Detailed Solutions in Eight
Programming Languages

Expressions
Cookbook

Jan Goyvaerts

O’REILLY" & Steven Levithan

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

SECOND EDITION

Regular Expressions Cookbook

Jan Goyvaerts and Steven Levithan

O’REILLY"

Beijing - Cambridge - Farnham - KéIn - Sebastopol - Tokyo

www.it-ebooks.info

http://www.it-ebooks.info/

Regular Expressions Cookbook, Second Edition
by Jan Goyvaerts and Steven Levithan

Copyright © 2012 Jan Goyvaerts, Steven Levithan. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Andy Oram Indexer: BIM Publishing Services
Production Editor: Holly Bauer Cover Designer: Karen Montgomery
Copyeditor: Genevieve d’Entremont Interior Designer: David Futato
Proofreader: BIM Publishing Services lllustrator: Rebecca Demarest
August 2012: Second Edition.

Revision History for the Second Edition:
2012-08-10 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449319434 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Regular Expressions Cookbook, the image of a musk shrew, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31943-4
[LSI]
1344629030

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449319434
http://www.it-ebooks.info/

Table of Contents

Preface ..o ix
1. Introduction to Regular EXpressionscoovvuiiiiiiiienineenennennns 1
Regular Expressions Defined 1
Search and Replace with Regular Expressions 6
Tools for Working with Regular Expressions 8

2. BasicRegular Expression Skillsc.ccoviiiiiiiiiiiiiiiiiiin, 27
2.1 Match Literal Text 28

2.2 Match Nonprintable Characters 30

2.3 Match One of Many Characters 33

2.4 Match Any Character 38

2.5 Match Something at the Start and/or the End of a Line 40

2.6 Match Whole Words 45

2.7 Unicode Code Points, Categories, Blocks, and Scripts 48

2.8 Match One of Several Alternatives 62

2.9 Group and Capture Parts of the Match 63

2.10 Match Previously Matched Text Again 66

2.11 Capture and Name Parts of the Match 68

2.12 Repeat Part of the Regex a Certain Number of Times 72

2.13 Choose Minimal or Maximal Repetition 75

2.14 Eliminate Needless Backtracking 78

2.15 Prevent Runaway Repetition 81

2.16 Test for a Match Without Adding It to the Overall Match 84

2.17 Match One of Two Alternatives Based on a Condition 91

2.18 Add Comments to a Regular Expression 93

2.19 Insert Literal Text into the Replacement Text 95

2.20 Insert the Regex Match into the Replacement Text 98

2.21 Insert Part of the Regex Match into the Replacement Text 99

2.22 TInsert Match Context into the Replacement Text 103

www.it-ebooks.info

http://www.it-ebooks.info/

3. Programming with Regular Expressionscccovviiiiiiininnnn.. 105

Programming Languages and Regex Flavors 105
3.1 Literal Regular Expressions in Source Code 111
3.2 Import the Regular Expression Library 117
3.3 Create Regular Expression Objects 119
3.4 Set Regular Expression Options 126
3.5 Test If a Match Can Be Found Within a Subject String 133
3.6 Test Whether a Regex Matches the Subject String Entirely 140
3.7 Retrieve the Matched Text 144
3.8 Determine the Position and Length of the Match 151
3.9 Retrieve Part of the Matched Text 156

3.10 Retrieve a List of All Matches 164
3.11 Tterate over All Matches 169
3.12 Validate Matches in Procedural Code 176
3.13 Find a Match Within Another Match 179
3.14 Replace All Matches 184
3.15 Replace Matches Reusing Parts of the Match 192
3.16 Replace Matches with Replacements Generated in Code 197
3.17 Replace All Matches Within the Matches of Another Regex 203
3.18 Replace All Matches Between the Matches of Another Regex 206
3.19 Split a String 211
3.20 Split a String, Keeping the Regex Matches 219
3.21 Search Line by Line 224
3.22 Construct a Parser 228
4, Validationand Formattingccoiuiiiiiiiiiiiiiiiiiiiiiieenanns 243
4.1 Validate Email Addresses 243
4.2 Validate and Format North American Phone Numbers 249
4.3 Validate International Phone Numbers 254
4.4 Validate Traditional Date Formats 256
4.5 Validate Traditional Date Formats, Excluding Invalid Dates 260
4.6 Validate Traditional Time Formats 266
4.7 Validate ISO 8601 Dates and Times 269
4.8 Limit Input to Alphanumeric Characters 275
4.9 Limit the Length of Text 278
4.10 Limit the Number of Lines in Text 283
4.11 Validate Affirmative Responses 288
4.12 Validate Social Security Numbers 289
4.13 Validate ISBNs 292
4.14 Validate ZIP Codes 300
4.15 Validate Canadian Postal Codes 301
4.16 Validate U.K. Postcodes 302
4.17 Find Addresses with Post Office Boxes 303

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

4.18 Reformat Names From “FirstName LastName” to “LastName,

FirstName” 305

4.19 Validate Password Complexity 308
4.20 Validate Credit Card Numbers 317
4.21 European VAT Numbers 323
5. Words, Lines, and Special Charactersc.cooviiiiiiiiiiiininnnns 331
5.1 Find a Specific Word 331
5.2 Find Any of Multiple Words 334
5.3 Find Similar Words 336
5.4 Find All Except a Specific Word 340
5.5 Find Any Word Not Followed by a Specific Word 342
5.6 Find Any Word Not Preceded by a Specific Word 344
5.7 Find Words Near Each Other 348
5.8 Find Repeated Words 355
5.9 Remove Duplicate Lines 358
5.10 Match Complete Lines That Contain a Word 362
5.11 Match Complete Lines That Do Not Contain a Word 364
5.12 Trim Leading and Trailing Whitespace 365
5.13 Replace Repeated Whitespace with a Single Space 369
5.14 Escape Regular Expression Metacharacters 371
6. Numberst 375
6.1 Integer Numbers 375
6.2 Hexadecimal Numbers 379
6.3 Binary Numbers 381
6.4 Octal Numbers 383
6.5 Decimal Numbers 384
6.6 Strip Leading Zeros 385
6.7 Numbers Within a Certain Range 386
6.8 Hexadecimal Numbers Within a Certain Range 392
6.9 Integer Numbers with Separators 395
6.10 Floating-Point Numbers 396
6.11 Numbers with Thousand Separators 399
6.12 Add Thousand Separators to Numbers 401
6.13 Roman Numerals 406
7. SourceCodeandLogFilesccovviiiniiiiiiiiiiiiiiiiiiiiiiiaenns 409
7.1 Keywords 409
7.2 Identifiers 412
7.3 Numeric Constants 413
7.4 Operators 414
7.5 Single-Line Comments 415

Table of Contents | v

www.it-ebooks.info

http://www.it-ebooks.info/

7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14

8. URLs, Paths, and Internet Addresses

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25

9. Markup and Data Formats
Processing Markup and Data Formats with Regular Expressions

9.1
9.2

9.3 Remove All XML-Style Tags Except and

9.4

Multiline Comments

All Comments

Strings

Strings with Escapes

Regex Literals

Here Documents

Common Log Format

Combined Log Format

Broken Links Reported in Web Logs

Validating URLs

Finding URLs Within Full Text

Finding Quoted URLs in Full Text

Finding URLs with Parentheses in Full Text
Turn URLs into Links

Validating URNs

Validating Generic URLs

Extracting the Scheme from a URL
Extracting the User from a URL

Extracting the Host from a URL

Extracting the Port from a URL

Extracting the Path from a URL

Extracting the Query from a URL
Extracting the Fragment from a URL
Validating Domain Names

Matching IPv4 Addresses

Matching IPv6 Addresses

Validate Windows Paths

Split Windows Paths into Their Parts
Extract the Drive Letter from a Windows Path
Extract the Server and Share from a UNC Path
Extract the Folder from a Windows Path
Extract the Filename from a Windows Path

Extract the File Extension from a Windows Path

Strip Invalid Characters from Filenames

Find XML-Style Tags
Replace Tags with

Match XML Names

oooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooo

416
417
418
421
423
425
426
430
431

435
435
438
440
442
444
445
447
453
455
457
459
461
464
465
466
469
472
486
489
494
495
496
498
499
500

503
503
510
526
530
533

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

9.5 Convert Plain Text to HTML by Adding <p> and
 Tags 539

9.6 Decode XML Entities
9.7 Find a Specific Attribute in XML-Style Tags

543
545

9.8 Add a cellspacing Attribute to <table> Tags That Do Not Already

Include It

9.9 Remove XML-Style Comments
9.10 Find Words Within XML-Style Comments
9.11 Change the Delimiter Used in CSV Files
9.12 Extract CSV Fields from a Specific Column
9.13 Match INT Section Headers
9.14 Match INI Section Blocks
9.15 Match INT Name-Value Pairs

oo

550
553
558
562
565
569
571
572

www.it-ebooks.info

Table of Contents | vii

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Over the past decade, regular expressions have experienced a remarkable rise in pop-
ularity. Today, all the popular programming languages include a powerful regular ex-
pression library, or even have regular expression support built right into the language.
Many developers have taken advantage of these regular expression features to provide
the users of their applications the ability to search or filter through their data using a
regular expression. Regular expressions are everywhere.

Many books have been published to ride the wave of regular expression adoption. Most
do a good job of explaining the regular expression syntax along with some examples
and a reference. But there aren’t any books that present solutions based on regular
expressions to a wide range of real-world practical problems dealing with text on a
computer and in a range of Internet applications. We, Steve and Jan, decided to fill that
need with this book.

We particularly wanted to show how you can use regular expressions in situations
where people with limited regular expression experience would say it can’t be done, or
where software purists would say a regular expression isn’t the right tool for the job.
Because regular expressions are everywhere these days, they are often a readily available
tool that can be used by end users, without the need to involve a team of programmers.
Even programmers can often save time by using a few regular expressions for informa-
tion retrieval and alteration tasks that would take hours or days to code in procedural
code, or that would otherwise require a third-party library that needs prior review and
management approval.

Caught in the Snarls of Different Versions

As with anything that becomes popular in the IT industry, regular expressions come
in many different implementations, with varying degrees of compatibility. This has
resulted in many different regular expression flavors that don’t always act the same
way, or work at all, on a particular regular expression.

Many books do mention that there are different flavors and point out some of the
differences. But they often leave out certain flavors here and there—particularly

www.it-ebooks.info

http://www.it-ebooks.info/

when a flavor lacks certain features—instead of providing alternative solutions or
workarounds. This is frustrating when you have to work with different regular expres-
sion flavors in different applications or programming languages.

Casual statements in the literature, such as “everybody uses Perl-style regular expres-
sions now,” unfortunately trivialize a wide range of incompatibilities. Even “Perl-style”
packages have important differences, and meanwhile Perl continues to evolve. Over-
simplified impressions can lead programmers to spend half an hour or so fruitlessly
running the debugger instead of checking the details of their regular expression imple-
mentation. Even when they discover that some feature they were depending on is not
present, they don’t always know how to work around it.

This book is the first book on the market that discusses the most popular and feature-

rich regular expression flavors side by side, and does so consistently throughout the
book.

Intended Audience

You should read this book if you regularly work with text on a computer, whether that’s
searching through a pile of documents, manipulating text in a text editor, or developing
software that needs to search through or manipulate text. Regular expressions are an
excellent tool for the job. Regular Expressions Cookbook teaches you everything you
need to know about regular expressions. You don’t need any prior experience what-
soever, because we explain even the most basic aspects of regular expressions.

If you do have experience with regular expressions, you’ll find a wealth of detail that
other books and online articles often gloss over. If you’ve ever been stumped by a regex
that works in one application but not another, you’ll find this book’s detailed and equal
coverage of seven of the world’s most popular regular expression flavors very valuable.
We organized the whole book as a cookbook, so you can jump right to the topics you
want to read up on. If you read the book cover to cover, you’ll become a world-class
chef of regular expressions.

This book teaches you everything you need to know about regular expressions and then
some, regardless of whether you are a programmer. If you want to use regular expres-
sions with a text editor, search tool, or any application with an input box labeled
“regex,” you can read this book with no programming experience at all. Most of the
recipes in this book have solutions purely based on one or more regular expressions.

If you are a programmer, Chapter 3 provides all the information you need to implement
regular expressions in your source code. This chapter assumes you’re familiar with the
basic language features of the programming language of your choice, but it does not
assume you have ever used a regular expression in your source code.

X | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Technology Covered

.NET, Java, JavaScript, PCRE, Perl, Python, and Ruby aren’t just back-cover buzz-
words. These are the seven regular expression flavors covered by this book. We cover
all seven flavors equally. We’ve particularly taken care to point out all the inconsisten-
cies that we could find between those regular expression flavors.

The programming chapter (Chapter 3) has code listings in C#, Java, JavaScript, PHP,
Perl, Python, Ruby, and VB.NET. Again, every recipe has solutions and explanations
forall eight languages. While this makes the chapter somewhat repetitive, you can easily
skip discussions on languages you aren’t interested in without missing anything you
should know about your language of choice.

Organization of This Book

The first three chapters of this book cover useful tools and basic information that give
you a basis for using regular expressions; each of the subsequent chapters presents a
variety of regular expressions while investigating one area of text processing in depth.

Chapter 1, Introduction to Regular Expressions, explains the role of regular expressions
and introduces a number of tools that will make it easier to learn, create, and debug
them.

Chapter 2, Basic Regular Expression Skills, covers each element and feature of regular
expressions, along with important guidelines for effective use. It forms a complete tu-
torial to regular expressions.

Chapter 3, Programming with Regular Expressions, specifies coding techniques and
includes code listings for using regular expressions in each of the programming lan-
guages covered by this book.

Chapter 4, Validation and Formatting, contains recipes for handling typical user input,
such as dates, phone numbers, and postal codes in various countries.

Chapter 5, Words, Lines, and Special Characters, explores common text processing
tasks, such as checking for lines that contain or fail to contain certain words.

Chapter 6, Numbers, shows how to detect integers, floating-point numbers, and several
other formats for this kind of input.

Chapter 7, Source Code and Log Files, provides building blocks for parsing source code
and other text file formats, and shows how you can process log files with regular
expressions.

Chapter 8, URLs, Paths, and Internet Addresses, shows you how to take apart and
manipulate the strings commonly used on the Internet and Windows systems to find
things.

Preface | xi

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9, Markup and Data Formats, covers the manipulation of HTML, XML,
comma-separated values (CSV), and INI-style configuration files.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, program elements such as variable or function names,
values returned as the result of a regular expression replacement, and subject or
input text that is applied to a regular expression. This could be the contents of a
text box in an application, a file on disk, or the contents of a string variable.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

<Regulareexpression»
Represents a regular expression, standing alone or as you would type it into the
search box of an application. Spaces in regular expressions are indicated with gray
circles to make them more obvious. Spaces are not indicated with gray circles in
free-spacing mode because this mode ignores spaces.

«Replacementetext»
Represents the text that regular expression matches will be replaced within a
search-and-replace operation. Spaces in replacement text are indicated with gray
circles to make them more obvious.

Matched text
Represents the part of the subject text that matches a regular expression.

A gray ellipsis in a regular expression indicates that you have to “fill in the blank”
before you can use the regular expression. The accompanying text explains what
you can fill in.

(R}, [LF|, and

CR, LF, and CRLF in boxes represent actual line break characters in strings, rather
than character escapes such as \r, \n, and \r\n. Such strings can be created by
pressing Enter in a multiline edit control in an application, or by using multiline
string constants in source code such as verbatim strings in C# or triple-quoted
strings in Python.

dJd
The return arrow, as you may see on the Return or Enter key on your keyboard,
indicates that we had to break up a line to make it fit the width of the printed page.
xii | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

When typing the textinto your source code, you should not press Enter, butinstead
type everything on a single line.

W
. “
A
[N
TSN

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Regular Expressions Cookbook by Jan
Goyvaerts and Steven Levithan. Copyright 2012 Jan Goyvaerts and Steven Levithan,
978-1-449-31943-4.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Safari

oks Onlin

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley

Preface | xiii

www.it-ebooks.info

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.it-ebooks.info/

Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata and any additional information.
You can access this page at:

http://oreilly.com/catalog/9781449319434
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: hitp://www.youtube.com/oreillymedia

Acknowledgments

We thank Andy Oram, our editor at O’Reilly Media, Inc., for helping us see this project
from start to finish. We also thank Jeffrey Friedl, Zak Greant, Nikolaj Lindberg, and
Ian Morse for their careful technical reviews on the first edition, and Nikolaj Lindberg,
Judith Myerson, and Zak Greant for reviewing the second, which made this a more
comprehensive and accurate book.

xiv | Preface

www.it-ebooks.info

http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreilly.com/catalog/9781449319434
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

CHAPTER1
Introduction to Regular Expressions

Having opened this cookbook, you are probably eager to inject some of the ungainly
strings of parentheses and question marks you find in its chapters right into your code.
If you are ready to plug and play, be our guest: the practical regular expressions are
listed and described in Chapters 4 through 9.

But the initial chapters of this book may save you a lot of time in the long run. For
instance, this chapter introduces you to a number of utilities—some of them created
by the authors, Jan and Steven—that let you test and debug a regular expression before
you bury it in code where errors are harder to find. And these initial chapters also show
you how to use various features and options of regular expressions to make your life
easier, help you understand regular expressions in order to improve their performance,
and learn the subtle differences between how regular expressions are handled by dif-
ferent programming languages—and even different versions of your favorite program-
ming language.

So we’ve put a lot of effort into these background matters, confident that you’ll read it
before you start or when you get frustrated by your use of regular expressions and want
to bolster your understanding.

Regular Expressions Defined

In the context of this book, a regular expression is a specific kind of text pattern that
you can use with many modern applications and programming languages. You can use
them to verify whether input fits into the text pattern, to find text that matches the
pattern within a larger body of text, to replace text matching the pattern with other
text or rearranged bits of the matched text, to split a block of text into a list of subtexts,
and to shoot yourself in the foot. This book helps you understand exactly what you’re
doing and avoid disaster.

www.it-ebooks.info

http://www.it-ebooks.info/

History of the Term “Regular Expression”

The term regular expression comes from mathematics and computer science theory,
where it reflects a trait of mathematical expressions called regularity. Such an expres-
sion can be implemented in software using a deterministic finite automaton (DFA). A
DFA is a finite state machine that doesn’t use backtracking.

The text patterns used by the earliest grep tools were regular expressions in the math-
ematical sense. Though the name has stuck, modern-day Perl-style regular expressions
are not regular expressions at all in the mathematical sense. They’re implemented with
a nondeterministic finite automaton (NFA). You will learn all about backtracking
shortly. All a practical programmer needs to remember from this note is that some ivory
tower computer scientists get upset about their well-defined terminology being over-
loaded with technology that’s far more useful in the real world.

If you use regular expressions with skill, they simplify many programming and text
processing tasks, and allow many that wouldn’t be at all feasible without the regular
expressions. You would need dozens if not hundreds of lines of procedural code to
extract all email addresses from a document—code that is tedious to write and hard to
maintain. But with the proper regular expression, as shown in Recipe 4.1, it takes just
a few lines of code, or maybe even one line.

But if you try to do too much with just one regular expression, or use regexes where
they’re not really appropriate, you’ll find out why some people say:!

Some people, when confronted with a problem, think “I know, I'll use regular expres-
sions.” Now they have two problems.

The second problem those people have is that they didn’t read the owner’s manual,
which you are holding now. Read on. Regular expressions are a powerful tool. If your
job involves manipulating or extracting text on a computer, a firm grasp of regular
expressions will save you plenty of overtime.

Many Flavors of Regular Expressions

All right, the title of the previous section was a lie. We didn’t define what regular
expressions are. We can’t. There is no official standard that defines exactly which text
patterns are regular expressions and which aren’t. As you can imagine, every designer
of programming languages and every developer of text processing applications has a
different idea of exactly what a regular expression should be. So now we’re stuck with
a whole palette of regular expression flavors.

Fortunately, most designers and developers are lazy. Why create something totally new
when you can copy what has already been done? As a result, all modern regular ex-
pression flavors, including those discussed in this book, can trace their history back to

1. Jeffrey Friedl traces the history of this quote in his blog at http://regex.info/blog/2006-09-15/247.

2 | Chapter1: Introduction to Regular Expressions

www.it-ebooks.info

http://regex.info/blog/2006-09-15/247
http://www.it-ebooks.info/

the Perl programming language. We call these flavors Perl-style regular expressions.
Their regular expression syntax is very similar, and mostly compatible, but not com-
pletely so.

Writers are lazy, too. We'll usually type regex or regexp to denote a single regular
expression, and regexes to denote the plural.

Regex flavors do not correspond one-to-one with programming languages. Scripting
languages tend to have their own, built-in regular expression flavor. Other program-
ming languages rely on libraries for regex support. Some libraries are available for mul-
tiple languages, while certain languages can draw on a choice of different libraries.

This introductory chapter deals with regular expression flavors only and completely
ignores any programming considerations. Chapter 3 begins the code listings, so you
can peek ahead to “Programming Languages and Regex Flavors” in Chapter 3 to find
out which flavors you’ll be working with. Butignore all the programming stuff for now.
The tools listed in the next section are an easier way to explore the regex syntax through
“learning by doing.”

Regex Flavors Covered by This Book

For this book, we selected the most popular regex flavors in use today. These are all
Perl-style regex flavors. Some flavors have more features than others. But if two flavors
have the same feature, they tend to use the same syntax. We’ll point out the few an-
noying inconsistencies as we encounter them.

All these regex flavors are part of programming languages and libraries that are in active
development. The list of flavors tells you which versions this book covers. Further along
in the book, we mention the flavor without any versions if the presented regex works
the same way with all flavors. This is almost always the case. Aside from bug fixes that
affect corner cases, regex flavors tend not to change, except to add features by giving
new meaning to syntax that was previously treated as an error:

.NET
The Microsoft .NET Framework provides a full-featured Perl-style regex flavor
through the System.Text.RegularExpressions package. This book covers .NET
versions 1.0 through 4.0. Strictly speaking, there are only two versions of the .NET
regex flavor: 1.0 and 2.0. No changes were made to the Regex classes at all
in .NET 1.1, 3.0, and 3.5. The Regex class got a few new methods in .NET 4.0, but
the regex syntax is unchanged.

Any .NET programming language, including C#, VB.NET, Delphi for .NET, and
even COBOL.NET, has full access to the .NET regex flavor. If an application de-
veloped with .NET offers you regex support, you can be quite certain it uses
the .NET flavor, even if it claims to use “Perl regular expressions.” For a long time,
a glaring exception was Visual Studio (VS) itself. Up until Visual Studio 2010, the
VS integrated development environment (IDE) had continued to use the same old

Regular Expressions Defined | 3

www.it-ebooks.info

http://www.it-ebooks.info/

regex flavor it has had from the beginning, which was not Perl-style at all. Visual
Studio 11, which is in beta when we write this, finally uses the .NET regex flavor
in the IDE too.

Java
Java 4is the first Java release to provide built-in regular expression support through
the java.util.regex package. It has quickly eclipsed the various third-party regex
libraries for Java. Besides being standard and built in, it offers a full-featured Perl-
style regex flavor and excellent performance, even when compared with applica-
tions written in C. This book covers the java.util.regex package in Java 4, 5, 6,
and 7.

If you’re using software developed with Java during the past few years, any regular
expression support it offers likely uses the Java flavor.

JavaScript

In this book, we use the term JavaScript to indicate the regular expression flavor
defined in versions 3 and 5 of the ECMA-262 standard. This standard defines the
ECMAScript programming language, which is better known through its JavaScript
and JScript implementations in various web browsers. Internet Explorer (as of ver-
sion 5.5), Firefox, Chrome, Opera, and Safari all implement Edition 3 or 5 of
ECMA-262. As far as regular expressions go, the differences between JavaScript 3
and JavaScript 5 are minimal. However, all browsers have various corner case bugs
causing them to deviate from the standard. We point out such issues in situations
where they matter.

If a website allows you to search or filter using a regular expression without waiting
for a response from the web server, it uses the JavaScript regex flavor, which is the
only cross-browser client-side regex flavor. Even Microsoft’s VBScript and Adobe’s
ActionScript 3 use it, although ActionScript 3 adds some extra features.

XRegExp

XRegExp is an open source JavaScript library developed by Steven Levithan. You
can download it at http://xregexp.com. XRegExp extends JavaScript’s regular ex-
pression syntax and removes some cross-browser inconsistencies. Recipes in this
book that use regular expression features that are not available in standard Java-
Script show additional solutions using XRegExp. If a solution shows XRegExp as
the regular expression flavor, that means it works with JavaScript when using the
XRegExp library, but not with standard JavaScript without the XRegExp library.
If a solution shows JavaScript as the regular expression flavor, then it works with
JavaScript whether you are using the XRegExp library or not.

This book covers XRegExp version 2.0. The recipes assume you’re using xregexp-
all.js so that all of XRegExp’s Unicode features are available.

PCRE
PCRE is the “Perl-Compatible Regular Expressions” C library developed by Philip
Hazel. You can download this open source library at http://www.pcre.org. This
book covers versions 4 through 8 of PCRE.

4 | Chapter1: Introduction to Regular Expressions

www.it-ebooks.info

http://xregexp.com
http://www.pcre.org
http://www.it-ebooks.info/

Though PCRE claims to be Perl-compatible, and is so more than any other flavor
in this book, it really is just Perl-style. Some features, such as Unicode support, are
slightly different, and you can’t mix Perl code into your regex, as Perl itself allows.

Because of its open source license and solid programming, PCRE has found its way
into many programming languages and applications. It is built into PHP and wrap-
ped into numerous Delphi components. If an application claims to support “Perl-
compatible” regular expressions without specifically listing the actual regex flavor
being used, it’s likely PCRE.
Perl

Perl’s built-in support for regular expressions is the main reason why regexes are
popular today. This book covers Perl 5.6, 5.8, 5.10, 5.12, and 5.14. Each of these
versions adds new features to Perl’s regular expression syntax. When this book
indicates that a certain regex works with a certain version of Perl, then it works
with that version and all later versions covered by this book.

Many applications and regex libraries that claim to use Perl or Perl-compatible
regular expressions in reality merely use Perl-style regular expressions. They use a
regex syntax similar to Perl’s, but don’t support the same set of regex features.
Quite likely, they’re using one of the regex flavors further down this list. Those
flavors are all Perl-style.

Python
Python supports regular expressions through its re module. This book covers
Python 2.4 until 3.2. The differences between the re modules in Python 2.4, 2.5,
2.6, and 2.7 are negligible. Python 3.0 improved Python’s handling of Unicode in
regular expressions. Python 3.1 and 3.2 brought no regex-related changes.

Ruby

Ruby’s regular expression support is part of the Ruby language itself, similar to
Perl. This book covers Ruby 1.8 and 1.9. A default compilation of Ruby 1.8 uses
the regular expression flavor provided directly by the Ruby source code. A default
compilation of Ruby 1.9 uses the Oniguruma regular expression library. Ruby 1.8
can be compiled to use Oniguruma, and Ruby 1.9 can be compiled to use the older
Ruby regex flavor. In this book, we denote the native Ruby flavor as Ruby 1.8, and
the Oniguruma flavor as Ruby 1.9.

To test which Ruby regex flavor your site uses, try to use the regular expression
<a++>. Ruby 1.8 will say the regular expression is invalid, because it does not support
possessive quantifiers, whereas Ruby 1.9 will match a string of one or more a
characters.

The Oniguruma library is designed to be backward-compatible with Ruby 1.8,
simply adding new features that will not break existing regexes. The implementors
even left in features that arguably should have been changed, such as using «(?
m)> to mean “the dot matches line breaks,” where other regex flavors use «(?s)>.

Regular Expressions Defined | 5

www.it-ebooks.info

http://www.it-ebooks.info/

Search and Replace with Regular Expressions

Search-and-replace is a common job for regular expressions. A search-and-replace
function takes a subject string, a regular expression, and a replacement string as input.
The output is the subject string with all matches of the regular expression replaced with
the replacement text.

Although the replacement text is not a regular expression at all, you can use certain
special syntax to build dynamic replacement texts. All flavors let you reinsert the text
matched by the regular expression or a capturing group into the replacement. Recipes
2.20 and 2.21 explain this. Some flavors also support inserting matched context into
the replacement text, as Recipe 2.22 shows. In Chapter 3, Recipe 3.16 teaches you how
to generate a different replacement text for each match in code.

Many Flavors of Replacement Text

Different ideas by different regular expression software developers have led to a wide
range of regular expression flavors, each with different syntax and feature sets. The
story for the replacement text is no different. In fact, there are even more replacement
text flavors than regular expression flavors. Building a regular expression engine
is difficult. Most programmers prefer to reuse an existing one, and bolting a
search-and-replace function onto an existing regular expression engine is quite easy.
The resultis that there are many replacement text flavors for regular expression libraries
that do not have built-in search-and-replace features.

Fortunately, all the regular expression flavors in this book have corresponding replace-
ment text flavors, except PCRE. This gap in PCRE complicates life for programmers
who use flavors based on it. The open source PCRE library does not include any func-
tions to make replacements. Thus, all applications and programming languages that
are based on PCRE need to provide their own search-and-replace function. Most pro-
grammers try to copy existing syntax, but never do so in exactly the same way.

This book covers the following replacement text flavors. Refer to “Regex Flavors Cov-
ered by This Book” on page 3 for more details on the regular expression flavors that
correspond with the replacement text flavors:

.NET
The System.Text.RegularExpressions package provides various search-and-
replace functions. The .NET replacement text flavor corresponds with the NET
regular expression flavor. All versions of .NET use the same replacement text fla-
vor. The new regular expression features in .NET 2.0 do not affect the replacement
text syntax.

Java
The java.util.regex package has built-in search-and-replace functions. This book
covers Java 4,5, 6,and 7.

6 | Chapter1: Introduction to Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript
In this book, we use the term JavaScript to indicate both the replacement text flavor
and the regular expression flavor defined in editions 3 and 5 of the ECMA-262
standard.

XRegExp

Steven Levithan’s XRegExp has its own replace() function that eliminates cross-
browser inconsistencies and adds support for backreferences to XRegExp’s named
capturing groups. Recipes in this book that use named capture show additional
solutions using XRegExp. If a solution shows XRegExp as the replacement text
flavor, that means it works with JavaScript when using the XRegExp library, but
not with standard JavaScript without the XRegExp library. If a solution shows
JavaScript as the replacement text flavor, then it works with JavaScript whether
you are using the XRegExp library or not.

This book covers XRegExp version 2.0, which you can download at http://xregexp
.com.

PHP
In this book, the PHP replacement text flavor refers to the preg_replace function
in PHP. This function uses the PCRE regular expression flavor and the PHP re-
placement text flavor. It was first introduced in PHP 4.0.0.

Other programming languages that use PCRE do not use the same replacement
text flavor as PHP. Depending on where the designers of your programming lan-
guage got their inspiration, the replacement text syntax may be similar to PHP or
any of the other replacement text flavors in this book.

PHP also has an ereg_replace function. This function uses a different regular ex-
pression flavor (POSIX ERE), and a different replacement text flavor, too. PHP’s
ereg functions are deprecated. They are not discussed in this book.

Perl
Perl has built-in support for regular expression substitution via the s/regex/
replace/ operator. The Perl replacement text flavor corresponds with the Perl reg-
ular expression flavor. This book covers Perl 5.6 to Perl 5.14. Perl 5.10 added sup-
port for named backreferences in the replacement text, as it adds named capture
to the regular expression syntax.

Python
Python’s re module provides a sub function to search and replace. The Python
replacement text flavor corresponds with the Python regular expression flavor.
This book covers Python 2.4 until 3.2. There are no differences in the replacement
text syntax between these versions of Python.

Ruby
Ruby’s regular expression support is part of the Ruby language itself, including the
search-and-replace function. This book covers Ruby 1.8 and 1.9. While there are
significant differences in the regex syntax between Ruby 1.8 and 1.9, the

Search and Replace with Regular Expressions | 7

www.it-ebooks.info

http://xregexp.com
http://xregexp.com
http://www.it-ebooks.info/

replacement syntax is basically the same. Ruby 1.9 only adds support for named
backreferences in the replacement text. Named capture is a new feature in Ruby
1.9 regular expressions.

Tools for Working with Regular Expressions

Unless you have been programming with regular expressions for some time, we rec-
ommend that you first experiment with regular expressions in a tool rather than in
source code. The sample regexes in this chapter and Chapter 2 are plain regular ex-
pressions that don’t contain the extra escaping that a programming language (even a
Unix shell) requires. You can type these regular expressions directly into an applica-
tion’s search box.

Chapter 3 explains how to mix regular expressions into your source code. Quoting a
literal regular expression as a string makes it even harder to read, because string es-
caping rules compound regex escaping rules. We leave that until Recipe 3.1. Once you
understand the basics of regular expressions, you’ll be able to see the forest through
the backslashes.

The tools described in this section also provide debugging, syntax checking, and other
feedback that you won’t get from most programming environments. Therefore, as you
develop regular expressions in your applications, you may find it useful to build a
complicated regular expression in one of these tools before you plug it in to your
program.

RegexBuddy

RegexBuddy (Figure 1-1) is the most full-featured tool available at the time of this
writing for creating, testing, and implementing regular expressions. It has the unique
ability to emulate all the regular expression flavors discussed in this book, and even
convert among the different flavors.

RegexBuddy was designed and developed by Jan Goyvaerts, one of this book’s authors.
Designing and developing RegexBuddy made Jan an expert on regular expressions, and
using RegexBuddy helped get coauthor Steven hooked on regular expressions to the
point where he pitched this book to O’Reilly.

If the screenshot (Figure 1-1) looks a little busy, that’s because we’ve arranged most of
the panels side by side to show off RegexBuddy’s extensive functionality. The default
view tucks all the panels neatly into a row of tabs. You also can drag panels off to a
secondary monitor.

To try one of the regular expressions shown in this book, simply type it into the edit
box at the top of RegexBuddy’s window. RegexBuddy automatically applies syntax
highlighting to your regular expression, making errors and mismatched brackets
obvious.

8 | Chapter1: Introduction to Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

[regmtsey ===

(O totcn) & Repiace Z2 5okt | 1) Copy~ [paste~ | @ »)+ | i~ 5[@~ | NET [] Dot matches neiwine (Case nsenstiye) ~$ match at ine breaks Eree-spacng

T nzoms 1AW TETT] [@t 278
+X/ee0s
Enai address
52
B create |2 wrary |ghcrer | Foum Qrest B38| sveng 578
[&xplain Token [Insert Token~ | [, Bxport~ §LL"E'[E'.""°E”"Q'|QM"W‘B*@* 2
) Assert postion at a word boundary QL Lst Al | Line by ine 28
+{8] Match a sngle character present i the list below T 2
(S Between one and unimited tmes, as many ¢ mes3s possble, giving back as f|| Y2124 2997 2
5 A character in the range between "A” ant s 5
(& A character in the range between "0" and g 1.2.3.123 - n
{4 one of the characters *,_%" i —— 31
4 The character "+" john.doe +regexbut 1. cc 2
4 The cha Hike.0" 2

Watch the character“@” keraly
Match the regubr expression below 1
(S Between one and unlmited times, as many times as possble, giving back as 1
+{8] Watch a single character present i the st below
Between one and unimted times, as many times as possble, giing back || I
A character in the range between A" and "Z'
A character n the range between "0” and "9”
The character ™~
A Match the character ™. iteraly
4 {8 Match a sngle character in the range between “A”
[Between 2 and 6 tmes, as many times as postﬂe mvm back as needed (g
B Ascert postion at a word boundary

s valid. 33

Souvauswne

PikeX oDeligireland:con 33

al i | » 35

(s 278 3
) copy | 7 | Langusge: Java [=] Function; Use regex object to[<] 2

Regex object Subject text - 4
R - E
= M E

Match 5: president@whitehouse.gov

tatch 6:
3 tatch 7: Dellgireland.con 7 1

i v [l m J
[The subject string t tet the reguiar expression an 4

Figure 1-1. RegexBuddy

The Create panel automatically builds a detailed English-language analysis while you
type in the regex. Double-click on any description in the regular expression tree to edit
that part of your regular expression. You can insert new parts to your regular expression
by hand, or by clicking the Insert Token button and selecting what you want from a
menu. For instance, if you don’t remember the complicated syntax for positive look-
ahead, you can ask RegexBuddy to insert the proper characters for you.

Type or paste in some sample text on the Test panel. When the Highlight button is
active, RegexBuddy automatically highlights the text matched by the regex.

Some of the buttons you’re most likely to use are:

List All
Displays a list of all matches.

Replace
The Replace button at the top displays a new window that lets you enter replace-
ment text. The Replace button in the Test box then lets you view the subject text
after the replacements are made.

Split (The button on the Test panel, not the one at the top)
Treats the regular expression as a separator, and splits the subject into tokens based
on where matches are found in your subject text using your regular expression.

Click any of these buttons and select Update Automatically to make RegexBuddy keep
the results dynamically in sync as you edit your regex or subject text.

Tools for Working with Regular Expressions | 9

www.it-ebooks.info

http://www.it-ebooks.info/

To see exactly how your regex works (or doesn’t), click on a highlighted match or at
the spot where the regex fails to match on the Test panel, and click the Debug button.
RegexBuddy will switch to the Debug panel, showing the entire matching processes
step by step. Click anywhere on the debugger’s output to see which regex token
matched the text you clicked on. Click on your regular expression to highlight that part
of the regex in the debugger.

On the Use panel, select your favorite programming language. Then, select a function
to instantly generate source code to implement your regex. RegexBuddy’s source code
templates are fully editable with the built-in template editor. You can add new functions
and even new languages, or change the provided ones.

To test your regex on a larger set of data, switch to the GREP panel to search (and
replace) through any number of files and folders.

When you find a regex in source code you’re maintaining, copy it to the clipboard,
including the delimiting quotes or slashes. In RegexBuddy, click the Paste button at
the top and select the string style of your programming language. Your regex will then
appear in RegexBuddy as a plain regex, without the extra quotes and escapes needed
for string literals. Use the Copy button at the top to create a string in the desired syntax,
so you can paste it back into your source code.

As your experience grows, you can build up a handy library of regular expressions on
the Library panel. Make sure to add a detailed description and a test subject when you
store a regex. Regular expressions can be cryptic, even for experts.

If you really can’t figure out a regex, click on the Forum panel and then the Login
button. If you’ve purchased RegexBuddy, the login screen appears. Click OK and you
are instantly connected to the RegexBuddy user forum. Steven and Jan often hang out
there.

RegexBuddy runs on Windows 98, ME, 2000, XP, Vista, 7, and 8. For Linux and Apple
fans, RegexBuddy also runs well on VMware, Parallels, CrossOver Office, and with a
few issues on WINE. You can download a free evaluation copy of RegexBuddy at http:
/www.regexbuddy.com/RegexBuddyCookbook.exe. Except for the user forum, the trial
is fully functional for seven days of actual use.

RegexPal

RegexPal (Figure 1-2) is an online regular expression tester created by Steven Levithan,
one of this book’s authors. All you need to use it is a modern web browser. RegexPal
is written entirely in JavaScript. Therefore, it supports only the JavaScript regex flavor,
as implemented in the web browser you’re using to access it.

10 | Chapter1: Introduction to Regular Expressions

www.it-ebooks.info

http://www.regexbuddy.com/RegexBuddyCookbook.exe
http://www.regexbuddy.com/RegexBuddyCookbook.exe
http://www.it-ebooks.info/

/6 Regex Tester - RegexPal - Windows Internet Explorer (E=5{EoH x|

@O - [&) hitps//unwregerpal.com/ - 49 x | Live Search 2 -]
o o I@ Regex Tester — RegexPal lil B - - b ~ [} Page v &} Tools v
r@é regexpal o.1.4 —aJavaScript regular expression tester Help Version History = Feedback = Blog

|

N Case insensitive (i) [l A§ match at line breaks (m) [£] Dot matches all (s; via XRegFxn) Options Quick Reference

AB[A-Z0-9._ %+-]1+@(?: [A-Z0-9-1+\.) +[BR-Z] {2,6}\b

Walid addresses:

president@whitehouse.gov

ip@1.2.3.123

pharach@egyptian.museum

john.doe+regexbuddy@gmail. com

Mike.0' Deli@irelandicon

"Mike\ O'Dell"@ireland.com

TPguy@[1.2.3.4]

The email address presidenc@whitehouse.gov is valid.

Invalid addresses:

1024x768860Hz
not.a.valid.email
not@valid.email
john@aol...com

Mike\ O'Dell@ireland.com

Need more power? Get RegexBuddy from JGsoft, a powerful regex tester & builder that inspired many of RegexPals features.
@ Permalink — @ 2008 Steven Levithan — Gooqle Code
[€ Internet | Protected Mode: On #100% ~

Figure 1-2. RegexPal

To try one of the regular expressions shown in this book, browse to http://regexpal
.com. Type the regex into the box at the top. RegexPal automatically applies syntax
highlighting to your regular expression, which immediately reveals any syntax errors
in the regex. RegexPal is aware of the cross-browser issues that can ruin your day when
dealing with JavaScript regular expressions. If certain syntax doesn’t work correctly in
some browsers, RegexPal will highlight it as an error.

Now type or paste some sample text into the large box at the center. RegexPal auto-
matically highlights the text matched by your regex.

There are no buttons to click, making RegexPal one of the most convenient online
regular expression testers.

RegexMagic

RegexMagic (Figure 1-3) is another tool designed and developed by Jan Goyvaerts.
Where RegexBuddy makes it easy to work with the regular expression syntax, Regex-
Magic is primarily designed for people who do not want to deal with the regular ex-
pression syntax, and certainly won’t read 500-page books on the topic.

With RegexMagic, you describe the text you want to match based on sample text and
RegexMagic’s high-level patterns. The screen shot shows that selecting the “email ad-
dress” pattern s all you need to do to get a regular expression to match an email address.
You can customize the pattern to limit the allowed user names and domain names, and
you can choose whether to allow or require the mailto: prefix.

Tools for Working with Regular Expressions | 11

www.it-ebooks.info

http://regexpal.com
http://regexpal.com
http://www.it-ebooks.info/

RegexMagic (
abe Samples ZE| @ Assistant =4 |

O - [ﬂ‘l%‘ %‘r“x Mark Unmark‘ ¢ [View = =8 Ppreferences @ Help~

email addresses Valid addresses: + | Regular Expression
president@whitehouse.gov The regular expression generated by
ip@@1 3.123 RegexMagic.

ubject scope: pharach@egyptian.museum

Whole sample -] John.doe+regexbuddyfigmail . com If you want to use this regular
Mike.0'Dell@ireland.com expression in source code, click the

Show samples and|or replacements: "Mikel 0'Nell™@ireland.com ~ | Copy button on the Regex toolbar

[samples only - |« T » and select the string style you're

working with to copy the regular

al al expression. Or, generate a full code
J%Mam |{ ‘ snippet on the Use panel.

Brelds i the reguiar expressian 1f you want to paste this reqular
Begin regex match at: expression into the search box of an
Start of word - application you're using, you can copy
it "as is".
Kind of field: Repeat this field: [Unlimited How to repeat this field:

Pattern (Emai address) v | 1 =hE B [Asmany tmesz ~]
End reges match at:

Patterns for the fields in the regular expression

Select field:

Email address -

Pattern to match field:

User name: Domain name: Mailto: prefix:

Allow any user name | [Allow any domain name | Mo prefix -

Overall options for generating the regular expression
Field vaiidation mode:
Average -

Jg Regex use EGREP |@ Library |mFomm |
{7 Generate| (] Copy~ ‘JGsoft |z|| Free-spacing Modlﬁersl ¥ RegexBuddy

|i[L#SIR' 4. /0922 _a 2|}~ JEH[.0 9a =]H\. [a 2] (2,63W B
[Dot matches newline [#] Case insensitive & match at line breaks

Figure 1-3. RegexMagic

Since you are reading this book, you are on your way to becoming well versed in regular
expressions. RegexMagic will not be your primary tool for working with them. But
there will still be situations where it comes in handy. In Recipe 6.7 we explain how you
can create a regular expression to match a range of numbers. Though a regular expres-
sion is not the best way to see if a number is within a certain range, there are situations
where a regular expression is all you can use. There are far more applications with a
built-in regex engine than with a built-in scripting language. There is nothing difficult
about the technique described in Recipe 6.7. But it can be quite tedious to do this by
hand.

Imagine that instead of the simple examples given in Recipe 6.7, you need to match a
number between 2,147,483,648 (23!) and 4,294,967,295 (2%21/n 1) in decimal nota-
tion. With RegexMagic, you just select the “Integer” pattern, select the “decimal” op-
tion, and limit the range to 2147483648. .4294967295. In “strict” mode, RegexMagic will
instantly generate this beast:

12 | Chapter1: Introduction to Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

\b(?:429496729[0-5]|42949672[0-8][0-9]|4294967[01][0-9]{2}|429496[0-6] «
[0-9]{3}|42949[0-5][0-9]{4}|4294[0-8][0-9]{5}|429[0-3][0-9]{6}|42[0-8] <
[0-9]1{7}|4[01][0-9]{8}[3[0-9]{9}|2[2-9][0-9]{8}|21[5-9][0-9]{7}|214[89]«
[0-9]{6}|2147[5-9][0-9]{5}|214749[0-9]{4}|214748[4-9][0-9]{3}|2147483 «
[7-9][0-9]{2}|21474836[5-9][0-9]|214748364[89])\b

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

RegexMagic runs on Windows 98, ME, 2000, XP, Vista, 7, and 8. For Linux and Apple
fans, RegexMagic also runs well on VMware, Parallels, CrossOver Office, and with a
few issues on WINE. You can download a free evaluation copy of RegexMagic at http:
/www.regexmagic.com/RegexMagicCookbook.exe. Except for the user forum, the trial
is fully functional for seven days of actual use.

More Online Regex Testers

Creating a simple online regular expression tester is easy. If you have some basic web
development skills, the information in Chapter 3 is all you need to roll your own.
Hundreds of people have already done this; a few have added some extra features that
make them worth mentioning.

RegexPlanet

RegexPlanet is a website developed by Andrew Marcuse. Its claim to fame is that it
allows you to test your regexes against a larger variety of regular expression libraries
than any other regex tester we are aware of. On the home page you’ll find links to testers
for Java, JavaScript, .NET, Perl, PHP, Python, and Ruby. They all use the same basic
interface. Only the list of options is adapted to those of each programming language.
Figure 1-4 shows the .NET version.

Type or paste your regular expression into the “regular expression” box. If you want
to test a search-and-replace, paste the replacement text into the “replacement” box.
You can test your regex against as many different subject strings as you like. Paste your
subject strings into the “input” boxes. Click “more inputs” if you need more than five.
The “regex” and “input” boxes allow you to type or paste in multiple lines of text, even
though they only show one line at a time. The arrows at the right are the scrollbar.

When you’re done, click the “test” button to send all your strings to the regexpla-
net.com server. The resulting page, as shown in Figure 1-4, lists the test results at the
top. The first two columns repeat your input. The remaining columns show the results
of various function calls. These columns are different for the various programming
languages that the site supports.

regex.larsolavtorvik.com

Lars Olav Torvik has put a great little regular expression tester online at http://regex
darsolavtorvik.com (see Figure 1-5).

Tools for Working with Regular Expressions | 13

www.it-ebooks.info

http://www.regexmagic.com/RegexMagicCookbook.exe
http://www.regexmagic.com/RegexMagicCookbook.exe
http://regex.larsolavtorvik.com
http://regex.larsolavtorvik.com
http://www.it-ebooks.info/

(<]SRCT G MEICIR| Y £ -]
i Favorites |) RegEx: online reqular expression testing for . (IR v] d v Pagev Safety~ Tools~ @~

RegexPlanet Testing-

Regular Expression Test Page for net [wson |

2ol 8 S @ o™ @ dz [| B Share

Test Results

Regular Expression \b[A-Z0-9_%+}+@[A-Z0-9 1\ [A-Z|{26}b
s a.Net string "NB[AZ0-9._%+1+@IAZ0-9 A ZIR B
Replacement

GetGroupNames() | D

GetGroupNumbers() 0

Test Target String Match() Result() Groups[0]
1 president@whitehouse.gov Yes president@whitehouse. gov
2 Mike.O'Dell@ireland.com Yes Dell@jireland.com
3 iP@123123 No
4 not an email address No

Expression to test

Regular expression

O

Options: @ Case-insensitive matching (IgnoreCase)
M ignore cultural differences in language (Culturelnvariant)
¥ *and $ so they match at the beginning and end, respectively, of any line. and not just the beginning and end of the entire string (Mulfiiine)
W dot () matches every character instead of every character except newlines (Singleline)
M only explicitly named or numbered groups of the form (?<name>...) are valid captures (ExplicitCapture)
¥ Eliminate unescaped white space from the pattem and enable comments marked with # (IgnorePatternWhitespace)
I search will be from right to left instead of from left to right (RightToLeft)

B ECMAScript-compliant behavior. This value can be sed only in conjunction with the IgnoreCase, Multiine, and Compiled values.

(ECMASeript)
APl More Inputs

Al More Inputs

@® | Make share code

Done & @ Internet | Protected Mode: On fa v ®10% v

Figure 1-4. RegexPlanet

To start, select the regular expression flavor you’re working with by clicking on the
flavor’s name at the top of the page. Lars offers PHP PCRE, PHP POSIX, and JavaScript.
PHP PCRE, the PCRE regex flavor discussed in this book, is used by PHP’s preg func-
tions. POSIX is an old and limited regex flavor used by PHP’s ereg functions, which

14 | Chapter1: Introduction to Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

{€ Rubular: a Ruby regular expression editor and tester - Windows Internet Explorer [felre =

() IR ovonibutarcoms [&[4[x |[= sing £~

vorites 7] Rubular: a Ruby regular expression editor and test. % v B v [0 & v Pagev Ssfetyv Tools~ @~

Rubular

a Ruby regular expression editor

Your regular expression:

m

Your test string: Match result:

valid

make permalink clear fields,

& Intemet | Protected Mode: On f3 v ®10% -

Figure 1-5. regex.larsolavtorvik.com

are not discussed in this book. If you select JavaScript, you’ll be working with your
browser’s JavaScript implementation.

Type your regular expression into the Pattern field and your subject text into the Subject
field. A moment later, the Matches field displays your subject text with highlighted
regex matches. The Code field displays a single line of source code that applies your
regex to your subject text. Copying and pasting this into your code editor saves you
the tedious job of manually converting your regex into a string literal. Any string or
array returned by the code is displayed in the Result field. Because Lars used Ajax
technology to build his site, results are updated in just a few moments for all flavors.
To use the tool, you have to be online, as PHP is processed on the server rather than in
your browser.

The second column displays a list of regex commands and regex options. These depend
on the regex flavor. The regex commands typically include match, replace, and split
operations. The regex options consist of common options such as case insensitivity, as
well as implementation-specific options. These commands and options are described
in Chapter 3.

Tools for Working with Regular Expressions | 15

www.it-ebooks.info

http://www.it-ebooks.info/

@ Nregex /0.1 - Windows Internet Explorer

@‘@ - [Ie] hitps/wwwnreger.com/nreger/defaultaspx

?]

[4] x || Live scarch

Wk I@ Nregex w/0.1

& - v @ v [Page v G Tools v

[]

Nregex

Regular Expression: Manually evaluate regex (large documents, latency issues)

T e (M - ir<oex Bookmarkiet | \

\B[A-Z0-9._%+-+@(7 [A-Z0-0-]+\ |+ [A-Z)(2 6}b

‘ Ignore Case | Single Line | Multi Line | Explicit Capture

Replacement String:

Matches 2 Replacements Send to Clipboard

Matched Groupe (click to find in match]:

Valid

zddresses

com|

john.doetregexbuddy@gmail

-

M | e
m

g -
4« [»

Load Target From File:

Browse...

president@whitehouse.gov

ip@l.2.3.123

pharach@egyprian.museum
john.dos+regexbuddyGomail. com
Mike.C'Dellfireland.com

"Mike\ Q'Dell"@ireland.com

IPguyB[1.2.3.4]

The email address president@whitehouse.gov is valid.

Invalid addresses:
1024x768860Hz
not.a.valid.email
not@valid.email

JonmBac. . .com

Submit bugs, feature requests, and other feedback

‘ «" Save to del.icio.us H & Email This |

[@ € Internet | Protected Mode: On

©100% v

Figure 1-6. Nregex

Nregex

http://'www.nregex.com (Figure 1-6) is a straightforward online regex tester built
on .NET technology by David Seruyange. It supports the .NET 2.0 regex flavor, which

is also used by .NET 3.0, 3.5, and 4.0.

The layout of the page is somewhat confusing. Enter your regular expression into the
field under the Regular Expression label, and set the regex options using the checkboxes
below that. Enter your subject text in the large box at the bottom, replacing the default
! mad.. If your subject is a web
page, type the URL in the Load Target From URL field, and click the Load button under
that input field. If your subject is a file on your hard disk, click the Browse button, find

If I just had $5.00 then "she" wouldn't be so @#$

the file you want, and then click the Load button under that input field.

16 | Chapter1: Introduction to Regular Expressions

www.it-ebooks.info

http://www.nregex.com
http://www.it-ebooks.info/

‘€ Rubular: a Ruby regular expression editor and tester - Windows Intemet Explorer [ol& =]
&) - [rttpirmrbuior com/ <[4 [%][regulator reguier 2 -

8 4% | Rubular: o Ruby regular expression editor and test.. | | [v 8 v [} Page v £ Tools

Rubular

a Ruby regular expression editor

Your regular expr

m

Match result

president@vhi tehouss. gov]
SRRV

valid

[@ @ intemet| Protected Mode: On #®100% ~

Figure 1-7. Rubular

Your subject text will appear duplicated in the “Matches & Replacements” field at the
center of the web page, with the regex matches highlighted. If you type something into
the Replacement String field, the result of the search-and-replace is shown instead. If
your regular expression is invalid, ... appears.

The regex matching is done in .NET code running on the server, so you need to be
online for the site to work. If the automatic updates are slow, perhaps because your
subject text is very long, tick the Manually Evaluate Regex checkbox above the field
for your regular expression to show the Evaluate button. Click that button to update
the “Matches & Replacements” display.

Rubular

Michael Lovitt put a minimalistic regex tester online at http://www.rubular.com (Fig-
ure 1-7). At the time of writing, it lets you choose between Ruby 1.8.7 and Ruby 1.9.2.
This allows you to test both the Ruby 1.8 and Ruby 1.9 regex flavors used in this book.

Enter your regular expression in the box between the two forward slashes under “Your
regular expression.” You can turn on case insensitivity by typing an i in the small box
after the second slash. Similarly, if you like, turn on the option “the dot matches line
breaks” by typing an m in the same box. im turns on both options. Though these con-
ventions may seem a bit user-unfriendly if you’re new to Ruby, they conform to
the /regex/im syntax used to specify a regex in Ruby source code.

Tools for Working with Regular Expressions | 17

www.it-ebooks.info

http://www.rubular.com
http://www.it-ebooks.info/

/& Regular Expression Editor - Windows Internet Explorer (=)= ===

6@ ~ |g, hittp://www.myregexp.com/ - ‘ ‘,‘ x ||Ltue£eorrh » v|
W e [g Regular Expression Editor lil B v B v & v [Page v @) Tools v
Online regex tester Eclipse Plugin IDEA Plugin Regex Examples

Regexp Editor

Flags Edit About

Regular expression [[] Case-insensitive (%) [] Multiline (?m) [_] Dot All Mode (?s) [... |

I(?:19|2E|] a dl([- /.1)(0[1-2]1]1[012])"2¢0[1-2] | [12] [O-21|3[01])

Find | Match | Split [Raplaca | L

Replﬂcemem:‘SI—SS—sq |
LEi-01-01 phing/08/13 p=lly. 01.01 &=y 01 01 1500-01.01 1200 13 01 [y 02 31 1200-01-01 2007-08-13
1900-01-01 1900-01-01
1900-01.01 1900 13 01
1900-02-31
Dene [@ @ Internet | Protected Mode: On #100% v

Figure 1-8. myregexp.com

Type or paste your subject text into the “Your test string” box, and wait a moment. A
new “Match result” box appears to the right, showing your subject text with all regex
matches highlighted.

myregexp.com

Sergey Evdokimov created several regular expression testers for Java developers. The
home page at hitp://www.myregexp.com (Figure 1-8) offers an online regex tester. It’s
a Java applet that runs in your browser. The Java 4 (or later) runtime needs to be
installed on your computer. The applet uses the java.util.regex package to evaluate
your regular expressions, which is new in Java 4. In this book, the “Java” regex flavor
refers to this package.

Type your regular expression into the Regular Expression box. Use the Flags menu to
set the regex options you want. Three of the options also have direct checkboxes.

If you want to test a regex that already exists as a string in Java code, copy the whole
string to the clipboard. In the myregexp.com tester, click on the Edit menu, and then
“Paste Regex from Java String.” In the same menu, pick “Copy Regex for Java Source”
when you’re done editing the regular expression. The Edit menu has similar commands
for JavaScript and XML as well.

Below the regular expression, there are four tabs that run four different tests:

18 | Chapter1: Introduction to Regular Expressions

www.it-ebooks.info

http://www.myregexp.com
http://www.it-ebooks.info/

Find
Highlights all regular expression matches in the sample text. These are the matches
found by the Matcher.find() method in Java.

Match
Tests whether the regular expression matches the sample text entirely. If it
does, the whole text is highlighted. This is what the String.matches() and
Matcher .matches() methods do.

Split
The second box at the right shows the array of strings returned by
String.split() or Pattern.split() when used with your regular expression and
sample text.

Replace
Type in a replacement text, and the box at the right shows the text returned by
String.replaceAll() or Matcher.replaceAll().

At the top of the page at http://www.myregexp.com, you can click the link to get Sergey’s
regex tester as a plug-in for Eclipse.

More Desktop Regular Expression Testers

Expresso

Expresso (not to be confused with caffeine-laden espresso) is a .NET application for
creating and testing regular expressions. You can download it at http://www.ultrapico
.com/Expresso.htm. The .NET Framework 2.0 or later must be installed on your
computer.

The download is a free 60-day trial. After the trial, you have to register or Expresso will
(mostly) stop working. Registration is free, but requires you to give the Ultrapico folks
your email address. The registration key is sent by email.

Expresso displays a screen like the one shown in Figure 1-9. The Regular Expression
box where you type in your regular expression is permanently visible. No syntax high-
lighting is available. The Regex Analyzer box automatically builds a brief
English-language analysis of your regular expression. It too is permanently visible.

In Design Mode, you can set matching options such as “Ignore Case” at the bottom of
the screen. Most of the screen space is taken up by a row of tabs where you can select
the regular expression token you want to insert. If you have two monitors or one large
monitor, click the Undock button to float the row of tabs. Then you can build up your
regular expression in the other mode (Test Mode) as well.

In Test Mode, type or paste your sample text in the lower-left corner. Then, click the
Run Match button to get a list of all matches in the Search Results box. No highlighting
is applied to the sample text. Click on a match in the results to select that match in the
sample text.

Tools for Working with Regular Expressions | 19

www.it-ebooks.info

http://www.myregexp.com
http://www.ultrapico.com/Expresso.htm
http://www.ultrapico.com/Expresso.htm
http://www.it-ebooks.info/

¥ Expresso - Mot registered, expires on March 30, 2009 - Samplesso
File Edit Settings Library Tools Help

Nd »rmek Q=06

Expression Library
Regex Anabze

(?<Month>d{1,2))/(?<Day>\d{1,2})/(?<Year=(?\d4}\d{2})) + Collapse Expand Edit Delet= [7] Show Whitespace

& [Month]: A named capture group. [ld{1.2}]

£l LS ayl: A named capture group. [\d{1.2}]

Replacement String i
$8 [${Day}-S(Month}-${Yean)] - [#-[Year]: A named capture group. [(?:\d{4}\d{2}1]

4 2

Characters |Gmups ISpecla\ I Paosition | Misc I Repetitions IODt\ons | Altematives |ASCII | Substltut\ons‘

Begex “w Insert Undock
Character class Repetitions
Match only if absent

[] s tew as possible 7
Any character

(@ Just once
) Any number *

() One or more +
Whitespace ‘s

A Ty | (@) Zero orone ?

(©) Specific character % ==

(@) Mamed Class "p{Class} Al Cortrol Char, = © Egactiyn n
(7) Specified Set [z-z4-2] 3zAZ -

leastn {n} m

(©) Class Subtraction [a-z-[asiou]] (7) Between n and m inm}

a7 minus aeiou

Compiled Ignare Case Muttiline Explicit Capture
ECMA Script Ignore White Singleline Right to Left Culture Invariant

Figure 1-9. Expresso

The Expression Library shows a list of sample regular expressions and a list of recent
regular expressions. Your regex is added to that list each time you press Run Match.
You can edit the library through the Library menu in the main menu bar.

The Regulator

The Regulator, which you can download from http://sourceforge.net/projects/regula
tor/, is not safe for SCUBA diving or cooking-gas canisters; it is another .NET applica-
tion for creating and testing regular expressions. The latest version requires .NET 2.0
or later. Older versions for .NET 1.x can still be downloaded. The Regulator is open
source, and no payment or registration is required.

The Regulator does everything in one screen (Figure 1-10). The New Document tab is
where you enter your regular expression. Syntax highlighting is automatically applied,
but syntax errors in your regex are not made obvious. Right-click to select the regex
token you want to insert from a menu. You can set regular expression options via the
buttons on the main toolbar. The icons are a bit cryptic. Wait for the tool tip to see
which option you’re setting with each button.

20 | Chapter1: Introduction to Regular Expressions

www.it-ebooks.info

http://sourceforge.net/projects/regulator/
http://sourceforge.net/projects/regulator/
http://www.it-ebooks.info/

2 The Regulator ==
File View Document Tools Window Help

D & &2 Match ¢ Replace 3 spit [na]E]~ [Z] & =

Web Search % | [Regex Analyzer Tx]

=}
Search Regextiboom Word boundary between //w and //W B T\b[A-20-5. _5+-1+8 (2: [A-20-3-1+\)+ (A2 (2, 61\b
Any character in "A-Z0-9._%+-"
+ (one or more times)
@

Dl x

T e Tt ey

Non-capturing Group
Any character in "A-Z0-9-"
+(ane or more times)

K1l

[Matches (7, 0.000005 sec)

End Capture

+ (one or more times)
Any character in "A-Z" B (presidencewnic
At least 2, but not more than 6 times B [pharach@egyptian.museun]
Word boundary between //uw and //W I~ o
d B [pel! lpresident@whitehouse.gov

ip@1.2.3.123

bharaoh@egyptian.museum

Mike.O'Dell@ireland.com

"Mike\ O'Dell"@ireland.com

Pouy@[1.2.3.4]

[The email address president@whitehouse.gov is valid.

|Valid addresses:

B [not@valid.email]
B [De116ixe

Connection Opions.

[SnippetsControl ax]
(7<GroupName>)

1024x768@60Hz
Inot..a.valid.email
not@valid.email
ljohn@zol....com
Mike\ O

Figure 1-10. The Regulator

Below the area for your regex and to the right, click on the Input button to display
the area for pasting in your sample text. Click the “Replace with” button to type in the
replacement text, if you want to do a search-and-replace. Below the regex and to the
left, you can see the results of your regex operation. Results are not updated automat-
ically; you must click the Match, Replace, or Split button in the toolbar to update the
results. No highlighting is applied to the input. Click on a match in the results to select
it in the subject text.

The Regex Analyzer panel shows a simple English-language analysis of your regular
expression, but it is not automatic or interactive. To update the analysis, select Regex
Analyzer in the View menu, even if it is already visible. Clicking on the analysis only
moves the text cursor.

SDL Regex Fuzzer

SDL Regex Fuzzer’s fuzzy name does not make its purpose obvious. Microsoft bills it
as “a tool to help test regular expressions for potential denial of service vulnerabilities.”
You can download it for free at http://www.microsoft.com/en-us/download/details.aspx
2id=20095. Tt requires .NET 3.5 to run.

What SDL Regex Fuzzer really does is to check whether there exists a subject string
that causes your regular expression to execute in exponential time. In our book we call
this “catastrophic backtracking.” We explain this in detail along with potential solu-
tionsin Recipe 2.15. Basically, a regex that exhibits catastrophic backtracking will cause
your application to run forever or to crash. If your application is a server, that could be
exploited in a denial-of-service attack.

Figure 1-11 shows the results of a test in SDL Regex Fuzzer. In Step 1 we pasted in a
regular expression from Recipe 2.15. Since this regex can never match non-ASCII char-
acters, there’s no need to select that option in Step 2. Otherwise, we should have. We

Tools for Working with Regular Expressions | 21

www.it-ebooks.info

http://www.microsoft.com/en-us/download/details.aspx?id=20095
http://www.microsoft.com/en-us/download/details.aspx?id=20095
http://www.it-ebooks.info/

P SDL Regex Fuzzervl1.0

Step 1.

Enter the regular expression feaca)ay
pattem to be tested

SDL Regex Fuzzerusesthe NET
traditional NFA regex engine to
perform its analysis

Step 2.

Choose a set of attack characters
to be used during fuzzing

) Reduced set of common attack characters fastest)

(&) All ASCII characters
The langer the st you choose, the B
more accurate the results will be, () All Unicode characters {most thorough, but very slow)

but the analysis will also be slower.

Step 3.

Choose how many fuzzing 100 .
fterations to perform

The more iterations, the maore
accurate the results wil be, but the
analysis will also be slower.

Step 4.
Start fuzzing!
Step 5.

Wait while the fuzzer perfforms the |
tests

Step 6.

Analyze the results. Any regexes Failed for evaluation string 0 -
that fail are potertially vulnerable

to denial-of-service attacks and 8
should be rewntten.

Step 7. (Optional)

File & bug. You can create a bug
and add it to a Microsoft Team

Foundation Server team project

Ready

Figure 1-11. SDL Regex Fuzzer

left Step 3 set to the default of 100 iterations. About five seconds after clicking the Start
button in Step 4, SDL Regex Fuzzer showed a sample string that will cause our regex
to fail in .NET 3.5.

Unfortunately, the usefulness of this tool is greatly limited because it only supports a
small subset of the .NET regex syntax. When we tried to test the naive solution from
Recipe 2.15, which would definitely fail this test, we received the error message shown
in Figure 1-12. Proper understanding of the concepts discussed in Recipe 2.15 is still
the only way to make sure you don’t bring down your applications with overly complex
regular expressions.

grep
The name grep is derived from the g/re/p command that performed a regular expression
search in the Unix text editor ed, one of the first applications to support regular

22 | Chapter1: Introduction to Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

Error

(’ﬁ‘) An error occurred trying to test the regex: The following constructs are
S currently not supported: anchors \G, \b, \B, named groups, lookahead,
lookbehind, as-few-times-as-possible quantifiers, backreferences,

conditional alternation, substitution

Figure 1-12. SDL Regex Fuzzer Limitations

expressions. This command was so popular that all Unix systems now have a dedicated
grep utility for searching through files using a regular expression. If you’re using Unix,
Linux, or OS X, type man grep into a terminal window to learn all about it.

The following three tools are Windows applications that do what grep does, and more.

PowerGREP

PowerGREP, developed by Jan Goyvaerts, one of this book’s authors, is probably the
most feature-rich grep tool available for the Microsoft Windows platform (Fig-
ure 1-13). PowerGREP uses a custom regex flavor that combines the best of the flavors
discussed in this book. This flavor is labeled “JGsoft” in RegexBuddy.

To run a quick regular expression search, simply select Clear in the Action menu and
type your regular expression into the Search box on the Action panel. Click on a folder
in the File Selector panel, and select “Include File or Folder” or “Include Folder and
Subfolders” in the File Selector menu. Then, select Execute in the Action menu to run
your search.

To run a search-and-replace, select “search-and-replace” in the “action type” drop-
down list at the top-left corner of the Action panel after clearing the action. A Replace
box will appear below the Search box. Enter your replacement text there. All the other
steps are the same as for searching.

PowerGREP has the unique ability to use up to five lists of regular expressions at the
same time, with any number of regular expressions in each list. While the previous two
paragraphs provide all you need to run simple searches like you can in any grep tool,
unleashing PowerGREP’s full potential will take a bit of reading through the tool’s
comprehensive documentation.

PowerGREP runs on Windows 2000, XP, Vista, 7, and 8. You can download a free
evaluation copy at http://www.powergrep.com/Power GREPCookbook.exe. Except for
saving results and libraries, the trial is fully functional for 15 days of actual use. Though
the trial won’t save the results shown on the Results panel, it will modify all your files
for search-and-replace actions, just like the full version does.

