s only capturing group.

3.9 Retrieve Part of the Matched Text | 149

Perl
if ($subject =~ '!http://(?<domain>[a-z0-9.-]+)%!) {
 $result = $+{'domain'};
} else {
 $result = '';
}

Perl supports named capturing groups starting with version 5.10. The $+ hash stores
the text matched by all named capturing groups. Perl numbers named groups along
with numbered groups. In this example, both $1 and $+{name} store the text matched
by the regular expression’s only capturing group.

Python
matchobj = re.search("http://(?P<domain>[a-z0-9.-]+)", subject)
if matchobj:
 result = matchobj.group("domain")
else:
 result = ""

If your regular expression has named capturing groups, you can pass the group’s name
instead of its number to the group() method.

See Also
Recipe 2.9 explains numbered capturing groups.

Recipe 2.11 explains named capturing groups.

3.10 Retrieve a List of All Matches
Problem
All the preceding recipes in this chapter deal only with the first match that a regular
expression can find in the subject string. But in many cases, a regular expression that
partially matches a string can find another match in the remainder of the string. And
there may be a third match after the second, and so on. For example, the regex ‹\d+›
can find six matches in the subject string The lucky numbers are 7, 13, 16, 42, 65,
and 99: 7, 13, 16, 42, 65, and 99.

You want to retrieve the list of all substrings that the regular expression finds when it
is applied repeatedly to the remainder of the string, after each match.

150 | Chapter 3: Programming with Regular Expressions

Solution

C#

You can use the static call when you process only a small number of strings with the
same regular expression:

MatchCollection matchlist = Regex.Matches(subjectString, @"\d+");

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Regex regexObj = new Regex(@"\d+");
MatchCollection matchlist = regexObj.Matches(subjectString);

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim matchlist = Regex.Matches(SubjectString, "\d+")

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim RegexObj As New Regex("\d+")
Dim MatchList = RegexObj.Matches(SubjectString)

Java
List<String> resultList = new ArrayList<String>();
Pattern regex = Pattern.compile("\\d+");
Matcher regexMatcher = regex.matcher(subjectString);
while (regexMatcher.find()) {
 resultList.add(regexMatcher.group());
}

JavaScript
var list = subject.match(/\d+/g);

PHP
preg_match_all('/\d+/', $subject, $result, PREG_PATTERN_ORDER);
$result = $result[0];

Perl
@result = $subject =~ m/\d+/g;

3.10 Retrieve a List of All Matches | 151

This only works for regular expressions that don’t have capturing groups, so use
noncapturing groups instead. See Recipe 2.9 for details.

Python

If you process only a small number of strings with the same regular expression, you can
use the global function:

result = re.findall(r"\d+", subject)

To use the same regex repeatedly, use a compiled object:

reobj = re.compile(r"\d+")
result = reobj.findall(subject)

Ruby
result = subject.scan(/\d+/)

Discussion

.NET

The Matches() method of the Regex class applies the regular expression repeatedly to
the string, until all matches have been found. It returns a MatchCollection object that
holds all the matches. The subject string is always the first parameter. This is the string
in which the regular expression will try to find a match. The first parameter must not
be null. Otherwise, Matches() will throw an ArgumentNullException.

If you want to get the regex matches in only a small number of strings, you can use the
static overload of Matches(). Pass your subject string as the first parameter and your
regular expression as the second paramater. You can pass regular expression options
as an optional third parameter.

If you’ll be processing many strings, construct a Regex object first, and use that to call
Matches(). The subject string is then the only required parameter. You can specify an
optional second parameter to indicate the character index at which the regular expres-
sion should begin the check. Essentially, the number you pass as the second parameter
is the number of characters at the start of your subject string that the regular expression
should ignore. This can be useful when you’ve already processed the string up to a
point and want to check whether the remainder should be processed further. If you
specify the number, it must be between zero and the length of the subject string. Oth-
erwise, IsMatch() throws an ArgumentOutOfRangeException.

The static overloads do not allow for the parameter that specifies where the regex at-
tempt should start in the string. There is no overload that allows you to tell
Matches() to stop before the end of the string. If you want to do that, you could call
Regex.Match("subject", start, stop) in a loop, as shown in the next recipe, and add
all the matches it finds to a list of your own.

152 | Chapter 3: Programming with Regular Expressions

Java

Java does not provide a function that retrieves the list of matches for you. You can easily
do this in your own code by adapting Recipe 3.7. Instead of calling find() in an if
statement, do it in a while loop.

To use the List and ArrayList classes, as in the example, put import java.util.*; at
the start of your code.

JavaScript

This code calls string.match(), just like the JavaScript solution to Recipe 3.7. There is
one small but very important difference: the /g flag. Regex flags are explained in Rec-
ipe 3.4.

The /g flag tells the match() function to iterate over all matches in the string and put
them into an array. In the code sample, list[0] will hold the first regex match,
list[1] the second, and so on. Check list.length to determine the number of matches.
If no matches can be found at all, string.match returns null as usual.

The elements in the array are strings. When you use a regex with the /g flag,
string.match() does not provide any further details about the regular expression
match. If you want to get match details for all regex matches, iterate over the matches
as explained in Recipe 3.11.

PHP

All the previous PHP recipes used preg_match(), which finds the first regex match in a
string. preg_match_all() is very similar. The key difference is that it will find all matches
in the string. It returns an integer indicating the number of times the regex could match.

The first three parameters for preg_match_all() are the same as the first three for
preg_match(): a string with your regular expression, the string you want to search
through, and a variable that will receive an array with the results. The only differences
are that the third parameter is required and the array is always multidimensional.

For the fourth parameter, specify either the constant PREG_PATTERN_ORDER or
PREG_SET_ORDER. If you omit the fourth parameter, PREG_PATTERN_ORDER is the default.

If you use PREG_PATTERN_ORDER, you will get an array that stores the details of the overall
match at element zero, and the details of capturing groups one and beyond at elements
one and beyond. The length of the array is the number of capturing groups plus one.
This is the same order used by preg_match(). The difference is that instead of each
element holding a string with the only regex match found by preg_match(), each ele-
ment holds a subarray with all the matches found by preg_matches(). The length of
each subarray is the same as the value returned by preg_matches().

To get a list of all the regex matches in the string, discarding text matched by capturing
groups, specify PREG_PATTERN_ORDER and retrieve element zero in the array. If you’re

3.10 Retrieve a List of All Matches | 153

only interested in the text matched by a particular capturing group, use
PREG_PATTERN_ORDER and the capturing group’s number. For example, specifying
$result[1] after calling preg_match('%http://([a-z0-9.-]+)%', $subject, $result)
gives you the list of domain names of all the URLs in your subject string.

PREG_SET_ORDER fills the array with the same strings, but in a different way. The length
of the array is the value returned by preg_matches(). Each element in the array is a
subarray, with the overall regex match in subelement zero and the capturing groups in
elements one and beyond. If you specify PREG_SET_ORDER, then $result[0] holds the
same array as if you had called preg_match().

You can combine PREG_OFFSET_CAPTURE with PREG_PATTERN_ORDER or PREG_SET_ORDER.
Doing so has the same effect as passing PREG_OFFSET_CAPTURE as the fourth parameter
to preg_match(). Instead of each element in the array holding a string, it will hold a two-
element array with the string and the offset at which that string occurs in the original
subject string.

Perl

Recipe 3.4 explains that you need to add the /g modifier to enable your regex to find
more than one match in the subject string. If you use a global regex in a list context, it
will find all the matches and return them. In this recipe, the list variable to the left of
the assignment operator provides the list context.

If the regular expression does not have any capturing groups, the list will contain the
overall regex matches. If the regular expression does have capturing groups, the list will
contain the text matched by all the capturing groups for each regex match. The overall
regex match is not included, unless you put a capturing group around the whole regex.
If you only want to get a list of overall regex matches, replace all capturing groups with
noncapturing groups. Recipe 2.9 explains both kinds of grouping.

Python

The findall() function in the re module searches repeatedly through a string to find
all matches of the regular expression. Pass your regular expression as the first parameter
and the subject string as the second parameter. You can pass the regular expression
options in the optional third parameter.

The re.findall() function calls re.compile(), and then calls the findall() method on
the compiled regular expression object. This method has only one required parameter:
the subject string.

The findall() method takes two optional parameters that the global re.findall()
function does not support. After the subject string, you can pass the character position
in the string at which findall() should begin its search. If you omit this parameter,
findall() processes the whole subject string. If you specify a starting position, you can

154 | Chapter 3: Programming with Regular Expressions

also specify an ending position. If you don’t specify an ending position, the search runs
until the end of the string.

No matter how you call findall(), the result is always a list with all the matches that
could be found. If the regex has no capturing groups, you get a list of strings. If it does
have capturing groups, you get a list of tuples with the text matched by all the capturing
groups for each regex match.

Ruby

The scan() method of the String class takes a regular expression as its only parameter.
It iterates over all the regular expression matches in the string. When called without a
block, scan() returns an array of all regex matches.

If your regular expression does not contain any capturing groups, scan() returns an
array of strings. The array has one element for each regex match, holding the text that
was matched.

When there are capturing groups, scan() returns an array of arrays. The array has one
element for each regex match. Each element is an array with the text matched by each
of the capturing groups. Subelement zero holds the text matched by the first capturing
group, subelement one holds the second capturing group, etc. The overall regex match
is not included in the array. If you want the overall match to be included, enclose your
entire regular expression with an extra capturing group:

Ruby does not provide an option to make scan() return an array of strings when the
regex has capturing groups. Your only solution is to replace all named and numbered
capturing groups with noncapturing groups.

See Also
Recipes 3.7, 3.11, and 3.12

3.11 Iterate over All Matches
Problem
The previous recipe shows how a regex could be applied repeatedly to a string to get a
list of matches. Now you want to iterate over all the matches in your own code.

Solution

C#

You can use the static call when you process only a small number of strings with the
same regular expression:

3.11 Iterate over All Matches | 155

Match matchResult = Regex.Match(subjectString, @"\d+");
while (matchResult.Success) {
 // Here you can process the match stored in matchResult
 matchResult = matchResult.NextMatch();
}

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Regex regexObj = new Regex(@"\d+");
matchResult = regexObj.Match(subjectString);
while (matchResult.Success) {
 // Here you can process the match stored in matchResult
 matchResult = matchResult.NextMatch();
}

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim MatchResult = Regex.Match(SubjectString, "\d+")
While MatchResult.Success
 'Here you can process the match stored in MatchResult
 MatchResult = MatchResult.NextMatch
End While

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim RegexObj As New Regex("\d+")
Dim MatchResult = RegexObj.Match(SubjectString)
While MatchResult.Success
 'Here you can process the match stored in MatchResult
 MatchResult = MatchResult.NextMatch
End While

Java
Pattern regex = Pattern.compile("\\d+");
Matcher regexMatcher = regex.matcher(subjectString);
while (regexMatcher.find()) {
 // Here you can process the match stored in regexMacher
}

JavaScript

If your regular expression may yield a zero-length match, or if you’re simply not sure
about that, make sure to work around cross-browser issues dealing with zero-length
matches and exec():

156 | Chapter 3: Programming with Regular Expressions

var regex = /\d+/g;
var match = null;
while (match = regex.exec(subject)) {
 // Don't let browsers such as Firefox get stuck in an infinite loop
 if (match.index == regex.lastIndex) regex.lastIndex++;
 // Here you can process the match stored in the match variable
}

If you know for sure your regex can never find a zero-length match, you can iterate over
the regex directly:

var regex = /\d+/g;
var match = null;
while (match = regex.exec(subject)) {
 // Here you can process the match stored in the match variable
}

PHP
preg_match_all('/\d+/', $subject, $result, PREG_PATTERN_ORDER);
for ($i = 0; $i < count($result[0]); $i++) {
 # Matched text = $result[0][$i];
}

Perl
while ($subject =~ m/\d+/g) {
 # matched text = $&
}

Python

If you process only a small number of strings with the same regular expression, you can
use the global function:

for matchobj in re.finditer(r"\d+", subject):
 # Here you can process the match stored in the matchobj variable

To use the same regex repeatedly, use a compiled object:

reobj = re.compile(r"\d+")
for matchobj in reobj.finditer(subject):
 # Here you can process the match stored in the matchobj variable

Ruby
subject.scan(/\d+/) {|match|
 # Here you can process the match stored in the match variable
}

3.11 Iterate over All Matches | 157

Discussion

.NET

Recipe 3.7 explains how to use the Match() member function of the Regex class to
retrieve the first regular expression match in the string. To iterate over all matches in
the string, we again call the Match() function to retrieve the details of the first match.
The Match() function returns an instance of the Match class, which we store in the
variable matchResult. If the Success property of the matchResult object holds true, we
can begin our loop.

At the start of the loop, you can use the properties of the Match class to process the
details of the first match. Recipe 3.7 explains the Value property, Recipe 3.8 explains
the Index and Length properties, and Recipe 3.9 explains the Groups collection.

When you’re done with the first match, call the NextMatch() member function on the
matchResult variable. Match.NextMatch() returns an instance of the Match class, just like
Regex.Match() does. The newly returned instance holds the details of the second match.

Assigning the result from matchResult.NextMatch() to the same matchResult variable
makes it easy to iterate over all matches. We have to check matchResult.Success again
to see whether NextMatch() did in fact find another match. When NextMatch() fails, it
still returns a Match object, but its Success property will be set to false. By using a single
matchResult variable, we can combine the initial test for success and the test after the
call to NextMatch() into a single while statement.

Calling NextMatch() does not invalidate the Match object you called it on. If you want,
you could keep the full Match object for each regular expression match.

The NextMatch() method does not accept any parameters. It uses the same regular ex-
pression and subject string as you passed to the Regex.Match() method. The Match object
keeps references to your regular expression and subject string.

You can use the static Regex.Match() call, even when your subject string contains a very
large number of regex matches. Regex.Match() will compile your regular expression
once, and the returned Match object will hold a reference to the compiled regular ex-
pression. Match.MatchAgain() uses the previously compiled regular expression
referenced by the Match object, even when you used the static Regex.Match() call. You
need to instantiate the Regex class only if you want to call Regex.Match() repeatedly,
i.e., use the same regex on many strings.

Java

Iterating over all the matches in a string is very easy in Java. Simply call the find()
method introduced in Recipe 3.7 in a while loop. Each call to find() updates the
Matcher object with the details about the match and the starting position for the next
match attempt.

158 | Chapter 3: Programming with Regular Expressions

JavaScript

Before you begin, make sure to specify the /g flag if you want to use your regex in a
loop. This flag is explained in Recipe 3.4. while (regexp.exec()) finds all numbers
in the subject string when regexp = /\d+/g. If regexp = /\d+/, then while
(regexp.exec()) finds the first number in the string again and again, until your script
crashes or is forcibly terminated by the browser.

Note that while (/\d+/g.exec()) (looping over a literal regex with /g) also will get stuck
in the same infinite loop, at least with certain JavaScript implementations, because the
regular expression is recompiled during each iteration of the while loop. When the
regex is recompiled, the starting position for the match attempt is reset to the start of
the string. Assign the regular expression to a variable outside the loop, to make sure it
is compiled only once.

Recipes 3.8 and 3.9 explain the object returned by regexp.exec(). This object is the
same, regardless of whether you use exec() in a loop. You can do whatever you want
with this object.

The only effect of the /g is that it updates the lastIndex property of the regexp object
on which you’re calling exec(). This works even when you’re using a literal regular
expression, as shown in the second JavaScript solution for this recipe. Next time you
call exec(), the match attempt will begin at lastIndex. If you assign a new value to
lastIndex, the match attempt will begin at the position you specified.

There is, unfortunately, one major problem with lastIndex. If you read the
ECMA-262v3 standard for JavaScript literally, then exec() should set lastIndex to the
first character after the match. This means that if the match is zero characters long, the
next match attempt will begin at the position of the match just found, resulting in an
infinite loop.

All regular expression engines discussed in this book (except JavaScript) deal with this
by automatically starting the next match attempt one character further in the string, if
the previous match was zero-length. Internet Explorer does this by incrementing
lastIndex by one if the match is zero-length. This is why Recipe 3.7 claims that you
cannot use lastIndex to determine the end of the match, as you’ll get incorrect values
in Internet Explorer.

The Firefox developers, however, are adamant about implementing the ECMA-262v3
standard literally, even if it means regexp.exec() may get stuck in an infinite loop.
This outcome is not unlikely. For example, you can use re = /^.*$/gm; while
(re.exec()) to iterate over all lines in a multiline string, and if the string has a blank
line, Firefox will get stuck on it.

The workaround is to increment lastIndex in your own code if the exec() function
hasn’t already done this. The first JavaScript solution to this recipe shows you how. If
you’re unsure, simply paste in this one line of code and be done with it.

3.11 Iterate over All Matches | 159

This problem does not exist with string.match() (Recipe 3.10) or string.replace()
(Recipe 3.14). For these methods, which use lastIndex internally, the ECMA-262v3
standard does state that lastIndex must be incremented for each zero-length match.

PHP

The preg_match() function takes an optional fifth parameter to indicate the position in
the string at which the match attempt should start. You could adapt Recipe 3.8 to
pass $matchstart + $matchlength as the fifth parameter upon the second call to
preg_match() to find the second match in the string, and repeat that for the third and
following matches until preg_match() returns 0. Recipe 3.18 uses this method.

In addition to requiring extra code to calculate the starting offset for each match at-
tempt, repeatedly calling preg_match() is inefficient, because there’s no way to store a
compiled regular expression in a variable. preg_match() has to look up the compiled
regular expression in its cache each time you call it.

An easier and more efficient solution is to call preg_match_all(), as explained in the
previous recipe, and iterate over the array with the match results.

Perl

Recipe 3.4 explains that you need to add the /g modifier to enable your regex to find
more than one match in the subject string. If you use a global regex in a scalar context,
it will try to find the next match, continuing at the end of the previous match. In this
recipe, the while statement provides the scalar context. All the special variables, such
as $& (explained in Recipe 3.7), are available inside the while loop.

Python

The finditer() function in re returns an iterator that you can use to find all the matches
of the regular expression. Pass your regular expression as the first parameter and the
subject string as the second parameter. You can pass the regular expression options in
the optional third parameter.

The re.finditer() function calls re.compile(), and then calls the finditer() method
on the compiled regular expression object. This method has only one required
parameter: the subject string.

The finditer() method takes two optional parameters that the global re.finditer()
function does not support. After the subject string, you can pass the character position
in the string at which finditer() should begin its search. If you omit this parameter,
the iterator will process the whole subject string. If you specify a starting position, you
can also specify an ending position. If you don’t specify an ending position, the search
runs until the end of the string.

160 | Chapter 3: Programming with Regular Expressions

Ruby

The scan() method of the String class takes a regular expression as its only parameter
and iterates over all the regular expression matches in the string. When called with a
block, you can process each match as it is found.

If your regular expression does not contain any capturing groups, specify one iterator
variable in the block. This variable will receive a string with the text matched by the
regular expression.

If your regex does contain one or more capturing groups, list one variable for each
group. The first variable will receive a string with the text matched by the first capturing
group, the second variable receives the second capturing group, and so on. No variable
will be filled with the overall regex match. If you want the overall match to be included,
enclose your entire regular expression with an extra capturing group.

subject.scan(/(a)(b)(c)/) {|a, b, c|
 # a, b, and c hold the text matched by the three capturing groups
}

If you list fewer variables than there are capturing groups in your regex, you will be
able to access only those capturing groups for which you provided variables. If you list
more variables than there are capturing groups, the extra variables will be set to nil.

If you list only one iterator variable and your regex has one or more capturing groups,
the variable will be filled with an array of strings. The array will have one string for
each capturing group. If there is only one capturing group, the array will have a single
element:

subject.scan(/(a)(b)(c)/) {|abc|
 # abc[0], abc[1], and abc[2] hold the text
 # matched by the three capturing groups
}

See Also
Recipes 3.7, 3.8, 3.10, and 3.12

3.12 Validate Matches in Procedural Code
Problem
Recipe 3.10 shows how you can retrieve a list of all matches a regular expression can
find in a string when it is applied repeatedly to the remainder of the string after each
match. Now you want to get a list of matches that meet certain extra criteria that you
cannot (easily) express in a regular expression. For example, when retrieving a list of
lucky numbers, you only want to retain those that are an integer multiple of 13.

3.12 Validate Matches in Procedural Code | 161

Solution

C#

You can use the static call when you process only a small number of strings with the
same regular expression:

StringCollection resultList = new StringCollection();
Match matchResult = Regex.Match(subjectString, @"\d+");
while (matchResult.Success) {
 if (int.Parse(matchResult.Value) % 13 == 0) {
 resultList.Add(matchResult.Value);
 }
 matchResult = matchResult.NextMatch();
}

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

StringCollection resultList = new StringCollection();
Regex regexObj = new Regex(@"\d+");
matchResult = regexObj.Match(subjectString);
while (matchResult.Success) {
 if (int.Parse(matchResult.Value) % 13 == 0) {
 resultList.Add(matchResult.Value);
 }
 matchResult = matchResult.NextMatch();
}

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim ResultList = New StringCollection
Dim MatchResult = Regex.Match(SubjectString, "\d+")
While MatchResult.Success
 If Integer.Parse(MatchResult.Value) Mod 13 = 0 Then
 ResultList.Add(MatchResult.Value)
 End If
 MatchResult = MatchResult.NextMatch
End While

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim ResultList = New StringCollection
Dim RegexObj As New Regex("\d+")
Dim MatchResult = RegexObj.Match(SubjectString)
While MatchResult.Success

162 | Chapter 3: Programming with Regular Expressions

 If Integer.Parse(MatchResult.Value) Mod 13 = 0 Then
 ResultList.Add(MatchResult.Value)
 End If
 MatchResult = MatchResult.NextMatch
End While

Java
List<String> resultList = new ArrayList<String>();
Pattern regex = Pattern.compile("\\d+");
Matcher regexMatcher = regex.matcher(subjectString);
while (regexMatcher.find()) {
 if (Integer.parseInt(regexMatcher.group()) % 13 == 0) {
 resultList.add(regexMatcher.group());
 }
}

JavaScript
var list = [];
var regex = /\d+/g;
var match = null;
while (match = regex.exec(subject)) {
 // Don't let browsers such as Firefox get stuck in an infinite loop
 if (match.index == regex.lastIndex) regex.lastIndex++;
 // Here you can process the match stored in the match variable
 if (match[0] % 13 == 0) {
 list.push(match[0]);
 }
}

PHP
preg_match_all('/\d+/', $subject, $matchdata, PREG_PATTERN_ORDER);
for ($i = 0; $i < count($matchdata[0]); $i++) {
 if ($matchdata[0][$i] % 13 == 0) {
 $list[] = $matchdata[0][$i];
 }
}

Perl
while ($subject =~ m/\d+/g) {
 if ($& % 13 == 0) {
 push(@list, $&);
 }
}

3.12 Validate Matches in Procedural Code | 163

Python

If you process only a small number of strings with the same regular expression, you can
use the global function:

list = []
for matchobj in re.finditer(r"\d+", subject):
 if int(matchobj.group()) % 13 == 0:
 list.append(matchobj.group())

To use the same regex repeatedly, use a compiled object:

list = []
reobj = re.compile(r"\d+")
for matchobj in reobj.finditer(subject):
 if int(matchobj.group()) % 13 == 0:
 list.append(matchobj.group())

Ruby
list = []
subject.scan(/\d+/) {|match|
 list << match if (Integer(match) % 13 == 0)
}

Discussion
Regular expressions deal with text. Though the regular expression ‹\d+› matches what
we call a number, to the regular expression engine it’s just a string of one or more digits.

If you want to find specific numbers, such as those divisible by 13, it is much easier to
write a general regex that matches all numbers, and then use a bit of procedural code
to skip the regex matches you’re not interested in.

The solutions for this recipe all are based on the solutions for the previous recipe, which
shows how to iterate over all matches. Inside the loop, we convert the regular expression
match into a number.

Some languages do this automatically; other languages require an explicit function call
to convert the string into an integer. We then check whether the integer is divisible by
13. If it is, the regex match is added to the list. If it is not, the regex match is skipped.

See Also
Recipes 3.7, 3.10, and 3.11

164 | Chapter 3: Programming with Regular Expressions

3.13 Find a Match Within Another Match
Problem
You want to find all the matches of a particular regular expression, but only within
certain sections of the subject string. Another regular expression matches each of the
sections in the string.

Suppose you have an HTML file in which various passages are marked as bold with
 tags. You want to find all numbers marked as bold. If some bold text contains
multiple numbers, you want to match all of them separately. For example, when pro-
cessing the string 1 2 3 4 5 6 7, you want to find four matches: 2, 5,
6, and 7.

Solution

C#
StringCollection resultList = new StringCollection();
Regex outerRegex = new Regex("(.*?)", RegexOptions.Singleline);
Regex innerRegex = new Regex(@"\d+");
// Find the first section
Match outerMatch = outerRegex.Match(subjectString);
while (outerMatch.Success) {
 // Get the matches within the section
 Match innerMatch = innerRegex.Match(outerMatch.Groups[1].Value);
 while (innerMatch.Success) {
 resultList.Add(innerMatch.Value);
 innerMatch = innerMatch.NextMatch();
 }
 // Find the next section
 outerMatch = outerMatch.NextMatch();
}

VB.NET
Dim ResultList = New StringCollection
Dim OuterRegex As New Regex("(.*?)", RegexOptions.Singleline)
Dim InnerRegex As New Regex("\d+")
'Find the first section
Dim OuterMatch = OuterRegex.Match(SubjectString)
While OuterMatch.Success
 'Get the matches within the section
 Dim InnerMatch = InnerRegex.Match(OuterMatch.Groups(1).Value)
 While InnerMatch.Success
 ResultList.Add(InnerMatch.Value)
 InnerMatch = InnerMatch.NextMatch
 End While

3.13 Find a Match Within Another Match | 165

 OuterMatch = OuterMatch.NextMatch
End While

Java

Iterating using two matchers is easy, and works with Java 4 and later:

List<String> resultList = new ArrayList<String>();
Pattern outerRegex = Pattern.compile("(.*?)", Pattern.DOTALL);
Pattern innerRegex = Pattern.compile("\\d+");
Matcher outerMatcher = outerRegex.matcher(subjectString);
while (outerMatcher.find()) {
 Matcher innerMatcher = innerRegex.matcher(outerMatcher.group());
 while (innerMatcher.find()) {
 resultList.add(innerMatcher.group());
 }
}

The following code is more efficient (because innerMatcher is created only once), but
requires Java 5 or later:

List<String> resultList = new ArrayList<String>();
Pattern outerRegex = Pattern.compile("(.*?)", Pattern.DOTALL);
Pattern innerRegex = Pattern.compile("\\d+");
Matcher outerMatcher = outerRegex.matcher(subjectString);
Matcher innerMatcher = innerRegex.matcher(subjectString);
while (outerMatcher.find()) {
 innerMatcher.region(outerMatcher.start(), outerMatcher.end());
 while (innerMatcher.find()) {
 resultList.add(innerMatcher.group());
 }
}

JavaScript
var result = [];
var outerRegex = /([\s\S]*?)<\/b>/g;
var innerRegex = /\d+/g;
var outerMatch = null;
while (outerMatch = outerRegex.exec(subject)) {
 if (outerMatch.index == outerRegex.lastIndex)
 outerRegex.lastIndex++;
 var innerSubject = subject.substr(outerMatch.index,
 outerMatch[0].length);
 var innerMatch = null;
 while (innerMatch = innerRegex.exec(innerSubject)) {
 if (innerMatch.index == innerRegex.lastIndex)
 innerRegex.lastIndex++;
 result.push(innerMatch[0]);

166 | Chapter 3: Programming with Regular Expressions

 }
}

PHP
$list = array();
preg_match_all('%(.*?)%s', $subject, $outermatches,
 PREG_PATTERN_ORDER);
for ($i = 0; $i < count($outermatches[0]); $i++) {
 if (preg_match_all('/\d+/', $outermatches[0][$i], $innermatches,
 PREG_PATTERN_ORDER)) {
 $list = array_merge($list, $innermatches[0]);
 }
}

Perl
while ($subject =~ m!(.*?)!gs) {
 push(@list, ($& =~ m/\d+/g));
}

This only works if the inner regular expression (‹\d+›, in this example) doesn’t have
any capturing groups, so use noncapturing groups instead. See Recipe 2.9 for details.

Python
list = []
innerre = re.compile(r"\d+")
for outermatch in re.finditer("(?s)(.*?)", subject):
 list.extend(innerre.findall(outermatch.group(1)))

Ruby
list = []
subject.scan(/(.*?)<\/b>/m) {|outergroups|
 list += outergroups[0].scan(/\d+/)
}

Discussion
Regular expressions are well-suited for tokenizing input, but they are not well-suited
for parsing input. Tokenizing means to identify different parts of a string, such as num-
bers, words, symbols, tags, comments, etc. It involves scanning the text from left to
right, trying different alternatives and quantities of characters to be matched. Regular
expressions handle this very well.

Parsing means to process the relationship between those tokens. For example, in a
programming language, combinations of such tokens form statements, functions,
classes, namespaces, etc. Keeping track of the meaning of the tokens within the larger

3.13 Find a Match Within Another Match | 167

context of the input is best left to procedural code. In particular, regular expressions
cannot keep track of nonlinear context, such as nested constructs.*

Trying to find one kind of token within another kind of token is a task that people
commonly try to tackle with regular expressions. A pair of HTML bold tags is easily
matched with the regular expression ‹(.*?)›.† A number is even more easily
matched with the regex ‹\d+›. But if you try to combine these into a single regex, you’ll
end up with something rather different:

\d+(?=(?:.(?!))*)
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Though the regular expression just shown is a solution to the problem posed by this
recipe, it is hardly intuitive. Even a regular expression expert will have to carefully
scrutinize the regex to determine what it does, or perhaps resort to a tool to highlight
the matches. And this is the combination of just two simple regexes.

A better solution is to keep the two regular expressions as they are and use procedural
code to combine them. The resulting code, while a bit longer, is much easier to under-
stand and maintain, and creating simple code is the reason for using regular expressions
in the first place. A regex such as ‹(.*?)› is easy to understand by anyone with
a modicum of regex experience, and quickly does what would otherwise take many
more lines of code that are harder to maintain.

Though the solutions for this recipe are some of the most complex ones in this chapter,
they’re very straightforward. Two regular expressions are used. The “outer” regular
expression matches the HTML bold tags and the text between them, and the text in
between is captured by the first capturing group. This regular expression is implemen-
ted with the same code shown in Recipe 3.11. The only difference is that the placeholder
comment saying where to use the match has been replaced with code that lets the
“inner” regular expression do its job.

The second regular expression matches a digit. This regex is implemented with the
same code as shown in Recipe 3.10. The only difference is that instead of processing
the subject string entirely, the second regex is applied only to the part of the subject
string matched by the first capturing group of the outer regular expression.

There are two ways to restrict the inner regular expressions to the text matched by (a
capturing group of) the outer regular expressions. Some languages provide a function
that allows the regular expression to be applied to part of a string. That can save an
extra string copy if the match function doesn’t automatically fill a structure with the

* A few modern regex flavors have tried to introduce features for balanced or recursive matching. These features
result in such complex regular expessions, however, that they only end up proving my point that parsing is
best left to procedural code.

† To allow the tag to span multiple lines, turn on “dot matches line breaks” mode. For JavaScript, use ‹([\s
\S]*?)›.

168 | Chapter 3: Programming with Regular Expressions

text matched by the capturing groups. We can always simply retrieve the substring
matched by the capturing group and apply the inner regex to that.

Either way, using two regular expressions together in a loop will be faster than using
the one regular expression with its nested lookahead groups. The latter requires the
regex engine to do a whole lot of backtracking. On large files, using just one regex will
be much slower, as it needs to determine the section boundaries (HTML bold tags) for
each number in the subject string, including numbers that are not between tags.
The solution that uses two regular expressions doesn’t even begin to look for numbers
until it has found the section boundaries, which it does in linear time.

See Also
Recipes 3.8, 3.10, and 3.11

3.14 Replace All Matches
Problem
You want to replace all matches of the regular expression ‹before› with the replacement
text «after».

Solution

C#

You can use the static call when you process only a small number of strings with the
same regular expression:

string resultString = Regex.Replace(subjectString, "before", "after");

If the regex is provided by the end user, you should use the static call with full exception
handling:

string resultString = null;
try {
 resultString = Regex.Replace(subjectString, "before", "after");
} catch (ArgumentNullException ex) {
 // Cannot pass null as the regular expression, subject string,
 // or replacement text
} catch (ArgumentException ex) {
 // Syntax error in the regular expression
}

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Regex regexObj = new Regex("before");
string resultString = regexObj.Replace(subjectString, "after");

3.14 Replace All Matches | 169

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

string resultString = null;
try {
 Regex regexObj = new Regex("before");
 try {
 resultString = regexObj.Replace(subjectString, "after");
 } catch (ArgumentNullException ex) {
 // Cannot pass null as the subject string or replacement text
 }
} catch (ArgumentException ex) {
 // Syntax error in the regular expression
}

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim ResultString = Regex.Replace(SubjectString, "before", "after")

If the regex is provided by the end user, you should use the static call with full exception
handling:

Dim ResultString As String = Nothing
Try
 ResultString = Regex.Replace(SubjectString, "before", "after")
Catch ex As ArgumentNullException
 'Cannot pass null as the regular expression, subject string,
 'or replacement text
Catch ex As ArgumentException
 'Syntax error in the regular expression
End Try

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim RegexObj As New Regex("before")
Dim ResultString = RegexObj.Replace(SubjectString, "after")

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

Dim ResultString As String = Nothing
Try
 Dim RegexObj As New Regex("before")
 Try
 ResultString = RegexObj.Replace(SubjectString, "after")
 Catch ex As ArgumentNullException
 'Cannot pass null as the subject string or replacement text

170 | Chapter 3: Programming with Regular Expressions

 End Try
Catch ex As ArgumentException
 'Syntax error in the regular expression
End Try

Java

You can use the static call when you process only one string with the same regular
expression:

String resultString = subjectString.replaceAll("before", "after");

If the regex or replacement text is provided by the end user, you should use the static
call with full exception handling:

try {
 String resultString = subjectString.replaceAll("before", "after");
} catch (PatternSyntaxException ex) {
 // Syntax error in the regular expression
} catch (IllegalArgumentException ex) {
 // Syntax error in the replacement text (unescaped $ signs?)
} catch (IndexOutOfBoundsException ex) {
 // Non-existent backreference used the replacement text
}

Construct a Matcher object if you want to use the same regular expression with a large
number of strings:

Pattern regex = Pattern.compile("before");
Matcher regexMatcher = regex.matcher(subjectString);
String resultString = regexMatcher.replaceAll("after");

If the regex or replacement text is provided by the end user, you should use the Regex
object with full exception handling:

String resultString = null;
try {
 Pattern regex = Pattern.compile("before");
 Matcher regexMatcher = regex.matcher(subjectString);
 try {
 resultString = regexMatcher.replaceAll("after");
 } catch (IllegalArgumentException ex) {
 // Syntax error in the replacement text (unescaped $ signs?)
 } catch (IndexOutOfBoundsException ex) {
 // Non-existent backreference used the replacement text
 }
} catch (PatternSyntaxException ex) {
 // Syntax error in the regular expression
}

3.14 Replace All Matches | 171

JavaScript
result = subject.replace(/before/g, "after");

PHP
$result = preg_replace('/before/', 'after', $subject);

Perl

With the subject string held in the special variable $_, storing the result back into $_:

s/before/after/g;

With the subject string held in the variable $subject, storing the result back into
$subject:

$subject =~ s/before/after/g;

With the subject string held in the variable $subject, storing the result into $result:

($result = $subject) =~ s/before/after/g;

Python

If you have only a few strings to process, you can use the global function:

result = re.sub("before", "after", subject)

To use the same regex repeatedly, use a compiled object:

reobj = re.compile("before")
result = reobj.sub("after", subject)

Ruby
result = subject.gsub(/before/, 'after')

Discussion

.NET

In .NET, you will always use the Regex.Replace() method to search and replace with
a regular expression. The Replace() method has 10 overloads. Half of those take a
string as the replacement text; those are discussed here. The other half take a
MatchEvaluator delegate as the replacement, and those are discussed in Recipe 3.16.

The first parameter expected by Replace(), is always the string that holds the original
subject text you want to search and replace through. This parameter should not be
null. Otherwise, Replace() will throw an ArgumentNullException. The return value of
Replace() is always the string with the replacements applied.

172 | Chapter 3: Programming with Regular Expressions

If you want to use the regular expression only a few times, you can use a static call. The
second parameter is then the regular expression you want to use. Specify the replace-
ment text as the third parameter. You can pass regex options as an optional fourth
parameter. If your regular expression has a syntax error, an ArgumentException will be
thrown.

If you want to use the same regular expression on many strings, you can make your
code more efficient by constructing a Regex object first, and then calling Replace() on
that object. Pass the subject string as the first parameter and the replacement text as
the second parameter. Those are the only required parameters.

When calling Replace() on an instance of the Regex class, you can pass additional pa-
rameters to limit the search-and-replace. If you omit these parameters, all matches of
the regular expression in the subject string will be replaced. The static overloads of
Replace() do not allow these additional parameters; they always replace all matches.

As the optional third parameter, after the subject and replacement, you can pass the
number of replacements to be made. If you pass a number greater than one, that is the
maximum number of replacements that will be made. For example, Replace(subject,
replacement, 3) replaces only the first three regular expression matches, and further
matches are ignored. If there are fewer than three possible matches in the string, all
matches will be replaced. You will not receive any indication that fewer replacements
were made than you requested. If you pass zero as the third parameter, no replacements
will be made at all and the subject string will be returned unchanged. If you pass -1, all
regex matches are replaced. Specifying a number less than -1 will cause Replace() to
throw an ArgumentOutOfRangeException.

If you specify the third parameter with the number of replacements to be made, then
you can specify an optional fourth parameter to indicate the character index at which
the regular expression should begin to search. Essentially, the number you pass as the
fourth parameter is the number of characters at the start of your subject string that the
regular expression should ignore. This can be useful when you’ve already processed
the string up to a point, and you want to search and replace only through the remainder
of the string. If you specify the number, it must be between zero and the length of the
subject string. Otherwise, Replace() throws an ArgumentOutOfRangeException. Unlike
Match(), Replace() does not allow you to provide a parameter that specifies the length
of the substring the regular expression is allowed to search through.

Java

If you only want to search and replace through one string with the same regex, you
can call either the replaceFirst() or replaceAll() method directly on your string.
Both methods take two parameters: a string with your regular expression and a
string with your replacement text. These are convenience functions that
call Pattern.compile("before").matcher(subjectString).replaceFirst("after") and
Pattern.compile("before").matcher(subjectString).replaceAll("after").

3.14 Replace All Matches | 173

If you want to use the same regex on multiple strings, you should create the Matcher
object as explained in Recipe 3.3. Then, call replaceFirst() or replaceAll() on your
matcher, passing the replacement text as the only parameter.

There are three different exception classes you have to contend with if the regex
and replacement text are provided by the end user. The exception class
PatternSyntaxException is thrown by Pattern.compile(), String.replaceFirst(), and
String.replaceAll() if the regular expression has a syntax error. Illegal
ArgumentException is thrown by replaceFirst() and replaceAll() if there’s a syntax
error in the replacement text. If the replacement text is syntactically valid but references
a capturing group that does not exist, then IndexOutOfBoundsException is thrown
instead.

JavaScript

To search and replace through a string using a regular expression, call the replace()
function on the string.Pass your regular expression as the first parameter and the string
with your replacement text as the second parameter. The replace() function returns a
new string with the replacements applied.

If you want to replace all regex matches in the string, set the /g flag when creating your
regular expression object. Recipe 3.4 explains how this works. If you don’t use the /g
flag, only the first match will be replaced.

PHP

You can easily search and replace through a string with preg_replace(). Pass your
regular expression as the first parameter, the replacement text as the second parameter,
and the subject string as the third parameter. The return value is a string with the
replacements applied.

The optional fourth parameter allows you to limit the number of replacements made.
If you omit the parameter or specify -1, all regex matches are replaced. If you specify
0, no replacements are made. If you specify a positive number, preg_replace() will
replace up to as many regex matches as you specified. If there are fewer matches, all of
them are replaced without error.

If you want to know how many replacements were made, you can add a fifth parameter
to the call. This parameter will receive an integer with the number of replacements that
were actually made.

A special feature of preg_replace() is that you can pass arrays instead of strings for the
first three parameters. If you pass an array of strings instead of a single string as the
third parameter, preg_replace() will return an array with the search-and-replace done
on all the strings.

174 | Chapter 3: Programming with Regular Expressions

If you pass an array of regular expression strings as the first parameter,
preg_replace() will use the regular expressions one by one to search and replace
through the subject string. If you pass an array of subject strings, all the regular ex-
pressions are used on all the subject strings. When searching for an array or regular
expressions, you can specify either a single string as the replacement (to be used by all
the regexes) or an array of replacements. When using two arrays, preg_replace() walks
through both the regex and replacement arrays, using a different replacement text for
each regex. preg_replace() walks through the array as it is stored in memory, which is
not necessarily the numerical order of the indexes in the array. If you didn’t build the
array in numerical order, call ksort() on the arrays with the regular expressions and
replacement texts before passing them to preg_replace().

This example builds the $replace array in reverse order:

$regex[0] = '/a/';
$regex[1] = '/b/';
$regex[2] = '/c/';
$replace[2] = '3';
$replace[1] = '2';
$replace[0] = '1';

echo preg_replace($regex, $replace, "abc");
ksort($replace);
echo preg_replace($regex, $replace, "abc");

The first call to preg_replace() displays 321, which is not what you might expect. After
using ksort(), the replacement returns 123 as we intended. ksort() modifies the vari-
able you pass to it. Don’t pass its return value (true or false) to preg_replace.

Perl

In Perl, s/// is in fact a substitution operator. If you use s/// by itself, it will search and
replace through the $_ variable, storing the result back into $_.

If you want to use the substitution operator on another variable, use the =~ binding
operator to associate the substitution operator with your variable. Binding the substi-
tution operator to a string immediately executes the search-and-replace. The result is
stored back into the variable that holds the subject string.

The s/// operator always modifies the variable you bind it to. If you want to store the
result of the search-and-replace in a new variable without modifying the original, first
assign the original string to the result variable, and then bind the substitution operator
to that variable. The Perl solution to this recipe shows how you can take those two
steps in one line of code.

Use the /g modifier explained in Recipe 3.4 to replace all regex matches. Without it,
Perl replaces only the first match.

3.14 Replace All Matches | 175

Python

The sub() function in the re module performs a search-and-replace using a regular
expression. Pass your regular expression as the first parameter, your replacement text
as the second parameter, and the subject string as the third parameter. The global
sub() function does not accept a parameter with regular expression options.

The re.sub() function calls re.compile(), and then calls the sub() method on the com-
piled regular expression object. This method has two required parameters: the replace-
ment text and the subject string.

Both forms of sub() return a string with all the regular expressions replaced. Both take
one optional parameter that you can use to limit the number of replacements to be
made. If you omit it or set it to zero, all regex matches are replaced. If you pass a positive
number, that is the maximum number of matches to be replaced. If fewer matches can
be found than the count you specified, all matches are replaced without error.

Ruby

The gsub() method of the String class does a search-and-replace using a regular ex-
pression. Pass the regular expression as the first parameter and a string with the re-
placement text as the second parameter. The return value is a new string with the
replacements applied. If no regex matches can be found, then gsub() returns the original
string.

gsub() does not modify the string on which you call the method. If you want the original
string to be modified, call gsub!() instead. If no regex matches can be found, gsub!()
returns nil. Otherwise, it returns the string you called it on, with the replacements
applied.

See Also
“Searching and Replacing with Regular Expressions” in Chapter 1, and Recipes 3.15
and 3.16

3.15 Replace Matches Reusing Parts of the Match
Problem
You want to run a search-and-replace that reinserts parts of the regex match back into
the replacement. The parts you want to reinsert have been isolated in your regular
expression using capturing groups, as described in Recipe 2.9.

For example, you want to match pairs of words delimited by an equals sign, and swap
those words in the replacement.

176 | Chapter 3: Programming with Regular Expressions

Solution

C#

You can use the static call when you process only a small number of strings with the
same regular expression:

string resultString = Regex.Replace(subjectString, @"(\w+)=(\w+)",
 "$2=$1");

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Regex regexObj = new Regex(@"(\w+)=(\w+)");
string resultString = regexObj.Replace(subjectString, "$2=$1");

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim ResultString = Regex.Replace(SubjectString, "(\w+)=(\w+)", "$2=$1")

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim RegexObj As New Regex("(\w+)=(\w+)")
Dim ResultString = RegexObj.Replace(SubjectString, "$2=$1")

Java

You can call String.replaceAll() when you process only one string with the same
regular expression:

String resultString = subjectString.replaceAll("(\\w+)=(\\w+)", "$2=$1");

Construct a Matcher object if you want to use the same regular expression with a large
number of strings:

Pattern regex = Pattern.compile("(\\w+)=(\\w+)");
Matcher regexMatcher = regex.matcher(subjectString);
String resultString = regexMatcher.replaceAll("$2=$1");

JavaScript
result = subject.replace(/(\w+)=(\w+)/g, "$2=$1");

PHP
$result = preg_replace('/(\w+)=(\w+)/', '$2=$1', $subject);

3.15 Replace Matches Reusing Parts of the Match | 177

Perl
$subject =~ s/(\w+)=(\w+)/$2=$1/g;

Python

If you have only a few strings to process, you can use the global function:

result = re.sub(r"(\w+)=(\w+)", r"\2=\1", subject)

To use the same regex repeatedly, use a compiled object:

reobj = re.compile(r"(\w+)=(\w+)")
result = reobj.sub(r"\2=\1", subject)

Ruby
result = subject.gsub(/(\w+)=(\w+)/, '\2=\1')

Discussion
The regular expression ‹(\w+)=(\w+)› matches the pair of words and captures each word
into its own capturing group. The word before the equals sign is captured by the first
group, and the word after the sign by the second group.

For the replacement, you need to specify that you want to use the text matched by the
second capturing group, followed by an equals sign, followed by the text matched by
the first capturing group. You can do this with special placeholders in the replacement
text. The replacement text syntax varies widely between different programming lan-
guages. “Searching and Replacing with Regular Expressions” in Chapter 1 describes
the replacement text flavors, and Recipe 2.21 explains how to reference capturing
groups in the replacement text.

.NET

In .NET, you can use the same Regex.Replace() method described in the previous rec-
ipe, using a string as the replacement. The syntax for adding backreferences to the
replacement text follows the .NET replacement text flavor Recipe 2.21.

Java

In Java, you can use the same replaceFirst() and replaceAll() methods described in
the previous recipe. The syntax for adding backreferences to the replacement text fol-
lows the Java replacement text flavor described in this book.

JavaScript

In JavaScript, you can use the same string.replace() method described in the previous
recipe. The syntax for adding backreferences to the replacement text follows the
JavaScript replacement text flavor described in this book.

178 | Chapter 3: Programming with Regular Expressions

PHP

In PHP, you can use the same preg_replace() function described in the previous recipe.
The syntax for adding backreferences to the replacement text follows the PHP replace-
ment text flavor described in this book.

Perl

In Perl, the replace part in s/regex/replace/ is simply interpreted as a double-quoted
string. You can use the special variables $&, $1, $2, etc. explained in Recipe 3.7 and
Recipe 3.9 in the replacement string. The variables are set right after the regex match
is found, before it is replaced. You can also use these variables in all other Perl code.
Their values persist until you tell Perl to find another regex match.

All the other programming languages in this book provide a function call that takes the
replacement text as a string. The function call parses the string to process backrefer-
ences such as $1 or \1. But outside the replacement text string, $1 has no meaning with
these languages.

Python

In Python, you can use the same sub() function described in the previous recipe. The
syntax for adding backreferences to the replacement text follows the Python replace-
ment text flavor described in this book.

Ruby

In Ruby, you can use the same String.gsub() method described in the previous recipe.
The syntax for adding backreferences to the replacement text follows the Ruby re-
placement text flavor described in this book.

You cannot interpolate variables such as $1 in the replacement text. That’s because
Ruby does variable interpolation before the gsub() call is executed. Before the call,
gsub() hasn’t found any matches yet, so backreferences can’t be substituted. If you try
to interpolate $1, you’ll get the text matched by the first capturing group in the last
regex match before the call to gsub().

Instead, use replacement text tokens such as «\1». The gsub() function substitutes
those tokens in the replacement text for each regex match. I recommend that you use
single-quoted strings for the replacement text. In double-quoted strings, the backslash
is used as an escape, and escaped digits are octal escapes. '\1' and "\\1" use the text
matched by the first capturing group as the replacement, whereas "\1" substitutes the
single literal character 0x01.

Named Capture
If you use named capturing groups in your regular expression, you can reference the
groups by their names in your replacement string.

3.15 Replace Matches Reusing Parts of the Match | 179

C#

You can use the static call when you process only a small number of strings with the
same regular expression:

string resultString = Regex.Replace(subjectString,
 @"(?<left>\w+)=(?<right>\w+)", "${right}=${left}");

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Regex regexObj = new Regex(@"(?<left>\w+)=(?<right>\w+)");
string resultString = regexObj.Replace(subjectString, "${right}=${left}");

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim ResultString = Regex.Replace(SubjectString,
 "(?<left>\w+)=(?<right>\w+)", "${right}=${left}")

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim RegexObj As New Regex("(?<left>\w+)=(?<right>\w+)")
Dim ResultString = RegexObj.Replace(SubjectString, "${right}=${left}")

PHP
$result = preg_replace('/(?P<left>\w+)=(?P<right>\w+)/',
 '$2=$1', $subject);

PHP’s preg functions use the PCRE library, which supports named capture. The
preg_match() and preg_match_all() functions add named capturing groups to the array
with match results. Unfortunately, preg_replace() does not provide a way to use named
backreferences in the replacement text. If your regex has named capturing groups,
count both the named and numbered capturing groups from left to right to determine
the backreference number of each group. Use those numbers in the replacement text.

Perl
$subject =~ s/(?<left>\w+)=(?<right>\w+)/$+{right}=$+{left}/g;

Perl supports named capturing groups starting with version 5.10. The $+ hash stores
the text matched by all named capturing groups in the regular expression last used.
You can use this hash in the replacement text string, as well as anywhere else.

Python

If you have only a few strings to process, you can use the global function:

180 | Chapter 3: Programming with Regular Expressions

result = re.sub(r"(?P<left>\w+)=(?P<right>\w+)", r"\g<right>=\g<left>",
 subject)

To use the same regex repeatedly, use a compiled object:

reobj = re.compile(r"(?P<left>\w+)=(?P<right>\w+)")
result = reobj.sub(r"\g<right>=\g<left>", subject)

Ruby
result = subject.gsub(/(?<left>\w+)=(?<right>\w+)/, '\k<left>=\k<right>')

See Also
“Searching and Replacing with Regular Expressions” in Chapter 1 describes the re-
placement text flavors.

Recipe 2.21 explains how to reference capturing groups in the replacement text.

3.16 Replace Matches with Replacements Generated in Code
Problem
You want to replace all matches of a regular expression with a new string that you build
up in procedural code. You want to be able to replace each match with a different string,
based on the text that was actually matched.

For example, suppose you want to replace all numbers in a string with the number
multiplied by two.

Solution

C#

You can use the static call when you process only a small number of strings with the
same regular expression:

string resultString = Regex.Replace(subjectString, @"\d+",
 new MatchEvaluator(ComputeReplacement));

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Regex regexObj = new Regex(@"\d+");
string resultString = regexObj.Replace(subjectString,
 new MatchEvaluator(ComputeReplacement));

Both code snippets call the function ComputeReplacement. You should add this method
to the class in which you’re implementing this solution:

3.16 Replace Matches with Replacements Generated in Code | 181

public String ComputeReplacement(Match matchResult) {
 int twiceasmuch = int.Parse(matchResult.Value) * 2;
 return twiceasmuch.ToString();
}

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim MyMatchEvaluator As New MatchEvaluator(AddressOf ComputeReplacement)
Dim ResultString = Regex.Replace(SubjectString, "\d+", MyMatchEvaluator)

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim RegexObj As New Regex("\d+")
Dim MyMatchEvaluator As New MatchEvaluator(AddressOf ComputeReplacement)
Dim ResultString = RegexObj.Replace(SubjectString, MyMatchEvaluator)

Both code snippets call the function ComputeReplacement. You should add this method
to the class in which you’re implementing this solution:

Public Function ComputeReplacement(ByVal MatchResult As Match) As String
 Dim TwiceAsMuch = Int.Parse(MatchResult.Value) * 2;
 Return TwiceAsMuch.ToString();
End Function

Java
StringBuffer resultString = new StringBuffer();
Pattern regex = Pattern.compile("\\d+");
Matcher regexMatcher = regex.matcher(subjectString);
while (regexMatcher.find()) {
 Integer twiceasmuch = Integer.parseInt(regexMatcher.group()) * 2;
 regexMatcher.appendReplacement(resultString, twiceasmuch.toString());
}
regexMatcher.appendTail(resultString);

JavaScript
var result = subject.replace(/\d+/g,
 function(match) { return match * 2; }
);

PHP

Using a declared callback function:

$result = preg_replace_callback('/\d+/', compute_replacement, $subject);

function compute_replacement($groups) {

182 | Chapter 3: Programming with Regular Expressions

 return $groups[0] * 2;
}

Using an anonymous callback function:

$result = preg_replace_callback(
 '/\d+/',
 create_function(
 '$groups',
 'return $groups[0] * 2;'
),
 $subject
);

Perl
$subject =~ s/\d+/$& * 2/eg;

Python

If you have only a few strings to process, you can use the global function:

result = re.sub(r"\d+", computereplacement, subject)

To use the same regex repeatedly, use a compiled object:

reobj = re.compile(r"\d+")
result = reobj.sub(computereplacement, subject)

Both code snippets call the function computereplacement. This function needs to be
declared before you can pass it to sub().

def computereplacement(matchobj):
 return str(int(matchobj.group()) * 2)

Ruby
result = subject.gsub(/\d+/) {|match|
 Integer(match) * 2
}

Discussion
When using a string as the replacement text, you can do only basic text substitution.
To replace each match with something totally different that varies along with the match
being replaced, you need to create the replacement text in your own code.

C#

Recipe 3.14 discusses the various ways in which you can call the Regex.Replace()
method, passing a string as the replacement text. When using a static call, the replace-
ment is the third parameter, after the subject and the regular expression. If you passed

3.16 Replace Matches with Replacements Generated in Code | 183

the regular expression to the Regex() constructor, you can call Replace() on that object
with the replacement as the second parameter.

Instead of passing a string as the second or third parameter, you can pass a Match
Evaluator delegate. This delegate is a reference to a member function that you add to
the class where you’re doing the search-and-replace. To create the delegate, use the
new keyword to call the MatchEvaluator() constructor. Pass your member function as
the only parameter to MatchEvaluator().

The function you want to use for the delegate should return a string and take one
parameter of class System.Text.RegularExpressions.Match. This is the same Match class
returned by the Regex.Match() member used in nearly all the previous recipes in this
chapter.

When you call Replace() with a MatchEvaluator as the replacement, your function will
be called for each regular expression match that needs to be replaced. Your function
needs to return the replacement text. You can use any of the properties of the
Match object to build your replacement text. The example shown earlier uses
matchResult.Value to retrieve the string with the whole regex match. Often, you’ll use
matchResult.Groups[] to build up your replacement text from the capturing groups in
your regular expression.

If you do not want to replace certain regex matches, your function should return
matchResult.Value. If you return null or an empty string, the regex match is replaced
with nothing (i.e., deleted).

VB.NET

Recipe 3.14 discusses the various ways in which you can call the Regex.Replace()
method, passing a string as the replacement text. When using a static call, the replace-
ment text is the third parameter, after the subject and the regular expression. If you
used the Dim keyword to create a variable with your regular expression, you can call
Replace() on that object with the replacement as the second parameter.

Instead of passing a string as the second or third parameter, you can pass a Match
Evaluator object. This object holds a reference to a function that you add to the class
where you’re doing the search-and-replace. Use the Dim keyword to create a new vari-
able of type MatchEvaluator. Pass one parameter with the AddressOf keyword followed
by the name of your member function. The AddressOf operator returns a reference to
your function, without actually calling the function at that point.

The function you want to use for MatchEvaluator should return a string and should take
one parameter of class System.Text.RegularExpressions.Match. This is the same
Match class returned by the Regex.Match() member used in nearly all the previous recipes
in this chapter. The parameter will be passed by value, so you have to declare it with
ByVal.

184 | Chapter 3: Programming with Regular Expressions

When you call Replace() with a MatchEvaluator as the replacement, your function will
be called for each regular expression match that needs to be replaced. Your function
needs to return the replacement text. You can use any of the properties of the Match
object to build your replacement text. The example uses MatchResult.Value to retrieve
the string with the whole regex match. Often, you’ll use MatchResult.Groups() to build
up your replacement text from the capturing groups in your regular expression.

If you do not want to replace certain regex matches, your function should return
MatchResult.Value. If you return Nothing or an empty string, the regex match is replaced
with nothing (i.e., deleted).

Java

The Java solution is very straightforward. We iterate over all the regex matches as
explained in Recipe 3.11. Inside the loop, we call appendReplacement() on our
Matcher object. When find() fails to find any further matches, we call appendTail().
The two methods appendReplacement() and appendTail() make it very easy to use a
different replacement text for each regex match.

appendReplacement() takes two parameters. The first is the StringBuffer where you’re
(temporarily) storing the result of the search-and-replace in progress. The second is the
replacement text to be used for the last match found by find(). This replacement text
can include references to capturing groups, such as "$1". If there is a syntax error in
your replacement text, an IllegalArgumentException is thrown. If the replacement text
references a capturing group that does not exist, an IndexOutOfBoundsException is
thrown instead. If you call appendReplacement() without a prior successful call to
find(), it throws an IllegalStateException.

If you call appendReplacement() correctly, it does two things. First, it copies the text
located between the previous and current regex match to the string buffer, without
making any modifications to the text. If the current match is the first one, it copies all
the text before that match. After that, it appends your replacement text, substituting
any backreferences in it with the text matched by the referenced capturing groups.

If you want to delete a particular match, simply replace it with an empty string. If you
want to leave a match in the string unchanged, you can omit the call to
appendReplacement() for that match. When I say “previous regex match,” I mean the
previous match for which you called appendReplacement(). If you don’t call
appendReplacement() for certain matches, those become part of the text between the
matches that you do replace, which is copied unchanged into the target string buffer.

When you’re done replacing matches, call appendTail(). That copies the text at the end
of the string after the last regex match for which you called appendReplacement().

3.16 Replace Matches with Replacements Generated in Code | 185

JavaScript

In JavaScript, a function is really just another object that can be assigned to a
variable. Instead of passing a literal string or a variable that holds a string to the
string.replace() function, we can pass a function that returns a string. This function
is then called each time a replacement needs to be made.

You can make your replacement function accept one or more parameters. If you do,
the first parameter will be set to the text matched by the regular expression. If your
regular expression has capturing groups, the second parameter will hold the text
matched by the first capturing group, the third parameter gives you the text of the
second capturing group, and so on. You can set these parameters to use bits of the
regular expression match to compose the replacement.

The replacement function in the JavaScript solution for this recipe simply takes the text
matched by the regular expression, and returns it multiplied by two. JavaScript handles
the string-to-number and number-to-string conversions implicitly.

PHP

The preg_replace_callback() function works just like the preg_replace() function de-
scribed in Recipe 3.14. It takes a regular expression, replacement, subject string, op-
tional replacement limit, and optional replacement count. The regular expression and
subject string can be single strings or arrays.

The difference is that preg_replace_callback() doesn’t accept a string or array of strings
for the replacement; it accepts a function. You can declare this function in your code
or use create_function() to create an anonymous function. The function should take
one parameter and return a string (or something that can be coerced into a string).

Each time preg_replace_callback() finds a regex match, it will call your callback func-
tion. The parameter will be filled with an array of strings. Element zero holds the overall
regex match, and elements one and beyond hold the text matched by capturing groups
one and beyond. You can use this array to build up your replacement text using the
text matched by the regular expression or one or more capturing groups.

Perl

The s/// operator supports one extra modifier that is ignored by the m// operator: /e.
The /e, or “execute,” modifier tells the substitution operator to execute the replacement
part as Perl code, instead of interpreting it as the contents of a double-quoted string.
Using this modifier, we can easily retrieve the matched text with the $& variable, and
then multiply it by two. The result of the code is used as the replacement string.

Python

Python’s sub() function allows you to pass the name of a function instead of a string
as the replacement text. This function is then called for each regex match to be replaced.

186 | Chapter 3: Programming with Regular Expressions

You need to declare this function before you can reference it. It should take one pa-
rameter to receive a MatchObject instance, which is the same object returned by the
search() function. You can use it to retrieve (part of) the regex match to build your
replacement. See Recipe 3.7 and Recipe 3.9 for details.

Your function should return a string with the replacement text.

Ruby

The previous two recipes called the gsub() method of the String class with two pa-
rameters: the regex and the replacement text. This method also exists in block form.

In block form, gsub() takes your regular expression as its only parameter. It fills one
iterator variable with a string that holds the text matched by the regular expression. If
you supply additional iterator variables, they are set to nil, even if your regular ex-
pression has capturing groups.

Inside the block, place an expression that evaluates to the string that you want to use
as the replacement text. You can use the special regex match variables, such as $~, $&,
and $1, inside the block. Their values change each time the block is evaluated to make
another replacement. See Recipes 3.7, 3.8, and 3.9 for details.

You cannot use replacement text tokens such as «\1». Those remain as literal text.

See Also
Recipes 3.9 and 3.15

3.17 Replace All Matches Within the Matches of Another Regex
Problem
You want to replace all the matches of a particular regular expression, but only within
certain sections of the subject string. Another regular expression matches each of the
sections in the string.

Say you have an HTML file in which various passages are marked as bold with tags.
Between each pair of bold tags, you want to replace all matches of the regular expression
‹before› with the replacement text ‹after›. For example, when processing the string
before first before before before before, you want to end up with:
before first after before after after.

Solution

C#
Regex outerRegex = new Regex(".*?", RegexOptions.Singleline);
Regex innerRegex = new Regex("before");

3.17 Replace All Matches Within the Matches of Another Regex | 187

string resultString = outerRegex.Replace(subjectString,
 new MatchEvaluator(ComputeReplacement));

public String ComputeReplacement(Match matchResult) {
 // Run the inner search-and-replace on each match of the outer regex
 return innerRegex.Replace(matchResult.Value, "after");
}

VB.NET
Dim OuterRegex As New Regex(".*?", RegexOptions.Singleline)
Dim InnerRegex As New Regex("before")
Dim MyMatchEvaluator As New MatchEvaluator(AddressOf ComputeReplacement)
Dim ResultString = OuterRegex.Replace(SubjectString, MyMatchEvaluator)

Public Function ComputeReplacement(ByVal MatchResult As Match) As String
 'Run the inner search-and-replace on each match of the outer regex
 Return InnerRegex.Replace(MatchResult.Value, "after");
End Function

Java
StringBuffer resultString = new StringBuffer();
Pattern outerRegex = Pattern.compile(".*?");
Pattern innerRegex = Pattern.compile("before");
Matcher outerMatcher = outerRegex.matcher(subjectString);
while (outerMatcher.find()) {
 outerMatcher.appendReplacement(resultString,
 innerRegex.matcher(outerMatcher.group()).replaceAll("after"));
}
outerMatcher.appendTail(resultString);

JavaScript
var result = subject.replace(/.*?<\/b>/g,
 function(match) {
 return match.replace(/before/g, "after");
 }
);

PHP
$result = preg_replace_callback('%.*?%',
 replace_within_tag, $subject);

function replace_within_tag($groups) {
 return preg_replace('/before/', 'after', $groups[0]);
}

188 | Chapter 3: Programming with Regular Expressions

Perl
$subject =~ s%.*?%($match = $&) =~ s/before/after/g; $match;%eg;

Python
innerre = re.compile("before")
def replacewithin(matchobj):
 return innerre.sub("after", matchobj.group())

result = re.sub(".*?", replacewithin, subject)

Ruby
innerre = /before/
result = subject.gsub(/.*?<\/b>/) {|match|
 match.gsub(innerre, 'after')
}

Discussion
This solution is again the combination of two previous solutions, using two regular
expressions. The “outer” regular expression, ‹.*?›, matches the HTML bold
tags and the text between them. The “inner” regular expression matches the “before,”
which we’ll replace with “after.”

Recipe 3.16 explains how you can run a search-and-replace and build the replacement
text for each regex match in your own code. Here, we do this with the outer regular
expression. Each time it finds a pair of opening and closing tags, we run a search-
and-replace using the inner regex, just as we do in Recipe 3.14. The subject string for
the search-and-replace with the inner regex is the text matched by the outer regex.

See Also
Recipes 3.11, 3.13, and 3.16

3.18 Replace All Matches Between the Matches of Another
Regex
Problem
You want to replace all the matches of a particular regular expression, but only within
certain sections of the subject string. Another regular expression matches the text be-
tween the sections. In other words, you want to search and replace through all parts of
the subject string not matched by the other regular expression.

3.18 Replace All Matches Between the Matches of Another Regex | 189

Say you have an HTML file in which you want to replace straight double quotes with
smart (curly) double quotes, but you only want to replace the quotes outside of HTML
tags. Quotes within HTML tags must remain plain ASCII straight quotes, or your
web browser won’t be able to parse the HTML anymore. For example, you
want to turn "text" "text" "text" into “text”
“text” “text”.

Solution

C#
string resultString = null;
Regex outerRegex = new Regex("<[^<>]*>");
Regex innerRegex = new Regex("\"([^\"]*)\"");
// Find the first section
int lastIndex = 0;
Match outerMatch = outerRegex.Match(subjectString);
while (outerMatch.Success) {
 // Search-and-replace through the text between this match,
 // and the previous one
 string textBetween =
 subjectString.Substring(lastIndex, outerMatch.Index - lastIndex);
 resultString = resultString +
 innerRegex.Replace(textBetween, "\u201C$1\u201D");
 lastIndex = outerMatch.Index + outerMatch.Length;
 // Copy the text in the section unchanged
 resultString = resultString + outerMatch.Value;
 // Find the next section
 outerMatch = outerMatch.NextMatch();
}
// Search-and-replace through the remainder after the last regex match
string textAfter = subjectString.Substring(lastIndex,
 subjectString.Length - lastIndex);
resultString = resultString + innerRegex.Replace(textAfter,
 "\u201C$1\u201D");

VB.NET
Dim ResultString As String = Nothing
Dim OuterRegex As New Regex("<[^<>]*>")
Dim InnerRegex As New Regex("""([^""]*)""")
'Find the first section
Dim LastIndex = 0
Dim OuterMatch = OuterRegex.Match(SubjectString)
While OuterMatch.Success
 'Search-and-replace through the text between this match,
 'and the previous one
 Dim TextBetween = SubjectString.Substring(LastIndex,

190 | Chapter 3: Programming with Regular Expressions

 OuterMatch.Index - LastIndex);
 ResultString = ResultString + InnerRegex.Replace(TextBetween,
 ChrW(&H201C) + "$1" + ChrW(&H201D))
 LastIndex = OuterMatch.Index + OuterMatch.Length
 'Copy the text in the section unchanged
 ResultString = ResultString + OuterMatch.Value
 'Find the next section
 OuterMatch = OuterMatch.NextMatch
End While
'Search-and-replace through the remainder after the last regex match
Dim TextAfter = SubjectString.Substring(LastIndex,
 SubjectString.Length - LastIndex);
ResultString = ResultString +
 InnerRegex.Replace(TextAfter, ChrW(&H201C) + "$1" + ChrW(&H201D))

Java
StringBuffer resultString = new StringBuffer();
Pattern outerRegex = Pattern.compile("<[^<>]*>");
Pattern innerRegex = Pattern.compile("\"([^\"]*)\"");
Matcher outerMatcher = outerRegex.matcher(subjectString);
int lastIndex = 0;
while (outerMatcher.find()) {
 // Search-and-replace through the text between this match,
 // and the previous one
 String textBetween = subjectString.substring(lastIndex,
 outerMatcher.start());
 Matcher innerMatcher = innerRegex.matcher(textBetween);
 resultString.append(innerMatcher.replaceAll("\u201C$1\u201D"));
 lastIndex = outerMatcher.end();
 // Append the regex match itself unchanged
 resultString.append(outerMatcher.group());
}
// Search-and-replace through the remainder after the last regex match
String textAfter = subjectString.substring(lastIndex);
Matcher innerMatcher = innerRegex.matcher(textAfter);
resultString.append(innerMatcher.replaceAll("\u201C$1\u201D"));

JavaScript
var result = "";
var outerRegex = /<[^<>]*>/g;
var innerRegex = /"([^"]*)"/g;
var outerMatch = null;
var lastIndex = 0;
while (outerMatch = outerRegex.exec(subject)) {
 if (outerMatch.index == outerRegex.lastIndex) outerRegex.lastIndex++;
 // Search-and-replace through the text between this match,
 // and the previous one

3.18 Replace All Matches Between the Matches of Another Regex | 191

 var textBetween = subject.substring(lastIndex, outerMatch.index);
 result = result + textBetween.replace(innerRegex, "\u201C$1\u201D");
 lastIndex = outerMatch.index + outerMatch[0].length;
 // Append the regex match itself unchanged
 result = result + outerMatch[0];
}
// Search-and-replace through the remainder after the last regex match
var textAfter = subject.substr(lastIndex);
result = result + textAfter.replace(innerRegex, "\u201C$1\u201D");

PHP
$result = '';
$lastindex = 0;
while (preg_match('/<[^<>]*>/', $subject, $groups, PREG_OFFSET_CAPTURE,
 $lastindex)) {
 $matchstart = $groups[0][1];
 $matchlength = strlen($groups[0][0]);
 // Search-and-replace through the text between this match,
 // and the previous one
 $textbetween = substr($subject, $lastindex, $matchstart-$lastindex);
 $result .= preg_replace('/"([^"]*)"/', '“$1”', $textbetween);
 // Append the regex match itself unchanged
 $result .= $groups[0][0];
 // Move the starting position for the next match
 $lastindex = $matchstart + $matchlength;
 if ($matchlength == 0) {
 // Don't get stuck in an infinite loop
 // if the regex allows zero-length matches
 $lastindex++;
 }
}
// Search-and-replace through the remainder after the last regex match
$textafter = substr($subject, $lastindex);
$result .= preg_replace('/"([^"]*)"/', '“$1”', $textafter);

Perl
use encoding "utf-8";
$result = '';
while ($subject =~ m/<[^<>]*>/g) {
 $match = $&;
 $textafter = $';
 ($textbetween = $`) =~ s/"([^"]*)"/\x{201C}$1\x{201D}/g;
 $result .= $textbetween . $match;
}
$textafter =~ s/"([^"]*)"/\x{201C}$1\x{201D}/g;
$result .= $textafter;

192 | Chapter 3: Programming with Regular Expressions

Python
innerre = re.compile('"([^"]*)"')
result = "";
lastindex = 0;
for outermatch in re.finditer("<[^<>]*>", subject):
 # Search-and-replace through the text between this match,
 # and the previous one
 textbetween = subject[lastindex:outermatch.start()]
 result += innerre.sub(u"\u201C\\1\u201D", textbetween)
 lastindex = outermatch.end()
 # Append the regex match itself unchanged
 result += outermatch.group()
Search-and-replace through the remainder after the last regex match
textafter = subject[lastindex:]
result += innerre.sub(u"\u201C\\1\u201D", textafter)

Ruby
result = '';
textafter = ''
subject.scan(/<[^<>]*>/) {|match|
 textafter = $'
 textbetween = $`.gsub(/"([^"]*)"/, '“\1”')
 result += textbetween + match
}
result += textafter.gsub(/"([^"]*)"/, '“\1”')

Discussion
Recipe 3.13 explains how to use two regular expressions to find matches (of the second
regex) only within certain sections of the file (matches of the first regex). The solution
for this recipe uses the same technique to search and replace through only certain parts
of the subject string.

It is important that the regular expression you use to find the sections continues to
work on the original subject string. If you modify the original subject string, you have
to shift the starting position for the regex that finds the section as the inner regex adds
or deletes characters. More importantly, the modifications can have unintended side
effects. For example, if your outer regex uses the anchor ‹^› to match something at the
start of a line, and your inner regex inserts a line break at the end of the section found
by the outer regex, then ‹^› will match right after the previous section because of the
newly inserted line break.

Though the solutions for this recipe are quite long, they’re very straightforward. Two
regular expressions are used. The “outer” regular expression, ‹<[^<>]*>›, matches a
pair of angle brackets and anything between them, except angle brackets. This is a crude
way of matching any HTML tag. This regex works fine as long as the HTML file does

3.18 Replace All Matches Between the Matches of Another Regex | 193

not contain any literal angle brackets that were (incorrectly) not encoded as entities.
We implement this regular expression with the same code shown in Recipe 3.11. The
only difference is that the placeholder comment in that code that said where to use the
match was replaced by the code that does the actual search-and-replace.

The search-and-replace within the loop follows the code shown in Recipe 3.14. The
subject string for the search-and-replace is the text between the previous match of the
outer regex and the current match. We append the result of the inner search-and-re-
place to the overall result string. We also append the current match of the outer regular
expression unchanged.

When the outer regex fails to find further matches, we run the inner search-and-replace
once more, on the text after the last match of the outer regex.

The regex ‹"([^"]*)"›, used for the search-and-replace inside the loop, matches a pair
of double-quote characters and anything between them, except double quotes. The
text between the quotes is captured into the first capturing group.

For the replacement text, we use a reference to the first capturing group, which is placed
between two smart quotes. The smart quotes occupy Unicode code points U+201C and
U+201D. Normally, you can simply paste the smart quotes directly into your source code.
Visual Studio 2008, however, insists on being clever and automatically replaces literal
smart quotes with straight quotes.

In a regular expression, you can match a Unicode code point with ‹\u201C› or
‹\x{201C}›, but none of the programming languages discussed in this book support
such tokens as part of the replacement text. If an end user wants to insert smart quotes
into the replacement text he types into an edit control, he’ll have to paste them in
literally from a character map. In your source code, you can use Unicode escapes in the
replacement text, if your language supports such escapes as part of literal strings. For
example, C# and Java support \u201C at the string level, but VB.NET does not offer a
way to escape Unicode characters in strings. In VB.NET, you can use the ChrW function
to convert a Unicode code point into a character.

Perl and Ruby

The Perl and Ruby solutions use two special variables available in these languages that
we haven’t explained yet. $` (dollar backtick) holds the part of the text to the left of
the subject match, and $' (dollar single quote) holds the part of the text to the right of
the subject match. Instead of iterating over the matches in the original subject string,
we start a new search on the part of the string after the previous match. This way, we
can easily retrieve the text between the match and the previous one with $`.

Python

The result of this code is a Unicode string because the replacement text is specified as
a Unicode string. You may need to call encode() to be able to display it, e.g.:

194 | Chapter 3: Programming with Regular Expressions

print result.encode('1252')

See Also
Recipes 3.11, 3.13, and 3.16

3.19 Split a String
Problem
You want to split a string using a regular expression. After the split, you will have an
array or list of strings with the text between the regular expression matches.

For example, you want to split a string with HTML tags in it along the HTML tags.
Splitting I●like●bold●and●<i>italic</i>●fonts should result in an array of
five strings: I●like●, bold, ●and●, italic, and ●fonts.

Solution

C#

You can use the static call when you process only a small number of strings with the
same regular expression:

string[] splitArray = Regex.Split(subjectString, "<[^<>]*>");

If the regex is provided by the end user, you should use the static call with full exception
handling:

string[] splitArray = null;
try {
 splitArray = Regex.Split(subjectString, "<[^<>]*>");
} catch (ArgumentNullException ex) {
 // Cannot pass null as the regular expression or subject string
} catch (ArgumentException ex) {
 // Syntax error in the regular expression
}

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Regex regexObj = new Regex("<[^<>]*>");
string[] splitArray = regexObj.Split(subjectString);

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

string[] splitArray = null;
try {
 Regex regexObj = new Regex("<[^<>]*>");

3.19 Split a String | 195

 try {
 splitArray = regexObj.Split(subjectString);
 } catch (ArgumentNullException ex) {
 // Cannot pass null as the subject string
 }
} catch (ArgumentException ex) {
 // Syntax error in the regular expression
}

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim SplitArray = Regex.Split(SubjectString, "<[^<>]*>")

If the regex is provided by the end user, you should use the static call with full exception
handling:

Dim SplitArray As String()
Try
 SplitArray = Regex.Split(SubjectString, "<[^<>]*>")
Catch ex As ArgumentNullException
 'Cannot pass null as the regular expression or subject string
Catch ex As ArgumentException
 'Syntax error in the regular expression
End Try

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim RegexObj As New Regex("<[^<>]*>")
Dim SplitArray = RegexObj.Split(SubjectString)

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

Dim SplitArray As String()
Try
 Dim RegexObj As New Regex("<[^<>]*>")
 Try
 SplitArray = RegexObj.Split(SubjectString)
 Catch ex As ArgumentNullException
 'Cannot pass null as the subject string
 End Try
Catch ex As ArgumentException
 'Syntax error in the regular expression
End Try

196 | Chapter 3: Programming with Regular Expressions

Java

You can call String.Split() directly when you want to split only one string with the
same regular expression:

String[] splitArray = subjectString.split("<[^<>]*>");

If the regex is provided by the end user, you should use full exception handling:

try {
 String[] splitArray = subjectString.split("<[^<>]*>");
} catch (PatternSyntaxException ex) {
 // Syntax error in the regular expression
}

Construct a Pattern object if you want to use the same regular expression with a large
number of strings:

Pattern regex = Pattern.compile("<[^<>]*>");
String[] splitArray = regex.split(subjectString);

If the regex is provided by the end user, you should use the Pattern object with full
exception handling:

String[] splitArray = null;
try {
 Pattern regex = Pattern.compile("<[^<>]*>");
 splitArray = regex.split(subjectString);
} catch (ArgumentException ex) {
 // Syntax error in the regular expression
}

JavaScript

The string.split() function can split a string using a regular expression:

result = subject.split(/<[^<>]*>/);

Unfortunately, there are a lot of cross-browser issues when using string.split() with
a regular expression. Building the list in your own code is more reliable:

var list = [];
var regex = /<[^<>]*>/g;
var match = null;
var lastIndex = 0;
while (match = regex.exec(subject)) {
 // Don't let browsers such as Firefox get stuck in an infinite loop
 if (match.index == regex.lastIndex) regex.lastIndex++;
 // Add the text before the match
 list.push(subject.substring(lastIndex, match.index));
 lastIndex = match.index + match[0].length;
}

3.19 Split a String | 197

// Add the remainder after the last match
list.push(subject.substr(lastIndex));

PHP
$result = preg_split('/<[^<>]*>/', $subject);

Perl
@result = split(m/<[^<>]*>/, $subject);

Python

If you have only a few strings to split, you can use the global function:

result = re.split("<[^<>]*>", subject))

To use the same regex repeatedly, use a compiled object:

reobj = re.compile("<[^<>]*>")
result = reobj.split(subject)

Ruby
result = subject.split(/<[^<>]*>/)

Discussion
Splitting a string using a regular expression essentially produces the opposite result of
Recipe 3.10. Instead of retrieving a list with all the regex matches, you get a list of the
text between the matches, including the text before the first and after the last match.
The regex matches themselves are omitted from the output of the split function.

C# and VB.NET

In .NET, you will always use the Regex.Split() method to split a string with a regular
expression. The first parameter expected by Split() is always the string that holds the
original subject text you want to split. This parameter should not be null. If it is,
Split() will throw an ArgumentNullException. The return value of Split() is always an
array of strings.

If you want to use the regular expression only a few times, you can use a static call. The
second parameter is then the regular expression you want to use. You can pass regex
options as an optional third parameter. If your regular expression has a syntax error,
an ArgumentException will be thrown.

If you want to use the same regular expression on many strings, you can make your
code more efficient by constructing a Regex object first, and then calling Split() on that
object. The subject string is then the only required parameter.

