Understand Your Data and
Be More Productive

Expressions

O,RE".LY‘b Jelfrey E.F. Fried!

Mastering Regular Expressions

Third Edition

Jeffrey E. F. Friedl

O’REILLY"

Beijing - Cambridge - Farnbam - Kéln - Paris - Sebastopol - Taipei - Tokyo

Mastering Regular Expressions, Third Edition
by Jeffrey E. F. Friedl

Copyright © 20006, 2002, 1997 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly Media, Inc. books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (safari.oreilly.com). For more information contact
our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: jeffrey E. F. Friedl

Cover Designer: Edie Freedman

Printing History:
January 1997: First Edition.
July 2002: Second Edition.
August 2006: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks
of O'Reilly Media, Inc. Mastering Regular Expressions, the image of owls, and related trade dress
are trademarks of O’'Reilly Media, Inc. Many of the designations used by manufacturers and sellers
to distinguish their products are claimed as trademarks. Where those designations appear in this
book, and O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed
in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author

assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

RepKover, - o . o
==== This book uses RepKover’, a durable and flexible lay-flat binding.

ISBN: 0-590-52812-4
(M]

For putting up with me.

And for the years I worked on this book,

for putting up without me.

Tlable of Contents

Prefaicecccocooiiiiiiiiiiiiiiiii xvii
1: Introduction to Regular EXDresSiOnS ..., 1
Solving Real Problemscooiiiiiiiiiiiiie e 2
Regular Expressions as @ LANGUAZEcceeviviieiiiiieiiiieiiieeiiee et 4
The Filename ANalo@ycociiiiiiiiiiiiiieie e 4
The Language ANAlOZYccooiiiiiiiiiiiiiiie e 5
The Regular-Expression Frame of Mindcccccooiiiiiiiiniiiiic, 6
If You Have Some Regular-Expression EXperienceccccooecvvivnnennne. 6
Searching Text Files: EGIeP ..ooooiiiiiiiiiiiiiieie st 6
EGrep MEtaCharaClerscciiiuiiiiiiiiiii ittt 8
Start and End of the LINecccociviiiiiiiiiiiiii e, 8
CRAracter CLASSESiiuiiiiiiiiiiie et 9
Matching Any Character With DOtcociiiiiiiiiiiicee e 11
ATEINATION .oiviiiiiiiiiit it 13
Ignoring Differences in Capitalizationccccooiiiiiiiiiiiiiiiieiieeeenn, 14
WOrd BOUNAATIES ...o.viiiiiiiiiiiiicicci e 15

In @ NUSHEIl ..ot 16
OPpONAL TEEMIS ...eiiiiiiiiie i 17
Other Quantifiers: REPEtitionc.ccoviiiiiiiiiiiiiiciiee e 18
Parentheses and Backreferences ..o, 20
The Great ESCAPEooiiiiiiiiieiiiee et 22
Expanding the FOuNdationccccoociiiiiiiiiiiiiiccee e 23
Linguistic DIVersifiCationccccoooiiiiiiiiiiieieic st 23
The Goal of a Regular EXPressionocccoocioiiiiiiiiiiie e 23

vii

viii Table of Contents

A Few More EXamPIEScoooiiiiiiiiiiiiiiie e 23
Regular Expression NOmMenclatureccoccooiiiiiiiinieiieiieeseeeee 27
Improving on the Status QUOcciiiiiiiiiiiiiit e 30
SUIMIMIATY ettt ettt e ettt e e e e eeeees 32
Personal GLHMPSESc.ccooiiiiiiiiiiiii i 33
2: Extended Introductory Examples ... 35
ADOUL the EXAMPLESooviviiiiiiiiiieiieiiiieeiii ettt 36
A Short Introduction to Perl ... 37
Matching Text with Regular EXpressionsc..ccocccvcioviiniiniiiiiincniiicee. 38
Toward a More Real-World Exampleccoociviiiiiiiiiiiiiecec, 40
Side Effects of a Successful Match ..o 40
Intertwined Regular EXPressionsc.ccccviviiiiiiiiiieiiieiice e 43
TNEEIMUESSION ..vittiiiiiiiii ettt ettt 49
Modifying Text with Regular EXPressionscoccoooiovieiieioiiiiaiieiie e 50
Example: FOIM LEEToiiiiiiiiiiiiiiiiiiiiecieee e 50
Example: Prettifying a Stock Pricecccoocviiiiiiiiiniiiiiiccceen 51
Automated EdItiNgGc.oooiiiiiiiiiie i 53

A Small Mail UL .ovveeiiiiiiiiieee e 53
Adding Commas to a Number with Lookaroundcccocceiiiniinn 59
TeXt-tO-HTML COMVETSIONviuiitiiiiiiiiaiiieteiate ettt ettt 67
That Doubled-Word Thingcccccoiiiiiiiiiie e 77

3: Overview of Regular Expression Features and Flavors 83
A Casual Stroll Across the Regex Landscapecccovvvieviiiiiiiiiiiieiieeiieeee 85
The Origins of Regular EXPressionscccoccoiiaiiiiiiiiiaiienie e 85

AL @ GIANCE .ot 91
Care and Handling of Regular EXpressionsccccccoevvveviieeniiesiiiesiieenenn 93
Integrated Handlingc.ccoooiiiiiiiiiiiiieccee e 94
Procedural and Object-Oriented Handlingcccocoooeviiiininiinincinn, 95

A Search-and-Replace EXample ..ot 98
Search and Replace in Other Languagescccoooveviiviiiiiiiiinieieaiene 100
Care and Handling: SUMMATYcccoiiiiiiiiiiii et 101
Strings, Character Encodings, and Modesccccccociiiiiiiiiiiniiiiiicieee, 101
Strings as Regular EXPressionsccoovioiiiiiiiiiiiiiiesc e 101
Character-ENcoding ISSUEScoviiiiiiiaiiiiie et 105
UNICOAER ittt 106
Regex Modes and Match MOdESccovviiiiiiiiiiiiiiiceee e 110

Common Metacharacters and FEAtULEscccccoovviiiviiiiiiiiieeee e 113

Table of Contents ix

Character RepreSentationsoceeiuiieiiieiiiieaiee e eiee et e 115
Character Classes and Class-Like CONSIIUCESc.cocvvvviviiiiiiiiiinieine. 118
Anchors and Other “Zero-Width Assertions”c.cccooevvvieriieiieancennn. 129
Comments and Mode MOIflersc.oociiviiiiiiiiiiiii e 135
Grouping, Capturing, Conditionals, and Controlc..ccccccoecvniiinnn. 137
Guide to the Advanced Chapterscocoiiiiiiiiiiiii e 142
4: The Mechanics of Expression Processing 143
StArt YOUTr ENGINES! ..ooiiiiiiiiiiiiiiie e 143
Two Kinds of ENGINESc.ooiiiiiiiiiiiii i 144
NEW StANAATASooviiiiiiiiici e 144
RegeX ENGINE TYPES 1uveiiiiiiiiiiieiie ettt 145
From the Department of Redundancy Departmentccccoeceevieennens 146
Testing the ENGINe TYPE ..oioiiiiiiiiiiiiiieiieiteieee et 146
MALCh BASICS +.evtiiiiiiiieeiie ettt 147
About the EXAMPIES ...ooiiiiiiiiiiiiiiiiiiii 147
Rule 1: The Match That Begins Earliest Winscccccoviviviiiniiiieinnns 148
Engine Pieces and PArtSoccooiiiiiiiiiiiieie st 149
Rule 2: The Standard Quantifiers Are Greedyccccooeevviviiiiiiieeninne 151
Regex-Directed Versus Text-Directedcccoooiiiiiiiiiiiiiiiicieecee 153
NFA Engine: RegeX-Directedcccoiiiiiiiiiiiiiiiiieie e 153
DFA Engine: TeXt-DireCtedcccoieiiiiiiiiiiiiieiiie e 155
First Thoughts: NFA and DFA in COMPATiSONccoovviiiiriaiiaeiaeenen. 156
BACKITACKING 1 etiieiieiie et 157
A Really Crummy ANalogyccoviiiiiiiiiiiiiic 158
Two Important Points on Backtrackingccccocvviiiiiiniiniiiciene, 159
SAVEA SEALES ...ttt 159
Backtracking and Greedinessccocoviiviiiiiiiiiiniiiieee 162
More About Greediness and Backtrackingcccoocviviiiiiiiiiniiniice 163
Problems Of GIre€dinesscccooiiiiiiiiiiiieie e 164
Multi-Character “QUOLES”cc.ovuiieiiiiee i 165
Using Lazy QUANUIETScc.oiiviiiiiiiiiiiieiee et 166
Greediness and Laziness Always Favor a Match ..., 167
The Essence of Greediness, Laziness, and Backtracking 168
Possessive Quantifiers and Atomic Groupingccc.cceevevevienieenieannens 169
Possessive Quantifiers, ?+, +, ++ and {mn}+ ..o 172
The Backtracking of Lookaroundccccoviiiiiiiiiiiiie, 173

Is Alternation Greedy?ocoiiiiiiiiiii e 174

Taking Advantage of Ordered Alternationccccoooieviiiniiiinenienn. 175

x Table of Contents

NFA, DFA, A0 POSIX ..vviveeieeeeeeeeeeeeeeeeeeeeeeeee e eee e 177
“The Longest-LeftmOst”ccciiiiiiiiiiioiie ettt 177
POSIX and the Longest-Leftmost Rule ..o 178
Speed and EffiCIeNCYccooviiiiiiiiiiii e 179
Summary: NFA and DFA in COMPATiSONccooivriiiniiniiiiiiaiienieieaiens 180

SUITIMATY oottt 183

5: Practical Regex Techniquesccococecevnoiiienniinnn, 185

RegeX Balancing ACc.ooviiiioiiiioiiiiiiee ettt 186

A Few Short EXAmMPIESooiviiiiiiiiiiiicciec e 186
Continuing with Continuation LINESc.ccocvviriiriiiiieieieeeeieena, 186
Matching an IP AdAIESSccooiiiiiiiiiiiiiiiiiite e 187
Working with Filenamesc.ccoccviiiiiiiiiiiiiccccce 190
Matching Balanced Sets of Parenthesesccccocooiiiiiiiiiiiiiii, 193
Watching Out for Unwanted Matchescccoccoviiiiiiiiiiiiiiice, 194
Matching Delimited TEXEccooviiiiiiiiiiiiieie e 196
Knowing Your Data and Making ASSUmMptionsccccceevviriienieannnns 198
Stripping Leading and Trailing Whitespacecccccoviiiiiiiiiiiiiiiiis 199

HTML-Related EXAMPIESoooviiiiiiiiiiiiiiiciicc e 200
Matching an HTML TAEc.ooiiiiiiiiiiie et 200
Matching an HTML LinKoccoiiiiiiiiiiiieie e 201
Examining an HTTP URLcoooiiiiiiiiiiiiiiiiiiiiceice e 203
Validating @ HOSINAMEcooiiiiiiiiiiiiice e 203
Plucking Out a URL in the Real Worldccccocovviiiiiiiiiiiiiec, 206

Extended EXAmMPIEScccoiiiiiiiiiiiiiiiic e 208
Keeping in Sync with Your Datacccoocoviiiiiiiiiiiiicieccee 209
Parsing CSV FileSiiiiiiiiiiiiiii it 213

6: Crafting an Efficient EXPresSiOn ..., 221

A SODbering EXAMPIE ...o.iiiiiiiiiiii ittt 222
A Simple Change —Placing Your Best Foot Forwardccc.ccceeenen. 223
Efficiency Versus COITECINESSeiiviiiiaiiiiiieiieaie et eee e 223
Advancing Further—Localizing the Greedinesscccocceoeiiviinienn. 225
Reality Check ..o 226

A Global View of Backtrackingcoccoviiiiiiiiiiiiiiiiiicc e 228
More Work for @ POSIX NFAccoiiiiiiiiiiiiiiiae e 229
Work Required During a Non-Match ... 230
Being More SPECIfICviiiiiiiiiiiiice e 231

Alternation Can Be EXPENSIVEcooviiiiiiiiiiiiiieiiiie e 231

Table of Contents Xi

Benchmarkingooooiiiiii e 232
Know What YOu’'re MEASUIINGc.ccovuiiiiiieiiiiieiiieeeiieeeieeeeiieeeiiee e 234
Benchmarking With PHPcoooiiiiiiiiiiiicic e 234
Benchmarking with Javacccooiiiiiii 235
Benchmarking with VB.INETcooiiiiiiiiiiiiiiie e 237
Benchmarking with RUDY ... 238
Benchmarking with Pythonccccoiiiiiiiiii 238
Benchmarking with TCloooiiiiiiiiiii e 239

CommON OPUHMIZALIONSeouviiiieiiie ittt 240
NO Free LUNCR .ooiiiiiiiiiiii e 240
Everyone’s Lunch is Differentccoccoooiiiiiiiiiiiiicc 241
The Mechanics of Regex Applicationccccooeieviiiiiiiiiiieiieee e 241
Pre-Application OptiMiZationscc.eeiuiiiiiiieiiiie et 242
Optimizations with the Transmissionccccocooiiiiiiiiiioiieiciee, 246
Optimizations of the Regex Itselfcccooviiiiiiiiiniiie, 247

Techniques for Faster EXPreSSiOnsccccciviiiiiieiiieiiiiaiiiee e 252
Common Sense TeChNIQUESc.ooiiiiiiiiiiiiii e 254
EXPOSE LIteral TEXE ..ooviiiiiiiiiiiiiiiie ettt 255
EXPOSE ANCROIS ..iiviiiiiiiiiii ittt 256
Lazy Versus Greedy: Be SPecifiCocooovioiiiiiiiiiiiieieeceee 256
Split Into Multiple Regular EXpressionscc.occcovviieeiieaieanieiieiie e 257
Mimic Initial-Character Discriminationc.ccooevviiiiinicnienieieene. 258
Use Atomic Grouping and Possessive Quantifiersccccocevieinnnne 259
Lead the Engine to a MatChcocooviiiiiiiiiieiiee e 260

UNrolling the LOOP ...ooiiiiiiiiiii i 261
Method 1: Building a Regex From Past Experiencesc..ccccocvenenn. 262
The Real “Unrolling-the-Loop” PAternccooceevieiiiiiiiiiieiie e 264
Method 2: A TOP-DOWN VIEW ...o.viiiiiiiiiiiiiiiiaieit e 266
Method 3: An Internet HOSIAMEoviiviiiieiieiieieieeece e 267
ODSEIVATONS ...ttt ettt ettt 208
Using Atomic Grouping and Possessive Quantifiersccocceeeinnrene 268
Short Unrolling EXamplescoooviiiiiiiiiiiiiicese e 270
Unrolling C COMMENESviiiiiieiiiieiiieeeiiie et e e et eiee e ee e e 272

The Freeflowing REZEXccciiiiiiiiiiiiiii ettt 277
A Helping Hand to Guide the Matchcoccooiiiiiiiiiii, 277
A Well-Guided Regex is @ Fast REZEXcccvivviiiiiiiiiiiiiiiiieeie e 279
WIAPUD oo 281

In Summary: Think! ... 281

xit Table of Contents

T2 POFL o 283
Regular Expressions as a Language COMPONENLccovevriierienieainianiennenns 285
Perl’s Greatest SENGLNc.ccooiiiiiiiiiiiei e, 286
Perl’s Greatest WeaKNessccocoviviiiiiiiiiiniiiiieit e 286
Perl’s REZEX FlAVOTc.oiiviiiiiiiiiiieee e 286
Regex Operands and Regex LiteralScccoooiiiiiiiiiniiiiiiiiiiieieae 288
How Regex Literals Are Parsedccccoooiiiiiiiiiiiiiicie e 292
REGEX MOMIfIEIS ..oiiiviiiiiiiiiiiii e 292
Regex-Related PerliSImSccooiiiiiiiiiii e 293
EXPIeSSION CONEEXE ..u.viiiiiiiiiiiaiiieiieeie et e eiee et ie et e eiee e eeeaeaeeeneeeieans 294
Dynamic Scope and Regex Match Effectscoccoociiiiiiiiiiiniiin 295
Special Variables Modified by a Matchcccoooiiiiiii, 299
The gr/-/ Operator and RegeX ODJECtSccceoviiiiiiiiiiiniiiniiiicciiciieee e 303
Building and Using Regex ODJECEScovviiiiiiiiiiiiiiiie e 303
Viewing RegeX ODJECES ...oo.iiiiiiiiiiiiiiiie it 305
Using Regex Objects for Efficiencycccocvvviiiiiiiniiiiiiiiice 306
The MatCh OPEIALOTcviiviivieiieiiitiieiei ettt 306
Match’s RegexX Operandccoociiiiiiiiiiiiiiiieeic e 307
Specifying the Match Target Operandcccoccoviiiiiniiiiiiniinicee 308
Different Uses of the Match Operatorccoccovviviiniiiiiiiiiiiceeae 309
Iterative Matching: Scalar Context, With /gccoccoeiviiiiiiiiiiinie, 312
The Match Operator’s Environmental Relationscccccociviiinnnnne. 316
The SubsSttution OPEIALOTcviiiiiiiiiiiiiie ettt 318
The Replacement Operandcoocciiiiiiiiiiiiiieie e 319
The /€ MOIIET ..viiiiiiiiiiiii e 319
Context and Return Value ... 321
The SPLit OPETALOr ..ottt ittt 321
BaSIC SPLIE .oveiieiiie et 322
Returning Empty EIEMENtScccoviiiiiiiiiiiiiiiiiieecee e 324
Split’s Special Regex Operandsccccooiiiiiiiiiiiiiieeie e 325
Split’s Match Operand with Capturing Parenthesescccccocceviiinniene 326
Fun with Perl ENhancementsccococoiiiiiiiiiiiiiicc e 326
Using a Dynamic Regex to Match Nested Pairscccccoooiviiiieniinns 328
Using the Embedded-Code CONSIIUCEcoviiiiiiiiniiiniiiiieiiciceeane 331
Using local in an Embedded-Code CONStIuCtcccoovvveviiinienieannnns 335

A Warning About Embedded Code and my Variablescccoccoeee. 338
Matching Nested Constructs with Embedded Code ..o, 340
Overloading Regex LIteralSccoooiiiiiiiiiiiiiiiiiiiese e 341

Problems with Regex-Literal Overloadingccccccooiiiiiiiiiiniiiii, 344

Table of Contents xiii

Mimicking Named CAPULEccooiiiiiiiiiiiiieieeie e 344
Perl EffICIENCY ISSUESiovviiiiiiiieiii et 347
“There’s More Than One Way to DO It”coccoiiiiiiiiiiieicece e 348
Regex Compilation, the /o Modifier, qr/-/, and Efficiency 348
Understanding the “Pre-Match” COPY ..ooovvvviiiiiiiiiiiiiciceccec e 355
The Study FUNCHON ...iiiiiiiiiiiiie et 359
Benchmarkingoocoooiiiiiii 360
Regex Debugging INformationc..ccooeoiiiiiiiiiioiciieceeeee 361
Final COMIMENTSoviviiiieiieieecete ettt 363
E: JAUA ..., 365
Java’s REGEX FLAVOTiciiiiiiiiiiiiiiiii et 366
Java Support for \p{---} and \P{ -} i 369
Unicode Line Terminatorsccooiviiiiiiiiiiiiiaiiiteeeiee e 370
USING JAVAULLICZEX .ovviiiiiiiiiiiiiiii e 371
The Pattern.compile () FACIOIY ...cccooooiiiiiiiiiiiiiiiieiee e 372
Pattern’s matcher method ... 373
The Matcher ODJECEiiiiiiiiiiiii e 373
APPLYING the REZEX ..viiiiiiiiiiiiiiie et 375
Querying Match RESUILSc.ccooiiiiiiiiiiiiei e 376
Simple Search and Replaceccoooiiiiiiiiiiii e 378
Advanced Search and Replaceccccviiiiiiiiiiiiiiiiiic 380
In-Place Search and Replacecccociviiiiiiiiiiiiiiiiec e 382
The Matcher’'s REGIONcoiiiiiiiiiiiiiie e 384
Method Chainingc.ccooiiiiiiiiiiii e 389
Methods for Building a SCANNETrccoociiiiiiiiiiiiiie e 389
Other Matcher MethodSoooiiiiiiiiiii e 392
Other Pattern MethOdSccoociioiiiiiiiiii e 394
Pattern’s split Method, with One Argumentcccocceviiiiiininnieinnns 395
Pattern’s split Method, with TWO Argumentscccccovceevienienieannnnns 396
Additional EXAMPIESooviiiiiiiiiiiiiiie e 397
Adding Width and Height Attributes to Image Tagscccocevveereenne. 397
Validating HTML with Multiple Patterns Per Matcher ..o, 399
Parsing Comma-Separated Values (CSV) TEXEccoovvviviviiariiniiinieanens 401
Java Version DIffer€ncescoociiviiiiiiiiiiiiiiiicc e 401
Differences Between 1.4.2 and 1.5.0 ...oooooiiiiiiiiiiiiieie e 402

Differences Between 1.5.0 and 1.6 ..ccooeieviiiiiieieeeeeeeeeeeeeeeee 403

xiv Table of Contents
9: UNET oo 405
NET’S REZEX FLAVOT L..oiiiiiiiiiiiiiiiicie e 406
Additional Comments on the Flavorccccocviiiiiiiiiiiiiiciceee, 409
Using .NET Regular EXPressionsoccviiiieiiiiiieiiie e 413
Re@EX QUICKSIATT ..ovviiviiiiiieiiiiii ettt 413
PACKAGE OVEIVIEW ..ottt ittt 415
Core ODJECt OVEIVIEWocuiiiiiiiiiiiiiiiiiiieit ettt 416
Core ODbJECt DELAILSviviiiiiiiiiiiie e 418
Creating Regex ODJECES ...cciiiiiiiiiiiiii et 419
Using Regex ODJECEScciiiiiiiiiiiiiiiiii e 421
UsiNg MAatCh ODJECES ..ovviviiiiiiiiiieit ettt 427
USING GLOUR ODJECES ..ovviiiiiiiiiiiiiit et 430
Static “Convenience” FUNCUHONScooiiiiiiiiiiiiiieeiiiiii e 431
REEEX CACRING ..oviiiiiiiiiii it 432
SUPPOTE FUNCHONS ..ttt ettt 432
AAVANCEA INET' .ottt 434
REEEX ASSCMDLIESiiviiiiiiiiiiiii e 434
Matching Nested CONSLIUCESoiiiiiiiiiieiie e 436
CAPEULE ODJECES ..ottt 437
JO: PHP ... 439
PHP’S REZEX FLAVOT .iiiiiiiiiiiiiii e 441
The Preg Function INterfacecoociviiiiiiiiiiiiiiiii e 443
“PAttern” ATGUIMIEINLS ...eivieiieiitaiietie ettt et e etieaiee ettt e seee e ee e eeeee e 444
The Preg FUNCHONS ...iiiiiiiiiiioiie ettt 449
Preg_MAatCh oo 449
Preg _match_all .., 453
PLeG_TEDPLACE .oiiiiiiiiiiie e 458
preg_replace_callback ... 463
PLEG SO LI E ettt 465
PIEI_GETED uoviiiiiieeiee e 469
PG _QUOLE oo 470
“MissSing” Preg FUNCHOMNScciiiiiiiiiiiiiiiiiiiiicieeeee e 471
preg_regex_to_Patbern ... 472
Syntax-Checking an Unknown Pattern Argumentccoceeeeerieannenns 474
Syntax-Checking an Unknown REZEXcccooviiiiiiiiniiiiiaieeie e 475
Recursive EXPIESSIONSccuuiiiiiiiiiiiiiiiiiii et 475
Matching Text with Nested Parenthesesccccooiiiiiiiiiniiiiinenn, 475

No Backtracking IntO RECUTSIONccouiiiiiiiiiiiiiiiieeiie et 477

Table of Contents xv

Matching a Set of Nested Parenthesesccccooeiiiiiiiiiiiiiiiiiiaeens. 478
PHP EffICIENCY ISSUES ...oioviiiiiiiiiieiii ittt 478
The S Pattern Modifier: “Study”cccooiiiiiiiiiieie e 478
Extended EXampPlEsccccoiiiiiiiiiiiiiici 480
CSV Parsing With PHPcccooiiiiiiiiiiiit it 480
Checking Tagged Data for Proper Nestingcccooceriiiiianiiniieaieaeens 481

Preface

This book is about a powerful tool called “regular expressions” It teaches you how
to use regular expressions to solve problems and get the most out of tools and
languages that provide them. Most documentation that mentions regular expres-
sions doesn’t even begin to hint at their power, but this book is about mastering
regular expressions.

Regular expressions are available in many types of tools (editors, word processors,
system tools, database engines, and such), but their power is most fully exposed
when available as part of a programming language. Examples include Java and
JScript, Visual Basic and VBScript, JavaScript and ECMAScript, C, C+, C#, elisp, Perl,
Python, Tcl, Ruby, PHP, sed, and awk. In fact, regular expressions are the very
heart of many programs written in some of these languages.

There’s a good reason that regular expressions are found in so many diverse lan-
guages and applications: they are extremely powerful. At a low level, a regular
expression describes a chunk of text. You might use it to verify a user’s input, or
perhaps to sift through large amounts of data. On a higher level, regular expres-
sions allow you to master your data. Control it. Put it to work for you. To master
regular expressions is to master your data.

The Need for This Book

I finished the first edition of this book in late 1996, and wrote it simply because
there was a need. Good documentation on regular expressions just wasn’t avail-
able, so most of their power went untapped. Regular-expression documentation
was available, but it centered on the “low-level view.” It seemed to me that they
were analogous to showing someone the alphabet and expecting them to learn to
speak.

XUii

XViii Preface

The five and a half years between the first and second editions of this book saw
the popular rise of the Internet, and, perhaps more than just coincidentally, a con-
siderable expansion in the world of regular expressions. The regular expressions
of almost every tool and language became more powerful and expressive. Perl,
Python, Tcl, Java, and Visual Basic all got new regular-expression backends. New
languages with regular expression support, like PHP, Ruby, and C#, were devel-
oped and became popular. During all this time, the basic core of the book —how
to truly understand regular expressions and how to get the most from them —
remained as important and relevant as ever.

Yet, the first edition gradually started to show its age. It needed updating to reflect
the new languages and features, as well as the expanding role that regular expres-
sions played in the Internet world. It was published in 2002, a year that saw the
landmark releases of java.util.regex, Microsoft’s .NET Framework, and Perl 5.8.
They were all covered fully in the second edition. My one regret with the second
edition was that it didn’t give more attention to PHP. In the four years since the
second edition was published, PHP has only grown in importance, so it became
imperative to correct that deficiency.

This third edition features enhanced PHP coverage in the early chapters, plus an all
new, expansive chapter devoted entirely to PHP regular expressions and how to
wield them effectively. Also new in this edition, the Java chapter has been rewrit-
ten and expanded considerably to reflect new features of Java 1.5 and Java 1.6.

Intended Audience

This book will interest anyone who has an opportunity to use regular expressions.
If you don’t yet understand the power that regular expressions can provide, you
should benefit greatly as a whole new world is opened up to you. This book
should expand your understanding, even if you consider yourself an accomplished
regular-expression expert. After the first edition, it wasn’t uncommon for me to
receive an email that started “I thought I knew regular expressions until 1 read
Mastering Regular Expressions. Now 1 do”

Programmers working on text-related tasks, such as web programming, will find
an absolute gold mine of detail, hints, tips, and understanding that can be put to
immediate use. The detail and thoroughness is simply not found anywhere else.

Regular expressions are an idea—one that is implemented in various ways by vari-
ous utilities (many, many more than are specifically presented in this book). If you
master the general concept of regular expressions, it’s a short step to mastering a
particular implementation. This book concentrates on that idea, so most of the
knowledge presented here transcends the utilities and languages used to present
the examples.

Preface Xix

How to Read This Book

This book is part tutorial, part reference manual, and part story, depending on
when you use it. Readers familiar with regular expressions might feel that they can
immediately begin using this book as a detailed reference, flipping directly to the
section on their favorite utility. T would like to discourage that.

You'll get the most out of this book by reading the first six chapters as a story. I
have found that certain habits and ways of thinking help in achieving a full under-
standing, but are best absorbed over pages, not merely memorized from a list.

The story that is the first six chapters form the basis for the last four, covering
specifics of Perl, Java, .NET, and PHP. To help you get the most from each part,
I've used cross references liberally, and I've worked hard to make the index as
useful as possible. (Over 1,200 cross references are sprinkled throughout the book;
they are often presented as “e=” followed by a page number.)

Until you read the full story, this book’s use as a reference makes little sense.
Before reading the story, you might look at one of the tables, such as the chart on
page 92, and think it presents all the relevant information you need to know. But
a great deal of background information does not appear in the charts themselves,
but rather in the associated story. Once you've read the story, you'll have an
appreciation for the issues, what you can remember off the top of your head, and
what is important to check up on.

Organization

The ten chapters of this book can be logically divided into roughly three parts.
Here’s a quick overview:
The Introduction
Chapter 1 introduces the concept of regular expressions.
Chapter 2 takes a look at text processing with regular expressions.
Chapter 3 provides an overview of features and utilities, plus a bit of history.

The Details
Chapter 4 explains the details of how regular expressions work.
Chapter 5 works through examples, using the knowledge from Chapter 4.
Chapter 6 discusses efficiency in detail.

Tool-Specific Information
Chapter 7 covers Perl regular expressions in detail.
Chapter 8 looks at Sun’s java.util.regex package.
Chapter 9 looks at .NET’s language-neutral regular-expression package.
Chapter 10 looks at PHP’s preg suite of regex functions.

XX

Preface

The introduction elevates the absolute novice to “issue-aware” novice. Readers
with a fair amount of experience can feel free to skim the early chapters, but I par-
ticularly recommend Chapter 3 even for the grizzled expert.

Chapter 1, Introduction to Regular Expressions, is geared toward the complete
novice. I introduce the concept of regular expressions using the widely avail-
able program egrep, and offer my perspective on how to think regular expres-
sions, instilling a solid foundation for the advanced concepts presented in later
chapters. Even readers with former experience would do well to skim this first
chapter.

Chapter 2, Extended Introductory Examples, looks at real text processing in a
programming language that has regular-expression support. The additional
examples provide a basis for the detailed discussions of later chapters, and
show additional important thought processes behind crafting advanced regular
expressions. To provide a feel for how to “speak in regular expressions,” this
chapter takes a problem requiring an advanced solution and shows ways to
solve it using two unrelated regular-expression—wielding tools.

Chapter 3, Overview of Regular Expression Features and Flavors, provides an
overview of the wide range of regular expressions commonly found in tools
today. Due to their turbulent history, current commonly-used regular-expres-
sion flavors can differ greatly. This chapter also takes a look at a bit of the his-
tory and evolution of regular expressions and the programs that use them. The
end of this chapter also contains the “Guide to the Advanced Chapters” This
guide is your road map to getting the most out of the advanced material that
follows.

The Details

Once you have the basics down, it's time to investigate the how and the why. Like
the “teach a man to fish” parable, truly understanding the issues will allow you to
apply that knowledge whenever and wherever regular expressions are found.

Chapter 4, The Mechanics of Expression Processing, ratchets up the pace sev-
eral notches and begins the central core of this book. It looks at the important
inner workings of how regular expression engines really work from a practi-
cal point of view. Understanding the details of how regular expressions are
handled goes a very long way toward allowing you to master them.

Chapter 5, Practical Regex Techniques, then puts that knowledge to high-level,
practical use. Common (but complex) problems are explored in detail, all with
the aim of expanding and deepening your regular-expression experience.

Preface X0

Chapter 6, Crafting an Efficient Expression, looks at the real-life efficiency
ramifications of the regular expressions available to most programming lan-
guages. This chapter puts information detailed in Chapters 4 and 5 to use for
exploiting an engine’s strengths and stepping around its weaknesses.

Tool-Specific Information

Once the lessons of Chapters 4, 5, and 6 are under your belt, there is usually little
to say about specific implementations. However, I've devoted an entire chapter to
each of four popular systems:

Chapter 7, Perl, closely examines regular expressions in Perl, arguably the
most popular regular-expression—laden programming language in use today. It
has only four operators related to regular expressions, but their myriad of
options and special situations provides an extremely rich set of programming
options —and pitfalls. The very richness that allows the programmer to move
quickly from concept to program can be a minefield for the uninitiated. This
detailed chapter clears a path.

Chapter 8, Java, looks in detail at the java.util.regex regular-expression
package, a standard part of the language since Java 1.4. The chapter’s primary
focus is on Java 1.5, but differences in both Java 1.4.2 and Java 1.6 are noted.

Chapter 9, .NET; is the documentation for the .NET regular-expression library
that Microsoft neglected to provide. Whether using VB.NET, C#, Ct JScript,
VBscript, ECMAScript, or any of the other languages that use .NET components,
this chapter provides the details you need to employ .NET regular-expressions
to the fullest.

Chapter 10, PHP, provides a short introduction to the multiple regex engines
embedded within PHP, followed by a detailed look at the regex flavor and API
of its preg regex suite, powered under the hood by the PCRE regex library.

Typograpbical Conventions

When doing (or talking about) detailed and complex text processing, being pre-
cise is important. The mere addition or subtraction of a space can make a world of
difference, so I've used the following special conventions in typesetting this book:

e A regular expression generally appears like 'this. Notice the thin corners

which flag “this is a regular expression” Literal text (such as that being
searched) generally appears like ‘this’. At times, I'll leave off the thin corners
or quotes when obviously unambiguous. Also, code snippets and screen shots
are always presented in their natural state, so the quotes and corners are not
used in such cases.

Xx01 Preface

e T use visually distinct ellipses within literal text and regular expressions. For
example [--] represents a set of square brackets with unspecified contents,
while [. . . 1 would be a set containing three periods.

e Without special presentation, it is virtually impossible to know how many
spaces are between the letters in “a b’} so when spaces appear in regular
expressions and selected literal text, they are presented with the ‘-’ symbol.
This way, it will be clear that there are exactly four spaces in ‘a b.

e [also use visual tab, newline, and carriage-return characters:

a space character

a tab character

a newline character

a carriage-return character

e At times, I use underlining or shade the background to highlight parts of literal
text or a regular expression. In this example the underline shows where in the
text the expression actually matches:

Because cat) matches ‘It-indicates -your-cat-is -’ instead of the
word ‘cat’, we realize. ..

In this example the underlines highlight what has just been added to an
expression under discussion:

To make this useful, we can wrap 'Subject |Date; with parentheses,
and append a colon and a space. This yields ' (Subject |Date) : -,

e This book is full of details and examples, so I've included over 1,200 cross ref-
erences to help you get the most out of it. They often appear in the text in a
“123” notation, which means “see page 123" For example, it might appear
like “. . .is described in Table 8-2 (s 367)”

Exercises

Occasionally, and particularly in the early chapters, T'll pose a question to highlight
the importance of the concept under discussion. They’re not there just to take up
space; 1 really do want you to try them before continuing. Please. So as not to
dilute their importance, I've sprinkled only a few throughout the entire book. They
also serve as checkpoints: if they take more than a few moments, it's probably
best to go over the relevant section again before continuing on.

To help entice you to actually think about these questions as you read them, I've
made checking the answers a breeze: just turn the page. Answers to questions
marked with & are always found by turning just one page. This way, they’re out
of sight while you think about the answer, but are within easy reach.

Preface XXi1i

Links, Code, Errata, and Contacts

I learned the hard way with the first edition that URLs change more quickly than a
printed book can be updated, so rather than providing an appendix of URLs, I'll
provide just one:

btip.//regex.info/

There you can find regular-expression links, all code snippets from this book, a
searchable index, and much more. In the unlikely event this book contains an
error :-), the errata will be available as well.

If you find an error in this book, or just want to drop me a note, you can contact
me at jfriedl@regex.info.

The publisher can be contacted at:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the
O'Reilly Network, see the O'Reilly web site at:

bttp.//www.oreilly.com

Safari® Enabled

When you see a Safari®Enabled icon on the cover of your favorite technology
book, that means the book is available online through the O'Reilly Network Safari
Bookshelf. Safari offers a solution that’s better than e-books. It's a virtual library
that lets you easily search thousands of top tech books, cut and paste code sam-
ples, download chapters, and find quick answers when you need the most accu-
rate, current information. Try it for free at http.//safari.oreilly.com.

XXiV Preface

Personal Comments and
Acknowledgments

Writing the first edition of this book was a grueling task that took two and a half
years and the help of many people. After the toll it took on my health and sanity, I
promised that I’'d never put myself through such an experience again.

I have many people to thank in helping me break that promise. Foremost is my
wife, Fumie. If you find this book useful, thank her; without her support and
understanding, I'd have neither the strength nor sanity to undertake a task as ardu-
ous as the research, writing, and production of a book like this.

While researching and writing this book, many people helped educate me on lan-
guages or systems I didn’t know, and more still reviewed and corrected drafts as
the manuscripts developed.

In particular, I'd like to thank my brother, Stephen Friedl, for his meticulous and
detailed reviews along the way. (Besides being an excellent technical reviewer,
he’s also an accomplished writer, known for his well-researched “Tech Tips,” avail-
able at bitp.//www.unixwiz.net/)

I'd also like to thank Zak Greant, Tan Morse, Philip Hazel, Stuart Gill, William F.
Maton, and my editor, Andy Oram.

Special thanks for providing an insider’s look at Java go to Mike “madbot”
McCloskey (formerly at Sun Microsystems, now at Google), and Mark Reinhold
and Dr. Cliff Click, both of Sun Microsystems. For .NET insight, I'd like to thank
Microsoft’s David Gutierrez, Kit George, and Ryan Byington. I thank Andrei
Zmievski of Yahoo! for providing insights into PHP.

I'd like to thank Dr. Ken Lunde of Adobe Systems, who created custom characters
and fonts for a number of the typographical aspects of this book. The Japanese
characters are from Adobe Systems’ Heisei Mincho W3 typeface, while the Korean
is from the Korean Ministry of Culture and Sports Munbwa typeface. It’s also Ken
who originally gave me the guiding principle that governs my writing: “you do the
research so your readers don’t have to”

For help in setting up the server for bitp://regex.info, I'd like to thank Jeffrey
Papen and Peak Web Hosting (http://www.PeakWebbosting.com/).

Introduction to
Regular Expressions

Here’s the scenario: you're given the job of checking the pages on a web server
for doubled words (such as “this this”), a common problem with documents sub-
ject to heavy editing. Your job is to create a solution that will:

e Accept any number of files to check, report each line of each file that has
doubled words, highlight (using standard ANSI escape sequences) each dou-
bled word, and ensure that the source filename appears with each line in the
report.

e Work across lines, even finding situations where a word at the end of one line
is repeated at the beginning of the next.

e Find doubled words despite capitalization differences, such as with ‘The
the -’ as well as allow differing amounts of whitespace (spaces, tabs, new-
lines, and the like) to lie between the words.

e Find doubled words even when separated by HTML tags. HTML tags are for
marking up text on World Wide Web pages, for example, to make a word

bold: ‘it is very very important- .

That’s certainly a tall order! But, it’s a real problem that needs to be solved. At one
point while working on the manuscript for this book, I ran such a tool on what I'd
written so far and was surprised at the way numerous doubled words had crept in.
There are many programming languages one could use to solve the problem, but
one with regular expression support can make the job substantially easier.

Regular expressions are the key to powerful, flexible, and efficient text processing.
Regular expressions themselves, with a general pattern notation almost like a mini
programming language, allow you to describe and parse text. With additional sup-
port provided by the particular tool being used, regular expressions can add,
remove, isolate, and generally fold, spindle, and mutilate all kinds of text and data.

2 Chapter 1: Introduction to Regular Expressions

It might be as simple as a text editor’s search command or as powerful as a full
text processing language. This book shows you the many ways regular expres-
sions can increase your productivity. It teaches you how to think regular expres-
sions so that you can master them, taking advantage of the full magnitude of their
power.

A full program that solves the doubled-word problem can be implemented in just
a few lines of many of today’s popular languages. With a single regular-expression
search-and-replace command, you can find and highlight doubled words in the
document. With another, you can remove all lines without doubled words (leaving
only the lines of interest left to report). Finally, with a third, you can ensure that
each line to be displayed begins with the name of the file the line came from.
We'll see examples in Perl and Java in the next chapter.

The host language (Perl, Java, VB.NET, or whatever) provides the peripheral pro-
cessing support, but the real power comes from regular expressions. In harnessing
this power for your own needs, you learn how to write regular expressions to
identify text you want, while bypassing text you don’t. You can then combine your
expressions with the language’s support constructs to actually do something with
the text (add appropriate highlighting codes, remove the text, change the text, and
SO on).

Solving Real Problems

Knowing how to wield regular expressions unleashes processing powers you
might not even know were available. Numerous times in any given day, regular
expressions help me solve problems both large and small (and quite often, ones
that are small but would be large if not for regular expressions).

Showing an example that provides the key to solving a large and important prob-
lem illustrates the benefit of regular expressions clearly, but perhaps not so obvi-
ous is the way regular expressions can be used throughout the day to solve rather
“uninteresting” problems. I use “uninteresting” in the sense that such problems are
not often the subject of bar-room war stories, but quite interesting in that until
they’re solved, you can’t get on with your real work.

As a simple example, I needed to check a lot of files (the 70 or so files comprising
the source for this book, actually) to confirm that each file contained ‘SetSize’
exactly as often (or as rarely) as it contained ‘ResetSize’. To complicate matters, I
needed to disregard capitalization (such that, for example, ‘setSIZE would be
counted just the same as ‘SetSize’). Inspecting the 32,000 lines of text by hand
certainly wasn’t practical.

Solving Real Problems 3

Even using the normal “find this word” search in an editor would have been ardu-
ous, especially with all the files and all the possible capitalization differences.

Regular expressions to the rescue! Typing just a single, short command, I was able
to check all files and confirm what I needed to know. Total elapsed time: perhaps
15 seconds to type the command, and another 2 seconds for the actual check of
all the data. Wow! (If you're interested to see what I actually used, peek ahead to
page 36.)

As another example, I was once helping a friend with some email problems on a
remote machine, and he wanted me to send a listing of messages in his mailbox
file. T could have loaded a copy of the whole file into a text editor and manually
removed all but the few header lines from each message, leaving a sort of table of
contents. Even if the file wasn’t as huge as it was, and even if T wasn’t connected
via a slow dial-up line, the task would have been slow and monotonous. Also, I
would have been placed in the uncomfortable position of actually seeing the text
of his personal mail.

Regular expressions to the rescue again! I gave a simple command (using the com-
mon search tool egrep described later in this chapter) to display the From: and
Subject: line from each message. To tell egrep exactly which kinds of lines I
wanted to see, I used the regular expression [* (From| Subject) :;

Once he got his list, he asked me to send a particular (5,000-linel) message. Again,
using a text editor or the mail system itself to extract just the one message would
have taken a long time. Rather, I used another tool (one called sed) and again
used regular expressions to describe exactly the text in the file I wanted. This way,
I could extract and send the desired message quickly and easily.

Saving both of us a lot of time and aggravation by using the regular expression
was not “exciting,” but surely much more exciting than wasting an hour in the text
editor. Had I not known regular expressions, I would have never considered that
there was an alternative. So, to a fair extent, this story is representative of how
regular expressions and associated tools can empower you to do things you might
have never thought you wanted to do.

Once you learn regular expressions, you’'ll realize that they’re an invaluable part of
your toolkit, and you’ll wonder how you could ever have gotten by without them.®

A full command of regular expressions is an invaluable skill. This book provides
the information needed to acquire that skill, and it is my hope that it provides the
motivation to do so, as well.

t If you have a TiVo, you already know the feeling!

4 Chapter 1: Introduction to Regular Expressions

Regular Expressions as a Language

Unless you’ve had some experience with regular expressions, you won’t under-
stand the regular expression " (From|Subject): from the last example, but
there’s nothing magic about it. For that matter, there is nothing magic about magic.
The magician merely understands something simple which doesn’t appear to be
simple or natural to the untrained audience. Once you learn how to hold a card
while making your hand look empty, you only need practice before you, too, can
“do magic” Like a foreign language — once you learn it, it stops sounding like
gibberish.

The Filename Analogy

Since you have decided to use this book, you probably have at least some idea of
just what a “regular expression” is. Even if you don’t, you are almost certainly
already familiar with the basic concept.

You know that report.txt is a specific filename, but if you have had any experience
with Unix or DOS/Windows, you also know that the pattern “+.txt” can be used
to select multiple files. With filename patterns like this (called file globs or wild-
cards), a few characters have special meaning. The star means “match anything,
and a question mark means “match any one character” So, with the file glob
“x.txt” we start with a match-anything ', and end with the literal '.txt, so we
end up with a pattern that means “select the files whose names start with anything
and end with . txt”

Most systems provide a few additional special characters, but, in general, these
filename patterns are limited in expressive power. This is not much of a shortcom-
ing because the scope of the problem (to provide convenient ways to specify
groups of files) is limited, well, simply to filenames.

On the other hand, dealing with general text is a much larger problem. Prose and
poetry, program listings, reports, HTML, code tables, word lists... you name it, if a
particular need is specific enough, such as “selecting files,” you can develop some
kind of specialized scheme or tool to help you accomplish it. However, over the
years, a generalized pattern language has developed, which is powerful and
expressive for a wide variety of uses. Each program implements and uses them
differently, but in general, this powerful pattern language and the patterns them-
selves are called regular expressions.

Regular Expressions as a Language 5

The Language Analogy

Full regular expressions are composed of two types of characters. The special
characters (like the » from the filename analogy) are called metacharacters, while
the rest are called literal, or normal text characters. What sets regular expressions
apart from filename patterns are the advanced expressive powers that their meta-
characters provide. Filename patterns provide limited metacharacters for limited
needs, but a regular expression “language” provides rich and expressive metachar-
acters for advanced uses.

It might help to consider regular expressions as their own language, with literal
text acting as the words and metacharacters as the grammar. The words are com-
bined with grammar according to a set of rules to create an expression that com-
municates an idea. In the email example, the expression I used to find lines
beginning with ‘From:’ or ‘Subject:’ was " (From|Subject) :. The metachar-
acters are underlined; we’ll get to their interpretation soon.

As with learning any other language, regular expressions might seem intimidating
at first. This is why it seems like magic to those with only a superficial understand-
ing, and perhaps completely unapproachable to those who have never seen it at
all. But, just as EHEBIIMEZXT would soon become clear to a student of
Japanese, the regular expression in

s!<emphasis>([0-9]+(\.[0-9]+) {3})</emphasis>!<inet>$1</inet>!
will soon become crystal clear to you, too.

This example is from a Perl language script that my editor used to modify a
manuscript. The author had mistakenly used the typesetting tag <emphasis> to
mark Internet TP addresses (which are sets of periods and numbers that look like
209.204.146.22). The incantation uses Perl’s text-substitution command with the
regular expression

l<emphasis>([0-91+(\.[0-9]1+){3})</emphasis>

to replace such tags with the appropriate <inet> tag, while leaving other uses of
<emphasis> alone. In later chapters, you'll learn all the details of exactly how this
type of incantation is constructed, so you’ll be able to apply the techniques to
your own needs, with your own application or programming language.

t “Regular expressions are easy!” A somewhat humorous comment about this: as Chapter 3 explains,
the term regular expression originally comes from formal algebra. When people ask me what my
book is about, the answer “regular expressions” draws a blank face if they are not already familiar
with the concept. The Japanese word for regular expression, IEFIZE, means as little to the average
Japanese as its English counterpart, but my reply in Japanese usually draws a bit more than a blank
stare. You see, the “regular” part is unfortunately pronounced identically to a much more common
word, a medical term for “reproductive organs” You can only imagine what flashes through their
minds until I explain!

6 Chapter 1: Introduction to Regular Expressions

The goal of this book

The chance that you will ever want to replace <emphasis> tags with <inet> tags
is small, but it is very likely that you will run into similar “replace this with that”
problems. The goal of this book is not to teach solutions to specific problems, but
rather to teach you how to think regular expressions so that you will be able to
conquer whatever problem you may face.