Tools for Working with Regular Expressions | 23

www.it-ebooks.info

http://www.powergrep.com/PowerGREPCookbook.exe
http://www.it-ebooks.info/

PowerGREP File Seector Action Librery Results Editor Undo History View Help

SRpPazelm

R Fie Selector 8| (g Acien 78| [l Resuts [F Lray [Undo Histow |
Dlv@x s |@@Es 2 0@~ 0 ® | ohreie giserch g Quicksench | D | @ | ® || B | @ upest
Folders and f con tpe: Search type: o
7 ,,gL < s, 7 =] | [ty search matches =) [Regiar expression o aveingseach | (mghes i contan) (e
20, progeam
T gy] Adapt ase of repacement text.] Sort s Sortpatches:
o pubic &l [ashabetaiy, az) <)
. vivm 1, 47747) Seart -
. -mw \b([A-70-9._%+-T+¢l@R[A-z0-9-1#\ . JE(A-2]{2,61\6 E
%) Documents (71, 47/ -
> i) Dowrioacs
o Favortes e scong: :
s G ((=2 mailto: saleshigsoft.con”
& Soll [case sensive search oot matches nevines g oo b tat
3 ‘Saved Games. | | Section search: hd (=E GRE tact, .
Dl —"—(<a-href="[50] B soilto:salesto
path - -
o al =
Fie Masks o) | Dlimvertsearhresis N
7] 5ame masks for al foders: Comments: \
) use regulr expressons to definemasts | [Find enail addresses in HTAL anchors ol
ncide e - ge
= ;
B <[m 3K
‘Exdude files: hd (S
T D@ B &R A R e | @@ % b BIEES .
- 5 <id>Buying PowerGREP</H2> 7
Fie odfication Dates 0. <Prplcase see our <

“buynow. html">ordering pages for a detailed explanation of the various options you have to acquire one

A HRE

e licenses to PowerGREP. All information about pricing, online (Internet) and offline (paperwork) ordering methods can be
(1gnore fle modsication dates < volr i
1

& b
5 b

12 <P>If you have 2 question that is not answered on the order page, you can email your question to
HRES >.</P>

Section Search Type

15 cTechnicol Supportcsi>
Tl of e temerems o vent o PPer

oo Ly N 17 maLe cuss-sestisontolrig ™ "I must say it has been a positive experience doing

fragment that must ar exactly this way in usiness with your

e serch tox (encepnfor cos). 15 company. A lot of conpanies out there could learn o lot regording

Areaular presion s atendearig | 19 custoner core and satisfaction by Tollowing in your footsteps.” 5>

e, apressonsionore n Inbsp,&nbsy,lnbsp,za April 2005, Canada</P></TD></TR></TABLE>

"‘"”“‘,,,_‘“,mmm,,,mwm 23 <P>Before contacting us for le:hmcal suppart, please make sure if you have m lues(versien of PowerGREP. New versions are

You enter n hes released often. Select Help|Check for New Versions in PowerGREP's toolbar & ically open a web page that tells you

lmnal’stnmd\edfwmmnenﬂyL e you have. she"Tecest”berton o not.. vou con Slee eed < HRELLohistary henl ShonerGRtE 2 vermion Westary /RS on Shiz ne
, or one after the ather. Each fem i site.</P>

heishsavahd atch, 2 <

ome i i 2kt oxcaot that vt

Figure 1-13. PowerGREP

ew Qptions Window Help

EHE V%Y MU =BE @D am

['[a-20-9]+ @[a-20-9.]+" in *.txt: 155 matches in 51 files. 586 files searched. 0 files sk [contact.page.bxt (Matches only)

[Mame (11 Tope [Foider [Matches | Size [Date/Time B
) affiate page.ta TT AL JGsaft 1 5087 172/200810:36:32 AM
) buged page tat T TestDocument CAUsers\WMAD ocuments\JG soft 1 195212472007 45340 P
T T) 4 5
) order page.t T Tewt Document CALserstWh\D ocumentstGsoft 2 2071 T1/23/2007 £:2238 PM
mailstokadd page st T Test Document CAUsers\MAD ocuments\more 1 1454 1218/2003 427,52 PM
b * T 2 11389 54/2008 757,34 AM
) contact page st T TestDocument CAUsers\WM\D ocuments\ PowerGREF 6 4145 /12008 5.06:38 P
ouarartespagetst T Test Document CAUssrsWMAD oouments\PowsiGREP 2 2551 25/2008 112638 A
) mubiserpagett T T 1 7586 T1/22/2007 5:20:32 PM
) press pagetat T TestDocument CAUsersWM\D ocuments\PowsGREF 2 6907 12/10/2005 35055 AM
J wt T 2 3945 11/29/2007 4:2812 PH
) emailpagetit TT Al 9 1882 1/27/2008 531248 PM a

Windows Grep Search Results

Plain | File contents | File names » | Line numbers » | Whole line ¥ | Word wrap « | Fixed Font | Match window: +/- 0+ | 11213145

lin
tact. txt
om" om</TT>,</P>
etext.com’>suppe etext.com</Az</TT>
om" _com</A=</TT>
.com”: i om</A=</TT>
ipscribble.com”>supps ibble.com</TT>
P grep.com">s grep.com</A=</TT>

00036: <P o technical Support is available for ECPad Classie ant EditPad Lte as thess are postcardware and freeware products
respectwe\v. However, we do value user input Fnr these programs which you can send to <

<P>Just Great Software was founded by Jan Goyvaerts in 1996. Today, Jan Goyvaerts still owns the
business, and is now Chief Software Designer. He designs all our products, including PowerGREP, and leads the development. <I--If you
want, you can contact him directly at <TT>jg@jgsoft.com </TT>.--> <-- Translator: mention that
Jan can read English, Dutch, French and German, and that he can reply in English or Dutch.—-> <!-- Note that it may take a couple of days
before you receive a personal reply as Jan is a busy man. If you have a sales inquiry or your comments are about a specific product, please
use the addresses listed above for fast service.</P>->

Figure 1-14. Windows Grep

24 | Chapter1: Introduction to Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

Windows Grep

Windows Grep (http://www.wingrep.com) is one of the oldest grep tools for Windows.
Its age shows a bit in its user interface (Figure 1-14), but it does what it says on the tin
just fine. It supports a limited regular expression flavor called POSIX ERE. For the
features that it supports, it uses the same syntax as the flavors in this book. Windows
Grep is shareware, which means you can download it for free, but payment is expected
if you want to keep it.

To prepare a search, select Search in the Search menu. The screen that appears differs
depending on whether you’ve selected Beginner Mode or Expert Mode in the Options
menu. Beginners get a step-by-step wizard, whereas experts get a tabbed dialog.

When you’ve set up the search, Windows Grep immediately executes it, presenting
you with a list of files in which matches were found. Click once on a file to see its
matches in the bottom panel, and double-click to open the file. Select “All Matches”
in the View menu to make the bottom panel show everything.

To run a search-and-replace, select Replace in the Search menu.

RegexRenamer

RegexRenamer (Figure 1-15) is not really a grep tool. Instead of searching through the
contents of files, it searches and replaces through the names of files. You can download
it at http://regexrenamer.sourceforge.net. RegexRenamer requires version 2.0 or later of
the Microsoft .NET Framework.

= RegexRenamer E@
Match: I o1+ iy Change Case = Fitter - Stats
/g Mumbering - - @ Glob
Replace: _ [A& Move/Copy =
-, Public * || Filename = Preview
~EE VM
= El Contacts || build.pl build.pl
B Deskicp || build_demo pl build_demo pl
i-JE| Documents || build_notepad pl build_natepad pl
Downloads || L_|build_regescpl build_regesc.pl
o[Favortes || build_regex_old pl build_regex_old pl
]l Links || build2004 pl build2004.pl
Music || build2006.p! build2006.pl
Pictures L | buildnew.pl build_new pl
Saved Games || buildeld pl buildald pl
Searches = ||| L_|buildprephp pl buildprephp pl
-] Videos || Emailin HTML Anchors pga Email_in_HTML_Anchers pga
E-.: J. Windows 4% | jgsoft ces igsoft ces
3 l\%’&l DVD RW Drive (D) ¥ |jgsoftsecure css jgsoftsecure css
| Control Panel
o Public
-8l Network L=
N
Path: C:\Users"WM\Documents Options = Help - 2 0 Rename ‘v

Figure 1-15. RegexRenamer

Tools for Working with Regular Expressions | 25

www.it-ebooks.info

http://www.wingrep.com
http://regexrenamer.sourceforge.net
http://www.it-ebooks.info/

Type your regular expression into the Match box and the replacement text into the
Replace box. Click /i to turn on case insensitivity, and /g to replace all matches in each
filename rather than just the first. /x turns on free-spacing syntax, which isn’t very
useful, since you have only one line to type in your regular expression.

Use the tree at the left to select the folder that holds the files you want to rename. You
can set a file mask or a regex filter in the top-right corner. This restricts the list of files
to which your search-and-replace regex will be applied. Using one regex to filter and
another to replace is much handier than trying to do both tasks with just one regex.

Popular Text Editors

Most modern text editors have at least basic support for regular expressions. In the
search or search-and-replace panel, you’ll typically find a checkbox to turn on regular
expression mode. Some editors, such as EditPad Pro, also use regular expressions for
various features that process text, such as syntax highlighting or class and function lists.
The documentation with each editor explains all these features. Some popular text
editors with regular expression support include:

* BBEdit (PCRE)

¢ Boxer Text Editor (PCRE)

* Dreamweaver (JavaScript)

¢ EditPad Pro (custom flavor that combines the best of the flavors discussed in this
book; labeled “JGsoft” in RegexBuddy)

* Multi-Edit (PCRE, if you select the “Per]” option)
* Nisus Writer Pro (Ruby 1.9 [Oniguruma])

* Notepad++ (PCRE)

¢ NoteTab (PCRE)

e UltraEdit (PCRE)

* TextMate (Ruby 1.9 [Oniguruma])

26 | Chapter1: Introduction to Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2
Basic Regular Expression Skills

The problems presented in this chapter aren’t the kind of real-world problems that your
boss or your customers ask you to solve. Rather, they’re technical problems you’ll
encounter while creating and editing regular expressions to solve real-world problems.
The first recipe, for example, explains how to match literal text with a regular expres-
sion, and how to deal with characters that have special meanings in regular expressions.
This isn’t a goal on its own, because you don’t need a regex when all you want to do
is to search for literal text. But when creating a regular expression, you’ll likely need it
to match certain text literally, and you’ll need to know which characters to escape.
Recipe 2.1 tells you how.

The recipes start out with very basic regular expression techniques. If you’ve used reg-
ular expressions before, you can probably skim or even skip them. The recipes further
along in this chapter will surely teach you something new, unless you have already read
Mastering Regular Expressions by Jeffrey E.F. Friedl (O’Reilly) cover to cover.

We devised the recipes in this chapter in such a way that each explains one aspect of
the regular expression syntax. Together, they form a comprehensive tutorial to regular
expressions. Read it from start to finish to get a firm grasp of regular expressions. Or
dive right in to the real-world regular expressions in Chapters 4 through 9, and follow
the references back to this chapter whenever those chapters use some syntax you’re not
familiar with.

This tutorial chapter deals with regular expressions only and completely ignores any
programming considerations. The next chapter is the one with all the code listings. You
can peek ahead to “Programming Languages and Regex Flavors” in Chapter 3 to find
out which regular expression flavor your programming language uses. The flavors
themselves, which this chapter talks about, were introduced in “Regex Flavors Covered
by This Book” on page 3.

27

www.it-ebooks.info

http://oreilly.com/catalog/9780596528126
http://www.it-ebooks.info/

2.1 Match Literal Text

Problem

Create a regular expression to exactly match this gloriously contrived sentence: The
punctuation characters in the ASCII table are: !"#$%&' ()*+,-./:;<=>20[\]*_“{|}~.

This is intended to show which characters have special meaning in regular expressions,
and which characters always match themselves literally.

Solution

This regular expression matches the sentence stated in the problem:

Theepunctuation®characterseinethe®ASCIIetable®are: o«
PS8 N\ VF\+, -\ /5 <>\ 2NN\ T\ [

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Any regular expression that does not include any of the dozen characters $()*+.?
[*{| simply matches itself. To find whether Mary had a little lamb in the text you’'re
editing, simply search for (Maryehadeaelittleelamb>. It doesn’t matter whether the
“regular expression” checkbox is turned on in your text editor.

The 12 punctuation characters that make regular expressions work their magic are
called metacharacters. If you want your regex to match them literally, you need to
escape them by placing a backslash in front of them. Thus, the regex: \$\(\)*\+\.\?

\[\\\"\{\ > matches the text $()*+.2[*{].

Notably absent from the list are the closing square bracket], the hyphen -, and the
closing curly bracket }. The first two become metacharacters only after an unescaped
[, and the } only after an unescaped {. There’s no need to ever escape }. Metacharacter
rules for the blocks that appear between [and] are explained in Recipe 2.3.

Escaping any other nonalphanumeric character does not change how your regular ex-
pression works—at least not when working with any of the flavors discussed in this
book. Escaping an alphanumeric character may give it a special meaning or throw a
Syntax error.

People new to regular expressions often escape every punctuation character in sight.
Don’t let anyone know you’re a newbie. Escape judiciously. A jungle of needless back-
slashes makes regular expressions hard to read, particularly when all those backslashes
have to be doubled up to quote the regex as a literal string in source code.

28 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

Variations

Block escape

We can make our solution easier to read when using a regex flavor that supports a
feature called block escape:

Theepunctuation®characterseinethe®ASCIIetable®are: e«
\Q!#E%& ()*F+,-./:;<=>20[\]"_{|}™\E

Regex options: None

Regex flavors: Java 6, PCRE, Perl

Perl, PCRE and Java support the regex tokens <\Q and <\E>. <\\Q> suppresses the meaning
of all metacharacters, including the backslash, until <\E>. If you omit <\E, all characters
after the (\Q@ until the end of the regex are treated as literals.

The only benefit of <\\Q...\E> is that it is easier to read than <\.\.\.>.

’—_ Though Java 4 and 5 support this feature, you should not use it. Bugs

;‘m in the implementation cause regular expressions with <\\Q-*-\E> to match

different things from what you intended, and from what PCRE, Perl, or

Java 6 would match. These bugs were fixed in Java 6, making it behave
the same way as PCRE and Perl.

Case-insensitive matching

By default, regular expressions are case sensitive. <regex> matches regex but not Regex,
REGEX, or ReGeX. To make <regex> match all of those, you need to turn on case
insensitivity.

In most applications, that’s a simple matter of marking or clearing a checkbox. All
programming languages discussed in the next chapter have a flag or property that you
can set to make your regex case insensitive. Recipe 3.4 in the next chapter explains how
to apply the regex options listed with each regular expression solution in this book in
your source code.
ascii
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

If you cannot turn on case insensitivity outside the regex, you can do so within by using
the «(?1)> mode modifier, such as «(?i)regex>. This works with the .NET, Java, PCRE,
Perl, Python, and Ruby flavors. It works with JavaScript when using the XRegExp
library.

(?i)ascii
Regex options: None
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

2.1 Match Literal Text | 29

www.it-ebooks.info

http://www.it-ebooks.info/

.NET, Java, PCRE, Perl, and Ruby support local mode modifiers, which affect only part
of the regular expression. «sensitive(?i)caseless(?-i)sensitive> matches sensitive
CASELESSsensitive but not SENSITIVEcaselessSENSITIVE. «(?i)> turns on case
insensitivity for the remainder of the regex, and «(?-i)» turns it off for the remainder
of the regex. They act as toggle switches.

Recipe 2.9 shows how to use local mode modifiers with groups instead of toggles.

See Also

Recipe 2.3 explains character classes. The metacharacters inside character classes are
different from those outside character classes.

Recipe 5.14 demonstrates how to use a regular expression to escape all metacharacters
in a string. Doing so converts the string into a regular expression that matches the string
literally.

“Example JavaScript solution” on page 334 in Recipe 5.2 shows some sample Java-
Script code for escaping all regex metacharacters. Some programming languages have
a built-in command for this.

2.2 Match Nonprintable Characters

Problem

Match a string of the following ASCII control characters: bell, escape, form feed, line
feed, carriage return, horizontal tab, vertical tab. These characters have the hexadeci-
mal ASCII codes 07, 1B, 0C, 0A, 0D, 09, 0B.

This demonstrates the use of escape sequences and how to reference characters by their
hexadecimal codes.

Solution
\a\e\f\n\r\t\v

Regex options: None

Regex flavors: .NET, Java, PCRE, Python, Ruby
\x07\x1B\f\n\r\t\v

Regex options: None

Regex flavors: .NET, Java, JavaScript, Python, Ruby
\a\e\f\n\r\t\xoB

Regex options: None

Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

30 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion

Seven of the most commonly used ASCII control characters have dedicated escape se-
quences. These all consist of a backslash followed by a letter. This is the same syntax
that is used by string literals in many programming languages. Table 2-1 shows the
common nonprinting characters and how they are represented.

Table 2-1. Nonprinting characters

Representation Meaning Hexadecimal representation Regex flavors

Aa» bell 0x07 .NET, Java, PCRE, Perl, Python, Ruby

Ae> escape 0x1B .NET, Java, PCRE, Perl, Ruby

AP form feed 0x0C .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
Anm> line feed (newline) ~ 0x0A .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
A carriage return 0x0D .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
At horizontal tab 0x09 .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
Aw vertical tab 0x0B .NET, Java, JavaScript, Python, Ruby

In Perl 5.10 and later, and PCRE 7.2 and later, <\v> does match the vertical tab. In these
flavors <\\v> matches all vertical whitespace. That includes the vertical tab, line breaks,
and the Unicode line and paragraph separators. So for Perl and PCRE we have to use
a different syntax for the vertical tab.

JavaScript does not support <\a> and <\e>. So for JavaScript too we need a separate
solution.

These control characters, as well as the alternative syntax shown in the following sec-
tion, can be used equally inside and outside character classes in your regular expression.

Variations on Representations of Nonprinting Characters

The 26 control characters

Here’s another way to match the same seven ASCII control characters matched by the
regexes earlier in this recipe:

\cG\x1B\cL\cI\cM\cI\cK
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Ruby 1.9

Using <\cA> through <\c2>, you can match one of the 26 control characters that occupy
positions 1 through 26 in the ASCII table. The ¢ must be lowercase. The letter that
follows the c is case insensitive in most flavors. We recommend that you always use an
uppercase letter. Java requires this.

2.2 Match Nonprintable Characters | 31

www.it-ebooks.info

http://www.it-ebooks.info/

This syntax can be handy if you’re used to entering control characters on console sys-
tems by pressing the Control key along with a letter. On a terminal, Ctrl-H sends a
backspace. In a regex, <\cH> matches a backspace.

Python and the classic Ruby engine in Ruby 1.8 do not support this syntax. The Oni-
guruma engine in Ruby 1.9 does.

The escape control character, at position 27 in the ASCII table, is beyond the reach of
the English alphabet, so we leave it as (\\x1B> in our regular expression.

The 7-bit character set

Following is yet another way to match our list of seven commonly used control
characters:

\x07\x1B\x0C\x0A\x0D\x09\x0B
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

A lowercase \x followed by two uppercase hexadecimal digits matches a single char-
acter in the ASCII set. Figure 2-1 shows which hexadecimal combinations from
A\x00> through (\x7F> match each character in the entire ASCII character set. The table
is arranged with the first hexadecimal digit going down the left side and the second
digit going across the top.

0o 1 2 3 4 5 6 7 8 9 A B C D E F
0 [NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VI FF CR SO SI
1 | DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US
2/ " & $ % & ' () * + , - ./
3fo 1 2 3 4 5 6 7 8 9 : 5 < = > 7
4, @ A B C D E F G H I J K L M N O
5P @ R S T U V W X Y zZ [\ 1 ~ _
6/ a b ¢ d e f g h i j k 1 m n o
71p q r s t u v w x y z { | } ~ DEL

Figure 2-1. ASCII table

The characters that (\\x80> through <\xFF> match depends on how your regex engine
interprets them, and which code page your subject text is encoded in. We recommend
that you not use (\x80> through (\xFF>. Instead, use the Unicode code point token
described in Recipe 2.7.

32 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

’—_ If you’re using Ruby 1.8 or you compiled PCRE without UTF-8 support,

“m you cannot use Unicode code points. Ruby 1.8 and PCRE without

UTF-8 are 8-bit regex engines. They are completely ignorant about text

encodings and multibyte characters. <\\xAA> in these engines simply

matches the byte 0xAA, regardless of which character OxAA happens to
represent or whether OxAA is part of a multibyte character.

See Also

Recipe 2.7 explains how to make a regex match particular Unicode characters. If your
regex engine supports Unicode, you can match nonprinting characters that way too.

2.3 Match One of Many Characters

Problem

Create one regular expression to match all common misspellings of calendar, so you
can find this word in a document without having to trust the author’s spelling ability.
Allow an a or e to be used in each of the vowel positions. Create another regular ex-
pression to match a single hexadecimal character. Create a third regex to match a single
character that is not a hexadecimal character.

The problems in this recipe are used to explain an important and commonly used regex
construct called a character class.

Solution

Calendar with misspellings

c[ae]l[ae]nd[ae]r
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Hexadecimal character
[a-fA-F0-9]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Nonhexadecimal character
[*a-fA-F0-9]
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

2.3 Match One of Many Characters | 33

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion

The notation using square brackets is called a character class. A character class matches
a single character out of a list of possible characters. The three classes in the first regex
match either an a or an e. They do so independently. When you test calendar against
this regex, the first character class matches a, the second g, and the third a.

Inside a character class, only four characters have a special function: \, #, -, and]. If
you’re using Java or .NET, the opening bracket [is also a metacharacter inside character
classes.

Abackslash always escapes the character that follows it, just as it does outside character
classes. The escaped character can be a single character, or the start or end of a range.
The other four metacharacters get their special meanings only when they’re placed in
a certain position. It is possible to include them as literal characters in a character class
without escaping them, by positioning them in a way that they don’t get their special
meaning. <[][*-]> pulls off this trick. This works with all flavors in this book, except
JavaScript. JavaScript treats <[]> as an empty character class that always fails to match.
But we recommend that you always escape these metacharacters, so the previous regex
should be ([\]J\[\"\-]>. Escaping the metacharacters makes your regular expression
easier to understand.

All other characters are literals and simply add themselves to the character class. The
regular expression <[$()*+.?{|]> matches any one of the nine characters between the
square brackets. These nine characters only have special meanings outside character
classes. Inside character classes they are just literal text. Escaping them would only
make your regular expression harder to read.

Alphanumeric characters cannot be escaped with a backslash. Doing so may be an error
or may create a regular expression token (something with a special meaning in a regular
expression). In our discussions of certain other regex tokens, such as in Recipe 2.2, we
mention that they can be used inside character classes. All these tokens consist of a
backslash and a letter, sometimes followed by a bunch of other characters. Thus, [\r
\n]> matches a carriage return (\r) or line feed (\n).

A caret (") negates the character class if you place it immediately after the opening
bracket. It makes the character class match any character that is not in the list.

In all the regex flavors discussed in this book, a negated character class
‘3@ matches line break characters, unless you add them to the negated char-

acter class. Make sure that you don’t accidentally allow your regex to
span across lines.

A hyphen (-) creates a range when it is placed between two characters. The range
includes the character before the hyphen, the character after the hyphen, and all char-
acters that lie between them in numerical order. To know which characters those are,
you have to look at the ASCII or Unicode character table. <[A-z]> includes all characters

34 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

in the ASCII table between the uppercase A and the lowercase z. The range includes
some punctuation, so <[A-Z\[\\\]*_“a-z]> matches the same characters more explic-
itly. We recommend that you create ranges only between two digits or between two
letters that are both upper- or lowercase.

W
. “
A
[N
TSN

Reversed ranges, such as <[z-a]», are not permitted.

Variations

Shorthands

Six regex tokens that consist of a backslash and a letter form shorthand character
classes: \d>, \D>, A\w>, \W>, <\s> and <\S>. You can use these both inside and outside
character classes. Each lowercase shorthand character has an associated uppercase
shorthand character with the opposite meaning.

A\d> and «[\d]> both match a single digit. <\\D> matches any character that is not a digit,
and is equivalent to <[*\d]>.

Here is how we can use the (\d> shorthand to rewrite the “hexadecimal character” regex
from earlier in this recipe:

[a-fA-F\d]
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Aw> matches a single word character. A word character is a character that can occur as
part of a word. That includes letters, digits, and the underscore. The particular choice
of characters here may seem odd, but it was chosen because these are the characters
that are typically allowed in identifiers in programming languages. <\W> matches any
character that is not part of such a propellerhead word.

In Java 4 to 6, JavaScript, PCRE, and Ruby, \\w> is always identical to <[a-zA-Z0-9_]>.
In .NET, it includes letters and digits from all other scripts (Cyrillic, Thai, etc.). In Java
7, the other scripts are included only if you set the UNICODE_CHARACTER_CLASS flag. In
Python 2.x, the other scripts are included only if you pass the UNICODE or U flag when
creating the regex. In Python 3.x the other scripts are included by default, but you can
make (\w> ASCII-only with the ASCII or A flag. In Perl 5.14, the /a (ASCII) flag makes
\w> identical to <[a-zA-Z0-9_]>, while /u (Unicode) adds all Unicode scripts, and /1
(locale) makes \\w> depend on the locale. Prior to Perl 5.14, or when using /d (default)
or none of the /adlu flags in Perl 5.14, \w> automatically includes Unicode scripts if
the subject string or the regex are encoded as UTF-8, or the regex includes a code point
above 255 such as \\x{100}> or a Unicode property such as <\p{L}>. If not, the default
for A\w» is pure ASCIL.

2.3 Match One of Many Characters | 35

www.it-ebooks.info

http://www.it-ebooks.info/

Ad> follows the same rules as <\w> in all these flavors. In .NET, digits from other scripts
are always included. In Python it depends on the UNICODE and ASCII flags, and whether
you’re using Python 2.x or 3.x. In Perl 5.14, it depends on the /adlu flags. In earlier
versions of Perl, it depends on the encoding of the subject and regex, and whether the
regex has any Uncicode tokens.

\s> matches any whitespace character. This includes spaces, tabs, and line breaks.
A\S> matches any character not matched by <\s> In .NET and JavaScript, <\s> also
matches any character defined as whitespace by the Unicode standard. In Java, Perl,
and Python, <\s> follows the same rules as (\w> and \d.

Notice that JavaScript uses Unicode for <\s> but ASCII for <\d> and <\\w>. Further in-
consistency arises when we add <\b> to the mix. <\b> is not a shorthand character class,
but a word boundary. Though you’d expect <\b> to support Unicode when \w> does
and to be ASCII-only when <\w> is ASCII-only, this isn’t always the case. The subsection
“Word Characters” on page 47 in Recipe 2.6 has the details.

(Case insensitivity
(?1)[A-F0-9]
Regex options: None
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby
(?i)[~A-Fo0-9]
Regex options: None
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

Case insensitivity, whether set with an external flag (see Recipe 3.4) or a mode modifier
inside the regex (see “Case-insensitive matching” on page 29 in Recipe 2.1), also affects
character classes. The two regexes just shown are equivalent to the ones in the original
solution.

JavaScript follows the same rule, but it doesn’t support ¢(?1)>. To make a regular ex-
pression case-insensitive in JavaScript, set the /i flag when creating it. Or use the XRe-
gExp library for JavaScript, which adds support for mode modifiers at the start of the
regex.

Flavor-Specific Features

.NET character class subtraction
[a-zA-Z0-9-[g-2G-Z]]
Regex options: None
Regex flavors: .NET 2.0 or later

This regular expression matches a single hexadecimal character, but in a roundabout
way. The base character class matches any alphanumeric character, and a nested class

36 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

then subtracts the letters g through z. This nested class must appear at the end of the
base class, preceded by a hyphen, as shown here: <[class-[subtract]]>.

Character class subtraction is particularly useful when working with Unicode cate-
gories, blocks, and scripts. As an example, \\p{IsThai}> matches any character in the
Thai block. <\P{N}»> matches any character that is not in the Number category. Com-
bining them with subtraction, <[\p{IsThai}-[\P{N}]]> matches any of the 10 Thai
digits using character class subtraction. Recipe 2.7 has all the details on working with
Unicode properties.

Java character class union, intersection, and subtraction

Java allows one character class to be nested inside another. If the nested class is included
directly, the resulting class is the union of the two. You can nest as many classes as you
like. The regexes <[a-f[A-F][0-9]]> and <[a-f[A-F[0-9]]]> use character class union.
They match a hexadecimal digit just like the original regex without the extra square
brackets.

The regex <[\w8&[a-fA-F0-9\s]]> uses character class intersection to match a hexadec-
imal digit. It could win a prize in a regex obfuscation contest. The base character class
<[\w]> matches any word character. The nested class «[a-fA-F0-9\s]> matches any hex-
adecimal digit and any whitespace character. The resulting class is the intersection of
the two, matching hexadecimal digits and nothing else. Because the base class does not
match whitespace and the nested class does not match «[g-zG-Z_]», those are dropped
from the final character class, leaving only the hexadecimal digits.

<[a-zA-Z0-988&[*g-2zG-Z]]> uses character class subtraction to match a single hexadeci-
mal character in a roundabout way. The base character class <[a-zA-Z0-9]> matches
any alphanumeric character. The nested class <[*g-zG-Z]> then subtracts the letters g
through z. This nested class must be a negated character class, preceded by two am-
persands, as shown here: «[class88&[*subtract]]>.

Character class intersection and subtraction are particularly useful when working with
Unicode properties, blocks, and scripts. Thus, <\p{InThai}> matches any character in
the Thai block, whereas <\p{N}> matches any character that is in the Number category.
In consequence, <[\p{InThai}&&[\p{N}]]> matches any of the 10 Thai digits using char-
acter class intersection.

If you’re wondering about the subtle differences in the <\p> regex tokens, you’ll find
those all explained in Recipe 2.7. Recipe 2.7 has all the details on working with Unicode
properties.

See Also

Recipe 2.2 explains how to match nonprinting characters. Recipe 2.7 explains how to
match Unicode characters. You can use the syntax for nonprinting and Unicode char-
acters inside character classes.

2.3 Match One of Many Characters | 37

www.it-ebooks.info

http://www.it-ebooks.info/

“Bat, cat, or rat” on page 338 in Recipe 5.3 describes some common character class
mistakes made by people who are new to regular expressions.

2.4 Match Any Character

This recipe explains the ins and outs of the dot metacharacter.

Problem

Match a quoted character. Provide one solution that allows any single character, except
a line break, between the quotes. Provide another that truly allows any character, in-
cluding line breaks.

Solution

Any character except line breaks

Regex options: None (the “dot matches line breaks” option must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Any character including line breaks
Regex options: Dot matches line breaks
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

"[\s\s]"'
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Any character except line breaks

The dot is one of the oldest and simplest regular expression features. Its meaning has
always been to match any single character.

There is, however, some confusion as to what any character truly means. The oldest
tools for working with regular expressions processed files line by line, so there was
never an opportunity for the subject text to include a line break. The programming
languages discussed in this book process the subject text as a whole, no matter how
many line breaks you put into it. If you want true line-by-line processing, you have to
write a bit of code that splits the subject into an array of lines and applies the regex to
each line in the array. Recipe 3.21 in the next chapter shows how to do this.

38 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

Larry Wall, the developer of Perl, wanted Perl to retain the traditional behavior of line-
based tools, in which the dot never matched a line break. All the other flavors discussed
in this book followed suit. <.> thus matches any single character except line break
characters.

Any character including line breaks

If you do want to allow your regular expression to span multiple lines, turn on the “dot
matches line breaks” option. This option masquerades under different names. Perl and
many others confusingly call it “single line” mode, whereas Java calls it “dot all” mode.
Recipe 3.4 in the next chapter has all the details. Whatever the name of this option in
your favorite programming language is, think of it as “dot matches line breaks” mode.
That’s all the option does.

An alternative solution is needed for JavaScript, which doesn’t have a “dot matches
line breaks” option. As Recipe 2.3 explains, <\s> matches any whitespace character,
whereas <\S» matches any character that is not matched by <\s>. Combining these into
<[\s\S]> results in a character class that includes all characters, including line breaks.
<[\d\D]> and <[\w\W]> have the same effect.

Dot abuse

The dot is the most abused regular expression feature. <\d\d.\d\d.\d\d> is not a good
way to match a date. It does match 05/16/08 just fine, but it also matches 99/99/99.
Worse, it matches 12345678.

A proper regex for matching only valid dates is a subject for a later chapter (see
Recipe 4.5). But replacing the dot with a more appropriate character class is very easy.
Ad\d[/.\-1\d\d[/.\-1\d\d> allows a forward slash, dot, or hyphen to be used as the
date separator. This regex still matches 99/99/99, but not 12345678.

W

It’s just a coincidence that the previous example includes a dot inside
the character classes. Inside a character class, the dot is just a literal
%s character. It’s worth including in this particular regular expression be-
" cause in some countries, such as Germany, the dot is used as a date
separator.

Use the dot only when you really want to allow any character. Use a character class or
negated character class in any other situation.

Variations

Here’s how to match any quoted character, including line breaks, with the help of an
inline mode modifier:

(?2s)"."

Regex options: None

2.4 Match Any Character | 39

www.it-ebooks.info

http://www.it-ebooks.info/

Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python
(m)'.'

Regex options: None

Regex flavors: Ruby

If you cannot turn on “dot matches line breaks” mode outside the regular expression,
you can place a mode modifier at the start of the regular expression. We explain the
concept of mode modifiers, and JavaScript’s lack of support for them, in the subsection
“Case-insensitive matching” on page 29 in Recipe 2.1.

«(?s)> is the mode modifier for “dot matches line breaks” mode in .NET, Java, XRe-
gExp, PCRE, Perl, and Python. The s stands for “single line” mode, which is Perl’s
confusing name for “dot matches line breaks.”

The terminology is so confusing that the developer of Ruby’s regex engine copied it
wrongly. Ruby uses «<(?m)> to turn on “dot matches line breaks” mode. Other than the
different letter, the functionality is exactly the same. The new engine in Ruby 1.9 con-
tinues to use <(?m)> for “dot matches line breaks.” Perl’s very different meaning for <(?
m)> is explained in Recipe 2.5.

See Also

In many cases, you don’t want to match truly any character, but rather any character
except a select few. Recipe 2.3 explains how to do that.

Recipe 3.4 explains how to set options such as “dot matches line breaks” in your source
code.

When working with Unicode text, you may prefer to use <\X> to match a Unicode
grapheme instead of the dot which matches a Unicode code point. Recipe 2.7 explains
this in detail.

2.5 Match Something at the Start and/or the End of a Line

Problem

Create four regular expressions. Match the word alpha, but only if it occurs at the very
beginning of the subject text. Match the word omega, but only if it occurs at the very
end of the subject text. Match the word begin, but only if it occurs at the beginning of
a line. Match the word end, but only if it occurs at the end of a line.

Solution

Start of the subject

~alpha
Regex options: None (“” and $ match at line breaks” must not be set)

40 | Chapter2: Basic Regular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python
\Aalpha

Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

End of the subject
omega$
Regex options: None (“” and $ match at line breaks” must not be set)
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python
omega\Z
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Start of a line
“begin
Regex options: ™ and $ match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

End of a line

end$
Regex options: ™ and $ match at line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Anchors and lines

The regular expression tokens <», ¢$», \A», \2», and <\z> are called anchors. They do
not match any characters. Instead, they match at certain positions, effectively anchoring
the regular expression match at those positions.

A line is the part of the subject text that lies between the start of the subject and a line
break, between two line breaks, or between a line break and the end of the subject. If
there are no line breaks in the subject, then the whole subject is considered to be one
line. Thus, the following text consists of four lines, one each for one, two, an empty
string, and four:

one
two

four

The text could be represented in a program as one|LFftwo|LF|LF|four.

2.5 Match Something at the Start and/or the End of aLine | 41

www.it-ebooks.info

http://www.it-ebooks.info/

Start of the subject

The anchor \A> always matches at the very start of the subject text, before the first
character. Thatis the only place where it matches. Place <\A> at the start of your regular
expression to test whether the subject text begins with the text you want to match. The
“A” must be uppercase.

JavaScript does not support <\A>.

The anchor «* is equivalent to <\A>, as long as you do not turn on the “ and $ match

at line breaks” option. This option is off by default for all regex flavors except Ruby.
Ruby does not offer a way to turn this option off.

Unless you’re using JavaScript, we recommend that you always use <\A> instead of
«*y. The meaning of <\A> never changes, avoiding any confusion or mistakes in setting
regex options.

End of the subject

The anchors (\2> and <\z> always match at the very end of the subject text, after the last
character. Place <\2> or (\z> at the end of your regular expression to test whether the
subject text ends with the text you want to match.

.NET, Java, PCRE, Perl, and Ruby support both (\\2> and (\z>. Python supports only
A\2>. JavaScript does not support <\2> or <\z> at all.

The difference between (\2> and <\\z> comes into play when the last character in your
subject text is a line break. In that case, <\Z> can match at the very end of the subject
text, after the final line break, as well as immediately before that line break. The benefit
is that you can search for <omega\z> without having to worry about stripping off a trailing
line break at the end of your subject text. When reading a file line by line, some tools
include the line break at the end of the line, whereas others don’t; <\Z> masks this
difference. <\\z> matches only at the very end of the subject text, so it will not match
text if a trailing line break follows.

The anchor <$» is equivalent to <\2», as long as you do not turn on the “” and $ match

at line breaks” option. This option is off by default for all regex flavors except Ruby.
Ruby does not offer a way to turn this option off. Just like (\2>, <$> matches at the very
end of the subject text, as well as before the final line break, if any.

To help clarify this subtle and somewhat confusing situation, let’s look at an example
in Perl. Assuming that $/ (the current record separator) is set to its default \n, the
following Perl statement reads a single line from the terminal (standard input):

$line = <>;
Perl leaves the newline on the content of the variable $line. Therefore, an expression

such as <endeofeinput.\z> will not match the variable. But <endeofeinput.\z> and
endeofeinput.$> will both match, because they ignore the trailing newline.

42 | Chapter2: Basic Regular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

To make processing easier, Perl programmers often strip newlines with:

chomp $line;

After that operation is performed, all three anchors will match. (Technically, chomp
strips a string of the current record separator.)

Unless you’re using JavaScript, we recommend that you always use «\Z> instead of
«$>. The meaning of <\\2Z> never changes, avoiding any confusion or mistakes in setting
regex options.

Start of a line

By default, <*> matches only at the start of the subject text, just like <\A>. Only in Ruby
does *» always match at the start of a line. All the other flavors require you to turn on
the option to make the caret and dollar sign match at line breaks. This option is typically
referred to as “multiline” mode.

Do not confuse this mode with “single line” mode, which would be better known as
“dot matches line breaks” mode. “Multiline” mode affects only the caret and dollar
sign; “single line” mode affects only the dot, as Recipe 2.4 explains. It is perfectly pos-
sible to turn on both “single line” and “multiline” mode at the same time. By default,
both options are off.

With the correct option set, «* will match at the start of each line in the subject text.
Strictly speaking, it matches before the very first character in the file, as it always does,
and also after each line break character in the subject text. The caret in <\n*» is redun-
dant because «*» always matches after <\n.

End of a line

By default, <$» matches only at the end of the subject text or before the final line break,
just like <\2>. Only in Ruby does «$> always match at the end of each line. All the other
flavors require you to turn on the “multiline” option to make the caret and dollar match
at line breaks.

With the correct option set, <$> will match at the end of each line in the subject text.
(Of course, it also matches after the very last character in the text because that is always
the end of a line as well.) The dollar in «$\n> is redundant because $> always matches
before \n>.

Zero-length matches

It is perfectly valid for a regular expression to consist of nothing but one or more an-
chors. Such a regular expression will find a zero-length match at each position where
the anchor can match. If you place several anchors together, all of them need to match
at the same position for the regex to match.

2.5 Match Something at the Start and/or the End of aLine | 43

www.it-ebooks.info

http://www.it-ebooks.info/

You could use such a regular expression in a search-and-replace. Replace \A> or \2»
to prepend or append something to the whole subject. Replace <* or «$», in “” and $
match at line breaks” mode, to prepend or append something in each line in the subject
text.

Combine two anchors to test for blank lines or missing input. <\\A\Z> matches the empty
string, as well as the string that consists of a single newline. <\A\z> matches only the
empty string. <*$>, in “~ and $ match at line breaks” mode, matches each empty line
in the subject text.

Variations

(?m)~begin
Regex options: None
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python

(?m)end$
Regex options: None
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python

If you cannot turn on “” and $ match at line breaks” mode outside the regular expres-

sion, you can place a mode modifier at the start of the regular expression. The concept
of mode modifiers and JavaScript’s lack of support for them are both explained in the
subsection “Case-insensitive matching” on page 29 under Recipe 2.1.

<(?m)> is the mode modifier for “~ and $ match at line breaks” mode in .NET, Java,

XRegExp, PCRE, Perl, and Python. The m stands for “multiline” mode, which is Perl’s
confusing name for “ and $ match at line breaks.”

As explained earlier, the terminology was so confusing that the developer of Ruby’s
regex engine copied it incorrectly. Ruby uses ¢(?m)> to turn on “dot matches line breaks”
mode. Ruby’s <«(?m)> has nothing to do with the caret and dollar anchors. In Ruby,
«» and «$» always match at the start and end of each line.

Except for the unfortunate mix-up in letters, Ruby’s choice to use «*» and $» exclusively
for lines is a good one. Unless you’re using JavaScript, we recommend that you copy
this choice in your own regular expressions.

Jan Goyvaerts followed the same idea in his designs of EditPad Pro and PowerGREP.
You won’t find a checkbox labeled “~ and $ match at line breaks,” even though there
is one labeled “dot matches line breaks.” Unless you prefix your regular expression
with «(2-m)>, you’ll have to use (\A> and <\Z> to anchor your regex to the beginning or
end of your file.

See Also

Recipe 3.4 explains how to set options such as “” and $ match at line breaks” in your
source code.

44 | Chapter2: Basic Regular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

Recipe 3.21 shows how to use procedural code to really make a regex process some
text line by line.

2.6 Match Whole Words

Problem

Create a regex that matches cat in My cat is brown, but not in category or bobcat.
Create another regex that matches cat in staccato, but not in any of the three previous
subject strings.

Solution

Word boundaries

\bcat\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Nonboundaries

\Bcat\B
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Word boundaries

The regular expression token «\b» is called a word boundary. It matches at the start or
the end of a word. By itself, it results in a zero-length match. <\b> is an anchor, just like
the tokens introduced in the previous section.

Strictly speaking, <\b> matches in these three positions:

* Before the first character in the subject, if the first character is a word character
* After the last character in the subject, if the last character is a word character

* Between two characters in the subject, where one is a word character and the other
is not a word character

To run a “whole words only” search using a regular expression, simply place the word
between two word boundaries, as we did with <\bcat\b>. The first <\b> requires the
<o to occur at the very start of the string, or after a nonword character. The second
\b> requires the «t» to occur at the very end of the string, or before a nonword character.

2.6 Match Whole Words | 45

www.it-ebooks.info

http://www.it-ebooks.info/

Line break characters are nonword characters. <\\b> will match after a line break if the
line break is immediately followed by a word character. It will also match before a line
break immediately preceded by a word character. So a word that occupies a whole line
by itself will be found by a “whole words only” search. <\b> is unaffected by “multiline”
mode or «(?m)>, which is one of the reasons why this book refers to “multiline” mode

as “” and $ match at line breaks” mode.

None of the flavors discussed in this book have separate tokens for matching only before
or only after a word. Unless you wanted to create a regex that consists of nothing but
aword boundary, these aren’t needed. The tokens before or after the <\b> in your regular
expression will determine where <\b> can match. The <\b> in <\bx> and <!\b> could match
only at the start of a word. The (\b» in «x\b> and <\b!> could match only at the end of a
word. «<x\bx> and <!\b!> can never match anywhere.

If you really want to match only the position before a word or only after a word, you
can do so with lookahead and lookbehind. Recipe 2.16 explains lookahead and look-
behind. This method does not work with JavaScript and Ruby 1.8 because these flavors
do not support lookbehind. The regex «(?<!\w) (?=\w)> matches the start of a word by
checking that the character before the match position is not a word character, and that
the character after the match position is a word character. «(?<=\w) (?!\w)> does the
opposite: it matches the end of the word by checking that the preceding character is a
word character, and that the following character is not a word character. It’s important
to use negative lookaround with <\w> rather than positive lookaround with \\W> to check
for the absence of a word character. «(?<!\w)> matches at the start of the string because
there is no word character (or any character at all) before the start of the string. But
<(?2<=\W)> never matches at the start of the string. <(?!\w)> matches at the end of the
string for the same reason. So our two lookaround constructs will correctly match the
start of the string if the string begins with a word and the end of the string if it ends
with a word.

Nonboundaries

<\B> matches at every position in the subject text where <\b> does not match. <\B
matches at every position that is not at the start or end of a word.

Strictly speaking, <\B> matches in these five positions:
* Before the first character in the subject, if the first character is not a word character
* After the last character in the subject, if the last character is not a word character
* Between two word characters
* Between two nonword characters
* The empty string

<\Bcat\B> matches cat in staccato, but notin My cat is brown, category, or bobcat.

46 | Chapter2: Basic Regular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

To do the opposite of a “whole words only” search (i.e., excluding My cat is brown
and including staccato, category, and bobcat), you need to use alternation to combine
<\Bcat> and «cat\B> into <\Bcat|cat\B>. «\Bcat> matches cat in staccato and bobcat.
<cat\B> matches cat in category (and staccato if <\\Bcat> hadn’t already taken care of
that). Recipe 2.8 explains alternation.

Word Characters

All this talk about word boundaries, but no talk about what a word character is. A word
character is a character that can occur as part of a word. The subsection “Short-
hands” on page 35 in Recipe 2.3 discussed which characters are included in \w>, which
matches a single word character. Unfortunately, the story is not the same for (\b>.

Although all the flavors in this book support <\\b> and <\B>, they differ in which char-
acters are word characters.

.NET, JavaScript, PCRE, Perl, Python, and Ruby have <\b> match between two char-
acters where one is matched by <\\w> and the other by (\W>. (\B> always matches between
two characters where both are matched by <\w> or <\W>.

JavaScript, PCRE, and Ruby view only ASCII characters as word characters. A\w> is
identical to <[a-zA-Z0-9_]>. With these flavors, you can do a “whole words only” search
on words in languages that use only the letters A to Z without diacritics, such as English.
But these flavors cannot do “whole words only” searches on words in other languages,
such as Spanish or Russian.

NET treats letters and digits from all scripts as word characters. You can do a “whole
words only” search on words in any language, including those that don’t use the Latin
alphabet.

Python gives you an option. In Python 2.x, non-ASCII characters are included only if
you pass the UNICODE or U flag when creating the regex. In Python 3.x, non-ASCII char-
acter are included by default, but you can exclude them with the ASCII or A flag. This
flag affects both <\b> and \w> equally.

In Perl, it depends on your version of Perl and /adlu flags whether \w> is pure ASCII
or includes all Unicode letters, digits, and underscores. The subsection “Short-
hands” on page 35 in Recipe 2.3 explains this in more detail. In all versions of Perl,
A\b» is consistent with \w>.

Java behaves inconsistently. <\w> matches only ASCII characters in Java 4 to 6. In Java
7, \w> matches only ASCII characters by default, but matches Unicode characters if
you set the UNICODE_CHARACTER_CLASS flag. But <\b> is Unicode-enabled in all versions of
Java, supporting any script. In Java 4 to 6, \\b\w\b> matches a single English letter, digit,
orunderscore that does not occur as part of a word in any language. (\bxomxa\b> always
correctly matches the Russian word for cat in Java, because <\b> supports Unicode. But
Aw+> will not match any Russian word in Java 4 to 6, because <\w> is ASCII-only.

2.6 Match Whole Words | 47

www.it-ebooks.info

http://www.it-ebooks.info/

See Also

Recipe 2.3 discusses which characters are matched by the shorthand character class
A\w> which matches a word character.

Recipe 5.1 shows how you can use word boundaries to match complete words, and
how you can work around the different behavior of word boundaries in various regex
flavors.

2.7 Unicode Code Points, Categories, Blocks, and Scripts

Problem

Use a regular expression to find the trademark sign (™) by specifying its Unicode code
point rather than copying and pasting an actual trademark sign. If you like copy and
paste, the trademark sign is just another literal character, even though you cannot type
it directly on your keyboard. Literal characters are discussed in Recipe 2.1.

Create a regular expression that matches any character is in the “Currency Symbol”
Unicode category.

Create a regular expression that matches any character in the “Greek Extended” Uni-

code block.

Create a regular expression that matches any character that, according to the Unicode
standard, is part of the Greek script.

Create a regular expression that matches a grapheme, or what is commonly thought of
as a character: a base character with all its combining marks.

Solution

Unicode code point

\u2122
Regex options: None
Regex flavors: .NET, Java, JavaScript, Python, Ruby 1.9

\U00002122
Regex options: None
Regex flavors: Python

These regexes work in Python 2.x only when quoted as Unicode strings: u"\u2122" or
u"\U00002122".

\x{2122}
Regex options: None
Regex flavors: Java 7, PCRE, Perl

48 | Chapter2: Basic Regular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

PCRE must be compiled with UTF-8 support; in PHP, turn on UTF-8 support with
the /u pattern modifier.

\u{2122}
Regex options: None
Regex flavors: Ruby 1.9

Ruby 1.8 does not support Unicode regular expressions.

Unicode category
\p{Sc}

Regex options: None
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Ruby 1.9

PCRE must be compiled with UTF-8 support; in PHP, turn on UTF-8 support with
the /u pattern modifier. JavaScript and Python do not support Unicode properties.
XRegExp adds support for Unicode properties to JavaScript. Ruby 1.8 does not support
Unicode regular expressions.

Unicode block

\p{IsGreekExtended}
Regex options: None
Regex flavors: .NET, Perl

\p{InGreekExtended}
Regex options: None
Regex flavors: Java, XRegExp, Perl

JavaScript, PCRE, Python, and Ruby 1.9 do not support Unicode blocks. They do
support Unicode code points, which you can use to match blocks as shown in the
“Variations” section in this recipe. XRegExp adds support for Unicode blocks to
JavaScript.

Unicode script

\p{Greek}
Regex options: None
Regex flavors: XRegExp, PCRE, Perl, Ruby 1.9

\p{IsGreek}
Regex options: None
Regex flavors: Java 7, Perl

Unicode script support requires PCRE 6.5 or later, and PCRE must be compiled with
UTF-8 support. In PHP, turn on UTF-8 support with the /u pattern modifier. .NET,
JavaScript, and Python do not support Unicode properties. XRegExp adds support for
Unicode properties to JavaScript. Ruby 1.8 does not support Unicode regular
expressions.

2.7 Unicode Code Points, Categories, Blocks, and Scripts | 49

www.it-ebooks.info

http://www.it-ebooks.info/

Unicode grapheme
\X
Regex options: None
Regex flavors: PCRE, Perl

PCRE and Perl have a dedicated token for matching graphemes. PCRE must be com-
piled with UTF-8 support; in PHP, turn on UTF-8 support with the /u pattern modifier.

(2>\P{M}P\p{m}*)
Regex options: None
Regex flavors: .NET, Java, Ruby 1.9

(2:\P{M}\p{M}*)
Regex options: None
Regex flavors: XRegExp

.NET, Java, XRegExp, and Ruby 1.9 do not have a token for matching graphemes. But
they do support Unicode categories, which we can use to emulate matching graphemes.

JavaScript (without XRegExp) and Python do not support Unicode properties. Ruby
1.8 does not support Unicode regular expressions.

Discussion

Unicode code point

A code point is one entry in the Unicode character database. A code point is not the
same as a character, depending on the meaning you give to “character.” What appears
as a character on screen is called a grapheme in Unicode.

The Unicode code point U+2122 represents the “trademark sign” character. You can
match this with \u2122>, \\u{2122}, or \x{2122}>, depending on the regex flavor
you’re working with.

The \w> syntax requires exactly four hexadecimal digits. This means you can only use
it for Unicode code points U+0000 through U+FFFF.

Au{--pand \x{ - }> allow between one and six hexadecimal digits between the braces,
supporting all code points U+000000 through U+10FFFF. You can match U+00EQ
with \x{E0}> or \\x{00E0}>. Code points U+100000 and above are used very infre-
quently. They are poorly supported by fonts and operating systems.

Python’s regular expression engine has no support for Unicode code points. Literal
Unicode strings in Python 2.x and literal text strings in Python 3.x do have escapes for
Unicode code points. \u0000 through \uFFFF represent Unicode code points U+0000
through U+FFFF. \U00000000 through \U0010FFFF represent all Unicode code points.
You have to specify eight hexadecimal numbers after \U, even though there are no
Unicode code points beyond U+10FFFF.

50 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

When hard-coding regular expressions as literal strings in your Python code, you can
directly use <\u2122> and «<\U00002122> in your regexes. When reading regexes from a
file or receiving them from user input, these Unicode escapes will not work if you pass
the string you read or received directly to re.compile(). In Python 2.x, you can decode
the Unicode escapes by calling string.decode('unicode-escape'). In Python 3.x you
can call string.encode('utf-8").decode('unicode-escape").

Code points can be used inside and outside character classes.

Unicode category

Each Unicode code point fits into a single Unicode category. There are 30 Unicode
categories, specified with a code consisting of two letters. These are grouped into 7
super-categories that are specified with a single letter.

Ap{L}>: Any kind of letter from any language

Ap{L1}>: A lowercase letter that has an uppercase variant

Ap{Lu}>: An uppercase letter that has a lowercase variant

Ap{Lt}>: A letter that appears at the start of a word when only the first letter of the
word is capitalized

Ap{Lm}>: A special character that is used like a letter

Ap{Lo}>: A letter or ideograph that does not have lowercase and uppercase variants
A\p{M}>: A character intended to be combined with another character (accents,
umlauts, enclosing boxes, etc.)

Ap{Mn}>: A character intended to be combined with another character that does
not take up extra space (e.g., accents, umlauts, etc.)

Ap{Mc}>: A character intended to be combined with another character that does
take up extra space (e.g., vowel signs in many Eastern languages)

\p{Me}>: A character that encloses another character (circle, square, keycap, etc.)
A\p{Z}>: Any kind of whitespace or invisible separator

Ap{Zs}>: A whitespace character that is invisible, but does take up space
Ap{z1}>: The line separator character U+2028

Ap{Zp}>: The paragraph separator character U+2029

Ap{S}>: Math symbols, currency signs, dingbats, box-drawing characters, etc.
Ap{Sm}>: Any mathematical symbol

A\p{Sc}>: Any currency sign

A\p{Sk}>: A combining character (mark) as a full character on its own

\p{So}>: Various symbols that are not math symbols, currency signs, or combining
characters

Ap{N}>: Any kind of numeric character in any script

Ap{Nd}>: A digit 0 through 9 in any script except ideographic scripts

Ap{N1}>: A number that looks like a letter, such as a Roman numeral

Ap{No}>: A superscript or subscript digit, or a number that is not a digit 0...9 (ex-
cluding numbers from ideographic scripts)

Ap{P}>: Any kind of punctuation character

2.7 Unicode Code Points, Categories, Blocks, and Scripts | 51

www.it-ebooks.info

http://www.it-ebooks.info/

Ap{Pd}>: Any kind of hyphen or dash

Ap{Ps}>: Any kind of opening bracket

Ap{Pe}>: Any kind of closing bracket

Ap{Pi}>: Any kind of opening quote

Ap{Pf}>: Any kind of closing quote

Ap{Pc}>: A punctuation character such as an underscore that connects words
Ap{Po}>: Any kind of punctuation character that is not a dash, bracket, quote or
connector

Ap{Ch: Invisible control characters and unused code points

\p{Cc}>: An ASCII or Latin-1 control character 0x00...0x1F and 0x7F...0x9F
Ap{Cf}>: An invisible formatting indicator

Ap{Co}>: Any code point reserved for private use

Ap{Cs}>: One half of a surrogate pair in UTF-16 encoding

A\p{Cn}>: Any code point to which no character has been assigned

Ap{L1}> matches a single code point that is in the L1, or “lowercase letter,” category.
Ap{L}> is a quick way of writing <[\p{L1}\p{Lu}\p{Lt}\p{Lm}\p{Lo}]> that matches a
single code point in any of the “letter” categories.

<\P» is the negated version of (\p>. <\P{L1}> matches a single code point that is not in
the L1 category. <\P{L}> matches a single code point that does not have any of the “letter”
properties. Thisis not the same as <[\P{LL}\P{Lu}\P{Lt}\P{Lm}\P{Lo} >, which matches
all code points. (\P{L1}> matches the code points in the Lu category (and every other
category except L1), whereas <\P{Lu}> includes the L1 code points. Combining just these
two in a code point class already matches all possible code points.

W
o In Perl as well as PCRE 6.5 and later <\p{L&}»> can be used as a shorthand
f‘:‘) for ([\p{L1}\p{Lu}\p{Lt}]> to match all letters in all scripts that distin-
ok guish between uppercase and lowercase letters.

(N

Unicode block

The Unicode character database divides all the code points into blocks. Each block
consists of a single range of code points. The code points U+0000 through U+FFFF
are divided into 156 blocks in version 6.1 of the Unicode standard:

<U+0000..U+007F \p{InBasicLatin}>

<U+0080..U+00FF \p{InLatin-1Supplement}>
<U+0100..U+017F \p{InLatinExtended-A}>
<U+0180..U+024F \p{InLatinExtended-B}>
<U+0250..U+02AF \p{InIPAExtensions}>
<U+02B0..U+02FF \p{InSpacingModifierLetters}
<U+0300..U+036F \p{InCombiningDiacriticalMarks}>»
<U+0370..U+03FF \p{InGreekandCoptic}»
<U+0400..U+04FF \p{InCyrillich

52 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

<U+0500..U+052F \p{InCyrillicSupplement}>
<U+0530..U+058F \p{InArmenian}>
<U+0590..U+05FF \p{InHebrew}»
<U+0600..U+06FF \p{InArabic}»
<«U+0700..U+074F \p{InSyriac}h
«U+0750..U+077F \p{InArabicSupplement}»
<U+0780..U+07BF \p{InThaana}»
<U+07C0..U+07FF \p{InNKo}>
<U+0800..U+083F \p{InSamaritan}>
<U+0840..U+085F \p{InMandaic}>
<U+08A0..U+08FF \p{InArabicExtended-A}>
<U+0900..U+097F \p{InDevanagari}»
<U+0980..U+09FF \p{InBengali}»
<U+0A00..U+0A7F \p{InGurmukhi}>»
<U+0A80..U+OAFF \p{InGujarati}>
<U+0B00..U+0B7F \p{InOriya}»
<U+0B80..U+0BFF \p{InTamil}
<U+0C00..U+0C7F \p{InTelugu}>
<U+0C80..U+0CFF \p{InKannada}>
<U+0D00..U+0D7F \p{InMalayalam}>
<U+0D80..U+0DFF \p{InSinhala}>
<U+0E00..U+OE7F \p{InThai}>
<U+0E80..U+OEFF \p{InLao}»
<U+0F00..U+OFFF \p{InTibetan}>
<U+1000..U+109F \p{InMyanmar}>
<U+10A0..U+10FF \p{InGeorgian}>
<U+1100..U+11FF \p{InHangullamo}>
<U+1200..U+137F \p{InEthiopic}
<U+1380..U+139F \p{InEthiopicSupplement}>
<U+13A0..U+13FF \p{InCherokee}>
<U+1400..U+167F \p{InUnifiedCanadianAboriginalSyllabics}>
<U+1680..U+169F \p{InOgham}>
<U+16A0..U+16FF \p{InRunic}h
U+1700..U+171F \p{InTagalog}
<U+1720..U+173F \p{InHanunoo}>
<U+1740..U+175F \p{InBuhid}>
U+1760..U+177F \p{InTagbanwa}>
<U+1780..U+17FF \p{InKhmer}>
<U+1800..U+18AF \p{InMongolian}>
<U+18B0..U+18FF \p{InUnifiedCanadianAboriginalSyllabicsExtended}>
<U+1900..U+194F \p{InLimbu}>
<U+1950..U+197F \p{InTailLe}
<U+1980..U+19DF \p{InNewTailLue}>

2.7 Unicode Code Points, Categories, Blocks, and Scripts | 53

www.it-ebooks.info

http://www.it-ebooks.info/

<U+19E0..U+19FF \p{InKhmerSymbols}>

<U+1A00..U+1A1F \p{InBuginese}>

<U+1A20..U+1AAF \p{InTaiTham}>

<U+1B00..U+1B7F \p{InBalinese}>

<U+1B80..U+1BBF \p{InSundanese}»

<U+1BCO..U+1BFF \p{InBatak}»

<U+1€00..U+1C4F \p{InLepcha}>

<U+1C50..U+1C7F \p{InOlChiki}>

<U+1CCO..U+1CCF \p{InSundaneseSupplement}>
<U+1CDO..U+1CFF \p{InVedicExtensions}»

<U+1D00..U+1D7F \p{InPhoneticExtensions}»

<U+1D80..U+1DBF \p{InPhoneticExtensionsSupplement}>
<U+1DCO..U+1DFF \p{InCombiningDiacriticalMarksSupplement}>
<U+1E00..U+1EFF \p{InLatinExtendedAdditional}>
<U+1F00..U+1FFF \p{InGreekExtended}»

<U+2000..U+206F \p{InGeneralPunctuation}»

<U+2070..U+209F \p{InSuperscriptsandSubscripts}
<U+20A0..U+20CF \p{InCurrencySymbols}»

<U+20D0..U+20FF \p{InCombiningDiacriticalMarksforSymbols}>
<U+2100..U+214F \p{InLetterlikeSymbols}>

<U+2150..U+218F \p{InNumberForms}>

<U+2190..U+21FF \p{InArrows}»

<U+2200..U+22FF \p{InMathematicalOperators}»
<U+2300..U+23FF \p{InMiscellaneousTechnical}
<U+2400..U+243F \p{InControlPictures}

<U+2440..U+245F \p{InOpticalCharacterRecognition}>
<U+2460..U+24FF \p{InEnclosedAlphanumerics}»
<U+2500..U+257F \p{InBoxDrawing}»

<U+2580..U+259F \p{InBlockElements}>

<U+25A0..U+25FF \p{InGeometricShapes}>

<U+2600..U+26FF \p{InMiscellaneousSymbols}>
<U+2700..U+27BF \p{InDingbats}>

<U+27C0..U+27EF \p{InMiscellaneousMathematicalSymbols-A}>
U+27F0..U+27FF \p{InSupplementalArrows-A}>
<U+2800..U+28FF \p{InBraillePatterns}»

<U+2900..U+297F \p{InSupplementalArrows-B}>
<U+2980..U+29FF \p{InMiscellaneousMathematicalSymbols-B}>
<U+2A00..U+2AFF \p{InSupplementalMathematicalOperators}
<U+2B00..U+2BFF \p{InMiscellaneousSymbolsandArrows}>
<U+2€00..U+2C5F \p{InGlagolitic}

<U+2C60..U+2C7F \p{InLatinExtended-C}>

<U+2C80..U+2CFF \p{InCoptic}

<U+2D00..U+2D2F \p{InGeorgianSupplement}>

54 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

«U+2D30...
«U+2D80...
<U+2DEO...
«U+2E00...
U+2E80...
«U+2Fo00..
U+2FFo...
<«U+3000...
«U+3040..
<U+30A0...
«U+3100...
«U+3130...
«U+3190...
<U+31A0...
«WU+31Co0...
«U+31F0..
<«U+3200...
<«U+3300...
«U+3400...
«U+4DCo..
<U+4E00...
<U+A000...
<U+A490...
<U+A4Do...
<U+A500...
U+A640...
<U+AB6AO...
<U+A700...
«U+A720...
<U+A800...
<U+A830..
U+A840...
<U+A880...
<U+A8EO...
<U+A900...
<U+A930...
U+A960...
<U+A980...
<U+AA0O...
<U+AA6O...
<U+AA80...
<U+AAEO..
<U+ABOO...

U+2D7F \p{InTifinagh}>

U+2DDF \p{InEthiopicExtended}>

U+2DFF \p{InCyrillicExtended-A}>

U+2E7F \p{InSupplementalPunctuation}»

U+2EFF \p{InCJKRadicalsSupplement}>

U+2FDF \p{InKangxiRadicals}»

U+2FFF \p{InIdeographicDescriptionCharacters}
U+303F \p{InCIKSymbolsandPunctuation}»

U+309F \p{InHiragana}

U+30FF \p{InKatakana}»

U+312F \p{InBopomofo}>

U+318F \p{InHangulCompatibilityJamo}>»

U+319F \p{InKanbun}»

U+31BF \p{InBopomofoExtended}>

U+31EF \p{InCIKStrokes}>

U+31FF \p{InKatakanaPhoneticExtensions}»
U+32FF \p{InEnclosedCIKLettersandMonths}>
U+33FF \p{InCIKCompatibility}>

U+4DBF \p{InCIKUnifiedIdeographsExtensionA}>

U+4DFF \p{InYijingHexagramSymbols}>

U+9FFF \p{InCIKUnifiedIdeographs}»
U+A48F \p{InYiSyllables}»

U+A4CF \p{InYiRadicals}

U+A4FF \p{InLisu}>

U+A63F \p{Invai}p

U+A69F \p{InCyrillicExtended-B}>
U+A6FF \p{InBamum}>

U+A71F \p{InModifierToneletters}
U+A7FF \p{InLatinExtended-D}>
U+A82F \p{InSylotiNagri}

U+A83F \p{InCommonIndicNumberForms}>

U+A87F \p{InPhags-pa}>

U+A8DF \p{InSaurashtra}

U+A8FF \p{InDevanagariExtended}»
U+A92F \p{InKayahLi}>

U+A95F \p{InRejang}

U+A97F \p{InHangulJamoExtended-A}>
U+A9DF \p{InJavanese}>

U+AASF \p{InCham}>

U+AA7F \p{InMyanmarExtended-A}>
U+AADF \p{InTaiviet}

U+AAFF \p{InMeeteiMayekExtensions}

U+AB2F \p{InEthiopicExtended-A}>

2.7 Unicode Code Points, Categories, Blocks, and Scripts | 55

www.it-ebooks.info

http://www.it-ebooks.info/

<U+ABCO..U+ABFF \p{InMeeteiMayek}>

<U+AC00..U+D7AF \p{InHangulSyllables}>
<«U+D7B0..U+D7FF \p{InHangulJamoExtended-B}>
<U+D800..U+DB7F \p{InHighSurrogates}»
<U+DB80..U+DBFF \p{InHighPrivateUseSurrogates}
<U+DC00..U+DFFF \p{InLowSurrogates}
<U+E000..U+F8FF \p{InPrivateUseArea}
<U+F900..U+FAFF \p{InCIKCompatibilityIdeographs}»
<U+FB00..U+FB4F \p{InAlphabeticPresentationForms}>
<U+FB50..U+FDFF \p{InArabicPresentationForms-A}>
<U+FE00..U+FEOF \p{InVariationSelectors}
<U+FE10..U+FE1F \p{InVerticalForms}>
<U+FE20..U+FE2F \p{InCombiningHalfMarks}>
<U+FE30..U+FE4F \p{InCIKCompatibilityForms}»
<U+FE50..U+FE6F \p{InSmallFormVariants}»
<U+FE70..U+FEFF \p{InArabicPresentationForms-B}>
<U+FF00..U+FFEF \p{InHalfwidthandFullwidthForms}»
<U+FFFO..U+FFFF \p{InSpecials}h

A Unicode block is a single, contiguous range of code points. Although many blocks
have the names of Unicode scripts and Unicode categories, they do not correspond
100% with them. The name of a block only indicates its primary use.

The Currency block does not include the dollar and yen symbols. Those are found in
the Basiclatin and Latin-1Supplement blocks, for historical reasons. Both are in the
Currency Symbol category. To match any currency symbol, use (\p{Sc}> instead of
A\p{InCurrency}.

Most blocks include unassigned code points, which are in the category <\p{Cn}>. None
of the other Unicode categories, and none of the Unicode scripts, include unassigned
code points.

The <\p{InBlockName}> syntax works with .NET, XRegExp, and Perl. Java uses the
<\p{IsBlockName}» syntax.

Perl also supports the Is variant, but we recommend you stick with the In syntax, to
avoid confusion with Unicode scripts. For scripts, Perl supports <\p{Script}> and
Ap{IsScript}>, but not \p{InScript}h.

The Unicode standard stipulates that block names should be case insensitive, and that
any differences in spaces, hyphens, or underscores should be ignored. Most regex fla-
vors are not this flexible, unfortunately. All versions of .NET and Java 4 require the
block names to be capitalized as shown in the preceding list. Perl 5.8 and later and Java
5 and later allow any mixture of case. Perl, Java, and .NET all support the notation
with hyphens and without spaces used in the preceding list. We recommend you use
this notation. Of the flavors discussed in this book, only XRegExp and Perl 5.12 and

56 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

later are fully flexible with regard to spaces, hyphens, and underscores in Unicode block
names.