198 | Chapter 3: Programming with Regular Expressions

When calling Split() on an instance of the Regex class, you can pass additional pa-
rameters to limit the split operation. If you omit these parameters, the string will be
split at all matches of the regular expression in the subject string. The static overloads
of Split() do not allow these additional parameters. They always split the whole string
at all matches.

As the optional second parameter, after the subject string, you can pass the maximum
number of split strings you want to end up with. For example, if you call
regexObj.Split(subject, 3), you will receive an array with at most three strings in it.
The Split() function will try to find two regex matches, and return an array with the
text before the first match, the text between the two matches, and the text after the
second match. Any further possible regex matches within the remainder of the subject
string are ignored, and left in the last string in the array.

If there are not enough regex matches to reach your limit, Split() will split along all
the available regex matches and return an array with fewer strings than you specified.
regexObj.Split(subject, 1) does not split the string at all, returning an array with the
original string as the only element. regexObj.Split(subject, 0) splits at all regex
matches, just like Split() does when you omit the second parameter. Specifying a
negative number will cause Split() to throw an ArgumentOutOfRangeException.

If you specify the second parameter with the maximum number of strings in the re-
turned array, you also can specify an optional third parameter to indicate the character
index at which the regular expression should begin to find matches. Essentially, the
number you pass as the third parameter is the number of characters at the start of your
subject string that the regular expression should ignore. This can be useful when you’ve
already processed the string up to a point, and you only want to split the remainder of
the string.

The characters skipped by the regular expression will still be added to the returned
array. The first string in the array is the whole substring before the first regex
match found after the starting position you specified, including the characters before
that starting position. If you specify the third parameter, it must be between
zero and the length of the subject string. Otherwise, Split() throws an
ArgumentOutOfRangeException. Unlike Match(), Split() does not allow you to specify a
parameter that sets the length of the substring the regular expression is allowed to
search through.

If a match occurs at the start of the subject string, the first string in the resulting array
will be an empty string. When two regex matches can be found right next to each other
in the subject string, with no text between them, an empty string will be added to the
array. If a match occurs at the end of the subject string, the last element in the array
will be an empty string.

3.19 Split a String | 199

Java

If you have only one string to split, you can call the split() method directly on your
subject string. Pass the regular expression as the only parameter. This method simply
calls Pattern.compile("regex").split(subjectString).

If you want to split multiple strings, use the Pattern.compile() factory to create a
Pattern object. This way, your regular expression needs to be compiled only once.
Then, call the split() method on your Pattern instance, and pass your subject string
as the parameter. There’s no need to create a Matcher object. The Matcher class does
not have a split() method at all.

Pattern.split() takes an optional second parameter, but String.split() does not. You
can use the second parameter to pass the maximum number of split strings you want
to end up with. For example, if you call Pattern.split(subject, 3), you will receive
an array with at most three strings in it. The split() function will try to find two regex
matches, and return an array with the text before the first match, the text between the
two matches, and the text after the second match. Any further possible regex matches
within the remainder of the subject string are ignored, and left in the last string in the
array. If there are not enough regex matches to reach your limit, split() will split along
all the available regex matches, and return an array with fewer strings than you speci-
fied. Pattern.split(subject, 1) does not split the string at all, returning an array with
the original string as the only element.

If a match occurs at the start of the subject string, the first string in the resulting array
will be an empty string. When two regex matches can be found right next to each other
in the subject string, with no text between them, an empty string will be added to the
array. If a match occurs at the end of the subject string, the last element in the array
will be an empty string.

Java, however, will eliminate empty strings at the end of the array. If you want the
empty strings to be included, pass a negative number as the second parameter to
Pattern.split(). This tells Java to split the string as many times as possible, and leave
any empty strings at the end of the array. The actual value of the second parameter
makes no difference when it is negative. You cannot tell Java to split a string a certain
number of times and also leave empty strings at the end of the array at the same time.

JavaScript

In JavaScript, call the split() method on the string you want to split. Pass the regular
expression as the only parameter to get an array with the string split as many times as
possible. You can pass an optional second parameter to specify the maximum number
of strings you want to have in the returned array. This should be a positive number. If
you pass zero, you get an empty array. If you omit the second parameter or pass a
negative number, the string is split as many times as possible. Setting the /g flag for the
regex (Recipe 3.4) makes no difference.

200 | Chapter 3: Programming with Regular Expressions

Unfortunately, none of the popular web browsers implement each aspect of the
split() method as specified in the JavaScript standard. In particular, some browsers
include the text matched by capturing groups in the array, and others don’t. Those that
include capturing groups don’t handle nonparticipating groups consistently. To avoid
such issues, use only noncapturing groups (Recipe 2.9) in regular expressions you pass
to split().

Some JavaScript implementations omit zero-length strings from the returned array.
Zero-length strings should be in the array when two regex matches occur right next to
each other, or when the regex matches at the start or the end of the string that is being
split. Since you can’t work around this with a simple change to your regular expression,
it is probably safer to use the longer JavaScript solution to this recipe. That solution
includes all zero-length strings, but you can easily edit it to exclude zero-length strings.

The long solution is an adaptation of Recipe 3.12. It adds the text between the regex
matches and the regex matches themselves to an array. To get the text between the
matches, we use the match details explained in Recipe 3.8.

If you want an implementation of String.prototype.split that follows the standard
and also works with all browsers, Steven Levithan has a solution for you at http://blog
.stevenlevithan.com/archives/cross-browser-split.

PHP

Call preg_split() to split a string into an array of strings along the regex matches. Pass
the regular expression as the first parameter and the subject string as the second pa-
rameter. If you omit the second parameter, $_ is used as the subject string.

You can pass an optional third parameter to specify the maximum number of split
strings you want to end up with. For example, if you call preg_split($regex, $subject,
3), you will receive an array with at most three strings in it. The preg_split() function
will try to find two regex matches, and return an array with the text before the first
match, the text between the two matches, and the text after the second match. Any
further possible regex matches within the remainder of the subject string are ignored,
and left in the last string in the array. If there are not enough regex matches to reach
your limit, preg_split() will split along all the available regex matches and return an
array with fewer strings than you specified. If you omit the third parameter or set it to
-1, the string is split as many times as possible.

If a match occurs at the start of the subject string, the first string in the resulting array
will be an empty string. When two regex matches can be found right next to each other
in the subject string, with no text between them, an empty string will be added to the
array. If a match occurs at the end of the subject string, the last element in the array
will be an empty string. By default, preg_split() includes those empty strings in the
array it returns. If you don’t want empty strings in the array, pass the constant
PREG_SPLIT_NO_EMPTY as the fourth parameter.

3.19 Split a String | 201

Perl

Call the split() function to split a string into an array of strings along the regex match-
es. Pass a regular expression operator as the first parameter and the subject string as
the second parameter.

You can pass an optional third parameter to specify the maximum number of split
strings you want to end up with. For example, if you call split(/regex/, subject,
3), you will receive an array with at most three strings in it. The split() function will
try to find two regex matches, and return an array with the text before the first match,
the text between the two matches, and the text after the second match. Any further
possible regex matches within the remainder of the subject string are ignored, and left
in the last string in the array. If there are not enough regex matches to reach your limit,
split() will split along all the available regex matches and return an array with fewer
strings than you specified.

If you omit the third parameter, Perl will determine the appropriate limit. If you assign
the result to an array variable, as the solution for this recipe does, the string is split as
many times as possible. If you assign the result to a list of scalar variables, Perl sets the
limit to the number of variables plus one. In other words, Perl will attempt to fill all the
variables, and will discard the unsplit remainder. For example, ($one, $two, $three)
= split(/,/) splits $_ with a limit of 4.

If a match occurs at the start of the subject string, the first string in the resulting array
will be an empty string. When two regex matches can be found right next to each other
in the subject string, with no text between them, an empty string will be added to the
array. If a match occurs at the end of the subject string, the last element in the array
will be an empty string.

Python

The split() function in the re module splits a string using a regular expression. Pass
your regular expression as the first parameter and the subject string as the second pa-
rameter. The global split() function does not accept a parameter with regular expres-
sion options.

The re.split() function calls re.compile(), and then calls the split() method on the
compiled regular expression object. This method has only one required parameter: the
subject string.

Both forms of split() return a list with the text between all the regex matches. Both
take one optional parameter that you can use to limit the number of times the string
should be split. If you omit it or set it to zero, the string is split as many times as possible.
If you pass a positive number, that is the maximum number of regex matches at which
the string will be split. The resulting list will contain one more string than the count
you specified. The last string is the unsplit remainder of the subject string after the last

202 | Chapter 3: Programming with Regular Expressions

regex match. If fewer matches can be found than the count you specified, the string is
split at all regex matches without error.

Ruby

Call the split() method on the subject string and pass your regular expression as the
first parameter to divide the string into an array of strings along the regex matches.

The split() method takes an optional second parameter, which you can use to indicate
the maximum number of split strings you want to end up with. For example, if you call
subject.split(re, 3), you will receive an array with at most three strings in it. The
split() function will try to find two regex matches, and return an array with the text
before the first match, the text between the two matches, and the text after the second
match. Any further possible regex matches within the remainder of the subject string
are ignored, and left in the last string in the array. If there are not enough regex matches
to reach your limit, split() will split along all the available regex matches, and return
an array with fewer strings than you specified. split(re, 1) does not split the string at
all, returning an array with the original string as the only element.

If a match occurs at the start of the subject string, the first string in the resulting array
will be an empty string. When two regex matches can be found right next to each other
in the subject string, with no text between them, an empty string will be added to the
array. If a match occurs at the end of the subject string, the last element in the array
will be an empty string.

Ruby, however, will eliminate empty strings at the end of the array. If you want the
empty strings to be included, pass a negative number as the second parameter to
split(). This tells Ruby to split the string as many times as possible and leave any empty
strings at the end of the array. The actual value of the second parameter makes no
difference when it is negative. You cannot tell Ruby to split a string a certain number
of times and also leave empty strings at the end of the array at the same time.

See Also
Recipe 3.20

3.20 Split a String, Keeping the Regex Matches
Problem
You want to split a string using a regular expression. After the split, you will have an
array or list of strings with the text between the regular expression matches, as well as
the regex matches themselves.

Suppose you want to split a string with HTML tags in it along the HTML tags, and also
keep the HTML tags. Splitting I●like●bold●and●<i>italic</i>●fonts should

3.20 Split a String, Keeping the Regex Matches | 203

result in an array of nine strings: I●like●, , bold, , ●and●, <i>, italic, </i>, and
●fonts.

Solution

C#

You can use the static call when you process only a small number of strings with the
same regular expression:

string[] splitArray = Regex.Split(subjectString, "(<[^<>]*>)");

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Regex regexObj = new Regex("(<[^<>]*>)");
string[] splitArray = regexObj.Split(subjectString);

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim SplitArray = Regex.Split(SubjectString, "(<[^<>]*>)")

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim RegexObj As New Regex("(<[^<>]*>)")
Dim SplitArray = RegexObj.Split(SubjectString)

Java
List<String> resultList = new ArrayList<String>();
Pattern regex = Pattern.compile("<[^<>]*>");
Matcher regexMatcher = regex.matcher(subjectString);
int lastIndex = 0;
while (regexMatcher.find()) {
 resultList.add(subjectString.substring(lastIndex,
 regexMatcher.start()));
 resultList.add(regexMatcher.group());
 lastIndex = regexMatcher.end();
}
resultList.add(subjectString.substring(lastIndex));

JavaScript
var list = [];
var regex = /<[^<>]*>/g;
var match = null;
var lastIndex = 0;

204 | Chapter 3: Programming with Regular Expressions

while (match = regex.exec(subject)) {
 // Don't let browsers such as Firefox get stuck in an infinite loop
 if (match.index == regex.lastIndex) regex.lastIndex++;
 // Add the text before the match, as well as the match itself
 list.push(subject.substring(lastIndex, match.index), match[0]);
 lastIndex = match.index + match[0].length;
}
// Add the remainder after the last match
list.push(subject.substr(lastIndex));

PHP
$result = preg_split('/(<[^<>]*>)/', $subject, -1,
 PREG_SPLIT_DELIM_CAPTURE);

Perl
@result = split(m/(<[^<>]*>)/, $subject);

Python

If you have only a few strings to split, you can use the global function:

result = re.split("(<[^<>]*>)", subject))

To use the same regex repeatedly, use a compiled object:

reobj = re.compile("(<[^<>]*>)")
result = reobj.split(subject)

Ruby
list = []
lastindex = 0;
subject.scan(/<[^<>]*>/) {|match|
 list << subject[lastindex..$~.begin(0)-1];
 list << $&
 lastindex = $~.end(0)
}
list << subject[lastindex..subject.length()]

Discussion

.NET

In .NET, the Regex.Split() method includes the text matched by capturing groups into
the array. .NET 1.0 and 1.1 include only the first capturing group. .NET 2.0 and later
include all capturing groups as separate strings into the array. If you want to include
the overall regex match into the array, place the whole regular expression inside a

3.20 Split a String, Keeping the Regex Matches | 205

capturing group. For .NET 2.0 and later, all other groups should be noncapturing, or
they will be included in the array.

The capturing groups are not included in the string count that you can pass to the
Split() function. If you call regexObj.Split(subject, 4) with the example string and
regex of this recipe, you’ll get an array with seven strings. Those will be the four strings
with the text before, between, and after the first three regex matches, plus three strings
between them with the regex matches, as captured by the only capturing group in the
regular expression. Simply put, you’ll get an array with: I●like●, , bold, , ●and●,
<italic>, and italic</italic>●fonts. If your regex has 10 capturing groups and you’re
using .NET 2.0 or later, regexObj.Split(subject, 4) returns an array with 34 strings.

.NET does not provide an option to exclude the capturing groups from the array. Your
only solution is to replace all named and numbered capturing groups with noncaptur-
ing groups. An easy way to do this in .NET is to use RegexOptions.ExplicitCapture,
and replace all named groups with normal groups (i.e., just a pair of parentheses) in
your regular expression.

Java

Java’s Pattern.split() method does not provide the option to add the regex matches
to the resulting array. Instead, we can adapt Recipe 3.12 to add the text between the
regex matches along with the regex matches themselves to a list. To get the text between
the matches, we use the match details explained in Recipe 3.8.

JavaScript

JavaScript’s string.split() function does not provide an option to control whether
regex matches should be added to the array. According to the JavaScript standard, all
capturing groups should have their matches added to the array. Unfortunately, the
popular web browsers either don’t do this at all or do so inconsistently.

For a solution that works with all browsers, we can adapt Recipe 3.12 to add the text
between the regex matches along with the regex matches themselves to a list. To get
the text between the matches, we use the match details explained in Recipe 3.8.

PHP

Pass PREG_SPLIT_DELIM_CAPTURE as the fourth parameter to preg_split() to include the
text matched by capturing groups in the returned array. You can use the | operator to
combine PREG_SPLIT_DELIM_CAPTURE with PREG_SPLIT_NO_EMPTY.

The capturing groups are not included in the string count that you specify as the third
argument to the preg_split() function. If you set the limit to four with the example
string and regex of this recipe, you’ll get an array with seven strings. Those will be the
four strings with the text before, between, and after the first three regex matches, plus
three strings between them with the regex matches, as captured by the only capturing

206 | Chapter 3: Programming with Regular Expressions

group in the regular expression. Simply put, you’ll get an array with: I●like●, , bold,
, ●and●, <italic>, and italic</italic>●fonts.

Perl

Perl’s split() function includes the text matched by all capturing groups into the array.
If you want to include the overall regex match into the array, place the whole regular
expression inside a capturing group.

The capturing groups are not included in the string count that you can pass to the
split() function. If you call split(/(<[^<>]*>)/, $subject, 4) with the example string
and regex of this recipe, you’ll get an array with seven strings. Those will be the four
strings with the text before, between, and after the first three regex matches, plus three
strings between them with the regex matches, as captured by the only capturing group
in the regular expression. Simply put, you’ll get an array with: I●like●, , bold, </
b>, ●and●, <italic>, and italic</italic>●fonts. If your regex has 10 capturing groups,
split($regex, $subject, 4) returns an array with 34 strings.

Perl does not provide an option to exclude the capturing groups from the array. Your
only solution is to replace all named and numbered capturing groups with
noncapturing groups.

Python

Python’s split() function includes the text matched by all capturing groups into the
array. If you want to include the overall regex match into the array, place the whole
regular expression inside a capturing group.

The capturing groups do not affect the number of times the string is split. If you call
split(/(<[^<>]*>)/, $subject, 3) with the example string and regex of this recipe,
you’ll get an array with seven strings. The string is split three times, which results in
four pieces of text between the matches, plus three pieces of text matched by the cap-
turing group. Simply put, you’ll get an array with: "I like", "", "bold", "",
" and ", "<i>", and "italic</i> fonts". If your regex has 10 capturing groups,
split($regex, $subject, 3) returns an array with 34 strings.

Python does not provide an option to exclude the capturing groups from the array.
Your only solution is to replace all named and numbered capturing groups with non-
capturing groups.

Ruby

Ruby’s String.split() method does not provide the option to add the regex matches
to the resulting array. Instead, we can adapt Recipe 3.11 to add the text between the
regex matches along with the regex matches themselves to a list. To get the text between
the matches, we use the match details explained in Recipe 3.8.

3.20 Split a String, Keeping the Regex Matches | 207

See Also
Recipe 2.9 explains capturing and noncapturing groups.

Recipe 2.11 explains named groups.

3.21 Search Line by Line
Problem
Traditional grep tools apply your regular expression to one line of text at a time, and
display the lines matched (or not matched) by the regular expression. You have an array
of strings, or a multiline string, that you want to process in this way.

Solution

C#

If you have a multiline string, split it into an array of strings first, with each string in
the array holding one line of text:

string[] lines = Regex.Split(subjectString, "\r?\n");

Then, iterate over the lines array:

Regex regexObj = new Regex("regex pattern");
for (int i = 0; i < lines.Length; i++) {
 if (regexObj.IsMatch(lines[i])) {
 // The regex matches lines[i]
 } else {
 // The regex does not match lines[i]
 }
}

VB.NET

If you have a multiline string, split it into an array of strings first, with each string in
the array holding one line of text:

Dim Lines = Regex.Split(SubjectString, "\r?\n")

Then, iterate over the lines array:

Dim RegexObj As New Regex("regex pattern")
For i As Integer = 0 To Lines.Length - 1
 If RegexObj.IsMatch(Lines(i)) Then
 'The regex matches Lines(i)
 Else
 'The regex does not match Lines(i)

208 | Chapter 3: Programming with Regular Expressions

 End If
Next

Java

If you have a multiline string, split it into an array of strings first, with each string in
the array holding one line of text:

String[] lines = subjectString.split("\r?\n");

Then, iterate over the lines array:

Pattern regex = Pattern.compile("regex pattern");
Matcher regexMatcher = regex.matcher("");
for (int i = 0; i < lines.length; i++) {
 regexMatcher.reset(lines[i]);
 if (regexMatcher.find()) {
 // The regex matches lines[i]
 } else {
 // The regex does not match lines[i]
 }
}

JavaScript

If you have a multiline string, split it into an array of strings first, with each string in
the array holding one line of text. As mentioned in Recipe 3.19, some browsers exclude
empty lines from the array.

var lines = subject.split(/\r?\n/);

Then, iterate over the lines array:

var regexp = /regex pattern/;
for (var i = 0; i < lines.length; i++) {
 if (lines[i].match(regexp)) {
 // The regex matches lines[i]
 } else {
 // The regex does not match lines[i]
 }
}

PHP

If you have a multiline string, split it into an array of strings first, with each string in
the array holding one line of text:

$lines = preg_split('/\r?\n/', $subject)

Then, iterate over the $lines array:

foreach ($lines as $line) {
 if (preg_match('/regex pattern/', $line)) {

3.21 Search Line by Line | 209

 // The regex matches $line
 } else {
 // The regex does not match $line
 }
}

Perl

If you have a multiline string, split it into an array of strings first, with each string in
the array holding one line of text:

$lines = split(m/\r?\n/, $subject)

Then, iterate over the $lines array:

foreach $line ($lines) {
 if ($line =~ m/regex pattern/) {
 # The regex matches $line
 } else {
 # The regex does not match $line
 }
}

Python

If you have a multiline string, split it into an array of strings first, with each string
in the array holding one line of text:

lines = re.split("\r?\n", subject);

Then, iterate over the lines array:

reobj = re.compile("regex pattern")
for line in lines[:]:
 if re.search(line):
 # The regex matches line
 else:
 # The regex does not match line

Ruby

If you have a multiline string, split it into an array of strings first, with each string in
the array holding one line of text:

lines = subject.split(/\r?\n/)

Then, iterate over the lines array:

re = /regex pattern/
lines.each { |line|
 if line =~ re
 # The regex matches line
 else

210 | Chapter 3: Programming with Regular Expressions

 # The regex does not match line
}

Discussion
When working with line-based data, you can save yourself a lot of trouble if you split
the data into an array of lines, instead of trying to work with one long string with
embedded line breaks. Then, you can apply your actual regex to each string in the array,
without worrying about matching more than one line. This approach also makes it easy
to keep track of the relationship between lines. For example, you could easily iterate
over the array using one regex to find a header line and then another to find the footer
line. With the delimiting lines found, you can then use a third regex to find the data
lines you’re interested in. Though this may seem like a lot of work, it’s all very straight-
forward, and will yield code that performs well. Trying to craft a single regex to find
the header, data, and footer all at once will be a lot more complicated, and will result
in a much slower regex.

Processing a string line by line also makes it easy to negate a regular expression. Regular
expressions don’t provide an easy way of saying “match a line that does not contain
this or that word.” Only character classes can be easily negated. But if you’ve already
split your string into lines, finding the lines that don’t contain a word becomes as easy
as doing a literal text search in all the lines, and removing the ones in which the word
can be found.

Recipe 3.19 shows how you can easily split a string into an array. The regular expression
‹\r\n› matches a pair of CR and LF characters, which delimit lines on the Microsoft
Windows platforms. ‹\n› matches an LF character, which delimits lines on Unix and
its derivatives, such as Linux and even OS X. Since these two regular expressions are
essentially plain text, you don’t even need to use a regular expression. If your pro-
gramming language can split strings using literal text, by all means split the string that
way.

If you’re not sure which line break style your data uses, you could split it using the
regular expression ‹\r?\n›. By making the CR optional, this regex matches either a
CRLF Windows line break or an LF Unix line break.

Once you have your strings into the array, you can easily loop over it. Inside the loop,
follow the recipe shown in Recipe 3.5 to check which lines match, and which don’t.

See Also
Recipes 3.11 and 3.19

3.21 Search Line by Line | 211

CHAPTER 4

Validation and Formatting

This chapter contains recipes for validating and formatting common types of user input.
Some of the solutions show how to allow variations of valid input, such as U.S. postal
codes that can contain either five or nine digits. Others are designed to harmonize or
fix commonly understood formats for things such as phone numbers, dates, and credit
card numbers.

Beyond helping you get the job done by eliminating invalid input, these recipes can
also improve the user experience of your applications. Messages such as “no spaces or
hyphens” next to phone or credit card number fields often frustrate users or are simply
ignored. Fortunately, in many cases regular expressions allow you to let users enter
data in formats that they find familiar and comfortable with very little extra work on
your part.

Certain programming languages provide functionality similar to some recipes in this
chapter through their native classes or libraries. Depending on your needs, it might
make more sense to use these built-in options, so we’ll point them out along the way.

4.1 Validate Email Addresses
Problem
You have a form on your website or a dialog box in your application that asks the user
for an email address. You want to use a regular expression to validate this email address
before trying to send email to it. This reduces the number of emails returned to you as
undeliverable.

Solution

Simple

The first solution does a very simple check. It only verifies that the email address has
a single at (@) sign and no whitespace:

213

^\S+@\S+$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

\A\S+@\S+\Z
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Simple, with restrictions on characters

The domain name, the part after the @ sign, is restricted to characters allowed in domain
names. The username, the part before the @ sign, is restricted to characters commonly
used in email usernames, which is more restrictive than what most email clients and
servers will accept:

^[A-Z0-9+_.-]+@[A-Z0-9.-]+$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

\A[A-Z0-9+_.-]+@[A-Z0-9.-]+\Z
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Simple, with all characters

This regular expression expands the previous one by allowing a larger set of rarely used
characters in the username. Not all email software can handle all these characters, but
we’ve included all the characters permitted by RFC 2822, which governs the email
message format. Among the permitted characters are some that present a security risk
if passed directly from user input to an SQL statement, such as the single quote (') and
the pipe character (|). Be sure to escape sensitive characters when inserting the email
address into a string passed to another program, in order to prevent security holes such
as SQL injection attacks:

^[\w!#$%&'*+/=?`{|}~^.-]+@[A-Z0-9.-]+$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

\A[\w!#$%&'*+/=?`{|}~^.-]+@[A-Z0-9.-]+\Z
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

No leading, trailing, or consecutive dots

Both the username and the domain name can contain one or more dots, but no two
dots can appear right next to each other. Furthermore, the first and last characters in
the username and in the domain name must not be dots:

214 | Chapter 4: Validation and Formatting

^[\w!#$%&'*+/=?`{|}~^-]+(?:\.[!#$%&'*+/=?`{|}~^-]+)*@↵
[A-Z0-9-]+(?:\.[A-Z0-9-]+)*$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

\A[\w!#$%&'*+/=?`{|}~^-]+(?:\.[!#$%&'*+/=?`{|}~^-]+)*@↵
[A-Z0-9-]+(?:\.[A-Z0-9-]+)*\Z

Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Top-level domain has two to six letters

This regular expression adds to the previous versions by specifying that the domain
name must include at least one dot, and that the part of the domain name after the dot
can only consist of letters. That is, the domain must contain at least two levels, such
as secondlevel.com or thirdlevel.secondlevel.com. The top-level domain, .com, must
consist of two to six letters. All country-code top-level domains have two letters. The
generic top-level domains have between three (.com) and six letters (.museum):

^[\w!#$%&'*+/=?`{|}~^-]+(?:\.[!#$%&'*+/=?`{|}~^-]+)*@↵
(?:[A-Z0-9-]+\.)+[A-Z]{2,6}$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

\A[\w!#$%&'*+/=?`{|}~^-]+(?:\.[!#$%&'*+/=?`{|}~^-]+)*@↵
(?:[A-Z0-9-]+\.)+[A-Z]{2,6}\Z

Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Discussion

About email addresses

If you thought something as conceptually simple as validating an email address would
have a simple one-size-fits-all regex solution, you’re quite wrong. This recipe is a prime
example that before you can start writing a regular expression, you have to decide
exactly what you want to match. There is no universally agreed upon rule as to which
email addresses are valid and which not. It depends on your definition of valid.

asdf@asdf.asdf is valid according to RFC 2822, which defines the syntax for email
addresses. But it is not valid if your definition specifies that a valid email address is one
that accepts mail. There is no top-level asdf domain.

The short answer to the validity problem is that you can’t know whether
john.doe@somewhere.com is an email address that can actually receive email until you try
to send email to it. And even then, you can’t be sure if the lack of response signals that
the somewhere.com domain is silently discarding mail sent to nonexistent mailboxes, or
if John Doe hit the Delete button on his keyboard, or if his spam filter beat him to it.

4.1 Validate Email Addresses | 215

Because you ultimately have to check whether the address exists by actually sending
email to it, you can decide to use a simpler or more relaxed regular expression. Allowing
invalid addresses to slip through may be preferable to annoying people by blocking
valid addresses. For this reason, you may want to select the “simple, with all characters”
regular expression. Though it obviously allows many things that aren’t email addresses,
such as #$%@.-, the regex is quick and simple, and will never block a valid email address.

If you want to avoid sending too many undeliverable emails, while still not blocking
any real email addresses, the regex in “Top-level domain has two to six let-
ters” on page 215 is a good choice.

You have to consider how complex you want your regular expression to be. If you’re
validating user input, you’ll likely want a more complex regex, because the user could
type in anything. But if you’re scanning database files that you know contain only valid
email addresses, you can use a very simple regex that merely separates the email ad-
dresses from the other data. Even the solution in the earlier subsection“Simple” may
be enough in this case.

Finally, you have to consider how future-proof you want your regular expression to be.
In the past, it made sense to restrict the top-level domain to only two-letter combina-
tions for the country codes, and exhaustively list the generic top-level domains, i.e.,
‹com|net|org|mil|edu›. With new top-level domains being added all the time, such
regular expressions now quickly go out of date.

Regular expression syntax

The regular expressions presented in this recipe show all the basic parts of the regular
expression syntax in action. If you read up on these parts in Chapter 2, you can already
do 90% of the jobs that are best solved with regular expressions.

All the regular expressions require the case-insensitive matching option to be turned
on. Otherwise, only uppercase characters will be allowed. Turning on this option allows
you to type ‹[A-Z]› instead of ‹[A-Za-z]›, saving a few keystrokes. If you use one of the
last two regular expressions, the case-insensitivity option is very handy. Otherwise,
you’d have to replace every letter ‹X› with ‹[Xx]›.
‹\S› and ‹\w› are shorthand character classes, as the recipe in Recipe 2.3 explains.
‹\S› matches any nonwhitespace character, whereas ‹\w› matches a word character.

‹@› and ‹\.› match a literal @ sign and a dot, respectively. Since the dot is a metachar-
acter when used outside character classes, it needs to be escaped with a backslash. The
@ sign never has a special meaning with any of the regular expression flavors in this
book. Recipe 2.1 gives you a list of all the metacharacters that need to be escaped.

‹[A-Z0-9.-]› and the other sequences between square brackets are character classes.
This one allows all letters between A and Z, all digits between 0 and 9, as well as a literal
dot and hyphen. Though the hyphen normally creates a range in a character class, the
hyphen is treated as a literal when it occurs as the last character in a character class.

216 | Chapter 4: Validation and Formatting

The recipe in Recipe 2.3 tells you all about character classes, including combining them
with shorthands, as in ‹[\w!#$%&'*+/=?`{|}~^.-]›. This class matches a word character,
as well as any of the 19 listed punctuation characters.

‹+› and ‹*›, when used outside character classes, are quantifiers. The plus sign repeats
the preceding regex token one or more times, whereas the asterisk repeats it zero or
more times. In these regular expressions, the quantified token is usually a character
class, and sometimes a group. Therefore, ‹[A-Z0-9.-]+› matches one or more letters,
digits, dots, and/or hyphens.

As an example of the use of a group, ‹(?:[A-Z0-9-]+\.)+› matches one or more letters,
digits, and/or hyphens, followed by one literal dot. The plus sign repeats this group
one or more times. The group must match at least once, but can match as many times
as possible. Recipe 2.12 explains the mechanics of constructs such as these in detail.

‹(?:group)› is a noncapturing group. Use it to create a group from part of the regular
expression so you can apply a quantifier to the group as a whole. The capturing group
‹(group)› does the same thing with a cleaner syntax, so you could replace ‹(?:› with
‹(› in all of the regular expressions we’ve used so far without changing the overall match
results.

But since we’re not interested in separately capturing parts of the email address, the
noncapturing group is somewhat more efficient, although it makes the regular expres-
sion somewhat harder to read. Recipe 2.9 tells you all about capturing and noncap-
turing groups.

The anchors ‹^› and ‹$› force the regular expression to find its match at the start and
end of the subject text, respectively. Placing the whole regular expression between these
characters effectively requires the regular expression to match the entire subject.

This is important when validating user input. You do not want to accept drop database;
-- joe@server.com haha! as a valid email address. Without the anchors, all the previous
regular expressions will match because they find joe@server.com in the middle of the
given text. See Recipe 2.5 for details. That recipe also explains why the “caret and dollar
match at line breaks” matching option must be off.

In Ruby, the caret and dollar always match at line breaks. The regular expressions using
the caret and dollar work correctly in Ruby, but only if the string you’re trying to validate
contains no line breaks. If the string may contain line breaks, all the regexes using ‹^›
and ‹$› will match the email address in drop database; -- LFjoe@server.com LF
haha!, where LF represents a line break.

To avoid this, use the anchors ‹\A› and ‹\Z› instead. These match at the start and end
of the string only, regardless of any options, in all flavors discussed in this book, except
JavaScript. JavaScript does not support ‹\A› and ‹\Z› at all. Recipe 2.5 explains these
anchors.

4.1 Validate Email Addresses | 217

The issue with ‹^› and ‹$› versus ‹\A› and ‹\Z› applies to all regular ex-
pressions that validate input. There are a lot of these in this book. Al-
though we will offer the occasional reminder, we will not constantly
repeat this advice or show separate solutions for JavaScript and Ruby
for each and every recipe. In many cases, we’ll show only one solution
using the caret and dollar, and list Ruby as a compatible flavor. If you’re
using Ruby, remember to use ‹\A› and ‹\Z› if you want to avoid matching
one line in a multiline string.

Building a regex step-by-step

This recipe illustrates how you can build a regular expression step-by-step. This tech-
nique is particularly handy with an interactive regular expression tester, such as
RegexBuddy.

First, load a bunch of valid and invalid sample data into the tool. In this case, that would
be a list of valid email addresses and a list of invalid email addresses.

Then, write a simple regular expression that matches all the valid email addresses.
Ignore the invalid addresses for now. ‹^\S+@\S+$› already defines the basic structure of
an email address: a username, an at sign, and a domain name.

With the basic structure of your text pattern defined, you can refine each part until
your regular expression no longer matches any of the invalid data. If your regular ex-
pression only has to work with previously existing data, that can be a quick job. If your
regex has to work with any user input, editing the regular expression until it is restrictive
enough will be a much harder job than just getting it to match the valid data.

Variations
If you want to search for email addresses in larger bodies of text instead of checking
whether the input as a whole is an email address, you cannot use the anchors ‹^› and
‹$›. Merely removing the anchors from the regular expression is not the right solution.
If you do that with the final regex, which restricts the top-level domain to letters, it will
match asdf@asdf.as in asdf@asdf.as99, for example. Instead of anchoring the regex
match to the start and end of the subject, you have to specify that the start of the
username and the top-level domain cannot be part of longer words.

This is easily done with a pair of word boundaries. Replace both ‹^› and ‹$›
with ‹\b›. For instance, ‹^[A-Z0-9+_.-]+@(?:[A-Z0-9-]+\.)+[A-Z]{2,6}$› becomes
‹\b[A-Z0-9+_.-]+@(?:[A-Z0-9-]+\.)+[A-Z]{2,6}\b›.
This regex indeed combines the username portion from “Simple, with restrictions on
characters” on page 214 and the domain name portion from “Top-level domain has
two to six letters” on page 215. We find that this regular expression works quite well
in practice.

218 | Chapter 4: Validation and Formatting

See Also
RFC 2822 defines the structure and syntax of email messages, including the email ad-
dresses used in email messages. You can download RFC 2822 at http://www.ietf.org/
rfc/rfc2822.txt.

4.2 Validate and Format North American Phone Numbers
Problem
You want to determine whether a user entered a North American phone number in a
common format, including the local area code. These formats include 1234567890,
123-456-7890, 123.456.7890, 123 456 7890, (123) 456 7890, and all related combina-
tions. If the phone number is valid, you want to convert it to your standard format,
(123) 456-7890, so that your phone number records are consistent.

Solution
A regular expression can easily check whether a user entered something that looks like
a valid phone number. By using capturing groups to remember each set of digits, the
same regular expression can be used to replace the subject text with precisely the format
you want.

Regular expression
^\(?([0-9]{3})\)?[-.●]?([0-9]{3})[-.●]?([0-9]{4})$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Replacement
($1)●$2-$3

Replacement text flavors: .NET, Java, JavaScript, Perl, PHP

(\1)●\2-\3
Replacement text flavors: Python, Ruby

C#
Regex regexObj =
 new Regex(@"^\(?([0-9]{3})\)?[-.]?([0-9]{3})[-.]?([0-9]{4})$");

if (regexObj.IsMatch(subjectString)) {
 string formattedPhoneNumber =
 regexObj.Replace(subjectString, "($1) $2-$3");
} else {

4.2 Validate and Format North American Phone Numbers | 219

 // Invalid phone number
}

JavaScript
var regexObj = /^\(?([0-9]{3})\)?[-.]?([0-9]{3})[-.]?([0-9]{4})$/;
if (regexObj.test(subjectString)) {
 var formattedPhoneNumber =
 subjectString.replace(regexObj, "($1) $2-$3");
} else {
 // Invalid phone number
}

Other programming languages

See Recipes 3.5 and 3.15 for help implementing this regular expression with other
programming languages.

Discussion
This regular expression matches three groups of digits. The first group can optionally
be enclosed with parentheses, and the first two groups can optionally be followed with
a choice of three separators (a hyphen, dot, or space). The following layout breaks the
regular expression into its individual parts, omitting the redundant groups of digits:

^ # Assert position at the beginning of the string.
\(# Match a literal "("...
 ? # between zero and one time.
(# Capture the enclosed match to backreference 1...
 [0-9] # Match a digit...
 {3} # exactly three times.
) # End capturing group 1.
\) # Match a literal ")"...
 ? # between zero and one time.
[-.] # Match one character from the set "-. "...
 ? # between zero and one time.
⋯ # [Match the remaining digits and separator.]
$ # Assert position at the end of the string.

Let’s look at each of these parts more closely.

The ‹^› and ‹$› at the beginning and end of the regular expression are a special kind of
metacharacter called an anchor or assertion. Instead of matching text, assertions match
a position within the text. Specifically, ‹^› matches at the beginning of the text, and
‹$› at the end. This ensures that the phone number regex does not match within longer
text, such as 123-456-78901.

As we’ve repeatedly seen, parentheses are special characters in regular expressions, but
in this case we want to allow a user to enter parentheses and have our regex recognize

220 | Chapter 4: Validation and Formatting

them. This is a textbook example of where we need a backslash to escape a special
character so the regular expression treats it as literal input. Thus, the ‹\(› and ‹\)›
sequences that enclose the first group of digits match literal parenthesis characters.
Both are followed by a question mark, which makes them optional. We’ll explain more
about the question mark after discussing the other types of tokens in this regular
expression.

The parentheses that appear without backslashes are capturing groups and are used to
remember the values matched within them so that the matched text can be recalled
later. In this case, backreferences to the captured values are used in the replacement
text so we can easily reformat the phone number as needed.

Two other types of tokens used in this regular expression are character classes and
quantifiers. Character classes allow you to match any one out of a set of characters.
‹[0-9]› is a character class that matches any digit. The regular expression flavors cov-
ered by this book all include the shorthand character class ‹\d› that also matches a digit,
but in some flavors ‹\d› matches a digit from any language’s character set or script,
which is not what we want here. See Recipe 2.3 for more information about ‹\d›.
‹[-.●]› is another character class, one that allows any one of three separators. It’s
important that the hyphen appears first in this character class, because if it appeared
between other characters, it would create a range, as with ‹[0-9]›. Another way to
ensure that a hyphen inside a character class matches a literal version of itself is to
escape it with a backslash. ‹[.\-●]› is therefore equivalent.

Finally, quantifiers allow you to repeat a token or group. ‹{3}› is a quantifier that causes
its preceding element to be repeated exactly three times. The regular expression ‹[0-9]
{3}› is therefore equivalent to ‹[0-9][0-9][0-9]›, but is shorter and hopefully easier to
read. A question mark (mentioned earlier) is a special quantifier that causes its pre-
ceding element to repeat zero or one time. It could also be written as ‹{0,1}›. Any
quantifier that allows something to be repeated zero times effectively makes that ele-
ment optional. Since a question mark is used after each separator, the phone number
digits are allowed to run together.

Note that although this recipe claims to handle North American phone numbers, it’s
actually designed to work with North American Numbering Plan (NANP) numbers.
The NANP is the telephone numbering plan for the countries that share the country
code “1”. This includes the United States and its territories, Canada, Bermuda, and 16
Caribbean nations. It excludes Mexico and the Central American nations.

Variations

Eliminate invalid phone numbers

So far, the regular expression matches any 10-digit number. If you want to limit matches
to valid phone numbers according to the North American Numbering Plan, here are
the basic rules:

4.2 Validate and Format North American Phone Numbers | 221

• Area codes start with a number from 2–9, followed by 0–8, and then any third digit.

• The second group of three digits, known as the central office or exchange code,
starts with a number from 2–9, followed by any two digits.

• The final four digits, known as the station code, have no restrictions.

These rules can easily be implemented with a few character classes.

^\(?([2-9][0-8][0-9])\)?[-.●]?([2-9][0-9]{2})[-.●]?([0-9]{4})$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Beyond the basic rules just listed, there are a variety of reserved, unassigned, and re-
stricted phone numbers. Unless you have very specific needs that require you to filter
out as many phone numbers as possible, don’t go overboard trying to eliminate unused
numbers. New area codes that fit the rules listed earlier are made available regularly,
and even if a phone number is valid, that doesn’t necessarily mean it was issued or is
in active use.

Find phone numbers in documents

Two simple changes allow the previous regular expression to match phone numbers
within longer text:

\(?\b([0-9]{3})\)?[-.●]?([0-9]{3})[-.●]?([0-9]{4})\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Here, the ‹^› and ‹$› assertions that bound the regular expression to the beginning and
end of the text have been removed. In their place, word boundary tokens (‹\b›) have
been added to ensure that the matched text stands on its own and is not part of a longer
number or word.

Similar to ‹^› and ‹$›, ‹\b› is an assertion that matches a position rather than any actual
text. Specifically, ‹\b› matches the position between a word character and either a non-
word character or the beginning or end of the text. Letters, numbers, and underscore
are all considered word characters (see Recipe 2.6).

Note that the first word boundary token appears after the optional, opening parenthe-
sis. This is important because there is no word boundary to be matched between two
nonword characters, such as the opening parenthesis and a preceding space character.
The first word boundary is relevant only when matching a number without parentheses,
since the word boundary always matches between the opening parenthesis and the first
digit of a phone number.

Allow a leading “1”

You can allow an optional, leading “1” for the country code (which covers the North
American Numbering Plan region) via the addition shown in the following regex:

222 | Chapter 4: Validation and Formatting

^(?:\+?1[-.●]?)?\(?([0-9]{3})\)?[-.●]?([0-9]{3})[-.●]?([0-9]{4})$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

In addition to the phone number formats shown previously, this regular expression
will also match strings such as +1 (123) 456-7890 and 1-123-456-7890. It uses a non-
capturing group, written as ‹(?:⋯)›. When a question mark follows an unescaped left
parenthesis like this, it’s not a quantifier, but instead helps to identify the type of
grouping. Standard capturing groups require the regular expression engine to keep
track of backreferences, so it’s more efficient to use noncapturing groups whenever the
text matched by a group does not need to be referenced later. Another reason to use a
noncapturing group here is to allow you to keep using the same replacement string as
in the previous examples. If we added a capturing group, we’d have to change $1 to
$2 (and so on) in the replacement text shown earlier in this recipe.

The full addition to this version of the regex is ‹(?:\+?1[-.●]?)?›. The “1” in this pattern
is preceded by an optional plus sign, and optionally followed by one of three separators
(hyphen, dot, or space). The entire, added noncapturing group is also optional, but
since the “1” is required within the group, the preceding plus sign and separator are
not allowed if there is no leading “1”.

Allow seven-digit phone numbers

To allow matching phone numbers that omit the local area code, enclose the first group
of digits together with its surrounding parentheses and following separator in an op-
tional, noncapturing group:

^(?:\(?([0-9]{3})\)?[-.●]?)?([0-9]{3})[-.●]?([0-9]{4})$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Since the area code is no longer required as part of the match, simply replacing any
match with «($1)●$2-$3» might now result in something like () 123-4567, with an
empty set of parentheses. To work around this, add code outside the regex that checks
whether group 1 matched any text, and adjust the replacement text accordingly.

See Also
Recipe 4.3 shows how to validate international phone numbers.

The North American Numbering Plan (NANP) is the telephone numbering plan for
the United States and its territories, Canada, Bermuda, and 16 Caribbean nations. More
information is available at http://www.nanpa.com.

4.2 Validate and Format North American Phone Numbers | 223

4.3 Validate International Phone Numbers
Problem
You want to validate international phone numbers. The numbers should start with a
plus sign, followed by the country code and national number.

Solution

Regular expression
^\+(?:[0-9]●?){6,14}[0-9]$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

JavaScript
function validate (phone) {
 var regex = /^\+(?:[0-9] ?){6,14}[0-9]$/;

 if (regex.test(phone)) {
 // Valid international phone number
 } else {
 // Invalid international phone number
 }
}

Other programming languages

See Recipe 3.5 for help implementing this regular expression with other programming
languages.

Discussion
The rules and conventions used to print international phone numbers vary significantly
around the world, so it’s hard to provide meaningful validation for an international
phone number unless you adopt a strict format. Fortunately, there is a simple, industry-
standard notation specified by ITU-T E.123. This notation requires that international
phone numbers include a leading plus sign (known as the international prefix sym-
bol), and allows only spaces to separate groups of digits. Although the tilde character
(~) can appear within a phone number to indicate the existence of an additional dial
tone, it has been excluded from this regular expression since it is merely a procedural
element (in other words, it is not actually dialed) and is infrequently used. Thanks to
the international phone numbering plan (ITU-T E.164), phone numbers cannot con-
tain more than 15 digits. The shortest international phone numbers in use contain seven
digits.

224 | Chapter 4: Validation and Formatting

With all of this in mind, let’s look at the regular expression again after breaking it into
its pieces. Because this version is written using free-spacing style, the literal space char-
acter has been replaced with ‹\x20›:

^ # Assert position at the beginning of the string.
\+ # Match a literal "+" character.
(?: # Group but don't capture...
 [0-9] # Match a digit.
 \x20 # Match a space character...
 ? # Between zero and one time.
) # End the noncapturing group.
 {6,14} # Repeat the preceding group between 6 and 14 times.
[0-9] # Match a digit.
$ # Assert position at the end of the string.

Regex options: Free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

The ‹^› and ‹$› anchors at the edges of the regular expression ensure that it matches
the whole subject text. The noncapturing group—enclosed with ‹(?:⋯)›—matches a
single digit, followed by an optional space character. Repeating this grouping with the
interval quantifier ‹{6,14}› enforces the rules for the minimum and maximum number
of digits, while allowing space separators to appear anywhere within the number. The
second instance of the character class ‹[0-9]› completes the rule for the number of digits
(bumping it up from between 6 and 14 digits to between 7 and 15), and ensures that
the phone number does not end with a space.

Variations

Validate international phone numbers in EPP format
^\+[0-9]{1,3}\.[0-9]{4,14}(?:x.+)?$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

This regular expression follows the international phone number notation specified by
the Extensible Provisioning Protocol (EPP). EPP is a relatively recent protocol (finalized
in 2004), designed for communication between domain name registries and
registrars. It is used by a growing number of domain name registries, includ-
ing .com, .info, .net, .org, and .us. The significance of this is that EPP-style international
phone numbers are increasingly used and recognized, and therefore provide a good
alternative format for storing (and validating) international phone numbers.

EPP-style phone numbers use the format +CCC.NNNNNNNNNNxEEEE, where C is the 1–3 digit
country code, N is up to 14 digits, and E is the (optional) extension. The leading plus
sign and the dot following the country code are required. The literal “x” character is
required only if an extension is provided.

4.3 Validate International Phone Numbers | 225

See Also
Recipe 4.2 provides more options for validating North American phone numbers.

ITU-T Recommendation E.123 (“Notation for national and international telephone
numbers, e-mail addresses and Web addresses”) can be downloaded here: http://www
.itu.int/rec/T-REC-E.123.

ITU-T Recommendation E.164 (“The international public telecommunication num-
bering plan”) can be downloaded at http://www.itu.int/rec/T-REC-E.164.

National numbering plans can be downloaded at http://www.itu.int/ITU-T/inr/nnp.

RFC 4933 defines the syntax and semantics of EPP contact identifiers, including inter-
national phone numbers. You can download RFC 4933 at http://tools.ietf.org/html/
rfc4933.

4.4 Validate Traditional Date Formats
Problem
You want to validate dates in the traditional formats mm/dd/yy, mm/dd/yyyy,
dd/mm/yy, and dd/mm/yyyy. You want to use a simple regex that simply checks
whether the input looks like a date, without trying to weed out things such as February
31st.

Solution
Match any of these date formats, allowing leading zeros to be omitted:

^[0-3]?[0-9]/[0-3]?[0-9]/(?:[0-9]{2})?[0-9]{2}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Match any of these date formats, requiring leading zeros:

^[0-3][0-9]/[0-3][0-9]/(?:[0-9][0-9])?[0-9][0-9]$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Match m/d/yy and mm/dd/yyyy, allowing any combination of one or two digits for the
day and month, and two or four digits for the year:

^(1[0-2]|0?[1-9])/(3[01]|[12][0-9]|0?[1-9])/(?:[0-9]{2})?[0-9]{2}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

226 | Chapter 4: Validation and Formatting

Match mm/dd/yyyy, requiring leading zeros:

^(1[0-2]|0[1-9])/(3[01]|[12][0-9]|0[1-9])/[0-9]{4}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Match d/m/yy and dd/mm/yyyy, allowing any combination of one or two digits for the
day and month, and two or four digits for the year:

^(3[01]|[12][0-9]|0?[1-9])/(1[0-2]|0?[1-9])/(?:[0-9]{2})?[0-9]{2}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Match dd/mm/yyyy, requiring leading zeros:

^(3[01]|[12][0-9]|0[1-9])/(1[0-2]|0[1-9])/[0-9]{4}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Match any of these date formats with greater accuracy, allowing leading zeros to be
omitted:

^(?:(1[0-2]|0?[1-9])/(3[01]|[12][0-9]|0?[1-9])|↵
(3[01]|[12][0-9]|0?[1-9])/(1[0-2]|0?[1-9]))/(?:[0-9]{2})?[0-9]{2}$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Match any of these date formats with greater accuracy, requiring leading zeros:

^(?:(1[0-2]|0[1-9])/(3[01]|[12][0-9]|0[1-9])|↵
(3[01]|[12][0-9]|0[1-9])/(1[0-2]|0[1-9]))/[0-9]{4}$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The free-spacing option makes these last two a bit more readable:

^(?:
 # m/d or mm/dd
 (1[0-2]|0?[1-9])/(3[01]|[12][0-9]|0?[1-9])
|
 # d/m or dd/mm
 (3[01]|[12][0-9]|0?[1-9])/(1[0-2]|0?[1-9])
)
/yy or /yyyy
/(?:[0-9]{2})?[0-9]{2}$

Regex options: Free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

4.4 Validate Traditional Date Formats | 227

^(?:
 # mm/dd
 (1[0-2]|0[1-9])/(3[01]|[12][0-9]|0[1-9])
|
 # dd/mm
 (3[01]|[12][0-9]|0[1-9])/(1[0-2]|0[1-9])
)
/yyyy
/[0-9]{4}$

Regex options: Free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Discussion
You might think that something as conceptually trivial as a date should be an easy job
for a regular expression. But it isn’t, for two reasons. Because dates are such an everyday
thing, humans are very sloppy with them. 4/1 may be April Fools’ Day to you. To
somebody else, it may be the first working day of the year, if New Year’s Day is on a
Friday. The solutions shown match some of the most common date formats.

The other issue is that regular expressions don’t deal directly with numbers. You can’t
tell a regular expression to “match a number between 1 and 31”, for instance. Regular
expressions work character by character. We use ‹3[01]|[12][0-9]|0?[1-9]› to match
3 followed by 0 or 1, or to match 1 or 2 followed by any digit, or to match an optional
0 followed by 1 to 9. In character classes, we can use ranges for single digits, such as
‹[1-9]›. That’s because the characters for the digits 0 through 9 occupy consecutive
positions in the ASCII and Unicode character tables. See Chapter 6 for more details on
matching all kinds of numbers with regular expressions.

Because of this, you have to choose how simple or how accurate you want your regular
expression to be. If you already know your subject text doesn’t contain any invalid
dates, you could use a trivial regex such as ‹\d{2}/\d{2}/\d{4}›. The fact that this
matches things like 99/99/9999 is irrelevant if those don’t occur in the subject text. You
can quickly type in this simple regex, and it will be quickly executed.

The first two solutions for this recipe are quick and simple, too, and they also match
invalid dates, such as 0/0/00 and 31/31/2008. They only use literal characters for the
date delimiters, and character classes (see Recipe 2.3) for the digits and the question
mark (see Recipe 2.12) to make certain digits optional. ‹(?:[0-9]{2})?[0-9]{2}› allows
the year to consist of two or four digits. ‹[0-9]{2}› matches exactly two digits.
‹(?:[0-9]{2})?› matches zero or two digits. The noncapturing group (see Recipe 2.9)
is required, because the question mark needs to apply to the character class and
the quantifier ‹{2}› combined. ‹[0-9]{2}?› matches exactly two digits, just like
‹[0-9]{2}›. Without the group, the question mark makes the quantifier lazy, which has
no effect because ‹{2}› cannot repeat more than two times or fewer than two times.

228 | Chapter 4: Validation and Formatting

Solutions 3 through 6 restrict the month to numbers between 1 and 12, and the day to
numbers between 1 and 31. We use alternation (see Recipe 2.8) inside a group to match
various pairs of digits to form a range of two-digit numbers. We use capturing groups
here because you’ll probably want to capture the day and month numbers anyway.

The final two solutions are a little more complex, so we’re presenting these in both
condensed and free-spacing form. The only difference between the two forms is read-
ability. JavaScript does not support free-spacing. The final solutions allow all of the
date formats, just like the first two examples. The difference is that the last two use an
extra level of alternation to restrict the dates to 12/31 and 31/12, disallowing invalid
months, such as 31/31.

Variations
If you want to search for dates in larger bodies of text instead of checking whether the
input as a whole is a date, you cannot use the anchors ‹^› and ‹$›. Merely removing the
anchors from the regular expression is not the right solution. That would allow any of
these regexes to match 12/12/2001 within 9912/12/200199, for example. Instead of an-
choring the regex match to the start and end of the subject, you have to specify that the
date cannot be part of longer sequences of digits.

This is easily done with a pair of word boundaries. In regular expressions, digits are
treated as characters that can be part of words. Replace both ‹^› and ‹$› with ‹\b›. As
an example:

\b(1[0-2]|0[1-9])/(3[01]|[12][0-9]|0[1-9])/[0-9]{4}\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

See Also
Recipes 4.5, 4.6, and 4.7

4.5 Accurately Validate Traditional Date Formats
Problem
You want to validate dates in the traditional formats mm/dd/yy, mm/dd/yyyy, dd/mm/
yy, and dd/mm/yyyy. You want to weed out invalid dates, such as February 31st.

Solution

C#

Month before day:

4.5 Accurately Validate Traditional Date Formats | 229

DateTime foundDate;
Match matchResult = Regex.Match(SubjectString,
 "^(?<month>[0-3]?[0-9])/(?<day>[0-3]?[0-9])/" +
 "(?<year>(?:[0-9]{2})?[0-9]{2})$");
if (matchResult.Success) {
 int year = int.Parse(matchResult.Groups["year"].Value);
 if (year < 50) year += 2000;
 else if (year < 100) year += 1900;
 try {
 foundDate = new DateTime(year,
 int.Parse(matchResult.Groups["month"].Value),
 int.Parse(matchResult.Groups["day"].Value));
 } catch {
 // Invalid date
 }
}

Day before month:

DateTime foundDate;
Match matchResult = Regex.Match(SubjectString,
 "^(?<day>[0-3]?[0-9])/(?<month>[0-3]?[0-9])/" +
 "(?<year>(?:[0-9]{2})?[0-9]{2})$");
if (matchResult.Success) {
 int year = int.Parse(matchResult.Groups["year"].Value);
 if (year < 50) year += 2000;
 else if (year < 100) year += 1900;
 try {
 foundDate = new DateTime(year,
 int.Parse(matchResult.Groups["month"].Value),
 int.Parse(matchResult.Groups["day"].Value));
 } catch {
 // Invalid date
 }
}

Perl

Month before day:

@daysinmonth = (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);
$validdate = 0;
if ($subject =~ m!^([0-3]?[0-9])/([0-3]?[0-9])/((?:[0-9]{2})?[0-9]{2})$!) {
 $month = $1;
 $day = $2;
 $year = $3;
 $year += 2000 if $year < 50;
 $year += 1900 if $year < 100;
 if ($month == 2 && $year % 4 == 0 && ($year % 100 != 0 ||
 $year % 400 == 0)) {

230 | Chapter 4: Validation and Formatting

 $validdate = 1 if $day >= 1 && $day <= 29;
 } elsif ($month >= 1 && $month <= 12) {
 $validdate = 1 if $day >= 1 && $day <= $daysinmonth[$month-1];
 }
}

Day before month:

@daysinmonth = (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);
$validdate = 0;
if ($subject =~ m!^([0-3]?[0-9])/([0-3]?[0-9])/((?:[0-9]{2})?[0-9]{2})$!) {
 $day = $1;
 $month = $2;
 $year = $3;
 $year += 2000 if $year < 50;
 $year += 1900 if $year < 100;
 if ($month == 2 && $year % 4 == 0 && ($year % 100 != 0 ||
 $year % 400 == 0)) {
 $validdate = 1 if $day >= 1 && $day <= 29;
 } elsif ($month >= 1 && $month <= 12) {
 $validdate = 1 if $day >= 1 && $day <= $daysinmonth[$month-1];
 }
}

Pure regular expression

Month before day:

^(?:
 # February (29 days every year)
 (?<month>0?2)/(?<day>[12][0-9]|0?[1-9])
|
 # 30-day months
 (?<month>0?[469]|11)/(?<day>30|[12][0-9]|0?[1-9])
|
 # 31-day months
 (?<month>0?[13578]|1[02])/(?<day>3[01]|[12][0-9]|0?[1-9])
)
Year
/(?<year>(?:[0-9]{2})?[0-9]{2})$

Regex options: Free-spacing
Regex flavors: .NET

^(?:
 # February (29 days every year)
 (0?2)/([12][0-9]|0?[1-9])
|
 # 30-day months
 (0?[469]|11)/(30|[12][0-9]|0?[1-9])
|

4.5 Accurately Validate Traditional Date Formats | 231

 # 31-day months
 (0?[13578]|1[02])/(3[01]|[12][0-9]|0?[1-9])
)
Year
/((?:[0-9]{2})?[0-9]{2})$

Regex options: Free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^(?:(0?2)/([12][0-9]|0?[1-9])|(0?[469]|11)/(30|[12][0-9]|0?[1-9])|↵
(0?[13578]|1[02])/(3[01]|[12][0-9]|0?[1-9]))/((?:[0-9]{2})?[0-9]{2})$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Day before month:

^(?:
 # February (29 days every year)
 (?<day>[12][0-9]|0?[1-9])/(?<month>0?2)
|
 # 30-day months
 (?<day>30|[12][0-9]|0?[1-9])/(?<month>0?[469]|11)
|
 # 31-day months
 (?<day>3[01]|[12][0-9]|0?[1-9])/(?<month>0?[13578]|1[02])
)
Year
/(?<year>(?:[0-9]{2})?[0-9]{2})$

Regex options: Free-spacing
Regex flavors: .NET

^(?:
 # February (29 days every year)
 ([12][0-9]|0?[1-9])/(0?2)
|
 # 30-day months
 (30|[12][0-9]|0?[1-9])/([469]|11)
|
 # 31-day months
 (3[01]|[12][0-9]|0?[1-9])/(0?[13578]|1[02])
)
Year
/((?:[0-9]{2})?[0-9]{2})$

Regex options: Free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^(?:([12][0-9]|0?[1-9])/(0?2)|(30|[12][0-9]|0?[1-9])/([469]|11)|↵
(3[01]|[12][0-9]|0?[1-9])/(0?[13578]|1[02]))/((?:[0-9]{2})?[0-9]{2})$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

232 | Chapter 4: Validation and Formatting

Discussion
There are essentially two ways to accurately validate dates with a regular expression.
One method is to use a simple regex that merely captures groups of numbers that look
like a month/day/year combination, and then use procedural code to check whether
the date is correct. I used the first regex from the previous recipe that allows any number
between 0 and 39 for the day and month. That makes it easy to change the format from
mm/dd/yy to dd/mm/yy by changing which capturing group is treated as the month.

The main benefit of this method is that you can easily add additional restrictions, such
as limiting dates to certain periods. Many programming languages provide specific
support for dealing with dates. The C# solution uses .NET’s DateTime structure to
check whether the date is valid and return the date in a useful format, all in one step.

The other method is to do everything with a regular expression. The solution is man-
ageable, if we take the liberty of treating every year as a leap year. We can use the same
technique of spelling out the alternatives as we did for the more final solutions presented
with the preceding recipe.

The problem with using a single regular expression is that it no longer neatly captures
the day and month in a single capturing group. We now have three capturing groups
for the month, and three for the day. When the regex matches a date, only three of the
seven groups in the regex will actually capture something. If the month is February,
groups 1 and 2 capture the month and day. If the month has 30 days, groups 3 and 4
return the month and day. If the month has 31 days, groups 5 and 6 take action. Group
7 always captures the year.

Only the .NET regex flavor helps us in this situation. .NET allows multiple named
capturing groups (see Recipe 2.11) to have the same name, and uses the same storage
space for groups with the same name. If you use the .NET-only solution with named
capture, you can simply retrieve the text matched by the groups “month” and “day”
without worrying about how many days the month has. All the other flavors discussed
in this book either don’t support named capture, don’t allow two groups to have the
same name, or return only the text captured by the last group with any given name.
For those flavors, numbered capture is the only way to go.

The pure regex solution is interesting only in situations where one regex is all you can
use, such as when you’re using an application that offers one box to type in a regex.
When programming, make things easier with a bit of extra code. This will be particu-
larly helpful if you want to add extra checks on the date later. Here’s a pure regex
solution that matches any date between 2 May 2007 and 29 August 2008 in d/m/yy or
dd/mm/yyyy format:

2 May 2007 till 29 August 2008
^(?:
 # 2 May 2007 till 31 December 2007
 (?:
 # 2 May till 31 May

4.5 Accurately Validate Traditional Date Formats | 233

 (?<day>3[01]|[12][0-9]|0?[2-9])/(?<month>0?5)/(?<year>2007)
 |
 # 1 June till 31 December
 (?:
 # 30-day months
 (?<day>30|[12][0-9]|0?[1-9])/(?<month>0?[69]|11)
 |
 # 31-day months
 (?<day>3[01]|[12][0-9]|0?[1-9])/(?<month>0?[78]|1[02])
)
 /(?<year>2007)
)
|
 # 1 January 2008 till 29 August 2008
 (?:
 # 1 August till 29 August
 (?<day>[12][0-9]|0?[1-9])/(?<month>0?8)/(?<year>2008)
 |
 # 1 Janary till 30 June
 (?:
 # February
 (?<day>[12][0-9]|0?[1-9])/(?<month>0?2)
 |
 # 30-day months
 (?<day>30|[12][0-9]|0?[1-9])/(?<month>0?[46])
 |
 # 31-day months
 (?<day>3[01]|[12][0-9]|0?[1-9])/(?<month>0?[1357])
)
 /(?<year>2008)
)
)$

Regex options: Free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

See Also
Recipes 4.4, 4.6, and 4.7

4.6 Validate Traditional Time Formats
Problem
You want to validate times in various traditional time formats, such as hh:mm and
hh:mm:ss in both 12-hour and 24-hour formats.

234 | Chapter 4: Validation and Formatting

Solution
Hours and minutes, 12-hour clock:

^(1[0-2]|0?[1-9]):([0-5]?[0-9])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Hours and minutes, 24-hour clock:

^(2[0-3]|[01]?[0-9]):([0-5]?[0-9])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Hours, minutes and seconds, 12-hour clock:

^(1[0-2]|0?[1-9]):([0-5]?[0-9]):([0-5]?[0-9])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Hours, minutes and seconds, 24-hour clock:

^(2[0-3]|[01]?[0-9]):([0-5]?[0-9]):([0-5]?[0-9])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The question marks in all of the preceding regular expressions make leading zeros
optional. Remove the question marks to make leading zeros mandatory.

Discussion
Validating times is considerably easier than validating dates. Every hour has 60 minutes,
and every minute has 60 seconds. This means we don’t need any complicated alterna-
tions in the regex. For the minutes and seconds, we don’t use alternation at all. ‹[0-5]?
[0-9]› matches a digit between 0 and 5, followed by a digit between 0 and 9. This
correctly matches any number between 0 and 59. The question mark after the first
character class makes it optional. This way, a single digit between 0 and 9 is also ac-
cepted as a valid minute or second. Remove the question mark if the first 10 minutes
and seconds should be written as 00 to 09. See Recipe 2.3 and Recipe 2.12 for details
on character classes and quantifiers such as the question mark.

For the hours, we do use alternation (see Recipe 2.8). The second digit allows different
ranges, depending on the first digit. On a 12-hour clock, if the first digit is 0, the second
digit allows all 10 digits, but if the first digit is 1, the second digit must be 0, 1, or 2. In
a regular expression, we write this as ‹1[0-2]|0?[1-9]›. On a 24-hour clock, if the first
digit is 0 or 1, the second digit allows all 10 digits, but if the first digit is 2, the second
digit must be between 0 and 3. In regex syntax, this can be expressed as 2[0-3]|[01]?
[0-9]. Again, the question mark allows the first 10 hours to be written with a single
digit. Remove the question mark to require two digits.

4.6 Validate Traditional Time Formats | 235

We put parentheses around the parts of the regex that match the hours, minutes, and
seconds. That makes it easy to retrieve the digits for the hours, minutes, and seconds
without the colons. Recipe 2.9 explains how parentheses create capturing groups.
Recipe 3.9 explains how you can retrieve the text matched by those capturing groups
in procedural code.

The parentheses around the hour part keeps two alternatives for the hour together. If
you remove those parentheses, the regex won’t work correctly. Removing the paren-
theses around the minutes and seconds has no effect, other than making it impossible
to retrieve their digits separately.

Variations
If you want to search for times in larger bodies of text instead of checking whether the
input as a whole is a time, you cannot use the anchors ‹^› and ‹$›. Merely removing the
anchors from the regular expression is not the right solution. That would allow the
hour and minute regexes to match 12:12 within 9912:1299, for instance. Instead of
anchoring the regex match to the start and end of the subject, you have to specify that
the date cannot be part of longer sequences of digits.

This is easily done with a pair of word boundaries. In regular expressions, digits are
treated as characters that can be part of words. Replace both ‹^› and ‹$› with ‹\b›. As
an example:

\b(2[0-3]|[01]?[0-9]):([0-5]?[0-9])\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Word boundaries don’t disallow everything; they only disallow letters, digits and un-
derscores. The regex just shown, which matches hours and minutes on a 24-hour clock,
matches 16:08 within the subject text The time is 16:08:42 sharp. The space is not a
word character, whereas the 1 is, so the word boundary matches between them. The
8 is a word character, whereas the colon isn’t, so ‹\b› also matches between those two.

If you want to disallow colons as well as word characters, you need to use lookaround
(see Recipe 2.16). The following regex will not match any part of The time is 16:08:42
sharp. It only works with flavors that support lookbehind:

(?<![:\w])(2[0-3]|[01]?[0-9]):([0-5]?[0-9])(?![:\w])
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

See Also
Recipes 4.4, 4.5, and 4.7

236 | Chapter 4: Validation and Formatting

4.7 Validate ISO 8601 Dates and Times
Problem
You want to match dates and/or times in the official ISO 8601 format, which is the
basis for many standardized date and time formats. For example, in XML Schema, the
built-in date, time, and dateTime types are all based on ISO 8601.

Solution
The following matches a calendar month, e.g., 2008-08. The hyphen is required:

^([0-9]{4})-(1[0-2]|0[1-9])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

^(?<year>[0-9]{4})-(?<month>1[0-2]|0[1-9])$
Regex options: None
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

^(?P<year>[0-9]{4})-(?P<month>1[0-2]|0[1-9])$
Regex options: None
Regex flavors: PCRE, Python

Calendar date, e.g., 2008-08-30. The hyphens are optional. This regex allows YYYY-
MMDD and YYYYMM-DD, which do not follow ISO 8601:

^([0-9]{4})-?(1[0-2]|0[1-9])-?(3[0-1]|0[1-9]|[1-2][0-9])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

^(?<year>[0-9]{4})-?(?<month>1[0-2]|0[1-9])-?↵
(?<day>3[0-1]|0[1-9]|[1-2][0-9])$

Regex options: None
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

Calendar date, e.g., 2008-08-30. The hyphens are optional. This regex uses a conditional
to exclude YYYY-MMDD and YYYYMM-DD. There is an extra capturing group for
the first hyphen:

^([0-9]{4})(-)?(1[0-2]|0[1-9])(?(2)-)(3[0-1]|0[1-9]|[1-2][0-9])$
Regex options: None
Regex flavors: .NET, PCRE, Perl, Python

Calendar date, e.g., 2008-08-30. The hyphens are optional. This regex uses alternation
to exclude YYYY-MMDD and YYYYMM-DD. There are two capturing groups for the
month:

4.7 Validate ISO 8601 Dates and Times | 237

^([0-9]{4})(?:(1[0-2]|0[1-9])|-?(1[0-2]|0[1-9])-?)↵
(3[0-1]|0[1-9]|[1-2][0-9])$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Week of the year, e.g., 2008-W35. The hyphen is optional:

^([0-9]{4})-?W(5[0-3]|[1-4][0-9]|0[1-9])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

^(?<year>[0-9]{4})-?W(?<week>5[0-3]|[1-4][0-9]|0[1-9])$
Regex options: None
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

Week date, e.g., 2008-W35-6. The hyphens are optional:

^([0-9]{4})-?W(5[0-3]|[1-4][0-9]|0[1-9])-?([1-7])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

^(?<year>[0-9]{4})-?W(?<week>5[0-3]|[1-4][0-9]|0[1-9])-?(?<day>[1-7])$
Regex options: None
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

Ordinal date, e.g., 2008-243. The hyphen is optional:

^([0-9]{4})-?(36[0-6]|3[0-5][0-9]|[12][0-9]{2}|0[1-9][0-9]|00[1-9])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

^(?<year>[0-9]{4})-?↵
(?<day>36[0-6]|3[0-5][0-9]|[12][0-9]{2}|0[1-9][0-9]|00[1-9])$

Regex options: None
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

Hours and minutes, e.g., 17:21. The colon is optional:

^(2[0-3]|[01]?[0-9]):?([0-5]?[0-9])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

^(?<hour>2[0-3]|[01]?[0-9]):?(?<minute>[0-5]?[0-9])$
Regex options: None
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

Hours, minutes, and seconds, e.g., 17:21:59. The colons are optional:

^(2[0-3]|[01]?[0-9]):?([0-5]?[0-9]):?([0-5]?[0-9])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

238 | Chapter 4: Validation and Formatting

^(?<hour>2[0-3]|[01]?[0-9]):?(?<minute>[0-5]?[0-9]):?↵
(?<second>[0-5]?[0-9])$

Regex options: None
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

Time zone designator, e.g., Z, +07 or +07:00. The colons and the minutes are optional:

^(Z|[+-](?:2[0-3]|[01]?[0-9])(?::?(?:[0-5]?[0-9]))?)$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Hours, minutes, and seconds with time zone designator, e.g., 17:21:59+07:00. All the
colons are optional. The minutes in the time zone designator are also optional:

^(2[0-3]|[01]?[0-9]):?([0-5]?[0-9]):?([0-5]?[0-9])↵
(Z|[+-](?:2[0-3]|[01]?[0-9])(?::?(?:[0-5]?[0-9]))?)$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

^(?<hour>2[0-3]|[01]?[0-9]):?(?<minute>[0-5]?[0-9]):?(?<sec>[0-5]?[0-9])↵
(?<timezone>Z|[+-](?:2[0-3]|[01]?[0-9])(?::?(?:[0-5]?[0-9]))?)$

Regex options: None
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

Date, with optional time zone, e.g., 2008-08-30 or 2008-08-30+07:00. Hyphens are re-
quired. This is the XML Schema date type:

^(-?(?:[1-9][0-9]*)?[0-9]{4})-(1[0-2]|0[1-9])-(3[0-1]|0[1-9]|[1-2][0-9])↵
(Z|[+-](?:2[0-3]|[0-1][0-9]):[0-5][0-9])?$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

^(?<year>-?(?:[1-9][0-9]*)?[0-9]{4})-(?<month>1[0-2]|0[1-9])-↵
(?<day>3[0-1]|0[1-9]|[1-2][0-9])↵
(?<timezone>Z|[+-](?:2[0-3]|[0-1][0-9]):[0-5][0-9])?$

Regex options: None
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

Time, with optional microseconds and time zone, e.g., 01:45:36 or
01:45:36.123+07:00. This is the XML Schema dateTime type:

^(2[0-3]|[0-1][0-9]):([0-5][0-9]):([0-5][0-9])(\.[0-9]+)?↵
(Z|[+-](?:2[0-3]|[0-1][0-9]):[0-5][0-9])?$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

^(?<hour>2[0-3]|[0-1][0-9]):(?<minute>[0-5][0-9]):(?<second>[0-5][0-9])↵
(?<ms>\.[0-9]+)?(?<timezone>Z|[+-](?:2[0-3]|[0-1][0-9]):[0-5][0-9])?$

Regex options: None
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

4.7 Validate ISO 8601 Dates and Times | 239

Date and time, with optional microseconds and time zone, e.g., 2008-08-30T01:45:36
or 2008-08-30T01:45:36.123Z. This is the XML Schema dateTime type:

^(-?(?:[1-9][0-9]*)?[0-9]{4})-(1[0-2]|0[1-9])-(3[0-1]|0[1-9]|[1-2][0-9])↵
T(2[0-3]|[0-1][0-9]):([0-5][0-9]):([0-5][0-9])(\.[0-9]+)?↵
(Z|[+-](?:2[0-3]|[0-1][0-9]):[0-5][0-9])?$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

^(?<year>-?(?:[1-9][0-9]*)?[0-9]{4})-(?<month>1[0-2]|0[1-9])-↵
(?<day>3[0-1]|0[1-9]|[1-2][0-9])T(?<hour>2[0-3]|[0-1][0-9]):↵
(?<minute>[0-5][0-9]):(?<second>[0-5][0-9])(?<ms>\.[0-9]+)?↵
(?<timezone>Z|[+-](?:2[0-3]|[0-1][0-9]):[0-5][0-9])?$

Regex options: None
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

Discussion
ISO 8601 defines a wide range of date and time formats. The regular expressions pre-
sented here cover the most common formats, but most systems that use ISO 8601 use
only a subset. For example, in XML Schema dates and times, the hyphens and colons
are mandatory. To make hyphens and colons mandatory, simply remove the question
marks after them. To disallow hyphens and colons, remove the hyphens and colons
along with the question mark that follows them. Do watch out for the noncapturing
groups, which use the ‹(?:group)› syntax. If a question mark and a colon follow an
opening parenthesis, those three characters open a noncapturing group.

The regular expressions make the individual hyphens and colons optional, which does
not follow ISO 8601 exactly. For example, 1733:26 is not a valid ISO 8601 time, but
will be accepted by the time regexes. Requiring all hyphens and colons to be present
or omitted at the same time makes your regex quite a bit more complex. We’ve done
this as an example for the date regex, but in practice, as with the XML Schema types,
the delimiters are usually required or disallowed rather than optional.

We put parentheses around all the number parts of the regex. That makes it easy to
retrieve the numbers for the years, months, days, hours, minutes, seconds, and time
zones. Recipe 2.9 explains how parentheses create capturing groups. Recipe 3.9 ex-
plains how you can retrieve the text matched by those capturing groups in procedural
code.

For most regexes, we also show an alternative using named capture. Some of these date
and time formats may be unfamiliar to you or your fellow developers. Named capture
makes the regex easier to understand. .NET, PCRE 7, Perl 5.10, and Ruby 1.9 support
the ‹(?<name>group)› syntax. All versions of PCRE and Python covered in this book
support the alternative ‹(?P<name>group)› syntax, which adds a ‹P›. See Recipe 2.11 and
Recipe 3.9 for details.

240 | Chapter 4: Validation and Formatting

The number ranges in all the regexes are strict. For example, the calendar day is re-
stricted between 01 and 31. You’ll never end up with day 32 or month 13. None of the
regexes here attempt to exclude invalid day and month combinations, such as February
31st; Recipe 4.5 explains how you can deal with that.

Though some of these regexes are quite long, they’re all very straightforward and use
the same techniques explained in Recipe 4.4 and Recipe 4.6.

See Also
Recipes 4.4, 4.5, 4.6

4.8 Limit Input to Alphanumeric Characters
Problem
Your application requires that users limit their responses to one or more alphanumeric
characters from the English alphabet.

Solution
With regular expressions at your disposal, the solution is dead simple. A character class
can set up the allowed range of characters. With an added quantifier that repeats the
character class one or more times, and anchors that bind the match to the start and end
of the string, you’re good to go.

Regular expression
^[A-Z0-9]+$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Ruby
if subject =~ /^[A-Z0-9]+$/i
 puts "Subject is alphanumeric"
else
 puts "Subject is not alphanumeric"
end

Other programming languages

See Recipes 3.4 and 3.5 for help implementing this regular expression with other pro-
gramming languages.

4.8 Limit Input to Alphanumeric Characters | 241

Discussion
Let’s look at the four pieces of this regular expression one at a time:

^ # Assert position at the beginning of the string.
[A-Z0-9] # Match a character from "A" to "Z" or from "0" to "9"...
 + # between one and unlimited times.
$ # Assert position at the end of the string.

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

The ‹^› and ‹$› assertions at the beginning and end of the regular expression ensure
that the entire input string is tested. Without them, the regex could match any part of
a longer string, letting invalid characters through. The plus quantifier ‹+› repeats the
preceding element one or more times. If you wanted to allow the regex to match an
entirely empty string, you could replace the ‹+› with ‹*›. The asterisk quantifier ‹*›
allows zero or more repetitions, effectively making the preceding element optional.

Variations

Limit input to ASCII characters

The following regular expression limits input to the 128 characters in the seven-bit
ASCII character table. This includes 33 nonvisible control characters:

^[\x00-\x7F]+$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Limit input to ASCII non-control characters and line breaks

Use the following regular expression to limit input to visible characters and whitespace
in the ASCII character table, excluding control characters. The line feed and carriage
return characters (at positions 0x0A and 0x0D, respectively) are the most commonly
used control characters, so they’re explicitly included using ‹\n› (line feed) and
‹\r› (carriage return):

^[\n\r\x20-\x7E]+$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Limit input to shared ISO-8859-1 and Windows-1252 characters

ISO-8859-1 and Windows-1252 (often referred to as ANSI) are two commonly used
eight-bit character encodings that are both based on the Latin-1 standard (or more
formally, ISO/IEC 8859-1). However, the characters they map to the positions between
0x80 and 0x9F are incompatible. ISO-8859-1 uses these positions for control codes,
whereas Windows-1252 uses them for an extended range of letters and punctuation.

242 | Chapter 4: Validation and Formatting

These differences sometimes lead to difficulty displaying characters, particularly with
documents that do not declare their encoding or when the recipient is using a non-
Windows system. The following regular expression can be used to limit input to char-
acters that are shared by ISO-8859-1 and Windows-1252 (including shared control
characters):

^[\x00-\x7F\xA0-\xFF]+$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The hexadecimal notation might make this regular expression hard to read, but it works
the same way as the ‹[A-Z0-9]› character class shown earlier. It matches characters in
two ranges: \x00-\x7F and \xA0-\xFF.

Limit input to alphanumeric characters in any language

This regular expression limits input to letters and numbers from any language or script.
It uses a character class that includes properties for all code points in the Unicode letter
and number categories:

^[\p{L}\p{N}]+$
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Ruby 1.9

Unfortunately, Unicode properties are not supported by all of the regular expression
flavors covered by this book. Specifically, this regex will not work with JavaScript,
Python, or Ruby 1.8. Additionally, using this regex with PCRE requires PCRE to be
compiled with UTF-8 support. Unicode properties can be used with PHP’s preg func-
tions (which rely on PCRE) if the /u option is appended to the regex.

The following regex shows a workaround for Python:

^[^\W_]+$
Regex options: Unicode
Regex flavors: Python

Here, we work around the lack of Unicode properties in Python by using the UNICODE
or U flag when creating the regular expression. This changes the meaning of some regex
tokens by making them use the Unicode character table. ‹\w› gets us most of the way
to a solution since it matches alphanumeric characters and the underscore. By using
its inverse (‹\W›) in a negated character class, we can remove the underscore from this
set. Double negatives like this are occasionally quite useful in regular expressions,
though perhaps a little difficult to wrap your head around.*

* For even more fun (if you have a twisted definition of fun), try creating triple, quadruple, or even greater
levels of negatives by throwing in negative lookaround (see Recipe 2.16) and character class subtraction (see
“Flavor-Specific Features” on page 33 in Recipe 2.3).