The Regular-Expression Frame of Mind

As we'll soon see, complete regular expressions are built up from small building-
block units. Each individual building block is quite simple, but since they can be
combined in an infinite number of ways, knowing how to combine them to
achieve a particular goal takes some experience. So, this chapter provides a quick
overview of some regular-expression concepts. It doesn’t go into much depth, but
provides a basis for the rest of this book to build on, and sets the stage for impor-
tant side issues that are best discussed before we delve too deeply into the regular
expressions themselves.

While some examples may seem silly (because some are silly), they represent the
kind of tasks that you will want to do—you just might not realize it yet. If each
point doesn’t seem to make sense, don’'t worry too much. Just let the gist of the
lessons sink in. That’s the goal of this chapter.

If You Have Some Regular-Expression Experience

If you're already familiar with regular expressions, much of this overview will not
be new, but please be sure to at least glance over it anyway. Although you may be
aware of the basic meaning of certain metacharacters, perhaps some of the ways
of thinking about and looking at regular expressions will be new.

Just as there is a difference between playing a musical piece well and making
music, there is a difference between knowing about regular expressions and really
understanding them. Some of the lessons present the same information that you
are already familiar with, but in ways that may be new and which are the first
steps to really understanding.

Searching Text Files: Egrep

Finding text is one of the simplest uses of regular expressions —many text editors
and word processors allow you to search a document using a regular-expression
pattern. Even simpler is the utility egrep. Give egrep a regular expression and some
files to search, and it attempts to match the regular expression to each line of each
file, displaying only those lines in which a match is found. egrep is freely available

The Regular-Expression Frame of Mind 7

for many systems, including DOS, MacOS, Windows, Unix, and so on. See this
book’s web site, http.//regex.info, for links on how to obtain a copy of egrep for
your system.

Returning to the email example from page 3, the command I actually used to gen-
erate a makeshift table of contents from the email file is shown in Figure 1-1. egrep
interprets the first command-line argument as a regular expression, and any
remaining arguments as the file(s) to search. Note, however, that the single quotes
shown in Figure 1-1 are not part of the regular expression, but are needed by my
command shell.! When using egrep, I usually wrap the regular expression with sin-
gle quotes. Exactly which characters are special, in what contexts, to whom (to the
regular-expression, or to the tool), and in what order they are interpreted are all
issues that grow in importance when you move to regular-expression use in full-
fledged programming languages—something we’ll see starting in the next chapter.

command
shell’s

pr ::7171 regular expression passed to egrep
|
‘J u | I]
% egrep YA (From | Subject): ¥ mailbox-file
L |

{

first command-line argument

quotes for the shell

Figure 1-1: Invoking egrep from the command line

We'll start to analyze just what the various parts of the regex mean in a moment,
but you can probably already guess just by looking that some of the characters
have special meanings. In this case, the parentheses, the ", and the |, characters
are regular-expression metacharacters, and combine with the other characters to
generate the result I want.

On the other hand, if your regular expression doesn’t use any of the dozen or so
metacharacters that egrep understands, it effectively becomes a simple “plain text”
search. For example, searching for lcat| in a file finds and displays all lines with
the three letters c[A[X in a row. This includes, for example, any line containing

vacation.

t The command shell is the part of the system that accepts your typed commands and actually exe-
cutes the programs you request. With the shell I use, the single quotes serve to group the command
argument, telling the shell not to pay too much attention to what’s inside. If I didn’t use them, the
shell might think, for example, a ‘+’ that I intended to be part of the regular expression was really
part of a filename pattern that it should interpret. I don’t want that to happen, so I use the quotes to
“hide” the metacharacters from the shell. Windows users of COMMAND.COM or CMD.EXE should prob-
ably use double quotes instead.

8 Chapter 1: Introduction to Regular Expressions

Even though the line might not have the word cat, the c[@ [k sequence in
vacation is still enough to be matched. Since it’s there, egrep goes ahead and dis-
plays the whole line. The key point is that regular-expression searching is not
done on a “word” basis— egrep can understand the concept of bytes and lines in a
file, but it generally has no idea of English’s (or any other language’s) words, sen-
tences, paragraphs, or other high-level concepts.

Egrep Metacharacters

Let’s start to explore some of the egrep metacharacters that supply its regular-
expression power. T'll go over them quickly with a few examples, leaving the
detailed examples and descriptions for later chapters.

Typographical Conventions Before we begin, please make sure to review the
typographical conventions explained in the preface, on page xxi. This book forges
a bit of new ground in the area of typesetting, so some of my notations may be
unfamiliar at first.

Start and End of the Line

Probably the easiest metacharacters to understand are [(caret) and 's; (dollar),
which represent the start and end, respectively, of the line of text as it is being
checked. As we've seen, the regular expression lcat, finds ¢ [& [anywhere on the
line, but ["cat, matches only if the ¢ [& [t is at the beginning of the line —the "/ is
used to eftectively anchor the match (of the rest of the regular expression) to the
start of the line. Similarly, lcat$, finds ¢ [& [only at the end of the line, such as a

line ending with scat.

It’s best to get into the habit of interpreting regular expressions in a rather literal
way. For example, don’t think

I"cat) matches a line with cat at the beginning
but rather:

I~cat, matches if you have the beginning of a line, followed immediately

by ¢, followed immediately by a, followed immediately by t.

They both end up meaning the same thing, but reading it the more literal way
allows you to intrinsically understand a new expression when you see it. How
would egrep interpret “cat$, *$, or even simply '~ alone? # Turn the page to
check your interpretations.

The caret and dollar are special in that they match a position in the line rather than
any actual text characters themselves. Of course, there are various ways to actually
match real text. Besides providing literal characters like lcat; in your regular
expression, you can also use some of the items discussed in the next few sections.

Egrep Metacharacters 9

Character Classes
Matching any one of several characters

Let’s say you want to search for “grey” but also want to find it if it were spelled
“gray” The regular-expression construct '[-1, usually called a character class, lets
you list the characters you want to allow at that point in the match. While e
matches just an e, and 'a; matches just an a, the regular expression '[ea]; matches
either. So, then, consider 'gr [ealy: this means to find “g, followed by z, followed
by either an e or an a, all followed by y” Because I'm a really poor speller, I'm
always using regular expressions like this against a huge list of English words to
figure out proper spellings. One I use often is 'seplealr[ealte, because I can
never remember whether the word is spelled “seperate” “separate; “separete,” or
what. The one that pops up in the list is the proper spelling; regular expressions
to the rescue.

Notice how outside of a class, literal characters (like the lg; and 'r; of lgr[aely))
have an implied “and then” between them — “match 'g; and then match r,...” It's
completely opposite inside a character class. The contents of a class is a list of
characters that can match at that point, so the implication is “or”

As another example, maybe you want to allow capitalization of a word’s first letter,
such as with [[Ss]mith. Remember that this still matches lines that contain smith
(or smith) embedded within another word, such as with blacksmith. I don’t
want to harp on this throughout the overview, but this issue does seem to be the
source of problems among some new users. I'll touch on some ways to handle this
embedded-word problem after we examine a few more metacharacters.

You can list in the class as many characters as you like. For example, [123456],
matches any of the listed digits. This particular class might be useful as part of
'<H[1234561>, which matches <H1>, <H2>, <H3>, etc. This can be useful when
searching for HTML headers.

Within a character class, the character-class metacharacter ‘-’ (dash) indicates a
range of characters: <H[1-6]1> is identical to the previous example. [[0-9] and
[a-z]) are common shorthands for classes to match digits and English lowercase
letters, respectively. Multiple ranges are fine, so [[0123456789abcdefABCDEF]; can
be written as '[0-9a-£fA-F], (or, perhaps, [[A-Fa-£0-9], since the order in which
ranges are given doesn’t matter). These last three examples can be useful when
processing hexadecimal numbers. You can freely combine ranges with literal char-
acters: I[0-9A-7Z_!.?]) matches a digit, uppercase letter, underscore, exclamation
point, period, or a question mark.

Note that a dash is a metacharacter only within a character class — otherwise it
matches the normal dash character. In fact, it is not even always a metacharacter
within a character class. If it is the first character listed in the class, it can’t possibly

10 Chapter 1: Introduction to Regular Expressions

Reading '"cats), I"$, and '
& Answers to the questions on page 8.

~cat$, Literally means: matches if the line has a beginning-of-line (which, of
course, all lines have), followed immediately by ¢ [a [, and then fol-
lowed immediately by the end of the line.

Effectively means: a line that consists of only cat — no extra words,
spaces, punctuation... just ‘cat’.
"3 Literally means: matches if the line has a beginning-of-line, followed
immediately by the end of the line.
Effectively means: an empty line (with nothing in it, not even
spaces).
Literally means: matches if the line has a beginning-of-line.

Effectively meaningless! Since every line has a beginning, every line
will match—even lines that are empty!

indicate a range, so it is not considered a metacharacter. Along the same lines, the
question mark and period at the end of the class are usually regular-expression
metacharacters, but only when not within a class (so, to be clear, the only special
characters within the class in [0-9A-7_! . ?], are the two dashes).

Consider character classes as their own mini language. The rules regard-
ing which metacharacters are supported (and what they do) are com-
pletely different inside and outside of character classes.

We’ll see more examples of this shortly.

Negated character classes

If you use I[~-]; instead of '[---], the class matches any character that isn’t listed.
For example, ["1-6]; matches a character that’s not 1 through 6. The leading " in
the class “negates” the list, so rather than listing the characters you want to include
in the class, you list the characters you don’t want to be included.

~

You might have noticed that the ~ used here is the same as the start-of-line caret
introduced on page 8. The character is the same, but the meaning is completely
different. Just as the English word “wind” can mean different things depending on
the context (sometimes a strong breeze, sometimes what you do to a clock), so
can a metacharacter. We've already seen one example, the range-building dash. Tt
is valid only inside a character class (and at that, only when not first inside the
class). *

(but, only when it is immediately after the class’s opening bracket; otherwise, it’s

is a line anchor outside a class, but a class metacharacter inside a class

Egrep Metacharacters 11

not special inside a class). Don’t fear —these are the most complex special cases;
others we’ll see later aren’t so bad.

As another example, let’s search that list of English words for odd words that have
q followed by something other than u. Translating that into a regular expression, it
becomes lg[~u]l, I tried it on the list I have, and there certainly weren’t many. I did
find a few, including a number of words that T didn’t even know were English.

Here’s what happened. (What I typed is in bold.)

% egrep ‘ql["ul]l’ word.list
Iraqgi

Iragian

migra

gasida

gintar

goph

zagqums$

3

Two notable words not listed are “Qantas”’ the Australian airline, and “Iraq”
Although both words are in the word.list file, neither were displayed by my egrep
command. Why? « Think about it for a bit, and then turn the page to check your
reasoning.

Remember, a negated character class means “match a character that’s not listed”
and not “don’t match what is listed” These might seem the same, but the Irag
example shows the subtle difference. A convenient way to view a negated class is
that it is simply a shorthand for a normal class that includes all possible characters
except those that are listed.

Matching Any Character with Dot

The metacharacter ., (usually called dot or point) is a shorthand for a character
class that matches any character. It can be convenient when you want to have an
“any character here” placeholder in your expression. For example, if you want to
search for a date such as 03/19/76, 03-19-76, or even 03.19.76, you could go
to the trouble to construct a regular expression that uses character classes to
explicitly allow ‘/’, ‘=’, or ‘.’ between each number, such as '03[-./]119[-./]176,
However, you might also try simply using '03.19.76,

Quite a few things are going on with this example that might be unclear at first. In
03[-./119[-./176;, the dots are not metacharacters because they are within a
character class. (Remember, the list of metacharacters and their meanings are dif-
ferent inside and outside of character classes.) The dashes are also not class meta-
characters in this case because each is the first thing after [or [~. Had they not
been first, as with [.-/], they would be the class range metacharacter, which
would be a mistake in this situation.

12 Chapter 1: Introduction to Regular Expressions

Quiz Answer

¢ Answer to the question on page 11.
Why doesn’t 'q[“ul match ‘Qantas’ or ‘Iraq’?

gantas didn’t match because the regular expression called for a lowercase q,
whereas the Q in Qantas is uppercase. Had we used 'Q["u]; instead, we
would have found it, but not the others, since they don’t have an uppercase
Q. The expression '[Qq] [“u], would have found them all.

The Irag example is somewhat of a trick question. The regular expression
calls for q followed by a character that’s not u, which precludes matching g
at the end of the line. Lines generally have newline characters at the very
end, but a little fact I neglected to mention (sorry) is that egrep strips those
before checking with the regular expression, so after a line-ending g, there’s
no non-u to be matched.

Don't feel too bad because of the trick question.” Let me assure you that had
egrep not automatically stripped the newlines (many other tools don’t strip
them), or had Traq been followed by spaces or other words or whatnot, the
line would have matched. It is important to eventually understand the little
details of each tool, but at this point what I'd like you to come away with
from this exercise is that a character class, even negated, still requires a char-
acter to match.

With 103.19.76, the dots are metacharacters — ones that match any character
(including the dash, period, and slash that we are expecting). However, it is
important to know that each dot can match any character at all, so it can match,
say, ‘lottery numbers: 19 203319 7639’

So, 103[-./119[-./176, is more precise, but it’s more difficult to read and write.
'03.19.76 is easy to understand, but vague. Which should we use? It all depends
upon what you know about the data being searched, and just how specific you
feel you need to be. One important, recurring issue has to do with balancing your
knowledge of the text being searched against the need to always be exact when
writing an expression. For example, if you know that with your data it would be
highly unlikely for '03.19.76, to match in an unwanted place, it would certainly
be reasonable to use it. Knowing the target text well is an important part of wield-
ing regular expressions effectively.

t Once, in fourth grade, I was leading the spelling bee when I was asked to spell “miss.” My answer
was ‘m[d [&7 Miss Smith relished in telling me that no, it was “M[(& [&” with a capital v, that 1
should have asked for an example sentence, and that I was out. It was a traumatic moment in a
young boy’s life. After that, I never liked Miss Smith, and have since been a very poor speler.

Egrep Metacharacters 13

Alternation
Matching any one of several subexpressions

A very convenient metacharacter is /| , which means “or” It allows you to combine
multiple expressions into a single expression that matches any of the individual
ones. For example, Bob, and Robert, are separate expressions, but 'Bob|Robert; is
one expression that matches either. When combined this way, the subexpressions
are called alternatives.

Looking back to our lgr[ealy, example, it is interesting to realize that it can be
written as 'grey|gray, and even lgr (ale)y. The latter case uses parentheses to
constrain the alternation. (For the record, parentheses are metacharacters too.)
Note that something like 'gr[alely is n#ot what we want — within a class, the ‘|’
character is just a normal character, like 'a, and e,

With 'gr(ale)y, the parentheses are required because without them, Igraley,
means “/gra, or ley;,” which is not what we want here. Alternation reaches far, but
not beyond parentheses. Another example is (First|1st) - [Ss]treet.! Actually,
since both First, and 1st; end with 'st, the combination can be shortened to
(Fir|1l)st-[Ss]ltreet, That's not necessarily quite as easy to read, but be sure to
understand that [(first|1st) and [(fir|1) st effectively mean the same thing.

Here’s an example involving an alternate spelling of my name. Compare and con-
trast the following three expressions, which are all effectively the same:

Jeffrey|Jeffery,
IJeff (reylery)
Jeff (reler)y

To have them match the British spellings as well, they could be:

[(Geoff |Jeff) (reylery),
[(Geo|Je) ff (reylery),
(Geo|Je) ff (reler)y

Finally, note that these three match effectively the same as the longer (but simpler)
'Jeffrey|Geoffery|Jeffery|Geoffrey. They're all different ways to specify the
same desired matches.

Although the lgr[ealy versus 'gr (ale)y, examples might blur the distinction, be
careful not to confuse the concept of alternation with that of a character class. A
character class can match just a single character in the target text. With alternation,
since each alternative can be a full-fledged regular expression in and of itself, each

« »

t Recall from the typographical conventions on page xxii that
character so it can be seen easily.

is how I sometimes show a space

14 Chapter 1: Introduction to Regular Expressions

alternative can match an arbitrary amount of text. Character classes are almost like
their own special mini-language (with their own ideas about metacharacters, for
example), while alternation is part of the “main” regular expression language.
You'll find both to be extremely useful.

Also, take care when using caret or dollar in an expression that has alternation.
Compare "From|Subject |Date: - with " (From|Subject|Date) : -. Both appear
similar to our earlier email example, but what each matches (and therefore how
useful it is) differs greatly. The first is composed of three alternatives, so it matches
“I"From or /Subject, or Date: -,” which is not particularly useful. We want the
leading caret and trailing ': to apply to each alternative. We can accomplish this
by using parentheses to “constrain” the alternation:

" (From| Subject |Date) :

The alternation is constrained by the parentheses, so literally, this regex means
“match the start of the line, then one of From, [Subject, or Date, and then match
: o Effectively, it matches:
1) start-of-line, followed by F [¥ [b [, followed by ‘: -’
or 2) start-of-line, followed by s h [b 3 [& [k [E, followed by ‘: -’
or 3) start-of-line, followed by D [& [t [&, followed by ‘: -’

)

Putting it less literally, it matches lines beginning with ‘From: -’, ‘Subject: -, or
‘Date: -, which is quite useful for listing the messages in an email file.

Here’s an example:

% egrep '~ (From|Subject|Date): ’ mailbox
From: elvis@tabloid.org (The King)
Subject: be seein’ ya around

Date: Mon, 23 Oct 2006 11:04:13

From: The Prez <president@whitehouse.gov>
Date: Wed, 25 Oct 2006 8:36:24

Subject: now, about your vote

Ignoring Differences in Capitalization

This email header example provides a good opportunity to introduce the concept
of a case-insensitive match. The field types in an email header usually appear with
leading capitalization, such as “Subject” and “From,” but the email standard actually
allows mixed capitalization, so things like “DATE” and “from” are also allowed.
Unfortunately, the regular expression in the previous section doesn’t match those.

One approach is to replace From with [[F£] [Rr] [Oo] [Mm], to match any form of
“from,” but this is quite cumbersome, to say the least. Fortunately, there is a way to
tell egrep to ignore case when doing comparisons, i.e., to perform the match in a
case insensitive manner in which capitalization differences are simply ignored. It is

Egrep Metacharacters 15

not a part of the regular-expression language, but is a related useful feature many

tools provide. egrep’'s command-line option “-i” tells it to do a case-insensitive
match. Place -i on the command line before the regular expression:

% egrep -i ‘" (From|Subject|Date): ’ mailbox

This brings up all the lines we matched before, but also includes lines such as:

SUBJECT: MAKE MONEY FAST

I find myself using the -i option quite frequently (perhaps related to the footnote
on page 12 so I recommend keeping it in mind. We'll see other convenient sup-
port features like this in later chapters.

Word Boundaries

A common problem is that a regular expression that matches the word you want
can often also match where the “word” is embedded within a larger word. I men-
tioned this briefly in the cat, gray, and smith examples. It turns out, though, that
some versions of egrep offer limited support for word recognition: namely the abil-
ity to match the boundary of a word (where a word begins or ends).

You can use the (perhaps odd looking) metasequences '\< and \> if your version
happens to support them (not all versions of egrep do). You can think of them as
word-based versions of 7] and $, that match the position at the start and end of a
word, respectively. Like the line anchors caret and dollar, they anchor other parts
of the regular expression but don’t actually consume any characters during a
match. The expression \<cat\> literally means “match if we can find a start-of-
word position, followed immediately by ¢ [& [}, followed immediately by an end-
of-word position” More naturally, it means “find the word cat” If you wanted,
you could use \<cat, or lcat\> to find words starting and ending with cat.

Note that < and > alone are not metacharacters — when combined with a back-
slash, the sequences become special. This is why I called them “metasequences”
It's their special interpretation that’s important, not the number of characters, so
for the most part I use these two meta-words interchangeably.

Remember, not all versions of egrep support these word-boundary metacharacters,
and those that do don’t magically understand the English language. The “start of a
word” is simply the position where a sequence of alphanumeric characters begins;
“end of word” is where such a sequence ends. Figure 1-2 on the next page shows
a sample line with these positions marked.

The word-starts (as egrep recognizes them) are marked with up arrows, the word-
ends with down arrows. As you can see, “start and end of word” is better phrased
as “start and end of an alphanumeric sequence,” but perhaps that's too much of a
mouthful.

16 Chapter 1: Introduction to Regular Expressions

|

That dang- tootin’ #@!%* varmint’s cost me $199.95!
4 A 4 4 44 4 4 4

4 "] . .
- positions where \< is true i - positions where \> is true - N words”

Figure 1-2: Start and end of “word” positions

In a Nutshell
Table 1-1 summarizes the metacharacters we have seen so far.

Table 1-1: Summary of Metacharacters Seen So Far

Metacharacter | Name Matches
dot any one character
[] character class any character listed
[~ negated character class | any character not listed
8 caret the position at the start of the line
$ dollar the position at the end of the line
\< backslash less-than 'the position at the start of a word
\> backslash greater-than | ‘the position at the end of a word
Tnot supported by all versions of egrep
| or, bar matches either expression it separates
() parentheses used to limit scope of 1, plus additional uses
yet to be discussed

In addition to the table, important points to remember include:

e The rules about which characters are and aren’t metacharacters (and exactly
what they mean) are different inside a character class. For example, dot is a
metacharacter outside of a class, but not within one. Conversely, a dash is a
metacharacter within a class (usually), but not outside. Moreover, a caret has
one meaning outside, another if specified inside a class immediately after the
opening [, and a third if given elsewhere in the class.

e Don’t confuse alternation with a character class. The class '[abc]) and the alter-
nation '(alblc), effectively mean the same thing, but the similarity in this
example does not extend to the general case. A character class can match
exactly one character, and that's true no matter how long or short the speci-
fied list of acceptable characters might be.

Egrep Metacharacters 17

Alternation, on the other hand, can have arbitrarily long alternatives, each tex-
tually unrelated to the other: \<(1,000,000|million|thousand-thou)\>
However, alternation can’t be negated like a character class.

e A negated character class is simply a notational convenience for a normal
character class that matches everything not listed. Thus, '["x]; doesn’t mean
“match unless there is an x,” but rather “match if there is something that is
not x.” The difference is subtle, but important. The first concept matches a
blank line, for example, while '[“x], does not.

e The useful -i option discounts capitalization during a match (s 15).

What we have seen so far can be quite useful, but the real power comes from
optional and counting elements, which we’ll look at next.

Optional Items

Let’s look at matching color or colour. Since they are the same except that one
has a u and the other doesn’t, we can use lcolou?r to match either. The metachar-
acter '?; (question mark) means optional. It is placed after the character that is
allowed to appear at that point in the expression, but whose existence isn’t actu-
ally required to still be considered a successful match.

Unlike other metacharacters we have seen so far, the question mark attaches only
to the immediately-preceding item. Thus, colou?r) is interpreted as “/c| then lo
then 1, then o, then 'u? then 'r,.”

«

The lu? part is always successful: sometimes it matches a u in the text, while other
times it doesn’t. The whole point of the ?-optional part is that it's successful either
way. This isn’t to say that any regular expression that contains ? is always success-
ful. For example, against ‘semicolon’, both lcolojand lu? are successful (matching
colo and nothing, respectively). However, the final 'r) fails, and that's what dis-
allows semicolon, in the end, from being matched by ‘colou?r,

As another example, consider matching a date that represents July fourth, with the
“July” part being either July or Jul, and the “fourth” part being fourth, 4th, or
simply 4. Of course, we could just use '(July|Jul) - (fourth|4th|4), but let’s
explore other ways to express the same thing.

First, we can shorten the [(July|Jul) to [(July?). Do you see how they are effec-
tively the same? The removal of the /|, means that the parentheses are no longer
really needed. Leaving the parentheses doesn’t hurt, but with them removed,
'July? is a bit less cluttered. This leaves us with 'July?- (fourth|4th|4).

t Recall from the typographical conventions (page xxii) that something like “wr 15” is a shorthand for a
reference to another page of this book.

18 Chapter 1: Introduction to Regular Expressions

Moving now to the second half, we can simplify the '4th|4, to '4(th)?. As you
can see, I?| can attach to a parenthesized expression. Inside the parentheses can be
as complex a subexpression as you like, but “from the outside” it is considered a
single unit. Grouping for '?; (and other similar metacharacters which I'll introduce
momentarily) is one of the main uses of parentheses.

Our expression now looks like [July? - (fourthl4 (th)?). Although there are a
fair number of metacharacters, and even nested parentheses, it is not that difficult
to decipher and understand. This discussion of two essentially simple examples
has been rather long, but in the meantime we have covered tangential topics that
add a lot, if perhaps only subconsciously, to our understanding of regular expres-
sions. Also, it’s given us some experience in taking different approaches toward
the same goal. As we advance through this book (and through to a better under-
standing), you'll find many opportunities for creative juices to flow while trying to
find the optimal way to solve a complex problem. Far from being some stuffy sci-
ence, writing regular expressions is closer to an art.

Other Quantifiers: Repetition

Similar to the question mark are '+, (plus) and '+ (an asterisk, but as a regular-
expression metacharacter, I prefer the term sta»). The metacharacter [+ means “one
or more of the immediately-preceding item,” and '+ means “any number, including
none, of the item” Phrased differently, /- means “try to match it as many times
as possible, but it’'s OK to settle for nothing if need be” The construct with plus,
-+, is similar in that it also tries to match as many times as possible, but different
in that it fails if it can’t match at least once. These three metacharacters, question
mark, plus, and star, are called guantifiers because they influence the quantity of
what they govern.

Like -2, the "% part of a regular expression always succeeds, with the only issue
being what text (if any) is matched. Contrast this to -+, which fails unless the
item matches at least once.

For example, -2, allows a single optional space, but I« allows any number of
optional spaces. We can use this to make page 9’s <H[1-6]> example flexible. The
HTML specification says that spaces are allowed immediately before the closing >,
such as with <H3.> and <H4- - ->. Inserting /- ¥ into our regular expression where
we want to allow (but not require) spaces, we get '<H[1-6] -=>. This still matches
<H1>, as no spaces are required, but it also flexibly picks up the other versions.

t If you are not familiar with HTML, never fear. I use these as real-world examples, but I provide all the
details needed to understand the points being made. Those familiar with parsing HTML tags will
likely recognize important considerations I don’t address at this point in the book.

Egrep Metacharacters 19

Exploring further, let’s search for an HTML tag such as <HR-SIZE=14>, which indi-
cates that a line (a Horizontal Rule) 14 pixels thick should be drawn across the
screen. Like the <H3> example, optional spaces are allowed before the closing
angle bracket. Additionally, they are allowed on either side of the equal sign.
Finally, one space is required between the HR and SIzE, although more are
allowed. To allow more, we could just add - to the /- already there, but instead
let’s change it to '-+. The plus allows extra spaces while still requiring at least one,
so it's effectively the same as - -+, but more concise. All these changes leave us
with [<HR -+ SIZE -# = -% 14 -#>,

Although flexible with respect to spaces, our expression is still inflexible with
respect to the size given in the tag. Rather than find tags with only one particular
size such as 14, we want to find them all. To accomplish this, we replace the 14,
with an expression to find a general number. Well, in this case, a “number” is one
or more digits. A digit is [[0-9], and “one or more” adds a plus, so we end up
replacing 114, by '[0-91+,. (A character class is one “unit,” so can be subject directly
to plus, question mark, and so on, without the need for parentheses.)

This leaves us with '<HR -+ SIZE -* = -* [0-9]+ -*>, which is certainly a mouthful
even though T've presented it with the metacharacters bold, added a bit of spacing
to make the groupings more apparent, and am using the “visible space” symbol ‘-’
for clarity. (Luckily, egrep has the -i case-insensitive option, s 15, which means I
don’t have to use [Hh] [Rr] instead of HR.) The unadorned regular expression
I<HR +SIZE == *[0-9]+ x> likely appears even more confusing. This example
looks particularly odd because the subjects of most of the stars and pluses are
space characters, and our eye has always been trained to treat spaces specially.
That's a habit you will have to break when reading regular expressions, because
the space character is a normal character, no different from, say, j or 4. (In later
chapters, we'll see that some other tools support a special mode in which white-
space is ignored, but egrep has no such mode.)

Continuing to exploit a good example, let’s consider that the size attribute is
optional, so you can simply use <HR> if the default size is wanted. (Extra spaces
are allowed before the >, as always.) How can we modify our regular expression
so that it matches either type? The key is realizing that the size part is optional
(that’s a hint). # Turn the page to check your answer.

Take a good look at our latest expression (in the answer box) to appreciate the
differences among the question mark, star, and plus, and what they really mean in
practice. Table 1-2 on the next page summarizes their meanings.

Note that each quantifier has some minimum number of matches required to suc-
ceed, and a maximum number of matches that it will ever attempt. With some, the
minimum number is zero; with some, the maximum number is unlimited.

20 Chapter 1: Introduction to Regular Expressions

Making a Subexpression Optional

¢ Answer to the question on page 19.

In this case, “optional” means that it is allowed once, but is not required.
That means using ?.. Since the thing that’s optional is larger than one charac-
ter, we must use parentheses: '(--) ?. Inserting into our expression, we get:

I<HR(~+SIZE-%=-%[0-9]+) 2 %>

Note that the ending -+ is kept outside of the (--) 2, This still allows some-
thing such as <HR->. Had we included it within the parentheses, ending
spaces would have been allowed only when the size component was
present.

Similarly, notice that the -+ before SIZE is included within the parentheses.
Were it left outside them, a space would have been required after the HR,
even when the SIZE part wasn’t there. This would cause ‘<HR>’ to not match.

Table 1-2: Summary of Quantifier “Repetition Metacharacters”

Minimum Maximum

Required to Try Meaning
? none 1 one allowed; none required (“one optional™)
* none no limit unlimited allowed; none required (“any amount OK™)
+ 1 no limit unlimited allowed; one required (“at least one”)

Defined range of maiches: intervals

Some versions of egrep support a metasequence for providing your own minimum
and maximum: |- {min,max}. This is called the interval quantifier. For example,
l.-{3,12} matches up to 12 times if possible, but settles for three. One might use
fa-zA-2]1{1,5} to match a US stock ticker (from one to five letters). Using this
notation, {0, 1} is the same as a question mark.

Not many versions of egrep support this notation yet, but many other tools do, so
it's covered in Chapter 3 when we look in detail at the broad spectrum of meta-
characters in common use today.

Parentheses and Backreferences

So far, we have seen two uses for parentheses: to limit the scope of alternation, |,
and to group multiple characters into larger units to which you can apply quanti-
fiers like question mark and star. I'd like to discuss another specialized use that’s
not common in egrep (although GNU’s popular version does support it), but which
is commonly found in many other tools.

Egrep Metacharacters 21

In many regular-expression flavors, parentheses can “remember” text matched by
the subexpression they enclose. We'll use this in a partial solution to the doubled-
word problem at the beginning of this chapter. If you knew the the specific dou-
bled word to find (such as “the” earlier in this sentence — did you catch it?), you
could search for it explicitly, such as with 'the-the;. In this case, you would also
find items such as the-theory, but you could easily get around that problem if
your egrep supports the word-boundary metasequences '\<-\> mentioned on
page 15: \<the-the\>. We could use -+ for the space for even more flexibility.

However, having to check for every possible pair of words would be an impossi-
ble task. Wouldn’t it be nice if we could match one generic word, and then say
“now match the same thing again” If your egrep supports backreferencing, you
can. Backreferencing is a regular-expression feature that allows you to match new
text that is the same as some text matched earlier in the expression.

We start with \<the-+the\> and replace the initial 'the, with a regular expression
to match a general word, say [[A-za-z]+. Then, for reasons that will become clear
in the next paragraph, let’s put parentheses around it. Finally, we replace the sec-
ond ‘the’ by the special metasequence \1, This yields \<([A-Za-z]1+) -+\1\>,

With tools that support backreferencing, parentheses “remember” the text that the
subexpression inside them matches, and the special metasequence \1, represents
that text later in the regular expression, whatever it happens to be at the time.

Of course, you can have more than one set of parentheses in a regular expression.
Use \1, \2;, \3, etc., to refer to the first, second, third, etc. sets. Pairs of parenthe-
ses are numbered by counting opening parentheses from the left, so with
([a-z]) ([0-91)\1\2, the \1, refers to the text matched by l[a-z], and \2, refers
to the text matched by [[0-91..

With our ‘the-the’ example, [A-Za-z]+ matches the first ‘the’. It is within the
first set of parentheses, so the ‘the’ matched becomes available via \1, If the fol-
lowing -+ matches, the subsequent \1, will require another ‘the’. If '\1,is success-
ful, then '\> makes sure that we are now at an end-of-word boundary (which we
wouldn’t be were the text ‘the-theft’). If successful, we've found a repeated
word. It's not always the case that that is an error (such as with “that” in this sen-
tence), but that’s for you to decide once the suspect lines are shown.

When I decided to include this example, I actually tried it on what I had written so
far. (I used a version of egrep that supports both '\<-\> and backreferencing.) To
make it more useful, so that ‘The-the’ would also be found, I used the case-insen-
sitive -i option mentioned on page 15.F

t Be aware that some versions of egrep, including older versions of popular GNU offering, have a bug
with the -i option such that it doesn’t apply to backreferences. Thus, it finds “the the” but not “The
the”

22 Chapter 1: Introduction to Regular Expressions

Here’s the command I ran:

% egrep -i '\<([a-z]+) +\1\>' files

I was surprised to find fourteen sets of mistakenly ‘doubled-doubled’ words! I
corrected them, and since then have built this type of regular-expression check
into the tools that T use to produce the final output of this book, to ensure none
creep back in.

As useful as this regular expression is, it is important to understand its limitations.
Since egrep considers each line in isolation, it isn’'t able to find when the ending
word of one line is repeated at the beginning of the next. For this, a more flexible
tool is needed, and we will see some examples in the next chapter.

The Great Escape

One important thing T haven’t mentioned yet is how to actually match a character
that a regular expression would normally interpret as a metacharacter. For exam-
ple, if T searched for the Internet hostname ega.att.com using ega.att.com, it
could end up matching something like megawatt -computing. Remember, /.| is a
metacharacter that matches any character, including a space.

The metasequence to match an actual period is a period preceded by a backslash:
‘ega\.att\.com. The sequence '\ .| is described as an escaped period or escaped
dot, and you can do this with all the normal metacharacters, except in a character-
class.t

A backslash used in this way is called an “escape” — when a metacharacter is
escaped, it loses its special meaning and becomes a literal character. If you like,
you can consider the sequence to be a special metasequence to match the literal
character. It’s all the same.

As another example, you could use \([a-zA-Z]+\), to match a word within
parentheses, such as ‘(very)’. The backslashes in the \ (and \); sequences
remove the special interpretation of the parentheses, leaving them as literals to
match parentheses in the text.

When used before a non-metacharacter, a backslash can have different meanings
depending upon the version of the program. For example, we have already seen
how some versions treat \<, \>, \1, etc. as metasequences. We will see many
more examples in later chapters.

t Most programming languages and tools allow you to escape characters within a character class as
well, but most versions of egrep do not, instead treating ‘\’ within a class as a literal backslash to be
included in the list of characters.

Expanding the Foundation 23

Expanding the Foundation

I hope the examples and explanations so far have helped to establish the basis for
a solid understanding of regular expressions, but please realize that what I've pro-
vided so far lacks depth. There’s so much more out there.

Linguistic Diversification

I mentioned a number of regular expression features that most versions of egrep
support. There are other features, some of which are not supported by all ver-
sions, which T'll leave for later chapters.

Unfortunately, the regular expression language is no different from any other in
that it has various dialects and accents. It seems each new program employing reg-
ular expressions devises its own “improvements.” The state of the art continually
moves forward, but changes over the years have resulted in a wide variety of reg-
ular expression “flavors” We’ll see many examples in the following chapters.

The Goal of a Regular Expression

From the broadest top-down view, a regular expression either matches within a
lump of text (with egrep, each line) or it doesn’t. When crafting a regular expres-
sion, you must consider the ongoing tug-of-war between having your expression
match the lines you want, yet still not matching lines you don’t want.

Also, while egrep doesn’t care where in the line the match occurs, this concern is
important for many other regular-expression uses. If your text is something such as
...zip is 44272. If you write, send $4.95 to cover postage and...
and you merely want to find lines matching '[0-9]+, you don’t care which num-
bers are matched. However, if your intent is to do something with the number
(such as save to a file, add, replace, and such—we will see examples of this kind
of processing in the next chapter), youll care very much exactly which numbers
are matched.

A Few More Examples

As with any language, experience is a very good thing, so I'm including a few
more examples of regular expressions to match some common constructs.

Half the battle when writing regular expressions is getting successful matches
when and where you want them. The other half is to not match when and where
you don’t want. In practice, both are important, but for the moment, I would like
to concentrate on the “getting successful matches” aspect. Even though I don'’t
take these examples to their fullest depths, they still provide useful insight.

24 Chapter 1: Introduction to Regular Expressions

Variable names

Many programming languages have identifiers (variable names and such) that are
allowed to contain only alphanumeric characters and underscores, but which may
not begin with a digit. They are matched by [a-zA-Z_] [a-zA-Z_0-9] . The first
character class matches what the first character can be, the second (with its accom-
panying star) allows the rest of the identifier. If there is a limit on the length of an
identifier, say 32 characters, you might replace the star with {0,331} if the
{min, max} notation is supported. (This construct, the interval quantifier, was briefly
mentioned on page 20.)

A string within double quotes
A simple solution to matching a string within double quotes might be: " [~"] %"

The double quotes at either end are to match the opening and closing double
quotes of the string. Between them, we can have anything... except another dou-
ble quote! So, we use [*"]; to match all characters except a double quote, and
apply using a star to indicate we can have any number of such non double-quote
characters.

A more useful (but more complex) definition of a double-quoted string allows
double quotes within the string if they are escaped with a backslash, such as in
"nail-the-2\"x4\" -plank". We'll see this example several times in future chap-
ters while covering the many details of how a match is actually carried out.

Dollar amount (with optional cents)
One approach to matching a dollar amount is: \$[0-9]1+(\.[0-9]1[0-9]1)?,

From a top-level perspective, this is a simple regular expression with three parts:
N\s and I -+ and (--) ?, which might be loosely paraphrased as “a literal dollar
sign, a bunch of one thing, and finally perhaps another thing” In this case, the
“one thing” is a digit (with a bunch of them being a number), and “another thing”
is the combination of a decimal point followed by two digits.

This example is a bit naive for several reasons. For example, it considers dollar
amounts like $1000, but not $1,000. It does allow for optional cents, but frankly,
that’s not really very useful when applied with egrep. egrep never cares exactly
bhow much is matched, but merely whether there is a match. Allowing something
optional at the end never changes whether there’s an overall match to begin with.

But, if you need to find lines that contain just a price, and nothing else, you can
wrap the expression with *-$. In this case, the optional cents part becomes
important since it might or might not come between the dollar amount and the

Expanding the Foundation 25

end of the line, and allowing or disallowing it makes the difference in achieving
an overall match.

One type of value our expression doesn’t match is ‘¢.49’. To solve this, you might
be tempted to change the plus to a star, but that doesn’t work. As to why, I'll leave
it as a teaser until we look at a similar example in Chapter 5 (s 194).

An HTTP/HTML URL

The format of web URLs can be complex, so constructing a regular expression to
match any possible URL can be equally complex. However, relaxing your standards
slightly can allow you to match most common URLs with a fairly simple expres-
sion. One common reason I might do this, for example, would be to search my
email archive for a URL that I vaguely remember having received, but which I
think I might recognize when I see it.

The general form of a common HTTP/HTML URL is along the lines of
http://hostname/path.html

although ending with .htm is common as well.

The rules about what can and can’t be a hostname (computer name, such as
www . yahoo.com) are complex, but for our needs we can realize that if it follows
‘http://’, it's probably a hostname, so we can make do with something simple,
such as [-a-z0-9_.1+. The path part can be even more varied, so we’ll use
T-a-z0-9_:@&?=+,.!/~%%$]1« for that. Notice that these classes have the dash
first, to ensure that it’s taken as a literal character and included in the list, as
opposed to part of a range (e 9).

Putting these all together, we might use as our first attempt something like:

% egrep -i ‘\<http://[-a-z0-9_.:]1+/[-a-20-9_:@&?=+,.!/7*%S$]*\ .html?\>’ files

Again, since we've taken liberties and relaxed what we’ll match, we could well
match something such as ‘http://. ... /foo.html’, which is certainly not a
valid URL. Do we care about this? Tt all depends on what you’re trying to do. For
my scan of my email archive, it doesn’t really matter if I get a few false matches.
Heck, I could probably get away with even something as simple as:

% egrep -i ‘\<http://[" 1x\.html?\>’ files...

As we'll learn when getting deeper into how to craft an expression, knowing the
data you’ll be searching is an important aspect of finding the balance between
complexity and completeness. We'll visit this example again, in more detail, in the
next chapter.

26 Chapter 1: Introduction to Regular Expressions

An HTML tag

With a tool like egrep, it doesn’'t seem particularly common or useful to simply
match lines with HTML tags. But, exploring a regular expression that matches HTML
tags exactly can be quite fruitful, especially when we delve into more advanced
tools in the next chapter.

Looking at simple cases like ‘<TITLE>" and ‘<HR>’, we might think to try <. >,
This simplistic approach is a frequent first thought, but it's certainly incorrect. Con-
verting '<. x> into English reads “match a ‘<’, followed by as much of anything as
can be matched, followed by ‘>’” Well, when phrased that way, it shouldn’t be sur-
prising that it can match more than just one tag, such as the marked portion of
‘this <I>short</I> example’.

This might have been a bit surprising, but we're still in the first chapter, and our
understanding at this point is only superficial. T have this example here to high-
light that regular expressions are not a difficult subject, but they can be tricky if
you don’t truly understand them. Over the next few chapters, we’'ll look at all the
details required to understand and solve this problem.

Time of day, such as “9:17 am” or “12:30 pm”

Matching a time can be taken to varying levels of strictness. Something such as
[0-912[0-91:[0-91[0-9] " (am|pm),

picks up both 9:17-am and 12:30-pm, but also allows something nonsensical like

99:99 -pm.

Looking at the hour, we realize that if it is a two-digit number, the first digit must
be a one. But, 1?2 [0-9] still allows an hour of 19 (and also an hour of 0), so
maybe it is better to break the hour part into two possibilities: '1[012]; for two-
digit hours and '[1-9], for single-digit hours. The result is (1 [012]11[1-91).

The minute part is easier. The first digit should be [[0-5], For the second, we can
stick with the current 10-91, This gives [(1[0121][1-91):[0-5][0-9] - (am|pm),
when we put it all together.

Using the same logic, can you extend this to handle 24-hour time with hours from
0 through 23? As a challenge, allow for a leading zero, at least through to 09:59.
«¢ Try building your solution, and then turn the page to check mine.

Expanding the Foundation 27

Regular Expression Nomenclature
Regex

As you might guess, using the full phrase “regular expression” can get a bit tiring,
particularly in writing. Instead, I normally use “regex.” It just rolls right off the
tongue (it thymes with “FedEx;” with a hard g sound like “regular” and not a soft
one like in “Regina”) and it is amenable to a variety of uses like “when you
regex...” “budding regexers] and even “regexification”’ I use the phrase “regex
engine” to refer to the part of a program that actually does the work of carrying
out a match attempt.

Matching

When I say a regex “matches” a string, I really mean that it matches iz a string.
Technically, the regex 'aj doesn’t match cat, but matches the a in cat. It's not
something that people tend to confuse, but it’s still worthy of mention.

Metacharacter

Whether a character is a metacharacter (or “metasequence” —I use the words inter-
changeably) depends on exactly where in the regex it's used. For example, x| is a
metacharacter, but only when it’s not within a character class and when not
escaped. “Escaped” means that it has a backslash in front of it—usually. The star is
escaped in \+, but not in *, (where the first backslash escapes the second),
although the star “has a backslash in front of it” in both examples.

Depending upon the regex flavor, there are various situations when certain charac-
ters are and aren’t metacharacters. Chapter 3 discusses this in more detail.

Flavor

As T've hinted, different tools use regular expressions for many different things,
and the set of metacharacters and other features that each support can differ. Let’s
look at word boundaries again as an example. Some versions of egrep support the
\<-\> notation we've seen. However, some do not support the separate word-
start and word-end, but one catch-all \b; metacharacter (which we haven’t seen
yet—we’'ll see it in the next chapter). Still others support both, and many others
support neither.

I use the term “flavor” to describe the sum total of all these little implementation
decisions. In the language analogy, it’s the same as a dialect of an individual
speaker. Superficially, this concept refers to which metacharacters are and aren’t

t You might also come across the decidedly unsightly “regexp” I'm not sure how one would pro-
nounce that, but those with a lisp might find it a bit easier.

28 Chapter 1: Introduction to Regular Expressions

Extending the Time Regex to Handle a 24-Hour Clock

¢ Answer to the question on page 26.

There are various solutions, but we can use similar logic as before. This time,
I'll break the task into three groups: one for the morning (hours 00 through
09, with the leading zero being optional), one for the daytime (hours 10
through 19), and one for the evening (hours 20 through 23). This can be
rendered in a pretty straightforward way: 02 [0-9111[0-9112[0-3].

Actually, we can combine the first two alternatives, resulting in the shorter
[01]1?2[0-9112[0-3]. You might need to think about it a bit to convince
yourself that they’ll really match exactly the same text, but they do. The fig-
ure below might help, and it shows another approach as well. The shaded
groups represent numbers that can be matched by a single alternative.

"fo11210-91|210-31 "[011214-91][01212(0-31
| s R | IR < 5| <[7] ¢ o
00(01/02(03|04|05(06/|07|08(09 00(01(02(03(04|05|06/|07|08|09
10(11|12(13|14|15(16|17|18|19 10(11(12(13(14|15|16|17|18|19
20(21|22|23 20(21|22|23

supported, but there’s much more to it. Even if two programs both support
\<-\>, they might disagree on exactly what they do and don’t consider to be a
word. This concern is important when you use the tool.

Don’t confuse “flavor” with “tool” Just as two people can speak the same dialect,
two completely different programs can support exactly the same regex flavor.
Also, two programs with the same name (and built to do the same task) often
have slightly (and sometimes not-so-slightly) different flavors. Among the various
programs called egrep, there is a wide variety of regex flavors supported.

In the late 1990s, the particularly expressive flavor offered by the Perl program-
ming language was widely recognized for its power, and soon other languages
were offering Perl-inspired regular expressions (many even acknowledging the
inspirational source by labeling themselves “Perl-compatible”). The adopters
include PHP, Python, many Java regex packages, Microsoft’s .NET Framework, Tcl,
and a variety of C libraries, to name a few. Yet, all are different in important
respects. On top of this, Perl’s regular expressions themselves are evolving and
growing (sometimes, now, in response to advances seen with other tools). As
always, the overall landscape continues to become more varied and confusing.

Expanding the Foundation 29

Subexpression

The term “subexpression” simply refers to part of a larger expression, although it
often refers to some part of an expression within parentheses, or to an alternative
of], For example, with " (Subject|Date):, the 'Subject|Date is usually
referred to as a subexpression. Within that, the alternatives [Subject, and Date) are
each referred to as subexpressions as well. But technically, /s, is a subexpression,
as isfu, and b, and 5, ...

Something such as 1-6 isn’t considered a subexpression of H[1-6] -x, since the
‘1-6’ is part of an unbreakable “unit] the character class. But, H, [1-61, and I,
are all subexpressions of H[1-6] - x,.

Unlike alternation, quantifiers (star, plus, and question mark) always work with the
smallest immediately-preceding subexpression. This is why with mis+pell; the +
governs the ‘s, not the mis or lis, Of course, when what immediately precedes a
quantifier is a parenthesized subexpression, the entire subexpression (no matter
how complex) is taken as one unit.

Character

The word “character” can be a loaded term in computing. The character that a
byte represents is merely a matter of interpretation. A byte with such-and-such a
value has that same value in any context in which you might wish to consider it,
but which character that value represents depends on the encoding in which it’s
viewed. As a concrete example, two bytes with decimal values 64 and 53 repre-
sent the characters “@” and “5” respectively, if considered in the ASCII encoding,
yet on the other hand are completely different if considered in the EBCDIC encod-
ing (they are a space and some kind of a control character).