Unicode script

Each Unicode code point, except unassigned ones, is part of exactly one Unicode script.
Unassigned code points are not part of any script. The assigned code points up to
U+FFFF are assigned to these 72 scripts in version 6.1 of the Unicode standard:

<\p{Common}» A\p{Lepcha}>
\p{Arabich Ap{Limbu}>
\p{Armenian}> Ap{Lisup
\p{Balinese}> \p{Malayalam}»
\p{Bamum}» <\p{Mandaic}
\p{Batak}» A\p{Meetei Mayek}>
\p{Bengali} \p{Mongolian}>
<\p{Bopomofo}> Ap{Myanmar}»
\p{Braille} A\p{New_Tai Lue}
\p{Buginese}> \p{Nko}>
\p{Buhid}> \p{Ogham}>
<\p{Canadian_Aboriginal}» \p{0l _Chiki}
\p{Cham}> \p{Oriya}
\p{Cherokee}> <\p{Phags_Pa}
\p{Coptich Ap{Rejang}
Ap{Cyrillichp A\p{Runich
<\p{Devanagari}» \p{Samaritan}>
\p{Ethiopic} \p{Saurashtra}
\p{Georgian} \p{Sinhala}
\p{Glagolitic}h <\p{Sundanese}»
\p{Greek}» A\p{Syloti Nagri}h
\p{Gujaratip Ap{Syriach
Ap{Gurmukhi}> \p{Tagalog}
\p{Han}> \p{Tagbanwa}»
\p{Hangul} Ap{Tai_Le}
\p{Hanunoo}» \p{Tai_Tham}>
\p{Hebrew}> \p{Tai Viethp
\p{Hiragana} Ap{Tamil}
A\p{Inherited} \p{Telugu}p>
\p{Javanese} \p{Thaana}>
\p{Kannada}» Ap{Thai}
\p{Katakana}» \p{Tibetan}
\p{Kayah_Li}> Ap{Tifinagh}>
\p{Khmer}» A\p{vaip
A\p{Lao} Ap{Yip

2.7 Unicode Code Points, Categories, Blocks, and Scripts | 57

www.it-ebooks.info

http://www.it-ebooks.info/

Ap{Latin}

A script is a group of code points used by a particular human writing system. Some
scripts, such as Thai, correspond with a single human language. Other scripts, such as
Latin, span multiple languages. Some languages are composed of multiple scripts. For
instance, there is no Japanese Unicode script; instead, Unicode offers the Hiragana,
Katakana, Han, and Latin scripts that Japanese documents are usually composed of.

We listed the Common script first, out of alphabetical order. This script contains all sorts
of characters that are common to a wide range of scripts, such as punctuation, white-
space, and miscellaneous symbols.

Java requires the name of the script to be prefixed with Is, as in <\p{IsYi}>. Perl allows
the Is prefix, but doesn’t require it. XRegExp, PCRE, and Ruby do not allow the Is
prefix.

The Unicode standard stipulates that script names should be case insensitive, and that
any differences in spaces, hyphens, or underscores should be ignored. Most regex fla-
vors are not this flexible, unfortunately. The notation with the words in the script names
capitalized and with underscores between the words works with all flavors in this book
that support Unicode scripts.

Unicode grapheme

The difference between code points and characters comes into play when there are
combining marks. The Unicode code point U+0061 is “Latin small letter a,” whereas
U+00EOQ is “Latin small letter a with grave accent.” Both represent what most people
would describe as a character.

U+0300 is the “combining grave accent” combining mark. It can be used sensibly only
after a letter. A string consisting of the Unicode code points U+0061 U+0300 will be
displayed as a, just like U+00EQ. The combining mark U+0300 is displayed on top of
the character U+0061.

The reason for these two different ways of displaying an accented letter is that many
historical character sets encode “a with grave accent” as a single character. Unicode’s
designers thought it would be useful to have a one-on-one mapping with popular legacy
character sets, in addition to the Unicode way of separating marks and base letters,
which makes arbitrary combinations not supported by legacy character sets possible.

What matters to you as a regex user is that all regex flavors discussed in this book
operate on code points rather than graphical characters. When we say that the regular
expression <.» matches a single character, it really matches just a single code point. If
your subject text consists of the two code points U+0061 U+0300, which can be rep-
resented as the string literal "\u0061\u0300" in a programming language such as Java,
the dot will match only the code point U+0061, or a, without the accent U+0300. The
regex ¢..> will match both.

58 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

Perl and PCRE offer a special regex token «<\X>, which matches any single Unicode
grapheme. Essentially, it is the Unicode version of the venerable dot. <\X> will find two
matches in the text aa, regardless of how it is encoded. If it is encoded as
\u00E0\u0061\u0300 the first match is \uooEo, and the second \uo061\u0300. The dot,
which matches any single Unicode code point, would find three matches as it matches
\U0OEO, \u0061, and \u0300 separately.

The rules for exactly which combinations of Unicode code points are considered
graphemes are quite complicated.! Generally speaking, to match a grapheme we need
to match any character that is not a mark and all the marks that follow it, if any. We
can match this with the regex «(?>\P{M}\p{M}*)> in all regex flavors that support Uni-
code but not the \X> token for graphemes. <\\P{M}> matches any character that is not in
the Mark category. <\p{M}*» matches all the marks, if any, that follow it.

We put these two regex tokens in an atomic group to make sure the \\p{M}*> won’t
backtrack if any following regex tokens fail to match. \\X{2}.> does not match aa, be-
cause there is nothing left for the dot to match after <\X{2}> has matched the two ac-
cented letters. <(2>\P{M}\p{M}*){2}.> does not match aa for the same reason. But «(?:
\P{M}I\p{M}*){2}.> with an non-capturing group does match aa if it is encoded as
\u00E0\u0061\u0300. Upon the second iteration of the group, \p{M}*> will match
\u0300. The dot will then fail to match. This causes the regex to backtrack, forcing
Ap{M}* to give up its match, allowing the dot to match \uo300.

JavaScript’s regex engine does not support atomic grouping. This is not a feature that
could be added by XRegExp, because XRegExp still relies on JavaScript’s regex engine
for the actual pattern matching. So when using XRegExp, <«(?:\P{M}\p{M}*)> is the
closest we can get to emulating <\X>. Without the atomic group, you’ll have to keep in
mind that \p{M}* may backtrack if whatever follows «(?:\P{M}\p{M}*)> in your regex
can match characters in the Mark category.

Variations

Negated variant

The uppercase <\P> is the negated variant of the lowercase \p>. For instance, <\P{Sc}>
matches any character that does not have the “Currency Symbol” Unicode property.
<\P» is supported by all flavors that support <\p>, and for all the properties, block, and
scripts that they support.

1. You can find all the details in Unicode Standard Annex #29 at http://www.unicode.org/reports/tr29/. The
“Graphemes and Normalization” section in Chapter 6 in the fourth edition of Programming Perl has more
practical details on how to deal with Unicode graphemes in your software.

2.7 Unicode Code Points, Categories, Blocks, and Scripts | 59

www.it-ebooks.info

http://www.unicode.org/reports/tr29/
http://www.it-ebooks.info/

Character classes

All flavors allow all the Aw, <\x>, \\p>, and \P> tokens they support to be used inside
character classes. The character represented by the code point, or the characters in the
category, block, or script, are then added to the character class. For instance, you could
match a character that is either an opening quote (initial punctuation property), a clos-
ing quote (final punctuation property), or the trademark symbol (U+2122) with:

[\p{Pi}\p{Pf}\u2122]
Regex options: None
Regex flavors: .NET, Java, XRegExp, Ruby 1.9

[\p{PiF\p{Pf}\x{2122}]
Regex options: None
Regex flavors: Java 7, PCRE, Perl

Listing all characters

Ifyour regular expression flavor does not support Unicode categories, blocks, or scripts,
you can list the characters that are in the category, block, or script in a character class.
For blocks this is very easy: each block is simply a range between two code points. The
Greek Extended block comprises the characters U+1F00 to U+1FFF:

[\u1F00-\u1FFF]
Regex options: None
Regex flavors: .NET, Java, JavaScript, Python, Ruby 1.9

[\x{1F00}-\x{1FFF}]
Regex options: None
Regex flavors: Java 7, PCRE, Perl

For most categories and many scripts, the equivalent character class is a long list of
individual code points and short ranges. The characters that comprise each category
and many of the scripts are scattered throughout the Unicode table. This is the Greek
script:
[\u0370-\u0373\u0375-\u0377\u037A-\u037D\u0384\u0386\u0388-\u038A«
\u038C\u038E-\u03A1\u03A3-\u03E1\u03F0-\u03FF\u1D26-\u1D2A\u1D5D-\u1D61 <
\u1D66-\u1D6A\u1DBF\u1F00-\u1F15\u1F18-\u1F1D\u1F20-\u1F45\u1F48-\u1F4D
\u1F50-\u1F57\u1F59\u1F5B\u1F5D\u1F5F-\u1F7D\u1F80-\u1FB4\u1FB6-\u1FC4
\u1FC6-\u1FD3\u1FD6-\u1FDB\u1FDD-\u1FEF\u1FF2-\u1FF4\u1FF6-\u1FFE\u2126+
\U00010140-\U0001018A\U0001D200-\U0001D245]
We generated this regular expression using the UnicodeSet web application at http://
unicode.org/cldr/utility/list-unicodeset.jsp. We entered \p{Greek} as the input, ticked the
“Abbreviate” and “Escape” checkboxes, and clicked the “Show Set” button.

Only Python supports this syntax for Unicode code points as we explained earlier in
this recipe in the section “Unicode code point” on page 50. To make this regular ex-
pression work with other regex flavors, we need to make some changes.

60 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://unicode.org/cldr/utility/list-unicodeset.jsp
http://unicode.org/cldr/utility/list-unicodeset.jsp
http://www.it-ebooks.info/

The regex will work with many more flavors if we remove the code points beyond U
+FFFF from the character class:

Regex options: None

Regex flavors: Python
[\u0370-\u0373\u0375-\u0377\u037A-\u037D\u0384\u0386\u0388-\uo38A«
\u038C\u038E-\u03A1\u03A3-\u03E1\uo3Fo-\uo3FF\u1D26-\u1D2A\u1D5D-\u1D61«
\u1D66-\u1D6A\u1DBF\u1F00-\u1F15\u1F18-\u1F1D\u1F20-\u1F45\u1F48-\u1F4D«
\u1F50-\u1F57\u1F59\u1F5B\u1F5D\u1F5F-\u1F7D\u1F80-\u1FB4\u1FB6-\u1FC4«
\U1FC6-\u1FD3\u1FD6-\u1FDB\u1FDD-\u1FEF\u1FF2-\u1FF4\u1FF6-\u1FFE\u2126]

Regex options: None

Regex flavors: .NET, Java, JavaScript, Python, Ruby 1.9

Perl and PCRE use a different syntax for Unicode code points. In the original regex, we
need to replace \\uFFFF> with \\x{FFFF}> and <\U0010FFFF> with \\x{10FFFF}>. This regex
also works with Java 7.

[\x{0370}-\x{0373}\x{0375}-\x{0377}\x{037A}-\x{037D}\x{0384}\x{0386} «
\x{0388}-\x{038A}\x{038C}\x{038E}-\x{03A1}\x{03A3}-\x{03E1}«
\x{03F0}-\x{03FF}\x{1D26}-\x{1D2A}\x{1D5D}-\x{1D61}\x{1D66 } - \x{1D6A} <
\x{1DBF}\x{1F00}-\x{1F15}\x{1F18}-\x{1F1D}\x{1F20}-\x{1F45}
\x{1F48}-\x{1F4D}\x{1F50}-\x{1F57 }\x{1F59 }\x{1F5B}\x{1F5D}\x{1F5F}- ¢
\x{1F7D}\x{1F80}-\x{1FB4}\x{1FB6}-\x{1FC4}\x{1FC6}-\x{1FD3}\x{1FD6}- <
\x{1FDB}\x{1FDD}-\x{1FEF}\x{1FF2}-\x{1FF4}\x{1FF6}-\x{1FFE}\x{2126}«
\x{10140}-\x{10178}\x{10179}-\x{10189}\x{1018A}\x{1D200}-\x{1D245}]

Regex options: None

Regex flavors: Java 7, PCRE, Perl

See Also

http://'www.unicode.org is the official website of the Unicode Consortium, where you
can download all the official Unicode documents, character tables, etc.

Unicode is a vast topic, on which entire books have been written. One such book is
Unicode Explained by Jukka K. Korpela (O’Reilly).

We can’t explain everything you should know about Unicode code points, categories,
blocks, and scripts in just one section. We haven’t even tried to explain why you should
care—you should. The comfortable simplicity of the extended ASCII table is a lonely
place in today’s globalized world.

“Limit input to alphanumeric characters in any language” on page 277 in Recipe 4.8
and “Limit the number of words” on page 281 in Recipe 4.9 solve some real-world
problems using Unicode categories.

2.7 Unicode Code Points, Categories, Blocks, and Scripts | 61

www.it-ebooks.info

http://www.unicode.org
http://oreilly.com/catalog/9780596101213
http://www.it-ebooks.info/

2.8 Match One of Several Alternatives

Problem

Create a regular expression that when applied repeatedly to the text Mary, Jane, and
Sue went to Mary's house will match Mary, Jane, Sue, and then Mary again. Further
match attempts should fail.

Solution

Mary |Jane | Sue
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

The vertical bar, or pipe symbol, splits the regular expression into multiple alterna-
tives. (Mary|Jane|Sue> matches Mary, or Jane, or Sue with each match attempt. Only one
name matches each time, but a different name can match each time.

All regular expression flavors discussed in this book use a regex-directed engine. The
engine is simply the software that makes the regular expression work. Regex-directed?
means that all possible permutations of the regular expression are attempted at each
character position in the subject text, before the regex is attempted at the next character
position.

When you apply Mary|Jane|Sue> to Mary, Jane, and Sue went to Mary's house, the
match Mary is immediately found at the start of the string.

When you apply the same regex to the remainder of the string—e.g., by clicking “Find
Next” in your text editor—the regex engine attempts to match «Mary» at the first comma
in the string. That fails. Then, it attempts to match <Jane> at the same position, which
also fails. Attempting to match <Sue> at the comma fails, too. Only then does the regex
engine advance to the next character in the string. Starting at the first space, all three
alternatives fail in the same way.

Starting at the J, the first alternative, (Mary>, fails to match. The second alternative,
Jane», is then attempted starting at the J. It matches Jane. The regex engine declares
victory.

Notice that Jane was found even though there is another occurrence of Mary in the
subject text, and that Mary> appears before «Jane> in the regex. At least in this case, the

2. The other kind of engine is a text-directed engine. The key difference is that a text-directed engine visits
each character in the subject text only once, whereas a regex-directed engine may visit each character
many times. Text-directed engines are much faster, but support regular expressions only in the
mathematical sense described at the beginning of Chapter 1. The fancy Perl-style regular expressions that
make this book so interesting can be implemented only with a regex-directed engine.

62 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

order of the alternatives in the regular expression does not matter. The regular expres-
sion finds the leftmost match. It scans the text from left to right, tries all alternatives in
the regular expression at each step, and stops at the first position in the text where any
of the alternatives produces a valid match.

If we do another search through the remainder of the string, Sue will be found. The
fourth search will find Mary once more. If you tell the regular engine to do a fifth search,
that will fail, because none of the three alternatives match the remaining ’s house string.

The order of the alternatives in the regex matters only when two of them can match at
the same position in the string. The regex <Jane|Janet> has two alternatives that match
at the same position in the text Her name is Janet. There are no word boundaries in
the regular expression. The fact that <Jane> matches the word Janet in Her name is
Janet only partially does not matter.

<Jane|Janet> matches Jane in Her name is Janet because a regex-directed regular ex-
pression engine is eager. In addition to scanning the subject text from left to right,
finding the leftmost match in the text, it also scans the alternatives in the regex from
left to right. The engine stops as soon as it finds an alternative that matches.

When <Jane|Janet> reaches the J in Her name is Janet, the first alternative, <Janej,
matches. The second alternative is not attempted. If we tell the engine to look for a
second match, the t is all that is left of the subject text. Neither alternative matches
there.

There are two ways to stop Jane from stealing Janet’s limelight. One way is to put the
longer alternative first: <Janet|Jane>. A more solid solution is to be explicit about what
we're trying to do: we’re looking for names, and names are complete words. Regular
expressions don’t deal with words, but they can deal with word boundaries.

So <\bJane\b|\bJanet\b> and <\bJanet\b|\bJane\b> will both match Janet in Her name
is Janet. Because of the word boundaries, only one alternative can match. The order
of the alternatives is again irrelevant.

Recipe 2.12 explains the best solution: \bJanet?\b>.

See Also

Recipe 2.9 explains how to group parts of a regex. You need to use a group if you want
to place several alternatives in the middle of a regex.

2.9 Group and Capture Parts of the Match

Problem

Improve the regular expression for matching Mary, Jane, or Sue by forcing the match to
be a whole word. Use grouping to achieve this with one pair of word boundaries for
the whole regex, instead of one pair for each alternative.

2.9 Group and Capture Parts of the Match | 63

www.it-ebooks.info

http://www.it-ebooks.info/

Create a regular expression that matches any date in yyyy-mm-dd format, and sepa-
rately captures the year, month, and day. The goal is to make it easy to work with these
separate values in the code that processes the match. You can assume all dates in the
subject text to be valid. The regular expression does not have to exclude things like
9999-99-99, as these won’t occur in the subject text at all.

Solution

\b(Mary|Jane|Sue)\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

\b(\d\d\d\d)-(\d\d)-(\d\d)\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

The alternation operator, explained in the previous section, has the lowest precedence
of all regex operators. If you try <\bMary | Jane | Sue\b>, the three alternatives are <\bMary>,
Jane», and «Sue\b>. This regex matches Jane in Her name is Janet.

If you want something in your regex to be excluded from the alternation, you have to
group the alternatives. Grouping is done with parentheses. They have the highest
precedence of all regex operators, just as in most programming languages. <\b(Mary |
Jane|Sue)\b> has three alternatives—«Mary>, Jane>, and (Sue>—between two word
boundaries. This regex does not match anything in Her name is Janet.

When the regex engine reaches the J in Janet in the subject text, the first word boundary
matches. The engine then enters the group. The first alternative in the group, Mary>,
fails. The second alternative, <Jane», succeeds. The engine exits the group. All that is
left is <\\b>. The word boundary fails to match between the e and t at the end of the
subject. The overall match attempt starting at J fails.

A pair of parentheses isn’t just a group; it’s a capturing group. For the Mary-Jane-Sue
regex, the capture isn’t very useful, because it’s simply the overall regex match. Cap-
tures become useful when they cover only part of the regular expression, as in

Ab(\d\d\d\d)- (\d\d)- (\d\d)\b>.

This regular expression matches a date in yyyy-mm-dd format. The regex <\b\d\d\d\d-
\d\d-\d\d\b> does exactly the same. Because this regular expression does not use any
alternation or repetition, the grouping function of the parentheses is not needed. But
the capture function is very handy.

The regex \b(\d\d\d\d)-(\d\d)-(\d\d)\b> has three capturing groups. Groups are
numbered by counting opening parentheses from left to right. «(\d\d\d\d)» is group
number 1. ¢(\d\d)> is number 2. The second «(\d\d)» is group number 3.

64 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

During the matching process, when the regular expression engine exits the group upon
reaching the closing parenthesis, it stores the part of the text matched by the capturing
group. When our regex matches 2008-05-24, 2008 is stored in the first capture, 05 in the
second capture, and 24 in the third capture.

There are three ways you can use the captured text. Recipe 2.10 in this chapter explains
how you can match the captured text again within the same regex match.
Recipe 2.21 shows how to insert the captured text into the replacement text when doing
a search-and-replace. Recipe 3.9 in the next chapter describes how your application
can use the parts of the regex match.

Variations

Noncapturing groups

In the regex <\b(Mary|Jane|Sue)\b>, we need the parentheses for grouping only. Instead
of using a capturing group, we could use a noncapturing group:

\b(?:Mary|Jane|Sue)\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The three characters «(?:> open the noncapturing group. The parenthesis <)> closes it.
The noncapturing group provides the same grouping functionality, but does not cap-
ture anything.

When counting opening parentheses of capturing groups to determine their numbers,
do not count the parenthesis of the noncapturing group. This is the main benefit of
noncapturing groups: you can add them to an existing regex without upsetting the
references to numbered capturing groups.

Another benefit of noncapturing groups is performance. If you’re not going to use a
backreference to a particular group (Recipe 2.10), reinsert it into the replacement text
(Recipe 2.21), or retrieve its match in source code (Recipe 3.9), a capturing group adds
unnecessary overhead that you can eliminate by using a noncapturing group. In prac-
tice, you’ll hardly notice the performance difference, unless you’re using the regex in a
tight loop and/or on lots of data.

Group with mode modifiers

In the “Case-insensitive matching” variation of Recipe 2.1, we explain that .NET,
Java, PCRE, Perl, and Ruby support local mode modifiers, using the mode toggles:
«<sensitive(?i)caseless(?-i)sensitive>. Although this syntax also involves parenthe-
ses, a toggle such as «(?1)> does not involve any grouping.

Instead of using toggles, you can specify mode modifiers in a noncapturing group:

\b(?i:Mary|Jane|Sue)\b
Regex options: None

2.9 Group and Capture Parts of the Match | 65

www.it-ebooks.info

http://www.it-ebooks.info/

Regex flavors: .NET, Java, PCRE, Perl, Ruby
sensitive(?i:caseless)sensitive

Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Ruby

Adding mode modifiers to a noncapturing group sets that mode for the part of the
regular expression inside the group. The previous settings are restored at the closing
parenthesis. Since case sensitivity is the default, only the part of the regex inside:

(?i:)
1S case insensitive.

You can combine multiple modifiers. <(?ism: -)>. Use a hyphen to turn off modifiers:
«(?-ism:--)> turns off the three options. «(?i-sm)> turns on case insensitivity (i), and
turns off both “dot matches line breaks” (s) and “” and $ match at line breaks” (m).
These options are explained in Recipes 2.4 and 2.5.

See Also

Recipe 2.10 explains how to make a regex match the same text that was matched by a
capturing group.

Recipe 2.11 explains named capturing groups. Naming the groups in your regex makes
the regex easier to read and maintain.

Recipe 2.21 explains how to make the replacement text reinsert text matched by a
capturing group when doing a search-and-replace.

Recipe 3.9 explains how to retrieve the text matched by a capturing group in procedural
code.

Recipe 2.15 explains how to make sure the regex engine doesn’t needlessly try different
ways of matching a group.

2.10 Match Previously Matched Text Again

Problem

Create a regular expression that matches “magical” dates in yyyy-mm-dd format. A
date is magical if the year minus the century, the month, and the day of the month are
all the same numbers. For example, 2008-08-08 is a magical date. You can assume all
dates in the subject text to be valid. The regular expression does not have to exclude
things like 9999-99-99, as these won’t occur in the subject text. You only need to find
the magical dates.

Solution
\b\d\d(\d\d)-\1-\1\b

66 | Chapter2: Basic Regular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

To match previously matched text later in a regex, we first have to capture the previous
text. We do that with a capturing group, as shown in Recipe 2.9. After that, we can
match the same text anywhere in the regex using a backreference. You can reference
the first nine capturing groups with a backslash followed by a single digit one through
nine. For groups 10 through 99, use (\10> to <\\99.

Do not use <\\oD>. That is either an octal escape or an error. We don’t

% use octal escapes in this book at all, because the <\xFF> hexadecimal

escapes are much easier to understand.

When the regular expression <\b\d\d(\d\d)-\1-\1\b> encounters 2008-08-08, the first
«\d\d> matches 20. The regex engine then enters the capturing group, noting the position
reached in the subject text.

The (\d\d> inside the capturing group matches 08, and the engine reaches the group’s
closing parenthesis. At this point, the partial match 08 is stored in capturing group 1.

The next token is the hyphen, which matches literally. Then comes the backreference.
The regex engine checks the contents of the first capturing group: 08. The engine tries
to match this text literally. If the regular expression is case-insensitive, the captured
text is matched in this way. Here, the backreference succeeds. The next hyphen and
backreference also succeed. Finally, the word boundary matches at the end of the sub-
ject text, and an overall match is found: 2008-08-08. The capturing group still holds 08.

If a capturing group is repeated, either by a quantifier (Recipe 2.12) or by backtracking
(Recipe 2.13), the stored match is overwritten each time the capturing group matches
something. A backreference to the group matches only the text that was last captured
by the group.

If the same regex encounters 2008-05-24 2007-07-07, the first time the group captures
something is when \b\d\d(\d\d)> matches 2008, storing 08 for the first (and only) cap-
turing group. Next, the hyphen matches itself. The backreference, which tries to match
<08, fails against 05.

Since there are no other alternatives in the regular expression, the engine gives up the
match attempt. This involves clearing all the capturing groups. When the engine tries
again, starting at the first 0 in the subject, <\1> holds no text at all.

Still processing 2008-05-24 2007-07-07, the next time the group captures something is
when <\b\d\d(\d\d)>» matches 2007, storing 07. Next, the hyphen matches itself. Now
the backreference tries to match «07>. This succeeds, as do the next hyphen, backre-
ference, and word boundary. 2007-07-07 has been found.

2.10 Match Previously Matched Text Again | 67

www.it-ebooks.info

http://www.it-ebooks.info/

Because the regex engine proceeds from start to end, you should put the capturing
parentheses before the backreference. The regular expressions «<\b\d\d\1- (\d\d)-\1
and \b\d\d\1-\1-(\d\d)\b> could never match anything. Since the backreference is
encountered before the capturing group, it has not captured anything yet. Unless you’re
using JavaScript, a backreference always fails if it points to a group that hasn’t already
participated in the match attempt.

A group that hasn’t participated is not the same as a group that has captured a zero-
length match. A backreference to a group with a zero-length capture always succeeds.
When «(*)\1> matches at the start of the string, the first capturing group captures the
caret’s zero-length match, causing <\1> to succeed. In practice, this can happen when
the contents of the capturing group are all optional.

N

JavaScript is the only flavor we know that goes against decades of back-
reference tradition in regular expressions. In JavaScript, or at least in
%l implementations that follow the JavaScript standard, a backreference
" to a group that hasn’t participated always succeeds, just like a backre-
ference to a group that captured a zero-length match. So, in JavaScript,
A\b\d\d\1-\1-(\d\d)\b> can match 12--34.

See Also
Recipe 2.9 explains the capturing groups that backreferences refer to.

Recipe 2.11 explains named capturing groups and named backreferences. Naming the
groups and backreferences in your regex makes the regex easier to read and maintain.

Recipe 2.21 explains how to make the replacement text reinsert text matched by a
capturing group when doing a search-and-replace.

Recipe 3.9 explains how to retrieve the text matched by a capturing group in procedural
code.

Recipes 5.8, 5.9, and 7.11 show how you can solve some real-world problems using
backreferences.

2.11 Capture and Name Parts of the Match

Problem

Create a regular expression that matches any date in yyyy-mm-dd format and separately
captures the year, month, and day. The goal is to make it easy to work with these
separate values in the code that processes the match. Contribute to this goal by as-
signing the descriptive names “year,” “month,” and “day” to the captured text.

68 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

Create another regular expression that matches “magical” dates in yyyy-mm-dd format.
A date is magical if the year minus the century, the month, and the day of the month
are all the same numbers. For example, 2008-08-08 is a magical date. Capture the
magical number (08 in the example), and label it “magic.”

You can assume all dates in the subject text to be valid. The regular expressions don’t
have to exclude things like 9999-99-99, because these won’t occur in the subject text.

Solution

Named capture

\b(?<year>\d\d\d\d) - (?<month>\d\d)- (?<day>\d\d)\b

Regex options: None

Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9
\b(?'year '\d\d\d\d)-(? 'month'\d\d)-(?"'day'\d\d)\b

Regex options: None

Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9
\b(?P<year>\d\d\d\d)- (?P<month>\d\d)- (?P<day>\d\d)\b

Regex options: None

Regex flavors: PCRE 4 and later, Perl 5.10, Python

Named backreferences

\b\d\d(?<magic>\d\d)-\k<magic>-\k<magic>\b
Regex options: None
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

\b\d\d(?'magic'\d\d)-\k'magic'-\k"'magic'\b
Regex options: None
Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9
\b\d\d(?P<magic>\d\d)-(?P=magic)-(?P=magic)\b
Regex options: None
Regex flavors: PCRE 4 and later, Perl 5.10, Python

Discussion

Named capture

Recipes 2.9 and 2.10 illustrate capturing groups and backreferences. To be more precise:
these recipes use numbered capturing groups and numbered backreferences. Each
group automatically gets a number, which you use for the backreference.

Modern regex flavors support named capturing groups in addition to numbered groups.
The only difference between named and numbered groups is your ability to assign a
descriptive name, instead of being stuck with automatic numbers. Named groups make

2.11 Capture and Name Parts of the Match | 69

www.it-ebooks.info

http://www.it-ebooks.info/

your regular expression more readable and easier to maintain. Inserting a capturing
group into an existing regex can change the numbers assigned to all the capturing
groups. Names that you assign remain the same.

Python was the first regular expression flavor to support named capture. It uses the
syntax <(?P<name>regex)>. The name must consist of word characters matched by (\w>.
<(?P<name>> is the group’s opening bracket, and <) is the closing bracket.

The designers of the .NET Regex class came up with their own syntax for named capture,
using two interchangeable variants. «(?<name>regex)» mimics Python’s syntax, minus
the P. The name must consist of word characters matched by (\w>. <(?<name>> is the
group’s opening bracket, and «)» is the closing bracket.

The angle brackets in the named capture syntax are annoying when you’re coding in
XML, or writing this book in DocBook XML. That’s the reason for .NET’s alternate
named capture syntax: <(?'name'regex)>. The angle brackets are replaced with single
quotes. Choose whichever syntax is easier for you to type. Their functionality is
identical.

Perhaps due to .NET’s popularity over Python, the .NET syntax seems to be the one
that other regex library developers prefer to copy. Perl 5.10 and later have it, and so
does the Oniguruma engine in Ruby 1.9. Perl 5.10 and Ruby 1.9 support both the syntax
using angle brackets and single quotes. Java 7 also copied the .NET syntax, but only
the variant using angle brackets. Standard JavaScript does not support named capture.
XRegExp adds support for named capture using the .NET syntax, but only the variant
with angle brackets.

PCRE copied Python’s syntax long ago, at a time when Perl did not support named
capture at all. PCRE 7, the version that adds the new features in Perl 5.10, supports
both the .NET syntax and the Python syntax. Perhaps as a testament to the success of
PCRE, in a reverse compatibility move, Perl 5.10 also supports the Python syntax. In
PCRE and Perl 5.10, the functionality of the .NET syntax and the Python syntax for
named capture is identical.

Choose the syntax that is most useful to you. If you’re coding in PHP and you want
your code to work with older versions of PHP that incorporate older versions of PCRE,
use the Python syntax. If you don’t need compatibility with older versions and you also
work with .NET or Ruby, the .NET syntax makes it easier to copy and paste between
all these languages. If you’re unsure, use the Python syntax for PHP/PCRE. People
recompiling your code with an older version of PCRE are going to be unhappy if the
regexes in your code suddenly stop working. When copying a regex to .NET or Ruby,
deleting a few Ps is easy enough.

Documentation for PCRE 7 and Perl 5.10 barely mention the Python syntax, but it is
by no means deprecated. For PCRE and PHP, we actually recommend it.

70 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

Named backreferences

With named capture comes named backreferences. Just as named capturing groups are
functionally identical to numbered capturing groups, named backreferences are func-
tionally identical to numbered backreferences. They’re just easier to read and maintain.

Python uses the syntax <(?P=name)> to create a backreference to the group name. Al-
though this syntax uses parentheses, the backreference is not a group. You cannot put
anything between the name and the closing parenthesis. A backreference «(?P=name)>
is a singular regex token, just like <\1>. PCRE and Perl 5.10 also support the Python
syntax for named backreferences.

.NET uses the syntax <\k<name>> and <\k'name">. The two variants are identical in func-
tionality, and you can freely mix them. A named group created with the bracket syntax
can be referenced with the quote syntax, and vice versa. Perl 5.10, PCRE 7, and Ruby
1.9 also support the .NET syntax for named backreferences. Java 7 and XRegExp sup-
port only the variant using angle brackets.

We strongly recommend you don’t mix named and numbered groups in the same regex.
Different flavors follow different rules for numbering unnamed groups that appear
between named groups. Perl 5.10, Ruby 1.9, Java 7, and XRegExp copied .NET’s syn-
tax, but they do not follow .NET’s way of numbering named capturing groups or of
mixing numbered capturing groups with named groups. Instead of trying to explain
the differences, we simply recommend not mixing named and numbered groups. Avoid
the confusion and either give all unnamed groups a name or make them noncapturing.

Groups with the same name

Perl 5.10, Ruby 1.9, and .NET allow multiple named capturing groups to share the
same name. We take advantage of this in the solutions for recipes 4.5, 8.7, and 8.19.
When a regular expression uses alternation to find different variations of certain text,
using capturing groups with the same name makes it easy to extract parts from the
match, regardless of which alternative actually matched the text. The section “Pure
regular expression” on page 262 in Recipe 4.5 uses alternation to separately match
dates in months of different lengths. Each alternative matches the day and the month.
By using the same group names “day” and “month” in all the alternatives, we only need
to query two capturing groups to retrieve the day and the month after the regular ex-
pression finds a match.

All the other flavors in this book that support named capture treat multiple groups with
the same name as an error.

2.11 Capture and Name Parts of the Match | 71

www.it-ebooks.info

http://www.it-ebooks.info/

’—_ Using multiple capturing groups with the same name only works relia-

“m bly when only one of the groups participates in the match. That is the

case in all the recipes in this book that use capturing groups with the

same name. The groups are in separate alternatives, and the alternatives

are not inside a group that is repeated. Perl 5.10, Ruby 1.9, and .NET

do allow two groups with the same name to participate in the match.

But then the behavior of backreferences and the text retained for the

group after the match will differ significantly between these flavors. It

is confusing enough for us to recommend to use groups with the same

name only when they’re in separate alternatives in the regular
expression.

See Also

Recipe 2.9 on numbered capturing groups has more fundamental information on how
grouping works in regular expressions.

Recipe 2.10 explains how to make a regex match the same text that was matched by a
named capturing group.

Recipe 2.11 explains named capturing groups. Naming the groups in your regex makes
the regex easier to read and maintain.

Recipe 2.21 explains how to make the replacement text reinsert text matched by a
capturing group when doing a search-and-replace.

Recipe 3.9 explains how to retrieve the text matched by a capturing group in procedural
code.

Recipe 2.15 explains how to make sure the regex engine doesn’t needlessly try different
ways of matching a group.

Many of the recipes in the later chapters use named capture to make it easier to retrieve
parts of the text that was matched. Recipes 4.5, 8.7, and Recipe 8.19 show some of the
more interesting solutions.

2.12 Repeat Part of the Regex a Certain Number of Times

Problem
Create regular expressions that match the following kinds of numbers:

* A googol (a decimal number with 100 digits).
* A 32-bit hexadecimal number.
* A 32-bit hexadecimal number with an optional h suffix.

* Afloating-point number with an optional integer part, a mandatory fractional part,
and an optional exponent. Each part allows any number of digits.

72 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

Solution

Googol
\b\d{100}\b

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Hexadecimal number

\b[a-f0-9]{1,8}\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Hexadecimal number with optional suffix

\b[a-f0-9]{1,8}h?\b
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Floating-point number
\d*\.\d+(e\d+)?

Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

Fixed repetition

The quantifier <{n}>, where n is a nonnegative integer, repeats the preceding regex token
n number of times. The <\\d{100}> in <\b\d{100}\b> matches a string of 100 digits. You
could achieve the same by typing <\d> 100 times.

«{1}> repeats the preceding token once, as it would without any quantifier. <ab{1}c> is
the same regex as <abc>.

«{0}> repeats the preceding token zero times, essentially deleting it from the regular
expression. «ab{0}c> is the same regex as <ac.

Variable repetition

For variable repetition, we use the quantifier «{n,m}>, where n is a nonnegative integer
and m is greater than n. \\b[a-f0-9]{1,8}\b> matches a hexadecimal number with one
to eight digits. With variable repetition, the order in which the alternatives are attemp-
ted comes into play. Recipe 2.13 explains that in detail.

2.12 Repeat Part of the Regex a Certain Number of Times | 73

www.it-ebooks.info

http://www.it-ebooks.info/

If n and m are equal, we have fixed repetition. <\b\d{100,100}\b> is the same regex as
A\b\d{100}\b>.

Infinite repetition

The quantifier «{n, }>, where n is a nonnegative integer, allows for infinite repetition.
Essentially, infinite repetition is variable repetition without an upper limit.

A\d{1, b> matches one or more digits, and <\d+> does the same. A plus after a regex token
that’s not a quantifier means “one or more.” Recipe 2.13 shows the meaning of a plus
after a quantifier.

A\d{o0, }> matches zero or more digits, and <\d*» does the same. The asterisk always
means “zero or more.” In addition to allowing infinite repetition, <{0, }> and the asterisk
also make the preceding token optional.

Making something optional

If we use variable repetition with n set to zero, we’re effectively making the token that
precedes the quantifier optional. <h{0,1}> matches the <h> once or not at all. If there is
no h, <h{0,1}> results in a zero-length match. If you use <h{0,1}> as a regular expression
all by itself, it will find a zero-length match before each character in the subject text
that is not an h. Each h will result in a match of one character (the h).

<h?> does the same as <h{0,1}>. A question mark after a valid and complete regex token
that is not a quantifier means “zero or once.” The next recipe shows the meaning of a
question mark after a quantifier.

N

o A question mark, or any other quantifier, after an opening parenthesis
is a syntax error. Perl and the flavors that copy it use this to add “Perl
extensions” to the regex syntax. Preceding recipes show noncapturing
groups and named capturing groups, which all use a question mark after
an opening parenthesis as part of their syntax. These question marks
are not quantifiers at all; they’re simply part of the syntax for noncap-
turing groups and named capturing groups. Following recipes will show
more styles of groups using the «(?> syntax.

oy

Repeating groups
If you place a quantifier after the closing parenthesis of a group, the whole group is

repeated. «(?:abc){3}> is the same as <abcabcabc>.

Quantifiers can be nested. <(e\d+)?> matches an e followed by one or more digits, or a
zero-length match. In our floating-point regular expression, this is the optional
exponent.

Capturing groups can be repeated. As explained in Recipe 2.9, the group’s match is
captured each time the engine exits the group, overwriting any text previously matched

74 | Chapter2: Basic Regular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

by the group. «(\d\d){1,3}> matches a string of two, four, or six digits. The engine exits
the group three times. When this regex matches 123456, the capturing group will hold

6, because 56 was stored by the last iteration of the group. The other two matches by
the group, 12 and 34, cannot be retrieved.

<«(\d\d){3}> captures the same text as \d\d\d\d(\d\d)>. If you want the capturing group
to capture all two, four, or six digits rather than just the last two, you have to place the
capturing group around the quantifier instead of repeating the capturing group: «((?:
\d\d){1,3})>. Here we used a noncapturing group to take over the grouping function
from the capturing group. We also could have used two capturing groups: «((\d\d)
{1,3})>. When this last regex matches 123456, <\1> holds 123456 and <\2> holds 56.

NET’s regular expression engine is the only one that allows you to retrieve all the
iterations of a repeated capturing group. If you directly query the group’s Value prop-
erty, which returns a string, you’ll get 56, as with every other regular expression engine.
Backreferences in the regular expression and replacement text also substitute 56, but if
you use the group’s CaptureCollection, you’ll get a stack with 56, 34, and 12.

See Also
Recipe 2.9 explains how to group part of a regex, so that part can be repeated as a whole.

Recipe 2.13 explains how to choose between minimal repetition and maximal
repetition.

Recipe 2.14 explains how to make sure the regex engine doesn’t needlessly try different
amounts of repetition.

2.13 Choose Minimal or Maximal Repetition

Problem

Match a pair of <p> and </p> XHTML tags and the text between them. The text between
the tags can include other XHTML tags.

Solution

<p>.*2¢</p>
Regex options: Dot matches line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

All the quantifiers discussed in Recipe 2.12 are greedy, meaning they try to repeat as
many times as possible, giving back only when required to allow the remainder of the
regular expression to match.

2.13 Choose Minimal or Maximal Repetition | 75

www.it-ebooks.info

http://www.it-ebooks.info/

This can make it hard to pair tags in XHTML (which is a version of XML and therefore
requires every opening tag to be matched by a closing tag). Consider the following
simple excerpt of XHTML:

<p>

The very first task is to find the beginning of a paragraph.

</p>

<p>

Then you have to find the end of the paragraph

</p>

There are two opening <p> tags and two closing </p> tags in the excerpt. You want to
match the first <p> with the first </p>, because they mark a single paragraph. Note that
this paragraph contains a nested tag, so the regex can’t simply stop when it en-
counters a < character.

Take a look at one incorrect solution for the problem in this recipe:
<p>.¥</p>
Regex options: Dot matches line breaks
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The only difference is that this incorrect solution lacks the extra question mark after
the asterisk. The incorrect solution uses the same greedy asterisk explained in
Recipe 2.12.

After matching the first <p> tag in the subject, the engine reaches <.*>. The dot matches
any character, including line breaks. The asterisk repeats it zero or more times. The
asterisk is greedy, and so <.* matches everything all the way to the end of the subject
text. Let me say that again: <.*) eats up your whole XHTML file, starting with the first
paragraph.

When the <.* has its belly full, the engine attempts to match the «> at the end of the
subject text. That fails. But it’s not the end of the story: the regex engine backtracks.

The asterisk prefers to grab as much text as possible, but it’s also perfectly satisfied to
match nothing at all (zero repetitions). With each repetition of a quantifier beyond the
quantifier’s minimum, the regular expression stores a backtracking position. Those are
positions the engine can go back to, in case the part of the regex following the quantifier
fails.

When <« fails, the engine backtracks by making the ¢.*> give up one character of its
match. Then « is attempted again, at the last character in the file. If it fails again, the
engine backtracks once more, attempting << at the second-to-last character in the file.
This process continues until <> succeeds. If <<> never succeeds, the <.*> eventually runs
out of backtracking positions and the overall match attempt fails.

If <> does match at some point during all that backtracking, </> is attempted. If </> fails,
the engine backtracks again. This repeats until «</p>> can be matched entirely.

76 | Chapter2: Basic Regular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

So what’s the problem? Because the asterisk is greedy, the incorrect regular expression
matches everything from the first <p> in the XHTML file to the last </p>. But to correctly
match an XHTML paragraph, we need to match the first <p> with the first </p> that
follows it.

That’s where lazy quantifiers come in. You can make any quantifier lazy by placing a
question mark after it: <*2>, <+2>, @, and «{7,42}?> are all lazy quantifiers.

Lazy quantifiers backtrack too, but the other way around. A lazy quantifier repeats as
few times as it has to, stores one backtracking position, and allows the regex to con-
tinue. If the remainder of the regex fails and the engine backtracks, the lazy quantifier
repeats once more. If the regex keeps backtracking, the quantifier will expand until its
maximum number of repetitions, or until the regex token it repeats fails to match.

«p>.*?2</p> uses a lazy quantifier to correctly match an XHTML paragraph. When
«p> matches, the «.*?), lazy as it is, initially does nothing but procrastinate. If <</p>>
immediately occurs after <p>, an empty paragraph is matched. If not, the engine back-
tracks to <.*?>, which matches one character. If «</p>> still fails, <.*?> matches the next
character. This continues until either «</p>> succeeds or <.*? fails to expand. Since the
dot matches everything, failure won’t occur until the <.*?> has matched everything up
to the end of the XHTML file.

The quantifiers <¢*» and ¢*?> allow all the same regular expression matches. The only
difference is the order in which the possible matches are tried. The greedy quantifier
will find the longest possible match. The lazy quantifier will find the shortest possible
match.

If possible, the best solution is to make sure there is only one possible match. The
regular expressions for matching numbers in Recipe 2.12 will still match the same
numbers if you make all their quantifiers lazy. The reason is that the parts of those
regular expressions that have quantifiers and the parts that follow them are mutually
exclusive. \d> matches a digit, and <\b> matches after <\d> only if the next character is
not a digit (or letter).

It may help to understand the operation of greedy and lazy repetition by comparing
how \d+\b> and <\d+?\b> act on a couple of different subject texts. The greedy and lazy
versions produce the same results, but test the subject text in a different order.

If we use \\d+\b> on 1234, \d+> will match all the digits. <\\b> then matches, and an
overall match is found. If we use (\d+?\b>, \\d+?> first matches only 1. <\\b> fails between
1 and 2. \d+?> expands to 12, and <\b> still fails. This continues until <\d+?> matches
1234, and <\b> succeeds.

If our subject text is 1234X, the first regex, <\d+\b>, still has <\d+> match 1234. But then
Ab> fails. <\d+» backtracks to 123. <\b» still fails. This continues until <\d+> has back-
tracked to its minimum 1, and <\b» still fails. Then the whole match attempt fails.

If we use \d+?\b> on 1234X, <\d+?> first matches only 1. <\\b> fails between 1 and 2.
A\d+?> expands to 12. \\b» still fails. This continues until <\d+?> matches 1234, and <\b>

2.13 Choose Minimal or Maximal Repetition | 77

www.it-ebooks.info

http://www.it-ebooks.info/

still fails. The regex engine attempts to expand <\d+?> once more, but \d> does not
match X. The overall match attempt fails.

If we put \\d+> between word boundaries, it must match all the digits in the subject
text, or it fails. Making the quantifier lazy won’t affect the final regex match or its
eventual failure. In fact, <\b\d+\b> would be better off without any backtracking at all.
The next recipe explains how you can use a possessive quantifier <\b\d++\b> to achieve
that, at least with some flavors.

See Also

Recipe 2.8 describes how the regex engine attempts different alternatives when you use
alternation. That is also a form of backtracking.

Recipe 2.12 shows the different alternation operators supported by regular expressions.
Recipe 2.9 explains how to group part of a regex, so that part can be repeated as a whole.

Recipe 2.14 explains how to make sure the regex engine doesn’t needlessly try different
amounts of repetition.

Recipe 2.15 explains how to make sure the regex engine doesn’t needlessly try different
ways of matching a group.

2.14 Eliminate Needless Backtracking

Problem

The previous recipe explains the difference between greedy and lazy quantifiers, and
how they backtrack. In some situations, this backtracking is unnecessary.

Ab\d+\b> uses a greedy quantifier, and <\b\d+?\b> uses a lazy quantifier. They both
match the same thing: an integer. Given the same subject text, both will find the exact
same matches. Any backtracking that is done is unnecessary. Rewrite this regular ex-
pression to explicitly eliminate all backtracking, making the regular expression more
efficient.

Solution

\b\d++\b
Regex options: None
Regex flavors: Java, PCRE, Perl 5.10, Ruby 1.9

The easiest solution is to use a possessive quantifier. But it is supported only in a few
recent regex flavors.
\b(?>\d+)\b
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Ruby

78 | Chapter2: Basic Regular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

An atomic group provides exactly the same functionality, using a slightly less readable
syntax. Support for atomic grouping is more widespread than support for possessive
quantifiers.

JavaScript and Python do not support possessive quantifiers or atomic grouping. There
is no way to eliminate needless backtracking with these two regex flavors.

Discussion

A possessive quantifier is similar to a greedy quantifier: it tries to repeat as many times
as possible. The difference is that a possessive quantifier will never give back, not even
when giving back is the only way that the remainder of the regular expression could
match. Possessive quantifiers do not keep backtracking positions.

You can make any quantifier possessive by placing a plus sign after it. For example,
Gy, 0, (20, and (7,42} are all possessive quantifiers.

Possessive quantifiers are supported by Java 4 and later, the first Java release to include
the java.util.regex package. All versions of PCRE discussed in this book (version 4
to 7) support possessive quantifiers. Perl supports them starting with Perl 5.10. Classic
Ruby regular expressions do not support possessive quantifiers, but the Oniguruma
engine, which is the default in Ruby 1.9, does support them.

Wrapping a greedy quantifier inside an atomic group has the exact same effect as using
a possessive quantifier. When the regex engine exits the atomic group, all backtracking
positions remembered by quantifiers and alternation inside the group are thrown away.
The syntax is <(?>"**)>, where <> is any regular expression. An atomic group is essen-
tially a noncapturing group, with the extra job of refusing to backtrack. The question
mark is not a quantifier; the opening bracket simply consists of the three characters

(.

When you apply the regex <\b\d++\b> (possessive) to 123abc 456, <\b> matches at the
start of the subject, and <\d++ matches 123. So far, this is no different from what
Ab\d+\b> (greedy) would do. But then the second «\b> fails to match between 3 and a.

The possessive quantifier did not store any backtracking positions. Since there are no
other quantifiers or alternation in this regular expression, there are no further options
to try when the second word boundary fails. The regex engine immediately declares
failure for the match attempt starting at 1.

The regex engine does attempt the regex starting at the next character positions in the
string, and using a possessive quantifier does not change that. If the regex must match
the whole subject, use anchors, as discussed in Recipe 2.5. Eventually, the regex engine
will attempt the regex starting at the 4 and find the match 456.

The difference with the greedy quantifier is that when the second «\b» fails during the
first match attempt, the greedy quantifier will backtrack. The regex engine will then
(needlessly) test <\b> between 2 and 3, and between 1 and 2.

2.14 Eliminate Needless Backtracking | 79

www.it-ebooks.info

http://www.it-ebooks.info/

The matching process using atomic grouping is essentially the same. When you apply
the regex <\b(?>\d+)\b> (possessive) to 123abc 456, the word boundary matches at the
start of the subject. The regex engine enters the atomic group, and «\d+> matches 123.
Now the engine exits the atomic group. At this point, the backtracking positions re-
membered by (\d+> are thrown away. When the second \b> fails, the regex engine is
left without any further options, causing the match attempt to fail immediately. As with
the possessive quantifier, eventually 456 will be found.

We describe the possessive quantifier as failing to remember backtracking positions,
and the atomic group as throwing them away. This makes it easier to understand the
matching process, but don’t get hung up on the difference, as it may not even exist in
the regex flavor you’re working with. In many flavors, «x++> is merely syntactic sugar
for «(?>x+)», and both are implemented in exactly the same way. Whether the engine
never remembers backtracking positions or throws them away later is irrelevant for the
final outcome of the match attempt.

Where possessive quantifiers and atomic grouping differ is that a possessive quantifier
applies only to a single regular expression token, whereas an atomic group can wrap a
whole regular expression.

Aw++\d++> and «(?>\w+\d+)> are not the same at all. \w++\d++>, which is the same as
<«(2>\w+) (2>\d+)>, will not match abc123. \w++> matches abc123 entirely. Then, the regex
engine attempts \d++> at the end of the subject text. Since there are no further characters
that can be matched, \d+#+> fails. Without any remembered backtracking positions, the
match attempt fails.

«(>\w+\d+)> has two greedy quantifiers inside the same atomic group. Within the
atomic group, backtracking occurs normally. Backtracking positions are thrown away
only when the engine exits the whole group. When the subject is abc123, \w+> matches
abc123. The greedy quantifier does remember backtracking positions. When \d+> fails
to match, \w+> gives up one character. \\d+» then matches 3. Now, the engine exits the
atomic group, throwing away all backtracking positions remembered for \w+> and
A\d+. Since the end of the regex has been reached, this doesn’t really make any differ-
ence. An overall match is found.

If the end had not been reached, as in <(?>\w+\d+)\d+>, we would be in the same sit-
uation as with \w++\d++>. The second \d+> has nothing left to match at the end of the
subject. Since the backtracking positions were thrown away, the regex engine can only
declare failure.

Possessive quantifiers and atomic grouping don’t just optimize regular expressions.
They can alter the matches found by a regular expression by eliminating those that
would be reached through backtracking.

This recipe shows how to use possessive quantifiers and atomic grouping to make
minor optimizations, which may not even show any difference in benchmarks. The
next recipe will showcase how atomic grouping can make a dramatic difference.

80 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

See Also
Recipe 2.12 shows the different alternation operators supported by regular expressions.

Recipe 2.15 explains how to make sure the regex engine doesn’t needlessly try different
ways of matching a group.

2.15 Prevent Runaway Repetition

Problem

Use a single regular expression to match a complete HTML file, checking for properly
nested html, head, title, and body tags. The regular expression must fail efficiently on
HTML files that do not have the proper tags.

Solution

<html>(?>.*2<head>) (?>.*¥2<title>) (2>.%?</title>) ¢

(2>.%2</head>) (2>.*2<body[*>]*>) (2>.*2</body>) . *2</html>
Regex options: Case insensitive, dot matches line breaks
Regex flavors: .NET, Java, PCRE, Perl, Ruby

JavaScript and Python do not support atomic grouping. There is no way to eliminate
needless backtracking with these two regex flavors. When programming in JavaScript
or Python, you can solve this problem by doing a literal text search for each of the tags
one by one, searching for the next tag through the remainder of the subject text after
the one last found.

Discussion

The proper solution to this problem is more easily understood if we start from this naive
solution:

<html>.*?<head>.*?<title> . *?</title>«
.¥2</head>.*?<body[*>]*>.*?</body>.*?</html>

Regex options: Case insensitive, dot matches line breaks

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

When you test this regex on a proper HTML file, it works perfectly well. <.*?» skips
over anything, because we turn on “dot matches line breaks.” The lazy asterisk makes
sure the regex goes ahead only one character at a time, each time checking whether the
next tag can be matched. Recipes 2.4 and 2.13 explain all this.

But this regex gets you into trouble when it needs to deal with a subject text that does
not have all the HTML tags. The worst case occurs when </html> is missing.

2.15 Prevent Runaway Repetition | 81

www.it-ebooks.info

http://www.it-ebooks.info/

Imagine the regex engine has matched all the preceding tags and is now busy expanding
the last <.*?>. Since «</html>> can never match, the <.*?> expands all the way to the end
of the file. When it can no longer expand, it fails.

But that is not the end of the story. The other six <.*?> have all remembered a back-
tracking position that allows them to expand further. When the last <. *?> fails, the one
before expands, gradually matching </body>. That same text was previously matched
by the literal «</body>> in the regex. This <.*?> too will expand all the way to the end
of the file, as will all preceding lazy dots. Only when the first one reaches the end of
the file will the regex engine declare failure.

This regular expression has a worst-case complexity3 of O(n”), the length of the subject
text to the seventh power. There are seven lazy dots that can potentially expand all the
way to the end of the file. If the file is twice the size, the regex can need up to 128 times
as many steps to figure out it doesn’t match.

We call this catastrophic backtracking. So much backtracking occurs that the regex
either takes forever or crashes your application. Some regex implementations are clever
and will abort runaway match attempts early, but even then the regex will still kill your
application’s performance.

W

Catastrophic backtracking is an instance of a phenomenon known as a

combinatorial explosion, in which several orthogonal conditions inter-
- . . .

ok sect and all combinations have to be tried. You could also say that the

" regex is a Cartesian product of the various repetition operators.

The solution is to use atomic grouping to prevent needless backtracking. There is no
need for the sixth <.*?) to expand after «</body>> has matched. If «</html>> fails, ex-
panding the sixth lazy dot will not magically produce a closing html tag.

To make a quantified regular expression token stop when the following delimiter
matches, place both the quantified part of the regex and the delimiter together in an
atomic group: «(?>.*?</body>)>. Now the regex engine throws away all the matching
positions for <.*?</body> when «/body> is found. If «</html>> later fails, the regex
engine has forgotten about <.*?</body>>, and no further expansion will occur.

If we do the same for all the other <.*?> in the regex, none of them will expand further.
Although there are still seven lazy dots in the regex, they will never overlap. This reduces
the complexity of the regular expression to O(n), which is linear with respect to the
length of the subject text. A regular expression can never be more efficient than this.

3. Complexity of computer algorithms is usually described using the “big O notation.” The article at http:
/len.wikipedia.org/wiki/Time_complexity provides a good overview of common time complexities for
computer algorithms.

82 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://en.wikipedia.org/wiki/Time_complexity
http://en.wikipedia.org/wiki/Time_complexity
http://www.it-ebooks.info/

Variations

If you really want to see catastrophic backtracking at work, try <«(x+x+)+y> on
xxxxxxxxxx. If it fails quickly, add one x to the subject. Repeat this until the regex starts
to take very long to match or your application crashes. It won’t take many more x
characters, unless you’re using Perl.

Of the regex flavors discussed in this book, only Perl is able to detect that the regular
expression is too complex and then abort the match attempt without crashing.

The complexity of this regex is O(2"). When «y> fails to match, the regex engine will
try all possible permutations of repeating each «x+> and the group containing them. For
instance, one such permutation, far down the match attempt, is <x+» matching xxx, the
second «x+> matching x, and then the group being repeated three more times with each
«+> matching x. With 10 x characters, there are 1,024 such permutations. If we increase
the number to 32, we’re at over 4 billion permutations, which will surely cause any
regex engine to run out of memory, unless it has a safety switch that allows it to give
up and say that your regular expression is too complicated.

In this case, this nonsensical regular expression is easily rewritten as <xx+y>, which finds
exactly the same matches in linear time. In practice, the solution may not be so obvious
with more complicated regexes.

Essentially, you have to watch out when two or more parts of the regular expression
can match the same text. In these cases, you may need atomic grouping to make sure
the regex engine doesn’t try all possible ways of dividing the subject text between those
two parts of the regex. Always test your regex on (long) test subjects that contain text
that can be partially but not entirely matched by the regex.

See Also

Recipe 2.13 explains how to choose between minimal repetition and maximal
repetition.

Recipe 2.14 explains how to make sure the regex engine doesn’t needlessly try different
amounts of repetition.

The section “Unicode grapheme” on page 58 in Recipe 2.7 has another example of how
atomic grouping can prevent undesirable match results.

“SDL Regex Fuzzer” on page 21 describes SDL Regex Fuzzer, which is a tool that can
test (some) regular expressions for catastrophic backtracking.

2.15 Prevent Runaway Repetition | 83

www.it-ebooks.info

http://www.it-ebooks.info/

2.16 Test for a Match Without Adding It to the Overall Match

Problem

Find any word that occurs between a pair of HTML bold tags, without including the
tags in the regex match. For instance, if the subject is My cat is furry, the only
valid match should be cat.

Solution

(2<=)\w+(?=)
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

JavaScript and Ruby 1.8 support the lookahead «(?=)>, but not the lookbehind
«(2<=).

Discussion

Lookaround

The four kinds of lookaround groups supported by modern regex flavors have the spe-
cial property of giving up the text matched by the part of the regex inside the look-
around. Essentially, lookaround checks whether certain text can be matched without
actually matching it.

Lookaround that looks backward is called lookbehind. This is the only regular expres-
sion construct that will traverse the text from right to left instead of from left to right.
The syntax for positive lookbehind is «(2<="--)>. The four characters «(?<=)> form the
opening bracket. What you can put inside the lookbehind, here represented by ¢« -,
varies among regular expression flavors. But simple literal text, such as «(?<=)>,
always works.

Lookbehind checks to see whether the text inside the lookbehind occurs immediately
to the left of the position that the regular expression engine has reached. If you match
«(?<=)> against My cat is furry, the lookbehind will fail to match until the
regular expression starts the match attempt at the letter ¢ in the subject. The regex
engine then enters the lookbehind group, telling it to look to the left. «> matches to
the left of c. The engine exits the lookbehind at this point, and discards any text matched
by the lookbehind from the match attempt. In other words, the match-in-progress is
back at where it was when the engine entered the lookbehind. In this case, the match-
in-progress is the zero-length match before the c in the subject string. The lookbehind
only tests or asserts that «> can be matched; it does not actually match it. Lookaround
constructs are therefore called zero-length assertions.

After the lookbehind has matched, the shorthand character class (\w+> attempts to
match one or more word characters. It matches cat. The <\\w#+> is not inside any kind of

84 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

lookaround or group, and so it matches the text cat normally. We say that (\w+> matches
and consumes cat, whereas lookaround can match something but can never consume
anything.

Lookaround that looks forward, in the same direction that the regular expression nor-
mally traverses the text, is called lookahead. Lookahead is equally supported by all regex
flavors in this book. The syntax for positive lookahead is <(?="")>. The three characters
«(?=> form the opening bracket of the group. Everything you can use in a regular ex-
pression can be used inside lookahead, here represented by <.

When the \w+> in <(?<=)\w+(?=)> has matched cat in My cat is furry,
the regex engine enters the lookahead. The only special behavior for the lookahead at
this point is that the regex engine remembers which part of the text it has matched so
far, associating it with the lookahead. «> is then matched normally. Now the regex
engine exits the lookahead. The regex inside the lookahead matches, so the lookahead
itself matches. The regex engine discards the text matched by the lookahead, by re-
storing the match-in-progress it remembered when entering the lookahead. Our overall
match-in-progress is back at cat. Since this is also the end of our regular expression,
cat becomes the final match result.

Negative lookaround

«(21--+)>, with an exclamation point instead of an equals sign, is negative lookahead.
Negative lookahead works just like positive lookahead, except that whereas positive
lookahead matches when the regex inside the lookahead matches, negative lookahead
matches when the regex inside the lookahead fails to match.

The matching process is exactly the same. The engine saves the match-in-progress when
entering the negative lookahead, and attempts to match the regex inside the lookahead
normally. If the sub-regex matches, the lookahead fails, and the regex engine back-
tracks. If the sub-regex fails to match, the engine restores the match-in-process and
proceeds with the remainder of the regex.

Similarly, (?<!--*) is negative lookbehind. Negative lookbehind matches when none of
the alternatives inside the lookbehind can be found looking backward from the position
the regex has reached in the subject text.

Different levels of lookbehind

Lookahead is easy. All regex flavors discussed in this book allow you to put a complete
regular expression inside the lookahead. Everything you can use in a regular expression
can be used inside lookahead. You can even nest other lookahead and lookbehind
groups inside lookahead. Your brain might get into a twist, but the regex engine will
handle everything nicely.

Lookbehind is a different story. Regular expression software has always been designed
to search the text from left to right only. Searching backward is often implemented as

2.16 Test for a Match Without Adding It to the Overall Match | 85

www.it-ebooks.info

http://www.it-ebooks.info/

a bit of a hack: the regex engine determines how many characters you put inside the
lookbehind, jumps back that many characters, and then compares the text in the look-
behind with the text in the subject from left to right.

For this reason, the earliestimplementations allowed only fixed-length literal text inside
lookbehind. Perl and Python still require lookbehind to have a fixed length, but they
do allow fixed-length regex tokens such as character classes, and allow alternation as
long as all alternatives match the same number of characters.

PCRE and Ruby 1.9 take this one step further. They allow alternatives of different
lengths inside lookbehind, as long as the length of each alternative is constant. They
can handle something like «(?<=one | two | three | forty-two|gr[ae]y)>, but nothing more
complex than that.

Internally, PCRE and Ruby 1.9 expand this into six lookbehind tests. First, they jump
back three characters to test <one|two>, then four characters to test «gray|grey», then
five to test ¢three>, and finally nine to test ¢forty-two>.

Java takes lookbehind one step further. Java allows any finite-length regular expression
inside lookbehind. This means you can use anything except the infinite quantifiers <*,
<, and «{42, }> inside lookbehind. Internally, Java’s regex engine calculates the mini-
mum and maximum length of the text that could possibly be matched by the part of
the regex in the lookbehind. It then jumps back the minimum number of characters,
and applies the regex in the lookbehind from left to right. If this fails, the engine jumps
back one more character and tries again, until either the lookbehind matches or the
maximum number of characters has been tried.

If all this sounds rather inefficient, it is. Lookbehind is very convenient, but it won’t
break any speed records. Later, we present a solution for JavaScript and Ruby 1.8,
which don’t support lookbehind at all. This solution is actually far more efficient than
using lookbehind.

The regular expression engine in the .NET Framework is the only one in the world*
that can actually apply a full regular expression from right to left. .NET allows you to
use anything inside lookbehind, and it will actually apply the regular expression from
right to left. Both the regular expression inside the lookbehind and the subject text are
scanned from right to left.

Matching the same text twice

If you use lookbehind at the start of the regex or lookahead at the end of the regex, the
net effect is that you’re requiring something to appear before or after the regex match,
without including it in the match. If you use lookaround in the middle of your regular
expression, you can apply multiple tests to the same text.

4. RegexBuddy’s regex engine also allows a full regex inside lookbehind, but does not (yet) have a feature
similar to .NET’s RegexOptions.RightToLeft to reverse the whole regular expression.

86 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

In “Flavor-Specific Features” on page 36 (a subsection of Recipe 2.3), we showed how
to use character class subtraction to match a Thai digit. Only .NET and Java support
character class subtraction.

With lookahead, you can test both requirements on the same character:

(?=\p{Thai})\p{N}
Regex options: None
Regex flavors: PCRE, Perl, Ruby 1.9

This regex works only with the three flavors that support Unicode scripts, as we explain
in Recipe 2.7. But the principle of using lookahead to match the same character more
than once works with all flavors discussed in this book.

When the regular expression engine searches for «(?=\p{Thai})\p{N}>, it starts by en-
tering the lookahead at each position in the string where it begins a match attempt. If
the character at that position is not in the Thai script (i.e., \\p{Thai}> fails to match),
the lookahead fails. This causes the whole match attempt to fail, forcing the regex
engine to start over at the next character.

When the regex reaches a Thai character, <\p{Thai}> matches. Thus, the <«(?=
\p{Thai})> lookaround matches, too. As the engine exits the lookaround, it restores
the match-in-progress. In this case, that’s the zero-length match before the character
just found to be Thai. Next up is <\p{N}>. Because the lookahead discarded its match,
Ap{N}> is compared with the same character that \p{Thai}> already matched. If this
character has the Unicode property Number, <\p{N}> matches. Since <\p{N}> is not inside
a lookaround, it consumes the character, and we have found our Thai digit.

Lookaround is atomic

When the regular expression engine exits a lookaround group, it discards the text
matched by the lookaround. Because the text is discarded, any backtracking positions
remembered by alternation or quantifiers inside the lookaround are also discarded.
This effectively makes lookahead and lookbehind atomic. Recipe 2.14 explains atomic
groups in detail.

In most situations, the atomic nature of lookaround is irrelevant. A lookaround is
merely an assertion to check whether the regex inside the lookaround matches or fails.
How many different ways it can match is irrelevant, as it does not consume any part of
the subject text.

The atomic nature comes into play only when you use capturing groups inside look-
ahead (and lookbehind, if your regex flavor allows you to). While the lookahead does
not consume any text, the regex engine will remember which part of the text was
matched by any capturing groups inside the lookahead. If the lookahead is at the end
of the regex, you will indeed end up with capturing groups that match text not matched

2.16 Test for a Match Without Adding It to the Overall Match | 87

www.it-ebooks.info

http://www.it-ebooks.info/

by the regular expression itself. If the lookahead is in the middle of the regex, you can
end up with capturing groups that match overlapping parts of the subject text.

The only situation in which the atomic nature of lookaround can alter the overall regex
match is when you use a backreference outside the lookaround to a capturing group
created inside the lookaround. Consider this regular expression:

(2=(\d+))\w+\1
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

At first glance, you may think that this regex would match 123x12. \d+» would capture
12 into the first capturing group, then \w+> would match 3x, and finally <\1> would
match 12 again.

But that never happens. The regular expression enters the lookaround and the captur-
ing group. The greedy «\d+> matches 123. This match is stored into the first capturing
group. The engine then exits the lookahead, resetting the match-in-progress to the start
of the string, discarding the backtracking positions remembered by the greedy plus but
keeping the 123 stored in the first capturing group.

Now, the greedy «\w+> is attempted at the start of the string. It eats up 123x12. \1,
which references 123, fails at the end of the string. (\w+> backtracks one character.
A fails again. \w+> keeps backtracking until it has given up everything except the first
1 in the subject. \\1> also fails to match after the first 1.

The final 12 would match «\1» if the regex engine could return to the lookahead and
give up 123 in favor of 12, but the regex engine doesn’t do that.

The regex engine has no further backtracking positions to go to. \w+> backtracked all
the way, and the lookaround forced <\d+> to give up its backtracking positions. The
match attempt fails.

Alternative to Lookbehind

\K\w+(2=)
Regex options: Case insensitive
Regex flavors: PCRE 7.2, Perl 5.10

Perl 5.10, PCRE 7.2, and later versions, provide an alternative mechanism to lookbe-
hind using <\K>. When the regex engine encounters <\K> in the regular expression, it will
keep the text it has matched so far. The match attempt will continue as it would if the
regex did not include the (\K>. But the text matched prior to the \K> will not be included
in the overall match result. Text matched by capturing groups before the (\K> will still
be available to backreferences after the <\K>. Only the overall match result is affected
by <\K>.