4.8 Limit Input to Alphanumeric Characters | 243

See Also
Recipe 4.9 shows how to limit text by length instead of character set.

4.9 Limit the Length of Text
Problem
You want to test whether a string is composed of between 1 and 10 letters from A to Z.

Solution
All the programming languages covered by this book provide a simple, efficient way to
check the length of text. For example, JavaScript strings have a length property that
holds an integer indicating the string’s length. However, using regular expressions to
check text length can be useful in some situations, particularly when length is only one
of multiple rules that determine whether the subject text fits the desired pattern. The
following regular expression ensures that text is between 1 and 10 characters long, and
additionally limits the text to the uppercase letters A–Z. You can modify the regular
expressions to allow any minimum or maximum text length, or allow characters other
than A–Z.

Regular expression
^[A-Z]{1,10}$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Perl
if ($ARGV[0] =~ /^[A-Z]{1,10}$/) {
 print "Input is valid\n";
} else {
 print "Input is invalid\n";
}

Other programming languages

See Recipe 3.5 for help with implementing this regular expression with other program-
ming languages.

Discussion
Here’s the breakdown for this very straightforward regex:

^ # Assert position at the beginning of the string.
[A-Z] # Match one letter from "A" to "Z"...

244 | Chapter 4: Validation and Formatting

 {1,10} # between 1 and 10 times.
$ # Assert position at the end of the string.

Regex options: Free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

The ‹^› and ‹$› anchors ensure that the regex matches the entire subject string; other-
wise, it could match 10 characters within longer text. The ‹[A-Z]› character class
matches any single uppercase character from A to Z, and the interval quantifier
‹{1,10}› repeats the character class from 1 to 10 times. By combining the interval quan-
tifier with the surrounding start- and end-of-string anchors, the regex will fail to match
if the subject text’s length falls outside the desired range.

Note that the character class ‹[A-Z]› explicitly allows only uppercase letters. If you want
to also allow the lowercase letters a to z, you can either change the character class to
‹[A-Za-z]› or apply the case insensitive option. Recipe 3.4 shows how to do this.

A mistake commonly made by new regular expression users is to try to save a few
characters by using the character class range ‹[A-z]›. At first glance, this might seem
like a clever trick to allow all uppercase and lowercase letters. However, the ASCII
character table includes several punctuation characters in positions between the A to
Z and a to z ranges. Hence, ‹[A-z]› is actually equivalent to ‹[A-Z[\]^_`a-z]›.

Variations

Limit the length of an arbitrary pattern

Because quantifiers such as ‹{1,10}› apply only to the immediately preceding element,
limiting the number of characters that can be matched by patterns that include more
than a single token requires a different approach.

As explained in Recipe 2.16, lookaheads (and their counterpart, lookbehinds) are a
special kind of assertion that, like ‹^› and ‹$›, match a position within the subject string
and do not consume any characters. Lookaheads can be either positive or negative,
which means they can check if a pattern follows or does not follow the current position
in the match. A positive lookahead, written as ‹(?=⋯)›, can be used at the beginning
of the pattern to ensure that the string is within the target length range. The remainder
of the regex can then validate the desired pattern without worrying about text length.
Here’s a simple example:

^(?=.{1,10}$).*
Regex options: Dot matches line breaks
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^(?=[\S\s]{1,10}$)[\S\s]*
Regex options: None
Regex flavor: JavaScript

4.9 Limit the Length of Text | 245

It is important that the ‹$› anchor appears inside the lookahead because the maximum
length test works only if we ensure that there are no more characters after we’ve reached
the limit. Because the lookahead at the beginning of the regex enforces the length range,
the following pattern can then apply any additional validation rules. In this case, the
pattern ‹.*› (or ‹[\S\s]*› in the JavaScript version) is used to simply match the entire
subject text with no added constraints.

This regex uses the “dot matches line breaks” option to allow the dots to match all
characters, including line breaks. See Recipe 3.4 for details about how to apply this
modifier with your programming language. The JavaScript regex is different, since
JavaScript does not have a “dot matches line breaks” option. See “Any character in-
cluding line breaks” on page 35 in Recipe 2.4 for more information.

Limit the number of nonwhitespace characters

The following regex matches any string that contains between 10 and 100 nonwhite-
space characters:

^\s*(?:\S\s*){10,100}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

In Java, PCRE, Python, and Ruby, ‹\s› matches only ASCII whitespace characters, and
‹\S› matches everything else. In Python, you can make ‹\s› match all Unicode white-
space by passing the UNICODE or U flag when creating the regex. Developers using Java,
PCRE, and Ruby 1.9 who want to avoid having any Unicode whitespace count against
their character limit can switch to the following version that takes advantage of Unicode
properties (described in Recipe 2.7):

^[\p{Z}\s]*(?:[^\p{Z}\s][\p{Z}\s]*){10,100}$
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Ruby 1.9

PCRE must be compiled with UTF-8 support for this to work. In PHP, turn on UTF-8
support with the /u pattern modifier.

This latter regex combines the Unicode ‹\p{Z}› Separator property with the ‹\s› short-
hand for whitespace. That’s because the characters matched by ‹\p{Z}› and ‹\s› do not
completely overlap. ‹\s› includes the characters at positions 0x09 through 0x0D (tab,
line feed, vertical tab, form feed, and carriage return), which are not assigned the Sep-
arator property by the Unicode standard. By combining ‹\p{Z}› and ‹\s› in a character
class, you ensure that all whitespace characters are matched.

In both regexes, the interval quantifier ‹{10,100}› is applied to the noncapturing group
that precedes it, rather than a single token. The group matches any single nonwhite-
space character followed by zero or more whitespace characters. The interval quantifier
can reliably track how many nonwhitespace characters are matched because exactly
one nonwhitespace character is matched during each iteration.

246 | Chapter 4: Validation and Formatting

Limit the number of words

The following regex is very similar to the previous example of limiting the number of
nonwhitespace characters, except that each repetition matches an entire word rather
than a single, nonwhitespace character. It matches between 10 and 100 words, skipping
past any nonword characters, including punctuation and whitespace:

^\W*(?:\w+\b\W*){10,100}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

In Java, JavaScript, PCRE, and Ruby, the word character token ‹\w› in this regex will
only match the ASCII characters A–Z, a–z, 0–9, and _, and therefore this cannot cor-
rectly count words that contain non-ASCII letters and numbers. In .NET and Perl,
‹\w› is based on the Unicode table (as is its inverse, ‹\W›, and the word boundary ‹\b›)
and will match letters and digits from all Unicode scripts. In Python, you can choose
whether these tokens should be Unicode-based or not, based on whether you pass the
UNICODE or U flag when creating the regex.

If you want to count words that contain non-ASCII letters and numbers, the following
regexes provide this capability for additional regex flavors:

^[^\p{L}\p{N}_]*(?:[\p{L}\p{N}_]+\b[^\p{L}\p{N}_]*){10,100}$
Regex options: None
Regex flavors: .NET, Java, Perl

^[^\p{L}\p{N}_]*(?:[\p{L}\p{N}_]+(?:[^\p{L}\p{N}_]+|$)){10,100}$
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Ruby 1.9

PCRE must be compiled with UTF-8 support for this to work. In PHP, turn on UTF-8
support with the /u pattern modifier.

As noted, the reason for these different (but equivalent) regexes is the varying handling
of the word character and word boundary tokens explained in “Word Charac-
ters” on page 42 in Recipe 2.6.

The last two regexes use character classes that include the separate Unicode properties
for letters and numbers (‹\p{L}› and ‹\p{N}›), and manually add the underscore char-
acter to each class to make them equivalent to the earlier regex that relied on ‹\w› and
‹\W›.
Each repetition of the noncapturing group in the first two of these three regexes matches
an entire word followed by zero or more nonword characters. The ‹\W› (or ‹[^\p{L}
\p{N}_]›) token inside the group is allowed to repeat zero times in case the string ends
with a word character. However, since this effectively makes the nonword character
sequence optional throughout the matching process, the word boundary assertion
‹\b› is needed between ‹\w› and ‹\W› (or ‹[\p{L}\p{N}_]› and ‹[^\p{L}\p{N}_]›), to en-
sure that each repetition of the group really matches an entire word. Without the word

4.9 Limit the Length of Text | 247

boundary, a single repetition would be allowed to match any part of a word, with
subsequent repetitions matching additional pieces.

The third version of the regex (which adds support for PCRE and Ruby 1.9) works a
bit differently. It uses a plus (one or more) instead of an asterisk (zero or more) quan-
tifier, and explicitly allows matching zero characters only if the matching process has
reached the end of the string. This allows us to avoid the word boundary token, which
is necessary to ensure accuracy, since ‹\b› is not Unicode-enabled in PCRE or Ruby.
‹\b› is Unicode-enabled in Java, even though Java’s ‹\w› is not.

Unfortunately, none of these options allow JavaScript or Ruby 1.8 to correctly handle
words that use non-ASCII characters. A possible workaround is to reframe the regex
to count whitespace rather than word character sequences, as shown here:

^\s*(?:\S+(?:\s+|$)){10,100}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, Perl, PCRE, Python, Ruby

In many cases, this will work the same as the previous solutions, although it’s not
exactly equivalent. For example, one difference is that compounds joined by a hyphen
(such as “far-reaching”) will now be counted as one word instead of two.

See Also
Recipes 4.8 and 4.10

4.10 Limit the Number of Lines in Text
Problem
You need to check whether a string is comprised of five or fewer lines, without regard
for how many total characters appear in the string.

Solution
The exact characters or character sequences used as line separators can vary depending
on your operating system’s convention, application or user preferences, and so on.
Crafting an ideal solution therefore raises questions about what conventions should be
supported to indicate the start of a new line. The following solutions support the
standard MS-DOS/Windows (‹\r\n›), legacy Mac OS (‹\r›), and Unix/Linux/OS X
(‹\n›) line break conventions.

Regular expression

The following three flavor-specific regexes contain two differences. The first regex uses
atomic groups, written as ‹(?>⋯)›, instead of noncapturing groups, written as
‹(?:⋯)›, because they have the potential to provide a minor efficiency improvement

248 | Chapter 4: Validation and Formatting

here for the regex flavors that support them. Python and JavaScript do not support
atomic groups, so they are not used with those flavors. The other difference is the tokens
used to assert position at the beginning and end of the string (‹\A› or ‹^› for the beginning
of the string, and ‹\z›, ‹\Z›, or ‹$› for the end). The reasons for this variation are dis-
cussed in depth later in this recipe. All three flavor-specific regexes match exactly the
same strings:

\A(?>(?>\r\n?|\n)?[^\r\n]*){0,5}\z
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Ruby

\A(?:(?:\r\n?|\n)?[^\r\n]*){0,5}\Z
Regex options: None
Regex flavor: Python

^(?:(?:\r\n?|\n)?[^\r\n]*){0,5}$
Regex options: None
Regex flavor: JavaScript

PHP (PCRE)
if (preg_match('/^(?>(?>\r\n?|\n)?[^\r\n]*){0,5}\z/', $_POST['subject'])) {
 print 'Subject contains five or fewer lines';
} else {
 print 'Subject contains more than five lines';
}

Other programming languages

See Recipe 3.5 for help implementing these regular expressions with other program-
ming languages.

Discussion
All of the regular expressions shown so far in this recipe use a grouping that matches
an MS-DOS/Windows, legacy Mac OS, or Unix/Linux/OS X line break sequence fol-
lowed by any number of non-line-break characters. The grouping is repeated between
zero and five times, since we’re matching up to five lines.

In the following example, we’ve broken up the JavaScript version of the regex into its
individual parts. We’ve used the JavaScript version here because its elements are prob-
ably familiar to the widest range of readers. We’ll explain the variations for alternative
regex flavors afterward:

^ # Assert position at the beginning of the string.
(?: # Group but don't capture...
 (?: # Group but don't capture...
 \r # Match a carriage return (CR, ASCII position 0x0D).
 \n # Match a line feed (LF, ASCII position 0x0A)...

4.10 Limit the Number of Lines in Text | 249

 ? # between zero and one time.
 | # or...
 \n # Match a line feed character.
) # End the noncapturing group.
 ? # Repeat the preceding group between zero and one time.
 [^\r\n] # Match any single character except CR or LF...
 * # between zero and unlimited times.
) # End the noncapturing group.
 {0,5} # Repeat the preceding group between zero and five times.
$ # Assert position at the end of the string.

Regex options: Free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

The leading ‹^› matches the position at the beginning of the string. This helps to ensure
that the entire string contains no more than five lines, because unless the regex is forced
to start at the beginning of the string, it can match any five lines within a longer string.

Next, a noncapturing group encloses the combination of a line break sequence and any
number of non-line-break characters. The immediately following quantifier allows this
group to repeat between zero and five times (zero repetitions would match a completely
empty string). Within the outer group, an optional subgroup matches a line break
sequence. Next is the character class that matches any number of non-line-break
characters.

Take a close look at the order of the outer group’s elements (first a line break, then a
non-line-break sequence). If we reversed the order so that the group was instead written
as ‹(?:[^\r\n]*(?:\r\n?|\n)?)›, a fifth repetition would allow a trailing line break.
Effectively, such a change would allow an empty, sixth line.

The subgroup allows any of three line break sequences:

• A carriage return followed by a line feed (‹\r\n›, the conventional MS-DOS/
Windows line break sequence)

• A standalone carriage return (‹\r›, the legacy Mac OS line break character)

• A standalone line feed (‹\n›, the conventional Unix/Linux/OS X line break
character)

Now let’s move on to the cross-flavor differences.

The first version of the regex (used by all flavors except Python and JavaScript) uses
atomic groups rather than simple noncapturing groups. Although in some cases the
use of atomic groups can have a much more profound impact, in this case they simply
let the regex engine avoid a bit of unnecessary backtracking that can occur if the match
attempt fails (see Recipe 2.15 for more information about atomic groups).

250 | Chapter 4: Validation and Formatting

The other cross-flavor differences are the tokens used to assert position at the beginning
and end of the string. The breakdown shown earlier used ‹^› and ‹$› for these purposes.
Although these anchors are supported by all of the regex flavors discussed here, the
alternative regexes in this section used ‹\A›, ‹\Z›, and ‹\z› instead. The short explanation
for this is that the meaning of these metacharacters differs slightly between regular
expression flavors. The long explanation leads us to a bit of regex history....

When using Perl to read a line from a file, the resulting string ends with a line break.
Hence, Perl introduced an “enhancement” to the traditional meaning of ‹$› that has
since been copied by most regex flavors. In addition to matching the absolute end of a
string, Perl’s ‹$› matches just before a string-terminating line break. Perl also introduced
two more assertions that match the end of a string: ‹\Z› and ‹\z›. Perl’s ‹\Z› anchor has
the same quirky meaning as ‹$›, except that it doesn’t change when the option to let
‹^› and ‹$› match at line breaks is enabled. ‹\z› always matches only the absolute end
of a string, no exceptions. Since this recipe explicitly deals with line breaks in order to
count the lines in a string, it uses the ‹\z› assertion for the regex flavors that support it,
to ensure that an empty, sixth line is not allowed.

Most of the other regex flavors copied Perl’s end-of-line/string anchors. .NET, Java,
PCRE, and Ruby all support both ‹\Z› and ‹\z› with the same meanings as Perl. Python
includes only ‹\Z› (uppercase), but confusingly changes its meaning to match only the
absolute end of the string, just like Perl’s lowercase ‹\z›. JavaScript doesn’t include any
“z” anchors, but unlike all of the other flavors discussed here, its ‹$› anchor matches
only at the absolute end of the string (when the option to let ‹^› and ‹$› match at line
breaks is not enabled).

As for ‹\A›, the situation is slightly better. It always matches only at the start of a string,
and it means exactly the same thing in all flavors discussed here, except JavaScript
(which doesn’t support it).

Although it’s unfortunate that these kinds of confusing cross-flavor inconsistencies
exist, one of the benefits of using the regular expressions in this book is that you gen-
erally won’t need to worry about them. Gory details like the ones we’ve just described
are included in case you care to dig deeper.

Variations

Working with esoteric line separators

The previously shown regexes limit support to the conventional MS-DOS/Windows,
Unix/Linux/OS X, and legacy Mac OS line break character sequences. However, there
are several rarer vertical whitespace characters that you might encounter occasionally.
The following regexes take these additional characters into account while limiting
matches to five lines of text or less.

4.10 Limit the Number of Lines in Text | 251

\A(?>\R?\V*){0,5}\z
Regex options: None
Regex flavors: PCRE 7 (with the PCRE_BSR_UNICODE option), Perl 5.10

\A(?>(?>\r\n?|[\n-\f\x85\x{2028}\x{2029}])?↵
[^\n-\r\x85\x{2028}\x{2029}]*){0,5}\z

Regex options: None
Regex flavors: PCRE, Perl

\A(?>(?>\r\n?|[\n-\f\x85\u2028\u2029])?[^\n-\r\x85\u2028\u2029]*){0,5}\z
Regex options: None
Regex flavors: .NET, Java, Ruby

\A(?:(?:\r\n?|[\n-\f\x85\u2028\u2029])?[^\n-\r\x85\u2028\u2029]*){0,5}\Z
Regex options: None
Regex flavor: Python

^(?:(?:\r\n?|[\n-\f\x85\u2028\u2029])?[^\n-\r\x85\u2028\u2029]*){0,5}$
Regex options: None
Regex flavor: JavaScript

All of these regexes handle the line separators in Table 4-1, listed with their Unicode
positions and names.

Table 4-1. Line separators

Unicode sequence Regex equivalent Name When used

U+000D U+000A ‹\r\n› Carriage return and line feed (CRLF) Windows and MS-DOS text
files

U+000A ‹\n› Line feed (LF) Unix, Linux, and OS X text files

U+000B ‹\v› Line tabulation (aka vertical tab, or VT) (Rare)

U+000C ‹\f› Form feed (FF) (Rare)

U+000D ‹\r› Carriage return (CR) Mac OS text files

U+0085 ‹\x85› Next line (NEL) IBM mainframe text files
(Rare)

U+2028 ‹\u2028› or
‹\x{2028}›

Line separator (Rare)

U+2029 ‹\u2029› or
‹\x{2029}›

Paragraph separator (Rare)

See Also
Recipe 4.9

252 | Chapter 4: Validation and Formatting

4.11 Validate Affirmative Responses
Problem
You need to check a configuration option or command-line response for a positive
value. You want to provide some flexibility in the accepted responses, so that true, t,
yes, y, okay, ok, and 1 are all accepted in any combination of uppercase and lowercase.

Solution
Using a regex that combines all of the accepted forms allows you to perform the check
with one simple test.

Regular expression
^(?:1|t(?:rue)?|y(?:es)?|ok(?:ay)?)$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

JavaScript
var yes = /^(?:1|t(?:rue)?|y(?:es)?|ok(?:ay)?)$/i;

if (yes.test(subject)) {
 alert("Yes");
} else {
 alert("No");
}

Other programming languages

See Recipes 3.4 and 3.5 for help implementing this regular expression with other pro-
gramming languages.

Discussion
The following breakdown shows the individual parts of the regex. Combinations of
tokens that are easy to read together are shown on the same line:

^ # Assert position at the beginning of the string.
(?: # Group but don't capture...
 1 # Match a literal "1".
 | # or...
 t(?:rue)? # Match "t", optionally followed by "rue".
 | # or...
 y(?:es)? # Match "y", optionally followed by "es".
 | # or...
 ok(?:ay)? # Match "ok", optionally followed by "ay".

4.11 Validate Affirmative Responses | 253

) # End the noncapturing group.
$ # Assert position at the end of the string.

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

This regex is essentially a simple test for one of seven literal, case-insensitive values. It
could be written in a number of ways. For example, ‹^(?:[1ty]|true|yes|ok(?:ay)?)
$› is an equally good approach. Simply alternating between all seven values as ‹^(?:1|
t|true|y|yes|ok|okay)$› would also work fine, although for performance reasons it’s
generally better to reduce the amount of alternation via the pipe ‹|› operator in favor
of character classes and optional suffixes (using the ‹?› quantifier). In this case, the
performance difference is probably no more than a few microseconds, but it’s a good
idea to keep regex performance issues in the back of your mind. Sometimes the differ-
ence between these approaches can surprise you.

All of these examples surround the potential match values with a noncapturing group
to limit the reach of the alternation operators. If we omit the grouping and instead use
something like ‹^true|yes$›, the regex engine will search for “the start of the string
followed by ‘true’” or “‘yes’ followed by the end of the string.” ‹^(?:true|yes)$› tells
the regex engine to find the start of the string, then either “true” or “yes”, and then the
end of the string.

See Also
Recipes 5.2 and 5.3

4.12 Validate Social Security Numbers
Problem
You need to check whether someone entered text as a valid Social Security number.

Solution
If you simply need to ensure that a string follows the basic Social Security number
format and that obvious, invalid numbers are eliminated, the following regex provides
an easy solution. If you need a more rigorous solution that checks with the Social Se-
curity Administration to determine whether the number belongs to a living person,
refer to the links in the “See Also” section of this recipe.

Regular expression
^(?!000|666)(?:[0-6][0-9]{2}|7(?:[0-6][0-9]|7[0-2]))-↵
(?!00)[0-9]{2}-(?!0000)[0-9]{4}$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

254 | Chapter 4: Validation and Formatting

Python
if re.match(r"^(?!000|666)(?:[0-6][0-9]{2}|7(?:[0-6][0-9]|7[0-2]))-↵
(?!00)[0-9]{2}-(?!0000)[0-9]{4}$", sys.argv[1]):
 print "SSN is valid"
else:
 print "SSN is invalid"

Other programming languages

See Recipe 3.5 for help with implementing this regular expression with other program-
ming languages.

Discussion
United States Social Security numbers are nine-digit numbers in the format
AAA-GG-SSSS:

• The first three digits are assigned by geographical region and are called the area
number. The area number cannot be 000 or 666, and as of this writing, no valid
Social Security number contains an area number above 772.

• Digits four and five are called the group number and range from 01 to 99.

• The last four digits are serial numbers from 0001 to 9999.

This recipe follows all of the rules just listed. Here’s the regular expression again, this
time explained piece by piece:

^ # Assert position at the beginning of the string.
(?!000|666) # Assert that neither "000" nor "666" can be matched here.
(?: # Group but don't capture...
 [0-6] # Match a character in the range between "0" and "6".
 [0-9]{2} # Match a digit, exactly two times.
 | # or...
 7 # Match a literal "7".
 (?: # Group but don't capture...
 [0-6] # Match a character in the range between "0" and "6".
 [0-9] # Match a digit.
 | # or...
 7 # Match a literal "7".
 [0-2] # Match a character in the range between "0" and "2".
) # End the noncapturing group.
) # End the noncapturing group.
- # Match a literal "-".
(?!00) # Assert that "00" cannot be matched here.
[0-9]{2} # Match a digit, exactly two times.
- # Match a literal "-".
(?!0000) # Assert that "0000" cannot be matched here.
[0-9]{4} # Match a digit, exactly four times.
$ # Assert position at the end of the string.

4.12 Validate Social Security Numbers | 255

Regex options: Free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Apart from the ‹^› and ‹$› tokens that assert position at the beginning and end of the
string, this regex can be broken into three groups of digits separated by hyphens. The
first group is the most complex. The second and third groups simply match any two
or four-digit number, respectively, but use a preceding negative lookahead to rule out
the possibility of matching all zeros.

The first group of digits is much more complex and harder to read than the others
because it matches a numeric range. First, it uses the negative lookahead ‹(?!000|
666)› to rule out the specific values “000” and “666”. Next comes the task of eliminating
any number higher than 772.

Since regular expressions deal with text rather than numbers, we have to break down
the numeric range character by character. First, we know that we can match any three-
digit number starting with 0 through 6, because the preceding negative lookahead al-
ready ruled out the invalid numbers 000 and 666. This first part is easily accomplished
using a couple of character classes and a quantifier: ‹[0-6][0-9]{2}›. Since we need to
offer an alternative for numbers starting with 7, the pattern we just built is put into a
grouping as ‹(?:[0-6][0-9]{2}|7)› in order to limit the reach of the alternation
operator.

Numbers starting with 7 are allowed only if they fall between 700 and 772, so the next
step is to further divide any number that starts with 7 based on the second digit. If it’s
between 0 and 6, any third digit is allowed. If the second digit is 7, the third digit must
be between 0 and 2. Putting these rules for numbers starting with 7 together, we get
‹7(?:[0-6][0-9]|7[0-2])›, which matches the number 7 followed by one of two options
for the second and third digit.

Finally, insert that into the outer grouping for the first set of digits, and you get
‹(?:[0-6][0-9]{2}|7(?:[0-6][0-9]|7[0-2]))›. That’s it. You’ve successfully created a
regex that matches a three-digit number between 000 and 772.

Variations

Find Social Security numbers in documents

If you’re searching for Social Security numbers in a larger document or input string,
replace the ‹^› and ‹$› anchors with word boundaries. Regular expression engines con-
sider all alphanumeric characters and the underscore to be word characters.

\b(?!000|666)(?:[0-6][0-9]{2}|7(?:[0-6][0-9]|7[0-2]))-↵
(?!00)[0-9]{2}-(?!0000)[0-9]{4}\b

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

256 | Chapter 4: Validation and Formatting

See Also
The Social Security Administration website at http://www.socialsecurity.gov provides
answers to common questions as well as up-to-date lists of what area and group num-
bers have been assigned.

The Social Security Number Verification Service (SSNVS) at http://www.socialsecurity
.gov/employer/ssnv.htm offers two ways to verify over the Internet that names and Social
Security numbers match the Social Security Administration’s records.

A more thorough discussion of matching numeric ranges, including examples of
matching ranges with a variable number of digits, can be found in Recipe 6.5.

4.13 Validate ISBNs
Problem
You need to check the validity of an International Standard Book Number (ISBN),
which can be in either the older ISBN-10 or the current ISBN-13 format. You want to
allow a leading ISBN identifier, and ISBN parts can optionally be separated by hyphens
or spaces. ISBN 978-0-596-52068-7, ISBN-13: 978-0-596-52068-7, 978 0 596 52068 7,
9780596520687, ISBN-10 0-596-52068-9, and 0-596-52068-9 are all examples of valid
input.

Solution
You cannot validate an ISBN using a regex alone, because the last digit is computed
using a checksum algorithm. The regular expressions in this section validate the format
of an ISBN, whereas the subsequent code examples include a validity check for the final
digit.

Regular expressions

ISBN-10:

^(?:ISBN(?:-10)?:?●)?(?=[-0-9X●]{13}$|[0-9X]{10}$)[0-9]{1,5}[-●]?↵
(?:[0-9]+[-●]?){2}[0-9X]$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

ISBN-13:

^(?:ISBN(?:-13)?:?●)?(?=[-0-9●]{17}$|[0-9]{13}$)97[89][-●]?[0-9]{1,5}↵
[-●]?(?:[0-9]+[-●]?){2}[0-9]$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

4.13 Validate ISBNs | 257

ISBN-10 or ISBN-13:

^(?:ISBN(?:-1[03])?:?●)?(?=[-0-9●]{17}$|[-0-9X●]{13}$|[0-9X]{10}$)↵
(?:97[89][-●]?)?[0-9]{1,5}[-●]?(?:[0-9]+[-●]?){2}[0-9X]$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

JavaScript
// `regex` checks for ISBN-10 or ISBN-13 format
var regex = /^(?:ISBN(?:-1[03])?:?)?(?=[-0-9]{17}$|[-0-9X]{13}$|↵
[0-9X]{10}$)(?:97[89][-]?)?[0-9]{1,5}[-]?(?:[0-9]+[-]?){2}[0-9X]$/;

if (regex.test(subject)) {
 // Remove non ISBN digits, then split into an array
 var chars = subject.replace(/[^0-9X]/g, "").split("");
 // Remove the final ISBN digit from `chars`, and assign it to `last`
 var last = chars.pop();
 var sum = 0;
 var digit = 10;
 var check;

 if (chars.length == 9) {
 // Compute the ISBN-10 check digit
 for (var i = 0; i < chars.length; i++) {
 sum += digit * parseInt(chars[i], 10);
 digit -= 1;
 }
 check = 11 - (sum % 11);
 if (check == 10) {
 check = "X";
 } else if (check == 11) {
 check = "0";
 }
 } else {
 // Compute the ISBN-13 check digit
 for (var i = 0; i < chars.length; i++) {
 sum += (i % 2 * 2 + 1) * parseInt(chars[i], 10);
 }
 check = 10 - (sum % 10);
 if (check == 10) {
 check = "0";
 }
 }

 if (check == last) {
 alert("Valid ISBN");
 } else {
 alert("Invalid ISBN check digit");

258 | Chapter 4: Validation and Formatting

 }
} else {
 alert("Invalid ISBN");
}

Python
import re
import sys

`regex` checks for ISBN-10 or ISBN-13 format
regex = re.compile("^(?:ISBN(?:-1[03])?:?)?(?=[-0-9]{17}$|↵
[-0-9X]{13}$|[0-9X]{10}$)(?:97[89][-]?)?[0-9]{1,5}[-]?↵
(?:[0-9]+[-]?){2}[0-9X]$")

subject = sys.argv[1]

if regex.search(subject):
 # Remove non ISBN digits, then split into an array
 chars = re.sub("[^0-9X]", "", subject).split("")
 # Remove the final ISBN digit from `chars`, and assign it to `last`
 last = chars.pop()

 if len(chars) == 9:
 # Compute the ISBN-10 check digit
 val = sum((x + 2) * int(y) for x,y in enumerate(reversed(chars)))
 check = 11 - (val % 11)
 if check == 10:
 check = "X"
 elif check == 11:
 check = "0"
 else:
 # Compute the ISBN-13 check digit
 val = sum((x % 2 * 2 + 1) * int(y) for x,y in enumerate(chars))
 check = 10 - (val % 10)
 if check == 10:
 check = "0"

 if (str(check) == last):
 print "Valid ISBN"
 else:
 print "Invalid ISBN check digit"
else:
 print "Invalid ISBN"

4.13 Validate ISBNs | 259

Other programming languages

See Recipe 3.5 for help with implementing these regular expressions in other program-
ming languages.

Discussion
An ISBN is a unique identifier for commercial books and book-like products. The 10-
digit ISBN format was published as an international standard, ISO 2108, in 1970. All
ISBNs assigned since January 1, 2007 are 13 digits.

ISBN-10 and ISBN-13 numbers are divided into four or five elements, respectively.
Three of the elements are of variable length; the remaining one or two elements are of
fixed length. All five parts are usually separated with hyphens or spaces. A brief de-
scription of each element follows:

• 13-digit ISBNs start with the prefix 978 or 979.

• The group identifier identifies the language-sharing country group. It ranges from
one to five digits long.

• The publisher identifier varies in length and is assigned by the national ISBN agency.

• The title identifier also varies in length and is selected by the publisher.

• The final character is called the check digit, and is computed using a checksum
algorithm. An ISBN-10 check digit can be either a number from 0 to 9 or the letter
X (Roman numeral for 10), while an ISBN-13 check digit ranges from 0 to 9. The
allowed characters are different because the two ISBN types use different checksum
algorithms.

The parts of the “ISBN-10 or ISBN-13” regex are shown in the following breakdown.
Because this regex is written in free-spacing mode, the literal space characters in the
regex have been escaped with backslashes. Java requires that even spaces within char-
acter classes be escaped in free-spacing mode:

^ # Assert position at the beginning of the string.
(?: # Group but don't capture...
 ISBN # Match the text "ISBN".
 (?:-1[03])? # Optionally match the text "-10" or "-13".
 :? # Optionally match a literal ":".
 \ # Match a space character (escaped).
)? # Repeat the group between zero and one time.
(?= # Assert that the following can be matched here...
 [-0-9\]{17}$ # Match 17 hyphens, digits, and spaces, then the end
 | # of the string. Or...
 [-0-9X\]{13}$ # Match 13 hyphens, digits, Xs, and spaces, then the
 | # end of the string. Or...
 [0-9X]{10}$ # Match 10 digits and Xs, then the end of the string.
) # End the positive lookahead.
(?: # Group but don't capture...

260 | Chapter 4: Validation and Formatting

 97[89] # Match the text "978" or "979".
 [-\]? # Optionally match a hyphen or space.
)? # Repeat the group between zero and one time.
[0-9]{1,5} # Match a digit between one and five times.
[-\]? # Optionally match a hyphen or space.
(?: # Group but don't capture...
 [0-9]+ # Match a digit between one and unlimited times.
 [-\]? # Optionally match a hyphen or space.
){2} # Repeat the group exactly two times.
[0-9X] # Match a digit or "X".
$ # Assert position at the end of the string.

Regex options: Free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

The leading ‹(?:ISBN(?:-1[03])?:?●)?› has three optional elements, allowing it to
match any one of the following seven strings (all except the empty-string option include
a space character at the end):

• ISBN●
• ISBN-10●
• ISBN-13●
• ISBN:●
• ISBN-10:●
• ISBN-13:●
• The empty string (no prefix)

Next, the positive lookahead ‹(?=[-0-9●]{17}$|[-0-9X●]{13}$|[0-9X]{10}$)› enforces
one of three options (separated by the ‹|› alternation operator) for the length and char-
acter set of the rest of the match. All three options (shown next) end with the ‹$› anchor,
which ensures that there cannot be any trailing text that doesn’t fit into one of the
patterns:

‹[-0-9●]{17}$›
Allows an ISBN-13 with four separators (17 total characters)

‹[-0-9X●]{13}$›
Allows an ISBN-13 with no separators or an ISBN-10 with three separators (13
total characters)

‹[0-9X]{10}$›
Allows an ISBN-10 with no separators (10 total characters)

After the positive lookahead validates the length and character set, we can match the
individual elements of the ISBN without worrying about their combined length.
‹(?:97[89][-●]?)?› matches the “978” or “979” prefix required by an ISBN-13. The
noncapturing group is optional because it will not match within an ISBN-10 subject
string. ‹[0-9]{1,5}[-●]?› matches the one to five digit group identifier and an optional,

4.13 Validate ISBNs | 261

following separator. ‹(?:[0-9]+[-●]?){2}› matches the variable-length publisher and
title identifiers, along with their optional separators. Finally, ‹[0-9X]$› matches the
check digit at the end of the string.

Although a regular expression can check that the final digit uses a valid character (a
digit or X), it cannot determine whether it’s correct for the ISBN’s checksum. One of
two checksum algorithms (determined by whether you’re working with an ISBN-10 or
ISBN-13 number) are used to provide some level of assurance that the ISBN digits
haven’t been accidentally transposed or otherwise entered incorrectly. The JavaScript
and Python example code shown earlier implemented both algorithms. The following
sections describe the checksum rules in order to help you implement these algorithms
with other programming languages.

ISBN-10 checksum

The check digit for an ISBN-10 number ranges from 0 to 10 (with the Roman numeral
X used instead of 10). It is computed as follows:

1. Multiply each of the first 9 digits by a number in the descending sequence from 10
to 2, and sum the results.

2. Divide the sum by 11.

3. Subtract the remainder (not the quotient) from 11.

4. If the result is 11, use the number 0; if 10, use the letter X.

Here’s an example of how to derive the ISBN-10 check digit for 0-596-52068-?:

Step 1:
sum = 10×0 + 9×5 + 8×9 + 7×6 + 6×5 + 5×2 + 4×0 + 3×6 + 2×8
 = 0 + 45 + 72 + 42 + 30 + 10 + 0 + 18 + 16
 = 233
Step 2:
 233 ÷ 11 = 21, remainder 2
Step 3:
 11 − 2 = 9
Step 4:
 9 [no substitution required]

The check digit is 9, so the complete sequence is ISBN 0-596-52068-9.

ISBN-13 checksum

An ISBN-13 check digit ranges from 0 to 9, and is computed using similar steps.

1. Multiply each of the first 12 digits by 1 or 3, alternating as you move from left to
right, and sum the results.

2. Divide the sum by 10.

262 | Chapter 4: Validation and Formatting

3. Subtract the remainder (not the quotient) from 10.

4. If the result is 10, use the number 0.

For example, the ISBN-13 check digit for 978-0-596-52068-? is calculated as follows:

Step 1:
sum = 1×9 + 3×7 + 1×8 + 3×0 + 1×5 + 3×9 + 1×6 + 3×5 + 1×2 + 3×0 + 1×6 + 3×8
 = 9 + 21 + 8 + 0 + 5 + 27 + 6 + 15 + 2 + 0 + 6 + 24
 = 123
Step 2:
 123 ÷ 10 = 12, remainder 3
Step 3:
 10 − 3 = 7
Step 4:
 7 [No substitution required]

The check digit is 7, and the complete sequence is ISBN 978-0-596-52068-7.

Variations

Find ISBNs in documents

This version of the “ISBN-10 or ISBN-13” regex uses word boundaries instead of an-
chors to help you find ISBNs within longer text while ensuring that they stand on their
own. The “ISBN” identifier has also been made a required string in this version, for
two reasons. First, requiring it helps eliminate false positives (without it, the regex could
potentially match any 10 or 13 digit number), and second, ISBNs are officially required
to use this identifier when printed:

\bISBN(?:-1[03])?:?●(?=[-0-9●]{17}$|[-0-9X●]{13}$|[0-9X]{10}$)↵
(?:97[89][-●]?)?[0-9]{1,5}[-●]?(?:[0-9]+[-●]?){2}[0-9X]\b

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Eliminate incorrect ISBN identifiers

A limitation of the previous regexes is that they allow matching an ISBN-10 number
preceded by the “ISBN-13” identifier, and vice versa. The following regex uses regex
conditionals (see Recipe 2.17) to ensure that an “ISBN-10” or “ISBN-13” identifier is
followed by the appropriate ISBN type. It allows both ISBN-10 and ISBN-13 numbers
when the type is not explicitly specified. This regex is overkill in most circumstances
because the same result could be achieved more manageably using the ISBN-10 and
ISBN-13 specific regexes that were shown earlier, one at a time. It’s included here
merely to demonstrate an interesting use of regular expressions:

^
(?:ISBN(-1(?:(0)|3))?:?\)?
(?(1)

4.13 Validate ISBNs | 263

 (?(2)
 (?=[-0-9X]{13}$|[0-9X]{10}$)
 [0-9]{1,5}[-]?(?:[0-9]+[-]?){2}[0-9X]$
 |
 (?=[-0-9]{17}$|[0-9]{13}$)
 97[89][-]?[0-9]{1,5}[-]?(?:[0-9]+[-]?){2}[0-9]$
)
 |
 (?=[-0-9]{17}$|[-0-9X]{13}$|[0-9X]{10}$)
 (?:97[89][-]?)?[0-9]{1,5}[-]?(?:[0-9]+[-]?){2}[0-9X]$
)
$

Regex options: Free-spacing
Regex flavors: .NET, PCRE, Perl, Python

See Also
The most up-to-date version of the ISBN Users’ Manual can be found on the Interna-
tional ISBN Agency’s website at http://www.isbn-international.org.

The official Numerical List of Group Identifiers at http://www.isbn-international.org/
en/identifiers/allidentifiers.html can help you identify a book’s originating country or
area based on the first 1 to 5 digits of its ISBN.

4.14 Validate ZIP Codes
Problem
You need to validate a ZIP code (U.S. postal code), allowing both the five-digit and
nine-digit (ZIP + 4) formats. The regex should match 12345 and 12345-6789, but not
1234, 123456, 123456789, or 1234-56789.

Solution

Regular expression
^[0-9]{5}(?:-[0-9]{4})?$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

VB.NET
If Regex.IsMatch(subjectString, "^[0-9]{5}(?:-[0-9]{4})?$") Then
 Console.WriteLine("Valid ZIP code")
Else
 Console.WriteLine("Invalid ZIP code")
End If

264 | Chapter 4: Validation and Formatting

Other programming languages

See Recipe 3.5 for help with implementing this regular expression with other program-
ming languages.

Discussion
A breakdown of the ZIP code regular expression follows:

^ # Assert position at the beginning of the string.
[0-9]{5} # Match a digit, exactly five times.
(?: # Group but don't capture...
 - # Match a literal "-".
 [0-9]{4} # Match a digit, exactly four times.
) # End the noncapturing group.
 ? # Repeat the preceding group between zero and one time.
$ # Assert position at the end of the string.

Regex options: Free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

This regex is pretty straightforward, so there isn’t much to add. A simple change that
allows you to find ZIP codes within a longer input string is to replace the ‹^› and ‹$›
anchors with word boundaries, so you end up with ‹\b[0-9]{5}(?:-[0-9]{4})?\b›.

See Also
Recipes 4.15, 4.16, and 4.17

4.15 Validate Canadian Postal Codes
Problem
You want to check whether a string is a Canadian postal code.

Solution
^(?!.*[DFIOQU])[A-VXY][0-9][A-Z]●[0-9][A-Z][0-9]$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
The negative lookahead at the beginning of this regular expression prevents D, F, I, O,
Q, or U anywhere in the subject string. The ‹[A-VXY]› character class further prevents
W or Z as the first character. Aside from those two exceptions, Canadian postal codes
simply use an alternating sequence of six alphanumeric characters with a space in the
middle. For example, the regex will match K1A 0B1, which is the postal code for Canada
Post’s Ottawa headquarters.

4.15 Validate Canadian Postal Codes | 265

See Also
Recipes 4.14, 4.16, and 4.17

4.16 Validate U.K. Postcodes
Problem
You need a regular expression that matches a U.K. postcode.

Solution
^[A-Z]{1,2}[0-9R][0-9A-Z]?●[0-9][ABD-HJLNP-UW-Z]{2}$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
Postal codes in the U.K. (or postcodes, as they’re called) are composed of five to seven
alphanumeric characters separated by a space. The rules covering which characters can
appear at particular positions are rather complicated and fraught with exceptions. This
regular expression sticks to the basic rules.

See Also
British Standard BS7666, available at http://www.govtalk.gov.uk/gdsc/html/frames/Post
Code.htm, describes the U.K. postcode rules.

Recipes 4.14, 4.15, and 4.17.

4.17 Find Addresses with Post Office Boxes
Problem
You want to catch addresses that contain a P.O. box, and warn users that their shipping
information must contain a street address.

Solution

Regular expression
^(?:Post●(?:Office●)?|P[.●]?O\.?●)?Box\b

Regex options: Case insensitive, ^ and $ match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

266 | Chapter 4: Validation and Formatting

C#
Regex regexObj = new Regex(
 @"^(?:Post (?:Office)?|P[.]?O\.?)?Box\b",
 RegexOptions.IgnoreCase | RegexOptions.Multiline
);
if (regexObj.IsMatch(subjectString) {
 Console.WriteLine("The value does not appear to be a street address");
} else {
 Console.WriteLine("Good to go");
}

Other programming languages

See Recipe 3.5 for help with implementing this regular expression with other program-
ming languages.

Discussion
The following explanation is written in free-spacing mode, so each of the meaningful
space characters in the regex has been escaped with a backslash:

^ # Assert position at the beginning of a line.
(?: # Group but don't capture...
 Post\ # Match "Post ".
 (?:Office\)? # Optionally match "Office ".
 | # or...
 P[.\]? # Match "P" and an optional period or space character.
 O\.?\ # Match "O", an optional period, and a space character.
)? # Repeat the group between zero and one time.
Box # Match "Box".
\b # Assert position at a word boundary.

Regex options: Case insensitive, ^ and $ match at line breaks
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

This regular expression matches all of the following example strings when they appear
at the beginning of a line:

• Post Office Box

• post box

• P.O. box

• P O Box

• Po. box

• PO Box

• Box

Despite the precautions taken here, you might encounter a few false positives or false
negatives because many people are used to shippers being quite flexible in deciphering

4.17 Find Addresses with Post Office Boxes | 267

addresses. To mitigate this risk, it’s best to state up front that P.O. boxes are not al-
lowed. If you get a match using this regular expression, consider warning the user that
it appears she has entered a P.O. box, while still providing the option to keep the entry.

See Also
Recipes 4.14, 4.15, and 4.16

4.18 Reformat Names From “FirstName LastName” to
“LastName, FirstName”
Problem
You want to convert people’s names from the “FirstName LastName” format to
“LastName, FirstName”, for use in an alphabetical listing. You additionally want to
account for other name parts, so that you can, e.g., convert “FirstName MiddleNames
Particles LastName Suffix” to “LastName, FirstName MiddleNames Particles Suffix”.

Solution
Unfortunately, it isn’t possible to reliably parse names using a regular expression. Reg-
ular expressions are rigid, whereas names are so flexible that even humans get them
wrong. Determining the structure of a name or how it should be listed alphabetically
often requires taking traditional and national conventions, or even personal preferen-
ces, into account. Nevertheless, if you’re willing to make certain assumptions about
your data and can handle a moderate level of error, a regular expression can provide a
quick solution.

The following regular expression has intentionally been kept simple, rather than trying
to account for edge cases.

Regular expression
^(.+?)●([^\s,]+)(,?●(?:[JS]r\.?|III?|IV))?$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Replacement
$2,●$1$3

Replacement text flavors: .NET, Java, JavaScript, Perl, PHP

\2,●\1\3
Replacement text flavors: Python, Ruby

268 | Chapter 4: Validation and Formatting

JavaScript
function formatName (name) {
 return name.replace(/^(.+?) ([^\s,]+)(,? (?:[JS]r\.?|III?|IV))?$/i,
 "$2, $1$3");
}

Other programming languages

See Recipe 3.15 for help implementing this regular expression with other programming
languages.

Discussion
First, let’s take a look at this regular expression piece by piece. Higher-level comments
are provided afterward to help explain which parts of a name are being matched by
various segments of the regex. Since the regex is written here in free-spacing mode, the
literal space characters have been escaped with backslashes:

^ # Assert position at the beginning of the string.
(# Capture the enclosed match to backreference 1...
 .+? # Match one or more characters, as few times as possible.
) # End the capturing group.
\ # Match a literal space character.
(# Capture the enclosed match to backreference 2...
 [^\s,]+ # Match one or more characters that are not whitespace
 # or commas.
) # End the capturing group.
(# Capture the enclosed match to backreference 3...
 ,?\ # Match ", " or " ".
 (?: # Group but don't capture...
 [JS]r\.? # Match "Jr", "Jr.", "Sr", or "Sr.".
 | # or...
 III? # Match "II" or "III".
 | # or...
 IV # Match "IV".
) # End the noncapturing group.
)? # Repeat the group between zero and one time.
$ # Assert position at the end of the string.

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

This regular expression makes the following assumptions about the subject data:

• It contains at least one first name and one last name (other name parts are optional).

• The first name is listed before the last name.

• If the name contains a suffix, it is one of the values “Jr”, “Jr.”, “Sr”, “Sr.”, “II”,
“III”, or “IV”, with an optional preceding comma.

4.18 Reformat Names From “FirstName LastName” to “LastName, FirstName” | 269

A few more issues to consider:

• The regular expression cannot identify compound surnames that don’t use hy-
phens. For example, Sacha Baron Cohen would be replaced with Cohen, Sacha
Baron, rather than the correct listing, Baron Cohen, Sacha.

• It does not keep particles in front of the family name, although this is occasionally
called for by convention or personal preference (for example, the correct alpha-
betical listing of “Charles de Gaulle” is “de Gaulle, Charles” according to the
Chicago Manual of Style, 15th Edition, which contradicts Merriam-Webster’s
Biographical Dictionary on this particular name).

• Because of the ‹^› and ‹$› anchors that bind the match to the beginning and end
of the string, no replacement can be made if the entire subject text does not fit the
pattern. Hence, if no suitable match is found (for example, if the subject text con-
tains only one name), the name is left unaltered.

As for how the regular expression works, it uses three capturing groups to split up the
name. The pieces are then reassembled in the desired order via backreferences in the
replacement string. Capturing group 1 uses the maximally flexible ‹.+?› pattern to grab
the first name along with any number of middle names and surname particles, such as
the German “von” or the French, Portuguese, and Spanish “de”. These name parts are
handled together because they are listed sequentially in the output. Lumping the first
and middle names together also helps avoid errors, because the regular expression
cannot distinguish between a compound first name, such as “Mary Lou” or “Norma
Jeane,” and a first name plus middle name. Even humans cannot accurately make the
distinction just by visual examination.

Capturing group 2 matches the last name using ‹[^\s,]+›. Like the dot used in capturing
group 1, the flexibility of this character class allows it to match accented characters and
any other non-Latin characters. Capturing group 3 matches an optional suffix, such as
“Jr.” or “III,” from a predefined list of possible values. The suffix is handled separately
from the last name because it should continue to appear at the end of the reformatted
name.

Let’s go back for a minute to capturing group 1. Why was the dot within group 1
followed by the lazy ‹+?› quantifier, whereas the character class in group 2 was followed
by the greedy ‹+› quantifier? If group 1 (which handles a variable number of elements
and therefore needs to go as far as it can into the name) used a greedy quantifier,
capturing group 3 (which attempts to match a suffix) wouldn’t have a shot at partici-
pating in the match. The dot from group 1 would match until the end of the string, and
since capturing group 3 is optional, the regex engine would only backtrack enough to
find a match for group 2 before declaring success. Capturing group 2 can use a greedy
quantifier because its more restrictive character class only allows it to match one name.

Table 4-2 shows some examples of how names are formatted using this regular ex-
pression and replacement string.

270 | Chapter 4: Validation and Formatting

Table 4-2. Formatted names

Input Output

Robert Downey, Jr. Downey, Robert, Jr.

John F. Kennedy Kennedy, John F.

Scarlett O’Hara O’Hara, Scarlett

Pepé Le Pew Pew, Pepé Le

J.R.R. Tolkien Tolkien, J.R.R.

Catherine Zeta-Jones Zeta-Jones, Catherine

Variations

List surname particles at the beginning of the name

An added segment in the following regular expression allows you to output surname
particles from a predefined list in front of the last name. Specifically, this regular ex-
pression accounts for the values “De”, “Du”, “La”, “Le”, “St”, “St.”, “Ste”, “Ste.”,
“Van”, and “Von”. Any number of these values are allowed in sequence (for example,
“de la”):

^(.+?)●((?:(?:D[eu]|L[ae]|Ste?\.?|V[ao]n)●)*[^\s,]+)↵
(,?●(?:[JS]r\.?|III?|IV))?$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

$2,●$1$3
Replacement text flavors: .NET, Java, JavaScript, Perl, PHP

\2,●\1\3
Replacement text flavors: Python, Ruby

4.19 Validate Credit Card Numbers
Problem
You’re given the job of implementing an order form for a company that accepts payment
by credit card. Since the credit card processor charges for each transaction attempt,
including failed attempts, you want to use a regular expression to weed out obviously
invalid credit card numbers.

Doing this will also improve the customer’s experience. A regular expression can in-
stantly detect obvious typos as soon as the customer finishes filling in the field on the
web form. A round trip to the credit card processor, by contrast, easily takes 10 to 30
seconds.

4.19 Validate Credit Card Numbers | 271

Solution

Strip spaces and hyphens

Retrieve the credit card number entered by the customer and store it into a variable.
Before performing the check for a valid number, perform a search-and-replace to strip
out spaces and hyphens. Replace this regular expression globally with blank replace-
ment text:

[●-]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Recipe 3.14 shows you how to perform this initial replacement.

Validate the number

With spaces and hyphens stripped from the input, this regular expression checks if the
credit card number uses the format of any of the six major credit card companies. It
uses named capture to detect which brand of credit card the customer has:

^(?:
(?<visa>4[0-9]{12}(?:[0-9]{3})?) |
(?<mastercard>5[1-5][0-9]{14}) |
(?<discover>6(?:011|5[0-9][0-9])[0-9]{12}) |
(?<amex>3[47][0-9]{13}) |
(?<diners>3(?:0[0-5]|[68][0-9])[0-9]{11}) |
(?<jcb>(?:2131|1800|35\d{3})\d{11})
)$

Regex options: Free-spacing
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

^(?:
(?P<visa>4[0-9]{12}(?:[0-9]{3})?) |
(?P<mastercard>5[1-5][0-9]{14}) |
(?P<discover>6(?:011|5[0-9][0-9])[0-9]{12}) |
(?P<amex>3[47][0-9]{13}) |
(?P<diners>3(?:0[0-5]|[68][0-9])[0-9]{11}) |
(?P<jcb>(?:2131|1800|35\d{3})\d{11})
)$

Regex options: Free-spacing
Regex flavors: PCRE, Python

Java, Perl 5.6, Perl 5.8, and Ruby 1.8 do not support named capture. You can use
numbered capture instead. Group 1 will capture Visa cards, group 2 MasterCard, and
so on up to group 6 for JCB:

^(?:
(4[0-9]{12}(?:[0-9]{3})?) | # Visa
(5[1-5][0-9]{14}) | # MasterCard

272 | Chapter 4: Validation and Formatting

(6(?:011|5[0-9][0-9])[0-9]{12}) | # Discover
(3[47][0-9]{13}) | # AMEX
(3(?:0[0-5]|[68][0-9])[0-9]{11}) | # Diners Club
((?:2131|1800|35\d{3})\d{11}) # JCB
)$

Regex options: Free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

JavaScript does not support free-spacing. Removing whitespace and comments, we get:

^(?:(4[0-9]{12}(?:[0-9]{3})?)|(5[1-5][0-9]{14})|↵
(6(?:011|5[0-9][0-9])[0-9]{12})|(3[47][0-9]{13})|↵
(3(?:0[0-5]|[68][0-9])[0-9]{11})|((?:2131|1800|35\d{3})\d{11}))$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

If you don’t need to determine which type the card is, you can remove the unnecessary
capturing groups:

^(?:
4[0-9]{12}(?:[0-9]{3})? | # Visa
5[1-5][0-9]{14} | # MasterCard
6(?:011|5[0-9][0-9])[0-9]{12} | # Discover
3[47][0-9]{13} | # AMEX
3(?:0[0-5]|[68][0-9])[0-9]{11} | # Diners Club
(?:2131|1800|35\d{3})\d{11} # JCB
)$

Regex options: Free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Or for JavaScript:

^(?:4[0-9]{12}(?:[0-9]{3})?|5[1-5][0-9]{14}|6(?:011|5[0-9][0-9])[0-9]{12}|↵
3[47][0-9]{13}|3(?:0[0-5]|[68][0-9])[0-9]{11}|(?:2131|1800|35\d{3})\d{11})$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Follow the recipe in Recipe 3.6 to add this regular expression to your order form to
validate the card number. If you use different processors for different cards, or if you
just want to keep some statistics, you can use Recipe 3.9 to check which named or
numbered capturing group holds the match. That will tell you which brand of credit
card the customer has.

Example web page with JavaScript
<html>
<head>
<title>Credit Card Test</title>
</head>

4.19 Validate Credit Card Numbers | 273

<body>
<h1>Credit Card Test</h1>

<form>
<p>Please enter your credit card number:</p>

<p><input type="text" size="20" name="cardnumber"
 onkeyup="validatecardnumber(this.value)"></p>

<p id="notice">(no card number entered)</p>
</form>

<script>
function validatecardnumber(cardnumber) {
 // Strip spaces and dashes
 cardnumber = cardnumber.replace(/[-]/g, '');
 // See if the card is valid
 // The regex will capture the number in one of the capturing groups
 var match = /^(?:(4[0-9]{12}(?:[0-9]{3})?)|(5[1-5][0-9]{14})|↵
(6(?:011|5[0-9][0-9])[0-9]{12})|(3[47][0-9]{13})|(3(?:0[0-5]|[68][0-9])↵
[0-9]{11})|((?:2131|1800|35\d{3})\d{11}))$/.exec(cardnumber);
 if (match) {
 // List of card types, in the same order as the regex capturing groups
 var types = ['Visa', 'MasterCard', 'Discover', 'American Express',
 'Diners Club', 'JCB'];
 // Find the capturing group that matched
 // Skip the zeroth element of the match array (the overall match)
 for (var i = 1; i < match.length; i++) {
 if (match[i]) {
 // Display the card type for that group
 document.getElementById('notice').innerHTML = types[i - 1];
 break;
 }
 }
 } else {
 document.getElementById('notice').innerHTML = '(invalid card number)';
 }
}
</script>
</body>
</html>

Discussion

Strip spaces and hyphens

On an actual credit card, the digits of the embossed card number are usually placed
into groups of four. That makes the card number is easier for humans to read. Naturally,

274 | Chapter 4: Validation and Formatting

many people will try to enter the card number in the same way, including the spaces,
on order forms.

Writing a regular expression that validates a card number, allowing for spaces, hyphens,
and whatnot, is much more difficult that writing a regular expression that only allows
digits. Thus, unless you want to annoy the customer with retyping the card number
without spaces or hyphens, do a quick search-and-replace to strip them out before
validating the card number and sending it to the card processor.

The regular expression ‹[●-]› matches a character that is a space or a hyphen. Replacing
all matches of this regular expression with nothing effectively deletes all spaces and
hyphens.

Credit card numbers can consist only of digits. Instead of using ‹[●-]› to remove only
spaces and hyphens, you could use the shorthand character class ‹\D› to strip out all
nondigits.

Validate the number

Each of the credit card companies uses a different number format. We’ll exploit that
difference to allow users to enter a number without specifying a company; the company
can be determined from the number. The format for each company is:

Visa
13 or 16 digits, starting with 4.

MasterCard
16 digits, starting with 51 through 55.

Discover
16 digits, starting with 6011, or 15 digits starting with 5.

American Express
15 digits, starting with 34 or 37.

Diners Club
14 digits, starting with 300 through 305, 36, or 38.

JCB
15 digits, starting with 2131 or 1800, or 16 digits starting with 35.

If you accept only certain brands of credit cards, you can delete the cards that you don’t
accept from the regular expression. When deleting JCB, make sure to delete the last
remaining ‹|› in the regular expression as well. If you end up with ‹||› or ‹|)› in your
regular expression, it will accept the empty string as a valid card number.

For example, to accept only Visa, MasterCard, and AMEX, you can use:

^(?:
4[0-9]{12}(?:[0-9]{3})? | # Visa
5[1-5][0-9]{14} | # MasterCard

4.19 Validate Credit Card Numbers | 275

3[47][0-9]{13} # AMEX
)$

Regex options: Free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Alternatively:

^(?:4[0-9]{12}(?:[0-9]{3})?|5[1-5][0-9]{14}|3[47][0-9]{13})$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

If you’re searching for credit card numbers in a larger body of text, replace the anchors
with ‹\b› word boundaries.

Incorporating the solution into a web page

The example in “Example web page with JavaScript” on page 273 shows how you could
add these two regular expressions to your order form. The input box for the credit card
number has an onkeyup event handler that calls the validatecardnumber() function. This
function retrieves the card number from the input box, strips the spaces and hyphens,
and then validates it using the regular expression with numbered capturing groups.
The result of the validation is displayed by replacing the text in the last paragraph on
the page.

If the regular expression fails to match, regexp.exec() returns null, and (invalid card
number) is displayed. If the regex does match, regexp.exec() returns an array of strings.
The zeroth element holds the overall match. Elements 1 through 6 hold the text match-
ed by the six capturing groups.

Our regular expression has six capturing groups, divided by alternation. This means
that exactly one capturing group will participate in the match and hold the card num-
ber. The other groups will be empty (either undefined or the empty string, depending
on your browser). The function checks the six capturing groups, one by one. When it
finds one that is not empty, the card number is recognized and displayed.

Extra Validation with the Luhn Algorithm
There is an extra validation check that you can do on the credit card number before
processing the order. The last digit in the credit card number is a checksum calculated
according to the Luhn algoritm. Since this algorithm requires basic arithmetic, you
cannot implement it with a regular expression.

You can add the Luhn check to the web page example for this recipe by inserting the
call luhn(cardnumber); before the “else” line in the validatecardnumber() function. This
way, the Luhn check will be done only if the regular expression finds a valid match,
and after determining the card brand. However, determining the brand of the credit
card is not necessary for the Luhn check. All credit cards use the same method.

276 | Chapter 4: Validation and Formatting

In JavaScript, you can code the Luhn function as follows:

function luhn(cardnumber) {
 // Build an array with the digits in the card number
 var getdigits = /\d/g;
 var digits = [];
 while (match = getdigits.exec(cardnumber)) {
 digits.push(parseInt(match[0], 10));
 }
 // Run the Luhn algorithm on the array
 var sum = 0;
 var alt = false;
 for (var i = digits.length - 1; i >= 0; i--) {
 if (alt) {
 digits[i] *= 2;
 if (digits[i] > 9) {
 digits[i] -= 9;
 }
 }
 sum += digits[i];
 alt = !alt;
 }
 // Card number turns out to be invalid anyway
 if (sum % 10 == 0) {
 document.getElementById("notice").innerHTML += '; Luhn check passed';
 } else {
 document.getElementById("notice").innerHTML += '; Luhn check failed';
 }
}

This function takes a string with the credit card number as a parameter. The card
number should consist only of digits. In our example, validatecardnumber() has already
stripped spaces and hyphens and determined the card number to have the right number
of digits.

First, the function uses the regular expression ‹\d› to iterate over all the digits in the
string. Notice the /g modifier. Inside the loop, match[0] retrieves the matched digit.
Since regular expressions deal with text (strings) only, we call parseInt() to make sure
the variable is stored as an integer instead of as a string. If we don’t do this, the sum
variable will end up as a string concatenation of the digits, rather than the integer
addition of the numbers.

The actual algorithm runs on the array, calculating a checksum. If the sum modulus
10 is zero, then the card number is valid. If not, the number is invalid.

4.19 Validate Credit Card Numbers | 277

4.20 European VAT Numbers
Problem
You’re given the job of implementing an online order form for a business in the Euro-
pean Union.

European tax laws stipulate that when a VAT-registered business (your customer) lo-
cated in one EU country purchases from a vendor (your company) in another EU
country, the vendor must not charge VAT (Value-Added Tax). If the buyer is not VAT-
registered, the vendor must charge VAT and remit the VAT to the local tax office. The
vendor must use the VAT registration number of the buyer as proof to the tax office
that no VAT is due. This means that for the vendor, it is very important to validate the
buyer’s VAT number before proceeding with the tax-exempt sale.

The most common cause of invalid VAT numbers are simple typing mistakes by the
customer. To make the ordering process faster and friendlier, you should use a regular
expression to validate the VAT number immediately while the customer fills out your
online order form. You can do this with some client-side JavaScript or in the CGI script
on your web server that receives the order form. If the number does not match the
regular expression, the customer can correct the typo right away.

Solution

Strip whitespace and punctuation

Retrieve the VAT number entered by the customer and store it into a variable. Before
performing the check for a valid number, perform a search-and-replace to replace this
regular expression globally with blank replacement text:

[-.●]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Recipe 3.14 shows you how to perform this initial replacement. We’ve assumed that
the customer wouldn’t enter any punctuation except hyphens, dots, and spaces. Any
other extraneous characters will be caught by the upcoming check.

Validate the number

With whitespace and punctuation stripped, this regular expression checks whether the
VAT number is valid for any of the 27 EU countries:

^(
(AT)?U[0-9]{8} | # Austria
(BE)?0?[0-9]{9} | # Belgium
(BG)?[0-9]{9,10} | # Bulgaria
(CY)?[0-9]{8}L | # Cyprus

278 | Chapter 4: Validation and Formatting

(CZ)?[0-9]{8,10} | # Czech Republic
(DE)?[0-9]{9} | # Germany
(DK)?[0-9]{8} | # Denmark
(EE)?[0-9]{9} | # Estonia
(EL|GR)?[0-9]{9} | # Greece
(ES)?[0-9A-Z][0-9]{7}[0-9A-Z] | # Spain
(FI)?[0-9]{8} | # Finland
(FR)?[0-9A-Z]{2}[0-9]{9} | # France
(GB)?([0-9]{9}([0-9]{3})?|[A-Z]{2}[0-9]{3}) | # United Kingdom
(HU)?[0-9]{8} | # Hungary
(IE)?[0-9]S[0-9]{5}L | # Ireland
(IT)?[0-9]{11} | # Italy
(LT)?([0-9]{9}|[0-9]{12}) | # Lithuania
(LU)?[0-9]{8} | # Luxembourg
(LV)?[0-9]{11} | # Latvia
(MT)?[0-9]{8} | # Malta
(NL)?[0-9]{9}B[0-9]{2} | # Netherlands
(PL)?[0-9]{10} | # Poland
(PT)?[0-9]{9} | # Portugal
(RO)?[0-9]{2,10} | # Romania
(SE)?[0-9]{12} | # Sweden
(SI)?[0-9]{8} | # Slovenia
(SK)?[0-9]{10} # Slovakia
)$

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

This regular expression uses free-spacing mode to make it easy to edit the regular ex-
pression later. Every now and then, new countries join the European Union, and mem-
ber countries change their rules for VAT numbers. Unfortunately, JavaScript does not
support free-spacing. In this case, you’re stuck putting everything on one line:

^((AT)?U[0-9]{8}|(BE)?0?[0-9]{9}|(BG)?[0-9]{9,10}|(CY)?[0-9]{8}L|↵
(CZ)?[0-9]{8,10}|(DE)?[0-9]{9}|(DK)?[0-9]{8}|(EE)?[0-9]{9}|↵
(EL|GR)?[0-9]{9}|(ES)?[0-9A-Z][0-9]{7}[0-9A-Z]|(FI)?[0-9]{8}|↵
(FR)?[0-9A-Z]{2}[0-9]{9}|(GB)?([0-9]{9}([0-9]{3})?|[A-Z]{2}[0-9]{3})|↵
(HU)?[0-9]{8}|(IE)?[0-9]S[0-9]{5}L|(IT)?[0-9]{11}|↵
(LT)?([0-9]{9}|[0-9]{12})|(LU)?[0-9]{8}|(LV)?[0-9]{11}|(MT)?[0-9]{8}|↵
(NL)?[0-9]{9}B[0-9]{2}|(PL)?[0-9]{10}|(PT)?[0-9]{9}|(RO)?[0-9]{2,10}|↵
(SE)?[0-9]{12}|(SI)?[0-9]{8}|(SK)?[0-9]{10})$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Follow Recipe 3.6 to add this regular expression to your order form.

4.20 European VAT Numbers | 279

Discussion

Strip whitespace and punctuation

To make VAT numbers easier to read for humans, people often type them in with extra
punctuation to split the digits into groups. For instance, a German customer might
enter his VAT number DE123456789 as DE 123.456.789.

A single regular expression that matches VAT numbers from 27 countries in any pos-
sible notation is an impossible job. Since the punctuation is only for readability, it is
much easier to first strip all the punctuation, then validate the resulting bare VAT
number.

The regular expression ‹[-.●]› matches a character that is a hyphen, dot, or space.
Replacing all matches of this regular expression with nothing effectively deletes the
punctuation characters commonly used in VAT numbers.

VAT numbers consist only of letters and digits. Instead of using ‹[-.●]› to remove only
common punctuation, you could use ‹[^A-Z0-9]› to strip out all invalid characters.

Validate the number

The two regular expressions for validating the number are identical. The only difference
is that the first one uses the free-spacing syntax to make the regular expression more
readable, and to indicate the countries. JavaScript does not support free-spacing, but
the other flavors give you the choice.

The regex uses alternation to accommodate the VAT numbers of all 27 EU countries.
The essential formats are:

Austria
U99999999

Belgium
999999999 or 0999999999

Bulgaria
999999999 or 9999999999

Cyprus
99999999L

Czech Republic
99999999, 999999999, or 9999999999

Germany
999999999

Denmark
99999999

280 | Chapter 4: Validation and Formatting

Estonia
999999999

Greece
999999999

Spain
X9999999X

Finland
99999999

France
XX999999999

United Kingdom
999999999, 999999999999, or XX999

Hungary
99999999

Ireland
9S99999L

Italy
99999999999

Lithuania
999999999 or 99999999999

Luxembourg
99999999

Latvia
99999999999

Malta
99999999

Netherlands
999999999B99

Poland
999999999

Portugal
999999999

Romania
99, 999, 9999, 99999, 999999, 9999999, 99999999, 999999999, or 9999999999

Sweden
99999999999

Slovenia
99999999

4.20 European VAT Numbers | 281

Slovakia
999999999

Strictly speaking, the two-letter country code is part of the VAT number. However,
people often omit it, since the billing address already indicates the country. The regular
expression will accept VAT numbers with and without the country code. If you want
the country code to be mandatory, remove all the question marks from the regular
expression. If you do, mention that you require the country code in the error message
that tells the user the VAT number is invalid.

If you accept orders only from certain countries, you can leave out the countries that
don’t appear in the country selection on your order form. When you delete an alter-
native, make sure to also delete the ‹|› operator that separates the alternative from the
next or previous one. If you don’t, you end up with ‹||› in your regular expression.
‹||› inserts an alternative that matches the empty string, which means your order form
will accept the omission of a VAT number as a valid VAT number.

The 27 alternatives are grouped together. The group is placed between a caret and a
dollar sign, which anchor the regular expression to the beginning and ending of the
string you’re validating. The whole input must validate as a VAT number.

If you’re searching for VAT numbers in a larger body of text, replace the anchors with
‹\b› word boundaries.

Variations
The benefit of using one regular expression to check for all 27 countries is that you only
need to add one regex validation to your order form. You could enhance your order
form by using 27 separate regular expressions. First, check the country that the cus-
tomer specified in the billing address. Then, look up the appropriate regular expression
according to the country:

Austria
‹^(AT)?U[0-9]{8}$›

Belgium
‹^(BE)?0?[0-9]{9}$›

Bulgaria
‹^(BG)?[0-9]{9,10}$›

Cyprus
‹^(CY)?[0-9]{8}L$›

Czech Republic
‹^(CZ)?[0-9]{8,10}$›

Germany
‹^(DE)?[0-9]{9}$›

282 | Chapter 4: Validation and Formatting

Denmark
‹^(DK)?[0-9]{8}$›

Estonia
‹^(EE)?[0-9]{9}$›

Greece
‹^(EL|GR)?[0-9]{9}$›

Spain
‹^(ES)?[0-9A-Z][0-9]{7}[0-9A-Z]$›

Finland
‹^(FI)?[0-9]{8}$›

France
‹^(FR)?[0-9A-Z]{2}[0-9]{9}$›

United Kingdom
‹^(GB)?([0-9]{9}([0-9]{3})?|[A-Z]{2}[0-9]{3})$›

Hungary
‹^(HU)?[0-9]{8}$›

Ireland
‹^(IE)?[0-9]S[0-9]{5}L$›

Italy
‹^(IT)?[0-9]{11}$›

Lithuania
‹^(LT)?([0-9]{9}|[0-9]{12})$›

Luxembourg
‹^(LU)?[0-9]{8}$›

Latvia
‹^(LV)?[0-9]{11}$›

Malta
‹^(MT)?[0-9]{8}$›

Netherlands
‹^(NL)?[0-9]{9}B[0-9]{2}$›

Poland
‹^(PL)?[0-9]{10}$›

Portugal
‹^(PT)?[0-9]{9}$›

Romania
‹^(RO)?[0-9]{2,10}$›

Sweden
‹^(SE)?[0-9]{12}$›

4.20 European VAT Numbers | 283

Slovenia
‹^(SI)?[0-9]{8}$›

Slovakia
‹^(SK)?[0-9]{10}$›

Implement Recipe 3.6 to validate the VAT number against the selected regular expres-
sion. That will tell you if the number is valid for the country the customer claims to
reside in.

The main benefit of using the separate regular expressions is that you can force the
VAT number to start with the correct country code, without asking the customer to
type it in. When the regular expression matches the provided number, check the con-
tents of the first capturing group. The recipe in Recipe 3.9 explains how to do this. If
the first capturing group is empty, the customer did not type the country code at the
start of the VAT number. You can then add the country code before storing the vali-
dated number in your order database.

Greek VAT numbers allow two country codes. EL is traditionally used for Greek VAT
numbers, but GR is the ISO country code for Greece.

See Also
The regular expression merely checks if the number looks like a valid VAT number.
This is enough to weed out honest mistakes. A regular expression obviously cannot
check whether the VAT number is assigned to the business placing the order. The
European Union provides a web page at http://ec.europa.eu/taxation_customs/vies/vie
shome.do where you can check which business a particular VAT number belongs to, if
any.

Techniques used in the regular expression are discussed in Recipes 2.3, 2.5 and 2.8.

284 | Chapter 4: Validation and Formatting

CHAPTER 5

Words, Lines, and Special Characters

This chapter contains recipes that deal with finding and manipulating text in a variety
of contexts. Some of the recipes show how to do things you might expect from an
advanced search engine, such as finding any one of several words or finding words that
appear near each other. Other examples help you find entire lines that contain partic-
ular words, remove repeated words, or escape regular expression metacharacters.

The central theme of this chapter is showing a variety of regular expression constructs
and techniques in action. Reading through it is like a workout for a large number of
regular expression syntax features, and will help you apply regular expressions gener-
ally to the problems you encounter. In many cases, what we search for is simple, but
the templates we provide in the solutions allow you to customize them for the specific
problems you’re facing.

5.1 Find a Specific Word
Problem
You’re given the simple task of finding all occurrences of the word “cat”, case insensi-
tively. The catch is that it must appear as a complete word. You don’t want to find
pieces of longer words, such as hellcat, application, or Catwoman.

Solution
Word boundary tokens make this a very easy problem to solve:

\bcat\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Recipe 3.7 shows how you can use this regular expression to find all matches. Rec-
ipe 3.14 shows how you can replace matches with other text.

285

Discussion
The word boundaries at both ends of the regular expression ensure that cat is matched
only when it appears as a complete word. More precisely, the word boundaries require
that cat is set apart from other text by the beginning or end of the string, whitespace,
punctuation, or other nonword characters.

Regular expression engines consider letters, numbers, and underscores to all be word
characters. Word boundaries are discussed in greater depth in Recipe 2.6.

A problem can occur when working with international text in JavaScript, PCRE, and
Ruby, since those regular expression flavors only consider letters in the ASCII table
to create a word boundary. In other words, word boundaries are found only at the
positions between a match of ‹^|[^A-Za-z0-9_]› and ‹[A-Za-z0-9_]›, or between
‹[A-Za-z0-9_]› and ‹[^A-Za-z0-9_]|$›. The same is true in Python when the UNICODE or
U flag is not set. This prevents ‹\b› from being useful for a “whole word only” search
on text that contains accented letters or words that use non-Latin scripts. For example,
in JavaScript, PCRE, and Ruby, ‹\büber\b› will find a match within darüber, but not
within dar über. In most cases, this is the exact opposite of what you would want. The
problem occurs because ü is considered a nonword character, and a word boundary is
therefore found between the two characters rü. No word boundary is found between
a space character and ü, because they create a contiguous sequence of nonword
characters.

You can deal with this problem by using lookahead and lookbehind (collectively, look-
around) instead of word boundaries. Like word boundaries, lookaround matches a
zero-width position. In PCRE (when compiled with UTF-8 support) and Ruby 1.9, you
can emulate Unicode-based word boundaries using, for example, ‹(?<=\P{L}|^)cat(?
=\P{L}|$)›. This regular expression also uses negated Unicode Letter property tokens
(‹\P{L}›), which are discussed in Recipe 2.7. Lookaround is discussed in Recipe 2.16.
If you want the lookarounds to also treat numbers and underscore as word characters
(like ‹\b› does), replace the two instances of ‹\P{L}› with the character class
‹[^\p{L}\p{N}_]›.
JavaScript and Ruby 1.8 support neither lookbehind nor Unicode properties. You can
work around the lack of lookbehind support by matching the nonword character pre-
ceding each match, and then either removing it from each match or putting it back into
the string when replacing matches (see the examples of using parts of a match in a
replacement string in Recipe 3.15). The additional lack of support for matching Uni-
code properties (coupled with the fact that both programming languages’ ‹\w› and
‹\W› tokens only match ASCII characters) means you might need to make do with a
more restrictive solution. Code points in the letter category are scattered throughout
Unicode’s character set, so it would take thousands of characters to emulate ‹\p{L}›
using Unicode escape sequences and character class ranges. A good compromise might
be ‹[A-Za-z\xAA\xB5\xBA\xC0-\xD6\xD8-\xF6\xF8-\xFF]›, which matches all Unicode
letter characters in eight-bit address space—i.e., the first 256 Unicode code points,

286 | Chapter 5: Words, Lines, and Special Characters

from positions 0x0 to 0xFF (see Figure 5-1 for the list of matched characters). This
character class lets you match (or in negated form, exclude) a variety of commonly
used, accented characters that are outside the addressable space of seven-bit ASCII.

Figure 5-1. Unicode letter characters in eight-bit address space

Following is an example of how to replace all instances of the word “cat” with “dog”
in JavaScript. It correctly accounts for common, accented characters, so ëcat is not
altered. To do this, you’ll need to construct your own character class instead of relying
on the built-in ‹\b› or ‹\w›:

// 8-bit-wide letter characters
var L = 'A-Za-z\xAA\xB5\xBA\xC0-\xD6\xD8-\xF6\xF8-\xFF';
var pattern = '([^{L}]|^)cat([^{L}]|$)'.replace(/{L}/g, L);
var regex = new RegExp(pattern, 'gi');

// replace cat with dog, and put back any
// additional matched characters
subject = subject.replace(regex, '$1dog$2');

Note that JavaScript string literals use \xHH (where HH is a two-digit hexadecimal num-
ber) to insert special characters. Hence, the L variable that is passed to the regular
expression actually ends up containing the literal versions of the characters. If you
wanted the \xHH metasequences to be passed through to the regex itself, you would
have to escape the backslashes in the string literal (e.g., "\\xHH"). However, in this case
it doesn’t matter and will not change what the regular expression matches.

See Also
Recipes 5.2, 5.3, and 5.4

5.1 Find a Specific Word | 287

5.2 Find Any of Multiple Words
Problem
You want to find any one out of a list of words, without having to search through the
subject string multiple times.

Solution

Using alternation

The simple solution is to alternate between the words you want to match:

\b(?:one|two|three)\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

More complicated examples of matching similar words are shown in Recipe 5.3.

Example JavaScript solution
var subject = 'One times two plus one equals three.';

var regex = /\b(?:one|two|three)\b/gi;

subject.match(regex);
// returns an array with four matches: ['One','two','one','three']

// This function does the same thing but accepts an array of words to
// match. Any regex metacharacters within the accepted words are escaped
// with a backslash before searching.

function match_words (subject, words) {
 var regex_metachars = /[(){}[\]*+?.\\^$|,\-]/g;

 for (var i = 0; i < words.length; i++) {
 words[i] = words[i].replace(regex_metachars, '\\$&');
 }

 var regex = new RegExp('\\b(?:' + words.join('|') + ')\\b', 'gi');

 return subject.match(regex) || [];
}

match_words(subject, ['one','two','three']);
// returns an array with four matches: ['One','two','one','three']

288 | Chapter 5: Words, Lines, and Special Characters

Discussion

Using alternation

There are three parts to this regular expression: the word boundaries on both ends, the
noncapturing group, and the list of words (each separated by the ‹|› alternation oper-
ator). The word boundaries ensure that the regex does not match part of a longer word.
The noncapturing group limits the reach of the alternation operators; otherwise, you’d
need to write ‹\bone\b|\btwo\b|\bthree\b› to achieve the same effect. Each of the words
simply matches itself.

Because the regex engine attempts to match each word in the list from left to right, you
might see a very slight performance gain by placing the words that are most likely to
be found in the subject text near the beginning of the list. Since the words are surroun-
ded on both sides by word boundaries, they can appear in any order. Without the word
boundaries, however, it might be important to put longer words first; otherwise, you’d
never find “awesome” when searching for ‹awe|awesome›. The regex would always just
match the “awe” at the beginning of the word.

Note that this regular expression is meant to generically demonstrate matching one out
of a list of words. Because both the ‹two› and ‹three› in this example start with the same
letter, you can more efficiently guide the regular expression engine by rewriting the
regex as ‹\b(?:one|t(?:wo|hree))\b›. See Recipe 5.3 for more examples of how to
efficiently match one out of a list of similar words.

Example JavaScript solution

The JavaScript example matches the same list of words in two different ways. The first
approach is to simply create the regex and search the subject string using the match
method that is available for JavaScript strings. When the match method is passed a
regular expression that uses the /g (“global”) flag, it returns an array of all matches
found in the string, or null if no match is found.