On the third hand, if those two bytes are considered in one of the popular encod-
ings for Japanese characters, together they represent the single character 1E. Yet,
to represent this same character in another of the Japanese encodings requires two
completely different bytes. Those two different bytes, by the way, yield the two
characters “Ap” in the popular Latin-1 encoding, but yield the one Korean charac-
ter 2t in one of the Unicode encodings.” The point is this: how bytes are to be
interpreted is a matter of perspective (called an encoding), and to be successful,
you've got to make sure that your perspective agrees with the perspective taken
by the tool you're using.

t The definitive book on multiple-byte encodings is Ken Lunde’s CJKV Information Processing, also
published by O’Reilly. The CJKV stands for Chinese, Japanese, Korean, and Vietnamese, which are
languages that tend to require multiple-byte encodings. Ken and Adobe kindly provided many of the
special fonts used in this book.

30 Chapter 1: Introduction to Regular Expressions

Until recently, text-processing tools generally treated their data as a bunch of
ASCII bytes, without regard to the encoding you might be intending. Recently,
however, more and more systems are using some form of Unicode to process data
internally (Chapter 3 includes an introduction to Unicode s 105). On such sys-
tems, if the regular-expression subsystem has been implemented properly, the user
doesn’t normally have to pay much attention to these issues. That’s a big “if)
which is why Chapter 3 looks at this issue in depth.

Improving on the Status Quo

When it comes down to it, regular expressions are not difficult. But, if you talk to
the average user of a program or language that supports them, you will likely find
someone that understands them “a bit,” but does not feel secure enough to really
use them for anything complex or with any tool but those they use most often.

Traditionally, regular expression documentation tends to be limited to a short and
incomplete description of one or two metacharacters, followed by a table of the
rest. Examples often use meaningless regular expressions like 'ax ((ab) * |bx),, and
text like ‘a-xxx-ce -xxxxxx-ci-xxx-d’. They also tend to completely ignore subtle
but important points, and often claim that their flavor is the same as some other
well-known tool, almost always forgetting to mention the exceptions where they
inevitably differ. The state of regex documentation needs help.

Now, I don’t mean to imply that this chapter fills the gap for all regular expres-
sions, or even for egrep regular expressions. Rather, this chapter merely provides
the foundation upon which the rest of this book is built. It may be ambitious, but I
hope this book does fill the gaps for you. I received many gratifying responses to
the first edition, and have worked very hard to make this one even better, both in
breadth and in depth.

Perhaps because regular-expression documentation has traditionally been so lack-
ing, 1 feel the need to make the extra effort to make things particularly clear.
Because T want to make sure you can use regular expressions to their fullest
potential, I want to make sure you really, really understand them.

This is both good and bad.

It is good because you will learn how to think regular expressions. You will learn
which differences and peculiarities to watch out for when faced with a new tool
with a different flavor. You will know how to express yourself even with a weak,
stripped-down regular expression flavor. You will understand what makes one
expression more efficient than another, and will be able to balance tradeoffs
among complexity, efficiency, and match results. When faced with a particularly
complex task, you will know how to work through an expression the way the

Expanding the Foundation 31

program would, constructing it as you go. In short, you will be comfortable using
regular expressions to their fullest.

The problem is that the learning curve of this method can be rather steep, with
three separate issues to tackle:

e How regular expressions are used Most programs use regular expressions in
ways that are more complex than egrep. Before we can discuss in detail how
to write a really useful expression, we need to look at the ways regular
expressions can be used. We start in the next chapter.

e Regular expression features Selecting the proper tool to use when faced with
a problem seems to be half the battle, so I don’t want to limit myself to only
using one utility throughout this book. Different programs, and often even dif-
ferent versions of the same program, provide different features and metachar-
acters. We must survey the field before getting into the details of using them.
This is the subject of Chapter 3.

e How regular expressions really work Before we can learn from useful (but
often complex) examples, we need to “look under the hood” to understand
just how a regular expression search is conducted. As we’ll see, the order in
which certain metacharacters are checked can be very important. In fact, regu-
lar expression engines can be implemented in different ways, so different pro-
grams sometimes do different things with the same expression. We examine
this meaty subject in Chapters 4, 5, and 6.

This last point is the most important and the most difficult to address. The discus-
sion is unfortunately sometimes a bit dry, with the reader chomping at the bit to
get to the fun part — tackling real problems. However, understanding how the
regex engine really works is the key to really understanding.

You might argue that you don’t want to be taught how a car works when you sim-
ply want to know how to drive. But, learning to drive a car is a poor analogy for
learning about regular expressions. My goal is to teach you how to solve problems
with regular expressions, and that means constructing regular expressions. The
better analogy is not how to drive a car, but how to build one. Before you can
build a car, you have to know how it works.

Chapter 2 gives more experience with driving. Chapter 3 takes a short look at the
history of driving, and a detailed look at the bodywork of a regex flavor. Chapter 4
looks at the all-important engine of a regex flavor. Chapter 5 shows some
extended examples, Chapter 6 shows you how to tune up certain kinds of
engines, and the chapters after that examine some specific makes and models. Par-
ticularly in Chapters 4, 5, and 6, we’ll spend a lot of time under the hood, so make
sure to have your coveralls and shop rags handy.

32 Chapter 1: Introduction to Regular Expressions

Summary

Table 1-3 summarizes the egrep metacharacters we’ve looked at in this chapter.

Table 1-3: Egrep Metacharacter Summary

Items to Match a Single Character

Metacharacter Matches
dot Matches any one character
[1] character class Matches any one character listed
[~ negated character class Matches any one character not listed
\ char escaped character When char is a metacharacter, or the escaped

combination is not otherwise special, matches
the literal char

Items Appended to Provide “Counting” : The Quantifiers

? question One allowed, but it is optional

* star Any number allowed, but all are optional

+ Dplus At least one required; additional are optional
{min,max} | specified range? Min required, max allowed

Items That Match a Position

A caret Matches the position at the start of the line

$ dollar Matches the position at the end of the line

\< word boundaryt Matches the position at the start of a word

\> word boundaryt Matches the position at the end of a word
Other

[alternation Matches either expression it separates

() parentheses Limits scope of alternation, provides grouping
for the quantifiers, and “captures” for
backreferences

\1,\2, ... | backreferencet Matches text previously matched within first,

second, etc., set of parentheses.

tnot supported by all versions of egrep

In addition, be sure that you understand the following points:

e Not all egrep programs are the same. The metacharacters supported, as well as
their exact meanings, are often different — see your local documentation
(e 23).

e Three reasons for using parentheses are constraining alternation (s 13),
grouping (e 14), and capturing (e= 21).

e Character classes are special, and have their own set of metacharacters totally
distinct from the “main” regex language (= 10).

Personal Glimpses 33

e Alternation and character classes are fundamentally different, providing unre-
lated services that appear, in only one limited situation, to overlap (e 13).

e A negated character class is still a “positive assertion” —even negated, a char-
acter class must match a character to be successful. Because the listing of char-
acters to match is negated, the matched character must be one of those not
listed in the class (s 12).

e The useful -i option discounts capitalization during a match (s 15).

e There are three types of escaped items:
1. The pairing of I\ and a metacharacter is a metasequence to match the
literal character (for example, '\ x; matches a literal asterisk).

2. The pairing of \; and selected non-metacharacters becomes a
metasequence with an implementation-defined meaning (for example, '\<
often means “start of word”).

3. The pairing of '\ and any other character defaults to simply matching the
character (that is, the backslash is ignored).

Remember, though, that a backslash within a character class is not special at
all with most versions of egrep, so it provides no “escape services” in such a
situation.

e Items governed by a question mark or star don’t need to actually match any
characters to “match successfully” They are always successful, even if they
don’t match anything (e 17).

Personal Glimpses

The doubled-word task at the start of this chapter might seem daunting, yet regu-
lar expressions are so powerful that we could solve much of the problem with a
tool as limited as egrep, right here in the first chapter. I'd like to fill this chapter
with flashy examples, but because I've concentrated on the solid foundation for
the later chapters, I fear that someone completely new to regular expressions
might read this chapter, complete with all the warnings and cautions and rules and
such, and feel “why bother?”

My brothers were once teaching some friends how to play schaffkopf, a card game
that’s been in my family for generations. It is much more exciting than it appears
at first glance, but has a rather steep learning curve. After about half an hour, my
sister-in-law Liz, normally the quintessence of patience, got frustrated with the
seemingly complex rules and said “Can’t we just play rummy?” Yet, as it turned
out, they all ended up playing late into the night, including Liz. Once they were

34 Chapter 1: Introduction to Regular Expressions

able to get over the initial hump of the learning curve, a first-hand taste of the
excitement was all it took to hook them. My brothers knew it would, but it took
some time and work to get to the point where Liz and the others new to the game
could appreciate what they were getting into.

It might take some time to become acclimated to regular expressions, so until you
get a real taste of the excitement by using them to solve your problems, it might
all feel just a bit too academic. If so, I hope you will resist the desire to “play
rummy” Once you understand the power that regular expressions provide, the
small amount of work spent learning them will feel trivial indeed.

Extended
Introductory Examples

Remember the doubled-word problem from the first chapter? I said that a full solu-
tion could be written in just a few lines in a language like Perl. Such a solution
might look like:

$/ = ".\n";
while (<>) {
next if !s/\b([a-z]+) ((?:\s|<[">]1+>)+) (\1\b)/\e[7mS$1\e[m$2\e[7m$3\e[m/1ig;

s/"(2:["\el*\n)+//mg; # Remove any unmarked lines.
s/"/$ARGV: /mg; # Ensure lines begin with filename.
print;

}
Yup, that’s the whole program.

Even if you’re familiar with Perl, I don’t expect you to understand it (yet/). Rather,
I wanted to show an example beyond what egrep can allow, and to whet your
appetite for the real power of regular expressions.

Most of this program’s work revolves around its three regular expressions:

e N\b([a-z]+) ((?:\s|<[">]+>)+) (\1\Db),
e " (?2:["\el*\n)+
[~

]

Though this is a Perl example, these three regular expressions can be used verba-
tim (or with only a few changes) in many other languages, including PHP, Python,
Java, VB.NET, Tcl, and more.

Now, looking at these, that last " is certainly recognizable, but the other expres-
sions have items unfamiliar to our egrep-only experience. This is because Perl’s
regex flavor is not the same as egrep’s. Some of the notations are different, and
Perl (as well as most modern tools) tends to provide a much richer set of meta-
characters than egrep. We'll see many examples throughout this chapter.

35

36 Chapter 2: Extended Introductory Examples

About the Examples

This chapter takes a few sample problems — validating user input; working with
email headers; converting plain text to HTML — and wanders through the regular
expression landscape with them. As I develop them, I'll “think out loud” to offer a
few insights into the thought processes that go into crafting a regex. During our
journey, we’ll see some constructs and features that egrep doesn’t have, and we’ll
take plenty of side trips to look at other important concepts as well.

Toward the end of this chapter, and in subsequent chapters, I'll show examples in
a variety of languages including PHP, Java, and VB.NET, but the examples through-
out most of this chapter are in Perl. Any of these languages, and most others for
that matter, allow you to employ regular expressions in much more complex ways
than egrep, so using any of them for the examples would allow us to see interest-
ing things. I choose to start with Perl primarily because it has the most ingrained,
easily accessible regex support among the popular languages. Also, Perl provides
many other concise data-handling constructs that alleviate much of the “dirty
work” of our example tasks, letting us concentrate on regular expressions.

Just to quickly demonstrate some of these powers, recall the file-check example
from page 2, where I needed to ensure that each file contained ‘ResetSize’
exactly as many times as ‘SetSize’. The utility I used was Perl, and the com-
mand was:

% perl -One ’‘print "$ARGV\n" if s/ResetSize//ig != s/SetSize//ig’ =

(I don’t expect that you understand this yet — I hope merely that you’ll be
impressed with the brevity of the solution.)

I like Perl, but it’'s important not to get too caught up in its trappings here.
Remember, this chapter concentrates on regular expressions. As an analogy, con-
sider the words of a computer science professor in a first-year course: “You're
going to learn computer-science concepts here, but we’ll use Pascal to show you.t

Since this chapter doesn’t assume that you know Perl, I'll be sure to introduce
enough to make the examples understandable. (Chapter 7, which looks at all the
nitty-gritty details of Perl, does assume some basic knowledge.) Even if you have
experience with a variety of programming languages, normal Perl may seem quite
odd at first glance because its syntax is very compact and its semantics thick. In
the interest of clarity, I won’t take advantage of much that Perl has to offer, instead
presenting programs in a more generic, almost pseudo-code style. While not “bad,
the examples are not the best models of The Perl Way of programming. But, we
will see some great uses of regular expressions.

t Pascal is a traditional programming language originally designed for teaching. Thanks to William F.
Maton, and his professor, for the analogy.

About the Examples 37

A Short Introduction to Perl

Perl is a powerful scripting language first developed in the late 1980s, drawing
ideas from many other programming languages and tools. Many of its concepts of
text handling and regular expressions are derived from two specialized languages
called awk and sed, both of which are quite different from a “traditional” language
such as C or Pascal.

Perl is available for many platforms, including DOS/Windows, MacOS, OS/2, VMS,
and Unix. It has a powerful bent toward text handling, and is a particularly com-
mon tool used for Web-related processing. See www.perl.com for information on
how to get a copy of Perl for your system.

This book addresses the Perl language as of Version 5.8, but the examples in this
chapter are written to work with versions as early as Version 5.005.

Let’s look at a simple example:

Scelsius = 30;
$fahrenheit = (Scelsius * 9 / 5) + 32; # calculate Fahrenbeit
print "Scelsius C is $fahrenheit F.\n"; # report both temperatires

When executed, this produces:
30 C is 86 F.

Simple variables, such as $fahrenheit and $celsius, always begin with a dollar
sign, and can hold a number or any amount of text. (In this example, only num-
bers are used.) Comments begin with # and continue for the rest of the line.

If you're used to languages such as C, C#, Java, or VB.NET, perhaps most surpris-
ing is that in Perl, variables can appear within a double-quoted string. With the
string "$celsius C is $fahrenheit F.\n", each variable is replaced by its
value. In this case, the resulting string is then printed. (The \n represents a
newline.)

Perl offers control structures similar to other popular languages:

Scelsius = 20;
while ($Scelsius <= 45)

{

Sfahrenheit = (Scelsius * 9 / 5) + 32; # calculate Fabrenbeit
print "$celsius C is S$fahrenheit F.\n";
Scelsius = $celsius + 5;

}

The body of the code controlled by the while loop is executed repeatedly so long
as the condition (the $celsius <= 45 in this case) is true. Putting this into a file,
say temps, we can run it directly from the command line.

38 Chapter 2: Extended Introductory Examples

Here’s how a run looks:

% perl -w temps
20 C is 68 F.
25 C is 77 F.

30 C is 86 F.
35 C is 95 F.
40 C is 104 F.
45 C is 113 F.

The -w option is neither necessary nor has anything directly to do with regular
expressions. It tells Perl to check your program more carefully and issue warnings
about items it thinks to be dubious, (such as using uninitialized variables and the
like — variables do not normally need to be predeclared in PerD). T use it here
merely because it is good practice to always do so.

Well, that’s it for the general introduction to Perl. We’ll move on now to see how
Perl allows us to use regular expressions.

Matiching Text with Regular Expressions

Perl uses regular expressions in many ways, the simplest being to check if a regex
matches text (or some part thereof) held in a variable. This snippet checks the
string held in variable $reply and reports whether it contains only digits:

if ($reply =" m/"[0-91+8/) {
print "only digits\n";
} else {
print "not only digits\n";
}
The mechanics of the first line might seem a bit strange: the regular expression is
" 10-91+$%;, while the surrounding m/--/ tells Perl what to do with it. The m means
to attempt a regular expression match, while the slashes delimit the regex itself.!
The preceding =~ links m/--/ with the string to be searched, in this case the con-
tents of the variable $reply.

Don’t confuse =~ with = or ==. The operator == tests whether two numbers are
the same. (The operator eq, as we will soon see, is used to test whether two
strings are the same.) The = operator is used to assign a value to a variable, as
with $celsius = 20. Finally, =~ links a regex search with the target string to be
searched. In the example, the search is m/~[0-91+$/ and the target is $reply.
Other languages approach this differently, and we’ll see examples in the next
chapter.

1 In many situations, the m is optional. This example can also appear as $reply =~ /"[0-91+%/
which some readers with past Perl experience may find to be more natural. Personally, I feel the m is
descriptive, so I tend to use it.

Matching Text with Regular Expressions 39

It might be convenient to read =~ as “matches,” such that
if ($reply =~ m/"[0-9]1+$/)

becomes:
if the text contained in the variable $reply matches the regex " [0-9]1+$),
then ...

The whole result of $reply =~ m/"[0-91+%/ is a true value if the " [0-9]1+$
matches the string held in $reply, a false value otherwise. The if uses this true
or false value to decide which message to print.

Note that a test such as $reply =~ m/[0-91+/ (the same as before except the
wrapping caret and dollar have been removed) would be true if $reply contained
at least one digit anywhbere. The surrounding [~ -$, ensures that the entire $reply
contains only digits.

Let’s combine the last two examples. We’ll prompt the user to enter a value, accept
that value, and then verify it with a regular expression to make sure it’s a number.
If it is, we calculate and display the Fahrenheit equivalent. Otherwise, we issue a
warning message:

print "Enter a temperature in Celsius:\n";
Scelsius = <STDIN>; # this reads one line from the user
chomp ($celsius) ; # this removes the ending newline from $celsius

if (Scelsius =~ m/"[0-9]+$/) {

$fahrenheit = (Scelsius * 9 / 5) + 32; # calculate Fahrenbeit

print "S$celsius C is S$fahrenheit F\n";
} else {

print "Expecting a number, so I don’t understand \"Scelsius\".\n";
}

Notice in the last print how we escaped the quotes to be printed, to distinguish
them from the quotes that delimit the string? As with literal strings in most lan-
guages, there are occasions to escape some items, and this is very similar to escap-
ing a metacharacter in a regex. The relationship between a string and a regex isn’t
quite as important with Perl, but is extremely important with languages like Java,
Python, and the like. The section “A short aside — metacharacters galore” (e 44)
discusses this in a bit more detail. (One notable exception is VB.NET, which
requires ‘"’ rather than ‘\"’ to get a double quote into a string literal.)

If we put this program into the file c2f; we might run it and see:

% perl -w c2f

Enter a temperature in Celsius:
22

22 C is 71.599999999999994316 F

Oops. As it turns out (at least on some systems), Perl’s simple print is not always
so good when it comes to floating-point numbers.

40 Chapter 2: Extended Introductory Examples

I don’t want to get bogged down describing all the details of Perl in this chapter,
so I'll just say without further comment that you can use printf (“print format-
ted”) to make this look better:

printf "%$.2f C is %.2f F\n", $celsius, S$fahrenheit;

The printf function is similar to the C language’s printf, or the format of Pas-
cal, Tcl, elisp, and Python. It doesn’t change the values of the variables, but merely
how they are displayed. The result is now much nicer:

Enter a temperature in Celsius:
22
22.00 C is 71.60 F

Toward a More Real-World Example

Let’s extend this example to allow negative and fractional temperature values. The
math part of the program is fine — Perl normally makes no distinction between
integers and floating-point numbers. We do, however, need to modify the regex to
let negative and floating-point values pass. We can insert a leading -2, to allow a
leading minus sign. In fact, we may as well make that '[-+]? to allow a leading
plus sign, too.

To allow an optional decimal part, we add /(\.[0-9]%)?. The escaped dot
matches a literal period, so \. [0-9]1+ is used to match a period followed by any
number of optional digits. Since '\ . [0-91+, is enclosed by (-) ?, the whole subex-
pression becomes optional. (Realize that this is very different from \.2[0-9]%,
which incorrectly allows additional digits to match even if '\ .; does not match.)

Putting this all together, we get
if ($celsius =" m/"[-+12[0-9]1+(\.[0-91%)?5/) {

as our check line. It allows numbers such as 32, -3.723, and +98.6. It is actually
not quite perfect: it doesn’t allow a number that begins with a decimal point (such
as .357). Of course, the user can just add a leading zero to allow it to match (e.g.,
0.357), so I don’t consider it a major shortcoming. This floating-point problem can
have some interesting twists, and I look at it in detail in Chapter 5 (s 194).

Side Effects of a Successful Maich

Let’s extend the example further to allow someone to enter a value in either
Fahrenheit or Celsius. We’ll have the user append a C or F to the temperature
entered. To let this pass our regular expression, we can simply add [[CF], after the
expression to match a number, but we still need to change the rest of the program
to recognize which kind of temperature was entered, and to compute the other.

In Chapter 1, we saw how some versions of egrep support \1, \2, \3, etc. as
metacharacters to refer to the text matched by parenthesized subexpressions

Matching Text with Regular Expressions 41

earlier within the regex (e 21). Perl and most other modern regex-endowed lan-
guages support these as well, but also provide a way to refer to the text matched
by parenthesized subexpressions from code outside of the regular expression, after
a match has been successfully completed.

We'll see examples of how other languages do this in the next chapter (s 137),
but Perl provides the access via the variables $1, $2, $3, etc., which refer to the
text matched by the first, second, third, etc., parenthesized subexpression. As odd
as it might seem, these are variables. The variable names just happen to be num-
bers. Perl sets them every time the application of a regex is successful.

To summarize, use the metacharacter '\1; within the regular expression to refer to
some text matched earlier during the same match attempt, and use the variable $1
in subsequent code to refer to that same text after the match has been successfully
completed.

To keep the example uncluttered and focus on what’s new, I'll remove the frac-
tional-value part of the regex for now, but we’ll return to it again soon. So, to see
$1 in action, compare:

$celsius =~ m/"[-+]1?[0-9]+[CF]$/

$celsius =~ m/"([-+]1?2[0-9]1+) ([CF])$/
Do the added parentheses change the meaning of the expression? Well, to answer
that, we need to know whether they provide grouping for star or other quantifiers,
or provide an enclosure for I];. The answer is no on both counts, so what matches
remains unchanged. However, they do enclose two subexpressions that match
“interesting” parts of the string we are checking. As Figure 2-1 illustrates, $1 will
receive the number entered, and $2 will receive the ¢ or F entered. Referring to
the flowchart in Figure 2-2 on the next page, we see that this allows us to easily
decide how to proceed after the match.

second parenthesis

entire regular expression / pairs with
I ‘ \ /) 1
$celsius =~ m/A([-+]12[0-91+) ([CF])$/
will fill $1 will fill $2
first parenthesis
pairs with

Figure 2-1: Capturing parentheses

42 Chapter 2: Extended Introductory Examples

get

user

input

validate regex note temperature]

input _mah_y and type from — Ctt}a//g(/?u@ =

Wregex) validation match ’
P

no no
match

calculate
Celsius

calculate
Fahrenheit

| =

display display
error message results

Figure 2-2: Temperature-conversion program’s logic flow

Temperature-conversion program

print "Enter a temperature (e.g., 32F, 100C):\n";
Sinput = <STDIN>; # T7his reads one line from the user.
chomp ($input) ; # This removes the ending newline from $input.

if ($input =" m/" ([-+1?[0-91+) ([CF1)$/)

{
If we get in bere, we bad a match. $1 is the number, $2 is "C" or "F".
SInputNum = $1; # Save to named variables to make the ...
Stype = $2; # ..vrestofthe program easier to read.

if ($type eqg "C") { # ‘eq’tests if two strings are equal
The input was Celsius, so calculate Fabrenbeit
Scelsius = $InputNum;
$fahrenheit = (Scelsius * 9 / 5) + 32;
} else {
If not "C", it must be an "F", so calculate Celsius
$fahrenheit = $InputNum;
Scelsius = ($fahrenheit - 32) %= 5 / 9;
}
At this point we have both temperatures, so display the results:
printf "%$.2f C is %.2f F\n", $celsius, S$fahrenheit;
} else {
The initial regex did not maich, so issue a warning.

print "Expecting a number followed by \"C\" or \"F\",\n";

print "so I don’t understand \"$input\".\n";

Matching Text with Regular Expressions 43

If the program shown on the facing page is named convert, we can use it like this:

% perl -w convert

Enter a temperature (e.g., 32F, 100C):
39F

3.89 C is 39.00 F

% perl -w convert

Enter a temperature (e.g., 32F, 100C):
39C

39.00 C is 102.20 F

% perl -w convert

Enter a temperature (e.g., 32F, 100C):
oops

Expecting a number followed by "C" or "F",
so I don’t understand "oops".

Intertwined Regular Expressions

With advanced programming languages like Perl, regex use can become quite
intertwined with the logic of the rest of the program. For example, let’s make three
useful changes to our program: allow floating-point numbers as we did earlier,
allow for the £ or ¢ entered to be lowercase, and allow spaces between the num-
ber and letter. Once all these changes are done, input such as ‘98.6-£" will be
allowed.

Earlier, we saw how we can allow floating-point numbers by adding (\. [0-9]+) ?,
to the expression:
if ($input =" m/"([-+1?2[0-9]+ (\.[0-91*)?) ([CF])$/)

Notice that it is added inside the first set of parentheses. Since we use that first set
to capture the number to compute, we want to make sure that they capture the
fractional portion as well. However, the added set of parentheses, even though
ostensibly used only to group for the question mark, also has the side effect of
capturing into a variable. Since the opening parenthesis of the pair is the second
(from the left), it captures into $2. This is illustrated in Figure 2-3.

matches into $1
into $2 into $3

[o

$input =~ m/*([-+]12[0-9]1+(\.[0-9]1%*)?) ([CF])$/

| !

15t open parenthesis 2 open parenthesis 3 open parenthesis

Figure 2-3: Nesting parentheses

44 Chapter 2: Extended Introductory Examples

Figure 2-3 illustrates how closing parentheses nest with opening ones. Adding a
set of parentheses earlier in the expression doesn’t influence the meaning of [[CF],
directly, but it does so indirectly because the parentheses surrounding it have now
become the third pair. Becoming the third pair means that we need to change the
assignment to stype to refer to $3 instead of $2 (but see the sidebar on the facing
page for an alternative approach).

Next, allowing spaces between the number and letter is easier. We know that an
unadorned space in a regex requires exactly one space in the matched text, so -«
can be used to allow any number of spaces (but still not require any):

if ($input =" m/" ([-+12[0-9]1+(\.[0-91%)?) = ([CF])$/)

This does give a limited amount of flexibility to the user of our program, but since
we are trying to make something useful in the real world, let’s construct the regex
to also allow for other kinds of whitespace as well. Tabs, for instance, are quite
common. Writing i+, of course, doesn’t allow for spaces, so we need to construct
a character class to match either one: [- #] *,.

Compare that with I(-+ |*), and see if you can recognize how they are fundamen-
tally different? « After considering this, turn the page to check your thoughts.

In this book, spaces and tabs are easy to notice because of the - and i typesetting
conventions I've used. Unfortunately, it is not so on-screen. If you see something
like [1%, you can guess that it is probably a space and a tab, but you can’t be
sure until you check. For convenience, Perl regular expressions provide the '\t
metacharacter. It simply matches a tab —its only benefit over a literal tab is that it
is visually apparent, so I use it in my expressions. Thus, I[- ®] x; becomes [-\t] ;.

Some other Perl convenience metacharacters are \n, (newline), "\ f, (ASCII form-
feed), and \bj (backspace). Well, actually, \b, is a backspace in some situations,
but in others, it matches a word boundary. How can it be both? The next section
tells us.

A short aside —metacharacters galore

We saw \n in earlier examples, but in those cases, it was in a string, not a regular
expression. Like most languages, Perl strings have metacharacters of their own,
and these are completely distinct from regular expression metacharacters. It is a
common mistake for new programmers to get them confused. (VB.NET is a notable
language that has very few string metacharacters.) Some of these string metachar-
acters conveniently look exactly the same as some comparable regex metachar-
acters. You can use the string metacharacter \t to get a tab into your string, while
you can use the regex metacharacter '\t, to insert a tab-matching element into your
regex.

Matching Text with Regular Expressions 45

Non-Capturing Parentheses: ' (?:),

In Figure 2-3, we use the parentheses of the I(\.[0-9]x)? part for their
grouping property, so we could apply a question mark to the whole of
\.[0-9]1% and make it optional. Still, as a side effect, text matched within
these parentheses is captured and saved to $2, which we don’t use. Wouldn’t
it be better if there were a type of parentheses that we could use for group-
ing which didn’t involve the overhead (and possible confusion) of capturing
and saving text to a variable that we never intend to use?

Perl, and recently some other regex flavors, do provide a way to do this.
Rather than using (--), which group and capture, you can use the special
notation (?:), which group but do not capture. With this notation, the
“opening parentheses” is the three-character sequence (?:, which certainly
looks odd. This use of ‘?” has no relation to the “optional” '?) metacharacter.
(Peek ahead to page 90 for a note about why this odd notation was chosen.)

So, the whole expression becomes:

if ($input =" m/" ([-+]12[0-9]1+(2:\.[0-9]1%)?) ([CF])s/)
Now, even though the parentheses surrounding '[CF], are ostensibly the third
set, the text they match goes to $2 since, for counting purposes, the [(?:-),
set doesn’t, well, count.

The benefits of this are twofold. One is that by avoiding the unnecessary
capturing, the match process is more efficient (efficiency is something we’ll
look at in great detail in Chapter 6). Another is that, overall, using exactly the
type of parentheses needed for each situation may be less confusing later to
someone reading the code who might otherwise be left wondering about the
exact nature of each set of parentheses.

On the other hand, the /(?:-), notation is somewhat unsightly, and perhaps
makes the expression more difficult to grasp at a glance. Are the benefits
worth it? Well, personally, I tend to use exactly the kind of parentheses I
need, but in this particular case, it's probably not worth the confusion. For
example, efficiency isn’t really an issue since the match is done just once (as
opposed to being done repeatedly in a loop).

Throughout this chapter, I'll tend to use [(--), even when I don’t need their
capturing, just for their visual clarity.

The similarity is convenient, but I can’t stress enough how important it is to main-
tain the distinction between the different types of metacharacters. It may not seem
important for such a simple example as \t, but as we'll later see when looking at
numerous different languages and tools, knowing which metacharacters are being
used in each situation is extremely important.

46 Chapter 2: Extended Introductory Examples

Quiz Answer

¢ Answer to the question on page 44.
How do '[- ¥] * and - » | i compare?

(- W«), allows either I+ % or * to match, which allows either some spaces
(or nothing) or some tabs (or nothing). It doesn’t, however, allow a combi-
nation of spaces and tabs.

On the other hand, 'T - ®] *, matches [- ®]; any number of times. With a string
such as ‘- -’ it matches three times, a tab the first time and spaces the rest.

[-F]* is logically equivalent to (- |®&)«*, although for reasons shown in
Chapter 4, a character class is often much more efficient.

We have already seen multiple sets of metacharacters conflict. In Chapter 1, while
working with egrep, we generally wrapped our regular expressions in single
quotes. The whole egrep command line is written at the command-shell prompt,
and the shell recognizes several of its own metacharacters. For example, to the
shell, the space is a metacharacter that separates the command from the arguments
and the arguments from each other. With many shells, single quotes are metachar-
acters that tell the shell to not recognize other shell metacharacters in the text
between the quotes. (DOS uses double quotes.)

Using the quotes for the shell allows us to use spaces in our regular expression.
Without the quotes, the shell would interpret the spaces in its own way instead of
passing them through to egrep to interpret in its way. Many shells also recognize
metacharacters such as §, =, ?, and so on—characters that we are likely to want to
use in a regex.

Now, all this talk about other shell metacharacters and Perl’s string metacharacters
has nothing to do with regular expressions themselves, but it has everything to do
with using regular expressions in real situations. As we move through this book,
we’ll see numerous (sometimes complex) situations where we need to take advan-
tage of multiple levels of simultaneously interacting metacharacters.

And what about this "\b; business? This is a regex thing: in Perl regular expres-
sions, \b; normally matches a word boundary, but within a character class, it
matches a backspace. A word boundary would make no sense as part of a class,
so Perl is free to let it mean something else. The warnings in the first chapter
about how a character class’s “sub language” is different from the main regex lan-
guage certainly apply to Perl (and every other regex flavor as welD).

Matching Text with Regular Expressions 47

Generic “whitespace” with \s

While discussing whitespace, we left off with [-\t]+,. This is fine, but many regex
flavors provide a useful shorthand: \s. While it looks similar to something like '\t
which simply represents a literal tab, the metacharacter \s, is a shorthand for a
whole character class that matches any “whitespace character” This includes
(among others) space, tab, newline, and carriage return. With our example, the
newline and carriage return don’t really matter one way or the other, but typing
\s* is easier than '[-\t]*. After a while, you get used to seeing it, and "\sx,
becomes easy to read even in complex regular expressions.

Our test now looks like:
$input =" m/" ([-+]1?2[0-9]1+(\.[0-9]%)?)\s*([CF])$/

Lastly, we want to allow a lowercase letter as well as uppercase. This is as easy as
adding the lowercase letters to the class: [CFcf]. However, I'd like to show
another way as well:

$input =7 m/”" ([-+]1?2[0-9]1+(\.[0-9]1%)?)\sx ([CF])$/i

The added i is called a modifier, and placing it after the m/ -/ instructs Perl to do
the match in a case-insensitive manner. It's not actually part of the regex, but part
of the m/-/ syntactic packaging that tells Perl what you want to do (apply a
regex), and which regex to do it with (the one between the slashes). We've seen
this type of thing before, with egrep’s -i option (= 15).

It’s a bit too cumbersome to say “the i modifier” all the time, so normally “/i” is
used even though you don’t add an extra / when actually using it. This /i nota-
tion is one way to specify modifiers in Perl —in the next chapter, we’ll see other
ways to do it in Perl, and also how other languages allow for the same functional-
ity. We'll also see other modifiers as we move along, including /g (“global match”)
and /x (“free-form expressions”) later in this chapter.

Well, we’ve made a lot of changes. Let’s try the new program:

% perl -w convert

Enter a temperature (e.g., 32F, 100C):
32 £

0.00 C is 32.00 F

% perl -w convert

Enter a temperature (e.g., 32F, 100C):
50 c

10.00 C is 50.00 F

Oops! Did you notice that in the second try we thought we were entering 50° Cel-
sius, yet it was interpreted as 50° Fahrenheit? Looking at the program’s logic, do
you see why?

48 Chapter 2: Extended Introductory Examples

Let’s look at that part of the program again:
if ($input =" m/" ([-+12[0-9]1+(\.[0-91*)?)\s* ([CF])$/1)
{
$£ype = $3; # saveto a named variable to make rest of program more readable

if ($type eq "C") { # ‘eq’testsif two strings are equal

} elée {

Although we modified the regex to allow a lowercase £, we neglected to update
the rest of the program appropriately. As it is now, if $type isn’t exactly ‘C’, we
assume the user entered Fahrenheit. Since we now also allow ‘c’ to mean Celsius,
we need to update the $type test:

if (Stype eq "C" or $type eqg "c") {

Actually, since this is a book on regular expressions, perhaps I should use:
if (Stype =~ m/c/i) {

In either case, it now works as we want. The final program is shown below. These
examples show how the use of regular expressions can become intertwined with
the rest of the program.

Temperature-conversion program — final listing

print "Enter a temperature (e.g., 32F, 100C):\n";
Sinput = <STDIN>; # 7his reads one line from the user.

chomp ($input) ; # This removes the ending newline from $input.
if ($input =" m/" ([-+]12[0-9]1+(\.[0-9]1%)?)\sx([CF])$/1)
{
If we get in bere, we had a match. $1 is the number, $3 is "C" or "F".
SInputNum = $1; # Saveto named variables to make the ...
Stype = $3; # ..vrestofthe program easier to read.
if (Stype =~ m/c/i) { # Isit "c”"or"C"?

The input was Celsius, so calculate Fabrenbeit
Scelsius = $InputNum;
Sfahrenheit = (Scelsius * 9 / 5) + 32;
} else {
If not "C", it must be an "F", so calculate Celsius
Sfahrenheit = $InputNum;
Scelsius = ($fahrenheit - 32) * 5 / 9;
}
At this point we have both temperatures, so display the results:
printf "%$.2f C is %.2f F\n", $celsius, S$fahrenheit;
} else {
The initial regex did not match, so issue a warning.
print "Expecting a number followed by \"C\" or \"F\",\n";
print "so I don’t understand \"$input\".\n";

Matching Text with Regular Expressions 49

Intermission

Although we have spent much of this chapter coming up to speed with Perl,
we've encountered a lot of new information about regexes:

1.

Most tools have their own particular flavor of regular expressions. Perl’s
appear to be of the same general type as egrep’s, but has a richer set of meta-
characters. Many other languages, such as Java, Python, the .NET languages,
and Tcl, have flavors similar to Perl’s.

Perl can check a string in a variable against a regex using the construct
$variable ="~ m/regex/. The m indicates that a maich is requested, while the
slashes delimit (and are not part of) the regular expression. The whole test,
as a unit, is either true or false.

The concept of metacharacters — characters with special interpretations — is
not unique to regular expressions. As discussed earlier about shells and dou-
ble-quoted strings, multiple contexts often vie for interpretation. Knowing the
various contexts (shell, regex, and string, among others), their metacharacters,
and how they can interact becomes more important as you learn and use
Perl, PHP, Java, Tcl, GNU Emacs, awk, Python, or other advanced languages.
(And of course, within regular expressions, character classes have their own
mini language with a distinct set of metacharacters.)

Among the more useful shorthands that Perl and many other flavors of regex
provide (some of which we haven’t seen yet) are:
\t a tab character
\n a newline character
\r a carriage-return character
\s matches any “whitespace” character (space, tab, newline, formfeed, and such)
\s anything not '\
\w [a-zA-Z0-9_], (useful as in "\w+, ostensibly to match a word)
\w anything not \w, i.e., [“a-zA-20-9_],
\d [0-9], i.e., a digit
\D anything not\d, i.e., ["0-9]
The /i modifier makes the test case-insensitive. Although written in prose as

“/i% only “i” is actually appended after the match operator’s closing
delimiter.

The somewhat unsightly [(?:); non-capturing parentheses can be used for
grouping without capturing.

After a successful match, Perl provides the variables $1, $2, $3, etc., which
hold the text matched by their respective (), parenthesized subexpressions
in the regex. In concert with these variables, you can use a regex to pluck
information from a string. (Other languages provide the same type of infor-
mation in other ways; we’ll see many examples in the next chapter.)

50 Chapter 2: Extended Introductory Examples

Subexpressions are numbered by counting open parentheses from the left,
starting with one. Subexpressions can be nested, as in ((Washington (-DC) ?),
Raw (), parentheses can be intended for grouping only, but as a byproduct,
they still capture into one of the special variables.

Modifying Text with Regular Expressions

So far, the examples have centered on finding, and at times, “plucking out” infor-
mation from a string. Now we look at substitution (also called search and
replace), a regex feature that Perl and many tools offer.

As we have seen, $var =~ m/regex/ attempts to match the given regular expres-
sion to the text in the given variable, and returns true or false appropriately. The
similar construct $var =~ s/regex/replacement/ takes it a step further: if the regex
is able to match somewhere in the string held by $var, the text actually matched
is replaced by replacement. The regex is the same as with m/. -/, but the replace-
ment (between the middle and final slash) is treated as a double-quoted string.
This means that you can include references to variables, including $1, $2, and so

on to refer to parts of what was just matched.

Thus, with $var =~ s/--/-/ the value of the variable is actually changed. (If
there is no match to begin with, no replacement is made and the variable is left
unchanged.) For example, if $var contained Jeff -Friedl and we ran

Svar =~ s/Jeff/Jeffrey/;
$var would end up with Jeffrey -Friedl. And if we did that again, it would end
up with Jeffreyrey -Friedl. To avoid that, perhaps we should use a word-
boundary metacharacter. As mentioned in the first chapter, some versions of egrep
support \<; and \> for their start-of~word and end-of-word metacharacters. Perl,
however, provides the catch-all '\b, which matches either:

svar =~ s/\bJdeff\b/Jeffrey/;

Here’s a slightly tricky quiz: like m/--/, the s/ /--/ operation can use modifiers,
such as the /i from page 47. (The modifier goes after the replacement.) Practically
speaking, what does

$var =" s/\bJeff\b/Jeff/i;

accomplish? ¢ Flip the page to check your answer.
Example: Form Letter

Let’s look at a rather humorous example that shows the use of a variable in the
replacement string. I can imagine a form-letter system that might use a letter tem-
plate with markers for the parts that must be customized for each letter.

Modifying Text with Regular Expressions 51

Here’s an example:

Dear =FIRST=,

You have been chosen to win a brand new =TRINKET=! Free!
Could you use another =TRINKET= in the =FAMILY= household?
Yes =SUCKER=, I bet you could! Just respond by.....

To process this for a particular recipient, you might have the program load:

$given = "Tom";
Sfamily = "Cruise";
swunderprize = "100% genuine faux diamond";

Once prepared, you could then “fill out the form” with:

$letter =~ s/=FIRST=/$given/g;

Sletter =~ s/=FAMILY=/$family/g;

Sletter =~ s/=SUCKER=/$given S$family/g;

Sletter =~ s/=TRINKET=/fabulous S$wunderprize/g;

Each substitution’s regex looks for a simple marker, and when found, replaces it
with the text wanted in the final message. The replacement part is actually a Perl
string in its own right, so it can reference variables, as each of these do. For exam-
ple, the marked portion of s/=TRINKET=/fabulous $wunderprize/g is inter-
preted just like the string "fabulous $wunderprize". If you just had the one
letter to generate, you could forego using variables in the replacement string alto-
gether, and just put the desired text directly. But, using this method makes
automation possible, such as when reading names from a list.

We haven'’t seen the /g “global replacement” modifier yet. It instructs the s/--/--/
to continue trying to find more matches, and make more replacements, after (and
from where) the first substitution completes. This is needed if each string we
check could contain multiple instances of the text to be replaced, and we want
each substitution to replace them all, not just one.

The results are predictable, but rather humorous:

Dear Tom,

You have been chosen to win a brand new fabulous 100% genuine faux diamond! Free!
Could you use another fabulous 100% genuine faux diamond in the Cruise household?
Yes Tom Cruise, I bet you could! Just respond by

Example: Prettifying a Stock Price

As another example, consider a problem I faced while working on some stock-
pricing software with Perl. I was getting prices that looked like “9.0500000037272"
The price was obviously 9.05, but because of how a computer represents the num-
ber internally, Perl sometimes prints them this way unless special formatting is
used. Normally, T would just use printf to display the price with exactly two dec-
imal digits as I did in the temperature-conversion example, but that was not

52 Chapter 2: Extended Introductory Examples

Quiz Answer

¢ Answer to the question on page 50.
Just what does $var =~ s/\bJeff\b/Jeff/i do?

It might be tricky because of the way I posed it. Had I used \bJEFF\b or
\bjeff\b; or perhaps \bjEfF\b as the regex, the intent might have been
more obvious. Because of /i, the word “Jeff” will be found without regard to
capitalization. It will then be replaced by ‘Jeff’, which has exactly the capi-
talization you see. (/i has no effect on the replacement text, although there
are other modifiers examined in Chapter 7 that do.)

The end result is that “jeff’, in any capitalization, is replaced by exactly
‘Jeff’.

appropriate in this case. At the time, stock prices were still given as fractions, and
a price that ended with, say, !/s, should be shown with three decimals (“.125"),
not two.

I boiled down my needs to “always take the first two digits after the decimal point,
and take the third digit only if it is not zero. Then, remove any other digits” The
result is that 12.3750000000392 or the already correct 12.375 is returned as
“12.375% yet 37.500 is reduced to “37.50” Just what I wanted.

So, how would we implement this? The variable $price contains the string in
question, so let’s use:
sprice =~ s/(\.\d\d[1-9]1?)\dx/$1/

(Reminder: \d@ was introduced on page 49, and matches a digit.)

The initial '\ ., causes the match to start at the decimal point. The subsequent '\d\d,
then matches the first two digits that follow. The [1-9]? matches an additional
non-zero digit if that's what follows the first two. Anything matched so far is what
we want to keep, so we wrap it in parentheses to capture to $1. We can then use
$1 in the replacement string. If this is the only thing that matches, we replace
exactly what was matched with itself — not very useful. However, we go on to
match other items outside the $1 parentheses. They don’t find their way to the
replacement string, so the effect is that they’re removed. In this case, the “to be
removed” text is any extra digits, the \dx, at the end of the regex.

Keep this example in mind, as we’ll come back to it in Chapter 4 when looking at
the important mechanics of just what goes on behind the scenes during a match.
Some very interesting lessons can be learned by playing with this example.

Modifying Text with Regular Expressions 53

Automated Editing

I encountered another simple yet real-world example while working on this chap-
ter. I was logged in to a machine across the Pacific, but the network was particu-
larly slow. Just getting a response from hitting RETURN took more than a minute,
but T needed to make a few small changes to a file to get an important program
going. In fact, all I wanted to do was change every occurrence of sysread to
read. There were only a few such changes to make, but with the slow response,
the idea of starting up a full-screen editor was impractical.

Here’s all T did to make all the changes I needed:

% perl -p -i -e ’s/sysread/read/g’ file

This runs the Perl program s/sysread/read/g. (Yes, that's the whole program —
the -e flag indicates that the entire program follows right there on the command
line.) The -p flag results in the substitution being done for every line of the named
file, and the -1i flag causes any changes to be written back to the file when done.

Note that there is no explicit target string for the substitute command to work on
(that is, no $var =~) because conveniently, the -p flag implicitly applies the
program, in turn, to each line of the file. Also, because I used the /g modifier, 'm
sure to replace multiple occurrences that might be in a line.

Although T applied this to only one file, I could have easily listed multiple files on
the command line and Perl would have applied my substitution to each line of
each file. This way, I can do mass editing across a huge set of files, all with one
simple command. The particular mechanics with which this was done are unique
to Perl, but the moral of the story is that regular expressions as part of a scripting
language can be very powerful, even in small doses.

A Small Mail Utility

Let’s work on another example tool. Let's say we have an email message in a file,
and we want to prepare a file for a reply. During the preparation, we want to
quote the original message so we can easily insert our own reply to each part. We
also want to remove unwanted lines from the header of the original message, as
well as prepare the header of our own reply.

The sidebar shows an example. The header has interesting fields — date, subject,
and so on—but also much that we are not interested in that we’ll want to remove.
If the script we’re about to write is called mkreply, and the original message is in
the file king.in, we would make the reply template with:

% perl -w mkreply king.in > king.out

(In case you've forgotten, the -w option enables extra Perl warnings s 38.)

54 Chapter 2: Extended Introductory Examples

A Sample Email Message

From elvis Thu Feb 29 11:15 2007

Received: from elvis@localhost by tabloid.org (8.11.3) id KA8CMY
Received: from tabloid.org by gateway.net (8.12.5/2) id N8XBK
To: jfriedl@regex.info (Jeffrey Friedl)

From: elvis@tabloid.org (The King)

Date: Thu, Feb 29 2007 11:15

Message-Id: <2007022939939.KA8CMY@Rtabloid.org>

Subject: Be seein’ ya around

Reply-To: elvis@hh.tabloid.org

X-Mailer: Madam Zelda’s Psychic Orb [version 3.7 PL92]

Sorry I haven’t been around lately. A few years back I checked
into that ole heartbreak hotel in the sky, ifyaknowwhatImean.
The Duke says "hi".

Elvis

We want the resulting file, king.out, to contain something like:

To: elvis@hh.tabloid.org (The King)
From: jfriedl@regex.info (Jeffrey Friedl)
Subject: Re: Be seein’ ya around

On Thu, Feb 29 2007 11:15 The King wrote:

|> Sorry I haven’t been around lately. A few years back I checked
|> into that ole heartbreak hotel in the sky, ifyaknowwhatImean.
|> The Duke says "hi".

| > Elvis

Let’s analyze this. To print out our new header, we need to know the destination
address (in this case elvis@hh.tabloid.org, derived from the Reply-To field of
the original), the recipient’s real name (The King), our own address and name, as
well as the subject. Additionally, to print out the introductory line for the message
body, we need to know the message date.