The result is that \\K> can be used instead of positive lookbehind in many situations.
<before\Ktext> will match text but only when immediately preceded by before, just as

88 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

«(?<=before)text> does. The benefit of \\K> over positive lookbehind in Perl and PCRE
is that you can use the full regular expression syntax with <\K>, while lookbehind has
various restrictions, such as not allowing quantifiers.

The major difference between (\K> and lookbehind is that when you use <\K», the regex
is matched strictly from left to right. It does not look backwards in any way. Lookbehind
does look backward. This difference comes into play when the part of the regex after
the \\K> or after the lookbehind can match the same text as the part of the regex before
the \K> or inside the lookbehind.

The regex <(?<=a)a> finds two matches in the string aaa. The first match attempt at the
start of the string fails, because the regex engine cannot find an a while looking back.
The match attempt starting between the first and second a is successful. Looking back
the regex engine sees the first a in the string, which satisfies the lookbehind. The second
<@ in the regex then matches the second a in the string. The third match attempt starting
between the second and third a is also successful. Looking back the second a in the
string satisfies the lookbehind. The regex then matches the third a. The final match
attempt at the end of the string also fails. Looking back the third a in the string does
satisfy the lookbehind. But there are no characters left in the string for the second <a»
in the regex to match.

The regex <a\Ka> finds only one match in the string. The first match attempt at the start
of the string succeeds. The first <a> in the regex matches the first a in the string. \K>
excludes this part of the match from the result that will be returned, but does not change
the matching process. The second <a> in the regex then matches the second a in the
string, which is returned as the overall match. The second match attempt begins be-
tween the second and third a in the string. The first <a> in the regex matches the third
a in the string. \\K> excludes it from the overall result, but the regex engine continues
normally. But there are no characters left in the string for the second <a> in the regex to
match, so the match attempt fails.

Asyou can see, when using <\K>, the regex matching process works normally. The regex
a\Ka> will find the exact same matches as the capturing group in the regex <a(a)>. You
cannot use <\K> to match the same part of the string more than once. With lookbehind,
you can. You can use <(?<=\p{Thai})(?<=\p{Nd})a> to match an a that is preceded by a
single character that is both in the Thai script and is a digit. If you tried <\p{Thai}\K
\p{Nd}\Ka> you’d be matching a Thai character followed by a digit followed by an a,
but returning only the a as the match. Again, this is no different from matching all three
characters with \p{Thai}\p{Nd}(a)> and using only the part matched by the capturing

group.
Solution Without Lookbehind

All the preceding arcane explanations are of no use if you’re using Ruby 1.8 or Java-
Script, because you cannot use lookbehind at all. There’s no way to solve the problem
as stated with these regex flavors, but you can work around the need for lookbehind

2.16 Test for a Match Without Adding It to the Overall Match | 89

www.it-ebooks.info

http://www.it-ebooks.info/

by using capturing groups. This alternative solution also works with all the other regex
flavors:

() (\w#) (2=¢/b>)
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Instead of using lookbehind, we used a capturing group for the opening tag «>. We
also placed the part of the match we’re interested in, the (\w+>, into a capturing group.

When you apply this regular expression to My cat is furry, the overall regex
match will be cat. The first capturing group will hold , and the second, cat.

If the requirement is to match only cat (the word between the tags) because you
want to extract only that from the text, you can reach that goal by simply storing the
text matched by the second capturing group instead of the overall regex.

If the requirement is that you want to do a search-and-replace, replacing only the word
between the tags, simply use a backreference to the first capturing group to reinsert the
opening tag into the replacement text. In this case, you don’t really need the capturing
group, as the opening tag is always the same. But when it’s variable, the capturing group
reinserts exactly what was matched. Recipe 2.21 explains this in detail.

Finally, if you really want to simulate lookbehind, you can do so with two regular
expressions. First, search for your regex without the lookbehind. When it matches,
copy the part of the subject text before the match into a new string variable. Do the test
you did inside the lookbehind with a second regex, appending an end-of-string anchor
(<\2> or <$»). The anchor makes sure the match of the second regex ends at the end of
the string. Since you cut the string at the point where the first regex matched, that
effectively puts the second match immediately to the left of the first match.

In JavaScript, you could code this along these lines:

var mainregexp = /\w+(?=<\/b>)/;
var lookbehind = /$/;
if (match = mainregexp.exec("My cat is furry")) {
// Found a word before a closing tag
var potentialmatch = match[o0];
var leftContext = match.input.substring(0, match.index);
if (lookbehind.exec(leftContext)) {
// Lookbehind matched:
// potentialmatch occurs between a pair of tags
} else {
// Lookbehind failed: potentialmatch is no good

} else {
// Unable to find a word before a closing tag
}

90 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

See Also

Recipes 5.5, 5.6, and 7.10 solve some real-world problems using lookaround.

2.17 Match One of Two Alternatives Based on a Condition

Problem

Create a regular expression that matches a comma-delimited list of the words one,
two, and three. Each word can occur any number of times in the list, and the words
can occur in any order, but each word must appear at least once.

Solution
\b(?:(?:(one) | (two) | (three))(?:,|\b)){3,}(2(1)[(21))(2(2)1(21))(2(3) | (21))

Regex options: None
Regex flavors: .NET, PCRE, Perl, Python

Java, JavaScript, and Ruby do not support conditionals. When programming in these
languages (or any other language), you can use the regular expression without the con-
ditionals, and write some extra code to check if each of the three capturing groups
matched something.

\b(?:(?:(one) | (two)|(three))(?:,]|\b)){3,}
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Discussion

.NET, PCRE, Perl, and Python support conditionals using numbered capturing groups.
«(?(1)then|else)> is a conditional that checks whether the first capturing group has
already matched something. If it has, the regex engine attempts to match «them. If the
capturing group has not participated in the match attempt thus far, the <else> part is
attempted.

The parentheses, question mark, and vertical bar are all part of the syntax for the con-
ditional. They don’t have their usual meaning. You can use any kind of regular expres-
sion for the <them> and <else> parts. The only restriction is that if you want to use
alternation for one of the parts, you have to use a group to keep it together. Only one
vertical bar is permitted directly in the conditional.

If you want, you can omit either the <then> or <else> part. The empty regex always finds
a zero-length match. The solution for this recipe uses three conditionals that have an
empty <them part. If the capturing group participated, the conditional simply matches.

An empty negative lookahead, «(?!)», fills the <else> part. Since the empty regex always
matches, a negative lookahead containing the empty regex always fails. Thus, the con-

2.17 Match One of Two Alternatives Based on a Condition | 91

www.it-ebooks.info

http://www.it-ebooks.info/

ditional «(?(12)[(?!))> always fails when the first capturing group did not match
anything.

By placing each of the three required alternatives in their own capturing group, we can
use three conditionals at the end of the regex to test if all the capturing groups captured
something. If one of the words was not matched, the conditional referencing its cap-
turing group will evaluate the “else” part, which will cause the conditional to fail to
match because of our empty negative lookahead. Thus the regex will fail to match if
one of the words was not matched.

To allow the words to appear in any order and any number of times, we place the words
inside a group using alternation, and repeat this group with a quantifier. Since we have
three words, and we require each word to be matched at least once, we know the group
has to be repeated at least three times.

.NET, Python, and PCRE 6.7 allow you to specify the name of a capturing group in a
conditional. «(?(name)then|else)> checks whether the named capturing group name
participated in the match attempt thus far. Perl 5.10 and later also support named
conditionals. But Perl requires angle brackets or quotes around the name, as in «(?
(<name>)then|else)> or «(?('name')then|else)>. PCRE 7.0 and later also supports Perl’s
syntax for named conditional, while also supporting the syntax used by .NET and
Python.

To better understand how conditionals work, let’s examine the regular expression
«(a)?b(2(1)c|d)>. This is essentially a complicated way of writing <abc |bd>.

If the subject text starts with an a, this is captured in the first capturing group. If not,
the first capturing group does not participate in the match attempt at all. Itis important
that the question mark is outside the capturing group because this makes the whole
group optional. If there is no a, the group is repeated zero times, and never gets the
chance to capture anything at all. It can’t capture a zero-length string.

If you use <(a?)>, the group always participates in the match attempt. There’s no quan-
tifier after the group, so it is repeated exactly once. The group will either capture a or
capture nothing.

Regardless of whether <a> was matched, the next token is . The conditional is next.
If the capturing group participated in the match attempt, even if it captured the zero-
length string (not possible here), «c> will be attempted. If not, «d> will be attempted.

In English, <(a)?b(?(1)c|d)> either matches ab followed by ¢, or matches b followed by
d.

With .NET, PCRE, and Perl, but not with Python, conditionals can also use look-
around. «(?(?=if)then|else)> first tests <(?=if)> as a normal lookahead. Recipe 2.16
explains how this works. If the lookaround succeeds, the <then> part is attempted. If
not, the <else> part is attempted. Since lookaround is zero-width, the <thenm> and
else> regexes are attempted at the same position in the subject text where «<if> either
matched or failed.

92 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

You can use lookbehind instead of lookahead in the conditional. You can also use
negative lookaround, though we recommend against it, as it only confuses things by
reversing the meaning of “then” and “else.”

o A conditional using lookaround can be written without the conditional

.“,“ L s «(?=if)then| (?!if)else>. If the positive lookahead succeeds, the

©_of») <then> part is attempted. If the positive lookahead fails, the alternation

" kicks in. The negative lookahead then does the same test. The negative

lookahead succeeds when «if> fails, which is already guaranteed because

«(?=if)> failed. Thus, <else> is attempted. Placing the lookahead in a
conditional saves time, as the conditional attempts «if> only once.

See Also

A conditional is essentially the combination of a lookaround (Recipe 2.16) and alter-
nation (Recipe 2.8) inside a group (Recipe 2.9).

“Eliminate incorrect ISBN identifiers” on page 299 in Recipe 4.13 and “Using a con-
ditional” on page 349 in Recipe 5.7 show how you can solve some real-world problems
using conditionals.

2.18 Add Comments to a Regular Expression

Problem

Ad{4}-\d{2}-\d{2}> matches a date in yyyy-mm-dd format, without doing any valida-
tion of the numbers. Such a simple regular expression is appropriate when you know
your data does not contain any invalid dates. Add comments to this regular expression
to indicate what each part of the regular expression does.

Solution

\d{4} # Year
- # Separator
\d{2} # Month
- # Separator
\d{2} # Day
Regex options: Free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

2.18 Add Comments to a Regular Expression | 93

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion

Free-spacing mode

Regular expressions can quickly become complicated and difficult to understand. Just
as you should comment source code, you should comment all but the most trivial
regular expressions.

All regular expression flavors in this book, except JavaScript, offer an alternative regular
expression syntax that makes it very easy to clearly comment your regular expressions.
You can enable this syntax by turning on the free-spacing option. It has different names
in various programming languages.

In .NET, set the RegexOptions.IgnorePatternWhitespace option. In Java, pass the
Pattern.COMMENTS flag. Python expects re.VERBOSE. PHP, Perl, and Ruby use the /x flag.

Though standard JavaScript does not support free-spacing regular expressions, the
XRegExp library adds that option. Simply add 'x' to the flags passed as the second
parameter to the XRegExp() constructor.

Turning on free-spacing mode has two effects. It turns the hash symbol (#) into a
metacharacter, outside character classes. The hash starts a comment that runs until the
end of the line or the end of the regex (whichever comes first). The hash and everything
after it is simply ignored by the regular expression engine. To match a literal hash sign,
either place it inside a character class <[#]> or escape it \#>.

The other effect is that whitespace, which includes spaces, tabs, and line breaks, is
also ignored outside character classes. To match a literal space, either place it inside a
character class <[®]> or escape it <\®. If you’re concerned about readability, you could
use the hexadecimal escape <\x20> or the Unicode escape <\u0020> or <\x{0020}» instead.
To match a tab, use <\t>. For line breaks, use <\r\n> (Windows) or <\n> (Unix/Linux/
0OS X).

Free-spacing mode does not change anything inside character classes. A character class
is a single token. Any whitespace characters or hashes inside character classes are literal
characters that are added to the character class. You cannot break up character classes
to comment their parts.

Java has free-spacing character classes

Regular expressions wouldn’t live up to their reputation unless at least one flavor was
incompatible with the others. In this case, Java is the odd one out.

In Java, character classes are not parsed as single tokens. If you turn on free-spacing
mode, Java ignores whitespace in character classes, and hashes inside character classes
do start comments. This means you cannot use <[®]> and «[#]> to match these charac-
ters literally. Use <\u0020> and (\#> instead.

94 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

Variations

(?#vear)\d{4} (?#Separator)- (?#Month)\d{2}- (?#Day)\d{2}
Regex options: None
Regex flavors: .NET, XRegExp, PCRE, Perl, Python, Ruby

If, for some reason, you can’t or don’t want to use free-spacing syntax, you can still add
comments by way of «(2#comment)>. All characters between «(?#> and <)> are ignored.

Unfortunately, JavaScript, the only flavor in this book that doesn’t support
free-spacing, also doesn’t support this comment syntax. XRegExp, which adds support
for free-spacing regular expressions to JavaScript, also adds support for the comment
syntax. While Java supports comments in free-spacing regular expressions, it does not
support the «(?#comment)> syntax.

(2x)\d{4} # Year

- # Separator
\d{2} # Month

- # Separator
\d{2} # Day

Regex options: None
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

If you cannot turn on free-spacing mode outside the regular expression, you can place
the mode modifier <(?x)> at the very start of the regular expression. Make sure there’s
no whitespace before the «(?x)>. Free-spacing mode begins only at this mode modifier;
any whitespace before it is significant.

Mode modifiers are explained in detail in “Case-insensitive matching” on page 29, a
subsection of Recipe 2.1.

2.19 Insert Literal Text into the Replacement Text

Problem

Search and replace any regular expression match literally with the eight characters

$%*$1\1.

Solution

$%*$$1\1
Replacement text flavors: .NET, JavaScript

\$\\F\$1\\1

Replacement text flavor: Java

$%*¥\$1\\1
Replacement text flavor: PHP

2.19 Insert Literal Text into the Replacement Text | 95

www.it-ebooks.info

http://www.it-ebooks.info/

\$%*¥\$1\\1

Replacement text flavor: Perl

$%*$1\\1
Replacement text flavors: Python, Ruby

Discussion

When and how to escape characters in replacement text

This recipe shows you the different escape rules used by the various replacement text
flavors. The only two characters you may ever need to escape in the replacement text

are the dollar sign and the backslash. The escape characters are also the dollar sign and
the backslash.

The percentage sign and asterisk in this example are always literal characters, though
a preceding backslash may be treated as an escape instead of a literal backslash. «$1»
and/or «\1» are a backreference to a capturing group. Recipe 2.21 tells you which
flavors use which syntax for backreferences.

The fact that this problem has five different solutions for seven replacement text flavors
demonstrates that there really is no standard for replacement text syntax.

.NET and JavaScript

NET and JavaScript always treat a backslash as a literal character. Do not escape it
with another backslash, or you’ll end up with two backslashes in the replacement.

A lone dollar sign is a literal character. Dollar signs need to be escaped only when they
are followed by a digit, ampersand, backtick, straight quote, underscore, plus sign, or
another dollar sign. To escape a dollar sign, precede it with another dollar sign.
You can double up all dollar signs if you feel that makes your replacement text more
readable. This solution is equally valid:

$$%*$$1\1
Replacement text flavors: .NET, JavaScript

NET and XRegExp also require dollar signs followed by an opening curly brace to be
escaped. «${group}» is a named backreference in .NET and XRegExp. Standard Java-
Script without the XRegExp library does not support named backreferences.

Java

In Java, the backslash is used to escape backslashes and dollar signs in the replacement
text. All literal backslashes and all literal dollar signs must be escaped. If you do not
escape them, Java will throw an exception.

96 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

PHP

PHP requires backslashes followed by a digit, and dollar signs followed by a digit or
opening curly brace, to be escaped with a backslash.

A backslash also escapes another backslash. Thus, you need to write «\\\\» to replace
with two literal backslashes. All other backslashes are treated as literal backslashes.

Perl

Perl is a bit different from the other replacement text flavors: it does not really have a
replacement text flavor. Whereas the other programming languages have special logic
in their search-and-replace routines to substitute things such as «$1», in Perl that’s just
normal variable interpolation. In the replacement text, you need to escape all literal
dollar signs with a backslash, just as you would in any double-quoted string.

One exception is that Perl does support the «\1» syntax for backreferences. Thus, you
need to escape a backslash followed by a digit if you want the backslash to be a literal.
A backslash followed by a dollar sign also needs to be escaped, to prevent the backslash
from escaping the dollar sign.

A backslash also escapes another backslash. Thus, you need to write «\\\\» to replace
with two literal backslashes. All other backslashes are treated as literal backslashes.

Python and Ruby

The dollar sign has no special meaning in the replacement text in Python and Ruby.
Backslashes need to be escaped with another backslash when followed by a character
that gives the backslash a special meaning.

With Python, «\1» through «\9» and «\g<» create backreferences. These backslashes
need to be escaped.

For Ruby, you need to escape a backslash followed by a digit, ampersand, backtick,
straight quote, or plus sign.

In both languages, a backslash also escapes another backslash. Thus, you need to write
«\\\\» to include two literal backslashes in replacement text. All other backslashes are
treated as literal backslashes.

More escape rules for string literals

Remember that in this chapter, we deal only with the regular expressions and replace-
ment text themselves. The next chapter covers programming languages and string
literals.

The replacement texts shown earlier will work when the actual string variable you’re
passing to the replace() function holds this text. In other words, if your application
provides a text box for the user to type in the replacement text, these solutions show
what the user would have to type in order for the search-and-replace to work as in-

2.19 Insert Literal Text into the Replacement Text | 97

www.it-ebooks.info

http://www.it-ebooks.info/

tended. If you test your search-and-replace commands with RegexBuddy or another
regex tester, the replacement texts included in this recipe will show the expected results.

But these same replacement texts will not work if you paste them directly into your
source code and put quote characters around them. String literals in programming
languages have their own escape rules, and you need to follow those rules on top of the
replacement text escape rules. You may indeed end up with a mess of backslashes.

See Also

Recipe 3.14 shows how to add a search-and-replace to source code.

2.20 Insert the Regex Match into the Replacement Text

Problem

Perform a search-and-replace that converts URLs into HTML links that point to the
URL, and use the URL as the text for the link. For this exercise, define a URL as
“http:” and all nonwhitespace characters that follow it. For instance, Please visit
http://www.regexcookbook.combecomes Please visit <a href="http://www.regexcook
book.com">http://www.regexcookbook.com.

Solution

Regular expression

http:\S+
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Replacement

<a®href="%$&">$&

Replacement text flavors: .NET, JavaScript, Perl
<a®href="$0">$0

Replacement text flavors: .NET, Java, XRegExp, PHP
<a®href="\0">\0

Replacement text flavors: PHP, Ruby
<aohref="\&">\8

Replacement text flavor: Ruby

<a®href="\g<0>">\g<0>
Replacement text flavor: Python

98 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion

Inserting the whole regex match back into the replacement text is an easy way to insert
new text before, after, or around the matched text, or even between multiple copies of
the matched text. Unless you’re using Python, you don’t have to add any capturing
groups to your regular expression to be able to reuse the overall match.

In Perl, «$8» is actually a variable. Perl stores the overall regex match in this variable
after each successful regex match. Using «$8» adds a performance penalty to all your
regexes in Perl, so you may prefer to wrap your whole regex in a capturing group and
use a backreference to that group instead.

.NET and JavaScript have adopted the «$&» syntax to insert the regex match into the
replacement text. Ruby uses backslashes instead of dollar signs for replacement text
tokens, so use «\&» for the overall match.

Java, PHP, and Python do not have a special token to reinsert the overall regex match,
but they do allow text matched by capturing groups to be inserted into the replacement
text, as the next section explains. The overall match is an implicit capturing group
number 0. For Python, we need to use the syntax for named capture to reference group
zero. Python does not support «\0».

NET, XRegExp, and Ruby also support the zeroth capturing group syntax, but it
doesn’t matter which syntax you use. The result is the same.

See Also

“Search and Replace with Regular Expressions” in Chapter 1 describes the various
replacement text flavors.

Recipe 3.15 explains how to use replacement text in source code.

2.21 Insert Part of the Regex Match into the Replacement Text

Problem

Match any contiguous sequence of 10 digits, such as 1234567890. Convert the sequence
into a nicely formatted phone number—for example, (123) 456-7890.

Solution

Regular expression
\b(\d{3}) (\d{3}) (\d{4})\b

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

2.21 Insert Part of the Regex Match into the Replacement Text | 99

www.it-ebooks.info

http://www.it-ebooks.info/

Replacement

($1)°$2-%3
Replacement text flavors: .NET, Java, JavaScript, PHP, Perl

(${1})*${2}-${3}

Replacement text flavors: NET, PHP, Perl
(\1)*\2-\3

Replacement text flavors: PHP, Python, Ruby

Discussion

Replacements using capturing groups

Recipe 2.10 explains how you can use capturing groups in your regular expression to
match the same text more than once. The text matched by each capturing group in
your regex is also available after each successful match. You can insert the text of some
or all capturing groups—in any order, or even more than once—into the replacement
text.

Some flavors, such as Python and Ruby, use the same «\1» syntax for backreferences
in both the regular expression and the replacement text. Other flavors use Perl’s «$1»
syntax, using a dollar sign instead of a backslash. PHP supports both.

In Perl, «$1» and above are actually variables that are set after each successful regex
match. You can use them anywhere in your code until the next regex match. .NET,
Java, JavaScript, and PHP support «$1» only in the replacement syntax. These pro-
gramming languages do offer other ways to access capturing groups in code. Chap-
ter 3 explains that in detail.

$10 and higher

All regex flavors in this book support up to 99 capturing groups in a regular expression.
In the replacement text, ambiguity can occur with «$10» or «\10» and above. These
can be interpreted as either the 10th capturing group, or the first capturing group fol-
lowed by a literal zero.

.NET, XRegExp, PHP, and Perl allow you to put curly braces around the number to
make your intention clear. «${10}» is always the 10th capturing group, and «${1}o» is
always the first followed by a literal zero.

Java and JavaScript try to be clever with «$10». If a capturing group with the specified
two-digit number exists in your regular expression, both digits are used for the cap-
turing group. If fewer capturing groups exist, only the first digit is used to reference the
group, leaving the second as a literal. Thus «$23» is the 23rd capturing group, if it exists.
Otherwise, it is the second capturing group followed by a literal «3».

100 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

.NET, XRegExp, PHP, Perl, Python, and Ruby always treat «$10» and «\10» as the
10th capturing group, regardless of whether it exists. If it doesn’t, the behavior for
nonexistent groups comes into play.

References to nonexistent groups

The regular expression in the solution for this recipe has three capturing groups. If you
type «$4» or «\4» into the replacement text, you’re adding a reference to a capturing
group that does not exist. This triggers one of three different behaviors.

Java, XRegExp, and Python will cry foul by raising an exception or returning an error
message. Do not use invalid backreferences with these flavors. (Actually, you shouldn’t
use invalid backreferences with any flavor.) If you want to insert «$4» or «\4» literally,
escape the dollar sign or backslash. Recipe 2.19 explains this in detail.

PHP, Perl, and Ruby substitute all backreferences in the replacement text, including
those that point to groups that don’t exist. Groups that don’t exist did not capture any
text and therefore references to these groups are simply replaced with nothing.

Finally, .NET and JavaScript (without XRegExp) leave backreferences to groups that
don’t exist as literal text in the replacement.

All flavors do replace groups that do exist in the regular expression but did not capture
anything. Those are replaced with nothing.

Solution Using Named Capture

Regular expression

\b(?<area>\d{3}) (?<exchange>\d{3}) (?<number>\d{4})\b

Regex options: None

Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9
\b(?'area'\d{3}) (?'exchange'\d{3}) (? 'number'\d{4})\b

Regex options: None

Regex flavors: .NET, PCRE 7, Perl 5.10, Ruby 1.9

\b(?P<area>\d{3}) (?P<exchange>\d{3}) (?P<number>\d{4})\b
Regex options: None
Regex flavors: PCRE, Perl 5.10, Python

Replacement

(${area})e${exchange}-${number}
Replacement text flavors: .NET, Java 7, XRegExp

(\g<area>)®\g<exchange>-\g<number>
Replacement text flavor: Python

(\k<area>)®\k<exchange>-\k<number>

2.21 Insert Part of the Regex Match into the Replacement Text | 101

www.it-ebooks.info

http://www.it-ebooks.info/

Replacement text flavor: Ruby 1.9

(\k'area')e®\k'exchange'-\k'number"
Replacement text flavor: Ruby 1.9

($+{area})*$+{exchange}-$+{number}
Replacement text flavor: Perl 5.10

($1)°$2-3$3
Replacement text flavor: PHP

Flavors that support named capture

.NET, Java 7, XRegExp, Python, and Ruby 1.9 allow you to use named backreferences
in the replacement text if you used named capturing groups in your regular expression.
The syntax for named backreferences in the replacement text differs from that in the
regular expression.

Ruby uses the same syntax for backreferences in the replacement text as it does in
the regular expression. For named capturing groups in Ruby 1.9, this syntax is
«\k<group>» or «\k'group'». The choice between angle brackets and single quotes is
merely a notational convenience.

Perl 5.10 and later store the text matched by named capturing groups into the hash %
+. You can get the text matched by the group “name” with $+{name}. Perl interpolates
variables in the replacement text, so you can treat «$+{name}» as a named backreference
in the replacement text.

PHP (using PCRE) supports named capturing groups in regular expressions, but not
in the replacement text. You can use numbered backreferences in the replacement text
to named capturing groups in the regular expression. PCRE assigns numbers to both
named and unnamed groups, from left to right.

NET, Java 7, XRegExp, Python, and Ruby 1.9 also allow numbered references to
named groups. However, .NET uses a different numbering scheme for named groups,
as Recipe 2.11 explains. Mixing names and numbers with .NET, Java 7, XRegExp,
Python, or Ruby is not recommended. Either give all your capturing groups names or
don’t name any groups at all. Always use named backreferences for named groups.

See Also
Recipe 2.9 explains the capturing groups that backreferences refer to.

Recipe 2.11 explains named capturing groups. Naming the groups in your regex and
the backreferences in your replacement text makes them easier to read and maintain.

“Search and Replace with Regular Expressions” in Chapter 1 describes the various
replacement text flavors.

Recipe 2.10 shows how to use backrefreences in the regular expression itself. The syntax
is different than for backreferences in the replacement text.

102 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

Recipe 3.15 explains how to use replacement text in source code.

2.22 Insert Match Context into the Replacement Text

Problem

Create replacement text that replaces the regex match with the text before the regex
match, followed by the whole subject text, followed by the text after the regex match.
For example, if Match is found in BeforeMatchAfter, replace the match with Before
BeforeMatchAfterAfter, yielding the new text BeforeBeforeBeforeMatchAfterAfterAfter.

Solution
$°% %'
Replacement text flavors: .NET, Perl
VAN
Replacement text flavor: Ruby
$°$ 383"
Replacement text flavor: JavaScript

Discussion

The term context refers to the subject text that the regular expression was applied to.
There are three pieces of context: the subject text before the regex match, the subject
text after the regex match, and the whole subject text. The text before the match is
sometimes called the left context, and the text after the match is correspondingly the
right context. The whole subject text is the left context, the match, and the right context.

.NET and Perl support «$*», «$'», and «$_» to insert all three forms of context into
the replacement text. Actually, in Perl these are variables set after a successful regex
match and are available in any code until the next match attempt. Dollar backtick is
the left context. You can type the backtick on a U.S. keyboard by pressing the key to
the left of the 1 key in the top-left corner of your keyboard. Dollar straight quote is the
right context. The straight quote is the usual single quote. On a U.S. keyboard, it sits
between the semicolon and Enter keys. Dollar underscore is the whole subject text.
Like .NET and Perl, JavaScript uses «$*» and «$'» for left and right context. However,
JavaScript does not have a token for inserting the entire subject text. You can recompose
the subject text by inserting the whole regex match with «$8» between the left and right
context.

Ruby supports left and right context via «\"» and «\'», and uses «\&» to insert the
whole regex match. Like JavaScript, there is no token for the whole subject text.

2.22 Insert Match Context into the Replacement Text | 103

www.it-ebooks.info

http://www.it-ebooks.info/

See Also

“Search and Replace with Regular Expressions” in Chapter 1 describes the various
replacement text flavors.

Recipe 3.15 explains how to use replacement text in source code.

104 | Chapter2: BasicRegular Expression Skills

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3
Programming with Reqular
Expressions

Programming Languages and Regex Flavors

This chapter explains how to implement regular expressions with your programming
language of choice. The recipes in this chapter assume you already have a working
regular expression at your disposal; the previous chapters can help in that regard. Now
you face the job of putting a regular expression into your source code and actually
making it do something.

We’ve done our best in this chapter to explain exactly how and why each piece of code
works the way it does. Because of the level of detail in this chapter, reading it from start
to finish may get a bit tedious. If you’re reading Regular Expression Cookbook for the
first time, we recommend you skim this chapter to get an idea of what can or needs to
be done. Later, when you want to implement one of the regular expressions from the
following chapters, come back here to learn exactly how to integrate the regexes with
your programming language of choice.

Chapters 4 through 9 use regular expressions to solve real-world problems. Those
chapters focus on the regular expressions themselves, and many recipes in those chap-
ters don’t show any source code at all. To make the regular expressions you find in
those chapters work, simply plug them into one of the code snippets in this chapter.

Because the other chapters focus on regular expressions, they present their solutions
for specific regular expression flavors, rather than for specific programming languages.
Regex flavors do not correspond one-on-one with programming languages. Scripting
languages tend to have their own regular expression flavor built-in, and other pro-
gramming languages rely on libraries for regex support. Some libraries are available for
multiple languages, while certain languages have multiple libraries available for them.

“Many Flavors of Regular Expressions” on page 2 describes all the regular expression
flavors covered in this book. “Many Flavors of Replacement Text” on page 6 lists the

105

www.it-ebooks.info

http://www.it-ebooks.info/

replacement text flavors, used for searching and replacing with a regular expression.
All of the programming languages covered in this chapter use one of these flavors.

Languages Covered in This Chapter

This chapter covers eight programming languages. Each recipe has separate solutions
for all eight programming languages, and many recipes also have separate discussions
for all eight languages. If a technique applies to more than one language, we repeat it
in the discussion for each of those languages. We’ve done this so you can safely skip
the discussions of programming languages that you’re not interested in:

C#
C# uses the Microsoft .NET Framework. The System.Text.RegularExpressions
classes use the “.NET” regular expression and replacement text flavor. This book
covers C# 1.0 through 4.0, or Visual Studio 2002 until Visual Studio 2010.

VB.NET
This book uses VB.NET and Visual Basic.NET to refer to Visual Basic 2002 and
later, to distinguish these versions from Visual Basic 6 and earlier. Visual Basic now
uses the Microsoft .NET Framework. The System.Text.RegularExpressions classes

use the “.NET” regular expression and replacement text flavor. This book covers
Visual Basic 2002 until Visual Basic 2010.

Java
Java 4 s the first Java release to provide built-in regular expression support through
the java.util.regex package. The java.util.regex package uses the “Java” regular
expression and replacement text flavor. This book covers Java 4, 5, 6, and 7.

JavaScript
This is the regex flavor used in the programming language commonly known as
JavaScript. All modern web browsers implement it: Internet Explorer (as of version
5.5), Firefox, Opera, Safari, and Chrome. Many other applications also use
JavaScript as a scripting language.

Strictly speaking, in this book we use the term JavaScript to indicate the program-
ming language defined in versions 3 and 5 of the ECMA-262 standard. This stan-
dard defines the ECMAScript programming language, which is better known
through its implementations JavaScript and JScript in various web browsers.

ECMA-262v3 and ECMA-262v5 also define the regular expression and replace-
ment text flavors used by JavaScript. Those flavors are labeled as “JavaScript” in
this book.

XRegExp
XRegExp is an open source JavaScript library developed by Steven Levithan. You
can download it at http://xregexp.com. XRegExp extends JavaScript’s regular ex-
pression syntax. XRegExp also provides replacement functions for JavaScript’s
regex matching functions for better cross-browser consistency, as well as new
higher-level functions that make tasks such as iterating over all matches easier.

106 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://xregexp.com
http://www.it-ebooks.info/

Most recipes in this chapter do not have separate JavaScript and XRegExp solu-
tions. You can use the standard JavaScript solutions with regular expressions cre-
ated by XRegExp. In situations where XRegExp’s methods offer a significantly
better solution, we show code for both standard JavaScript, as well as JavaScript
with XRegExp.

PHP
PHP has three sets of regular expression functions. We strongly recommend using
the preg functions. Therefore, this book only covers the preg functions, which are
builtinto PHP as of version 4.2.0. This book covers PHP 4 and 5. The preg functions
are PHP wrappers around the PCRE library. The PCRE regex flavor is indicated as
“PCRE” in this book. Since PCRE does not include search-and-replace function-
ality, the PHP developers devised their own replacement text syntax for
preg_replace. This replacement text flavor is labeled “PHP” in this book.

Themb_ereg functions are part of PHP’s “multibyte” functions, which are designed
to work well with languages that are traditionally encoded with multibyte character
sets, such as Japanese and Chinese. In PHP 5, the mb_ereg functions use the Oni-
guruma regex library, which was originally developed for Ruby. The Oniguruma
regex flavor is indicated as “Ruby 1.9” in this book. Using themb_ereg functions is
recommended only if you have a specific requirement to deal with multibyte code
pages and you’re already familiar with the mb_ functions in PHP.

The ereg group of functions is the oldest set of PHP regex functions, and are offi-
cially deprecated as of PHP 5.3.0. They don’t depend on external libraries, and
implement the POSIX ERE flavor. This flavor offers only a limited feature set,
and is not discussed in this book. POSIX ERE is a strict subset of the Ruby 1.9 and
PCRE flavors. You can take the regex from any ereg function call and use it with
mb_ereg or preg. For preg, you have to add Perl-style delimiters (Recipe 3.1).

Perl
Perl’s built-in support for regular expressions is the main reason why regexes are
popular today. The regular expression and replacement text flavors used by Perl’s
m// and s/// operators are labeled as “Perl” in this book. This book covers Perl 5.6,
5.8,5.10,5.12, and 5.14.

Python
Python supports regular expressions through its re module. The regular expression
and replacement text flavor used by this module are labeled “Python” in this book.
This book covers Python 2.4 until 3.2.

Ruby
Ruby has built-in support for regular expressions. This book covers Ruby 1.8 and
Ruby 1.9. These two versions of Ruby have different default regular expression
engines. Ruby 1.9 uses the Oniguruma engine, which has more regex features than
the classic engine in Ruby 1.8. “Regex Flavors Covered by This Book” on page 3
has more details on this.

Programming Languages and Regex Flavors | 107

www.it-ebooks.info

http://www.it-ebooks.info/

In this chapter, we don’t talk much about the differences between Ruby 1.8 and
1.9. The regular expressions in this chapter are very basic, and they don’t use the
new features in Ruby 1.9. Because the regular expression support is compiled into
the Ruby language itself, the Ruby code you use to implement your regular ex-
pressions is the same, regardless of whether you’ve compiled Ruby using the classic
regex engine or the Oniguruma engine. You could recompile Ruby 1.8 to use the
Oniguruma engine if you need its features.

More Programming Languages

The programming languages in the following list aren’t covered by this book, but they
do use one of the regular expression flavors in this book. If you use one of these lan-
guages, you can skip this chapter, but all the other chapters are still useful:

ActionScript
ActionScript is Adobe’s implementation of the ECMA-262 standard. As of version
3.0, ActionScript has full support for ECMA-262v3 regular expressions. This regex
flavor is labeled “JavaScript” in this book. The ActionScript language is also very
close to JavaScript. You should be able to adapt the JavaScript examples in this
chapter for ActionScript.

C can use a wide variety of regular expression libraries. The open source PCRE
library is likely the best choice out of the flavors covered by this book. You can
download the full C source code at hitp://www.pcre.org. The code is written to
compile with a wide range of compilers on a wide range of platforms.

C++
C++ can use a wide variety of regular expression libraries. The open source PCRE
library is likely the best choice out of the flavors covered by this book. You can
either use the C API directly or use the C++ class wrappers included with the PCRE
download itself (see http://www.pcre.org).

On Windows, you could import the VBScript 5.5 RegExp COM object, as ex-
plained later for Visual Basic 6. That could be useful for regex consistency between
a C++ backend and a JavaScript frontend.

C++ TRI1 defines a <regex> header file that defines functions such as
regex_search(), regex_match(), and regex_replace() that you can use to search
through strings, validate strings, and search-and-replace through strings with reg-
ular expressions. The regular expression support in C++ TR1 is based on the
Boost.Regex library. You can use the Boost.Regex library if your C++ compiler
does not support TR1. You can find full documentation at http://www.boost.org/
libs/regex/.

Delphi
Delphi XE was the first version of Delphi to have built-in support for regular ex-
pressions. The regex features are unchanged in Delphi XE2. The RegularExpres

108 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.pcre.org
http://www.pcre.org
http://www.boost.org/libs/regex/
http://www.boost.org/libs/regex/
http://www.it-ebooks.info/

sionsAPI unit is a thin wrapper around the PCRE library. You won’t use this unit
directly.

The RegularExpressionsCore unit implements the TPerlRegEx class. It provides a
full set of methods to search, replace, and split strings using regular expressions.
It uses the UTF8String type for all strings, as PCRE is based on UTF-8. You can use
the TPerlRegEx class in situations where you want full control over when strings
are converted to and from UTF-8, or if your data is in UTF-8 already. You can also
use this unit if you’re porting code from an older version of Delphi that used Jan
Goyvaerts’s TPer1RegEx class. The RegularExpressionsCore unit is based on code
that Jan Goyvaerts donated to Embarcadero.

The RegularExpressions unit is the one you’ll use most for new code. It implements
records such as TRegex and TMatch that have names and methods that closely mimic
the regular expression classes in the .NET Framework. Because they’re records,
you don’t have to worry about explicitly creating and destroying them. They pro-
vide many static methods that allow you to use a regular expression with just a
single line of code.

If you are using an older version of Delphi, your best choice is Jan Goyvaerts’s
TPerlRegEx class. You can download the full source code at http://www.regexp
.info/delphi.html. It is open source under the Mozilla Public License. The latest
release of TPerlRegEx is fully compatible with the RegularExpressionsCore unit in
Delphi XE. For new code written in Delphi 2010 or earlier, using the latest release
of TPerlRegEx is strongly recommended. If you later migrate your code to Delphi
XE, all you have to do is replace Per1RegEx with RegularExpressionsCore in the uses
clause of your units. When compiled with Delphi 2009 or Delphi 2010, the Perl
RegEx unit uses UTF8String and fully supports Unicode. When compiled with Del-
phi 2007 or earlier, the unit uses AnsiString and does not support Unicode.

Another popular PCRE wrapper for Delphi is the TIc1RegEx class part of the JCL
library at http://www.delphi-jedi.org. It is also open source under the Mozilla Public
License.

Delphi Prism
In Delphi Prism, you can use the regular expression support provided by the NET
Framework. Simply add System.Text.RegularExpressions to the uses clause of any
Delphi Prism unit in which you want to use regular expressions.

Once you’ve done that, you can use the same techniques shown in the C# and
VB.NET code snippets in this chapter.

Groovy
You can use regular expressions in Groovy with the java.util.regex package, just
as you can in Java. In fact, all of the Java solutions in this chapter should work with
Groovy as well. Groovy’s own regular expression syntax merely provides nota-
tional shortcuts. A literal regex delimited with forward slashes is an instance of
java.lang.String and the =~ operator instantiates java.util.regex.Matcher. You

Programming Languages and Regex Flavors | 109

www.it-ebooks.info

http://www.regexp.info/delphi.html
http://www.regexp.info/delphi.html
http://www.delphi-jedi.org
http://www.it-ebooks.info/

can freely mix the Groovy syntax with the standard Java syntax—the classes and
objects are all the same.

PowerShell
PowerShell is Microsoft’s shell-scripting language, based on the .NET Framework.
PowerShell’s built-in -match and -replace operators use the .NET regex flavor and
replacement text as described in this book.

The R Project supports regular expressions via the grep, sub, and regexpr functions
in the base package. All these functions take an argument labeled perl, which is
FALSE if you omit it. Set it to TRUE to use the PCRE regex flavor as described in this
book. The regular expressions shown for PCRE 7 work with R 2.5.0 and later. For
earlier versions of R, use the regular expressions marked as “PCRE 4 and later” in
this book. The “basic” and “extended” flavors supported by R are older and limited
regex flavors not discussed in this book.

REALDbasic
REALbasic has a built-in RegEx class. Internally, this class uses the UTF-8 version
of the PCRE library. This means that you can use PCRE’s Unicode support, but
you have to use REALbasic’s TextConverter class to convert non-ASCII text into
UTF-8 before passing it to the RegEx class.

All regular expressions shown in this book for PCRE 7 will work with REALDbasic
2011. One caveat is that in REALbasic, the “case insensitive” (Regex.Options.Case
Sensitive) and “” and $ match at line breaks” (Regex.Options.TreatTargetAsOne
Line) options are on by default. If you want to use a regular expression from this
book that does not tell you to turn on these matching modes, you have to turn
them off explicitly in REALbasic.

Scala
Scala provides built-in regex support through the scala.util.matching package.
This support is built on the regular expression engine in Java’s java.util.regex
package. The regular expression and replacement text flavors used by Java and
Scala are labeled “Java” in this book.

Visual Basic 6
Visual Basic 6 is the last version of Visual Basic that does not require the .NET
Framework. That also means Visual Basic 6 cannot use the excellent regular ex-
pression support of the .NET Framework. The VB.NET code samples in this chap-
ter won’t work with VB 6 at all.

Visual Basic 6 does make it very easy to use the functionality provided by ActiveX
and COM libraries. One such library is Microsoft’s VBScript scripting library,
which has decent regular expression capabilities starting with version 5.5. The
scripting library implements the same regular expression flavor used in JavaScript,
as standardized in ECMA-262v3. This library is part of Internet Explorer 5.5 and
later. It is available on all computers running Windows XP or Vista, and previous

110 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

versions of Windows if the user has upgraded to IE 5.5 or later. That includes
almost every Windows PC that is used to connect to the Internet.

To use this library in your Visual Basic application, select Project|References in the
VB IDE’s menu. Scroll down the list to find the item “Microsoft VBScript Regular
Expressions 5.5”, which is immediately below the “Microsoft VBScript Regular
Expressions 1.0” item. Make sure to tick the 5.5 version. The 1.0 version is only
provided for backward compatibility, and its capabilities are less than satisfactory.

After adding the reference, you can see which classes and class members the library
provides. Select View|Object Browser in the menu. In the Object Browser, select
the “VBScript_RegExp_55” library in the drop-down list in the upper-left corner.

3.1 Literal Regular Expressions in Source Code

Problem

You have been given the regular expression <[$" '\n\d/\\]> as the solution to a problem.
This regular expression consists of a single character class that matches a dollar sign,
a double quote, a single quote, a line feed, any digit between 0 and 9, a forward slash,
or a backslash. You want to hardcode this regular expression into your source code as
a string constant or regular expression operator.

Solution

(€
As a normal string:
"[$\""\n\\d/A\\\]"

As a verbatim string:

@"[$"" " \n\d/\]"

VB.NET
"[$"" \n\d/\\]"

Java
"[$\" \n\\d/\\\\]"

JavaScript
/18" "\n\d\/\\1/

3.1 Literal Regular Expressions in Source Code | 111

www.it-ebooks.info

http://www.it-ebooks.info/

XRegExp
"[$\"\n\\d/A\\\\]"

PHP
%%\ \n\d/\\\\1%"

Perl

Pattern-matching operator:
/TN$" "\n\d\/\\]/
mI[\$""\n\d/\\]!

Substitution operator:

sI\$""\n\d/\\]!!

Python
Raw triple-quoted string:
r" nn [$|l) \n\d/\\] mnn

Normal string:

"I\ AN/

Ruby
Literal regex delimited with forward slashes:
/18" \n\d\/\\]/

Literal regex delimited with punctuation of your choice:

%r![$" " \n\d/\\]!

Discussion

When this book shows you a regular expression by itself (as opposed to as part of a
larger source code snippet), it always shows regular expressions unadorned. This recipe
is the only exception. If you’re using a regular expression tester such as RegexBuddy
or RegexPal, you would type in the regex this way. If your application accepts a regular
expression as user input, the user would type it in this way.

But if you want to hardcode the regular expression into your source code, you have
extra work. Carelessly copying and pasting regular expressions from a regular expres-
sion tester into your source code—or vice versa—will often leave you scratching your
head as to why the regular expression works in your tool but not in your source code,
or why the tester fails on a regex you’ve copied from somebody else’s code. All pro-
gramming languages discussed in this book require literal regular expressions to be

112 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

delimited in a certain way, with some languages requiring strings and some requiring
aspecial regex constant. If your regex includes the language’s delimiters or certain other
characters with special meanings in the language, you have to escape them.

The backslash is the most commonly used escape character. That’s why most of the
solutions to this problem have far more backslashes in them than the four in the original
regular expression.

€

In C#, you can pass literal regular expressions to the Regex() constructor, and to various
member functions in the Regex class. The parameter that takes the regular expression
is always declared as a string.

C# supports two kinds of string literals. The most common kind is the double-quoted
string, well-known from languages such as C++ and Java. Within double-quoted
strings, double quotes and backslashes must be escaped with a backslash. Escapes for
nonprintable characters, such as <\n», are also supported in strings. There is a difference
between "\n" and "\\n" when using RegexOptions.IgnorePatternWhitespace (see
Recipe 3.4) to turn on free-spacing mode, as explained in Recipe 2.18. "\n" is a string
with a literal line break, which is ignored as whitespace. "\\n" is a string with the regex
token <\n», which matches a newline.

Verbatim strings start with an at sign and a double quote, and end with a double quote
on its own. To include a double quote in a verbatim string, double it up. Backslashes
do not need to be escaped, resulting in a significantly more readable regular expression.
@"\n" is always the regex token <\n>, which matches a newline, even in free-spacing
mode. Verbatim strings do not support <\n> at the string level, but can span multiple
lines instead. That makes verbatim strings ideal for free-spacing regular expressions.

The choice is clear: use verbatim strings to put regular expressions into your C# source
code.

VB.NET

In VB.NET, you can pass literal regular expressions to the Regex() constructor, and to
various member functions in the Regex class. The parameter that takes the regular ex-
pression is always declared as a string.

Visual Basic uses double-quoted strings. Double quotes within the string must be dou-
bled. No other characters need to be escaped.

Java

In Java, you can pass literal regular expressions to the Pattern.compile() class factory,
and to various functions of the String class. The parameter that takes the regular ex-
pression is always declared as a string.

3.1 Literal Regular Expressions in Source Code | 113

www.it-ebooks.info

http://www.it-ebooks.info/

Java uses double-quoted strings. Within double-quoted strings, double quotes and
backslashes must be escaped with a backslash. Escapes for nonprintable characters,
such as \\n», and Unicode escapes such as <\\uFFFF> are also supported in strings.

There is a difference between "\n" and "\\n" when using Pattern.COMMENTS (see
Recipe 3.4) to turn on free-spacing mode, as explained in Recipe 2.18. "\n" is a string
with a literal line break, which is ignored as whitespace. "\\n" is a string with the regex
token <\n», which matches a newline.

JavaScript

In JavaScript, regular expressions are best created by using the special syntax for de-
claring literal regular expressions. Simply place your regular expression between two
forward slashes. If any forward slashes occur within the regular expression itself, escape
those with a backslash.

Although it is possible to create a RegExp object from a string, it makes little sense to
use the string notation for literal regular expressions in your code. You would have to
escape quotes and backslashes, which generally leads to a forest of backslashes.

XRegExp

If you use XRegExp to extend JavaScript’s regular expression syntax, then you will be
creating XRegExp objects from strings, and you’ll need to escape quotes and backslashes.

PHP

Literal regular expressions for use with PHP’s preg functions are a curious contraption.
Unlike JavaScript or Perl, PHP does not have a native regular expression type. Regular
expressions must always be quoted as strings. This is true for the ereg and mb_ereg
functions as well. But in their quest to mimic Perl, the developers of PHP’s wrapper
functions for PCRE added an additional requirement.

Within the string, the regular expression must be quoted as a Perl-style literal regular
expression. That means that where you would write /regex/ in Perl, the string for PHP’s
preg functions becomes '/regex/'. As in Perl, you can use any pair of punctuation
characters as the delimiters. If the regex delimiter occurs within the regex, it must be
escaped with a backslash. To avoid this, choose a delimiter that does not occur in the
regex. For this recipe, we used the percentage sign, because the forward slash occurs
in the regex but the percentage sign does not. If the forward slash does not occur in the
regex, use that, as it’s the most commonly used delimiter in Perl and the required
delimiter in JavaScript and Ruby.

PHP supports both single-quoted and double-quoted strings. Both require the quote
(single or double) and the backslash within a regex to be escaped with a backslash. In
double-quoted strings, the dollar sign also needs to be escaped. For regular expressions,

114 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

you should use single-quoted strings, unless you really want to interpolate variables in
your regex.

Perl

In Perl, literal regular expressions are used with the pattern-matching operator and the
substitution operator. The pattern-matching operator consists of two forward slashes,
with the regex between it. Forward slashes within the regular expression must be es-
caped with a backslash. There’s no need to escape any other characters, except perhaps
$ and @, as explained at the end of this subsection.

An alternative notation for the pattern-matching operator puts the regular expression
between any pair of punctuation characters, preceded by the letter m. If you use any
kind of opening and closing punctuation (parentheses, braces, or brackets) as the de-
limiter, they need to match up: for example, m{regex}. If you use other punctuation,
simply use the same character twice. The solution for this recipe uses the exclamation
point. That saves us having to escape the literal forward slash in the regular expression.
Only the closing delimiter needs to be escaped with a backslash.

The substitution operator is similar to the pattern-matching operator. It starts with s
instead of m, and tacks on the replacement text. When using brackets or similar punc-
tuation as the delimiters, you need two pairs: s[regex][replace]. If you mix different
delimiters, you also need two pairs: s[regex]/replace/. For all other punctuation, use
it three times: s/regex/replace/.

Perl parses the pattern-matching and substitution operators as double-quoted strings.
Ifyouwritem/I am $name/ and $name holds "Jan", you end up with the regular expression
<IeameJan>. $" is also a variable in Perl, so we have to escape the literal dollar sign in
the character class in our regular expression in this recipe.

Never escape a dollar sign that you want to use as an anchor (see Recipe 2.5). An escaped
dollar sign is always a literal. Perl is smart enough to differentiate between dollars used
as anchors, and dollars used for variable interpolation, due to the fact that anchors can
be used sensibly only at the end of a group or the whole regex, or before a newline. You
shouldn’t escape the dollar in m/*regex$/> if you want to check whether “regex”
matches the subject string entirely.

The at sign does not have a special meaning in regular expressions, but it is used for
variable interpolation in Perl. You need to escape it in literal regular expressions in Perl
code, as you do for double-quoted strings.

Python

The functions in Python’s re module expect literal regular expressions to be passed as
strings. You can use any of the various ways that Python provides to quote strings.
Depending on the characters that occur in your regular expression, different ways of
quoting it may reduce the number of characters you need to escape with backslashes.

3.1 Literal Regular Expressions in Source Code | 115

www.it-ebooks.info

http://www.it-ebooks.info/

Generally, raw strings are the best option. Python raw strings don’t require any char-
acters to be escaped. If you use a raw string, you don’t need to double up the backslashes
in your regular expression. r"\d+" is easier to read than "\\d+", particularly as your
regex gets long.

The only situation where raw strings aren’t ideal is when your regular expression in-
cludes both the single quote and double quote characters. Then you can’t use a raw
string delimited with one pair of single or double quotes, because there’s no way to
escape the quotes inside the regular expression. In that case, you can triple-quote the
raw string, as we did in the Python solution for this recipe. The normal string is shown
for comparison.

If you want to use the Unicode features explained in Recipe 2.7 in your regular expres-
sionin Python 2.x, you need to use Unicode strings. You can turn a string into a Unicode
string by preceding it with a u. In Python 3.0 and later, all text is Unicode.

Raw strings don’t support nonprintable character escapes such as \n. Raw strings treat
escape sequences as literal text. This is not a problem for the re module. It supports
these escapes as part of the regular expression syntax, and as part of the replacement
text syntax. A literal \n in a raw string will still be interpreted as a newline in your
regular expressions and replacement texts.

There is a difference between the string "\n" on one side, and the string "\\n" and the
raw string r"\n" on the other side when using re.VERBOSE (see Recipe 3.4) to turn on
free-spacing mode, as explained in Recipe 2.18. "\n" is a string with a literal line break,
which is ignored as whitespace. "\\n" and r"\n" are both strings with the regex token
\n>, which matches a newline.

When using free-spacing mode, triple-quoted raw strings such asr"""\n""" are the best
solution, because they can span multiple lines. Also, <\n> is not interpreted at the string
level, so it can be interpreted at the regex level to match a line break.

Ruby

In Ruby, regular expressions are best created by using the special syntax for declaring
literal regular expressions. Simply place your regular expression between two forward
slashes. If any forward slashes occur within the regular expression itself, escape those

with a backslash.

If you don’t want to escape forward slashes in your regex, you can prefix your regular
expression with %r and then use any punctuation character of your choice as the
delimiter.

Although it is possible to create a Regexp object from a string, it makes little sense to
use the string notation for literal regular expressions in your code. You then would have
to escape quotes and backslashes, which generally leads to a forest of backslashes.

116 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

Ruby is very similar to JavaScript in this respect, except that the name
of the class is Regexp as one word in Ruby, whereas it is RegExp with
~ Qs camel caps in JavaScript.

See Also

Recipe 2.3 explains how character classes work, and why two backslashes are needed
in the regular expression to include just one in the character class.

Recipe 3.4 explains how to set regular expression options, which is done as part of
literal regular expressions in some programming languages.

3.2 Import the Regular Expression Library

Problem

Tobe able to use regular expressions in your application, you want to import the regular
expression library or namespace into your source code.

W N
o The remainder of the source code snippets in this book assume that you
:‘:‘ have already done this, if needed.
4
Solution

€

using System.Text.RegularExpressions;

VB.NET

Imports System.Text.RegularExpressions

XRegExp
For JavaScript code running in a browser:
<script src="xregexp-all-min.js"></script>
For JavaScript code running on a server using Node.js:

var XRegExp = require('xregexp').XRegExp;

Java

import java.util.regex.*;

3.2 Import the Regular Expression Library | 117

www.it-ebooks.info

http://www.it-ebooks.info/

Python

import re

Discussion

Some programming languages have regular expressions built-in. For these languages,
you don’t need to do anything to enable regular expression support. Other languages
provide regular expression functionality through a library that needs to be imported
with animport statementin your source code. Some languages don’t have regex support
at all. For those, you’ll have to compile and link in the regular expression support
yourself.

€

If you place the using statement at the top of your C# source file, you can reference
the classes that provide regular expression functionality directly, without
having to fully qualify them. For instance, you can write Regex() instead of
System.Text.RegularExpressions.Regex().

VB.NET

If you place the Imports statement at the top of your VB.NET source file, you can
reference the classes that provide regular expression functionality directly, without
having to fully qualify them. For instance, you can write Regex() instead of
System.Text.RegularExpressions.Regex().

Java

You have to import the java.util.regex package into your application to be able to
use Java’s built-in regular expression library.

JavaScript

JavaScript’s regular expression support is built-in and always available.

XRegExp

If you want to use XRegExp to extend JavaScript’s regular expression syntax, your web
page will need to load the XRegExp library. The easiest way to do that is to load xregexp-
all-min.js which includes all of XRegExp’s functionality in minimized form. The
XRegExp recipes in this book assume you’re doing just that.

If you’re concerned about page loading times and you do not use Unicode categories,
blocks, and/or scripts, you can load the base library xregexp-min.js and load the
addon libraries as needed. Load unicode-base. js to enable the \p{***}> syntax for Uni-
code properties. You can then load unicode-blocks. js, unicode-categories. js, and/or

118 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

unicode-scripts.js to make it possible to match Unicode blocks, categories, and/or
scripts with \p{--}.

If you are using Node.js to run JavaScript on a server, then you’ll need to install
XRegExp as an npm package. This can be done by entering npm install xregexp on
the command line. Once installed, your server-side scripts can import the XRegExp
library as shown in the Solution section.

PHP

The preg functions are built-in and always available in PHP 4.2.0 and later.

Perl

Perl’s regular expression support is built-in and always available.

Python

You have to import the re module into your script to be able to use Python’s regular
expression functions.

Ruby

Ruby’s regular expression support is built-in and always available.

3.3 Create Regular Expression Objects

Problem

You want to instantiate a regular expression object or otherwise compile a regular
expression so you can use it efficiently throughout your application.

Solution

C#
If you know the regex to be correct:

Regex regexObj = new Regex("regex pattern");

If the regex is provided by the end user (UserInput being a string variable):

try {

Regex regexObj = new Regex(UserInput);
} catch (ArgumentException ex) {

// Syntax error in the regular expression
}

3.3 Create Regular Expression Objects | 119

www.it-ebooks.info

http://www.it-ebooks.info/

VB.NET
If you know the regex to be correct:
Dim RegexObj As New Regex("regex pattern")
If the regex is provided by the end user (UserInput being a string variable):

Try

Dim RegexObj As New Regex(UserInput)
Catch ex As ArgumentException

'Syntax error in the regular expression
End Try

Java
If you know the regex to be correct:

Pattern regex = Pattern.compile("regex pattern");

If the regex is provided by the end user (userInput being a string variable):

try {

Pattern regex = Pattern.compile(userInput);
} catch (PatternSyntaxException ex) {

// Syntax error in the regular expression
}

To be able to use the regex on a string, create a Matcher:

Matcher regexMatcher = regex.matcher(subjectString);

To use the regex on another string, you can create a new Matcher, as just shown, or
reuse an existing one:

regexMatcher.reset(anotherSubjectString);

JavaScript
Literal regular expression in your code:
var myregexp = /regex pattern/;

Regular expression retrieved from user input, as a string stored in the variable
userinput:

var myregexp = new RegExp(userinput);

XRegExp

If you want to use XRegExp’s extended regular expression syntax in JavaScript, you
need to create an XRegExp object from a string:

var myregexp = XRegExp("regex pattern");

120 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

Perl

$myregex = qr/regex pattern/
Regular expression retrieved from user input, as a string stored in the variable
$userinput:

$myregex = qr/$userinput/

Python

reobj = re.compile("regex pattern")

Regular expression retrieved from user input, as a string stored in the variable
userinput:

reobj = re.compile(userinput)

Ruby

Literal regular expression in your code:
myregexp = /regex pattern/;

Regular expression retrieved from user input, as a string stored in the variable
userinput:

myregexp = Regexp.new(userinput);

Discussion

Before the regular expression engine can match a regular expression to a string, the
regular expression has to be compiled. This compilation happens while your applica-
tion is running. The regular expression constructor or compile function parses the
string that holds your regular expression and converts it into a tree structure or state
machine. The function that does the actual pattern matching will traverse this tree or
state machine as it scans the string. Programming languages that support literal regular
expressions do the compilation when execution reaches the regular expression
operator.

{NET

In C# and VB.NET, the .NET class System.Text.RegularExpressions.Regex holds one
compiled regular expression. The simplest constructor takes just one parameter: a
string that holds your regular expression.

If there’s a syntax error in the regular expression, the Regex() constructor will throw
an ArgumentException. The exception message will indicate exactly which error was
encountered. It is important to catch this exception if the regular expression is provided
by the user of your application. Display the exception message and ask the user to
correct the regular expression. If your regular expression is a hardcoded string literal,

3.3 Create Regular Expression Objects | 121

www.it-ebooks.info

http://www.it-ebooks.info/

you can omit catching the exception if you use a code coverage tool to make sure the
line is executed without throwing an exception. There are no possible changes to state
or mode that could cause the same literal regex to compile in one situation and fail to
compilein another. Note thatif there is a syntax error in your literal regex, the exception
will occur when your application is run, not when your application is compiled.

You should construct a Regex object if you will be using the regular expression inside
a loop or repeatedly throughout your application. Constructing the regex object in-
volves no extra overhead. The static members of the Regex class that take the regex as
a string parameter construct a Regex object internally anyway, so you might just as well
do it in your own code and keep a reference to the object.

If you plan to use the regex only once or a few times, you can use the static members
of the Regex class instead, to save a line of code. The static Regex members do not throw
away the internally constructed regular expression object immediately; instead, they
keep a cache of the 15 most recently used regular expressions. You can change the cache
size by setting the Regex.CacheSize property. The cache lookup is done by looking up
your regular expression string in the cache. But don’t go overboard with the cache. If
you need lots of regex objects frequently, keep a cache of your own that you can look
up more efficiently than with a string search.

Java

In Java, the Pattern class holds one compiled regular expression. You can create objects
of this class with the Pattern.compile() class factory, which requires just one param-
eter: a string with your regular expression.

If there’s a syntax error in the regular expression, the Pattern.compile() factory will
throw a PatternSyntaxException. The exception message will indicate exactly which
error was encountered. It is important to catch this exception if the regular expression
is provided by the user of your application. Display the exception message and ask the
user to correct the regular expression. If your regular expression is a hardcoded string
literal, you can omit catching the exception if you use a code coverage tool to make
sure the line is executed without throwing an exception. There are no possible changes
to state or mode that could cause the same literal regex to compile in one situation and
fail to compile in another. Note that if there is a syntax error in your literal regex, the
exception will occur when your application is run, not when your application is
compiled.

Unless you plan to use a regex only once, you should create a Pattern object instead of
using the static members of the String class. Though it takes a few lines of extra code,
that code will run more efficiently. The static calls recompile your regex each and every
time. In fact, Java provides static calls for only a few very basic regex tasks.

A Pattern object only stores a compiled regular expression; it does not do any actual
work. The actual regex matching is done by the Matcher class. To create a Matcher, call

122 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

the matcher () method on your compiled regular expression. Pass the subject string as
the only argument to matcher ().

You can call matcher () as many times as you like to use the same regular expression on
multiple strings. You can work with multiple matchers using the same regex at the same
time, as long as you keep everything in a single thread. The Pattern and Matcher
classes are not thread-safe. If you want to use the same regex in multiple threads, call
Pattern.compile() in each thread.

Ifyou’re done applying a regex to one string and want to apply the same regex to another
string, you can reuse the Matcher object by calling reset(). Pass the next subject string
as the only argument. This is more efficient than creating a new Matcher object.
reset() returns the same Matcher you called it on, allowing you to easily reset and use
a matcher in one line of code—for example, regexMatcher.reset (nextString).find().

JavaScript

The notation for literal regular expressions shown in Recipe 3.2 already creates a new
regular expression object. To use the same object repeatedly, simply assign it to a
variable.

If you have a regular expression stored in a string variable (e.g., because you asked the
user to type in a regular expression), use the RegExp() constructor to compile the regular
expression. Notice that the regular expression inside the string is not delimited by
forward slashes. Those slashes are part of JavaScript’s notation for literal RegExp objects,
rather than part of the regular expression itself.

Since assigning a literal regex to a variable is trivial, most of the
JavaScript solutions in this chapter omit this line of code and use
% the literal regular expression directly. In your own code, when using the
" same regex more than once, you should assign the regex to a variable
and use that variable instead of pasting the same literal regex multiple
times into your code. This increases performance and makes your code
easier to maintain.

XRegExp

If you want to use XRegExp’s enhancements to JavaScript’s regular expression syntax,
you have to use the XRegExp() constructor to compile the regular expression. For best
performance when using the same regular expression repeatedly, you should assign it
to a variable. Pass that variable to methods of the XRegExp class when using the regular
expression.

In situations where it isn’t practical to keep a variable around to hold the XRegExp object,
you can use the XRegExp. cache() method to compile the regular expression. This meth-
od will compile each regular expression only once. Each time you call it with the same
parameters, it will return the same XRegExp instance.

3.3 Create Regular Expression Objects | 123

www.it-ebooks.info

http://www.it-ebooks.info/

PHP

PHP does not provide a way to store a compiled regular expression in a variable.
Whenever you want to do something with a regular expression, you have to pass it as
a string to one of the preg functions.

The preg functions keep a cache of up to 4,096 compiled regular expressions. Although
the hash-based cache lookup is not as fast as referencing a variable, the performance
hit is not as dramatic as having to recompile the same regular expression over and over.
When the cache is full, the regex that was compiled the longest ago is removed.

Perl

You can use the “quote regex” operator to compile a regular expression and assign it
to a variable. It uses the same syntax as the match operator described in Recipe 3.1,
except that it starts with the letters qr instead of the letter m.

Perl is generally quite efficient at reusing previously compiled regular expressions.
Therefore, we don’t use qr// in the code samples in this chapter. Only Recipe 3.5
demonstrates its use.

qr// is useful when you’re interpolating variables in the regular expression or when
you’ve retrieved the whole regular expression as a string (e.g., from user input). With
qr/$regexstring/, you can control when the regex is recompiled to reflect the new
contents of $regexstring. m/$regexstring/ would recompile the regex every time,
whereas m/$regexstring/o never recompiles it. Recipe 3.4 explains /o.

Python

The compile() function in Python’s re module takes a string with your regular expres-
sion, and returns an object with your compiled regular expression.

You should call compile() explicitly if you plan to use the same regular expression
repeatedly. All the functions in the re module first call compile(), and then call the
function you wanted on the compiled regular expression object.

The compile() function keeps a reference to the last 100 regular expressions that it
compiled. This reduces the recompilation of any of the last 100 used regular expressions
to a dictionary lookup. When the cache is full, it is cleared out entirely.

If performance is not an issue, the cache works well enough that you can use the func-
tions in the re module directly. But when performance matters, calling compile() is a
good idea.

Ruby

The notation for literal regular expressions shown in Recipe 3.2 already creates a
new regular expression object. To use the same object repeatedly, simply assign it to a
variable.

124 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

If you have a regular expression stored in a string variable (e.g., because you asked the
user to type in a regular expression), use the Regexp.new() factory or its synonym
Regexp.compile() to compile the regular expression. Notice that the regular expression
inside the string is not delimited by forward slashes. Those slashes are part of Ruby’s
notation for literal Regexp objects and are not part of the regular expression itself.

W

Since assigning a literal regex to a variable is trivial, most of the Ruby
solutions in this chapter omit this line of code and use the literal regular
* Qlae expression directly. In your own code, when using the same regex more
" than once, you should assign the regex to a variable and use the variable
instead of pasting the same literal regex multiple times into your code.
This increases performance and makes your code easier to maintain.

Compiling a Regular Expression Down to CIL

G
Regex regexObj = new Regex("regex pattern", RegexOptions.Compiled);

VB.NET
Dim RegexObj As New Regex("regex pattern", RegexOptions.Compiled)

Discussion

When you construct a Regex object in .NET without passing any options, the regular
expression is compiled in the way we described in “Discussion” on page 121. If you
pass RegexOptions.Compiled as a second parameter to the Regex() constructor, the
Regex class does something rather different: it compiles your regular expression down
to CIL, also known as MSIL. CIL stands for Common Intermediate Language, a low-
level programming language that is closer to assembly than to C# or Visual Basic.
All .NET compilers produce CIL. The first time your application runs, the .NET
Framework compiles the CIL further down to machine code suitable for the user’s
computer.

The benefit of compiling a regular expression with RegexOptions.Compiled is that it can
run up to 10 times faster than a regular expression compiled without this option.
The drawback is that this compilation can be up to two orders of magnitude slower
than simply parsing the regex string into a tree. The CIL code also becomes a permanent
part of your application until it is terminated. CIL code is not garbage collected.

Use RegexOptions.Compiled only if a regular expression is either so complex or needs
to process so much text that the user experiences a noticeable wait during operations
using the regular expression. The compilation and assembly overhead is not worth it
for regexes that do their job in a split second.

3.3 Create Regular Expression Objects | 125

www.it-ebooks.info

http://www.it-ebooks.info/

See Also
Recipe 3.1 explains how to insert regular expressions as literal strings into source code.

Recipe 3.2 explains how to import the regular expression library into your source code.
Some programming languages require this extra step before you can create regular
expression objects.

Recipe 3.4 explains how to set regular expression options, which is done as part of
literal regular expressions in some programming languages.