The second approach uses a function (match_words) that accepts the subject string to
search within and an array of words to search for. The function first escapes any regex
metacharacters that might exist in the provided words, and then splices the word list
into a new regular expression that is used to search the string. The function returns an
array of any matches that are found, or an empty array if the generated regex doesn’t
match the string at all. The desired words can be matched in any combination of upper-
and lowercase, thanks to the use of the case-insensitive (/i) flag.

See Also
Recipes 5.1, 5.3, and 5.4

5.2 Find Any of Multiple Words | 289

5.3 Find Similar Words
Problem
You have several problems in this case:

• You want to find all occurrences of both color and colour in a string.

• You want to find any of three words that end with “at”: bat, cat, or rat.

• You want to find any word ending with phobia.

• You want to find common variations on the name “Steven”: Steve, Steven, and
Stephen.

• You want to match any common form of the term “regular expression”.

Solution
Regular expressions to solve each of the problems just listed are shown in turn. All of
these solutions are listed with the case insensitive option.

Color or colour
\bcolou?r\b

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Bat, cat, or rat
\b[bcr]at\b

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Words ending with “phobia”
\b\w*phobia\b

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Steve, Steven, or Stephen
\bSte(?:ven?|phen)\b

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Variations of “regular expression”
\breg(?:ular●expressions?|ex(?:ps?|e[sn])?)\b

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

290 | Chapter 5: Words, Lines, and Special Characters

Discussion

Use word boundaries to match complete words

All five of these regular expressions use word boundaries (‹\b›) to ensure that they
match only complete words. The patterns use several different approaches to allow
variation in the words that they match.

Let’s take a closer look at each one.

Color or colour

This regular expression will match color or colour, but will not match within
colorblind. It uses the ‹?› quantifier to make its preceding “u” optional. Quantifiers
such as ‹?› do not work like the wildcards that many people are more familiar with.
Instead, they bind to the immediately preceding element, which can be either a single
token (in this case, the literal character “u”) or a group of tokens wrapped in paren-
theses. The ‹?› quantifier repeats the preceding element zero or one time. The regex
engine first tries to match the element that the quantifier is bound to, and if that doesn’t
work, the engine moves forward without matching it. Any quantifier that allows zero
repetitions effectively makes the preceding element optional, which is exactly what we
want here.

Bat, cat, or rat

This regular expression uses a character class to match “b”, “c”, or “r”, followed by the
literal characters “at”. You could do the same thing using ‹\b(?:b|c|r)at\b›, ‹\b(?:bat|
cat|rat)\b›, or ‹\bbat\b|\bcat\b|\brat\b›. However, any time the difference between
allowed matches is a choice from one of a list of characters, you’re better off using a
character class. Not only do character classes provide a more compact and readable
syntax (thanks to being able to drop all the vertical bars and use ranges such as A–Z),
most regex engines also provide far superior optimization for character classes. Alter-
nation using vertical bars requires the engine to use the computationally expensive
backtracking algorithm, whereas character classes use a simpler search approach.

A few words of caution, though. Character classes are among the most frequently mis-
used regular expression features. It’s possible that they’re not always documented well,
or maybe some readers just skimmed over the details. Whatever the reasons, don’t let
yourself make the same newbie mistakes. Character classes are only capable of match-
ing one character at a time from the characters specified within them—no exceptions.

Following are two of the most common ways that character classes are misused:

Putting words in character classes
Sure, something like ‹[cat]{3}› will match cat, but it will also match act, ttt, and
any other three-character combination of the listed characters. The same applies

5.3 Find Similar Words | 291

to negated character classes such as ‹[^cat]›, which matches any single character
that is not c, a, or t.

Trying to use the alternation operator within character classes
By definition, character classes allow a choice between the characters specified
within them. ‹[a|b|c]› matches a single character from the set “abc|”, which is
probably not what you want. And even if it is, the class contains a redundant ver-
tical bar.

See Recipe 2.3 for all the details you need to use character classes correctly and
effectively.

Words ending with “phobia”

Like the previous regular expression, this one also uses a quantifier to provide the
variation in the strings it matches. This regular expression matches, for example,
arachnophobia and hexakosioihexekontahexaphobia, and because the ‹*› allows zero
repetitions, it also matches phobia on its own. If you want to require at least one char-
acter before the “phobia” suffix, change the ‹*› to ‹+›.

Steve, Steven, or Stephen

This regex combines a couple of the features we’ve used in the previous examples. A
noncapturing group, written as ‹(?:⋯)›, limits the reach of the ‹|› alternation operator.
The ‹?› quantifier used inside the group’s first alternation option makes the preceding
‹n› character optional. This improves efficiency (and brevity) versus the equivalent
‹\bSte(?:ve|ven|phen)\b›. The same principle explains why the literal string ‹Ste› ap-
pears at the front of the regular expression, rather than being repeated three times as
with ‹\b(?:Steve|Steven|Stephen)\b› or ‹\bSteve\b|\bSteven\b|\bStephen\b›. Some
backtracking regular expression engines are not smart enough to figure out that any
text matched by these latter regexes must start with Ste. Instead, as the engine steps
through the subject string looking for a match, it will first find a word boundary, then
check the following character to see if it is an S. If not, the engine must try all alternative
paths through the regular expression before it can move on and start over again at the
next position in the string. Although it’s easy for a human to see that this would be a
waste of effort (since the alternative paths through the regex all start with “Ste”), the
engine doesn’t know this. If instead you write the regex as ‹\bSte(?:ven?|phen)\b›, the
engine immediately realizes that it cannot match any string that does not start with
those characters.

For an in-depth look under the hood of a backtracking regular expression engine, see
Recipe 2.13.

292 | Chapter 5: Words, Lines, and Special Characters

Variations of “regular expression”

The final example for this recipe mixes alternation, character classes, and quantifiers
to match any common variation of the term “regular expression”. Since the regular
expression can be a bit difficult to take in at a glance, let’s break it down and examine
each of its parts.

The regex is written here using the free-spacing option, which is not available in
JavaScript. Since whitespace is ignored in free-spacing mode, the literal space character
has been escaped with a backslash:

\b # Assert position at a word boundary.
reg # Match "reg".
(?: # Group but don't capture...
 ular\ # Match "ular ".
 expressions? # Match "expression" or "expressions".
 | # or...
 ex # Match "ex".
 (?: # Group but don't capture...
 ps? # Match "p" or "ps".
 | # or...
 e # Match "e".
 [sn] # Match one character from the set "sn".
) # End the noncapturing group.
 ? # Repeat the preceding group zero or one time.
) # End the noncapturing group.
\b # Assert position at a word boundary.

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

This pattern matches any of the following seven strings:

• regular expressions

• regular expression

• regexps

• regexp

• regexes

• regexen

• regex

See Also
Recipes 5.1, 5.2, and 5.4

5.3 Find Similar Words | 293

5.4 Find All Except a Specific Word
Problem
You want to use a regular expression to match any complete word except cat.
Catwoman and other words that merely contain the letters “cat” should be matched—
just not cat.

Solution
A negative lookahead can help you rule out specific words, and is key to this next regex:

\b(?!cat\b)\w+
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
Although a negated character class (written as ‹[^⋯]›) makes it easy to match anything
except a specific character, you can’t just write ‹[^cat]› to match anything except the
word cat. ‹[^cat]› is a valid regex, but it matches any character except c, a, or t. Hence,
although ‹\b[^cat]+\b› would avoid matching the word cat, it wouldn’t match the
word cup either, because it contains the forbidden letter c. The regular expression
‹\b[^c][^a][^t]\w*› is no good either, because it would reject any word with c as its
first letter, a as its second letter, or t as its third. Furthermore, that doesn’t restrict the
first three letters to word characters, and it only matches words with at least three
characters since none of the negated character classes are optional.

With all that in mind, let’s take another look at how the regular expression shown at
the beginning of this recipe solved the problem:

\b # Assert position at a word boundary.
(?! # Assert that the regex below cannot be matched starting here...
 cat # Match "cat".
 \b # Assert position at a word boundary.
) # End the negative lookahead.
\w+ # Match one or more word characters.

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

The key to this pattern is a negative lookahead, which looks like ‹(?!⋯)›. The negative
lookahead disallows the sequence cat followed by a word boundary, without prevent-
ing the use of those letters when they do not appear in that exact sequence, or when
they appear as part of a longer or shorter word. There’s no word boundary at the very
end of the regular expression, because it wouldn’t change what the regex matches. The
‹+› quantifier in ‹\w+› repeats the word character token as many times as possible, which
means that it will always match until the next word boundary.

294 | Chapter 5: Words, Lines, and Special Characters

When applied to the subject string categorically match any word except cat, the regex
will find five matches: categorically, match, any, word, and except.

Variations

Find words that don’t contain another word

If, instead of trying to match any word that is not cat, you are trying to match any word
that does not contain cat, a slightly different approach is needed:

\b(?:(?!cat)\w)+\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

In the earlier section of this recipe, the word boundary at the beginning of the regular
expression provided a convenient anchor that allowed us to simply place the negative
lookahead at the beginning of the word. The solution used here is not as efficient, but
it’s nevertheless a commonly used construct that allows you to match something other
than a particular word or pattern. It does this by repeating a group containing a negative
lookahead and a single word character. Before matching each character, the regex en-
gine makes sure that the word cat cannot be matched starting at the current position.

Unlike the previous regular expression, this one requires a terminating word boundary.
Otherwise, it could match just the first part of a word, up to where cat appears within
it.

See Also
Recipe 2.16, which includes a more thorough discussion of lookaround (the collective
term for positive and negative lookahead and lookbehind).

Recipes 5.1, 5.5, 5.6, and 5.11.

5.5 Find Any Word Not Followed by a Specific Word
Problem
You want to match any word that is not immediately followed by the word cat, ignoring
any whitespace, punctuation, or other nonword characters that appear in between.

Solution
Negative lookahead is the secret ingredient for this regular expression:

\b\w+\b(?!\W+cat\b)
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

5.5 Find Any Word Not Followed by a Specific Word | 295

Recipes 3.7 and 3.14 show examples of how you might want to implement this regular
expression in code.

Discussion
As with many other recipes in this chapter, word boundaries (‹\b›) and the word char-
acter token (‹\w›) work together to match a complete word. You can find in-depth
descriptions of these features in Recipe 2.6.

The ‹(?!⋯)› surrounding the second part of this regex is a negative lookahead. Look-
ahead tells the regex engine to temporarily step forward in the string, to check whether
the pattern inside the lookahead can be matched just ahead of the current position. It
does not consume any of the characters matched inside the lookahead. Instead, it
merely asserts whether a match is possible. Since we’re using a negative lookahead, the
result of the assertion is inverted. In other words, if the pattern inside the lookahead
can be matched just ahead, the match attempt fails, and regex engine moves forward
to try all over again starting from the next character in the subject string. You can find
much more detail about lookahead (and its counterpart, lookbehind) in Recipe 2.16.

As for the pattern inside the lookahead, the ‹\W+› matches one or more nonword char-
acters that appear before ‹cat›, and the word boundary at the end makes sure that we
skip only words not followed by cat as a complete word, rather than just any word
starting with cat.

Note that this regular expression even matches the word cat, as long as the subsequent
word is not also cat. If you also want to avoid matching cat, you could combine this
regex with the one in Recipe 5.4 to end up with ‹\b(?!cat\b)\w+\b(?!\W+cat\b)›.

Variations
If you want to only match words that are followed by cat (without including cat and
its preceding nonword characters as part of the matched text), change the lookahead
from negative to positive, then turn your frown upside-down:

\b\w+\b(?=\W+cat\b)
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

See Also
Recipe 2.16, which includes a more thorough discussion of lookaround (the collective
term for positive and negative lookahead and lookbehind).

Recipes 5.4 and 5.6.

296 | Chapter 5: Words, Lines, and Special Characters

5.6 Find Any Word Not Preceded by a Specific Word
Problem
You want to match any word that is not immediately preceded by the word cat, ignoring
any whitespace, punctuation, or other nonword characters that come between.

Solution

Lookbehind you

Lookbehind lets you check if text appears before a given position. It works by instruct-
ing the regex engine to temporarily step backward in the string, checking whether
something can be found ending at the position where you placed the lookbehind. See
Recipe 2.16 if you need to brush up on the details of lookbehind.

The following three regexes use negative lookbehind, which looks like ‹(?<!⋯)›. Un-
fortunately, the regex flavors covered by this book differ in what kinds of patterns they
allow you to place within lookbehind. As a result, the solutions end up working a bit
differently in each case. Make sure to check out the “Discussion” on page 298 of this
recipe for further details.

Words not preceded by “cat”
(?<!\bcat\W+)\b\w+

Regex options: Case insensitive
Regex flavor: .NET

(?<!\bcat\W{1,9})\b\w+
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE

(?<!\bcat)(?:\W+|^)(\w+)
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

Simulate lookbehind

JavaScript and Ruby 1.8 do not support lookbehind at all, even though they do support
lookahead. However, because the lookbehind for this problem appears at the very be-
ginning of the regex, it is possible to perfectly simulate the lookbehind by splitting the
regex into two parts, as demonstrated in the following JavaScript example:

var subject = 'My cat is furry.',
 main_regex = /\b\w+/g,
 lookbehind = /\bcat\W+$/i,
 lookbehind_type = false, // negative lookbehind
 matches = [],

5.6 Find Any Word Not Preceded by a Specific Word | 297

 match,
 left_context;

while (match = main_regex.exec(subject)) {
 left_context = subject.substring(0, match.index);

 if (lookbehind_type == lookbehind.test(left_context)) {
 matches.push(match[0]);
 } else {
 main_regex.lastIndex = match.index + 1;
 }
}

// matches: ['My','cat','furry']

Discussion

Fixed, finite, and infinite length lookbehind

The first regular expression uses the negative lookbehind ‹(?<!\bcat\W+)›. Because the
‹+› quantifier used inside the lookbehind has no upper limit on how many characters
it can match, this version only works with the .NET regular expression flavor. All of
the other regular expression flavors covered by this book require a fixed or maximum
(finite) length for lookbehind patterns.

The second regular expression replaces the ‹+› within the lookbehind with ‹{1,9}›. As
a result, it can be used with .NET, Java, and PCRE, all of which support variable-length
lookbehind when there is a known upper limit to how many characters can be matched
within them. I’ve arbitrarily chosen a maximum length of nine nonword characters to
separate the words. That allows a bit of punctuation and a few blank lines to separate
the words. Unless you’re working with unusual subject text, this will probably end up
working exactly like the previous .NET-only solution. Even in .NET, however, pro-
viding a reasonable repetition limit for any quantifiers inside lookbehind is likely to
make your regular expression more efficient, if only because it reduces the amount of
unanticipated backtracking that can potentially occur within the lookbehind.

The third regular expression was restructured in a way that lets the lookbehind test a
fixed-length string, thereby adding support for even more regular expression flavors.
In order to do so, the nonword character (‹\W›) shorthand class was moved outside of
the lookbehind. This means that the nonword characters (such as punctuation and
whitespace) preceding the words you’re searching for will be part of the string that is
actually matched (and returned) by the regular expression. To make it a little easier to
ignore this portion of each match, a capturing group was added around the final word-
character sequence. With a bit of additional code, you can read just the value of back-
reference 1 rather than the entire match, giving you the same result that you’d get from

298 | Chapter 5: Words, Lines, and Special Characters

the prior regular expressions. Recipe 3.9 shows the code needed to work with
backreferences.

Simulate lookbehind

JavaScript does not support lookbehind, but the JavaScript example code shows how
you can simulate lookbehind that appears at the beginning of a regex by using two
regular expressions. It doesn’t impose any restrictions on the length of the text matched
by the (simulated) lookbehind.

We start by splitting the ‹(?<!\bcat\W+)\b\w+› regular expression from the original
solution into two pieces: the pattern inside the lookbehind (‹\bcat\W+›) and the pattern
that comes after it (‹\b\w+›). Append a ‹$› to the end of the lookbehind regex. If you
need to use the “caret and dollar sign match at line breaks” option (/m) with the
lookbehind regex, use ‹$(?!\s)› instead of ‹$› to ensure that it can match only at the
very end of its subject text. The lookbehind_type variable indicates whether we’re em-
ulating positive or negative lookbehind, using true for positive and false for negative.

After the variables are set up, we use main_regex and the exec method to iterate over
the subject string (see Recipe 3.11 for a description of this process). When a match is
found, the part of the subject text before the match is copied into a new string variable
(left_context), and we test whether the lookbehind regex matches that string. Because
of the anchor we appended to the end of the lookbehind regex, this effectively puts the
second match immediately to the left of the first match. By comparing the result of
the lookbehind test to lookbehind_type, we can determine whether the match meets
the complete criteria for a successful match.

Finally, we take one of two steps. If we have a successful match, append the matched
text to the matches array. If not, change the position at which to continue searching for
a match (using main_regex.lastIndex) to the position one character after the starting
position of the main_regex object’s last match, rather than letting the next iteration of
the exec method start at the end of the current match.

Whew! We’re done.

This is an advanced trick that takes advantage of the lastIndex property that is dy-
namically updated with JavaScript regular expressions that use the /g (“global”) flag.
Usually, updating and resetting lastIndex is something that happens automagically.
Here, we use it to take control of the regex’s path through the subject string, moving
forward and backward as necessary. This trick only lets you emulate lookbehind that
appears at the beginning of a regex. With a few changes, this code could also be used
to emulate lookbehind at the very end of a regex. However, it does not serve as a full
substitute for lookbehind support. Due to the interplay of lookbehind and backtrack-
ing, this approach cannot help you accurately emulate the behavior of a lookbehind
that appears in the middle of a regex.

5.6 Find Any Word Not Preceded by a Specific Word | 299

Variations
If you only want to match words that are preceded by cat (without including cat and
its following nonword characters as part of the matched text), change the negative
lookbehind to a positive lookbehind:

(?<=\bcat\W+)\b\w+
Regex options: Case insensitive
Regex flavor: .NET

(?<=\bcat\W{1,9})\b\w+
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE

(?<=\bcat)(?:\W+|^)(\w+)
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

See Also
Recipe 2.16, which includes a more thorough discussion of lookaround (the collective
term for positive and negative lookahead and lookbehind).

Recipes 5.4 and 5.5.

5.7 Find Words Near Each Other
Problem
You want to emulate a NEAR search using a regular expression. For readers unfamiliar
with the term, some search tools that use Boolean operators such as NOT and OR also
have a special operator called NEAR. Searching for “word1 NEAR word2” finds
word1 and word2 in any order, as long as they occur within a certain distance of each
other.

Solution
If you’re only searching for two different words, you can combine two regular expres-
sions—one that matches word1 before word2, and another that flips the order of the
words. The following regex allows up to five words to separate the two you’re searching
for:

\b(?:word1\W+(?:\w+\W+){0,5}?word2|word2\W+(?:\w+\W+){0,5}?word1)\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

\b(?:
 word1 # first term
 \W+ (?:\w+\W+){0,5}? # up to five words

300 | Chapter 5: Words, Lines, and Special Characters

 word2 # second term
| # or, the same pattern in reverse...
 word2 # second term
 \W+ (?:\w+\W+){0,5}? # up to five words
 word1 # first term
)\b

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

The second regular expression here uses the free-spacing option and adds whitespace
and comments for readability. Apart from that, the two regular expressions are iden-
tical. JavaScript doesn’t support free-spacing mode, but the other listed regex flavors
allow you to take your pick. Recipes 3.5 and 3.7 show examples of how you can add
these regular expressions to your search form or other code.

Discussion
This regular expression puts two inverted copies of the same pattern back to back, and
then surrounds them with word boundaries. The first subpattern matches word1, fol-
lowed by between zero and five words, and then word2. The second subpattern matches
the same thing, with the order of word1 and word2 reversed.

The lazy quantifier ‹{0,5}?› appears in both of the subpatterns. It causes the regular
expression to match as few words as possible between the two terms you’re searching
for. If you run the regular expression over the subject text word1 word2 word2, it will
match word1 word2 because that has fewer words (zero) between the start and end
points. To configure the distance permitted between the target words, change the 0
and 5 within the two quantifiers to your preferred values. For example, if you changed
them to ‹{1,15}?›, that would allow up to 15 words between the two you’re looking
for, and require that they be separated by at least one other word.

The shorthand character classes that are used to match word characters and nonword
characters (‹\w› and ‹\W›, respectively) follow the quirky regular expression definition
of which characters words are composed of (letters, numbers, and underscore).

Variations

Using a conditional

Often, there are many ways to write the same regular expression. In this book, we’ve
tried hard to balance the trade-offs between portability, brevity, efficiency, and other
considerations. However, sometimes solutions that are less than ideal can still be ed-
ucational. The next two regular expressions illustrate alternative approaches to finding
words near each other. We don’t recommend actually using them, because although
they match the same text, they will typically take a little longer to do so. They also work
with fewer regular expression flavors.

5.7 Find Words Near Each Other | 301

This first regular expression uses a conditional to determine whether to match word1
or word2 at the end of the regex, rather than simply stringing reversed patterns together.
The conditional checks if capturing group 1 participated in the match, which would
mean that the match started with word2:

\b(?:word1|(word2))\W+(?:\w+\W+){0,5}?(?(1)word1|word2)\b
Regex options: None
Regex flavors: .NET, PCRE, Perl, Python

This next version once again uses a conditional to determine which word should be
matched at the end, but it adds two more regular expression features into the mix:

\b(?:(?<w1>word1)|(?<w2>word2))\W+(?:\w+\W+){0,5}?(?(w2)(?&w1)|(?&w2))\b
Regex options: None
Regex flavors: PCRE 7, Perl 5.10

Here, named capturing groups, written as ‹(?<name>⋯)›, surround the first instances
of ‹word1› and ‹word2›. This allows you to use the ‹(?&name)› subroutine syntax to reuse
a subpattern that is called by name. This does not work the same as a backreference to
a named group. A named backreference, such as ‹\k<name>› (.NET, PCRE 7, Perl 5.10)
or ‹(?P=name)› (PCRE 4 and higher, Perl 5.10, Python) lets you re-match text that has
already been matched by a named capturing group. A subroutine such as ‹(?&name)›
allows you to reuse the actual pattern contained within the corresponding group. You
can’t use a backreference here, because that would only allow re-matching words that
have already been matched. The subroutines within the conditional at the end of the
regex match the word from the two provided options that hasn’t already been matched,
without having to spell out the words again. This means there is only one place in the
regex to update if you need to reuse it to match different words.

Match three or more words near each other

Matching two words near each other is a fairly
straightforward task. After all, there are only two possible ways to order them. But what
if you want to match three words in any order? Now there are six possible orders (see
Figure 5-2). The number of ways you can shift a given set of words around is n!, or the
product of consecutive integers 1 through n (“n factorial”). With four words, there are
24 possible ways to order them. By the time you get to 10 words, the number of ar-
rangements explodes into the millions. It is simply not viable to match more than a few
words near each other using the regular expression techniques discussed so far.

One way to solve this problem is by repeating a group that matches the
required words or any other word (after a required word is first matched), and then
using conditionals to prevent a match attempt from finishing successfully until all of
the required words have been matched. Following is an example of matching three
words in any order with up to five other words separating them:

Exponentially increasing permutations.

The ugly solution.

302 | Chapter 5: Words, Lines, and Special Characters

\b(?:(?>(word1)|(word2)|(word3)|(?(1)|(?(2)|(?(3)|(?!))))\w+)\b\W*?){3,8}↵
(?(1)(?(2)(?(3)|(?!))|(?!))|(?!))

Regex options: Case insensitive
Regex flavors: .NET, PCRE, Perl

Two values:
 [12, 21]
 = 2 possible arrangements

Three values:
 [123, 132,
 213, 231,
 312, 321]
 = 6 possible arrangements

Four values:
 [1234, 1243, 1324, 1342, 1423, 1432,
 2134, 2143, 2314, 2341, 2413, 2432,
 3124, 3142, 3214, 3241, 3412, 3421,
 4123, 4132, 4213, 4231, 4312, 4321]
 = 24 possible arrangements

Factorials:
 2! = 2 × 1 = 2
 3! = 3 × 2 × 1 = 6
 4! = 4 × 3 × 2 × 1 = 24
 5! = 5 × 4 × 3 × 2 × 1 = 120
 ...
 10! = 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 3628800

Figure 5-2. Many ways to arrange a set

Here’s the regex again with the atomic group (see Recipe 2.14) replaced with a standard,
noncapturing group in order to add support for Python:

\b(?:(?:(word1)|(word2)|(word3)|(?(1)|(?(2)|(?(3)|(?!))))\w+)\b\W*?){3,8}↵
(?(1)(?(2)(?(3)|(?!))|(?!))|(?!))

Regex options: Case insensitive
Regex flavors: .NET, PCRE, Perl, Python

The ‹{3,8}› quantifiers in the regular expressions just shown account for the three
required words, and thus allows zero to five words in between them. The empty neg-
ative lookaheads, which look like ‹(?!)›, will never match and are therefore used to
block certain paths through the regex until one or more of the required words have
been matched. The logic that controls these paths is implemented using two sets of
nested conditionals. The first set prevents matching any old word using ‹\w+› until at
least one of the required words have been matched. The second set of conditionals at

5.7 Find Words Near Each Other | 303

the end forces the regex engine to backtrack or fail unless all of the required words have
been matched.

That’s the brief overview of how this works, but rather than getting further into the
weeds and describing how to add additional required words, let’s take a look at an
improved implementation that adds support for more regex flavors, and involves a bit
of a trick.

The ugly solution works, but it could probably win a regex
obfuscation contest for being so difficult to read and manage. It would only get worse
if you added more required words into the mix.

Fortunately, there’s a regular expression hack you can use that makes this a lot easier
to follow, while also adding support for Java and Ruby (neither of which support
conditionals).

The behavior described in this section should be used with caution in
production applications. We’re pushing expectations for regex behavior
into places that are undocumented for most regex libraries.

\b(?:(?>word1()|word2()|word3()|(?>\1|\2|\3)\w+)\b\W*?){3,8}\1\2\3
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Ruby

\b(?:(?:word1()|word2()|word3()|(?:\1|\2|\3)\w+)\b\W*?){3,8}\1\2\3
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Using this construct, it’s easy to add more required words. Here’s an example that
allows four required words to appear in any order, with a total of up to five other words
between them:

\b(?:(?>word1()|word2()|word3()|word4()|↵
(?>\1|\2|\3|\4)\w+)\b\W*?){4,9}\1\2\3\4

Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Ruby

\b(?:(?:word1()|word2()|word3()|word4()|↵
(?:\1|\2|\3|\4)\w+)\b\W*?){4,9}\1\2\3\4

Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

These regular expressions intentionally use empty capturing groups after each of the
required words. Since any attempt to match a backreference such as ‹\1› will fail if the
corresponding capturing group has not yet participated in the match, backreferences
to empty groups can be used to control the path a regex engine takes through a pattern,
much like the more verbose conditionals we showed earlier. If the corresponding group
has already participated in the match attempt when the engine reaches the backrefer-
ence, it will simply match an empty string and move on.

Exploiting empty backreferences.

304 | Chapter 5: Words, Lines, and Special Characters

Here, the ‹(?>\1|\2|\3)› grouping prevents matching a word using ‹\w+› until at least
one of the required words has been matched. The backreferences are repeated at the
end of the pattern to prevent any match from successfully completing until all of the
required words have been found.

Python does not support atomic groups, so once again the examples that list Python
among the regex flavors replace such groups with standard noncapturing groups. Al-
though this makes the regexes less efficient, it doesn’t change what they match. The
outermost grouping cannot be atomic in any flavor, because in order for this to work,
the regex engine must be able to backtrack into the outer group if the backreferences
at the end of the pattern fail to match.

Even though JavaScript supports all the syntax
used in the Python versions of this pattern, it has two behavioral rules that prevent this
trick from working like the other flavors. The first issue is what is matched by backre-
ferences to capturing groups that have not yet participated in a match. The JavaScript
specification dictates that such backreferences match the empty string, or in other
words, they always match successfully. In just about every other regular expression
flavor, the opposite is true: they never match, and as a result they force the regex engine
to backtrack until either the entire match fails or the group they reference participates,
thereby providing the possibility that the backreference too will match.

The second difference with the JavaScript flavor involves the value remembered by
capturing groups nested within a repeated, outer group, e.g., ‹((a)|(b))+›. With most
regex flavors, the value remembered by a capturing group within a repeated grouping
is whatever the group matched the last time it participated in the match. So, after ‹(?:
(a)|(b))+› is used to match ab, the value of backreference 1 would be a. However,
according to the JavaScript specification, the value of backreferences to nested groups
is reset every time the outer group is repeated. Hence, ‹(?:(a)|(b))+› would still match
ab, but backreference 1 after the match is complete would reference a nonparticipating
capturing group, which in JavaScript would match an empty string within the
regex itself and be returned as undefined in, for example, the array returned by the
RegExp.prototype.exec method.

Either of these behavioral differences found in the JavaScript regex flavor are enough
to prevent emulating conditionals using empty capturing groups, as described here.

Multiple words, any distance from each other

If you simply want to test whether a list of words can be found anywhere in a subject
string without regard for their proximity, positive lookahead provides a way to do so
using one search operation.

In many cases it’s simpler and more efficient to perform discrete search-
es for each term you’re looking for, while keeping track of whether all
tests come back positive.

JavaScript backreferences by its own rules.

5.7 Find Words Near Each Other | 305

\A(?=.*?\bword1\b)(?=.*?\bword2\b).*\Z
Regex options: Case insensitive, dot matches line breaks
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^(?=[\s\S]*?\bword1\b)(?=[\s\S]*?\bword2\b)[\s\S]*$
Regex options: Case insensitive (“^ and $ match at line breaks” must not be set)
Regex flavor: JavaScript

These regular expressions match the entire string they’re run against if all of your target
words are found within it; otherwise, they will not find any match. JavaScript pro-
grammers cannot use the first version, because JavaScript doesn’t support the ‹\A› and
‹\Z› anchors or the “dot matches line breaks” option.

You can implement these regular expressions by following the code in Recipe 3.6. Sim-
ply change the ‹word1› and ‹word2› placeholders to the terms you’re searching for. If
you’re checking for more than two words, you can add as many lookaheads to the front
of the regex as you need. For example, ‹\A(?=.*?\bword1\b)(?=.*?\bword2\b)(?=.*?
\bword3\b).*\Z› searches for three words.

See Also
Recipes 5.5 and 5.6

5.8 Find Repeated Words
Problem
You’re editing a document and would like to check it for any incorrectly repeated
words. You want to find these doubled words despite capitalization differences, such
as with “The the”. You also want to allow differing amounts of whitespace between
words, even if this causes the words to extend across more than one line.

Solution
A backreference matches something that has been matched before, and therefore pro-
vides the key ingredient for this recipe:

\b([A-Z]+)\s+\1\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

If you want to use this regular expression to keep the first word but remove subsequent
duplicate words, replace all matches with backreference 1. Another approach is to
highlight matches by surrounding them with other characters (such as an HTML tag),
so you can more easily identify them during later inspection. Recipe 3.15 shows how
you can use backreferences in your replacement text, which you’ll need to do to im-
plement either of these approaches.

306 | Chapter 5: Words, Lines, and Special Characters

If you just want to find repeated words so you can manually examine whether they
need to be corrected, Recipe 3.7 shows the code you need. A text editor or grep-like
tool, such as those mentioned in “Tools for Working with Regular Expressions” in
Chapter 1, can help you find repeated words while providing the context needed to
determine whether the words in question are in fact used correctly.

Discussion
There are two things needed to match something that was previously matched: a cap-
turing group and a backreference. Place the thing you want to match more than once
inside a capturing group, and then match it again using a backreference. This works
differently from simply repeating a token or group using a quantifier. Consider the
difference between the simplified regular expressions ‹(\w)\1› and ‹\w{2}›. The first
regex uses a capturing group and backreference to match the same word character
twice, whereas the latter uses a quantifier to match any two word characters. Rec-
ipe 2.10 discusses the magic of backreferences in greater depth.

Back to the problem at hand. This recipe only finds repeated words that are composed
of letters from A to Z and a to z (since the case insensitive option is enabled). To also
allow accented letters and letters from other scripts, you can use the Unicode Letter
property (‹\p{L}›) if your regex flavor supports it (see “Unicode property or catego-
ry” on page 45).

Between the capturing group and backreference, ‹\s+› matches any whitespace char-
acters, such as spaces, tabs, or line breaks. If you want to restrict the characters that
can separate repeated words to horizontal whitespace (i.e., no line breaks), replace the
‹\s› with ‹[^\S\r\n]›. This prevents matching repeated words that appear across mul-
tiple lines. PCRE 7 and Perl 5.10 include the shorthand character class ‹\h› that you
might prefer to use here since it is specifically designed to match horizontal whitespace.

Finally, the word boundaries at the beginning and end of the regular expression ensure
that it doesn’t match within other words, e.g., with “this thistle”.

Note that the use of repeated words is not always incorrect, so simply removing them
without examination is potentially dangerous. For example, the constructions “that
that” and “had had” are generally accepted in colloquial English. Homonyms, names,
onomatopoeic words (such as “oink oink” or “ha ha”), and some other constructions
also occasionally result in intentionally repeated words. Therefore, in most cases you
will need to visually examine each match.

See Also
Recipe 2.10, which discusses backreferences in greater depth.

Recipe 5.9, which shows how to match repeated lines of text.

5.8 Find Repeated Words | 307

5.9 Remove Duplicate Lines
Problem
You have a logfile, database query output, or some other type of file or string with
duplicate lines. You need to remove all but one of each duplicate line using a text editor
or other similar tool.

Solution
There is a variety of software (including the Unix command-line utility uniq and Win-
dows PowerShell cmdlet Get-Unique) that can help you remove duplicate lines in a file
or string. The following sections contain three regex-based approaches that can be
especially helpful when trying to accomplish this task in a nonscriptable text editor
with regular expression search-and-replace support.

When programming, options two and three should be avoided since they are inefficient
compared to other available approaches, such as using a hash object to keep track of
unique lines. However, the first option (which requires that you sort the lines in ad-
vance, unless you only want to remove adjacent duplicates) may be an acceptable ap-
proach since it’s quick and easy.

Option 1: Sort lines and remove adjacent duplicates

If you’re able to sort lines in the file or string you’re working with so that any duplicate
lines appear next to each other, you should do so, unless the order of the lines must be
preserved. This option will allow using a simpler and more efficient search-and-replace
operation to remove the duplicates than would otherwise be possible.

After sorting the lines, use the following regex and replacement string to get rid of the
duplicates:

^(.*)(?:(?:\r?\n|\r)\1)+$
Regex options: ^ and $ match at line breaks (“dot matches line breaks” must not
be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Replace with:

$1
Replacement text flavors: .NET, Java, JavaScript, Perl, PHP

\1
Replacement text flavors: Python, Ruby

This regular expression uses a capturing group and a backreference (among other in-
gredients) to match two or more sequential, duplicate lines. A backreference is used in
the replacement string to put back the first line. Recipe 3.15 shows example code that
can be repurposed to implement this.

308 | Chapter 5: Words, Lines, and Special Characters

Option 2: Keep the last occurrence of each duplicate line in an unsorted file

If you are using a text editor that does not have the built-in ability to sort lines, or if it
is important to preseve the original line order, the following solution lets you remove
duplicates even when they are separated by other lines:

^([^\r\n]*)(?:\r?\n|\r)(?=.*^\1$)
Regex options: Dot matches line breaks, ^ and $ match at line breaks
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Here’s the same thing as a JavaScript-compatible regex, without the requirement for
the “dot matches line breaks” option:

^(.*)(?:\r?\n|\r)(?=[\s\S]*^\1$)
Regex options: ^ and $ match at line breaks
Regex flavor: JavaScript

Replace with:

(The empty string, i.e., nothing.)

Replacement text flavors: N/A

Option 3: Keep the first occurrence of each duplicate line in an unsorted file

If you want to preserve the first occurrence of each duplicate line, you’ll need to use a
somewhat different approach. First, here is the regular expression and replacement
string we will use:

^([^\r\n]*)$(.*?)(?:(?:\r?\n|\r)\1$)+
Regex options: Dot matches line breaks, ^ and $ match at line breaks
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Once again, we need to make a couple changes to make this compatible with JavaScript-
flavor regexes, since JavaScript doesn’t have a “dot matches line breaks” option.

^(.*)$([\s\S]*?)(?:(?:\r?\n|\r)\1$)+
Regex options: ^ and $ match at line breaks
Regex flavors: JavaScript

Replace with:

$1$2
Replacement text flavors: .NET, Java, JavaScript, Perl, PHP

\1\2
Replacement text flavors: Python, Ruby

Unlike the option 1 and 2 regexes, this version cannot remove all duplicate lines with
one search-and-replace operation. You’ll need to continually apply “replace all” until
the regex no longer matches your string, meaning that there are no more duplicates to
remove. See the “Discussion” of this recipe for further details.

5.9 Remove Duplicate Lines | 309

Discussion

Option 1: Sort lines and remove adjacent duplicates

This regex removes all but the first of duplicate lines that appear next to each other. It
does not remove duplicates that are separated by other lines. Let’s step through the
process.

First, the caret (‹^›) at the front of the regular expression matches the start of a line.
Normally it would only match at the beginning of the subject string, so you need to
make sure that the option to let ^ and $ match at line breaks is enabled (Recipe 3.4
shows you how to set regex options). Next, the ‹.*› within the capturing parentheses
matches the entire contents of a line (even if it’s blank), and the value is stored as
backreference 1. For this to work correctly, the “dot matches line breaks” option must
not be set; otherwise, the dot-asterisk combination would match until the end of the
string.

Within an outer, noncapturing group, we’ve used ‹(?:\r?\n|\r)› to match a line sep-
arator used in Windows (‹\r\n›), Unix/Linux/OS X (‹\n›), or legacy Mac OS (‹\r›) text
files. The backreference ‹\1› then tries to match the line we just finished matching. If
the same line isn’t found at that position, the match attempt fails and the regex engine
moves on. If it matches, we repeat the group (composed of a line break sequence and
backreference 1) using the ‹+› quantifier to try to match additional duplicate lines.

Finally, we use the dollar sign at the end of the regex to assert position at the end of
the line. This ensures that we only match identical lines, and not lines that merely start
with the same characters as a previous line.

Because we’re doing a search-and-replace, each entire match (including the original
line and line separators) is removed from the string. We replace this with backreference
1 to put the original line back in.

Option 2: Keep the last occurrence of each duplicate line in an unsorted file

There are several changes here compared to the option 1 regex earlier in this recipe,
which only finds duplicate lines when they appear next to each other. First, in the non-
JavaScript version of the option 2 regex, the dot within the capturing group has been
replaced with ‹[^\r\n]› (any character except a line break), and the “dot matches line
breaks” option has been enabled. That’s because a dot is used later in the regex to match
any character, including line breaks. Second, a lookahead has been added to scan for
duplicate lines at any position further along in the string. Since the lookahead does not
consume any characters, the text matched by the regex is always a single line (along
with its following line break) that is known to appear again later in the string. Replacing
all matches with the empty string removes the duplicate lines, leaving behind only the
last occurrence of each.

310 | Chapter 5: Words, Lines, and Special Characters

Option 3: Keep the first occurrence of each duplicate line in an unsorted file

Because lookbehind is not as widely supported as lookahead (and where it is supported,
you still may not be able to look as far backwards as you need to), the Option 3 regex
is significantly different from Option 2. Instead of matching lines that are known to be
repeated earlier in the string (which would be comparable to option 2’s tactic), this
regex matches a line, the first duplicate of that line that occurs later in the string, and
all the lines in between. The original line is stored as backreference 1, and the lines in
between (if any) as backreference 2. By replacing each match with both backreference
1 and 2, you put back the parts you want to keep, leaving out the trailing, duplicate
line and its preceding line break.

This alternative approach presents a couple of issues. First, because each match of a
set of duplicate lines may include other lines in between, it’s possible that there are
duplicates of a different value within your matched text, and those will be skipped over
during a “replace all” operation. Second, if a line is repeated more than twice, the regex
will first match duplicates one and two, but after that, it will take another set of dupli-
cates to get the regex to match again as it advances through the string. Thus, a single
“replace all” action will at best remove only every other duplicate of any specific line.
To solve both of these problems and make sure that all duplicates are removed, you’ll
need to continually apply the search-and-replace operation to your entire subject string
until the regex no longer matches within it. Consider how this regex will work when
applied to the following subject string:

value1
value2
value2
value3
value3
value1
value2

Removing all duplicate lines from this string will take three passes. Table 5-1 shows
the result of each pass.

Table 5-1. Replacement passes

Pass one Pass two Pass three Final string

value1 value1 value1 value1

value2 value2 value2 value2

value2 value2 value3 value3

value3 value3 value2

value3 value3

value1 value2

value2

One match/replacement Two matches/replacements One match/replacement No duplicates remain

5.9 Remove Duplicate Lines | 311

See Also
Recipe 2.10, which discusses backreferences in greater depth.

Recipe 5.8, which shows how to match repeated words.

5.10 Match Complete Lines That Contain a Word
Problem
You want to match all lines that contain the word ninja anywhere within them.

Solution
^.*\bninja\b.*$

Regex options: Case insensitive, ^ and $ match at line breaks (“dot matches line
breaks” must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
It’s often useful to match complete lines in order to collect or remove them. To match
any line that contains the word ninja, we start with the regular expression ‹\bninja
\b›. The word boundary tokens on both ends make sure that we only match “ninja”
when it appears as a complete word, as explained in Recipe 2.6.

To expand the regex to match a complete line, add ‹.*› at both ends. The dot-asterisk
sequences match zero or more characters within the current line. The asterisk quanti-
fiers are greedy, so they will match as much text as possible. The first dot-asterisk
matches until the last occurrence of “ninja” on the line, and the second dot-asterisk
matches any nonline-break characters that occur after it.

Finally, place caret and dollar sign anchors at the beginning and end of the regular
expression, respectively, to ensure that matches contain a complete line. Strictly speak-
ing, the dollar sign anchor at the end is redundant since the dot and greedy asterisk will
always match until the end of the line. However, it doesn’t hurt to add it, and makes
the regular expression a little more self-explanatory. Adding line or string anchors to
your regexes, when appropriate, can sometimes help you avoid unexpected issues, so
it’s not a bad habit to form. Note that unlike the dollar sign, the caret at the beginning
of the regular expression is not necessarily redundant, since it ensures that the regex
only matches complete lines, even if the search starts in the middle of a line for some
reason.

Remember that the three key metacharacters used to restrict matches to a single line
(the ‹^› and ‹$› anchors, and the dot) do not have fixed meanings. To make them all
line-oriented, you have to enable the option to let ‹^› and ‹$› match at line breaks, and
make sure that the option to let the dot match line breaks is not enabled. Recipe 3.4

312 | Chapter 5: Words, Lines, and Special Characters

shows you how to apply these options in your code. If you’re using JavaScript or Ruby,
there is one less option to worry about, because JavaScript does not have an option to
let dot match line breaks, and Ruby’s caret and dollar sign anchors always match at
line breaks.

Variations
To search for lines that contain any one of multiple words, use alternation:

^.*\b(one|two|three)\b.*$
Regex options: Case insensitive, ^ and $ match at line breaks (“dot matches line
breaks” must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The regular expression just shown matches any line that contains at least one of the
words “one”, “two”, or “three”. The parentheses around the words serve two purposes.
First, they limit the reach of the alternation, and second, they capture the word that
actually appears on the line to backreference 1. If the line contains more than one of
the words, the backreference will hold the one that occurs farthest to the right. This is
because the asterisk quantifier that appears before the parentheses is greedy, and will
expand the dot to match as much text as possible. If you make the asterisk lazy, as with
‹^.*?\b(one|two|three)\b.*$›, backreference 1 will contain the word from your list
that appears farthest to the left.

To find lines that must contain multiple words, use lookahead:

^(?=.*?\bone\b)(?=.*?\btwo\b)(?=.*?\bthree\b).+$
Regex options: Case insensitive, ^ and $ match at line breaks (“dot matches line
breaks” must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

This regular expression uses positive lookahead to match lines that contain three re-
quired words anywhere within them. The ‹.+› at the end is used to actually match the
line, after the lookaheads have determined that the line meets the requirements.

See Also
Recipe 5.11 shows how to match complete lines that do not contain a particular word.

5.11 Match Complete Lines That Do Not Contain a Word
Problem
You want to match complete lines that do not contain the word ninja.

5.11 Match Complete Lines That Do Not Contain a Word | 313

Solution
^(?:(?!\bninja\b).)*$

Regex options: Case insensitive, ^ and $ match at line breaks (“dot matches line
breaks” must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
In order to match a line that does not contain something, use negative lookahead (de-
scribed in Recipe 2.16). Notice that in this regular expression, a negative lookahead
and a dot are repeated together using a noncapturing group. This makes sure that the
regex ‹\bninja\b› fails at every position in the line. The ‹^› and ‹$› anchors are placed
at the edges of the regular expression to make sure you match a complete line.

The options you apply to this regular expression determine whether it tries to match
the entire subject string or just one line at a time. With the option to let ‹^› and ‹$›
match at line breaks enabled and the option to let dot match line breaks disabled, this
regular expression works as described and matches line by line. If you invert the state
of these two options, the regular expression will match any string that does not contain
the word “ninja”.

Testing a negative lookahead against every position in a line or string is
rather inefficient. This solution is only intended to be used in situations
where one regular expression is all that can be used, such as when using
an application that can’t be programmed. When programming, Rec-
ipe 3.21 presents a far more efficient solution.

See Also
Recipe 5.10 shows how to match complete lines that do contain a particular word.

5.12 Trim Leading and Trailing Whitespace
Problem
You want to remove leading and trailing whitespace from a string.

Solution
To keep things simple and fast, the best all-around solution is to use two
substitutions—one to remove leading whitespace, and another to remove trailing
whitespace:

^\s+
Regex options: None (“^ and $ match at line breaks” must not be set)

314 | Chapter 5: Words, Lines, and Special Characters

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

\s+$
Regex options: None (“^ and $ match at line breaks” must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Simply replace matches found using both of these regular expressions with the empty
string. Recipe 3.14 shows you how. With both regular expressions, you only need to
replace the first match found since they match all leading or trailing whitespace in one
go.

Discussion
Removing leading and trailing whitespace is a simple but common task. The two regular
expressions just shown each contain three parts: an anchor to assert position at the
beginning or end of the string (‹^› and ‹$›, respectively), the shorthand character class
to match any whitespace character (‹\s›), and the quantifier to repeat the class one or
more times (‹+›).
Many programming languages provide a function, usually called trim or strip, that
can remove leading and trailing whitespace for you. Table 5-2 shows how to use this
built-in function or method in a variety of programming languages.

Table 5-2. Standard functions to remove leading and trailing whitespace

Programming language(s) Example usage

C#, VB.NET String.Trim([chars])

Java string.trim()

PHP trim($string)

Python, Ruby string.strip()

JavaScript and Perl do not have an equivalent function in their standard libraries, but
you can easily create your own.

In Perl:

sub trim {
 my $string = shift;
 $string =~ s/^\s+//;
 $string =~ s/\s+$//;
 return $string;
}

In JavaScript:

function trim (string) {
 return string.replace(/^\s+/, '').replace(/\s+$/, '');
}

5.12 Trim Leading and Trailing Whitespace | 315

// Alternatively, use this to make trim a method of all strings:
String.prototype.trim = function () {
 return this.replace(/^\s+/, '').replace(/\s+$/, '');
};

In both Perl and JavaScript, ‹\s› matches any character defined as white-
space by the Unicode standard, in addition to the space, tab, line feed,
and carriage return characters that are most commonly considered
whitespace.

Variations
There are in fact a wide variety of ways you can write a regular expression to help you
trim a string. However, they are invariably slower than using two simple substitutions
when working with long strings (when performance matters most). Following are some
of the more common alternative solutions that you might encounter. They are all writ-
ten in JavaScript, and since JavaScript doesn’t have a “dot matches line breaks” option,
the regular expressions use ‹[\s\S]› to match any single character, including line
breaks. In other programming languages, use a dot instead, and enable the “dot matches
line breaks” option.

string.replace(/^\s+|\s+$/g, '');
This is probably the most common solution. It combines the two simple regexes
via alternation (see Recipe 2.8), and uses the /g (global) option to replace all
matches, rather than just the first (it will match twice if there is both leading and
trailing whitespace in the string). This isn’t a terrible approach, but it’s slower than
using two simple substitutions when working with long strings.

string.replace(/^\s*([\s\S]*?)\s*$/, '$1')
This regular expression works by matching the entire string and capturing the
sequence from the first to the last nonwhitespace characters (if any) to backrefer-
ence 1. By replacing the entire string with backreference 1, you’re left with a trim-
med version of the string.

This approach is conceptually simple, but the lazy quantifier inside the capturing
group makes the regex engine do a lot of extra work, and therefore tends to make
this option slow with long subject strings. After the regex engine enters the cap-
turing group during the matching process, the lazy quantifier requires that the
‹[\s\S]› character class be repeated as few times as possible. Thus, the regex engine
matches one character at a time, stopping after each character to try to match the
remaining pattern (‹\s*$›). If that fails because nonwhitespace characters remain
somewhere after the current position in the string, the engine matches one more
character and then tries the remainder of the pattern again.

316 | Chapter 5: Words, Lines, and Special Characters

string.replace(/^\s*([\s\S]*\S)?\s*$/, '$1')
This is similar to the last regex, but it replaces the lazy quantifier with a greedy one
for performance reasons. In order to make sure that the capturing group still only
matches up to the last nonwhitespace character, we use a required trailing ‹\S›.
However, since the regex must be able to match whitespace-only strings, the entire
capturing group is made optional by adding a trailing question mark quantifier.

Let’s step back to look at how this actually works. Here, the greedy asterisk in
‹[\s\S]*› repeats the “any character” pattern until the end of the string. The regex
engine then backtracks from the end of the string one character at a time until it’s
able to match the following ‹\S›, or until it’s backtracked to the first character
matched within the capturing group. Unless there’s more trailing whitespace than
there is text up until that point, this generally ends up being faster than the previous
solution that used a lazy quantifier. Still, it can’t compare to the performance of
two simple substitutions.

string.replace(/^\s*(\S*(?:\s+\S+)*)\s*$/, '$1')
This is a relatively common approach, so it’s included here as a warning. There’s
no good reason to use this, because it’s slower than all of the other solutions shown
here. It’s similar to the last two regexes in that it matches the entire string and
replaces it with the part you want to keep, but because the inner, noncapturing
group matches only one word at a time, there are a lot of discrete steps the regex
engine must take. The performance hit will most likely be unnoticeable when
trimming short strings, but with very long strings that contain lots of words, this
regex can become a performance bottleneck.

Some regular expression implementations contain clever optimizations that alter the
internal matching processes described here, and therefore make some of these options
perform a bit better or worse than we’ve suggested. Nevertheless, the simplicity of using
two substitutions provides consistently respectable performance with different string
lengths and varying string contents, and it’s therefore the best all-around solution.

See Also
Recipe 5.13

5.13 Replace Repeated Whitespace with a Single Space
Problem
As part of a cleanup routine for user input or other data, you want to replace repeated
whitespace characters with a single space. Any tabs, line breaks, or other whitespace
should also be replaced with a space.

5.13 Replace Repeated Whitespace with a Single Space | 317

Solution
To implement either of the following regular expressions, simply replace all matches
with a single space character. Recipe 3.14 shows the code to do this.

Clean any whitespace characters
\s+

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Clean horizontal whitespace characters
[●\t]+

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
A common text cleanup routine is to replace repeated whitespace characters with a
single space. In HTML, for example, repeated whitespace is simply ignored when ren-
dering a page (with a few exceptions), so removing repeated whitespace can help to
reduce the file size of pages without any negative effect.

Clean any whitespace characters

In this solution, any sequence of whitespace characters (line breaks, tabs, spaces, etc.)
is replaced with a single space. Since the ‹+› quantifier repeats the whitespace class
(‹\s›) one or more times, even a single tab character, for example, will be replaced with
a space. If you replaced the ‹+› with ‹{2,}›, only sequences of two or more whitespace
characters would be replaced. This could result in fewer replacements and thus im-
proved performance, but it could also leave behind tab characters or line breaks that
would otherwise be replaced with space characters. The better approach, therefore,
depends on what you’re trying to accomplish.

Clean horizontal whitespace characters

This works exactly like the previous solution, except that it leaves line breaks alone.
Only tabs and spaces are replaced.

See Also
Recipe 5.12

318 | Chapter 5: Words, Lines, and Special Characters

5.14 Escape Regular Expression Metacharacters
Problem
You want to use a literal string provided by a user or from some other source as
part of a regular expression. However, you want to escape all regular expression
metacharacters within the string before embedding this string in your regex, to avoid
any unintended consequences.

Solution
By adding a backslash before any characters that potentially have special meaning
within a regular expression, you can safely use the resulting pattern to match a literal
sequence of characters. Of the programming languages covered by this book, all except
JavaScript have a built-in function or method to perform this task (listed in Ta-
ble 5-3). However, for the sake of completeness, we’ll show how to pull this off using
your own regex, even in the languages that have a ready-made solution.

Built-in solutions

Table 5-3 lists the native functions designed to solve this problem.

Table 5-3. Native solutions for escaping regular expression metacharacters

Language Function

C#, VB.NET Regex.Escape(str)

Java Pattern.quote(str)

Perl quotemeta(str)

PHP preg_quote(str, [delimiter])

Python re.escape(str)

Ruby Regexp.escape(str)

Notably absent from the list is JavaScript, which does not have a built-in function
designed for this purpose.

Regular expression

Although it’s best to use a built-in solution if available, you can pull this off on your
own by using the following regular expression along with the appropriate replacement
string (shown next). Just make sure to replace all matches, rather than only the first.
Recipe 3.15 shows code for replacing matches with a string that contains a backrefer-
ence. You’ll need a backreference here to bring back the matched special character
along with a preceding backslash:

[[\]{}()*+?.\\|^$\-,&#\s]

5.14 Escape Regular Expression Metacharacters | 319

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Replacement

The following replacement strings contain a literal backslash character.
The strings are shown without the extra backslashes that may be needed
to escape backslashes when using string literals in some programming
languages. See Recipe 2.19 for more details about replacement text
flavors.

\$&
Replacement text flavors: .NET, JavaScript

\\$&
Replacement text flavor: Perl

\\$0
Replacement text flavors: Java, PHP

\\\0
Replacement text flavors: PHP, Ruby

\\\&
Replacement text flavor: Ruby

\\\g<0>
Replacement text flavor: Python

Example JavaScript function

Here’s an example of how you can put the regular expression and replacement string
to use to create a static method called RegExp.escape in JavaScript:

RegExp.escape = function (str) {
 return str.replace(/[[\]{}()*+?.\\|^$\-,&#\s]/g, "\\$&");
};

// Test it out...
var str = "Hello.World?";
var escaped_str = RegExp.escape(str);
alert(escaped_str == "Hello\\.World\\?"); // -> true

Discussion
This recipe’s regular expression puts all the regex metacharacters inside a single char-
acter class. Let’s take a look at each of those characters, and examine why they need
to be escaped. Some are less obvious than others:

320 | Chapter 5: Words, Lines, and Special Characters

[] {} ()
‹[› and ‹]› create character classes. ‹{› and ‹}› create interval quantifiers and are
also used with some other special constructs, such as Unicode properties. ‹(› and
‹)› are used for grouping, capturing, and other special constructs.

* + ?
These three characters are quantifiers that repeat their preceding element zero or
more, one or more, or between zero and one time, respectively. The question mark
is also used after an opening parenthesis to create special groupings and other
constructs (the same is true for the asterisk in Perl 5.10 and PCRE 7).

. \ |
A dot matches any character within a line or string, a backslash escapes a special
character or makes a literal character special, and a vertical bar alternates between
multiple options.

^ $
The caret and dollar symbols are anchors that match the start or end of a line or
string. The caret can also negate a character class.

The remaining characters matched by the regular expression are only special in special
circumstances. They’re included in the list to err on the side of caution.

-
A hyphen creates a range within a character class. It’s escaped here to avoid inad-
vertently creating ranges when embedding text in the middle of a character class.
Keep in mind that if you do embed text inside a character class, the resulting regex
will not match the embedded string, but rather any one of the characters in the
embedded string.

,
A comma is used inside an interval quantifier such as ‹{1,5}›. Since most regular
expression flavors treat curly brackets as literal characters if they do not form a
valid quantifier, it’s possible (though a bit unlikely) to create a quantifier where
there was none before when inserting literal text in a regex if you don’t escape
commas.

&
The ampersand is included in the list because two ampersands in a row are used
for character class intersection in Java. In other programming languages, it’s safe
to remove the ampersand from the list of characters that need to be escaped, but
it doesn’t hurt to keep it.

and whitespace
The pound sign and whitespace (matched by ‹\s›) are metacharacters only if the
free-spacing option is enabled. Again, it doesn’t hurt to escape them anyway.

As for the replacement text, one of five tokens («$&», «\&», «$0», «\0», or «\g<0>») is
used to restore the matched character along with a preceding backslash. In Perl, $& is

5.14 Escape Regular Expression Metacharacters | 321

actually a variable, and using it with any regular expression imposes a global perform-
ance penalty on all regular expressions. If $& is used elsewhere in your Perl program,
it’s OK to use it as much as you want because you’ve already paid the price. Otherwise,
it’s probably better to wrap the entire regex in a capturing group, and use $1 instead of
$& in the replacement.

Variations
As explained in “Block escape” on page 27 in Recipe 2.1, you can create a block escape
sequence within a regex using ‹\Q⋯\E›. However, block escapes are only supported by
Java, PCRE, and Perl, and even in those languages block escapes are not foolproof. For
complete safety, you’d still need to escape any occurrence of \E within the string you
plan to embed in your regex. In most cases it’s probably easier to just use the cross-
language approach of escaping all regex metacharacters.

See Also
Recipe 2.1 discusses how to match literal characters; its list of characters that need to
be escaped is shorter since it doesn’t concern itself with characters that may need to be
escaped in free-spacing mode or when dropped into an arbitrary, longer pattern.

322 | Chapter 5: Words, Lines, and Special Characters

CHAPTER 6

Numbers

Regular expressions are designed to deal with text, and don’t understand the numerical
meanings that humans assign to strings of digits. To a regular expression, 56 is not the
number fifty-six, but a string consisting of two characters displayed as the digits 5 and
6. The regex engine knows they’re digits, because the shorthand character class ‹\d›
matches them (see Recipe 2.3). But that’s it. It doesn’t know that 56 has a higher mean-
ing, just as it doesn’t know that :-) is anything but three punctuation characters
matched by ‹\p{P}{3}›.
But numbers are some of the most important input you’re likely to deal with, and
sometimes you need to process them inside a regular expression instead of just passing
them to a conventional programming language when you want to answer questions
such as, “Is this number within the range 1 through 100?” So we’ve devoted a whole
chapter to matching all kinds of numbers with regular expressions. We start off with a
few recipes that may seem trivial, but actually explain important basic concepts. The
later recipes that deal with more complicated regexes assume you grasp these basic
concepts.

6.1 Integer Numbers
Problem
You want to find various kinds of integer decimal numbers in a larger body of text, or
check whether a string variable holds an integer decimal number.

Solution
Find any positive integer decimal number in a larger body of text:

\b[0-9]+\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

323

Check if a text string holds just a positive integer decimal number:

\A[0-9]+\Z
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^[0-9]+$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Find any positive integer decimal number that stands alone in a larger body of text:

(?<=^|\s)[0-9]+(?=$|\s)
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

Find any positive integer decimal number that stands alone in a larger body of text,
allowing leading whitespace to be included in the regex match:

(^|\s)([0-9]+)(?=$|\s)
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find any integer decimal number with an optional leading plus or minus sign:

[+-]?\b[0-9]+\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Check whether a text string holds just an integer decimal number with optional sign:

\A[+-]?[0-9]+\Z
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^[+-]?[0-9]+$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Find any integer decimal number with optional sign, allowing whitespace between the
number and the sign, but no leading whitespace without the sign:

([+-]●*)?\b[0-9]+\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
An integer number is a contiguous series of one or more digits, each between zero and
nine. We can easily represent this with a character class (Recipe 2.3) and a quantifier
(Recipe 2.12): ‹[0-9]+›.

324 | Chapter 6: Numbers

We prefer to use the explicit range ‹[0-9]› instead of the shorthand ‹\d›.
In .NET and Perl, ‹\d› matches any digit in any script, but ‹[0-9]› always
just matches the 10 digits in the ASCII table. If you know your subject
text doesn’t include any non-ASCII digits, you can save a few keystrokes
and use ‹\d› instead of ‹[0-9]›.

If you don’t know whether your subject will include digits outside
the ASCII table, you need to think about what you want to do with the
regex matches and what the user’s expectations are in order to decide
whether you should use ‹\d› or ‹[0-9]›. If you plan to convert the text
matched by the regular expression into an integer, check whether the
string-to-integer function in your programming language can interpret
non-ASCII digits. Users writing documents in their native scripts will
expect your software to recognize digits in their native scripts.

Beyond being a series of digits, the number must also stand alone. A4 is a paper size,
not a number. There are several ways to make sure your regex only matches pure
numbers.

If you want to check whether your string holds nothing but a number, simply put start-
of-string and end-of-string anchors around your regex. ‹\A› and ‹\Z› are your best op-
tion, because their meaning doesn’t change. Unfortunately, JavaScript doesn’t support
them. In JavaScript, use ‹^› and ‹$›, and make sure you don’t specify the /m flag that
makes the caret and dollar match at line breaks. In Ruby, the caret and dollar always
match at line breaks, so you can’t reliably use them to force your regex to match the
whole string.

When searching for numbers within a larger body of text, word boundaries (Rec-
ipe 2.6) are an easy solution. When you place them before or after a regex token that
matches a digit, the word boundary makes sure there is no word character before or
after the matched digit. For example, ‹4› matches 4 in A4. ‹4\b› does too, because there’s
no word character after the 4. ‹\b4› and ‹\b4\b› don’t match anything in A4, because
‹\b› fails between the two word characters A and 4. In regular expressions, word char-
acters include letters, digits and underscores.

If you include nonword characters such as plus or minus signs or whitespace in your
regex, you have to be careful with the placement of word boundaries. To match +4
while excluding +4B, use ‹\+4\b› instead of ‹\b\+4\b›. The latter does not match +4,
because there’s no word character before the plus in the subject string to satisfy the
word boundary. ‹\b\+4\b› does match +4 in the text 3+4, because 3 is a word character
and + is not.

‹\+4\b› only needs one word boundary. The first ‹\b› in ‹\+\b4\b› is superfluous. When
this regex matches, the first ‹\b› is always between a + and a 4, and thus never excludes
anything. The first ‹\b› becomes important when the plus sign is optional. ‹\+?\b4\b›
does not match the 4 in A4, whereas ‹\+?4\b› does.

6.1 Integer Numbers | 325

Word boundaries are not always the right solution. Consider the subject text
$123,456.78. If you iterate over this string with the regex ‹\b[0-9]+\b›, it’ll match 123,
456, and 78. The dollar sign, comma, and decimal point are not word characters, so the
word boundary matches between a digit and any of these characters. Sometimes this
is what you want, sometimes not.

If you only want to find integers surrounded by whitespace or the start or end of a
string, you need to use lookaround instead of word boundaries. ‹(?=$|\s)› matches at
the end of the string or before a character that is whitespace (whitespace includes line
breaks). ‹(?<=^|\s)› matches either at the start of the string, or after a character that is
whitespace. You can replace ‹\s› with a character class that matches any of the char-
acters you want to allow before or after the number. See Recipe 2.16 to learn how
lookaround works.

JavaScript and Ruby 1.8 don’t support lookbehind. You can use a normal group instead
of lookbehind to check if the number occurs at the start of the string, or if it is preceded
by whitespace. The drawback is that the whitespace character will be included in the
overall regex match if the number doesn’t occur at the start of the string. An easy
solution to that is to put the part of the regex that matches the number inside a capturing
group. The fifth regex in the section “Solution” captures the whitespace character in
the first capturing group and the matched integer in the second capturing group.

See Also
Recipes 2.3 and 2.12

6.2 Hexadecimal Numbers
Problem
You want to find hexadecimal numbers in a larger body of text, or check whether a
string variable holds a hexadecimal number.

Solution
Find any hexadecimal number in a larger body of text:

\b[0-9A-F]+\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

\b[0-9A-Fa-f]+\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

326 | Chapter 6: Numbers

Check if a text string holds just a hexadecimal number:

\A[0-9A-F]+\Z
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^[0-9A-F]+$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Find a hexadecimal number with a 0x prefix:

\b0x[0-9A-F]+\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find a hexadecimal number with an &H prefix:

&H[0-9A-F]+\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find a hexadecimal number with an H suffix:

\b[0-9A-F]+H\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find a hexadecimal byte value or 8-bit number:

\b[0-9A-F]{2}\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find a hexadecimal word value or 16-bit number:

\b[0-9A-F]{4}\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find a hexadecimal double word value or 32-bit number:

\b[0-9A-F]{8}\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find a hexadecimal quad word value or 64-bit number:

\b[0-9A-F]{16}\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

6.2 Hexadecimal Numbers | 327

Find a string of hexadecimal bytes (i.e., an even number of hexadecimal digits):

\b(?:[0-9A-F]{2})+\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
The techniques for matching hexadecimal integers with a regular expression is the same
as matching decimal integers. The only difference is that the character class that match-
es a single digit now has to include the letters A through F. You have to consider whether
the letters must be either uppercase or lowercase, or if mixed case is permitted. The
regular expressions shown here all allow mixed case.

By default, regular expressions are case-sensitive. ‹[0-9a-f]› allows only lowercase
hexadecimal digits, and ‹[0-9A-F]› allows only uppercase hexadecimal digits. To allow
mixed case, use ‹[0-9a-fA-F]› or turn on the option to make your regular expression
case insensitive. Recipe 3.4 explains how to do that with the programming languages
covered by this book. The first regex in the solution is shown twice, using the two
different ways of making it case-insensitive. The others shown use only the second
method.

If you only want to allow uppercase letters in hexadecimal numbers, use the regexes
shown with case insensitivity turned off. To allow only lowercase letters, turn off case
insensitivity and replace ‹A-F› with ‹a-f›.
‹(?:[0-9A-F]{2})+› matches an even number of hexadecimal digits. ‹[0-9A-F]{2}›
matches exactly two hexadecimal digits. ‹(?:[0-9A-F]{2})+› does that one or more
times. The noncapturing group (see Recipe 2.9) is required because the plus needs to
repeat the character class and the quantifier ‹{2}› combined. ‹[0-9]{2}+› is not a syntax
error in Java, PCRE, and Perl 5.10, but it doesn’t do what you want. The extra ‹+› makes
the ‹{2}› possessive. That has no effect, because ‹{2}› cannot repeat fewer than two
times anyway.

Several of the solutions show how to require the hexadecimal number to have one of
the prefixes or suffixes commonly used to identify hexadecimal numbers. These are
used to differentiate between decimal numbers and hexadecimal numbers that happen
to consist of only decimal digits. For example, 10 could be the decimal number between
9 and 11, or the hexadecimal number between F and 11.

Most solutions are shown with word boundaries (Recipe 2.6). Use word boundaries as
shown to find numbers within a larger body of text. Notice that the regex using the
&H prefix does not have a word boundary at the start. That’s because the ampersand is
not a word boundary. If we put a word boundary at the start of that regex, it would
only find hexadecimal numbers immediately after a word character.

328 | Chapter 6: Numbers

If you want to check whether your string holds nothing but a hexadecimal number,
simply put start-of-string and end-of-string anchors around your regex. ‹\A› and ‹\Z›
are your best options, because their meanings don’t change. Unfortunately, JavaScript
doesn’t support them. In JavaScript, use ‹^› and ‹$›, and make sure you don’t specify
the /m flag that makes the caret and dollar match at line breaks. In Ruby, the caret and
dollar always match at line breaks, so you can’t reliably use them to force your regex
to match the whole string.

See Also
Recipes 2.3 and 2.12

6.3 Binary Numbers
Problem
You want to find binary numbers in a larger body of text, or check whether a string
variable holds a binary number.

Solution
Find a binary number in a larger body of text:

\b[01]+\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Check whether a text string holds just a binary number:

\A[01]+\Z
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^[01]+$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Find a binary number with a B suffix:

\b[01]+B\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find a binary byte value or 8-bit number:

\b[01]{8}\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

6.3 Binary Numbers | 329

Find a binary word value or 16-bit number:

\b[01]{16}\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find a string of bytes (i.e., a multiple of eight bits):

\b(?:[01]{8})+\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
All these regexes use techniques explained in the previous two recipes. The key differ-
ence is that each digit is now a 0 or a 1. We easily match that with a character class that
includes just those two characters: ‹[01]›.

See Also
Recipes 2.3 and 2.12

6.4 Strip Leading Zeros
Problem
You want to match an integer number, and either return the number without any lead-
ing zeros or delete the leading zeros.

Solution

Regular expression
\b0*([1-9][0-9]*|0)\b

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Replacement
$1

Replacement text flavors: .NET, Java, JavaScript, PHP, Perl

\1
Replacement text flavors: PHP, Python, Ruby

330 | Chapter 6: Numbers

Getting the numbers in Perl
while ($subject =~ m/\b0*([1-9][0-9]*|0)\b/g) {
 push(@list, $1);
}

Stripping leading zeros in PHP
$result = preg_replace('/\b0*([1-9][0-9]*|0)\b/', '$1', $subject);

Discussion
We use a capturing group to separate a number from its leading zeros. Before the group,
‹0*› matches the leading zeros, if any. Within the group, ‹[1-9][0-9]*› matches a num-
ber that consists of one or more digits, with the first digit being nonzero. The number
can begin with a zero only if the number is zero itself. The word boundaries make sure
we don’t match partial numbers, as explained in Recipe 6.1.

To get a list of all numbers in the subject text without leading zeros, iterate over the
regex matches as explained in Recipe 3.11. Inside the loop, retrieve the text matched
by the first (and only) capturing group, as explained in Recipe 3.9. The solution for this
shows how you could do this in Perl.

Stripping the leading zeros is easy with a search-and-replace. Our regex has a capturing
group that separates the number from its leading zeros. If we replace the overall regex
match (the number including the leading zeros) with the text matched by the first
capturing group, we’ve effectively stripped out the leading zeros. The solution shows
how to do this in PHP. Recipe 3.15 shows how to do it in other programming languages.

See Also
Recipes 3.15 and 6.1

6.5 Numbers Within a Certain Range
Problem
You want to match an integer number within a certain range of numbers. You want
the regular expression to specify the range accurately, rather than just limiting the
number of digits.

Solution
1 to 12 (hour or month):

^(1[0-2]|[1-9])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

6.5 Numbers Within a Certain Range | 331

1 to 24 (hour):

^(2[0-4]|1[0-9]|[1-9])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

1 to 31 (day of the month):

^(3[01]|[12][0-9]|[1-9])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

1 to 53 (week of the year):

^(5[0-3]|[1-4][0-9]|[1-9])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

0 to 59 (minute or second):

^[1-5]?[0-9]$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

0 to 100 (percentage):

^(100|[1-9]?[0-9])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

1 to 100:

^(100|[1-9][0-9]?)$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

32 to 126 (printable ASCII codes):

^(12[0-6]|1[01][0-9]|[4-9][0-9]|3[2-9])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

0 to 127 (nonnegative signed byte):

^(12[0-7]|1[01][0-9]|[1-9]?[0-9])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

–128 to 127 (signed byte):

^(12[0-7]|1[01][0-9]|[1-9]?[0-9]|-(12[0-8]|1[01][0-9]|[1-9]?[0-9]))$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

332 | Chapter 6: Numbers

0 to 255 (unsigned byte):

^(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

1 to 366 (day of the year):

^(36[0-6]|3[0-5][0-9]|[12][0-9]{2}|[1-9][0-9]?)$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

1900 to 2099 (year):

^(19|20)[0-9]{2}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

0 to 32767 (nonnegative signed word):

^(3276[0-7]|327[0-5][0-9]|32[0-6][0-9]{2}|3[01][0-9]{3}|[12][0-9]{4}|↵
[1-9][0-9]{1,3}|[0-9])$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

–32768 to 32767 (signed word):

^(3276[0-7]|327[0-5][0-9]|32[0-6][0-9]{2}|3[01][0-9]{3}|[12][0-9]{4}|↵
[1-9][0-9]{1,3}|[0-9]|-(3276[0-8]|327[0-5][0-9]|32[0-6][0-9]{2}|↵
3[01][0-9]{3}|[12][0-9]{4}|[1-9][0-9]{1,3}|[0-9]))$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

0 to 65535 (unsigned word):

^(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|6[0-4][0-9]{3}|[1-5][0-9]{4}|↵
[1-9][0-9]{1,3}|[0-9])$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
The previous recipes matched integers with any number of digits, or with a certain
number of digits. They allowed the full range of digits for all the digits in the number.
Such regular expressions are very straightforward.

Matching a number in a specific range—e.g., a number between 0 and 255—is not a
simple task with regular expressions. You can’t write ‹[0-255]›. Well, you could, but
it wouldn’t match a number between 0 and 255. This character class, which is equiv-
alent to ‹[0125]›, matches a single character that is one of the digits 0, 1, 2, or 5.

6.5 Numbers Within a Certain Range | 333

Because these regular expressions are quite a bit longer, the solutions
all use anchors to make the regex suitable to check whether a string,
such as user input, consists of a single acceptable number. Recipe 6.1
explains how you can use word boundaries or lookaround instead of
the anchors for other purposes. In the discussion, we show the regexes
without any anchors, keep the focus on dealing with numeric ranges. If
you want to use any of these regexes, you’ll have to add anchors or word
boundaries to make sure your regex doesn’t match digits that are part
of a longer number.

Regular expressions work character by character. If we want to match a number that
consists of more than one digit, we have to spell out all the possible combinations for
the digits. The essential building blocks are character classes (Recipe 2.3) and alterna-
tion (Recipe 2.8).

In character classes, we can use ranges for single digits, such as ‹[0-5]›. That’s because
the characters for the digits 0 through 9 occupy consecutive positions in the ASCII and
Unicode character tables. ‹[0-5]› matches one of six characters, just like ‹[j-o]› and
‹[\x09-\x0E]› match different ranges of six characters.

When a numeric range is represented as text, it consists of a number of positions. Each
position allows a certain range of digits. Some ranges have a fixed number of positions,
such as 12 to 24. Others have a variable number of positions, such as 1 to 12. The range
of digits allowed by each position can be either interdependent or independent of the
digits in the other positions. In the range 40 to 59, the positions are independent. In
the range 44 to 55, the positions are interdependent.

The easiest ranges are those with a fixed number of independent positions, such as 40
to 59. To code these as a regular expression, all you need to do is to string together a
bunch of character classes. Use one character class for each position, specifying the
range of digits allowed at that position.

[45][0-9]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The range 40 to 59 requires a number with two digits. Thus we need two character
classes. The first digit must be a 4 or 5. The character class ‹[45]› maches either digit.
The second digit can be any of the 10 digits. ‹[0-9]› does the trick.

We could also have used the shorthand ‹\d› instead of ‹[0-9]›. We use
the explicit range ‹[0-9]› for consistency with the other character
classes, to help maintain readability. Reducing the number of back-
slashes in your regexes is also very helpful if you’re working with a pro-
gramming language such as Java that requires backslashes to be escaped
in literal strings.

334 | Chapter 6: Numbers

The numbers in the range 44 to 55 also need two positions, but they’re not independent.
The first digit must be 4 or 5. If the first digit is 4, the second digit must be between 4
and 9. That covers the numbers 44 to 49. If the first digit is 5, the second digit must be
between 0 and 5. That covers the numbers 50 to 55. To create our regex, we simply
use alternation to combine the two ranges:

4[4-9]|5[0-5]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

By using alternation, we’re telling the regex engine to match ‹4[4-9]› or ‹5[0-5]›. The
alternation operator has the lowest precedence of all regex operators, and so we don’t
need to group the digits, as in ‹(4[4-9])|(5[0-5)›.
You can string together as many ranges using alternation as you want. The range 34 to
65 also has two interdependent positions. The first digit must be between 3 and 6. If
the first digit is 3, the second must be 4 to 9. If the first is 4 or 5, the second can be any
digit. If the first is 6, the second must be 0 to 5:

3[4-9]|[45][0-9]|6[0-5]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Just like we use alternation to split ranges with interdependent positions into multiple
ranges with independent positions, we can use alternation to split ranges with a variable
number of positions into multiple ranges with a fixed number of positions. The range
1 to 12 has numbers with one or two positions. We split this into the range 1 to 9 with
one position, and the range 10 to 12 with two positions. The positions in each of these
two ranges are independent, so we don’t need to split them up further:

1[0-2]|[1-9]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

We listed the range with two digits before the one with a single digit. This is intentional
because the regular expression engine is eager. It scans the alternatives from left to right,
and stops as soon as one matches. If your subject text is 12, then ‹1[0-2|[1-9]› matches
12, whereas ‹[1-9]|1[0-2]› matches just ‹1›. The first alternative, ‹[1-9]›, is tried first.
Since that alternative is happy to match just 1, the regex engine never tries to check
whether ‹1[0-2]› might offer a “better” solution.

Some Regex Engines Are Not Eager
POSIX-compliant regex engines and DFA regex engines do not follow this rule. They
try all alternatives, and return the one that finds the longest match. All the flavors
discussed in this book, however, are NFA engines, which don’t do the extra work
required by POSIX. They will all tell you that ‹[1-9]|1[0-2]› matches 1 in 12.

6.5 Numbers Within a Certain Range | 335

In practice, you’ll usually use anchors or word boundaries around your list of alterna-
tives. Then the order of alternatives doesn’t really matter. ‹^([1-9]|1[0-2])$› and
‹^(1[0-2]|[1-9])$› both match 12 in 12 with all regex flavors in this book, as well as
POSIX “extended” regular expressions and DFA engines. The anchors require the regex
to match either the whole string or nothing at all. DFA and NFA are defined in the
sidebar “History of the Term ‘Regular Expression’” on page 2 in Chapter 1.

The range 85 to 117 includes numbers of two different lengths. The range 85 to 99 has
two positions, and the range 100 to 117 has three positions. The positions in these
ranges are interdependent, and so we have to split them up further. For the two-digit
range, if the first digit is 8, the second must be between 5 and 9. If the first digit is 9,
the second digit can be any digit. For the three-digit range, the first position allows only
the digit 1. If the second position has the digit 0, the third position allows any digit.
But if the second digit is 1, then the third digit must be between 0 and 7. This gives us
four ranges total: 85 to 89, 90 to 99, 100 to 109, and 110 to 117. Though things are
getting long-winded, the regular expression remains as straightforward as the previous
ones:

8[5-9]|9[0-9]|10[0-9]|11[0-7]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

That’s all there really is to matching numeric ranges with regular expressions: simply
split up the range until you have ranges with a fixed number of positions with inde-
pendent digits. This way, you’ll always get a correct regular expression that is easy to
read and maintain, even if it may get a bit long-winded.

There are some extra techniques that allow for shorter regular expressions. For exam-
ple, using the previous system, the range 0 to 65535 would require this regex:

6553[0-5]|655[0-2][0-9]|65[0-4][0-9][0-9]|6[0-4][0-9][0-9][0-9]|↵
[1-5][0-9][0-9][0-9][0-9]|[1-9][0-9][0-9][0-9]|[1-9][0-9][0-9]|↵
[1-9][0-9]|[0-9]

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

This regular expression works perfectly, and you won’t be able to come up with a regex
that runs measurably faster. Any optimizations that could be made (e.g., there are
various alternatives starting with a 6) are already made by the regular expression engine
when it compiles your regular expression. There’s no need to waste your time to make
your regex more complicated in the hopes of getting it faster. But you can make your
regex shorter, to reduce the amount of typing you need to do, while still keeping it
readable.

Several of the alternatives have identical character classes next to each other. You can
eliminate the duplication by using quantifiers. Recipe 2.12 tells you all about those.

336 | Chapter 6: Numbers

6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|6[0-4][0-9]{3}|[1-5][0-9]{4}|↵
[1-9][0-9]{3}|[1-9][0-9]{2}|[1-9][0-9]|[0-9]

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The ‹[1-9][0-9]{3}|[1-9][0-9]{2}|[1-9][0-9]› part of the regex has three very similar
alternatives, and they all have the same pair of character classes. The only difference is
the number of times the second class is repeated. We can easily combine that into
‹[1-9][0-9]{1,3}›.