The work can be split into three phases:
1. Extract information from the message header.
2. Print out the reply header.
3. Print out the original message, indented by ‘|>-’.

I'm getting a bit ahead of myself —we can’t worry about processing the data until
we determine how to read the data into the program. Fortunately, Perl makes this
a breeze with the magic “<>” operator. This funny-looking construct gives you the
next line of input when you assign from it to a normal $variable, as with
“$variable = <>" The input comes from files listed after the Perl script on the
command line (from king.in in the previous example).

Don’t confuse the two-character operator <> with the shell’s “> filename” redirec-
tion or Perl’s greater-than/less-than operators. It is just Perl’s funny way to express
a kind of a getline () function.

Modifying Text with Regular Expressions 55

Once all the input has been read, <> conveniently returns an undefined value
(which is interpreted as a Boolean false), so an entire file can be processed with:

while ($line = <>) {
... work with $line here ...

}

We’ll use something similar for our email processing, but the nature of email
means we need to process the header specially. The header includes everything
before the first blank line; the body of the message follows. To read only the
header, we might use:

Process the beader
while ($line = <>) {
if ($line =~ m/"\s*$/) {
last; # stop processing within this while loop, continue below
}
... process header line here ...
}

... processing for the rest of the message follows ...

We check for the header-ending blank line with the expression "\s*$, It checks
to see whether the target string has a beginning (as all do), followed by any num-
ber of whitespace characters (although we aren’t really expecting any except the
newline character that ends each line), followed by the end of the string.! The
keyword last breaks out of the enclosing while loop, stopping the header-line
processing.

So, inside the loop, after the blank-line check, we can do whatever work we like
with each header line. In this case, we need to extract information, such as the
subject and date of the message.

To pull out the subject, we can employ a popular technique we’ll use often:

if ($line =~ m/"Subject: (.*)/i) {

Ssubject = $1;

}
This attempts to match a string beginning with ‘Subject: -, having any capitaliza-
tion. Once that much of the regex matches, the subsequent ' . x; matches whatever
else is on the rest of the line. Since the ! . x is within parentheses, we can later use
$1 to access the text of the subject. In our case, we just save it to the variable
$subject. Of course, if the regex doesn’t match the string (as it won’t with most),
the result for the if is false and $subject isn’t set for that line.

t 1 use the word “string” instead of “line” because, although it’s not really an issue with this particular
example, regular expressions can be applied to a string that contains a multiline chunk of text. The
caret and dollar anchors (normally) match only at the start and end of the string as a whole (we’ll
see a counter example later in this chapter). In any case, the distinction is not vital here because, due
to the nature of our algorithm, we know that $1ine never has more than one logical line.

56 Chapter 2: Extended Introductory Examples

A Warning About ' . x|

The expression . x| is often used to mean “a bunch of anything,” since dot
can match anything (with some tools, anything except newlines) and star
means that any amount is allowed, but none required. This can be quite
useful.

However, some hidden “gotchas” can bite the user who doesn’t fully under-
stand the implications of how it works when used as part of a larger expres-
sion. We've already seen one example (e 206), and will see many more in
Chapter 4 when this topic is discussed in depth (e 164).

Similarly, we can look for the Date and Reply-To fields:

if ($line =~ m/"Date: (.*)/i) {
$date = $1;

}

if ($line =~ m/"Reply-To: (.*)/i) {

Sreply_address = $1;
}
The From: line involves a bit more work. First, we want the one that begins with
‘From:’, not the more cryptic first line that begins with ‘From-’. We want:

From: elvis@tabloid.org (The King)

It has the originating address, as well as the name of the sender in parentheses;
our goal is to extract the name.

To match up through the address, we can use "From: - (\S+). As you might guess,
\s) matches anything that’s not whitespace (i 49), so '\S+ matches up until the
first whitespace (or until the end of the target text). In this case, that’s the originat-
ing address. Once that’s matched, we want to match whatever is in parentheses.
Of course, we also need to match the parentheses themselves. This is done using
\ (and '\),, escaping the parentheses to remove their special metacharacter mean-
ing. Inside the parentheses, we want to match anything—anything except another
parenthesis! That's accomplished with [~ ()1+. Remember, the character-class
metacharacters are different from the “normal” regex metacharacters; inside a char-
acter class, parentheses are not special and do not need to be escaped.

So, putting this all together we get:
"From: - (\S+) -\ (([" () 1%)\).

At first it might be a tad confusing with all those parentheses, so Figure 2-4 on the
facing page shows it more clearly.

Modifying Text with Regular Expressions 57

“non-parentheses” character class

literal parentheses ‘

AFrom: (\S+) \(([A()1*)\)

capture to $1 capture to $2

Figure 2-4: Nested parentheses; $1 and $2

When the regex from Figure 2-4 matches, we can access the sender’s name as $2,
and also have $1 as a possible return address:
if ($line =" m/"From: (\S+) \((["()1*)\)/i) {
$reply_address = $1;
$from_name = $2;

}
Since not all email messages come with a Reply-To header line, we use $1 as a
provisional return address. If there turns out to be a Reply-To field later in the
header, we’ll overwrite $reply_address at that point. Putting this all together, we
end up with:

while ($line = <>)
{
if ($line =~ m/"\sx$/) { # Ifwebave an empty line...
last; # this immediately ends the ‘while’ loop.
}

if ($line =~ m/"Subject: (.*)/i) {
Ssubject = $1;

if ($line =~ m/"Date: (.*)/i) {
Sdate = $1;

}

if ($line =~ m/"Reply-To: (\S+)/i) {

Sreply_address = $1;

if ($line =~ m/"From: (\S+) \((["()1*)\)/i) {
$Sreply_address = $1;
$from_name = $2;

}

Each line of the header is checked against all the regular expressions, and if it
matches one, some appropriate variable is set. Many header lines won't be
matched by any of the regular expressions, and so end up being ignored.

58 Chapter 2: Extended Introductory Examples

Once the while loop is done, we are ready to print out the reply header:'

print "To: S$reply_address ($Sfrom_name)\n";

print "From: jfriedl\@regex.info (Jeffrey Friedl)\n";

print "Subject: Re: $subject\n";

print "\n" ; # blank line to separate the beader from message body.
Notice how we add the Re: to the subject to informally indicate that it is a reply.
Finally, after the header, we can introduce the body of the reply with:

print "On $date $from_name wrote:\n";

Now, for the rest of the input (the body of the message), we want to print each
line with ‘|>-" prepended:
while ($line = <>) {
print "|> $line";
}
Here, we don’t need to provide a newline because we know that $1ine contains
one from the input.

It is interesting to see that we can rewrite the code to prepend the quoting marker
using a regex construct:

$line =~ s/"/1> /;
print $line;

~

The substitute searches for *, which of course immediately matches at the begin-
ning of the string. It doesn’t actually match any characters, though, so the substi-
tute “replaces” the “nothingness” at the beginning of the string with ‘|>.". In effect,
* at the beginning of the string. It's a novel use of a regular expres-
sion that is gross overkill in this particular case, but we'll see similar (but much
more useful) examples later in this chapter.

it inserts ‘| >

Real-world problems, real-world solutions

It’s hard to present a real-world example without pointing out its real-world short-
comings. First, as I have commented, the goal of these examples is to show regu-
lar expressions in action, and the use of Perl is simply a vehicle to do so. The Perl
code I've used here is not necessarily the most efficient or even the best approach,
but, hopefully, it clearly shows the regular expressions at work.

Also, real-world email messages are far more complex than indicated by the sim-
ple problem addressed here. A From: line can appear in various different formats,
only one of which our program can handle. If it doesn’t match our pattern exactly,
the $from_name variable never gets set, and so remains undefined (which is a
kind of “no value” value) when we attempt to use it. The ideal fix would be to
update the regex to handle all the different address/name formats, but as a first

t In Perl regular expressions and double-quoted strings, most ‘@’ must be escaped (s 77).

Modifying Text with Regular Expressions 59

step, after checking the original message (and before printing the reply template),
we can put:

if (not defined(Sreply_address)
or not defined($from_name)
or not defined($subject)
or not defined($date))
{
die "couldn’t glean the required information!";

}

Perl’s defined function indicates whether the variable has a value, while the die
function issues an error message and exits the program.

Another consideration is that our program assumes that the From: line appears
before any Reply-To: line. If the From: line comes later, it overwrites the
$reply_address we took from the Reply-To: line.

The “real” real world

Email is produced by many different types of programs, each following their own
idea of what they think the standard is, so email can be tricky to handle. As I dis-
covered once while attempting to write some code in Pascal, it can be extremely
difficult without regular expressions. So much so, in fact, that T found it easier to
write a Perl-like regex package in Pascal than attempt to do everything in raw Pas-
cal! T had taken the power and flexibility of regular expressions for granted until T
entered a world without them. I certainly didn’t want to stay in that world long.

Adding Commas to a Number with LooRaround

Presenting large numbers with commas often makes reports more readable. Some-
thing like

print "The US population is $pop\n";
might print out “The US population is 298444215 but it would look more natural
to most English speakers to use “298,444,215” instead. How might we use a regu-
lar expression to help?

Well, when we insert commas mentally, we count sets of digits by threes from the
right, and insert commas at each point where there are still digits to the left. It'd be
nice if we could apply this natural process directly with a regular expression, but
regular expressions generally work left-to-right. However, if we distill the idea of
where commas should be inserted as “locations having digits on the right in exact
sets of three, and at least some digits on the left] we can solve this problem easily
using a set of relatively new regex features collectively called lookaround.

Lookaround constructs are similar to word-boundary metacharacters like \b; or the
anchors 17 and '$; in that they don’t match text, but rather match positions within

60 Chapter 2: Extended Introductory Examples

the text. But, lookaround is a much more general construct than the special-case
word boundary and anchors.

One type of lookaround, called lookabead, peeks forward in the text (toward the
right) to see if its subexpression can match, and is successful as a regex compo-
nent if it can. Positive lookahead is specified with the special sequence (?=-),
such as with /(?=\d), which is successful at positions where a digit comes next.
Another type of lookaround is lookbehind, which looks back (toward the left). It’s
given with the special sequence /(?<=), such as [(?<=\d), which is successful at
positions with a digit to the left (i.e., at positions after a digit).

Lookaround doesn’t “consume” text

An important thing to understand about lookahead and other lookaround con-
structs is that although they go through the motions to see if their subexpression is
able to match, they don’t actually “consume” any text. That may be a bit confus-
ing, so let me give an example. The regex 'Jeffrey matches

by Jeffrey Friedl.
but the same regex within lookahead, /(?=Jeffrey), matches only the marked
location in:

by Jeffrey Friedl.

Lookahead uses its subexpression to check the text, but only to find a location in
the text at which it can be matched, not the actual fext it matches. But, combining
it with something that does match text, such as lgeff, allows us to be more spe-
cific than Igeff alone. The combined expression, [(?=Jeffrey)Jeff, illustrated in
the figure on the facing page, effectively matches “Jeff” only if it is part of “Jeffrey”
It does match:
by Jeffrey Friedl.
just like Igef £, alone would, but it doesn’t match on this line:

by Thomas Jefferson

By itself, geff; would easily match this line as well, but since there’s no position
at which [(?=Jeffrey), can match, they fail as a pair. Don’t worry too much if the
benefit of this doesn't seem obvious at this point. Concentrate now on the
mechanics of what lookahead means—we’ll soon see realistic examples that illus-
trate their benefit more clearly.

It might be insightful to realize that ((?=Jeffrey)Jeff is effectively the same as
'Jeff (?=rey). Both match “Jeff” only if it is part of “Jeffrey”

It's also interesting to realize that the order in which they’re combined is very
important. '[Jeff (?=Jeffrey), doesn’t match any of these examples, but rather
matches “Jeff” only if followed immediately by “Jeffrey”

Modifying Text with Regular Expressions 61

Actual match

"by Jeffrey Friedl"
A A

Matched while checking S =
lookahead

Result of lookahead

(2=Jeffrey)Jets
| 1

I
Regex

Figure 2-5: How!(?=Jeffrey)Jeff) is applied

Another important thing to realize about lookaround constructs concerns their
somewhat ungainly notation. Like the non-capturing parentheses “(2:--)” intro-
duced on page 45, these constructs use special sequences of characters as their
“open parenthesis” There are a number of such special “open parenthesis”
sequences, but they all begin with the two-character sequence “(2” The character
following the question mark tells what special function they perform. We've
already seen the group-but-don’t-capture “(?:-)" lookahead “(?=--)" and look-
behind “(?<=-)” constructs, and we will see more as we go along.

A few more lookabead examples

We'll get to adding commas to numbers soon, but first let’s see a few more exam-
ples of lookaround. We'll start by making occurrences of “Jeffs” possessive by
replacing them with “Jeff’s” This is easy to solve without any kind of lookaround,
with s/Jeffs/Jeff’s/g. (Remember, the /g is for “global replacement” s 51.)
Better yet, we can add word-boundary anchors: s/\bJeffs\b/Jeff’'s/g.

We might even use something fancy like s/\b(Jeff) (s)\b/$1’$2/g, but this
seems gratuitously complex for such a simple task, so for the moment we’ll stick
with s/\bJeffs\b/Jeff’s/g. Now, compare this with:

s/\bJeff (?=s\b) /Jeff’ /g

The only change to the regular expression is that the trailing 's\b, is now within
lookahead. Figure 2-6 on the next page illustrates how this regex matches. Corre-
sponding to the change in the regex, the ‘s’ has been removed from the replace-
ment string.

After [Jef £ matches, the lookahead is attempted. It is successful only if 's\b can
match at that point (i.e., if ‘s’ and a word boundary is what follows ‘Jeff’). But,
because the [s\b, is part of a lookahead subexpression, the ‘s’ it matches isn’t actu-
ally considered part of the final match. Remember, while 'geff, selects text, the
lookahead part merely “selects” a position. The only benefit, then, to having the

62 Chapter 2: Extended Introductory Examples

Actual match

"see Jeffs book"

['

AL 7 Matched while checking lookahead
Result of lookahead
r
\b Jeff (?=s\b)

Figure 2-6: How'\bJeff (?=s\b) is applied

lookahead in this situation is that it can cause the whole regex to fail in some
cases where it otherwise wouldn’t. Or, another way to look at it, it allows us to
check the entire 'gef fs; while pretending to match only 'Jeff,

Why would we want to pretend to match less than we really did? In many cases,
it's because we want to recheck that same text by some later part of the regex, or
by some later application of the regex. We see this in action in a few pages when
we finally get to the number commafication example. The current example has a
different reason: we want to check the whole of 'gJeffs| because that’s the situa-
tion where we want to add an apostrophe, but if we actually match only ‘Jeff’,
that allows the replacement string to be smaller. Since the ‘s’ is no longer part of
the match, it no longer needs to be part of what is replaced. That’s why it’s been
removed from the replacement string.

So, while both the regular expressions and the replacement string of each example
are different, in the end their results are the same. So far, these regex acrobatics
may seem a bit academic, but I'm working toward a goal. Let’s take the next step.

When moving from the first example to the second, the trailing 's; was moved from
the “main” regex to lookahead. What if we did something similar with the leading
'Jeff, putting it into lookbehind? That would be (?<=\bJeff) (?=s\b), which
reads as “find a spot where we can look behind to find ‘geff’, and also look
ahead to find ‘s’” It exactly describes where we want to insert the apostrophe. So,
using this in our substitution gives:

s/ (?<=\bJeff) (?=s\b) /' /g

Well, this is getting interesting. The regex doesn’t actually match any text, but
rather matches at a position where we wish to insert an apostrophe. At such loca-
tions, we then “replace” the nothingness we just matched with an apostrophe. Fig-
ure 2-7 illustrates this. We saw this exact type of thing just a few pages ago with
the s/"~/1>-/ used to prepend ‘| >-’ to the line.

Modifying Text with Regular Expressions 63

Actual match point

"see Jeffs book"

YW W WYYV Matched while checking lookahead

Result of lookahead

Result of lookbehin

(2<=\b J‘eff)H(?=s\lf>)\J

I
Regex

Figure 2-7: How'(?<=\bJeff) (?=s\b), is applied

Would the meaning of the expression change if the order of the two lookaround
constructs was switched? That is, what does s/ (?=s\b) (?<=\bJeff)/’'/g do?
#¢ Turn the page to check your answer.

“Jeffs” summary Table 2-1 summarizes the various approaches we've seen to
replacing Jeffs with Jeff’s.

Table 2-1: Approaches to the “Jeffs” Problem

Solution Comments

s/\bJeffs\b/Jeff’'s/g The simplest, most straightforward, and efficient solution; the
one I'd use if I weren't trying to show other interesting ways to
approach the same problem. Without lookaround, the regex

“consumes” the entire ‘Jeffs’.

s/\b(Jeff) (s)\b/S1'$2/g Complex without benefit. Still consumes entire ‘Jeffs’.

s/\bJeff (?=s\b) /Jeff’/g Doesn’t actually consume the ‘s’, but this not of much practical
value here except to illustrate lookahead.

s/ (?<=\bJeff) (?=s\b)/’/g This regex doesn’t actually “consume” any text. It uses both
lookahead and lookbehind to match positions of interest, at
which an apostrophe is inserted. Very useful to illustrate
lookaround.

s/ (?=s\b) (?<=\bJeff)/’'/g This is exactly the same as the one above, but the two
lookaround tests are reversed. Because the tests don’t consume
text, the order in which they’re applied makes no difference to

whether there’s a match.

Before moving back to the adding-commas-to-numbers example, let me ask one
question about these expressions. If I wanted to find “Jeffs” in a case-insensitive
manner, but preserve the original case after the conversion, which of the expres-
sions could I add /i to and have it work properly? I'll give you a hint: it won'’t

64 Chapter 2: Extended Introductory Examples

Quiz Answer

¢ Answer to the question on page 63.
What does s/ (?=s\b) (?<=\bJeff)/’/g do?

In this case, it doesn’t matter which order '(?=s\b), and [(?<=\bJeff), are
arranged. Whether “checking on the right, then the left” or the other way
around, the key is that both checks must succeed at the same position for
the combination of the two checks to succeed. For example, in the string
‘Thomas -Jefferson’, both (?=s\b),; and [(?<=\bJeff) can match (at the
two locations marked), but since there is no one position where both can be
successful, the combination of the two cannot match.

It’s fine for now to use the somewhat vague phrase “combination of the two”
to talk about this, as the meaning is fairly intuitive in this case. There are
times, however, when exactly how a regex engine goes about applying a
regex may not necessarily be quite so intuitive. Since how it works has
immediate practical effects on what our regular expressions really mean,
Chapter 4 discusses this in explicit detail.

work properly with two of them. # Think about which ones would work, and
why, and then turn the page to check your answer.

Back to the comma example . . .

You've probably already realized that the connection between the “Jeffs” example
and the comma example lies in our wanting to insert something at a location that
we can describe with a regular expression.

Earlier, we realized that we wanted to insert commas at “locations having digits on
the right in exact sets of three, and at least some digits on the left” The second
requirement is simple enough with lookbehind. One digit on the left is enough to
fulfill the “some digits on the left” requirement, and that’s [(?<=\d),.

Now for “locations having digits on the right in exact sets of three” An exact set of
three digits is \d\d\d, of course. We can wrap it with /(--) +, to allow more than
one (the “sets” of our requirement), and append '$, to ensure that nothing follows
(the “exact” of our requirement). Alone, [(\d\d\d) +$, matches sets of triple digits
to the end of the string, but when inserted into the '(?=--), lookahead construct, it
matches at locations that are even sets of triple digits from the end of the string,
such as at the marked locations in ‘123456789’. That's actually more than we want
—we don’t want to put a comma before the first digit—so we add [(?<=\d), to fur-
ther limit the match locations.

Modifying Text with Regular Expressions 65

This snippet:

Spop =" s/(2<=\4d) (?=(\d\d\d)+$)/,/g;
print "The US population is $pop\n";

indeed prints “The US population is 298,444,215” as we desire. It might, however,
seem a bit odd that the parentheses surrounding \d\d\d, are capturing parenthe-
ses. Here, we use them only for grouping, to apply the plus to the set of three dig-
its, and so don’t need their capture-to-$1 functionality.

I could have used [(?:), the non-capturing parentheses introduced in the sidebar
on page 45. This would leave the regex as [(?<=\d) (?=(?:\d\d\d)+$), This is
“better” in that it's more specific— someone reading this later won’t have to won-
der if or where the $1 associated with capturing parentheses might be used. It's
also just a bit more efficient, since the engine doesn’t have to bother remembering
the captured text. On the other hand, even with (-), the expression can be a bit
confusing to read, and with [(?:), even more so, so I chose the clearer presenta-
tion this time. These are common tradeoffs one faces when writing regular expres-
sions. Personally, T like to use I(?:-), everywhere it naturally applies (such as this
example), but opt for clarity when trying to illustrate other points (as is usually the
case in this book).

Word boundaries and negative lookaround

Let’s say that we wanted to extend the use of this expression to commafying num-
bers that might be included within a larger string. For example:

Stext = "The population of 298444215 is growing";

Stext =" s/(2<=\d) (2=(\a\&\d)+§) /, /q;

print "Stext\n";
As it stands, this doesn’t work because the '$, requires that the sets of three digits
line up with the end of the string. We can’t just remove it, since that would have it
insert a comma everywhere that there was a digit on the left, and at least three
digits on the right—we’d end up with “...of 29,8 4,4,4,215 is...”!

It might seem odd at first, but we could replace '§; with something to match a
word boundary, \b, Even though we’re dealing with numbers only, Perl’s concept
of “words” helps us out. As indicated by \w, (i 49), Perl and most other programs
consider alphanumerics and underscore to be part of a word. Thus, any location
with those on one side (such as our number) and not those on the other side
(e.g., the end of the line, or the space after a number) is a word boundary.

This “such-and-such on one side, and this-and-that on the other” certainly sounds
familiar, doesn’t it? It’s exactly what we did in the “Jeffs” example. One difference
here is that one side must 7ot match something. It turns out that what we’ve so far
been calling lookahead and lookbehind should really be called positive lookabead

66 Chapter 2: Extended Introductory Examples

Quiz Answer

¢ Answer to the question on page 64.
Which “Jeffs” solutions would preserve case when applied with /i?

To preserve case, you've got to either replace the exact characters consumed
(rather than just always inserting ‘Jeff’s’), or not consume any letters. The
second solution listed in Table 2-1 takes the first approach, capturing what is
consumed and using $1 and $2 to put it back. The last two solutions in the
table take the “don’t consume anything” approach. Since they don’t consume
text, they have nothing to preserve.

The first and third solutions hard-code the replacement string. If applied with
/1, they don’t preserve case. They end up incorrectly replacing JEFFS with
Jeff’'s and Jeff’s, respectively.

and positive lookbebind, since they are successful at positions where their subex-
pression is able to match. As Table 2-2 shows, their converse, negative lookahead
and megative lookbehind, are also available. As their name implies, they are suc-
cessful as positions where their subexpression is not able to match.

Table 2-2: Four Types of Lookaround

Type Regex Successful if the enclosed subexpression . . .
Positive Lookbehind (?<=...) | successful if can match to the left
Negative Lookbehind | (?<!...) | successtul if can not match to the left
Positive Lookahead (?=..) successful if can match to the right
Negative Lookahead (21.) successful if can not match to the right

So, if a word boundary is a position with \w, on one side and not \w, on the other,
we can use '(?<!\w) (?=\w), as a start-of-word boundary, and its complement
(?<=\w) (?!\w), as an end-of-word boundary. Putting them together, we could use
[(?<!\w) (?=\w) | (?<=\w) (?!\w),as a replacement for '\b, In practice, it would be
silly to do this for languages that natively support \b (\b is much more direct and
efficient), but the individual alternatives may indeed be useful (e 134).

For our comma problem, though, we really need only (?1\d), to cap our sets of
three digits. We use that instead of \b, or '$, which leaves us with:

Stext =7 s/ (?<=\d) (?=(\d\d\d)+(?!\d))/,/g;

This now works on text like “...tone of 12345Hz which is good, but unfortu-
nately it also matches the year in “... the 1970s ...” Actually, any of these match
“...in 1970 ...} which is not good. There’s no substitute for knowing the data

Modifying Text with Regular Expressions 67

you intend to apply a regex to, and knowing when that application is appropriate
(and if your data has year numbers, this regex is probably not appropriate).

Throughout this discussion of boundaries and what we don’t want to match, we
used negative lookahead, [(? ! \w), or[(?1\d),. You might remember the “something
not a digit” metacharacter \D; from page 49 and think that perhaps this could be
used instead of [(?1\d). That would be a mistake. Remember, in \D’s meaning of
“something not a digit, something is required, just something that’s not a digit. If
there’s nothing in the text being searched after the digit, \D, can’t match. (We saw
something similar to this back in the sidebar on page 12.)

Commafication without lookbebind

Lookbehind is not as widely supported (nor as widely used) as lookahead. Look-
ahead support was introduced to the world of regular expressions years before
lookbehind, and though Perl now has both, this is not yet true for many lan-
guages. Therefore, it might be instructive to consider how to solve the commafica-
tion problem without lookbehind. Consider:

Stext =7 s/(\d) (?=(\d\d\d)+(?!\d))/$1,/g;

The change from the previous example is that the positive lookbehind that had
been wrapped around the leading \d has been replaced by capturing parentheses,
and the corresponding $1 has been inserted into the replacement string, just
before the comma.

What about if we don’t have lookahead either? We can put the \b back for the
(1\d), but does the technique used to eliminate the lookbehind also work for
the remaining lookahead? That is, does the following work?

Stext =7 s/(\d) ((\d\d\d)+\b)/$1,$2/g;
#¢ Turn the page to check your answer.

Text-to-HTML Conversion

Let’s write a little tool to convert plain text to HTML. It's difficult to write a general
tool that’s useful for every situation, so for this section we’ll just write a simple tool
whose main goal is to be a teaching vehicle.

In all our examples to this point, we’'ve applied regular expressions to variables
containing exactly one line of text. For this project, it is easier (and more interest-
ing) if we have the entire text we wish to convert available as one big string. In
Perl, we can easily do this with:

undef $/; # Enter "file-slurp” mode.
Stext = <>; # Shup up the first file given on the command line.

68 Chapter 2: Extended Introductory Examples

Quiz Answer

¢ Answer to the question on page 67.
Does $text =~ s/(\d) ((\d\d\d)+\b)/$1,$2/g "commafy"a number?

This won’t work the way we want. It leaves results such as “281,421906. This
is because the digits matched by '(\d\d\d) + are now actually part of the
final match, and so are not left “unmatched” and available to the next itera-
tion of the regex via the /g.

When one iteration ends, the next picks up the inspection of the text at the
point where the previous match ended. We’d like that to be the point where
the comma was inserted so we can go ahead and check to see whether addi-
tional commas need to be inserted later in the same number. But, in this
case, that restarting point is at the end of all the digits. The whole point of
using lookahead was to get the positional check without actually having the
inspected text check count toward the final “string that matched?”

Actually, this expression can still be used to solve this problem. If the expres-
sion is applied repeatedly by the host language, such as via a while loop, the
newly-modified text is completely revisited each time. With each such appli-
cation, one more comma is added (to each number in the target string, due
to the /g modifier). Here’s an example:

while ($text =7 s/(\d) ((\d\d\d)+\b)/$1,82/g) {

Nothing to do inside the body of the while -- we merely want to reapply the regex until it fails
}

If our sample file contains the three short lines

This is a sample file.
It has three lines.
That’s all

the variable $text will then contain

This is a sample file.WIt has three lines./That’s allp
although depending on the system, it could instead be

This is a sample file.WWUIt has three lines.WWThat’s alllW
since most systems use a newline to end lines, but some (most notably Windows)
use a carriage-return/newline combination. We’ll be sure that our simple tool
works with either.

Cooking special characters

Our first step is to make any ‘&’, ‘<’, and ‘>’ characters in the original text “safe” by
converting them to their proper HTML encodings, ‘&’, ‘&«lt;’, and ‘>’
respectively. Those characters are special to HTML, and not encoding them

Modifying Text with Regular Expressions 69

properly can cause display problems. T call this simple conversion “cooking the
text for HTML,” and it’s fairly simple:

Stext =~ s/&/&/g; # Make the basic HTML . . .
Stext =" s/</</g; # ...characters&, < and > . ..
Stext =~ s/>/>/g; # ...HIMLsafe.

Here again, we're using /g so that all of target characters will be converted (as
opposed to just the first of each in the string if we didn’t use /g). It's important to
convert & first, since all three have ‘&’ in the replacement.

Separating paragraphs

Next, we'll mark paragraphs by separating them with the <p> paragraph-separator
HTML tag. An easy way to identify paragraphs is to consider them separated by
blank lines. There are a number of ways that we might try to identify a blank line.
At first you might be tempted to use
Stext =" s/"$/<p>/g;

to match a “start-of-line position followed immediately by an end-of-line position”
Indeed, as we saw in the answer on page 10, this would work in a tool like egrep
where the text being searched is always considered in chunks containing a single
logical line. It would also work in Perl in the context of the earlier email example
where we knew that each string contained exactly one logical line.

But, as I mentioned in the footnote on page 55, " and '$; normally refer not to log-
ical line positions, but to the absolute start- and end-of-string positions.” So, now
that we have multiple logical lines embedded within our target string, we need to
do something different.

Luckily, most regex-endowed languages give us an easy solution, an enhanced
line anchor match mode in which the meaning of I*; and '$, to change from string
related to the logical-line related meaning we need for this example. With Perl,
this mode is specified with the /m modifier:

Stext =~ s/”$/<p>/mg;

Notice how /m and /g have been combined. (When using multiple modifiers, you
can combine them in any order.) We'll see how other languages handle modifiers
in the next chapter.

)

Thus, if we start with ‘- chapter. ™/ Thus -
‘. .chapter. [<p>MThus -’ as we want.

in $text, we will end up with

It won't work, however, if there are spaces or other whitespace on the “blank”
line. To allow for spaces, we can use [~ -x$, or perhaps " [-\t\r]*$, to allow for

t Actually, 1§, is often a bit more complex than simply “end of string,” although that’s not important to
us for this example. For details, see the discussion of end-of-line anchors on page 129.

70 Chapter 2: Extended Introductory Examples

spaces, tabs, and the carriage return that some systems have before the line-end-
ing newline. These are fundamentally different from *$, alone in that these now
match actual characters, while "$, matches only a position. But, since we don’t
need those spaces, tabs, and carriage returns in this case, it’s fine to match them
(and then replace them with our paragraph tag).

If you remember \s; from page 47, you might be inclined to use "\sx$), just as we
did in the email example on page 55. If we use '\s, instead of [-\t\r], the fact
that '\s; can match a newline means that the overall meaning changes from “find
lines that are blank except for whitespace” to “find spans of lines that are blank
except for whitespace” This means that if we have several blank lines in a row,
"\s*$, is able to match them all in one shot. The fortunate result is that the
replacement leaves just one <p> instead of the several in a row we would other-
wise end up with.

Therefore, if we have the string
with. WM - & Therefore
in the variable $text, and we use
Stext =~ s/°[\t\r]=*$/<p>/mg;
we'll end up with:

with. W <p>WM <p>M <p> | Therefore

But, if we use
Stext =7 s/"\s*$/<p>/mg;
we’ll end up instead with the more desirable:

with.W<p>[Therefore

So, we'll stick with "\s=$, in our final program.

“Linkizing” an email address

The next step in our text-to-HTML converter is to recognize an email address, and
turn it into a “mailto” link. This would convert something like “jfriedl@oreilly.com”
to <a-href="mailto:jfriedl@oreilly.com">jfriedl@oreilly.com.

It's a common desire to match or validate an email address with a regular expres-
sion. The official address specification is quite complex, so to do it exactly is diffi-
cult, but we can use something less complex that works for most email addresses
we might run into. The basic form of an email address is “username@hostname’.
Before looking at just what regular expression to use for each of those parts, let’s
look at the context we’ll use them in:

$text =" s/\b(usernameregex\@hostnameregex)\b/$1<\/a>/g;

The first things to notice are the two marked backslash characters, one in the
regex (‘\@) and one toward the end of the replacement string. Each is there for a

Modifying Text with Regular Expressions 71

different reason. T'll defer the discussion of \@ until a bit later (x=77), for the
moment merely saying that Perl requires @ symbols to be escaped when used in a
regex literal.

The backslash before the ¢/’ in the replacement string is a bit more useful to talk
about at the moment. We’ve seen that the basic form of a Perl search and replace
is s/regex/replacement/modifiers, with the forward slashes delimiting the parts. Now, if
we wish to include a forward slash within one of the parts, Perl requires us to
escape it to indicate that it should not be taken as a delimiter, but rather included
as part of the regex or replacement string. This means that we would need to use
<\/a> if we wish to get into the replacement string, which is just what we
did here.

This works, but it’s a little ugly, so Perl allows us to pick our own delimiters. For
instance, stregexistringlmodifiers or s{regex}stringymodifiers. With either, since the slash
in the replacement string no longer conflicts with the delimiter, it no longer needs
to be escaped. The delimiters for the regex and string parts pair up nicely in the
second example, so I'll use that form from now on.

Returning to the code snippet, notice how the entire address part is wrapped in
\b--\b. Adding these word boundaries help to avoid an embedded match like in
‘jfriedl@oreilly.compiler’. Although running into a nonsensical string like
that is probably rare, it's simple enough to use the word boundaries to guard
against matching it when we do, so I use them. Notice also that the entire address
part is wrapped in parentheses. These are to capture the matched address, making
it available to the replacement string ‘<a-href="mailto:$1">$1".

Matching the username and bhostname

Now we turn our attention to actually matching an email address by building
those username and bostname regular expressions. Hostnames, like regex.info
‘edu’,
‘info’, ‘uk’, or other selected sequences. A simplistic approach to matching an
email address could be N\w+\@\w+ (\.\w+) +, which allows \w+, for the username
and the same for each part of the hostname. In practice, though, you’ll need
something a little more specific. For usernames, you’ll run into some with periods
and dashes in them (although rarely does a username start with one of these). So,
rather than N\w+, we'll try \w[-.\w] . This requires the name to start with a \w,
character, but then allows periods and dashes as well. (Notice how we are sure to
put the dash first in the class, to ensure that it’s taken as a literal dash, and not the
part of an a-z type of range? With many flavors, a range like .-\w is almost
certainly wrong, yielding a fairly random set of letters, numbers, and punctuation
that’s dependent on the program and the computer’s native character encoding.
Perl handles .-\w in a class just fine, but being careful with dash in a class is a
good habit to get into.)

and www.oreilly.com, consist of dot-separated parts ending with ‘com’,

72 Chapter 2: Extended Introductory Examples

The hostname part is a bit more complex in that the dots are strictly separators,
which means that there must be something in between for them to separate. This
is why even in the simplistic version earlier, the hostname part uses \w+ (\ . \w+) +,
instead of '[\w.]+. The latter incorrectly matches ‘. .x..’. But, even the former
matches in ‘Artichokes 4@1.00’, so we still need to be more specific.

One approach is to specifically list what the last component can be, along the
lines of "\w+(\.\w+)*\. (com|edu|info), (That list of alternatives really should
be com|edu|gov|int|mil|net|org|biz|info|name|museum|coop|aero| [a-2z] [a-2], but T'll
use the shorter list to keep the example uncluttered.) This allows a leading N\w+
part, along with optional additional '\ .\w+, parts, finally followed by one of the
specific ending parts we’ve listed.

Actually, \w, is not quite appropriate. It allows ASCII letters and digits, which is
good, but with some systems may allow non-ASCII letters such as &, ¢, =, &, and
with most flavors, an underscore as well. None of these extra characters are
allowed in a hostname. So, we probably should use [[a-zA-Z0-9], or perhaps
Ta-z0-91 with the /i modifier (for a case-insensitive match). Hostnames can also
have a dash as well, so we’ll use '[-a-z0-9]; (again, being careful to put the dash
first). This leaves us with [-a-z0-9]+(\.[-a-2z0-9]1+) *\. (com|edu|info) for
the hostname part.

As with all regex examples, it's important to remember the context in which they
will be used. By itself, [[-a-z0-9]1+(\.[-a-z0-9]1+) *\. (com|edu|info) could
match, say ‘run C:\\startup.command at startup’, but once we drop it into
the context of our program, we’ll be sure that it matches where we want, and not
where we don’t. In fact, I'd like to drop it right into the
Stext =" s{\b(usernameregex\@hostnameregex)\b}{$l}gi;
form mentioned earlier (updated here with the s{ -}{ -} delimiters, and the /i
modifier), but there’s no way I could get it to fit onto the page. Perl, of course,
doesn’t care if it fits nicely or looks pretty, but I do. That’'s why I'll now introduce
the /x modifier, which allows us to rewrite that regex as:
Stext =7 s{
\b
Capture the address to $1 . . .
(
usernameregex
\e
hostname regex
)
\b
}{$1}gix;

Wow, that’s different! The /x modifier appears at the end of that snippet (along
with the /g and /i modifiers), and does two simple but powerful things for the

Modifying Text with Regular Expressions 73

regular expression. First, it causes most whitespace to be ignored, so you can
“free-format” the expression for readability. Secondly, it allows comments with a
leading #.

Specifically, /x turns most whitespace into an “ignore me” metacharacter, and #
into an “ignore me, and everything else up to the next newline” metacharacter
(e 111). They aren’t taken as metacharacters within a character class (which
means that classes are not free-format, even with /x), and as with other metachar-
acters, you can escape whitespace and # that you want to be taken literally. Of
course, you can always use \s; to match whitespace, as in m/<a \s+ href=>/x.

Realize that /x applies only to the regular expression, and not to the replacement
string. Also, even though we’ve now switched to using the s{--}{ -} form, where
the modifiers come after the final ‘}’ (e.g., ‘}x"), in conversation we still refer to
“the x modifier” as “/x”

Putting it together
Well, now we can drop in our username and hostname parts, combined with what
we developed earlier, to leave us with the program so far:

undef $/; # Enter "file-slurp” mode.
Stext = <>; # Shup up the first file given on the command line.

Stext =~ s/&/&/g; # Make the basic HIML . . .
Stext =" s/</</g; # ... characters & <, and > . . .
Stext =" s/>/>/g; # ... HIML safe.

Stext =7 s/"\s*$/<p>/mg; # Separate paragraphs.

Turn email addresses into links . . .
Stext =" s{
\b
Capture the address to $1 . . .
(
\wl-.\wl=* # username
\@
[-a-20-9]+(\.[-a-2z0-9]1+) *\. (com|edul|info) # hostname
)
\b
}{$1l}gix;

print S$text; # Finally, display the HIML-ized text.

All the regular expressions work with the same multiline string, but notice that
only the expression to separate paragraphs requires the /m modifier, since only
that expression has ", or [$. Using /m on the others wouldn’t hurt (well, except to
make the reader wonder why it was there).

74 Chapter 2: Extended Introductory Examples

“Linkizing” an HITP URL

Finally, let’s turn our attention to recognizing a normal HTTP URL, turning it into a
link to itself. This would convert something like “http://www.yahoo.com/” to
<a-href="http://www.yahoo.com/">http://www.yahoo.com/.

The basic form of an HTTP URL is “http://bostname/path’, where the /path part is
optional. This gives us a form of:
Stext =" s{
\b
Capture the URL to $1 . . .

(
http:// hostname

(
/ path
)?

)
}{$1}gix;
For the hostname part, we can use the same subexpression we used for the email
address. The path part of a URL can consist of a variety of characters, and in the
previous chapter we used I[-a-z0-9_:@&?=+, . !/~ *'%$]* (= 25), which is most
ASCII characters except whitespace, control characters, and things like <> () { }.

There’s one other thing we must do before using it with Perl, and that’s escape the
@ and $ characters. Again, I'll defer on the explanation until a bit later (== 77).
Now, let’s plug in our hostname and path parts:
Stext =7 s{
\b
Capture the URL to $1 . . .

(
http:// [-a-z0-9]1+(\.[-a-20-9]+)x\. (com|edul|info) \b # hostname

(
/ [-a-z0-9_:\@&?=+, .!/"x"%\$1x # optional path

)?
)
}{$1}gix;
You'll notice that there’s no \by after the path, since it's perfectly allowable for a
URL to end with punctuation, such as the URL for O'Reilly’s page on this book:

btp://www.oreilly.com/catalog/regex3/
Using \by at the end would disallow a URL ending this way.

That being said, in practice we probably want to put some artificial restrictions on
what the URL can end with. Consider the following text:

Read "odd" news at http://dailynews.yahoo.com/h/od, and
maybe some tech stuff at http://www.slashdot.com!

Modifying Text with Regular Expressions 75

Our current regex matches the marked text, although it’s obvious that the trailing
punctuation in each really shouldn’t be part of the URL. When trying to match URLs
embedded in English text, it seems to make sense to not include an ending
T.,?!] as part of the URL. (This isn’t part of any standard, but just a heuristic I've
come up with that seems to work most of the time.) Well, that’s as easy as adding
a “can’t be any of I[[., 211" negative lookbehind, (?<![.,?!1), to the end of the
path part. The effect is that after we’'ve matched what we intend to take as the
URL, the lookbehind peeks back to ensure that the last character is appropriate. If
not, the engine must reevaluate what’s taken as the URL so that this final condition
is fulfilled. That means it's forced to leave off the offending punctuation so the
final lookbehind can match. (We'll see a different way to solve this problem in
Chapter 5 = 200.)

Inserting this, we can now try the full program:

undef $/; # Enter "file-slurp” mode
Stext = <>; # Shup up the first file given on the command line.

Stext =~ s/&/&/g; # Make the basic HIML . . .
Stext =~ s/</&1lt;/g; # ... characters &, <, and > . . .
Stext =" s/>/>/g; # ... HIML safe.

Stext =7 s/"\s*$/<p>/mg; # Separate paragraphs.

Turn email addresses into links . . .
Stext =" s{
\b
Capture the address to $1 . . .
(

\w[-.\w]x* # username
\@
[-a-z0-9]1+(\.[-a-2z0-9]+) *\. (com|edu|info) # hostname
)
\b

}{$l}gix;

Turn HTTP URLS into links . . .
Stext =" s{
\b
Capture the URL to $1 . . .
(
http:// [-a-z0-9]1+(\.[-a-2z0-9]+) *\. (com|edu|info) \b # hostname
(
/ [-a-z0-9_:\@&?=+,.!/ " x'%$\$1x # Optional path
(?<![.,2?!1) # Not allowed to end with [.,?]
)?
)
}{$1}gix;

print $text; # Finally, display the HIML-ized text.

76 Chapter 2: Extended Introductory Examples

Building a regex library

Note that the same expression is used for each of the two hostnames, which
means that if we ever update one, we have to be sure to update the other. Rather
than keeping that potential source of confusion, consider the three instances of
$HostnameRegex in this modified snippet from our program:

$HostnameRegex = qgr/[-a-z0-9]1+(\.[-a-z0-9]1+)*\. (com|edu|info) /i;

Turn email addresses into links . . .
Stext =7 s{
\b
Capture the address to $1 . . .
(

\w[-.\w]=* # username
\@
$HostnameRegex # hostname
)
\b

}{$l}gix;

Turn HTTP URLs into links . . .
Stext =7 s{
\b
Capture the URL to $1 . . .
(
http:// $HostnameRegex \b # hostname
(
/ [-a-z0-9_:\@&?=+, .!/"x'%\$1x # Optional path
(?<![.,?2!]) # not allowed to end with [.,?!]
)?

)
}{$1}gix;

The first line introduces Perl’s gr operator. It’s similar to the m and s operators in
that it takes a regular expression (i.e., used as qr/--/, just like m/-/ and
s/--/-/), but rather than immediately applying it to some text in search of a
match, it converts the regex provided into a regex object, which you can save to a
variable. Later, you can use that object in place of a regular expression, or even as
a subexpression of some other regex (as we’ve done here, using the regex object
assigned to $HostnameRegex as part of the regex of the two substitutions). This is
very convenient because it makes things clearer. As a bonus, we then need only
one “master source” to specify the regex to match a hostname, which we can then
use as often as we like. There are additional examples of building this type of
“regex library” in Chapter 6 (e 277), and a detailed discussion in Chapter 7
(1= 303).

Other languages offer ways to create their own regex objects; several languages
are explored briefly in the next chapter, with Java and .NET discussed in detail in
Chapters 8 and 9.

Modifying Text with Regular Expressions 77

Why ‘S’ and ‘@ sometimes need to be escaped

You'll notice that the same ‘$’ is used as both the end-of-string metacharacter, and
to request interpolation (inclusion) of a variable. Normally, there’s no ambiguity to
what ‘$’ means, but within a character class it gets a bit tricky. Since it can’t possi-
bly mean end-of-string within a class, in that situation Perl considers it a request to
interpolate (include from) a variable, unless it's escaped. If escaped, the ‘$’ is just
included as a member of the class. That's what we want this time, so that's why
we have to escape the dollar sign in the path part of the URL-matching regex.

It's somewhat similar for @. Perl uses @ at the beginning of array names, and Perl
string or regex literals allow arrays to be interpolated. If we wish a literal @ to be
part of a regex, we must escape it so that it’s not taken as an array interpolation.

Some languages don’t allow variable interpolation (Java, VB.NET, C, C#, Emacs,
and awk, for instance). Some do allow variable interpolation (including Perl, PHP,
Python, Ruby, and TcD), but each has their own way to do it. This is discussed fur-
ther in the next chapter (s 101).

That Doubled-Word Thing

The doubled-word problem in Chapter 1 hopefully whetted your appetite for the
power of regular expressions. I teased you at the start of this chapter with a cryp-
tic bunch of symbols I called a solution:

s/ = ll.\nll;
while (<>) {
next if !s/\b([a-z]+) ((?:\s]|<[">]1+>)+) (\1\b)/\e[7m$1l\e[mS$2\e[7m$3\e[m/ig;

s/ (?2:["\el*\n)+//mg; # Remove any unmarked lines.
s/"/$ARGV: /mg; # Ensure lines begin with filename.
print;

}

Now that you've seen a bit of Perl, you hopefully understand at least the general
form —the <>, the three s/-/--/, and the print. Still, it’s rather heady stuff! If
this chapter has been your only exposure to Perl (and these chapters your only
exposure to regular expressions), this example is probably a bit beyond what you
want to be getting into at this point.

However, when it comes down to it, I don’t think the regex is really so difficult.
Before looking at the program again, it might be good to review the specification
found on page 1, and to see a sample run:

% perl -w FindDbl chO0l.txt

ch0l.txt: check for doubled words (such as this this), a common problem with
ch0l.txt: » Find doubled words despite capitalization differences, such as with ‘The
ch0l.txt: the ', as well as allow differing amounts of whitespace (space, tabs,
chO0l.txt: /\<(1,000,000|million| thousand thousand)/. But alternation can’t be
ch0l.txt: of this chapter. If you knew the the specific doubled word to find (such

78 Chapter 2: Extended Introductory Examples

Let’s look at the program now, first in Perl. We'll then briefly look at a solution in
Java to see a different approach for working with regular expressions. This time,
the listing below uses the s{regex}{replacement}ymodifiers form of the substitution. It
also uses the /x modifier to make the listing clearer (and with the extra room,
now uses the more readable ‘next unless’ instead of ‘next if !’). Otherwise, it
is identical to the short version at the start of this chapter.

Double-word example in Perl

$/ = ".\n"; @ # Seisaspecial “chunk-mode”; chunks end with a period-newline combination

while (<>) (2]

{

next unless s{@# (regex siarts bere)

Need to match one word:

\b # Start of word

([a-z]+) # Grab word, filling $1 (and \1).

Now need to allow any number of spaces and/or <TAGS>

(# Save what intervenes to $2.

(?: # (Non-capturing parens for grouping the alternation)
\s # Whitespace (includes newline, which is good).
| # -or-
<[">1+> # [Item like <TAG>.
)+ # Need at least one of the above, but allow more.

)

Now match the first word again:

(\1\b) # \b ensures not embedded. This copy saved to $3.