3.4 Set Regular Expression Options

Problem

You want to compile a regular expression with all of the available matching modes:
free-spacing, case insensitive, dot matches line breaks, and “” and $ match at line

breaks.”
Solution

G

Regex regexObj = new Regex("regex pattern",
RegexOptions.IgnorePatternWhitespace | RegexOptions.IgnoreCase |
RegexOptions.Singleline | RegexOptions.Multiline);

VB.NET

Dim RegexObj As New Regex("regex pattern",
RegexOptions.IgnorePatternWhitespace Or RegexOptions.IgnoreCase Or
RegexOptions.Singleline Or RegexOptions.Multiline)

Java

Pattern regex = Pattern.compile("regex pattern",
Pattern.COMMENTS | Pattern.CASE_INSENSITIVE | Pattern.UNICODE CASE |
Pattern.DOTALL | Pattern.MULTILINE);

JavaScript
Literal regular expression in your code:
var myregexp = /regex pattern/im;
Regular expression retrieved from user input, as a string:

var myregexp = new RegExp(userinput, "im");

126 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

XRegExp

var myregexp = XRegExp("regex pattern", "xism");

PHP

regexstring = '/regex pattern/xism';

Perl

m/regex pattern/xism;

Python

reobj = re.compile(“"regex pattern",
re.VERBOSE | re.IGNORECASE |
re.DOTALL | re.MULTILINE)

Ruby

Literal regular expression in your code:
myregexp = /regex pattern/xim;

Regular expression retrieved from user input, as a string:
myregexp = Regexp.new(userinput,

Regexp: :EXTENDED or Regexp::IGNORECASE or
Regexp: :MULTILINE);

Discussion

Many of the regular expressions in this book, and those that you find elsewhere, are
written to be used with certain regex matching modes. There are four basic modes that
nearly all modern regex flavors support. Unfortunately, some flavors use inconsistent
and confusing names for the options that implement the modes. Using the wrong
modes usually breaks the regular expression.

All the solutions in this recipe use flags or options provided by the programming lan-
guage or regular expression class to set the modes. Another way to set modes is to use
mode modifiers within the regular expression. Mode modifiers within the regex always
override options or flags set outside the regular expression.

{NET

The Regex() constructor takes an optional second parameter with regular expressions
options. You can find the available options in the RegexOptions enumeration.

Free-spacing: RegexOptions.IgnorePatternWhitespace
(ase insensitive: RegexOptions.IgnoreCase
Dot matches line breaks: RegexOptions.Singleline

3.4 Set Regular Expression Options | 127

www.it-ebooks.info

http://www.it-ebooks.info/

A and $ match at line breaks: RegexOptions.Multiline

Java

The Pattern.compile() class factory takes an optional second parameter with regular
expression options. The Pattern class defines several constants that set the various
options. You can set multiple options by combining them with the bitwise inclusive or
operator |.

Free-spacing: Pattern.COMMENTS

Case insensitive: Pattern.CASE_INSENSITIVE | Pattern.UNICODE_CASE
Dot matches line breaks: Pattern.DOTALL

A and $ match at line breaks: Pattern.MULTILINE

There are indeed two options for case insensitivity, and you have to set both for full
case insensitivity. If you set only Pattern.CASE_INSENSITIVE, only the English letters A
to Z are matched case insensitively. If you set both options, all characters from all scripts
are matched case insensitively. The only reason not to use Pattern.UNICODE CASE is
performance, in case you know in advance you’ll be dealing with ASCII text only. When
using mode modifiers inside your regular expression, use <(?i)> for ASCllI-only case
insensitivity and «<(?iu)> for full case insensitivity.

JavaScript

In JavaScript, you can specify options by appending one or more single-letter flags to
the RegExp literal, after the forward slash that terminates the regular expression. When
talking about these flags in documentation, they are usually written as /i and /m, even
though the flag itself is only one letter. No additional slashes are added to specify regex
mode flags.

When using the RegExp() constructor to compile a string into a regular expression, you
can pass an optional second parameter with flags to the constructor. The second pa-
rameter should be a string with the letters of the options you want to set. Do not put
any slashes into the string.

Free-spacing: Not supported by JavaScript.

Case insensitive: /1

Dot matches line breaks: Not supported by JavaScript.
A and $ match at line breaks: /m

XRegExp

XRegExp extends JavaScript’s regular expression syntax, adding support for the “free-
spacing” and “dot matches line breaks” modes with the letters “x” and “s” commonly
used by other regular expression flavors. Pass these letters in the string with the flags

in the second parameter to the XRegExp() constructor.

Free-spacing: "x"

128 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

(Case insensitive: "i"
Dot matches line breaks: "s"
A and $ match at line breaks: "m"

PHP

Recipe 3.1 explains that the PHP preg functions require literal regular expressions to
be delimited with two punctuation characters, usually forward slashes, and the whole
lot formatted as a string literal. You can specify regular expression options by appending
one or more single-letter modifiers to the end of the string. That is, the modifier letters
come after the closing regex delimiter, but still inside the string’s single or double
quotes. When talking about these modifiers in documentation, they are usually written
as /x, even though the flag itself is only one letter, and even though the delimiter be-
tween the regex and the modifiers doesn’t have to be a forward slash.

Free-spacing: /x

(Case insensitive: /i

Dot matches line breaks: /s

A and $ match at line breaks: /m

Perl

You can specify regular expression options by appending one or more single-letter
modifiers to the end of the pattern-matching or substitution operator. When talking
about these modifiers in documentation, they are usually written as /x, even though
the flag itself is only one letter, and even though the delimiter between the regex and
the modifiers doesn’t have to be a forward slash.

Free-spacing: /x

Case insensitive: /i

Dot matches line breaks: /s

A and $ match at line breaks: /m

Python

The compile() function (explained in the previous recipe) takes an optional second
parameter with regular expression options. You can build up this parameter by using
the | operator to combine the constants defined in the re module. Many of the other
functions in the re module that take a literal regular expression as a parameter also
accept regular expression options as a final and optional parameter.

The constants for the regular expression options come in pairs. Each option can be
represented either as a constant with a full name or as just a single letter. Their func-
tionality is equivalent. The only difference is that the full name makes your code easier
to read by developers who aren’t familiar with the alphabet soup of regular expression
options. The basic single-letter options listed in this section are the same as in Perl.

3.4 Set Regular Expression Options | 129

www.it-ebooks.info

http://www.it-ebooks.info/

Free-spacing: re.VERBOSE or re.X

(ase insensitive: re. IGNORECASE or re.I

Dot matches line breaks: re.DOTALL or re.S

A and $ match at line breaks: re .MULTILINE or re.M

Ruby

In Ruby, you can specify options by appending one or more single-letter flags to the
Regexp literal, after the forward slash that terminates the regular expression. When
talking about these flags in documentation, they are usually written as /i and /m, even
though the flag itself is only one letter. No additional slashes are added to specify regex
mode flags.

When using the Regexp.new() factory to compile a string into a regular expression, you
can pass an optional second parameter with flags to the constructor. The second pa-
rameter should be either nil to turn off all options, or a combination of constants from
the Regexp class combined with the or operator.

Free-spacing: /r or Regexp: : EXTENDED

Case insensitive: /i or Regexp: : IGNORECASE

Dot matches line breaks: /m or Regexp::MULTILINE. Ruby indeed uses “m” and
“multiline” here, whereas all the other flavors use “s” or “singleline” for “dot
matches line breaks.”

A and $ match at line breaks: The caret and dollar always match at line breaks in Ruby.
You cannot turn this off. Use <\\A> and «\2> to match at the start or end of the subject

string.
Additional Language-Specific Options

{NET

RegexOptions.ExplicitCapture makes all groups, except named groups, noncapturing.
With this option, «(***)> is the same as «(?:*). If you always name your capturing
groups, turn on this option to make your regular expression more efficient without the
need to use the ¢(?:°)> syntax. Instead of using RegexOptions.ExplicitCapture, you
can turn on this option by putting <(?n)> at the start of your regular expression. See
Recipe 2.9 to learn about grouping. Recipe 2.11 explains named groups.

Specify RegexOptions.ECMAScript if you’re using the same regular expression in
your .NET code and in JavaScript code, and you want to make sure it behaves in the
same way. This is particularly useful when you’re developing the client side of a web
application in JavaScript and the server side in ASP.NET. The most important effect is
that with this option, (\w> and <\d> are restricted to ASCII characters, as they are in
JavaScript.

130 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

Java

An option unique to Java is Pattern.CANON_EQ, which enables “canonical equivalence.”
As explained in the discussion in “Unicode grapheme” on page 58, Unicode provides
different ways to represent characters with diacritics. When you turn on this option,
your regex will match a character, even if it is encoded differently in the subject string.
For instance, the regex <\u0oE0> will match both "\u0ooE0" and "\u0061\u0300", because
they are canonically equivalent. They both appear as “a4” when displayed on screen,
indistinguishable to the end user. Without canonical equivalence, the regex <\uooEo»
does not match the string "\u0061\u0300". This is how all other regex flavors discussed
in this book behave.

In Java 7, you can set Pattern.UNICODE CHARACTER CLASS to make shorthand character
classes match Unicode characters rather than just ASCII characters. See “Short-
hands” on page 35 in Recipe 2.3 for details.

Finally, Pattern.UNIX_LINES tells Java to treat only <\n> as a line break character for the
dot, caret, and dollar. By default, all Unicode line breaks are treated as line break
characters.

JavaScript

If you want to apply a regular expression repeatedly to the same string (e.g., to iterate
over all matches or to search and replace all matches instead of just the first) specify
the /g or “global” flag.

XRegExp

XRegExp needs the “g” flag if you want to apply a regular expression repeatedly to the
same string just as standard JavaScript does. XRegExp also adds the “n” flag which
makes all groups, except named groups, noncapturing. With this option, <(--*) is the
same as <(?:--)». If you always name your capturing groups, turn on this option to
make your regular expression more efficient without the need to use the <(?:---)» syntax.
See Recipe 2.9 to learn about grouping. Recipe 2.11 explains named groups.

PHP

/u tells PCRE to interpret both the regular expression and the subject string as UTF-8
strings. This modifier also enables Unicode regex tokens such as <\x{FFFF}> and
Ap{L}>. These are explained in Recipe 2.7. Without this modifier, PCRE treats each
byte as a separate character, and Unicode regex tokens cause an error.

/U flips the “greedy” and “lazy” behavior of adding an extra question mark to a quan-
tifier. Normally, <.*) is greedy and <.*?> is lazy. With /U, <.*) is lazy and <.*?> is greedy.
We strongly recommend that you never use this flag, as it will confuse programmers
who read your code later and miss the extra /U modifier, which is unique to PHP. Also,

3.4 Set Regular Expression Options | 131

www.it-ebooks.info

http://www.it-ebooks.info/

don’t confuse /U with /u if you encounter it in somebody else’s code. Regex modifiers
are case sensitive.

Perl

If you want to apply a regular expression repeatedly to the same string (e.g., to iterate
over all matches or to search-and-replace all matches instead of just the first one),
specify the /g (“global”) flag.

If you interpolate a variable in a regex as inm/I am $name/ then Perl will recompile the
regular expression each time it needs to be used, because the contents of $name may
have changed. You can suppress this with the /o modifier. m/I am $name/o is compiled
the first time Perl needs to use it, and then reused the way it is after that. If the contents
of $name change, the regex will not reflect the change. See Recipe 3.3 if you want to
control when the regex is recompiled.

If your regex uses shorthand character classes or word boundaries, you can specify one
of the /d, /u, /a, or /1 flags to control whether the shorthands and word boundaries
will match only ASCII characters, or whether they use Unicode or the current locale.
The “Variations” sections in Recipes 2.3 and 2.3 have more details on what these flags
do in Perl.

Python

Python has two extra options that change the meaning of word boundaries (see
Recipe 2.6) and the shorthand character classes (\w>, (\d>, and \s>, as well as their
negated counterparts (see Recipe 2.3). By default, these tokens deal only with ASCII
letters, digits, and whitespace.

The re.LOCALE or re. L option makes these tokens dependent on the current locale. The
locale then determines which characters are treated as letters, digits, and whitespace
by these regex tokens. You should specify this option when the subject string is not a
Unicode string and you want characters such as letters with diacritics to be treated as
such.

The re.UNICODE or re.U makes these tokens dependent on the Unicode standard. All
characters defined by Unicode as letters, digits, and whitespace are then treated as such
by these regex tokens. You should specify this option when the subject string you’re
applying the regular expression to is a Unicode string.

Ruby

The Regexp.new() factory takes an optional third parameter to select the string encoding
your regular expression supports. If you do not specify an encoding for your regular
expression, it will use the same encoding as your source file. Most of the time, using
the source file’s encoding is the right thing to do.

132 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

To select a coding explicitly, pass a single character for this parameter. The parameter
is case-insensitive. Possible values are:

n
This stands for “None.” Each byte in your string is treated as one character. Use
this for ASCII text.
e
Enables the “EUC” encoding for Far East languages.
s
Enables the Japanese “Shift-JIS” encoding.
u

Enables UTF-8, which uses one to four bytes per character and supports all lan-
guages in the Unicode standard (which includes all living languages of any
significance).

When using a literal regular expression, you can set the encoding with the modi-
fiers /n, /e, /s, and /u. Only one of these modifiers can be used for a single regular
expression. They can be used in combination with any or all of the /x, /i, and /m
modifiers.

F—_ Do not mistake Ruby’s /s for that of Perl, Java, or .NET. In Ruby, /s
%@ forces the Shift-JIS encoding. In Perl and most other regex flavors, it
turns on “dot matches line breaks” mode. In Ruby, you can do that

with /m.

See Also

The effects of the matching modes are explained in detail in Chapter 2. Those sections
also explain the use of mode modifiers within the regular expression.

Free-spacing: Recipe 2.18
Case insensitive: “Case-insensitive matching” on page 29 in Recipe 2.1

Dot matches line breaks: Recipe 2.4
A and $ match at line breaks: Recipe 2.5

Recipes 3.1 and 3.3 explain how to use literal regular expressions in your source code
and how to create regular expression objects. You set the regular expression options
while creating a regular expression.

3.5 Test If a Match Can Be Found Within a Subject String

Problem

You want to check whether a match can be found for a particular regular expression
in a particular string. A partial match is sufficient. For instance, the regex «regexepat

3.5 Test If a Match Can Be Found Within a Subject String | 133

www.it-ebooks.info

http://www.it-ebooks.info/

tern> partially matches The regex pattern can be found. You don’t care about any of
the details of the match. You just want to know whether the regex matches the string.

Solution

G

For quick one-off tests, you can use the static call:

bool foundMatch = Regex.IsMatch(subjectString, "regex pattern");

If the regex is provided by the end user, you should use the static call with full exception
handling:

bool foundMatch = false;

try {
foundMatch = Regex.IsMatch(subjectString, UserInput);
} catch (ArgumentNullException ex) {
// Cannot pass null as the regular expression or subject string
} catch (ArgumentException ex) {
// Syntax error in the regular expression
}

To use the same regex repeatedly, construct a Regex object:

Regex regexObj = new Regex("regex pattern");
bool foundMatch = regexObj.IsMatch(subjectString);

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

bool foundMatch = false;

try {
Regex regexObj = new Regex(UserInput);

try {

foundMatch = regexObj.IsMatch(subjectString);
} catch (ArgumentNullException ex) {

// Cannot pass null as the regular expression or subject string
}

} catch (ArgumentException ex) {
// Syntax error in the regular expression
}

VB.NET
For quick one-off tests, you can use the static call:

Dim FoundMatch = Regex.IsMatch(SubjectString, "regex pattern")

If the regex is provided by the end user, you should use the static call with full exception
handling:

134 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

Dim FoundMatch As Boolean
Try
FoundMatch = Regex.IsMatch(SubjectString, UserInput)
Catch ex As ArgumentNullException
'Cannot pass Nothing as the regular expression or subject string
Catch ex As ArgumentException
'Syntax error in the regular expression
End Try

To use the same regex repeatedly, construct a Regex object:

Dim RegexObj As New Regex(“"regex pattern")
Dim FoundMatch = RegexObj.IsMatch(SubjectString)

The IsMatch() call should have SubjectString as the only parameter, and the call should
be made on the Regex0bj instance rather than the Regex class:

Dim FoundMatch = RegexObj.IsMatch(SubjectString)

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

Dim FoundMatch As Boolean
Try
Dim RegexObj As New Regex(UserInput)
Try
FoundMatch = Regex.IsMatch(SubjectString)
Catch ex As ArgumentNullException
'Cannot pass Nothing as the regular expression or subject string
End Try
Catch ex As ArgumentException
'Syntax error in the regular expression
End Try

Java
The only way to test for a partial match is to create a Matcher:

Pattern regex = Pattern.compile("regex pattern");
Matcher regexMatcher = regex.matcher(subjectString);
boolean foundMatch = regexMatcher.find();

If the regex is provided by the end user, you should use exception handling:

boolean foundMatch = false;
try {
Pattern regex = Pattern.compile(UserInput);
Matcher regexMatcher = regex.matcher(subjectString);
foundMatch = regexMatcher.find();
} catch (PatternSyntaxException ex) {
// Syntax error in the regular expression
}

3.5 Test If a Match Can Be Found Within a Subject String | 135

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript

if (/regex pattern/.test(subject)) {
// Successful match

} else {
// Match attempt failed

}

PHP

if (preg match('/regex pattern/', $subject)) {
Successful match

} else {
Match attempt failed

}

Perl
With the subject string held in the special variable $ _:

if (m/regex pattern/) {

Successful match
} else {

Match attempt failed
}

With the subject string held in the variable $subject:

if ($subject =~ m/regex pattern/) {
Successful match

} else {
Match attempt failed

}

Using a precompiled regular expression:

$regex = qr/regex pattern/;
if ($subject =~ $regex) {
Successful match
} else {
Match attempt failed
}

Python
For quick one-off tests, you can use the global function:

if re.search("regex pattern", subject):
Successful match

else:
Match attempt failed

136 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

To use the same regex repeatedly, use a compiled object:

reobj = re.compile("regex pattern")
if reobj.search(subject):

Successful match
else:

Match attempt failed

Ruby

if subject =~ /regex pattern/
Successful match
else
Match attempt failed
end

This code does exactly the same thing:

if /regex pattern/ =~ subject
Successful match
else
Match attempt failed
end

Discussion

The most basic task for a regular expression is to check whether a string matches the
regex. In most programming languages, a partial match is sufficient for the match
function to return true. The match function will scan through the entire subject string
to see whether the regular expression matches any part of it. The function returns true
as soon as a match is found. It returns false only when it reaches the end of the string
without finding any matches.

The code examples in this recipe are useful for checking whether a string contains
certain data. If you want to check whether a string fits a certain pattern in its entirety
(e.g., for input validation), use the next recipe instead.

C# and VB.NET

The Regex class provides four overloaded versions of the IsMatch() method, two of
which are static. This makes it possible to call IsMatch() with different parameters. The
subject string is always the first parameter. This is the string in which the regular ex-
pression will try to find a match. The first parameter must not be null. Otherwise,
IsMatch() will throw an ArgumentNullException.

You can perform the test in a single line of code by calling Regex.IsMatch() without
constructing a Regex object. Simply pass the regular expression as the second parameter
and pass regex options as an optional third parameter. If your regular expression has
a syntax error, an ArgumentException will be thrown by IsMatch(). If your regex is valid,

3.5 Test If a Match Can Be Found Within a Subject String | 137

www.it-ebooks.info

http://www.it-ebooks.info/

the call will return true if a partial match was found, or false if no match could be
found at all.

If you want to use the same regular expression on many strings, you can make your
code more efficient by constructing a Regex object first, and calling IsMatch() on that
object. The first parameter, which holds the subject string, is then the only required
parameter. You can specify an optional second parameter to indicate the character
index at which the regular expression should begin the check. Essentially, the number
you pass as the second parameter is the number of characters at the start of your subject
string that the regular expression should ignore. This can be useful when you’ve already
processed the string up to a point, and you want to check whether the remainder should
be processed further. If you specify a number, it must be greater than or equal to zero
and less than or equal to the length of the subject string. Otherwise, IsMatch() throws
an ArgumentOutOfRangeException.

Java

To test whether a regex matches a string partially or entirely, instantiate a Matcher object
as explained in Recipe 3.3. Then call the find() method on your newly created or newly
reset matcher.

Do not call String.matches(), Pattern.matches(), or Matcher.matches(). Those all re-
quire the regex to match the whole string.

JavaScript

To test whether a regular expression can match part of a string, call the test() method
on your regular expression. Pass the subject string as the only parameter.

regexp.test() returns true if the regular expression matches part or all of the subject
string, and false if it does not.

PHP

The preg_match() function can be used for a variety of purposes. The most basic way
to call it is with only the two required parameters: the string with your regular
expression, and the string with the subject text you want the regex to search through.
preg_match() returns 1 if a match can be found and 0 when the regex cannot match the
subject at all.

Later recipes in this chapter explain the optional parameters you can pass to
preg match().

Perl

In Perl, m// is in fact a regular expression operator, not a mere regular expression con-
tainer. If you use m// by itself, it uses the $_ variable as the subject string.

138 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

If you want to use the matching operator on the contents of another variable, use the
=~ binding operator to associate the regex operator with your variable. Binding the
regex to a string immediately executes the regex. The pattern-matching operator returns
true if the regex matches part of the subject string, and false if it doesn’t match at all.

If you want to check whether a regular expression does not match a string, you can
use !, which is the negated version of =".

Python

The search() function in the re module searches through a string to find whether the
regular expression matches part of it. Pass your regular expression as the first parameter
and the subject string as the second parameter. You can pass the regular expression
options in the optional third parameter.

The re.search() function calls re.compile(), and then calls the search() method on
the compiled regular expression object. This method takes just one parameter: the
subject string.

If the regular expression finds a match, search() returns a MatchObject instance. If the
regex fails to match, search() returns None. When you evaluate the returned value in
an if statement, the MatchObject evaluates to True, whereas None evaluates to False.
Later recipes in this chapter show how to use the information stored by MatchObject.

Don’t confuse search() with match(). You cannot use match() to find a
match in the middle of a string. The next recipe uses match().

Ruby

The =~ operator is the pattern-matching operator. Place it between a regular expression
and a string to find the first regular expression match. The operator returns an integer
with the position at which the regex match begins in the string. It returns nil if no
match can be found.

This operator is implemented in both the Regexp and String classes. In Ruby 1.8, it
doesn’t matter which class you place to the left and which to the right of the operator.
In Ruby 1.9, doing so has a special side effect involving named capturing groups.
Recipe 3.9 explains this.

In all the other Ruby code snippets in this book, we place the subject

string to the left of the =~ operator and the regular expression to the

%15 right. This maintains consistency with Perl, from which Ruby borrowed

" the =~ syntax, and avoids the Ruby 1.9 magic with named capturing
groups that people might not expect.

3.5 Test If a Match Can Be Found Within a Subject String | 139

www.it-ebooks.info

http://www.it-ebooks.info/

See Also
Recipe 3.6 shows code to test whether a regex matches a subject string entirely.

Recipe 3.7 shows code to get the text that was actually matched by the regex.

3.6 Test Whether a Regex Matches the Subject String Entirely

Problem

You want to check whether a string fits a certain pattern in its entirety. That is, you
want to check that the regular expression holding the pattern can match the string from
start to end. For instance, if your regex is <regexepattern, it will match input text
consisting of regex pattern but not the longer string The regex pattern can be found.

Solution

G
For quick one-off tests, you can use the static call:

bool foundMatch = Regex.IsMatch(subjectString, @"\Aregex pattern\z");
To use the same regex repeatedly, construct a Regex object:

Regex regexObj = new Regex(@"\Aregex pattern\z");
bool foundMatch = regexObj.IsMatch(subjectString);

VB.NET
For quick one-off tests, you can use the static call:

Dim FoundMatch = Regex.IsMatch(SubjectString, "\Aregex pattern\Z")
To use the same regex repeatedly, construct a Regex object:

Dim RegexObj As New Regex("\Aregex pattern\z")
Dim FoundMatch = RegexObj.IsMatch(SubjectString)

The IsMatch() call should have SubjectString as the only parameter, and the call should
be made on the Regex0bj instance rather than the Regex class:

Dim FoundMatch = RegexObj.IsMatch(SubjectString)

Java
If you want to test just one string, you can use the static call:

boolean foundMatch = subjectString.matches("regex pattern");

If you want to use the same regex on multiple strings, compile your regex and create a
matcher:

140 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

Pattern regex = Pattern.compile("regex pattern");
Matcher regexMatcher = regex.matcher(subjectString);
boolean foundMatch = regexMatcher.matches(subjectString);

JavaScript

if (/*regex pattern$/.test(subject)) {
// Successful match

} else {
// Match attempt failed

}

PHP

if (preg_match('/\Aregex pattern\z/', $subject)) {
Successful match

} else {
Match attempt failed

}

Perl

if ($subject =~ m/\Aregex pattern\z/) {
Successful match

} else {
Match attempt failed

}

Python
For quick one-off tests, you can use the global function:

if re.match(r"regex pattern\Z", subject):
Successful match

else:
Match attempt failed

To use the same regex repeatedly, use a compiled object:

reobj = re.compile(r"regex pattern\z")
if reobj.match(subject):

Successful match
else:

Match attempt failed

Ruby

if subject =~ /\Aregex pattern\z/
Successful match
else

3.6 Test Whether a Regex Matches the Subject String Entirely | 141

www.it-ebooks.info

http://www.it-ebooks.info/

Match attempt failed
end

Discussion

Normally, a successful regular expression match tells you that the pattern you want is
somewhere within the subject text. In many situations you also want to make sure it
completely matches, with nothing else in the subject text. Probably the most common
situation calling for a complete match is validating input. If a user enters a phone num-
ber or IP address but includes extraneous characters, you want to reject the input.

The solutions that use the anchors «$» and <\2> also work when you’re processing a file
line by line (Recipe 3.21), and the mechanism you’re using to retrieve the lines leaves
the line breaks at the end of the line. As Recipe 2.5 explains, these anchors also match
before a final line break, essentially allowing the final line break to be ignored.

In the following subsections, we explain the solutions for various languages in detail.

C#and VB.NET

The Regex class in the .NET Framework does not have a function for testing whether
a regex matches a string entirely. The solution is to add the start-of-string anchor <\A>
to the start of your regular expression, and the end-of-string anchor <\\2> to the end of
your regular expression. This way, the regular expression can only match a string either
in its entirety or not at all. If your regular expression uses alternation, as in <one|two|
three>, make sure to group the alternation before adding the anchors: <\A(?:one|two|
three)\2>.

With your regular expression amended to match whole strings, you can use the same
IsMatch() method as described in the previous recipe.

Java

Java has three methods called matches(). They all check whether a regex can match a
string entirely. These methods are a quick way to do input validation, without having
to enclose your regex with start-of-string and end-of-string anchors.

The String class has a matches() method that takes a regular expression as the only
parameter. It returns true or false to indicate whether the regex can match the whole
string. The Pattern class has a static matches() method, which takes two strings: the
first is the regular expression, and the second is the subject string. Actually, you can
pass any CharSequence as the subject string to Pattern.matches(). That’s the only reason
for using Pattern.matches() instead of String.matches().

Both String.matches() and Pattern.matches() recompile the regular expression each
time by calling Pattern.compile("regex").matcher(subjectString).matches(). Be-
cause the regex is recompiled each time, you should use these calls only when you want
to use the regex only once (e.g., to validate one field on an input form) or when efficiency

142 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

is not an issue. These methods don’t provide a way to specify matching options outside
of the regular expression. A PatternSyntaxException is thrown if your regular expres-
sion has a syntax error.

If you want to use the same regex to test many strings efficiently, you should compile
your regex and create and reuse a Matcher, as explained in Recipe 3.3. Then call

matches() on your Matcher instance. This function does not take any parameters, be-
cause you’ve already specified the subject string when creating or resetting the matcher.

JavaScript

JavaScript does not have a function for testing whether a regex matches a string entirely.
The solution is to add «* to the start of your regular expression, and «$» to the end of
your regular expression. Make sure that you do not set the /m flag for your regular
expression. Only without /m do the caret and dollar match only at the start and end of
the subject string. When you set /m, they also match at line breaks in the middle of the
string.

With the anchors added to your regular expression, you can use the same
regexp.test() method described in the previous recipe.

PHP

PHP does not have a function for testing whether a regex matches a string entirely. The
solution is to add the start-of-string anchor <\A» to the start of your regular expression,
and the end-of-string anchor (\\Z> to the end of your regular expression. This way, the
regular expression can only match a string either in its entirety or not at all. If your
regular expression uses alternation, as in <one|two|three>, make sure to group the al-
ternation before adding the anchors: (\A(?:one|two|three)\2.

With your regular expression amended to match whole strings, you can use the same
preg_match() function as described in the previous recipe.

Perl

Perl has only one pattern-matching operator, which is satisfied with partial matches. If
you want to check whether your regex matches the whole subject string, add the
start-of-string anchor <\A> to the start of your regular expression, and the end-of-string
anchor \\2> to the end of your regular expression. This way, the regular expression can
only match a string either in its entirety or not at all. If your regular expression uses
alternation, as in <one|two|three>, make sure to group the alternation before adding
the anchors: (\A(?:one|two|three)\2>.

With your regular expression amended to match whole strings, use it as described in
the previous recipe.

3.6 Test Whether a Regex Matches the Subject String Entirely | 143

www.it-ebooks.info

http://www.it-ebooks.info/

Python

The match() function is very similar to the search() function described in the previous
recipe. The key difference is that match() evaluates the regular expression only at the
very beginning of the subject string. If the regex does not match at the start of the string,
match() returns None right away. The search() function, however, will keep trying the
regex at each successive position in the string until it either finds a match or reaches
the end of the subject string.

Thematch() function does not require the regular expression to match the whole string.
A partial match is accepted, as long as it begins at the start of the string. If you want to
check whether your regex can match the whole string, append the end-of-string anchor
A\2> to your regular expression.

Ruby

Ruby’s Regexp class does not have a function for testing whether a regex matches a
string entirely. The solution is to add the start-of-string anchor <\A> to the start of your
regular expression, and the end-of-string anchor (\2> to the end of your regular
expression. This way, the regular expression can only match a string either in its entirety
or not at all. If your regular expression uses alternation, as in <one|two|three>, make
sure to group the alternation before adding the anchors: (\A(?:one|two|three)\2>.

With your regular expression amended to match whole strings, you can use the same
=~ operator as described in the previous recipe.

See Also
Recipe 2.5 explains in detail how anchors work.

Recipes 2.8 and 2.9 explain alternation and grouping. If your regex uses alternation
outside of any groups, you need to group your regex before adding the anchors. If your
regex does not use alternation, or if it uses alternation only within groups, then no extra
grouping is needed to make the anchors work as intended.

Follow Recipe 3.5 when partial matches are acceptable.

3.7 Retrieve the Matched Text

Problem

You have a regular expression that matches a part of the subject text, and you want to
extract the text that was matched. If the regular expression can match the string more
than once, you want only the first match. For example, when applying the regex
A\d+> to the string Do you like 13 or 42?, 13 should be returned.

144 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

Solution

C#
For quick one-off matches, you can use the static call:

string resultString = Regex.Match(subjectString, @"\d+").Value;

If the regex is provided by the end user, you should use the static call with full exception
handling:

string resultString = null;
try {
resultString = Regex.Match(subjectString, @"\d+").Value;
} catch (ArgumentNullException ex) {
// Cannot pass null as the regular expression or subject string
} catch (ArgumentException ex) {
// Syntax error in the regular expression
}

To use the same regex repeatedly, construct a Regex object:

Regex regexObj = new Regex(@"\d+");
string resultString = regex0Obj.Match(subjectString).Value;

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

string resultString = null;

try {
Regex regexObj = new Regex(@"\d+");

try {

resultString = regexObj.Match(subjectString).Value;
} catch (ArgumentNullException ex) {

// Cannot pass null as the subject string

} catch (ArgumentException ex) {
// Syntax error in the regular expression
}

VB.NET
For quick one-off matches, you can use the static call:

Dim ResultString = Regex.Match(SubjectString, "\d+").Value

If the regex is provided by the end user, you should use the static call with full exception
handling:

Dim ResultString As String = Nothing
Try
ResultString = Regex.Match(SubjectString, "\d+").Value

3.7 Retrieve the Matched Text | 145

www.it-ebooks.info

http://www.it-ebooks.info/

Catch ex As ArgumentNullException

'Cannot pass Nothing as the regular expression or subject string
Catch ex As ArgumentException

'Syntax error in the regular expression
End Try

To use the same regex repeatedly, construct a Regex object:

Dim RegexObj As New Regex("\d+")
Dim ResultString = RegexObj.Match(SubjectString).Value

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

Dim ResultString As String = Nothing
Try
Dim RegexObj As New Regex("\d+")
Try
ResultString = RegexObj.Match(SubjectString).Value
Catch ex As ArgumentNullException
'Cannot pass Nothing as the subject string
End Try
Catch ex As ArgumentException
'Syntax error in the regular expression
End Try

Java
Create a Matcher to run the search and store the result:

String resultString = null;
Pattern regex = Pattern.compile("\\d+");
Matcher regexMatcher = regex.matcher(subjectString);
if (regexMatcher.find()) {
resultString = regexMatcher.group();
}

If the regex is provided by the end user, you should use full exception handling:

String resultString = null;
try {
Pattern regex = Pattern.compile("\\d+");
Matcher regexMatcher = regex.matcher(subjectString);
if (regexMatcher.find()) {
resultString = regexMatcher.group();
}

} catch (PatternSyntaxException ex) {
// Syntax error in the regular expression
}

146 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript

var result = subject.match(/\d+/);
if (result) {
result = result[o];
} else {
result = '';
}

PHP

if (preg match('/\d+/', $subject, $groups)) {
$result = $groups[o0];

} else {
$result = '';
}
Perl
if ($subject =~ m/\d+/) {
$result = $&;
} else {
$result = '';
}
Python

For quick one-off matches, you can use the global function:

matchobj = re.search("regex pattern", subject)
if matchobj:

result = matchobj.group()
else:

result =

To use the same regex repeatedly, use a compiled object:

reobj = re.compile("regex pattern")
matchobj = reobj.search(subject)
if match:
result = matchobj.group()
else:
result =

Ruby
You can use the =~ operator and its magic $& variable:

if subject =~ /regex pattern/
result = $&
else

3.7 Retrieve the Matched Text | 147

www.it-ebooks.info

http://www.it-ebooks.info/

result =
end

Alternatively, you can call the match method on a Regexp object:

matchobj = /regex pattern/.match(subject)
if matchobj

result = matchobj[0]
else

result =
end

Discussion

Extracting the part of a longer string that fits the pattern is another prime job for regular
expressions. All programming languages discussed in this book provide an easy way to
get the first regular expression match from a string. The function will attempt the reg-
ular expression at the start of the string and continue scanning through the string until
the regular expression matches.

.NET

The .NET Regex class does not have a member that returns the string matched by the
regular expression. But it does have a Match() method that returns an instance of the
Match class. This Match object has a property called Value, which holds the text matched
by the regular expression. If the regular expression fails to match, it still returns a
Match object, but the Value property holds an empty string.

A total of five overloads allows you to call the Match() method in various ways. The
first parameter is always the string that holds the subject text in which you want the
regular expression to find a match. This parameter should not be null. Otherwise,
Match() will throw an ArgumentNullException.

If you want to use the regular expression only a few times, you can use a static call. The
second parameter is then the regular expression you want to use. You can pass regex
options as an optional third parameter. If your regular expression has a syntax error,
an ArgumentException will be thrown.

If you want to use the same regular expression on many strings, you can make your
code more efficient by constructing a Regex object first and then calling Match() on that
object. The first parameter with the subject string is then the only required parameter.
You can specify an optional second parameter to indicate the character index at which
the regular expression should begin to search. Essentially, the number you pass as the
second parameter is the number of characters at the start of your subject string that the
regular expression should ignore. This can be useful when you’ve already processed
the string up to a point and want to search the remainder of the string. If you specify
this number, it must be in the range from zero to the length of the subject string.
Otherwise, IsMatch() throws an ArgumentOutOfRangeException.

148 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

If you specify the second parameter with the starting position, you can specify a third
parameter that indicates the length of the substring the regular expression is allowed
to search through. This number must be greater than or equal to zero and must not
exceed the length of the subject string (first parameter) minus the starting offset (second
parameter). For instance, regexObj.Match("123456", 3, 2) tries to find a match in
"45". If the third parameter is greater than the length of the subject string, Match()
throws an ArgumentOutOfRangeException. If the third parameter is not greater than the
length of the subject string, but the sum of the second and third parameters is greater
than the length of the string, then another IndexOutOfRangeException is thrown. If you
allow the user to specify starting and ending positions, either check them before calling
Match() or make sure to catch both out-of-range exceptions.

The static overloads do not allow for the parameters that specify which part of the string
the regular expression can search through.

Java

To get the part of a string matched by a regular expression, you need to create a
Matcher, as explained in Recipe 3.3. Then call the find() method on your matcher,
without any parameters. If find() returns true, call group() without any parameters to
retrieve the text matched by your regular expression. If find() returns false, you should
not call group(), as all you’ll get is an I1legalStateException.

Matcher.find() takes one optional parameter with the starting position in the subject
string. You can use this to begin the search at a certain position in the string.
Specify zero to begin the match attempt at the start of the string. An IndexOut0fBound
sException is thrown if you set the starting position to a negative number, or to a
number greater than the length of the subject string.

If you omit the parameter, find() starts at the character after the previous match found
by find(). If you’re calling find() for the first time after Pattern.matcher() or
Matcher.reset(), then find() begins searching at the start of the string.

JavaScript

The string.match() method takes a regular expression as its only parameter. You can
pass the regular expression as a literal regex, a regular expression object, or as a string.
If you pass a string, string.match() creates a temporary regexp object.

When the match attempt fails, string.match() returns null. This allows you to differ-
entiate between a regex that finds no matches, and a regex that finds a zero-length
match. It does mean that you cannot directly display the result, as “null” or an error
about a null object may appear.

When the match attempt succeeds, string.match() returns an array with the details of
the match. Element zero in the array is a string that holds the text matched by the regular
expression.

3.7 Retrieve the Matched Text | 149

www.it-ebooks.info

http://www.it-ebooks.info/

Make sure that you do not add the /g flag to your regular expression. If you do,
string.match() behaves differently, as Recipe 3.10 explains.

PHP

The preg_match() function discussed in the previous two recipes takes an optional third
parameter to store the text matched by the regular expression and its capturing groups.
When preg_match() returns 1, the variable holds an array of strings. Element zero in
the array holds the overall regular expression match. The other elements are explained
in Recipe 3.9.

Perl

When the pattern-matching operator m// finds a match, it sets several special variables.
One of those is the $& variable, which holds the part of the string matched by the regular
expression. The other special variables are explained in later recipes.

Python

Recipe 3.5 explains the search() function. This time, we store the MatchObject instance
returned by search() into a variable. To get the part of the string matched by the regular
expression, we call the group() method on the match object without any parameters.

Ruby

Recipe 3.8 explains the $~ variable and the MatchData object. In a string context, this
object evaluates to the text matched by the regular expression. In an array context, this
object evaluates to an array with element number zero holding the overall regular ex-
pression match.

$& is a special read-only variable. It is an alias for $~[0], which holds a string with the
text matched by the regular expression.

See Also

Recipe 3.5 shows code to test whether a regex matches a subject string, without re-
trieving the actual match.

Recipe 3.8 shows code to determine the position and length of the match.

Recipe 3.9 shows code to get the text matched by a particular part (capturing group)
of a regex.

Recipe 3.10 shows code to get a list of all the matches a regex can find in a string.

Recipe 3.11 shows code to iterate over all the matches a regex can find in a string.

150 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

3.8 Determine the Position and Length of the Match

Problem

Instead of extracting the substring matched by the regular expression, as shown in the
previous recipe, you want to determine the starting position and length of the match.
With this information, you can extract the match in your own code or apply whatever
processing you fancy on the part of the original string matched by the regex.

Solution

G

For quick one-off matches, you can use the static call:

int matchstart, matchlength = -1;
Match matchResult = Regex.Match(subjectString, @"\d+");
if (matchResult.Success) {

matchstart = matchResult.Index;

matchlength = matchResult.Length;

}

To use the same regex repeatedly, construct a Regex object:

int matchstart, matchlength = -1;
Regex regexObj = new Regex(@"\d+");
Match matchResult = regexObj.Match(subjectString).Value;
if (matchResult.Success) {
matchstart = matchResult.Index;
matchlength = matchResult.Length;

}

VB.NET
For quick one-off matches, you can use the static call:

Dim MatchStart = -1
Dim MatchLength = -1
Dim MatchResult = Regex.Match(SubjectString, "\d+")
If MatchResult.Success Then
MatchStart = MatchResult.Index
MatchLength = MatchResult.Length
End If

To use the same regex repeatedly, construct a Regex object:

Dim MatchStart = -1

Dim MatchLength = -1

Dim RegexObj As New Regex("\d+")

Dim MatchResult = Regex.Match(SubjectString, "\d+")

3.8 Determine the Position and Length of the Match | 151

www.it-ebooks.info

http://www.it-ebooks.info/

If MatchResult.Success Then
MatchStart = MatchResult.Index
MatchLength = MatchResult.Length

End If

Java

int matchStart, matchLength = -1;
Pattern regex = Pattern.compile("\\d+");
Matcher regexMatcher = regex.matcher(subjectString);
if (regexMatcher.find()) {
matchStart = regexMatcher.start();
matchLength = regexMatcher.end() - matchStart;
}

JavaScript

var matchstart = -1;
var matchlength = -1;
var match = /\d+/.exec(subject);
if (match) {
matchstart = match.index;
matchlength = match[0].length;

PHP

if (preg_match('/\d+/', $subject, $groups, PREG OFFSET CAPTURE)) {
$matchstart = $groups[o][1];
$matchlength = strlen($groups[o][0]);

Perl

if ($subject =~ m/\d+/g)
$matchstart = $-[0];
$matchlength = $+[0] - $-[0];
}

Python
For quick one-off matches, you can use the global function:

matchobj = re.search(r"\d+", subject)
if matchobj:
matchstart = matchobj.start()
matchlength = matchobj.end() - matchstart

To use the same regex repeatedly, use a compiled object:

152 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

reobj = re.compile(r"\d+")
matchobj = reobj.search(subject)
if matchobj:
matchstart = matchobj.start()
matchlength = matchobj.end() - matchstart

Ruby

You can use the =~ operator and its magic $~ variable:

if subject =~ /regex pattern/
matchstart = $~.begin()
matchlength = $~.end() - matchstart
end

Alternatively, you can call the match method on a Regexp object:

matchobj = /regex pattern/.match(subject)
if matchobj

matchstart = matchobj.begin()

matchlength = matchobj.end() - matchstart
end

Discussion

NET

To get the match index and length, we use the same Regex.Match() method described
in the previous recipe. This time, we use the Index and Length properties of the Match
object returned by Regex.Match().

Index is the index in the subject string at which the regex match begins. If the regex
match begins at the start of the string, Index will be zero. If the match starts at the
second character in the string, Index will be one. The maximum value for Index is
the length of the string. That can happen when the regex finds a zero-length match at
the end of the string. For example, the regex consisting solely of the end-of-string anchor
A\2> always matches at the end of the string.

Length indicates the number of characters that were matched. It is possible for a valid
match to be zero characters long. For example, the regex consisting only of the word
boundary \b> will find a zero-length match at the start of the first word in the string.

If the match attempt fails, Regex.Match() still returns a Match object. Its Index and
Length properties will both be zero. These values can also happen with a successful
match. The regex consisting of the start-of-string anchor \\A> will find a zero-length
match at the start of the string. Thus, you cannot rely on Match.Index or
Match.Length to indicate whether the match attempt was successful. Use Match
.Success instead.

3.8 Determine the Position and Length of the Match | 153

www.it-ebooks.info

http://www.it-ebooks.info/

Java

To get the position and length of the match, call Matcher.find() as described in the
previous recipe. When find() returns true, call Matcher.start() without any parame-
ters to obtain the index of the first character that is part of the regex match. Call

end() without any parameters to get the index of the first character after the match.
Subtract the start from the end to get the length of the match, which can be zero. If you
call start() orend() without a prior call to find(), you’ll get an I11egalStateException.

JavaScript

Call the exec() method on a regexp object to get an array with details about the match.
This array has a few additional properties. The index property stores the position in
the subject string at which the regex match begins. If the match begins at the start of
the string, index will be zero. Element zero in the array holds a string with the overall
regex match. Get the length property of that string to determine the length of the match.

If the regular expression cannot match the string at all, regexp.exec() returns null.

Do not use the lastIndex property of the array returned by exec() to determine the
ending position of the match. In a strict JavaScript implementation, the lastIndex does
not exist in the returned array at all, but only in the regexp object itself. You shouldn’t
use regexp.lastIndex either. It is unreliable, due to cross-browser differences (see
Recipe 3.11 for more details). Instead, simply add up match.index and
match[0].1length to determine where the regex match ended.

PHP

The previous recipe explains how you can get the text matched by the regular expres-
sion by passing a third parameter to preg_match(). You can get the position of the match
by passing the constant PREG_OFFSET_CAPTURE as a fourth parameter. This parameter
changes what preg match() stores in the third parameter when it returns 1.

When you either omit the fourth parameter or set it to zero, the variable passed as the
third parameter receives an array of strings. When you pass PREG_OFFSET_CAPTURE as the
fourth parameter, the variable receives an array of arrays. Element zero in the overall
array is still the overall match (see the preceding recipe), and elements one and beyond
are still capturing groups one and beyond (see the next recipe). But instead of holding
a string with the text matched by the regex or a capturing group, the element holds an
array with two values: the text that was matched and the position in the string at which
it was matched.

To get the details of the overall match, subelement zero of element zero gives us the
text matched by the regex. We pass this to the strlen() function to calculate its length.
Subelement one of element zero holds an integer with the position in the subject string
at which the match starts.

154 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

Perl

Perl stores the position where the match of each capturing group starts in the array
@- and the position where each group ends in @-. The overall regex match is group
number zero. You can get starting position of the overall match with $-[0] and the
ending position with $+[0].

Python

The start() method of MatchObject returns the position in the string at which the
regular expression match begins. The end() method returns the position of the first
character after the match. Both methods return the same value when a zero-length
regular expression match is found.

You can pass a parameter to start() and end() to retrieve the range of text matched by
one of the capturing groups in the regular expressions. Call start(1) for the first cap-
turing group, end(2) for the second group, and so on. Python supports up to 99 cap-
turing groups. Group number 0 is the overall regular expression match. Any number
other than zero up to the number of capturing groups in the regular expression (with
99 being the ceiling) causes start() and end() to raise an IndexError exception. If the
group number is valid but the group did not participate in the regex match, start()
and end() both return -1 for that group.

If you want to store both the starting and ending positions in a tuple, call the span()
method on the match object.

Ruby

Recipe 3.5 uses the =~ operator to find the first regex match in a string. A side effect of
this operator is that it fills the special $~ variable with an instance of the MatchData class.
This variable is thread-local and method-local. That means you can use the contents
of this variable until your method exits or until the next time you use the =~ operator
in your method, without worrying that another thread or another method in your
thread will overwrite it.

If you want to keep the details of multiple regex matches, call the match() method on
a Regexp object. This method takes a subject string as its only parameter. It returns a
MatchData instance when a match can be found, or nil otherwise. It also sets the $~
variable to the same MatchObject instance, but does not overwrite other MatchObject
instances stored in other variables.

The MatchData object stores all the details about a regular expression match. Recipes
3.7 and 3.9 explain how to get the text matched by the regular expression and by
capturing groups.

The begin() method returns the position in the subject string at which the regex match
begins. end() returns the position of the first character after the regex match.
offset() returns an array with the beginning and ending positions. These three meth-

3.8 Determine the Position and Length of the Match | 155

www.it-ebooks.info

http://www.it-ebooks.info/

ods take one parameter. Pass 0 to get the positions of the overall regex match, or pass
a positive number to get the positions of the specified capturing group. For example,
begin(1) returns the start of the first capturing group.

Do notuse length() or size() to get the length of the match. Both these methods return
the number of elements in the array that MatchData evaluates to in array context, as
explained in Recipe 3.9.

See Also

Recipe 3.5 shows code to test whether a regex matches a subject string, without re-
trieving the actual match.

Recipe 3.7 shows code to get the text that was actually matched by the regex.

Recipe 3.9 shows code to get the text matched by a particular part (capturing group)
of a regex.

3.9 Retrieve Part of the Matched Text

Problem

As in Recipe 3.7, you have a regular expression that matches a substring of the subject
text, but this time you want to match just one part of that substring. To isolate the part
you want, you added a capturing group to your regular expression, as described in
Recipe 2.9.

For example, the regular expression <http://([a-z0-9.-]+)> matches http://www.regex
cookbook.comin the string Please visit http://www.regexcookbook.com for more infor
mation. The part of the regex inside the first capturing group matches www.regexcook
book.com, and you want to retrieve the domain name captured by the first capturing
group into a string variable.

We’'re using this simple regex to illustrate the concept of capturing groups. See Chap-
ter 8 for more accurate regular expressions for matching URLs.

Solution

€

For quick one-off matches, you can use the static call:
string resultString = Regex.Match(subjectString,
"http://([a-z0-9.-]1+)").Groups[1].Value;
To use the same regex repeatedly, construct a Regex object:

Regex regexObj = new Regex("http://([a-z0-9.-]+)");
string resultString = regexObj.Match(subjectString).Groups[1].Value;

156 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

VB.NET

For quick one-off matches, you can use the static call:

Dim ResultString = Regex.Match(SubjectString,
"http://([a-20-9.-]+)").Groups(1).Value

To use the same regex repeatedly, construct a Regex object:

Dim RegexObj As New Regex("http://([a-z0-9.-]1+)")
Dim ResultString = RegexObj.Match(SubjectString).Groups(1).Value

Java

String resultString = null;
Pattern regex = Pattern.compile("http://([a-20-9.-]+)");
Matcher regexMatcher = regex.matcher(subjectString);
if (regexMatcher.find()) {
resultString = regexMatcher.group(1);
}

JavaScript

var result;
var match = /http:\/\/([a-2z0-9.-]+)/.exec(subject);
if (match) {
result = match[1];
} else {
result = "";
}

PHP

if (preg match('%http://([a-z0-9.-]1+)%", $subject, $groups)) {
$result = $groups[1];

} else {
$result = '';
}
Perl
if ($subject =~ mlhttp://([a-20-9.-1+)!) {
$result = $1;
} else {
$result = '';
}
Python

For quick one-off matches, you can use the global function:

3.9 Retrieve Part of the Matched Text | 157

www.it-ebooks.info

http://www.it-ebooks.info/

matchobj = re.search("http://([a-z0-9.-]+)", subject)
if matchobj:

result = matchobj.group(1)
else:

result =

To use the same regex repeatedly, use a compiled object:

reobj = re.compile("http://([a-20-9.-]+)")
matchobj = reobj.search(subject)
if match:
result = matchobj.group(1)
else:
result =

Ruby
You can use the =~ operator and its magic numbered variables, such as $1:

if subject =~ %r!http://([a-z0-9.-]+)!
result = $1
else
result =
end

Alternatively, you can call the match method on a Regexp object:

matchobj = %r!http://([a-z0-9.-]+)!.match(subject)
if matchobj
result
else
result =
end

matchobj[1]

Discussion

Recipe 2.10 and Recipe 2.21 explain how you can use numbered backreferences in the
regular expression and the replacement text to match the same text again, or to insert
part of the regex match into the replacement text. You can use the same reference
numbers to retrieve the text matched by one or more capturing groups in your code.

In regular expressions, capturing groups are numbered starting at one. Programming
languages typically start numbering arrays and lists at zero. All programming languages
discussed in this book that store capturing groups in an array or list use the same
numbering for capturing groups as the regular expression, starting at one. The zeroth
element in the array or list is used to store the overall regular expression match. This
means that if your regular expression has three capturing groups, the array storing their
matches will have four elements. Element zero holds the overall match, and elements
one, two, and three store the text matched by the three capturing groups.

158 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

{NET

To retrieve details about capturing groups, we again resort to the Regex.Match() mem-
ber function, first explained in Recipe 3.7. The returned Match object has a property
called Groups. This is a collection property of type GroupCollection. The collection
holds the details for all the capturing groups in your regular expression. Groups[1] holds
the details for the first capturing group, Groups[2] the second group, and so on.

The Groups collection holds one Group object for each capturing group. The Group class
has the same properties as the Match class, except for the Groups property.
Match.Groups[1].Value returns the text matched by the first capturing group, in the
same way thatMatch.Value returns the overall regex match. Match.Groups[1].Index and
Match.Groups[1].Length return the starting position and length of the text matched by
the group. See Recipe 3.8 for more details on Index and Length.

Groups[0] holds the details for the overall regex match, which are also held by the match
object directly. Match.Value and Match.Groups[0].Value are equivalent.

The Groups collection does not throw an exception if you pass an invalid group number.
For example, Groups[-1] still returns a Group object, but the properties of that Group
object will indicate that the fictional capturing group -1 failed to match. The best way
to test this is to use the Success property. Groups[-1].Success will return false.

To determine how many capturing groups there are, check Match.Groups.Count. The
Count property follows the same convention as the Count property for all collection
objects in .NET: it returns the number of elements in the collection, which is the highest
allowed index plus one. In our example, the Groups collection holds Groups[0] and
Groups[1]. Groups.Count thus returns 2.

Java

The code for getting either the text matched by a capturing group or the match details
of a capturing group is practically the same as that for the whole regex match, as shown
in the preceding two recipes. The group(), start() and end(), methods of the Matcher
class all take one optional parameter. Without this parameter, or with this parameter
set to zero, you get the match or positions of the whole regex match.

If you pass a positive number, you get the details of that capturing group. Groups are
numbered starting at one, just like backreferences in the regular expression itself. If you
specify a number higher than the number of capturing groups in your regular expres-
sion, these three functions throw an IndexOutOfBoundsException. If the capturing group
exists but did not participate in the match, group(n) returns null, whereas start(n)
and end(n) both return -1.

JavaScript

As explained in the previous recipe, the exec() method of a regular expression object
returns an array with details about the match. Element zero in the array holds the overall

3.9 Retrieve Part of the Matched Text | 159

www.it-ebooks.info

http://www.it-ebooks.info/

regex match. Element one holds the text matched by the first capturing group, element
two stores the second group’s match, etc.

If the regular expression cannot match the string at all, regexp.exec() returns null.

PHP

Recipe 3.7 explains how you can get the text matched by the regular expression by
passing a third parameter to preg_match(). When preg_match() returns 1, the parameter
is filled with an array. Element zero holds a string with the overall regex match.

Element one holds the text matched by the first capturing group, element two the text
from the second group, and so on. The length of the array is the number of capturing
groups plus one. Array indexes correspond to backreference numbers in the regular
expression.

If you specify the PREG_OFFSET_CAPTURE constant as the fourth parameter, as explained
in the previous recipe, then the length of the array is still the number of capturing groups
plus one. But instead of holding a string at each index, the array will hold subarrays
with two elements. Subelement zero is the string with the text matched by the overall
regex or the capturing group. Subelement one is an integer that indicates the position
in the subject string at which the matched text starts.

Perl

When the pattern-matching operatorm// finds a match, it sets several special variables.
Those include the numbered variables $1, $2, $3, etc., which hold the part of the string
matched by the capturing groups in the regular expression.

Python

The solution to this problem is almost identical to the one in Recipe 3.7. Instead of
calling group() without any parameters, we specify the number of the capturing group
we're interested in. Call group(1) to get the text matched by the first capturing group,
group(2) for the second group, and so on. Python supports up to 99 capturing
groups. Group number 0 is the overall regular expression match. If you pass a number
greater than the number of capturing groups in your regular expression, then group()
raises an IndexError exception. If the group number is valid but the group did not
participate in the regex match, group() returns None.

You can pass multiple group numbers to group() to get the text matched by several
capturing groups in one call. The result will be a list of strings.

If you want to retrieve a tuple with the text matched by all the capturing groups, you
can call the groups() method of MatchObject. The tuple will hold None for groups that
did not participate in the match. If you pass a parameter to groups(), that value is used
instead of None for groups that did not participate in the match.

160 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

If you want a dictionary instead of a tuple with the text matched by the capturing
groups, call groupdict() instead of groups(). You can pass a parameter to
groupdict() to put something other than None in the dictionary for groups that did not
participate in the match.

Ruby

Recipe 3.8 explains the $~ variable and the MatchData object. In an array context, this
object evaluates to an array with the text matched by all the capturing groups in your
regular expression. Capturing groups are numbered starting at 1, just like backrefer-
ences in the regular expression. Element 0 in the array holds the overall regular ex-
pression match.

$1, $2, and beyond are special read-only variables. $1 is a shortcut to $~[1], which holds
the text matched by the first capturing group. $2 retrieves the second group, and so on.

Named Capture

If your regular expression uses named capturing groups, you can use the group’s name
to retrieve its match in your code.

Gt
For quick one-off matches, you can use the static call:
string resultString = Regex.Match(subjectString,
"http://(?<domain>[a-z0-9.-]+)").Groups["domain"].Value;
To use the same regex repeatedly, construct a Regex object:
Regex regexObj = new Regex("http://(?<domain>[a-z0-9.-]+)");
string resultString = regexObj.Match(subjectString).Groups["domain"].Value;

In C#, there’s no real difference in the code for getting the Group object for a named
group compared with a numbered group. Instead of indexing the Groups collection with
an integer, index it with a string. Also in this case, .NET will not throw an exception if
the group does not exist. Match.Groups["nosuchgroup”].Success merely returns false.

VB.NET

For quick one-off matches, you can use the static call:
Dim ResultString = Regex.Match(SubjectString,
"http://(?<domain>[a-z0-9.-]+)").Groups("domain").Value
To use the same regex repeatedly, construct a Regex object:

Dim RegexObj As New Regex("http://(?<domain>[a-z0-9.-]+)")
Dim ResultString = RegexObj.Match(SubjectString).Groups("domain").Value

3.9 Retrieve Part of the Matched Text | 161

www.it-ebooks.info

http://www.it-ebooks.info/

In VB.NET, there’s no real difference in the code for getting the Group object for a named
group compared with a numbered group. Instead of indexing the Groups collection with
an integer, index it with a string. Also in this case, .NET will not throw an exception if
the group does not exist. Match.Groups("nosuchgroup").Success merely returns False.

Java

String resultString = null;
Pattern regex = Pattern.compile("http://(?<domain>[a-z0-9.-]+)");
Matcher regexMatcher = regex.matcher(subjectString);
if (regexMatcher.find()) {
resultString = regexMatcher.group("domain");
}

Java 7 adds support for named capturing groups. It also adds an overload to the
Matcher.group() method that takes the name of a capturing group as its parameter, and
returns the text matched by that capturing group. It throws an I1legalArgumentExcep
tion if you pass the name of a group that does not exist.

Unfortunately, the Matcher.start() and Matcher.end() methods do not have similar
overloads. If you want to get the start or the end of a named capturing group, you have
to reference it by its number. Java numbers both named and unnamed capturing groups
from left to right. The group(), start(), and end() methods of the Matcher class all take
one optional parameter. Without this parameter, or with this parameter set to zero,
you get the match or positions of the whole regex match.

XRegExp

var result;
var match = XRegExp.exec(subject,
XRegExp("http://(2<domain>[a-z0-9.-1+)"));
if (match) {
result = match.domain;
} else {
result = "";
}

XRegExp extends JavaScript’s regular expression syntax with named capture. XReg
Exp.exec() adds a property for each named capturing group to the match object it re-
turns, allowing you to easily reference each group by name.

PHP

if (preg_match('%http://(?P<domain>[a-z0-9.-]+)%", $subject, $groups)) {
$result = $groups['domain'];

} else {
$result = '';

}

162 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

If your regular expression has named capturing groups, then the array assigned to
$groups is an associative array. The text matched by each named capturing group is
added to the array twice. You can retrieve the matched text by indexing the array with
either the group’s number or the group’s name. In the code sample, $groups[0] stores
the overall regex match, whereas both $groups[1] and $groups['domain'] store the text
matched by the regular expression’s only capturing group.

Perl
if ($subject =~ '!http://(?<domain>[a-z0-9.-]+)%!) {
$result = $+{'domain'};
} else {
$result = '';
}

Perl supports named capturing groups starting with version 5.10. The %+ hash stores
the text matched by all named capturing groups. Perl numbers named groups along
with numbered groups. In this example, both $1 and $+{name} store the text matched
by the regular expression’s only capturing group.

Python

matchobj = re.search("http://(?P<domain>[a-z0-9.-]+)", subject)
if matchobj:

result = matchobj.group("domain")
else:

result =

If your regular expression has named capturing groups, you can pass the group’s name
instead of its number to the group() method.

Ruby

Ruby 1.9 adds support for named capture to the regular expression syntax. It also
extends the $~ variable and the MatchData object explained in Recipe 3.8 to support
named capture. $~["name"] or matchobj["name"] returns the text matched by the named
group “name.” Call matchobj.begin("name") and matchobj.end("name") to retrieve the
beginning and ending positions of the match of a named group.

See Also
Recipe 2.9 explains numbered capturing groups.

Recipe 2.11 explains named capturing groups.

3.9 Retrieve Part of the Matched Text | 163

www.it-ebooks.info

http://www.it-ebooks.info/

3.10 Retrieve a List of All Matches

Problem

All the preceding recipes in this chapter deal only with the first match that a regular
expression can find in the subject string. But in many cases, a regular expression that
partially matches a string can find another match in the remainder of the string. And
there may be a third match after the second, and so on. For example, the regex \d+
can find six matches in the subject string The lucky numbers are 7, 13, 16, 42, 65,
and 99: 7, 13, 16, 42, 65, and 99.

You want to retrieve the list of all substrings that the regular expression finds when it
is applied repeatedly to the remainder of the string, after each match.

Solution

(€
You can use the static call when you process only a small number of strings with the
same regular expression:

MatchCollection matchlist = Regex.Matches(subjectString, @"\d+");
Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Regex regexObj = new Regex(@"\d+");
MatchCollection matchlist = regexObj.Matches(subjectString);

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim MatchList = Regex.Matches(SubjectString, "\d+")

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim RegexObj As New Regex("\d+")
Dim MatchList = RegexObj.Matches(SubjectString)

Java

List<String> resultlist = new Arraylist<String>();

Pattern regex = Pattern.compile("\\d+");

Matcher regexMatcher = regex.matcher(subjectString);

while (regexMatcher.find()) {
resultlist.add(regexMatcher.group());

}

164 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript
var list = subject.match(/\d+/g);

PHP

preg match all('/\d+/', $subject, $result, PREG_PATTERN ORDER);
$result = $result[o];

Perl
@result = $subject =~ m/\d+/g;

This only works for regular expressions that don’t have capturing groups, so use
noncapturing groups instead. See Recipe 2.9 for details.

Python

If you process only a small number of strings with the same regular expression, you can
use the global function:

result = re.findall(r"\d+", subject)

To use the same regex repeatedly, use a compiled object:

reobj = re.compile(r"\d+")
result = reobj.findall(subject)

Ruby
result = subject.scan(/\d+/)

Discussion

{NET

The Matches() method of the Regex class applies the regular expression repeatedly to
the string, until all matches have been found. It returns a MatchCollection object that
holds all the matches. The subject string is always the first parameter. This is the string
in which the regular expression will try to find a match. The first parameter must not
be null. Otherwise, Matches() will throw an ArgumentNullException.

If you want to get the regex matches in only a small number of strings, you can use the
static overload of Matches(). Pass your subject string as the first parameter and your
regular expression as the second parameter. You can pass regular expression options
as an optional third parameter.

If you’ll be processing many strings, construct a Regex object first, and use that to call
Matches(). The subject string is then the only required parameter. You can specify an
optional second parameter to indicate the character index at which the regular expres-
sion should begin the check. Essentially, the number you pass as the second parameter

3.10 Retrieve a List of All Matches | 165

www.it-ebooks.info

http://www.it-ebooks.info/

is the number of characters at the start of your subject string that the regular expression
should ignore. This can be useful when you’ve already processed the string up to a
point and want to check whether the remainder should be processed further. If you
specify the number, it must be between zero and the length of the subject string. Other-
wise, IsMatch() throws an ArgumentOutOfRangeException.

The static overloads do not allow for the parameter that specifies where the regex at-
tempt should start in the string. There is no overload that allows you to tell
Matches() to stop before the end of the string. If you want to do that, you could call
Regex.Match("subject", start, stop) in aloop, as shown in the next recipe, and add
all the matches it finds to a list of your own.

Java

Java does not provide a function that retrieves the list of matches for you. You can easily
do this in your own code by adapting Recipe 3.7. Instead of calling find() in an if
statement, do it in a while loop.

To use the List and ArrayList classes, as in the example, put import java.util.*; at
the start of your code.

JavaScript

This code calls string.match(), just like the JavaScript solution to Recipe 3.7. There is
one small but very important difference: the /g flag. Regex flags are explained in
Recipe 3.4.

The /g flag tells the match() function to iterate over all matches in the string and put
them into an array. In the code sample, 1ist[0] will hold the first regex match,
list[1] the second, and so on. Check list.length to determine the number of matches.
If no matches can be found at all, string.match returns null as usual.

The elements in the array are strings. When you use a regex with the /g flag,
string.match() does not provide any further details about the regular expression
match. If you want to get match details for all regex matches, iterate over the matches
as explained in Recipe 3.11.

PHP

All the previous PHP recipes used preg_match(), which finds the first regex match in a
string. preg_match_all() is very similar. The key difference is that it will find all matches
in the string. It returns an integer indicating the number of times the regex could match.

The first three parameters for preg match_all() are the same as the first three for
preg match(): a string with your regular expression, the string you want to search
through, and a variable that will receive an array with the results. The only differences
are that the third parameter is required and the array is always multidimensional.

166 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

For the fourth parameter, specify either the constant PREG_PATTERN ORDER or
PREG_SET_ORDER. If you omit the fourth parameter, PREG_PATTERN_ORDER is the default.

If you use PREG_PATTERN_ORDER, you will get an array that stores the details of the overall
match at element zero, and the details of capturing groups one and beyond at elements
one and beyond. The length of the array is the number of capturing groups plus one.
This is the same order used by preg match(). The difference is that instead of each
element holding a string with the only regex match found by preg_match(), each ele-
ment holds a subarray with all the matches found by preg matches(). The length of
each subarray is the same as the value returned by preg_matches().

To get a list of all the regex matches in the string, discarding text matched by capturing
groups, specify PREG_PATTERN_ORDER and retrieve element zero in the array. If you're
only interested in the text matched by a particular capturing group, use PREG_PAT
TERN_ORDER and the capturing group’s number. For example, specifying $result[1] after
calling preg match('%http://([a-20-9.-]+)%', $subject, $result) gives you the list
of domain names of all the URLs in your subject string.

PREG_SET_ORDER fills the array with the same strings, but in a different way. The length
of the array is the value returned by preg matches(). Each element in the array is a
subarray, with the overall regex match in subelement zero and the capturing groups in
elements one and beyond. If you specify PREG_SET_ORDER, then $result[o0] holds the
same array as if you had called preg_match().

You can combine PREG_OFFSET CAPTURE with PREG_PATTERN_ORDER or PREG_SET ORDER.
Doing so has the same effect as passing PREG_OFFSET_CAPTURE as the fourth parameter
to preg_match(). Instead of each element in the array holding a string, it will hold a two-
element array with the string and the offset at which that string occurs in the original
subject string.

Perl

Recipe 3.4 explains that you need to add the /g modifier to enable your regex to find
more than one match in the subject string. If you use a global regex in a list context, it
will find all the matches and return them. In this recipe, the list variable to the left of
the assignment operator provides the list context.

If the regular expression does not have any capturing groups, the list will contain the
overall regex matches. If the regular expression does have capturing groups, the list will
contain the text matched by all the capturing groups for each regex match. The overall
regex match is not included, unless you put a capturing group around the whole regex.
If you only want to get a list of overall regex matches, replace all capturing groups with
noncapturing groups. Recipe 2.9 explains both kinds of grouping.

3.10 Retrieve a List of All Matches | 167

www.it-ebooks.info

http://www.it-ebooks.info/

Python

The findall() function in the re module searches repeatedly through a string to find
all matches of the regular expression. Pass your regular expression as the first parameter
and the subject string as the second parameter. You can pass the regular expression
options in the optional third parameter.

The re.findall() function calls re.compile(), and then calls the findall() method on
the compiled regular expression object. This method has only one required parameter:
the subject string.

The findall() method takes two optional parameters that the global re.findall()
function does not support. After the subject string, you can pass the character position
in the string at which findall() should begin its search. If you omit this parameter,
findall() processes the whole subject string. If you specify a starting position, you can
also specify an ending position. If you don’t specify an ending position, the search runs
until the end of the string.

No matter how you call findall(), the result is always a list with all the matches that
could be found. If the regex has no capturing groups, you get a list of strings. If it does
have capturing groups, you get a list of tuples with the text matched by all the capturing
groups for each regex match.