6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|6[0-4][0-9]{3}|[1-5][0-9]{4}|↵
[1-9][0-9]{1,3}|[0-9]

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Any further tricks will hurt readability. For example, you could isolate the leading 6
from the first four alternatives:

6(?:553[0-5]|55[0-2][0-9]|5[0-4][0-9]{2}|[0-4][0-9]{3})|[1-5][0-9]{4}|↵
[1-9][0-9]{1,3}|[0-9]

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

But this regex is actually one character longer because we had to add a noncapturing
group to isolate the alternatives with the leading 6 from the other alternatives. You
won’t get a performance benefit with any of the regex flavors discussed in this book.
They all make this optimization internally.

See Also
Recipes 2.8, 4.12, and 6.1

6.6 Hexadecimal Numbers Within a Certain Range
Problem
You want to match a hexadecimal number within a certain range of numbers. You want
the regular expression to specify the range accurately, rather than just limiting the
number of digits.

Solution
1 to C (1 to 12: hour or month):

^[1-9a-c]$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

6.6 Hexadecimal Numbers Within a Certain Range | 337

1 to 18 (1 to 24: hour):

^(1[0-8]|[1-9a-f])$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

1 to 1F (1 to 31: day of the month):

^(1[0-9a-f]|[1-9a-f])$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

1 to 35 (1 to 53: week of the year):

^(3[0-5]|[12][0-9a-f]|[1-9a-f])$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

0 to 3B (0 to 59: minute or second):

^(3[0-9a-b]|[12]?[0-9a-f])$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

0 to 64 (0 to 100: percentage):

^(6[0-4]|[1-5]?[0-9a-f])$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

1 to 64 (1 to 100):

^(6[0-4]|[1-5][0-9a-f]|[1-9a-f])$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

20 to 7E (32 to 126: printable ASCII codes):

^(7[0-9a-e]|[2-6][0-9a-f])$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

0 to 7F (0 to 127: 7-bit number):

^[1-7]?[0-9a-f]$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

0 to FF (0 to 255: 8-bit number):

^[1-9a-f]?[0-9a-f]$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

338 | Chapter 6: Numbers

1 to 16E (1 to 366: day of the year):

^(16[0-9a-e]|1[0-5][0-9a-f]|[1-9a-f][0-9a-f]?)$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

76C to 833 (1900 to 2099: year):

^(83[0-3]|8[0-2][0-9a-f]|7[7-9a-f][0-9a-f]|76[c-f])$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

0 to 7FFF: (0 to 32767: 15-bit number):

^([1-7][0-9a-f]{3}|[1-9a-f][0-9a-f]{1,2}|[0-9a-f])$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

0 to FFFF: (0 to 65535: 16-bit number):

^([1-9a-f][0-9a-f]{1,3}|[0-9a-f])$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
There’s no difference between matching decimal numeric ranges and hexadecimal nu-
meric ranges with a regular expression. As the previous recipe explains, split the range
into multiple ranges, until each range has a fixed number of positions with independent
hexadecimal digits. Then it’s just a matter of using a character class for each position,
and combining the ranges with alternation.

Since letters and digits occupy separate areas in the ASCII and Unicode character tables,
you cannot use the character class ‹[0-F]› to match any of the 16 hexadecimal decimal
digits. Though this character class will actually do that, it will also match the punctu-
ation symbols that sit between the digits and the letters in the ASCII table. Instead,
place two character ranges in the character class: [0-9A-F].

Another issue that comes into play is case-sensitivity. By default, regular expressions
are case-sensitive. ‹[0-9A-F]› matches only uppercase characters, and ‹[0-9a-f]›
matches only lowercase characters. ‹[0-9A-Fa-f]› matches both.

Explicitly typing both the uppercase and lowercase ranges in each character class
quickly gets tedious. Turning on the case insensitivity option is much easier. See Rec-
ipe 3.4 to learn how to do that in your favorite programming language.

See Also
Recipes 2.8 and 6.2

6.6 Hexadecimal Numbers Within a Certain Range | 339

6.7 Floating Point Numbers
Problem
You want to match a floating-point number and specify whether the sign, integer, frac-
tion and exponent parts of the number are required, optional, or disallowed. You don’t
want to use the regular expression to restrict the numbers to a specific range, and instead
leave that to procedural code, as explained in Recipe 3.12.

Solution
Mandatory sign, integer, fraction, and exponent:

^[-+][0-9]+\.[0-9]+[eE][-+]?[0-9]+$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Mandatory sign, integer, and fraction, but no exponent:

^[-+][0-9]+\.[0-9]+$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Optional sign, mandatory integer and fraction, and no exponent:

^[-+]?[0-9]+\.[0-9]+$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Optional sign and integer, mandatory fraction, and no exponent:

^[-+]?[0-9]*\.[0-9]+$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Optional sign, integer, and fraction. If the integer part is omitted, the fraction is man-
datory. If the fraction is omitted, the decimal dot must be omitted, too. No exponent.

^[-+]?([0-9]+(\.[0-9]+)?|\.[0-9]+)$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Optional sign, integer, and fraction. If the integer part is omitted, the fraction is man-
datory. If the fraction is omitted, the decimal dot is optional. No exponent.

^[-+]?([0-9]+(\.[0-9]*)?|\.[0-9]+)$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

340 | Chapter 6: Numbers

Optional sign, integer, and fraction. If the integer part is omitted, the fraction is man-
datory. If the fraction is omitted, the decimal dot must be omitted, too. Optional
exponent.

^[-+]?([0-9]+(\.[0-9]+)?|\.[0-9]+)([eE][-+]?[0-9]+)?$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Optional sign, integer, and fraction. If the integer part is omitted, the fraction is man-
datory. If the fraction is omitted, the decimal dot is optional. Optional exponent.

^[-+]?([0-9]+(\.[0-9]*)?|\.[0-9]+)([eE][-+]?[0-9]+)?$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The preceding regex, edited to find the number in a larger body of text:

[-+]?(\b[0-9]+(\.[0-9]*)?|\.[0-9]+)([eE][-+]?[0-9]+\b)?
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
All regular expressions are wrapped between anchors (Recipe 2.5) to make sure we
check whether the whole input is a floating-point number, as opposed to a floating-
point number occurring in a larger string. You could use word boundaries or look-
around as explained in Recipe 6.1 if you want to find floating-point numbers in a larger
body of text.

The solutions without any optional parts are very straightforward: they simply spell
things out from left to right. Character classes (Recipe 2.3) match the sign, digits, and
the e. The plus and question mark quantifiers (Recipe 2.12) allow for any number of
digits and an optional exponent sign.

Making just the sign and integer parts optional is easy. The question mark after the
character class with the sign symbols makes it optional. Using an asterisk instead of a
plus to repeat the integer digits allows for zero or more instead of one or more digits.

Complications arise when sign, integer, and fraction are all optional. Although they are
optional on their own, they are not all optional at the same time, and the empty string
is not a valid floating-point number. The naïve solution, ‹[-+]?[0-9]*\.?[0-9]*›, does
match all valid floating-point numbers, but it also matches the empty string. And be-
cause we omitted the anchors, this regex will match the zero-length string between any
two characters in your subject text. If you run a search-and-replace with this regex and
the replacement «{$&}» on 123abc456, you’ll get {123}{}a{}b{}c{456}{}. The regex does
match 123 and 456 correctly, but it finds a zero-length match at every other match
attempt, too.

6.7 Floating Point Numbers | 341

When creating a regular expression in a situation where everything is optional, it’s very
important to consider whether everything else remains optional if one part is actually
omitted. Floating-point numbers must have at least one digit.

The solutions for this recipe clearly spell out that when the integer and fractional parts
are optional, either of them is still required. They also spell out whether 123. is a
floating-point number with a decimal dot, or whether it’s an integer number followed
by a dot that’s not part of the number. For example, in a programming language, that
trailing dot might be a concatenation operator or the first dot in a range operator speci-
fied by two dots.

To implement the requirement that the integer and fractional can’t be omitted at the
same time, we use alternation (Recipe 2.8) inside a group (Recipe 2.9) to simply spell
out the two situations. ‹[0-9]+(\.[0-9]+)?› matches a number with a required integer
part and an optional fraction. ‹\.[0-9]+› matches just a fractional number.

Combined, ‹[0-9]+(\.[0-9]+)?|\.[0-9]+› covers all three situations. The first alterna-
tive covers numbers with both the integer and fractional parts, as well as numbers
without a fraction. The second alternative matches just the fraction. Because the alter-
nation operator has the lowest precedence of all, we have to place these two alternatives
in a group before we can add them to a longer regular expression.

‹[0-9]+(\.[0-9]+)?|\.[0-9]+› requires the decimal dot to be omitted when the fraction
is omitted. If the decimal dot can occur even without fractional digits, we use ‹[0-9]+
(\.[0-9]*)?|\.[0-9]+› instead. In the first alternative in this regex, the fractional part
is still grouped with the question mark quantifier, which makes it optional. The dif-
ference is that the fractional digits themselves are now optional. We changed the plus
(one or more) into an asterisk (zero or more). The result is that the first alternative in
this regex matches an integer with optional fractional part, where the fraction can either
be a decimal dot with digits or just a decimal dot. The second alternative in the regex
is unchanged.

This last example is interesting because we have a requirement change about one thing,
but change the quantifier in the regex on something else. The requirement change is
about the dot being optional on its own, rather than in combination with the fractional
digits. We achieve this by changing the quantifier on the character class for the frac-
tional digits. This works because the decimal dot and the character class were already
inside a group that made both of them optional at the same time.

See Also
Recipes 2.3, 2.8, 2.9, and 2.12

342 | Chapter 6: Numbers

6.8 Numbers with Thousand Separators
Problem
You want to match numbers that use the comma as the thousand separator and the
dot as the decimal separator.

Solution
Mandatory integer and fraction:

^[0-9]{1,3}(,[0-9]{3})*\.[0-9]+$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Mandatory integer and optional fraction. Decimal dot must be omitted if the fraction
is omitted.

^[0-9]{1,3}(,[0-9]{3})*(\.[0-9]+)?$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Optional integer and optional fraction. Decimal dot must be omitted if the fraction is
omitted.

^([0-9]{1,3}(,[0-9]{3})*(\.[0-9]+)?|\.[0-9]+)$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The preceding regex, edited to find the number in a larger body of text:

\b[0-9]{1,3}(,[0-9]{3})*(\.[0-9]+)?\b|\.[0-9]+\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
Since these are all regular expressions for matching floating-point numbers, they use
the same techniques as the previous recipe. The only difference is that instead of simply
matching the integer part with ‹[0-9]+›, we now use ‹[0-9]{1,3}(,[0-9]{3})*›. This
regular expression matches between 1 and 3 digits, followed by zero or more groups
that consist of a comma and 3 digits.

We cannot use ‹[0-9]{0,3}(,[0-9]{3})*› to make the integer part optional, because
that would match numbers with a leading comma, e.g., ,123. It’s the same trap of
making everything optional, explained in the previous recipe. To make the integer part
optional, we don’t change the part of the regex for the integer, but instead make it
optional in its entirety. The last two regexes in the solution do this using alternation.
The regex for a mandatory integer and optional fraction is alternated with a regex that

6.8 Numbers with Thousand Separators | 343

matches the fraction without the integer. That yields a regex where both integer and
fraction are optional, but not at the same time.

See Also
Recipes 2.3, 2.9, and 2.12

6.9 Roman Numerals
Problem
You want to match Roman numerals such as IV, XIII, and MVIII.

Solution
Roman numerals without validation:

^[MDCLXVI]+$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Modern Roman numerals, strict:

^(?=[MDCLXVI])M*(C[MD]|D?C{0,3})(X[CL]|L?X{0,3})(I[XV]|V?I{0,3})$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Modern Roman numerals, flexible:

^(?=[MDCLXVI])M*(C[MD]|D?C*)(X[CL]|L?X*)(I[XV]|V?I*)$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Simple Roman numerals:

^(?=[MDCLXVI])M*D?C{0,4}L?X{0,4}V?I{0,4}$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
Roman numerals are written using the letters M, D, C, L, X, V, and I, representing the
values 1000, 500, 100, 50, 10, 5, and 1, respectively. The first regex matches any string
composed of these letters, without checking whether the letters appear in the order or
quantity necessary to form a proper Roman numeral.

In modern times (meaning during the past few hundred years), Roman numerals have
generally been written following a strict set of rules. These rules yield exactly one Ro-
man numeral per number. For example, 4 is always written as IV, never as IIII.

344 | Chapter 6: Numbers

The second regex in the solution matches only Roman numerals that follow these
modern rules.

Each nonzero digit of the decimal number is written out separately in the Roman nu-
meral. 1999 is written as MCMXCIX, where M is 1000, CM is 900, XC is 90, and IX is
9. We don’t write MIM or IMM.

The thousands are easy: one M per thousand, easily matched with ‹M*›.
There are 10 variations for the hundreds, which we match using two alternatives.
‹C[MD]› matches CM and CD, which represent 900 and 400. ‹D?C{0,3}› matches DCCC,
DCC, DC, D, CCC, CC, C, and the empty string, representing 800, 700, 600, 500, 300,
200, 100, and nothing. This gives us all of the 10 digits for the hundreds.

We match the tens with ‹X[CL]|L?X{0,3}› and the units with ‹I[XV]|V?I{0,3}›. These
use the same syntax, but with different letters.

All four parts of the regex allow everything to be optional, because each of the digits
could be zero. The Romans did not have a symbol, or even a word, to represent zero.
Thus, zero is unwritten in Roman numerals. While each part of the regex should indeed
be optional, they’re not all optional at the same time. We have to make sure our
regex does not allow zero-length matches. To do this, we put the lookahead
‹(?=[MDCLXVI])› at the start of the regex. This lookahead, as Recipe 2.16 explains, makes
sure that there’s at least one letter in the regex match. The lookahead does not consume
the letter that it matches, so that letter can be matched again by the remainder of the
regex.

The third regex is a bit more flexible. It also accepts numerals such as IIII, while still
accepting IV.

The fourth regex only allows numerals written without using subtraction, and therefore
all the letters must be in descending order. 4 must be written as IIII rather than IV. The
Romans themselves usually wrote numbers this way.

All regular expressions are wrapped between anchors (Recipe 2.5) to
make sure we check whether the whole input is a Roman numeral, as
opposed to a floating-point number occurring in a larger string. You can
replace ‹^› and ‹$› with ‹\b› word boundaries if you want to find Roman
numerals in a larger body of text.

Convert Roman Numerals to Decimal
This Perl function uses the “strict” regular expression from this recipe to check whether
the input is a valid Roman numeral. If it is, it uses the regex ‹[MDLV]|C[MD]?|X[CL]?|
I[XV]?› to iterate over all of the letters in the numeral, adding up their values:

sub roman2decimal {
 my $roman = shift;

6.9 Roman Numerals | 345

 if ($roman =~
 m/^(?=[MDCLXVI])
 (M*) # 1000
 (C[MD]|D?C{0,3}) # 100
 (X[CL]|L?X{0,3}) # 10
 (I[XV]|V?I{0,3}) # 1
 $/ix)
 {
 # Roman numeral found
 my %r2d = ('I' => 1, 'IV' => 4, 'V' => 5, 'IX' => 9,
 'X' => 10, 'XL' => 40, 'L' => 50, 'XC' => 90,
 'C' => 100, 'CD' => 400, 'D' => 500, 'CM' => 900,
 'M' => 1000);
 my $decimal = 0;
 while ($roman =~ m/[MDLV]|C[MD]?|X[CL]?|I[XV]?/ig) {
 $decimal += $r2d{uc($&)};
 }
 return $decimal;
 } else {
 # Not a Roman numeral
 return 0;
 }
}

See Also
Recipes 2.3, 2.8, 2.9, 2.12, 2.16, 3.9, and 3.11

346 | Chapter 6: Numbers

CHAPTER 7

URLs, Paths, and Internet Addresses

Along with numbers, which were the subject of the previous chapter, another major
subject that concerns a wide range of programs is the various paths and locators for
finding data:

• URLs, URNs, and related strings

• Domain names

• IP addresses

• Microsoft Windows file and folder names

The URL format in particular has proven so flexible and useful that it has been adopted
for a wide range of resources that have nothing to do with the World Wide Web. The
toolbox of parsing regular expressions in this chapter will thus prove valuable in a
surprising variety of situations.

7.1 Validating URLs
Problem
You want to check whether a given piece of text is a URL that is valid for your purposes.

Solution
Allow almost any URL:

^(https?|ftp|file)://.+$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

\A(https?|ftp|file)://.+\Z
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

347

Require a domain name, and don’t allow a username or password:

\A # Anchor
(https?|ftp):// # Scheme
[a-z0-9-]+(\.[a-z0-9-]+)+ # Domain
([/?].*)? # Path and/or parameters
\Z # Anchor

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^(https?|ftp)://[a-z0-9-]+(\.[a-z0-9-]+)+↵
([/?].+)?$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Require a domain name, and don’t allow a username or password. Allow the scheme
(http or ftp) to be omitted if it can be inferred from the subdomain (www or ftp):

\A # Anchor
((https?|ftp)://|(www|ftp)\.) # Scheme or subdomain
[a-z0-9-]+(\.[a-z0-9-]+)+ # Domain
([/?].*)? # Path and/or parameters
\Z # Anchor

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^((https?|ftp)://|(www|ftp)\.)[a-z0-9-]+(\.[a-z0-9-]+)+([/?].*)?$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Require a domain name and a path that points to an image file. Don’t allow a username,
password, or parameters:

\A # Anchor
(https?|ftp):// # Scheme
[a-z0-9-]+(\.[a-z0-9-]+)+ # Domain
(/[\w-]+)* # Path
/[\w-]+\.(gif|png|jpg) # File
\Z # Anchor

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^(https?|ftp)://[a-z0-9-]+(\.[a-z0-9-]+)+(/[\w-]+)*/[\w-]+\.(gif|png|jpg)$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Discussion
You cannot create a regular expression that matches every valid URL without matching
any invalid URLs. The reason is that pretty much anything could be a valid URL in
some as of yet uninvented scheme.

348 | Chapter 7: URLs, Paths, and Internet Addresses

Validating URLs becomes useful only when we know the context in which those URLs
have to be valid. We then can limit the URLs we accept to schemes supported by the
software we’re using. All the regular expressions for this recipe are for URLs used by
web browsers. Such URLs use the form:

scheme://user:password@domain.name:80/path/file.ext?param=value¶m2↵
=value2#fragment

All these parts are in fact optional. A file: URL has only a path. http: URLs only need
a domain name.

The first regular expression in the solution checks whether the URL begins with one
of the common schemes used by web browsers: http, https, ftp, and file. The caret
anchors the regex to the start of the string (Recipe 2.5). Alternation (Recipe 2.8) is used
to spell out the list of schemes. ‹https?› is a clever way of saying ‹http|https›.
Because the first regex allows for rather different schemes, such as http and file, it
doesn’t try to validate the text after the scheme. ‹.+$› simply grabs everything until the
end of the string, as long as the string doesn’t contain any line break characters.

By default, the dot (Recipe 2.4) matches all characters except line break characters, and
the dollar (Recipe 2.5) does not match at embedded line breaks. Ruby is the exception
here. In Ruby, caret and dollar always match at embedded line breaks, and so we have
to use ‹\A› and ‹\Z› instead (Recipe 2.5). Strictly speaking, you’d have to make the same
change for Ruby for all the other regular expressions shown in this recipe. You should…
if your input could consist of multiple lines and you want to avoid matching a URL
that takes up one line in several lines of text.

The next two regular expressions are the free-spacing (Recipe 2.18) and regular versions
of the same regex. The free-spacing regex is easier to read, whereas the regular version
is faster to type. JavaScript does not support free-spacing regular expressions.

These two regexes accept only web and FTP URLs, and require the HTTP or FTP
scheme to be followed by something that looks like a valid domain name. The domain
name must be in ASCII. Internationalized domains (IDNs) are not accepted. The do-
main can be followed by a path or a list of parameters, separated from the domain with
a forward slash or a question mark. Since the question mark is inside a character class
(Recipe 2.3), we don’t need to escape it. The question mark is an ordinary character in
character classes, and the forward slash is an ordinary character anywhere in a regular
expression. (If you see it escaped in source code, that’s because Perl and several other
programming languages use forward slashes to delimit literal regular expressions.)

No attempt is made to validate the path or the parameters. ‹.*› simply matches anything
that doesn’t include line breaks. Since the path and parameters are both optional,
‹[/?].*› is placed inside a group that is made optional with a question mark (Rec-
ipe 2.12).

7.1 Validating URLs | 349

These regular expressions, and the ones that follow, don’t allow a username or pass-
word to be specified as part of the URL. Putting user information in a URL is considered
bad practice for security reasons.

Most web browsers accept URLs that don’t specify the scheme, and correctly infer the
scheme from the domain name. For example, www.regexbuddy.com is short for http://
www.regexbuddy.com. To allow such URLs, we simply expand the list of schemes allowed
by the regular expression to include the subdomains www. and ftp..

‹(https?|ftp)://|(www|ftp)\.› does this nicely. This list has two alternatives, each of
which starts with two alternatives. The first alternative allows ‹https?› and ‹ftp›, which
must be followed by ‹://›. The second alternative allows ‹www› and ‹ftp›, which must
be followed by a dot. You can easily edit both lists to change the schemes and sub-
domains the regex should accept.

The last two regular expressions require a scheme, an ASCII domain name, a path, and
a filename to a GIF, PNG, or JPEG image file. The path and filename allow all letters
and digits in any script, as well as underscores and hyphens. The shorthand character
class ‹\w› includes all that, except the hyphens (Recipe 2.3).

Which of these regular expressions should you use? That really depends on what you’re
trying to do. In many situations, the answer may be to not use any regular expression
at all. Simply try to resolve the URL. If it returns valid content, accept it. If you get a
404 or other error, reject it. Ultimately, that’s the only real test to see whether a URL
is valid.

See Also
Recipes 2.3, 2.8, 2.9, and 2.12

7.2 Finding URLs Within Full Text
Problem
You want to find URLs in a larger body of text. URLs may or may not be enclosed in
punctuation, such as parentheses, that are not part of the URL.

Solution
URL without spaces:

\b(https?|ftp|file)://\S+
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

350 | Chapter 7: URLs, Paths, and Internet Addresses

URL without spaces or final punctuation:

\b(https?|ftp|file)://[-A-Z0-9+&@#/%?=~_|$!:,.;]*↵
[A-Z0-9+&@#/%=~_|$]

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

URL without spaces or final punctuation. URLs that start with the www or ftp subdomain
can omit the scheme:

\b((https?|ftp|file)://|(www|ftp)\.)[-A-Z0-9+&@#/%?=~_|$!:,.;]*↵
[A-Z0-9+&@#/%=~_|$]

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
Given the text:

Visit http://www.somesite.com/page, where you will find more information.

what is the URL?

Before you say http://www.somesite.com/page, think about this: punctuation and
spaces are valid characters in URLs. Commas, dots, and even spaces do not have to be
escaped as %20. Literal spaces are perfectly valid. Some WYSIWYG web authoring tools
even make it easy for the user to put spaces in file and folder names, and include those
spaces literally in links to those files.

That means that if we use a regular expression that allows all valid URLs, it will find
this URL in the preceding text:

http://www.somesite.com/page, where you will find more information.

The odds are small that the person who typed in this sentence intended the spaces to
be part of the URL, since unescaped spaces in URLs are rare. The first regular expression
in the solution excludes them using the shorthand character class ‹\S›, which includes
all characters that are not whitespace. Though the regex specifies the “case insensitive”
option, the S must be uppercase, because ‹\S› is not the same as ‹\s›. In fact, they’re
exactly the opposite. Recipe 2.3 has all the details.

The first regular expression is still quite crude. It will include the comma in the example
text into the URL. Though it’s not uncommon for URLs to include commas and other
punctuation, punctuation rarely occurs at the end of the URL.

The next regular expression uses two character classes instead of the single shorthand
‹\S›. The first character class includes more punctuation than the second. The second
class excludes those characters that are likely to appear as English language punctuation
right after a URL when the URL is placed into an English sentence. The first character
class has the asterisk quantifier (Recipe 2.12), to allow URLs of any length. The second
character class has no quantifier, requiring the URL to end with one character from

7.2 Finding URLs Within Full Text | 351

that class. The character classes don’t include the lowercase letters; the “case
insensitive” option takes care of those. See Recipe 3.4 to learn how to set such options
in your programming language.

The second regex will work incorrectly with certain URLs that use odd punctuation,
matching those URLs only partially. But this regex does solve the very common problem
of a comma or full stop right after a URL, while still allowing commas and dots within
the URL.

Most web browsers accept URLs that don’t specify the scheme, and correctly infer the
scheme from the domain name. For example, www.regexbuddy.com is short for http://
www.regexbuddy.com. To allow such URLs, the final regex expands the list of allowed
schemes to include the subdomains www. and ftp..

‹(https?|ftp)://|(www|ftp)\.› does this nicely. This list has two alternatives, each of
which starts with two alternatives. The first alternative allows ‹https?› and ‹ftp›, which
must be followed by ‹://›. The second alternative allows ‹www› and ‹ftp›, which must
be followed by a dot. You can easily edit both lists to change the schemes and
subdomains the regex should accept.

See Also
Recipes 2.3 and 2.6

7.3 Finding Quoted URLs in Full Text
Problem
You want to find URLs in a larger body of text. URLs may or may not be enclosed in
punctuation that is part of the larger body of text rather than part of the URL. You want
to give users the option to place URLs between quotation marks, so they can explicitly
indicate whether punctuation, or even spaces, should be part of the URL.

Solution
\b(?:(?:https?|ftp|file)://|(www|ftp)\.)[-A-Z0-9+&@#/%?=~_|$!:,.;]*
 [-A-Z0-9+&@#/%=~_|$]
|"(?:(?:https?|ftp|file)://|(www|ftp)\.)[^"\r\n]+"
|'(?:(?:https?|ftp|file)://|(www|ftp)\.)[^'\r\n]+'

Regex options: Free-spacing, case insensitive, dot matches line breaks, anchors
match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
The previous recipe explains the issue of mixing URLs with English text, and how to
differentiate between English punctuation and URL characters. Though the solution

352 | Chapter 7: URLs, Paths, and Internet Addresses

to the previous recipe is a very useful one that gets it right most of the time, no regex
will get it right all of the time.

If your regex will be used on text to be written in the future, you can provide a way for
your users to quote their URLs. The solution we present allows a pair of single quotes
or a pair of double quotes to be placed around the URL. When a URL is quoted, it must
start with one of several schemes: ‹https?|ftp|file› or one of two subdomains ‹www|
ftp›. After the scheme or subdomain, the regex allows the URL to include any character,
except for line breaks, and the delimiting quote.

The regular expression as a whole is split into three alternatives. The first alternative is
the regex from the previous recipe, which matches an unquoted URL, trying to differ-
entiate between English punctuation and URL characters. The second alternative
matches a double-quoted URL. The third alternative matches a single-quoted URL. We
use two alternatives rather than a single alternative with a capturing group around the
opening quote and a backreference for the closing quote, because we cannot use a
backreference inside the negated character class that excludes the quote character from
the URL.

We chose to use single and double quotes because that’s how URLs commonly appear
in HTML and XHTML files. Quoting URLs this way is natural to people who work on
the Web, but you can easily edit the regex to allow different pairs of characters to delimit
URLs.

See Also
Recipes 2.8 and 2.9

7.4 Finding URLs with Parentheses in Full Text
Problem
You want to find URLs in a larger body of text. URLs may or may not be enclosed in
punctuation that is part of the larger body of text rather than part of the URL. You want
to correctly match URLs that include pairs of parentheses as part of the URL, without
matching parentheses placed around the entire URL.

Solution
\b(?:(?:https?|ftp|file)://|www\.|ftp\.)
 (?:\([-A-Z0-9+&@#/%=~_|$?!:,.]*\)|[-A-Z0-9+&@#/%=~_|$?!:,.])*
 (?:\([-A-Z0-9+&@#/%=~_|$?!:,.]*\)|[A-Z0-9+&@#/%=~_|$])

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

7.4 Finding URLs with Parentheses in Full Text | 353

\b(?:(?:https?|ftp|file)://|www\.|ftp\.)(?:\([-A-Z0-9+&@#/%=~_|$?!:,.]*\)↵
|[-A-Z0-9+&@#/%=~_|$?!:,.])*(?:\([-A-Z0-9+&@#/%=~_|$?!:,.]*\)|↵
[A-Z0-9+&@#/%=~_|$])

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
Pretty much any character is valid in URLs, including parentheses. Parentheses are very
rare in URLs, however, and that’s why we don’t include them in any of the regular
expressions in the previous recipes. But certain important websites have started using
them:

http://en.wikipedia.org/wiki/PC_Tools_(Central_Point_Software)
http://msdn.microsoft.com/en-us/library/aa752574(VS.85).aspx

One solution is to require your users to quote such URLs. The other is to enhance your
regex to accept such URLs. The hard part is how to determine whether a closing pa-
renthesis is part of the URL or is used as punctuation around the URL, as in this
example:

RegexBuddy's web site (at http://www.regexbuddy.com) is really cool.

Since it’s possible for one of the parentheses to be adjacent to the URL while the other
one isn’t, we can’t use the technique for quoting regexes from the previous recipe. The
most straightforward solution is to allow parentheses in URLs only when they occur
in unnested pairs of opening and closing parentheses. The Wikipedia and Microsoft
URLs meet that requirement.

The two regular expressions in the solution are the same. The first uses free-spacing
mode to make it a bit more readable.

These regular expressions are essentially the same as the last regex in the solution to
Recipe 7.2. There are three parts to all these regexes: the list of schemes, followed by
the body of the URL that uses the asterisk quantifier to allow URLs of any length, and
the end of the URL, which has no quantifier (i.e., it must occur once). In the original
regex in Recipe 7.2, both the body of the URL and the end of the URL consisted of just
one character class.

The solutions to this recipe replace the two character classes with more elaborate things.
The middle character class:

[-A-Z0-9+&@#/%=~_|$?!:,.]

has become:

\([-A-Z0-9+&@#/%=~_|$?!:,.]*\)|[-A-Z0-9+&@#/%=~_|$?!:,.]

The final character class:

[A-Z0-9+&@#/%=~_|$]

354 | Chapter 7: URLs, Paths, and Internet Addresses

has become:

\([-A-Z0-9+&@#/%=~_|$?!:,.]*\)|[A-Z0-9+&@#/%=~_|$]

Both character classes were replaced with something involving alternation (Rec-
ipe 2.8). Because alternation has the lowest precedence of all regex operators, we use
noncapturing groups (Recipe 2.9) to keep the two alternatives together.

For both character classes, we’ve added the alternative ‹\([-A-Z0-9+&@#/%=~_|$?!:,.]*
\)› while leaving the original character class as the other alternative. The new alternative
matches a pair of parentheses, with any number of any of the characters we allow in
the URL in between.

The final character class was given the same alternative, allowing the URL to end with
text between parentheses or with a single character that is not likely to be English
language punctuation.

Combined, this results in a regex that matches URLs with any number of parentheses,
including URLs without parentheses and even URLs that consist of nothing but pa-
rentheses, and as long as those parentheses occur in pairs.

For the body of the URL, we put the asterisk quantifier around the whole noncapturing
group. This allows any number of pairs of parentheses to occur in the URL. Because
we have the asterisk around the noncapturing group, we no longer need an asterisk
directly on the original character class. In fact, we must make sure not to include the
asterisk.

The regex in the solution has the form ‹(ab*c|d)*› in the middle, where ‹a› and ‹c› are
the literal parentheses, and ‹b› and ‹d› are character classes. Writing this as ‹(ab*c|
d*)*› would be a mistake. It might seem logical at first, because we allow any number
of the characters from ‹d›, but the outer ‹*› already repeats ‹d› just fine. If we add an
inner asterisk directly on ‹d›, the complexity of the regular expression becomes expo-
nential. ‹(d*)*› can match dddd in many ways. For example, the outer asterisk could
repeat four times, repeating the inner asterisk once each time. The outer asterisk could
repeat three times, with the inner asterisk doing 2-1-1, 1-2-1, or 1-1-2. The outer asterisk
could repeat twice, with the inner asterisk doing 2-2, 1-3, or 3-1. You can imagine that
as the length of the string grows, the number of combinations quickly explodes. We
call this catastrophic backtracking, a term introduced in Recipe 2.15. This problem will
arise when the regular expression cannot find a valid match, e.g., because you’ve ap-
pended something to the regex to find URLs that end with or contain something specific
to your requirements.

See Also
Recipes 2.8 and 2.9

7.4 Finding URLs with Parentheses in Full Text | 355

7.5 Turn URLs into Links
Problem
You have a body of text that may contain one or more URLs. You want to convert the
URLs that it contains into links by placing HTML anchor tags around the URLs. The
URL itself will be both the destination for the link and the text being linked.

Solution
To find the URLs in the text, use one of the regular expressions from Recipes 7.2 or
7.4. As the replacement text, use:

<a●href="$&">$&
Replacement text flavors: .NET, JavaScript, Perl

<a●href="$0">$0
Replacement text flavors: .NET, Java, PHP

<a●href="\0">\0
Replacement text flavors: PHP, Ruby

<a●href="\&">\&
Replacement text flavor: Ruby

<a●href="\g<0>">\g<0>
Replacement text flavor: Python

When programming, you can implement this search-and-replace as explained in Rec-
ipe 3.15.

Discussion
The solution to this problem is very straightforward. We use a regular expression to
match a URL, and then replace it with «<a●href="URL">URL», where URL represents
the URL that we matched. Different programming languages use different syntax for
the replacement text, hence the long list of solutions to this problem. But they all do
exactly the same thing. Recipe 2.20 explains the replacement text syntax.

See Also
Recipes 2.21, 3.15, 7.2, and 7.4

7.6 Validating URNs
Problem
You want to check whether a string represents a valid Uniform Resource Name (URN),
as specified in RFC 2141, or find URNs in a larger body of text.

356 | Chapter 7: URLs, Paths, and Internet Addresses

Solution
Check whether a string consists entirely of a valid URN:

\Aurn:
Namespace Identifier
[a-z0-9][a-z0-9-]{0,31}:
Namespace Specific String
[a-z0-9()+,\-.:=@;$_!*'%/?#]+
\Z

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^urn:[a-z0-9][a-z0-9-]{0,31}:[a-z0-9()+,\-.:=@;$_!*'%/?#]+$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Find a URN in a larger body of text:

\burn:
Namespace Identifier
[a-z0-9][a-z0-9-]{0,31}:
Namespace Specific String
[a-z0-9()+,\-.:=@;$_!*'%/?#]+

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

\burn:[a-z0-9][a-z0-9-]{0,31}:[a-z0-9()+,\-.:=@;$_!*'%/?#]+
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find a URN in a larger body of text, assuming that punctuation at the end of the URN
is part of the (English) text in which the URN is quoted rather than part of the URN
itself:

\burn:
Namespace Identifier
[a-z0-9][a-z0-9-]{0,31}:
Namespace Specific String
[a-z0-9()+,\-.:=@;$_!*'%/?#]*[a-z0-9+=@$/]

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

\burn:[a-z0-9][a-z0-9-]{0,31}:[a-z0-9()+,\-.:=@;$_!*'%/?#]*[a-z0-9+=@$/]
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
A URN consists of three parts. The first part is the four characters urn:, which we can
add literally to the regular expression.

7.6 Validating URNs | 357

The second part is the Namespace Identifier (NID). It is between 1 and 32 characters
long. The first character must be a letter or a digit. The remaining characters can be
letters, digits, and hyphens. We match this using two character classes (Recipe 2.3):
the first one matches a letter or a digit, and the second one matches between 0 and 31
letters, digits, and hyphens. The NID must be delimited with a colon, which we again
add literally to the regex.

The third part of the URN is the Namespace Specific String (NSS). It can be of any
length, and can include a bunch of punctuation characters in addition to letters and
digits. We easily match this with another character class. The plus after the character
class repeats it one or more times (Recipe 2.12).

If you want to check whether a string represents a valid URN, all that remains is to add
anchors to the start and the end of the regex that match at the start and the end of the
string. We can do this with ‹^› and ‹$› in all flavors except Ruby, and with ‹\A› and
‹\Z› in all flavors except JavaScript. Recipe 2.5 has all the details on these anchors.

Things are a little trickier if you want to find URNs in a larger body of text. The punc-
tuation issue with URLs discussed in Recipe 7.2 also exists for URNs. Suppose you
have the text:

The URN is urn:nid:nss, isn't it?

The issue is whether the comma is part of the URN. URNs that end with commas are
syntactically valid, but any human reading this English-language sentence would see
the comma as English punctuation, not as part of the URN. The last regular expression
in the “Solution” section solves this issue by being a little more strict than RFC 2141.
It restricts the last character of the URN to be a character that is valid for the NSS part,
and is not likely to appear as English punctuation in a sentence mentioning a URN.

This is easily done by replacing the plus quantifier (one or more) with an asterisk (zero
or more), and adding a second character class for the final character. If we added the
character class without changing the quantifier, we’d require the NSS to be at least two
characters long, which isn’t what we want.

See Also
Recipes 2.3 and 2.12

7.7 Validating Generic URLs
Problem
You want to check whether a given piece of text is a valid URL according to RFC 3986.

358 | Chapter 7: URLs, Paths, and Internet Addresses

Solution
\A
(# Scheme
 [a-z][a-z0-9+\-.]*:
 (# Authority & path
 //
 ([a-z0-9\-._~%!$&'()*+,;=]+@)? # User
 ([a-z0-9\-._~%]+ # Named host
 |\[[a-f0-9:.]+\] # IPv6 host
 |\[v[a-f0-9][a-z0-9\-._~%!$&'()*+,;=:]+\]) # IPvFuture host
 (:[0-9]+)? # Port
 (/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/? # Path
 |# Path without authority
 (/?[a-z0-9\-._~%!$&'()*+,;=:@]+(/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/?)?
)
|# Relative URL (no scheme or authority)
 (# Relative path
 [a-z0-9\-._~%!$&'()*+,;=@]+(/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/?
 |# Absolute path
 (/[a-z0-9\-._~%!$&'()*+,;=:@]+)+/?
)
)
Query
(\?[a-z0-9\-._~%!$&'()*+,;=:@/?]*)?
Fragment
(\#[a-z0-9\-._~%!$&'()*+,;=:@/?]*)?
\Z

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

\A
(# Scheme
 (?<scheme>[a-z][a-z0-9+\-.]*):
 (# Authority & path
 //
 (?<user>[a-z0-9\-._~%!$&'()*+,;=]+@)? # User
 (?<host>[a-z0-9\-._~%]+ # Named host
 | \[[a-f0-9:.]+\] # IPv6 host
 | \[v[a-f0-9][a-z0-9\-._~%!$&'()*+,;=:]+\]) # IPvFuture host
 (?<port>:[0-9]+)? # Port
 (?<path>(/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/?) # Path
 |# Path without authority
 (?<path>/?[a-z0-9\-._~%!$&'()*+,;=:@]+
 (/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/?)?
)
|# Relative URL (no scheme or authority)
 (?<path>
 # Relative path

7.7 Validating Generic URLs | 359

 [a-z0-9\-._~%!$&'()*+,;=@]+(/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/?
 |# Absolute path
 (/[a-z0-9\-._~%!$&'()*+,;=:@]+)+/?
)
)
Query
(?<query>\?[a-z0-9\-._~%!$&'()*+,;=:@/?]*)?
Fragment
(?<fragment>\#[a-z0-9\-._~%!$&'()*+,;=:@/?]*)?
\Z

Regex options: Free-spacing, case insensitive
Regex flavor: .NET

\A
(# Scheme
 (?<scheme>[a-z][a-z0-9+\-.]*):
 (# Authority & path
 //
 (?<user>[a-z0-9\-._~%!$&'()*+,;=]+@)? # User
 (?<host>[a-z0-9\-._~%]+ # Named host
 | \[[a-f0-9:.]+\] # IPv6 host
 | \[v[a-f0-9][a-z0-9\-._~%!$&'()*+,;=:]+\]) # IPvFuture host
 (?<port>:[0-9]+)? # Port
 (?<hostpath>(/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/?) # Path
 |# Path without authority
 (?<schemepath>/?[a-z0-9\-._~%!$&'()*+,;=:@]+
 (/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/?)?
)
|# Relative URL (no scheme or authority)
 (?<relpath>
 # Relative path
 [a-z0-9\-._~%!$&'()*+,;=@]+(/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/?
 |# Absolute path
 (/[a-z0-9\-._~%!$&'()*+,;=:@]+)+/?
)
)
Query
(?<query>\?[a-z0-9\-._~%!$&'()*+,;=:@/?]*)?
Fragment
(?<fragment>\#[a-z0-9\-._~%!$&'()*+,;=:@/?]*)?
\Z

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

\A
(# Scheme
 (?P<scheme>[a-z][a-z0-9+\-.]*):
 (# Authority & path
 //

360 | Chapter 7: URLs, Paths, and Internet Addresses

 (?P<user>[a-z0-9\-._~%!$&'()*+,;=]+@)? # User
 (?P<host>[a-z0-9\-._~%]+ # Named host
 | \[[a-f0-9:.]+\] # IPv6 host
 | \[v[a-f0-9][a-z0-9\-._~%!$&'()*+,;=:]+\]) # IPvFuture host
 (?P<port>:[0-9]+)? # Port
 (?P<hostpath>(/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/?) # Path
 |# Path without authority
 (?P<schemepath>/?[a-z0-9\-._~%!$&'()*+,;=:@]+
 (/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/?)?
)
|# Relative URL (no scheme or authority)
 (?P<relpath>
 # Relative path
 [a-z0-9\-._~%!$&'()*+,;=@]+(/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/?
 |# Absolute path
 (/[a-z0-9\-._~%!$&'()*+,;=:@]+)+/?
)
)
Query
(?P<query>\?[a-z0-9\-._~%!$&'()*+,;=:@/?]*)?
Fragment
(?P<fragment>\#[a-z0-9\-._~%!$&'()*+,;=:@/?]*)?
\Z

Regex options: Free-spacing, case insensitive
Regex flavors: PCRE 4 and later, Perl 5.10, Python

^([a-z][a-z0-9+\-.]*:(\/\/([a-z0-9\-._~%!$&'()*+,;=]+@)?([a-z0-9\-._~%]+|↵
\[[a-f0-9:.]+\]|\[v[a-f0-9][a-z0-9\-._~%!$&'()*+,;=:]+\])(:[0-9]+)?↵
(\/[a-z0-9\-._~%!$&'()*+,;=:@]+)*\/?|(\/?[a-z0-9\-._~%!$&'()*+,;=:@]+↵
(\/[a-z0-9\-._~%!$&'()*+,;=:@]+)*\/?)?)|([a-z0-9\-._~%!$&'()*+,;=@]+↵
(\/[a-z0-9\-._~%!$&'()*+,;=:@]+)*\/?|(\/[a-z0-9\-._~%!$&'()*+,;=:@]+)↵
+\/?))
(\?[a-z0-9\-._~%!$&'()*+,;=:@\/?]*)?(#[a-z0-9\-._~%!$&'()*+,;=:@\/?]*)?$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Discussion
Most of the preceding recipes in this chapter deal with URLs, and the regular expres-
sions in those recipes deal with specific kinds of URLs. Some of the regexes are adapted
to specific purposes, such as determining whether punctuation is part of the URL or
the text that quotes the URL.

The regular expressions in this recipe deal with generic URLs. They’re not intended for
searching for URLs in larger text, but for validating strings that are supposed to hold
URLs, and for splitting URLs into their various parts. They accomplish these tasks for
any kind of URL, but in practice, you’ll likely want to make the regexes more specific.
The recipes after this one show examples of more specific regexes.

7.7 Validating Generic URLs | 361

RFC 3986 describes what a valid URL should look like. It covers every possible URL,
including relative URLs and URLs for schemes that haven’t even been invented yet. As
a result, RFC 3986 is very broad, and a regular expression that implements it is quite
long. The regular expressions in this recipe only implement the basics. They’re enough
to reliably split the URL into its various parts, but not to validate each of those parts.
Validating all the parts would require specific knowledge of each URL scheme anyway.

RFC 3986 does not cover all URLs that you may encounter in the wild. For example,
many browsers and web servers accept URLs with literal spaces in them, but RFC 3986
requires spaces to be escaped as %20.

An absolute URL must begin with a scheme, such as http: or ftp:. The first character
of the scheme must be a letter. The following characters may be letters, digits, and a
few specific punctuation characters. We can easily match that with two character
classes: ‹[a-z][a-z0-9+\-.]*›.
Many URL schemes require what RFC 3986 calls an “authority.” The authority is the
domain name or IP address of the server, optionally preceded by a username, and op-
tionally followed by a port number.

The username can consist of letters, digits, and a bunch of punctuation. It must be
delimited from the domain name or IP address with an @ sign. ‹[a-z0-9\-._~%!$&'()*
+,;=]+@› matches the username and delimiter.

RFC 3986 is quite liberal in what it allows for the domain name. Recipe 7.15 explains
what is commonly allowed for domains: letters, digits, hyphens, and dots. RFC 3986
also allows tildes, and any other character via the percentage notation. The domain
name must be converted to UTF-8, and any byte that is not a letter, digit, hyphen, or
tilde must be encoded as %FF, where FF is the hexadecimal representation of the byte.

To keep our regular expression simple, we don’t check if each percentage sign is fol-
lowed by exactly two hexadecimal digits. It is better to do such validation after the
various parts of the URL have been separated. So we match the hostname with just
‹[a-z0-9\-._~%]+›, which also matches IPv4 addresses (allowed under RFC 3986).

Instead of a domain name or IPv4 address, the host also can be specified as an IPv6
address between square brackets, or even a future version of IP addresses. We match
the IPv6 addresses with ‹\[[a-f0-9:.]+\]› and the future addresses with ‹\[v[a-f0-9]
[a-z0-9\-._~%!$&'()*+,;=:]+\]›. Although we can’t validate IP addresses using a ver-
sion of IP that hasn’t been defined yet, we could be more strict about the IPv6 addresses.
But this is again better left for a second regex, after extracting the address from the
URL. Recipe 7.17 shows that validating IPv6 addresses is far from trivial.

The port number, if specified, is simply a decimal number separated from the hostname
with a colon. ‹:[0-9]+› is all we need.

If an authority is specified, it must be followed by either an absolute path or no path
at all. An absolute path starts with a forward slash, followed by one or more segments
delimited by forward slashes. A segment consists of one or more letters, digits, or

362 | Chapter 7: URLs, Paths, and Internet Addresses

punctuation characters. There can be no consecutive forward slashes. The path may
end with a forward slash. ‹(/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/?› matches such paths.

If the URL does not specify an authority, the path can be absolute, relative, or omitted.
Absolute paths start with a forward slash, whereas relative paths don’t. Because the
leading forward slash is now optional, we need a slightly longer regex to match both
absolute and relative paths: ‹/?[a-z0-9\-._~%!$&'()*+,;=:@]+(/[a-z0-9\-._~%!$&'()*
+,;=:@]+)*/?›.
Relative URLs do not specify a scheme, and therefore no authority. The path becomes
mandatory, and it can be absolute or relative. Since the URL does not specify a scheme,
the first segment of a relative path cannot contain any colons. Otherwise, that colon
would be seen as the delimiter of the scheme. So we need two regular expressions to
match the path of a relative URL. We match relative paths with ‹[a-z0-9\-._~%!$&'()*
+,;=@]+(/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/?›. This is very similar to the regex for paths
with a scheme but no authority. The only differences are the optional forward slash at
the start, which is missing, and the first character class, which does not include the
colon. We match absolute paths with ‹(/[a-z0-9\-._~%!$&'()*+,;=:@]+)+/?›. This is
the same regex as the one for paths in URLs that specify a scheme and an authority,
except that the asterisk that repeats the segments of the path has become a plus. Relative
URLs require at least one path segment.

The query part of the URL is optional. If present, it must start with a question mark.
The query runs until the first hash sign in the URL or until the end of the URL. Since
the hash sign is not among valid punctuation characters for the query part of the URL,
we can easily match this with ‹\?[a-z0-9\-._~%!$&'()*+,;=:@/?]*›. Both of the ques-
tion marks in this regex are literal characters. The first one is outside a character class,
and must be escaped. The second one is inside a character class, where it is always a
literal character.

The final part of a URL is the fragment, which is also optional. It begins with a hash
sign and runs until the end of the URL. ‹\#[a-z0-9\-._~%!$&'()*+,;=:@/?]*› matches
this.

To make it easier to work with the various parts of the URL, we use named capturing
groups. Recipe 2.11 explains how named capture works in the different regex flavors
discussed in this book. .NET is the only flavor that treats multiple groups with the same
name as if they were one group. This is very handy in this situation, because our regex
has multiple ways of matching the URL’s path, depending on whether the scheme and/
or the authority are specified. If we give these three groups the same name, we can
simply query the “path” group to get the path, regardless of whether the URL has a
scheme and/or an authority.

The other flavors don’t support this behavior for named capture in .NET, even though
most support the same syntax for named capture. For the other flavors, the three cap-
turing groups for the path all have different names. Only one of them will actually hold

7.7 Validating Generic URLs | 363

the URL’s path when a match is found. The other two won’t have participated in the
match.

See Also
Recipes 2.3, 2.8, 2.9, and 2.12

7.8 Extracting the Scheme from a URL
Problem
You want to extract the URL scheme from a string that holds a URL. For example, you
want to extract http from http://www.regexcookbook.com.

Solution

Extract the scheme from a URL known to be valid
^([a-z][a-z0-9+\-.]*):

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Extract the scheme while validating the URL
\A
([a-z][a-z0-9+\-.]*):
(# Authority & path
 //
 ([a-z0-9\-._~%!$&'()*+,;=]+@)? # User
 ([a-z0-9\-._~%]+ # Named host
 |\[[a-f0-9:.]+\] # IPv6 host
 |\[v[a-f0-9][a-z0-9\-._~%!$&'()*+,;=:]+\]) # IPvFuture host
 (:[0-9]+)? # Port
 (/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/? # Path
|# Path without authority
 (/?[a-z0-9\-._~%!$&'()*+,;=:@]+(/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/?)?
)
Query
(\?[a-z0-9\-._~%!$&'()*+,;=:@/?]*)?
Fragment
(\#[a-z0-9\-._~%!$&'()*+,;=:@/?]*)?
\Z

Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

364 | Chapter 7: URLs, Paths, and Internet Addresses

^([a-z][a-z0-9+\-.]*):(//([a-z0-9\-._~%!$&'()*+,;=]+@)?([a-z0-9\-._~%]+|↵
\[[a-f0-9:.]+\]|\[v[a-f0-9][a-z0-9\-._~%!$&'()*+,;=:]+\])(:[0-9]+)?↵
(/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/?|(/?[a-z0-9\-._~%!$&'()*+,;=:@]+↵
(/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/?)?)(\?[a-z0-9\-._~%!$&'()*+,;=:@/?]*)?↵
(#[a-z0-9\-._~%!$&'()*+,;=:@/?]*)?$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Discussion
Extracting the scheme from a URL is easy if you already know that your subject text is
a valid URL. A URL’s scheme always occurs at the very start of the URL. The caret
(Recipe 2.5) specifies that requirement in the regex. The scheme begins with a letter,
which can be followed by additional letters, digits, plus signs, hyphens, and dots. We
match this with the two character classes ‹[a-z][a-z0-9+\-.]*› (Recipe 2.3).

The scheme is delimited from the rest of the URL with a colon. We add this colon to
the regex to make sure we match the scheme only if the URL actually starts with a
scheme. Relative URLs do not start with a scheme. The URL syntax specified in RFC
3986 makes sure that relative URLs don’t contain any colons, unless those colons are
preceded by characters that aren’t allowed in schemes. That’s why we had to exclude
the colon from one of the character classes for matching the path in Recipe 7.7. If you
use the regexes in this recipe on a valid but relative URL, they won’t find a match at all.

Since the regex matches more than just the scheme itself (it includes the colon), we’ve
added a capturing group to the regular expression. When the regex finds a match, you
can retrieve the text matched by the first (and only) capturing group to get the scheme
without the colon. Recipe 2.9 tells you all about capturing groups. See Recipe 3.9 to
learn how to retrieve text matched by capturing groups in your favorite programming
language.

If you don’t already know that your subject text is a valid URL, you can use a simplified
version of the regex from Recipe 7.7. Since we want to extract the scheme, we can
exclude relative URLs, which don’t specify a scheme. That makes the regular expression
slightly simpler.

Since this regex matches the whole URL, we added an extra capturing group around
the part of the regex that matches the scheme. Retrieve the text matched by capturing
group number 1 to get the URL’s scheme.

See Also
Recipes 2.9, 3.9, and 7.7

7.8 Extracting the Scheme from a URL | 365

7.9 Extracting the User from a URL
Problem
You want to extract the user from a string that holds a URL. For example, you want to
extract jan from http://jan@www.regexcookbook.com.

Solution

Extract the user from a URL known to be valid
^[a-z0-9+\-.]+://([a-z0-9\-._~%!$&'()*+,;=]+)@

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Extract the user while validating the URL
\A
[a-z][a-z0-9+\-.]*:// # Scheme
([a-z0-9\-._~%!$&'()*+,;=]+)@ # User
([a-z0-9\-._~%]+ # Named host
|\[[a-f0-9:.]+\] # IPv6 host
|\[v[a-f0-9][a-z0-9\-._~%!$&'()*+,;=:]+\]) # IPvFuture host
(:[0-9]+)? # Port
(/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/? # Path
(\?[a-z0-9\-._~%!$&'()*+,;=:@/?]*)? # Query
(\#[a-z0-9\-._~%!$&'()*+,;=:@/?]*)? # Fragment
\Z

Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^[a-z][a-z0-9+\-.]*://([a-z0-9\-._~%!$&'()*+,;=]+)@([a-z0-9\-._~%]+|↵
\[[a-f0-9:.]+\]|\[v[a-f0-9][a-z0-9\-._~%!$&'()*+,;=:]+\])(:[0-9]+)?↵
(/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/?(\?[a-z0-9\-._~%!$&'()*+,;=:@/?]*)?↵
(#[a-z0-9\-._~%!$&'()*+,;=:@/?]*)?$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Discussion
Extracting the user from a URL is easy if you already know that your subject text is a
valid URL. The username, if present in the URL, occurs right after the scheme and the
two forward slashes that begin the “authority” part of the URL. The username is sep-
arated from the hostname that follows it with an @ sign. Since @ signs are not valid
in hostnames, we can be sure that we’re extracting the username portion of a URL if
we find an @ sign after the two forward slashes and before the next forward slash in

366 | Chapter 7: URLs, Paths, and Internet Addresses

the URL. Forward slashes are not valid in usernames, so we don’t need to do any special
checking for them.

All these rules mean we can very easily extract the username if we know the URL to be
valid. We just skip over the scheme with ‹[a-z0-9+\-.]+› and the ://. Then, we grab
the username that follows. If we can match the @ sign, we know that the characters
before it are the username. The character class ‹[a-z0-9\-._~%!$&'()*+,;=]› lists all the
characters that are valid in usernames.

This regex will find a match only if the URL actually specifies a user. When it does, the
regex will match both the scheme and the user parts of the URL. Therefore, we’ve added
a capturing group to the regular expression. When the regex finds a match, you can
retrieve the text matched by the first (and only) capturing group to get the username
without any delimiters or other URL parts. Recipe 2.9 tells you all about capturing
groups. See Recipe 3.9 to learn how to retrieve text matched by capturing groups in
your favorite programming language.

If you don’t already know that your subject text is a valid URL, you can use a simplified
version of the regex from Recipe 7.7. Since we want to extract the user, we can exclude
URLs that don’t specify an authority. The regex in the solution actually matches only
URLs that specify an authority that includes a username. Requiring the authority part
of the URL makes the regular expression quite a bit simpler. It’s even simpler than the
one we used in Recipe 7.8.

Since this regex matches the whole URL, we added an extra capturing group around
the part of the regex that matches the user. Retrieve the text matched by capturing
group number 1 to get the URL’s user.

If you want a regex that matches any valid URL, including those that don’t specify the
user, you can use one of the regexes from Recipe 7.7. The first regex in that recipe
captures the user, if present, in the third capturing group. The capturing group will
include the @ symbol. You can add an extra capturing group to the regex if you want
to capture the username without the @ symbol.

See Also
Recipes 2.9, 3.9, and 7.7

7.10 Extracting the Host from a URL
Problem
You want to extract the host from a string that holds a URL. For example, you want
to extract www.regexcookbook.com from http://www.regexcookbook.com/.

7.10 Extracting the Host from a URL | 367

Solution

Extract the host from a URL known to be valid
\A
[a-z][a-z0-9+\-.]*:// # Scheme
([a-z0-9\-._~%!$&'()*+,;=]+@)? # User
([a-z0-9\-._~%]+ # Named or IPv4 host
|\[[a-z0-9\-._~%!$&'()*+,;=:]+\]) # IPv6+ host

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

^[a-z][a-z0-9+\-.]*://([a-z0-9\-._~%!$&'()*+,;=]+@)?([a-z0-9\-._~%]+|↵
\[[a-z0-9\-._~%!$&'()*+,;=:]+\])

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Extract the host while validating the URL
\A
[a-z][a-z0-9+\-.]*:// # Scheme
([a-z0-9\-._~%!$&'()*+,;=]+@)? # User
([a-z0-9\-._~%]+ # Named host
|\[[a-f0-9:.]+\] # IPv6 host
|\[v[a-f0-9][a-z0-9\-._~%!$&'()*+,;=:]+\]) # IPvFuture host
(:[0-9]+)? # Port
(/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/? # Path
(\?[a-z0-9\-._~%!$&'()*+,;=:@/?]*)? # Query
(\#[a-z0-9\-._~%!$&'()*+,;=:@/?]*)? # Fragment
\Z

Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^[a-z][a-z0-9+\-.]*://([a-z0-9\-._~%!$&'()*+,;=]+@)?([a-z0-9\-._~%]+|↵
\[[a-f0-9:.]+\]|\[v[a-f0-9][a-z0-9\-._~%!$&'()*+,;=:]+\])(:[0-9]+)?↵
(/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/?(\?[a-z0-9\-._~%!$&'()*+,;=:@/?]*)?↵
(#[a-z0-9\-._~%!$&'()*+,;=:@/?]*)?$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Discussion
Extracting the host from a URL is easy if you already know that your subject text is a
valid URL. We use ‹\A› or ‹^› to anchor the match to the start of the string. ‹[a-z][a-
z0-9+\-.]*://› skips over the scheme, and ‹([a-z0-9\-._~%!$&'()*+,;=]+@)?› skips
over the optional user. The hostname follows right after that.

368 | Chapter 7: URLs, Paths, and Internet Addresses

RFC 3986 allows two different notations for the host. Domain names and IPv4 ad-
dresses are specified without square brackets, whereas IPv6 and future IP addresses are
specified with square brackets. We need to handle those separately because the nota-
tion with square brackets allows more punctuation than the notation without. In par-
ticular, the colon is allowed between square brackets, but not in domain names or IPv4
addresses. The colon is also used to delimit the hostname (with or without square
brackets) from the port number.

‹[a-z0-9\-._~%]+› matches domain names and IPv4 addresses. ‹\[[a-z0-9\-._~%!
$&'()*+,;=:]+\]› handles IP version 6 and later. We combine these two using alterna-
tion (Recipe 2.8) in a group. The capturing group also allows us to extract the hostname.

This regex will find a match only if the URL actually specifies a host. When it does, the
regex will match the scheme, user, and host parts of the URL. When the regex finds a
match, you can retrieve the text matched by the second capturing group to get the
hostname without any delimiters or other URL parts. The capturing group will include
the square brackets for IPv6 addresses. Recipe 2.9 tells you all about capturing groups.
See Recipe 3.9 to learn how to retrieve text matched by capturing groups in your favorite
programming language.

If you don’t already know that your subject text is a valid URL, you can use a simplified
version of the regex from Recipe 7.7. Since we want to extract the host, we can exclude
URLs that don’t specify an authority. This makes the regular expression quite a bit
simpler. It’s very similar to the one we used in Recipe 7.9. The only difference is that
now the user part of the authority is optional again, as it was in Recipe 7.7.

This regex also uses alternation for the various notations for the host, which is kept
together by a capturing group. Retrieve the text matched by capturing group number
2 to get the URL’s host.

If you want a regex that matches any valid URL, including those that don’t specify the
user, you can use one of the regexes from Recipe 7.7. The first regex in that recipe
captures the host, if present, in the fourth capturing group.

See Also
Recipes 2.9, 3.9, and 7.7

7.11 Extracting the Port from a URL
Problem
You want to extract the port number from a string that holds a URL. For example, you
want to extract 80 from http://www.regexcookbook.com:80/.

7.11 Extracting the Port from a URL | 369

Solution

Extract the port from a URL known to be valid
\A
[a-z][a-z0-9+\-.]*:// # Scheme
([a-z0-9\-._~%!$&'()*+,;=]+@)? # User
([a-z0-9\-._~%]+ # Named or IPv4 host
|\[[a-z0-9\-._~%!$&'()*+,;=:]+\]) # IPv6+ host
:(?<port>[0-9]+) # Port number

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

^[a-z][a-z0-9+\-.]*://([a-z0-9\-._~%!$&'()*+,;=]+@)?↵
([a-z0-9\-._~%]+|\[[a-z0-9\-._~%!$&'()*+,;=:]+\]):([0-9]+)

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Extract the host while validating the URL
\A
[a-z][a-z0-9+\-.]*:// # Scheme
([a-z0-9\-._~%!$&'()*+,;=]+@)? # User
([a-z0-9\-._~%]+ # Named host
|\[[a-f0-9:.]+\] # IPv6 host
|\[v[a-f0-9][a-z0-9\-._~%!$&'()*+,;=:]+\]) # IPvFuture host
:([0-9]+) # Port
(/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/? # Path
(\?[a-z0-9\-._~%!$&'()*+,;=:@/?]*)? # Query
(\#[a-z0-9\-._~%!$&'()*+,;=:@/?]*)? # Fragment
\Z

Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^[a-z][a-z0-9+\-.]*:\/\/([a-z0-9\-._~%!$&'()*+,;=]+@)?↵
([a-z0-9\-._~%]+|\[[a-f0-9:.]+\]|\[v[a-f0-9][a-z0-9\-._~%!$&'()*+,;=:]↵
+\]):([0-9]+)(\/[a-z0-9\-._~%!$&'()*+,;=:@]+)*\/?↵
(\?[a-z0-9\-._~%!$&'()*+,;=:@\/?]*)?(#[a-z0-9\-._~%!$&'()*+,;=:@\/?]*)?$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Discussion
Extracting the port number from a URL is easy if you already know that your subject
text is a valid URL. We use ‹\A› or ‹^› to anchor the match to the start of the string.
‹[a-z][a-z0-9+\-.]*://› skips over the scheme, and ‹([a-z0-9\-._~%!$&'()*+,;=]
+@)?› skips over the optional user. ‹([a-z0-9\-._~%]+|\[[a-z0-9\-._~%!$&'()*+,;=:]+
\])› skips over the hostname.

370 | Chapter 7: URLs, Paths, and Internet Addresses

The port number is separated from the hostname with a colon, which we add as a literal
character to the regular expression. The port number itself is simply a string of digits,
easily matched with ‹[0-9]+›.
This regex will find a match only if the URL actually specifies a port number. When it
does, the regex will match the scheme, user, host, and port number parts of the URL.
When the regex finds a match, you can retrieve the text matched by the third capturing
group to get the port number without any delimiters or other URL parts.

The other two groups are used to make the username optional, and to keep the two
alternatives for the hostname together. Recipe 2.9 tells you all about capturing groups.
See Recipe 3.9 to learn how to retrieve text matched by capturing groups in your favorite
programming language.

If you don’t already know that your subject text is a valid URL, you can use a simplified
version of the regex from Recipe 7.7. Since we want to extract the host, we can exclude
URLs that don’t specify an authority. This makes the regular expression quite a bit
simpler. It’s very similar to the one we used in Recipe 7.10.

The only difference is that this time the port number isn’t optional, and we moved the
port number’s capturing group to exclude the colon that separates the port number
from the hostname. The capturing group’s number is 3.

If you want a regex that matches any valid URL, including those that don’t specify the
port, you can use one of the regexes from Recipe 7.7. The first regex in that recipe
captures the port, if present, in the fifth capturing group.

See Also
Recipes 2.9, 3.9, and 7.7

7.12 Extracting the Path from a URL
Problem
You want to extract the path from a string that holds a URL. For example, you
want to extract /index.html from http://www.regexcookbook.com/index.html or
from /index.html#fragment.

Solution
Extract the path from a string known to hold a valid URL. The following finds a match
for all URLs, even for URLs that have no path:

\A
Skip over scheme and authority, if any
([a-z][a-z0-9+\-.]*:(//[^/?#]+)?)?

7.12 Extracting the Path from a URL | 371

Path
([a-z0-9\-._~%!$&'()*+,;=:@/]*)

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^([a-z][a-z0-9+\-.]*:(//[^/?#]+)?)?([a-z0-9\-._~%!$&'()*+,;=:@/]*)
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Extract the path from a string known to hold a valid URL. Only match URLs that
actually have a path:

\A
Skip over scheme and authority, if any
([a-z][a-z0-9+\-.]*:(//[^/?#]+)?)?
Path
(/?[a-z0-9\-._~%!$&'()*+,;=@]+(/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/?|/)
Query, fragment, or end of URL
([#?]|\Z)

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^([a-z][a-z0-9+\-.]*:(//[^/?#]+)?)?(/?[a-z0-9\-._~%!$&'()*+,;=@]+↵
(/[a-z0-9\-._~%!$&'()*+,;=:@]+)*/?|/)([#?]|$)

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Extract the path from a string known to hold a valid URL. Use atomic grouping to
match only those URLs that actually have a path:

\A
Skip over scheme and authority, if any
(?>([a-z][a-z0-9+\-.]*:(//[^/?#]+)?)?)
Path
([a-z0-9\-._~%!$&'()*+,;=:@/]+)

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Ruby

Discussion
You can use a much simpler regular expression to extract the path if you already know
that your subject text is a valid URL. While the generic regex in Recipe 7.7 has three
different ways to match the path, depending on whether the URL specifies a scheme
and/or authority, the specific regex for extracting the path from a URL known to be
valid needs to match the path only once.

We start with ‹\A› or ‹^› to anchor the match to the start of the string. ‹[a-z][a-z0-9+
\-.]*:› skips over the scheme, and ‹//[^/?#]+› skips over the authority. We can use
this very simple regex for the authority because we already know it to be valid,
and we’re not interested in extracting the user, host, or port from the authority.

372 | Chapter 7: URLs, Paths, and Internet Addresses

The authority starts with two forward slashes, and runs until the start of the path
(forward slash), query (question mark), or fragment (hash). The negated character class
matches everything up to the first forward slash, question mark, or hash (Recipe 2.3).

Because the authority is optional, we put it into a group followed by the question mark
quantifier: ‹(//[^/?#]+)?›. The scheme is also optional. If the scheme is omitted, the
authority must be omitted, too. To match this, we place the parts of the regex for the
scheme and the optional authority in another group, also made optional with a question
mark.

Since we know the URL to be valid, we can easily match the path with a single character
class ‹[a-z0-9\-._~%!$&'()*+,;=:@/]*› that includes the forward slash. We don’t need
to check for consecutive forward slashes, which aren’t allowed in paths in URLs.

We indeed use an asterisk rather than a plus as the quantifier on the character class for
the path. It may seem strange to make the path optional in a regex that only exists to
extract the path from a URL. Actually, making the path optional is essential because
of the shortcuts we took in skipping over the scheme and the authority.

In the generic regex for URLs in Recipe 7.7, we have three different ways of matching
the path, depending on whether the scheme and/or authority are present in the URL.
This makes sure the scheme isn’t accidentally matched as the path.

Now we’re trying to keep things simple by using only one character class for the path.
Consider the URL http://www.regexcookbook.com, which has a scheme and an authority
but no path. The first part of our regex will happily match the scheme and the authority.
The regex engine then tries to match the character class for the path, but there are no
characters left. If the path is optional (using the asterisk quantifier), the regex engine
is perfectly happy not to match any characters for the path. It reaches the end of the
regex and declares that an overall match has been found.

But if the character class for the path is not optional, the regex engine backtracks. (See
Recipe 2.13 if you’re not familiar with backtracking.) It remembered that the authority
and scheme parts of our regex are optional, so the engine says: let’s try this again,
without allowing ‹(//[^/?#]+)?› to match anything. ‹[a-z0-9\-._~%!$&'()*+,;=:@/]
+› would then match //www.regexcookbook.com for the path, clearly not what we want.
If we used a more accurate regex for the path to disallow the double forward slashes,
the regex engine would simply backtrack again, and pretend the URL has no scheme.
With an accurate regex for the path, it would match http as the path. To prevent that
as well, we would have to add an extra check to make sure the path is followed by the
query, fragment, or nothing at all. If we do all that, we end up with the regular expres-
sions indicated as “only match URLs that actually have a path” in this Recipe’s “Solu-
tion”. These are quite a bit more complicated than the first two, all just to make the
regex not match URLs without a path.

7.12 Extracting the Path from a URL | 373

If your regex flavor supports atomic grouping, there’s an easier way. All flavors dis-
cussed in this book, except JavaScript and Python, support atomic grouping (see Rec-
ipe 2.15). Essentially, an atomic group tells the regex engine not to backtrack. If we
place the scheme and authority parts of our regex inside an atomic group, the regex
engine will be forced to keep the matches of the scheme and authority parts once they’ve
been matched, even if that allows no room for the character class for the path to match.
This solution is just as efficient as making the path optional.

Regardless of which regular expression you choose from this recipe, the third capturing
group will hold the path. The third capturing group may return the empty string, or
null in JavaScript, if you use one of the first two regexes that allow the path to be
optional.

If you don’t already know that your subject text is a valid URL, you can use the regex
from Recipe 7.7. If you’re using .NET, you can use the .NET-specific regex that includes
three groups named “path” to capture the three parts of the regex that could match the
URL’s path. If you use another flavor that supports named capture, one of three groups
will have captured it: “hostpath”, “schemepath”, or “relpath”. Since only one of the
three groups will actually capture anything, a simple trick to get the path is to concat-
enate the strings returned by the three groups. Two of them will return the empty string,
so no actual concatenation is done.

If your flavor does not support named capture, you can use the first regex in Rec-
ipe 7.7. It captures the path in group 6, 7, or 8. You can use the same trick to concatenate
the text captured by these three groups, as two of them will return the empty string. In
JavaScript, however, this won’t work. JavaScript returns undefined for groups that
don’t participate.

Recipe 3.9 has more information on retrieving the text matched by named and num-
bered capturing groups in your favorite programming language.

See Also
Recipes 2.9, 3.9, and 7.7

7.13 Extracting the Query from a URL
Problem
You want to extract the query from a string that holds a URL. For example, you
want to extract param=value from http://www.regexcookbook.com?param=value or
from /index.html?param=value.

374 | Chapter 7: URLs, Paths, and Internet Addresses

Solution
^[^?#]+\?([^#]+)

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
Extracting the query from a URL is trivial if you know that your subject text is a valid
URL. The query is delimited from the part of the URL before it with a question mark.
That is the first question mark allowed anywhere in URLs. Thus, we can easily skip
ahead to the first question mark with ‹^[^?#]+\?›. The question mark is a metacharacter
only outside character classes, but not inside, so we escape the literal question mark
outside the character class. The first ‹^› is an anchor (Recipe 2.5), whereas the second
‹^› negates the character class (Recipe 2.3).

Question marks can appear in URLs as part of the (optional) fragment after the query.
So we do need to use ‹^[^?#]+\?›, rather than just ‹\?›, to make sure we have the first
question mark in the URL, and make sure that it isn’t part of the fragment in a URL
without a query.

The query runs until the start of the fragment, or the end of the URL if there is no
fragment. The fragment is delimited from the rest of the URL with a hash sign. Since
hash signs are not permitted anywhere except in the fragment, ‹[^#]+› is all we need to
match the query. The negated character class matches everything up to the first hash
sign, or everything until the end of the subject if it doesn’t contain any hash signs.

This regular expression will find a match only for URLs that actually contain a query.
When it matches a URL, the match includes everything from the start of the URL, so
we put the ‹[^#]+› part of the regex that matches the query inside a capturing group.
When the regex finds a match, you can retrieve the text matched by the first (and only)
capturing group to get the query without any delimiters or other URL parts. Rec-
ipe 2.9 tells you all about capturing groups. See Recipe 3.9 to learn how to retrieve text
matched by capturing groups in your favorite programming language.

If you don’t already know that your subject text is a valid URL, you can use one of the
regexes from Recipe 7.7. The first regex in that recipe captures the query, if one is
present in the URL, into capturing group number 12.

See Also
Recipes 2.9, 3.9, and 7.7

7.13 Extracting the Query from a URL | 375

7.14 Extracting the Fragment from a URL
Problem
You want to extract the fragment from a string that holds a URL. For example, you
want to extract top from http://www.regexcookbook.com#top or from /index.html#top.

Solution
#(.+)

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
Extracting the fragment from a URL is trivial if you know that your subject text is a
valid URL. The query is delimited from the part of the URL before it with a hash sign.
The fragment is the only part of URLs in which hash signs are allowed, and the fragment
is always the last part of the URL. Thus, we can easily extract the fragment by finding
the first hash sign and grabbing everything until the end of the string. ‹#.+› does that
nicely. Make sure to turn off free-spacing mode; otherwise, you need to escape the
literal hash sign with a backslash.

This regular expression will find a match only for URLs that actually contain a fragment.
The match consists of just the fragment, but includes the hash sign that delimits the
fragment from the rest of the URL. The solution has an extra capturing group to retrieve
just the fragment, without the delimiting #.

If you don’t already know that your subject text is a valid URL, you can use one of the
regexes from Recipe 7.7. The first regex in that recipe captures the fragment, if one is
present in the URL, into capturing group number 13.

See Also
Recipes 2.9, 3.9, and 7.7

7.15 Validating Domain Names
Problem
You want to check whether a string looks like it may be a valid, fully qualified domain
name, or find such domain names in longer text.

Solution
Check whether a string looks like a valid domain name:

376 | Chapter 7: URLs, Paths, and Internet Addresses

^([a-z0-9]+(-[a-z0-9]+)*\.)+[a-z]{2,}$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

\A([a-z0-9]+(-[a-z0-9]+)*\.)+[a-z]{2,}\Z
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Find valid domain names in longer text:

\b([a-z0-9]+(-[a-z0-9]+)*\.)+[a-z]{2,}\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Check whether each part of the domain is not longer than 63 characters:

\b((?=[a-z0-9-]{1,63}\.)[a-z0-9]+(-[a-z0-9]+)*\.)+[a-z]{2,63}\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Allow internationalized domain names using the punycode notation:

\b((xn--)?[a-z0-9]+(-[a-z0-9]+)*\.)+[a-z]{2,}\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Check whether each part of the domain is not longer than 63 characters, and allow
internationalized domain names using the punycode notation:

\b((?=[a-z0-9-]{1,63}\.)(xn--)?[a-z0-9]+(-[a-z0-9]+)*\.)+[a-z]{2,63}\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
A domain name has the form of domain.tld, or subdomain.domain.tld, or any number
of additional subdomains. The top-level domain (tld) consists of two or more letters.
That’s the easiest part of the regex: ‹[a-z]{2,}›.
The domain, and any subdomains, consist of letters, digits, and hyphens. Hyphens
cannot appear in pairs, and cannot appear as the first or last character in the domain.
We handle this with the regular expression ‹[a-z0-9]+(-[a-z0-9]+)*›. This regex allows
any number of letters and digits, optionally followed by any number of groups that
consist of a hyphen followed by another sequence of letters and digits. Remember that
the hyphen is a metacharacter inside character classes (Recipe 2.3) but an ordinary
character outside of character classes, so we don’t need to escape any hyphens in this
regex.

The domain and the subdomains are delimited with a literal dot, which we match with
‹\.› in a regular expression. Since we can have any number of subdomains in addition
to the domain, we place the domain name part of the regex and the literal dot in a group

7.15 Validating Domain Names | 377

that we repeat: ‹([a-z0-9]+(-[a-z0-9]+)*\.)+›. Since the subdomains follow the same
syntax as the domain, this one group handles both.

If you want to check whether a string represents a valid domain name, all that remains
is to add anchors to the start and the end of the regex that match at the start and the
end of the string. We can do this with ‹^› and ‹$› in all flavors except Ruby, and with
‹\A› and ‹\Z› in all flavors except JavaScript. Recipe 2.5 has all the details.

If you want to find domain names in a larger body of text, you can add word boundaries
(‹\b›; see Recipe 2.6).

Our first set of regular expressions doesn’t check whether each part of the domain is
no longer than 63 characters. We can’t easily do this, because our regex for each domain
part, ‹[a-z0-9]+(-[a-z0-9]+)*›, has three quantifiers in it. There’s no way to tell the
regex engine to make these add up to 63.

We could use ‹[-a-z0-9]{1,63}› to match a domain part that is 1 to 63 characters long,
or ‹\b([-a-z0-9]{1,63}\.)+[a-z]{2,63}› for the whole domain name. But then we’re
no longer excluding domains with hyphens in the wrong places.

What we can do is to use lookahead to match the same text twice. Review Rec-
ipe 2.16 first if you’re not familiar with lookahead. We use the same regex ‹[a-z0-9]+
(-[a-z0-9]+)*\.› to match a domain name with valid hyphens, and add ‹[-a-z0-9]
{1,63}\.› inside a lookahead to check that its length is also 63 characters or less. The
result is ‹(?=[-a-z0-9]{1,63}\.)[a-z0-9]+(-[a-z0-9]+)*\.›.
The lookahead ‹(?=[-a-z0-9]{1,63}\.)› first checks that there are 1 to 63 letters, digits,
and hyphens until the next dot. It’s important to include the dot in the lookahead.
Without it, domains longer than 63 characters would still satisfy the lookahead’s re-
quirement for 63 characters. Only by putting the literal dot inside the lookahead do we
enforce the requirement that we want at most 63 characters.

The lookahead does not consume the text that it matched. Thus, if the lookahead
succeeds, ‹[a-z0-9]+(-[a-z0-9]+)*\.› is applied to the same text already matched by
the lookahead. We’ve confirmed there are no more than 63 characters, and now we
test that they’re the right combination of hyphens and nonhyphens.

Internationalized domain names (IDNs) theoretically can contain pretty much any
character. The actual list of characters depends on the registry that manages the top-
level domain. For example, .es allows domain names with Spanish characters.

In practice, internationalized domain names are often encoded using a scheme called
punycode. Although the punycode algorithm is quite complicated, what matters here
is that it results in domain names that are a combination of letters, digits, and hyphens,
following the rules we’re already handling with our regular expression for domain
names. The only difference is that the domain name produced by punycode is prefixed
with xn--. To add support for such domains to our regular expression, we only need
to add ‹(xn--)?› to the group in our regular expression that matches the domain name
parts.

378 | Chapter 7: URLs, Paths, and Internet Addresses

See Also
Recipes 2.3, 2.12, and 2.16

7.16 Matching IPv4 Addresses
Problem
You want to check whether a certain string represents a valid IPv4 address in
255.255.255.255 notation. Optionally, you want to convert this address into a 32-bit
integer.

Solution

Regular expression

Simple regex to check for an IP address:

^(?:[0-9]{1,3}\.){3}[0-9]{1,3}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Accurate regex to check for an IP address:

^(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}↵
(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Simple regex to extract IP addresses from longer text:

\b(?:[0-9]{1,3}\.){3}[0-9]{1,3}\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Accurate regex to extract IP addresses from longer text:

\b(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}↵
(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\b

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Simple regex that captures the four parts of the IP address:

^([0-9]{1,3})\.([0-9]{1,3})\.([0-9]{1,3})\.([0-9]{1,3})$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

7.16 Matching IPv4 Addresses | 379

Accurate regex that captures the four parts of the IP address:

^(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.↵
(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.↵
(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.↵
(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Perl
if ($subject =~ m/^([0-9]{1,3})\.([0-9]{1,3})\.([0-9]{1,3})\.([0-9]{1,3})/)
{
 $ip = $1 << 24 | $2 << 16 | $3 << 8 | $4;
}

Discussion
A version 4 IP address is usually written in the form 255.255.255.255, where each of
the four numbers must be between 0 and 255. Matching such IP addresses with a regular
expression is very straightforward.