(regex ends bere)
}
Above is the regex. The replacement string is below, followed by the modifiers, /i, /g, and /x
{\e[7m$1l\e[m$2\e[7m$3\e[m}igx; @
s/”(?:["\el*\n)+//mg; @ # Remove any unmarked lines.
s/"/SARGV: /mg; @ # Ensure lines begin with filename.
print;
}

This short program does use a fair number of things we haven’t seen yet. Let me
briefly explain it and some of the logic behind it, but I direct you to the Perl man
page for details (or, if regex-related, to Chapter 7). In the description that follows,
“magic” means “because of a feature of Perl that you may not be familiar with yet”

@ Because the doubled-word problem must work even when the doubled
words are split across lines, I can’t use the normal line-by-line processing I
used with the mail utility example. Setting the special variable $/ (yes, that’s
a variable) as shown puts the subsequent <> into a magic mode such that it
returns not single lines, but more-or-less paragraph-sized chunks. The value
returned is just one string, but a string that could potentially contain many of
what we would consider to be logical lines.

Modifying Text with Regular Expressions 79

2]

Did you notice that I don’t assign the value from <> to anything? When used
as the conditional of a while like this, <> magically assigns the string to a
special default variable.” That same variable holds the default string that
s/-/-/ works on, and that print displays. Using these defaults makes the
program less cluttered, but also less understandable to someone new to the
language, so I recommend using explicit operands until you're comfortable.

The next unless before the substitute command has Perl abort processing on
the current string (to continue with the next) if the substitution doesn’t actu-
ally do anything. There’s no need to continue working on a string in which
no doubled words are found.

The replacement string is really just "$1 $2 $3" with intervening ANSI escape
sequences that provide highlighting to the two doubled words, but not to
whatever separates them. These escape sequences are \e[7m to begin high-
lighting, and \e[m to end it. (\e is Perl’s regex and string shorthand for the
ASCII escape character, which begins these ANSI escape sequences.)

Looking at how the parentheses in the regex are laid out, you'll realize that
"$1$23$3" represents exactly what was matched in the first place. So, other
than adding in the escape sequences, this whole substitute command is
essentially a (slow) no-op.

We know that $1 and $3 represent matches of the same word (the whole
point of the program!), so I could probably get by with using just one or the
other in the replacement. However, since they might differ in capitalization, I
use both variables explicitly.

The string may contain many logical lines, but once the substitution has
marked all the doubled words, we want to keep only logical lines that have
an escape character. Removing those that don’t leaves only the lines of inter-
est in the string. Since we used the enhanced line anchor match mode (the
/m modifier) with this substitution, the regex " ([~\e]l*\n)+ can find logical
lines of non-escapes. Use of this regex in the substitute causes those
sequences to be removed. The result is that only logical lines that have an
escape remain, which means that only logical lines that have doubled words
in them remain.*

The variable $ARGV magically provides the name of the input file. Combined
with /m and /g, this substitution tacks the input filename to the beginning of
each logical line remaining in the string. Cool!

t The default variable is $_ (yes, that’s a variable too). It's used as the default operand for many func-
tions and operators.

} This logic assumes that the input file doesn’t have an ASCIT escape character itself. If it did, this pro-
gram could report lines in error.

80 Chapter 2: Extended Introductory Examples

Finally, the print spits out what’s left of the string, escapes and all. The while
loop repeats the same processing for all the strings (paragraph-sized chunks of
text) that are read from the input.

Moving bits around: operators, functions, and objects

As 1 emphasized earlier, I use Perl in this chapter as a tool to show the concepts. It
happens to be a very useful tool, but I again want to stress that this problem can
be easily solved with regular expressions in many other languages.

Still, showing the concepts is made a bit easier due to a Perl feature unique among
advanced languages, which is that regular expressions are a “first class,” low-level
feature of the language. This means that there are basic operators that work with
regular expressions in the same way that + and - work with numbers. This
reduces the amount of “syntactic baggage” needed to wield regular expressions.

Most languages do not provide this. For reasons that are discussed in Chapter 3
(e 93), many modern languages instead provide functions or objects for manipu-
lating and applying regular expressions. There might be a function, for example,
that accepts a string to be interpreted as a regular expression, as well as text to be
searched, and returns a true or false depending on whether the regular expression
matches the text. More commonly, though, these two tasks (first, interpreting a
string as a regular expression, and second, applying the regular expression to text)
are broken up into two or more separate functions, as seen in the Java listing on
the facing page. The code uses the java.util.regex package that comes stan-
dard as of Java 1.4.

You can see near the top the same three regular expressions we used in the Perl
example, passed as strings to the three Pattern.compile routines. A direct com-
parison shows that the Java version has a few extra backslashes, but that’s just a
side effect of Java’s requirement that regular expressions be provided as strings.
Backslashes intended for the regular expression must be escaped to prevent Java’s
string parser from interpreting the backslashes in its own way (i 44).

You'll also notice that the regular expressions are located not in the main text-pro-
cessing part of the program, but at the start, in the initialization section. The
Pattern.compile function merely analyzes the string as a regular expression, and
builds an internal “compiled version” that is assigned to a Pattern variable
(regexl, etc.). Then, in the main text-processing part of the program, that com-
piled version is applied to text with regexl.matcher (text), the result of which
is used to do the replacement. Again, we’ll get into the details in the next chapter,
but the point here is that when learning any regex-enabled language, there are
two parts to the story: the regex flavor itself, and how the language lets you wield
the regular expressions.

Modifying Text with Regular Expressions

81

Double-word example in Java

import java.io.x*;
import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class TwoWord
{
public static void main(String [] args)
{
Pattern regexl = Pattern.compile (
"\\b([a-z]+) ((2:\\s|\\<[">]1+\\>)+) (\\1\\b) ",
Pattern.CASE_INSENSITIVE) ;
String replacel = "\033[7m$1\033[m$2\033[7m$S3\033 [m";

Pattern regex2 = Pattern.compile(""(?:["\\el*\\n)+", Pattern.MULTILINE) ;

Pattern regex3 = Pattern.compile(""(["\\nl+)", Pattern.MULTILINE) ;

// For each command-line argument....
for (int 1 = 0; i < args.length; i++)
{
try {
BufferedReader in = new BufferedReader (new FileReader (argsl[il]));
String text;

// For each paragraph of each file.....
while ((text = getPara(in)) != null)
{
// Apply the three substitutions
text = regexl.matcher (text) .replaceAll (replacel) ;
text = regex2.matcher (text) .replaceAll("");
text = regex3.matcher (text) .replaceAll (args([i] + ": $1");

// Display results
System.out.print (text) ;
}
} catch (IOException e) {
System.err.println("can’'t read ["+args[i]+"]: " + e.getMessage());

// Routine to read next "paragraph" and return as a string
static String getPara(BufferedReader in) throws java.io.IOException
{

StringBuffer buf = new StringBuffer();

String line;

while ((line = in.readLine()) != null &&
(buf.length() == || line.length() != 0))
{
buf.append(line + "\n");
}
return buf.length() == 0 ? null : buf.toString();

Overview of
Regular Expression
Features and Flavors

Now that you have a feel for regular expressions and a few diverse tools that use
them, you might think we’re ready to dive into using them wherever they're
found. But even a simple comparison among the egrep versions of the first chapter
and the Perl and Java in the previous chapter shows that regular expressions and
the way they’re used can vary wildly from tool to tool.

When looking at regular expressions in the context of their host language or tool,
there are three broad issues to consider:
e What metacharacters are supported, and their meaning. Often called the regex
“flavor”

e How regular expressions “interface” with the language or tool, such as how to
specify regular-expression operations, what operations are allowed, and what
text they operate on.

e How the regular-expression engine actually goes about applying a regular
expression to some text. The method that the language or tool designer uses
to implement the regular-expression engine has a strong influence on the
results one might expect from any given regular expression.

Regular Expressions and Cars

The considerations just listed parallel the way one might think while shopping for
a car. With regular expressions, the metacharacters are the first thing you notice,
just as with a car it’s the body shape, shine, and nifty features like a CD player and
leather seats. These are the types of things you'll find splashed across the pages of
a glossy brochure, and a list of metacharacters like the one on page 32 is the reg-
ular-expression equivalent. It’s important information, but only part of the story.

83

84 Chapter 3: Overview of Regular Expression Features and Flavors

How regular expressions interface with their host program is also important. The
interface is partly cosmetic, as in the syntax of how to actually provide a regular
expression to the program. Other parts of the interface are more functional, defin-
ing what operations are supported, and how convenient they are to use. In our car
comparison, this would be how the car “interfaces” with us and our lives. Some
issues might be cosmetic, such as what side of the car you put gas in, or whether
the windows are powered. Others might be a bit more important, such as if it has
an automatic or manual transmission. Still others deal with functionality: can you
fit the thing in your garage? Can you transport a king-size mattress? Skis? Five
adults? (And how easy is it for those five adults to get in and out of the car—easier
with four doors than with two.) Many of these issues are also mentioned in the
glossy brochure, although you might have to read the small print in the back to
get all the details.

The final concern is about the engine, and how it goes about its work to turn the
wheels. Here is where the analogy ends, because with cars, people tend to under-
stand at least the minimum required about an engine to use it well: if it’s a gaso-
line engine, they won’t put diesel fuel into it. And if it has a manual transmission,
they won't forget to use the clutch. But, in the regular-expression world, even the
most minute details about how the regex engine goes about its work, and how
that influences how expressions should be crafted and used, are usually absent
from the documentation. However, these details are so important to the practical
use of regular expressions that the entire next chapter is devoted to them.

In This Chapter

As the title might suggest, this chapter provides an overview of regular expression
features and flavors. It looks at the types of metacharacters commonly available,
and some of the ways regular expressions interface with the tools they're part of.
These are the first two points mentioned at the chapter’s opening. The third point
—how a regex engine goes about its work, and what that means to us in a practi-
cal sense—is covered in the next few chapters.

One thing T should say about this chapter is that it does not try to provide a refer-
ence for any particular tool’s regex features, nor does it teach how to use regexes
in any of the various tools and languages mentioned as examples. Rather, it
attempts to provide a global perspective on regular expressions and the tools that
implement them. If you lived in a cave using only one particular tool, you could
live your life without caring about how other tools (or other versions of the same
tooD) might act differently. Since that’s not the case, knowing something about
your utility’s computational pedigree adds interesting and valuable insight.

A Casual Stroll Across the Regex Landscape 85

A Casual Stroll Across the Regex Landscape

I'd like to start with the story about the evolution of some regular expression fla-
vors and their associated programs. So, grab a hot cup (or frosty mug) of your
favorite brewed beverage and relax as we look at the sometimes wacky history
behind the regular expressions we have today. The idea is to add color to our
regex understanding, and to develop a feeling as to why “the way things are” are
the way things are. There are some footnotes for those that are interested, but for
the most part, this should be read as a light story for enjoyment.

The Origins of Regular Expressions

The seeds of regular expressions were planted in the early 1940s by two neuro-
physiologists, Warren McCulloch and Walter Pitts, who developed models of how
they believed the nervous system worked at the neuron level.! Regular expressions
became a reality several years later when mathematician Stephen Kleene formally
described these models in an algebra he called regular sets. He devised a simple
notation to express these regular sets, and called them regular expressions.

Through the 1950s and 1960s, regular expressions enjoyed a rich study in theoreti-
cal mathematics circles. Robert Constable has written a good summary* for the
mathematically inclined.

Although there is evidence of earlier work, the first published computational use
of regular expressions 1 have actually been able to find is Ken Thompson’s 1968
article Regular Expression Search Algorithm® in which he describes a regular-
expression compiler that produced IBM 7094 object code. This led to his work on
ged, an editor that formed the basis for the Unix editor ed.

ed’s regular expressions were not as advanced as those in ged, but they were the
first to gain widespread use in non-technical fields. ed had a command to display
lines of the edited file that matched a given regular expression. The command,
“g/ Regular Expression/p’, was read “Global Regular Expression Print” This particu-
lar function was so useful that it was made into its own utility, grep (after which
egrep —extended grep —was later modeled).

—+

“A logical calculus of the ideas imminent in nervous activity,” first published in Bulletin of Math. Bio-
Dphysics 5 (1943) and later reprinted in Embodiments of Mind (MIT Press, 1965). The article begins
with an interesting summary of how neurons behave (did you know that intra-neuron impulse
speeds can range from 1 all the way to 150 meters per second?), and then descends into a pit of for-
mulae that is, literally, all Greek to me.

+H

Robert L. Constable, “The Role of Finite Automata in the Development of Modern Computing The-
ory, in The Kleene Symposium, Eds. Barwise, Keisler, and Kunen (North-Holland Publishing Com-
pany, 1980), 61-83.

Communications of the ACM, Vol.11, No. 6, June 1968.

=

86 Chapter 3: Overview of Regular Expression Features and Flavors

Grep’s metacharacters

The regular expressions supported by grep and other early tools were quite limited
when compared to egrep’s. The metacharacter * was supported, but + and »? were
not (the latter’s absence being a particularly strong drawback). grep’s capturing
metacharacters were \ (--\), with unescaped parentheses representing literal text.
grep supported line anchors, but in a limited way. If ~ appeared at the beginning
of the regex, it was a metacharacter matching the beginning of the line. Otherwise,
it wasn’'t a metacharacter at all and just matched a literal circumflex (also called a
“caret”). Similarly, $ was the end-of-line metacharacter only at the end of the
regex. The upshot was that you couldn’t do something like 'end$ | “start. But
that’s OK, since alternation wasn’t supported either!

The way metacharacters interact is also important. For example, perhaps grep’s
largest shortcoming was that star could not be applied to a parenthesized expres-
sion, but only to a literal character, a character class, or dot. So, in grep, parenthe-
ses were useful only for capturing matched text, and not for general grouping. In
fact, some early versions of grep didn’t even allow nested parentheses.

Grep evolves

Although many systems have grep today, you'll note that I've been using past
tense. The past tense refers to the flavor of the old versions, now upwards of 30
years old. Over time, as technology advances, older programs are sometimes
retrofitted with additional features, and grep has been no exception.

Along the way, AT&T Bell Labs added some new features, such as incorporating
the \{min,max\} notation from the program /Jex. They also fixed the -y option,
which in early versions was supposed to allow case-insensitive matches but
worked only sporadically. Around the same time, people at Berkeley added start-
and end-of-word metacharacters and renamed -y to -i. Unfortunately, you still
couldn’t apply star or the other quantifiers to a parenthesized expression.

Egrep evolves

By this time, Alfred Aho (also at AT&T Bell Labs) had written egrep, which pro-
vided most of the richer set of metacharacters described in Chapter 1. More impor-
tantly, he implemented them in a completely different (and generally better) way.
Not only were '+ and '?; added, but they could be applied to parenthesized expres-
sions, greatly increasing egrep expressive power.

t Historical trivia: ed (and hence grep) used escaped parentheses rather than unadorned parentheses as
delimiters because Ken Thompson felt regular expressions would be used to work primarily with C
code, where needing to match raw parentheses would be more common than backreferencing.

A Casual Stroll Across the Regex Landscape 87

Alternation was added as well, and the line anchors were upgraded to “first-class”
status so that you could use them almost anywhere in your regex. However, egrep
had problems as well —sometimes it would find a match but not display the result,
and it didn’t have some useful features that are now popular. Nevertheless, it was
a vastly more useful tool.

Other species evolve

At the same time, other programs such as awk, lex, and sed, were growing and
changing at their own pace. Often, developers who liked a feature from one pro-
gram tried to add it to another. Sometimes, the result wasn’t pretty. For example, if
support for plus was added to grep, + by itself couldn’t be used because grep had
a long history of a raw ‘+’ not being a metacharacter, and suddenly making it one
would have surprised users. Since ‘\+" was probably not something a grep user
would have otherwise normally typed, it could safely be subsumed as the “one or
more” metacharacter.

Sometimes new bugs were introduced as features were added. Other times, added
features were later removed. There was little to no documentation for the many
subtle points that round out a tool’s flavor, so new tools either made up their own
style, or attempted to mimic “what seemed to work” with other tools.

Multiply that by the passage of time and numerous programmers, and the result is
general confusion (particularly when you try to deal with everything at once).

POSIX — An attempt at standardization

POSIX, short for Portable Operating System Interface, is a wide-ranging standard
put forth in 1986 to ensure portability across operating systems. Several parts of
this standard deal with regular expressions and the traditional tools that use them,
so it’s of some interest to us. None of the flavors covered in this book, however,
strictly adhere to all the relevant parts. In an effort to reorganize the mess that reg-
ular expressions had become, POSIX distills the various common flavors into just
two classes of regex flavor, Basic Regular Expressions (BREs), and Extended Regu-
lar Expressions (EREs). POSIX programs then support one flavor or the other. Table
3-1 on the next page summarizes the metacharacters in the two flavors.

One important feature of the POSIX standard is the notion of a locale, a collection
of settings that describe language and cultural conventions for such things as the
display of dates, times, and monetary values, the interpretation of characters in the
active encoding, and so on. Locales aim to allow programs to be internationalized.
They are not a regex-specific concept, although they can affect regular-expression
use. For example, when working with a locale that describes the Latin-1 encoding

t Such as when writing a book about regular expressions—ask me, I know!

88 Chapter 3: Overview of Regular Expression Features and Flavors

Table 3-1: Overview of POSIX Regex Flavors

Regex feature BREs EREs
dot, ~, 8, [, [™] v v

“any number” quantifier * *

+and ? quantifiers +?
range quantifier \ {min, max\'} {min, max}
grouping \(\) ()

can apply quantifiers to parentheses v v
backreferences \1 through \9

alternation 4

(also called “ISO-8859-1”), a and A (characters with ordinal values 224 and 160,
respectively) are considered “letters,” and any application of a regex that ignores
capitalization would know to treat them as identical.

Another example is \w, commonly provided as a shorthand for a “word-con-
stituent character” (ostensibly, the same as [a-zA-20-9_] in many flavors). This
feature is not required by POSIX, but it is allowed. If supported, \w would know to
allow all letters and digits defined in the locale, not just those in ASCIIL.

Note, however, that the need for this aspect of locales is mostly alleviated when
working with tools that support Unicode. Unicode is discussed further beginning
on page 106.

Henry Spencer’s regex package

Also first appearing in 1986, and perhaps of more importance, was the release by
Henry Spencer of a regex package, written in C, which could be freely incorpo-
rated by others into their own programs —a first at the time. Every program that
used Henry’s package — and there were many — provided the same consistent
regex flavor unless the program’s author went to the explicit trouble to change it.

Perl evolves

At about the same time, Larry Wall started developing a tool that would later
become the language Perl. He had already greatly enhanced distributed software
development with his patch program, but Perl was destined to have a truly monu-
mental impact.

Larry released Perl Version 1 in December 1987. Perl was an immediate hit
because it blended so many useful features of other languages, and combined
them with the explicit goal of being, in a day-to-day practical sense, usefusl.

A Casual Stroll Across the Regex Landscape 89

One immediately notable feature was a set of regular expression operators in the
tradition of the specialty tools sed and awk— a first for a general scripting lan-
guage. For the regular expression engine, Larry borrowed code from an earlier
project, his news reader rn (which based its regular expression code on that in
James Gosling’s Emacs).” The regex flavor was considered powerful by the day’s
standards, but was not nearly as full-featured as it is today. Its major drawbacks
were that it supported at most nine sets of parentheses, and at most nine alterna-
tives with /|, and worst of all, /|, was not allowed within parentheses. It did not
support case-insensitive matching, nor allow \w within a class (it didn’t support \s
or \d anywhere). It didn’t support the {min, max} range quantifier.

Perl 2 was released in June 1988. Larry had replaced the regex code entirely, this
time using a greatly enhanced version of the Henry Spencer package mentioned in
the previous section. You could still have at most nine sets of parentheses, but
now you could use /|, inside them. Support for \d and \s was added, and support
for \w was changed to include an underscore, since then it would match what
characters were allowed in a Perl variable name. Furthermore, these metachar-
acters were now allowed inside classes. (Their opposites, \D, \W, and \S, were
also newly supported, but weren’t allowed within a class, and in any case some-
times didn’t work correctly.) Importantly, the /i modifier was added, so you could
now do case-insensitive matching.

Perl 3 came out more than a year later, in October 1989. It added the /e modifier,
which greatly increased the power of the replacement operator, and fixed some
backreference-related bugs from the previous version. It added the [{min, max}, range
quantifiers, although unfortunately, they didn’t always work quite right. Worse still,
with Version 3, the regular expression engine couldn’t always work with 8-bit data,
yielding unpredictable results with non-ASCII input.

Perl 4 was released a year and a half later, in March 1991, and over the next two
years, it was improved until its last update in February 1993. By this time, the bugs
were fixed and restrictions expanded (you could use \D and such within character
classes, and a regular expression could have virtually unlimited sets of parenthe-
ses). Work also went into optimizing how the regex engine went about its task,
but the real breakthrough wouldn’t happen until 1994.

Perl 5 was officially released in October 1994. Overall, Perl had undergone a mas-
sive overhaul, and the result was a vastly superior language in every respect. On
the regular-expression side, it had more internal optimizations, and a few meta-
characters were added (including \G, which increased the power of iterative

t James Gosling would later go on to develop his own language, Java, which includes a standard reg-
ular-expressions library as of Version 1.4. Java is covered in depth in Chapter 8.

90 Chapter 3: Overview of Regular Expression Features and Flavors

matches s 130), non-capturing parentheses (i 45), lazy quantifiers (e 141), look-
ahead (&= 60), and the /x modifier’ (s 72).

More important than just for their raw functionality, these “outside the box” modi-
fications made it clear that regular expressions could really be a powerful pro-
gramming language unto themselves, and were still ripe for further development.

The newly-added non-capturing parentheses and lookahead constructs required a
way to be expressed. None of the grouping pairs — (), [-], <> or
{-~} — were available to be used for these new features, so Larry came up with
the various ‘(?’ notations we use today. He chose this unsightly sequence because
it previously would have been an illegal combination in a Perl regex, so he was
free to give it meaning. One important consideration Larry had the foresight to rec-
ognize was that there would likely be additional functionality in the future, so by
restricting what was allowed after the ‘(?’ sequences, he was able to reserve them
for future enhancements.

Subsequent versions of Perl grew more robust, with fewer bugs, more internal
optimizations, and new features. I like to believe that the first edition of this book
played some small part in this, for as I researched and tested regex-related fea-
tures, I would send my results to Larry and the Perl Porters group, which helped
give some direction as to where improvements might be made.

New regex features added over the years include limited lookbehind (e 60),
“atomic” grouping (e 139), and Unicode support. Regular expressions were
brought to a new level by the addition of conditional constructs (s 140), allowing
you to make if-then-else decisions right there within the regular expression. And if
that wasn’t enough, there are now constructs that allow you to intermingle Perl
code within a regular expression, which takes things full circle (e 327). The ver-
sion of Perl covered in this book is 5.8.8.

A partial consolidation of flavors

The advances seen in Perl 5 were perfectly timed for the World Wide Web revolu-
tion. Perl was built for text processing, and the building of web pages is just that,
so Perl quickly became the language for web development. Perl became vastly
more popular, and with it, its powerful regular expression flavor did as well.

Developers of other languages were not blind to this power, and eventually regu-
lar expression packages that were “Perl compatible” to one extent or another were
created. Among these were packages for Tcl, Python, Microsoft’s .NET suite of lan-
guages, Ruby, PHP, C/C+ and many packages for Java.

t My claim to fame is that Larry added the /x modifier after seeing a note from me discussing a long
and complex regex. In the note, I had “pretty printed” the regular expression for clarity. Upon seeing
it, he thought that it would be convenient to do so in Perl code as well, so he added /x.

A Casual Stroll Across the Regex Landscape 91

Another form of consolidation began in 1997 (coincidentally, the year the first edi-
tion of this book was published) when Philip Hazel developed PCRE, his library
for Perl Compatible Regular Expressions, a high-quality regular-expression engine
that faithfully mimics the syntax and semantics of Perl regular expressions. Other
developers could then integrate PCRE into their own tools and languages, thereby
easily providing a rich and expressive (and well-known) regex functionality to
their users. PCRE is now used in popular software such as PHP, Apache Version 2,
Exim, Postfix, and Nmap.'

Versions as of this book

Table 3-2 shows a few of the version numbers for programs and libraries that I
talk about in the book. Older versions may well have fewer features and more
bugs, while newer versions may have additional features and bug fixes (and new
bugs of their own).

Table 3-2: Versions of Some Tools Mentioned in This Book

GNU awk 3.1 java.util.regex (Java 1.5.0, A.K.A Java 5.0) | Procmail 3.22
GNU egrep/grep 2.5.1 | .NET Framework 2.0 Python 2.3.5
GNU Emacs 21.3.1 PCRE 6.6 Ruby 1.8.4
flex 2.5.31 Perl 5.8.8 GNU sed 4.0.7
MySQL 5.1 PHP (preg routines) 5.1.4 / 4.4.3 Tcl 8.4

At a Glance

A chart showing just a few aspects of some common tools gives a good clue to
how different things still are. Table 3-3 provides a very superficial look at a few
aspects of the regex flavors of a few tools.

A chart like Table 3-3 is often found in other books to show the differences among
tools. But, this chart is only the tip of the iceberg—for every feature shown, there
are a dozen important issues that are overlooked.

Foremost is that programs change over time. For example, Tcl didn’t used to sup-
port backreferences and word boundaries, but now does. It first supported word
boundaries with the ungainly-looking [:<:] and [:>:], and still does, although
such use is deprecated in favor of its more-recently supported \m, \M, and \y (start
of word boundary, end of word boundary, or either).

Along the same lines, programs such as grep and egrep, which aren’t from a single
provider but rather can be provided by anyone who wants to create them, can
have whatever flavor the individual author of the program wishes. Human nature

t PCRE is available for free at fip:./fip.csx.cam.ac.uk/pub/software/programming/pcre/

92 Chapter 3: Overview of Regular Expression Features and Flavors

Table 3-3: A (Very) Superficial Look at the Flavor of a Few Common Tools

* 508 0] 4 v v v v v v
? o+ | \? \+ \[[? + | |? + \| ? o+ | 2o+ 2o+ 72 o+ |
grouping \ () () \ (-\) () () () ()
(?:) 4 v v
word boundary \<\> \<\>\b\B|\m, \M, \y | \b,\B |\b,\B |\b,\B
\w, \W v v v v v v
backreferences | v/ v v v v v v

v supported

being what is, each tends to have its own features and peculiarities. (The GNU ver-
sions of many common tools, for example, are often more powerful and robust
than other versions.)

Perhaps as important as the easily visible features are the many subtle (and some
not-so-subtle) differences among flavors. Looking at the table, one might think that
regular expressions are exactly the same in Perl, .NET, and Java, which is certainly
not true. Just a few of the questions one might ask when looking at something like
Table 3-3 are:

e Are star and friends allowed to quantify something wrapped in parentheses?

e Does dot match a newline? Do negated character classes match it? Do either
match the NUL character?

e Are the line anchors really /ine anchors (i.e., do they recognize newlines that
might be embedded within the target string)? Are they first-class metachar-
acters, or are they valid only in certain parts of the regex?

e Are escapes recognized in character classes? What else is or isn’'t allowed
within character classes?

e Are parentheses allowed to be nested? If so, how deeply (and how many
parentheses are even allowed in the first place)?

o If backreferences are allowed, when a case-insensitive match is requested, do
backreferences match appropriately? Do backreferences “behave” reasonably
in fringe situations?

e Are octal escapes such as \123 allowed? If so, how do they reconcile the syn-
tactic conflict with backreferences? What about hexadecimal escapes? Is it
really the regex engine that supports octal and hexadecimal escapes, or is it
some other part of the utility?

Care and Handling of Regular Expressions 93

e Does \w match only alphanumerics, or additional characters as well? (Among
the programs shown supporting \w in Table 3-3, there are several different
interpretations). Does \w agree with the various word-boundary metachar-
acters on what does and doesn’t constitute a “word character” Do they
respect the locale, or understand Unicode?

Many issues must be kept in mind, even with a tidy little summary like Table 3-3
as a superficial guide. If you realize that there’s a lot of dirty laundry behind that
nice facade, it's not too difficult to keep your wits about you and deal with it.

As mentioned at the start of the chapter, much of this is just superficial syntax, but
many issues go deeper. For example, once you understand that something such as
(Jul|July), in egrep needs to be written as \ (Jul\|July\) for GNU Emacs, you
might think that everything is the same from there, but that's not always the case.
The differences in the semantics of how a match is attempted (or, at least, how it
appears to be attempted) is an extremely important issue that is often overlooked,
yet it explains why these two apparently identical examples would actually end up
matching differently: one always matches ‘Jul’, even when applied to ‘July’.
Those very same semantics also explain why the opposite, [(July|Jul), and
\ (July\ |Jul\), do match the same text. Again, the entire next chapter is devoted
to understanding this.

Of course, what a tool can do with a regular expression is often more important
than the flavor of its regular expressions. For example, even if Perl’s expressions
were less powerful than egrep’s, Perl’s flexible use of regexes provides for more
raw usefulness. We’'ll look at a lot of individual features in this chapter, and in
depth at a few languages in later chapters.

Care and Handling of
Regular Expressions

The second concern outlined at the start of the chapter is the syntactic packaging
that tells an application “Hey, here’s a regex, and this is what I want you to do
with it” egrep is a simple example because the regular expression is expected as
an argument on the command line. Any extra syntactic sugar, such as the single
quotes I used throughout the first chapter, are needed only to satisfy the command
shell, not egrep. Complex systems, such as regular expressions in programming
languages, require more complex packaging to inform the system exactly what the
regex is and how it should be used.

The next step, then, is to look at what you can do with the results of a match.
Again, egrep is simple in that it pretty much always does the same thing (displays
lines that contain a match), but as the previous chapter began to show, the real
power is in doing much more interesting things. The two basic actions behind

94 Chapter 3: Overview of Regular Expression Features and Flavors

those interesting things are match (to check if a regex matches in a string, and to
perhaps pluck information from the string), and search and replace, to modify a
string based upon a match. There are many variations of these actions, and many
variations on how individual languages let you perform them.

In general, a programming language can take one of three approaches to regular
expressions: integrated, procedural, and object-oriented. With the first, regular
expression operators are built directly into the language, as with Perl. In the other
two, regular expressions are not part of the low-level syntax of the language.
Rather, normal strings are passed as arguments to normal functions, which then
interpret the strings as regular expressions. Depending on the function, one or
more regex-related actions are then performed. One derivative or another of this
style is use by most (non-Perl) languages, including Java, the .NET languages, Tcl,
Python, PHP, Emacs lisp, and Ruby.

Integrated Handling

We've already seen a bit of Perl’s integrated approach, such as this example from
page 55:

if ($line =~ m/"Subject: (.=*)/i) {

S$subject = $1;

}
Here, for clarity, variable names I've chosen are in italic, while the regex-related
items are bold, and the regular expression itself is underlined. We know that Perl
applies the regular expression "Subject: - (.*), to the text held in $1ine, and if a
match is found, executes the block of code that follows. In that block, the variable
$1 represents the text matched within the regular expression’s parentheses, and
this gets assigned to the variable $subject.

Another example of an integrated approach is when regular expressions are part
of a configuration file, such as for procmail (a Unix mail-processing utility.) In the
configuration file, regular expressions are used to route mail messages to the sec-
tions that actually process them. It’s even simpler than with Perl, since the
operands (the mail messages) are implicit.

What goes on behind the scenes is quite a bit more complex than these examples
show. An integrated approach simplifies things to the programmer because it hides
in the background some of the mechanics of preparing the regular expression, set-
ting up the match, applying the regular expression, and deriving results from that
application. Hiding these steps makes the normal case very easy to work with, but
as we'll see later, it can make some cases less efficient or clumsier to work with.

But, before getting into those details, let’s uncover the hidden steps by looking at
the other methods.

Care and Handling of Regular Expressions 95

Procedural and Object-Oriented Handling

Procedural and object-oriented handling are fairly similar. In either case, regex
functionality is provided not by built-in regular-expression operators, but by nor-
mal functions (procedural) or constructors and methods (object-oriented). In this
case, there are no true regular-expression operands, but rather normal string argu-
ments that the functions, constructors, or methods choose to interpret as regular
expressions.

The next sections show examples in Java, VB.NET, PHP, and Python.

Regex bandling in Java

Let’s look at the equivalent of the “Subject” example in Java, using Sun’s
java.util.regex package. (Java is covered in depth in Chapter 8.)

import java.util.regex.*; // Make regex classes easily available

Pattern r = Pattern.compile (" "Subject: (.*)", Pattern.CASE_INSENSITIVE) ;
Matcher m = r.matcher (line);
if (m.£ind()) {

subject = m.group(l);

oo0e

}

Variable names I've chosen are again in italic, the regex-related items are bold, and
the regular expression itself is underlined. Well, to be precise, what's underlined is
a normal string literal to be interpreted as a regular expression.

This example shows an object-oriented approach with regex functionality supplied
by two classes in Sun’s java.util.regex package: Pattern and Matcher. The
actions performed are:
© Inspect the regular expression and compile it into an internal form that
matches in a case-insensitive manner, yielding a “Pattern” object.

® Associate it with some text to be inspected, yielding a “Matcher” object.

®

Actually apply the regex to see if there is a match in the previously-associ-
ated text, and let us know the result.

O If there is a match, make available the text matched within the first set of
capturing parentheses.

Actions similar to these are required, explicitly or implicitly, by any program wish-
ing to use regular expressions. Perl hides most of these details, and this Java
implementation usually exposes them.

A procedural example. Java does, however, provide a few procedural-approach
“convenience functions” that hide much of the work. Instead of you having to first
create a regex object and then use that object’s methods to apply it, these static
functions create a temporary object for you, throwing it away once done.

96 Chapter 3: Overview of Regular Expression Features and Flavors

Here’s an example showing the Pattern.matches () function:

if (! Pattern.matches("\\sx*", line))
{
// ... lineis not blank . . .

}

This function wraps an implicit *--$; around the regex, and returns a Boolean indi-
cating whether it can match the input string. It’s common for a package to provide
both procedural and object-oriented interfaces, just as Sun did here. The differ-
ences between them often involve convenience (a procedural interface can be eas-
ier to work with for simple tasks, but more cumbersome for complex tasks),
functionality (procedural interfaces generally have less functionality and options
than their object-oriented counterparts), and efficiency (in any given situation, one
is likely to be more efficient than the other —a subject covered in detail in
Chapter 6).

Sun has occasionally integrated regular expressions into other parts of the lan-
guage. For example, the previous example can be written using the string class’s
matches method:

if (! line.matches("\\s*",))
{
// ... lineisnotblank . . .

}

Again, this is not as efficient as a properly-applied object-oriented approach, and
so is not appropriate for use in a time-critical loop, but it’s quite convenient for
“casual” use.

Regex bandling in VB and other .NET languages

Although all regex engines perform essentially the same basic tasks, they differ in
how those tasks and services are exposed to the programmer, even among imple-
mentations sharing the same approach. Here’s the “Subject” example in VB.NET
(.NET is covered in detail in Chapter 9):

Imports System.Text.RegularExpressions ' Make regex classes easily available

Dim R as Regex = New Regex (" "Subject: (.*)", RegexOptions.IgnoreCase)
Dim M as Match = R.Match(lIine)
If M.Success
subject = M.Groups(l) .Value
End If

Overall, this is generally similar to the Java example, except that .NET combines
steps @ and @, and requires an extra Value in @. Why the differences? One is
not inherently better or worse — each was just chosen by the developers who
thought it was the best approach at the time. (More on this in a bit.)

Care and Handling of Regular Expressions 97

.NET also provides a few procedural-approach functions. Here’s one to check for a
blank line:

If Not Regex.IsMatch(Line, ""\s*$") Then
' .. .lineis not blank . . .
End If
Unlike Sun’s Pattern.matches function, which adds an implicit '*--$; around the
regex, Microsoft chose to offer this more general function. It’s just a simple wrap-
per around the core objects, but it involves less typing and variable corralling for
the programmer, at only a small efficiency expense.

Regex bandling in PHP
Here’s the [Subject, example with PHP’s preg suite of regex functions, which take
a strictly procedural approach. (PHP is covered in detail in Chapter 10.)

if (preg_match(’/"Subject: (.x)/i’, Sline, $matches))
SSubject = Smatches[1l];

Regex bandling in Python

As a final example, let’s look at the 'subject; example in Python, which uses an
object-oriented approach:

import re;

R = re.compile(""Subject: (.*)", re.IGNORECASE);
M = R.search(line)
if m:

subject = M.group(l)

Again, this looks very similar to what we’ve seen before.

Why do approaches differ?

Why does one language do it one way, and another language another? There may
be language-specific reasons, but it mostly depends on the whim and skills of the
engineers that develop each package. There are, for example, many different
regex packages for Java, each written by someone who wanted the functionality
that Sun didn’t originally provide. Each has its own strengths and weaknesses, but
it's interesting to note that they all provide their functionality in quite different
ways from each other, and from what Sun eventually decided to implement
themselves.

Another clear example of the differences is PHP, which includes three wholly unre-
lated regex engines, each utilized by its own suite of functions. At different times,
PHP developers, dissatisfied with the original functionality, updated the PHP core
by adding a new package and a corresponding suite of interface functions. (The
“preg” suite is generally considered superior overall, and is what this book covers.)

98 Chapter 3: Overview of Regular Expression Features and Flavors

A Search-and-Replace Example

The “Subject” example is simple, so the various approaches really don’t have an
opportunity to show how different they really are. In this section, we'll look at a
somewhat more complex example, further highlighting the different designs.

In the previous chapter (s= 73), we saw this Perl search and replace to “linkize” an

email address:
sStext =7 s{
\b
Capture the address to $1 . . .
(
\w[-.\w]=* # username
c]
[-\wl+(\.[-\w]+)*\. (com|edu|info) # hostname
)
\b
}{$1}gix;

Perl’s search-and-replace operator works on a string “in place; meaning that the
variable being searched is modified when a replacement is done. Most other lan-
guages do replacements on a copy of the text being searched. This is quite conve-
nient if you don’t want to modify the original, but you must assign the result back
to the same variable if you want an in-place update. Some examples follow.

Search and replace in Java

Here’s the search-and-replace example with Sun’s java.util.regex package:

import java.util.regex.*; // Make regex classes easily available

Pattern r = Pattern.compile(

"\\b \n"+
"# Capture the address to $1 . . . \n"+
" (\n"+
"N \w-\\w]* # username \n"+
"oe \n"+
" [-\N\wl+(\\ . [-\\w]+) *\\. (com|edu|info) # hostname \n"+
") \n"+
"\\b \n",

Pattern.CASE_INSENSITIVE|Pattern.COMMENTS) ;

Matcher m = r.matcher(text);
text = m.replaceAll("$1l");

Note that each ‘\’ wanted in a string’s value requires ‘\\’ in the string literal, so if
you're providing regular expressions via string literals as we are here, '\w, requires
‘“\\w’. For debugging, System.out.println(r.pattern()) can be useful to dis-
play the regular expression as the regex function actually received it. One reason
that T include newlines in the regex is so that it displays nicely when printed this
way. Another reason is that each ‘#” introduces a comment that goes until the next
newline; so, at least some of the newlines are required to restrain the comments.

Care and Handling of Regular Expressions 99

Perl uses notations like /g, /i, and /x to signify special conditions (these are the
modifiers for replace all, case-insensitivity, and free formatting modes s 135), but
java.util.regex uses either different functions (replaceAll versus replace)
or flag arguments passed to the function (e.g., Pattern.CASE_INSENSITIVE and
Pattern.COMMENTS).

Search and replace in VB.NET
The general approach in VB.NET is similar:

Dim R As Regex = New Regex _

("\b "s
" (?# Capture the address to $1 .. .) "s
L (n & _
"o\w[-\w] = (?# wusername) "&
L Q@ LI v _
" [-\w]l+(\.[-\w]+)*\. (com|edul|info) (?# hostname) "s
II) LI _
" \b n

RegexOptions.IgnoreCase Or RegexOptions.IgnorePatternWhitespace)
text = R.Replace(text, "${1l}")

Due to the inflexibility of VB.NET string literals (they can’t span lines, and it’s diffi-
cult to get newline characters into them), longer regular expressions are not as
convenient to work with as in some other languages. On the other hand, because
‘\” is not a string metacharacter in VB.NET, the expression can be less visually clut-
tered. A double quote is a metacharacter in VB.NET string literals: to get one dou-
ble quote into the string’s value, you need two double quotes in the string literal.

Search and replace in PHP
Here’s the search-and-replace example in PHP:

Stext = preg_replace(’{
\b
Capture the address to $1 . . .
(

\w[-.\w]=* # username
€]
[-\w]+(\.[-\w]l+)*\. (com|edul|info) # hostname
)
\b
Yix’,
'$1', # replacement string
Stext) ;

As in Java and VB.NET, the result of the search-and-replace action must be
assigned back into $text, but otherwise this looks quite similar to the Perl
example.

100 Chapter 3: Overview of Regular Expression Features and Flavors

Search and Replace in Other Languages

Let’s quickly look at a few examples from other traditional tools and languages.

Awk

Awk uses an integrated approach, /regex/, to perform a match on the current
~ .7 to perform a match on other data. You can see
where Perl got its notation for matching. (Perl’s substitution operator, however, is
modeled after sed’s.) The early versions of awk didn’t support a regex substitution,
but modern versions have the sub (-) operator:

input line, and uses “var

sub(/mizpel/, "misspell")

This applies the regex mizpel, to the current line, replacing the first match with
misspell. Note how this compares to Perl’s (and sed’s) s/mizpel/misspell/.

To replace all matches within the line, awk does not use any kind of /g modifier,
but a different operator altogether: gsub(/mizpel/, "misspell").

Tcl

Tcl takes a procedural approach that might look confusing if you’re not familiar
with Tcl’s quoting conventions. To correct our misspellings with Tcl, we might use:

regsub mizpel $var misspell newvar

This checks the string in the variable var, and replaces the first match of mizpel,
with misspell, putting the now possibly-changed version of the original string
into the variable newvar (which is not written with a dollar sign in this case). Tcl
expects the regular expression first, the target string to look at second, the replace-
ment string third, and the name of the target variable fourth. Tcl also allows
optional flags to its regsub, such as -all to replace all occurrences of the match
instead of just the first:

regsub -all mizpel S$Svar misspell newvar

Also, the -nocase option causes the regex engine to ignore the difference
between uppercase and lowercase characters (just like egrep’s -i flag, or Perl’'s /i
modifier).

GNU Emacs

The powerful text editor GNU Emacs (just “Emacs” from here on) supports elisp
(Emacs lisp) as a built-in programming language. It provides a procedural regex
interface with numerous functions providing various services. One of the main
ones is re-search-forward, which accepts a normal string as an argument and
interprets it as a regular expression. It then searches the text starting from the “cur-
rent position,” stopping at the first match, or aborting if no match is found.

Strings, Character Encodings, and Modes 101

(re-search-forward is what's executed when one invokes a “regexp search”
while using the editor.)

As Table 3-3 (s 92) shows, Emacs’ flavor of regular expressions is heavily laden
with backslashes. For example, \<\ ([a-z]+\)\ ([\n-\t]\|<[">]1+>\)+\1\> is
an expression for finding doubled words, similar to the problem in the first chap-
ter. We couldn’t use this regex directly, however, because the Emacs regex engine
doesn’t understand \t and \n. Emacs double-quoted strings, however, do, and
convert them to the tab and newline values we desire before the regex engine
ever sees them. This is a notable benefit of using normal strings to provide regular
expressions. One drawback, particularly with elisp’s regex flavor’s propensity for
backslashes, is that regular expressions can end up looking like a row of scattered
toothpicks. Here’s a small function for finding the next doubled word:

(defun FindNextDbl ()
"move to next doubled word, ignoring < > tags" (interactive)
(re-search-forward "\\<\\ ([a-z]+\\)\\ ([\n \EI\\[<[">1+>\\)+\\1\\>")
)

Combine that with (define-key global-map "\C-x\C-d" ’FindNextDbl) and you
can use the “Control-x Control-a” sequence to quickly search for doubled words.

Care and Handling: Summary

As you can see, there’s a wide range of functionalities and mechanics for achiev-
ing them. If you are new to these languages, it might be quite confusing at this
point. But, never fear! When trying to learn any one particular tool, it is a simple
matter to learn its mechanisms.

Strings, Character Encodings, and Modes

Before getting into the various type of metacharacters generally available, there are
a number of global issues to understand: regular expressions as strings, character
encodings, and match modes.

These are simple concepts, in theory, and in practice, some indeed are. With most,
though, the small details, subtleties, and inconsistencies among the various imple-
mentations sometimes makes it hard to pin down exactly how they work in prac-
tice. The next sections cover some of the common and sometimes complex issues
you'll face.

Strings as Regular Expressions

The concept is simple: in most languages except Perl, awk, and sed, the regex
engine accepts regular expressions as normal strings — strings that are often pro-
vided as string literals like "“From: (.)". What confuses many, especially early

102 Chapter 3: Overview of Regular Expression Features and Flavors

on, is the need to deal with the language’s own string-literal metacharacters when
composing a string to be used as a regular expression.

Each language’s string literals have their own set of metacharacters, and some lan-
guages even have more than one type of string literal, so there’s no one rule that
works everywhere, but the concepts are all the same. Many languages’ string liter-
als recognize escape sequences like \t, \\, and \x2a, which are interpreted while
the string’s value is being composed. The most common regex-related aspect of
this is that each backslash in a regex requires two backslashes in the correspond-
ing string literal. For example, "\\n" is required to get the regex \n,

If you forget the extra backslash for the string literal and use "\n", with many lan-
guages you’d then get v, which just happens to do exactly the same thing as '\n,
Well, actually, if the regex is in an /x type of free-spacing mode, M, becomes
empty, while \n remains a regex to match a newline. So, you can get bitten if you
forget. Table 3-4 below shows a few examples involving \t and \x2a (22 is the
ASCII code for ‘') The second pair of examples in the table show the unintended
results when the string-literal metacharacters aren’t taken into account.

Table 3-4: A Few String-Literal Examples

String literal "[\t\x2A]" "[\\t\\x2A]" "\t\x2A" "\\t\\x2A"
String value [Fx]’ ‘[\t\x2A]’ ‘g% \t\x2a’

As regex I[Fe* 1 T\t\x2A], Ihg*) Nt\x2A
Matches tab or star tab or star any number tabs tab followed by star
In /x mode tab or star tab or star error tab followed by star

Every language’s string literals are different, but some are quite different in that ‘\’
is not a metacharacter. For example. VB.NET’s string literals have only one meta-
character, a double quote. The next sections look at the details of several common
languages’ string literals. Whatever the individual string-literal rules, the question
on your mind when using them should be “what will the regular expression
engine see after the language’s string processing is done?”

Strings in Java

Java string literals are like those presented in the introduction, in that they are
delimited by double quotes, and backslash is a metacharacter. Common combina-
tions such as ‘\t’ (tab), ‘\n’ (newline), ‘\\’ (literal backslash), etc. are supported.
Using a backslash in a sequence not explicitly supported by literal strings results in
an error.

Strings, Character Encodings, and Modes 103

Strings in VB.NET

String literals in VB.NET are also delimited by double quotes, but otherwise are
quite different from Java’s. VB.NET strings recognize only one metasequence: a pair
of double quotes in the string literal add one double quote into the string’s value.
For example, "he said ""hi""\." results in ’he said "hi"\.

Strings in C#

Although all the languages of Microsoft’s .NET Framework share the same regular
expression engine internally, each has its own rules about the strings used to cre-
ate the regular-expression arguments. We just saw Visual Basic’s simple string liter-
als. In contrast, Microsoft’s C# language has two types of string literals.

C# supports the common double-quoted string similar to the kind discussed in this
section’s introduction, except that "* rather than \" adds a double quote into the
string’s value. However, C# also supports “verbatim strings,” which look like @"- ..
Verbatim strings recognize no backslash sequences, but instead, just one special
sequence: a pair of double quotes inserts one double quote into the target value.
This means that you can use "\\t\\x2A" or @"\t\x2A" to create the \t\x24,
example. Because of this simpler interface, one would tend to use these @" " ver-
batim strings for most regular expressions.

Strings in PHP

PHP also offers two types of strings, yet both differ from either of C#’s types. With
PHP’s double-quoted strings, you get the common backslash sequences like ‘\n’,
but you also get variable interpolation as we've seen with Perl (s 77), and also the
special sequence {-} which inserts into the string the result of executing the code
between the braces.