Ruby

The scan() method of the String class takes a regular expression as its only parameter.
It iterates over all the regular expression matches in the string. When called without a
block, scan() returns an array of all regex matches.

If your regular expression does not contain any capturing groups, scan() returns an
array of strings. The array has one element for each regex match, holding the text that
was matched.

When there are capturing groups, scan() returns an array of arrays. The array has one
element for each regex match. Each element is an array with the text matched by each
of the capturing groups. Subelement zero holds the text matched by the first capturing
group, subelement one holds the second capturing group, etc. The overall regex match
is not included in the array. If you want the overall match to be included, enclose your
entire regular expression with an extra capturing group:

Ruby does not provide an option to make scan() return an array of strings when the
regex has capturing groups. Your only solution is to replace all named and numbered
capturing groups with noncapturing groups.

See Also
Recipe 3.7 shows code to get only the first regex match.

Recipe 3.11 shows code to iterate over all the matches a regex can find in a string.

168 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

Recipe 3.12 shows code to iterate over all the matches a regex can find in a string and
only retain those matches that meet certain criteria.

3.11 Iterate over All Matches

Problem

The previous recipe shows how a regex could be applied repeatedly to a string to get a
list of matches. Now you want to iterate over all the matches in your own code.

Solution

G

You can use the static call when you process only a small number of strings with the
same regular expression:

Match matchResult = Regex.Match(subjectString, @"\d+");
while (matchResult.Success) {
// Here you can process the match stored in matchResult
matchResult = matchResult.NextMatch();

}

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Regex regexObj = new Regex(@"\d+");

matchResult = regexObj.Match(subjectString);

while (matchResult.Success) {
// Here you can process the match stored in matchResult
matchResult = matchResult.NextMatch();

}

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim MatchResult = Regex.Match(SubjectString, "\d+")

While MatchResult.Success
'Here you can process the match stored in MatchResult
MatchResult = MatchResult.NextMatch

End While

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim RegexObj As New Regex("\d+")
Dim MatchResult = RegexObj.Match(SubjectString)

3.11 Iterate over All Matches | 169

www.it-ebooks.info

http://www.it-ebooks.info/

While MatchResult.Success
'Here you can process the match stored in MatchResult
MatchResult = MatchResult.NextMatch

End While

Java

Pattern regex = Pattern.compile("\\d+");
Matcher regexMatcher = regex.matcher(subjectString);
while (regexMatcher.find()) {
// Here you can process the match stored in regexMatcher
}

JavaScript

If your regular expression may yield a zero-length match, or if you’re simply not sure
about that, make sure to work around cross-browser issues dealing with zero-length
matches and exec():

var regex = /\d+/g;
var match = null;
while (match = regex.exec(subject)) {
// Don't let browsers get stuck in an infinite loop
if (match.index == regex.lastIndex) regex.lastIndex++;
// Here you can process the match stored in the match variable

}

If you know for sure your regex can never find a zero-length match, you can iterate over
the regex directly:

var regex = /\d+/g;

var match = null;

while (match = regex.exec(subject)) {
// Here you can process the match stored in the match variable

}

XRegExp

If you're using the XRegExp JavaScript library, you can use the dedicated XReg
Exp.forEach() method to iterate over matches:

XRegExp.forEach(subject, /\d+/, function(match) {
// Here you can process the match stored in the match variable

B;

PHP

preg match all('/\d+/', $subject, $result, PREG_PATTERN ORDER);
for ($i = 0; $i < count($result[o]); $i++) {

Matched text = $result[o0][$i];
}

170 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

Perl

while ($subject =~ m/\d+/g) {
matched text = $&
}

Python

If you process only a small number of strings with the same regular expression, you can
use the global function:

for matchobj in re.finditer(r"\d+", subject):
Here you can process the match stored in the matchobj variable

To use the same regex repeatedly, use a compiled object:
reobj = re.compile(r"\d+")
for matchobj in reobj.finditer(subject):
Here you can process the match stored in the matchobj variable

Ruby

subject.scan(/\d+/) {|match|
Here you can process the match stored in the match variable
}

Discussion

{NET

Recipe 3.7 explains how to use the Match() member function of the Regex class to
retrieve the first regular expression match in the string. To iterate over all matches in
the string, we again call the Match() function to retrieve the details of the first match.
The Match() function returns an instance of the Match class, which we store in the
variable matchResult. If the Success property of the matchResult object holds true, we
can begin our loop.

At the start of the loop, you can use the properties of the Match class to process the
details of the first match. Recipe 3.7 explains the Value property, Recipe 3.8 explains
the Index and Length properties, and Recipe 3.9 explains the Groups collection.

When you’re done with the first match, call the NextMatch() member function on the
matchResult variable. Match.NextMatch() returns an instance of the Match class, just like
Regex.Match() does. The newly returned instance holds the details of the second match.

Assigning the result from matchResult.NextMatch() to the same matchResult variable
makes it easy to iterate over all matches. We have to check matchResult.Success again
to see whether NextMatch() did in fact find another match. When NextMatch() fails, it
still returns a Match object, but its Success property will be set to false. By using a single

3.1 Iterate over All Matches | 171

www.it-ebooks.info

http://www.it-ebooks.info/

matchResult variable, we can combine the initial test for success and the test after the
call to NextMatch() into a single while statement.

Calling NextMatch() does not invalidate the Match object you called it on. If you want,
you could keep the full Match object for each regular expression match.

The NextMatch() method does not accept any parameters. It uses the same regular ex-
pression and subject string as you passed to the Regex.Match() method. The Match object
keeps references to your regular expression and subject string.

You can use the static Regex.Match() call, even when your subject string contains a very
large number of regex matches. Regex.Match() will compile your regular expression
once, and the returned Match object will hold a reference to the compiled regular ex-
pression. Match.MatchAgain() uses the previously compiled regular expression
referenced by the Match object, even when you used the static Regex.Match() call. You
need to instantiate the Regex class only if you want to call Regex.Match() repeatedly
(i.e., use the same regex on many strings).

Java

[terating over all the matches in a string is very easy in Java. Simply call the find()
method introduced in Recipe 3.7 in a while loop. Each call to find() updates the
Matcher object with the details about the match and the starting position for the next
match attempt.

JavaScript

Before you begin, make sure to specify the /g flag if you want to use your regex in a
loop. This flag is explained in Recipe 3.4. while (regexp.exec()) finds all numbers
in the subject string when regexp = /\d+/g. If regexp = /\d+/, then while
(regexp.exec()) finds the first number in the string again and again, until your script
crashes or is forcibly terminated by the browser.

Note thatwhile (/\d+/g.exec()) (loopingover aliteral regex with /g) also will get stuck
in the same infinite loop, at least with certain JavaScript implementations, because the
regular expression is recompiled during each iteration of the while loop. When the
regex is recompiled, the starting position for the match attempt is reset to the start of
the string. Assign the regular expression to a variable outside the loop, to make sure it
is compiled only once.

Recipes 3.8 and 3.9 explain the object returned by regexp.exec(). This object is the
same, regardless of whether you use exec() in a loop. You can do whatever you want
with this object.

The only effect of the /g is that it updates the lastIndex property of the regexp object
on which you’re calling exec(). This works even when you’re using a literal regular
expression, as shown in the second JavaScript solution for this recipe. Next time you

172 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

call exec(), the match attempt will begin at lastIndex. If you assign a new value to
lastIndex, the match attempt will begin at the position you specified.

There is, unfortunately, one major problem with lastIndex. If you read the
ECMA-262v3 standard for JavaScript literally, then exec() should set lastIndex to
the first character after the match. This means that if the match is zero characters long,
the next match attempt will begin at the position of the match just found, resulting in
an infinite loop.

All modern browsers implement the standard as written, which means regexp.exec()
may get stuck in an infinite loop. This outcome is not unlikely. For example, you can
use re = /*.*$/gm; while (re.exec()) to iterate over all lines in a multiline string. If
the string has a blank line, your script will get stuck on it.

The workaround is to increment lastIndex in your own code if the exec() function
hasn’t already done this. The first JavaScript solution to this recipe shows you how. If
you’re unsure, simply paste in this one line of code and be done with it.

Older versions of Internet Explorer avoided this problem by incrementing
lastIndex by one if the match is zero-length. Internet Explorer 9 only does this when
running in quirks mode. This is why Recipe 3.7 claims that you cannot use lastIndex
to determine the end of the match, as you’ll get incorrect values in Internet Explorer’s
quirks mode.

All other regular expression engines discussed in this book deal with this by automat-
ically starting the next match attempt one character further in the string, if the previous
match was zero-length.

This problem does not exist with string.replace() (Recipe 3.14) or when finding all
matches with string.match() (Recipe 3.10). For these methods, which use lastIndex
internally, the ECMA-262v3 standard does state that lastIndex must be incremented
for each zero-length match.

XRegExp

If you’re using the XRegExp JavaScript library, the dedicated XRegExp. forEach() meth-
od makes your life much easier. Pass your subject string, your regular expression, and
a callback function to this method. Your callback function will be called for each match
of the regular expression in the subject string. The callback will receive the match array,
the index of the match (counting from zero), the subject string, and the regex being
used to search the string as parameters. If you pass a fourth parameter to
XRegExp.forEach(), then this will be used as the context that is used as the value for
this in the callback and will also be returned by XRegExp.forEach() after it finishes
finding matches.

XRegExp.forEach() ignores the global and lastIndex properties of the RegExp object you
pass to it. It always iterates over all matches. Use XRegExp.forEach() to neatly sidestep
any issues with zero-length matches.

3.1 Iterate over All Matches | 173

www.it-ebooks.info

http://www.it-ebooks.info/

XRegExp also provides its own XRegExp.exec() method. This method ignores the last
Index property. Instead, it takes an optional third parameter that lets you specify the
position at which the match attempt should begin. To find the next match, specify the
position where the previous match ended. If the previous match was zero-length, spec-
ify the position where the match ended plus one.

PHP

The preg_match() function takes an optional fifth parameter to indicate the position in
the string at which the match attempt should start. You could adapt Recipe 3.8 to
pass $matchstart + $matchlength as the fifth parameter upon the second call to
preg_match() to find the second match in the string, and repeat that for the third and
following matches until preg_match() returns 0. Recipe 3.18 uses this method.

In addition to requiring extra code to calculate the starting offset for each match at-
tempt, repeatedly calling preg_match() is inefficient, because there’s no way to store a
compiled regular expression in a variable. preg_match() has to look up the compiled
regular expression in its cache each time you call it.

An easier and more efficient solution is to call preg_match_all(), as explained in the
previous recipe, and iterate over the array with the match results.

Perl

Recipe 3.4 explains that you need to add the /g modifier to enable your regex to find
more than one match in the subject string. If you use a global regex in a scalar context,
it will try to find the next match, continuing at the end of the previous match. In this
recipe, the while statement provides the scalar context. All the special variables, such
as $& (explained in Recipe 3.7), are available inside the while loop.

Python

The finditer() function in re returns an iterator that you can use to find all the matches
of the regular expression. Pass your regular expression as the first parameter and the
subject string as the second parameter. You can pass the regular expression options in
the optional third parameter.

The re.finditer() function calls re.compile(), and then calls the finditer() method
on the compiled regular expression object. This method has only one required
parameter: the subject string.

The finditer() method takes two optional parameters that the global re.finditer()
function does not support. After the subject string, you can pass the character position
in the string at which finditer() should begin its search. If you omit this parameter,
the iterator will process the whole subject string. If you specify a starting position, you
can also specify an ending position. If you don’t specify an ending position, the search
runs until the end of the string.

174 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

Ruby

The scan() method of the String class takes a regular expression as its only parameter
and iterates over all the regular expression matches in the string. When it is called with
a block, you can process each match as it is found.

If your regular expression does not contain any capturing groups, specify one iterator
variable in the block. This variable will receive a string with the text matched by the
regular expression.

If your regex does contain one or more capturing groups, list one variable for each
group. The first variable will receive a string with the text matched by the first capturing
group, the second variable receives the second capturing group, and so on. No variable
will be filled with the overall regex match. If you want the overall match to be included,
enclose your entire regular expression with an extra capturing group.

subject.scan(/(a)(b)(c)/) {la, b, c|
a, b, and c hold the text matched by the three capturing groups
}

If you list fewer variables than there are capturing groups in your regex, you will be
able to access only those capturing groups for which you provided variables. If you list
more variables than there are capturing groups, the extra variables will be set to nil.

If you list only one iterator variable and your regex has one or more capturing groups,
the variable will be filled with an array of strings. The array will have one string for
each capturing group. If there is only one capturing group, the array will have a single
element:
subject.scan(/(a)(b)(c)/) {]abc|
abc[0], abc[1], and abc[2] hold the text
matched by the three capturing groups

}
See Also

Recipe 3.12 expands on this recipe by only retaining those matches that meet certain
criteria.

Recipe 3.7 shows code to get only the first regex match.
Recipe 3.8 shows code to determine the position and length of the match.
Recipe 3.10 shows code to get a list of all the matches a regex can find in a string.

Recipe 3.22 shows how you can build a simple parser by iterating over all the matches
of a regular expression.

3.1 Iterate over All Matches | 175

www.it-ebooks.info

http://www.it-ebooks.info/

3.12 Validate Matches in Procedural Code

Problem

Recipe 3.10 shows how you can retrieve a list of all matches a regular expression can
find in a string when it is applied repeatedly to the remainder of the string after each
match. Now you want to get a list of matches that meet certain extra criteria that you
cannot (easily) express in a regular expression. For example, when retrieving a list of
lucky numbers, you only want to retain those that are an integer multiple of 13.

Solution

G

You can use the static call when you process only a small number of strings with the
same regular expression:

StringCollection resultlist = new StringCollection();
Match matchResult = Regex.Match(subjectString, @"\d+");
while (matchResult.Success) {
if (int.Parse(matchResult.Value) % 13 == 0) {
resultList.Add(matchResult.Value);
}

matchResult = matchResult.NextMatch();
}

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

StringCollection resultlist = new StringCollection();
Regex regexObj = new Regex(@"\d+");
matchResult = regexObj.Match(subjectString);
while (matchResult.Success) {
if (int.Parse(matchResult.Value) % 13 == 0) {
resultlList.Add(matchResult.Value);
}

matchResult = matchResult.NextMatch();
}

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim ResultlList = New StringCollection
Dim MatchResult = Regex.Match(SubjectString, "\d+")
While MatchResult.Success
If Integer.Parse(MatchResult.Value) Mod 13 = 0 Then
ResultlList.Add(MatchResult.Value)

176 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

End If
MatchResult = MatchResult.NextMatch
End While

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim ResultlList = New StringCollection
Dim RegexObj As New Regex("\d+")
Dim MatchResult = RegexObj.Match(SubjectString)
While MatchResult.Success
If Integer.Parse(MatchResult.Value) Mod 13 = 0 Then
ResultlList.Add(MatchResult.Value)
End If
MatchResult = MatchResult.NextMatch
End While

Java

List<String> resultList = new ArraylList<String>();
Pattern regex = Pattern.compile("\\d+");
Matcher regexMatcher = regex.matcher(subjectString);
while (regexMatcher.find()) {
if (Integer.parselnt(regexMatcher.group()) % 13 == 0) {
resultList.add(regexMatcher.group());
}

}

JavaScript

var list = [];
var regex = /\d+/g;
var match = null;
while (match = regex.exec(subject)) {
// Don't let browsers get stuck in an infinite loop
if (match.index == regex.lastIndex) regex.lastIndex++;
// Here you can process the match stored in the match variable
if (match[o] % 13 == 0) {
list.push(match[0]);
}

}

XRegExp

var list = [];
XRegExp.forEach(subject, /\d+/, function(match) {
if (match[o] % 13 == 0) {
list.push(match[0]);
}

};

3.12 Validate Matches in Procedural Code | 177

www.it-ebooks.info

http://www.it-ebooks.info/

PHP

preg match all('/\d+/', $subject, $matchdata, PREG PATTERN ORDER);
for ($i = 0; $i < count($matchdata[o0]); $i++) {
if ($matchdata[o][$i] % 13 == 0) {
$1list[] = $matchdata[0][$i];
}

Perl
while ($subject =~ m/\d+/g) {
if ($8 % 13 == 0) {
push(@list, $&);

}

Python

If you process only a small number of strings with the same regular expression, you can
use the global function:
list = []
for matchobj in re.finditer(r"\d+", subject):
if int(matchobj.group()) % 13 == 0:
list.append(matchobj.group())

To use the same regex repeatedly, use a compiled object:
list = []
reobj = re.compile(r"\d+")
for matchobj in reobj.finditer(subject):
if int(matchobj.group()) % 13 == 0:
list.append(matchobj.group())

Ruby

list = []
subject.scan(/\d+/) {|match|

list << match if (Integer(match) % 13 == 0)
}

Discussion

Regular expressions deal with text. Though the regular expression <\d+» matches what
we call a number, to the regular expression engine it’s just a string of one or more digits.

If you want to find specific numbers, such as those divisible by 13, it is much easier to
write a general regex that matches all numbers, and then use a bit of procedural code
to skip the regex matches you’re not interested in.

178 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

The solutions for this recipe all are based on the solutions for the previous recipe, which
shows how to iterate over all matches. Inside the loop, we convert the regular expression
match into a number.

Some languages do this automatically; other languages require an explicit function call
to convert the string into an integer. We then check whether the integer is divisible by
13. If it is, the regex match is added to the list. If it is not, the regex match is skipped.

See Also

Recipe 3.12 was used as a basis for this recipe. It explains how iterating over regex
matches works.

Recipe 3.7 shows code to get only the first regex match.
Recipe 3.8 shows code to determine the position and length of the match.

Recipe 3.10 shows code to get a list of all the matches a regex can find in a string.

3.13 Find a Match Within Another Match

Problem

You want to find all the matches of a particular regular expression, but only within
certain sections of the subject string. Another regular expression matches each of the
sections in the string.

Suppose you have an HTML file in which various passages are marked as bold with
 tags. You want to find all numbers marked as bold. If some bold text contains
multiple numbers, you want to match all of them separately. For example, when pro-
cessing the string 1 2 3 4 5 6 7, you want to find four matches: 2, 5,
6, and 7.

Solution

€

StringCollection resultlist = new StringCollection();
Regex outerRegex = new Regex("(.*?)", RegexOptions.Singleline);
Regex innerRegex = new Regex(@"\d+");
// Find the first section
Match outerMatch = outerRegex.Match(subjectString);
while (outerMatch.Success) {
// Get the matches within the section
Match innerMatch = innerRegex.Match(outerMatch.Groups[1].Value);
while (innerMatch.Success) {
resultlist.Add(innerMatch.Value);
innerMatch = innerMatch.NextMatch();

3.13 Find a Match Within Another Match | 179

www.it-ebooks.info

http://www.it-ebooks.info/

// Find the next section
outerMatch = outerMatch.NextMatch();

VB.NET

Dim ResultlList = New StringCollection
Dim OuterRegex As New Regex("(.*?)", RegexOptions.Singleline)
Dim InnerRegex As New Regex("\d+")
'Find the first section
Dim OuterMatch = OuterRegex.Match(SubjectString)
While OuterMatch.Success
'Get the matches within the section
Dim InnerMatch = InnerRegex.Match(OuterMatch.Groups(1).Value)
While InnerMatch.Success
ResultlList.Add(InnerMatch.Value)
InnerMatch = InnerMatch.NextMatch
End While
OuterMatch = OuterMatch.NextMatch
End While

Java
[terating using two matchers is easy, and works with Java 4 and later:

List<String> resultList = new ArraylList<String>();
Pattern outerRegex = Pattern.compile("(.*?)", Pattern.DOTALL);
Pattern innerRegex = Pattern.compile("\\d+");
Matcher outerMatcher = outerRegex.matcher(subjectString);
while (outerMatcher.find()) {
Matcher innerMatcher = innerRegex.matcher(outerMatcher.group(1));
while (innerMatcher.find()) {
resultlist.add(innerMatcher.group());
}

}

The following code is more efficient (because innerMatcher is created only once), but
requires Java 5 or later:

List<String> resultList = new ArraylList<String>();

Pattern outerRegex = Pattern.compile("(.*?)", Pattern.DOTALL);

Pattern innerRegex = Pattern.compile("\\d+");

Matcher outerMatcher = outerRegex.matcher(subjectString);

Matcher innerMatcher = innerRegex.matcher(subjectString);

while (outerMatcher.find()) {
innerMatcher.region(outerMatcher.start(1), outerMatcher.end(1));
while (innerMatcher.find()) {

resultList.add(innerMatcher.group());

180 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

}

JavaScript

var result = [];
var outerRegex = /([\s\S]*?)<\/b>/g;
var innerRegex = /\d+/g;
var outerMatch;
var innerMatches;
while (outerMatch = outerRegex.exec(subject)) {
if (outerMatch.index == outerRegex.lastIndex)
outerRegex.lastIndex++;
innerMatches = outerMatch[1].match(innerRegex);
if (innerMatches) {
result = result.concat(innerMatches);
}

}

XRegExp

XRegExp has a matchChain() method that is specifically designed to get the matches of
one regex within the matches of another regex:

var result = XRegExp.matchChain(subject, [
{regex: XRegExp("(.*?)", "s"), backref: 1},
/\d+/

D;

Alternatively, you can use XRegExp.forEach() for a solution similar to the standard
JavaScript solution:

var result = []
var outerRegex = XRegExp("(.*?)", "s");
var innerRegex = /\d+/g;
XRegExp.forEach(subject, outerRegex, function(outerMatch) {
var innerMatches = outerMatch[1].match(innerRegex);
if (innerMatches) {
result = result.concat(innerMatches);
}

e

B;

PHP

$1list = array();
preg match all('%(.*?)%s"', $subject, $outermatches,
PREG_PATTERN_ORDER);
for ($i = 0; $i < count($outermatches[0]); $i++) {
if (preg_match all('/\d+/', $outermatches[1][$i], $innermatches,
PREG_PATTERN_ORDER)) {

3.13 Find a Match Within Another Match | 181

www.it-ebooks.info

http://www.it-ebooks.info/

$list = array merge($list, $innermatches[0]);

Perl

while ($subject =~ ml(.*?)!gs) {
push(@list, ($1 =~ m/\d+/g));

This only works if the inner regular expression (<\d+, in this example) doesn’t have
any capturing groups, so use noncapturing groups instead. See Recipe 2.9 for details.

Python
list = []
innerre = re.compile(r"\d+")
for outermatch in re.finditer("(?s)(.*?)", subject):
list.extend(innerre.findall(outermatch.group(1)))

Ruby
list = []
subject.scan(/(.*?)<\/b>/m) {|outergroups|
list += outergroups[1].scan(/\d+/)
}

Discussion

Regular expressions are well suited for tokenizing input, but they are not well suited
for parsing input. Tokenizing means to identify different parts of a string, such as num-
bers, words, symbols, tags, comments, etc. It involves scanning the text from left to
right, trying different alternatives and quantities of characters to be matched. Regular
expressions handle this very well.

Parsing means to process the relationship between those tokens. For example, in a
programming language, combinations of such tokens form statements, functions,
classes, namespaces, etc. Keeping track of the meaning of the tokens within the larger
context of the input is best left to procedural code. In particular, regular expressions
cannot keep track of nonlinear context, such as nested constructs.!

Trying to find one kind of token within another kind of token is a task that people
commonly try to tackle with regular expressions. A pair of HTML bold tags is easily
matched with the regular expression «b>(.*?).2 A number is even more easily

1. A few modern regex flavors have tried to introduce features for balanced or recursive matching. These
features result in such complex regular expessions, however, that they only end up proving our point that
parsing is best left to procedural code.

182 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

matched with the regex (\d+>. But if you try to combine these into a single regex, you’ll
end up with something rather different:
\d+(?=(?:(21).)*)
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Though the regular expression just shown is a solution to the problem posed by this
recipe, it is hardly intuitive. Even a regular expression expert will have to carefully
scrutinize the regex to determine what it does, or perhaps resort to a tool to highlight
the matches. And this is the combination of just two simple regexes.

A better solution is to keep the two regular expressions as they are and use procedural
code to combine them. The resulting code, while a bit longer, is much easier to under-
stand and maintain, and creating simple code is the reason for using regular expressions
in the first place. A regex such as «b>(.*?) is easy to understand by anyone with
a modicum of regex experience, and quickly does what would otherwise take many
more lines of code that are harder to maintain.

Though the solutions for this recipe are some of the most complex ones in this chapter,
they’re very straightforward. Two regular expressions are used. The “outer” regular
expression matches the HTML bold tags and the text between them, and the text in
between is captured by the first capturing group. This regular expression is imple-
mented with the same code shown in Recipe 3.11. The only difference is that the place-
holder comment saying where to use the match has been replaced with code that lets
the “inner” regular expression do its job.

The second regular expression matches a digit. This regex is implemented with the
same code as shown in Recipe 3.10. The only difference is that instead of processing
the subject string entirely, the second regex is applied only to the part of the subject
string matched by the first capturing group of the outer regular expression.

There are two ways to restrict the inner regular expressions to the text matched by (a
capturing group of) the outer regular expressions. Some languages provide a function
that allows the regular expression to be applied to part of a string. That can save an
extra string copy if the match function doesn’t automatically fill a structure with the
text matched by the capturing groups. We can always simply retrieve the substring
matched by the capturing group and apply the inner regex to that.

Either way, using two regular expressions together in a loop will be faster than using
the one regular expression with its nested lookahead groups. The latter requires the
regex engine to do a whole lot of backtracking. On large files, using just one regex will
be much slower, as it needs to determine the section boundaries (HTML bold tags) for
each number in the subject string, including numbers that are not between tags.

2. To allow the tag to span multiple lines, turn on “dot matches line breaks” mode. For JavaScript, use
«b>([\s\S]*?)>.

3.13 Find a Match Within Another Match | 183

www.it-ebooks.info

http://www.it-ebooks.info/

The solution that uses two regular expressions doesn’t even begin to look for numbers
until it has found the section boundaries, which it does in linear time.

The XRegExp library for JavaScript has a special matchChain() method that is specifi-
cally designed to get the matches of one regex within the matches of another regex.
This method takes an array of regexes as its second parameter. You can add as many
regexes to the array as you want. You can find the matches of a regex within the matches
of another regex, within the matches of other regexes, as many levels deep as you want.
This recipe only uses two regexes, so our array only needs two elements. If you want
the next regex to search within the text matched by a particular capturing group of a
regex, add that regex as an object to the array. The object should have a regex property
with the regular expression, and a backref property with the name or number of the
capturing group. If you specify the last regex in the array as an object with a regex and
a backref property, then the returned array will contain the matches of that capturing
group in the final regex.

See Also

This recipe uses techniques introduced by three earlier recipes. Recipe 3.8 shows code
to determine the position and length of the match. Recipe 3.10 shows code to get a list
of all the matches a regex can find in a string. Recipe 3.11 shows code to iterate over
all the matches a regex can find in a string.

3.14 Replace All Matches

Problem

You want to replace all matches of the regular expression <before» with the replacement
text «after».

Solution

G

You can use the static call when you process only a small number of strings with the
same regular expression:

string resultString = Regex.Replace(subjectString, "before", "after");

If the regex is provided by the end user, you should use the static call with full exception
handling:

string resultString = null;
try {

resultString = Regex.Replace(subjectString, "before", "after");
} catch (ArgumentNullException ex) {

// Cannot pass null as the regular expression, subject string,

184 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

// or replacement text
} catch (ArgumentException ex) {

// Syntax error in the regular expression
}

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Regex regexObj = new Regex("before");
string resultString = regexObj.Replace(subjectString, "after");

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

string resultString = null;

try {
Regex regexObj = new Regex("before");

try {

resultString = regexObj.Replace(subjectString, "after");
} catch (ArgumentNullException ex) {

// Cannot pass null as the subject string or replacement text
}

} catch (ArgumentException ex) {
// Syntax error in the regular expression
}

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim ResultString = Regex.Replace(SubjectString, "before", "after")

If the regex is provided by the end user, you should use the static call with full exception
handling:

Dim ResultString As String = Nothing
Try
ResultString = Regex.Replace(SubjectString, "before", "after")
Catch ex As ArgumentNullException
"Cannot pass null as the regular expression, subject string,
'or replacement text
Catch ex As ArgumentException
'Syntax error in the regular expression
End Try

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim RegexObj As New Regex("before")
Dim ResultString = RegexObj.Replace(SubjectString, "after")

3.14 Replace All Matches | 185

www.it-ebooks.info

http://www.it-ebooks.info/

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

Dim ResultString As String = Nothing
Try
Dim RegexObj As New Regex("before")
Try
ResultString = RegexObj.Replace(SubjectString, "after")
Catch ex As ArgumentNullException
"Cannot pass null as the subject string or replacement text
End Try
Catch ex As ArgumentException
'Syntax error in the regular expression
End Try

Java

You can use the static call when you process only one string with the same regular
expression:

String resultString = subjectString.replaceAll("before", "after");

If the regex or replacement text is provided by the end user, you should use the static
call with full exception handling:

try {
String resultString = subjectString.replaceAll("before", "after");
} catch (PatternSyntaxException ex) {
// Syntax error in the regular expression
} catch (IllegalArgumentException ex) {
// Syntax error in the replacement text (unescaped $ signs?)
} catch (IndexOutOfBoundsException ex) {
// Non-existent backreference used the replacement text
}

Construct a Matcher object if you want to use the same regular expression with a large
number of strings:

Pattern regex = Pattern.compile("before");
Matcher regexMatcher = regex.matcher(subjectString);
String resultString = regexMatcher.replaceAll("after");

If the regex or replacement text is provided by the end user, you should use the
Matcher object with full exception handling:

String resultString = null;
try {
Pattern regex = Pattern.compile("before");
Matcher regexMatcher = regex.matcher(subjectString);

try {
resultString = regexMatcher.replaceAll("after");

186 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

} catch (IllegalArgumentException ex) {

// Syntax error in the replacement text (unescaped $ signs?)
} catch (IndexOutOfBoundsException ex) {

// Non-existent backreference used the replacement text
}

catch (PatternSyntaxException ex
Yy p
// Syntax error in the regular expression

JavaScript
result = subject.replace(/before/g, "after");

PHP
$result = preg replace('/before/', 'after', $subject);

Perl
With the subject string held in the special variable $_, storing the result back into $_:

s/before/after/g;

With the subject string held in the variable $subject, storing the result back into
$subject:

$subject =~ s/before/after/g;

With the subject string held in the variable $subject, storing the result into $result:
($result = $subject) =~ s/before/after/g;

Python
If you have only a few strings to process, you can use the global function:

result = re.sub("before", "after", subject)

To use the same regex repeatedly, use a compiled object:

reobj = re.compile("before")
result = reobj.sub("after", subject)

Ruby
result = subject.gsub(/before/, 'after')

Discussion

{NET

In .NET, you will always use the Regex.Replace() method to search and replace with
a regular expression. The Replace() method has 10 overloads. Half of those take a

3.14 Replace All Matches | 187

www.it-ebooks.info

http://www.it-ebooks.info/

string as the replacement text; those are discussed here. The other half take a
MatchEvaluator delegate as the replacement, and those are discussed in Recipe 3.16.

The first parameter expected by Replace() is always the string that holds the original
subject text you want to search and replace through. This parameter should not be
null. Otherwise, Replace() will throw an ArgumentNullException. The return value of
Replace() is always the string with the replacements applied.

If you want to use the regular expression only a few times, you can use a static call. The
second parameter is then the regular expression you want to use. Specify the replace-
ment text as the third parameter. You can pass regex options as an optional fourth
parameter. If your regular expression has a syntax error, an ArgumentException will be
thrown.

If you want to use the same regular expression on many strings, you can make your
code more efficient by constructing a Regex object first, and then calling Replace() on
that object. Pass the subject string as the first parameter and the replacement text as
the second parameter. Those are the only required parameters.

When calling Replace() on an instance of the Regex class, you can pass additional pa-
rameters to limit the search-and-replace. If you omit these parameters, all matches of
the regular expression in the subject string will be replaced. The static overloads of
Replace() do not allow these additional parameters; they always replace all matches.

As the optional third parameter, after the subject and replacement, you can pass the
number of replacements to be made. If you pass a number greater than one, that is the
maximum number of replacements that will be made. For example, Replace(subject,
replacement, 3) replaces only the first three regular expression matches, and further
matches are ignored. If there are fewer than three possible matches in the string, all
matches will be replaced. You will not receive any indication that fewer replacements
were made than you requested. If you pass zero as the third parameter, no replacements
will be made at all and the subject string will be returned unchanged. If you pass -1, all
regex matches are replaced. Specifying a number less than -1 will cause Replace() to
throw an ArgumentOutOfRangeException.

If you specify the third parameter with the number of replacements to be made, then
you can specify an optional fourth parameter to indicate the character index at which
the regular expression should begin to search. Essentially, the number you pass as the
fourth parameter is the number of characters at the start of your subject string that the
regular expression should ignore. This can be useful when you’ve already processed
the string up to a point, and you want to search and replace only through the remainder
of the string. If you specify the number, it must be between zero and the length of the
subject string. Otherwise, Replace() throws an ArgumentOutOfRangeException. Unlike
Match(), Replace() does not allow you to provide a parameter that specifies the length
of the substring the regular expression is allowed to search through.

188 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

Java

If you only want to search and replace through one string with the same regex, you
can call either the replaceFirst() or replaceAll() method directly on your string.
Both methods take two parameters: a string with your regular expression and a
string with your replacement text. These are convenience functions that
call Pattern.compile("before").matcher(subjectString).replaceFirst("after") and
Pattern.compile("before").matcher(subjectString).replaceAll("after").

If you want to use the same regex on multiple strings, you should create the Matcher
object as explained in Recipe 3.3. Then, call replaceFirst() or replaceAll() on your
matcher, passing the replacement text as the only parameter.

There are three different exception classes you have to contend with if the regex
and replacement text are provided by the end user. The exception class
PatternSyntaxException is thrown by Pattern.compile(), String.replaceFirst(), and
String.replaceAll() if the regular expression has a syntax error.
IllegalArgumentException is thrown by replaceFirst() and replaceAll() if there’s a
syntax error in the replacement text. If the replacement text is syntactically valid but
references a capturing group that does not exist, then IndexOutOfBoundsException is
thrown instead.

JavaScript

To search and replace through a string using a regular expression, call the replace()
function on the string. Pass your regular expression as the first parameter and the string
with your replacement text as the second parameter. The replace() function returns a
new string with the replacements applied.

If you want to replace all regex matches in the string, set the /g flag when creating your
regular expression object. Recipe 3.4 explains how this works. If you don’t use the /g
flag, only the first match will be replaced.

PHP

You can easily search and replace through a string with preg_replace(). Pass your
regular expression as the first parameter, the replacement text as the second parameter,
and the subject string as the third parameter. The return value is a string with the
replacements applied.

The optional fourth parameter allows you to limit the number of replacements made.
If you omit the parameter or specify -1, all regex matches are replaced. If you specify
0, no replacements are made. If you specify a positive number, preg replace() will
replace up to as many regex matches as you specified. If there are fewer matches, all of
them are replaced without error.

3.14 Replace All Matches | 189

www.it-ebooks.info

http://www.it-ebooks.info/

If you want to know how many replacements were made, you can add a fifth parameter
to the call. This parameter will receive an integer with the number of replacements that
were actually made.

A special feature of preg_replace() is that you can pass arrays instead of strings for the
first three parameters. If you pass an array of strings instead of a single string as the
third parameter, preg_replace() will return an array with the search-and-replace done
on all the strings.

If you pass an array of regular expression strings as the first parameter,
preg replace() will use the regular expressions one by one to search and replace
through the subject string. If you pass an array of subject strings, all the regular ex-
pressions are used on all the subject strings. When searching for an array of regular
expressions, you can specify either a single string as the replacement (to be used by all
the regexes) or an array of replacements. When using two arrays, preg_replace() walks
through both the regex and replacement arrays, using a different replacement text for
each regex. preg replace() walks through the array as it is stored in memory, which is
not necessarily the numerical order of the indexes in the array. If you didn’t build the
array in numerical order, call ksort() on the arrays with the regular expressions and
replacement texts before passing them to preg_replace().

This example builds the $replace array in reverse order:

$regex[0] = '/a/';
$regex[1] = '/b/";
$regex[2] = "/c/';

$replace[2] = '3';
$replace[1] = '2';
$replace[0] = '1';

echo preg replace($regex, $replace, "abc");
ksort($replace);
echo preg replace($regex, $replace, "abc");

The first call to preg_replace() displays 321, which is not what you might expect. After
using ksort(), the replacement returns 123 as we intended. ksort() modifies the vari-
able you pass to it. Don’t pass its return value (true or false) to preg_replace().

Perl

In Perl, s/// is in fact a substitution operator. If you use s/// by itself, it will search and
replace through the $_ variable, storing the result back into $_.

If you want to use the substitution operator on another variable, use the =~ binding
operator to associate the substitution operator with your variable. Binding the substi-
tution operator to a string immediately executes the search-and-replace. The result is
stored back into the variable that holds the subject string.

190 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

The s/// operator always modifies the variable you bind it to. If you want to store the
result of the search-and-replace in a new variable without modifying the original, first
assign the original string to the result variable, and then bind the substitution operator
to that variable. The Perl solution to this recipe shows how you can take those two
steps in one line of code.

Use the /g modifier explained in Recipe 3.4 to replace all regex matches. Without it,
Perl replaces only the first match.

Python

The sub() function in the re module performs a search-and-replace using a regular
expression. Pass your regular expression as the first parameter, your replacement text
as the second parameter, and the subject string as the third parameter. The global
sub() function does not accept a parameter with regular expression options.

The re.sub() function calls re.compile(), and then calls the sub() method on the com-
piled regular expression object. This method has two required parameters: the replace-
ment text and the subject string.

Both forms of sub() return a string with all the regular expressions replaced. Both take
one optional parameter that you can use to limit the number of replacements to be
made. If you omit it or set it to zero, all regex matches are replaced. If you pass a positive
number, that is the maximum number of matches to be replaced. If fewer matches can
be found than the count you specified, all matches are replaced without error.

Ruby

The gsub() method of the String class does a search-and-replace using a regular ex-
pression. Pass the regular expression as the first parameter and a string with the re-
placement text as the second parameter. The return value is a new string with the
replacements applied. If no regex matches can be found, then gsub() returns the original
string.

gsub() does not modify the string on which you call the method. If you want the original
string to be modified, call gsub! () instead. If no regex matches can be found, gsub!()
returns nil. Otherwise, it returns the string you called it on, with the replacements
applied.

See Also

“Search and Replace with Regular Expressions” in Chapter 1 describes the various
replacement text flavors.

Recipe 3.15 shows code to make a search-and-replace reinsert parts of the text matched
by the regular expression.

3.14 Replace All Matches | 191

www.it-ebooks.info

http://www.it-ebooks.info/

Recipe 3.16 shows code to search and replace with replacements generated in code for
each regex match instead of using a fixed replacement text for all matches.

3.15 Replace Matches Reusing Parts of the Match

Problem

You want to run a search-and-replace that reinserts parts of the regex match back into
the replacement. The parts you want to reinsert have been isolated in your regular
expression using capturing groups, as described in Recipe 2.9.

For example, you want to match pairs of words delimited by an equals sign, and swap
those words in the replacement.

Solution

G

You can use the static call when you process only a small number of strings with the
same regular expression:

string resultString = Regex.Replace(subjectString, @"(\w+)=(\w+)",
"$2=$1");

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Regex regexObj = new Regex(@"(\w+)=(\w+)");
string resultString = regexObj.Replace(subjectString, "$2=$1");

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim ResultString = Regex.Replace(SubjectString, "(\w+)=(\w+)", "$2=$1")
Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim RegexObj As New Regex("(\w+)=(\w+)")
Dim ResultString = RegexObj.Replace(SubjectString, "$2=$1")

Java

You can call String.replaceAll() when you process only one string with the same
regular expression:

String resultString = subjectString.replaceAll("(\\w+)=(\\w+)", "$2=$1");

192 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

Construct a Matcher object if you want to use the same regular expression with a large
number of strings:

Pattern regex = Pattern.compile("(\\w+)=(\\w+)");
Matcher regexMatcher = regex.matcher(subjectString);
String resultString = regexMatcher.replaceAll("$2=$1");

JavaScript
result = subject.replace(/(\w+)=(\w+)/g, "$2=$1");

PHP
$result = preg replace('/(\w+)=(\w+)/', '$2=$1', $subject);

Perl
$subject =~ s/(\w+)=(\w+)/$2=$1/g;

Python

If you have only a few strings to process, you can use the global function:
result = re.sub(r"(\w+)=(\w+)", r"\2=\1", subject)

To use the same regex repeatedly, use a compiled object:

reobj = re.compile(r" (\w+)=(\w+)")
result = reobj.sub(r"\2=\1", subject)

Ruby
result = subject.gsub(/(\w+)=(\w+)/, '\2=\1")

Discussion

The regular expression «(\w+)=(\w+)> matches the pair of words and captures each word
into its own capturing group. The word before the equals sign is captured by the first
group, and the word after the sign by the second group.

For the replacement, you need to specify that you want to use the text matched by the
second capturing group, followed by an equals sign, followed by the text matched by
the first capturing group. You can do this with special placeholders in the replacement
text. The replacement text syntax varies widely between different programming lan-
guages. “Search and Replace with Regular Expressions” in Chapter 1 describes the
replacement text flavors, and Recipe 2.21 explains how to reference capturing groups
in the replacement text.

3.15 Replace Matches Reusing Parts of the Match | 193

www.it-ebooks.info

http://www.it-ebooks.info/

{NET

In .NET, you can use the same Regex.Replace() method described in the previous
recipe, using a string as the replacement. The syntax for adding backreferences to the
replacement text follows the .NET replacement text flavor Recipe 2.21.

Java

In Java, you can use the same replaceFirst() and replaceAll() methods described in
the previous recipe. The syntax for adding backreferences to the replacement text fol-
lows the Java replacement text flavor described in this book.

JavaScript

In JavaScript, you can use the same string.replace() method described in the previous
recipe. The syntax for adding backreferences to the replacement text follows the
JavaScript replacement text flavor described in this book.

PHP

In PHP, you can use the same preg_replace() function described in the previous recipe.
The syntax for adding backreferences to the replacement text follows the PHP replace-
ment text flavor described in this book.

Perl

In Perl, the replace part in s/regex/replace/ is simply interpreted as a double-quoted
string. You can use the special variables $8&, $1, $2, etc., explained in Recipe 3.7 and
Recipe 3.9 in the replacement string. The variables are set right after the regex match
is found, before it is replaced. You can also use these variables in all other Perl code.
Their values persist until you tell Perl to find another regex match.

All the other programming languages in this book provide a function call that takes the
replacement text as a string. The function call parses the string to process
backreferences such as $1 or \1. But outside the replacement text string, $1 has no
meaning with these languages.

Python

In Python, you can use the same sub() function described in the previous recipe. The
syntax for adding backreferences to the replacement text follows the Python replace-
ment text flavor described in this book.

Ruby

In Ruby, you can use the same String.gsub() method described in the previous recipe.
The syntax for adding backreferences to the replacement text follows the Ruby re-
placement text flavor described in this book.

194 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

You cannot interpolate variables such as $1 in the replacement text. That’s because
Ruby does variable interpolation before the gsub() call is executed. Before the call,
gsub() hasn’t found any matches yet, so backreferences can’t be substituted. If you try
to interpolate $1, you’ll get the text matched by the first capturing group in the last
regex match before the call to gsub().

Instead, use replacement text tokens such as «\1». The gsub() function substitutes
those tokens in the replacement text for each regex match. We recommend that you
use single-quoted strings for the replacement text. In double-quoted strings, the back-
slash is used as an escape, and escaped digits are octal escapes. '\1' and "\\1" use the
text matched by the first capturing group as the replacement, whereas "\1" substitutes
the single literal character oxo1.

Named Capture

If you use named capturing groups in your regular expression, you can reference the
groups by their names in your replacement string.

€

You can use the static call when you process only a small number of strings with the
same regular expression:

string resultString = Regex.Replace(subjectString,
@" (?<left>\w+)=(?<right>\w+)", "${right}=${left}");
Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Regex regexObj = new Regex(@"(?<left>\w+)=(?<right>\w+)");
string resultString = regexObj.Replace(subjectString, "${right}=${left}");

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim ResultString = Regex.Replace(SubjectString,
"(2<lefto\wt)=(2<right>\w+)", "${right}=${left}")
Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim RegexObj As New Regex("(?<left>\w+)=(?<right>\w+)")
Dim ResultString = RegexObj.Replace(SubjectString, "${right}=${left}")

Java7

Java 7 adds support for named capture to the regular expression syntax and for named
backreferences to the replacement text syntax.

3.15 Replace Matches Reusing Parts of the Match | 195

www.it-ebooks.info

http://www.it-ebooks.info/

You can call String.replaceAll() when you process only one string with the same
regular expression:

String resultString = subjectString.replaceAll(
"(2<lefto\\w+)=(2<right>\\w+)", "${right}=${left}");
Construct a Matcher object if you want to use the same regular expression with a large

number of strings:

Pattern regex = Pattern.compile("(?<left>\\w+)=(2<right>\\w+)");
Matcher regexMatcher = regex.matcher(subjectString);
String resultString = regexMatcher.replaceAll("${right}=${left}");

XRegExp
The XRegExp.replace() method extends JavaScript’s replacement text syntax with

named backreferences.

var re = XRegExp("(?<left>\\w+)=(?<right>\\w+)", "g");
var result = XRegExp.replace(subject, re, "${right}=${left}");

PHP
$result = preg replace('/(?P<left>\w+)=(?P<right>\w+)/",
'$2=$1", $subject);

PHP’s preg functions use the PCRE library, which supports named capture. The
preg_match() and preg_match_all() functions add named capturing groups to the array
with match results. Unfortunately, preg_replace() does not provide a way to use named
backreferences in the replacement text. If your regex has named capturing groups,
count both the named and numbered capturing groups from left to right to determine
the backreference number of each group. Use those numbers in the replacement text.

Perl
$subject =~ s/(?<left>\w+)=(?<right>\w+)/$+{right}=$+{1left}/g;
Perl supports named capturing groups starting with version 5.10. The %+ hash stores

the text matched by all named capturing groups in the regular expression last used.
You can use this hash in the replacement text string, as well as anywhere else.

Python
If you have only a few strings to process, you can use the global function:
result = re.sub(r"(?P<left>\w+)=(?P<right>\w+)", r"\g<right>=\g<left>",
subject)
To use the same regex repeatedly, use a compiled object:

reobj = re.compile(r"(?P<left>\w+)=(?P<right>\w+)")
result = reobj.sub(r"\g<right>=\g<left>", subject)

196 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

Ruby
result = subject.gsub(/(?<left>\w+)=(?<right>\w+)/, '\k<left>=\k<right>')

See Also

“Search and Replace with Regular Expressions” in Chapter 1 describes the replacement
text flavors.

Recipe 2.21 explains how to reference capturing groups in the replacement text.

3.16 Replace Matches with Replacements Generated in Code

Problem

You want to replace all matches of a regular expression with a new string that you build
up in procedural code. You want to be able to replace each match with a different string,
based on the text that was actually matched.

For example, suppose you want to replace all numbers in a string with the number
multiplied by two.

Solution

€

You can use the static call when you process only a small number of strings with the
same regular expression:

string resultString = Regex.Replace(subjectString, @"\d+",
new MatchEvaluator(ComputeReplacement));

Construct a Regex object if you want to use the same regular expression with a large
number of strings:
Regex regexObj = new Regex(@"\d+");
string resultString = regexObj.Replace(subjectString,
new MatchEvaluator(ComputeReplacement));

Both code snippets call the function ComputeReplacement. You should add this method
to the class in which you’re implementing this solution:

public String ComputeReplacement(Match matchResult) {
int twiceasmuch = int.Parse(matchResult.Value) * 2;
return twiceasmuch.ToString();

3.16 Replace Matches with Replacements Generated in Code | 197

www.it-ebooks.info

http://www.it-ebooks.info/

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim MyMatchEvaluator As New MatchEvaluator (AddressOf ComputeReplacement)
Dim ResultString = Regex.Replace(SubjectString, "\d+", MyMatchEvaluator)

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim RegexObj As New Regex("\d+")
Dim MyMatchEvaluator As New MatchEvaluator(AddressOf ComputeReplacement)
Dim ResultString = RegexObj.Replace(SubjectString, MyMatchEvaluator)

Both code snippets call the function ComputeReplacement. You should add this method
to the class in which you’re implementing this solution:

Public Function ComputeReplacement(ByVal MatchResult As Match) As String
Dim TwiceAsMuch = Int.Parse(MatchResult.Value) * 2;
Return TwiceAsMuch.ToString();

End Function

Java

StringBuffer resultString = new StringBuffer();

Pattern regex = Pattern.compile("\\d+");

Matcher regexMatcher = regex.matcher(subjectString);

while (regexMatcher.find()) {
Integer twiceasmuch = Integer.parseInt(regexMatcher.group()) * 2;
regexMatcher.appendReplacement(resultString, twiceasmuch.toString());

}
regexMatcher.appendTail(resultString);

JavaScript

var result = subject.replace(/\d+/g, function(match) {
return match * 2;

};

PHP

Using a declared callback function:

$result = preg replace callback('/\d+/', 'compute replacement', $subject);

function compute_replacement($groups) {
return $groups[0] * 2;
}

Using an anonymous callback function:

198 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

$result = preg replace callback(
"\d+/",
create_function(
"$groups’,
'return $groups[o] * 2;'

)s
$subject

)5

Perl
$subject =~ s/\d+/$& * 2/eg;

Python
If you have only a few strings to process, you can use the global function:

result = re.sub(r"\d+", computereplacement, subject)

To use the same regex repeatedly, use a compiled object:

reobj = re.compile(r"\d+")
result = reobj.sub(computereplacement, subject)

Both code snippets call the function computereplacement. This function needs to be
declared before you can pass it to sub().

def computereplacement(matchobj):
return str(int(matchobj.group()) * 2)

Ruby

result = subject.gsub(/\d+/) {|match|
Integer(match) * 2
}

Discussion

When using a string as the replacement text, you can do only basic text substitution.
To replace each match with something totally different that varies along with the match
being replaced, you need to create the replacement text in your own code.

G

Recipe 3.14 discusses the various ways in which you can call the Regex.Replace()
method, passing a string as the replacement text. When using a static call, the replace-
ment is the third parameter, after the subject and the regular expression. If you passed
the regular expression to the Regex() constructor, you can call Replace() on that object
with the replacement as the second parameter.

3.16 Replace Matches with Replacements Generated in Code | 199

www.it-ebooks.info

http://www.it-ebooks.info/

Instead of passing a string as the second or third parameter, you can pass a
MatchEvaluator delegate. This delegate is a reference to a member function that you
add to the class where you’re doing the search-and-replace. To create the delegate, use
the new keyword to call the MatchEvaluator() constructor. Pass your member function
as the only parameter to MatchEvaluator().

The function you want to use for the delegate should return a string and take one
parameter of class System.Text.RegularExpressions.Match. This is the same Match class
returned by the Regex.Match() member used in nearly all the previous recipes in this
chapter.

When you call Replace() with a MatchEvaluator as the replacement, your function will
be called for each regular expression match that needs to be replaced. Your function
needs to return the replacement text. You can use any of the properties of the
Match object to build your replacement text. The example shown earlier uses
matchResult.Value to retrieve the string with the whole regex match. Often, you’ll use
matchResult.Groups[] to build up your replacement text from the capturing groups in
your regular expression.

If you do not want to replace certain regex matches, your function should return
matchResult.Value. If you return null or an empty string, the regex match is replaced
with nothing (i.e., deleted).

VB.NET

Recipe 3.14 discusses the various ways in which you can call the Regex.Replace()
method, passing a string as the replacement text. When using a static call, the replace-
ment text is the third parameter, after the subject and the regular expression. If you
used the Dim keyword to create a variable with your regular expression, you can call
Replace() on that object with the replacement as the second parameter.

Instead of passing a string as the second or third parameter, you can pass a
MatchEvaluator object. This object holds a reference to a function that you add to the
class where you’re doing the search-and-replace. Use the Dim keyword to create a new
variable of type MatchEvaluator. Pass one parameter with the AddressOf keyword fol-
lowed by the name of your member function. The AddressOf operator returns a refer-
ence to your function, without actually calling the function at that point.

The function you want to use for MatchEvaluator should return a string and should take
one parameter of class System.Text.RegularExpressions.Match. This is the same
Match class returned by the Regex.Match() member used in nearly all the previous recipes
in this chapter. The parameter will be passed by value, so you have to declare it with
ByVal.

When you call Replace() with a MatchEvaluator as the replacement, your function will
be called for each regular expression match that needs to be replaced. Your function
needs to return the replacement text. You can use any of the properties of the Match

200 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

object to build your replacement text. The example uses MatchResult.Value to retrieve
the string with the whole regex match. Often, you’ll use MatchResult.Groups() to build
up your replacement text from the capturing groups in your regular expression.

If you do not want to replace certain regex matches, your function should return
MatchResult.Value. If you return Nothing or an empty string, the regex match is replaced
with nothing (i.e., deleted).

Java

The Java solution is very straightforward. We iterate over all the regex matches as
explained in Recipe 3.11. Inside the loop, we call appendReplacement() on our
Matcher object. When find() fails to find any further matches, we call appendTail().
The two methods appendReplacement() and appendTail() make it very easy to use a
different replacement text for each regex match.

appendReplacement() takes two parameters. The first is the StringBuffer where you're
(temporarily) storing the result of the search-and-replace in progress. The second is the
replacement text to be used for the last match found by find(). This replacement text
can include references to capturing groups, such as "$1". If there is a syntax error in
your replacement text, an I11egalArgumentException is thrown. If the replacement text
references a capturing group that does not exist, an IndexOutOfBoundsException is
thrown instead. If you call appendReplacement() without a prior successful call to
find(), it throws an I1legalStateException.

If you call appendReplacement() correctly, it does two things. First, it copies the text
located between the previous and current regex match to the string buffer, without
making any modifications to the text. If the current match is the first one, it copies all
the text before that match. After that, it appends your replacement text, substituting
any backreferences in it with the text matched by the referenced capturing groups.

If you want to delete a particular match, simply replace it with an empty string. If you
want to leave a match in the string unchanged, you can omit the call to appendReplace
ment() for that match. By “previous regex match,” We mean the previous match for
which you called appendReplacement (). If you don’t call appendReplacement () for certain
matches, those become part of the text between the matches that you do replace, which
is copied unchanged into the target string buffer.

When you’re done replacing matches, call appendTail(). That copies the text at the end
of the string after the last regex match for which you called appendReplacement().

JavaScript

In JavaScript, a function is really just another object that can be assigned to a
variable. Instead of passing a literal string or a variable that holds a string to the
string.replace() function, we can pass a function that returns a string. This function
is then called each time a replacement needs to be made.

3.16 Replace Matches with Replacements Generated in Code | 201

www.it-ebooks.info

http://www.it-ebooks.info/

You can make your replacement function accept one or more parameters. If you do,
the first parameter will be set to the text matched by the regular expression. If your
regular expression has capturing groups, the second parameter will hold the text
matched by the first capturing group, the third parameter gives you the text of the
second capturing group, and so on. You can set these parameters to use bits of the
regular expression match to compose the replacement.

The replacement function in the JavaScript solution for this recipe simply takes the text
matched by the regular expression, and returns it multiplied by two. JavaScript handles
the string-to-number and number-to-string conversions implicitly.

PHP

The preg_replace callback() function works just like the preg replace() function de-
scribed in Recipe 3.14. It takes a regular expression, replacement, subject string, op-
tional replacement limit, and optional replacement count. The regular expression and
subject string can be single strings or arrays.

The difference is that preg replace callback() expects the second parameter to be a
function rather than the actual replacement text. If you declare the function in your
code, then the name of the function must be passed as a string. Alternatively, you can
pass the result of create_function() to create an anonymous function. Either way, your
replacement function should take one parameter and return a string (or something that
can be coerced into a string).

Each time preg_replace _callback() finds a regex match, it will call your callback func-
tion. The parameter will be filled with an array of strings. Element zero holds the overall
regex match, and elements one and beyond hold the text matched by capturing groups
one and beyond. You can use this array to build up your replacement text using the
text matched by the regular expression or one or more capturing groups.

Perl

The s/// operator supports one extra modifier that is ignored by the m// operator: /e.
The /e, or “execute,” modifier tells the substitution operator to execute the replacement
part as Perl code, instead of interpreting it as the contents of a double-quoted string.
Using this modifier, we can easily retrieve the matched text with the $& variable, and
then multiply it by two. The result of the code is used as the replacement string.

Python

Python’s sub() function allows you to pass the name of a function instead of a string
as the replacement text. This function is then called for each regex match to be replaced.

You need to declare this function before you can reference it. It should take one pa-
rameter to receive a MatchObject instance, which is the same object returned by the

202 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

search() function. You can use it to retrieve (part of) the regex match to build your
replacement. See Recipe 3.7 and Recipe 3.9 for details.

Your function should return a string with the replacement text.

Ruby

The previous two recipes called the gsub() method of the String class with two pa-
rameters: the regex and the replacement text. This method also exists in block form.

In block form, gsub() takes your regular expression as its only parameter. It fills one
iterator variable with a string that holds the text matched by the regular expression. If
you supply additional iterator variables, they are set to nil, even if your regular ex-
pression has capturing groups.

Inside the block, place an expression that evaluates to the string that you want to use
as the replacement text. You can use the special regex match variables, such as $~, $8,
and $1, inside the block. Their values change each time the block is evaluated to make
another replacement. See Recipes 3.7, 3.8, and 3.9 for details.

You cannot use replacement text tokens such as «\1». Those remain as literal text.

See Also

Recipe 3.9 shows code to get the text matched by a particular part (capturing group)
of a regex.

Recipe 3.15 shows code to make a search-and-replace reinsert parts of the text matched
by the regular expression.

3.17 Replace All Matches Within the Matches of
Another Regex

Problem

You want to replace all the matches of a particular regular expression, but only within
certain sections of the subject string. Another regular expression matches each of the
sections in the string.

Say you have an HTML file in which various passages are marked as bold with tags.
Between each pair of bold tags, you want to replace all matches of the regular expression
<before> with the replacement text <after>. For example, when processing the string
before first before before before before, you want to end up with:
before first after before after after.

3.17 Replace All Matches Within the Matches of Another Regex | 203

www.it-ebooks.info

http://www.it-ebooks.info/

Solution

€

Regex outerRegex = new Regex(".*?", RegexOptions.Singleline);
Regex innerRegex = new Regex("before");
string resultString = outerRegex.Replace(subjectString,

new MatchEvaluator(ComputeReplacement));

public String ComputeReplacement(Match matchResult) {
// Run the inner search-and-replace on each match of the outer regex
return innerRegex.Replace(matchResult.Value, "after");

}

VB.NET

Java

Dim OuterRegex As New Regex(".*?", RegexOptions.Singleline)

Dim InnerRegex As New Regex("before")

Dim MyMatchEvaluator As New MatchEvaluator(AddressOf ComputeReplacement)
Dim ResultString = OuterRegex.Replace(SubjectString, MyMatchEvaluator)

Public Function ComputeReplacement(ByVal MatchResult As Match) As String
'Run the inner search-and-replace on each match of the outer regex
Return InnerRegex.Replace(MatchResult.Value, "after");

End Function

StringBuffer resultString = new StringBuffer();
Pattern outerRegex = Pattern.compile(".*?");
Pattern innerRegex = Pattern.compile("before");
Matcher outerMatcher = outerRegex.matcher(subjectString);
while (outerMatcher.find()) {
outerMatcher.appendReplacement(resultString,
innerRegex.matcher(outerMatcher.group()).replaceAll("after"));

}
outerMatcher.appendTail(resultString);

JavaScript

PHP

var result = subject.replace(/.*?<\/b>/g, function(match) {
return match.replace(/before/g, "after");

};

$result = preg replace callback('%.*?2%",
replace within_tag, $subject);

204 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

function replace within tag($groups) {
return preg replace('/before/', 'after', $groups[o]);
}

Perl
$subject =~ s¥h.*2%($match = $&) =~ s/before/after/g; $match;%eg;

Python

innerre = re.compile("before")
def replacewithin(matchobj):
return innerre.sub("after", matchobj.group())

result = re.sub(".*?", replacewithin, subject)

Ruby
innerre = /before/

result = subject.gsub(/.*2<\/b>/) {|match|
match.gsub(innerre, 'after')
}

Discussion

This solution is again the combination of two previous solutions, using two regular
expressions. The “outer” regular expression, «b>.*?>, matches the HTML bold
tags and the text between them. The “inner” regular expression matches the “before,”
which we’ll replace with “after.”

Recipe 3.16 explains how you can run a search-and-replace and build the replacement
text for each regex match in your own code. Here, we do this with the outer regular
expression. Each time it finds a pair of opening and closing tags, we run a
search-and-replace using the inner regex, just as we do in Recipe 3.14. The subject
string for the search-and-replace with the inner regex is the text matched by the outer
regex.

See Also

This recipe uses techniques introduced by three earlier recipes. Recipe 3.11 shows code
to iterate over all the matches a regex can find in a string. Recipe 3.15 shows code to
find regex matches within the matches of another regex. Recipe 3.16 shows code to
search and replace with replacements generated in code for each regex match instead
of using a fixed replacement text for all matches.

3.17 Replace All Matches Within the Matches of Another Regex | 205

www.it-ebooks.info

http://www.it-ebooks.info/

3.18 Replace All Matches Between the Matches of Another
Regex

Problem

You want to replace all the matches of a particular regular expression, but only within
certain sections of the subject string. Another regular expression matches the text be-
tween the sections. In other words, you want to search and replace through all parts of
the subject string not matched by the other regular expression.

Say you have an HTML file in which you want to replace straight double quotes with
smart (curly) double quotes, but you only want to replace the quotes outside of HTML
tags. Quotes within HTML tags must remain plain ASCII straight quotes, or your
web browser won’t be able to parse the HTML anymore. For example, you
want to turn "text" "text" "text" into “text”
“text” “text”.

Solution

G

string resultString = null;
Regex outerRegex = new Regex("<[*<>]*>");
Regex innerRegex = new Regex("\"([*\"T*)\"");
// Find the first section
int lastIndex = 0;
Match outerMatch = outerRegex.Match(subjectString);
while (outerMatch.Success) {
// Search and replace through the text between this match,
// and the previous one
string textBetween =
subjectString.Substring(lastIndex, outerMatch.Index - lastIndex);
resultString += innerRegex.Replace(textBetween, "\u201C$1\u201D");
lastIndex = outerMatch.Index + outerMatch.Length;
// Copy the text in the section unchanged
resultString += outerMatch.Value;
// Find the next section
outerMatch = outerMatch.NextMatch();
}
// Search and replace through the remainder after the last regex match
string textAfter = subjectString.Substring(lastIndex,
subjectString.Length - lastIndex);
resultString += innerRegex.Replace(textAfter, "\u201C$1\u201D");

206 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

VB.NET

Dim ResultString As String = Nothing
Dim OuterRegex As New Regex("<[*<>]*>")
Dim InnerRegex As New Regex("""([~""]*)""")
'Find the first section
Dim LastIndex = O
Dim OuterMatch = OuterRegex.Match(SubjectString)
While OuterMatch.Success
'Search and replace through the text between this match,
"and the previous one
Dim TextBetween = SubjectString.Substring(LastIndex,
OuterMatch.Index - LastIndex);
ResultString += InnerRegex.Replace(TextBetween,
ChrW(&H201C) + "$1" + ChrW(8H201D))
LastIndex = OuterMatch.Index + OuterMatch.Length
'Copy the text in the section unchanged
ResultString += OuterMatch.Value
'Find the next section
OuterMatch = OuterMatch.NextMatch
End While
'Search and replace through the remainder after the last regex match
Dim TextAfter = SubjectString.Substring(LastIndex,
SubjectString.Length - LastIndex);
ResultString += InnerRegex.Replace(TextAfter,
ChrW(8H201C) + "$1" + ChrW(&H201D))

Java

StringBuffer resultString = new StringBuffer();

Pattern outerRegex = Pattern.compile("<[*<>]*>");

Pattern innerRegex = Pattern.compile("\"([~\"]*)\"");

Matcher outerMatcher = outerRegex.matcher(subjectString);

int lastIndex = 0;

while (outerMatcher.find()) {
// Search and replace through the text between this match,
// and the previous one
String textBetween = subjectString.substring(lastIndex,

outerMatcher.start());

Matcher innerMatcher = innerRegex.matcher(textBetween);
resultString.append(innerMatcher.replaceAll("\u201C$1\u201D"));
lastIndex = outerMatcher.end();
// Append the regex match itself unchanged
resultString.append(outerMatcher.group());

// Search and replace through the remainder after the last regex match
String textAfter = subjectString.substring(lastIndex);

Matcher innerMatcher = innerRegex.matcher(textAfter);
resultString.append(innerMatcher.replaceAll("\u201C$1\u201D"));

3.18 Replace All Matches Between the Matches of Another Regex | 207

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript

var result = "";
var outerRegex = /<[*<>]*>/g;
var innerRegex = /"([*"]*)"/g;
var outerMatch = null;
var lastIndex = 0;
while (outerMatch = outerRegex.exec(subject)) {
if (outerMatch.index == outerRegex.lastIndex) outerRegex.lastIndex++;
// Search and replace through the text between this match,
// and the previous one
var textBetween = subject.slice(lastIndex, outerMatch.index);
result += textBetween.replace(innerRegex, "\u201C$1\u201D");
lastIndex = outerMatch.index + outerMatch[o0].length;
// Append the regex match itself unchanged
result += outerMatch[o0];
}
// Search and replace through the remainder after the last regex match
var textAfter = subject.slice(lastIndex);
result += textAfter.replace(innerRegex, "\u201C$1\u201D");

PHP

$result = '';
$lastindex = 0;
while (preg match('/<[*<>]*>/', $subject, $groups, PREG OFFSET CAPTURE,
$lastindex)) {
$matchstart = $groups[o0][1];
$matchlength = strlen($groups[o][0]);
// Search and replace through the text between this match,
// and the previous one
$textbetween = substr($subject, $lastindex, $matchstart-$lastindex);
$result .= preg replace('/"([*"]*)"/', '“$1”', $textbetween);
// Append the regex match itself unchanged
$result .= $groups[o][o0];
// Move the starting position for the next match
$lastindex = $matchstart + $matchlength;
if ($matchlength == 0) {
// Don't get stuck in an infinite loop
// if the regex allows zero-length matches
$lastindex++;
}
}
// Search and replace through the remainder after the last regex match
$textafter = substr($subject, $lastindex);
$result .= preg replace('/"([~"]*)"/', '“$1”', $textafter);

208 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

Perl

use encoding "utf-8";

$result = '';
while ($subject =~ m/<[*<>]*>/g) {
$match = $&;

$textafter = $';
($textbetween = $°) =~ s/"([~"]*)"/\x{201C}$1\x{201D}/g;
$result .= $textbetween . $match;

}

$textafter =~ s/"([*"]1*)"/\x{201C}$1\x{201D}/g;

$result .= $textafter;

Python
innerre = re.compile('"([*"]*¥)"")
result = "";

lastindex = 0;
for outermatch in re.finditer("<[*<>]*>", subject):
Search and replace through the text between this match,
and the previous one
textbetween = subject[lastindex:outermatch.start()]
result += innerre.sub(u"\u201C\\1\u201D", textbetween)
lastindex = outermatch.end()
Append the regex match itself unchanged
result += outermatch.group()
Search and replace through the remainder after the last regex match
textafter = subject[lastindex:]
result += innerre.sub(u"\u201C\\1\u201D", textafter)

Ruby

result = '';

textafter = "'

subject.scan(/<[*<>]1*>/) {|match]|
textafter = §'
textbetween = $.gsub(/"([*"]*)"/, "“\1”")
result += textbetween + match

}
result += textafter.gsub(/"([*"]*)"/, "“\1”")

Discussion

Recipe 3.13 explains how to use two regular expressions to find matches (of the second
regex) only within certain sections of the file (matches of the first regex). The solution
for this recipe uses the same technique to search and replace through only certain parts
of the subject string.

3.18 Replace All Matches Between the Matches of Another Regex | 209

www.it-ebooks.info

http://www.it-ebooks.info/

It is important that the regular expression you use to find the sections continues to
work on the original subject string. If you modify the original subject string, you have
to shift the starting position for the regex that finds the section as the inner regex adds
or deletes characters. More importantly, the modifications can have unintended side
effects. For example, if your outer regex uses the anchor «*> to match something at the
start of a line, and your inner regex inserts a line break at the end of the section found
by the outer regex, then «* will match right after the previous section because of the
newly inserted line break.