In the solution we present four regular expressions. Two of them are billed as “simple,”
while the other two are marked “accurate.”

The simple regexes use ‹[0-9]{1,3}› to match each of the four blocks of digits in the IP
address. These actually allow numbers from 0 to 999 rather than 0 to 255. The simple
regexes are more efficient when you already know your input will contain only valid IP
addresses, and you only need to separate the IP addresses from the other stuff.

The accurate regexes use ‹25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?› to match each of
the four numbers in the IP address. This regex accurately matches a number in the
range 0 to 255, with one optional leading zero for numbers between 10 and 99, and
two optional leading zeros for numbers between 0 and 9. ‹25[0-5]› matches 250
through 255, ‹2[0-4][0-9]› matches 200 to 249, and ‹[01]?[0-9][0-9]?› takes care of
0 to 199, including the optional leading zeros. Recipe 6.5 explains in detail how to
match numeric ranges with a regular expression.

If you want to check whether a string is a valid IP address in its entirety, use one of the
regexes that begin with a caret and end with a dollar. These are the start-of-string and
end-of-string anchors, explained in Recipe 2.5. If you want to find IP addresses within
longer text, use one of the regexes that begin and end with the word boundaries
‹\b› (Recipe 2.6).

The first four regular expressions use the form ‹(?:number\.){3}number›. The first three
numbers in the IP address are matched by a noncapturing group (Recipe 2.9) that is
repeated three times (Recipe 2.12). The group matches a number and a literal dot, of
which there are three in an IP address. The last part of the regex matches the final

380 | Chapter 7: URLs, Paths, and Internet Addresses

number in the IP address. Using the noncapturing group and repeating it three times
makes our regular expression shorter and more efficient.

To convert the textual representation of the IP address into an integer, we need to
capture the four numbers separately. The last two regexes in the solution do this. In-
stead of using the trick of repeating a group three times, they have four capturing
groups, one for each number. Spelling things out this way is the only way we can
separately capture all four numbers in the IP address.

Once we’ve captured the number, combining them into a 32-bit number is easy. In
Perl, the special variables $1, $2, $3, and $4 hold the text matched by the four capturing
groups in the regular expression. Recipe 3.9 explains how to retrieve capturing groups
in other programming languages. In Perl, the string variables for the capturing groups
are automatically coerced into numbers when we apply the bitwise left shift operator
(<<) to them. In other languages, you may have to call String.toInteger() or something
similar before you can shift the numbers and combine them with a bitwise or.

See Also
Recipes 2.3, 2.8, 2.9, and 2.12

7.17 Matching IPv6 Addresses
Problem
You want to check whether a string represents a valid IPv6 address using the standard,
compact, and/or mixed notations.

Solution

Standard notation

Match an IPv6 address in standard notation, which consists of eight 16-bit words using
hexadecimal notation, delimited by colons (e.g.: 1762:0:0:0:0:B03:1:AF18). Leading
zeros are optional.

Check whether the whole subject text is an IPv6 address using standard notation:

^(?:[A-F0-9]{1,4}:){7}[A-F0-9]{1,4}$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

\A(?:[A-F0-9]{1,4}:){7}[A-F0-9]{1,4}\Z
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

7.17 Matching IPv6 Addresses | 381

Find an IPv6 address using standard notation within a larger collection of text:

(?<![:.\w])(?:[A-F0-9]{1,4}:){7}[A-F0-9]{1,4}(?![:.\w])
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

JavaScript and Ruby 1.8 don’t support lookbehind. We have to remove the check at
the start of the regex that keeps it from finding IPv6 addresses within longer sequences
of hexadecimal digits and colons. A word boundary performs part of the test:

\b(?:[A-F0-9]{1,4}:){7}[A-F0-9]{1,4}\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Mixed notation

Match an IPv6 address in mixed notation, which consists of six 16-bit words using
hexadecimal notation, followed by four bytes using decimal notation. The words are
delimited with colons, and the bytes with dots. A colon separates the words from the
bytes. Leading zeros are optional for both the hexadecimal words and the decimal bytes.
This notation is used in situations where IPv4 and IPv6 are mixed, and the IPv6 ad-
dresses are extensions of the IPv4 addresses. 1762:0:0:0:0:B03:127.32.67.15 is an ex-
ample of an IPv6 address in mixed notation.

Check whether the whole subject text is an IPv6 address using mixed notation:

^(?:[A-F0-9]{1,4}:){6}(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}↵
(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Find IPv6 address using mixed notation within a larger collection of text:

(?<![:.\w])(?:[A-F0-9]{1,4}:){6}↵
(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}↵
(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)(?![:.\w])

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

JavaScript and Ruby 1.8 don’t support lookbehind. We have to remove the check at
the start of the regex that keeps it from finding IPv6 addresses within longer sequences
of hexadecimal digits and colons. A word boundary performs part of the test:

\b(?:[A-F0-9]{1,4}:){6}(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}↵
(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\b

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

382 | Chapter 7: URLs, Paths, and Internet Addresses

Standard or mixed notation

Match an IPv6 address using standard or mixed notation.

Check whether the whole subject text is an IPv6 address using standard or mixed
notation:

\A # Start of string
(?:[A-F0-9]{1,4}:){6} # 6 words
(?:[A-F0-9]{1,4}:[A-F0-9]{1,4} # 2 words
| (?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3} # or 4 bytes
 (?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)
)\Z # End of string

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^(?:[A-F0-9]{1,4}:){6}(?:[A-F0-9]{1,4}:[A-F0-9]{1,4}|↵
(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}↵
(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?))$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Find IPv6 address using standard or mixed notation within a larger collection of text:

(?<![:.\w]) # Anchor address
(?:[A-F0-9]{1,4}:){6} # 6 words
(?:[A-F0-9]{1,4}:[A-F0-9]{1,4} # 2 words
| (?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3} # or 4 bytes
 (?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)
)(?![:.\w]) # Anchor address

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

JavaScript and Ruby 1.8 don’t support lookbehind. We have to remove the check at
the start of the regex that keeps it from finding IPv6 addresses within longer sequences
of hexadecimal digits and colons. A word boundary performs part of the test:

\b # Word boundary
(?:[A-F0-9]{1,4}:){6} # 6 words
(?:[A-F0-9]{1,4}:[A-F0-9]{1,4} # 2 words
| (?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3} # or 4 bytes
 (?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)
)\b # Word boundary

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

\b(?:[A-F0-9]{1,4}:){6}(?:[A-F0-9]{1,4}:[A-F0-9]{1,4}|↵
(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}↵
(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?))\b

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

7.17 Matching IPv6 Addresses | 383

Compressed notation

Match an IPv6 address using compressed notation. Compressed notation is the same
as standard notation, except that one sequence of one or more words that are zero may
be omitted, leaving only the colons before and after the omitted zeros. Addresses using
compressed notation can be recognized by the occurrence of two adjacent colons in
the address. Only one sequence of zeros may be omitted; otherwise, it would be
impossible to determine how many words have been omitted in each sequence. If the
omitted sequence of zeros is at the start or the end of the IP address, it will begin or
end with two colons. If all numbers are zero, the compressed IPv6 address consists of
just two colons, without any digits.

For example, 1762::B03:1:AF18 is the compressed form of 1762:0:0:0:0:B03:1:AF18.
The regular expressions in this section will match both the compressed and the standard
form of the IPv6 address. Check whether the whole subject text is an IPv6 address using
standard or compressed notation:

\A(?:
 # Standard
 (?:[A-F0-9]{1,4}:){7}[A-F0-9]{1,4}
 # Compressed with at most 7 colons
|(?=(?:[A-F0-9]{0,4}:){0,7}[A-F0-9]{0,4}
 \Z) # and anchored
 # and at most 1 double colon
 (([0-9A-F]{1,4}:){1,7}|:)((:[0-9A-F]{1,4}){1,7}|:)
)\Z

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^(?:(?:[A-F0-9]{1,4}:){7}[A-F0-9]{1,4}|↵
(?=(?:[A-F0-9]{0,4}:){0,7}[A-F0-9]{0,4}$)(([0-9A-F]{1,4}:){1,7}|:)↵
((:[0-9A-F]{1,4}){1,7}|:))$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Find IPv6 address using standard or compressed notation within a larger collection of
text:

(?<![:.\w])(?:
 # Standard
 (?:[A-F0-9]{1,4}:){7}[A-F0-9]{1,4}
 # Compressed with at most 7 colons
|(?=(?:[A-F0-9]{0,4}:){0,7}[A-F0-9]{0,4}
 (?![:.\w])) # and anchored
 # and at most 1 double colon
 (([0-9A-F]{1,4}:){1,7}|:)((:[0-9A-F]{1,4}){1,7}|:)
)(?![:.\w])

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

384 | Chapter 7: URLs, Paths, and Internet Addresses

JavaScript and Ruby 1.8 don’t support lookbehind, so we have to remove the check at
the start of the regex that keeps it from finding IPv6 addresses within longer sequences
of hexadecimal digits and colons. We cannot use a word boundary, because the address
may start with a colon, which is not a word character:

(?:
 # Standard
 (?:[A-F0-9]{1,4}:){7}[A-F0-9]{1,4}
 # Compressed with at most 7 colons
|(?=(?:[A-F0-9]{0,4}:){0,7}[A-F0-9]{0,4}
 (?![:.\w])) # and anchored
 # and at most 1 double colon
 (([0-9A-F]{1,4}:){1,7}|:)((:[0-9A-F]{1,4}){1,7}|:)
)(?![:.\w])

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

(?:(?:[A-F0-9]{1,4}:){7}[A-F0-9]{1,4}|(?=(?:[A-F0-9]{0,4}:){0,7}↵
[A-F0-9]{0,4}(?![:.\w]))(([0-9A-F]{1,4}:){1,7}|:)((:[0-9A-F]{1,4})↵
{1,7}|:))(?![:.\w])

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Compressed mixed notation

Match an IPv6 address using compressed mixed notation. Compressed mixed notation
is the same as mixed notation, except that one sequence of one or more words that are
zero may be omitted, leaving only the colons before and after the omitted zeros. The 4
decimal bytes must all be specified, even if they are zero. Addresses using compressed
mixed notation can be recognized by the occurrence of two adjacent colons in the first
part of the address and the three dots in the second part. Only one sequence of zeros
may be omitted; otherwise, it would be impossible to determine how many words have
been omitted in each sequence. If the omitted sequence of zeros is at the start of the IP
address, it will begin with two colons rather than with a digit.

For example, the IPv6 address 1762::B03:127.32.67.15 is the compressed form of
1762:0:0:0:0:B03:127.32.67.15. The regular expressions in this section will match
both compressed and noncompressed IPv6 address using mixed notation.

Check whether the whole subject text is an IPv6 address using compressed or non-
compressed mixed notation:

\A
(?:
 # Non-compressed
 (?:[A-F0-9]{1,4}:){6}
 # Compressed with at most 6 colons
|(?=(?:[A-F0-9]{0,4}:){0,6}
 (?:[0-9]{1,3}\.){3}[0-9]{1,3} # and 4 bytes

7.17 Matching IPv6 Addresses | 385

 \Z) # and anchored
 # and at most 1 double colon
 (([0-9A-F]{1,4}:){0,5}|:)((:[0-9A-F]{1,4}){1,5}:|:)
)
255.255.255.
(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}
255
(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)
\Z

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^(?:(?:[A-F0-9]{1,4}:){6}|(?=(?:[A-F0-9]{0,4}:){0,6}(?:[0-9]{1,3}\.)↵
{3}[0-9]{1,3}$)(([0-9A-F]{1,4}:){0,5}|:)((:[0-9A-F]{1,4}){1,5}:|:))↵
(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4]↵
[0-9]|[01]?[0-9][0-9]?)$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Find IPv6 address using compressed or noncompressed mixed notation within a larger
collection of text:

(?<![:.\w])
(?:
 # Non-compressed
 (?:[A-F0-9]{1,4}:){6}
 # Compressed with at most 6 colons
|(?=(?:[A-F0-9]{0,4}:){0,6}
 (?:[0-9]{1,3}\.){3}[0-9]{1,3} # and 4 bytes
 (?![:.\w])) # and anchored
 # and at most 1 double colon
 (([0-9A-F]{1,4}:){0,5}|:)((:[0-9A-F]{1,4}){1,5}:|:)
)
255.255.255.
(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}
255
(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)
(?![:.\w])

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

JavaScript and Ruby 1.8 don’t support lookbehind, so we have to remove the check at
the start of the regex that keeps it from finding IPv6 addresses within longer sequences
of hexadecimal digits and colons. We cannot use a word boundary, because the address
may start with a colon, which is not a word character.

(?:
 # Non-compressed
 (?:[A-F0-9]{1,4}:){6}
 # Compressed with at most 6 colons

386 | Chapter 7: URLs, Paths, and Internet Addresses

|(?=(?:[A-F0-9]{0,4}:){0,6}
 (?:[0-9]{1,3}\.){3}[0-9]{1,3} # and 4 bytes
 (?![:.\w])) # and anchored
 # and at most 1 double colon
 (([0-9A-F]{1,4}:){0,5}|:)((:[0-9A-F]{1,4}){1,5}:|:)
)
255.255.255.
(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}
255
(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)
(?![:.\w])

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

(?:(?:[A-F0-9]{1,4}:){6}|(?=(?:[A-F0-9]{0,4}:){0,6}(?:[0-9]{1,3}\.){3}↵
[0-9]{1,3}(?![:.\w]))(([0-9A-F]{1,4}:){0,5}|:)((:[0-9A-F]{1,4}){1,5}:|:))↵
(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}↵
(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)(?![:.\w])

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Standard, mixed, or compressed notation

Match an IPv6 address using any of the notations explained earlier: standard, mixed,
compressed, and compressed mixed.

Check whether the whole subject text is an IPv6 address:

\A(?:
Mixed
 (?:
 # Non-compressed
 (?:[A-F0-9]{1,4}:){6}
 # Compressed with at most 6 colons
 |(?=(?:[A-F0-9]{0,4}:){0,6}
 (?:[0-9]{1,3}\.){3}[0-9]{1,3} # and 4 bytes
 \Z) # and anchored
 # and at most 1 double colon
 (([0-9A-F]{1,4}:){0,5}|:)((:[0-9A-F]{1,4}){1,5}:|:)
)
 # 255.255.255.
 (?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}
 # 255
 (?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)
|# Standard
 (?:[A-F0-9]{1,4}:){7}[A-F0-9]{1,4}
|# Compressed with at most 7 colons
 (?=(?:[A-F0-9]{0,4}:){0,7}[A-F0-9]{0,4}
 \Z) # and anchored

7.17 Matching IPv6 Addresses | 387

 # and at most 1 double colon
 (([0-9A-F]{1,4}:){1,7}|:)((:[0-9A-F]{1,4}){1,7}|:)
)\Z

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^(?:(?:(?:[A-F0-9]{1,4}:){6}|(?=(?:[A-F0-9]{0,4}:){0,6}(?:[0-9]{1,3}\.){3}↵
[0-9]{1,3}$)(([0-9A-F]{1,4}:){0,5}|:)((:[0-9A-F]{1,4}){1,5}:|:))↵
(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}↵
(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)|(?:[A-F0-9]{1,4}:){7}↵
[A-F0-9]{1,4}|(?=(?:[A-F0-9]{0,4}:){0,7}[A-F0-9]{0,4}$)↵
(([0-9A-F]{1,4}:){1,7}|:)((:[0-9A-F]{1,4}){1,7}|:))$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Find an IPv6 address using standard or mixed notation within a larger collection of text:

(?<![:.\w])(?:
Mixed
 (?:
 # Non-compressed
 (?:[A-F0-9]{1,4}:){6}
 # Compressed with at most 6 colons
 |(?=(?:[A-F0-9]{0,4}:){0,6}
 (?:[0-9]{1,3}\.){3}[0-9]{1,3} # and 4 bytes
 (?![:.\w])) # and anchored
 # and at most 1 double colon
 (([0-9A-F]{1,4}:){0,5}|:)((:[0-9A-F]{1,4}){1,5}:|:)
)
 # 255.255.255.
 (?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}
 # 255
 (?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)
|# Standard
 (?:[A-F0-9]{1,4}:){7}[A-F0-9]{1,4}
|# Compressed with at most 7 colons
 (?=(?:[A-F0-9]{0,4}:){0,7}[A-F0-9]{0,4}
 (?![:.\w])) # and anchored
 # and at most 1 double colon
 (([0-9A-F]{1,4}:){1,7}|:)((:[0-9A-F]{1,4}){1,7}|:)
)(?![:.\w])

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

JavaScript and Ruby 1.8 don’t support lookbehind, so we have to remove the check at
the start of the regex that keeps it from finding IPv6 addresses within longer sequences
of hexadecimal digits and colons. We cannot use a word boundary, because the address
may start with a colon, which is not a word character.

388 | Chapter 7: URLs, Paths, and Internet Addresses

(?:
 # Mixed
 (?:
 # Non-compressed
 (?:[A-F0-9]{1,4}:){6}
 # Compressed with at most 6 colons
 |(?=(?:[A-F0-9]{0,4}:){0,6}
 (?:[0-9]{1,3}\.){3}[0-9]{1,3} # and 4 bytes
 (?![:.\w])) # and anchored
 # and at most 1 double colon
 (([0-9A-F]{1,4}:){0,5}|:)((:[0-9A-F]{1,4}){1,5}:|:)
)
 # 255.255.255.
 (?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}
 # 255
 (?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)
|# Standard
 (?:[A-F0-9]{1,4}:){7}[A-F0-9]{1,4}
|# Compressed with at most 7 colons
 (?=(?:[A-F0-9]{0,4}:){0,7}[A-F0-9]{0,4}
 (?![:.\w])) # and anchored
 # and at most 1 double colon
 (([0-9A-F]{1,4}:){1,7}|:)((:[0-9A-F]{1,4}){1,7}|:)
)(?![:.\w])

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

(?:(?:(?:[A-F0-9]{1,4}:){6}|(?=(?:[A-F0-9]{0,4}:){0,6}(?:[0-9]{1,3}\.){3}↵
[0-9]{1,3}(?![:.\w]))(([0-9A-F]{1,4}:){0,5}|:)((:[0-9A-F]{1,4}){1,5}:|:))↵
(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|↵
[01]?[0-9][0-9]?)|(?:[A-F0-9]{1,4}:){7}[A-F0-9]{1,4}|↵
(?=(?:[A-F0-9]{0,4}:){0,7}[A-F0-9]{0,4}(?![:.\w]))↵
(([0-9A-F]{1,4}:){1,7}|:)((:[0-9A-F]{1,4}){1,7}|:))(?![:.\w])

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
Because of the different notations, matching an IPv6 address isn’t nearly as simple as
matching an IPv4 address. Which notations you want to accept will greatly impact the
complexity of your regular expression. Basically, there are two notations: standard and
mixed. You can decide to allow only one of the two notations, or both. That gives us
three sets of regular expressions.

Both the standard and mixed notations have a compressed form that omits zeros. Al-
lowing compressed notation gives us another three sets of regular expressions.

You’ll need slightly different regexes depending on whether you want to check if a given
string is a valid IPv6 address, or whether you want to find IP addresses in a larger body

7.17 Matching IPv6 Addresses | 389

of text. To validate the IP address, we use anchors, as Recipe 2.5 explains. JavaScript
uses the ‹^› and ‹$› anchors, whereas Ruby uses ‹\A› and ‹\Z›. All other flavors support
both. Ruby also supports ‹^› and ‹$›, but allows them to match at embedded line breaks
in the string as well. You should use the caret and dollar in Ruby only if you know your
string doesn’t have any embedded line breaks.

To find IPv6 addresses within larger text, we use negative lookbehind ‹(?<![:.\w])›
and negative lookahead ‹(?![:.\w])› to make sure the address isn’t preceded or fol-
lowed by a word character (letter, digit, or underscore) or by a dot or colon. This makes
sure we don’t match parts of longer sequences of digits and colons. Recipe 2.16 explains
how lookbehind and lookahead work. If lookaround isn’t available, word boundaries
can check that the address isn’t preceded or followed by a word character, but only if
the first and last character in the address are sure to be (hexadecimal) digits. Com-
pressed notation allows addresses that start and end with a colon. If we were to put a
word boundary before or after a colon, it would require an adjacent letter or digit, which
isn’t what we want. Recipe 2.6 explains everything about word boundaries.

Standard notation

Standard IPv6 notation is very straightforward to handle with a regular expression. We
need to match eight words in hexadecimal notation, delimited by seven colons.
‹[A-F0-9]{1,4}› matches 1 to 4 hexadecimal characters, which is what we need for a
16-bit word with optional leading zeros. The character class (Recipe 2.3) lists only the
uppercase letters. The case-insensitive matching mode takes care of the lowercase let-
ters. See Recipe 3.4 to learn how to set matching modes in your programming language.

The noncapturing group ‹(?:[A-F0-9]{1,4}:){7}› matches a hexadecimal word fol-
lowed by a literal colon. The quantifier repeats the group seven times. The first colon
in this regex is part of the regex syntax for noncapturing groups, as Recipe 2.9 explains,
and the second is a literal colon. The colon is not a metacharacter in regular expressions,
except in a few very specific situations as part of a larger regex token. Therefore, we
don’t need to use backslashes to escape literal colons in our regular expressions. We
could escape them, but it would only make the regex harder to read.

Mixed notation

The regex for the mixed IPv6 notation consists of two parts. ‹(?:[A-F0-9]{1,4}:){6}›
matches six hexadecimal words, each followed by a literal colon, just like we have a
sequence of seven such words in the regex for the standard IPv6 notation.

Instead of having one more hexadecimal word at the end, we now have a full IPv4
address at the end. We match this using the “accurate” regex shown in Recipe 7.16.

Standard or mixed notation

Allowing both standard and mixed notation requires a slightly longer regular expres-
sion. The two notations differ only in their representation of the last 32 bits of the IPv6

390 | Chapter 7: URLs, Paths, and Internet Addresses

address. Standard notation uses two 16-bit words, whereas mixed notation uses 4 dec-
imal bytes, as with IPv4.

The first part of the regex matches six hexadecimal words, as in the regex that supports
mixed notation only. The second part of the regex is now a noncapturing group with
the two alternatives for the last 32 bits. As Recipe 2.8 explains, the alternation operator
(vertical bar) has the lowest precedence of all regex operators. Thus, we need the non-
capturing group to exclude the six words from the alternation.

The first alternative, located to the left of the vertical bar, matches two hexadecimal
words with a literal colon in between. The second alternative matches an IPv4 address.

Compressed notation

Things get quite a bit more complicated when we allow compressed notation. The
reason is that compressed notation allows a variable number of zeros to be omitted.
1:0:0:0:0:6:0:0, 1::6:0:0, and 1:0:0:0:0:6:: are three ways of writing the same IPv6
address. The address may have at most eight words, but it needn’t have any. If it has
less than eight, it must have one double-colon sequence that represents the omitted
zeros.

Variable repetition is easy with regular expressions. If an IPv6 address has a double
colon, there can be at most seven words before and after the double colon. We could
easily write this as:

(
 ([0-9A-F]{1,4}:){1,7} # 1 to 7 words to the left
| : # or a double colon at the start
)
(
 (:[0-9A-F]{1,4}){1,7} # 1 to 7 words to the right
| : # or a double colon at the end
)

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

This regular expression and the ones that follow in this discussion also
work with JavaScript if you eliminate the comments and extra white-
space. JavaScript supports all the features used in these regexes, except
free-spacing, which we use here to make these regexes easier to
understand.

This regular expression matches all compressed IPv6 addresses, but it doesn’t match
any addresses that use noncompressed standard notation.

This regex is quite simple. The first part matches 1 to 7 words followed by a colon, or
just the colon for addresses that don’t have any words to the left of the double colon.

7.17 Matching IPv6 Addresses | 391

The second part matches 1 to 7 words preceded by a colon, or just the colon for ad-
dresses that don’t have any words to the right of the double colon. Put together, valid
matches are a double colon by itself, a double colon with 1 to 7 words at the left only,
a double colon with 1 to 7 words at the right only, and a double colon with 1 to 7 words
at both the left and the right.

It’s the last part that is troublesome. The regex allows 1 to 7 words at both the left and
the right, as it should, but it doesn’t specify that the total number of words at the left
and right must be 7 or less. An IPv6 address has 8 words. The double colon indicates
we’re omitting at least one word, so at most 7 remain.

Regular expressions don’t do math. They can count if something occurs between 1 and
7 times. But they cannot count if two things occur for a total of 7 times, splitting those
7 times between the two things in any combination.

To understand this problem better, let’s examine a simple analog. Say we want to match
something in the form of aaaaxbbb. The string must be between 1 and 8 characters long
and consist of 0 to 7 times a, exactly one x, and 0 to 7 times b.

There are two ways to solve this problem with a regular expression. One way is to spell
out all the alternatives. The next section discussing compressed mixed notation uses
this. It can result in a long-winded regex, but it will be easy to understand.

\A(?:a{7}x
 | a{6}xb?
 | a{5}xb{0,2}
 | a{4}xb{0,3}
 | a{3}xb{0,4}
 | a{2}xb{0,5}
 | axb{0,6}
 | xb{0,7}
)\Z

Regex options: Free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

This regular expression has one alternative for each of the possible number of letters
a. Each alternative spells out how many letters b are allowed after the given number of
letters a and the x have been matched. The other solution is to use lookahead. This is
the method used for the regex within the “Solution” section that matches an IPv6 ad-
dress using compressed notation. If you’re not familiar with lookahead, see Rec-
ipe 2.16 first. Using lookahead, we can essentially match the same text twice, checking
it for two conditions.

\A
 (?=[abx]{1,8}\Z)
 a{0,7}xb{0,7}
\Z

Regex options: Free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

392 | Chapter 7: URLs, Paths, and Internet Addresses

The ‹\A› at the start of the regex anchors it to the start of the subject text. Then the
positive lookahead kicks in. It checks whether a series of 1 to 8 letters ‹a›, ‹b›, and/or
‹x› can be matched, and that the end of the string is reached when those 1 to 8 letters
have been matched. The ‹\Z› inside the lookahead is crucial. In order to limit the regex
to strings of eight characters or less, the lookahead must test that there aren’t any further
characters after those that it matched.

In a different scenario, you might use another kind of delimiter instead of ‹\A› and
‹\Z›. If you wanted to do a “whole words only” search for aaaaxbbb and friends, you
would use word boundaries. But to restrict the regex match to the right length, you
have to use some kind of delimiter, and you have to put the delimiter that matches the
end of the string both inside the lookahead and at the end of the regular expression. If
you don’t, the regular expression will partly match a string that has too many
characters.

When the lookahead has satisfied its requirement, it gives up the characters that it has
matched. Thus, when the regex engine attempts ‹a{0,7}›, it is back at the start of the
string. The fact that the lookahead doesn’t consume the text that it matched is the key
difference between a lookahead and a noncapturing group, and is what allows us to
apply two patterns to a single piece of text.

Although ‹a{0,7}xb{0,7}› on its own could match up to 15 letters, in this case it can
match only 8, because the lookahead already made sure there are only 8 letters. All
‹a{0,7}xb{0,7}› has to do is to check that they appear in the right order. In fact,
‹a*xb*› would have the exact same effect as ‹a{0,7}xb{0,7}› in this regular expression.

The second ‹\Z› at the end of the regex is also essential. Just like the lookahead needs
to make sure there aren’t too many letters, the second test after the lookahead needs
to make sure that all the letters are in the right order. This makes sure we don’t match
something like axba, even though it satisfies the lookahead by being between 1 and 8
characters long.

Compressed mixed notation

Mixed notation can be compressed just like standard notation. Although the four bytes
at the end must always be specified, even when they are zero, the number of hexadec-
imal words before them again becomes variable. If all the hexadecimal words are zero,
the IPv6 address could end up looking like an IPv4 address with two colons before it.

Creating a regex for compressed mixed notation involves solving the same issues as for
compressed standard notation. The previous section explains all this.

The main difference between the regex for compressed mixed notation and the regex
for compressed (standard) notation is that the one for compressed mixed notation
needs to check for the IPv4 address after the six hexadecimal words. We do this check
at the end of the regex, using the same regex for accurate IPv4 addresses from Rec-
ipe 7.16 that we used in this recipe for noncompressed mixed notation.

7.17 Matching IPv6 Addresses | 393

We have to match the IPv4 part of the address at the end of the regex, but we also have
to check for it inside the lookahead that makes sure we have no more than six colons
or six hexadecimal words in the IPv6 address. Since we’re already doing an accurate
test at the end of the regex, the lookahead can suffice with a simple IPv4 check. The
lookahead doesn’t need to validate the IPv4 part, as the main regex already does that.
But it does have to match the IPv4 part, so that the end-of-string anchor at the end of
the lookahead can do its job.

Standard, mixed, or compressed notation

The final set of regular expressions puts it all together. These match an IPv6 address in
any notation: standard or mixed, compressed or not.

These regular expressions are formed by alternating the ones for compressed mixed
notation and compressed (standard) notation. These regexes already use alternation to
match both the compressed and noncompressed variety of the IPv6 notation they
support.

The result is a regular expression with three top-level alternatives, with the first alter-
native consisting of two alternatives of its own. The first alternative matches an IPv6
address using mixed notation, either noncompressed or compressed. The second al-
ternative matches an IPv6 address using standard notation. The third alternative covers
the compressed (standard) notation.

We have three top-level alternatives instead of two alternatives that each contain their
own two alternatives because there’s no particular reason to group the alternatives for
standard and compressed notation. For mixed notation, we do keep the compressed
and noncompressed alternatives together, because it saves us having to spell out the
IPv4 part twice.

Essentially, we combined this regex:

^(6words|compressed6words)ip4$

and this regex:

^(8words|compressed8words)$

into:

^((6words|compressed6words)ip4|8words|compressed8words)$

rather than:

^((6words|compressed6words)ip4|(8words|compressed8words))$

See Also
Recipes 2.16 and 7.16

394 | Chapter 7: URLs, Paths, and Internet Addresses

7.18 Validate Windows Paths
Problem
You want to check whether a string looks like a valid path to a folder or file on the
Microsoft Windows operating system.

Solution

Drive letter paths
\A
[a-z]:\\ # Drive
(?:[^\\/:*?"<>|\r\n]+\\)* # Folder
[^\\/:*?"<>|\r\n]* # File
\Z

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^[a-z]:\\(?:[^\\/:*?"<>|\r\n]+\\)*[^\\/:*?"<>|\r\n]*$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Drive letter and UNC paths
\A
(?:[a-z]:|\\\\[a-z0-9_.$]+\\[a-z0-9_.$]+)\\ # Drive
(?:[^\\/:*?"<>|\r\n]+\\)* # Folder
[^\\/:*?"<>|\r\n]* # File
\Z

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^(?:[a-z]:|\\\\[a-z0-9_.$]+\\[a-z0-9_.$]+)\\(?:[^\\/:*?"<>|\r\n]+\\)*↵
[^\\/:*?"<>|\r\n]*$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Drive letter, UNC, and relative paths
\A
(?:(?:[a-z]:|\\\\[a-z0-9_.$]+\\[a-z0-9_.$]+)\\| # Drive
 \\?[^\\/:*?"<>|\r\n]+\\?) # Relative path
(?:[^\\/:*?"<>|\r\n]+\\)* # Folder
[^\\/:*?"<>|\r\n]* # File
\Z

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

7.18 Validate Windows Paths | 395

^(?:(?:[a-z]:|\\\\[a-z0-9_.$]+\\[a-z0-9_.$]+)\\|\\?[^\\/:*?"<>|\r\n]+\\?)↵
(?:[^\\/:*?"<>|\r\n]+\\)*[^\\/:*?"<>|\r\n]*$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Discussion

Drive letter paths

Matching a full path to a file or folder on a drive that has a drive letter is very straight-
forward. The drive is indicated with a single letter, followed by a colon and a backslash.
We easily match this with ‹[a-z]:\\›. The backslash is a metacharacter in regular ex-
pressions, and so we need to escape it with another backslash to match it literally.

Folder and filenames on Windows can contain all characters, except these:
\/:*?"<>|. Line breaks aren’t allowed either. We can easily match a sequence of all
characters except these with the negated character class ‹[^\\/:*?"<>|\r\n]+›. The
backslash is a metacharacter in character classes too, so we escape it. ‹\r› and ‹\n› are
the two line break characters. See Recipe 2.3 to learn more about (negated) character
classes. The plus quantifier (Recipe 2.12) specifies we want one or more such
characters.

Folders are delimited with backslashes. We can match a sequence of zero or more
folders with ‹(?:[^\\/:*?"<>|\r\n]+\\)*›, which puts the regex for the folder name
and a literal backslash inside a noncapturing group (Recipe 2.9) that is repeated zero
or more times with the asterisk (Recipe 2.12).

To match the filename, we use ‹[^\\/:*?"<>|\r\n]*›. The asterisk makes the filename
optional, to allow paths that end with a backslash. If you don’t want to allow paths
that end with a backslash, change the last ‹*› in the regex into a ‹+›.

Drive letter and UNC paths

Paths to files on network drives that aren’t mapped to drive letters can be accessed
using Universal Naming Convention (UNC) paths. UNC paths have the form \\server
\share\folder\file.

We can easily adapt the regex for drive letter paths to support UNC paths as well. All
we have to do is to replace the ‹[a-z]:› part that matches the drive letter with something
that matches a drive letter or server name.

‹(?:[a-z]:|\\\\[a-z0-9_.$]+\\[a-z0-9_.$]+)› does that. The vertical bar is the alter-
nation operator (Recipe 2.8). It gives the choice between a drive letter matched with
‹[a-z]:› or a server and share name matched with ‹\\\\[a-z0-9_.$]+\\[a-z0-9_.$]+›.
The alternation operator has the lowest precedence of all regex operators. To group
the two alternatives together, we use a noncapturing group. As Recipe 2.9 explains, the
characters ‹(?:› form the somewhat complicated opening bracket of a noncapturing
group. The question mark does not have its usual meaning after a parenthesis.

396 | Chapter 7: URLs, Paths, and Internet Addresses

The rest of the regular expression can remain the same. The name of the share in UNC
paths will be matched by the part of the regex that matches folder names.

Drive letter, UNC, and relative paths

A relative path is one that begins with a folder name (perhaps the special folder .. to
select the parent folder) or consists of just a filename. To support relative paths, we
add a third alternative to the “drive” portion of our regex. This alternative matches the
start of a relative path rather than a drive letter or server name.

‹\\?[^\\/:*?"<>|\r\n]+\\?› matches the start of the relative path. The path can begin
with a backslash, but it doesn't have to. ‹\\?› matches the backslash if present, or
nothing otherwise. ‹[^\\/:*?"<>|\r\n]+› matches a folder or filename. If the relative
path consists of just a filename, the final ‹\\?› won’t match anything, and neither will
the “folder” and “file” parts of the regex, which are both optional. If the relative path
specifies a folder, the final ‹\\?› will match the backslash that delimits the first folder
in the relative path from the rest of the path. The “folder” part then matches the re-
maining folders in the path, if any, and the “file” part matches the filename.

The regular expression for matching relative paths no longer neatly uses distinct parts
of the regex to match distinct parts of the subject text. The regex part labeled “relative
path” will actually match a folder or filename if the path is relative. If the relative path
specifies one or more folders, the “relative path” part matches the first folder, and the
“folder” and “file” paths match what’s left. If the relative path is just a filename, it will
be matched by the “relative path” part, leaving nothing for the “folder” and “file” parts.
Since we’re only interested in validating the path, this doesn’t matter. The comments
in the regex are just labels to help us understand it.

If we wanted to extract parts of the path into capturing groups, we’d have to be more
careful to match the drive, folder, and filename separately. The next recipe handles that
problem.

See Also
Recipes 2.3, 2.8, 2.9, and 2.12

7.19 Split Windows Paths into Their Parts
Problem
You want to check whether a string looks like a valid path to a folder or file on the
Microsoft Windows operating system. If the string turns out to hold a valid Windows
path, then you also want to extract the drive, folder, and filename parts of the path
separately.

7.19 Split Windows Paths into Their Parts | 397

Solution

Drive letter paths
\A
(?<drive>[a-z]:)\\
(?<folder>(?:[^\\/:*?"<>|\r\n]+\\)*)
(?<file>[^\\/:*?"<>|\r\n]*)
\Z

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

\A
(?P<drive>[a-z]:)\\
(?P<folder>(?:[^\\/:*?"<>|\r\n]+\\)*)
(?P<file>[^\\/:*?"<>|\r\n]*)
\Z

Regex options: Free-spacing, case insensitive
Regex flavors: PCRE 4 and later, Perl 5.10, Python

\A
([a-z]:)\\
((?:[^\\/:*?"<>|\r\n]+\\)*)
([^\\/:*?"<>|\r\n]*)
\Z

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^([a-z]:)\\((?:[^\\/:*?"<>|\r\n]+\\)*)([^\\/:*?"<>|\r\n]*)$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Drive letter and UNC paths
\A
(?<drive>[a-z]:|\\\\[a-z0-9_.$]+\\[a-z0-9_.$]+)\\
(?<folder>(?:[^\\/:*?"<>|\r\n]+\\)*)
(?<file>[^\\/:*?"<>|\r\n]*)
\Z

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

\A
(?P<drive>[a-z]:|\\\\[a-z0-9_.$]+\\[a-z0-9_.$]+)\\
(?P<folder>(?:[^\\/:*?"<>|\r\n]+\\)*)
(?P<file>[^\\/:*?"<>|\r\n]*)
\Z

Regex options: Free-spacing, case insensitive
Regex flavors: PCRE 4 and later, Perl 5.10, Python

398 | Chapter 7: URLs, Paths, and Internet Addresses

\A
([a-z]:|\\\\[a-z0-9_.$]+\\[a-z0-9_.$]+)\\
((?:[^\\/:*?"<>|\r\n]+\\)*)
([^\\/:*?"<>|\r\n]*)
\Z

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^([a-z]:|\\\\[a-z0-9_.$]+\\[a-z0-9_.$]+)\\((?:[^\\/:*?"<>|\r\n]+\\)*)↵
([^\\/:*?"<>|\r\n]*)$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

Drive letter, UNC, and relative paths

These regular expressions can match the empty string. See the Discus-
sion for more details and an alternative solution.

\A
(?<drive>[a-z]:\\|\\\\[a-z0-9_.$]+\\[a-z0-9_.$]+\\|\\?)
(?<folder>(?:[^\\/:*?"<>|\r\n]+\\)*)
(?<file>[^\\/:*?"<>|\r\n]*)
\Z

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

\A
(?P<drive>[a-z]:\\|\\\\[a-z0-9_.$]+\\[a-z0-9_.$]+\\|\\?)
(?P<folder>(?:[^\\/:*?"<>|\r\n]+\\)*)
(?P<file>[^\\/:*?"<>|\r\n]*)
\Z

Regex options: Free-spacing, case insensitive
Regex flavors: PCRE 4 and later, Perl 5.10, Python

\A
([a-z]:\\|\\\\[a-z0-9_.$]+\\[a-z0-9_.$]+\\|\\?)
((?:[^\\/:*?"<>|\r\n]+\\)*)
([^\\/:*?"<>|\r\n]*)
\Z

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^([a-z]:\\|\\\\[a-z0-9_.$]+\\[a-z0-9_.$]+\\|\\?)↵
((?:[^\\/:*?"<>|\r\n]+\\)*)([^\\/:*?"<>|\r\n]*)$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

7.19 Split Windows Paths into Their Parts | 399

Discussion
The regular expressions in this recipe are very similar to the ones in the previous recipe.
This discussion assumes you’ve already read and understood the discussion of the pre-
vious recipe.

Drive letter paths

We’ve made only one change to the regular expressions for drive letter paths, compared
to the ones in the previous recipe. We’ve added three capturing groups that you can
use to retrieve the various parts of the path: ‹drive›, ‹folder›, and ‹file›. You can use
these names if your regex flavor supports named capture (Recipe 2.11). If not, you’ll
have to reference the capturing groups by their numbers: 1, 2, and 3. See Recipe 3.9 to
learn how to get the text matched by named and/or numbered groups in your favorite
programming language.

Drive letter and UNC paths

We’ve added the same three capturing groups to the regexes for UNC paths.

Drive letter, UNC, and relative paths

Things get a bit more complicated if we also want to allow relative paths. In the previous
recipe, we could just add a third alternative to the drive part of the regex to match the
start of the relative path. We can’t do that here. In case of a relative path, the capturing
group for the drive should remain empty.

Instead, the literal backslash that was after the capturing group for the drives in the
regex in the “drive letter and UNC paths” section is now moved into that capturing
group. We add it to the end of the alternatives for the drive letter and the network share.
We add a third alternative with an optional backslash for relative paths that may or
may not begin with a backslash. Because the third alternative is optional, the whole
group for the drive is essentially optional.

The resulting regular expression correctly matches all Windows paths. The problem is
that by making the drive part optional, we now have a regex in which everything is
optional. The folder and file parts were already optional in the regexes that support
absolute paths only. In other words: our regular expression will match the empty string.

If we want to make sure the regex doesn’t match empty strings, we’d have to add
additional alternatives to deal with relative paths that specify a folder (in which case
the filename is optional), and relative paths that don’t specify a folder (in which case
the filename is mandatory):

\A
(?:
 (?<drive>[a-z]:|\\\\[a-z0-9_.$]+\\[a-z0-9_.$]+)\\
 (?<folder>(?:[^\\/:*?"<>|\r\n]+\\)*)

400 | Chapter 7: URLs, Paths, and Internet Addresses

 (?<file>[^\\/:*?"<>|\r\n]*)
| (?<relativefolder>\\?(?:[^\\/:*?"<>|\r\n]+\\)+)
 (?<file2>[^\\/:*?"<>|\r\n]*)
| (?<relativefile>[^\\/:*?"<>|\r\n]+)
)
\Z

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

\A
(?:
 (?P<drive>[a-z]:|\\\\[a-z0-9_.$]+\\[a-z0-9_.$]+)\\
 (?P<folder>(?:[^\\/:*?"<>|\r\n]+\\)*)
 (?P<file>[^\\/:*?"<>|\r\n]*)
| (?P<relativefolder>\\?(?:[^\\/:*?"<>|\r\n]+\\)+)
 (?P<file2>[^\\/:*?"<>|\r\n]*)
| (?P<relativefile>[^\\/:*?"<>|\r\n]+)
)
\Z

Regex options: Free-spacing, case insensitive
Regex flavors: PCRE 4 and later, Perl 5.10, Python

\A
(?:
 ([a-z]:|\\\\[a-z0-9_.$]+\\[a-z0-9_.$]+)\\
 ((?:[^\\/:*?"<>|\r\n]+\\)*)
 ([^\\/:*?"<>|\r\n]*)
| (\\?(?:[^\\/:*?"<>|\r\n]+\\)+)
 ([^\\/:*?"<>|\r\n]*)
| ([^\\/:*?"<>|\r\n]+)
)
\Z

Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

^(?:([a-z]:|\\\\[a-z0-9_.$]+\\[a-z0-9_.$]+)\\((?:[^\\/:*?"<>|\r\n]+\\)*)↵
([^\\/:*?"<>|\r\n]*)|(\\?(?:[^\\/:*?"<>|\r\n]+\\)+)([^\\/:*?"<>|\r\n]*)|↵
([^\\/:*?"<>|\r\n]+))$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

The price we pay for excluding zero-length strings is that we now have six capturing
groups to capture the three different parts of the path. You’ll have to look at the scenario
in which you want to use these regular expressions to determine whether it’s easier to
do an extra check for empty strings before using the regex or to spend more effort in
dealing with multiple capturing groups after a match has been found.

7.19 Split Windows Paths into Their Parts | 401

If you’re using the .NET regex flavor, you can give multiple named groups the same
name. The .NET flavor is the only one that treats groups with the same name as if they
were a single capturing group. With this regex in .NET, you can simply get the match
of the folder or file group, without worrying about which of the two folder groups or
three file groups actually participated in the regex match:

\A
(?:
 (?<drive>[a-z]:|\\\\[a-z0-9_.$]+\\[a-z0-9_.$]+)\\
 (?<folder>(?:[^\\/:*?"<>|\r\n]+\\)*)
 (?<file>[^\\/:*?"<>|\r\n]*)
| (?<folder>\\?(?:[^\\/:*?"<>|\r\n]+\\)+)
 (?<file>[^\\/:*?"<>|\r\n]*)
| (?<file>[^\\/:*?"<>|\r\n]+)
)
\Z

Regex options: Free-spacing, case insensitive
Regex flavor: .NET

See Also
Recipes 2.9, 2.11, 3.9, and 7.18

7.20 Extract the Drive Letter from a Windows Path
Problem
You have a string that holds a (syntactically) valid path to a file or folder on a Windows
PC or network. You want to extract the drive letter, if any, from the path. For example,
you want to extract c from c:\folder\file.ext.

Solution
^([a-z]):

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
Extracting the drive letter from a string known to hold a valid path is trivial, even if you
don’t know whether the path actually starts with a drive letter. The path could be a
relative path or a UNC path.

Colons are invalid characters in Windows paths, except to delimit the drive letter. Thus,
if we have a letter followed by a colon at the start of the string, we know the letter is
the drive letter.

402 | Chapter 7: URLs, Paths, and Internet Addresses

The anchor ‹^› matches at the start of the string (Recipe 2.5). The fact that the caret
also matches at embedded line breaks in Ruby doesn’t matter, because valid Windows
paths don’t include line breaks. The character class ‹[a-z]› matches a single letter
(Recipe 2.3). We place the character class between a pair of parentheses (which form
a capturing group) so you can get the drive letter without the literal colon that is also
matched by the regular expression. We add the colon to the regular expression to make
sure we’re extracting the drive letter, rather than the first letter in a relative path.

See Also
Recipe 2.9 tells you all about capturing groups.

See Recipe 3.9 to learn how to retrieve text matched by capturing groups in your favorite
programming language.

Follow Recipe 7.19 if you don’t know in advance that your string holds a valid Windows
path.

7.21 Extract the Server and Share from a UNC Path
Problem
You have a string that holds a (syntactically) valid path to a file or folder on a Windows
PC or network. If the path is a UNC path, then you want to extract the name of the
network server and the share on the server that the path points to. For example, you
want to extract server and share from \\server\share\folder\file.ext.

Solution
^\\\\([a-z0-9_.$]+)\\([a-z0-9_.$]+)

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
Extracting the network server and share from a string known to hold a valid path is
easy, even if you don’t know whether the path is a UNC path. The path could be a
relative path or use a drive letter.

UNC paths begin with two backslashes. Two consecutive backslashes are not allowed
in Windows paths, except to begin a UNC path. Thus, if a known valid path begins
with two backslashes, we know that the server and share name must follow.

The anchor ‹^› matches at the start of the string (Recipe 2.5). The fact that the caret
also matches at embedded line breaks in Ruby doesn’t matter, because valid Windows
paths don’t include line breaks. ‹\\\\› matches two literal backslashes. Since the back-
slash is a metacharacter in regular expressions, we have to escape a backslahsh with

7.21 Extract the Server and Share from a UNC Path | 403

another backslash if we want to match it as a literal character. The first character class,
‹[a-z0-9_.$]+›, matches the name of the network server. The second one, after another
literal backslash, matches the name of the share. We place both character classes be-
tween a pair of parentheses, which form a capturing group. That way you can get the
server name alone from the first capturing group, and the share name alone from the
second capturing group. The overall regex match will be \\server\share.

See Also
Recipe 2.9 tells you all about capturing groups.

See Recipe 3.9 to learn how to retrieve text matched by capturing groups in your favorite
programming language.

Follow Recipe 7.19 if you don’t know in advance that your string holds a valid Windows
path.

7.22 Extract the Folder from a Windows Path
Problem
You have a string that holds a (syntactically) valid path to a file or folder on a Windows
PC or network, and you want to extract the folder from the path. For example, you
want to extract \folder\subfolder\ from c:\folder\subfolder\file.ext or \\server
\share\folder\subfolder\file.ext.

Solution
^([a-z]:|\\\\[a-z0-9_.$]+\\[a-z0-9_.$]+)?((?:\\|^)↵
(?:[^\\/:*?"<>|\r\n]+\\)+)

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
Extracting the folder from a Windows path is a bit tricky if we want to support UNC
paths, because we can’t just grab the part of the path between backslashes. If we did,
we’d be grabbing the server and share from UNC paths too.

The first part of the regex, ‹^([a-z]:|\\\\[a-z0-9_.$]+\\[a-z0-9_.$]+)?›, skips over
the drive letter or the network server and network share names at the start of the path.
This piece of the regex consists of a capturing group with two alternatives. The first
alternative matches the drive letter, as in Recipe 7.20, and the second alternative
matches the server and share in UNC paths, as in Recipe 7.21. Recipe 2.8 explains the
alternation operator.

404 | Chapter 7: URLs, Paths, and Internet Addresses

The question mark after the group makes it optional. This allows us to support relative
paths, which don’t have a drive letter or network share.

The folders are easily matched with ‹(?:[^\\/:*?"<>|\r\n]+\\)+›. The character class
matches a folder name. The noncapturing group matches a folder name followed by a
literal backslash that delimits the folders from each other and from the filename. We
repeat this group one or more times. This means our regular expression will match only
those paths that actually specify a folder. Paths that specify only a filename, drive, or
network share won’t be matched.

If the path begins with a drive letter or network share, that must be followed by a
backslash. A relative path may or may not begin with a backslash. Thus, we need to
add an optional backslash to the start of the group that matches the folder part of the
path. Since we will only use our regex on paths known to be valid, we don’t have to be
strict about requiring the backslash in case of a drive letter or network share. We only
have to allow for it.

Because we require the regex to match at least one folder, we have to make sure that
our regex doesn’t match e\ as the folder in \\server\share\. That’s why we use
‹(\\|^)› rather than ‹\\?› to add the optional backslash at the start of the capturing
group for the folder.

If you’re wondering why \\server\shar might be matched as the drive and e\ as the
folder, review Recipe 2.13. Regular expression engines backtrack. Imagine this regex:

^([a-z]:|\\\\[a-z0-9_.$]+\\[a-z0-9_.$]+)?↵
((?:\\?(?:[^\\/:*?"<>|\r\n]+\\)+)

This regex, just like the regex in the solution, requires at least one nonbackslash char-
acter and one backslash for the path. If the regex has matched \\server\share for the
drive in \\server\share and then fails to match the folder group, it doesn’t just give up;
it tries different permutations of the regex.

In this case, the engine has remembered that the character class ‹[a-z0-9_.$]+›, which
matches the network share, doesn’t have to match all available characters. One char-
acter is enough to satisfy the ‹+›. The engine backtracks by forcing the character class
to give up one character, and then it tries to continue.

When the engine continues, it has two remaining characters in the subject string to
match the folder: e\. These two characters are enough to satisfy ‹(?:[^\\/:*?"<>|\r\n]
+\\)+›, and we have an overall match for the regex. But it’s not the match we wanted.

Using ‹(\\|^)› instead of ‹\\?› solves this. It still allows for an optional backslash, but
when the backslash is missing, it requires the folder to begin at the start of the string.
This means that if a drive has been matched, and thus the regex engine has proceeded
beyond the start of the string, the backslash is required. The regex engine will still try
to backtrack if it can’t match any folders, but it will do so in vain because
‹(\\|^)› will fail to match. The regex engine will backtrack until it is back at the start
of the string. The capturing group for the drive letter and network share is optional, so

7.22 Extract the Folder from a Windows Path | 405

the regex engine is welcome to try to match the folder at the start of the string.
Although ‹(\\|^)› will match there, the rest of the regex will not, because ‹(?:[^\
\/:*?"<>|\r\n]+\\)+› does not allow the colon that follows the drive letter or the double
backslash of the network share.

If you’re wondering why we don’t use this technique in Recipes 7.18 and 7.19, that’s
because those regular expressions don’t require a folder. Since everything after the part
that matches the drive in those regexes is optional, the regex engine never does any
backtracking. Of course, making things optional can lead to different problems, as
discussed in Recipe 7.19.

When this regular expression finds a match, the first capturing group will hold the drive
letter or network share, and the second capturing group will hold the folder. The first
capturing group will be empty in case of a relative path. The second capturing group
will always contain at least one folder. If you use this regex on a path that doesn’t specify
a folder, the regex won’t find a match at all.

See Also
Recipe 2.9 tells you all about capturing groups.

See Recipe 3.9 to learn how to retrieve text matched by capturing groups in your favorite
programming language.

Follow Recipe 7.19 if you don’t know in advance that your string holds a valid Windows
path.

7.23 Extract the Filename from a Windows Path
Problem
You have a string that holds a (syntactically) valid path to a file or folder on a Windows
PC or network, and you want to extract the filename, if any, from the path. For example,
you want to extract file.ext from c:\folder\file.ext.

Solution
[^\\/:*?"<>|\r\n]+$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
Extracting the filename from a string known to hold a valid path is trivial, even if you
don’t know whether the path actually ends with a filename.

406 | Chapter 7: URLs, Paths, and Internet Addresses

The filename always occurs at the end of the string. It can’t contain any colons or
backslashes, so it cannot be confused with folders, drive letters, or network shares,
which all use backslashes and/or colons.

The anchor ‹$› matches at the end of the string (Recipe 2.5). The fact that the
dollar also matches at embedded line breaks in Ruby doesn’t matter, because valid
Windows paths don’t include line breaks. The negated character class ‹[^\\/:*?"<>|
\r\n]+› (Recipe 2.3) matches the characters that can occur in filenames. Though the
regex engine scans the string from left to right, the anchor at the end of the regex makes
sure that only the last run of filename characters in the string will be matched, giving
us our filename.

If the string ends with a backslash, as it will for paths that don’t specify a filename, the
regex won’t match at all. When it does match, it will match only the filename, so we
don’t need to use any capturing groups to separate the filename from the rest of the path.

See Also
See Recipe 3.7 to learn how to retrieve text matched by the regular expression in your
favorite programming language.

Follow Recipe 7.19 if you don’t know in advance that your string holds a valid Windows
path.

7.24 Extract the File Extension from a Windows Path
Problem
You have a string that holds a (syntactically) valid path to a file or folder on a Windows
PC or network, and you want to extract the file extension, if any, from the path. For
example, you want to extract .ext from c:\folder\file.ext.

Solution
\.[^.\\/:*?"<>|\r\n]+$

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
We can use the same technique for extracting the file extension as we used for extracting
the whole filename in Recipe 7.23.

The only difference is in how we handle dots. The regex in Recipe 7.23 does not include
any dots. The negated character class in that regex will simply match any dots that
happen to be in the filename.

7.24 Extract the File Extension from a Windows Path | 407

A file extension must begin with a dot. Thus, we add ‹\.› to match a literal dot at the
start of the regex.

Filenames such as Version 2.0.txt may contain multiple dots. The last dot is the one
that delimits the extension from the filename. The extension itself should not contain
any dots. We specify this in the regex by putting a dot inside the character class. The
dot is simply a literal character inside character classes, so we don’t need to escape it.
The ‹$› anchor at the end of the regex makes sure we match .txt instead of .0.

If the string ends with a backslash, or with a filename that doesn’t include any dots,
the regex won’t match at all. When it does match, it will match the extension, including
the dot that delimits the extension and the filename.

See Also
Follow Recipe 7.19 if you don’t know in advance that your string holds a valid Windows
path.

7.25 Strip Invalid Characters from Filenames
Problem
You want to strip a string of characters that aren’t valid in Windows filenames. For
example, you have a string with the title of a document that you want to use as the
default filename when the user clicks the Save button the first time.

Solution

Regular expression
[\\/:"*?<>|]+

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Replacement

Leave the replacement text blank.

Replacement text flavors: .NET, Java, JavaScript, PHP, Perl, Python, Ruby

Discussion
The characters \/:"*?<>| are not valid in Windows filenames. These characters are
used to delimit drives and folders, to quote paths, or to specify wildcards and redirec-
tion on the command line.

408 | Chapter 7: URLs, Paths, and Internet Addresses

We can easily match those characters with the character class ‹[\\/:"*?<>|]›. The
backslash is a metacharacter inside character classes, so we need to escape it with
another backslash. All the other characters are always literal characters inside character
classes.

We repeat the character class with a ‹+› for efficiency. This way, if the string contains
a sequence of invalid characters, the whole sequence will be deleted at once, rather than
character by character. You won’t notice the performance difference when dealing with
very short strings, such as filenames, but it is a good technique to keep in mind when
you’re dealing with larger sets of data that are more likely to have longer runs of char-
acters that you want to delete.

Since we just want to delete the offending characters, we run a search-and-replace with
the empty string as the replacement text.

See Also
Recipe 3.14 explains how to run a search-and-replace with a fixed replacement text in
your favorite programming language.

7.25 Strip Invalid Characters from Filenames | 409

CHAPTER 8

Markup and Data Interchange

This final chapter focuses on common tasks that come up when working with an as-
sortment of common markup languages and formats: HTML, XHTML, XML, CSV,
and INI. Although we’ll assume at least basic familiarity with these technologies, a brief
description of each is included at the start of the chapter to make sure we’re on the
same page before digging in. The descriptions here concentrate on the basic syntax
rules needed to correctly search through the data structures of each format. Other
details will be introduced as we encounter relevant issues.

Although it’s not always apparent on the surface, some of these formats can be sur-
prisingly complex to process and manipulate accurately, at least using regular expres-
sions. It’s usually best to use dedicated parsers and APIs instead of regular expressions
when performing many of the tasks in this chapter, especially if accuracy is critical (e.g.,
if your processing might have security implications). Nevertheless, these recipes show
useful techniques that can be used with many quick processing tasks.

So let’s look at what we’re up against. Many of the difficulties we’ll encounter through-
out this chapter involve how we should handle cases that deviate from the following
rules in expected or unexpected ways.

Hypertext Markup Language (HTML)
HTML is used to describe the structure, semantics, and appearance of billions of
web pages and other documents. It’s common to want to process HTML using
regular expressions, but you should know up front that the language is poorly
suited to the rigidity and precision of regular expressions. This is especially true of
the bastardized HTML that is common on many web pages, thanks in part to the
extreme tolerance for poorly constructed HTML that web browsers are known for.
In this chapter we’ll concentrate on the rules needed to process the key components
of well-formed HTML: elements (and the attributes they contain), character ref-
erences, comments, and document type declarations. This book covers HTML
4.01, which was finalized in 1999 and remains the latest finalized version of the
standard as of this writing.

411

The basic HTML building blocks are called elements. Elements are written using
tags, which are surrounded by angle brackets. Elements are classified as either
block-level (e.g., paragraphs, headings, lists, tables, and forms) or inline (e.g., hy-
perlinks, citations, italics, and form input controls). Elements usually have both a
start tag (e.g., <html>) and end tag (</html>). An element’s start tag may contain
attributes, which are described later. Between the tags is the element’s content,
which can be composed of text and other elements or left empty. Elements may
be nested, but cannot overlap (e.g., <div><div></div></div> is OK, but not
<div></div>). For some elements (such as <p>, which marks a para-
graph), the end tag is optional. Elements with an optional end tag are automatically
closed by the start of new block-level elements. A few elements (including
,
which terminates a line) cannot contain content, and never use an end tag. How-
ever, an empty element may still contain attributes. HTML element names start
with a letter from A–Z. All valid elements use only letters and numbers in their
names. Element names are not case-sensitive.

<script> and <style> elements warrant special consideration because they let you
embed scripting language code and stylesheets in your document. These elements
end after the first occurrence of </style> or </script>, even if it appears within a
comment or string inside the style or scripting language.

Attributes appear within an element’s start tag after the element name, and are
separated by one or more whitespace characters. Most attributes are written as
name-value pairs. Thus, the following example shows an <a> (anchor) element with
two attributes and the content “Click me!”:

<a href="http://www.regexcookbook.com"
 title = 'Regex Cookbook'>Click me!

As shown here, an attribute’s name and value are separated by an equals sign and
optional whitespace. The value is enclosed with single or double quotes. To use
the enclosing quote type within the value, you must use a character reference (de-
scribed next). The enclosing quote characters are not required if the value contains
only the characters A–Z, a–z, 0–9, underscore, period, colon, and hyphen (written
in regex, that’s ‹^[-.0-9:A-Z_a-z]+$›). A few attributes (such as the selected
and checked attributes used with some form elements) affect the element that con-
tains them simply by their presence, and do not require a value. In these cases, the
equals sign that separates an attribute’s name and value is also omitted. Alterna-
tively, these “minimized” attributes may reuse their name as their value
(e.g., selected="selected"). Attribute names start with a letter from A–Z. All valid
attributes use only letters and hyphens in their names. Attributes may appear in
any order, and their names are not case-sensitive.

HTML version 4 defines 252 character entity references and more than a million
numeric character references (collectively, we’ll call these character references).
Numeric character references refer to a character by its Unicode code point, and
use the format &#nnnn; or &#xhhhh;, where nnnn is one or more decimal digits

412 | Chapter 8: Markup and Data Interchange

from 0–9 and hhhh is one or more hexadecimal digits from 0–9 and A–F
(case-insensitive). Character entity references are written as &entityname; (case-
sensitive, unlike most other aspects of HTML), and are especially helpful when
entering literal characters that are sensitive in some contexts, such as angle brackets
(< and >), double quotes ("), and ampersand (&).

Also common is the entity (no-break space, position 0xA0), which is par-
ticularly useful since all occurrences of this character are rendered, even when they
appear in sequence. Spaces, tabs, and line breaks are all normally rendered as a
single space character, even if many of them are entered in a row. The ampersand
character (&) cannot be used outside of character references.

HTML comments have the following syntax:

<!-- this is a comment -->
<!-- so is this, but this comment
 spans more than one line -->

Content within comments has no special meaning, and is hidden from view by
most user agents. Whitespace is allowed between the closing -- and >. For com-
patibility with ancient (pre-1995) browsers, some people surround the content of
<script> and <style> elements with an HTML comment. Modern browsers ignore
these comments and process the script or style content normally.

Finally, HTML documents often start with a document type declaration (informally,
a “DOCTYPE”), which identifies a machine-readable specification of the permitted
and prohibited content for the document. The DOCTYPE looks a bit similar to an
HTML element, as shown in the following line used with documents wishing to
conform to the HTML 4.01 Strict definition:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">

So, that’s the physical structure of an HTML document in a nutshell. Be aware that
real-world HTML is often rife with deviations from these rules that most browsers
are happy to accommodate. Beyond these basics, each element has restrictions on
the content and attributes that may appear within it in order for an HTML docu-
ment to be considered valid. Such content rules are beyond the scope of this book,
but O’Reilly’s HTML & XHTML: The Definitive Guide by Chuck Musciano and
Bill Kennedy is a good source if you need more information.

Because the structure of HTML is very similar to XHTML and XML
(both described next), many regular expressions in this chapter are
written to support all three markup languages.

Markup and Data Interchange | 413

Extensible Hypertext Markup Language (XHTML)
XHTML was designed as the successor to HTML 4.01, and migrates HTML from
its SGML heritage to an XML foundation. However, development of HTML is now
continuing separately, and thus XHTML is more accurately considered an alter-
native to HTML. This book covers XHTML 1.0 and 1.1. Although these versions
of the standard are mostly backward-compatible with HTML, there are a few key
differences from the HTML structure we’ve just described:

• XHTML documents may start with an XML declaration such as <?xml
version="1.0" encoding="UTF-8"?>.

• Nonempty elements must have a closing tag. Empty elements must either use a
closing tag or end with />.

• Element and attribute names are case-sensitive and use lowercase.

• Due to the use of XML namespace prefixes, element and attribute names may
include a colon, in addition to the characters found in HTML names.

• Unquoted attribute values are not allowed. Attribute values must be enclosed
in single or double quotes.

• Attributes must have an accompanying value.

There are a number of other differences between HTML and XHTML that mostly
affect edge cases and error handling, but generally they do not affect the regexes
in this chapter. For more on the differences between HTML and XHTML,
see http://www.w3.org/TR/xhtml1/#diffs and http://wiki.whatwg.org/wiki/HTML
_vs._XHTML.

Because the syntax of XHTML is very similar to HTML and is
formed from XML, many regular expressions in this chapter are
written to support all three of these markup languages. Recipes that
refer to “(X)HTML” handle HTML and XHTML equally. You
usually cannot depend on a document using only HTML or
XHTML conventions, since mix-ups are common and web brows-
ers generally don’t mind.

Extensible Markup Language (XML)
XML is a general-purpose language designed primarily for sharing structured data.
It is used as the foundation to create a wide array of markup languages, including
XHTML, which we’ve just discussed. This book covers XML versions 1.0 and 1.1.
A full description of XML features and grammar is beyond the scope of this book,
but for our purposes, there are only a few key differences from the HTML structure
we’ve already described:

• XML documents may start with an XML declaration such as <?xml
version="1.0" encoding="UTF-8"?>, and may contain other, similarly formatted
processing instructions. For example, <?xml-stylesheet type="text/xsl"

414 | Chapter 8: Markup and Data Interchange

href="transform.xslt"?> specifies that the XSL transformation file
transform.xslt should be applied to the document.

• The DOCTYPE may include internal markup declarations within square brack-
ets. For example:

<!DOCTYPE example [
 <!ENTITY copy "©">
 <!ENTITY copyright-notice "Copyright © 2008, O'Reilly Media">
]>

• CDATA sections are used to escape blocks of text. They begin with the string
<![CDATA[and end with the first occurrence of]]>.

• Nonempty elements must have a closing tag. Empty elements must either use a
closing tag or end with />.

• XML names (which govern the rules for element, attribute, and entity reference
names) are case-sensitive, and may use a large group of Unicode characters. The
allowed characters include A–Z, a–z, colon (:), and underscore (_), as well as
0–9, hyphen (-), and period (.) after the first character. See Recipe 8.4 for more
precise details.

• Unquoted attribute values are not allowed. Attribute values must be enclosed
in single or double quotes.

• Attributes must have an accompanying value.

There are many other rules that must be adhered to when authoring well-formed
XML documents, or if you want to write your own conforming XML parser. How-
ever, the rules we’ve just described (appended to the structure we’ve already out-
lined for HTML documents) are generally enough for simple regex searches.

Because the structure of XML is very similar to HTML and forms
the basis of XHTML, many regular expressions in this chapter are
written to support all three markup languages. Recipes that refer
to “XML-style” markup handle XML, XHTML, and HTML
equally.

Comma-Separated Values (CSV)
CSV is an old but still very common file format used for spreadsheet-like data. The
CSV format is supported by most spreadsheets and database management systems,
and is especially popular for exchanging data between applications. Although there
is no official CSV specification, an attempt at a common definition was published
in October 2005 as RFC 4180 and registered with IANA as MIME type “text/csv”.
Before this RFC was published, the CSV conventions used by Microsoft Excel had
been established as more or less a de facto standard. Since the RFC specifies rules
that are very similar to those used by Excel, this doesn’t present much of a problem.

Markup and Data Interchange | 415

This chapter covers the CSV formats specified by RFC 4180 and used by Microsoft
Excel 2003 and later.

As the name suggests, CSV files contain a list of values, or fields, separated by
commas. Each row, or record, appears on its own line. The last field in a record is
not followed by a comma. The last record in a file may or may not be followed by
a line break. Throughout the entire file, each record should have the same number
of fields.

The value of each CSV field may be unadorned or enclosed with double quotes.
Fields also may be entirely empty. Any field that contains commas, double quotes,
or line breaks must be enclosed in double quotes. A double quote appearing inside
a field is escaped by preceding it with another double quote.

The first record in a CSV file is sometimes used as a header with the names of each
column. This cannot be programmatically determined from the content of a CSV
file alone, so some applications prompt the user to decide how the first row should
be handled.

RFC 4180 specifies that leading and trailing spaces in a field are part of the value.
Some older versions of Excel ignored these spaces, but Excel 2003 and later follow
the RFC on this point. The RFC does not specify error handling for unescaped
double quotes or pretty much anything else. Excel’s handling can be a bit unpre-
dictable in edge cases, so it’s important to ensure that double quotes are escaped,
fields containing double quotes are themselves enclosed with double quotes, and
quoted fields do not contain leading or trailing spaces outside of the quotes.

The following CSV example demonstrates many of the rules we’ve just discussed.
It contains two records with three fields each:

aaa,b b,"""c"" cc"
1,,"333, three,
still more threes"

Table 8-1 shows how the CSV content just shown would be displayed in a table.

Table 8-1. Example CSV output

aaa b b "c" cc

1 (empty) 333, three,
still more threes

Although we’ve described the CSV rules observed by the chapters in this recipe,
there is a fair amount of variation in how different programs read and write CSV
files. Many applications even allow files with the “csv” extension to use any de-
limiter, not just commas. Other common variations include how commas (or other
field delimiters), double quotes, and line breaks are embedded within fields, and
whether leading and trailing whitespace in unquoted fields is ignored or treated as
literal text.

416 | Chapter 8: Markup and Data Interchange

Initialization files (INI)
The lightweight INI file format is commonly used for configuration files. It is poorly
defined, and as a result, there is plenty of variation in how the format is interpreted
by different programs and systems. The regexes in this chapter adhere to the most
common INI file conventions, which we’ll describe here.

INI file parameters are name-value pairs, separated by an equals sign and optional
spaces or tabs. Values may be enclosed in single or double quotes, which allows
them to contain leading and trailing whitespace and other special characters.

Parameters may be grouped into sections, which start with the section’s name en-
closed in square brackets on its own line. Sections continue until either the next
section declaration or the end of the file. Sections cannot be nested.

A semicolon marks the start of a comment, which continues until the end of the
line. A comment may appear on the same line as a parameter or section declaration.
Content within comments has no special meaning.

Following is an example INI file with an introductory comment (noting when the
file was last modified), two sections (“user” and “post”), and a total of three pa-
rameters (“name”, “title”, and “content”):

; last modified 2008-12-25

[user]
name=J. Random Hacker

[post]
title = Regular Expressions Rock!
content = "Let me count the ways..."

8.1 Find XML-Style Tags
Problem
You want to match any HTML, XHTML, or XML tags in a string, in order to remove,
modify, count, or otherwise deal with them.

Solution
The most appropriate solution depends on several factors, including the level of accu-
racy, efficiency, and tolerance for erroneous markup that is acceptable to you. Once
you’ve determined the approach that works for your needs, there are any number of
things you might want to do with the results. But whether you want to remove the tags,
search within them, add or remove attributes, or replace them with alternative markup,
the first step is to find them.

8.1 Find XML-Style Tags | 417

Be forewarned that this will be a long recipe, fraught with subtleties, exceptions, and
variations. If you’re looking for a quick fix and are not willing to put in the effort to
determine the best solution for your needs, you might want to jump to the section
“(X)HTML tags (loose)” of this recipe, which offers a decent mix of tolerance versus
precaution.

Quick and dirty

This first solution is simple and more commonly used than you might expect, but it’s
included here mostly for comparison and examination of its flaws. It may be good
enough when you know exactly what type of content you’re dealing with and are not
overly concerned about the consequences of incorrect handling. This regex starts by
matching <, then simply continues until the first >:

<[^>]*>
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Allow > in attribute values

This next regex is again rather simplistic and does not handle all cases correctly. How-
ever, it might work well for your needs if it will be used to process only snippets of valid
(X)HTML. It’s advantage over the previous regex is that it correctly passes over > char-
acters that appear within attribute values:

<(?:[^>"']|"[^"]*"|'[^']*')*>
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Here is the same regex, with added whitespace and comments for readability:

<
(?: [^>"'] # Non-quoted character, or...
 | "[^"]*" # Double-quoted attribute value, or...
 | '[^']*' # Single-quoted attribute value
)*
>

Regex options: Free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

The two regexes just shown work identically, so you can use whichever you prefer.
JavaScripters are stuck with the first option since JavaScript lacks a free-spacing option.

(X)HTML tags (loose)

In addition to supporting > characters embedded in attribute values, this next
regex emulates the lenient rules for (X)HTML tag names that browsers generally im-
plement. This lets the regex avoid content that does not look like a tag, including com-
ments, DOCTYPEs, and unencoded < characters in text. It uses the same handling for

418 | Chapter 8: Markup and Data Interchange

attributes and other stray characters that may appear inside a tag as the previous regex,
but it adds special handling for the tag name. Specifically, it requires that the name
begin with an English letter. The tag name is captured to backreference 1 in case you
need to refer back to it:

</?([A-Za-z][^\s>/]*)(?:[^>"']|"[^"]*"|'[^']*')*>
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

And in free-spacing mode:

<
/? # Permit closing tags
([A-Za-z][^\s>/]*) # Capture the tag name to backreference 1
(?: [^>"'] # Non-quoted character, or...
 | "[^"]*" # Double-quoted attribute value, or...
 | '[^']*' # Single-quoted attribute value
)*
>

Regex options: Free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

The last two regexes work identically, although the latter cannot be used in JavaScript,
since it lacks a free-spacing option.

(X)HTML tags (strict)

This regex is more complicated than those we’ve already seen in this recipe, because it
actually follows the rules for (X)HTML tags explained in the introductory section of
this chapter. This is not always desirable, since browsers don’t strictly adhere to these
rules. In other words, this regex will avoid matching content that does not look like
valid (X)HTML tags, at the cost of possibly not matching some content that browsers
would in fact interpret as a tag (e.g., if your markup uses an attribute name that includes
characters not accounted for here, or if attributes are included in a closing tag). Both
HTML and XHTML tag rules are handled together since it is common for their con-
ventions to be mixed. The tag name is captured to backreference 1 or 2 (depending on
whether it is an opening or closing tag), in case you need to refer back to it:

<(?:([A-Z][-:A-Z0-9]*)(?:\s+[A-Z][-:A-Z0-9]*(?:\s*=\s*(?:"[^"]*"|↵
'[^']*'|[-.:\w]+))?)*\s*/?|/([A-Z][-:A-Z0-9]*)\s*)>

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

To make it a little less cryptic, here is the same regex in free-spacing mode with
comments:

< #
(?: # Branch for opening tags...
 ([A-Z][-:A-Z0-9]*) # Capture the opening tag name to backreference 1

8.1 Find XML-Style Tags | 419

 (?: # Permit zero or more attributes...
 \s+ # ...separated by whitespace
 [A-Z][-:A-Z0-9]* # Attribute name
 (?: #
 \s*=\s* # Attribute name-value delimiter
 (?: "[^"]*" # Double-quoted attribute value
 | '[^']*' # Single-quoted attribute value
 | [-.:\w]+ # Unquoted attribute value (HTML)
) #
)? # Permit attributes without a value (HTML)
)* #
 \s* # Permit trailing whitespace
 /? # Permit self-closed tags (XHTML)
 | # Branch for closing tags...
 / #
 ([A-Z][-:A-Z0-9]*) # Capture the closing tag name to backreference 2
 \s* # Permit trailing whitespace
) #
> #

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

XML tags (strict)

XML is a very precisely specified language, and requires that user agents strictly adhere
to and enforce its rules. This is a stark change from HTML and the commonly used,
long-suffering browsers that process it:

<(?:([_:A-Z][-.:\w]*)(?:\s+[_:A-Z][-.:\w]*\s*=\s*(?:"[^"]*"|'[^']*'))*\s*↵
/?|/([_:A-Z][-.:\w]*)\s*)>

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Once again, here is the same regex in free-spacing mode with added comments:

< #
(?: # Branch for opening tags...
 ([_:A-Z][-.:\w]*) # Capture the opening tag name to backreference 1
 (?: # Permit zero or more attributes...
 \s+ # ...separated by whitespace
 [_:A-Z][-.:\w]* # Attribute name
 \s*=\s* # Attribute name-value delimiter
 (?: "[^"]*" # Double-quoted attribute value
 | '[^']*' # Single-quoted attribute value
) #
)* #
 \s* # Permit trailing whitespace
 /? # Permit self-closed tags
 | # Branch for closing tags...

420 | Chapter 8: Markup and Data Interchange

 / #
 ([_:A-Z][-.:\w]*) # Capture the closing tag name to backreference 2
 \s* # Permit trailing whitespace
) #
> #

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Like the previous two solutions shown for (X)HTML tags, these regexes capture the
tag name to backreference 1 or 2, depending on whether an opening or closing tag is
matched. The XML tag regex is a little shorter than the (X)HTML versions since it
doesn’t have to deal with HTML-only syntax (minimized attributes and unquoted val-
ues). It also allows a wider range of characters to be used for element and attribute
names.

Discussion

A few words of caution

Although it’s common to want to match XML-style tags using regular expressions,
doing it safely requires balancing trade-offs and thinking carefully about the data you’re
working with. Because of these difficulties, some people choose to forgo the use of
regular expressions for any sort of XML or (X)HTML processing in favor of specialized
parsers and APIs. That’s an approach you should strongly consider, since such tools
are typically optimized to perform their designated tasks quickly, and they include
robust detection or handling for incorrect markup. In browser-land, for example, it’s
usually best to take advantage of the tree-based Document Object Model (DOM) for
your HTML search and manipulation needs. Elsewhere, you might be well-served by
a SAX parser or XPath. However, you may occasionally find places where regex-based
solutions make a lot of sense and work perfectly fine.

With that disclaimer out of the way, let’s examine the regexes we’ve already seen in
this recipe. The first two solutions are overly simplistic for most cases, but handle XML-
style markup languages equally. The latter three follow stricter rules and are tailored
to their respective markup languages. Even in the latter solutions, however, HTML and
XHTML tag conventions are handled together since it’s common for them to be mixed,
often inadvertently. For example, an author may use an XHTML-style, self-closing

 tag in an HTML document, or incorrectly use an uppercase element name in a
document with an XHTML DOCTYPE.

Quick and dirty

The advantage of this solution is its simplicity, which makes it easy to remember and
type, and also fast to run. The trade-off is that it incorrectly handles certain valid and
invalid XML and (X)HTML constructs. If you’re working with markup you wrote
yourself and know that such cases will never appear in your subject text, or if you are

8.1 Find XML-Style Tags | 421

not concerned about the consequences if they do, this trade-off might be OK. Another
example of where this solution might be good enough is when you’re working with a
text editor that lets you preview regex matches.

The regex starts off by finding a literal ‹<› character (the start of a tag). It then uses a
negated character class and greedy asterisk quantifier ‹[^>]*› to match zero or more
following characters that are not >. This takes care of matching the name of the tag,
attributes, and a leading or trailing /. We could use a lazy quantifier (‹[^>]*?›) instead,
but that wouldn’t change anything other than making the regex a tiny bit slower since
it would cause more backtracking (Recipe 2.13 explains why). To end the tag, the regex
then matches a literal ‹>›.
If you prefer to use a dot instead of the negated character class ‹[^>]›, go for it. A dot
will work fine as long as you also use a lazy asterisk along with it (‹.*?›) and make sure
to enable the “dot matches line breaks” option (in JavaScript, you could use ‹[\s
\S]*?› instead). A dot with a greedy asterisk (making the full pattern ‹<.*>›) would
change the regex’s meaning, causing it to incorrectly match from the first < until the
very last > in the subject string, even if the regex has to swallow multiple tags along the
way in order to do so.

It’s time for a few examples. This regex matches each of the following lines in full:

<div>
</div>
<div class="box">
<div id="pandoras-box" class="box" />
<!-- comment -->
<!DOCTYPE html>
<< < w00t! >
<>

Notice that the pattern matches more than just tags. Worse, it will not correctly match
the entire tags in the subject strings <input type="button" value=">>"> or <input
type="button" onclick="alert(2 > 1)">. Instead, it will only match until the first > that
appears within the attribute values. It will have similar problems with comments, XML
CDATA sections, DOCTYPEs, code within <script> elements, and anything else that
contains embedded > symbols.

If you’re processing anything more than the most basic markup, especially if the subject
text is coming from mixed or unknown sources, you will be better served by one of the
more robust solutions further along in this recipe.

Allow > in attribute values

Like the quick and dirty regex we’ve just described, this next one is included primarily
to contrast it with the later, more robust solutions. Nevertheless, it covers the basics
needed to match XML-style tags, and thus it might work well for your needs if it will

422 | Chapter 8: Markup and Data Interchange

be used to process snippets of valid markup that include only elements and text. The
difference from the last regex is that it passes over > characters that appear within
attribute values. For example, it will correctly match the entire <input> tags in the
example subject strings we’ve previously shown: <input type="button" value=">>">
and <input type="button" onclick="alert(2 > 1)">.