These extra features of PHP double-quoted strings mean that you’ll tend to insert
extra backslashes into regular expressions, but there’s one additional feature that
helps mitigate that need. With Java and C# string literals, a backslash sequence
that isn’t explicitly recognized as special within strings results in an error, but with
PHP double-quoted strings, such sequences are simply passed through to the
string’s value. PHP strings recognize \t, so you still need "\\t" to get \t, but if
you use "\w", you'll get \w; because \w is not among the sequences that PHP dou-
ble-quoted strings recognize. This extra feature, while handy at times, does add
yet another level of complexity to PHP double-quoted strings, so PHP also offers its
simpler single-quoted strings.

PHP single-quoted strings offer uncluttered strings on the order of VB.NET’s strings,
or C#’s @ strings, but in a slightly different way. Within a PHP single-quoted
string, the sequence \’ includes one single quote in the target value, and \\

104 Chapter 3: Overview of Regular Expression Features and Flavors

includes a backslash. Any other character (including any other backslash) is not
considered special, and is copied to the target value verbatim. This means that
’\t\x2A’ creates \t\x2A. Because of this simplicity, single-quoted strings are the
most convenient for PHP regular expressions.

PHP single-quoted strings are discussed further in Chapter 10 (s 445).

Strings in Python

Python offers a number of string-literal types. You can use either single quotes or
double quotes to create strings, but unlike PHP, there is no difference between the
two. Python also offers “triple-quoted” strings of the form * 7.7+ and "»»"..vnn,
which are different in that they may contain unescaped newlines. All four types
offer the common backslash sequences such as \n, but have the same twist that
PHP has in that unrecognized sequences are left in the string verbatim. Contrast
this with Java and C# strings, for which unrecognized sequences cause an error.

Like PHP and C#, Python offers a more literal type of string, its “raw string” Similar
to C#’s @"-." notation, Python uses an ‘r’ before the opening quote of any of the
four quote types. For example, r"\t\x2a" yields \t\x2A. Unlike the other lan-
guages, though, with Python’s raw strings, a// backslashes are kept in the string,
including those that escape a double quote (so that the double quote can be
included within the string): r"he said \"hi\"\." results in 'he said \"hi\"\..
This isn’t really a problem when using strings for regular expressions, since
Python’s regex flavor treats \"; as [, but if you like, you can bypass the issue by
using one of the other types of raw quoting: r’he said "hi"\.~’

Strings in Tcl

Tcl is different from anything else in that it doesn’t really have string literals at all.
Rather, command lines are broken into “words,” which Tcl commands can then
consider as strings, variable names, regular expressions, or anything else as appro-
priate to the command. While a line is being parsed into words, common back-
slash sequences like \n are recognized and converted, and backslashes in
unknown combinations are simply dropped. You can put double quotes around
the word if you like, but they aren’t required unless the word has whitespace in it.

Tcl also has a raw literal type of quoting similar to Python’s raw strings, but Tcl
uses braces, { -}, instead of r’ /. Within the braces, everything except a back-
slash-newline combination is kept as-is, so you can use {\t\x2A} to get \t\x2A,

Within the braces, you can have additional sets of braces so long as they nest.
Those that don’t nest must be escaped with a backslash, although the backslash
does remain in the string’s value.

Strings, Character Encodings, and Modes 105

Regex literals in Perl

In the Perl examples we’'ve seen so far in this book, regular expressions have been
provided as literals (“regular-expression literals”). As it turns out, you can also pro-
vide them as strings. For example:

$str =" m/ (\w+) /;

can also be written as:

Sregex = ' (\w+) ’;
Sstr =" S$regex;

or perhaps:
Sregex = " (\\w+)";
Sstr =" Sregex;

(Note that using a string can be much less efficient s 242, 348.)

When a regex is provided as a literal, Perl provides extra features that the regular-
expression engine itself does not, including:
e The interpolation of variables (incorporating the contents of a variable as part
of the regular expression).

e Support for a literal-text mode via \Q-\E, (e 113).

e Optional support for a \N{name} construct, which allows you to specify char-
acters via their official Unicode names. For example, you can match ‘;Hola!’
with \N{INVERTED EXCLAMATION MARK}Holal!,

In Perl, a regex literal is parsed like a very special kind of string. In fact, these fea-
tures are also available with Perl double-quoted strings. The point to be aware of
is that these features are not provided by the regular-expression engine. Since the
vast majority of regular expressions used within Perl are as regex literals, most
think that \Q--\E is part of Perl’s regex language, but if you ever use regular
expressions read from a configuration file (or from the command line, etc.), it’s
important to know exactly what features are provided by which aspect of the lan-
guage.

More details are available in Chapter 7, starting on page 288.

Character-Encoding Issues

A character encoding is merely an explicit agreement on how bytes with various
values should be interpreted. A byte with the decimal value 110 is interpreted as
the character ‘n’ with the ASCII encoding, but as ‘>’ with EBCDIC. Why? Because
that’'s what someone decided — there’s nothing intrinsic about those values and
characters that makes one encoding better than the other. The byte is the same;
only the interpretation changes.

106 Chapter 3: Overview of Regular Expression Features and Flavors

ASCII defines characters for only half the values that a byte can hold. The
ISO-8859-1 encoding (commonly called “Latin-1”) fills in the blank spots with
accented characters and special symbols, making an encoding usable by a larger
set of languages. With this encoding, a byte with a decimal value of 234 is to be
interpreted as &, instead of being undefined as it is with ASCII.

The important question for us is: when we intend for a certain set of bytes to be
considered in the light of a particular encoding, does the program actually do so?
For example, if we have four bytes with the values 234, 116, 101, and 115 that we
intend to be considered as Latin-1 (representing the French word “étes”), we’d like
the regex "\w+$, or "\b, to match. This happens if the program’s \w and \b know
to treat those bytes as Latin-1 characters, and probably doesn’t happen otherwise.

Richness of encoding-related support
There are many encodings. When you’re concerned with a particular one, impor-
tant questions you should ask include:

e Does the program understand this encoding?

e How does it know to treat this data as being of that encoding?

e How rich is the regex support for this encoding?

The richness of an encoding’s support has several important issues, including:

e Are characters that are encoded with multiple bytes recognized as such? Do
expressions like dot and ["x] match single characters, or single bytes?

e Do \w, \d, \s, \b, etc., properly understand all the characters in the encoding?
For example, even if & is known to be a letter, do \w and \b treat it as such?

e Does the program try to extend the interpretation of class ranges? Is &
matched by [a-z]?

e Does case-insensitive matching work properly with all the characters? For
example, are & and £ treated as being equal?

Sometimes things are not as simple as they might seem. For example, the \b of
Sun’s java.util.regex package properly understands all the word-related char-
acters of Unicode, but its \w does not (it understands only basic ASCID. We'll see
more examples of this later in the chapter.

Unicode

There seems to be a lot of misunderstanding about just what “Unicode” is. At the
most basic level, Unicode is a character set or a conceptual encoding— a logical
mapping between a number and a character. For example, the Korean character

Strings, Character Encodings, and Modes 107

3t is mapped to the number 49,333. The number, called a code point, is normally

shown in hexadecimal, with “U+” prepended. 49,333 in hex is C0B5, so %} is
referred to as U+coss. Included as part of the Unicode concept is a set of attributes
for many characters, such as “3 is a digit” and “E is an uppercase letter whose low-

0

ercase equivalent is é&!

At this level, nothing is yet said about just how these numbers are actually
encoded as data on a computer. There are a variety of ways to do so, including
the UCS-2 encoding (all characters encoded with two bytes), the UCS-4 encoding
(all characters encoded with four bytes), UTF-16 (most characters encoded with
two bytes, but some with four), and the UTF-8 encoding (characters encoded with
one to six bytes). Exactly which (f any) of these encodings a particular program
uses internally is usually not a concern to the user of the program. The user’s con-
cern is usually limited to how to convert external data (such as data read from a
file) from a known encoding (ASCII, Latin-1, UTF-8, etc.) to whatever the program
uses. Programs that work with Unicode usually supply various encoding and
decoding routines for doing the conversion.

Regular expressions for programs that work with Unicode often support a \unum
metasequence that can be used to match a specific Unicode character (e 117).
The number is usually given as a four-digit hexadecimal number, so \uC0B5
matches 4}, It's important to realize that \uc0B5 is saying “match the Unicode
character U+coBs,” and says nothing about what actual bytes are to be compared,
which is dependent on the particular encoding used internally to represent Uni-
code code points. If the program happens to use UTF-8 internally, that character
happens to be represented with three bytes. But you, as someone using the Uni-
code-enabled program, don’t normally need to care. (Sometimes you do, as with

PHP’s preg suite and its u pattern modifier; e 447).

There are a few related issues that you may need to be aware of...

Characters versus combining-character sequences

What a person considers a “character” doesn’t always agree with what Unicode or
a Unicode-enabled program (or regex engine) considers to be a character. For
example, most would consider & to be a single character, but in Unicode, it can be
composed of two code points, U+0061 (a) combined with the grave accent U+0300
(™). Unicode offers a number of combining characters that are intended to follow
(and be combined with) a base character. This makes things a bit more complex
for the regular-expression engine — for example, should dot match just one code
point, or the entire U+0061 plus U+0300 combination?

108 Chapter 3: Overview of Regular Expression Features and Flavors

In practice, it seems that many programs treat “character” and “code point” as syn-
onymous, which means that dot matches each code point individually, whether it
is base character or one of the combining characters. Thus, & (U+0061 plus U+0300)
is matched by '*. .$, and not by I . $,.

Perl and PCRE (and by extension, PHP’s preg suite) support the \X metasequence,
which fulfills what many might expect from dot (“match one character”) in that it
matches a base character followed by any number of combining characters. See
more on page 120.

It's important to keep combining characters in mind when using a Unicode-
enabled editor to input Unicode characters directly into regular-expressions. If an
accented character, say A, ends up in a regular expression as ‘A’ plus “; it likely
can’t match a string containing the single code point version of A (single code
point versions are discussed in the next section). Also, it appears as two distinct
characters to the regular-expression engine itself, so specifying [.--A-1, adds the
two characters to the class, just as the explicit '[--A "] does.

In a similar vein, if a two-code-point character like A is followed by a quantifier,
the quantifier actually applies only to the second code point, just as with an
explicit A+,

Multiple code points for the same character

In theory, Unicode is supposed to be a one-to-one mapping between code points
and characters, but there are many situations where one character can have multi-
ple representations. The previous section notes that a is U+o061 followed by
U+0300. It is, however, also encoded separately as the single code point U+00E0.
Why is it encoded twice? To maintain easier conversion between Unicode and
Latin-1. If you have Latin-1 text that you convert to Unicode, a will likely be con-
verted to U+00E0. But, it could well be converted to a U+0061, U+0300 combination.
Often, there’s nothing you can do to automatically allow for these different ways
of expressing characters, but Sun’s java.util.regex package provides a special
match option, CANON_EQ, which causes characters that are “canonically equivalent”
to match the same, even if their representations in Unicode differ (e 368).

Somewhat related is that different characters can look virtually the same, which
could account for some confusion at times among those creating the text you're
tasked to check. For example, the Roman letter I (U+0049) could be confused with
I, the Greek letter Tota (U+0399). Add dialytika to that to get T or I, and it can be
encoded four different ways (U+00cF; U+03aa; U+0049 U+0308; U+0399 U+0308).
This means that you might have to manually allow for these four possibilities
when constructing a regular expression to match I. There are many examples
like this.

Strings, Character Encodings, and Modes 109

Also plentiful are single characters that appear to be more than one character. For
example, Unicode defines a character called “SQUARE HZ” (U+3390), which appears
as Hz. This looks very similar to the two normal characters Hz (U+0048 U+0073).

Although the use of special characters like Hz is minimal now, their adoption over
the coming years will increase the complexity of programs that scan text, so those
working with Unicode would do well to keep these issues in the back of their
mind. Along those lines, one might already expect, for example, the need to allow
for both normal spaces (U+0020) and no-break spaces (U+0020), and perhaps also
any of the dozen or so other types of spaces that Unicode defines.

Unicode 3.1+ and code points beyond U+FFFF

With the release of Unicode Version 3.1 in mid 2001, characters with code points
beyond U+rrrF were added. (Previous versions of Unicode had built in a way to
allow for characters at those code points, but until Version 3.1, none were actually
defined.) For example, there is a character for musical symbol C Clef defined at
U+1p121. Older programs built to handle only code points U+FrrF and below
won’t be able to handle this. Most programs’ \unum indeed allow only a four-digit
hexadecimal number.

Programs that can handle characters at these new code points generally offer the
\x{num} sequence, where num can be any number of digits. (This is offered
instead of, or in addition to, the four-digit \unum notation.) You can then use
\x{1D121} to match the C Clef character.

Unicode line terminator

Unicode defines a number of characters (and one sequence of two characters) that
are to be considered line terminators, shown in Table 3-5.

Table 3-5: Unicode Line Terminators

Characters Description

LF U+000A ASCII Line Feed

VT U+000B ASCII Vertical Tab

FF U+000C ASCIT Form Feed

CR U+000D ASCII Carriage Return

CR/LF | U+000D U+000A | ASCII Carriage Return / Line Feed sequence
NEL U+0085 Unicode NEXT LINE

LS U+2028 Unicode LINE SEPARATOR

PS U+2029 Unicode PARAGRAPH SEPARATOR

110 Chapter 3: Overview of Regular Expression Features and Flavors

When fully supported, line terminators influence how lines are read from a file
(including, in scripting languages, the file the program is being read from). With
regular expressions, they can influence both what dot matches (s 111), and where
", s, and \z; match (e 112).

Regex Modes and Match Modes

Most regex engines support a number of different modes for how a regular
expression is interpreted or applied. We’'ve seen an example of each with Perl’s /x
modifier (regex mode that allows free whitespace and comments s 72) and /i
modifier (match mode for case-insensitive matching s 47).

Modes can generally be applied globally to the whole regex, or in many modern
flavors, partially, to specific subexpressions of the regex. The global application is
achieved through modifiers or options, such as Perl’s /i, PHP’s i pattern modifier
(1= 446), or java.util.regex’s Pattern.CASE_INSENSITIVE flag (&= 99). If sup-
ported, the partial application of a mode is achieved with a regex construct that
looks like [(?1) to turn on case-insensitive matching, or '(?-1i), to turn it off. Some
flavors also support [(?i:--);and '(?-1i:-), which turn on and off case-insensitive
matching for the subexpression enclosed.

How these modes are invoked within a regex is discussed later in this chapter
(e 135). In this section, we’ll merely review some of the modes commonly avail-
able in most systems.

Case-insensitive match mode

The almost ubiquitous case-insensitive match mode ignores letter case during
matching, so that b matches both ‘b’ and ‘B’. This feature relies upon proper char-
acter encoding support, so all the cautions mentioned earlier apply.

Historically, case-insensitive matching support has been surprisingly fraught with
bugs, but most have been fixed over the years. Still, Ruby’s case-insensitive match-
ing doesn’t apply to octal and hex escapes.

There are special Unicode-related issues with case-insensitive matching (which
Unicode calls “loose matching”). For starters, not all alphabets have the concept of
upper and lower case, and some have an additional title case used only at the start
of a word. Sometimes there’s not a straight one-to-one mapping between upper
and lower case. A common example is that a Greek Sigma, ¥, has two lowercase
versions, ¢ and 0; all three should mutually match in case-insensitive mode. Of the
systems I've tested, only Perl and Java’s java.util.regex handle this correctly.

Strings, Character Encodings, and Modes 111

Another issue is that sometimes a single character maps to a sequence of multiple
characters. One well known example is that the uppercase version of 8 is the two-
character combination “SS”. Only Perl handles this properly.

There are also Unicode-manufactured problems. One example is that while there’s
a single character j (U+01F0), it has no single-character uppercase version. Rather, ¥
requires a combining sequence (s 107), U+004a and U+030c. Yet, j and J should
match in a case-insensitive mode. There are even examples like this that involve
one-to-three mappings. Luckily, most of these do not involve commonly used
characters.

Free-spacing and comments regex mode

In this mode, whitespace outside of character classes is mostly ignored. White-
space within a character class still counts (except in java.util.regex), and com-
ments are allowed between # and a newline. We've already seen examples of this
for Perl (s 72), Java (s 98), and VB.NET (s= 99).

Except for java.util.regex, it's not quite true that a// whitespace outside of
classes is ignored, but that it’s turned into a do-nothing metacharacter. The distinc-
tion is important with something like \12 -3, which in this mode is taken as \12,
followed by 13, and not '\ 123, as some might expect.

Of course, just what is and isn’'t “whitespace” is subject to the character encoding
in effect, and its fullness of support. Most programs recognize only ASCII
whitespace.

Dot-maiches-all match mode (a.R.a., “single-line mode”)

Usually, dot does not match a newline. The original Unix regex tools worked on a
line-by-line basis, so the thought of matching a newline wasn’t an issue until the
advent of sed and lex. By that time, .+ had become a common idiom to match
“the rest of the line,” so the new languages disallowed it from crossing line bound-
aries in order to keep it familiar." Thus, tools that could work with multiple lines
(such as a text editor) generally disallow dot from matching a newline.

For modern programming languages, a mode in which dot matches a newline can
be as useful as one where dot doesn’t. Which of these is most convenient for a
particular situation depends on, well, the situation. Many programs now offer ways
for the mode to be selected on a per-regex basis.

There are a few exceptions to the common standard. Unicode-enabled systems,
such as Sun’s Java regex package, may expand what dot normally does not match
to include any of the single-character Unicode line terminators (s 109). Tcl's

t As Ken Thompson (ed’s author) explained it to me, it kept . from becoming “too unwieldy.”

112 Chapter 3: Overview of Regular Expression Features and Flavors

normal state is that its dot matches everything, but in its special “newline-sensitive”
and “partial newline-sensitive” matching modes, both dot and a negated character
class are prohibited from matching a newline.

An unfortunate name. When first introduced by Perl with its /s modifier, this
mode was called “single-line mode” This unfortunate name continues to cause no
end of confusion because it has nothing whatsoever to do with I and '$, which
are influenced by the “multiline mode” discussed in the next section. “Single-line
mode” merely means that dot has no restrictions and can match any character.

Enbanced line-anchor match mode (a.k.a., “multiline mode”)

An enhanced line-anchor match mode influences where the line anchors, ") and
'$, match. The anchor ") normally does not match at embedded newlines, but
rather only at the start of the string that the regex is being applied to. However, in
enhanced mode, it can also match after an embedded newline, effectively having
"~ treat the string as multiple logical lines if the string contains newlines in the
middle. We saw this in action in the previous chapter (e 69) while developing a
Perl program to converting text to HIML. The entire text document was within a
single string, so we could use the search-and-replace s/"$/<p>/mg to convert
“.tags. MMIts...” to “...tags.M<p>MIt’s...” The substitution replaces empty
“lines” with paragraph tags.

It's much the same for '$;, although the basic rules about when '$; can normally
match can be a bit more complex to begin with (s 129). However, as far as this
section is concerned, enhanced mode simply includes locations before an embed-
ded newline as one of the places that '$; can match.

Programs that offer this mode often offer \a, and '\z, which normally behave the
same as I and [$) except they are not modified by this mode. This means that "\ 2
and \Z, never match at embedded newlines. Some implementations also allow '$,
and \z to match before a string-ending newline. Such implementations often offer
\z, which disregards all newlines and matches only at the very end of the string.
See page 129 for details.

As with dot, there are exceptions to the common standard. A text editor like GNU
Emacs normally lets the line anchors match at embedded newlines, since that
makes the most sense for an editor. On the other hand, lex has its '$) match only
before a newline (while its ") maintains the common meaning.)

~

Unicode-enabled systems, such as Sun’s java.util.regex, may allow the line
anchors in this mode to match at any line terminator (== 109). Ruby’s line anchors
normally do match at any embedded newline, and Python’s \z, behaves like its
"\ z, rather than its normal S,

Common Metacharacters and Features 113

Traditionally, this mode has been called “multiline mode.” Although it is unrelated
to “single-line mode,” the names confusingly imply a relation. One simply modifies
how dot matches, while the other modifies how [and '$; match. Another problem
is that they approach newlines from different views. The first changes the concept
of how dot treats a newline from “special” to “not special,” while the other does
the opposite and changes the concept of how [and '$; treat newlines from “not
special” to “special 7t

Literal-text regex mode

A “literal text” mode is one that doesn’t recognize most or all regex metachar-
acters. For example, a literal-text mode version of [[a-z]+, matches the string
‘la-z]+". A fully literal search is the same as a simple string search (“find this
string” as opposed to “find a match for this regex”), and programs that offer regex
support also tend to offer separate support for simple string searches. A regex lit-
eral-text mode becomes more interesting when it can be applied to just part of a
regular expression. For example, PCRE (and hence PHP) regexes and Perl regex lit-
erals offer the special sequence \Q-\E, the contents of which have all metachar-
acters ignored (except the \E itself, of course).

Common Metacharacters and Features

The remainder of this chapter — the next 30 pages or so — offers an overview of
common regex metacharacters and concepts, as outlined on the next page. Not
every issue is discussed, and no one tool includes everything presented here.

In one respect, this section is just a summary of much of what you've seen in the
first two chapters, but in light of the wider, more complex world presented at the
beginning of this chapter. During your first pass through, a light glance should
allow you to continue on to the next chapters. You can come back here to pick up
details as you need them.

Some tools add a lot of new and rich functionality and some gratuitously change
common notations to suit their whim or special needs. Although T'll sometimes
comment about specific utilities, I won’t address too many tool-specific concerns
here. Rather, in this section I'll just try to cover some common metacharacters and
their uses, and some concerns to be aware of. I encourage you to follow along
with the manual of your favorite utility.

t Tcl normally lets its dot match everything, so in one sense it's more straightforward than other lan-
guages. In Tcl regular expressions, newlines are not normally treated specially in any way (neither to
dot nor to the line anchors), but by using match modes, they become special. However, since other
systems have always done it another way, Tcl could be considered confusing to those used to those
other ways.

114

Chapter 3: Overview of Regular Expression Features and Flavors

Constructs Covered in This Section

Character Representations

w115
w116
w117
w117

Character Shorthands: \n, \t, \a, \b, \e, \£, \r, \v, ...
Octal Escapes: \num

Hex/Unicode Escapes: \xnum, \x{num}, \unum, \Unum, ...
Control Characters: \ecchar

Character Classes and Class-Like Constructs

w118
w119
= 120
= 120
w120
w121
125
w127
128
w128
w128

Normal classes: [a-z] and ["a-z]

Almost any character: dot

Exactly one byte: \C

Unicode Combining Character Sequence: \x

Class shorthands: \w, \d, \s, \W, \D, \S

Unicode properties, blocks, and categories: \p{Prop}, \P{Prop}
Class set operations: [[a-z]&&[" aeiou]]

POSIX bracket-expression “character class™ [[:alpha:]]

POSIX bracket-expression “collating sequences”: [[.span-11.]1]
POSIX bracket-expression “character equivalents”: [[=n=]]
Emacs syntax classes

Anchors and Other “Zero-Width Assertions”

w129
w129
w130
s 133
133

Start of line/string: ~, \a

End of line/string: §, \z, \z

Start of match (or end of previous match): \G

Word boundaries: \b, \B, \<, \>, ...

Lookahead (2=-), (2!); Lookbehind, (?<=), (2<!)

Comments and Mode Modifiers

w135
w135
w136
w136

Mode modifier: (2?modifier), such as (?i) or (2-i)
Mode-modified span: (?modifiers), such as (?i:-)
Comments: (?#-) and #-

Literal-text span: \Q-\E

Grouping, Capturing, Conditionals, and Control

= 137
w137
= 138
1 139
1 139
s 140
s 141
= 141
1 142

Capturing/grouping parentheses: (), \1, \2, ...
Grouping-only parentheses: (2:)

Named capture: (2?<Name>--)

Atomic grouping: (?>-)

Alternation: ||

Conditional: (2 if then | else)

Greedy quantifiers: =, +, 2, {num, num}

Lazy quantifiers: 2, +2, 22, {num, num}?
Possessive quantifiers: »+, ++, 2+, {num, num}+

Common Metacharacters and Features 115

Character Representations

This group of metacharacters provides visually pleasing ways to match specific
characters that are otherwise difficult to represent.

Character shorthands

Many utilities provide metacharacters to represent certain control characters that
are sometimes machine-dependent, and which would otherwise be difficult to
input or to visualize:
\a Alert (e.g., to sound the bell when “printed”) Usually maps to the ASCI
<BEL> character, 007 octal.

\b Backspace Usually maps to the ASCII <BS> character, 010 octal. (With many
flavors, \b, is a shorthand only within a character class, a word-boundary
metacharacter outside s 133.)

\e Escape character Usually maps to the ASCII <ESC> character, 033 octal.
\f Form feed Usually maps to the ASCII <FF> character, 014 octal.

\n Newline On most platforms (including Unix and DOS/Windows), usually
maps to the ASCII <LF> character, 012 octal. On MacOS systems, usually
maps to the ASCII <CR> character, 015 octal. With Java or any .NET lan-
guage, always the ASCII <LF> character regardless of platform.

\r Carriage return Usually maps to the ASCII <CR> character. On MacOS sys-
tems, usually maps to the ASCII <LF> character. With Java or any .NET lan-
guage, always the ASCII <CR> character regardless of platform.

\t Normal horizontal tab Maps to the ASCII <HT> character, 011 octal.

\v Vertical tab Usually maps to the ASCII <vT> character, 013 octal.

Table 3-6 lists a few common tools and some of the character shorthands they pro-
vide. As discussed earlier, some languages also provide many of the same short-
hands for the string literals they support. Be sure to review that section (r 101) for
some of the associated pitfalls.

These are machine dependent?

As noted in the list, \n and \r are operating-system dependent in many tools," so,
it's best to choose carefully when you use them. When you need, for example, “a
newline” for whatever system your script will happen to run on, use \n. When
you need a character with a specific value, such as when writing code for a

t If the tool itself is written in C or CH, and converts its regex backslash escapes into C backslash
escapes, the resulting value is dependent upon the compiler. In practice, compilers for any particular
platform are standardized around newline support, so it's safe to view these as operating-system
dependent. Furthermore, only \n and \r tend to vary across operating systems (and less so as time
goes on), so the others can be considered standard across all systems.

116 Chapter 3: Overview of Regular Expression Features and Flavors

Table 3-6: A Few Utilities and Some of the Shorthand Metacharacters They Provide

= e
ER 2 E 2
Z g g E 2 b E
8 =% ~ 5] & k) c0 S
T Z g 5 g 5 = a 2
9] Y = 3 g 7} & =)
& & g N € g g g &
\b \b \a \e \f \n \r \t \v
Program Character shorthands
Python v A v v v v v v
Tcl as \y v v v v v v Ve v
Perl v A v v v v v 4
Java 4 ‘/x 4 v Vir Vix ik Yix v
GNU awk v/ 4 4 v 4 4 v
GNU sed v v
GNU Emacs v A A A VA A A A 4
.NET v v v v v v 4 4 v
PHP (preg routines) v A v v v v v v
MySQL
GNU grep/egrep v
flex v v v v v v v
Ruby v A v v v v v v v
v supported '/L supported in class only See page 91 for version information
V4 supported (also supported by string literals)
v supported (but string literals have a different meaning for the same sequence)
#, not supported (but string literals have a different meaning for the same sequence)
¢, not supported (but supported by string literals)
This table assumes the most regex-friendly type of string per application (e 101)

defined protocol like HTTP, use \012 or whatever the standard calls for. (\012 is
an octal escape for the ASCII linefeed character.) If you wish to match DOS line-
ending characters, use \015\012. To match either DOS or Unix line-ending char-
acters, use \015?\012. (These actually match the line-ending characters — to
match at the start or end of a line, use a line anchor = 129).

Octal escape — \num

Implementations supporting octal (base 8) escapes generally allow two- and three-
digit octal escapes to be used to indicate a byte or character with a particular
value. For example, \015\012, matches an ASCII CR/LF sequence. Octal escapes
can be convenient for inserting hard-to-type characters into an expression. In Perl,
for instance, you can use \e, for the ASCII escape character, but you can’t in awk.

Common Metacharacters and Features 117

Since awk does support octal escapes, you can use the ASCII code for the escape
character directly: \ 033,

Table 3-7 on the next page shows the octal escapes some tools support.

Some implementations, as a special case, allow \0, to match a NUL byte. Some
allow all one-digit octal escapes, but usually don'’t if backreferences such as \1 are
supported. When there’s a conflict, backreferences generally take precedence over
octal escapes. Some allow four-digit octal escapes, usually to support a require-
ment that any octal escape begin with a zero (such as with java.util.regex).

You might wonder what happens with out-of-range values like \565 (8-bit octal
values range from \000 until only \377). It seems that half the implementations
leave it as a larger-than-byte value (which may match a Unicode character if Uni-
code is supported), while the other half strip it to a byte. In general, it’s best to
limit octal escapes to \377 and below.

Hex and Unicode escapes: \xnum, \x{num}, \unum, \Unum, ...

Similar to octal escapes, many utilities allow a hexadecimal (base 16) value to be
entered using \x, \u, or sometimes \U. If allowed with \x, for example,
\x0D\x0A, matches the CR/LF sequence. Table 3-7 shows the hex escapes that
some tools support.

Besides the question of which escape is used, you must also know how many dig-
its they recognize, and if braces may be (or must be) used around the digits.
These are also indicated in Table 3-7.

Control characters: \cchar

Many flavors offer the \cchar, sequence to match control characters with encoding
values less than 32 (some allow a wider range). For example, \cH matches a Con-
trol-H, which represents a backspace in ASCII, while \cg matches an ASCII linefeed
(which is often also matched by \nj, but sometimes by \r, depending on the plat-
form s 115).

Details aren’t uniform among systems that offer this construct. You'll always be
safe using uppercase English letters as in the examples. With most implementa-
tions, you can use lowercase letters as well, but Sun’s Java regex package, for
example, does not support them. And what exactly happens with non-alphabetics
is very flavor-dependent, so I recommend using only uppercase letters with \c.

Related Note: GNU Emacs supports this functionality, but with the rather ungainly
metasequence [?\ " char (e.g., [?\"H to match an ASCII backspace).

118 Chapter 3: Overview of Regular Expression Features and Flavors

Table 3-7: A Few Utilities and the Octal and Hex Regex Escapes Their Regexes Support

Back-

references Octal escapes Hex escapes
Python v \0, \07, \377 \XFF
Tcl v \0, \77, \777 \x \uFFFF; \UFFFFFFFF
Perl v \0, \77, \777 \xF; \XFF; \x{}
Java v \07, \077, \0377 \XFF; \uFFFF
GNU awk \7, \77, \377 \x
GNU sed v
GNU Emacs v
NET v \0, \77, \377 \XFF, \uFFFF
PHP (preg suite) v \0, \77, \377 \XF, \XFF, \x{}
MySQL
GNU egrep v
GNU grep v
Slex \7, \77, \377 \XF, \XFF
Ruby v \7, \77, \377 \XF, \xFF
\0 — "\ 0, matches a NUL byte, but other one-digit octal escapes are not supported
\7, \77 — one- and two- digit octal escapes are supported
\07 — two-digit octal escapes are supported if leading digit is a zero
\077 — three-digit octal escapes are supported if leading digit is a zero
\377 — three-digit octal escapes are supported, until \377
\0377 — four-digit octal escapes are supported, until \0377
\777 — three-digit octal escapes are supported, until \777
\x - — \x allows any number of digits
\x{ } — \x{} allows any number of digits
\xF, \xFF — one- and two- digit hex escape is allowed with \x
\uFFFF — four-digit hex escape allowed with \u
\UFFFF — four-digit hex escape allowed with \U
\UFFFFFFFF — eight-digit hex escape allowed with \U (See page 91 for version information.)

Character Classes and Class-Like Constructs

Modern flavors provide a number of ways to specify a set of characters allowed at
a particular point in the regex, but the simple character class is ubiquitous.

Normal classes: [a-z] and ["a-z]

The basic concept of a character class has already been well covered, but let me
emphasize again that the metacharacter rules change depending on whether
you're in a character class or not. For example, x| is never a metacharacter within
a class, while - usually is. Some metasequences, such as \b, sometimes have a
different meaning within a class than outside of one (= 116).

Common Metacharacters and Features 119

With most systems, the order that characters are listed in a class makes no differ-
ence, and using ranges instead of listing characters is irrelevant to the execution
speed (e.g., [0-9] should be no different from [9081726354]1). However, some
implementations don’t completely optimize classes (Sun’s Java regex package
comes to mind), so it’s usually best to use ranges, which tend to be faster, wher-
ever possible.

A character class is always a positive assertion. In other words, it must always
match a character to be successful. A negated class must still match a character,
but one not listed. It might be convenient to consider a negated character class to
be a “class to match characters not listed” (Be sure to see the warning about dot
and negated character classes, in the next section.) It used to be true that some-
thing like I["LMNOP]; was the same as [\x00-KQ-\xFF], In strictly eight-bit sys-
tems, it still is, but in a system such as Unicode where character ordinals go
beyond 255 (AxFF), a negated class like ["LMNOP]; suddenly includes all the tens
of thousands of characters in the encoding—all except L, M, N, O, and P.

Be sure to understand the underlying character set when using ranges. For exam-
ple, Ta-z1 is likely an error, and in any case certainly isn’t “alphabetics” One
specification for alphabetics is [[a-zA-Z], at least for the ASCII encoding. (See
\p{L} in “Unicode properties” e 121.) Of course, when dealing with binary data,
ranges like ‘\x80-\xFF’ within a class make perfect sense.

Almost any character: dot

In some tools, dot is a shorthand for a character class that can match any charac-
ter, while in most others, it is a shorthand to match any character except a newline.
It'’s a subtle difference that is important when working with tools that allow target
text to contain multiple logical lines (or to span logical lines, such as in a text edi-
tor). Concerns about dot include:
¢ In some Unicode-enabled systems, such as Sun’s Java regex package, dot nor-
mally does not match a Unicode line terminator (e 109).

e A match mode (= 111) can change the meaning of what dot matches.

e The POSIX standard dictates that dot not match a NUL (a character with the
value zero), although all the major scripting languages allow NULLs in their
text (and dot matches them).

Dot versus a negated character class

When working with tools that allow multiline text to be searched, take care to
note that dot usually does not match a newline, while a negated class like [""],
usually does. This could yield surprises when changing from something such as
moxmto " [~"]x", The matching qualities of dot can often be changed by a match
mode—see “Dot-matches-all match mode” on page 111.

120 Chapter 3: Overview of Regular Expression Features and Flavors

Exactly one byte

Perl and PCRE (and hence PHP) support \C, which matches one byte, even if that
byte is one of several that might encode a single character (on the other hand,
everything else works on a per-character basis). This is dangerous—its misuse can
cause internal errors, so it shouldn’t be used unless you really know what you're
doing. T can’t think of a good use for it, so I won’t mention it further.

Unicode combining character sequence: \X

Perl and PHP support \X as a shorthand for \P{M}\p{M}*, which is like an
extended ., (dot). It matches a base character (anything not \p{M}), possibly fol-
lowed by any number of combining characters (anything that is \p{M}).

As discussed earlier (e 107), Unicode uses a system of base and combining char-
acters which, in combination, create what look like single, accented characters like
a (‘a’ U+0061 combined with the grave accent ©’ U+0300). You can use more than
one combining character if that’s what you need to create the final result. For
example, if for some reason you need ‘¢’, that would be ‘¢’ followed by a combin-
ing cedilla ‘" and a combining breve <~ (U+0063 followed by U+0327 and U+0306).

If you wanted to match either “francais” or “francais,” it wouldn’t be safe to just use
'fran.ais orfran[cglais, as those assume that the ‘¢’ is rendered with the sin-
gle Unicode code point U+00c7, rather than ‘¢’ followed by the cedilla (U+0063 fol-
lowed by U+0327). You could perhaps use fran(c,?|¢)ais if you needed to be
very specific, but in this case, fran\Xais, is a good substitute for 'fran.ais,

Besides the fact that \X matches trailing combining characters, there are two differ-
ences between it and dot. One is that \X always matches a newline and other Uni-
code line terminators (s 109), while dot is subject to dot-matches-all match-mode
(e 111), and perhaps other match modes depending on the tool. Another differ-
ence is that a dot-matches-all dot is guaranteed to match all characters at all times,
while \X doesn’t match a leading combining character.

Class shorthands: \w, \d, \s, \W, \D, \S

Support for the following shorthands is common:
\d Digit Generally the same as[0-91], or, in some Unicode-enabled tools, all
Unicode digits.
\D Non-digit Generally the same as '[~\d]

\w Part-ofword character Often the same as [a-zA-Z0-9_]. Some tools
omit the underscore, while others include all alphanumerics in the current
locale (r 87). If Unicode is supported, \w usually refers to all alphanumer-
ics; notable exceptions include java.util.regex and PCRE (and by
extension, PHP), whose \w are exactly [a-zA-20-9_1.

Common Metacharacters and Features 121

\W Non-word character Generally the same as [“\w],

\s Whitespace character On ASCII-only systems, this is often the same as
T-\f\n\r\t\v]. Unicode-enabled systems sometimes also include the
Unicode “next line” control character U+0085, and sometimes the “white-
space” property \p{z} (described in the next section).

\S Non-whitespace character Generally the same as [“\s],

As described on page 87, a POSIX locale could influence the meaning of these
shorthands (in particular, \w). Unicode-enabled programs likely have \w match a
much wider scope of characters, such as \p{L} (discussed in the next section)
plus an underscore.

Unicode properties, scripts, and blocks: \p{Prop}, \P{Prop}

On its surface, Unicode is a mapping (== 106), but the Unicode Standard offers
much more. It also defines qualities about each character, such as “this character is

a lowercase letter,” “this character is meant to be written right-to-left,
ter is a mark that’s meant to be combined with another character etc.

this charac-

Regular-expression support for these qualities varies, but many Unicode-enabled
programs support matching via at least some of them with \p{quality}, (matches
characters that have the quality) and \P{quality}; (matches characters without it). A
basic example is \p{L}, where ‘I’ is the quality meaning “letter” (as opposed to
number, punctuation, accents, etc.). ‘L’ is an example of a general property (also
called a category). We'll soon see other “qualities” that can be tested by \p{ -}
and \P{ -}, but the most commonly supported are the general properties.

The general properties are shown in Table 3-8. Each character (each code point
actually, which includes those that have no characters defined) can be matched by
just one general property. The general property names are one character (‘I for
Letter, ‘s’ for symbol, etc.), but some systems support a more descriptive synonym
(‘Letter’, ‘symbol’, etc.) as well. Perl, for example, supports these.

With some systems, single-letter property names may be referenced without the
curly braces (e.g., using \pL instead of \p{L}). Some systems may require (or
simply allow) ‘In’ or ‘Is’ to prefix the letter (e.g., \p{IsL}). As we look at addi-
tional qualities, we'll see examples of where an Is/In prefix is required.’

As shown in Table 3-9, each one-letter general Unicode property can be further
subdivided into a set of two-letter sub-properties, such as “letter” being divided

t As we'll see (and is illustrated in the table on page 125), the whole Is/In prefix business is some-
what of a mess. Previous versions of Unicode recommend one thing, while early implementations
often did another. During Perl 5.8's development, I worked with the development group to simplify
things for Perl. The rule in Perl now is simply “You don’t need to use ‘Is’ or ‘In’ unless you specifi-

IE)

cally want a Unicode Block (s 124), in which case you must prepend ‘In’.

122 Chapter 3: Overview of Regular Expression Features and Flavors

Table 3-8: Basic Unicode Properties

Class Synonym and description

\p{L} \p{Letter} — Things considered letters.

\p{M} \p{Mark} — Various characters that are not meant to appear by themselves,
but with other base characters (accent marks, enclosing boxes, ...).

\p{z} \p{Separator} — Characters that separate things, but have no visual
representation (various kinds of spaces. . .).

\p{s} \p{Symbol} — Various types of Dingbats and symbols.

\p{N} \p{Number} — Any kind of numeric character.

\p{P} \p{Punctuation} — Punctuation characters.

\p{C} \p{other} — Catch-all for everything else (rarely used for normal characters).

» o« » o« » o« » o«

into “lowercase letter; “uppercase letter;” “titlecase letter; “modifier letter)” “other
letter” Each code point is assigned exactly one of the subdivided properties.

Additionally, some implementations support a special composite sub-property,
\p{L&}, which is a shorthand for all “cased” letters, and is the same as
M\p{Lu}\p{L1}\p{Lt}],

Also shown in Table 3-9 are the full-length synonyms (e.g., “Lowercase_Letter”
instead of “L1”) supported by some implementations. The standard suggests that a
variety of forms be accepted (such as ‘LowercaseLetter’, ‘LOWERCASE_LETTER’,
‘Lowercase-Letter’, ‘lowercase-letter’, etc.), but I recommend, for consis-
tency, always using the form shown in Table 3-9.

Scripts. Some systems have support for matching via a script (writing system)
name with \p{-}. For example, if supported, \p{Hebrew} matches characters that
are specifically part of the Hebrew writing system. (A script does not include
common characters that might be used by other writing systems as well, such as
spaces and punctuation.)

Some scripts are language-based (such as Gujarati, Thai, Cherokee, ...). Some
span multiple languages (e.g., Latin, Cyrillic), while some languages are com-
posed of multiple scripts, such as Japanese, which uses characters from the
Hiragana, Katakana, Han (“Chinese Characters”), and Latin scripts. See your sys-
tem’s documentation for the full list.

A script does not include all characters used by the particular writing system, but
rather, all characters used only (or predominantly) by that writing system. Com-
mon characters such as spacing and punctuation are not included within any
script, but rather are included as part of the catch-all pseudo-script IsCommon,
matched by \p{IsCommon}. A second pseudo-script, Inherited, is composed of
certain combining characters that inherit the script from the base character that
they follow.

Common Metacharacters and Features 123

Table 3-9: Basic Unicode Sub-Properties

Property | Synonym and description

\p{Ll} |\p{Lowercase_Letter} — Lowercase letters.
\p{Lu} |\p{Uppercase_Letter} — Uppercase letters.

\p{Lt} |\p{Titlecase_Letter} — Letters that appear at the start of a word (e.g., the
character Dz is the title case of the lowercase dZ and of the uppercase DZ).

\p{L&} |A composite shorthand matching all \p{L1}, \p{Lu}, and \p{Lt} characters.
\p{Lm} |\p{Modifier_ Letter} — A small set of letter-like special-use characters.

\p{Lo} |\p{other_Letter} — Letters that have no case, and aren’t modifiers, including
letters from Hebrew, Arabic, Bengali, Tibetan, Japanese, ...

\p{Mn} |\p{Non_Spacing_Mark} — “Characters” that modify other characters, such as
accents, umlauts, certain “vowel signs,” and tone marks.

\p{Mc} |\p{Spacing_Combining_ Mark} — Modification characters that take up space of
their own (mostly “vowel signs” in languages that have them, including Bengali,
Gujarati, Tamil, Telugu, Kannada, Malayalam, Sinhala, Myanmar, and Khmer).
\p{Me} |\p{Enclosing_ Mark} — A small set of marks that can enclose other characters,
such as circles, squares, diamonds, and “keycaps”

\p{Zs} | \p{Space_Separator} — Various kinds of spacing characters, such as a normal
space, non-break space, and various spaces of specific widths.

\p{z1} |\p{Line_Separator} — The LINE SEPARATOR character (U+2028).

\p{Zp} | \p{Paragraph_Separator} — The PARAGRAPH SEPARATOR character (U+2029).

\p{Sm} [\p{Math_Symbol} — +, +, a fraction slash, <, ...
\p{Sc} |\p{Currency Symbol} —§$,6 ¢ ¥ €, ..

\p{Sk} |\p{Modifier_Symbol} — Mostly versions of the combining characters, but as
full-fledged characters in their own right.

\p{So} |\p{Other_symbol} — Various Dingbats, box-drawing symbols, Braille patterns,
non-letter Chinese characters, ...

\p{Nd} |\p{Decimal_Digit_Number} — Zero through nine, in various scripts (not
including Chinese, Japanese, and Korean).
\p{N1} |\p{Letter_Number} — Mostly Roman numerals.

\p{No} |\p{Other_Number} — Numbers as superscripts or symbols; characters repre-
senting numbers that aren’t digits (Chinese, Japanese, and Korean not included).

\p{Pd} |\p{Dash_Punctuation} — Hyphens and dashes of all sorts.
\p{Ps} |\p{Open_Punctuation} — Characters like (, -, and {; ...
\p{Pe} |\p{Close_Punctuation} — Characters like), v, » -
\p{Pi} [\p{Initial_Punctuation} — Characters like «, “, <, ...

\p{P£} |\p{Final_Punctuation} — Characters like », ', >, ...

\p{Pc} | \p{Connector_Punctuation} — A few punctuation characters with special
linguistic meaning, such as an underscore.

\p{Po} |\p{Other_Punctuation} — Catch-all for other punctuation: !, &, [I:, , ...

\p{Cc} [\p{Control} — The ASCII and Latin-1 control characters (TAB, LF, CR, ...)
\p{Cf} |\p{Format} — Non-visible characters intended to indicate some basic formatting
(zero width joiner, activate Arabic form shaping, ...)

\p{Co} |\p{Private_use} — Code points allocated for private use (company logos, etc.).
\p{cn} |\p{Unassigned} — Code points that have no characters assigned.

124 Chapter 3: Overview of Regular Expression Features and Flavors

Blocks. Similar (but inferior) to scripts, blocks refer to ranges of code points on
the Unicode character map. For example, the Tibetan block refers to the 256
code points from U+0r00 through U+orrr. Characters in this block are matched
with \p{InTibetan} in Perl and java.util.regex, and with \p{IsTibetan} in
NET. (More on this in a bit.)

There are many blocks, including blocks for most systems of writing (Hebrew,
Tamil, Basic_Latin, Hangul_Jamo, Cyrillic, Katakana, ...), and for special
character types (Currency, Arrows, Box_Drawing, Dingbats, ...).

Tibetan is one of the better examples of a block, since all characters in the block
that are defined relate to the Tibetan language, and there are no Tibetan-specific
characters outside the block. Block qualities, however, are inferior to script quali-
ties for a number of reasons:
e Blocks can contain unassigned code points. For example, about 25 percent of
the code points in the Tibetan block have no characters assigned to them.

e Not all characters that would seem related to a block are actually part of that
block. For example, the Currency block does not contain the universal cur-
rency symbol ‘', nor such notable currency symbols as $, ¢, £, €, and ¥.
(Luckily, in this case, you can use the currency property, \p{Sc}, in its place.)

e Blocks often have unrelated characters in them. For example, ¥ (Yen symbol)
is found in the Latin_1_Supplement block.

e What might be considered one script may be included within multiple blocks.
For example, characters used in Greek can be found in both the Greek and
Greek_Extended blocks.

Support for block qualities is more common than for script qualities. There is
ample room for getting the two confused because there is a lot of overlap in the
naming (for example, Unicode provides for both a Tibetan script and a Tibetan
block).

Furthermore, as Table 3-10 on the facing page shows, the nomenclature has not
yet been standardized. With Perl and java.util.regex, the Tibetan block is
\p{InTibetan}, but in the .NET Framework, it’s \p{IsTibetan} (which, to add
to the confusion, Perl allows as an alternate representation for the Tibetan script).

Other properties/qualities. Not everything talked about so far is universally
supported. Table 3-10 gives a few details about what’s been covered so far.

Additionally, Unicode defines many other qualities that might be accessible via the
\p{ -} construct, including ones related to how a character is written (left-to-right,
right-to-left, etc.), vowel sounds associated with characters, and more. Some
implementations even allow you to create your own properties on the fly. See
your program’s documentation for details on what’s supported.