Though the solutions for this recipe are quite long, they’re very straightforward. Two
regular expressions are used. The “outer” regular expression, «<[*<>]*>>, matches a
pair of angle brackets and anything between them, except angle brackets. Thisisa crude
way of matching any HTML tag. This regex works fine as long as the HTML file does
not contain any literal angle brackets that were (incorrectly) not encoded as entities.
We implement this regular expression with the same code shown in Recipe 3.11. The
only difference is that the placeholder comment in that code that said where to use the
match was replaced by the code that does the actual search-and-replace.

The search-and-replace within the loop follows the code shown in Recipe 3.14. The
subject string for the search-and-replace is the text between the previous match of the
outer regex and the current match. We append the result of the inner search-and-
replace to the overall result string. We also append the current match of the outer
regular expression unchanged.

When the outer regex fails to find further matches, we run the inner search-and-replace
once more, on the text after the last match of the outer regex.

The regex <"([*"]*)™, used for the search-and-replace inside the loop, matches a pair
of double-quote characters and anything between them, except double quotes. The
text between the quotes is captured into the first capturing group.

For the replacement text, we use a reference to the first capturing group, which is placed
between two smart quotes. The smart quotes occupy Unicode code points U+201C and
U+201D. Normally, you can simply paste the smart quotes directly into your source code.
Visual Studio 2008, however, insists on being clever and automatically replaces literal
smart quotes with straight quotes.

In a regular expression, you can match a Unicode code point with (\u201C> or
Ax{201C}>, but none of the programming languages discussed in this book support
such tokens as part of the replacement text. If an end user wants to insert smart quotes
into the replacement text he types into an edit control, he’ll have to paste them in
literally from a character map. In your source code, you can use Unicode escapes in the
replacement text, if your language supports such escapes as part of literal strings. For
example, C# and Java support \u201C at the string level, but VB.NET does not offer a
way to escape Unicode characters in strings. In VB.NET, you can use the ChrW function
to convert a Unicode code point into a character.

210 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

Perl and Ruby

The Perl and Ruby solutions use two special variables available in these languages that
we haven’t explained yet. $° (dollar backtick) holds the part of the text to the left of
the subject match, and $' (dollar single quote) holds the part of the text to the right of
the subject match. Instead of iterating over the matches in the original subject string,
we start a new search on the part of the string after the previous match. This way, we
can easily retrieve the text between the match and the previous one with $°.

Python

The result of this code is a Unicode string because the replacement text is specified as
a Unicode string. You may need to call encode() to be able to display it, for example

print result.encode('1252")

See Also

This recipe uses techniques introduced by three earlier recipes. Recipe 3.11 shows code
to iterate over all the matches a regex can find in a string. Recipe 3.15 shows code to
find regex matches within the matches of another regex. Recipe 3.16 shows code to
search and replace with replacements generated in code for each regex match instead
of using a fixed replacement text for all matches.

3.19 Splita String

Problem

You want to split a string using a regular expression. After the split, you will have an
array or list of strings with the text between the regular expression matches.

For example, you want to split a string with HTML tags in it along the HTML tags.
Splitting Ielike®boldeande<i>italic</i>®fonts should result in an array of
five strings: Ielike®, bold, ®ande, italic, and ®fonts.

Solution

€

You can use the static call when you process only a small number of strings with the
same regular expression:

string[] splitArray = Regex.Split(subjectString, "<[*<>]*>");

If the regex is provided by the end user, you should use the static call with full exception
handling:

3.19 SplitaString | 211

www.it-ebooks.info

http://www.it-ebooks.info/

string[] splitArray = null;
try {
splitArray = Regex.Split(subjectString, "<[*<>]*>");
} catch (ArgumentNullException ex) {
// Cannot pass null as the regular expression or subject string
} catch (ArgumentException ex) {
// Syntax error in the regular expression

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Regex regexObj = new Regex("<["<>]*>");
string[] splitArray = regexObj.Split(subjectString);

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

string[] splitArray = null;
try {
Regex regexObj = new Regex("<[*<>]*>");
try {
splitArray = regexObj.Split(subjectString);
} catch (ArgumentNullException ex) {
// Cannot pass null as the subject string
}

} catch (ArgumentException ex) {
// Syntax error in the regular expression
}

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim SplitArray = Regex.Split(SubjectString, "<[*<>]*>")

If the regex is provided by the end user, you should use the static call with full exception
handling:

Dim SplitArray As String()
Try
SplitArray = Regex.Split(SubjectString, "<[*<>]*>")
Catch ex As ArgumentNullException
"Cannot pass null as the regular expression or subject string
Catch ex As ArgumentException
'Syntax error in the regular expression
End Try

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

212 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

Dim RegexObj As New Regex("<[*<>]*>")
Dim SplitArray = RegexObj.Split(SubjectString)

If the regex is provided by the end user, you should use the Regex object with full
exception handling:

Dim SplitArray As String()
Try
Dim RegexObj As New Regex("<[*<>]*>")
Try
SplitArray = RegexObj.Split(SubjectString)
Catch ex As ArgumentNullException
"Cannot pass null as the subject string
End Try
Catch ex As ArgumentException
'Syntax error in the regular expression
End Try

Java

You can call String.Split() directly when you want to split only one string with the
same regular expression:

String[] splitArray = subjectString.split("<[*<>]*>");
If the regex is provided by the end user, you should use full exception handling:

try {

String[] splitArray = subjectString.split("<[*<>]*>");
} catch (PatternSyntaxException ex) {

// Syntax error in the regular expression
}

Construct a Pattern object if you want to use the same regular expression with a large
number of strings:

Pattern regex = Pattern.compile("<[*<>]*>");
String[] splitArray = regex.split(subjectString);

If the regex is provided by the end user, you should use the Pattern object with full
exception handling:

String[] splitArray = null;

try {
Pattern regex = Pattern.compile("<[*<>]*>");
splitArray = regex.split(subjectString);

} catch (ArgumentException ex) {
// Syntax error in the regular expression

}

3.19 SplitaString | 213

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript
The string.split() method can split a string using a regular expression:
result = subject.split(/<[*<>]*>/);

XRegExp
result = XRegExp.split(subject, /<[*<>]*>/);

PHP

$result = preg split('/<[*<>]*>/", $subject);
Perl

@result = split(m/<[*<>]*>/, $subject);
Python

If you have only a few strings to split, you can use the global function:
result = re.split("<["<>]*>", subject))
To use the same regex repeatedly, use a compiled object:

reobj = re.compile("<[*<>]*>")
result = reobj.split(subject)

Ruby
result = subject.split(/<[*<>]*>/)

Discussion

Splitting a string using a regular expression essentially produces the opposite result of
Recipe 3.10. Instead of retrieving a list with all the regex matches, you get a list of the
text between the matches, including the text before the first and after the last match.
The regex matches themselves are omitted from the output of the split function.

C# and VB.NET

In .NET, you will always use the Regex.Split() method to split a string with a regular
expression. The first parameter expected by Split() is always the string that holds the
original subject text you want to split. This parameter should not be null. If it is,
Split() will throw an ArgumentNullException. The return value of Split() is always an
array of strings.

If you want to use the regular expression only a few times, you can use a static call. The
second parameter is then the regular expression you want to use. You can pass regex

214 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

options as an optional third parameter. If your regular expression has a syntax error,
an ArgumentException will be thrown.

If you want to use the same regular expression on many strings, you can make your
code more efficient by constructing a Regex object first, and then calling Split() on that
object. The subject string is then the only required parameter.

When calling Split() on an instance of the Regex class, you can pass additional pa-
rameters to limit the split operation. If you omit these parameters, the string will be
split at all matches of the regular expression in the subject string. The static overloads
of Split() do not allow these additional parameters. They always split the whole string
at all matches.

As the optional second parameter, after the subject string, you can pass the maximum
number of split strings you want to end up with. For example, if you call
regexObj.Split(subject, 3), you will receive an array with at most three strings in it.
The Split() function will try to find two regex matches, and return an array with the
text before the first match, the text between the two matches, and the text after the
second match. Any further possible regex matches within the remainder of the subject
string are ignored, and left in the last string in the array.

If there are not enough regex matches to reach your limit, Split() will split along all
the available regex matches and return an array with fewer strings than you specified.
regex0Obj.Split(subject, 1) does not split the string at all, returning an array with the
original string as the only element. regex0Obj.Split(subject, 0) splits at all regex
matches, just like Split() does when you omit the second parameter. Specifying a
negative number will cause Split() to throw an ArgumentOutOfRangeException.

If you specify the second parameter with the maximum number of strings in the re-
turned array, you also can specify an optional third parameter to indicate the character
index at which the regular expression should begin to find matches. Essentially, the
number you pass as the third parameter is the number of characters at the start of your
subject string that the regular expression should ignore. This can be useful when you’ve
already processed the string up to a point, and you only want to split the remainder of
the string.

The characters skipped by the regular expression will still be added to the returned
array. The first string in the array is the whole substring before the first regex
match found after the starting position you specified, including the characters before
that starting position. If you specify the third parameter, it must be between
zero and the length of the subject string. Otherwise, Split() throws an
ArgumentOutOfRangeException. Unlike Match(), Split() does not allow you to specify a
parameter that sets the length of the substring the regular expression is allowed to
search through.

If a match occurs at the start of the subject string, the first string in the resulting array
will be an empty string. When two regex matches can be found right next to each other

3.19 SplitaString | 215

www.it-ebooks.info

http://www.it-ebooks.info/

in the subject string, with no text between them, an empty string will be added to the
array. If a match occurs at the end of the subject string, the last element in the array
will be an empty string.

Java

If you have only one string to split, you can call the split() method directly on your
subject string. Pass the regular expression as the only parameter. This method simply
calls Pattern.compile("regex").split(subjectString).

If you want to split multiple strings, use the Pattern.compile() factory to create a
Pattern object. This way, your regular expression needs to be compiled only once.
Then, call the split() method on your Pattern instance, and pass your subject string
as the parameter. There’s no need to create a Matcher object. The Matcher class does
not have a split() method at all.

Pattern.split() takesan optional second parameter, but String.split() doesnot. You
can use the second parameter to pass the maximum number of split strings you want
to end up with. For example, if you call Pattern.split(subject, 3), you will receive
an array with at most three strings in it. The split() function will try to find two regex
matches, and return an array with the text before the first match, the text between the
two matches, and the text after the second match. Any further possible regex matches
within the remainder of the subject string are ignored, and left in the last string in the
array. If there are not enough regex matches to reach your limit, split() will split along
all the available regex matches, and return an array with fewer strings than you speci-
fied. Pattern.split(subject, 1) does not split the string at all, returning an array with
the original string as the only element.

If a match occurs at the start of the subject string, the first string in the resulting array
will be an empty string. When two regex matches can be found right next to each other
in the subject string, with no text between them, an empty string will be added to the
array. If a match occurs at the end of the subject string, the last element in the array
will be an empty string.

Java, however, will eliminate empty strings at the end of the array. If you want the
empty strings to be included, pass a negative number as the second parameter to
Pattern.split(). This tells Java to split the string as many times as possible, and leave
any empty strings at the end of the array. The actual value of the second parameter
makes no difference when it is negative. You cannot tell Java to split a string a certain
number of times and also leave empty strings at the end of the array at the same time.

JavaScript

In JavaScript, call the split() method on the string you want to split. Pass the regular
expression as the only parameter to get an array with the string split as many times as
possible. You can pass an optional second parameter to specify the maximum number
of strings you want to have in the returned array. This should be a positive number. If

216 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

you pass zero, you get an empty array. If you omit the second parameter or pass a
negative number, the string is split as many times as possible. Setting the /g flag for the
regex (Recipe 3.4) makes no difference.

In a standards-compliant browser, the split() method includes the matches of
capturing groups in the returned array. It even adds undefined for nonparticipating
capturing groups. If you do not want these extra elements in your array, use only
noncapturing groups (Recipe 2.9) in regular expressions you pass to split().

All the major web browsers now implement String. prototype.split() correctly. Older
browsers have various issues with capturing groups and adjacent matches. If you want
an implementation of String.prototype.split() that follows the standard and also
works with all browsers, Steven Levithan has a solution for you at http://blog.stevenle
vithan.com/archives/cross-browser-split.

XRegExp

When using XRegExp in JavaScript, call XRegExp.split(subject, regex) instead of
subject.split(regex) for standards-compliant results in all browsers.

PHP

Call preg_split() to split a string into an array of strings along the regex matches. Pass
the regular expression as the first parameter and the subject string as the second pa-
rameter. If you omit the second parameter, $_is used as the subject string.

You can pass an optional third parameter to specify the maximum number of split
strings you want to end up with. For example, if you call preg split
($regex, $subject, 3), you will receive an array with at most three strings in it. The
preg_split() function will try to find two regex matches, and return an array with the
text before the first match, the text between the two matches, and the text after the
second match. Any further possible regex matches within the remainder of the subject
string are ignored, and left in the last string in the array. If there are not enough regex
matches to reach your limit, preg_split() will split along all the available regex matches
and return an array with fewer strings than you specified. If you omit the third param-
eter or set it to -1, the string is split as many times as possible.

If a match occurs at the start of the subject string, the first string in the resulting array
will be an empty string. When two regex matches can be found right next to each other
in the subject string, with no text between them, an empty string will be added to the
array. If a match occurs at the end of the subject string, the last element in the array
will be an empty string. By default, preg_split() includes those empty strings in the
array it returns. If you don’t want empty strings in the array, pass the constant
PREG_SPLIT_NO_EMPTY as the fourth parameter.

3.19 SplitaString | 217

www.it-ebooks.info

http://blog.stevenlevithan.com/archives/cross-browser-split
http://blog.stevenlevithan.com/archives/cross-browser-split
http://www.it-ebooks.info/

Perl

Call the split() function to split a string into an array of strings along the regex match-
es. Pass a regular expression operator as the first parameter and the subject string as
the second parameter.

You can pass an optional third parameter to specify the maximum number of split
strings you want to end up with. For example, if you call split(/regex/, subject,
3), you will receive an array with at most three strings in it. The split() function will
try to find two regex matches, and return an array with the text before the first match,
the text between the two matches, and the text after the second match. Any further
possible regex matches within the remainder of the subject string are ignored, and left
in the last string in the array. If there are not enough regex matches to reach your limit,
split() will split along all the available regex matches and return an array with fewer
strings than you specified.

If you omit the third parameter, Perl will determine the appropriate limit. If you assign
the result to an array variable, as the solution for this recipe does, the string is split as
many times as possible. If you assign the result to a list of scalar variables, Perl sets the
limit to the number of variables plus one. In other words, Perl will attempt to fill all the
variables, and will discard the unsplit remainder. For example, ($one, $two, $three)
= split(/,/) splits $_ with a limit of 4.

If a match occurs at the start of the subject string, the first string in the resulting array
will be an empty string. When two regex matches can be found right next to each other
in the subject string, with no text between them, an empty string will be added to the
array. If a match occurs at the end of the subject string, the last element in the array
will be an empty string.

Python

The split() function in the re module splits a string using a regular expression. Pass
your regular expression as the first parameter and the subject string as the second pa-
rameter. The global split() function does not accept a parameter with regular expres-
sion options.

The re.split() function calls re.compile(), and then calls the split() method on the
compiled regular expression object. This method has only one required parameter: the
subject string.

Both forms of split() return a list with the text between all the regex matches. Both
take one optional parameter that you can use to limit the number of times the string
should be split. If you omit it or set it to zero, the string is split as many times as possible.
If you pass a positive number, that is the maximum number of regex matches at which
the string will be split. The resulting list will contain one more string than the count
you specified. The last string is the unsplit remainder of the subject string after the last

218 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

regex match. If fewer matches can be found than the count you specified, the string is
split at all regex matches without error.

Ruby

Call the split() method on the subject string and pass your regular expression as the
first parameter to divide the string into an array of strings along the regex matches.

The split() method takes an optional second parameter, which you can use to indicate
the maximum number of split strings you want to end up with. For example, if you call
subject.split(re, 3), you will receive an array with at most three strings in it. The
split() function will try to find two regex matches, and return an array with the text
before the first match, the text between the two matches, and the text after the second
match. Any further possible regex matches within the remainder of the subject string
are ignored, and left in the last string in the array. If there are not enough regex matches
to reach your limit, split() will split along all the available regex matches, and return
an array with fewer strings than you specified. split(re, 1) does not split the string at
all, returning an array with the original string as the only element.

If a match occurs at the start of the subject string, the first string in the resulting array
will be an empty string. When two regex matches can be found right next to each other
in the subject string, with no text between them, an empty string will be added to the
array. If a match occurs at the end of the subject string, the last element in the array
will be an empty string.

Ruby, however, will eliminate empty strings at the end of the array. If you want the
empty strings to be included, pass a negative number as the second parameter to
split(). This tells Ruby to split the string as many times as possible and leave any empty
strings at the end of the array. The actual value of the second parameter makes no
difference when it is negative. You cannot tell Ruby to split a string a certain number
of times and also leave empty strings at the end of the array at the same time.

See Also

Recipe 3.20 shows code that splits a string into an array and also adds the regex matches
to the array.

3.20 Split a String, Keeping the Regex Matches

Problem

You want to split a string using a regular expression. After the split, you will have an
array or list of strings with the text between the regular expression matches, as well as
the regex matches themselves.

3.20 Splita String, Keeping the Regex Matches | 219

www.it-ebooks.info

http://www.it-ebooks.info/

Suppose you want to split a string with HTML tags in it along the HTML tags, and also
keep the HTML tags. Splitting Ielike®bold®ande<i>italic</i>®fonts should
result in an array of nine strings: I®1likee, , bold, , ®and®, <i>, italic, </i>, and
efonts.

Solution

G

You can use the static call when you process only a small number of strings with the
same regular expression:

string[] splitArray = Regex.Split(subjectString, "(<[*<>]*>)");

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Regex regexObj = new Regex("(<[*<>]*>)");

string[] splitArray = regexObj.Split(subjectString);

VB.NET

You can use the static call when you process only a small number of strings with the
same regular expression:

Dim SplitArray = Regex.Split(SubjectString, "(<[*<>]*>)")

Construct a Regex object if you want to use the same regular expression with a large
number of strings:

Dim RegexObj As New Regex("(<[*<>]*>)")
Dim SplitArray = RegexObj.Split(SubjectString)

Java

List<String> resultList = new ArrayList<String>();

Pattern regex = Pattern.compile("<[*<>]*>");

Matcher regexMatcher = regex.matcher(subjectString);

int lastIndex = 0;

while (regexMatcher.find()) {
resultlist.add(subjectString.substring(lastIndex,

regexMatcher.start()));

resultlList.add(regexMatcher.group());
lastIndex = regexMatcher.end();

}
resultlist.add(subjectString.substring(lastIndex));

JavaScript
result = subject.split(/(<[*<>]*>)/);

220 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

XRegExp
result = XRegExp.split(subject, /(<[*<>]*>)/);

PHP
$result = preg split('/(<[*<>]*>)/', $subject, -1,
PREG_SPLIT DELIM CAPTURE);
Perl
@result = split(m/(<["<>]*>)/, $subject);
Python

If you have only a few strings to split, you can use the global function:
result = re.split("(<["<>]*>)", subject))
To use the same regex repeatedly, use a compiled object:

reobj = re.compile("(<[*<>]*>)")
result = reobj.split(subject)

Ruby

list = []

lastindex = 0;

subject.scan(/<[*<>]1*>/) {|match]|
list << subject[lastindex..$~.begin(0)-1];
list << $&
lastindex = $~.end(0)

}

list << subject[lastindex..subject.length()]

Discussion

.NET

In .NET, the Regex.Split() method includes the text matched by capturing groups into
the array. .NET 1.0 and 1.1 include only the first capturing group. .NET 2.0 and later
include all capturing groups as separate strings into the array. If you want to include
the overall regex match into the array, place the whole regular expression inside a
capturing group. For .NET 2.0 and later, all other groups should be noncapturing, or

they will be included in the array.

The capturing groups are not included in the string count that you can pass to the
Split() function. If you call regex0Obj.Split(subject, 4) with the example string and
regex of this recipe, you’ll get an array with seven strings. Those will be the four strings
with the text before, between, and after the first three regex matches, plus three strings

3.20 Splita String, Keeping the Regex Matches | 221

www.it-ebooks.info

http://www.it-ebooks.info/

between them with the regex matches, as captured by the only capturing group in the
regular expression. Simply put, you’ll get an array with: Ielikee, , bold, , ®ande,
<i>, and italic</i>efonts. If your regex has 10 capturing groups and you’re us-
ing .NET 2.0 or later, regex0Obj.Split(subject, 4) returns an array with 34 strings.

.NET does not provide an option to exclude the capturing groups from the array. Your
only solution is to replace all named and numbered capturing groups with noncaptur-
ing groups. An easy way to do this in .NET is to use RegexOptions.ExplicitCapture,
and replace all named groups with normal groups (i.e., just a pair of parentheses) in
your regular expression.

Java

Java’s Pattern.split() method does not provide the option to add the regex matches
to the resulting array. Instead, we can adapt Recipe 3.12 to add the text between the
regex matches along with the regex matches themselves to a list. To get the text between
the matches, we use the match details explained in Recipe 3.8.

JavaScript

JavaScript’s string.split() function does not provide an option to control whether
regex matches should be added to the array. According to the JavaScript standard, all
capturing groups should have their matches added to the array.

All the major web browsers now implement String. prototype.split() correctly. Older
browsers did not always correctly add capturing groups to the returned array. If you
want an implementation of String.prototype.split() that follows the standard and
also works with all browsers, Steven Levithan has a solution for you at http://blog.ste
venlevithan.com/archives/cross-browser-split.

XRegExp

When using XRegExp in JavaScript, call XRegExp.split(subject, regex) instead of
subject.split(regex) for standards-compliant results in all browsers.

PHP

Pass PREG_SPLIT DELIM CAPTURE as the fourth parameter to preg_split() to include the
text matched by capturing groups in the returned array. You can use the | operator to
combine PREG_SPLIT DELIM_CAPTURE with PREG_SPLIT NO_EMPTY.

The capturing groups are not included in the string count that you specify as the third
argument to the preg split() function. If you set the limit to four with the example
string and regex of this recipe, you’ll get an array with seven strings. Those will be the
four strings with the text before, between, and after the first three regex matches, plus
three strings between them with the regex matches, as captured by the only capturing

222 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://blog.stevenlevithan.com/archives/cross-browser-split
http://blog.stevenlevithan.com/archives/cross-browser-split
http://www.it-ebooks.info/

group in the regular expression. Simply put, you’ll get an array with: I®1ike®, , bold,
, ®and®, <i>, and italic</i>®fonts.

Perl

Perl’s split() function includes the text matched by all capturing groups into the array.
If you want to include the overall regex match into the array, place the whole regular
expression inside a capturing group.

The capturing groups are not included in the string count that you can pass to the
split() function. If you call split(/(<[*<>]*>)/, $subject, 4) with the example string
and regex of this recipe, you’ll get an array with seven strings. Those will be the four
strings with the text before, between, and after the first three regex matches, plus three
strings between them with the regex matches, as captured by the only capturing group
in the regular expression. Simply put, you’ll get an array with: I®1ike®, , bold, ,
®ande, <i>, and italic</i>®fonts. If your regex has 10 capturing groups,
split($regex, $subject, 4) returns an array with 34 strings.

Perl does not provide an option to exclude the capturing groups from the array. Your
only solution is to replace all named and numbered capturing groups with
noncapturing groups.

Python

Python’s split() function includes the text matched by all capturing groups into the
array. If you want to include the overall regex match into the array, place the whole
regular expression inside a capturing group.

The capturing groups do not affect the number of times the string is split. If you call
split(/(<[*<>]*>)/, $subject, 3) with the example string and regex of this recipe,
you’ll get an array with seven strings. The string is split three times, which results in
four pieces of text between the matches, plus three pieces of text matched by the cap-
turing group. Simply put, you’ll get an array with: “I 1ike”, “”, “bold”, “”,
" and ", “<i>”, and “italic</i> fonts”. If your regex has 10 capturing groups,
split($regex, $subject, 3) returns an array with 34 strings.

Python does not provide an option to exclude the capturing groups from the array.
Your only solution is to replace all named and numbered capturing groups with non-
capturing groups.

Ruby

Ruby’s String.split() method does not provide the option to add the regex matches
to the resulting array. Instead, we can adapt Recipe 3.11 to add the text between the
regex matches along with the regex matches themselves to a list. To get the text between
the matches, we use the match details explained in Recipe 3.8.

3.20 Splita String, Keeping the Regex Matches | 223

www.it-ebooks.info

http://www.it-ebooks.info/

See Also

Recipe 2.9 explains capturing and noncapturing groups. Recipe 2.11 explains named
capturing groups. Some programming languages also add text matched by capturing
groups to the array when splitting a string.

Recipe 3.19 shows code that splits a string into an array without adding the regex
matches to the array.

3.21 Search Line by Line

Problem

Traditional grep tools apply your regular expression to one line of text at a time, and
display the lines matched (or not matched) by the regular expression. You have an array
of strings, or a multiline string, that you want to process in this way.

Solution

G
If you have a multiline string, split it into an array of strings first, with each string in
the array holding one line of text:
string[] lines = Regex.Split(subjectString, "\r?\n");
Then, iterate over the lines array:

Regex regexObj = new Regex("regex pattern");
for (int i = 0; i < lines.Length; i++) {
if (regexObj.IsMatch(lines[i])) {
// The regex matches lines[i]
} else {
// The regex does not match lines[i]
}

}

VB.NET

If you have a multiline string, split it into an array of strings first, with each string in
the array holding one line of text:

Dim Lines = Regex.Split(SubjectString, "\r?\n")
Then, iterate over the lines array:

Dim RegexObj As New Regex("regex pattern")
For i As Integer = 0 To Lines.length - 1
If RegexObj.IsMatch(Lines(i)) Then
'The regex matches Lines(i)

224 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

Else

'The regex does not match Lines(i)
End If
Next

Java

If you have a multiline string, split it into an array of strings first, with each string in
the array holding one line of text:

String[] lines = subjectString.split("\r?\n");
Then, iterate over the lines array:

Pattern regex = Pattern.compile("regex pattern");
Matcher regexMatcher = regex.matcher("");
for (int i = 0; i < lines.length; i++) {
regexMatcher.reset(lines[i]);
if (regexMatcher.find()) {
// The regex matches lines[i]
} else {
// The regex does not match lines[i]
}

}

JavaScript

If you have a multiline string, split it into an array of strings first, with each string in
the array holding one line of text.

var lines = subject.split(/\r?\n/);
Then, iterate over the lines array:

var regexp = /regex pattern/;
for (var i = 0; i < lines.length; i++) {
if (lines[i].match(regexp)) {
// The regex matches lines[i]
} else {
// The regex does not match lines[i]
}

PHP

If you have a multiline string, split it into an array of strings first, with each string in
the array holding one line of text:

$lines = preg split('/\r?\n/', $subject)

Then, iterate over the $lines array:

3.21 Search Line by Line | 225

www.it-ebooks.info

http://www.it-ebooks.info/

foreach ($lines as $line) {
if (preg match('/regex pattern/', $line)) {
// The regex matches $line
} else {
// The regex does not match $line
}

Perl

If you have a multiline string, split it into an array of strings first, with each string in
the array holding one line of text:

@lines = split(m/\r?\n/, $subject)
Then, iterate over the $lines array:

foreach $line (@lines) {
if ($line =~ m/regex pattern/) {
The regex matches $line
} else {
The regex does not match $line
}

}

Python
If you have a multiline string, split it into an array of strings first, with each string
in the array holding one line of text:
lines = re.split("\r?\n", subject)
Then, iterate over the lines array:

reobj = re.compile("regex pattern")
for line in lines[:]:
if reobj.search(line):
The regex matches line
else:
The regex does not match line

Ruby

If you have a multiline string, split it into an array of strings first, with each string in
the array holding one line of text:

lines = subject.split(/\r?\n/)
Then, iterate over the lines array:

re = /regex pattern/
lines.each { |line|
if line =~ re

226 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

The regex matches line
else
The regex does not match line

}

Discussion

When working with line-based data, you can save yourself a lot of trouble if you split
the data into an array of lines, instead of trying to work with one long string with
embedded line breaks. Then, you can apply your actual regex to each string in the array,
without worrying about matching more than one line. This approach also makes it easy
to keep track of the relationship between lines. For example, you could easily iterate
over the array using one regex to find a header line and then another to find the footer
line. With the delimiting lines found, you can then use a third regex to find the data
lines you’re interested in. Though this may seem like a lot of work, it’s all very straight-
forward, and will yield code that performs well. Trying to craft a single regex to find
the header, data, and footer all at once will be a lot more complicated, and will result
in a much slower regex.

Processing a string line by line also makes it easy to negate a regular expression. Regular
expressions don’t provide an easy way of saying “match a line that does not contain
this or that word.” Only character classes can be easily negated. But if you've already
split your string into lines, finding the lines that don’t contain a word becomes as easy
as doing a literal text search in all the lines, and removing the ones in which the word
can be found.

Recipe 3.19 shows how you can easily splita string into an array. The regular expression
A\r\n> matches a pair of |CR] and Characters, which delimit lines on the Microsoft
Windows platforms. <\n> matches an |LF| character, which delimits lines on Unix and
its derivatives, such as Linux and even OS X. Since these two regular expressions are
essentially plain text, you don’t even need to use a regular expression. If your pro-
gramming language can split strings using literal text, by all means split the string that
way.

If you’re not sure which line break style your data uses, you could split it using the
regular expression (\r?\nm>. By making the [CR| optional, this regex matches either a
Windows line break or an |LF| Unix line break.

Once you have your strings into the array, you can easily loop over it. Inside the loop,
follow the recipe shown in Recipe 3.5 to check which lines match, and which don’t.

See Also

This recipe uses techniques introduced by two earlier recipes. Recipe 3.11 shows code
to iterate over all the matches a regex can find in a string. Recipe 3.19 shows code to
split a string into an array or list using a regular expression.

3.21 Search Line by Line | 227

www.it-ebooks.info

http://www.it-ebooks.info/

3.22 Construct a Parser

Problem

You have an application that stores certain data in a table. Your task is to add a new
feature to this application to import that data from a file format that your application
does not yet support. There are no off-the-shelf parsers available for this file format.
You will have to roll your own.

The rules of the file format you need to parse are as follows:

1.

The keyword table begins a new table. A file can have an unlimited number of
tables, and must have at least one.

. Any strings that follow the table keyword form the table’s caption. A table does

not need to have a caption.

. The keyword row begins a new row. A row cannot exist outside of a table. A table

can have an unlimited number of rows, and must have at least one.

4. The row keyword cannot be followed by a string.

10.

11.

. The keyword cell begins a new cell. A cell cannot exist outside of a row. A row

can have an unlimited number of cells, but does not need any. Different rows in
the same table can have different numbers of cells.

. Any strings that follow the cell keyword form the content of the cell. A cell does

not need to have any content.

. A string is a sequence of zero or more characters enclosed by percentage signs. A

string with nothing between the percentage signs is an empty string. Two sequen-
tial percentage signs in a character string denote a single character, a percentage
sign. No characters other than the percentage sign have a special meaning in strings.
Line breaks and other control characters that appear between the percentage signs
are all part of the string.

. If two or more strings follow the same table or cell keyword, those strings form

separate lines in the table’s caption or the cell’s content, regardless of whether there
is a line break between the strings in the file.

. Keywords are case insensitive. Cell, cell, CELL, and CelLl are all the same.

Any whitespace between keywords and/or strings must be ignored. Whitespace is
required to delimit adjacent keywords. Whitespace is also required to delimit ad-
jacent strings. Whitespace is not required to delimit keywords from strings.

Any characters in the file that do not form a keyword or string are an error.

This sample file illustrates the rules:

table %First table%
row cell %A1% cell %B1% cell%Ci%cell%D1%
ROW row CELL %The previous row was blank%

228

| Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

cell %B3%
oW
cell %A4% %second line%
cE1l %B4%
%second line%
cell %C4
second line%
row cell %%%string%%%
cell %%
cell %%%%
cell %%%%hdkb

Formatted as a table, it would look like Table 3-1.

Table 3-1. Table to be parsed from the sample file

Al B1 Q D1
(omitted) (omitted) (omitted) (omitted)
The previous row was blank B3 (omitted) (omitted)
A4 B4 4 (omitted)
second line second line second line

%string% (blank) % %%

Your solution should define a function that parses a string containing the entire con-
tents of the file that needs to be imported. You should use the application’s existing
data structures RECTable, RECRow, and RECCell to store the tables imported from the file.

Solution

G

static RECTable ImportTable(string fileContents) {
RECTable table = null;
RECRow row = null;
RECCell cell = null;
Regex regexObj = new Regex(
@" \b(?<keyword>table|row|cell)\b
| %(2<string>[%]* (2 :%%[%]*)*)%
| (?<error>\S+)",
RegexOptions.IgnoreCase | RegexOptions.IgnorePatternWhitespace);
Match match = regexObj.Match(fileContents);
while (match.Success) {
if (match.Groups["keyword"].Success) {
string keyword = match.Groups["keyword"].Value.ToLower();
if (keyword == "table") {
table = new RECTable();
row = null;
cell = null;

3.22 Constructa Parser | 229

www.it-ebooks.info

http://www.it-ebooks.info/

} else if (keyword == "row") {
if (table == null)
throw new Exception("Invalid data: row without table");
row = table.addRow();
cell = null;
} else if (keyword == "cell") {
if (row == null)
throw new Exception("Invalid data: cell without row");
cell = row.addCell();
} else {
throw new Exception("Parser bug: unknown keyword");

} else if (match.Groups["string"].Success) {
string content = match.Groups["string"].vValue.Replace("%%", "%");
if (cell != null)
cell.addContent(content);
else if (row != null)
throw new Exception("Invalid data: string after row keyword");
else if (table != null)
table.addCaption(content);
else
throw new Exception("Invalid data: string before table keyword");
} else if (match.Groups["error"].Success) {
throw new Exception("Invalid data: " + match.Groups["error"].Value);
} else {
throw new Exception("Parser bug: no capturing group matched");
}
match = match.NextMatch();
}
if (table == null)
throw new Exception("Invalid data: table keyword missing");
return table;

}

VB.NET

Function ImportTable(ByVal FileContents As String)
Dim Table As RECTable = Nothing
Dim Row As RECRow = Nothing
Dim Cell As RECCell = Nothing
Dim RegexObj As New Regex(
" \b(?<keyword>table|row|cell)\b" & _
"| %(2<string> [~B]*(2:%B[B]F)*)%" &
"| (2<error>\S+)",
RegexOptions.IgnoreCase Or RegexOptions.IgnorePatternWhitespace)
Dim MatchResults As Match = RegexObj.Match(FileContents)
While MatchResults.Success
If MatchResults.Groups("keyword").Success Then

230 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

Dim Keyword As String = MatchResults.Groups("keyword").Value
Keyword = Keyword.ToLower()
If Keyword = "table" Then
Table = New RECTable
Row = Nothing
Cell = Nothing
ElseIf Keyword = "row" Then
If Table Is Nothing Then
Throw New Exception("Invalid data: row without table")
End If
Row = Table.addRow
Cell = Nothing
ElseIf Keyword = "cell" Then
If Row Is Nothing Then
Throw New Exception("Invalid data: cell without row")

End If

Cell = Row.addCell
Else

Throw New Exception("Parser bug: unknown keyword")
End If

ElseIf MatchResults.Groups("string").Success Then
Dim Content As String = MatchResults.Groups("string").Value
Content = Content.Replace("%%", "%")
If Cell IsNot Nothing Then
Cell.addContent(Content)
ElseIf Row IsNot Nothing Then
Throw New Exception("Invalid data: string after row keyword")
ElseIf Table IsNot Nothing Then
Table.addCaption(Content)
Else
Throw New Exception("Invalid data: string before table keyword")
End If
ElseIf MatchResults.Groups("error").Success Then
Throw New Exception("Invalid data")
Else
Throw New Exception("Parser bug: no capturing group matched")
End If
MatchResults = MatchResults.NextMatch()
End While
If Table Is Nothing Then
Throw New Exception("Invalid data: table keyword missing")
End If
Return Table
End Function

3.22 Constructa Parser | 231

www.it-ebooks.info

http://www.it-ebooks.info/

Java

RECTable ImportTable(String fileContents) throws Exception {
RECTable table = null;
RECRow row = null;
RECCell cell = null;
final int groupkeyword = 1;
final int groupstring = 2;
final int grouperror = 3;
Pattern regex = Pattern.compile(

" \\b(table|row|cell)\\b\n" +

"1 BCLABTHF(2 BB %]*)*)%\n" +

" (\sH)",

Pattern.CASE_INSENSITIVE | Pattern.COMMENTS);
Matcher regexMatcher = regex.matcher(fileContents);
while (regexMatcher.find()) {

if (regexMatcher.start(groupkeyword) >= 0) {

String keyword = regexMatcher.group(groupkeyword).toLowerCase();

if (keyword.equals("table")) {
table = new RECTable();
row = null;
cell = null;
} else if (keyword.equals("row")) {
if (table == null)
throw new Exception("Invalid data: row without table");
row = table.addRow();
cell = null;
} else if (keyword.equals("cell")) {
if (row == null)
throw new Exception("Invalid data: cell without row");
cell = row.addCell();
} else {
throw new Exception("Parser bug: unknown keyword");

} else if (regexMatcher.start(groupstring) >= 0) {
String content = regexMatcher.group(groupstring);
content = content.replaceAll("%%", "%");
if (cell != null)

cell.addContent(content);
else if (row != null)

throw new Exception("Invalid data: String after row keyword");

else if (table != null)
table.addCaption(content);
else

throw new Exception("Invalid data: String before table keyword");

} else if (regexMatcher.start(grouperror) >= 0) {
throw new Exception("Invalid data: " +
regexMatcher.group(grouperror));
} else {

232 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

throw new Exception("Parser bug: no capturing group matched");
}
}
if (table == null)

throw new Exception("Invalid data: table keyword missing");
return table;

}

JavaScript

function importTable(fileContents) {
var table = null;
var row = null;
var cell = null;
var groupkeyword = 1;
var groupstring = 2;
var grouperror = 3;
var myregexp = /\b(table|row|cell)\b|%([%]*(?:%%["%]*)*)%| (\S+)/ig;
var match;
var keyword;
var content;
while (match = myregexp.exec(fileContents)) {
if (match[groupkeyword] !== undefined) {
keyword = match[groupkeyword].tolLowerCase();
if (keyword == "table") {
table = new RECTable();
row = null;
cell = null;
} else if (keyword == "row") {
if (!table)
throw new Error("Invalid data: row without table");
row = table.addRow();
cell = null;
} else if (keyword == "cell") {
if ('row)
throw new Error("Invalid data: cell without row");
cell = row.addCell();
} else {
throw new Error("Parser bug: unknown keyword");
}
} else if (match[groupstring] !== undefined) {
content = match[groupstring].replace(/%%/g, "%");
if (cell)
cell.addContent(content);
else if (row)
throw new Error("Invalid data: string after row keyword");
else if (table)
table.addCaption(content);

3.22 Constructa Parser | 233

www.it-ebooks.info

http://www.it-ebooks.info/

else
throw new Error("Invalid data: string before table keyword");

} else if (match[grouperror] !== undefined) {

throw new Error("Invalid data: " + match[grouperror]);
} else {

throw new Error("Parser bug: no capturing group matched");
}

}
if (!table)

throw new Error("Invalid data: table keyword missing");
return table;

}

XRegExp

function importTable(fileContents) {
var table = null;
var row = null;
var cell = null;
var myregexp = XRegExp("(?ix)\\b(?<keyword>table|row|cell)\\b" +
" | %(<string> [AB]*(2:%B[AB]F))% +
" | (2<error>\\S+)");
XRegExp.forEach(fileContents, myregexp, function(match) {
var keyword;
var content;
if (match.keyword !== undefined) {
keyword = match.keyword.toLowerCase();
if (keyword == "table") {
table = new RECTable();
row = null;
cell = null;
} else if (keyword == "row") {
if (!table)
throw new Error("Invalid data: row without table");
row = table.addRow();
cell = null;
} else if (keyword == "cell") {
if (!row)
throw new Error("Invalid data: cell without row");
cell = row.addCell();
} else {
throw new Error("Parser bug: unknown keyword");

} else if (match.string !== undefined) {
content = match.string.replace(/%%/g, "%");
if (cell)

cell.addContent(content);
else if (row)

234 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

throw new Error("Invalid data: string after row keyword");
else if (table)
table.addCaption(content);

else
throw new Error("Invalid data: string before table keyword");
} else if (match.error !== undefined) {
throw new Error("Invalid data: " + match.error);
} else {
throw new Error("Parser bug: no capturing group matched");

}

1;
if (!table)

throw new Error("Invalid data: table keyword missing");
return table;

}

Perl

sub importtable {
my $filecontents = shift;
my $table;
my $row;
my $cell;
while ($filecontents ="~
m/ \b(table|row|cell)\b
| (%1% (2% "%]*)*)%
| (\s+)/ixg) {
if (defined($1)) { # Keyword
my $keyword = lc($1);
if ($keyword eq "table") {
$table = new RECTable();
undef $row;
undef $cell;
} elsif ($keyword eq "row") {
if (!defined($table)) {
die "Invalid data: row without table";
}
$row = $table->addRow();
undef $cell;
} elsif ($keyword eq "cell") {
if (!defined($row)) {
die "Invalid data: cell without row";
}
$cell = $row->addCell();
} else {
die "Parser bug: unknown keyword";

}
} elsif (defined($2)) { # String

3.22 Constructa Parser | 235

www.it-ebooks.info

http://www.it-ebooks.info/

my $content = $2;
$content =~ s/%%/%/g;
if (defined($cell)) {
$cell->addContent($content);
} elsif (defined($row)) {
die "Invalid data: string after row keyword";
} elsif (defined($table)) {
$table->addCaption($content);
} else {
die "Invalid data: string before table keyword";

}
} elsif (defined($3)) { # Error

die "Invalid data: $3";
} else {

die "Parser bug: no capturing group matched";
}

}
if (!defined(table)) {

die "Invalid data: table keyword missing";

}

return table;

}

Python

def importtable(filecontents):
table = None
row = None
cell = None
for match in re.finditer(
""" (?ix)\b(?P<keyword>table|row|cell)\b
| %(2P<string> [%]*(2:%%[%]1*)*)%
| (?P<error>\S+)""", filecontents):
if match.group("keyword") != None:
keyword = match.group("keyword").lower()
if keyword == "table":
table = RECTable()
row = None
cell = None
elif keyword == "row":
if table == None:
raise Exception("Invalid data: row without table")
row = table.addRow()
cell = None
elif keyword == "cell":
if row == None:
raise Exception("Invalid data: cell without row")
cell = row.addCell()

236 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

else:
raise Exception("Parser bug: unknown keyword")
elif match.group("string") != None:
content = match.group("string").replace("%%", "%")
if cell != None:
cell.addContent(content)
elif row != None:
raise Exception("Invalid data: string after row keyword")
elif table != None:
table.addCaption(content)
else:
raise Exception("Invalid data: string before table keyword")
elif match.group("error") != None:
raise Exception("Invalid data: "
else:
raise Exception("Parser bug: no capturing group matched")
if table == None:
raise Exception("Invalid data: table keyword missing")
return table

+ match.group("error"))

PHP

function importTable($fileContents) {
preg_match all(
'/ \b(?P<keyword>table|row|cell)\b
| (2P<string>%[%1% (2:%%[%]1*)*%)
| (?P<error>\S+)/ix',
$fileContents, $matches, PREG_PATTERN_ORDER);
$table = NULL;
$row = NULL;
$cell = NULL;
for ($i = 0; $i < count($matches[0]); $i++) {
if ($matches['keyword'][$i] != NULL) {
$keyword = strtolower($matches['keyword'][$i]);
if ($keyword == "table") {
$table = new RECTable();

$row = NULL;
$cell = NULL;
} elseif ($keyword == "row") {

if ($table == NULL)
throw new Exception("Invalid data: row without table");
$row = $table->addRow();
$cell = NULL;
} elseif ($keyword == "cell") {
if ($row == NULL)
throw new Exception("Invalid data: cell without row");
$cell = $row->addCell();
} else {

3.22 Constructa Parser | 237

www.it-ebooks.info

http://www.it-ebooks.info/

throw new Exception("Parser bug: unknown keyword");

}
} elseif ($matches['string'][$i] != NULL) {
$content = $matches['string'][$i];
$content = substr($content, 1, strlen($content)-2);
$content = str replace('%%', '%', $content);
if ($cell !'= NULL)
$cell->addContent($content);
elseif ($row != NULL)
throw new Exception("Invalid data: string after row keyword");
elseif ($table != NULL)
$table->addCaption($content);
else
throw new Exception("Invalid data: string before table keyword");
} elseif ($matches['error'][$i] != NULL) {
throw new Exception("Invalid data: " + $matches['error'][$i]);
} else {
throw new Exception("Parser bug: no capturing group matched");
}
}
if ($table == NULL)
throw new Exception("Invalid data: table keyword missing");
return $table;

}

Ruby

def importtable(filecontents)
table = nil
row = nil
cell = nil
groupkeyword = 0;
groupstring = 1;
grouperror = 2;
regexp = / \b(table|row|cell)\b
| %([MB1*(2:%m[%]*)*)%
| (\S+)/ix
filecontents.scan(regexp) do |match]|
if match[groupkeyword]
keyword = match[groupkeyword].downcase
if keyword == "table"
table = RECTable.new()

row = nil
cell = nil
elsif keyword == "row"

if table.nil?
raise "Invalid data: row without table"
end

238 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

row = table.addRow()
cell = nil
elsif keyword == "cell"
if row.nil?
raise "Invalid data: cell without row"

end

cell = row.addCell()
else

raise "Parser bug: unknown keyword"
end

elsif not match[groupstring].nil?
content = match[groupstring].gsub("%%", "%")
if not cell.nil?
cell.addContent(content)
elsif not row.nil?
raise "Invalid data: string after row keyword"
elsif not table.nil?
table.addCaption(content)
else
raise "Invalid data: string before table keyword"
end
elsif not match[grouperror].nil?
raise "Invalid data: " + match.group("error")
else
raise "Parser bug: no capturing group matched"
end
end
if table.nil?
raise "Invalid data: table keyword missing"
end
return table
end

Discussion

A straightforward way to create a parser is to use a regular expression to tokenize the
input and to use procedural code to parse those tokens.

To tokenize means to scan the file for tokens, which are the smallest elements that the
syntax allows. In the file format we’re working with, those tokens are the three
keywords, strings enclosed by percentage signs, whitespace between keywords and
strings, and nonwhitespace other than keywords and strings. We can easily create a
regular expression that matches each of these tokens.

\b(?<keyword>table|row|cell)\b
| %(2<string>[~B]* (2 : %% %]*)*)%
| (?<error>\S+)
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

3.22 Constructa Parser | 239

www.it-ebooks.info

http://www.it-ebooks.info/

\b(?P<keyword>table|row|cell)\b
| %(2P<string>[~%]*(?: %% ~%5]*)*)%
| (?P<error>\S+)
Regex options: Free-spacing, case insensitive
Regex flavors: PCRE 4 and later, Perl 5.10, Python

\b(table|row|cell)\b
| (%1% (2% %]*)*)%
I (\s+)
Regex options: Free-spacing, case insensitive
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

\b(table|row|cell)\b|%([%]*+(?:%%[~%]*+)*+)%]| (\S+)
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

If you iterate over all the matches of this regular expression in the sample file, it will
match each keyword and string separately. On another file with invalid characters, each
sequence of invalid characters would also be matched separately. The regular expres-
sion does not match the whitespace between keywords and strings because the parser
does not need to process it. The word boundaries around the list of keywords are all
that is needed to make sure that keywords are delimited with whitespace. We use a
separate capturing group for each kind of token. That makes it much easier to identify
the token that was matched in the procedural part of our solution.

We use free-spacing and named capture to make our regular expression and our code
more readable in the programming languages that have regex flavors that support free-
spacing and named capture. There is no functional difference between these four reg-
ular expressions.

The capturing group for the strings does not include the percentage signs that enclose
the strings. The benefit is that the procedural code won’t have to remove those per-
centage signs to get the content of the string that was matched. The drawback is that
when the regex matches an empty string (two percentage signs with nothing in be-
tween), the capturing group for the string will find a zero-length match. When we test
which capturing group found the match, we have to make sure that we accept a zero-
length match as a valid match. In the JavaScript solution, for example, we use if
(match[groupstring] !== undefined), which evaluates to true if the group participated
in the match attempt, even when the match is empty. We cannot use if (match[group
string]) because that evaluates to false when the group finds a zero-length match.

240 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

’—_ Internet Explorer 8 and prior do not follow the JavaScript standard that

“m requires nonparticipating groups to be undefined in the match object.

1E8 stores empty strings for nonparticipating groups, making it impos-

sible to distinguish between a group that did not participate, and one

that participated and captured a zero-length string. This means the

JavaScript solution will not work with IE8 and prior. This bug was fixed
in Internet Explorer 9.

The XRegExp.exec() method does return a match object that leaves non-
participating groups undefined, regardless of the browser running the
code. So does XRegExp.forEach() as it relies on XRegExp.exec(). If you
need a solution for browsers such as IE8 that aren’t standards-compliant
in this area, you should use the solution based on XRegExp.

In PHP, the preg match_all() function stores NULL in the array for capturing groups
that found a zero-length match as well as for capturing groups that did not participate
in the match. Thus the PHP solution includes the enclosing percentage signs in the
string group. An extra line of PHP code calls substr to remove them.

The procedural code implements our parser. This parser has four different states. It
keeps track of the state it is in by checking which of the variables table, row, and cell
are assigned.

1. Nothing: nothing has been read yet. The variables table, row, and cell are all
unassigned.

2. Inside table: a table keyword has been parsed. The variable table is assigned, while
row and cell are unassigned. Since a table can have any number of caption strings,
including none, the parser does not need a separate state to track whether a string
was parsed after the table keyword.

3. Inside row: a row keyword has been parsed. The variables table and row have been
assigned, while cell is unassigned.

4. Inside cell: a cell keyword has been parsed. The variables table, row, and cell have
all been assigned. Since a cell can have any number of caption strings, including
none, the parser does not need a separate state to track whether a string was parsed
after the cell keyword.

When the parser runs, it iterates over all matches in the regular expression. It checks
what kind of token was matched by the regular expression (a keyword, a string, or
invalid text) and then processes that token depending on the state the parser is in, as
shown in Table 3-2.

3.22 Constructa Parser | 241

www.it-ebooks.info

http://www.it-ebooks.info/

Table 3-2. Regex matches are handled depending on the state of the parser

Match State

Nothing Inside table Inside row Inside cell
keyword (reate new table and Create new table and Create new table and Create new table and
table change state to “inside change state to “inside change state to “inside change state to “inside

table” table” table” table”
keyword Fail: data is invalid Add row to table and Add row to table Add row to table and
Tow change state to “inside change state to “inside

row” row”
keyword Fail: data is invalid Fail: data is invalid Add cell to row and Add cell to row
cell change state to “inside
cell”
string Fail: data is invalid Add caption to table Fail: data is invalid Add content to cell
invalid text Fail: data is invalid Fail: data is invalid Fail: data is invalid Fail: data is invalid
See Also

Techniques used in the regular expression in this recipe are discussed in Chapter 2.
Recipe 2.6 explains word boundaries and Recipe 2.8 explains alternation, which we
used to match the keywords. Recipe 2.11 explains named capturing groups. Naming
the groups in your regex makes the regex easier to read and maintain.

To match the strings enclosed in percentage signs, we used the same technique ex-
plained in Recipe 7.8 for matching quoted strings in source code. The only difference
is that here the strings are enclosed with percentage signs rather than quotes.

The parser iterates over all the matches found by the regular expression. Recipe 3.11
explains how that works.

242 | Chapter3: Programming with Regular Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4
Validation and Formatting

This chapter contains recipes for validating and formatting common types of user input.
Some of the solutions show how to allow variations of valid input, such as U.S. postal
codes that can contain either five or nine digits. Others are designed to harmonize or
fix commonly understood formats for things such as phone numbers, dates, and credit
card numbers.

Beyond helping you get the job done by eliminating invalid input, these recipes can
also improve the user experience of your applications. Messages such as “no spaces or
hyphens” next to phone or credit card number fields often frustrate users or are simply
ignored. Fortunately, in many cases regular expressions allow you to let users enter
data in formats with which they are familiar and comfortable, with very little extra work
on your part.

Certain programming languages provide functionality similar to some recipes in this
chapter through their native classes or libraries. Depending on your needs, it might
make more sense to use these built-in options, so we’ll point them out along the way.

4.1 Validate Email Addresses

Problem

You have a form on your website or a dialog box in your application that asks the user
for an email address. You want to use a regular expression to validate this email address
before trying to send email to it. This reduces the number of emails returned to you as
undeliverable.

Solution

Simple

This first solution does a very simple check. It only validates that the string contains
an at sign (@) that is preceded and followed by one or more nonwhitespace characters.

243

www.it-ebooks.info

http://www.it-ebooks.info/

M\S+@\S+$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

\A\S+@\S+\Z
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Simple, with restrictions on characters

The domain name, the part after the @ sign, is restricted to characters allowed in domain
names. Internationalized domain names are not allowed. The local part, the part before
the @ sign, is restricted to characters commonly used in email local parts, which is
more restrictive than what most email clients and servers will accept:
A[A-Z0-9+ .-]+@[A-Z0-9.-]+$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

\A[A-Z0-9+ .-]+@[A-Z0-9.-]+\Z
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Simple, with all valid local part characters

This regular expression expands the previous one by allowing a larger set of rarely used
characters in the local part. Not all email software can handle all these characters, but
we've included all the characters permitted by RFC 5322, which governs the email
message format. Among the permitted characters are some that present a security risk
if passed directly from user input to an SQL statement, such as the single quote (') and
the pipe character (]). Be sure to escape sensitive characters when inserting the email
address into a string passed to another program, in order to prevent security holes such
as SQL injection attacks:
A[A-Z0-9_ 1H$%8" *+/=2" {|}7. -]+@[A-20-9.-]+$
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python

\A[A-Z0-9 !#$%8"*+/=2"{|}~".-]+@[A-Z0-9.-]+\Z
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

No leading, trailing, or consecutive dots

Both the local part and the domain name can contain one or more dots, but no two
dots can appear right next to each other. Furthermore, the first and last characters in
the local part and in the domain name must not be dots:

244 | Chapter4: Validation and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

AA-Z0-9 1H$%8" *+/=2"{| }~-1+(2:\. [A-Z0-9 1H#$%&" *+/=2"{| }~*-]+4
)*@[A-Z0-9-1+(?:\.[A-Z0-9-]+)*$

Regex options: Case insensitive

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python
\A[A-Z0-9_1#$%8" *+/=2"{| }~"-1+(2:\. [A-Z0-9_1#$%8&" *+/=2"{| }~"-]+d
Y*@[A-Z0-9-1+(2:\. [A-20-9-]+)*\Z

Regex options: Case insensitive

Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Top-level domain has two to six letters

This regular expression adds to the previous versions by specifying that the domain
name must include at least one dot, and that the part of the domain name after the last
dot can only consist of letters. That is, the domain must contain at least two levels,
such as secondlevel.com or thirdlevel.secondlevel.com. The top-level domain (.com
in these examples) must consist of two to six letters. All country-code top-level domains
(.us, .uk, etc.) have two letters. The generic top-level domains have between three
(.com) and six letters (.museum):
AW %8 K+ /=27 { | 1A= 14 (2N [\wHS%& 44+ /=27 {| ™0 -]+) @4
(?:[A-Z20-9-1+\.)+[A-Z1{2,6}%
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python
NAD\W! 8% *4+/=27 {| }A-1+(2: N [\w ! #9%8 " *+/=2" {| }~A-]+) %@«
(?:[A-20-9-1+\.)+[A-Z]{2,6}\Z
Regex options: Case insensitive
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby

Discussion

About email addresses

If you thought something as conceptually simple as validating an email address would
have a simple one-size-fits-all regex solution, you’re quite wrong. This recipe is a prime
example that before you can start writing a regular expression, you have to decide
exactly what you want to match. There is no universally agreed-upon rule as to which
email addresses are valid and which not. It depends on your definition of valid.

asdf@asdf.asdf is valid according to RFC 5322, which defines the syntax for email
addresses. But it is not valid if your definition specifies that a valid email address is one
that accepts mail. There is no top-level asdf domain.

The short answer to the validity problem is that you can’t know whether john. doe@some
where. comis an email address that can actually receive email until you try to send email
to it. And even then, you can’t be sure if the lack of response signals that the

4.1 Validate Email Addresses | 245

www.it-ebooks.info

http://www.it-ebooks.info/

somewhere.com domain is silently discarding mail sent to nonexistent mailboxes, or if
John Doe hit the Delete button on his keyboard, or if his spam filter beat him to it.

Because you ultimately have to check whether the address exists by actually sending
email to it, you can decide to use a simpler or more relaxed regular expression. Allowing
invalid addresses to slip through may be preferable to annoying people by blocking
valid addresses. For this reason, you may want to select the “simple” regular expression.
Though it obviously allows many things that aren’t email addresses, such as #$%@. -,
the regex is quick and simple, and will never block a valid email address.

If you want to avoid sending too many undeliverable emails, while still not blocking
any real email addresses, the regex in “Top-level domain has two to six let-
ters” on page 245 is a good choice.

You have to consider how complex you want your regular expression to be. If you’re
validating user input, you’ll likely want a more complex regex, because the user could
type in anything. But if you’re scanning database files that you know contain only valid
email addresses, you can use a very simple regex that merely separates the email ad-
dresses from the other data. Even the solution in the earlier subsection “Simple” may
be enough in this case.

Finally, you have to consider how future-proof you want your regular expression to be.
In the past, it made sense to restrict the top-level domain to only two-letter combina-
tions for the country codes, and exhaustively list the generic top-level domains—that
is, <com|net |org|mil|edu>. With new top-level domains being added all the time, such
regular expressions now quickly go out of date.

Regular expression syntax

The regular expressions presented in this recipe show all the basic parts of the regular
expression syntax in action. If you read up on these parts in Chapter 2, you can already
do 90% of the jobs that are best solved with regular expressions.

All the regular expressions, except the “simple” one, require the case-insensitive match-
ing option to be turned on. Otherwise, only uppercase characters will be allowed.
Turning on this option allows you to type <[A-Z]> instead of <[A-Za-z]>, saving a few
keystrokes.

A\S is a shorthand character class, as Recipe 2.3 explains. <\S» matches any character
that is not a whitespace character.

«@ and <\.» match a literal @ sign and a dot, respectively. Since the dot is a metachar-
acter when used outside character classes, it needs to be escaped with a backslash. The
@ sign never has a special meaning with any of the regular expression flavors in this
book. Recipe 2.1 gives you a list of all the metacharacters that need to be escaped.

<[A-Z0-9.-]> and the other sequences between square brackets are character classes.
This one allows all letters between A and Z, all digits between 0 and 9, as well as a literal
dot and hyphen. Though the hyphen normally creates a range in a character class, the

246 | Chapter4: Validation and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

hyphen is treated as a literal when it occurs as the first or last character in a character
class. Recipe 2.3 tells you all about character classes, including combining them with
shorthands, as in <[A-Z0-9_1#$%8&"'*+/=2"{|}~*.- . This class matches a word charac-
ter, as well as any of the 19 listed punctuation characters.

< and ¢, when used outside character classes, are quantifiers. The plus sign repeats
the preceding regex token one or more times, whereas the asterisk repeats it zero or
more times. In these regular expressions, the quantified token is usually a character
class, and sometimes a group. Therefore, <[A-Z0-9.-]+> matches one or more letters,
digits, dots, and/or hyphens.

As an example of the use of a group, «(?:[A-Z0-9-]+\.)+> matches one or more letters,
digits, and/or hyphens, followed by one literal dot. The plus sign repeats this group
one or more times. The group must match at least once, but can match as many times
as possible. Recipe 2.12 explains the mechanics of the plus sign and other quantifiers
in detail.

<«(?:)»isanoncapturing group. The capturing group <(-*)> does the same thing with
a cleaner syntax, so you could replace «(?:> with <(> in all of the regular expressions
we've used so far without changing the overall match results. But since we’re not in-
terested in separately capturing parts of the email address, the noncapturing group is
somewhat more efficient, although it makes the regular expression somewhat harder
to read. Recipe 2.9 tells you all about capturing and noncapturing groups.

In most regex flavors, the anchors <* and «$» force the regular expression to find its
match at the start and end of the subject text, respectively. Placing the whole regular
expression between these characters effectively requires the regular expression to match
the entire subject.

This isimportant when validating user input. You do not want to acceptdrop database;
-- joe@server.com haha! asavalid email address. Without the anchors, all the previous
regular expressions will match because they find joe@server.com in the middle of the
given text. See Recipe 2.5 for details about anchors. That recipe also explains why the
[{WaN . 9 . .

and $ match at line breaks” matching option must be off for these regular
expressions.

In Ruby, the caret and dollar always match at line breaks. The regular expressions using
the caretand dollar work correctly in Ruby, but only if the string you’re trying to validate
contains no line breaks. If the string may contain line breaks, all the regexes using «*
and ¢ will match the email address in drop database; -- [LFljoe@server.comLF]
haha!, where |LF| represents a line break.

To avoid this, use the anchors <\A> and «<\2> instead. These match at the start and end
of the string only, regardless of any options, in all flavors discussed in this book, except
JavaScript. JavaScript does not support <\A> and <\2> at all. Recipe 2.5 explains these
anchors.

4.1 Validate Email Addresses | 247

www.it-ebooks.info

http://www.it-ebooks.info/

The issue with ¢ and $> versus <\A> and \2> applies to all regular ex-
“m pressions that validate input. There are a lot of these in this book. Al-

though we will offer the occasional reminder, we will not constantly
repeat this advice or show separate solutions for JavaScript and Ruby
for each and every recipe. In many cases, we’ll show only one solution
using the caret and dollar, and list Ruby as a compatible flavor. If you're
using Ruby, remember to use \\A> and <\2> if you want to avoid matching
one line in a multiline string.

Building a regex step-by-step

This recipe illustrates how you can build a regular expression step-by-step. This tech-
nique is particularly handy with an interactive regular expression tester, such as
RegexBuddy.

First, load a bunch of valid and invalid sample data into the tool. In this case, that would
be a list of valid email addresses and a list of invalid email addresses.

Then, write a simple regular expression that matches all the valid email addresses.
Ignore the invalid addresses for now. «*\S+@\S+$> already defines the basic structure of
an email address: a local part, an at sign, and a domain name.

With the basic structure of your text pattern defined, you can refine each part until
your regular expression no longer matches any of the invalid data. If your regular ex-
pression only has to work with previously existing data, that can be a quick job. If your
regex has to work with any user input, editing the regular expression until it is restrictive
enough will be a much harder job than just getting it to match the valid data.

Variations

If you want to search for email addresses in larger bodies of text instead of checking
whether the input as a whole is an email address, you cannot use the anchors <*» and
«$>. Merely removing the anchors from the regular expression is not the right solution.
If you do that with the final regex, which restricts the top-level domain to letters, it will
match john@doe.com in john@doe.com77, for example. Instead of anchoring the regex
match to the start and end of the subject, you have to specify that the start of the local
part and the top-level domain cannot be part of longer words.

This is easily done with a pair of word boundaries. Replace both «* and «$» with \b>.
For instance, (*[A-Z0-9+ .-]+@[A-Z0-9.-]+$> becomes (\b[A-Z0-9+ .-]+@[A-Z0-9.-]+
\b>.

See Also

RFC 5322 defines the structure and syntax of email messages, including the email ad-
dresses used in email messages. You can download RFC 5322 at http://www.ietf.org/
html/rfc5322.txt.

248 | Chapter4: Validation and Formatting

www.it-ebooks.info

http://www.ietf.org/html/rfc5322.txt
http://www.ietf.org/html/rfc5322.txt
http://www.it-ebooks.info/

Wikipedia maintains a comprehensive list of top-level domain names at http://en.wiki
pedia.org/wiki/List_of_Internet_top-level_domains.

Chapter 8 has a lot of solutions for working with URLs and Internet addresses.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.1 explains which special characters need to be escaped. Recipe 2.3 explains
character classes. Recipe 2.5 explains anchors. Recipe 2.6 explains word boundaries.
Recipe 2.9 explains grouping. Recipe 2.12 explains repetition.

4.2 Validate and Format North American Phone Numbers

Problem

You want to determine whether a user entered a North American phone number, in-
cluding the local area code, in a common format. These formats include 1234567890,
123-456-7890, 123.456.7890, 123 456 7890, (123) 456 7890, and all related combina-
tions. If the phone number is valid, you want to convert it to your standard format,
(123) 456-7890, so that your phone number records are consistent.

Solution

A regular expression can easily check whether a user entered something that looks like
a valid phone number. By using capturing groups to remember each set of digits, the
same regular expression can be used to replace the subject text with precisely the format
you want.

Regular expression

M2 ([0-9]{3H\)?[-.*]2([0-9]{3})[-.*]?([0-9]{4})$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Replacement
($1)°$2-%3
Replacement text flavors: .NET, Java, JavaScript, Perl, PHP

(\1)*\2-\3
Replacement text flavors: Python, Ruby

C# example
Regex phoneRegex =

new Regex(@""\(?([0-9]1{3})\)?[-. 12([0-91{3})[-. 1?([0-91{4})$");

if (phoneRegex.IsMatch(subjectString)) {
string formattedPhoneNumber =

4.2 Validate and Format North American Phone Numbers | 249

www.it-ebooks.info

http://en.wikipedia.org/wiki/List_of_Internet_top-level_domains
http://en.wikipedia.org/wiki/List_of_Internet_top-level_domains
http://www.it-ebooks.info/

phoneRegex.Replace(subjectString, "($1) $2-$3");
} else {
// Invalid phone number
}

JavaScript example
var phoneRegex = /"\(?([0-91{3})\)?[-. 1?([0-9]1{3})[-. 12([0-9]{4})$/;

if (phoneRegex.test(subjectString)) {
var formattedPhoneNumber =
subjectString.replace(phoneRegex, "($1) $2-$3");
} else {
// Invalid phone number
}

Other programming languages

If you need help converting the examples just listed to your programming language of
choice, Recipe 3.6 shows how to implement the test of whether a regex matches the
entire subject, and Recipe 3.15 has code listings for performing a replacement that
reuses parts of a match (done here to reformat the phone number).

Discussion

This regular expression matches three groups of digits. The first group can optionally
be enclosed with parentheses, and the first two groups can optionally be followed with
a choice of three separators (a hyphen, dot, or space). The following layout breaks the
regular expression into its individual parts, omitting the redundant groups of digits:

>
=+

Assert position at the beginning of the string.
Match a literal "("
between zero and one time.
Capture the enclosed match to backreference 1:
Match a digit
exactly three times.
End capturing group 1.
Match a literal ")"
between zero and one time.
Match one hyphen, dot, or space
between zero and one time.
[Match the remaining digits and separator.]
Assert position at the end of the string.

N—
HH HH TR

Let’s look at each of these parts more closely.

The <*» and «$> at the beginning and end of the regular expression are a special kind of
metacharacter called an anchor or assertion. Instead of matching text, assertions match
a position within the text. Specifically, «*> matches at the beginning of the text, and

250 | Chapter4: Validation and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

%> at the end. This ensures that the phone number regex does not match within longer
text, such as 123-456-78901.

As we've repeatedly seen, parentheses are special characters in regular expressions, but
in this case we want to allow a user to enter parentheses and have our regex recognize
them. This is a textbook example of where we need a backslash to escape a special
character so the regular expression treats it as literal input. Thus, the <\(> and <\)»
sequences that enclose the first group of digits match literal parenthesis characters.
Both are followed by a question mark, which makes them optional. We’ll explain more
about the question mark after discussing the other types of tokens in this regular
expression.

The parentheses that appear without backslashes are capturing groups and are used to
remember the values matched within them so that the matched text can be recalled
later. In this case, backreferences to the captured values are used in the replacement
text so we can easily reformat the phone number as needed.

Two other types of tokens used in this regular expression are character classes and
quantifiers. Character classes allow you to match any one out of a set of characters.
<[0-9]> is a character class that matches any digit. The regular expression flavors cov-
ered by this book all include the shorthand character class <\d> that also matches a digit,
but in some flavors <\d> matches a digit from any language’s character set or script,
which is not what we want here. See Recipe 2.3 for more information about «\d>.

¢([-.®]> is another character class, one that allows any one of three separators. It’s
important that the hyphen appears first or last in this character class, because if it
appeared between other characters, it would create a range, as with <[0-9]>. Another
way to ensure that a hyphen inside a character class matches a literal version of itself
is to escape it with a backslash. <[.\-®]> is therefore equivalent. The <> represents a
literal space character.