As before, the regex uses literal angle bracket characters at the edges of the regex to
match the start and end of a tag. In between, it repeats a noncapturing group containing
three alternatives, each separated by the ‹|› alternation metacharacter.

The first alternative is the negated character class ‹[^>"']›, which matches any single
character other than a right angle bracket (which closes the tag), double quote, or single
quote (both quote marks indicate the start of an attribute value). This first alternative
is responsible for matching the tag and attribute names as well as any other characters
outside of quoted values. The order of the alternatives is intentional, and written with
performance in mind. Regular expression engines attempt alternative paths through a
regex from left to right, and attempts at matching this first option will most likely
succeed more often than the alternatives for quoted values (especially since it matches
only one character at a time).

Next come the alternatives for matching double and single quoted attribute values
(‹"[^"]*"› and ‹'[^']*'›). Their use of negated character classes allows them to con-
tinue matching past any included > characters, line breaks, and anything else that isn’t
a closing quote mark.

Note that this solution has no special handling that allows it to exclude or properly
match comments and other special nodes in your documents. Make sure you’re familiar
with the kind of content you’re working with before putting this regex to use.

A (Safe) Efficiency Optimization
After reading this section, you might think you could make the regex a bit faster by
adding a ‹*› or ‹+› quantifier after the leading negated character class (‹[^>"']›). At
positions within the subject string where the regex finds matches, you’d be right. By
matching more than one character at a time, you’d let the regex engine skip a lot of
unnecessary steps on the way to a successful match.

What might not be as readily apparent is the negative consequence such a change could
lead to in places where the regex engine finds only a partial match. When the regex
matches an opening < character but there is no following > that would allow the match
attempt to complete successfully, you’ll run into the “catastrophic backtracking” prob-
lem described in Recipe 2.15. This is because of the huge number of ways the new,
inner quantifier could be combined with the outer quantifier (following the noncap-
turing group) to match the text that follows <, all of which the engine must try before
giving up on the match attempt. Watch out!

8.1 Find XML-Style Tags | 423

With regex flavors that support possessive quantifiers or atomic groups (JavaScript and
Python have neither), it’s possible to avoid this problem while still gaining the per-
formance advantage of matching more than one nonquoted character at a time. In fact,
we can go further and reduce potential backtracking elsewhere in the regex as well. If
the regex flavor you’re using supports both features, possessive quantifiers (shown here
in the second regex) are the better option since they keep the regex shorter and more
readable.

With atomic groups:

<(?>(?:(?>[^>"']+)|"[^"]*"|'[^']*')*)>
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Ruby

With possessive quantifiers:

<(?:[^>"']++|"[^"]*"|'[^']*')*+>
Regex options: None
Regex flavors: Java, PCRE, Perl 5.10, Ruby 1.9

(X)HTML tags (loose)

Via a simple addition, this regex gets a lot closer to emulating the easygoing rules that
web browsers use to identify (X)HTML tags in source code. That makes it a good
solution in cases where you’re trying to copy browser behavior and don’t care whether
the tags you match actually follow all the rules for valid markup. Keep in mind that it’s
still possible to create horrifically invalid HTML that this regex will not handle in the
same way as one or more browsers, since browsers parse edge cases of erroneous mark-
up in their own, unique ways.

This regex’s most significant difference from the previous solution is that it requires
the character following the opening left angle bracket (<) to be a letter from A–Z or a–
z, optionally preceded by / (for closing tags). This constraint rules out matching stray,
unencoded < characters in text, as well as comments, DOCTYPEs, XML declarations
and processing instructions, CDATA sections, etc. That doesn’t protect it from match-
ing something that looks like a tag within comments, scripting language code, the con-
tent of <textarea> elements, and so on. The upcoming section, “Skip tricky (X)HTML
and XML sections” on page 428, shows a workaround for this issue. But first, let’s
look at how this regex works.

‹<› starts off the match with a literal left angle bracket. The ‹/?› that follows allows an
optional forward slash, for closing tags. Next comes the capturing group ‹([A-Za-z]
[^\s>/]*)›, which matches the tag’s name and remembers it as backreference 1. If you
don’t need to refer back to the tag name (e.g., if you’re simply removing all tags), you
can remove the capturing parentheses (just don’t get rid of the pattern within them).
Within the group are two character classes. The first, ‹[A-Za-z]›, sets the tag name’s
initial-character rule. The next class, ‹[^\s>/]›, allows nearly any characters to follow
as part of the name. The only exceptions are whitespace (‹\s›, which separates the tag

424 | Chapter 8: Markup and Data Interchange

name from any following attributes), > (which ends the tag), and / (used before the
closing > for XHTML-style singleton tags). Any other characters (even including quote
marks) are treated as part of the tag’s name. That might seem a bit overly permissive,
but it’s how most browsers operate. Bogus tags might not have any effect on the way
a page is rendered, but they neverthess become accessible via the DOM tree and are
not rendered as text, although any content within them will show up.

After the tag name comes the attribute handling, which is taken directly out of the
previous regex: ‹(?:[^>"']|"[^"]*"|'[^']*')*›. Add a right angle bracket to finish the
tag, and we’re done.

The following regexes show how this pattern can be tweaked to match only opening,
closing, or singleton (self-closing) tags:

Opening tags

<([A-Za-z][^\s>/]*)(?:[^>"'/]|"[^"]*"|'[^']*')*>
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

This version adds a forward slash (/) within the first negated character class in the
noncapturing group, to prevent forward slashes from occuring anywhere other
than within quoted attribute values.

Singleton tags

<([A-Za-z][^\s>/]*)(?:[^>"']|"[^"]*"|'[^']*')*/>
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Here, we’ve added a required forward slash just before the closing right angle
bracket.

Opening and singleton tags

<([A-Za-z][^\s>/]*)(?:[^>"']|"[^"]*"|'[^']*')*>
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

There is no addition here. Instead, the ‹/?› that appeared after the the opening
‹<› in the original regex has been removed.

Closing tags

</([A-Za-z][^\s>/]*)(?:[^>"']|"[^"]*"|'[^']*')*>
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The forward slash after the opening left angle bracket has been made a required
part of the match here. Note that we are intentionally allowing attributes inside
closing tags, since this is based on the “loose” solution. Although browsers don’t
use attributes that occur in closing tags, they don’t mind if such attributes exist.

8.1 Find XML-Style Tags | 425

The sidebar “A (Safe) Efficiency Optimization” on page 423 showed how to improve
performance when matching tags through the use of atomic groups or possessive quan-
tifiers. This time around, the potential performance improvement is even greater since
the characters that can be matched by the ‹[^\s>/]› character class overlaps with the
latter part of the regex, thereby providing lots of pattern combinations to try before the
regex engine can give up on a partial match.

If atomic groups or possessive quantifiers are available in the regex flavor you’re using,
you may get significantly better performance by taking advantage of them here. The
following changes can also be transferred to the opening/closing/singleton-specific
regexes just shown:

</?([A-Za-z](?>[^\s>/]*))(?>(?:(?>[^>"']+)|"[^"]*"|'[^']*')*)>
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Ruby

</?([A-Za-z][^\s>/]*+)(?:[^>"']++|"[^"]*"|'[^']*')*+>
Regex options: None
Regex flavors: Java, PCRE, Perl 5.10, Ruby 1.9

(X)HTML tags (strict)

By saying that this solution is strict, we mean that it attempts to follow the HTML and
XHTML syntax rules explained in the introductory section of this chapter, rather than
emulating the rules browsers actually use when parsing the source code of a document.
This strictness adds the following rules compared to the previous regexes:

• Both tag and attribute names must start with a letter from A–Z or a–z, and their
names may only use the characters A–Z, a–z, 0–9, hyphen, and colon (in regex,
that’s ‹^[-:A-Za-z0-9]+$›).

• Inappropriate, stray characters are not allowed after the tag name. Only white-
space, attributes (with or without an accompanying value), and optionally a trailing
forward slash (/) may appear after the tag name.

• Unquoted attribute values may only use the characters A–Z, a–z, 0–9, underscore,
hyphen, period, and colon (in regex, ‹^[-.:A-Za-z0-9_]+$›).

• Closing tags cannot include attributes.

Since the pattern is split into two branches (the first for opening and singleton tags,
and the second for closing tags), the tag name is captured to either backreference 1 or
2, depending on what type of tag is matched. Both sets of capturing parentheses may
be removed if you have no need to refer back to the tag names.

In the following examples, the two branches of the pattern are separated into their own
regexes. Both capture the tag name to backreference 1:

426 | Chapter 8: Markup and Data Interchange

Opening and singleton tags

<([A-Z][-:A-Z0-9]*)(?:\s+[A-Z][-:A-Z0-9]*(?:\s*=\s*↵
(?:"[^"]*"|'[^']*'|[-.:\w]+))?)*\s*/?>

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The ‹/?› that appears just before the closing ‹>› is what allows this regex to match
both opening and singleton tags. Remove it to match only opening tags. Remove
just the question mark quantifier (making the ‹/› required), and it will only match
singleton tags.

Closing tags

</([A-Z][-:A-Z0-9]*)\s*>
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

In the last couple of sections, we’ve shown how to get a potential performance boost
by adding atomic groups or possessive quantifiers. The strictly defined paths through
this regex means that there is no potential to match the same strings more than one
way, and therefore less potential backtracking to worry about. This regex doesn’t
rely on backtracking, so if you wanted to, you could make every last ‹*›, ‹+›, and ‹?›
quantifier possessive (or achieve the same effect using atomic groups). Although that
could only help, we’re going to skip such variations for this (and the next) regex, to try
to keep the crazy amount of options in this recipe under control.

See “Skip tricky (X)HTML and XML sections” on page 428 for a way to avoid matching
tags within comments, <script> tags, and so on.

XML tags (strict)

XML precludes the need for a “loose” solution through its precise specification and
requirement that conforming parsers do not process markup that is not well-formed.
Although you could use one of the preceding regexes when processing XML docu-
ments, their simplicity won’t give you the advantage of actually providing a more reli-
able search, since there is no loose XML user agent behavior to emulate.

This regex is basically a simpler version of the “(X)HTML tags (strict)” regex, since
we’re able to remove support for two HTML features that are not allowed in XML:
unquoted attribute values and minimized attributes (attributes without an accompa-
nying value). The only other difference is the characters that are allowed as part of the
tag and attribute names. In fact, the rules for XML names (which govern the require-
ments for both tag and attribute names) are more permissive than shown here, allowing
hundreds of thousands of additional Unicode characters. If you need to allow these
characters in your search, you can replace the three occurrences of ‹[_:A-Z][-.:\w]*›
with one of the patterns found in Recipe 8.4. Note that the list of characters allowed
differs depending on the version of XML in use.

8.1 Find XML-Style Tags | 427

As with the (X)HTML regexes, the tag name is captured to backreference 1 or 2, de-
pending on whether an opening/singleton or closing tag is matched. And once again,
you can remove the capturing parentheses if you don’t need to refer back to the tag
names.

In the following examples, the two branches of the pattern are separated into their own
regexes. As a result, both regexes capture the tag name to backreference 1:

Opening and singleton tags

<([_:A-Z][-.:\w]*)(?:\s+[_:A-Z][-.:\w]*\s*=\s*↵
(?:"[^"]*"|'[^']*'))*\s*/?>

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The ‹/?› that appears just before the closing ‹>› is what allows this regex to match
both opening and singleton tags. Remove it to match only opening tags. Remove
just the question mark quantifier, and it will match only singleton tags.

Closing tags

</([_:A-Z][-.:\w]*)\s*>
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

See the section “Skip tricky (X)HTML and XML sections” for a way to avoid matching
tags within comments, CDATA sections, and DOCTYPEs.

Skip tricky (X)HTML and XML sections

When trying to match XML-style tags within a source file or string, much of the battle
is avoiding content that looks like a tag, even though its placement or other context
precludes it from being interpreted as a tag. The (X)HTML- and XML-specific regexes
we’ve shown in this recipe avoid some problematic content by restricting the initial
character of an element’s name. Some went even further, requiring tags to fulfill the
(X)HTML or XML syntax rules. Still, a robust solution requires that we also avoid any
content that appears within comments, scripting language code (which may use
greater-than and less-than symbols for mathematical operations), XML CDATA sec-
tions, and various other constructs. We can solve this issue by first searching for these
problematic sections, and then searching for tags only in the content outside of those
matches.

Recipe 3.18 shows how to write code that searches between matches of another regex.
It takes two patterns: an inner regex and outer regex. The solutions we’ve already shown
will serve as our inner regex. The outer regex is shown next, with separate patterns for
(X)HTML and XML. This approach hides the problematic sections from the inner
regex’s view, and thereby lets us keep things relatively simple.

428 | Chapter 8: Markup and Data Interchange

The following regex matches comments as well as <script>,
<style>, <textarea>, and <xmp>* elements (including their content):

<!--.*?--\s*>|<(script|style|textarea|xmp)\b(?:[^>"']|"[^"]*"|↵
'[^']*')*?(?:/>|>.*?</\1\s*>)

Regex options: Case insensitive, dot matches line breaks
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

In case that’s not the most readable line of code you’ve ever read, here is the regex again
in free-spacing mode, with a few comments added:

Comment
<!-- .*? --\s*>

|

Special element and its content
<(script | style | textarea | xmp)\b
 (?: [^>"'] # Non-quoted character
 | "[^"]*" # Double-quoted value
 | '[^']*' # Single-quoted value
)*?
(?: # Singleton tag
 />
 | # Otherwise, include the element's content and matching closing tag
 > .*? </\1\s*>
)

Regex options: Case insensitive, dot matches line breaks, free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Neither of the above regexes work correctly in JavaScript, since JavaScript lacks both
the “dot matches line breaks” and “free-spacing” options. The following regex reverts
back to being unreadable and replaces the dots with ‹[\s\S]›, so it can be used in
JavaScript:

<!--[\s\S]*?--\s*>|<(script|style|textarea|xmp)\b(?:[^>"']|"[^"]*"|↵
'[^']*')*?(?:/>|>[\s\S]*?</\1\s*>)

Regex options: Case insensitive
Regex flavors: JavaScript

These regexes present a bit of a dilemma: because they match <script>, <style>,
<textarea>, and <xmp> tags, those tags are never matched by the second (inner) regex,
even though we’re supposedly searching for all tags. However, it should just be a matter
of adding a bit of extra code to handle those tags specially. These (outer) regexes already

Outer regex for (X)HTML.

* <xmp> is a little-known but widely supported element similar to <pre>. Like <pre>, it preserves all whitespace
and uses a fixed-width font by default, but it goes one step further and displays all of its contents (including
HTML tags) as plain text. <xmp> was deprecated in HTML 3.2, and removed entirely from HTML 4.

8.1 Find XML-Style Tags | 429

capture the tag names to backreference 1, which can serve as a good check of whether
they matched a comment or tag (and if it was a tag, you’ll know which one).

This regex matches comments, CDATA sections, and DOCTYPEs.
Each of these cases are matched using a discrete pattern, all of which are combined into
one regex using the ‹|› alternation metacharacter:

<!--.*?--\s*>|<!\[CDATA\[.*?]]>|<!DOCTYPE\s(?:[^<>"']|"[^"]*"|↵
'[^']*'|<!(?:[^>"']|"[^"]*"|'[^']*')*>)*>

Regex options: Case insensitive, dot matches line breaks
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Here it is again in free-spacing mode:

Comment
<!-- .*? --\s*>

|

CDATA section
<!\[CDATA\[.*?]]>

|

Document type declaration
<!DOCTYPE\s
 (?: [^<>"'] # Non-special character
 | "[^"]*" # Double-quoted value
 | '[^']*' # Single-quoted value
 | <!(?:[^>"']|"[^"]*"|'[^']*')*> # Markup declaration
)*
>

Regex options: Case insensitive, dot matches line breaks, free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

And here is a version that works in JavaScript (which lacks the “dot matches line breaks”
and “free-spacing” options):

<!--[\s\S]*?--\s*>|<!\[CDATA\[[\s\S]*?]]>|<!DOCTYPE\s(?:[^<>"']|"[^"]*"|↵
'[^']*'|<!(?:[^>"']|"[^"]*"|'[^']*')*>)*>

Regex options: Case insensitive
Regex flavors: JavaScript

Variations

Match valid HTML 4 tags

Occasionally, you may want to limit your search to only valid HTML elements, espe-
cially when searching for tags in non-HTML documents where extra precaution against
false positives may be in order. The following regex matches only the 91 valid HTML

Outer regex for XML.

430 | Chapter 8: Markup and Data Interchange

4 elements. This list does not include nonstandard HTML, such as the proprietary tags
<blink>, <bgsound>, <embed>, and <nobr>. It also doesn’t include XHTML 1.1-only ele-
ments (XHTML 1.0 adds no new tags) or fancy new elements planned for HTML 5:

</?(a|abbr|acronym|address|applet|area|b|base|basefont|bdo|big|blockquote|↵
body|br|button|caption|center|cite|code|col|colgroup|dd|del|dfn|dir|div|↵
dl|dt|em|fieldset|font|form|frame|frameset|h1|h2|h3|h4|h5|h6|head|hr|html|↵
i|iframe|img|input|ins|isindex|kbd|label|legend|li|link|map|menu|meta|↵
noframes|noscript|object|ol|optgroup|option|p|param|pre|q|s|samp|script|↵
select|small|span|strike|strong|style|sub|sup|table|tbody|td|textarea|↵
tfoot|th|thead|title|tr|tt|u|ul|var)\b(?:[^>"']|"[^"]*"|'[^']*')*>

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

We can make this regex faster by reducing the number of alternatives separated by the
‹|› metacharacter. Instead, we’ll use character classes and optional suffixes wherever
possible. These changes can dramatically reduce the amount of backtracking required
by the regex engine. Consider what happens when the engine encounters <0 in the
subject text. This cannot possibly be the start of a tag, since no tag name starts with
the number 0, but before the regex engine can rule this out as a match, it must check
whether any of the 91 alternatives start with a literal 0. By reducing the number of
alternatives to the minimum (one for each letter that can start a tag), we bring the
number of steps that must be tried after a left angle bracket is found from 91 down to
just 19. Here’s how such a regex looks:

</?(a(?:bbr|cronym|ddress|pplet|rea)?|b(?:ase(?:font)?|do|ig|lockquote|↵
ody|r|utton)?|c(?:aption|enter|ite|o(?:de|l(?:group)?))|d(?:[dlt]|el|fn|↵
i[rv])|em|f(?:ieldset|o(?:nt|rm)|rame(?:set)?)|h(?:[1-6r]|ead|tml)|↵
i(?:frame|mg|n(?:put|s)|sindex)?|kbd|l(?:abel|egend|i(?:nk)?)|m(?:ap|↵
e(?:nu|ta))|no(?:frames|script)|o(?:bject|l|p(?:tgroup|tion))|p(?:aram|↵
re)?|q|s(?:amp|cript|elect|mall|pan|t(?:rike|rong|yle)|u[bp])?|t(?:able|↵
body|[dhrt]|extarea|foot|head|itle)|ul?|var)\b(?:[^>"']|"[^"]*"|'[^']*')*>

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

That’s certainly harder to read, but free-spacing mode can help a little:

<
/? # Permit closing tags
(# Capture the tag name to backreference 1

 a(?:bbr|cronym|ddress|pplet|rea)?|
 b(?:ase(?:font)?|do|ig|lockquote|ody|r|utton)?|
 c(?:aption|enter|ite|o(?:de|l(?:group)?))|
 d(?:[dlt]|el|fn|i[rv])|
 em|
 f(?:ieldset|o(?:nt|rm)|rame(?:set)?)|
 h(?:[1-6r]|ead|tml)|
 i(?:frame|mg|n(?:put|s)|sindex)?|

8.1 Find XML-Style Tags | 431

 kbd|
 l(?:abel|egend|i(?:nk)?)|
 m(?:ap|e(?:nu|ta))|
 no(?:frames|script)|
 o(?:bject|l|p(?:tgroup|tion))|
 p(?:aram|re)?|
 q|
 s(?:amp|cript|elect|mall|pan|t(?:rike|rong|yle)|u[bp])?|
 t(?:able|body|[dhrt]|extarea|foot|head|itle)|
 ul?|
 var

) \b # Don't permit partial name matches
(?: [^>"'] # Any character except >, ", or '
 | "[^"]*" # Double-quoted attribute value
 | '[^']*' # Single-quoted attribute value
)*
>

Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

If you want to go crazy with whitespace, here’s yet another way to write the same regex
in free-spacing mode that might make it even easier to read:

<
/? # Permit closing tags
(# Capture the tag name to backreference 1

 a (?: bbr #
 | cronym #
 | ddress #
 | pplet #
 | rea #
)?| # Optional group (allow <a>)
 b (?: ase (?:font)? # <base>, <basefont>
 | do #
 | ig #
 | lockquote #
 | ody #
 | r #
 | utton #
)?| # Optional group (allow)
 c (?: aption #
 | enter #
 | ite #
 | o (?:de|l(?:group)?) # <code>, <col>, <colgroup>
) | #
 d (?: [dlt] # <dd>, <dl>, <dt>
 | el #

432 | Chapter 8: Markup and Data Interchange

 | fn #
 | i[rv] # <dir>, <div>
) | #
 em | #
 f (?: ieldset #
 | o (?:nt|rm) # , <form>
 | rame (?:set)? # <frame>, <frameset>
) | #
 h (?: [1-6r] # <h1>, <h2>, <h3>, <h4>, <h5>, <h6>, <hr>
 | ead #
 | tml #
) | #
 i (?: frame #
 | mg #
 | n (?:put|s) # <input>, <ins>
 | sindex #
)?| # Optional group (allow <i>)
 kbd | #
 l (?: abel #
 | egend #
 | i (?:nk)? # , <link>
) | #
 m (?: ap #
 | e (?:nu|ta) # <menu>, <meta>
) | #
 no (?: frames #
 | script #
) | #
 o (?: bject #
 | l #
 | p (?:tgroup|tion) # <optgroup>, <option>
) | #
 p (?: aram #
 | re #
)?| # Optional group (allow <p>)
 q | #
 s (?: amp #
 | cript #
 | elect #
 | mall #
 | pan #
 | t (?:rike|rong|yle) # <strike>, , <style>
 | u[bp] # <sub>, <sup>
)?| # Optional group (allow <s>)
 t (?: able #
 | body #
 | [dhrt] # <td>, <th>, <tr>, <tt>
 | extarea #

8.1 Find XML-Style Tags | 433

 | foot #
 | head #
 | itle #
) | #
 ul? | # <u>,
 var #

) \b # Don't permit partial name matches
(?: [^>"'] # Any character except >, ", or '
 | "[^"]*" # Double-quoted attribute value
 | '[^']*' # Single-quoted attribute value
)*
>

Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

If you’re working with XHTML, note that although XHTML 1.0 adds no new tags, it
removes the following 14: <applet>, <basefont>, <center>, <dir>, , <frame>,
<frameset>, <iframe>, <isindex>, <menu>, <noframes>, <s>, <strike>, and <u>.

XHTML 1.1 keeps all the elements from XHTML 1.0, and adds six new ones (all related
to ruby text for Asian languages): <rb>, <rbc>, <rp>, <rt>, <rtc>, and <ruby>. Creating
regexes dedicated to matching only the valid XHTML 1.0 or 1.1 elements is something
we’ll leave to you.

See Also
Matching any and all tags can be useful, but it’s also common to want to match a specific
one or a few out of the bunch; Recipe 8.2 shows how to pull off both of these tasks.

Recipe 8.4 describes the characters that can be used in valid XML element and attribute
names.

8.2 Replace Tags with
Problem
You want to replace all opening and closing tags in a string with corresponding
 tags, while preserving any existing attributes.

Solution
This regex matches opening and closing tags, with or without attributes:

<(/?)b\b((?:[^>"']|"[^"]*"|'[^']*')*)>
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

434 | Chapter 8: Markup and Data Interchange

In free-spacing mode:

< #
(/?) # Capture the optional leading slash to backreference 1
b \b # Complete tag name, with word boundary
(# Capture any attributes, etc. to backreference 2
 (?: [^>"'] # Any character except >, ", or '
 | "[^"]*" # Double-quoted attribute value
 | '[^']*' # Single-quoted attribute value
)* #
) #
> #

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

To preserve all attributes while changing the tag name, use the following replacement
text:

<$1strong$2>
Replacement text flavors: .NET, Java, JavaScript, Perl, PHP

<\1strong\2>
Replacement text flavors: Python, Ruby

If you want to discard any attributes in the same process, omit backreference 2 in the
replacement string:

<$1strong>
Replacement text flavors: .NET, Java, JavaScript, Perl, PHP

<\1strong>
Replacement text flavors: Python, Ruby

Recipe 3.15 shows the code needed to implement this.

Discussion
The previous recipe included a detailed discussion of many ways to match any XML-
style tag. That frees this recipe to focus on a straightforward approach to search for a
specific type of tag. and its replacement are offered as examples, but you
can substitute those tag names with any two others.

The regex starts by matching a literal ‹<›—the first character of any tag. It then op-
tionally matches the forward slash found in closing tags using ‹/?›, within capturing
parentheses. Capturing the result of this pattern (which will be either an empty string
or a forward slash) allows you to easily restore the forward slash in the replacement
string, without any conditional logic.

Next, we match the tag name itself, ‹b›. You could use any other tag name instead if
you wanted to. We’re using the case-insensitive option to make sure that we also match
an uppercase B.

8.2 Replace Tags with | 435

The word boundary (‹\b›) that follows the tag name is easy to forget, but it’s one of the
most important pieces of this regex. The word boundary lets us match only tags,
and not
, <body>, <blockquote>, or any other tags that merely start with the letter
“b”. We could alternatively match a whitespace token (‹\s›) after the name as a safe-
guard against this same problem, but that wouldn’t work for tags that have no attributes
and thus might not have any whitespace following their tag name. The word boundary
solves this problem simply and elegantly.

When working with XML and XHTML, be aware that the colon used
for namespaces, as well as hyphens and some other characters allowed
as part of XML names, create a word boundary. For example, the regex
could end up matching something like <b-sharp>. If you’re worried
about this, you might want to use the lookahead ‹(?=[\s/>])› instead
of a word boundary. It achieves the same result of ensuring that we do
not match partial tag names, and does so more reliably.

After the tag name, the pattern ‹((?:[^>"']|"[^"]*"|'[^']*')*)› is used to match any-
thing remaining within the tag up until the closing right angle bracket. Wrapping this
pattern in a capturing group as we’ve done here lets us easily bring back any attributes
and other characters (such as the trailing slash for singleton tags) in our replacement
string. Within the capturing parentheses, the pattern repeats a noncapturing group
with three alternatives. The first, ‹[^>"']›, matches any single character except >, ", or
'. The remaining two alternatives match an entire double- or single-quoted string,
which lets you match attribute values that contain right angle brackets without having
the regex think it has found the end of the tag.

Variations

Replace a list of tags

If you want to match any from a list of tag names, a simple change is needed. Place all
of the desired tag names within a group, and alternate between them. Placing the names
in a group limits the reach of the alternation metacharacter (‹|›).
The following regex matches opening and closing , <i>, , and <big> tags. The
replacement text shown later replaces all of them with a corresponding or
 tag, while preserving any attributes:

<(/?)([bi]|em|big)\b((?:[^>"']|"[^"]*"|'[^']*')*)>
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Here’s the same regex in free-spacing mode:

< #
(/?) # Capture the optional leading slash to backreference 1

436 | Chapter 8: Markup and Data Interchange

([bi]|em|big) \b # Capture the tag name to backreference 2
(# Capture any attributes, etc. to backreference 3
 (?: [^>"'] # Any character except >, ", or '
 | "[^"]*" # Double-quoted attribute value
 | '[^']*' # Single-quoted attribute value
)* #
) #
> #

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

We’ve used the character class ‹[bi]› to match both and <i> tags, rather than sep-
arating them with the alternation metacharacter (|) as we’ve done for and <big>.
Character classes perform faster than alternation, since they don’t use backtracking to
get their job done. When the difference between two options is a single character, use
a character class.

We’ve also added a capturing group for the tag name, which shifted the group that
matches attributes, etc. to store its match as backreference 3. Although there’s no need
to refer back to the tag name if you’re just going to replace all matches with
tags, storing the tag name in its own backreference can help you check what type of tag
was matched, when needed.

To preserve all attributes while replacing the tag name, use the following replacement
text:

<$1strong$3>
Replacement text flavors: .NET, Java, JavaScript, Perl, PHP

<\1strong\3>
Replacement text flavors: Python, Ruby

Omit backreference 3 in the replacement string if you want to discard attributes for
matched tags as part of the same process:

<$1strong>
Replacement text flavors: .NET, Java, JavaScript, Perl, PHP

<\1strong>
Replacement text flavors: Python, Ruby

See Also
Recipe 8.1 shows how to match all XML-style tags while balancing trade-offs, including
tolerance for invalid markup.

Recipe 8.3 is the opposite of this recipe, and shows how to match all except a select list
of tags.

8.2 Replace Tags with | 437

8.3 Remove All XML-Style Tags Except and
Problem
You want to remove all tags in a string except and .

In a separate case, you not only want to remove all tags other than and ,
you also want to remove and tags that contain attributes.

Solution
This is a perfect setting to put negative lookahead (explained in Recipe 2.16) to use.
Applied to this problem, negative lookahead lets you match what looks like a tag,
except when certain words come immediately after the opening < or </. If you then
replace all matches with an empty string (Recipe 3.14 shows you how), only the ap-
proved tags are left behind.

Solution 1: Match tags except and
</?(?!(?:em|strong)\b)[a-z](?:[^>"']|"[^"]*"|'[^']*')*>

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

In free-spacing mode:

< /? # Permit closing tags
(?! # Negative lookahead
 (?: em | strong) # List of tags to avoid matching
 \b # Word boundary avoids partial word matches
) #
[a-z] # Tag name initial character must be a-z
(?: [^>"'] # Any character except >, ", or '
 | "[^"]*" # Double-quoted attribute value
 | '[^']*' # Single-quoted attribute value
)* #
> #

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Solution 2: Match tags except and , and any tags that contain attributes

With one change (replacing the ‹\b› with ‹\s*>›), you can make the regex also match
any and tags that contain attributes:

</?(?!(?:em|strong)\s*>)[a-z](?:[^>"']|"[^"]*"|'[^']*')*>
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

438 | Chapter 8: Markup and Data Interchange

Once again, the same regex in free-spacing mode:

< /? # Permit closing tags
(?! # Negative lookahead
 (?: em | strong) # List of tags to avoid matching
 \s* > # Only avoid tags if they contain no attributes
) #
[a-z] # Tag name initial character must be a-z
(?: [^>"'] # Any character except >, ", or '
 | "[^"]*" # Double-quoted attribute value
 | '[^']*' # Single-quoted attribute value
)* #
> #

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Discussion
This recipe’s regular expressions have a lot in common with those we’ve included earlier
in this chapter for matching XML-style tags. Apart from the negative lookahead added
to prevent some tags from being matched, these regexes are nearly equivalent to the
“(X)HTML tags (loose)” regex from Recipe 8.1. The other main difference here is that
we’re not capturing the tag name to backreference 1.

So let’s look more closely at what’s new in this recipe. Solution 1 never matches
or tags, regardless of whether they have any attributes, but matches all other
tags. Solution 2 matches all the same tags as Solution 1, and additionally matches
 and tags that contain one or more attributes. Table 8-2 shows a few
example subject strings that illustrate this.

Table 8-2. A few example subject strings

Subject string Solution 1 Solution 2

<i> Match Match

</i> Match Match

<i style="font-size:500%; color:red;"> Match Match

 No match No match

 No match No match

<em style="font-size:500%; color:red;"> No match Match

Since the point of these regexes is to replace matches with empty strings (i.e., remove
the tags), Solution 2 is less prone to abuse of the allowed and tags to
provide unexpected formatting or other shenanigans.

8.3 Remove All XML-Style Tags Except and | 439

This recipe has (until now) intentionally avoided the word “whitelist”
when describing how only a few tags are left in place, since that word
has security connotations. There are a variety of ways to work around
this pattern’s constraints using specially crafted, malicious HTML
strings. If you’re worried about malicious HTML and cross-site scripting
(XSS) attacks, your safest bet is to convert all <, >, and & characters to
their corresponding character entity references (<, >, and &),
then bring back tags that are known to be safe (as long as they contain
no attributes or only use those within a select list of approved attributes).
style is an example of an attribute that is not safe, since some browsers
let you embed scripting language code in your CSS. For example, to
bring back tags after replacing <, >, and & with entity references, you
might search using the regex ‹<(/?)em>› and replace matches with
«<$1em>» (or in Python and Ruby, «<\1em>»).

Variations

Whitelist specific attributes

Consider these new requirements: you need to match all tags except <a>, , and
, with two exceptions. Any <a> tags that have attributes other than href or
title should be matched, and if or tags have any attributes at all, match
them too. All matched strings will be removed.

In other words, you want to remove all tags, except those on your whitelist (<a>,
, and). The only whitelisted attributes are href and title, and they are
allowed only within <a> tags. If a nonwhitelisted attribute appears in any tag, the entire
tag should be removed.

Here’s a regex that can get the job done, shown with and without free-spacing mode:

<(?!(?:em|strong|a(?:\s+(?:href|title)\s*=\s*(?:"[^"]*"|'[^']*'))*)\s*>)↵
[a-z](?:[^>"']|"[^"]*"|'[^']*')*>

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

< /? # Permit closing tags
(?! # Negative lookahead
 (?: em # Dont match ...
 | strong # or ...
 | a # or <a>...
 (?: # Only avoid matching <a> tags that stick to...
 \s+ # href and/or title attributes
 (?:href|title)
 \s*=\s*
 (?:"[^"]*"|'[^']*') # Double- or single-quoted attribute value
)*
)

440 | Chapter 8: Markup and Data Interchange

 \s* > # Only avoid matching these tags when they stick to the...
) # attributes listed above
[a-z] # Tag name initial character must be a-z
(?: [^>"'] # Any character except >, ", or '
 | "[^"]*" # Double-quoted attribute value
 | '[^']*' # Single-quoted attribute value
)*
>

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

This pushes the boundary of where it makes sense to use such a complicated regex. If
your rules get any more complex than this, it would probably be better to write some
code based on Recipes 3.11 or 3.16 that checks the value of each matched tag to de-
termine how to process it (based on the tag name, included attributes, or whatever else
is needed).

See Also
Recipe 8.1 shows how to match all XML-style tags, while balancing trade-offs, includ-
ing tolerance for invalid markup.

Recipe 8.2 is the opposite of this recipe, and shows how to match a select list of tags.

8.4 Match XML Names
Problem
You want to check whether a string is a legitimate XML name (a common syntactic
construct). XML provides precise rules for the characters that can occur in a name, and
reuses those rules for element, attribute, and entity names, processing instruction tar-
gets, and more. Names must be composed of a letter, underscore, or colon as the first
character, followed by any combination of letters, digits, underscores, colons, hyphens,
and periods. That’s actually an approximate description, but it’s pretty close. The exact
list of permitted characters depends on the version of XML in use.

Alternatively, you might want to splice a pattern for matching valid names into other
XML-handling regexes, when the extra precision warrants the added complexity.

Following are some examples of valid names:

• thing

• _thing_2_

• :Российские-Вещь
• fantastic4:the.thing

• 日本の物

8.4 Match XML Names | 441

Note that letters from non-Latin scripts are allowed, even including the ideographic
characters in the last example. Likewise, any Unicode digit is allowed after the first
character, not just the Arabic numerals 0–9.

For comparison, here are several examples of invalid names that should not be matched
by the regex:

• thing!

• thing with spaces

• .thing.with.a.dot.in.front

• -thingamajig

• 2nd_thing

Solution
Like identifiers in many programming languages, there is a set of characters that can
occur in an XML name, and a subset that can be used as the first character. Those
character lists are dramatically different for XML 1.0 Fourth Edition (and earlier) and
XML 1.1 and 1.0 Fifth Edition. Essentially, XML 1.1 names can use all the characters
permitted by 1.0 Fourth Edition, plus almost a million more. However, the majority of
the additional characters are nothing more than positions in the Unicode table. Most
don’t have a character assigned to them yet, but are allowed for future compatibility
as the Unicode character database expands.

For brevity’s sake, references to XML 1.0 in this recipe describe the first through fourth
editions of XML 1.0. When we talk about XML 1.1 names, we’re also describing the
XML 1.0 Fifth Edition rules. The fifth edition only became an official W3C Recom-
mendation at the end of November 2008, nearly five years after XML 1.1.

Regexes in this recipe are shown with start and end of string anchors
(using either ‹^⋯$› or ‹\A⋯\Z›) that cause your subject string to be
matched in its entirety or not at all. If you want to embed these patterns
in a longer regular expression that deals with matching, say, XML ele-
ments, make sure to remove the anchors at the beginning and end of
the patterns displayed here. Anchors are explained in Recipe 2.5.

XML 1.0 names (approximate)
\A[:_\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nl}][:_\-.\p{L}\p{M}\p{Nd}\p{Nl}]*\Z

Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Ruby 1.9

PCRE must be compiled with UTF-8 support for the Unicode properties (‹\p{⋯}›) to
work. In PHP, turn on UTF-8 support with the /u pattern modifier.

442 | Chapter 8: Markup and Data Interchange

Unicode properties are not supported by JavaScript, Python, or Ruby 1.8. The XML
1.1 names regex that comes next doesn’t rely on Unicode properties and therefore might
be a good alternative if you’re using one of these programming languages. See the
“Discussion” on page 444 of this recipe for details on why you might be better off using
the XML 1.1-based solution anyway, even if your regex flavor supports Unicode
properties.

XML 1.1 names (exact)

Following are three versions of the same regular expression, due to flavor differences.
The only difference between the first two is the anchors used at the start and end of the
patterns. The third version uses ‹\x{⋯}› instead of ‹\u› to specify Unicode code points
greater than FF hexadecimal (255 decimal).

\A[:_A-Za-z\xC0-\xD6\xD8-\xF6\xF8-\u02FF\u0370-\u037D\u037F-\u1FFF\u200C↵
\u200D\u2070-\u218F\u2C00-\u2FEF\u3001-\uD7FF\uF900-\uFDCF\uFDF0-\uFFFD]↵
[:_\-.A-Za-z0-9\xB7\xC0-\xD6\xD8-\xF6\xF8-\u036F\u0370-\u037D\u037F-\u1FFF↵
\u200C\u200D\u203F\u2040\u2070-\u218F\u2C00-\u2FEF\u3001-\uD7FF\uF900-↵
\uFDCF\uFDF0-\uFFFD]*\Z

Regex options: None
Regex flavors: .NET, Java, Python, Ruby 1.9

^[:_A-Za-z\xC0-\xD6\xD8-\xF6\xF8-\u02FF\u0370-\u037D\u037F-\u1FFF\u200C↵
\u200D\u2070-\u218F\u2C00-\u2FEF\u3001-\uD7FF\uF900-\uFDCF\uFDF0-\uFFFD]↵
[:_\-.A-Za-z0-9\xB7\xC0-\xD6\xD8-\xF6\xF8-\u036F\u0370-\u037D\u037F-\u1FFF↵
\u200C\u200D\u203F\u2040\u2070-\u218F\u2C00-\u2FEF\u3001-\uD7FF\uF900-↵
\uFDCF\uFDF0-\uFFFD]*$

Regex options: None (“^ and $ match at line breaks” must not be set)
Regex flavors: .NET, Java, JavaScript, Python

\A[:_A-Za-z\xC0-\xD6\xD8-\xF6\xF8-\x{2FF}\x{370}-\x{37D}\x{37F}-\x{1FFF}↵
\x{200C}\x{200D}\x{2070}-\x{218F}\x{2C00}-\x{2FEF}\x{3001}-\x{D7FF}↵
\x{F900}-\x{FDCF}\x{FDF0}-\x{FFFD}][:_\-.A-Za-z0-9\xB7\xC0-\xD6\xD8-\xF6↵
\xF8-\x{36F}\x{370}-\x{37D}\x{37F}-\x{1FFF}\x{200C}\x{200D}\x{203F}↵
\x{2040}\x{2070}-\x{218F}\x{2C00}-\x{2FEF}\x{3001}-\x{D7FF}\x{F900}-↵
\x{FDCF}\x{FDF0}-\x{FFFD}]*\Z

Regex options: None
Regex flavors: PCRE, Perl

PCRE must be compiled with UTF-8 support for the ‹\x{⋯}› metasequences to work
with values greater than FF hexadecimal. In PHP, turn on UTF-8 support with the /u
pattern modifier.

Ruby 1.8 does not support Unicode regular expressions at all, but see the section
“Variations” on page 446 of this recipe for a possible alternative solution that is less
precise.

8.4 Match XML Names | 443

Although we’ve claimed these regular expressions follow the XML 1.1 name rules ex-
actly, that’s actually only true for characters up to 16-bits wide (positions 0x0 through
0xFFFF). XML 1.1 additionally allows the 917,503 code points between positions
0x10000 and 0xEFFFF to occur after the name start character. However, only PCRE,
Perl, and Python are even capable of referencing code points beyond 0xFFFF, and you
are unlikely to encounter any in the wild (for one thing, most of the positions in this
range have not been assigned an actual character). If you need to add support for these
extra code points, in PCRE and Perl you could add ‹\x{10000}-\x{EFFFF}› at the end
of the second character class, and in Python you could add ‹\U00010000-
\U000EFFFF› (note the uppercase U, which must be followed by eight hexadecimal dig-
its). But even without adding this massive range, the XML 1.1 name character list we’ve
just shown is much more permissive than XML 1.0.

Discussion
Since many of the regular expressions in this chapter deal with matching XML elements,
this recipe largely serves to provide a fuller discussion of the patterns that can be used
when you want to get very specific about how tag and attribute names are matched.
Elsewhere, we mostly stick to simpler patterns that are less precise, in the interest of
readability and efficiency.

So let’s dig a little deeper into the rules behind these patterns.

XML 1.0 names

The XML 1.0 specification uses a whitelist approach for its name rules, and explicitly
lists all the characters that are allowed. The name start character can be a colon (:),
underscore (_), or approximately any character in the following Unicode categories:

• Lowercase letter (Ll)

• Uppercase letter (Lu)

• Titlecase letter (Lt)

• Letter without case (Lo)

• Letter number (Nl)

After the initial character, hyphen (-), period (.), and any character in the following
categories are allowed in addition to the characters already mentioned:

• Mark (M), which combines the subcategories non-spacing mark (Mn), spacing
combining mark (Mc), and enclosing mark (Me)

• Modifier letter (Lm)

• Decimal digit (Nd)

These rules lead us to the regular expression shown in the “Solution” of this recipe.
Here it is again in free-spacing mode:

444 | Chapter 8: Markup and Data Interchange

\A # Start of string
[:_\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nl}] # Name start character
[:_\-.\p{L}\p{M}\p{Nd}\p{Nl}]* # Name characters (zero or more)
\Z # End of string

Regex options: Free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Ruby 1.9

Again, PCRE must be compiled with UTF-8 support. In PHP, turn on UTF-8 support
with the /u pattern modifier.

Notice that in the second character class, all of the letter subcategories (Ll, Lu, Lt, Lo,
and Lm) have been combined into their base category using ‹\p{L}›.
Earlier, we noted that the rules described here are approximate. There are a couple of
reasons for that. First, the XML 1.0 specification (remember that we’re not talking
about the fifth edition and later here) lists a number of exceptions to these rules. Second,
the XML 1.0 character lists were derived from Unicode 2.0, which was released back
in 1996. Later versions of the Unicode standard have added support for an assortment
of new scripts whose characters are not permitted by the XML 1.0 rules. However,
decoupling the regex from whatever Unicode version your regex engine uses so you
can restrict matches to Unicode 2.0 characters would turn this pattern into a page-long
monstrosity filled with hundreds of ranges and code points. If you really want to create
this monster, refer to XML 1.0, Fourth Edition (http://www.w3.org/TR/2006/REC-xml
-20060816) section 2.3, “Common Syntactic Constructs,” and Appendix B, “Character
Classes.”

Following are several flavor-specific ways to shorten the regex we’ve already seen.

Perl and PCRE let you combine the lowercase letter (Ll), uppercase letter (Lu), and
titlecase letter (Lt) subcategories into the special “letter with case” (L&) category. These
regex flavors also let you omit the curly brackets in the ‹\p{⋯}› escape sequence if only
one letter is used within. We’ve taken advantage of this in the following regex by using
‹\pL\pM› instead of ‹\p{L}\p{M}›:

\A[:_\p{L&}\p{Lo}\p{Nl}][:_\-.\pL\pM\p{Nd}\p{Nl}]*\Z
Regex options: None
Regex flavors: PCRE, Perl

.NET supports character class subtraction, which is used in the first character class here
to subtract the Lm subcategory from L, rather than explicitly listing all the other letter
subcategories:

\A[:_\p{L}\p{Nl}-[\p{Lm}]][:_\-.\p{L}\p{M}\p{Nd}\p{Nl}]*\Z
Regex options: None
Regex flavor: .NET

Java, like PCRE and Perl, lets you omit the curly brackets around one-letter Unicode
categories. The following regex also takes advantage of Java’s more complicated version

8.4 Match XML Names | 445

of character class subtraction (implemented via intersection with a negated class) to
subtract the Lm subcategory from L:

\A[:_\pL\p{Nl}&&[^\p{Lm}]][:_\-.\pL\pM\p{Nd}\p{Nl}]*\Z
Regex options: None
Regex flavor: Java

JavaScript, Python, and Ruby 1.8 don’t support Unicode categories at all. Ruby 1.9
doesn’t have the fancy features just described, but it does support the more portable
version of these regexes shown in the “Solution” of this recipe.

XML 1.1 names

XML 1.0 made the mistake of explicitly tying itself to Unicode 2.0. Later versions of
the Unicode standard have added support for many more characters, some of which
are from scripts that weren’t previously accounted for at all (e.g., Cherokee, Ethiopic,
and Mongolian). Since XML wants to be regarded as a universal format, it has tried to
fix this problem with XML 1.1 and 1.0 Fifth Edition. These later versions switch from
a whitelist to a blacklist approach for name characters in order to support not only the
characters added since Unicode 2.0, but also those that may be added in the future.

This new strategy of allowing anything that isn’t explicitly forbidden improves future
compatibility, and it also makes it easier and less verbose to precisely follow the rules.
That’s why the XML 1.1 name regexes are labeled as being exact, whereas the XML 1.0
regex is approximate.

Variations
In some of this chapter’s recipes (e.g., Recipe 8.1), the pattern segments that deal with
XML names employ next to no restrictions or disallow foreign scripts and other char-
acters that are in fact perfectly valid. This is done to keep things simple. However, if
you want to allow foreign scripts while still providing a base level of restrictions (and
you don’t need the more precise name validation of earlier regexes in this recipe), these
next regexes might do the trick.

We’ve left the start- and end-of-string anchors off of these regexes since
they’re not meant to be used on their own, but rather as parts of longer
patterns.

This first regex simply avoids matching the characters used as separators and delimiters
within XML tags, and additionally prevents matching a digit as the first character:

[^\d\s"'/<=>][^\s"'/<=>]*
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

446 | Chapter 8: Markup and Data Interchange

Following is another, even shorter way to accomplish the same thing. Instead of using
two separate character classes, it uses negative lookahead to forbid a digit as the initial
character. This ban applies to the first matched character only, even though the ‹+›
quantifier after the character class lets the regex match an unlimited number of
characters:

(?!\d)[^\s"'/<=>]+
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

See Also
John Cowan, one of the editors of the XML 1.1 specification, explains which characters
are forbidden in XML 1.1 names and why in a blog post at http://recycledknowledge
.blogspot.com/2008/02/which-characters-are-excluded-in-xml.html.

The document “Background to Changes in XML 1.0, 5th Edition” at http://www.w3
.org/XML/2008/02/xml10_5th_edition_background.html discusses the rationale for
backporting XML 1.1’s name rules to XML 1.0, Fifth Edition.

8.5 Convert Plain Text to HTML by Adding <p> and
 Tags
Problem
Given a plain text string, such as a multiline value submitted via a form, you want to
convert it to an HTML fragment to display within a web page. Paragraphs, separated
by two line breaks in a row, should be surrounded with <p>⋯</p>. Additional line
breaks should be replaced with
 tags.

Solution
This problem can be solved in four simple steps. In most programming languages, only
the middle two steps benefit from regular expressions.

Step 1: Replace HTML special characters with character entity references

As we’re converting plain text to HTML, the first step is to convert the three special
HTML characters &, <, and > to character entity references (see Table 8-3). Otherwise,
the resulting markup could lead to unintended results when displayed in a web browser.

Table 8-3. HTML special character substitutions

Search for Replace with

‹&› «&»
‹<› «<»
‹>› «>»

8.5 Convert Plain Text to HTML by Adding <p> and
 Tags | 447

Ampersands (&) must be replaced first, since you’ll be adding additional ampersands
to the subject string as part of the character entity references.

Step 2: Replace all line breaks with

Search for:

\r\n?|\n
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

\R
Regex options: None
Regex flavors: PCRE 7, Perl 5.10

Replace with:

Replacement text flavors: .NET, Java, JavaScript, Perl, PHP, Python, Ruby

Step 3: Replace double
 tags with </p><p>

Search for:

\s*

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Replace with:

</p><p>
Replacement text flavors: .NET, Java, JavaScript, Perl, PHP, Python, Ruby

Step 4: Wrap the entire string with <p>⋯</p>

This step is a simple string concatenation, and doesn’t require regular expressions.

JavaScript example

As we tie all four steps together, we’ll create a JavaScript function called
html_from_plaintext. This function accepts a string, processes it using the steps we’ve
just described, then returns the new HTML string:

function html_from_plaintext (subject) {
 // step 1 (plain text searches)
 subject = subject.replace(/&/g, "&").
 replace(/</g, "<").
 replace(/>/g, ">");

 // step 2
 subject = subject.replace(/\r\n?|\n/g, "
");

448 | Chapter 8: Markup and Data Interchange

 // step 3
 subject = subject.replace(/
\s*
/g, "</p><p>");

 // step 4
 subject = "<p>" + subject + "</p>";

 return subject;
}

/*
html_from_plaintext("Test.") -> "<p>Test.</p>"
html_from_plaintext("Test.\n") -> "<p>Test.
</p>"
html_from_plaintext("Test.\n\n") -> "<p>Test.</p><p></p>"
html_from_plaintext("Test1.\nTest2.") -> "<p>Test1.
Test2.</p>"
html_from_plaintext("Test1.\n\nTest2.") -> "<p>Test1.</p><p>Test2.</p>"
html_from_plaintext("< AT&T >") -> "<p>< AT&T ></p>"
*/

Several examples are included at the end of the code snippet that show the output when
this function is applied to various subject strings. If JavaScript is foreign to you, note
that the /g modifier appended to each of the regex literals causes the replace method
to replace all occurrences of the pattern, rather than just the first. The \n metasequence
in the example subject strings inserts a line feed character (ASCII position 0x0A) in a
JavaScript string literal.

Discussion

Step 1: Replace HTML special characters with character entity references

The easiest way to complete this step is to use three discrete search-and-replace
operations (see Table 8-3, shown earlier, for the list of replacements). JavaScript always
uses regular expressions for global search-and-replace operations, but in other pro-
gramming languages you will typically get better performance from simple plain-text
substitutions.

Step 2: Replace all line breaks with

In this step, we use the regular expression ‹\r\n?|\n› to find line breaks that follow the
Windows/MS-DOS (CRLF), Unix/Linux/OS X (LF), and legacy Mac OS (CR) con-
ventions. Perl 5.10 and PCRE 7 users can use the dedicated ‹\R› token (note the up-
percase R) instead for matching those and other line break sequences.

Replacing all line breaks with
 before adding paragraph tags in the next step keeps
things simpler overall, since it gives you the option to add whitespace between your
</p><p> tags in later substitutions. Doing so can help keep your HTML code readable
by not smashing it all together.

8.5 Convert Plain Text to HTML by Adding <p> and
 Tags | 449

If you prefer to use XHTML-style singleton tags, use «<br●/>» instead of «
» as
your replacement string. You’ll also need to alter the regular expression in Step 3 to
match this change.

Step 3: Replace double
 tags with </p><p>

Two line breaks in a row indicate the end of one paragraph and the start of another, so
our replacement text for this step is a closing </p> tag followed by an opening <p>. If
the subject text contains only one paragraph (i.e., two line breaks never appear in a
row), no substitutions will be made. Step 2 already replaced several line break conven-
tions (leaving behind only
 tags), so this step could be handled with a plain text
substitution. However, using a regex here makes it easy to take things one step further
and ignore whitespace that appears between line breaks. Any extra space characters
won’t be rendered in an HTML document anyway.

If you’re generating XHTML and therefore replaced line breaks with «<br●/>» instead
of «
», you’ll need to adjust the regex for this step to ‹<br●/>\s*<br●/>›.

Step 4: Wrap the entire string with <p>⋯</p>

Step 3 merely added markup between paragraphs. Now you need to add a <p> tag at
the very beginning of the subject string, and a closing </p> at the very end. That com-
pletes the process, whether there were 1 or 100 paragraphs in the text.

See Also
Recipe 4.10 includes more information about Perl and PCRE’s ‹\R› token, and shows
how to manually match the additional, esoteric line separators that are supported by
‹\R›.

8.6 Find a Specific Attribute in XML-Style Tags
Problem
You want to find tags within an (X)HTML or XML file that contain a specific attribute,
such as id.

This recipe covers several variations on the same problem. Suppose that you want to
match each of the following types of strings using separate regular expressions:

• Tags that contain an id attribute.

• <div> tags that contain an id attribute.

• Tags that contain an id attribute with the value my-id.

• Tags that contain my-class within their class attribute value (classes are separated
by whitespace).

450 | Chapter 8: Markup and Data Interchange

Solution

Tags that contain an id attribute (quick and dirty)

If you want to do a quick search in a text editor that lets you preview your results, the
following (overly simplistic) regex might do the trick:

<[^>]+\sid\b[^>]*>
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Here’s a breakdown of the regex in free-spacing mode:

< # Start of the tag
[^>]+ # Tag name, attributes, etc.
\s id \b # The target attribute name, as a whole word
[^>]* # The remainder of the tag, including the id attribute's value
> # End of the tag

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Tags that contain an id attribute (more reliable)

Unlike the regex just shown, this next take on the same problem supports quoted
attribute values that contain literal > characters, and it doesn’t match tags that merely
contain the word id within one of their attributes’ values:

<(?:[^>"']|"[^"]*"|'[^']*')+?\sid\s*=\s*("[^"]*"|'[^']*')↵
(?:[^>"']|"[^"]*"|'[^']*')*>

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

In free-spacing mode:

< #
(?: [^>"'] # Tag and attribute names, etc.
 | "[^"]*" # ...and quoted attribute values
 | '[^']*' #
)+? #
\s id # The target attribute name, as a whole word
\s* = \s* # Attribute name-value delimiter
("[^"]*" | '[^']*') # Capture the attribute value to backreference 1
(?: [^>"'] # Any remaining characters
 | "[^"]*" # ...and quoted attribute values
 | '[^']*' #
)* #
> #

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

8.6 Find a Specific Attribute in XML-Style Tags | 451

This regex captures the id attribute’s value and surrounding quote marks to backre-
ference 1. This allows you to use the value in code outside of the regex or in a replace-
ment string. If you don’t need to reuse the value, you can switch to a noncapturing
group or replace the entire ‹\s*=\s*("[^"]*"|'[^']*')› sequence with ‹\b›. The re-
mainder of the regex will pick up the slack and match the id attribute’s value.

<div> tags that contain an id attribute

To search for a specific tag type, you need to add its name to the beginning of the regex
and make a couple of other minor changes to the previous regex. In the following
example, we’ve added ‹div\s› after the opening ‹<›. The ‹\s› (whitespace) token ensures
that we don’t match tags whose names merely start with the three letters “div”. We
know there will be a whitespace character following the tag name because the tags we’re
searching for have at least one attribute (id). Additionally, the ‹+?\sid› sequence has
been changed to ‹*?\bid›, so that the regex works when id is the first attribute within
the tag and there are no additional separating characters (beyond the initial space) after
the tag name:

<div\s(?:[^>"']|"[^"]*"|'[^']*')*?\bid\s*=\s*("[^"]*"|'[^']*')↵
(?:[^>"']|"[^"]*"|'[^']*')*>

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Here is the same thing in free-spacing mode:

<div \s # Tag name and following whitespace character
(?: [^>"'] # Tag and attribute names, etc.
 | "[^"]*" # ...and quoted attribute values
 | '[^']*' #
)*? #
\b id # The target attribute name, as a whole word
\s* = \s* # Attribute name-value delimiter
("[^"]*" | '[^']*') # Capture the attribute value to backreference 1
(?: [^>"'] # Any remaining characters
 | "[^"]*" # ...and quoted attribute values
 | '[^']*' #
)* #
> #

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Tags that contain an id attribute with the value “my-id”

Compared to the regex titled “Tags that contain an id attribute (more relia-
ble)” on page 451, this time we’ll remove the capturing group around the id attribute’s
value since you already know the value in advance. Specifically, the subpattern
‹("[^"]*"|'[^']*')› has been replaced with ‹(?:"my-id"|'my-id')›:

452 | Chapter 8: Markup and Data Interchange

<(?:[^>"']|"[^"]*"|'[^']*')+?\sid\s*=\s*(?:"my-id"|'my-id')↵
(?:[^>"']|"[^"]*"|'[^']*')*>

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

And the free-spacing version:

< #
(?: [^>"'] # Tag and attribute names, etc.
 | "[^"]*" # ...and quoted attribute values
 | '[^']*' #
)+? #
\s id # The target attribute name, as a whole word
\s* = \s* # Attribute name-value delimiter
(?: "my-id" # The target attribute value
 | 'my-id') # ...surrounded by single or double quotes
(?: [^>"'] # Any remaining characters
 | "[^"]*" # ...and quoted attribute values
 | '[^']*' #
)* #
> #

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Going back to the ‹(?:"my-id"|'my-id')› subpattern for a second, you could alterna-
tively avoid repeating “my-id” (at the cost of some efficiency) by using ‹(["'])my-id
\1›. That uses a capturing group and backreference to ensure that the value starts and
ends with the same type of quote mark.

Tags that contain “my-class” within their class attribute value

If the previous regular expressions haven’t already passed this threshold, this is where
it becomes obvious that we’re pushing the boundary of what can sensibly be accom-
plished using a single regex. Splitting the process into multiple regexes helps a little, so
we’ll split this search into three parts. The first regex will match tags, the next will find
the class attribute within it (and store its value within a backreference), and finally
we’ll search within the value for my-class.

Find tags:

<(?:[^>"']|"[^"]*"|'[^']*')+>
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Recipe 8.1 is dedicated to matching XML-style tags. It explains how the
regex just shown works, and provides a number of alternatives with
varying degrees of complexity and accuracy.

8.6 Find a Specific Attribute in XML-Style Tags | 453

Next, follow the code in Recipe 3.13 to search within each match for a class attribute
using the following regex:

^(?:[^>"']|"[^"]*"|'[^']*')+?\sclass\s*=\s*("[^"]*"|'[^']*')
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

This captures the entire class value and its surrounding quote marks to backreference
1. Everything before the class attribute is matched using ‹^(?:[^>"']|"[^"]*"|'[^']*')
+?›, which matches quoted values in single steps to avoid finding the word “class” inside
another attribute’s value. On the right side of the pattern, the match ends as soon as
we reach the end of the class attribute’s value. Nothing after that is relevant to our
search, so there’s no reason to match all the way to the end of the tag within which
you’re searching.

The caret at the beginning of the regex anchors it to the start of the subject string. This
doesn’t change what is matched, but it’s there so that if the regex engine can’t find a
match starting at the beginning of the string, it doesn’t try again (and inevitably fail) at
each subsequent character position.

Finally, if both of the previous regexes matched successfully, you’ll want to search
within backreference 1 of the second regex’s matches using the following pattern:

(?:^|\s)my-class(?:\s|$)
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Since classes are separated by whitespace, my-class must be bordered on both ends by
either whitespace or nothing at all. If it weren’t for the fact that class names can include
hyphens, you could use word boundary tokens instead of the two noncapturing groups
here. However, hyphens create word boundaries, and thus ‹\bmy-class\b› would match
within not-my-class.

Discussion
The “Solution” of this recipe already covers the details of how these regular expressions
work, so we’ll avoid rehashing it all here. Remember that regular expressions are often
not the ideal solution for markup searches, especially those that reach the complexity
described in this recipe. Before using these regular expressions, consider whether you’d
be better served by an alternative solution, such as XPath, a SAX parser, or a DOM.
We’ve included these regexes since it’s not uncommon for people to try to pull off this
kind of thing, but don’t say you weren’t warned. Hopefully this has at least helped to
show some of the issues involved in markup searches, and helped you avoid even more
naïve solutions.

454 | Chapter 8: Markup and Data Interchange

See Also
Recipe 8.7 is the conceptual inverse of this recipe, and finds tags that do not contain a
specific attribute.

8.7 Add a cellspacing Attribute to <table> Tags That Do Not
Already Include It
Problem
You want to search through an (X)HTML file and add cellspacing="0" to all tables
that do not already include a cellspacing attribute.

This recipe serves as an example of adding an attribute to XML-style tags that do not
already include it. You can swap in whatever tag and attribute names and values you
prefer.

Solution

Regex 1: Simplistic solution

You can use negative lookahead to match <table> tags that do not contain the word
cellspacing, as follows:

<table\b(?![^>]*?\scellspacing\b)([^>]*)>
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Here’s the regex again in free-spacing mode:

<table \b # Match "<table", followed by a word boundary
(?! # Assert that the regex below cannot be matched here
 [^>] # Match any character except ">"...
 *? # zero or more times, as few as possible (lazy)
 \s cellspacing \b # Match "cellspacing" as a complete word
) #
(# Capture the regex below to backreference 1
 [^>] # Match any character except ">"...
 * # zero or more times, as many as possible (greedy)
) #
> # Match a literal ">" to end the tag

Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

8.7 Add a cellspacing Attribute to <table> Tags That Do Not Already Include It | 455

Regex 2: More reliable solution

The following regex replaces both instances of the negated character class ‹[^>]› from
the simplistic solution with ‹(?:[^>"']|"[^"]*"|'[^']*')›. This improves the regular
expression’s reliability in two ways. First, it adds support for quoted attribute values
that contain literal “>” characters. Second, it ensures that we don’t preclude matching
tags that merely contain the word “cellspacing” within an attribute’s value.

Here’s how the regex looks with the change we’ve just described:

<table\b(?!(?:[^>"']|"[^"]*"|'[^']*')*?\scellspacing\b)↵
((?:[^>"']|"[^"]*"|'[^']*')*)>

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

And here it is in free-spacing mode:

<table \b # Match "<table", followed by a word boundary
(?! # Assert that the regex below cannot be matched here
 (?: [^>"'] # Match any character except >, ", or '
 | "[^"]*" # Or, a double-quoted value
 | '[^']*' # Or, a single-quoted value
)*? # Zero or more times, as few as possible (lazy)
 \s cellspacing \b # Match "cellspacing" as a complete word
) #
(# Capture the regex below to backreference 1
 (?: [^>"'] # Match any character except >, ", or '
 | "[^"]*" # Or, a double-quoted value
 | '[^']*' # Or, a single-quoted value
)* # Zero or more times, as many as possible (greedy)
) #
> #

Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Insert the new attribute

All of the regexes shown in this recipe can use the same replacement strings, since the
regexes all capture attributes within the matched <table> tags (if any) to backreference
1. This lets you bring back those attributes as part of your replacement value, while
adding the new cellspacing attribute. Here are the necessary replacement strings:

<table●cellspacing="0"$1>
Replacement text flavors: .NET, Java, JavaScript, Perl, PHP

<table●cellspacing="0"\1>
Replacement text flavors: Python, Ruby

Recipe 3.15 shows how to perform substitutions that use a backreference in the re-
placement string.

456 | Chapter 8: Markup and Data Interchange

Discussion
In order to examine how these regexes work, we’ll first break down the simplistic sol-
ution. As you’ll see, it has four logical parts.

The first part, ‹<table\b›, matches the literal characters <table, followed by a word
boundary (‹\b›). The word boundary prevents matching tag names that merely start
with “table”. Although that might seem unnecessary here when working with
(X)HTML (since there are no valid elements named “tablet”, “tableau”, or “table-
spoon”, for example), it’s good practice nonetheless, and can help you avoid bugs when
adapting this regex to search for other tags.

The second part of the regex, ‹(?![^>]*?\scellspacing\b)›, is a negative lookahead. It
doesn’t consume any text as part of the match, but it asserts that the match attempt
should fail if the word cellspacing occurs anywhere within the opening tag. Since we’re
going to add the cellspacing attribute to all matches, we don’t want to match tags that
already contain it.

Since the lookahead peeks forward from the current position in the match attempt, it
uses the leading ‹[^>]*?› to let it search as far forward as it needs to, up until what is
assumed to be the end of the tag (the first occurrence of >). The remainder of the
lookahead subpattern (‹\scellspacing\b›) simply matches the literal characters “cell-
spacing” as a complete word. We match a leading whitespace character (‹\s›) since
whitespace must always separate an attribute name from the tag name or preceding
attributes. We match a trailing word boundary instead of another whitespace character
since a word boundary fulfills the need to match cellspacing as a complete word, yet
works even if the attribute has no value or if the attribute name is immediately followed
by an equals sign.

Moving along, we get to the third piece of the regex: ‹([^>]*)›. This is a negated char-
acter class and a following “zero or more” quantifier, wrapped in a capturing group.
Capturing this part of the match allows you to easily bring back the attributes that each
matched tag contained as part of the replacement string. And unlike the negative look-
ahead, this part actually adds the attributes within the tag to the string matched by the
regex.

Finally, the regex matches the literal character ‹>› to end the tag.

Regex 2, the so-called more reliable version, works exactly the same as the regex we’ve
just described, except that both instances of the negated character class ‹[^>]› are re-
placed with ‹(?:[^>"']|"[^"]*"|'[^']*')›. This longer pattern passes over double- and
single-quoted attribute values in one step.

As for the replacement strings, they work with both regexes, replacing each matched
<table> tag with a new tag that includes cellspacing as the first attribute, followed by
whatever attributes occurred within the original tag (backreference 1).

8.7 Add a cellspacing Attribute to <table> Tags That Do Not Already Include It | 457

See Also
Recipe 8.6 is the conceptual inverse of this recipe, and finds tags that contain a specific
attribute.

8.8 Remove XML-Style Comments
Problem
You want to remove comments from an (X)HTML or XML document. For example,
you want to remove comments from a web page before it is served to web browsers in
order to reduce the file size of the page and thereby reduce load time for people with
slow Internet connections.

Solution
Finding comments is not a difficult task, thanks to the availability of lazy quantifiers.
Here is the regular expression for the job:

<!--.*?-->
Regex options: Dot matches line breaks
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

That’s pretty straightforward. As usual, though, JavaScript’s lack of a “dot matches line
breaks” option means that you’ll need to replace the dot with an all-inclusive character
class in order for the regular expression to match comments that span more than one
line. Following is a version that works with JavaScript:

<!--[\s\S]*?-->
Regex options: None
Regex flavor: JavaScript

To remove the comments, replace all matches with the empty string (i.e., nothing).
Recipe 3.14 lists code to replace all matches of a regex.

Discussion

How it works

At the beginning and end of this regular expression are the literal character sequences
‹<!--› and ‹-->›. Since none of those characters are special in regex syntax (except
within character classes, where hyphens create ranges), they don’t need to be escaped.
That just leaves the ‹.*?› or ‹[\s\S]*?› in the middle of the regex to examine further.

Thanks to the “dot matches line breaks” option, the dot in the regex shown first
matches any single character. In the JavaScript version, the character class ‹[\s\S]›
takes its place. However, the two regexes are exactly equivalent. ‹\s› matches any

458 | Chapter 8: Markup and Data Interchange

whitespace character, and ‹\S› matches everything else. Combined, they match any
character.

The lazy ‹*?› quantifier repeats its preceding “any character” element zero or more
times, as few times as possible. Thus, the preceding token is repeated only until the
first occurrence of -->, rather than matching all the way to the end of the subject string,
and then backtracking until the last -->. (See Recipe 2.13 for more on how backtracking
works with lazy and greedy quantifiers.) This simple strategy works well since XML-
style comments cannot be nested within each other. In other words, they always end
at the first (leftmost) occurrence of -->.

When comments can’t be removed

Most web developers are familiar with using HTML comments within <script> and
<style> elements for backward compatibility with ancient browsers. These days, it’s
mostly just a meaningless incantation, but its use lives on thanks in part to
copy-and-paste coding. We’re going to assume that when you remove comments from
an (X)HTML document, you don’t want to strip out embedded JavaScript and CSS.
You probably also want to leave the contents of <textarea> elements, CDATA sections,
and the values of attributes within tags alone.

Earlier, we said removing comments wasn’t a difficult task. As it turns out, that was
only true if you ignore some of the tricky areas of (X)HTML or XML where the syntax
rules change. In other words, if you ignore the hard parts of the problem, it’s easy.

Of course, in some cases you might evaluate the markup you’re dealing with and decide
it’s OK to ignore these problem cases, maybe because you wrote the markup yourself
and know what to expect. It might also be OK if you’re doing a search-and-replace in
a text editor and are able to manually inspect each match before removing it.

But getting back to how to work around these issues, in “Skip tricky (X)HTML and
XML sections” on page 428 we discussed some of these same problems in the context
of matching XML-style tags. We can use a similar line of attack when searching for
comments. Use the code in Recipe 3.18 to first search for tricky sections using the
regular expression shown next, and then replace comments found between matches
with the empty string (i.e., remove the comments):

<(script|style|textarea|xmp)\b(?:[^>"']|"[^"]*"|'[^']*')*?↵
(?:/>|>.*?</\1\s*>)|<[a-z](?:[^>"']|"[^"]*"|'[^']*')*>|<!\[CDATA\[.*?]]>

Regex options: Case insensitive, dot matches line breaks
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Adding some whitespace and a few comments to the regex in free-spacing mode makes
this a lot easier to follow:

Special element: tag and content
<(script | style | textarea | xmp)\b
 (?: [^>"'] # Match any attribute names
 | "[^"]*" # ...and values

8.8 Remove XML-Style Comments | 459

 | '[^']*' #
)*?
(?: # Singleton tag
 />
 | # Otherwise, include the element's content and matching closing tag
 > .*? </\1\s*>
)

|

Standard element: tag only
<[a-z] # Tag name initial character
 (?: [^>"'] # Match the rest of the tag name
 | "[^"]*" # ...along with attribute
 | '[^']*' # ...names and values
)*
>

|

CDATA section
<!\[CDATA\[.*?]]>

Regex options: Case insensitive, dot matches line breaks, free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Here’s an equivalent version for JavaScript, which lacks both “dot matches line breaks”
and “free-spacing” options:

<(script|style|textarea|xmp)\b(?:[^>"']|"[^"]*"|'[^']*')*?↵
(?:/>|>[\s\S]*?</\1\s*>)|<[a-z](?:[^>"']|"[^"]*"|'[^']*')*>|<!\[CDATA\[↵
[\s\S]*?]]>

Regex options: Case insensitive
Regex flavor: JavaScript

Variations

Find valid XML-style comments

There are in fact a few syntax rules for (X)HTML and XML comments that go beyond
simply starting with <!-- and ending with -->. Specifically:

• Two hyphens cannot appear in a row within a comment. For example, <!--
com--ment --> is invalid because of the two hyphens in the middle.

• The closing delimiter cannot be preceded by a hyphen that is part of the
comment. For example, <!-- comment ---> is invalid, but the completely empty
comment <!----> is allowed.

• Whitespace may occur between the closing -- and >. For example, <!-- comment
-- > is a valid, complete comment.

460 | Chapter 8: Markup and Data Interchange

It’s not hard to work these rules into a regex:

<!--[^-]*(?:-[^-]+)*--\s*>
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Notice that everything between the opening and closing comment delimiters is still
optional, so it matches the completely empty comment <!---->. However, if a hyphen
occurs between the delimiters, it must be followed by at least one nonhyphen character.
And since the inner portion of the regex can no longer match two hyphens in a row,
the lazy quantifier from the regexes at the beginning of this recipe has been replaced
with greedy quantifiers. Lazy quantifiers would still work fine, but sticking with them
here would result in unnecessary backtracking (see Recipe 2.13).

Some readers might look at this new regex and wonder why the ‹[^-]› negated character
class is used twice, rather than just making the hyphen inside the noncapturing group
optional (i.e., ‹<!--(?:-?[^-]+)*--\s*>›). There’s a good reason, which brings us back
to the discussion of “catastrophic backtracking” from Recipe 2.15.

So-called nested quantifiers always warrant extra attention and care in order to ensure
that you’re not creating the potential for catastrophic backtracking. A quantifier is
nested when it occurs within a grouping that is itself repeated by a quantifier. For
example, the pattern ‹(?:-?[^-]+)*› contains two nested quantifiers: the question mark
following the hyphen and the plus sign following the negated character class.

However, nesting quantifiers is not really what makes this dangerous, performance-
wise. Rather, it’s that there are a potentially massive number of ways that the outer
‹*› quantifier can be combined with the inner quantifiers while attempting to match a
string. If the regex engine fails to find --> at the end of a partial match (as is required
when you plug this pattern segment into the comment-matching regex), the engine
must try all possible repetition combinations before failing the match attempt and
moving on. This number of options expands extremely rapidly with each additional
character that the engine must try to match. However, there is nothing dangerous about
the nested quantifiers if this situation is avoided. For example, the pattern ‹(?:-[^-]
+)*› does not pose a risk, even though it contains a nested ‹+› quantifier, because now
that exactly one hyphen must be matched per repetition of the group, the potential
number of backtracking points increases linearly with the length of the subject string.

Another way to avoid the potential backtracking problem we’ve just described is to use
an atomic group. The following is equivalent to the first regex shown in this section,
but it’s a few characters shorter and isn’t supported by JavaScript or Python:

<!--(?>-?[^-]+)*--\s*>
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Ruby

See Recipe 2.14 for the details about how atomic groups (and their counterpart, pos-
sessive quantifiers) work.

8.8 Remove XML-Style Comments | 461

Find C-style comments

The same type of pattern as shown for XML-style comments works well with other
nonnested, multiline comments. C-style comments either start with /* and end with
the first occurrence of */, or start with // and continue until the end of the line. The
following regex matches both of these comment types by combining a pattern for each
type using a vertical bar:

/*[\s\S]*?*/|//.*
Regex options: None (“dot matches line breaks” must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

See Also
Recipe 8.9 shows how to find specific words when they occur within XML-style
comments.

8.9 Find Words Within XML-Style Comments
Problem
You want to find all occurrences of the word TODO within (X)HTML or XML comments.
For example, you want to match only the underlined text within the following string:

This "TODO" is not within a comment, but the next one is. <!-- TODO: ↵
Come up with a cooler comment for this example. -->

Solution
There are at least two approaches to this problem, and both have their advantages. The
first tactic, described as the “Two-step approach” on page 463, is to find comments
with an outer regex, and then search within each match using a separate regex or even
a plain text search. That works best if you’re writing code to do the job, since separating
the task into two steps keeps things simple and fast. However, if you’re searching
through files using a text editor or grep tool, splitting the task in two won’t work unless
your tool of choice offers a special option to search within matches found by another
regex.†

When you need to find words within comments using a single regex, you can accom-
plish this with the help of lookaround. This second method is shown in the upcoming
section “Single-step approach”.

† PowerGREP—described in “Tools for Working with Regular Expressions” in Chapter 1—is one tool that’s
able to search within matches.

462 | Chapter 8: Markup and Data Interchange

Two-step approach

When it’s a workable option, the better solution is to split the task in two: search for
comments, and then search within those comments for TODO.

Here’s how you can find comments:

<!--.*?-->
Regex options: Dot matches line breaks
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

JavaScript doesn’t have a “dot matches line breaks” option, but you can use an all-
inclusive character class in place of the dot, as follows:

<!--[\s\S]*?-->
Regex options: None
Regex flavor: JavaScript

For each comment you find using one of the regexes just shown, you can then search
within the matched text for the literal characters ‹TODO›. If you prefer, you can make it
a case-insensitive regex with word boundaries on each end to make sure that only the
complete word TODO is matched, like so:

\bTODO\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Recipe 3.13 shows how to search within matches of an outer regex.

Single-step approach

Lookahead (described in Recipe 2.16) lets you solve this problem with a single regex,
albeit less efficiently. In the following regex, positive lookahead is used to make sure
that the word TODO is followed by the closing comment delimiter -->. On its own, that
doesn’t tell whether the word appears within a comment or is simply followed by a
comment, so a nested negative lookahead is used to ensure that the opening comment
delimiter <!-- does not appear before the -->:

\bTODO\b(?=(?:(?!<!--).)*?-->)
Regex options: Case insensitive, dot matches line breaks
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Since JavaScript doesn’t have a “dot matches line breaks” option, use ‹[\s\S]› in place
of the dot:

\bTODO\b(?=(?:(?!<!--)[\s\S])*?-->)
Regex options: Case insensitive
Regex flavor: JavaScript

8.9 Find Words Within XML-Style Comments | 463

Discussion

Two-step approach

Recipe 3.13 shows the code you need to search within matches of another regex. It
takes an inner and outer regex. The comment regex serves as the outer regex, and
‹\bTODO\b› as the inner regex. The main thing to note here is the lazy ‹*?› quantifier that
follows the dot or character class in the comment regex. As explained in Recipe 2.13,
that lets you match up to the first --> (the one that ends the comment), rather than the
very last occurrence of --> in your subject string.

Single-step approach

This solution is more complex, and slower. On the plus side, it combines the two steps
of the previous approach into one regex. Thus, it can be used when working with a text
editor, IDE, or other tool that doesn’t allow searching within matches of another regex.

Let’s break this regex down in free-spacing mode, and take a closer look at each part:

\b TODO \b # Match the characters "TODO", as a complete word
(?= # Assert that the regex below can match here
 (?: # Group but don't capture...
 (?! <!--) # Assert that "<!--" cannot match here
 . # Match any single character
)*? # Repeat zero or more times, as few as possible (lazy)
 --> # Match the characters "-->"
) #

Regex options: Dot matches line breaks, free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

This commented version of the regex doesn’t work in JavaScript, since JavaScript lacks
both “free-spacing” and “dot matches line breaks” modes.

Notice that the regex contains a negative lookahead nested within an outer, positive
lookahead. That lets you require that any match of TODO is followed by --> and that
<!-- does not occur in between.

If it’s clear to you how all of this works together, great: you can skip the rest of this
section. But in case it’s still a little hazy, let’s take another step back and build the outer,
positive lookahead in this regex step by step.

Let’s say for a moment that we simply want to match occurrences of the word TODO that
are followed at some point in the string by -->. That gives us the regex ‹\bTODO
\b(?=.*?-->)› (with “dot matches line breaks” enabled), which matches the underlined
text in <!--TODO--> just fine. We need the ‹.*?› at the beginning of the lookahead,
because otherwise the regex would match only when TODO is immediately followed by
-->, with no characters in between. The ‹*?› quantifier repeats the dot zero or more

464 | Chapter 8: Markup and Data Interchange

times, as few times as possible, which is great since we only want to match until the
first following -->.

As an aside, the regex so far could be rewritten as ‹\bTODO(?=.*?-->)\b›—with the
second ‹\b› moved after the lookahead—without any affect on the text that is matched.
That’s because both the word boundary and the lookahead are zero-length assertions
(see “Lookaround” on page 75). However, it’s better to place the word boundary first
for readability and efficiency. In the middle of a partial match, the regex engine can
more quickly test a word boundary, fail, and move forward to try again at the next
character in the string without having to spend time testing the lookahead when it isn’t
necessary because TODO is not a complete word.

OK, so the regex ‹\bTODO\b(?=.*?-->)› seems to work fine so far, but what about when
it’s applied to the subject string TODO <!-- separate comment -->? The regex still
matches TODO since it’s followed by -->, even though TODO is not within a comment.
Thus, we need to change the dot within the lookahead from matching any character to
any character that is not part of the string <!--, since that would indicate the start of a
new comment. We can’t use a negated character class such as ‹[^<!-]›, because we
want to allow <, !, and - characters that are not grouped into the exact sequence <!--.