Common Metacharacters and Features 125

Table 3-10: Property/Script/Block Features

Feature Perl Java .NET PHP/PCRE

v Basic Properties like \p{L} v v v v

v Basic Properties shorthand like \pL v v v
Basic Properties longhand like \p{IsL} v v

v Basic Properties full like \p{Letter} v

v Composite \p{L&} v v

v Script like \p{Greek} v v
Script longhand like \p{IsGreek} v

v Block like \p{Cyrillic} if no script v

v Block longhand like \p{InCyrillic} v v
Block longhand like \p{IsCyrillic} v

v Negated \P{ '} v v v v
Negated \p{" } v/ v

v \p{any} 4 as \p{all} v

v \p{Assigned} v as \P{Cn} |as \P{Cn} |as \P{Cn}

v \p{Unassigned} v as \p{Cn} |as \p{Cn} |as \p{Cn}

Lines checkmarked at left are recommended for new implementations. (See page 91 for version information)

Simple class subtraction: [[a-z]-[aeiou]]

NET offers a simple class “subtraction” nomenclature, which allows you to remove
from what a class can match those characters matchable by another class. For
example, the characters matched by /[[a-z] - [aeioul], are those matched by
[a-z] minus those matched by l[aeiou], i.e. that are non-vowel lower-case ASCII.

As another example, [\p{P} - [\p{Ps}\p{Pe}]] is a class that matches characters
in \p{P} except those matchable by [\p{Ps}\p{Pe}], which is to say that it
matches all punctuation except opening and closing punctuation such as) and (.

Full class set operations: [[a-z] && ["aeiou]]

Sun’s Java regex package supports a full range of set operations (union, subtrac-
tion, intersection) within character classes. The syntax is different from the simple
class subtraction mentioned in the previous section (and, in particular, Java’s set
subtraction looks particularly odd—the non-vowel example shown in the previous
section would be rendered in Java as [[a-z]&&["aeioull). Before looking at
subtraction in detail, let’s look at the two basic class set operations, OR and AND.

OR allows you to add characters to the class by including what looks like an
embedded class within the class: [abcxyz] can also be written as [[abc] [xyz]1],
[abc[xyz]l, or [[abclxyz], among others. OR combines sets, creating a new set

126 Chapter 3: Overview of Regular Expression Features and Flavors

that is the sum of the argument sets. Conceptually, it's similar to the “bitwise or”
operator that many languages have via a ‘|’ or ‘or’ operator. In character classes,
OR is mostly a notational convenience, although the ability to include negated
classes can be useful in some situations.

AND does a conceptual “bitwise AND” of two sets, keeping only those characters
found in both sets. It is achieved by inserting the special class metasequence &&
between two sets of characters. For example, [\p{InThai}&&\P{Cn}] matches all
assigned code points in the Thai block. It does this by taking the intersection
between (i.e., keeping only characters in both) \p{InThai} and \P{Cn}. Remem-
ber, \P{- -} with a capital ‘P, matches everything not part of the quality, so \P{Cn}
matches everything not unassigned, which in other words, means is assigned.
(Had Sun supported the Assigned quality, I could have used \p{Assigned}
instead of \P{Cn} in this example.)

Be careful not to confuse OR and AND. How intuitive these names feel depends on
your point of view. For example, [[this] [that]] in normally read “accept char-
acters that match [this] or [that],” yet it is equally true if read “the list of char-
acters to allow is [this] and [that]” Two points of view for the same thing.

AND is less confusing in that [\p{InThai}&&\P{Cn}] is normally read as “match
only characters matchable by \p{InThai} and \P{Cn}) although it is sometimes
read as “the list of allowed characters is the intersection of \p{InThai} and
\P{Cn}’

These differing points of view can make talking about this confusing: what I call
OR and AND, some might choose to call AND and INTERSECTION.

Class subtraction with set operators. 1It's useful to realize that \P{Cn} is the same
as ["\p{Cn}], which allows the “assigned characters in the Thai block” example,
[\p{InThai}&&\P{Cn}], to be rewritten as [\p{InThai}&&[“\p{Cn}1]. Such a
change is not particularly helpful except that it helps to illustrate a general pattern:
realizing that “assigned characters in the Thai block” can be rephrased as the
somewhat unruly “characters in the Thai block, minus unassigned characters” we
then see that [\p{InThai}&&[~\p{Cn}1] means “\p{InThai} minus \p{Cn}’

This brings us back to the '[[a-z]&&["aeiou]], example from the start of the sec-
tion, and shows how to do class subtraction. The pattern is that [this&& [~ that]]|
means “[his] minus [thar]” T find that the double negatives of && and [~] tend
to make my head swim, so I just remember the /[&& ["-1], pattern.

Mimicking class set operations with lookaround. 1f your program doesn’t
support class set operations, but does support lookaround (= 133), you can mimic
the set operations. With lookahead, [\p{InThai}&&["\p{Cn}]11 can be rewritten

Common Metacharacters and Features 127

as [(?1\p{Cn}) \p{InThai}," Although not as efficient as well-implemented class
set operations, using lookaround can be quite flexible. This example can be
written four different ways (substituting IsThai for InThai in .NET s 125):

(?!'\p{Cn})\p{InThai}
(?=\P{Cn}) \p{InThai}
\p{InThai} (?<!\p{Cn})
\p{InThai} (?<=\P{Cn})

POSIX bracket-expression “character class” [[:alpha:]]

What we normally call a character class, the POSIX standard calls a bracket expres-
sion. POSIX uses the term “character class” for a special feature used within a
bracket expression® that we might consider to be the precursor to Unicode’s char-
acter properties.

A POSIX character class is one of several special metasequences for use within a
POSIX bracket expression. An example is [:lower:], which represents any lower-
case letter within the current locale (s 87). For English text, [:lower:] is compa-
rable to a-z. Since this entire sequence is valid only within a bracket expression,
the full class comparable to '[a-z] is [[[:lower:]1. Yes, it’s that ugly. But, it has
the advantage over '[a-z] of including other characters, such as 6, i, and the like
if the locale actually indicates that they are “lowercase letters”

The exact list of POSIX character classes is locale dependent, but the following are
usually supported:

[:alnum:] alphabetic characters and numeric character

[:alpha:] alphabetic characters

[:blank:] space and tab

[:cntrl:] control characters

[:digit:] digits

[:graph:] non-blank characters (not spaces, control characters, or the like)
[:lower:] lowercase alphabetics

[:print:] like [:graph:1, but includes the space character

[:punct:] punctuation characters

[:space:] all whitespace characters ([:blank:], newline, carriage return, and the like)
[:upper:] uppercase alphabetics

[

:xdigit:] digits allowed in a hexadecimal number (i.e., 0-9a-£fA-F).

—+

Actually, in Perl, this particular example could probably be written simply as \p{Thai}, since in Perl
\p{Thai} is a script, which never contains unassigned code points. Other differences between the
Thai script and block are subtle. It's beneficial to have the documentation as to what is actually cov-
ered by any particular script or block. In this case, the script is actually missing a few special charac-
ters that are in the block. See the data files at http.//unicode.org for all the details.

-

In general, this book uses “character class” and “POSIX bracket expression” as synonyms to refer to
the entire construct, while “POSIX character class” refers to the special range-like class feature
described here.

128 Chapter 3: Overview of Regular Expression Features and Flavors

Systems that support Unicode properties (s 121) may or may not extend that Uni-
code support to these POSIX constructs. The Unicode property constructs are more
powerful, so those should generally be used if available.

POSIX bracket-expression “collating sequences” [[.span-11.]]

A locale can have collating sequences to describe how certain characters or sets of
characters should be ordered. For example, in Spanish, the two characters 11 (as
in tortilla) traditionally sort as if they were one logical character between 1 and m,
and the German 1 is a character that falls between s and t, but sorts as if it were
the two characters ss. These rules might be manifested in collating sequences
named, for example, span-11 and eszet.

A collating sequence that maps multiple physical characters to a single logical
character, such as the span-11 example, is considered “one character” to a fully
compliant POSIX regex engine. This means that '[“abc]; matches a ‘11’ sequence.

A collating sequence element is included within a bracket expression using a
[.-.] notation: 'tortil[.span-11.]]a matches tortilla. A collating sequence
allows you to match against those characters that are made up of combinations of
other characters. It also creates a situation where a bracket expression can match
more than one physical character.

POSIX bracket-expression “character equivalents”: [[=n=]]

Some locales define character equivalents to indicate that certain characters should
be considered identical for sorting and such. For example, a locale might define
an equivalence class ‘n’ as containing n and #, or perhaps one named ‘a’ as con-
taining a, &, and 4. Using a notation similar to [:--:1, but with ‘=" instead of a
colon, you can reference these equivalence classes within a bracket expression:
'[[=n=] [=a=]1 matches any of the characters just mentioned.

If a character equivalence with a single-letter name is used but not defined in the
locale, it defaults to the collating sequence of the same name. Locales normally
include normal characters as collating sequences — [.a.], [.b.1, [.c.], and so
on—so in the absence of special equivalents, I[[[=n=] [=a=] 1], defaults to [[na].

Emacs syntax classes

GNU Emacs doesn’t support the traditional \w, \s, etc.; rather, it uses special
sequences to reference “syntax classes”
\schar matches characters in the Emacs syntax class as described by char

\Schar matches characters not in the Emacs syntax class

Common Metacharacters and Features 129

"\ sw matches a “word constituent” character, and \s-; matches a “whitespace char-
acter” These would be written as \w; and \'s; in many other systems.

Emacs is special because the choice of which characters fall into these classes can
be modified on the fly, so, for example, the concept of which characters are word
constituents can be changed depending upon the kind of text being edited.

Anchors and Other “Zero-Width Assertions”

Anchors and other “zero-width assertions” don’t match actual text, but rather posi-
tions in the text.

Start of line/string: =, \A

Caret ") matches at the beginning of the text being searched, and, if in an
enhanced line-anchor match mode (e 112), after any newline. In some systems,
an enhanced-mode " can match after Unicode line terminators, as well (&= 109).

When supported, \a, always matches only at the start of the text being searched,
regardless of any match mode.

End of line/string: $, \Z, \z

As Table 3-11 on the next page shows, the concept of “end of line” can be a bit
more complex than its start-of-line counterpart. '$; has a variety of meanings
among different tools, but the most common meaning is that it matches at the end
of the target string, and before a string-ending newline, as well. The latter is com-
mon, to allow an expression like Is$, (ostensibly, to match “a line ending with s”)
to match s, a line ending with s that’s capped with an ending newline.

Two other common meanings for '$) are to match only at the end of the target text,
and to match before any newline. In some Unicode systems, the special meaning
of newline in these rules are replaced by Unicode line terminators (e 109). (Java,
for example, offers particularly complex semantics for '$; with respect to Unicode
line terminators = 370.)

A match mode (s 112) can change the meaning of $; to match before any embed-
ded newline (or Unicode line terminator as well).

When supported, \z, usually matches what the “unmoded” $; matches, which
often means to match at the end of the string, or before a string-ending newline.
To complement these, \z, matches only at the end of the string, period, without
regard to any newline. See Table 3-11 for a few exceptions.

130 Chapter 3: Overview of Regular Expression Features and Flavors

Table 3-11: Line Anchors for Some Scripting Languages

Concern Java Perl PHP Python Ruby Tcl .NET
Normally . ..
~ matches at start of string v v v v v v v
~ matches after any newline V2
$ matches at end of string v v v v v v v
$ matches before string-ending newline V1 v v v v v
$ matches before any newline v’
Has enhanced line-anchor mode (s112) v v v v v v

In enhanced line-anchor mode . . .

~ matches at start of string v v v v N/A v v
~ matches after any newline Vi v v v N/A v v
$ matches at end of string v v v v N/A v v
$ matches before any newline V1 v v v N/A v v
\a always matches like normal * v v v v °4 v v
\z always matches like normal $ Vi v v o3 °s v v
\z always matches only at end of string v v v N/A N/A v v

Notes: 1. Sun’s Java regex package supports Unicode’s line terminator (= 109) in these cases.
2. Ruby’s $ and "~ match at embedded newlines, but its \A and \z do not.
3. Python’s \z matches only at the end of the string.
4. Ruby’s \a, unlike its ~, matches only at the start of the string.
5. Ruby’s \z, unlike its $, matches at the end of the string, or before a string-ending newline.

(See page 91 for version information.)

Start of maich (or end of previous match): \G

NG was first introduced by Perl to be useful when doing iterative matching with /g
(s 51), and ostensibly matches the location where the previous match left off. On
the first iteration, '\G, matches only at the beginning of the string, just like \A.

If a match is not successful, the location at which '\G, matches is reset back to the
beginning of the string. Thus, when a regex is applied repeatedly, as with Perl’s
ls/--/--/gy or other language’s “match all” function, the failure that causes the
“match all” to fail also resets the location for \G, for the next time a match of some
sort is applied.

Perl’s \G, has three unique aspects that I find quite interesting and useful:

e The location associated with \G, is an attribute of each target string, not of the
regexes that are setting that location. This means that multiple regexes can
match against a string, in turn, each using \G to ensure that they pick up
exactly where one of the others left off.

Common Metacharacters and Features 131

e Perl’s regex operators have an option (Perl’s /¢ modifier e 315) that indicates
a failing match should not reset the \G, location, but rather to leave it where it
was. This works well with the first point to allow tests with a variety of
expressions to be performed at one point in the target string, advancing only
when there’s a match.

e That location associated with \G, can be inspected and modified by non-regex
constructs (Perl’s pos function s 313). One might want to explicitly set the
location to “prime” a match to start at a particular location, and match only at
that location. Also, if the language supports this point, the functionality of the
previous point can be mimicked with this feature, if it’s not already supported
directly.

See the sidebar on the next page for an example of these features in action.
Despite these convenient features, Perl’s \G, does have a problem in that it works
reliably only when it’s the first thing in the regex. Luckily, that's where it’s most-
naturally used.

End of previous maich, or start of the current maich?

One detail that differs among implementations is whether \G, actually matches the
“start of the current match” or “end of the previous match” In the vast majority of
cases, the two meanings are the same, so it's a non-issue most of the time.
Uncommonly, they can differ. There is a realistic example of how this might arise
on page 215, but the issue is easiest to understand with a contrived example:
consider applying x?, to ‘abede’. The regex can match successfully at ‘abede’, but
doesn’t actually match any text. In a global search-and-replace situation, where the
regex is applied repeatedly, picking up each time from where it left off, unless the
transmission does something special, the “where it left off” will always be the
same as where it started. To avoid an infinite loop, the transmission forcefully
bumps along to the next character (s 148) when it recognizes this situation. You
can see this by applying s/x?/!/g to ‘abede’, yielding ‘ta!btc!dte!’.

One side effect of the transmission having to step in this way is that the “end of
the previous match” then differs from “the start of the current match” When this
happens, the question becomes: which of the two locations does \G, match? In
Perl, actually applying s/\@x?/!/g to ‘abcde’ yields just ‘!abede’, so in Perl, \G
really does match only the end of the previous match. If the transmission does the
artificial bump-along, Perl’s \G is guaranteed to fail.

On the other hand, applying the same search and replace with some other tools
yields the original ‘ta!btctdte!’, showing that their \G matches successfully at
the start of each current match, as decided after the artificial bump-along.

You can’t always rely on the documentation that comes with a tool to tell you
which is which, as both Microsoft’'s .NET and Sun’s Java documentation were

132 Chapter 3: Overview of Regular Expression Features and Flavors

Advanced Use of \G with Perl

Here’s the outline of a snippet that performs simple validation on the HTML
in the variable $html, ensuring that it contains constructs from among only a
very limited subset of HTML (simple and <A> tags are allowed, as well
as simple entities like >). I used this method at Yahoo!, for example, to
validate that a user’s HTML submission met certain guidelines.

This code relies heavily on the behavior of Perl’s m/-/gc match operator,
which applies the regular expression to the target string once, picking up
from where the last successful match left off, but not resetting that position if
it fails (s 315).

Using this feature, the various expressions used below all “tag team” to work
their way through the string. It’s similar in theory to having one big alterna-
tion with all the expressions, but this approach allows program code to be
executed with each match, and to include or exclude expressions on the fly.

my $need_close_anchor = 0; # Trueif we've seen <A>, but not its closing .

while (not $html =~ m/\G\z/gc) # While we haven't worked our way to the end . . .
{
if ($html =" m/\G(\w+)/gc) {
... bave a word or number in $1 -- can now check for profanity, for example . . .
elsif (Shtml =~ m/\G["<>&\wl+/gc) {
Other non-HIML stuff -- simply allow it.
elsif ($html =~ m/\G<img\s+([">]+)>/gci) {
... bave an image tag -- can check that it’s appropriate . . .

-

—

} elsif (not $need_close_anchor and $html =~ m/\G<A\s+([">]1+)>/gci) {
... have a link anchor — can validate it . . .

$Sneed_close_anchor = 1; # Note that we now need

} elsif (Sneed_close_anchor and $html =~ m{\G}gci) {
$need_close_anchor = 0; # Gotwhat we needed; don’t allow again

} elsif (shtml =" m/\G& (#\d+|\w+);/gc) {
Allow entities like > and {

} else {
Nothing matched at this point, so it must be an error. Note the location, and grab a dozen or so
characters from the HIML so that we can issue an informative error message.
my $location = pos($html); # Note where the unexpected HIML starts.
my (Sbadstuff) = $html =~ m/\G(.{1,12})/s;
die "Unexpected HTML at position $location: S$badstuff\n";

}
Make sure there’s no dangling <A>

if ($Sneed_close_anchor) {
die "Missing final "

Common Metacharacters and Features 133

incorrect until T contacted them about it (they’ve since been fixed). The status now
is that PHP and Ruby have \G, match at the start of the current match, while Perl,
java.util.regex, and the .NET languages have it match at the end of the previ-
ous match.

Word boundaries: \b, \B, \<, \>, ..

Like line anchors, word-boundary anchors match a location in the string. There are
two distinct approaches. One provides separate metasequences for start- and end-
of-word boundaries (often \< and \>), while the other provides ones catch-all
word boundary metasequence (often \b). Either generally provides a not-word-
boundary metasequence as well (often \B). Table 3-12 shows a few examples.
Tools that don’t provide separate start- and end-of-word anchors, but do support
lookaround, can mimic word-boundary anchors with the lookaround. In the table,
I've filled in the otherwise empty spots that way, wherever practical.

A word boundary is generally defined as a location where there is a “word charac-
ter” on one side, and not on the other. Each tool has its own idea of what consti-
tutes a “word character,” as far as word boundaries go. It would make sense if the
word boundaries agree with \w, but that's not always the case. With PHP and
java.util.regex, for example, \w applies only to ASCII characters and not the
full breadth of Unicode, so in the table I've used lookaround with the Unicode let-
ter property \pL (which is a shorthand for \p{L} e 121).

Whatever the word boundaries consider to be “word characters,” word boundary
tests are always a simple test of adjoining characters. No regex engine actually
does linguistic analysis to decide about words: all consider “NE14AD8” to be a
word, but not “M.I.T.”

Lookabead (?=---), (?!), Lookbebhind, (?<=---), (?<!-)

Lookahead and lookbehind constructs (collectively, lookaround) are discussed
with an extended example in the previous chapter’s “Adding Commas to a Num-
ber with Lookaround” (s 59). One important issue not discussed there relates to
what kind of expression can appear within either of the lookbehind constructs.
Most implementations have restrictions about the length of text matchable within
lookbehind (but not within lookahead, which is unrestricted).

The most restrictive rule exists in Perl and Python, where the lookbehind can
match only fixed-length strings. For example, (?<!\w) and (?<!this|that) are
allowed, but (?<!books?) and (?<!~\w+:) are not, as they can match a variable
amount of text. In some cases, such as with (?<!books?), you can accomplish
the same thing by rewriting the expression, as with [(?<!book) (?<!books),
although that’s certainly not easy to read at first glance.

134

Chapter 3: Overview of Regular Expression Features and Flavors

Table 3-12: A Few Utilities and Their Word Boundary Metacharacters

Word Not word-
Program Start-of-word ... End-of-word boundary boundary
GNU awk \< ... \> \y \B
GNU egrep \< ..o\> \b \B
GNU Emacs \< ... \> \b \B
Java (?<!\pL) (?=\pL) ... (?<=\pL) (?!\pL) \b \B
MySQL [[:<:11] [[:>:1] [[:<:11100:>:11
.NET (2<I\w) (2=\w) ... (2<=\w) (?!\w) \b \B
Perl (2<\w) (?=\w) ... (?<=\w) (?!\w) \b \B
PHP (?<!\pL) (?=\pL) ... (?<=\pL) (?!\pL) \b \B
Python (2<!\w) (?=\w) ... (?<=\w) (?!\w) \b \B
Ruby \b \B
GNU sed \< ... \> \b \B
Tcl \m ... \M \y \Y
Items marked with & work only with characters in ASCII (or the locale-based 8-bit
encoding), even though the flavor otherwise supports Unicode.

(See page 91 for version infomation.)

The next level of support allows alternatives of different lengths within the look-
behind, so (?<!books?) can be written as (?<!book|books). PCRE (and as such
the preg suite in PHP) allows this.

The next level allows for regular expressions that match a variable amount of text,
but only if it’s of a finite length. This allows (?<!books?) directly, but still dis-
allows (?<!"\w+:) since the \w+ is open-ended. Sun’s Java regex package sup-
ports this level.

When it comes down to it, these first three levels of support are really equivalent,
since they can all be expressed, although perhaps somewhat clumsily, with the
most restrictive fixed-length matching level of support. The intermediate levels are
just “syntactic sugar” to allow you to express the same thing in a more pleasing
way. The fourth level, however, allows the subexpression within lookbehind to
match any amount of text, including the (?<!~\w+:) example. This level, sup-
ported by Microsoft’s .NET languages, is truly superior to the others, but does carry
a potentially huge efficiency penalty if used unwisely. (When faced with look-
behind that can match any amount of text, the engine is forced to check the look-
behind subexpression from the start of the string, which may mean a /ot of wasted
effort when requested from near the end of a long string.)

Common Metacharacters and Features 135

Comments and Mode Modifiers

With many flavors, the regex modes and match modes described earlier (s 110)
can be modified within the regex (on the fly, so to speak) by the following
constructs.

Mode modifier: (?modifier), such as (?1) or (?-1)

Many flavors now allow some of the regex and match modes (i 110) to be set
within the regular expression itself. A common example is the special notation
(?1i), which turns on case-insensitive matching, and '(?-1),, which turns it off. For
example, '(?i)very(?-1) has the very part match with case insensitiv-
ity, while still keeping the tag names case-sensitive. This matches ‘VERY’
and ‘Very’, for example, but not ‘Very".

This example works with most systems that support [(?1), including Perl, PHP,
java.util.regex, Ruby," and the .NET languages. It doesn’t work with Python or
Tcl, neither of which support [(?-1).

With most implementations except Python, the effects of '(?1), within any type of
parentheses are limited by the parentheses (that is, turn off at the closing paren-
theses). So, the '(?-1), can be eliminated by wrapping the case-insensitive part in
parentheses and putting [(?1), as the first thing inside: '(2?: (?1) very).

The mode-modifier constructs support more than just ‘i’. With most systems, you
can use at least those shown in Table 3-13. Some systems have additional letters

for additional functions. PHP, in particular, offers quite a few extra (e 4406), as
does Tcl (see its documentation).

Table 3-13: Common Mode Modifiers

Letter Mode
i case-insensitivity match mode (=110)
X free-spacing and comments regex mode (=111)
S dot-matches-all match mode (==111)
m enhanced line-anchor match mode (=°112)

Mode-modified span: (Pmodifierz---), such as (?iz:-)

The example from the previous section can be made even simpler for systems that
support a mode-modified span. Using a syntax like '(?i:-), a mode-modified
span turns on the mode only for what's matched within the parentheses. Using
this, the (?: (?i)very) example is simplified to '(?i:very).

t The example works with Ruby, but note that Ruby’s (?i) has a bug whereby it sometimes doesn’t
work with | -separated alternatives that are lowercase (but does if they’re uppercase).

136 Chapter 3: Overview of Regular Expression Features and Flavors

When supported, this form generally works for all mode-modifier letters the sys-
tem supports. Tcl and Python are two examples that support the /(?i), form, but
not the mode-modified span (?1i:-), form.

Comments: (?#) and # -

Some flavors support comments via '(?#). In practice, this is rarely used, in favor
of the free-spacing and comments regex mode (s 111). However, this type of
comment is particularly useful in languages for which it’s difficult to get a newline
into a string literal, such as VB.NET (e 99, 420).

Literal-text span: \Q---\E

First introduced with Perl, the special sequence \Q--\E turns off all regex meta-
characters between them, except for \E itself. (If the \E is omitted, they are turned
off until the end of the regex.) It allows what would otherwise be taken as normal
metacharacters to be treated as literal text. This is especially useful when including
the contents of a variable while building a regular expression.

For example, to respond to a web search, you might accept what the user types as
$query, and search for it with m/$query/i. As it is, this would certainly have
unexpected results if $query were to contain, say, ‘C: \WINDOWS\’, which results in
a run-time error because the search term contains something that isn’t a valid regu-
lar expression (the trailing lone backslash).

\Q \E/ avoids the problem. With the Perl code m/\Q$query\E/i, a $query of
‘C: \WINDOWS\’ becomes 'C\:\\WINDOWS\\, resulting in a search that finds the
original ‘C:\WINDOWS\’ as the user expects.

This feature is less useful in systems with procedural and object-oriented handling
(e 95), as they accept normal strings. While building the string to be used as a
regular expression, it’s fairly easy to call a function to make the value from the
variable “safe” for use in a regular expression. In VB, for example, one would use
the Regex.Escape method (s 432); PHP has the preg_quote function (& 470);
Java has a quote method (= 395).

The only regex engines that I know of that support \Q - \E are java.util.regex
and PCRE (and hence also PHP’s preg suite). Considering that I just mentioned that
this was introduced with Perl (and I gave an example in Perl), you might wonder
why I don'’t include Perl in the list. Perl supports \Q--\E within regex /literals (reg-
ular expressions appearing directly in the program), but not within the contents of
variables that might be interpolated into them. See Chapter 7 (e 290) for details.

The java.util.regex support for \Q-\E, within a character class, prior to Java
1.6.0, is buggy and shouldn’t be relied upon.

Common Metacharacters and Features 137

Grouping, Capturing, Conditionals, and Control
Capturing/Grouping Parentbeses: (---) and \1, \2, ...

Common, unadorned parentheses generally perform two functions, grouping and
capturing. Common parentheses are almost always of the form (- -), but a few fla-
vors use '\ (--\), These include GNU Emacs, sed, vi, and grep.

Capturing parentheses are numbered by counting their opening parentheses from
the left, as shown in figures on pages 41, 43, and 57. If backreferences are avail-
able, the text matched via an enclosed subexpression can itself be matched later in
the same regular expression with \1, \2, etc.

One of the most common uses of parentheses is to pluck data from a string. The
text matched by a parenthesized subexpression (also called “the text matched by
the parentheses”) is made available after the match in different ways by different
programs, such as Perl’s $1, $2, etc. (A common mistake is to try to use the \1,
syntax outside the regular expression; something allowed only with sed and vi.)
Table 3-14 on the next page shows how a number of programs make the captured
text available after a match. It shows how to access the text matched by the whole
expression, and the text matched within a set of capturing parentheses.

Grouping-only parentbeses: (?:z--)

Grouping-only parentheses [(?:-); don’t capture, but, as the name implies, group
regex components for alternation and the application of quantifiers. They are not
counted as part of $1, $2, etc. After a match of '(1|one) (?:and|or) (2| two), for
example, $1 contains ‘1’ or ‘one’, while $2 contains 2’ or ‘two’. Grouping-only
parentheses are also called non-capturing parentheses.

Non-capturing parentheses are useful for a number of reasons. They can help
make the use of a complex regex clearer in that the reader doesn’t need to won-
der if what's matched by what they group is accessed elsewhere by $1 or the like.
Also, they can be more efficient. If the regex engine doesn’t need to keep track of
the text matched for capturing purposes, it can work faster and use less memory.
(Efficiency is covered in detail in Chapter 6.)

Non-capturing parentheses are useful when building up a regex from parts. Recall
the example from page 76 in which the variable $HostnameRegex holds a regex
to match a hostname. Imagine using that to pluck out the whitespace around a
hostname, as in the Perl snippet m/ (\s+) $HostnameRegex (\s«*) /. After this, you
might expect $1 and $2 to hold the leading and trailing whitespace, but the trail-
ing whitespace is actually in $4 because $HostnameRegex contains two sets of
capturing parentheses:

SHostnameRegex = qr/[-a-z0-9]1+(\.[-a-z0-9]1+)*\. (com|edu|info)/i;

138

Chapter 3: Overview of Regular Expression Features and Flavors

Table 3-14: A Few Utilities and Their Access to Captured Text

Program Entire match First set of parentheses
GNU egrep N/A N/A
GNU Emacs (match-string 0) (match-string 1)
(\& within replacement string) (\1 within replacement string)
GNU awk substr ($fext, RSTART, RLENGTH) \1 (within gensub replacement)
(\& within replacement string)
MySQL N/A N/A
Perl w41 $& $1
PHP = 450 Smatches[0] Smatches[1]
Python = 97 MatchObj. group (0) MatchObj. group (1)
Ruby $& $1
GNU sed & (in replacement string only) \1 (in replacement and regex only)
Java = 95 MatcherObj. group () MatcherObj. group (1)
Tcl set to user-selected variables via regexp command
VB.NET = 96 MatchObj.Groups (0) MatchObj.Groups (1)
C# MatchObj.Groups [0] MatchObj.Groups [1]
vi & \1
(See page 91 for version information.)

Were those sets of parentheses non-capturing instead, $HostnameRegex could be
used without generating this surprise. Another way to avoid the surprise, although
not available in Perl, is to use named capture, discussed next.

Named capture: (?<Name>:--)

Python, PHP’s preg engine, and .NET languages support captures to named loca-
tions. Python and PHP use the syntax [(?P<name>--), while the .NET languages use
l(?<name>--), a syntax that I prefer. Here’s an example for .NET:

N\b(?<Area>\d\d\d\) - (?<Exch>\d\d\d) - (?<Num>\d\d\d\d) \b
and for Python/PHP:
N\b (?P<Area>\d\d\d\) - (?P<Exch>\d\d\d) - (?P<Num>\d\d\d\d) \b

This “fills the names” Area, Exch, and Num with the components of a US phone
number. The program can then refer to each matched substring through its name,
for example, RegexObj.Groups ("Area") in VB.NET and most other .NET lan-
guages, RegexObj.Groups|["Area"] in C#, RegexObj.group ("Area") in Python,
and $matches["Area"] in PHP. The result is clearer code.

Common Metacharacters and Features 139

Within the regular expression itself, the captured text is available via '\k<Area>
with .NET, and [(?P=Area), in Python and PHP.

With Python and .NET (but not with PHP), you can use the same name more than
once within the same expression. For example, to match the area code part of a
UsS phone number, which look like ¢ (###)’ or ‘s, you might use (shown in .NET
syntax): [(?:\ ((?<Area>\d\d\d) \) | (?<Area>\d\d\d)-) . When either set
matches, the three-digit code is saved to the name Area.

Atomic grouping: (?>-)

Atomic grouping, '(?>-), will be very easy to explain once the important details
of how the regex engine carries out its work is understood (e 169). Here, I'll just
say that once the parenthesized subexpression matches, what it matches is fixed
(becomes atomic, unchangeable) for the rest of the match, unless it turns out that
the whole set of atomic parentheses needs to be abandoned and subsequently
revisited. A simple example helps to illustrate this indivisible, “atomic” nature of
text matched by these parentheses.

The string ‘iHola!’ is matched by /; .« !, but is not matched if | . x; is wrapped with
atomic grouping, '; (?>.+) !. In either case, | .« first internally matches as much as
it can (‘jHola!’), but the inability of the subsequent 1, to match wants to force the
".% to give up some of what it had matched (the final ‘1”). That can’t happen in
the second case because ! . * is inside atomic grouping, which never “gives up”
anything once the matching leaves them.

Although this example doesn’t hint at it, atomic grouping has important uses. In
particular, it can help make matching more efficient (s 171), and can be used to
finely control what can and can’t be matched (= 269).

Alternation: ||

Alternation allows several subexpressions to be tested at a given point. Each
subexpression is called an alternative. The |, symbol is called various things, but
or and bar seem popular. Some flavors use \ || instead.

Alternation has very low precedence, so this and|or that matches the same as
(this and) | (or that), and not 'this (and|or) that, even though visually,
the and|or looks like a unit.

Most flavors allow an empty alternative, as in '(this|that|). The empty subex-
pression can always match, so this example is comparable to [(this|that) ?.'

t To be pedantic, '(this|that|), is logically comparable to /((?:this|that)?). The minor difference
from /(this|that) ? is that a “nothingness match” is not within the parentheses, a subtle difference
important to tools that differentiate between a match of nothing and non-participation in the match.

140 Chapter 3: Overview of Regular Expression Features and Flavors

The POSIX standard disallows an empty alternative, as does lex and most versions
of awk. I think it’s useful for its notational convenience or clarity. As Larry Wall
told me once, “It’s like having a zero in your numbering system.”

Conditional: (?if then [else)

This construct allows you to express an if/then/else within a regex. The if part is a
special kind of conditional expression discussed in a moment. Both the then and
else parts are normal regex subexpressions. If the if part tests true, the then
expression is attempted. Otherwise, the else part is attempted. (The else part may
be omitted, and if so, the ‘|’ before it may be omitted as well.)

The kinds of if tests available are flavor-dependent, but most implementations
allow at least special references to capturing subexpressions and lookaround.

Using a special reference to capturing parentbeses as the test. 1If the if part is a
number in parentheses, it evaluates to “true” if that numbered set of capturing
parentheses has participated in the match to this point. Here’s an example that
matches an HTML tag, either alone, or surrounded by <a>-- link tags.
It's shown in a free-spacing mode with comments, and the conditional construct
(which in this example has no else part) is bold:

(<A\s+[">]1+> \s*)? # Match leading <A> tag, if there.
<IMG\s+[">]+> # Match tag.
(? (1) \s*) # Match a closing , if we'd matched an <A> before.

The (1) in [(?(1)), tests whether the first set of capturing parentheses partici-
pated in the match. “Participating in the match” is very different from “actually
matched some text,” as a simple example illustrates...

Consider these two approaches to matching a word optionally wrapped in “<-->":
(<)?\w+ (?2(1)>), works, but [(<?) \w+ (?(1)>), does not. The only difference
between them is the location of the first question mark. In the first (correct)
approach, the question mark governs the capturing parentheses, so the parenthe-
ses (and all they contain) are optional. In the flawed second approach, the captur-
ing parentheses are not optional — only the < matched within them is, so they
“participate in the match” regardless of a ‘<’ being matched or not. This means that
the if part of [(? (1)), always tests “true”

If named capture (s= 138) is supported, you can generally use the name in paren-
theses instead of the number.

Using lookaround as the test. A full lookaround construct, such as [(?=--), and
(?<=-), can be used as the if test. If the lookaround matches, it evaluates to
“true; and so the then part is attempted. Otherwise, the else part is attempted. A
somewhat contrived example that illustrates this is [(? (?<=NUM:) \d+ | \w+), which

Common Metacharacters and Features 141

attempts \d+ at positions just after NUM:;, but attempts \w+, at other positions. The
lookbehind conditional is underlined.

Other tests for the conditional. Perl adds an interesting twist to this conditional
construct by allowing arbitrary Perl code to be executed as the test. The return
value of the code is the test’s value, indicating whether the then or else part should
be attempted. This is covered in Chapter 7, on page 327.

Greedy quantifiers: *, +, ?, {num,num}

The quantifiers (star, plus, question mark, and intervals—metacharacters that affect
the quantity of what they govern) have already been discussed extensively. How-
ever, note that in some tools, \+, and '\ ?, are used instead of '+, and I?. Also, with
some older tools, quantifiers can’t be applied to a backreference or to a set of
parentheses.

Intervals — {min ,max} or \ {min ,max \'}

Intervals can be considered a “counting quantifier” because you specify exactly the
minimum number of matches you wish to require, and the maximum number of
matches you wish to allow. If only a single number is given (such as in [a-z] {3}
or fa-z]\{3\}, depending upon the flavor), it matches exactly that many of the
item. This example is the same as '[a-z] [a-z] [a-z], (although one may be more
or less efficient than the other s 251).

One caution: don’t think you can use something like 'X{0, 0}, to mean “there must
not be an X here” X{0,0} is a meaningless expression because it means “no
requirement to match X, and, in fact, don’t even bother trying to match any.
Period.” It’s the same as if the whole Xx{0, 0}, wasn’t there at all —if there is an X
present, it could still be matched by something later in the expression, so your
intended purpose is defeated.! Use negative lookahead for a true “must not be
here” construct.

Lazy quantifiers: *?, +2?, ??, {num, num}?

Some tools offer the rather ungainly looking ?, +?, 2?2, and {min, max}?. These are
the /lazy versions of the quantifiers. (They are also called minimal matching, non-
greedy, and ungreedy.) Quantifiers are normally “greedy, and try to match as
much as possible. Conversely, these non-greedy versions match as little as possi-
ble, just the bare minimum needed to satisfy the match. The difference has far-
reaching implications, covered in detail in the next chapter (e 159).

t In theory, what I say about {0, 0} is correct. In practice, what actually happens is even worse —it’s
almost random! In many programs (including GNU awk, GNU grep, and older versions of Perl) it
seems that {0,0} means the same as *, while in many others (including most versions of sed that
I've seen, and some versions of grep) it means the same as ?. Crazy!

142 Chapter 3: Overview of Regular Expression Features and Flavors

Possessive quantifiers: »+, ++, ?+, {num , num}+

Currently supported only by java.util.regex and PCRE (and hence PHP), but
likely to gain popularity, possessive quantifiers are like normally greedy quantifiers,
but once they match something, they never “give it up.” Like the atomic grouping
to which they'’re related, understanding possessive quantifiers is much easier once
the underlying match process is understood (which is the subject of the next
chapter).

In one sense, possessive quantifiers are just syntactic sugar, as they can be mim-
icked with atomic grouping. Something like . ++ has exactly the same result as
(?>.+), although a smart implementation can optimize possessive quantifiers
more than atomic grouping (s 250).

Guide to the Advanced Chapters

Now that we’re familiar with metacharacters, flavors, syntactic packaging, and the
like, it’s time to start getting into the nitty-gritty details of the third concern raised
at the start of this chapter, the specifics of how a tool’'s regex engine goes about
applying a regex to some text. In Chapter 4, The Mechanics of Expression Process-
ing, we see how the implementation of the match engine influences whether a
match is achieved, which text is matched, and how much time the whole thing
takes. We’ll look at all the details. As a byproduct of this knowledge, you'll find it
much easier to craft complex expressions with confidence. Chapter 5, Practical
Regex Techniques helps to solidify that knowledge with extended examples.

That brings us to Chapter 6, Crafting an Efficient Expression. Once you know the
basics about how an engine works, you can learn techniques to take full advan-
tage of that knowledge. Chapter 6 looks at regex pitfalls that often lead to unwel-
come surprises, and turns the tables to put them to use for us.

Chapters 4, 5, and 6 are the central core of this book. The first three chapters
merely lead up to them, and the tool-specific chapters that follow rely on them.
The core chapters are not “light reading,” but I've taken care to stay away from
math, algebra, and all that stuff that’s just mumbo-jumbo to most of us. As with
any large amount of new information, it will likely take time to sink in and
internalize.

The Mechanics
of Expression
Processing

The previous chapter started with an analogy between cars and regular expres-
sions. The bulk of the chapter discussed features, regex flavors, and other “glossy
brochure” issues of regular expressions. This chapter continues with that analogy,
talking about the all-important regular-expression engine, and how it goes about
its work.

Why would you care how it works? As we’ll see, there are several types of regex
engines, and the type most commonly used —the type used by Perl, Tcl, Python,
the .NET languages, Ruby, PHP, all Java packages I've seen, and more — works in
such a way that how you craft your expression can influence whether it can match
a particular string, wbhbere in the string it matches, and how quickly it finds the
match or reports the failure. If these issues are important to you, this chapter is
for you.

Start Your Engines/

Let’s see how much I can milk this engine analogy. The whole point of having an
engine is so that you can get from Point A to Point B without doing much work.
The engine does the work for you so you can relax and enjoy the sound system.
The engine’s primary task is to turn the wheels, and how it does that isn’t really a
concern of yours. Or is it?

143

144 Chapter 4: The Mechanics of Expression Processing

Two Kinds of Engines

Well, what if you had an electric car? They’ve been around for a long time, but
they aren’t as common as gas cars because they’re hard to design well. If you had
one, though, you would have to remember not to put gas in it. If you had a gaso-
line engine, well, watch out for sparks! An electric engine more or less just runs,
but a gas engine might need some babysitting. You can get much better perfor-
mance just by changing little things like your spark plug gaps, air filter, or brand of
gas. Do it wrong and the engine’s performance deteriorates, or, worse yet, it stalls.

Each engine might do its work differently, but the end result is that the wheels
turn. You still have to steer properly if you want to get anywhere, but that’s an
entirely different issue.

New Standards

Let’s stoke the fire by adding another variable: the California Emissions Standards."
Some engines adhere to California’s strict pollution standards, and some engines
don’t. These aren'’t really different kinds of engines, just new variations on what’s
already around. The standard regulates a result of the engine’s work, the emis-
sions, but doesn’t say anything about how the engine should go about achieving
those cleaner results. So, our two classes of engine are divided into four types:
electric (adhering and non-adhering) and gasoline (adhering and non-adhering).

Come to think of it, I bet that an electric engine can qualify for the standard with-
out much change —the standard just “blesses” the clean results that are already par
for the course. The gas engine, on the other hand, needs some major tweaking
and a bit of re-tooling before it can qualify. Owners of this kind of engine need to
pay particular care to what they feed it—use the wrong kind of gas and you’re in
big trouble.

The impact of standards

Better pollution standards are a good thing, but they require that the driver exer-
cise more thought and foresight (well, at least for gas engines). Frankly, however,
the standard doesn’t impact most people since all the other states still do their own
thing and don’t follow California’s standard.

So, you realize that these four types of engines can be classified into three groups
(the two kinds for gas, and electric in general). You know about the differences,
and that in the end they all still turn the wheels. What you don’t know is what the
heck this has to do with regular expressions! More than you might imagine.

t California has rather strict standards regulating the amount of pollution a car can produce. Because
of this, many cars sold in America come in “California” and “non-California” models.

Start Your Engines! 145

Regex Engine Types

There are two fundamentally different types of regex engines: one called “DFA”
(the electric engine of our story) and one called “NFA” (the gas engine). The
details of what NFA and DFA mean follow shortly (s 150), but for now just con-
sider them names, like Bill and Ted. Or electric and gas.

Both engine types have been around for a long time, but like its gasoline counter-
part, the NFA type seems to be used more often. Tools that use an NFA engine
include the .NET languages, PHP, Ruby, Perl, Python, GNU Emacs, ed, sed, vi, most
versions of grep, and even a few versions of egrep and awk. On the other hand, a
DFA engine is found in almost all versions of egrep and awk, as well as lex and
flex. Some systems have a multi-engine hybrid system, using the most appropriate
engine for the job (or even one that swaps between engines for different parts of
the same regex, as needed to get the best combination of features and speed). Ta-
ble 4-1 lists a few common programs and the regex engine that most versions use.
If your favorite program is not in the list, the section “Testing the Engine Type” on
the next page can help you find out which it is.

Table 4-1: Some Tools and Their Regex Engines

Engine type Programs
DFA awk (most versions), egrep (most versions), flex, lex, MySQL, Procmail
Traditional NFA GNU Emacs, Java, grep (most versions), less, more, .NET languages,

PCRE library, Perl, PHP (all three regex suites), Python, Ruby,
sed (most versions), vi

POSIX NFA mawk, Mortice Kern Systems’ utilities, GNU Emacs (when requested)

Hybrid NFA/DFA GNU awk, GNU grep/egrep, Tcl

As Chapter 3 illustrated, 20 years of development with both DFAs and NFAs
resulted in a lot of needless variety. Things were dirty. The POSIX standard came
in to clean things up by clearly specifying not only which metacharacters and fea-
tures an engine should support, as mentioned in the previous chapter, but also
exactly the results you could expect from them. Superficial details aside, the DFAs
(our electric engines) were already well suited to adhere to this new standard, but
the kind of results an NFA traditionally provided were different, so changes were
needed. As a result, broadly speaking, there are three types of regex engines:

e DFA (POSIX or not—similar either way)

e Traditional NFA (most common: Perl, .NET, PHP, Java, Python, ...)

e POSIX NFA

Here, we use “POSIX” to refer to the match semantics—the expected operation of
a regex that the POSIX standard specifies (which we’ll get to later in this chapter).
Don’t confuse this use of “POSIX” with uses surrounding regex features introduced

146 Chapter 4: The Mechanics of Expression Processing

in that same standard (s 127). Many programs support the features without sup-
porting the full match semantics.

Old (and minimally featured) programs like egrep, awk, and lex were normally
implemented with the electric DFA engine, so the new standard primarily just con-
firmed the status quo —no big changes. However, there were some gas-powered
versions of these programs which had to be changed if they wanted to be POSIX-
compliant. The gas engines that passed the California Emission Standards tests
(POSIX NFA) were fine in that they produced results according to the standard, but
the necessary changes only increased how fickle they were to proper tuning.
Where before you might get by with slightly misaligned spark plugs, you now
have absolutely no tolerance. Gasoline that used to be “good enough” now causes
knocks and pings. But, so long as you know how to maintain your baby, the
engine runs smoothly and cleanly.

From the Department of Redundancy Department

At this point, T'll ask you to go back and review the story about engines. Every
sentence there rings with some truth about regular expressions. A second reading
should raise some questions. Particularly, what does it mean that an electric DFA
regex engine more or less “just runs?” What affects a gas-powered NFA? How can I
tune my regular expressions to run as I want on an NFA? What special concerns
does an emissions-controlled POSIX NFA have? What's a “stalled engine” in the
regex world?

Testing the Engine Type

Because the type of engine used in a tool influences the type of features it can
offer, and how those features appear to work, we can often learn the type of
engine a tool has merely by checking to see how it handles a few test expressions.
(After all, if you can’t tell the difference, the difference doesn’t matter.) At this
point in the book, I wouldn’t expect you to understand why the following test
results indicate what they do, but T want to offer these tests now so that if your
favorite tool is not listed in Table 4-1, you can investigate before continuing with
this and the subsequent chapters.

Traditional NFA or not?

The most commonly used engine is a Traditional NFA, and spotting it is easy. First,
are lazy quantifiers (s 141) supported? If so, it's almost certainly a Traditional NFA.
As we'll see, lazy quantifiers are not possible with a DFA, nor would they make
any sense with a POSIX NFA. However, to make sure, simply apply the regex
nfa|nfa-not, to the string ‘nfa-not’—if only ‘nfa’ matches, it’s a Traditional NFA.
If the entire ‘nfa-not’ matches, it’s either a POSIX NFA or a DFA.

Match Basics 147

DFA or POSIX NFA?

Differentiating between a POSIX NFA and a DFA is sometimes just as simple. Cap-
turing parentheses and backreferences are not supported by a DFA, so that can be
one hint, but there are systems that are a hybrid mix between the two engine
types, and so may end up using a DFA if there are no capturing parentheses.

Here’s a simple test that can tell you a lot. Apply 'X(.+)+X to a string like
‘=XX======================", as with this egrep command:

echo =XX ======== | egrep 'X(.+)+X’

If it takes a long time to finish, it’s an NFA (and if not a Traditional NFA as per the
test in the previous section, it must be a POSIX NFA). If it finishes quickly, it’s either
a DFA or an NFA with some advanced optimization. Does it display a warning mes-
sage about a stack overflow or long match aborted? If so, it’s an NFA.

Match Basics

Before looking at the differences among these engine types, let’s first look at their
similarities. Certain aspects of the drive train are the same (or for all practical pur-
poses appear to be the same), so these examples can cover all engine types.

About the Examples

This chapter is primarily concerned with a generic, full-function regex engine, so
some tools won’t support exactly everything presented. In my examples, the dip-
stick might be to the left of the oil filter, while under your hood it might be behind
the distributor cap. Your goal is to understand the concepts so that you can drive
and maintain your favorite regex package (and ones you find interest in later).