Finally, quantifiers allow you to repeatedly match a token or group. <{3}» is a quantifier
that causes its preceding element to be matched exactly three times. The regular ex-
pression <[0-9]{3}> is therefore equivalent to <[0-9][0-9][0-9]>, but is shorter and
hopefully easier to read. A question mark (mentioned earlier) is a quantifier that causes
its preceding element to match zero or one time. It could also be written as «{0,1}>.
Any quantifier that allows something to match zero times effectively makes that element
optional. Since a question mark is used after each separator, the phone number digits
are allowed to run together.

Note that although this recipe claims to handle North American phone
numbers, it’s actually designed to work with North American Number-
& ing Plan (NANP) numbers. The NANP is the telephone numbering plan
* for the countries that share the country code “1.” This includes the
United States and its territories, Canada, Bermuda, and 17 Caribbean
nations. It excludes Mexico and the Central American nations.

4.2 Validate and Format North American Phone Numbers | 251

www.it-ebooks.info

http://www.it-ebooks.info/

Variations

Eliminate invalid phone numbers

So far, the regular expression matches any 10-digit number. If you want to limit matches
to valid phone numbers according to the North American Numbering Plan, here are
the basic rules:

* Area codes start with a number 2-9, followed by 0-8, and then any third digit.

* The second group of three digits, known as the central office or exchange code,
starts with a number 2-9, followed by any two digits.

* The final four digits, known as the station code, have no restrictions.

These rules can easily be implemented with a few character classes.

M\(2([2-9][0-8][0-91)\)?[-.*]2([2-9][0-9]{2})[-.*]?([0-9]{4})$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Beyond the basic rules just listed, there are a variety of reserved, unassigned, and re-
stricted phone numbers. Unless you have very specific needs that require you to filter
out as many phone numbers as possible, don’t go overboard trying to eliminate unused
numbers. New area codes that fit the rules listed earlier are made available regularly,
and even if a phone number is valid, that doesn’t necessarily mean it was issued or is
in active use.

Find phone numbers in documents

Two simple changes allow the previous regular expressions to match phone numbers
within longer text:

\N(?\b([0-9]{3})\)?[-.*]2([0-9]{3})[-.*]1?([0-9]{4})\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Here, the <*> and «$> assertions that bound the regular expression to the beginning and
end of the text have been removed. In their place, word boundary tokens (<\b>) have
been added to ensure that the matched text stands on its own and is not part of a longer
number or word.

Similar to <» and «$>, <\b> is an assertion that matches a position rather than any actual
text. Specifically, <\b> matches the position between a word character and either a non-
word character or the beginning or end of the text. Letters, numbers, and underscore
are all considered word characters (see Recipe 2.6).

Note that the first word boundary token appears after the optional, opening parenthe-
sis. This is important because there is no word boundary to be matched between two
nonword characters, such as the opening parenthesis and a preceding space character.

252 | Chapter4: Validation and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

The first word boundary is relevant only when matching a number without parentheses,
since the word boundary always matches between the opening parenthesis and the first
digit of a phone number.

Allow a leading “1”

You can allow an optional, leading “1” for the country code (which covers the North
American Numbering Plan region) via the addition shown in the following regex:

ARA21[- 012\ (2([0-91{3\) ?[-. #]2([0-9]{3})[-. *]?([0-9]{4})$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

In addition to the phone number formats shown previously, this regular expression
will also match strings such as +1 (123) 456-7890 and 1-123-456-7890. It uses a non-
capturing group, written as <(?:-:-)>. When a question mark follows an unescaped left
parenthesis like this, it’s not a quantifier, but instead helps to identify the type of
grouping. Standard capturing groups require the regular expression engine to keep
track of backreferences, so it’s more efficient to use noncapturing groups whenever the
text matched by a group does not need to be referenced later. Another reason to use a
noncapturing group here is to allow you to keep using the same replacement string as
in the previous examples. If we added a capturing group, we’d have to change $1 to
$2 (and so on) in the replacement text shown earlier in this recipe.

The full addition to this version of the regexis «(?:\+?1[-.®]?)?>. The “1” in this pattern
is preceded by an optional plus sign, and optionally followed by one of three separators
(hyphen, dot, or space). The entire, added noncapturing group is also optional, but
since the “1” is required within the group, the preceding plus sign and separator are
not allowed if there is no leading “1.”

Allow seven-digit phone numbers

To allow matching phone numbers that omit the local area code, enclose the first group
of digits together with its surrounding parentheses and following separator in an op-
tional, noncapturing group:

AEAQ[0-91{3H\)?2[-.212)2([0-91{3})[-. *]?([0-9]{4})$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Since the area code is no longer required as part of the match, simply replacing any
match with «($1)$2-$3» might now result in something like () 123-4567, with an
empty set of parentheses. To work around this, add code outside the regex that checks
whether group 1 matched any text, and adjust the replacement text accordingly.

See Also

Recipe 4.3 shows how to validate international phone numbers.

4.2 Validate and Format North American Phone Numbers | 253

www.it-ebooks.info

http://www.it-ebooks.info/

As noted previously, the North American Numbering Plan (NANP) is the telephone
numbering plan for the United States and its territories, Canada, Bermuda, and 17
Caribbean nations. More information is available at http://www.nanpa.com.

Techniques used in the regular expressions and replacement text in this recipe are
discussed in Chapter 2. Recipe 2.1 explains which special characters need to be escaped.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.9 explains
grouping. Recipe 2.12 explains repetition. Recipe 2.6 explains word boundaries.
Recipe 2.21 explains how to insert text matched by capturing groups into the replace-
ment text.

4.3 Validate International Phone Numbers

Problem

You want to validate international phone numbers. The numbers should start with a
plus sign, followed by the country code and national number.

Solution

Regular expression
M+(?:[0-9]°?){6,14}[0-9]$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

JavaScript example

function validate(phone) {
var regex = /M\+(?:[0-9] ?){6,14}[0-9]%/;

if (regex.test(phone)) {

// Valid international phone number
} else {

// Invalid international phone number
}

}

Follow Recipe 3.6 to implement this regular expression with other programming
languages.

Discussion

The rules and conventions used to print international phone numbers vary significantly
around the world, so it’s hard to provide meaningful validation for an international
phone number unless you adopt a strict format. Fortunately, there is a simple, industry-
standard notation specified by ITU-T E.123. This notation requires that international

254 | Chapter4: Validation and Formatting

www.it-ebooks.info

http://www.nanpa.com
http://www.it-ebooks.info/

phone numbers include a leading plus sign (known as the international prefix sym-
bol), and allows only spaces to separate groups of digits. Although the tilde character
(~) can appear within a phone number to indicate the existence of an additional dial
tone, it has been excluded from this regular expression since it is merely a procedural
element (in other words, it is not actually dialed) and is infrequently used. Thanks to
the international phone numbering plan (ITU-T E.164), phone numbers cannot con-
tain more than 15 digits. The shortest international phone numbers in use contain seven
digits.
With all of this in mind, let’s look at the regular expression again after breaking it into
its pieces. Because this version is written using free-spacing style, the literal space char-
acter has been replaced with (\x20>:

A

\+

(2:

[0-9]

\x20
?

E=3

Assert position at the beginning of the string.
Match a literal "+" character.
Group but don't capture:

Match a digit.

Match a space character

between zero and one time.

End the noncapturing group.

Repeat the group between 6 and 14 times.
Match a digit.
Assert position at the end of the string.
Regex options: Free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

(6,14}
[0-9]
$

e e

E=3

The «» and «$> anchors at the edges of the regular expression ensure that it matches
the whole subject text. The noncapturing group, enclosed with <(?::-)», matches a
single digit followed by an optional space character. Repeating this grouping with the
interval quantifier «{6,14}> enforces the rules for the minimum and maximum number
of digits, while allowing space separators to appear anywhere within the number. The
second instance of the character class <[0-9]> completes the rule for the number of digits
(bumping it up from between 6 and 14 digits to between 7 and 15), and ensures that
the phone number does not end with a space.

Variations

Validate international phone numbers in EPP format
M\+[0-9]{1,3}\.[0-9]{4,14}(?:x.+)?$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

This regular expression follows the international phone number notation specified by
the Extensible Provisioning Protocol (EPP). EPP is a relatively recent protocol (finalized
in 2004), designed for communication between domain name registries and
registrars. It is used by a growing number of domain name registries, including .com,

4.3 Validate International Phone Numbers | 255

www.it-ebooks.info

http://www.it-ebooks.info/

.info, .net, .org, and .us. The significance of this is that EPP-style international phone
numbers are increasingly used and recognized, and therefore provide a good alternative
format for storing (and validating) international phone numbers.

EPP-style phone numbers use the format +CCC. NNNNNNNVNNXEEEE, where C is the 1-3 digit
country code, N is up to 14 digits, and E is the (optional) extension. The leading plus

sign and the dot following the country code are required. The literal “x” character is
required only if an extension is provided.

See Also
Recipe 4.2 provides more options for validating North American phone numbers.

ITU-T Recommendation E.123 (“Notation for national and international telephone
numbers, e-mail addresses and web addresses”) can be downloaded at hitp:/www.itu
.int/rec/T-REC-E.123. ITU-T Recommendation E.164 (“The international public tele-
communication numbering plan”) can be downloaded at http://www.itu.int/rec/T-REC
-E.164. National numbering plans can be downloaded at http://www.itu.int/ITU-T/inr/
nnp/.

RFC 5733 defines the syntax and semantics of EPP contact identifiers, including inter-
national phone numbers. You can download RFC 5733 at http://tools.ietf.org/html/
rfc5733.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.1 explains which special characters need to be escaped. Recipe 2.3 explains
character classes. Recipe 2.5 explains anchors. Recipe 2.9 explains grouping.
Recipe 2.12 explains repetition.

4.4 Validate Traditional Date Formats

Problem

You want to validate dates in the traditional formats mm/dd/yy, mm/dd/yyyy,
dd/mm/yy, and dd/mm/yyyy. You want to use a simple regex that simply checks
whether the input looks like a date, without trying to weed out things such as February
318t

Solution

Solution 1: Match any of these date formats, allowing leading zeros to be omitted:

~[0-3]?[0-9]/[0-3]2[0-9]/(?:[0-9]{2})?[0-9]{2}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Solution 2: Match any of these date formats, requiring leading zeros:

256 | Chapter4: Validation and Formatting

www.it-ebooks.info

http://www.itu.int/rec/T-REC-E.123
http://www.itu.int/rec/T-REC-E.123
http://www.itu.int/rec/T-REC-E.164
http://www.itu.int/rec/T-REC-E.164
http://www.itu.int/ITU-T/inr/nnp/
http://www.itu.int/ITU-T/inr/nnp/
http://tools.ietf.org/html/rfc5733
http://tools.ietf.org/html/rfc5733
http://www.it-ebooks.info/

~[0-3][0-9]/[0-3][0-9]/(?:[0-9][0-9])?[0-9][0-9]%
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Solution 3: Match m/d/yy and mm/dd/yyyy, allowing any combination of one or two
digits for the day and month, and two or four digits for the year:
~(1[0-2]|0?[1-9])/(3[01]|[12][0-9]|0?[1-9])/(?:[0-9]{2})?[0-9]{2}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Solution 4: Match mm/dd/yyyy, requiring leading zeros:
~(1[0-2]]0[1-9])/(3[01]|[12][0-9][0[1-9])/[0-9]{4}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Solution 5: Match d/m/yy and dd/mm/yyyy, allowing any combination of one or two
digits for the day and month, and two or four digits for the year:
~(3[01]][12][0-9]]0?[1-9])/(a[0-2]]0?[1-9])/(?:[0-9]{2})?[0-9]{2}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Solution 6: Match dd/mm/yyyy, requiring leading zeros:
~(3[01]][12][0-9]]0[1-9])/(1[0-2][0[1-9])/[0-9]{4}$

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Solution 7: Match any of these date formats with greater accuracy, allowing leading
zeros to be omitted:

~(?:(1[0-2]]0?[1-9])/(3[01][[12][0-9]|0?[1-9])| ¢
(3[01][[12][0-9]|0?[1-9])/(1[0-2]]02[1-9]))/(?:[0-9]{2})?[0-9]{2}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

We can use the free-spacing option to make this regular expression easier to read:
A(2:
m/d or mm/dd
(1[0-2]]0?[1-9])/(3[01]|[12][0-9]|0?[1-9])

d/m or dd/mm
(3[01][[12][0-9]|0?[1-9])/(2[0-2]]0?[1-9])

/yy or /yyyy
/(2:[0-9]{2})?[0-9]{2}$
Regex options: Free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

4.4 Validate Traditional Date Formats | 257

www.it-ebooks.info

http://www.it-ebooks.info/

Solution 8: Match any of these date formats with greater accuracy, requiring leading
zeros:

~(?:(1[0-2]]o[1-9])/(3[01][[12][0-9]|0[1-9])| ¢
(3[01][[12][0-9]|0[1-9])/(1[0-2]]0[1-9]))/[0-9]{4}$

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The same solution using the free-spacing option to make it easier to read:
A(2:
mm/dd
(1[0-2]|o[1-9])/(3[01]|[12][0-9]|0[1-9])

dd/mm
) (3[01][[12][0-9]|o[1-9])/(1[0-2]|0[1-9])

/yyyy
/[0-91{4}$

Regex options: Free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

Discussion

You might think that something as conceptually trivial as a date should be an easy job
for a regular expression. Butitisn’t, for two reasons. Because dates are such an everyday
thing, humans are very sloppy with them. 4/1 may be April Fools’ Day to you. To
somebody else, it may be the first working day of the year, if New Year’s Day is on a
Friday.

The other issue is that regular expressions don’t deal directly with numbers. You can’t
tell a regular expression to “match a number between 1 and 317, for instance. Regular
expressions work character by character. We use «3[01]|[12][0-9]|0?[1-9]> to match
3 followed by 0 or 1, or to match 1 or 2 followed by any digit, or to match an optional
0 followed by 1 to 9. In character classes, we can use ranges for single digits, such as
¢«[1-9]>. That’s because the characters for the digits 0 through 9 occupy consecutive
positions in the ASCII and Unicode character tables. See Chapter 6 for more details on
matching all kinds of numbers with regular expressions.

Because of this, you have to choose how simple or how accurate you want your regular
expression to be. If you already know your subject text doesn’t contain any invalid
dates, you could use a trivial regex such as \\d{2}/\d{2}/\d{4}>. The fact that this
matches things like 99/99/9999 is irrelevant if those don’t occur in the subject text.

The first two solutions for this recipe are quick and simple, too, and they also match
invalid dates, such as 0/0/00 and 31/31/2008. They only use literal characters for the
date delimiters, character classes (see Recipe 2.3) for the digits, and the question mark
(see Recipe 2.12) to make certain digits optional. <(?:[0-9]{2})?[0-9]{2}> allows the

258 | Chapter4: Validation and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

year to consist of two or four digits. <[0-9]{2}> matches exactly two digits.
«(?:[0-9]{2})?> matches zero or two digits. The noncapturing group (see Recipe 2.9)
is required, because the question mark needs to apply to the character class and
the quantifier «{2}> combined. <[0-9]{2}?> matches exactly two digits, just like
<[0-9]{2}>. Without the group, the question mark makes the quantifier lazy, which has
no effect because «{2}> cannot repeat more than two times or fewer than two times.

Solutions 3 through 6 restrict the month to numbers between 1 and 12, and the day to
numbers between 1 and 31. We use alternation (see Recipe 2.8) inside a group to match
various pairs of digits to form a range of two-digit numbers. We use capturing groups
here because you’ll probably want to capture the day and month numbers anyway.

The final two solutions are a little more complex, so we’re presenting these in both
condensed and free-spacing form. The only difference between the two forms is read-
ability. JavaScript does not support free-spacing. The final two solutions allow all of
the date formats, just like the first two examples. The difference is that the last two use
an extra level of alternation to restrict the dates to 12/31 and 31/12, disallowing invalid
months, such as 31/31.

Variations

If you want to search for dates in larger bodies of text instead of checking whether the
input as a whole is a date, you cannot use the anchors «*> and «$>. Merely removing the
anchors from the regular expression is not the right solution. That would allow any of
these regexes to match 12/12/2001 within 9912/12/200199, for example. Instead of an-
choring the regex match to the start and end of the subject, you have to specify that the
date cannot be part of longer sequences of digits.

This is easily done with a pair of word boundaries. In regular expressions, digits are
treated as characters that can be part of words. Replace both «*» and «$» with \b>. As
an example:

\b(1[0-2]|0[1-9])/(3[01][[12][0-9]|0[1-9])/[0-9]{4}\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

See Also

This chapter has several other recipes for matching dates and times. Recipe 4.5 shows
how to validate traditional date formats more accurately. Recipe 4.6 shows how to
validate traditional time formats. Recipe 4.7 shows how to validate date and time for-
mats according to the ISO 8601 standard.

Recipe 6.7 explains how you can create a regular expression to match a number in a
given range of numbers.

4.4 Validate Traditional Date Formats | 259

www.it-ebooks.info

http://www.it-ebooks.info/

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.8 explains
alternation. Recipe 2.9 explains grouping. Recipe 2.12 explains repetition.

4.5 Validate Traditional Date Formats, Excluding Invalid Dates

Problem

You want to validate dates in the traditional formats mm/dd/yy, mm/dd/yyyy, dd/mm/
yy, and dd/mm/yyyy, as shown in Recipe 4.4. But this time, you also want to weed out
invalid dates, such as February 315

Solution

G

The first solution requires the month to be specified before the day. The regular ex-
pression works with a variety of flavors:

~(?2<month>[0-3]?[0-9])/(?<day>[0-3]?[0-9])/(?<year>(?:[0-9]{2})?[0-9]1{2})$
Regex options: None
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10

This is the complete solution implemented in C#:

DateTime foundDate;

Match matchResult = Regex.Match(SubjectString,
"~(?2<month>[0-3]?[0-9])/(?<day>[0-3]?[0-9])/" +
"(?<year>(?:[0-9]{2})?[0-9]{2})$");

if (matchResult.Success) {
int year = int.Parse(matchResult.Groups["year"].Value);
if (year < 50) year += 2000;
else if (year < 100) year += 1900;
try {

foundDate = new DateTime(year,
int.Parse(matchResult.Groups["month"].Value),
int.Parse(matchResult.Groups["day"].Value));
} catch {
// Invalid date
}

}

The second solution requires the day to be specified before the month. The only dif-
ference is that we’ve swapped the names of the capturing groups in the regular
expression.

~(?<day>[0-3]?[0-9])/(?<month>[0-3]?[0-9])/(?<year>(?:[0-9]{2})?[0-9]{2})$
Regex options: None
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10

260 | Chapter4: Validation and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

The C# code is unchanged, except for the regular expression:

DateTime foundDate;

Match matchResult = Regex.Match(SubjectString,
"A(2<day>[0-3]?[0-9])/(?<month>[0-3]?[0-9])/" +
"(2<year>(?:[0-9]{2})?[0-9]{2})$");

if (matchResult.Success) {
int year = int.Parse(matchResult.Groups["year"].Value);
if (year < 50) year += 2000;
else if (year < 100) year += 1900;
try {

foundDate = new DateTime(year,
int.Parse(matchResult.Groups["month"].Value),
int.Parse(matchResult.Groups["day"].Value));
} catch {
// Invalid date
}

Perl

The first solution requires the month to be specified before the day. The regular ex-
pression works with all flavors covered in this book.

~([0-3]12[0-9])/([0-3]?[0-9]1)/((?:[0-9]{2})?[0-9]{2})$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

This is the complete solution implemented in Perl:

@daysinmonth = (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);
$validdate = 0;

if ($subject - m!~([0-3]?[0-9])/([0-3]2[0-9])/((?:[0-9]{2})?[0-9]{2})$!)

$month = $1;
$day = $2;
$year = $3;

$year += 2000 if $year < 50;
$year += 1900 if $year < 100;
if ($month == 2 83 $year % 4 == 0 & ($year % 100 != 0 ||
$year % 400 == 0)) {
$validdate = 1 if $day >= 1 && $day <= 29;
} elsif ($month >= 1 && $month <= 12) {
$validdate = 1 if $day >= 1 && $day <= $daysinmonth[$month-1];
}

}

The second solution requires the day to be specified before the month. The regular
expression is exactly the same. The Perl code swaps the meaning of the first two cap-
turing groups.

4.5 Validate Traditional Date Formats, Excluding Invalid Dates | 261

www.it-ebooks.info

http://www.it-ebooks.info/

@daysinmonth =
$validdate = 0;
if ($subject =~ m!"([0-3]?[0-9])/([0-3]2[0-9])/((?:[0-9]{2})?[0-9]{2})$!)

(31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);

$day = $1;
$month = $2;
$year = $3;

$year += 2000 if $year < 50;
$year += 1900 if $year < 100;
if ($month == 2 83 $year % 4 == 0 & ($year % 100 != 0 ||
$year % 400 == 0)) {
$validdate = 1 if $day >= 1 && $day <= 29;
} elsif ($month >= 1 8& $month <= 12) {
$validdate = 1 if $day >= 1 && $day <= $daysinmonth[$month-1];
}

}

Pure regular expression

You can solve this problem with one regular expression without procedural code, if
that is all you can use in your application.
Month before day:
A2
February (29 days every year)
(?<month>0?2)/(?<day>[12][0-9]|0?[1-9])
|
30-day months
(?<month>0?[469]|11)/(?<day>30|[12][0-9]|0?[1-9])

I
31-day months

(?<month>0?[13578]|1[02])/(?<day>3[01]|[12][0-9]|0?[1-9])
)

Year
/(2<year>(?:[0-9]{2})?[0-9]{2})$
Regex options: Free-spacing
Regex flavors: .NET, Perl 5.10, Ruby 1.9
~2:
February (29 days every year)
(0?2)/([12][0-9]]0?[1-9])
|
30-day months

(02[469]|11)/(30[[12][0-9]]0?[1-9])
|

31-day months
(02[13578]|1[02])/(3[01][[12][0-9][0?[1-9])

262 | Chapter4: Validation and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

Year
/((?:[0-9]{2})?[0-9]{2})$
Regex options: Free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

~(?2:(072)/([12][0-9]|0?[1-9]) [(0?2[469][11)/ (30| [12] [0-9]|0?[1-9]) | «

(02[13578][1[02])/(3[01]|[12][0-9]0?[1-9]))/((?:[0-9]{2})?[0-9]{2})$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Day before month:

A2
February (29 days every year)
(?<day>[12][0-9]]|0?[1-9])/(?<month>0?2)

I
30-day months
(?<day>30|[12][0-9]|0?2[1-9])/(2<month>0?[469]|11)

I
31-day months
(?<day>3[01]|[12][0-9]|0?[1-9])/(?<month>0?[13578]|1[02])

Year
/(2<year>(?:[0-9]{2})?[0-9]{2})$
Regex options: Free-spacing
Regex flavors: .NET, Perl 5.10, Ruby 1.9
~2:
February (29 days every year)
I ([12][0-9]]0?[1-9])/(0?2)
30-day months
(30][12][0-9][0?[1-9])/([469] |11)

31-day months
(3[o1][[12][0-9]|0?[1-9])/(0?[13578] |1[02])

Year
/((2:[0-9]{2})?[0-9]{2})$
Regex options: Free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby
~(2:([12][0-9]]0?[1-9])/(0?2) | (30[[12][0-9][0?[1-9])/([469]|11) |«
(3[01]|[12][0-9]|0?[1-9])/(0?[13578]|1[02]))/((?:[0-9]{2})?[0-9]{2})$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

4.5 Validate Traditional Date Formats, Excluding Invalid Dates | 263

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion

Regex with procedural code

There are essentially two ways to accurately validate dates with a regular expression.
One method is to use a simple regex that merely captures groups of numbers that look
like a month/day/year combination, and then use procedural code to check whether
the date is correct.

The main benefit of this method is that you can easily add additional restrictions, such
as limiting dates to certain periods. Many programming languages provide specific
support for dealing with dates. The C# solution uses .NET’s DateTime structure to
check whether the date is valid and return the date in a useful format, all in one step.

We used the first regex from Recipe 4.4 that allows any number between 0 and 39 for
the day and month. That makes it easy to change the format from mm/dd/yy to dd/
mm/yy by changing which capturing group is treated as the month. When we’re using
named capture, that means changing the names of the capturing groups in the regular
expression. When we’re using numbered capture, that means changing the references
to the numbered groups in the procedural code.

Pure regular expression

The other method is to do everything with a regular expression. We can use the same
technique of spelling out the alternatives as we did for the more final solutions presented
in Recipe 4.4. The solution is manageable, if we take the liberty of treating every year
as a leap year, allowing the regex to match February 29th regardless of the year. Al-
lowing February 29th only on leap years would require us to spell out all the years that
are leap years, and all the years that aren’t.

The problem with using a single regular expression is that it no longer neatly captures
the day and month in a single capturing group. We now have three capturing groups
for the month, and three for the day. When the regex matches a date, only three of the
seven groups in the regex will actually capture something. If the month is February,
groups 1 and 2 capture the month and day. If the month has 30 days, groups 3 and 4
return the month and day. If the month has 31 days, groups 5 and 6 take action. Group
7 always captures the year.

Perl 5.10, Ruby 1.9, and .NET help us in this situation. Their regex flavors allow mul-
tiple named capturing groups to share the same name. See the section “Groups with
the same name” on page 71 in Recipe 2.11 for details. We take advantage of this by
using the same names “month” and “day” in each of the alternatives. When the regex
finds a match, we can retrieve the text matched by the groups “month” and “day”
without worrying about how many days the month has.

264 | Chapter4: Validation and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

For the other regex flavors, we use numbered capturing groups. When a match is found,
three different groups have to be checked to extract the day, and three other groups to
extract the month.

The pure regex solution is interesting only in situations where one regex is all you can
use, such as when you’re using an application that offers one box to type in a regex.
When programming, make things easier with a bit of extra code. This will be particu-
larly helpful if you want to add extra checks on the date later.

Variations

To show how complicated the pure regex solution gets as you add more requirements,
here’s a pure regex solution that matches any date between 2 May 2007 and 29 August
2008 in d/m/yy or dd/mm/yyyy format:

2 May 2007 till 29 August 2008
A(2:
2 May 2007 till 31 December 2007
(?:
2 May till 31 May
(?<day>3[01]|[12][0-9]|0?[2-9])/(?<month>0?5)/(?<year>2007)

1 June till 31 December

(2:
30-day months
(?<day>30([12][0-9]]|02[1-9])/(?<month>02[69]|11)

|
31-day months
(?2<day>3[01]|[12][0-9]|0?[1-9])/(2<month>0?[78]|1[02])

/(2<year>2007)
)
|

1 January 2008 till 29 August 2008

(2:
1 August till 29 August
(?<day>[12][0-9]|0?[1-9])/(?<month>0?8)/(?<year>2008)

1 Janary till 30 June

(?:
February
(?<day>[12][0-9]]0?[1-9])/(?<month>0?2)

|
30-day months
(?<day>30([12][0-9]]0?[1-9])/(?<month>02[46])

|
31-day months
(?2<day>3[01]][12][0-9]]|02[1-9])/(2<month>0?[1357])

4.5 Validate Traditional Date Formats, Excluding Invalid Dates | 265

www.it-ebooks.info

http://www.it-ebooks.info/

/(2<year>2008)

)$
Regex options: Free-spacing
Regex flavors: .NET, Perl 5.10, Ruby 1.9

See Also

This chapter has several other recipes for matching dates and times. Recipe 4.5 shows
how to validate traditional date formats more simply, giving up some accuracy.
Recipe 4.6 shows how to validate traditional time formats. Recipe 4.7 shows how to
validate date and time formats according to the ISO 8601 standard.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.8 explains
alternation. Recipe 2.9 explains grouping. Recipe 2.11 explains named capturing
groups. Recipe 2.12 explains repetition.

4.6 Validate Traditional Time Formats

Problem

You want to validate times in various traditional time formats, such as hh:mm and
hh:mm:ss in both 12-hour and 24-hour formats.

Solution
Hours and minutes, 12-hour clock:

~(1[0-2]]0?[1-9]): ([0-5]?[0-9]) (*?[AP]M)?$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Hours and minutes, 24-hour clock:

~(2[0-3]|[01]?[0-9]):([0-5]?[0-9])%
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
Hours, minutes, and seconds, 12-hour clock:

~(1[0-2]|0?[1-9]):([0-5]?[0-9]): ([0-5]?[0-9]) (*?[AP]M)?$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Hours, minutes, and seconds, 24-hour clock:

~(2[0-3]][01]2[0-9]): ([0-5]?[0-9]): ([0-5]?[0-9])$
Regex options: None

266 | Chapter4: Validation and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The question marks in all of the preceding regular expressions make leading zeros
optional. Remove the question marks to make leading zeros mandatory.

Discussion

Validating times is considerably easier than validating dates. Every hour has 60 minutes,
and every minute has 60 seconds. This means we don’t need any complicated alterna-
tions in the regex. For the minutes and seconds, we don’t use alternation at all. <[0-5]?
[0-9]> matches a digit between 0 and 5, followed by a digit between 0 and 9. This
correctly matches any number between 0 and 59. The question mark after the first
character class makes it optional. This way, a single digit between 0 and 9 is also ac-
cepted as a valid minute or second. Remove the question mark if the first 10 minutes
and seconds should be written as 00 to 09. See Recipes 2.3 and 2.12 for details on
character classes and quantifiers such as the question mark.

For the hours, we do need to use alternation (see Recipe 2.8). The second digit allows
different ranges, depending on the first digit. On a 12-hour clock, if the first digit is 0,
the second digit allows all 10 digits, but if the first digit is 1, the second digit must be
0,1,or2.Inaregular expression, we write thisas<1[0-2]|0?[1-9]>. On a 24-hour clock,
if the first digit is 0 or 1, the second digit allows all 10 digits, but if the first digit is 2,
the second digit must be between 0 and 3. In regex syntax, this can be expressed as
«2[0-3]|[01]?[0-9]>. Again, the question mark allows the first 10 hours to be written
with a single digit. Whether you’re working with a 12- or 24-hour clock, remove the
question mark to require two digits.

We put parentheses around the parts of the regex that match the hours, minutes, and
seconds. That makes it easy to retrieve the digits for the hours, minutes, and seconds,
without the colons. Recipe 2.9 explains how parentheses create capturing groups.
Recipe 3.9 explains how you can retrieve the text matched by those capturing groups
in procedural code.

The parentheses around the hour part keeps two alternatives for the hour together. If
you remove those parentheses, the regex won’t work correctly. Removing the paren-
theses around the minutes and seconds has no effect, other than making it impossible
to retrieve their digits separately.

On a 12-hour clock, we allow the time to be followed by AM or PM. We also allow a
space between the time and the AM/PM indicator. <([AP]M> matches AM or PM. <e?»
matches an optional space. <(®?[AP]M)?> groups the space and the indicator, and makes
them optional as one unit. We don’t use <#?([AP]M) ?> because that would allow a space
even when the indicator is omitted.

4.6 Validate Traditional Time Formats | 267

www.it-ebooks.info

http://www.it-ebooks.info/

Variations

If you want to search for times in larger bodies of text instead of checking whether
the input as a whole is a time, you cannot use the anchors <*> and «$>. Merely removing
the anchors from the regular expression is not the right solution. That would allow the
hour and minute regexes to match 12:12 within 9912:1299, for instance. Instead of
anchoring the regex match to the start and end of the subject, you have to specify that
the time cannot be part of longer sequences of digits.

This is easily done with a pair of word boundaries. In regular expressions, digits are
treated as characters that can be part of words. Replace both «*» and «$» with \b>. As
an example:

\b(2[0-3][[01]?[0-9]):([0-5]?[0-9])\b
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Word boundaries don’t disallow everything; they only disallow letters, digits and un-
derscores. The regex just shown, which matches hours and minutes on a 24-hour clock,
matches 16:08 within the subject text The time is 16:08:42 sharp. The space is not a
word character, whereas the 1 is, so the word boundary matches between them. The
8 is a word character, whereas the colon isn’t, so <\b> also matches between those two.

If you want to disallow colons as well as word characters, you need to use lookaround
(see Recipe 2.16), as shown in the following regex. Unlike before, this regex will not
match any part of The time is 16:08:42 sharp. It only works with flavors that support
lookbehind:

(2<![:\w])(2[0-3]][01]?[0-9]): ([0-5]2[0-9]) (?! [:\w])
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Python, Ruby 1.9

See Also

This chapter has several other recipes for matching dates and times. Recipes 4.4 and
4.5 show how to validate traditional date formats. Recipe 4.7 shows how to validate
date and time formats according to the ISO 8601 standard.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.6 explains
word boundaries. Recipe 2.8 explains alternation. Recipe 2.9 explains grouping.
Recipe 2.12 explains repetition. Recipe 2.16 explains lookaround.

268 | Chapter4: Validation and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

4.7 Validate IS0 8601 Dates and Times

Problem

You want to match dates and/or times in the official ISO 8601 format, which is the
basis for many standardized date and time formats. For example, in XML Schema, the
built-in date, time, and dateTime types are all based on ISO 8601.

Solution

TheISO 8601 standard defines a wide range of date and time formats. Most applications
that use ISO 8601 only use a subset of it. These solutions match the most commonly
used ISO 8601 date and time formats. We’ve also added solutions for XML Schema,
which is one particular implementation of ISO 8601.

Dates

The following matches a calendar month (e.g., 2008-08). The hyphen is required:
~([0-91{4})-(1[0-2]]0[1-9])%
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Named capture makes the regular expression and any code that may reference the
capturing groups easier to read:

~(2<year>[0-9]{4})-(?<month>1[0-2]]0[1-9])$
Regex options: None
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

Python uses a different syntax for named capture, adding a P. For brevity, we only show
one solution using the Python syntax. All the other solutions using .NET-style named
capture can be easily adapted to Python-style named capture in the same way.

~(?P<year>[0-9]1{4})- (?P<month>1[0-2]|0[1-9])$
Regex options: None
Regex flavors: PCRE, Python

ISO 8601 allows hyphens to be omitted from calendar dates, making both 2010-08-20
and 20100820 valid representations of the same date. The following regex accounts for
this, but also allows for invalid formats like YYYY-MMDD and YYYYMM-DD.
~([0-9]{4})-?(1[0-2]|0[1-9])-?(3[01]|0[1-9]|[12][0-9])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
~(?<year>[0-9]{4})-?(?<month>1[0-2]]|0[1-9])-?«
(?<day>3[01]|0[1-9]|[12][0-9])$
Regex options: None
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

4.7 Validate 150 8601 Dates and Times | 269

www.it-ebooks.info

http://www.it-ebooks.info/

Calendar date, such as 2008-08-30 or 20080830. The hyphens are optional. This regex
uses a capturing group and a backreference to match YYYY-MM-DD or YYYYMMDD,
but not YYYY-MMDD or YYYYMM-DD.
~([0-9]{4})(-?)(1[0-2]]o[1-9])\2(3[01] |0[1-9] |[12][0-9])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
~(?<year>[0-9]{4}) (?<hyphen>-?)(2<month>1[0-2]|0[1-9]) ¢
\k<hyphen>(?<day>3[01]|0[1-9]|[12][0-9])%
Regex options: None
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

Python also uses a different syntax for named backreferences:
~(?P<year>[0-9]{4}) (?P<hyphen>-2) (?P<month>1[0-2]|0[1-9]) «
(?P=hyphen) (?<day>3[01]|0[1-9]|[12][0-9])%

Regex options: None
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

Ordinal date (e.g., 2008-243). The hyphen is optional:

~([0-9]{4})-?(36[0-6][3[0-5][0-9][[12][0-9]{2}|0[1-9][0-9][00[1-9])$

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
~(2<year>[0-9]{4})-?«
(?<day>36[0-6]|3[0-5][0-9]|[12][0-9]{2}|0[1-9][0-9]|00[1-9])$

Regex options: None

Regex flavors: .NET, Java 7, PCRE 7, Perl 5.10, Ruby 1.9

Weeks
Week of the year (e.g., 2008-W35). The hyphen is optional:

~([0-9]{4})-2W(5[0-3][[1-4][0-9] |0[1-9])%

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
~(?2<year>[0-9]{4})-2W(?<week>5[0-3]|[1-4][0-9]|0[1-9])$%

Regex options: None

Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

Week date (e.g., 2008-W35-6). The hyphens are optional.

~([0-91{4})-?w(5[0-3][[1-4][0-9]|o[1-9])-?([1-7])$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

~(2<year>[0-9]{4})-2W(?<week>5[0-3]|[1-4][0-9]|0[1-9])-?(?<day>[1-7])$
Regex options: None
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

270 | Chapter4: Validation and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

Times

Hours and minutes (e.g., 17:21). The colon is optional:

~(2[0-3]|[o1][0-9]):2([0-5][0-9])%

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
A(?2<hour>2[0-3]|[01][0-9]):?(?<minute>[0-5][0-9])%

Regex options: None

Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

Hours, minutes, and seconds (e.g., 17:21:59). The colons are optional:

~(2[0-3]][01][0-9]):2([0-5][0-9]):?([0-5][0-9])$

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby
~(?<hour>2[0-3]]|[01][0-9]):?(?<minute>[0-5][0-9]):?«
(?<second>[0-5][0-9])%

Regex options: None

Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

Time zone designator (e.g., Z, +07 or +07:00). The colons and the minutes are optional:

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Hours, minutes, and seconds with time zone designator (e.g., 17:21:59+07:00). All the
colons are optional. The minutes in the time zone designator are also optional:

*(2[0-3]|[01][0-9]):?([0-5][0-9]):?([0-5][0-9]) <«

Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

A(2<hour>2[0-3]|[01][0-9]):2(?<minute>[0-5][0-9]):?(?<second>[0-5][0-9]) <

Regex options: None
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

Date and time

Calendar date with hours, minutes, and seconds (e.g., 2008-08-30 17:21:59 or 20080830
172159). A space is required between the date and the time. The hyphens and colons
are optional. This regex matches dates and times that specify some hyphens or colons
but omit others. This does not follow ISO 8601.
~([0-91{4})-?(1[0-2]|0[1-9])-?(3[01]|0[1-9]|[12][0-9]) ¢
*(2[0-3]|[01][0-9]):?([0-5][0-9]):?([0-5][0-9])$
Regex options: None

4.7 Validate 150 8601 Dates and Times | 271

www.it-ebooks.info

http://www.it-ebooks.info/

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

~(2<year>[0-9]{4})-?(?2<month>1[0-2]|0[1-9])-2«
(?<day>3[01]|0[1-9]|[12][0-9])®(?<hour>2[0-3]|[01][0-9])+«
:?2(?<minute>[0-5][0-9]):?(?<second>[0-5][0-9])%

Regex options: None

Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

A more complicated solution is needed if we want to match date and time values that
specify either all of the hyphens and colons, or none of them. The cleanest solution is
to use conditionals. But only some flavors support conditionals.

~([0-91{4})(-)?(1[0-2]]0[1-9])(?(2)-)(3[01]|0[1-9]|[12][0-9]) ¢
*(2[0-3][[01][0-9])(?(2):)([0-5][0-9])(?(2):)([0-5][0-9])%
Regex options: None
Regex flavors: .NET, PCRE, Perl, Python

~(2<year>[0-9]{4}) (?<hyphen>-)?(2<month>1[0-2]]|0[1-9]) ¢
(?(hyphen)-)(?<day>3[01]]|0[1-9]|[12][0-9])® (?<hour>2[0-3]|[01][0-9]) <«
(?(hyphen):) (?<minute>[0-5][0-9]) (?(hyphen):)(?<second>[0-5][0-9])$
Regex options: None
Regex flavors: .NET, PCRE 7, Perl 5.10

~(?P<year>[0-9]{4}) (?P<hyphen>-)?(?P<month>1[0-2]|0[1-9])
(?(hyphen)-) (?P<day>3[01]|0[1-9]|[12][0-9])®(?P<hour>2[0-3]|[01][0-9])«
(?(hyphen):) (?P<minute>[0-5][0-9]) (? (hyphen):)(?P<second>[0-5][0-9])$
Regex options: None
Regex flavors: PCRE, Perl 5.10, Python

If conditionals are not available, then we have to use alternation to spell out the alter-
natives with and without delimiters.

~(?:([0-9]{4})-?(1[0-2]|0[2-9])-?(3[01] |0[2-9][[12][0-9]) «
*(2[0-3][[01][0-9]):?([0-5][0-9]):?([0-5][0-9]) |«
([0-9]{4})(1[0-2]|o[1-9])(3[01]|0[1-9][[12][0-9])
*(2[0-3][[01][0-9])([0-5][0-9])([0-5][0-9]))$

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

XML Schema dates and times

The date and time types defined in the XML Schema standard are based on the ISO
8601 standard. The date types allow negative years for years before the start of the
calendar (B.C. years). It also allows for years with more than four digits, but not for
years with fewer than four digits. Years with more than four digits must not have leading
zeros. If you only want to allow years with four digits as in the preceding solutions,
remove -?(?:[1-9][0-9]*)? from the following solutions.

Date, with optional time zone (e.g., 2008-08-30 or 2008-08-30+07:00). Hyphens are
required. This is the XML Schema date type:

272 | Chapter4: Validation and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

~(-2(2:[1-9][0-9]*)?[0-9]{4})-(1[0-2]|0[1-9])-(3[01] |0[1-9]|[12][0-9])«
(Z|[+-1(2:2[0-3]|[01][0-9]):[0-5][0-9])?$

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

~(2<year>-2(?:[12-9][0-9]1*)?[0-9]{4})- (?<month>1[0-2]|0[1-9])-«
(?<day>3[01]|0[1-9]|[12][0-9])«
(?<timezone>Z|[+-](?:2[0-3]|[01][0-9]):[0-5][0-9])?%

Regex options: None

Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

Time, with optional fractional seconds and time zone (e.g., 01:45:36 or
01:45:36.123+07:00). There is no limit on the number of digits for the fractional sec-
onds. This is the XML Schema time type:

~(2[0-3]|[01][0-9]): ([0-5][0-9]): ([0-5][0-9]) (\.[0-9]+)?
(Z|[+-1(2:2[0-3]|[01][0-9]):[0-5][0-9])?$

Regex options: None

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

A(?2<hour>2[0-3]|[01][0-9]): (?<minute>[0-5][0-9]):(?<second>[0-5][0-9]) <
(2<frac>\.[0-9]+)?(2<timezone>Z|[+-](?:2[0-3]|[01][0-9]):[0-5][0-9])?%
Regex options: None
Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

Date and time, with optional fractional seconds and time zone (e.g.,
2008-08-30T01:45:36 or 2008-08-30T01:45:36.123Z). This is the XML Schema date
Time type:

~(-2(?2:[1-9][0-9]*)?[0

T(2[0-3]|[01][0-9]): ([0~

(Z|[+-1(?:2[0-3][[01][
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

~(2<year>-2(?:[12-9][0-9]1*)?[0-9]{4})- (?<month>1[0-2]|0[1-9])-«
(?<day>3[01]|0[1-9]|[212][0-9])T(?<hour>2[0-3]|[01][0-9]): <
(?2<minute>[0-5][0-9]): (?<second>[0-5][0-9]) (2<ms>\.[0-9]+)?«
(?2<timezone>Z|[+-](?:2[0-3]|[01][0-9]):[0-5][0-9])?%

Regex options: None

Regex flavors: .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, Ruby 1.9

-91{4})- (1[0 2]|o[1-9])-(3[01] | [1-9][[12][0-9])+
5][0-91):([o- 5][0 91)(\.[0-9]+)24
-9]):[0-5][0-9])?%

Discussion

ISO 8601 defines a wide range of date and time formats. The regular expressions pre-
sented here cover the most common formats, but most systems that use ISO 8601 only
use a subset. For example, in XML Schema dates and times, the hyphens and colons
are mandatory. To make hyphens and colons mandatory, simply remove the question
marks after them. To disallow hyphens and colons, remove the hyphens and colons
along with the question mark that follows them. Do watch out for the noncapturing

4.7 Validate 150 8601 Dates and Times | 273

www.it-ebooks.info

http://www.it-ebooks.info/

groups, which use the <(?:---)> syntax. If a question mark and a colon follow an opening
parenthesis, those three characters open a noncapturing group.

We put parentheses around all the number parts of the regexes. That makes it easy to
retrieve the numbers for the years, months, days, hours, minutes, seconds, and time
zones. Recipe 2.9 explains how parentheses create capturing groups. Recipe 3.9 ex-
plains how you can retrieve the text matched by those capturing groups in procedural
code.

For most regexes, we also show an alternative using named capture. Some of these date
and time formats may be unfamiliar to you or your fellow developers. Named capture
makes the regex easier to understand. .NET, Java 7, XRegExp, PCRE 7, Perl 5.10, and
Ruby 1.9 support the <(?<name>--*)> syntax used in the solutions in this recipe. All
versions of PCRE and Python covered in this book support the alternative «(?
P<name>---)» syntax, which adds a «P>. See Recipes 2.11 and 3.9 for details.

The number ranges in all the regexes are strict. For example, the calendar day is re-
stricted between 01 and 31. You'll never end up with day 32 or month 13. None of the
regexes here attempts to exclude invalid day and month combinations, such as Febru-
ary 31 Recipe 4.5 explains how you can deal with that.

The regular expressions, except those in the XML Schema subsection, make the indi-
vidual hyphens and colons optional. This does not follow ISO 8601 exactly. For ex-
ample, 1733:26 is not a valid ISO 8601 time, but will be accepted by the time regexes.
Requiring all hyphens and colons to be present or omitted at the same time makes your
regex quite a bit more complex.

If the delimiters are all the same, we can do this quite easily using a capturing group
for the first delimiter and backreferences for the remaining delimiters. The “dates”
subsection of the “Solution” section shows an example. For the first hyphen, we use
<(-?)», <(2<hyphen>-2)> or «(2P<hyphen>-?)> to match an optional hyphen and capture
it into a named or numbered group. If the hyphen was omitted, the capturing group
stores the zero-length string. The question mark that makes the hyphen optional must
be inside the group. If we made the group itself optional, then backreferences to that
group would always fail to match if the hyphen was not matched, as the group would
not have participated in the match at all. For the remaining hyphens, we use \2,
<\k<hyphen>>, or «(?P=hyphen)> to match the same text that was matched by the cap-
turing group, which is either a hyphen or nothing at all, depending on whether the first
hyphen was matched or not. When using numbered capture, make sure to use the
correct number for the backreference.

If the delimiters are different, such as when matching a single string with both a date
and a time, the solution is more complex. The “date and time” subsection shows an
example. This time, we use <(-)?>, <(?<hyphen>-)?> or «(?P<hyphen>-)?> to match the
hyphen. Now the question mark is outside the capturing group so that it will not par-
ticipate in the match at all when the hyphen is omitted. This allows us to use the
capturing group with a conditional. <(?(2)-)> matches a hyphen and <(?(2):)> matches

274 | Chapter4: Validation and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

a colon if the second capturing group participated in the match. The conditionals have
no alternative, which means they will match nothing at all (but still succeed) when the
second capturing group did not participate in the match. «(?(hyphen)-)> and «(?
(hyphen):)> do the same using named capture.

Only some flavors support conditionals. If conditionals are not available, the only sol-
ution is to use alternation to spell out the two alternatives with and without delimiters.
The disadvantage of this solution is that it results in two capturing groups for each part
of the date and time. Only one of the two sets of capturing groups will participate in
the match. Code that uses this regex will have to check both groups.

See Also

This chapter has several other recipes for matching dates and times. Recipes 4.4 and
4.5 show how to validate traditional date formats. Recipe 4.6 shows how to validate
traditional time formats.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.5 explains anchors. Recipe 2.8 explains
alternation. Recipe 2.9 explains grouping. Recipe 2.10 explains backreferences.
Recipe 2.11 explains named capturing groups. Recipe 2.12 explains repetition.
Recipe 2.17 explains conditionals.

4.8 Limit Input to Alphanumeric Characters

Problem

Your application requires that users limit their responses to one or more alphanumeric
English characters (letters A—Z and a—z, and digits 0-9).

Solution

With regular expressions at your disposal, the solution is dead simple. A character class
can set up the allowed range of characters. With an added quantifier that repeats the
character class one or more times, and anchors that bind the match to the start and end
of the string, you’re good to go.

Regular expression
~[A-Z0-9]+%
Regex options: Case insensitive
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Ruby example

if subject =~ /7[A-Z0-9]+$/i
puts "Subject is alphanumeric"

4.8 Limit Input to Alphanumeric Characters | 275

www.it-ebooks.info

http://www.it-ebooks.info/

else
puts "Subject is not alphanumeric"
end

Follow Recipe 3.6 to add this regex to your code in other programming languages.
Recipe 3.4 shows how to set regular expression options, including the “case insensitive”
modifier used here.

Discussion
Let’s look at the four pieces of this regular expression one at a time:
A # Assert position at the beginning of the string.
[A-Z0-9] # Match a character from A to Z or from 0 to 9
+ # between one and unlimited times.
$ # Assert position at the end of the string.

Regex options: Case insensitive, free-spacing
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

The <» and «$» assertions at the beginning and end of the regular expression ensure
that the entire input string is tested. Without them, the regex could match any part of
a longer string, letting invalid characters through. The plus quantifier ¢+ repeats the
preceding element one or more times. If you wanted to allow the regex to match an
entirely empty string, you could replace the «+» with ¢. That’s because the asterisk
quantifier ¢*» allows zero or more repetitions, effectively making the preceding element
optional.

Variations

Limit input to ASCII characters

The following regular expression limits input to the 128 characters in the seven-bit
ASCII character table. This includes 33 nonvisible control characters:

AT\x00-\x7F]+$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Limit input to ASCII noncontrol characters and line breaks

Use the following regular expression to limit input to visible characters and whitespace
in the ASCII character table, excluding control characters. The line feed and carriage
return characters (at positions 0x0A and 0x0D, respectively) are the most commonly
used control characters, so they’re explicitly included using (\n> (line feed) and
A\r> (carriage return):

A\n\r\x20-\x7E]+$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

276 | Chapter4: Validation and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

Limit input to shared 1S0-8859-1 and Windows-1252 characters

[SO-8859-1 and Windows-1252 (often called ANSI) are two commonly used eight-bit
character encodings that are both based on the Latin-1 standard (or more formally,
ISO/IEC 8859-1). However, the characters they map to the positions between 0x80
and 0x9F are incompatible. ISO-8859-1 uses these positions for control codes, whereas
Windows-1252 uses them for an extended range of letters and punctuation. These
differences sometimes lead to difficulty displaying characters, particularly with docu-
ments that do not declare their encoding or when the recipient is using a non-Windows
system. The following regular expression can be used to limit input to characters that
are shared by ISO-8859-1 and Windows-1252 (including shared control characters):

~[\x00-\x7F\xA0-\xFF]+$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

The hexadecimal notation might make this regular expression hard to read, but it works
the same way as the <[A-Z0-9]> character class shown earlier. It matches characters in
two ranges: \x00-\x7F and \xA0-\xFF.

Limit input to alphanumeric characters in any language

This regular expression limits input to letters and numbers from any language or script:

A\p{LN\p{MH\p{Nd}]+$
Regex options: None
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Ruby 1.9

This uses a character class that includes shorthands for all code points in the Unicode
Letter, Mark, and Decimal Number categories, which follows the official Unicode def-
inition of an alphanumeric character. The Mark category is included since marks are
required for words of many languages. Marks are code points that are intended to be
combined with other characters (for example, to form an accented version of a base
letter).

Unfortunately, Unicode categories are not supported by all of the regular expression
flavors covered by this book. Specifically, this regex will not work with JavaScript (un-
less using XRegExp), Python, or Ruby 1.8’s native flavor. Using this regex with PCRE
requires PCRE to be compiled with UTF-8 support, and Unicode categories can be used
with PHP’s preg functions (which rely on PCRE) if the /u option is appended to the
regex.

The following regex shows a workaround for Python:
A [/\\w_] +$
Regex options: Unicode
Regex flavors: Python

4.8 Limit Input to Alphanumeric Characters | 277

www.it-ebooks.info

http://www.it-ebooks.info/

Here, we work around the lack of Unicode categories in Python by using the UNICODE
or U flag when creating the regular expression. This changes the meaning of some regex
tokens by making them use the Unicode character table. <\w> then gets us most of the
way to a solution since it matches alphanumeric characters and the underscore. By
using its inverse <\W> in a negated character class, we can remove the underscore from
this set. Double negatives like this are occasionally quite useful in regular expressions,
though they can be difficult to wrap your head around.! Python 3.x includes non-ASCII
characters in shorthands like (\w> by default, and therefore doesn’t require the
UNICODE flag.

See Also
Recipe 4.9 shows how to limit text by length instead of character set.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.2 explains how to match nonprinting characters. Recipe 2.3 explains character
classes. Recipe 2.5 explains anchors. Recipe 2.12 explains repetition. Recipe 2.7 ex-
plains how to match Unicode characters.

4.9 Limit the Length of Text

Problem

You want to test whether a string is composed of between 1 and 10 letters from A to Z.

Solution

All the programming languages covered by this book provide a simple, efficient way to
check the length of text. For example, JavaScript strings have a length property that
holds an integer indicating the string’s length. However, using regular expressions to
check text length can be useful in some situations, particularly when length is only one
of multiple rules that determine whether the subject text fits the desired pattern. The
following regular expression ensures that text is between 1 and 10 characters long, and
additionally limits the text to the uppercase letters A—Z. You can modify the regular
expression to allow any minimum or maximum text length, or allow characters other
than A-Z.

Regular expression

~[A-Z1{1,10}$
Regex options: None

1. For even more fun (if you have a twisted definition of fun), try creating triple, quadruple, or even greater
levels of negatives by throwing in negative lookaround (see Recipe 2.16) and character class subtraction
(see “Flavor-Specific Features” on page 36 in Recipe 2.3).

278 | Chapter4: Validation and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

Perl example
if ($ARGV[0] =~ /~[A-Z]{1,10}$/) {
print "Input is valid\n";
} else {
print "Input is invalid\n";
}

See Recipe 3.6 for help with implementing this regular expression with other program-
ming languages.

Discussion
Here’s the breakdown for this very straightforward regex:

" # Assert position at the beginning of the string.
[A-Z] # Match one letter from A to Z

{1,10} # between 1 and 10 times.
$ # Assert position at the end of the string.

Regex options: Free-spacing

Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

The ¢ and «$> anchors ensure that the regex matches the entire subject string; other-
wise, it could match 10 characters within longer text. The <[A-Z]> character class
matches any single uppercase character from A to Z, and the interval quantifier
«{1,10}> repeats the character class from 1 to 10 times. By combining the interval quan-
tifier with the surrounding start- and end-of-string anchors, the regex will fail to match
if the subject text’s length falls outside the desired range.

Note that the character class <([A-Z]> explicitly allows only uppercase letters. If you want
to also allow the lowercase letters a to z, you can either change the character class to
«[A-Za-z]> or apply the case insensitive option. Recipe 3.4 shows how to do this.

W
. A mistake commonly made by new regular expression users is to try to
"‘,‘\ save a few characters by using the character class range <([A-z]>. At first
O
o glance, this might seem like a clever trick to allow all uppercase and

lowercase letters. However, the ASCII character table includes several
punctuation characters in positions between the A—Z and a—z ranges.
Hence, <[A-z]> is actually equivalent to <[A-Z[\]* “a-z]>.

4.9 Limitthe Length of Text | 279

www.it-ebooks.info

http://www.it-ebooks.info/

Variations

Limit the length of an arbitrary pattern

Because quantifiers such as <{1,10}» apply only to the immediately preceding element,
limiting the number of characters that can be matched by patterns that include more
than a single token requires a different approach.

As explained in Recipe 2.16, lookaheads (and their counterpart, lookbehinds) are a
special kind of assertion that, like «*> and «$», match a position within the subject string
and do not consume any characters. Lookaheads can be either positive or negative,
which means they can check if a pattern follows or does not follow the current position
in the match. A positive lookahead, written as «(?=""")>, can be used at the beginning
of the pattern to ensure that the string is within the target length range. The remainder
of the regex can then validate the desired pattern without worrying about text length.
Here’s a simple example:

r(?2=.{1,10}%).*
Regex options: Dot matches line breaks
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Python, Ruby

~(2=[\S\s]{1,10}$)[\S\s]*
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

It is important that the <$> anchor appears inside the lookahead because the maximum
length test works only if we ensure that there are no more characters after we’ve reached
the limit. Because the lookahead at the beginning of the regex enforces the length range,
the following pattern can then apply any additional validation rules. In this case, the
pattern <.® (or <[\S\s]*® in the version that adds native JavaScript support) is used to
simply match the entire subject text with no added constraints.

The first regex uses the “dot matches line breaks” option so that it will work correctly
when your subject string contains line breaks. See Recipe 3.4 for details about how to
apply this modifier with your programming language. Standard JavaScript without
XRegExp doesn’t have a “dot matches line breaks” option, so the second regex uses a
character class that matches any character. See “Any character including line
breaks” on page 39 for more information.

Limit the number of nonwhitespace characters

The following regex matches any string that contains between 10 and 100 nonwhite-
space characters:
Ms*(?:\S\s*){10,100}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

280 | Chapter4: Validation and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

By default, \\s> in .NET, JavaScript, Perl, and Python 3.x matches all Unicode white-
space, and <\\S> matches everything else. In Java, PCRE, Python 2.x, and Ruby, <\s»
matches ASCII whitespace only, and <\S> matches everything else. In Python 2.x, you
can make (\s> match all Unicode whitespace by passing the UNICODE or U flag when
creating the regex. In Java 7, you can make <\s> match all Unicode whitespace by pass-
ing the UNICODE_CHARACTER CLASS flag. Developers using Java 4 to 6, PCRE, and Ruby
1.9 who want to avoid having any Unicode whitespace count against their character
limit can switch to the following version of the regex that takes advantage of Unicode
categories (described in Recipe 2.7):

MAP{ZRN\sT*(2: ["\p{Z\s[\p{Z}\s]*){10,100}$
Regex options: None
Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Ruby 1.9

PCRE must be compiled with UTF-8 support for this to work. In PHP, turn on UTF-8
support with the /u pattern modifier.

This latter regex combines the Unicode <\p{Z}» Separator property with the <\s> short-
hand for whitespace. That’s because the characters matched by <\p{z}» and <\s> do not
completely overlap. <\\s> includes the characters at positions 0x09 through 0x0D (tab,
line feed, vertical tab, form feed, and carriage return), which are not assigned the Sep-
arator property by the Unicode standard. By combining \\p{z}> and <\s> in a character
class, you ensure that all whitespace characters are matched.

In both regexes, the interval quantifier <{10,100}» is applied to the noncapturing group
that precedes it, rather than a single token. The group matches any single nonwhite-
space character followed by zero or more whitespace characters. The interval quantifier
can reliably track how many nonwhitespace characters are matched because exactly
one nonwhitespace character is matched during each iteration.

Limit the number of words

The following regex is very similar to the previous example of limiting the number of
nonwhitespace characters, except that each repetition matches an entire word rather
than a single nonwhitespace character. It matches between 10 and 100 words, skipping
past any nonword characters, including punctuation and whitespace:

AW (? :\w+\b\W*){10,100}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, PCRE, Perl, Python, Ruby

In Java 4 to 6, JavaScript, PCRE, Python 2.x, and Ruby, the word character token
Aw in this regex will match only the ASCII characters A—Z, a—z, 0-9, and _, and there-
fore this cannot correctly count words that contain non-ASCII letters and numbers.
In .NET and Perl, \\w> is based on the Unicode table (as is its inverse, <\W>, and the word
boundary <\b>) and will match letters and digits from all Unicode scripts. In Python
2.x, you can choose to make these tokens Unicode-based by passing the UNICODE or U
flag when creating the regex. In Python 3.x, they are Unicode-based by default. In Java

4.9 Limit the Length of Text | 281

www.it-ebooks.info

http://www.it-ebooks.info/

7, you can choose to make the shorthands for word and nonword characters Unicode-
based by passing the UNICODE_CHARACTER_CLASS flag. Java’s <\b> is always Unicode-based.

If you want to count words that contain non-ASCII letters and numbers, the following
regexes provide this capability for additional regex flavors:

MINP{LNp{MP\p{Nd}\p{Pc}]*(?: [\p{L}\p{M}\p{Nd}\p{Pc}]+«
\b[\p{L}\p{M}\p{Nd}\p{Pc}1*){10,100}$

Regex options: None

Regex flavors: .NET, Java, Perl

AM\P{LINp{MINp{Nd}\p{Pc}T*(?: [\p{L}\p{M}\p{Nd}\p{Pc}]+«
(2:["\p{LI\p{M}p{Nd}\p{Pc}]+|$)){10,100}$

Regex options: None

Regex flavors: .NET, Java, XRegExp, PCRE, Perl, Ruby 1.9

PCRE must be compiled with UTF-8 support for this to work. In PHP, turn on UTF-8
support with the /u pattern modifier.

As noted, the reason for these different (but equivalent) regexes is the varying handling
of the word character and word boundary tokens, explained more fully in “Word
Characters” on page 47.

The last two regexes use character classes that include the separate Unicode categories
for letters, marks (necessary for matching words of many languages), decimal numbers,
and connector punctuation (the underscore and similar characters), which makes them
equivalent to the earlier regex that used (\w> and <\W>.

Each repetition of the noncapturing group in the first two of these three regexes matches
an entire word followed by zero or more nonword characters. The \W> (or <[*\p{L}
\p{M}I\p{Nd}\p{Pc}]>) token inside the group is allowed to repeat zero times in case the
string ends with a word character. However, since this effectively makes the nonword
character sequence optional throughout the matching process, the word boundary as-
sertion <\b> is needed between <\w> and \W> (or <[\p{L}\p{M}\p{Nd}\p{Pc}]> and «[*
\p{LI\p{M}\p{Nd}\p{Pc}]>), to ensure that each repetition of the group really matches
an entire word. Without the word boundary, a single repetition would be allowed to
match any part of a word, with subsequent repetitions matching additional pieces.

The third version of the regex (which adds support for XRegExp, PCRE, and Ruby 1.9)
works a bit differently. It uses a plus (one or more) instead of an asterisk (zero or more)
quantifier, and explicitly allows matching zero characters only if the matching process
has reached the end of the string. This allows us to avoid the word boundary token,
which is necessary to ensure accuracy since <\b> is not Unicode-enabled in XRegExp,
PCRE, or Ruby. <\b> is Unicode-enabled in Java, even though Java’s (\w> is not (unless
you use the UNICODE_CHARACTER_CLASS flag in Java 7).

Unfortunately, none of these options allow standard JavaScript or Ruby 1.8 to correctly
handle words that use non-ASCII characters. A possible workaround is to reframe the
regex to count whitespace rather than word character sequences, as shown here:

282 | Chapter4: Validation and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

Ms*(2:\S+(?:\s+|$)){10,100}$
Regex options: None
Regex flavors: .NET, Java, JavaScript, Perl, PCRE, Python, Ruby

In many cases, this will work the same as the previous solutions, although it’s not
exactly equivalent. For example, one difference is that compounds joined by a hyphen,
such as “far-reaching,” will now be counted as one word instead of two. The same
applies to words with apostrophes, such as “don’t.”

See Also

Recipe 4.8 shows how to limit input by character set (alphanumeric, ASCII-only, etc.)
instead of length.

Recipe 4.10 explains the subtleties that go into precisely limiting the number of lines
in your text.

Techniques used in the regular expressions in this recipe are discussed in Chapter 2.
Recipe 2.3 explains character classes. Recipe 2.4 explains that the dot matches any
character. Recipe 2.5 explains anchors. Recipe 2.7 explains how to match Unicode
characters. Recipe 2.12 explains repetition. Recipe 2.16 explains lookaround.

4.10 Limit the Number of Lines in Text

Problem

You need to check whether a string is composed of five or fewer lines, without regard
for how many total characters appear in the string.

Solution

The exact characters or character sequences used as line separators can vary depending
on your operating system’s convention, application or user preferences, and so on.
Crafting an ideal solution therefore raises questions about what conventions for indi-
cating the start of a new line should be supported. The following solutions support the
standard MS-DOS/Windows (<\r\m), legacy Mac OS (<\\r»), and Unix/Linux/BSD/OS
X (\m) line break conventions.

Regular expression

The following three flavor-specific regexes contain two differences. The first regex uses
atomic groups, written as «(?>')», instead of noncapturing groups, written as
«(?:)>, because they have the potential to provide a minor efficiency improvement
here for the regex flavors that support them. Python and JavaScript do not support
atomic groups, so they are not used with those flavors. The other difference is the tokens
used to assert position at the beginning and end of the string (<\A> or ¢*» for the beginning

4.10 Limit the Number of Lines in Text | 283

www.it-ebooks.info

http://www.it-ebooks.info/

of the string, and <\z>, \2», or <$> for the end). The reasons for this variation are dis-
cussed in depth later in this recipe. All three flavor-specific regexes, however, match
exactly the same strings:
\A(>[M\L\nT*(2>\r\n?|\n)){0,4}["\r\n]*\z
Regex options: None
Regex flavors: .NET, Java, PCRE, Perl, Ruby
\A(Z: [M\r\n]*(2:\r\n? |[\n)){0,4}["\r\n]*\Z
Regex options: None
Regex flavor: Python
A2 [M\\n]*(2:\r\n? | \n)){0,4}["\r\n]*$
Regex options: None (“” and $ match at line breaks” must not be set)
Regex flavor: JavaScript

PHP (PCRE) example
if (preg_match('/AA(Z>[*\r\n]*(?>\r\n?|\n)){0,4}["\r\n]*\z/",
$ _POST['subject'])) {
print 'Subject contains five or fewer lines';
} else {
print 'Subject contains more than five lines';
}

See Recipe 3.6 for help implementing these regular expressions with other program-
ming languages.

Discussion

All of the regular expressions shown so far in this recipe use a grouping that matches
any number of non-line-break characters followed by an MS-DOS/Windows, legacy
Mac OS, or Unix/Linux/BSD/OS X line break sequence. The grouping is repeated be-
tween zero and four times, since four line breaks occur in five lines of text. After the
grouping, we allow one last sequence of non-line-break characters to fill out the fifth
line, if present.

In the following example, we’ve broken up the first version of the regex into its indi-
vidual parts. We’ll explain the variations for alternative regex flavors afterward:

\A # Assert position at the beginning of the string.
P g g g
?> # Group but don't capture or keep backtracking positions:
P P P g P
[*\r\n]* # Match zero or more characters except CR and LF.
(» # Group but don't capture or keep backtracking positions:
\r\n? # Match a CR, with an optional following LF (CRLF).
| # Or:
\n # Match a standalone LF character.
) # End the noncapturing, atomic group.
{0,4} # End group; repeat between zero and four times.
group P

284 | Chapter4: Validation and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

[*\r\n]* # Match zero or more characters except CR and LF.
\z # Assert position at the end of the string.

Regex options: Free-spacing

Regex flavors: .NET, Java, PCRE, Perl, Ruby

The leading \\A> matches the position at the beginning of the string, and <\z> matches
at the end. This helps to ensure that the entire string contains no more than five lines,
because unless the regex is anchored to the start and end of the text, it can match any
five lines within a longer string.

Next, an atomic group (see Recipe 2.14) encloses a character class that matches any
number of non-line-break characters and a subgroup that matches one line break se-
quence. The character class is optional (in that its following quantifier allows it to repeat
zero times), but the subgroup is required and must match exactly one line break per
repetition of the outer group. The outer group’s immediately following quantifier al-
lows it to repeat between zero and four times. Zero repetitions allows matching a com-
pletely empty string, or a string with only one line (no line breaks).

Following the outer group is another character class that matches zero or more non-
line-break characters. This lets the regex fill in the match with the fifth line of subject
text, if present. We can’t simply omit this class and change the preceding quantifier to
«{0,5}>, because then the text would have to end with a line break to match at all. So
long as the last line was empty, it would also allow matching six lines, since six lines
are separated by five line breaks. That’s no good.

In all of these regexes, the subgroup matches any of three line break sequences:

* A carriage return followed by a line feed (<\r\n, the conventional MS-DOS/Win-
dows line break sequence)

* A standalone carriage return (<\r, the legacy Mac OS line break character)

¢ A standalone line feed (<\n», the conventional Unix/Linux/BSD/OS X line break
character)

Now let’s move on to the cross-flavor differences.

The first version of the regex (used by all flavors except Python and JavaScript) uses
atomic groups rather than simple noncapturing groups. Although in some cases the
use of atomic groups can have a much more profound impact, in this case they simply
let the regex engine avoid a bit of unnecessary backtracking that can occur if the match
attempt fails.

The other cross-flavor differences are the tokens used to assert position at the beginning
and end of the string. All of the regex flavors discussed here support «*> and <$», so why
do some of the regexes use \\), \\2>, and (\z> instead? The short explanation is that
the meaning of these metacharacters differs slightly between regular expression flavors.
The long explanation leads us to a bit of regex history....

4.10 Limit the Number of Lines in Text | 285

www.it-ebooks.info

http://www.it-ebooks.inf