That’s where the nested negative lookahead comes in. ‹(?!<!--).› matches any single
character that is not part of an opening comment delimiter. Placing that pattern within
a noncapturing group as ‹(?:(?!<!--).)› allows us to repeat the whole sequence with
the lazy ‹*?› quantifier we’d previously applied to just the dot.

Putting it all together, we get the final regex that was listed as the solution for
this problem: ‹\bTODO\b(?=(?:(?!<!--).)*?-->)›. In JavaScript, which lacks the nec-
essary “dot matches line breaks” option, ‹\bTODO\b(?=(?:(?!<!--)[\s\S])*?-->)› is
equivalent.

Variations
Although the “single-step approach” regex ensures that any match of TODO is followed
by --> without <!-- occurring in between, it doesn’t check the reverse: that the target
word is also preceded by <!-- without --> in between. There are several reasons we left
that rule out:

• You can usually get away with not doing this double-check, especially since the
single-step regex is meant to be used with text editors and the like, where you can
visually verify your results.

• Having less to verify means less time spent performing the verification (i.e., it’s
faster to leave the extra check out).

• Most importantly, since you don’t know how far back the comment may have
started, looking backward like this requires infinite-length lookbehind, which is
supported by the .NET regex flavor only.

8.9 Find Words Within XML-Style Comments | 465

If you’re working with .NET and want to include this added check, use the following
regex:

(?<=<!--(?:(?!-->).)*?)\bTODO\b(?=(?:(?!<!--).)*?-->)
Regex options: Case insensitive, dot matches line breaks
Regex flavor: .NET

This stricter, .NET-only regex adds a positive lookbehind at the front, which works
just like the lookahead at the end but in reverse. Because the lookbehind works forward
from the position where it finds <!--, the lookbehind contains a nested negative look-
ahead that lets it match any characters that are not part of the sequence -->.

Since the leading lookahead and trailing lookbehind are both zero-length assertions,
the final match is just the word TODO. The strings matched within the lookarounds do
not become a part of the final matched text.

See Also
Recipe 8.8 includes a detailed discussion of how to match XML-style comments.

8.10 Change the Delimiter Used in CSV Files
Problem
You want to change all field-delimiting commas in a CSV file to tabs. Commas that
occur within double-quoted values should be left alone.

Solution
The following regular expression matches an individual CSV field along with its pre-
ceding delimiter, if any. The preceding delimiter is usually a comma, but can also be
an empty string (i.e., nothing) when matching the first field of the first record, or a line
break when matching the first field of any subsequent record. Every time a match is
found, the field itself, including the double quotes that may surround it, is captured to
backreference 2, and its preceding delimiter is captured to backreference 1.

The regular expressions in this recipe are designed to work correctly
only with valid CSV files, according to the format rules under the term
“Comma-Separated Values (CSV)” that was discussed earlier in this
book.

(,|\r?\n|^)([^",\r\n]+|"(?:[^"]|"")*")?
Regex options: None (“^ and $ match at line breaks” must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

466 | Chapter 8: Markup and Data Interchange

Here is the same regular expression again in free-spacing mode:

(, | \r?\n | ^) # Capturing group 1 matches field delimiters
 # or the beginning of the string
(# Capturing group 2 matches a single field:
 [^",\r\n]+ # a non-quoted field
| # or...
 " (?:[^"]|"")* " # a quoted field (may contain escaped double-quotes)
)? # The group is optional because fields may be empty

Regex options: Free-spacing (“^ and $ match at line breaks” must not be set)
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Using this regex and the code in Recipe 3.11, you can iterate over your CSV file and
check the value of backreference 1 after each match. The necessary replacement string
for each match depends on the value of this backreference. If it’s a comma, replace it
with a tab character. If the backreference is empty or contains a line break, leave the
value in place (i.e., do nothing, or put it back as part of a replacement string). Since
CSV fields are captured to backreference 2 as part of each match, you’ll also have to
put that back as part of each replacement string. The only things you’re actually re-
placing are the commas that are captured to backreference 1.

JavaScript example

The following code is a complete web page that includes two multiline text input fields,
with a button labeled Replace between them. Clicking the button takes whatever string
you put into the first text box (labeled Input), converts any comma delimiters to tabs
with the help of the regular expression just shown, then puts the new string into the
second text box (labeled Output). If you use valid CSV content as your input, it should
show up in the second text box with all comma delimiters replaced with tabs. To test
it, save this code into a file with the “.html” extension and open it in your favorite web
browser:

<html>
<head>
<title>Change CSV delimiters from commas to tabs</title>
</head>

<body>
<p>Input:</p>
<textarea id="input" rows="5" cols="75"></textarea>

<p><input type="button" value="Replace" onclick="commas_to_tabs()"></p>

<p>Output:</p>
<textarea id="output" rows="5" cols="75"></textarea>

<script>
function commas_to_tabs () {

8.10 Change the Delimiter Used in CSV Files | 467

 var input = document.getElementById('input'),
 output = document.getElementById('output'),
 regex = /(,|\r?\n|^)([^",\r\n]+|"(?:[^"]|"")*")?/g,
 result = '',
 match;

 while (match = regex.exec(input.value)) {
 // Check the value of backreference 1
 if (match[1] == ',') {
 // Add a tab (in place of the matched comma)
 // and backreference 2 to the result.
 // If backreference 2 is undefined (because the
 // optional, second capturing group did not participate
 // in the match), use an empty string instead.
 result += '\t' + (match[2] || '');
 } else {
 // Add the entire match to the result
 result += match[0];
 }

 // Prevent some browsers from getting stuck in an infinite loop
 if (match.index == regex.lastIndex) regex.lastIndex++;
 }

 output.value = result;
}
</script>
</body>
</html>

Discussion
The approach prescribed by this recipe allows you to pass over each complete CSV field
(including any embedded line breaks, escaped double quotes, and commas) one at a
time. Each match then starts just before the next field delimiter.

The first capturing group in the regex, ‹(,|\r?\n|^)›, matches a comma, line break, or
the position at the beginning of the subject string. Since the regex engine will attempt
alternatives from left to right, these options are listed in the order in which they will
most frequently occur in the average CSV file. This capturing group is the only part of
the regex that is required to match. Therefore, it’s possible for the complete regex to
match an empty string since the ‹^› anchor can always match once. The value matched
by this first capturing group must be checked in code outside of the regex that replaces
commas with your substitute delimiter (e.g., a tab).

We haven’t yet gotten through the entire regex, but the approach described so far is
already somewhat convoluted. You might be wondering why the regex is not written
to match only the commas that should be replaced with tabs. If you could do that, a

468 | Chapter 8: Markup and Data Interchange

simple substitution of all matched text would avoid the need for code outside of the
regex to check whether capturing group 1 matched a comma or some other string. After
all, it should be possible to use lookahead and lookbehind to determine whether a
comma is inside or outside a quoted CSV field, right?

Unfortunately, in order for such an approach to accurately determine which commas
are outside of double-quoted fields, you’d need infinite-length lookbehind,
which is available only in the .NET regex flavor (see “Different levels of lookbe-
hind” on page 77 for a discussion of the varying lookbehind limitations). Even .NET
developers should avoid a lookaround-based approach since it would add significant
complexity and also make the regex slower.

Getting back to how the regex works, most of the pattern appears within the next set
of parentheses: capturing group 2. This second group matches a single CSV field, in-
cluding any surrounding double quotes. Unlike the previous capturing group, this one
is optional in order to allow matching empty fields.

Note that group 2 within the regex contains two alternative patterns separated by the
‹|› metacharacter. The first alternative, ‹[^",\r\n]+›, is a negated character class fol-
lowed by a one-or-more (‹+›) quantifier that, together, match an entire nonquoted field.
For this to match, the field cannot contain any double quotes, commas, or line breaks.

The second alternative within group 2, ‹"(?:[^"]|"")*"›, matches a field surrounded
by double quotes. More precisely, it matches a double-quote character, followed by
zero or more nondouble-quote characters and repeated (escaped) double quotes, fol-
lowed by a closing double quote.

The ‹*› quantifier at the end of the inner, noncapturing group repeats the two inner
options as many times as possible, until you get to a double quote that is not repeated
and therefore ends the field.

Assuming you’re working with a valid CSV file, the first match found by this regex
should occur at the beginning of the subject string, and each subsequent match should
occur immediately after the end of the last match.

See Also
Recipe 8.11 describes how to reuse the regex in this recipe to extract CSV fields from
a specific column.

8.11 Extract CSV Fields from a Specific Column
Problem
You want to extract every field from the third column of a CSV file.

8.11 Extract CSV Fields from a Specific Column | 469

Solution
The regular expressions from Recipe 8.10 can be reused here to iterate over each field
in a CSV subject string. With a bit of extra code, you can count the number of fields
from left to right in each row, or record, and extract the fields at the position you’re
interested in.

The following regular expression (shown with and without the free-spacing option)
matches a single CSV field and its preceding delimiter in two separate capturing groups.
Since line breaks can appear within double-quoted fields, it would not be accurate to
simply search from the beginning of each line in your CSV string. By matching and
stepping past fields one by one, you can easily determine which line breaks appear
outside of double-quoted fields and therefore start a new record.

The regular expressions in this recipe are designed to work correctly
only with valid CSV files, according to the format rules discussed in
“Comma-Separated Values (CSV) on page 415.”

(,|\r?\n|^)([^",\r\n]+|"(?:[^"]|"")*")?
Regex options: None (“^ and $ match at line breaks” must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

(, | \r?\n | ^) # Capturing group 1 matches field delimiters
 # or the beginning of the string
(# Capturing group 2 matches a single field:
 [^",\r\n]+ # a non-quoted field
| # or...
 " (?:[^"]|"")* " # a quoted field (may contain escaped double-quotes)
)? # The group is optional because fields may be empty

Regex options: Free-spacing (“^ and $ match at line breaks” must not be set)
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

These regular expressions are exactly the same as those in Recipe 8.10, and they can
be repurposed for plenty of other CSV processing tasks as well. The following example
code demonstrates how you can use the version without the free-spacing option to help
you extract a CSV column.

JavaScript example

The following code is a complete web page that includes two multiline text input fields
and a button between them labeled Extract Column 3. Clicking the button takes what-
ever string you put into the Input text box, extracts the value of the third field in each
record with the help of the regular expression shown earlier in this recipe, then puts
the entire column (with each value separated by a line break) into the Output field. To
test it, save this code into a file with the “.html” extension and open it in your favorite
web browser:

470 | Chapter 8: Markup and Data Interchange

<html>
<head>
<title>Extract the third column from a CSV string</title>
</head>

<body>
<p>Input:</p>
<textarea id="input" rows="5" cols="75"></textarea>

<p><input type="button" value="Extract Column 3"
 onclick="display_csv_column(2)"></p>

<p>Output:</p>
<textarea id="output" rows="5" cols="75"></textarea>

<script>
function display_csv_column (index) {
 var input = document.getElementById('input'),
 output = document.getElementById('output'),
 column_fields = get_csv_column(input.value, index);

 if (column_fields.length > 0) {
 // Show each record on its own line, separated by a line feed (\n)
 output.value = column_fields.join('\n');
 } else {
 output.value = '[No data found to extract]';
 }
}

// Return an array of CSV fields at the provided, zero-based index
function get_csv_column (csv, index) {
 var regex = /(,|\r?\n|^)([^",\r\n]+|"(?:[^"]|"")*")?/g,
 result = [],
 column_index = 0,
 match;

 while (match = regex.exec(csv)) {
 // Check the value of backreference 1. If it's a comma,
 // increment column_index. Otherwise, reset it to zero.
 if (match[1] == ',') {
 column_index++;
 } else {
 column_index = 0;
 }
 if (column_index == index) {
 // Add the field (backref 2) at the end of the result array
 result.push(match[2]);
 }

8.11 Extract CSV Fields from a Specific Column | 471

 // Prevent some browsers from getting stuck in an infinite loop
 if (match.index == regex.lastIndex) regex.lastIndex++;
 }

 return result;
}
</script>
</body>
</html>

Discussion
Since the regular expressions here are repurposed from Recipe 8.10, we won’t repeat
the detailed explanation of how they work. However, this recipe includes new
JavaScript example code that uses the regex to extract fields at a specific index from
each record in the CSV subject string.

In the provided code, the get_csv_column function works by iterating over the subject
string one match at a time. After each match, backreference 1 is examined to check
whether it contains a comma. If so, you’ve matched something other than the first field
in a row, so the column_index variable is incremented to keep track of which column
you’re at. If backreference 1 is anything other than a comma (i.e., an empty string or a
line break), you’ve matched the first field in a new row and column_index is reset to zero.

The next step in the code is to check whether the column_index counter has reached the
index you’re looking to extract. Every time it does, the value of backreference 2 (ev-
erything after the leading delimiter) is pushed to the result array. After you’ve iterated
over the entire subject string, the get_csv_column function returns an array containing
values for the entire specified column (in this example, the third column). The list of
matches is then dumped into the second text box on the page, with each value separated
by a line feed character (\n).

A simple improvement would be to let the user specify which column index should be
extracted, via a prompt or additional text field. The get_csv_column function we’ve been
discussing is already written with this feature in mind, and lets you specify the desired
column as a zero-based integer via the second parameter (index).

Variations
Although using code to iterate over a string one CSV field at a time allows for extra
flexibility, if you’re using a text editor to get the job done, you may be limited to just
search-and-replace. In this situation, you can achieve a similar result by matching each
complete record and replacing it with the value of the field at the column index you’re
searching for (using a backreference). The following regexes illustrate this technique
for particular column indexes, replacing each record with the field in a specific column.

472 | Chapter 8: Markup and Data Interchange

With all of these regexes, if any record does not contain at least as many fields as the
column index you’re searching for, that record will not be matched and will be left in
place.

Match a CSV record and capture the field in column 1 to backreference 1
^([^",\r\n]+|"(?:[^"]|"")*")?(?:,(?:[^",\r\n]+|"(?:[^"]|"")*")?)*

Regex options: ^ and $ match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Match a CSV record and capture the field in column 2 to backreference 1
^(?:[^",\r\n]+|"(?:[^"]|"")*")?,([^",\r\n]+|"(?:[^"]|"")*")?↵
(?:,(?:[^",\r\n]+|"(?:[^"]|"")*")?)*

Regex options: ^ and $ match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Match a CSV record and capture the field in column 3 or higher to backreference 1
^(?:[^",\r\n]+|"(?:[^"]|"")*")?(?:,(?:[^",\r\n]+|"(?:[^"]|"")*")?){1},↵
([^",\r\n]+|"(?:[^"]|"")*")?(?:,(?:[^",\r\n]+|"(?:[^"]|"")*")?)*

Regex options: ^ and $ match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Increment the number within the ‹{1}› quantifier to make this last regex work for any-
thing higher than column 3. For example, change it to ‹{2}› to capture fields from
column 4, ‹{3}› for column 5, and so on. If you’re working with column 3, you can
simply remove the ‹{1}› if you prefer, since it has no effect here.

Replacement string

The same replacement string (backreference 1) is used with all of these regexes. Re-
placing each match with backreference 1 should leave you with just the fields you’re
searching for.

$1
Replacement text flavors: .NET, Java, JavaScript, Perl, PHP

\1
Replacement text flavors: Python, Ruby

8.12 Match INI Section Headers
Problem
You want to match all section headers in an INI file.

8.12 Match INI Section Headers | 473

Solution
This one is easy. INI section headers appear at the beginning of a line, and are designated
by placing a name within square brackets (e.g., [Section1]). Those rules are simple to
translate into a regex:

^\[[^\]\r\n]+]
Regex options: ^ and $ match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion
There aren’t many parts to this regex, so it’s easy to break down:

• The leading ‹^› matches the position at the beginning of a line, since the “^ and $
match at line breaks” option is enabled.

• ‹\[› matches a literal [character. It’s escaped with a backslash to prevent [from
starting a character class.

• ‹[^\]\r\n]› is a negated character class that matches any character except], a
carriage return (\r), or a line feed (\n). The immediately following ‹+› quantifier
lets the class match one or more characters, which brings us to....

• The trailing ‹]› matches a literal] character to end the section header. There’s no
need to escape this character with a backslash because it does not occur within a
character class.

If you only want to find a specific section header, that’s even easier. The following regex
matches the header for a section called Section1:

^\[Section1]
Regex options: ^ and $ match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

In this case, the only difference from a plain-text search for “[Section1]” is that the
match must occur at the beginning of a line. This prevents matching commented-out
section headers (preceded by a semicolon) or what looks like a header but is actually
part of a parameter’s value (e.g., Item1=[Value1]).

See Also
Recipe 8.13 describes how to match INI section blocks.

Recipe 8.14 does the same for INI name-value pairs.

474 | Chapter 8: Markup and Data Interchange

8.13 Match INI Section Blocks
Problem
You need to match each complete INI section block (i.e., a section header and all of
the section’s parameter-value pairs), in order to split up an INI file or process each
block separately.

Solution
Recipe 8.12 showed how to match an INI section header. To match an entire section,
we’ll start with the same pattern from that recipe, but continue matching until we reach
the end of the string or a [character that occurs at the beginning of a line (since that
indicates the start of a new section):

^\[[^\]\r\n]+](?:\r?\n(?:[^[\r\n].*)?)*
Regex options: ^ and $ match at line breaks (“dot matches line breaks” must not
be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Or in free-spacing mode:

^ \[[^\]\r\n]+] # Match a section header
(?: # Followed by the rest of the section...
 \r?\n # Match a line break character sequence
 (?: # After each line starts, match...
 [^[\r\n] # Any character except "[" or a line break character
 .* # Match the rest of the line
)? # The group is optional to allow matching empty lines
)* # Continue until the end of the section

Regex options: ̂ and $ match at line breaks, free-spacing (“dot matches line breaks”
must not be set)
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Discussion
This regular expression starts by matching an INI section header with the pattern ‹^\
[[^\]\r\n]+]›, and continues matching one line at a time as long as the lines do not
start with [. Consider the following subject text:

[Section1]
Item1=Value1
Item2=[Value2]

; [SectionA]
; The SectionA header has been commented out

ItemA=ValueA ; ItemA is not commented out, and is part of Section1

8.13 Match INI Section Blocks | 475

[Section2]
Item3=Value3
Item4 = Value4

Given the string just shown, this regex finds two matches. The first match extends from
the beginning of the string up to and including the empty line before “[Section2]”. The
second match extends from the start of the Section2 header until the end of the string.

See Also
Recipe 8.12 shows how to match INI section headers.

Recipe 8.14 does the same for INI name-value pairs.

8.14 Match INI Name-Value Pairs
Problem
You want to match INI parameter name-value pairs (e.g., Item1=Value1), separating
each match into two parts using capturing groups. Backreference 1 should contain the
parameter name (Item1), and backreference 2 should contain the value (Value1).

Solution
Here’s the regular expression to get the job done (the second is shown with free-spacing
mode):

^([^=;\r\n]+)=([^;\r\n]*)
Regex options: ^ and $ match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

^ # Start of a line
([^=;\r\n]+) # Capture the name to backreference 1
= # Name-value delimiter
([^;\r\n]*) # Capture the value to backreference 2

Regex options: ^ and $ match at line breaks, free-spacing
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Discussion
Like the other INI recipes in this chapter, we’re working with pretty straightforward
ingredients here. The regex starts with ‹^›, to match the position at the start of a line
(make sure the “^ and $ match at line breaks” option is enabled). This is important
because without the assurance that matches start at the beginning of a line, you could
match part of a commented-out line.

476 | Chapter 8: Markup and Data Interchange

Next, the regex uses a capturing group that contains a negated character class (‹[^=;\r
\n]›) followed by the one-or-more quantifier (‹+›) to match the name of the parameter
and remember it as backreference 1. The negated class matches any character except
the following four: equals sign, semicolon, carriage return (‹\r›), and line feed (‹\n›).
The carriage return and line feed characters are both used to end an INI parameter, a
semicolon marks the start of a comment, and an equals sign separates a parameter’s
name and value.

After matching the parameter name, the regex matches a literal equals sign (the name-
value delimiter), and then the parameter value. The value is matched using a second
capturing group that is similar to the pattern used to match the parameter name but
has two less restrictions. First, this second subpattern allows matching equals signs as
part of the value (i.e., there is one less negated character in the character class). Second,
it uses a ‹*› quantifier to remove the need to match at least one character (since, unlike
names, values may be empty).

And we’re done.

See Also
Recipe 8.12 explains how to match INI section headers.

Recipe 8.13 gives the details on INI section blocks.

8.14 Match INI Name-Value Pairs | 477

Index

Symbols
* (asterisk)

as anchor (assertion), 220
escaping, 321
as greedy, 68
as metacharacter, 26
for possessive quantifiers, 217

@ (at sign)
encoding in Perl, 104
matching, 216

\ (backslash)
escaping, 321

in replacement text, 85–87
for escaping characters, 26, 319–322

within character classes, 31
as metacharacters, 26
in source code, 102

!~ operator, 126
{ } (braces)

escaping, 321
as metacharacters, 26
for repetition, 65

[] (brackets)
for character classes, 216
for defining character classes, 31
escaping, 321
as metacharacter, 26

^ (caret)
as anchor, 37, 39, 217, 220
escaping, 321
as metacharacter, 26
negation within character classes, 31

, (comma)
escaping, 321

in interval quantifier, 246
as thousands separator, 343–344

$ (dollar sign)
as anchor, 37, 38, 39, 104, 217
escaping, 321
escaping in replacement text, 85–87
as metacharacter, 26

$& variable, 138
$& variable, 142
$` variable, 194
$+ hash, 150, 180
$' variable, 194
$~ variable (Ruby), 138

capturing groups, 148
$~[0] variable, 138
. (dot)

abuse of, 35
escaping, 321
to match any single character, 35
matching, 216
as metacharacter, 26

=~ operator (Perl), 126, 143
=~ operator (Ruby), 124, 127
(hash symbol)

for comments, 83
escaping, 321

- (hyphen)
escaping, 321
as metacharacter, 26
for ranges within character classes, 31
stripping from credit card numbers, 272,

274
() (parentheses)

atomic groups, 71–72, 74, 248
capturing groups, 57–60

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

479

for matching previously matched text,
60–62

reproducing lookbehind, 79
escaping, 321
as metacharacters, 26, 220

+ (plus sign)
escaping, 321
as metacharacter, 26
for possessive quantifiers, 70, 217

? (question mark)
escaping, 321
for lazy quantifiers, 69
as metacharacter, 26
for zero-or-once matching, 66

| (vertical bar)
as alternation operator, 56, 235, 288
escaping, 321

A
\a (bell character), 28
\A anchor, 37, 38, 218
accented letters, 52
ActionScript language, 98
addresses with post office boxes, finding, 266–

268
affirmative responses, validating, 253–254
alphanumeric characters, limiting input to,

241–244
alternation, 56

finding numbers within a range, 335
finding words from a list, 288
verifying time formats, 235

ampersand (&), escaping, 321
anchors, 37
ANSI characters, limiting to, 242
appendReplacement() method, 185
appendTail() method, 185
ASCII control characters (see control

characters)
assertions, 220
asterisk (*)

as anchor (assertion), 220
escaping, 321
as greedy, 68
as metacharacter, 26
for possessive quantifiers, 217

at sign (@)
encoding in Perl, 104
matching, 216

atomic groups, 71–72, 74, 248
atomic lookaround and lookbehind, 78
attributes (markup languages), 412

finding specific, 450–455
whitelisting, 440

B
 tags, replacing with , 434–437
\b word boundary, 32, 41, 218, 222, 236, 286

(see also words)
\B nonboundary, 42
backreferences

empty, using, 304
finding repeated words, 306–307
named, 64
named capture for (see named capture)
to nonexistent groups, 90
reinserting parts of match, 176–181
with splitting strings, 203–208

backreferencing, 60–62
backslash (\)

escaping, 321
in replacement text, 85–87

for escaping characters, 26, 319–322
within character classes, 31

as metacharacters, 26
in source code, 102

backtracking, 68
catastrophic, 73
unnecessary, eliminating, 70–72

balanced matching, 168
!~ operator, 126
begin() method, Ruby (MatchData class), 143
bell character (\a), 28
binary numbers, finding, 329–330
block escapes, 27, 322
blocks, Unicode, 48–51

listing all characters in, 53
braces { }

escaping, 321
as metacharacters, 26
for repetition, 65

brackets []
for character classes, 216
for defining character classes, 31
escaping, 321
as metacharacter, 26

480 | Index

C
C language, 98
C# language, 96

creating regular expression objects, 110
importing regular expression library, 107
literal regular expressions in, 102

C++ language, 98
\cA through \cZ values, 29
CacheSize property (.NET), 110
Canadian postal codes, validating, 265–266
CANON_EQ constant (Java), 118
capitals (see case)
capturing groups, 57–60, 217

conditions with, 81–83
empty backreferences, using, 304
finding repeated words, 306–307
to match previously matched text, 60–62
named capture, 62–64, 91, 148, 179

groups with same names (.NET), 233
references to nonexistent groups, 90
reinserting parts of match, 176–181
reproducing lookbehind with, 79
retrieving details about, 143–150
with splitting strings, 203

caret (^)
as anchor, 37, 39, 217, 220
escaping, 321
as metacharacter, 26
negation within character classes, 31

carriage return (\r), 28
case

case-insensitive matching, 27, 216
insensitivity, in character classes, 33

case-insensitive mode, setting option for, 114–
121

CASE_INSENSITIVE constant (Java), 116
catastrophic backtracking, 73
categories, Unicode, 45
CDATA sections, XML, 415
cellspacing attribute, adding to <table> tags,

455–458
character classes, 31, 221

case insensitivity with, 33
in free-spacing mode, 83
shorthands, 32
subtraction, 33, 78
Unicode tokens in, 53
unions and intersections of, 33

character entity references, HTML, 412, 449

character matching (see matching)
checksum (ISBN), 257
CIL (Common Intermediate Language), 113
code points, Unicode, 45

blocks for, 48–51
combining marks, 52
comma (,)

escaping, 321
in interval quantifier, 246
as thousands separator, 343–344

Comma-Separated Values files (see CSV files)
comments

in HTML, 413
in INI files, 417
in XML

finding words in, 462–466
removing, 458–462
validating, 460

COMMENTS constant (Java), 116
comments in regular expressions, 83–84
Common Intermediate Language (see CIL)
compile() method

Java (Pattern class), 103, 111, 116
Python (re module), 112

regular expression options, 117
Ruby (Regexp class), 113

compressed mixed notation (IPv6), 385, 393
compressed notation (IPv6), 384, 387, 391
conditional expressions, 302
conditions, in matching, 81–83
context of matches, inserting, 92–93
control characters

escape sequences for, 28–30
Unicode category for, 47

Count property (Match.Groups), 146
credit card numbers, validating, 271–277
CSV (Comma-Separated Values) files, 415–

416
changing delimiter used in, 466–469
extracting fields from specific columns,

469–473
curly brackets { }

escaping, 321
as metacharacters, 26
for repetition, 65

Currency block (Unicode), 51

D
\d token, 32, 325

Index | 481

\D token, 32
dash (see hyphen (-))
date formats, validating, 226–229

ISO 8601 formats, 237–241
removing invalid dates, 229–234

decimal, converting Roman numerals to, 345
decimal numbers (see floating point numbers)
delimiter in CSV files, changing, 466–469
Delphi for Win32, 98
Delphi Prism, 98
desktop regex testers, 17–19
deterministic finite automation (DFA), 2
DFA regex engines, 335
digits (numbers), 325

(see also numbers)
matching in character classes, 32
Unicode category for, 46

DOCTYPEs (HTML), 413
document type declarations, HTML, 413
$& variable, 88, 92
$' variable, 92
$_ variable, 92
$` variable, 92
dollar sign ($)

as anchor, 37, 38, 39, 104, 217
escaping, 321
escaping in replacement text, 85–87
as metacharacter, 26

domain names, validating, 376–379
dot (.)

abuse of, 35
escaping, 321
to match any single character, 35
matching, 216
as metacharacter, 26

“dot all” mode, 35, 114–121
“dot matches line breaks” option, 35, 114–

121
DOTALL constant (Java), 116
double-quoted strings

C#, 102
Java, 103
Perl, 104
PHP, 103
VB.NET, 102

drive letters, extracting from Windows paths,
402–403

duplicate lines, removing, 308–312

E
\e (escape character), 28
\E token to suppress metacharacters, 27, 322
eager, regular expression engine as, 335
ECMA-262 standard, 96, 98
ECMAScript programming language, 96
ECMAScript value (RegexOptions), 118
elements, HTML, 412
email addresses, validating, 213–219
embedded matches, finding, 165–169
empty backreferences, 304
end of line, matching characters at, 36–41
end() method

Java (Matcher class), 141, 147
Python (MatchObject class), 142
Ruby (MatchData class), 143

entities, HTML, 412, 449
EPP (Extensible Provisioning Protocol), 225
=~ operator (Ruby), 124, 126, 127, 143
ereg functions (PHP), 97

ereg_replace, 6
literal regular expressions in, 103

escape character (\e), 28
escaping, 26

characters in replacement text, 85–87
how and when appropriate, 319–322
inside character classes, 31

European VAT numbers, validating, 278–284
!~ operator, 126
exec() method (JavaScript), 141, 147

iterating over matches, 159
ExplicitCapture value (RegexOptions), 118
Expresso tester, 17
EXTENDED constant (Regexp), 118
Extensible Hypertext Markup Language (see

XHTML)
Extensible Markup Language (see XML)
Extensible Provisioning Protocol (EPP), 225
extensions (file), extracting from paths, 407–

408

F
\f (form feed character), 28
fields, in CSV files, 416

extracting, 469–473
filenames

extracting extensions from Windows paths,
407–408

482 | Index

extracting from Windows paths, 406–407
stripping invalid characters from, 408–409

filesystem paths (Windows)
extracting drive letters from, 402–403
extracting file extensions from, 407–408
extracting filenames from, 406–407
extracting folders from, 404–406
splitting, 397–402
validating, 395–397

Find tab (myregexp.com), 15
find() method, Java (Matcher class), 125, 137,

141, 153
iterating over matches, 158

findall() method, Python (re module), 154
finding (see search-and-replace; searching)
finditer() method, Python (re module), 160
finite-length lookaround, 298
first names, reformatting, 268–271
first occurrences of lines, storing, 309, 311
fixed repetition, 65
fixed-length lookaround, 298
flavors of regular expressions, 2–5
flavors of replacement text, 5
floating point numbers, 340–342
folders, extracting from Windows paths, 404–

406
form feed character (\f), 28
formatting

of dates, validating, 226–229
ISO 8601 formats, 237–241
removing invalid dates, 229–234

first and last names, 268–271
of times, validating

ISO 8601 formats, 237–241
traditional formats, 234–236

phone numbers (North American), 219–
223

fragment, extracting from URL, 376
free-spacing mode, 83

in Python, 105
setting option for, 114–121

G
generic URLs, validating, 358–364
Get-Unique cmdlet (PowerShell), 308
graphemes, Unicode, 45, 52
greedy quantifiers, 67

eliminating backtracking with, 70–72
grep function, R Project support for, 99

grep tools, 19–22
Group class (.NET), 146
Group property, .NET (Match() function),

146
group() method

Java (Matcher class), 147
re module (Python), 148

groupdict() method, Python (MatchObject
class), 148

grouping, 57–60
atomic groups, 71–72, 74, 248
capturing and naming parts of match (see

named capture)
empty backreferences, 304
lookaround, 75–80, 245, 286

conditionals with, 82
referencing nonexistent groups, 90
repeating groups, 66
reproducing lookbehind, 79

groups() method, Python (MatchObject class),
148

gsub() method, Ruby (String class), 176, 187
with backreferences, 179

H
hash symbol (#)

for comments, 83
escaping, 321

hexadecimal numbers, finding, 326–329
within a certain range, 337–339

horizontal tab character (\t), 28
host, extracting from URL, 367–369
HTML (Hypertext Markup Language), 411–

413
adding <p> to plain text, 447–450
adding attributes to <table> tags, 455–458
matching tags, 417–434
replacing with , 434–437
validating tags, 430

hyperlinks, turning URLs into, 356
Hypertext Markup Language (see HTML)
hyphen (-)

escaping, 321
as metacharacter, 26
for ranges within character classes, 31
stripping from credit card numbers, 272,

274

Index | 483

I
(?i) mode modifier, 27
(?-i) mode modifier, 27
IGNORECASE constant (Regexp), 118
IgnoreCase option (RegexOptions), 115
IgnorePatternWhitespace option

(RegexOptions), 115
importing regular expression library, 106–107
Index property (.NET), 141
index property (JavaScript), 141
infinite repetition, 66
infinite-length lookaround, 298
INI files, 417

matching name-value pairs in, 476–477
matching section blocks in, 475–476
matching section headers in, 473–474

initialization files (see INI files)
input validation, 254

(see also validating)
affirmative responses, 253–254
allowing only alphanumeric characters,

241–244
credit card numbers, 271–277
line count, 248–252
string length, 244–248

integers
containing comma (thousands separator),

343–344
finding or identifying, 323–326
stripping leading zeros, 330–331
within a certain range, finding, 331–337

international phone numbers, validating, 224–
226

intersections of character classes, 33
interval quantifier, 246
IPv4 addresses, matching, 379–381
IPv6 addresses, matching, 381–394
ISBNs, validating, 257–264
IsMatch() method (.NET), 125, 152
ISO 8601 formats, 237–241
ISO-8859-1 characters, limiting to, 242
iterating over all matches, 155–161

J
Java language, xiv

(see also Matcher class (Java); Pattern class
(Java); String class (Java))
creating regular expression objects, 110

importing regular expression library, 107
literal regular expressions in, 103
regular expression options, 116, 118
regular expressions support, 4, 96
regular replacement text, 6

java.util.regex package, 4, 6, 96
to use regular expression library, 107

JavaScript language, xiv
(see also RegExp class (JavaScript); String
class (JavaScript))
creating regular expression objects, 111
literal regular expressions in, 103
regular expression library, 107
regular expression options, 116, 119
regular expressions support, 4, 96
replacement text, 7

K
ksort() method (PHP), 175

L
languages, Unicode scripts for, 51
last names, reformatting, 268–271
last occurrences of lines, storing, 309, 310
lastIndex property (JavaScript), 141, 159
lastIndex property, JavaScript (RegExp class),

299
lazy quantifiers, 69

eliminating backtracking with, 70–72
leading whitespace, trimming, 314–317
leading zeros, stripping, 330–331
left context, 92
length of match, determining, 138–143
length of strings, validating, 244–248
Length property (.NET), 141
length() method, Ruby (MatchData class), 143
letters, Unicode category for, 45
line breaks, 42, 251

in HTML documents, 449
line count, validating, 248–252
line feed (see newline)
line start or end, matching characters at, 36–

41
(see also word boundaries)

line-by-line searching, 208–211
lines, 308

(see also words)
defined, 37

484 | Index

duplicate, removing, 308–312
escaping metacharacters in, 319–322
repeated whitespace, removing from, 317–

318
sorting, to remove duplicates, 308, 310
that contain specific words, 312–313
that don't contain specific words, 313–314
trimming whitespace from, 314–317

List All button (RegexBuddy), 9
lists of all matches, retrieving, 150–155
literal regular expressions in source code, 100–

106
literal text, matching, 26–28
local mode modifiers, 27
lookahead (see lookaround)
lookaround, 75–80, 245, 286

conditions with, 82
matching words any distance apart, 305
negative, 76, 294, 296
searching for numbers, 326
simulating lookbehind with lookahead, 297,

299
storing unique occurrences of lines, 310

lookbehind, 75, 245, 286, 297, 326
(see also lookaround)
conditions with, 82
negative, 76, 297
reproducing with capturing groups, 79
simulating with lookahead, 297, 299

lowercase (see case)
Luhn algorithm, 276

M
(?m) mode modifier, 40
m// operator (Perl), 126, 138

capturing groups, 148
Match class (.NET)

Index and Length properties, 141
MatchAgain() method, 158
NextMatch() method, 158

Match tab (myregexp.com), 15
match() method

JavaScript (String class), 153
Ruby (Regexp class), 143

Match() method (.NET), 141
Groups property, 146
iterating over matches, 158
Value property, 136

MatchAgain() method, .NET (Match class),
158

MatchData class (Ruby), 138
length() and size() methods, 143

Matcher class (Java), 111
end() method, 141
find() method, 125, 137, 141

iterating over matches, 158
group() method, 147
reset() method, 137
start() and end() methods, 147

Matcher class (java)
find() method, 153

Matches() method (.NET), 152
MatchEvaluator class (.NET), 184
matching, 313

(see also search-and-replace; searching)
any character, 34–36
balanced and recursive matching, 168
case-insensitive, 27, 216
with conditionals, 81–83
context of, inserting into replacement text,

92–93
determining match position and length,

138–143
finding matches within other matches, 165–

169
grouping and capturing, 57–60

atomic groups, 71–72, 74, 248
lookaround, 75–80, 82, 245, 286
named capture (see named capture)
references to nonexistent groups, 90
repeating groups, 66
reproducing lookbehind, 79

in INI files (see INI files)
IPv4 addresses, 379–381
IPv6 addresses, 381–394
iterating over all matches, 155–161
at line start/end, 36–41
literal text, 26–28
matches of other regex, 187–189
nonprintable characters, 28–30
one of many characters, 30–34
one of several alternatives, 55–57
previously matched text, 60–62
reinserting parts of match, 176–181
with repetition

minimal and maximal repetition, 67–70
preventing runaway repetition, 72–75

Index | 485

repeating parts of the regexp, 64–67
replacing all matches, 169–176
retrieving list of all matches, 150–155
retrieving matched text, 132–138
retrieving part of matched text, 143–150
tags from markup languages, 417–434
testing for match to entire string, 127–132
testing for matches within string, 121–127
Unicode elements, 43–55
validating matches in procedural code, 161–

164
whole words, 41–43
XML names, 441

MatchObject class (Python)
end() methods, 142
groups() method, 148
start() methods, 142

MatchObject class (Ruby)
begin() and end() methods, 143

mathematical regularity, 2
maximal repetition, 67–70
mb_ereg functions (PHP), 97

literal regular expressions in, 103
metacharacters, 26

escaping, 319–322
inside character classes, 31

Microsoft .NET (see .NET Framework)
Microsoft VBScript scripting library, 100
Microsoft Windows paths

extracting drive letters from, 402–403
splitting, 397–402
validating, 395–397

minimal repetition, 67–70
mixed notation (IPv6), 382, 387, 390

compressed mixed notation, 385, 393
mode modifiers, 27

specifying with noncapturing groups, 59
MSIL (see CIL)
MULTILINE constant (Java), 116
MULTILINE constant (Regexp class), 118
multiline mode, 39, 40
Multiline option (RegexOptions), 115
multiline strings

adding <p> tags to, 447–450
searching line by line, 208–211
validating line count, 248–252

myregexp.com online tester, 14

N
\n (newline character), 28

encoding in C#, 102
encoding in Java, 103
encoding in Python, 105
not matched with dot, 35

name-value pairs, INI files, 476–477
named backreferences, 64
named capture, 62–64, 91, 148

groups with same names (.NET), 233
named capturing groups, 179
named conditionals, 82
names, reformatting, 268–271
names, XML, 415

matching, 441–447
Namespace Identifiers (NIDs), 358
Namespace Specific String (NSS), 358
NEAR searches (words), 300–306
negation within character classes, 31
negative lookaround, 76, 294, 296, 297
nested

character classes, 33
quantifiers, 461

.NET Framework, xiv, 96
(see also Group class (.NET); Match class
(.NET); MatchEvaluator class (.NET);
Regex class (.NET))
creating regular expression objects, 110
regular expression options, 115, 118
regular expressions support, 4
replacement text, 6

new() method (Ruby), 113, 118
newline (\n), 28

encoding in C#, 102
encoding in Java, 103
encoding in Python, 105
not matched with dot, 35

NextMatch() method, .NET (Match class),
158

noncapturing groups, 59
nonprintable characters

in C# source code, 102
encloding in Python, 105

nonprintable characters, matching, 28–30
nonwhitespace characters, limiting number of,

246
North American phone numbers, validating,

219–223
nregex online tester, 12

486 | Index

numbers, xiv
(see also digits (numbers))
binary numbers, finding, 329–330
containing comma (thousands separator),

343–344
credit card numbers, validating, 271–277
date formats, validating, 226–229

removing invalid dates, 229–234
floating point numbers, 340–342
hexadecimal, finding, 326–329

within a certain range, finding, 337–339
integers

finding or identifying, 323–326
within a certain range, finding, 331–337

IPv4 addresses, matching, 379–381
IPv6 addresses, matching, 381–394
ISBNs, validating, 257–264
phone numbers, validating

international numbers, 224–226
North American numbers, 219–223

postal codes, validating
Canada, 265–266
United Kindgom, 266
United States (ZIP codes), 264–265

Roman numerals, 344–346
social security numbers, validating, 254–

257
stripping leading zeros, 330–331
time formats, validating

ISO 8601 formats, 237–241
traditional formats, 234–236

Unicode category for, 46
VAT numbers, validating, 278–284

numeric character references, HTML, 412

O
occurrences of lines, storing, 309, 310
offset() method, Ruby (MatchData class), 143
Oniguruma library, 5, 7, 97
online regex testers, 11–17
options for regular expressions, setting, 114–

121

P
P.O. boxes, finding addresses with, 266–268
parameters of INI files, 417
parentheses ()

atomic groups, 71–72, 74, 248

capturing groups, xiv, 57–60
(see also capturing groups)
for matching previously matched text,

60–62
named capture (see named capture)
reproducing lookbehind, 79

escaping, 321
as metacharacters, 26, 220

(?:) for capturing groups, 217
parsing input, 167
path, extracting from URL, 371–374
paths (UNC), extracting from, 403–404
paths (Windows)

extracting drive letters from, 402–403
extracting file extensions from, 407–408
extracting filenames from, 406–407
extracting folders from, 404–406
splitting, 397–402
validating, 395–397

Pattern class (Java), 110
compile() method, 103, 111, 116
option constants, 116, 118
reset() method, 111
split() method, 200

pattern-matching operator (Java), 104
PatternSyntaxException exception, 111
PCRE (Perl-Compatible Regular Expressions)

library, 3, 96
replacement text, 6

period (see dot (.))
Perl language, xiv

(see also m// operator)
creating regular expression objects, 112
literal regular expressions in, 104
regular expression library, 107
regular expression options, 117, 119
regular expressions support, 3, 97
replacement text, 6

Perl-style regular expressions, 3
phone numbers, validating

international numbers, 224–226
North American numbers, 219–223

PHP language, xiv
(see also ereg functions; mb_ereg functions;
preg functions)
creating regular expression objects, 112
importing regular expression library, 107
literal regular expressions in, 103
regular expression functions, 96

Index | 487

regular expression options, 116, 119
replacement text flavor, 6

pipe symbol (see vertical bar (|))
plain text, converting to HTML, 447–450
plus sign (+)

escaping, 321
as metacharacter, 26
for possessive quantifiers, 70, 217

ports, extracting from URLs, 369–371
position of matching, determining, 138–143
positive lookahead, 76

matching words any distance apart, 305
positive lookbehind, 75
POSIX-compliant regex engines, 335
possessive quantifiers, 70, 217
post office boxes, finding addresses with, 266–

268
postal codes, validating

Canada, 265–266
United Kindgom, 266
United States (ZIP codes), 264–265

pound sign (see hash symbol (#))
PowerGREP tool, 20
PowerShell scripting language, 99
preg functions (PHP)

availability of, 107
creating regular expression objects, 112
literal regular expressions in, 103
preg_match(), 126, 137, 153

iterating over matches, 160
preg_matches(), 153
preg_match_all(), 153, 160
preg_replace(), 6, 97, 174

named capture with, 180
with backreferences, 179

preg_replace_callback(), 186
preg_split(), 201

with capturing groups, 206
regular expression options, 116

PREG_OFFSET_CAPTURE constant, 142,
147, 154

PREG_PATTERN_ORDER constant, 153
PREG_SET_ORDER constant, 153
PREG_SPLIT_DELIM_CAPTURE constant,

206
PREG_SPLIT_NO_EMPTY constant, 201,

206
properties, Unicode, 45
punctuation, Unicode category for, 47

Python language, xiv
(see also MatchObject class (Python); re
module (Python))
creating regular expression objects, 112
importing regular expression library, 107
literal regular expressions in, 104
regular expression options, 117, 119
regular expressions support, 5, 97
replacement text, 7

\p{ } for Unicode categories, 45
\P{ } for Unicode categories, 47, 53

Q
\Q token to suppress metacharacters, 27, 322
qr// operator (perl), 112
quantifiers, 221

for fixed repetition, 65
for infinite repetition, 66
nested, 461
for variable repetition, 65

queries, extracting from URLs, 374–375
question mark (?)

escaping, 321
for lazy quantifiers, 69
as metacharacter, 26
for zero-or-once matching, 66

quote regex operator (perl), 112

R
\r (carriage return character), 28
R Project, 99
ranges inside character classes, 31
raw strings, Python, 105
re module (Python), 5, 97, 104

compile() function, 112
findall() method, 154
finditer() method, 160
group() method, 148
importing, 107
regular expression options, 117, 119
search() function, 126, 138
split() method, 202

with capturing groups, 207
sub() method, 176, 186

with backrefereces, 179
REALbasic language, 99
reAnimator online tester, 16
records, in CSV files, 416

488 | Index

recursive matching, 168
Regex class (.NET)

IsMatch() method, 125, 152
Match() (see Match() method (.NET))
Matches() method, 152
Replace() method, 172, 183, 184

with backreferences, 178
Split() method, 198

with backreferences, 205
RegEx class (REALbasic), 99
Regex() constructor (.NET), 102, 110

RegexOptions enumeration (for
parameters), 113, 115, 118

regex-directed engines, 56
regex.larsolavtorvik.com online tester, 11
RegexBuddy tool, 8–10
RegexOptions enumeration, 115, 118

Compiled value, 113
RegExp class (JavaScript)

exec() method, 147
iterating over matches, 159

index property, 141
lastIndex property, 141, 159, 299
test() method, 126

Regexp class (Ruby)
compile() method, 113
match() (see match() method, Regexp class

(Ruby))
new() method, 113, 118

RegExp() constructor (JavaScript), 111
flags for, 116

RegexPal tool, 10–11
regexpr function, R Project support for, 99
RegexRenamer tool, 22
regular expression library, importing, 106–107
regular expression objects, creating, 108–114
regular expression options, setting, 114–121
regular expressions, defined, 1–5
regular expressions, flavors of, 2–5
regular expressions tools, 7–23

desktop testers, 17
grep tools, 19
online testers, 11
RegexBuddy, 8
RegexPal, 10
text editors, popular, 23

regularity (mathematical), 2
The Regulator tester, 18
reinserting parts of match, 176–181

relative Windows paths, 397, 400
repeated whitespace, removing, 317–318
repeated words, finding, 306–307
repetition, in matching

minimal and maximal repetition, 67–70
preventing runaway, 72–75
repeating parts of the regexp, 64–67

Replace button (RegexBuddy), 9
Replace tab (myregexp.com), 16
replace() function, String class

removing whitespace with, 316
replace() function, String class (JavaScript),

174
with backreferences, 178

Replace() method (.NET), 172, 183, 184
with backreferences, 178

replaceAll() method, Java (String class), 173
with backreferences, 178

replaceFirst() method, Java (String class), 173
with backreferences, 178

replacement text
escaping characters in, 85–87
generated in code, 181–187
inserting match context into, 92–93
inserting part of regex match into, 88–92
inserting regex match into, 87–88

replacing text (see search-and-replace)
reset() method (Java), 111
reset() method, Java (Matcher class), 137
retrieving lists of all matches, 150–155
retrieving matched text, 132–138
retrieving part of matched text, 143–150
RFC 3986 standard, 362
RFC 4180 standard, 416
right context, 92
Roman numerals, 344–346
rubular online tester, 14
Ruby language, xiv

(see also MatchData class (Ruby);
MatchObject class (Ruby); Regexp class
(Ruby); String class (Ruby))
creating regular expression objects, 113
literal regular expressions in, 105
regular expression library, 107
regular expression options, 117, 120
regular expressions support, 5, 97
replacement text, 7

runaway repetition, preventing, 72–75

Index | 489

S
\S token, 32, 216
\s token, 32, 246

(see also whitespace)
s/// operator (Perl), 175

/e modifier, 186
with backreferences, 179

Scala regular expression support, 99
scala.util.matching package, 99
scan() method, Ruby (String class), 155, 161
schemes, extracting from URLs, 364–365
<script> elements (HTML), 412
scripts, Unicode, 51

listing all characters in, 53
search() function, Python (re module), 126,

138
search-and-replace

all matches within other regex matches,
187–189

between matches of another regex, 189–
195

HTML special characters with entities, 449
inserting literal text, 85–87
inserting match context into replacement

text, 92–93
inserting match into replacement text, 87–

88
inserting match part into replacement text,

88–92
markup language tags, 434–437
reinserting parts of match, 176–181
replacement text, 5–7
replacements generated in code, 181–187
replacing all matches, 169–176

searching, 313
(see also matching)
line by line in multiline strings, 208–211
for lines

duplicated, 308–312
that contain a word, 312–313
that don’t contain a word, 313–314

for numbers
binary numbers, 329–330
hexadecimals, 326–329
integers, 323–326

for URLs in full text, 350–352
within parentheses, 353–355
within quotes, 352–353

for words, 285–287

from among a list of words, 288–289
except for a specific word, 294–295
matching complete lines, 312–313
near other words, 300–306
not followed by specific words, 295–

296
not preceded by specific words, 297–

300
that are repeated, 306–307
that are similar, 290–293
in XML-style comments, 462–466

for XML attributes, 450–455
sections of INI files, 417

matching section blocks, 475–476
matching section headers, 473–474

server, extracting from UNC path, extracting
from, 403–404, 403–404

7-bit character set, 29
sharp (see hash symbol (#))
shorthand character classes, 32
similar words, finding, 290–293
“single line” mode, 35, 39, 114–121
single-quoted strings (PHP), 103
Singleline option (RegexOptions), 115
size() method, Ruby (MatchData class), 143
social security numbers, validating, 254–257
sorting lines, 308, 310
source code, literal regular expressions in, 100–

106
span() method, Python (MatchObject class),

143
Split button (RegexBuddy), 9
Split tab (myregexp.com), 16
split() function (Perl), 202

with capturing groups, 207
Split() method (.NET), 198

with backreferences, 205
split() method (Java), 200
split() method, Java (String class), 200, 206
split() method, JavaScript (String class), 200
split() method, Python (re module), 202

wth capturing groups, 207
split() method, Ruby (String class), 203, 207
splitting strings, 195–208
splitting Windows paths, 397–402
square brackets []

for character classes, 216
for defining character classes, 31
escaping, 321

490 | Index

as metacharacter, 26
star quantifier (see asterisk (*))
start of line, matching at, 36–41
start() method, Java (Matcher class), 147
start() method, Python (MatchObject class),

142
String class (Java)

replaceAll() and replaceFirst() methods,
173

with backreferences, 178
split() method, 200, 206

String class (JavaScript)
match() method, 137, 153
replace() function, 174

removing whitespace with, 316
with backreferences, 178

split() method, 200
String class (Ruby)

gsub() method, 176, 187
with backreferences, 179

scan() method, 155, 161
split() method, 203, 207

string literals (see entries at literal)
strings

escaping metacharacters in, 319–322
leading and trailing whitespace in,

removing, 314–317
repeated whitespace in, removing, 317–

318
splitting, 195–208
validating as URLs, 347–350
validating as URNs, 356–358
validating length of, in input, 244–248

strip function, in general, 315
stripping

invalid characters from filenames, 408–409
leading zeros, 330–331

strlen() function, 142
 tags, replacing with, 434–437
<style> elements (HTML), 412
sub function, R Project support for, 99
sub() method, Python (re module), 176, 186

with backreferences, 179
sub() method, re module, 7
substitution operator, Java, 104
substitution operator, Perl (see s/// operator)
subtraction within character classes, 33, 78
System.Text.RegularExpressions package, 6

System.Text.RegularExpressions.Regex class,
110

T
\t (horizontal tab character), 28
<table> tags, adding attributes to, 455–458
tags (markup languages), 412

matching, 417–434
removing all but selected, 438–441
replacing one with another, 434–437

test() method (JavaScript), 126
testers for regular expressions, 7–23

desktop testers, 17
grep tools, 19
online testers, 11
RegexBuddy, 8
RegexPal, 10
text editors, popular, 23

text editors, popular, 23
text-directed engines, 56
time formats, validating

ISO 8601 formats, 237–241
traditional formats, 234–236

tokenizing input, 167
tools for regular expression programming, 7–

23
desktop testers, 17
grep tools, 19
online testers, 11
RegexBuddy, 8
RegexPal, 10
text editors, popular, 23

TPerlRegEx component, 98
trademark symbol, matching, 43
trailing whitespace, trimming, 314–317
trim function, in general, 315
triple-quoted strings, Python, 105

U
\u for Unicode code points, 45

encoding in Java strings, 103
U.K. postal codes, validating, 266
unassigned code points (Unicode), 47, 51
UNC paths, 396, 400

extracting drive letters from, 403–404
UNICODE (or U) flag, 32, 243
Unicode blocks, listing all characters in, 53
Unicode categories, 45

Index | 491

listing all characters in, 53
Unicode graphemes, 45, 52
Unicode properties, 45
Unicode scripts, 51

listing all characters in, 53
UNICODE_CASE constant (Java), 116
unions of character classes, 33
uniq utility (Unix), 308
UNIX_LINES constant (Java), 119
uppercase (see case)
URLs (uniform resource locators)

extracting fragments from, 376
extracting hosts from, 367–369
extracting paths from, 371–374
extracting ports from, 369–371
extracting queries from, 374–375
extracting schemes from, 364–365
extracting users from, 366–367
finding within full text, 350–352

within parentheses, 353–355
within quotes, 352–353

generic, validating, 358–364
turning into links, 356
validating, 347–350

URNs (Uniform Resource Names), validating,
356–358

user, extracting from URLs, 366–367

V
\v (vertical tab character), 28
validating

credit card numbers, 271–277
date formats, 226–229

ISO 8601 formats, 237–241
removing invalid dates, 229–234

date formats (ISO 8601), 237–241
date formats (traditional), 234–236
domain names, 376–379
email addresses, 213–219
European VAT numbers, 278–284
HTML elements, 430
ISBNs, 257–264
with Luhn algorithm, 276
of input

affirmative responses, 253–254
limiting to alphanumeric characters,

241–244
line count, 248–252
string length, 244–248

phone numbers (international), 224–226
phone numbers (North American), 219–

223
postal codes (Canadian), 265–266
postal codes (U.K.), 266
postal codes (U.S.), 264–265
social security numbers, 254–257
URLs, 347–350
URLs, generic, 358–364
URNs, 356–358
Windows paths, 395–397
XML-style comments, 460

validating matches in procedural code, 161–
164

Value property, .NET (Match object), 136
variable repetition, 65
VAT numbers, validating, 278–284
VB.NET language, 96, 99

creating regular expression objects, 110
importing regular expression library, 107
literal regular expressions in, 102

VBScript scripting library, 100
vertical bar (|)

as alternation operator, 56, 235, 288
escaping, 321

vertical tab character (\v), 28
Visual Basic 6 language, 99

W
\w token, 32, 43, 216

limiting number of words with, 247
\W token, 32, 43

limiting number of words with, 247
whitelisting, 440
whitespace

ignored in free-spacing mode, 83
limiting number of nonwhitespace

characters, 246
matching in character classes, 32
repeated, removing, 317–318
stripping from credit card numbers, 272,

274
stripping from VAT numbers, 278, 280
trimming from strings, 314–317
Unicode category for, 46

whole words, matching, 41–43
Windows Grep tool, 21
Windows paths

extracting drive letters from, 402–403

492 | Index

extracting file extensions from, 407–408
extracting filenames from, 406–407
extracting folders from, 404–406
splitting, 397–402
validating, 395–397

Windows-1252 characters, limiting to, 242
word boundaries, 41, 236

(see also \b word boundary)
matching in character classes, 32
for searching for numbers, 325

word characters, 32, 42
words, 308

(see also lines)
escaping metacharacters in, 319–322
finding all except specific, 294–295
finding any of multiple, 288–289
finding in XML-style comments, 462–466
finding lines that contain, 312–313
finding lines that don’t contain, 313–314
finding similar, 290–293
finding specific, 285–287
limiting number of, 247
matching whole words, 41–43
near other words, finding, 300–306
not followed by specific words, 295–296
not preceded by specific words, 297–300
repeated, finding, 306–307
trimming whitespace from, 314–317, 314–

317

X
\x for Unicode code points, 45
\X token for Unicode graphemes, 53
\x values (7-bit character set), 29
XHTML (Extensible Hypertext Markup

Language), 414
adding attributes to <table> tags, 455–458
matching tags, 417–434
replacing with , 434–437

XML (Extensible Markup Language), 414–415
adding attributes to <table> tags, 455–458
comments, validating, 460
finding specific attributes, 450–455
finding words in comments, 462–466
matching names, 441–447
matching tags, 420, 427–434
removing almost tags but selected, 438–

441
removing comments from, 458–462

XML 1.0 specification, 442, 444
XML 1.1 specification, 443, 446

Z
\Z anchor, 37, 38, 218
\z anchor, 37, 38
zero-length assertions, 76
zero-length matches, 40
zero-or-once matching, 66
zeros, stripping from numbers, 330–331
ZIP codes (see postal codes)

Index | 493

About the Authors
Regular Expressions Cookbook is written by Jan Goyvaerts and Steven Levithan, two
of the world’s experts on regular expressions.

Jan Goyvaerts runs Just Great Software, where he designs and develops some of the
most popular regular expression software. His products include RegexBuddy, the
world’s only regular expression editor that emulates the peculiarities of 15 regular ex-
pression flavors, and PowerGREP, the most feature-rich grep tool for Microsoft
Windows.

Steven Levithan is a leading JavaScript regular expression expert and runs a popular
regular expression centric blog at http://blog.stevenlevithan.com. Expanding his knowl-
edge of the regular expression flavor and library landscape has been one of his hobbies
for the last several years.

Colophon
The image on the cover of Regular Expressions Cookbook is a musk shrew (genus
Crocidura, family Soricidae). Several types of musk shrews exist, including white- and
red-toothed shrews, gray musk shrews, and red musk shrews. The shrew is native to
South Africa and India.

While several physical characteristics distinguish one type of shrew from another, all
shrews share certain commonalities. For instance, shrews are thought to be the smallest
insectivores in the world, and all have stubby legs, five claws on each foot, and an
elongated snout with tactile hairs. Differences include color variations among their
teeth (most noticeably in the aptly named white- and red-toothed shrews) and in the
color of their fur, which ranges from red to brown to gray.

Though the shrew usually forages for insects, it will also help farmers keep vermin in
check by eating mice or other small rodents in their fields.

Many musk shrews give off a strong, musky odor (hence their common name), which
they use to mark their territory. At one time it was rumored that the musk shrew’s scent
was so strong that it would permeate any wine or beer bottles that the shrew happened
to pass by, thus giving the liquor a musky taint, but the rumor has since proved to be
false.

The cover image is from Lydekker’s Royal Natural History. The cover font is Adobe
ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Caught in the Snarls of Different Versions
	Intended Audience
	Technology Covered
	Organization of This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction to Regular Expressions
	Regular Expressions Defined
	Many Flavors of Regular Expressions
	Regex Flavors Covered by This Book

	Searching and Replacing with Regular Expressions
	Many Flavors of Replacement Text

	Tools for Working with Regular Expressions
	RegexBuddy
	RegexPal
	More Online Regex Testers
	regex.larsolavtorvik.com
	Nregex
	Rubular
	myregexp.com
	reAnimator

	More Desktop Regular Expression Testers
	Expresso
	The Regulator

	grep
	PowerGREP
	Windows Grep
	RegexRenamer

	Popular Text Editors

	Chapter 2. Basic Regular Expression Skills
	2.1 Match Literal Text
	Problem
	Solution
	Discussion
	Variations
	Block escape
	Case-insensitive matching

	See Also

	2.2 Match Nonprintable Characters
	Problem
	Solution
	Discussion
	Variations on Representations of Nonprinting Characters
	The 26 control characters
	The 7-bit character set

	See Also

	2.3 Match One of Many Characters
	Problem
	Solution
	Calendar with misspellings
	Hexadecimal character
	Nonhexadecimal character

	Discussion
	Variations
	Shorthands
	Case insensitivity

	Flavor-Specific Features
	.NET character class subtraction
	Java character class union, subtraction, and intersection

	See Also

	2.4 Match Any Character
	Problem
	Solution
	Any character except line breaks
	Any character including line breaks

	Discussion
	Any character except line breaks
	Any character including line breaks
	Dot abuse

	Variations
	See Also

	2.5 Match Something at the Start and/or the End of a Line
	Problem
	Solution
	Start of the subject
	End of the subject
	Start of a line
	End of a line

	Discussion
	Anchors and lines
	Start of the subject
	End of the subject
	Start of a line
	End of a line
	Zero-length matches

	Variations
	See Also

	2.6 Match Whole Words
	Problem
	Solution
	Word boundaries
	Nonboundaries

	Discussion
	Word boundaries
	Nonboundaries

	Word Characters
	See Also

	2.7 Unicode Code Points, Properties, Blocks, and Scripts
	Problem
	Solution
	Unicode code point
	Unicode property or category
	Unicode block
	Unicode script
	Unicode grapheme

	Discussion
	Unicode code point
	Unicode property or category
	Unicode block
	Unicode script
	Unicode grapheme

	Variations
	Negated variant
	Character classes
	Listing all characters

	See Also

	2.8 Match One of Several Alternatives
	Problem
	Solution
	Discussion
	See Also

	2.9 Group and Capture Parts of the Match
	Problem
	Solution
	Discussion
	Variations
	Noncapturing groups
	Group with mode modifiers

	See Also

	2.10 Match Previously Matched Text Again
	Problem
	Solution
	Discussion
	See Also

	2.11 Capture and Name Parts of the Match
	Problem
	Solution
	Named capture
	Named backreferences

	Discussion
	Named capture
	Named backreferences

	See Also

	2.12 Repeat Part of the Regex a Certain Number of Times
	Problem
	Solution
	Googol
	Hexadecimal number
	Hexadecimal number
	Floating-point number

	Discussion
	Fixed repetition
	Variable repetition
	Infinite repetition
	Making something optional
	Repeating groups

	See Also

	2.13 Choose Minimal or Maximal Repetition
	Problem
	Solution
	Discussion
	See Also

	2.14 Eliminate Needless Backtracking
	Problem
	Solution
	Discussion
	See Also

	2.15 Prevent Runaway Repetition
	Problem
	Solution
	Discussion
	Variations
	See Also

	2.16 Test for a Match Without Adding It to the Overall Match
	Problem
	Solution
	Discussion
	Lookaround
	Negative lookaround
	Different levels of lookbehind
	Matching the same text twice
	Lookaround is atomic

	Solution Without Lookbehind
	See Also

	2.17 Match One of Two Alternatives Based on a Condition
	Problem
	Solution
	Discussion
	See Also

	2.18 Add Comments to a Regular Expression
	Problem
	Solution
	Discussion
	Free-spacing mode
	Java has free-spacing character classes

	Variations

	2.19 Insert Literal Text into the Replacement Text
	Problem
	Solution
	Discussion
	When and how to escape characters in replacement text
	.NET and JavaScript
	Java
	PHP
	Perl
	Python and Ruby
	More escape rules for string literals

	See Also

	2.20 Insert the Regex Match into the Replacement Text
	Problem
	Solution
	Regular expression
	Replacement

	Discussion
	See Also

	2.21 Insert Part of the Regex Match into the Replacement Text
	Problem
	Solution
	Regular expression
	Replacement

	Discussion
	Replacements using capturing groups
	$10 and higher
	References to nonexistent groups

	Solution Using Named Capture
	Regular expression
	Replacement
	Flavors that support named capture

	See Also

	2.22 Insert Match Context into the Replacement Text
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. Programming with Regular Expressions
	Programming Languages and Regex Flavors
	Languages Covered in This Chapter
	More Programming Languages

	3.1 Literal Regular Expressions in Source Code
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	See Also

	3.2 Import the Regular Expression Library
	Problem
	Solution
	C#
	VB.NET
	Java
	Python

	Discussion
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	3.3 Creating Regular Expression Objects
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	Perl
	Python
	Ruby

	Discussion
	.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Compiling a Regular Expression Down to CIL
	C#
	VB.NET

	Discussion
	See Also

	3.4 Setting Regular Expression Options
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Additional Language-Specific Options
	.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	See Also

	3.5 Test Whether a Match Can Be Found Within a Subject String
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	C# and VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	See Also

	3.6 Test Whether a Regex Matches the Subject String Entirely
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	C# and VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	See Also

	3.7 Retrieve the Matched Text
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	See Also

	3.8 Determine the Position and Length of the Match
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	See Also

	3.9 Retrieve Part of the Matched Text
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Named Capture
	C#
	VB.NET
	PHP
	Perl
	Python

	See Also

	3.10 Retrieve a List of All Matches
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	See Also

	3.11 Iterate over All Matches
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	See Also

	3.12 Validate Matches in Procedural Code
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	See Also

	3.13 Find a Match Within Another Match
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	See Also

	3.14 Replace All Matches
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	See Also

	3.15 Replace Matches Reusing Parts of the Match
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Named Capture
	C#
	VB.NET
	PHP
	Perl
	Python
	Ruby

	See Also

	3.16 Replace Matches with Replacements Generated in Code
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	See Also

	3.17 Replace All Matches Within the Matches of Another Regex
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	See Also

	3.18 Replace All Matches Between the Matches of Another Regex
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	Perl and Ruby
	Python

	See Also

	3.19 Split a String
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	C# and VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	See Also

	3.20 Split a String, Keeping the Regex Matches
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	See Also

	3.21 Search Line by Line
	Problem
	Solution
	C#
	VB.NET
	Java
	JavaScript
	PHP
	Perl
	Python
	Ruby

	Discussion
	See Also

	Chapter 4. Validation and Formatting
	4.1 Validate Email Addresses
	Problem
	Solution
	Simple
	Simple, with restrictions on characters
	Simple, with all characters
	No leading, trailing, or consecutive dots
	Top-level domain has two to six letters

	Discussion
	About email addresses
	Regular expression syntax
	Building a regex step-by-step

	Variations
	See Also

	4.2 Validate and Format North American Phone Numbers
	Problem
	Solution
	Regular expression
	Replacement
	C#
	JavaScript
	Other programming languages

	Discussion
	Variations
	Eliminate invalid phone numbers
	Find phone numbers in documents
	Allow a leading “1”
	Allow seven-digit phone numbers

	See Also

	4.3 Validate International Phone Numbers
	Problem
	Solution
	Regular expression
	JavaScript
	Other programming languages

	Discussion
	Variations
	Validate international phone numbers in EPP format

	See Also

	4.4 Validate Traditional Date Formats
	Problem
	Solution
	Discussion
	Variations
	See Also

	4.5 Accurately Validate Traditional Date Formats
	Problem
	Solution
	C#
	Perl
	Pure regular expression

	Discussion
	See Also

	4.6 Validate Traditional Time Formats
	Problem
	Solution
	Discussion
	Variations
	See Also

	4.7 Validate ISO 8601 Dates and Times
	Problem
	Solution
	Discussion
	See Also

	4.8 Limit Input to Alphanumeric Characters
	Problem
	Solution
	Regular expression
	Ruby
	Other programming languages

	Discussion
	Variations
	Limit input to ASCII characters
	Limit input to ASCII non-control characters and line breaks
	Limit input to shared ISO-8859-1 and Windows-1252 characters
	Limit input to alphanumeric characters in any language

	See Also

	4.9 Limit the Length of Text
	Problem
	Solution
	Regular expression
	Perl
	Other programming languages

	Discussion
	Variations
	Limit the length of an arbitrary pattern
	Limit the number of nonwhitespace characters
	Limit the number of words

	See Also

	4.10 Limit the Number of Lines in Text
	Problem
	Solution
	Regular expression
	PHP (PCRE)
	Other programming languages

	Discussion
	Variations
	Working with esoteric line separators

	See Also

	4.11 Validate Affirmative Responses
	Problem
	Solution
	Regular expression
	JavaScript
	Other programming languages

	Discussion
	See Also

	4.12 Validate Social Security Numbers
	Problem
	Solution
	Regular expression
	Python
	Other programming languages

	Discussion
	Variations
	Find Social Security numbers in documents

	See Also

	4.13 Validate ISBNs
	Problem
	Solution
	Regular expressions
	JavaScript
	Python
	Other programming languages

	Discussion
	ISBN-10 checksum
	ISBN-13 checksum

	Variations
	Find ISBNs in documents
	Eliminate incorrect ISBN identifiers

	See Also

	4.14 Validate ZIP Codes
	Problem
	Solution
	Regular expression
	VB.NET
	Other programming languages

	Discussion
	See Also

	4.15 Validate Canadian Postal Codes
	Problem
	Solution
	Discussion
	See Also

	4.16 Validate U.K. Postcodes
	Problem
	Solution
	Discussion
	See Also

	4.17 Find Addresses with Post Office Boxes
	Problem
	Solution
	Regular expression
	C#
	Other programming languages

	Discussion
	See Also

	4.18 Reformat Names From “FirstName LastName” to “LastName, FirstName”
	Problem
	Solution
	Regular expression
	Replacement
	JavaScript
	Other programming languages

	Discussion
	Variations
	List surname particles at the beginning of the name

	4.19 Validate Credit Card Numbers
	Problem
	Solution
	Strip spaces and hyphens
	Validate the number
	Example web page with JavaScript

	Discussion
	Strip spaces and hyphens
	Validate the number
	Incorporating the solution into a web page

	Extra Validation with the Luhn Algorithm

	4.20 European VAT Numbers
	Problem
	Solution
	Strip whitespace and punctuation
	Validate the number

	Discussion
	Strip whitespace and punctuation
	Validate the number

	Variations
	See Also

	Chapter 5. Words, Lines, and Special Characters
	5.1 Find a Specific Word
	Problem
	Solution
	Discussion
	See Also

	5.2 Find Any of Multiple Words
	Problem
	Solution
	Using alternation
	Example JavaScript solution

	Discussion
	Using alternation
	Example JavaScript solution

	See Also

	5.3 Find Similar Words
	Problem
	Solution
	Color or colour
	Bat, cat, or rat
	Words ending with “phobia”
	Steve, Steven, or Stephen
	Variations of “regular expression”

	Discussion
	Use word boundaries to match complete words
	Color or colour
	Bat, cat, or rat
	Words ending with “phobia”
	Steve, Steven, or Stephen
	Variations of “regular expression”

	See Also

	5.4 Find All Except a Specific Word
	Problem
	Solution
	Discussion
	Variations
	Find words that don’t contain another word

	See Also

	5.5 Find Any Word Not Followed by a Specific Word
	Problem
	Solution
	Discussion
	Variations
	See Also

	5.6 Find Any Word Not Preceded by a Specific Word
	Problem
	Solution
	Lookbehind you
	Words not preceded by “cat”
	Simulate lookbehind

	Discussion
	Fixed, finite, and infinite length lookbehind
	Simulate lookbehind

	Variations
	See Also

	5.7 Find Words Near Each Other
	Problem
	Solution
	Discussion
	Variations
	Using a conditional
	Match three or more words near each other
	Multiple words, any distance from each other

	See Also

	5.8 Find Repeated Words
	Problem
	Solution
	Discussion
	See Also

	5.9 Remove Duplicate Lines
	Problem
	Solution
	Option 1: Sort lines and remove adjacent duplicates
	Option 2: Keep the last occurrence of each duplicate line in an unsorted file
	Option 3: Keep the first occurrence of each duplicate line in an unsorted file

	Discussion
	Option 1: Sort lines and remove adjacent duplicates
	Option 2: Keep the last occurrence of each duplicate line in an unsorted file
	Option 3: Keep the first occurrence of each duplicate line in an unsorted file

	See Also

	5.10 Match Complete Lines That Contain a Word
	Problem
	Solution
	Discussion
	Variations
	See Also

	5.11 Match Complete Lines That Do Not Contain a Word
	Problem
	Solution
	Discussion
	See Also

	5.12 Trim Leading and Trailing Whitespace
	Problem
	Solution
	Discussion
	Variations
	See Also

	5.13 Replace Repeated Whitespace with a Single Space
	Problem
	Solution
	Clean any whitespace characters
	Clean horizontal whitespace characters

	Discussion
	Clean any whitespace characters
	Clean horizontal whitespace characters

	See Also

	5.14 Escape Regular Expression Metacharacters
	Problem
	Solution
	Built-in solutions
	Regular expression
	Replacement
	Example JavaScript function

	Discussion
	Variations
	See Also

	Chapter 6. Numbers
	6.1 Integer Numbers
	Problem
	Solution
	Discussion
	See Also

	6.2 Hexadecimal Numbers
	Problem
	Solution
	Discussion
	See Also

	6.3 Binary Numbers
	Problem
	Solution
	Discussion
	See Also

	6.4 Strip Leading Zeros
	Problem
	Solution
	Regular expression
	Replacement
	Getting the numbers in Perl
	Stripping leading zeros in PHP

	Discussion
	See Also

	6.5 Numbers Within a Certain Range
	Problem
	Solution
	Discussion
	See Also

	6.6 Hexadecimal Numbers Within a Certain Range
	Problem
	Solution
	Discussion
	See Also

	6.7 Floating Point Numbers
	Problem
	Solution
	Discussion
	See Also

	6.8 Numbers with Thousand Separators
	Problem
	Solution
	Discussion
	See Also

	6.9 Roman Numerals
	Problem
	Solution
	Discussion
	Convert Roman Numerals to Decimal
	See Also

	Chapter 7. URLs, Paths, and Internet Addresses
	7.1 Validating URLs
	Problem
	Solution
	Discussion
	See Also

	7.2 Finding URLs Within Full Text
	Problem
	Solution
	Discussion
	See Also

	7.3 Finding Quoted URLs in Full Text
	Problem
	Solution
	Discussion
	See Also

	7.4 Finding URLs with Parentheses in Full Text
	Problem
	Solution
	Discussion
	See Also

	7.5 Turn URLs into Links
	Problem
	Solution
	Discussion
	See Also

	7.6 Validating URNs
	Problem
	Solution
	Discussion
	See Also

	7.7 Validating Generic URLs
	Problem
	Solution
	Discussion
	See Also

	7.8 Extracting the Scheme from a URL
	Problem
	Solution
	Extract the scheme from a URL known to be valid
	Extract the scheme while validating the URL

	Discussion
	See Also

	7.9 Extracting the User from a URL
	Problem
	Solution
	Extract the user from a URL known to be valid
	Extract the user while validating the URL

	Discussion
	See Also

	7.10 Extracting the Host from a URL
	Problem
	Solution
	Extract the host from a URL known to be valid
	Extract the host while validating the URL

	Discussion
	See Also

	7.11 Extracting the Port from a URL
	Problem
	Solution
	Extract the port from a URL known to be valid
	Extract the host while validating the URL

	Discussion
	See Also

	7.12 Extracting the Path from a URL
	Problem
	Solution
	Discussion
	See Also

	7.13 Extracting the Query from a URL
	Problem
	Solution
	Discussion
	See Also

	7.14 Extracting the Fragment from a URL
	Problem
	Solution
	Discussion
	See Also

	7.15 Validating Domain Names
	Problem
	Solution
	Discussion
	See Also

	7.16 Matching IPv4 Addresses
	Problem
	Solution
	Regular expression
	Perl

	Discussion
	See Also

	7.17 Matching IPv6 Addresses
	Problem
	Solution
	Standard notation
	Mixed notation
	Standard or mixed notation
	Compressed notation
	Compressed mixed notation
	Standard, mixed, or compressed notation

	Discussion
	Standard notation
	Mixed notation
	Standard or mixed notation
	Compressed notation
	Compressed mixed notation
	Standard, mixed, or compressed notation

	See Also

	7.18 Validate Windows Paths
	Problem
	Solution
	Drive letter paths
	Drive letter and UNC paths
	Drive letter, UNC, and relative paths

	Discussion
	Drive letter paths
	Drive letter and UNC paths
	Drive letter, UNC, and relative paths

	See Also

	7.19 Split Windows Paths into Their Parts
	Problem
	Solution
	Drive letter paths
	Drive letter and UNC paths
	Drive letter, UNC, and relative paths

	Discussion
	Drive letter paths
	Drive letter and UNC paths
	Drive letter, UNC, and relative paths

	See Also

	7.20 Extract the Drive Letter from a Windows Path
	Problem
	Solution
	Discussion
	See Also

	7.21 Extract the Server and Share from a UNC Path
	Problem
	Solution
	Discussion
	See Also

	7.22 Extract the Folder from a Windows Path
	Problem
	Solution
	Discussion
	See Also

	7.23 Extract the Filename from a Windows Path
	Problem
	Solution
	Discussion
	See Also

	7.24 Extract the File Extension from a Windows Path
	Problem
	Solution
	Discussion
	See Also

	7.25 Strip Invalid Characters from Filenames
	Problem
	Solution
	Regular expression
	Replacement

	Discussion
	See Also

	Chapter 8. Markup and Data Interchange
	8.1 Find XML-Style Tags
	Problem
	Solution
	Quick and dirty
	Allow > in attribute values
	(X)HTML tags (loose)
	(X)HTML tags (strict)
	XML tags (strict)

	Discussion
	A few words of caution
	Quick and dirty
	Allow > in attribute values
	(X)HTML tags (loose)
	(X)HTML tags (strict)
	XML tags (strict)
	Skip tricky (X)HTML and XML sections

	Variations
	Match valid HTML 4 tags

	See Also

	8.2 Replace Tags with
	Problem
	Solution
	Discussion
	Variations
	Replace a list of tags

	See Also

	8.3 Remove All XML-Style Tags Except and
	Problem
	Solution
	Solution 1: Match tags except and
	Solution 2: Match tags except and , and any tags that contain attributes

	Discussion
	Variations
	Whitelist specific attributes

	See Also

	8.4 Match XML Names
	Problem
	Solution
	XML 1.0 names (approximate)
	XML 1.1 names (exact)

	Discussion
	XML 1.0 names
	XML 1.1 names

	Variations
	See Also

	8.5 Convert Plain Text to HTML by Adding <p> and
 Tags
	Problem
	Solution
	Step 1: Replace HTML special characters with character entity references
	Step 2: Replace all line breaks with

	Step 3: Replace double
 tags with </p><p>
	Step 4: Wrap the entire string with <p>⋯</p>
	JavaScript example

	Discussion
	Step 1: Replace HTML special characters with character entity references
	Step 2: Replace all line breaks with

	Step 3: Replace double
 tags with </p><p>
	Step 4: Wrap the entire string with <p>⋯</p>

	See Also

	8.6 Find a Specific Attribute in XML-Style Tags
	Problem
	Solution
	Tags that contain an id attribute (quick and dirty)
	Tags that contain an id attribute (more reliable)
	<div> tags that contain an id attribute
	Tags that contain an id attribute with the value “my-id”
	Tags that contain “my-class” within their class attribute value

	Discussion
	See Also

	8.7 Add a cellspacing Attribute to <table> Tags That Do Not Already Include It
	Problem
	Solution
	Regex 1: Simplistic solution
	Regex 2: More reliable solution
	Insert the new attribute

	Discussion
	See Also

	8.8 Remove XML-Style Comments
	Problem
	Solution
	Discussion
	How it works
	When comments can’t be removed

	Variations
	Find valid XML-style comments
	Find C-style comments

	See Also

	8.9 Find Words Within XML-Style Comments
	Problem
	Solution
	Two-step approach
	Single-step approach

	Discussion
	Two-step approach
	Single-step approach

	Variations
	See Also

	8.10 Change the Delimiter Used in CSV Files
	Problem
	Solution
	JavaScript example

	Discussion
	See Also

	8.11 Extract CSV Fields from a Specific Column
	Problem
	Solution
	JavaScript example

	Discussion
	Variations
	Match a CSV record and capture the field in column 1 to backreference 1
	Match a CSV record and capture the field in column 2 to backreference 1
	Match a CSV record and capture the field in column 3 or higher to backreference 1
	Replacement string

	8.12 Match INI Section Headers
	Problem
	Solution
	Discussion
	See Also

	8.13 Match INI Section Blocks
	Problem
	Solution
	Discussion
	See Also

	8.14 Match INI Name-Value Pairs
	Problem
	Solution
	Discussion
	See Also

	Index