I'll continue to use Perl’s notation for most of the examples, although I'll occasion-
ally show others to remind you that the notation is superficial and that the issues
under discussion transcend any one tool or flavor. To cut down on wordiness
here, T'll rely on you to check Chapter 3 (e 114) if T use an unfamiliar construct.

This chapter details the practical effects of how a match is carried out. It would be
nice if everything could be distilled down to a few simple rules that could be
memorized without needing to understand what is going on. Unfortunately, that’s
not the case. In fact, with all this chapter offers, I identify only two all-encompass-
ing rules:

1. The match that begins earliest (Ieftmost) wins.

2. The standard quantifiers ('x, I+, 7, and {m, n}) are greedy.

We'll look at these rules, their effects, and much more throughout this chapter.
Let’s start by diving into the details of the first rule.

148 Chapter 4: The Mechanics of Expression Processing

Rule 1: The Maich That Begins Earliest Wins

This rule says that any match that begins earlier (leftmost) in the string is always
preferred over any plausible match that begins later. This rule doesn’t say anything
about how long the winning match might be (we’ll get into that shortly), merely
that among all the matches possible anywhere in the string, the one that begins
leftmost in the string is chosen. Actually, since more than one plausible match can
start at the same earliest point, perhaps the rule should read “a match...” instead of
“the match...” but that sounds odd.

Here’s how the rule comes about: the match is first attempted at the very begin-
ning of the string to be searched (just before the first character). “Attempted”
means that every permutation of the entire (perhaps complex) regex is tested start-
ing right at that spot. If all possibilities are exhausted and a match is not found,
the complete expression is re-tried starting from just before the second character.
This full retry occurs at each position in the string until a match is found. A “no
match” result is reported only if no match is found after the full retry has been
attempted at each position all the way to the end of the string (just after the last
character).

Thus, when trying to match 'ORA| against FLORAL, the first attempt at the start of the
string fails (since IORA, can’t match FLO). The attempt starting at the second charac-
ter also fails (it doesn’t match LOR either). The attempt starting at the third posi-
tion, however, does match, so the engine stops and reports the match: FLORAL.

If you didn’t know this rule, results might sometimes surprise you. For example,
when matching lcat against
The dragging belly indicates your cat is too fat

the match is in indicates, not at the word cat that appears later in the line. This
word cat could match, but the cat in indicates appears earlier in the string, so
it is the one matched. For an application like egrep, the distinction is irrelevant
because it cares only whether there is a match, not where the match might be. For
other uses, such as with a search and replace, the distinction becomes paramount.

Here’s a (hopefully simple) quiz: where does 'fat|cat|belly|your; match in the
string ‘The dragging belly indicates your cat is too fat’? ¢ Turn the

page to check your answer.

The “transmission” and the bump-along

It might help to think of this rule as the car’s transmission, connecting the engine
to the drive train while adjusting for the gear you're in. The engine itself does the
real work (turning the crank); the transmission transfers this work to the wheels.

Match Basics 149

The transmission’s main work: the bump-along

If the engine can’t find a match starting at the beginning of the string, it’s the
transmission that bumps the regex engine along to attempt a match at the next
position in the string, and the next, and the next, and so on. Usually. For instance,
if a regex begins with a start-of-string anchor, the transmission can realize that any
bump-along would be futile, for only the attempt at the start of the string could
possibly be successful. This and other internal optimizations are discussed in
Chapter 6.

Engine Pieces and Parts

An engine is made up of parts of various types and sizes. You can’t possibly hope
to truly understand how the whole thing works if you don’t know much about the
individual parts. In a regex, these parts are the individual units —literal characters,
quantifiers (star and friends), character classes, parentheses, and so on, as
described in Chapter 3 (r 114). The combination of these parts (and the engine’s
treatment of them) makes a regex what it is, so looking at ways they can be com-
bined and how they interact is our primary interest. First, let’s take a look at some
of the individual parts:
Literal text (e.g., a \» ! K¢ ..)
With a literal, non-metacharacter like 'z or 1, the match attempt is simply
“Does this literal character match the current text character?” If your regex is
only literal text, such as lusa, it is treated as “'u and then 's; and then la.” It's
a bit more complicated if you have the engine do a case-insensitive match,
where by matches B and vice-versa, but it’s still pretty straightforward. (With
Unicode, there are a few additional twists s 110.)

Character classes, dot, Unicode properties, and the like
Matching dot, character classes, Unicode properties, and the like (e 118) is
usually a simple matter: regardless of the length of the character class, it still
matches just one character.’

Dot is just a shorthand for a large character class that matches almost any
character (s= 111), so its actions are simple, as are the other shorthand conve-
niences such as \w, \w, and \d,

Capturing parentheses
Parentheses used only for capturing text (as opposed to those used for
grouping) don’t change how the match is carried out.

t Actually, as we saw in the previous chapter (s 128), a POSIX collating sequence can match multiple
characters, but this is not common. Also, certain Unicode characters can match multiple characters
when applied in a case-insensitive manner (s 110), although most implementations do not sup-
port this.

150 Chapter 4: The Mechanics of Expression Processing

Quiz Answer

& Answer to the question on page 148.

Remember, the regex is tried completely each time, so 'fat|cat|belly|your
matches ‘The dragging belly indicates your cat is too fat’ rather
than fat, even though Ifat is listed first among the alternatives.

Sure, the regex could conceivably match fat and the other alternatives, but
since they are not the earliest possible match (the match starting furthest to
the left), they are not the one chosen. The entire regex is attempted com-
pletely from one spot before moving along the string to try again from the
next spot, and in this case that means trying each alternative 'fat, 'cat),
belly, and lyour) at each position before moving on.

Anchors (e.g., ") Nz [(?<=\d),...)
There are two basic types of anchors: simple ones (%, $, \G, \b, ... = 129)
and complex ones (lookahead and lookbehind s 133). The simple ones are
indeed simple in that they test either the quality of a particular location in the
target string (*, \Z, ...), or compare two adjacent characters (\<, \b, ...). On
the other hand, the lookaround constructs can contain arbitrary sub-expres-
sions, and so can be arbitrarily complex.

No “electric” parentbeses, bacRreferences, or lazy quantifiers

I'd like to concentrate here on the similarities among the engines, but as foreshad-
owing of what’s to come in this chapter, I'll point out a few interesting differences.
Capturing parentheses (and the associated backreferences and $1 type functional-
ity) are like a gas additive —they affect a gasoline (NFA) engine, but are irrelevant
to an electric (DFA) engine. The same thing applies to lazy quantifiers. The way a
DFA engine works completely precludes these concepts.! This explains why tools
developed with DFAs don’t provide these features. You'll notice that awk, /lex, and
egrep don’t have backreferences or any $1 type functionality.

You might, however, notice that GNU’s version of egrep does support backrefer-
ences. It does so by having two complete engines under the hood! It first uses a
DFA engine to see whether a match is likely, and then uses an NFA engine (which
supports the full flavor, including backreferences) to confirm the match. Later in
this chapter, we’ll see why a DFA engine can’t deal with backreferences or captur-
ing, and why anyone ever would want to use such an engine at all. (It has some
major advantages, such as being able to match very quickly.)

+ This does not mean that there can’t be some mixing of technologies to try to get the best of both
worlds. This is discussed in a sidebar on page 182.

Match Basics 151

Rule 2: The Standard Quantifiers Are Greedy

So far, we have seen features that are quite straightforward. They are also rather
boring—you can’t do much without involving more-powerful metacharacters such
as star, plus, alternation, and so on. Their added power requires more information
to understand them fully.

First, you need to know that the standard quantifiers (?, x, +, and {min,max}) are
greedy. When one of these governs a subexpression, such as 'a; in 'a?, the "(expr),
in (expr) =, or [0-91,in [0-91+, there is a minimum number of matches that are
required before it can be considered successful, and a maximum number that it
will ever attempt to match. This has been mentioned in earlier chapters — what’s
new here concerns the rule that they always attempt to match as much as possi-
ble. (Some flavors provide other types of quantifiers, but this section is concerned
only with the standard, greedy ones.)

To be clear, the standard quantifiers settle for something less than the maximum
number of allowed matches if they have to, but they always attempt to match as
many times as they can, up to that maximum allowed. The only time they settle
for anything less than their maximum allowed is when matching too much ends
up causing some later part of the regex to fail. A simple example is using
\b\w+s\b to match words ending with an ‘s’, such as ‘regexes’. The \w+, alone is
happy to match the entire word, but if it does, it leaves nothing for the 's; to
match. To achieve the overall match, the \w+ must settle for matching only
‘regexes’, thereby allowing 's\b, (and thus the full regex) to match.

If it turns out that the only way the rest of the regex can succeed is when the
greedy construct in question matches nothing, well, that's perfectly fine, if zero
matches are allowed (as with star, question, and {0,max} intervals). However, it
turns out this way only if the requirements of some later subexpression force the
issue. It’s because the greedy quantifiers always (or, at least, try to) take more than
they minimally need that they are called greedy.

Greediness has many useful (but sometimes troublesome) implications. It explains,
for example, why [0-9]+ matches the full number in March-1998. Once the ‘1’
has been matched, the plus has fulfilled its minimum requirement, but it’s greedy,
so it doesn’t stop. So, it continues, and matches the ‘998’ before being forced to
stop by the end of the string. (Since '[0-9], can’t match the nothingness at the end
of the string, the plus finally stops.)

A subjective example

Of course, this method of grabbing things is useful for more than just numbers.
Let’s say you have a line from an email header and want to check whether it is the
subject line. As we saw in earlier chapters (s=55), you simply use ["Subject:,

152 Chapter 4: The Mechanics of Expression Processing

However, if you use ["Subject: - (.*), you can later access the text of the subject
itself via the tool’s after-the-fact parenthesis memory (for example, $1 in Perl)."

Before looking at why '. » matches the entire subject, be sure to understand that
once the "Subject: part matches, you're guaranteed that the entire regular
expression will eventually match. You know this because there’s nothing after
“subject: - that could cause the expression to fail; I ., can never fail, since the
worst case of “no matches” is still considered successful for star.

So, why do we even bother adding .x? Well, we know that because star is
greedy, it attempts to match dot as many times as possible, so we use it to “fill”
$1. In fact, the parentheses add nothing to the logic of what the regular expression
matches—in this case we use them simply to capture the text matched by /. .

Once ' .+ hits the end of the string, the dot isn’t able to match, so the star finally
stops and lets the next item in the regular expression attempt to match (for even
though the starred dot could match no further, perhaps a subexpression later in
the regex could). Ah, but since it turns out that there is no next item, we reach the
end of the regex and we know that we have a successful match.

Being too greedy

Let’s get back to the concept of a greedy quantifier being as greedy as it can be.
Consider how the matching and results would change if we add another '.x:
"Subject: - (.*).*. The answer is: nothing would change. The initial . %, (inside
the parentheses) is so greedy that it matches all the subject text, never leaving any-
thing for the second . %, to match. Again, the failure of the second '.* to match
something is not a problem, since the star does not require a match to be success-
ful. Were the second I. x| in parentheses as well, the resulting $2 would always be
empty.

Does this mean that after I . », a regular expression can never have anything that is
expected to actually match? No, of course not. As we saw with the \w+s, example,
it is possible for something later in the regex to force something previously greedy
to give back (that is, relinquish or conceptually “unmatch”) if that's what is neces-
sary to achieve an overall match.

Let’s consider the possibly useful .+ ([0-91[0-91), which finds the /ast two dig-
its on a line, wherever they might be, and saves them to $1. Here’s how it works:
at first, '.+ matches the entire line. Because the following ([0-91[0-91), is
required, its initial failure to match at the end of the line, in effect, tells I . “Hey,
you took too much! Give me back something so that I can have a chance to

t This example uses capturing as a forum for presenting greediness, so the example itself is appropri-
ate only for NFAs (because only NFAs support capturing). The lessons on greediness, however, apply
to all engines, including the non-capturing DFA.

Regex-Directed Versus Text-Directed 153

match” Greedy components first try to take as much as they can, but they always
defer to the greater need to achieve an overall match. They're just stubborn about
it, and only do so when forced. Of course, they’ll never give up something that
hadn’t been optional in the first place, such as a plus quantifier’s first match.

With this in mind, let’s apply *.* ([0-9]1 [0-9]), tOo ‘about 24 .characters-long’.
Once | .+ matches the whole string, the requirement for the first '[0-9], to match
forces I'. % to give up ‘g’ (the last thing it had matched). That doesn’t, however,
allow '[0-91; to match, so . x| is again forced to relinquish something, this time the
‘n’. This cycle continues 15 more times until ' . «, finally gets around to giving up ‘4’.

Unfortunately, even though the first [[0-9], can then match that ‘4’, the second still
cannot. So, .« is forced to relinquish once more in an attempt fo find an overall
match. This time | . » gives up the ‘2’, which the first '[0-9], can then match. Now,
the ‘4’ is free for the second '[0-91, to match, and so the entire expression matches
‘about -24 -char’, with $1 getting ‘24’.

First come, first served

Consider now using [~ .= ([0-9]+), ostensibly to match not just the last two digits,
but the last whole number, however long it might be. When this regex is applied
to ‘Copyright 2003.’, what is captured? « Turn the page to check your answer.

Getting down to the details

I should clear up a few things here. Phrases like “the .« gives up...” and “the
10-91 forces...” are slightly misleading. I used these terms because they’re easy to
grasp, and the end result appears to be the same as reality. However, what really
happens behind the scenes depends on the basic engine type, DFA or NFA. So, it’s
time to see what these really are.

Regex-Directed Versus Text-Directed

The two basic engine types reflect a fundamental difference in algorithms available
for applying a regular expression to a string. I call the gasoline-driven NFA engine
“regex-directed,” and the electric-driven DFA “text-directed”

NFA Engine: Regex-Directed

Let’s consider one way an engine might match 'to (nite|knight |night), against
the text ‘- tonight . Starting with the 't, the regular expression is examined one
component at a time, and the “current text” is checked to see whether it is
matched by the current component of the regex. If it does, the next component is
checked, and so on, until all components have matched, indicating that an overall
match has been achieved.

154 Chapter 4: The Mechanics of Expression Processing

Quiz Answer

& Answer to the question on page 153.

When " . ([0-91+), is applied to ‘Copyright 2003.’, what is captured by
the parentheses?

The desire is to get the last whole number, but it doesn’t work. As before,

.* is forced to relinquish some of what it had matched because the subse-
quent '[0-91+, requires a match to be successful. In this example, that means
unmatching the final period and ‘3’, which then allows [0-9]; to match.
That’s governed by '+, so matching just once fulfills its minimum, and now
facing .’ in the string, it finds nothing else to match.

Unlike before, though, there’s then nothing further that must match, so ' ./ is
not forced to give up the 0 or any other digits it might have matched. Were
.* to do so, the [0-91+ would certainly be a grateful and greedy recipient,
but nope, first come first served. Greedy constructs give up something
they’ve matched only when forced. In the end, $1 gets only ‘3’.

If this feels counter-intuitive, realize that [0-9]+, is at most one match away
from [0-91%, which is in the same league as .x. Substituting that into
™% ([0-91+), we get [".«(.x*) as our regex, which looks suspiciously like
the "Subject: - (.#) . example from page 152, where the second /. x was
guaranteed to match nothing.

With the 'to(nitelknight|night), example, the first component is 't, which
repeatedly fails until a ‘t’ is reached in the target string. Once that happens, the /o,
is checked against the next character, and if it matches, control moves to the next
component. In this case, the “next component” is (nite|knight|night); which
really means “nite; or knight, or might.” Faced with three possibilities, the
engine just tries each in turn. We (humans with advanced neural nets between our
ears) can see that if we’'re matching tonight, the third alternative is the one that
leads to a match. Despite their brainy origins (e 85), a regex-directed engine can’t
come to that conclusion until actually going through the motions to check.

Attempting the first alternative, mite, involves the same component-at-a-time
treatment as before: “Try to match n, then /i, then It, and finally 'e. ” If this fails,
as it eventually does, the engine tries another alternative, and so on until it
achieves a match or must report failure. Control moves within the regex from com-
ponent to component, so I call it “regex-directed”

Regex-Directed Versus Text-Directed 155

The control benefits of an NFA engine

In essence, each subexpression of a regex in a regex-directed match is checked
independently of the others. Other than backreferences, there’s no interrelation
among subexpressions, except for the relation implied by virtue of being thrown
together to make a larger expression. The layout of the subexpressions and regex
control structures (e.g., alternation, parentheses, and quantifiers) controls an
engine’s overall movement through a match.

Since the regex directs the NFA engine, the driver (the writer of the regular expres-
sion) has considerable opportunity to craft just what he or she wants to happen.
(Chapters 5 and 6 show how to put this to use to get a job done correctly and effi-
ciently.) What this really means may seem vague now, but it will all be spelled
out soon.

DFA Engine: Text-Directed

Contrast the regex-directed NFA engine with an engine that, while scanning the
string, keeps track of all matches “currently in the works” In the tonight exam-
ple, the moment the engine hits t, it adds a potential match to its list of those cur-
rently in progress:

in string ‘ in regex

after tonight ‘ possible matches: 'to (nite|knight |night),

Each subsequent character scanned updates the list of possible matches. After a
few more characters are matched, the situation becomes

in string ‘ in regex

after - tonight ‘ possible matches: 'to (nite|knight |night),

with two possible matches in the works (and one alternative, knight, ruled out).
With the g that follows, only the third alternative remains viable. Once the h and t
are scanned as well, the engine realizes it has a complete match and can return
success.

I call this “text-directed” matching because each character scanned from the text
controls the engine. As in the example, a partial match might be the start of any
number of different, yet possible, matches. Matches that are no longer viable are
pruned as subsequent characters are scanned. There are even situations where a
“partial match in progress” is also a full match. If the regex were 'to(-)?, for
example, the parenthesized expression becomes optional, but it’s still greedy, so
it's always attempted. All the time that a partial match is in progress inside those
parentheses, a full match (of ‘to”) is already confirmed and in reserve in case the
longer matches don’t pan out.

156 Chapter 4: The Mechanics of Expression Processing

If the engine reaches a character in the text that invalidates all the matches in the
works, it must revert to one of the full matches in reserve. If there are none, it
must declare that there are no matches at the current attempt’s starting point.

First Thougbts: NFA and DFA in Comparison

If you compare these two engines based only on what I've mentioned so far, you
might conclude that the text-directed DFA engine is generally faster. The regex-
directed NFA engine might waste time attempting to match different subexpres-
sions against the same text (such as the three alternatives in the example).

You would be right. During the course of an NFA match, the same character of the
target might be checked by many different parts of the regex (or even by the same
part, over and over). Even if a subexpression can match, it might have to be
applied again (and again and again) as it works in concert with the rest of the
regex to find a match. A local subexpression can fail or match, but you just never
know about the overall match until you eventually work your way to the end of
the regex. (If T could find a way to include “It’s not over until the fat lady sings.” in
this paragraph, I would.) On the other hand, a DFA engine is deterministic—each
character in the target is checked once (at most). When a character matches, you
don’t know yet if it will be part of the final match (it could be part of a possible
match that doesn’t pan out), but since the engine keeps track of all possible
matches in parallel, it needs to be checked only once, period.

The two basic technologies behind regular-expression engines have the somewhat
imposing names Nondeterministic Finite Automaton (NFA) and Deterministic Finite
Automaton (DFA). With mouthfuls like this, you see why I stick to just “NFA” and
“DFA” We won'’t be seeing these phrases spelled out again.

Consequences to us as users

Because of the regex-directed nature of an NFA, the details of how the engine
attempts a match are very important. As I said before, the writer can exercise a fair
amount of control simply by changing how the regex is written. With the tonight
example, perhaps less work would have been wasted had the regex been written
differently, such as in one of the following ways:

e lto(ni(ght|te) |knight),
e Itonite|toknight|tonight,
e to(k?night|nite)

t 1 suppose I could explain the underlying theory that goes into these names, if I only knew it! As I
hinted, the word deterministic is pretty important, but for the most part the theory is not relevant, so
long as we understand the practical effects. By the end of this chapter, we will.

Backtracking 157

With any given text, these all end up matching exactly the same thing, but in
doing so direct the engine in different ways. At this point, we don’t know enough
to judge which of these, if any, are better than the others, but that's coming soon.

It's the exact opposite with a DFA — since the engine keeps track of all matches
simultaneously, none of these differences in representation matter so long as in
the end they all represent the same set of possible matches. There could be a hun-
dred different ways to achieve the same result, but since the DFA keeps track of
them all simultaneously (almost magically — more on this later), it doesn’t matter
which form the regex takes. To a pure DFA, even expressions that appear as differ-
ent as 'abc) and [[aa-a] (b|b{1} |b) ¢ are utterly indistinguishable.

Three things come to my mind when describing a DFA engine:

e DFA matching is very fast.
e DFA matching is very consistent.
e Talking about DFA matching is very boring.

I'll eventually expand on all these points.

The regex-directed nature of an NFA makes it interesting to talk about. NFAs pro-
vide plenty of room for creative juices to flow. There are great benefits in crafting
an expression well, and even greater penalties for doing it poorly. A gasoline
engine is not the only engine that can stall and conk out completely. To get to the
bottom of this, we need to look at the essence of an NFA engine: backtracking.

Backtracking

The essence of an NFA engine is this: it considers each subexpression or compo-
nent in turn, and whenever it needs to decide between two equally viable options,
it selects one and remembers the other to return to later if need be.

Situations where it has to decide among courses of action include anything with a
quantifier (decide whether to try another match), and alternation (decide which
alternative to try, and which to leave for later).

Whichever course of action is attempted, if it’s successful and the rest of the regex
is also successful, the match is finished. If anything in the rest of the regex eventu-
ally causes failure, the regex engine knows it can backtrack to where it chose the
first option, and can continue with the match by trying the other option. This way,
it eventually tries all possible permutations of the regex (or at least as many as
needed until a match is found).

158 Chapter 4: The Mechanics of Expression Processing

A Really Crummy Analogy

Backtracking is like leaving a pile of bread crumbs at every fork in the road. If the
path you choose turns out to be a dead end, you can retrace your steps, giving up
ground until you come across a pile of crumbs that indicates an untried path.
Should that path, too, turn out to be a dead end, you can backtrack further, retrac-
ing your steps to the next pile of crumbs, and so on, until you eventually find a
path that leads to your goal, or until you run out of untried paths.

There are various situations when the regex engine needs to choose between two
(or more) options — the alternation we saw earlier is only one example. Another
example is that upon reaching ' x?-, the engine must decide whether it should
attempt 'x. Upon reaching /- x+ -, however, there is no question about trying to
match 'x; at least once —the plus requires at least one match, and that’s non-nego-
tiable. Once the first 'x, has been matched, though, the requirement is lifted and it
then must decide to match another 'x. If it decides to match, it must decide if it
will then attempt to match yet another... and another... and so on. At each of these
many decision points, a virtual “pile of crumbs” is left behind as a reminder that
another option (to match or not to match, whichever wasn’t chosen at each point)
remains viable at that point.

A crummy little example

Let’s look at a full example using our earlier 'to (nite|knight |night), regex on
the string ‘hot-tonic-tonight!’ (silly, yes, but a good example). The first com-
ponent, 't,, is attempted at the start of the string. It fails to match h, so the entire
regex fails at that point. The engine’s transmission then bumps along to retry the
regex from the second position (which also fails), and again at the third. This time
the It; matches, but the subsequent lo fails to match because the text we're at is
now a space. So, again, the whole attempt fails.

The attempt that eventually starts at - tonic-- is more interesting. Once the to has
been matched, the three alternatives become three available options. The regex
engine picks one to try, remembering the others (“leaving some bread crumbs”) in
case the first fails. For the purposes of discussion, let’s say that the engine first
chooses mite. That expression breaks down to “n; + [i; + 't, ..., which gets to
~-tonic-- before failing. Unlike the earlier failures, this failure doesn’t mean the
end of the overall attempt because other options — the as-of-yet untried alterna-
tives — still remain. (In our analogy, we still have piles of breadcrumbs we can
return to.) The engine chooses one, we'll say knight, but it fails right away
because 'k, doesn’t match ‘n’. That leaves one final option, might, but it too even-
tually fails. Since that was the final untried option, its failure means the failure of

the entire attempt starting at --tonic- -, so the transmission kicks in again.

Backtracking 159

Once the engine works its way to attempt the match starting at - tonight!, it gets
interesting again. This time, the might, alternative successfully matches to the end
(which means an overall match, so the engine can report success at that point).

Two Important Points on Backtracking

The general idea of how backtracking works is fairly simple, but some of the
details are quite important for real-world use. Specifically, when faced with multi-
ple choices, which choice should be tried first? Secondly, when forced to back-
track, which saved choice should the engine use? The answer to that first question
is this important principle:

In situations where the decision is between “make an attempt” and “skip

an attempt,” as with items governed by quantifiers, the engine always

chooses to first make the attempt for greedy quantifiers, and to first skip

the attempt for lazy (non-greedy) ones.

This has far-reaching repercussions. For starters, it helps explain why the greedy
quantifiers are greedy, but it doesn’t explain it completely. To complete the pic-
ture, we need to know which (among possibly many) saved options to use when
we backtrack. Simply put:

The most recently saved option is the one returned to when a local fail-
ure forces backtracking. They’re used LIFO (last in first out).

This is easily understood in the crummy analogy —if your path becomes blocked,
you simply retrace your steps until you come back across a pile of bread crumbs.
The first you'll return to is the one most recently laid. The traditional analogy for
describing LIFO also holds: like stacking and unstacking dishes, the most-recently
stacked will be the first unstacked.

Saved States

In NFA regular expression nomenclature, the piles of bread crumbs are known as
saved states. A state indicates where matching can restart from, if need be. It
reflects both the position in the regex and the point in the string where an untried
option begins. Because this is the basis for NFA matching, let me show the implica-
tions of what I've already said with some simple but verbose examples. If you're
comfortable with the discussion so far, feel free to skip ahead.

160 Chapter 4: The Mechanics of Expression Processing

A maich without backtracking

Let’s look at a simple example, matching lab?c, against abc. Once the 'a; has
matched, the current state of the match is reflected by:

‘ at ‘apc’ ‘ matching 'ab?c

However, now that 'b?, is up to match, the regex engine has a decision to make:
should it attempt the b, or skip it?. Well, since ? is greedy, it attempts the match.
But, so that it can recover if that attempt fails or eventually leads to failure, it adds

‘ at ‘abc’ ‘ matching 'ab?c ‘

to its otherwise empty list of saved states. This indicates that the engine can later
pick up the match in the regex just after the 'b?, picking up in the text from just
before the b (that is, where it is now). Thus, in effect, skipping the b, as the ques-
tion mark allows.

Once the engine carefully places that pile of crumbs, it goes ahead and checks the
b. With the example text, it matches, so the new current state becomes:

‘ at ‘abc’ ‘ matching lab?c

The final lc) matches as well, so we have an overall match. The one saved state is
no longer needed, so it is simply forgotten.

A maich after backtracking

Now, if ‘ac’ had been the text to match, everything would have been the same
until the by attempt was made. Of course, this time it wouldn’t match. This means
that the path that resulted from actually attempting the ' -2, failed. Since there is a
saved state available to return to, this “local failure” does not mean overall failure.
The engine backtracks, meaning that it takes the most recently saved state as its
new current state. In this case, that would be the

‘ at ‘ac’ ‘ matching lab?c

state that had been saved as the untried option before the b, had been attempted.
This time, the 'c; and ¢ match up, so the overall match is achieved.

A non-match

Now let’s look at the same expression, but against ‘abx’. Before the b is
attempted, the question mark causes this state to be saved:

‘ at ‘apXx’ ‘ matching lab?¢;

Backtracking 161

The) matches, but that avenue later turns out to be a dead end because the Ic
fails to match x. The failure results in a backtrack to the saved state. The engine
next tests 'c; against the b that the backtrack effectively “unmatched.” Obviously,
this test fails, too. If there were other saved states, another backtrack would occur,
but since there aren’t any, the overall match at the current starting position is
deemed a failure.

Are we done? Nope. The engine’s transmission still does its “bump along the string
and retry the regex,” which might be thought of as a pseudo-backtrack. The match
restarts at:

‘ at ‘abx’ ‘ matching lab?¢

The whole match is attempted again from the new spot, and like before, all paths
lead to failure. After the next two attempts (from abX and abx) similarly fail, over-
all failure is finally reported.

A lazy match

Let’s look at the original example, but with a lazy quantifier, matching ‘ab??c
against ‘abc’. Once the la; has matched, the state of the match is reflected by:

‘ at ‘abc’

matching 'ab??c
]

Now that b??, is next to be applied, the regex engine has a decision to make:
attempt the b, or skip it? Well, since 27 is lazy, it specifically chooses to first skip
the attempt, but, so that it can recover if that attempt fails or eventually leads to
failure, it adds

‘ at ‘abc’ ‘ matching 'abc

to its otherwise empty list of saved states. This indicates that the engine can later
pick up the match by making the attempt of b, in the text from just before the b.
(We know it will match, but the regex engine doesn’t yet know that, or even know
if it will ever need to get as far as making the attempt.) Once the state has been
saved, it goes ahead and continues from after its skip-the-attempt decision:

at ‘abc’ ‘ matching lab??c ‘

The /¢ fails to match ‘©’, so indeed the engine must backtrack to its one saved
state:

‘ at ‘abc’ ‘ matching labc, ‘

Of course, it matches this time, and the subsequent 'c; matches ‘c’. The same final
match we got with the greedy lab?c is achieved, although via a different path.

162 Chapter 4: The Mechanics of Expression Processing

Backtracking and Greediness

For tools that use this NFA regex-directed backtracking engine, understanding how
backtracking works with your regular expression is the key to writing expressions
that accomplish what you want, and accomplish it quickly. We've seen how '?
greediness and '??) laziness works, so now let’s look at star and plus.

Star, plus, and their backtracking

If you consider 'x* to be more or less the same as x?x?x?x?x?x? | (or, more
appropriately, '(x (x (x (x--?) ?) ?) ?) ?)), it’s not too different from what we have
already seen. Before checking the item quantified by the star, the engine saves a
state indicating that if the check fails (or leads to failure), the match can pick up
after the star. This is done repeatedly, until an attempt via the star actually
does fail.

Thus, when matching [0-9]+ against ‘a-1234 -num’, once '[0-9] fails to match the
space after the 4, there are four saved states corresponding to locations to which
the plus can backtrack:

a 1234 num
1 2A3 4 num
1234 num
123 4A num

[V

These represent the fact that the attempt of [0-91, had been optional at each of
these positions. When [0-91]; fails to match the space, the engine backtracks to the
most recently saved state (the last one listed), picking up at ‘a-1234-.num’ in the
text and at [[0-9]+, in the regex. Well, that’s at the end of the regex. Now that
we're actually there and notice it, we realize that we have an overall match.

Note that ‘a-1234-num’ is not in the list of positions, because the first match using
the plus quantifier is required, not optional. Would it have been in the list had the
regex been I[0-91x? (bint: it’s a trick question) » Turn the page to check your
answer.

Revisiting a fuller example

With our more detailed understanding, let’s revisit the " .= ([0-9] [0-9]), example
from page 152. This time, instead of just pointing to “greediness” to explain why
the match turns out as it does, we can use our knowledge of NFA mechanics to
explain why in precise terms.

I'll use ‘cA-95472, -USA’ as an example. Once the . x; has successfully matched to
the end of the string, there are a baker’s dozen saved states accumulated from the

t Just for comparison, remember that a DFA doesn’t care much about the form you use to express
which matches are possible; the three examples are identical to a DFA.

More About Greediness and Backtracking 163

star-governed dot matching 13 things that are (if need be) optional. These states
note that the match can pick up in the regex at I".([0-9]1[0-91), and in the
string at each point where a state was created.

Now that we've reached the end of the string and pass control to the first [0-91,
the match obviously fails. No problem: we have a saved state to try (a baker’s
dozen of them, actually). We backtrack, resetting the current state to the one most
recently saved, to just before where | . matched the final A. Skipping that match
(or “unmatching” it, if you like) gives us the opportunity to try that A against the
first [0-91,. But, it fails.

This backtrack-and-test cycle continues until the engine effectively unmatches the
2, at which point the first [[0-9]; can match. The second can’t, however, so we
must continue to backtrack. It's now irrelevant that the first [0-91, matched during
the previous attempt; the backtrack resets the current state to before the first
[0-9],. As it turns out, the same backtrack resets the string position to just before
the 7, so the first '[0-9], can match again. This time, so can the second (matching
the 2). Thus, we have a match: ‘CA-95472, -USA’, with $1 getting ‘72’.

A few observations: first, backtracking entails not only recalculating our position
within the regex and the text, but also maintaining the status of the text being
matched by the subexpression within parentheses. Each backtrack caused the
match to be picked up before the parentheses, at [~ . ([0-91[0-91). As far as the
simple match attempt is concerned, this is the same as '*.%[0-9]1[0-9], so I used
phrases such as “picks up before the first '[0-91” However, moving in and out of
the parentheses involves updating the status of what $1 should be, which also has
an impact on efficiency.

One final observation that may already be clear to you: something governed by
star (or any of the greedy quantifiers) first matches as much as it can without
regard to what might follow in the regex. In our example, the .+ does not magi-
cally know to stop at the first digit, or the second to the last digit, or any other
place until what's governed by the greedy quantifier — the dot — finally fails. We
saw this earlier when looking at how " . ([0-9]+),; would never have more than
a single digit matched by the [0-91+ part (e 153).

More About Greediness
and BacRktracking

Many concerns (and benefits) of greediness are shared by both an NFA and a DFA.
(A DFA doesn’t support laziness, which is why we’ve concentrated on greediness
up to this point.) I'd like to look at some ramifications of greediness for both, but
with examples explained in terms of an NFA. The lessons apply to a DFA just as
well, but not for the same reasons. A DFA is greedy, period, and there’s not much

164 Chapter 4: The Mechanics of Expression Processing

Quiz Answer

& Answer to the question on page 162.

When matching [0-91 % against ‘a-1234 -num’, would ‘a-1234 -num’ be part of
a saved state?

The answer is “no” I posed this question because the mistake is commonly
made. Remember, a component that has star applied can always match. If
that’s the entire regex, it can always match anywhere. This certainly includes
the attempt when the transmission applies the engine the first time, at the
start of the string. In this case, the regex matches at ‘a-1234 -num’ and that’s
the end of it—it never even gets as far the digits.

In case you missed this, there’s still a chance for partial credit. Had there
been something in the regex after the /[0-9]«, that kept an overall match
from happening before the engine got to:

|at‘a 1234

matching [[0-97* ‘

then indeed, the attempt of the ‘1" also creates the state:

|at'a 1234

matching [0-9] x| ‘

more to say after that. It’s very easy to use, but pretty boring to talk about. An NFA,
however, is interesting because of the creative outlet its regex-directed nature pro-
vides. Besides lazy quantifiers, there are a variety of extra features an NFA can sup-
port, including lookaround, conditionals, backreferences, and atomic grouping.
And on top of these, an NFA affords the regex author direct control over how a
match is carried out, which can be a benefit when used properly, but it does cre-
ate some efficiency-related pitfalls (discussed in Chapter 6.)

Despite these differences, the match results are often similar. For the next few
pages, T'll talk of both engine types, but describe effects in terms of the regex-
directed NFA. By the end of this chapter, you’ll have a firm grasp of just when the
results might differ, as well as exactly why.

Problems of Greediness

As we saw with the last example, | . = always marches to the end of the line.! This
is because ! . # just thinks of itself and grabs what it can, only later giving up some-
thing if it is required to achieve an overall match.

1 With a tool or mode where a dot can match a newline, | . applied to strings that contain multiline
data matches through all the logical lines to the end of the whole string.

More About Greediness and Backitracking 165

Sometimes this can be a real pain. Consider a regex to match text wrapped in
double quotes. At first, you might want to write I".x", but knowing what we
know about . x|, guess where it matches in:

The name "McDonald’s" is said "makudonarudo" in Japanese

Actually, since we understand the mechanics of matching, we don’t need to guess,
because we know. Once the initial quote matches, . | is free to match, and imme-
diately does so all the way to the end of the string. It backs off (or, perhaps more
appropriately, is backed off by the regex engine) only as much as is needed until
the final quote can match. In the end, it matches

The name "McDonald’s" is said "makudonarudo" in Japanese

which is obviously not the double-quoted string that was intended. This is one
reason why I caution against the overuse of I. x|, as it can often lead to surprising
results if you don’t pay careful attention to greediness.

So, how can we have it match "McDonald’s" only? The key is to realize that we
don’t want “anything” between the quotes, but rather “anything except a quote.” If
we use [~ "]* rather than I .« it won’t overshoot the closing quote.

The regex engine’s basic approach with ™ [~"]x" is exactly the same as before.
Once the initial double quote matches, '[*"]*, gets a shot at matching as much as
it can. In this case, that’s up to the double quote after McDonald’s, at which point
it finally stops because '[~ "], can’t match the quote. At that point, control moves to
the closing . It happily matches, resulting in overall success:

The name "McDonald’s" is said "makudonarudo" in Japanese

Actually, there could be one unexpected change, and that’s because in most fla-
vors, [[* "], can match a newline, while dot doesn’t. If you want to keep the regex
from crossing lines, use [~ "\n],

Multi-Character “Quotes”

In the first chapter, I talked a bit about matching HTML tags, such as the sequence
very that renders the “very” in bold if the browser can do so. Attempting
to match a - sequence seems similar to matching a quoted string, except
the “quotes” in this case are the multi-character sequences and . Like the
quoted string example, multiple sets of “quotes” cause problems if we use . «;:

Billions and Zillions of suns

With . » , the greedy ! . causes the match in progress to zip to the end of
the line, backtracking only far enough to allow the ' to match, matching the
last on the line instead of the one corresponding to the opening ' at the
start of the match.

166 Chapter 4: The Mechanics of Expression Processing

Unfortunately, since the closing delimiter is more than one character, we can’t
solve the problem with a negated class as we did with double-quoted strings. We
can’t expect something like [~]* to work. A character class repre-
sents only one character and not the full sequence that we want. Don't let
the apparent structure of I[[“], fool you. It is just a class to match one charac-
ter—any one except <, >, /, and B. It is the same as, say '["/<>B], and certainly
doesn’t work as an “anything not " construct. (With lookahead, you can insist
that ' not match at a particular point; we’ll see this in action in the next
section.)

Using Lazy Quantifiers

These problems arise because the standard quantifiers are greedy. Some NFAs sup-
port lazy quantifiers (e 141), with *? being the lazy version of x. With that in
mind, let’s apply . *? to:

Billions and Zillions of suns
After the initial has matched, /. x?; immediately decides that since it doesn’t

require any matches, it lazily doesn’t bother trying to perform any. So, it immedi-
ately passes control to the following I<;

at‘ Billions ’ Inauinng'.*gs/Ba‘

The '« doesn’t match at that point, so control returns back to . «?, where it still has
its untried option to attempt a match (to attempt multiple matches, actually). It
begrudgingly does so, with the dot matching the underlined B in - Billions
Again, the «? has the option to match more, or to stop. It’s lazy, so it first tries
stopping. The subsequent /< still fails, so .x? has to again exercise its untried
match option. After eight cycles, !.x?; eventually matches Billions, at which
point the subsequent <, (and the whole ' subexpression) is finally able to
match:

Billions and Zillions of suns

So, as we’ve seen, the greediness of star and friends can be a real boon at times,
while troublesome at others. Having non-greedy, lazy versions is wonderful, as
they allow you to do things that are otherwise very difficult (or even impossible).
Still, T've often seen inexperienced programmers use lazy quantifiers in inappropri-
ate situations. In fact, what we've just done may not be appropriate. Consider
applying [. x? to:

Billions and Zillions of suns

It matches as shown, and while T suppose it depends on the exact needs of the sit-
uation, I would think that in this case that match is not desired. However, there’s
nothing about . 2, to stop it from marching right past the Zillion’s to its .

More About Greediness and BacRtracking 167

This is an excellent example of why a lazy quantifier is often not a good replace-
ment for a negated class. In the I".*" example, using ["], as a replacement for
the dot specifically disallows it from marching past a delimiter—a quality we wish
our current regex had.

However, if negative lookahead (v=133) is supported, you can use it to create
something comparable to a negated class. Alone, (?1), is a test that is success-
ful if is not at the current location in the string. Those are the locations that
we want the dot of .x? to match, so changing that dot to [((?1) .),
creates a regex that matches where we want it, but doesn’t match where we don’t.
Assembled all together, the whole thing can become quite confusing, so I'll show
it here in a free-spacing mode (i 111) with comments:

 # Match the opening

(# Now, only as many of the following as needed . . .
(?!) # Ifnot. ..
. # ... any character is okay

) *? #

 # ... until the closing delimiter can match

With one adjustment to the lookahead, we can put the quantifier back to a normal
greedy one, which may be less confusing to some:

 # Match the opening
(# Now, as many of the following as possible . . .
(?! </2?2B>) # If not , and not . . .
. # ... any character is okay
) * # (now greedy)
 # <ANNO> . . . until the closing delimiter can match.

Now, the lookahead prohibits the main body to match beyond as well as
, which eliminates the problem we tried to solve with laziness, so the laziness
can be removed. This expression can still be improved; we’ll see it again during
the discussion on efficiency in Chapter 6 (e 270).

Greediness and Laziness Always Favor a Maitch

Recall the price display example from Chapter 2 (e 51). We'll examine this exam-
ple in detail at a number of points during this chapter, so I'll recap the basic issue:
due to floating-point representation problems, values that should have been
“1.625” or “3.00” were sometimes coming out like “1.62500000002828” and
“3.00000000028822” To fix this, T used
$price =7 s/ (\.\d\d[1-9]1?)\dx/$1/;

to lop off all but the first two or three decimal digits from the value stored in the
variable $price. The '\.\d\d matches the first two decimal digits regardless,
while the '[1-9] ?) matches the third digit only if it is non-zero.

168 Chapter 4: The Mechanics of Expression Processing

I then noted:

Anything matched so far is what we want to keep, so we wrap it in paren-
theses to capture to $1. We can then use $1 in the replacement string. If this
is the only thing that matches, we replace exactly what was matched with
itself —not very useful. However, we go on to match other items outside the
$1 parentheses. They don’t find their way to the replacement string, so the
effect is that they're removed. In this case, the “to be removed” text is any
extra digits, the '\dx at the end of the regex.

So far so good, but let’s consider what happens when the contents of the variable
$price is already well formed. When it is 27.625, the "(\.\d\d[1-9]?), part
matches the entire decimal part. Since the trailing \d* doesn’t match anything, the
substitution replaces the ‘. 625" with ‘. 625" — an effective no-op.

This is the desired result, but wouldn’t it be just a bit more efficient to do the
replacement only when it would have some real effect (that is, do the replacement
only when \dx, actually matches something)? Well, we know how to write “at
least one digit”! Simply replace '\dx with \d+

$price =7 s/(\.\d\d[1-9]1?)\d+/$1/

With crazy numbers like “1.62500000002828 it still works as before, but with
something such as “9.43” the trailing \d+ isn’t able to match, so rightly, no substi-
tution occurs. So, this is a great modification, yes? No/ What happens with a three-
digit decimal value like 27.625? We want this value to be left alone, but that’s not
what happens. Stop for a moment to work through the match of 27.625 yourself,
with particular attention to how the ‘5 interacts with the regex.

In hindsight, the problem is really fairly simple. Picking up in the action once
(\.\d\d[1-9]?)\d+ has matched 27.625, we find that \d+ can’t match. That’s
no problem for the overall match, though, since as far as the regex is concerned,
the match of ‘5’ by [[1-91, was optional and there is still a saved state to try. This
state allows '[1-9] 2, to match nothing, leaving the 5 to fulfill the must-match-one
requirement of \d+. Thus, we get the match, but not the right match: .625 is
replaced by .62, and the value becomes incorrect.

What if [1-9]12 were lazy instead? We’d get the same match, but without the inter-
vening “match the 5 but then give it back” steps, since the lazy '[1-9] 22 first skips
the match attempt. So, laziness is not a solution to this problem.

The Essence of Greediness, Laziness,
and BacRtracking

The lesson of the preceding section is that it makes no difference whether there
are greedy or lazy components to a regex; an overall match takes precedence over
an overall non-match. This includes taking from what had been greedy (or giving
to what had been lazy) if that's what is required to achieve a match, because when

More About Greediness and Backtracking 169

a “local failure” is hit, the engine keeps going back to the saved states (retracing
steps to the piles of bread crumbs), trying the untested paths. Whether greedily or
lazily, every possible path is tested before the engine admits failure.

The order that the paths are tested is different between greedy and lazy quantifiers
(after all, that’s the whole point of having the two!), but in the end, if no match is
to be found, it’s known only after testing every possible path.

If, on the other hand, there exists just one plausible match, both a regex with a
greedy quantifier and one with a lazy quantifier find that match, although the
series of paths they take to get there may be wildly different. In these cases,
selecting greedy or lazy doesn’t influence what is matched, but merely how long
or short a path the engine takes to get there (which is an efficiency issue, the sub-
ject of Chapter 6).

Finally, if there is more than one plausible match, understanding greediness, lazi-
ness, and backtracking allows you to know which is selected. The . «" example
has three plausible matches:

The name "McDonald’s" is said "makudonarudo" in Japanese

We know that " . " with the greedy star, selects the longest one, and that I" . x2",
with the lazy star, selects the shortest.

Possessive Quantifiers and Atomic Grouping

The ‘. 625" example on the facing page shows important insights about NFA match-
ing as we know it, and how with that particular example our naive intents were
thwarted. Some flavors do provide tools to help us here, but before looking at
them, it’s absolutely essential to fully understand the preceding section, “The
Essence of Greediness, Laziness, and Backtracking” Be sure to review it if you
have any doubts.

So, continuing with the ‘. 625" example and recalling what we really want to hap-
pen, we know that if the matching can successfully get to the marked position in
(\.\@\d[1-91?)\d+, we never want it to go back. That is, we want [[1-9]; to
match if possible, but if it does, we don’t want that match to be given up. Saying it
more forcefully, we would rather have the entire match attempt fail, if need be,
before giving up something matched by the [1-9], (As you’'ll recall, the problem
before when this regex was applied to ‘.625" was that it indeed didn’t fail, but
instead went back to try the remaining skip-me alternative.)

Well, what if we could somehow eliminate that skip-me alternative (eliminate the
state that 7 saves before it makes the attempt to match [1-9]1)? If there was no
state to go back to, a match of [[1-9], wouldn’t be given up. That’s what we want!
Ah, but if there was no skip-me state to go back to, what would happen if we

170 Chapter 4: The Mechanics of Expression Processing

applied the regex to ‘.50007? The [[1-9], couldn’t match, and in this case, we do
want it to go back and skip the [1-9]; so that the subsequent \d+ can match dig-
its to be removed.

It sounds like we have two conflicting desires, but thinking about it, what we
really want is to eliminate the skip-me alternative only if the match-me alternative
succeeds. That is, if [1-91] is indeed able to match, we’d like to get rid of the skip-
me saved state so that it is never given up. This is possible, with regex flavors that
support [(?>); atomic grouping (e 139), or possessive quantifiers like '[1-9] 2+
(e 142). We'll look at atomic grouping first.

Atomic grouping with ' (?>---),

In essence, matching within [(?>-), carries on normally, but if and when matching
is able to exit the construct (that is, get past its closing parenthesis), all states that
had been saved while within it are thrown away. In practice, this means that once
the atomic grouping has been exited, whatever text was matched within it is now
one unchangeable unit, to be kept or given back only as a whole. All saved states
representing untried options within the parentheses are eliminated, so backtrack-
ing can never undo any of the decisions made within (at least not once they’re
“locked in” when the construct is exited).

So, let’s consider I(\.\d\d(?>[1-9]?))\d+. Quantifiers work normally within
atomic grouping, so if [1-97 is not able to match, the regex returns to the skip-me
saved state the '?, had left. That allows matching to leave the atomic grouping and
continue on to the \d+, In this case, there are no saved states to flush when con-
trol leaves the atomic grouping (that is, there are no saved states remaining that
had been created within it).

However, when /[1-9], is able to match, matching can exit the atomic grouping,
but this time, the skip-me state is still there. Since it had been created within the
atomic grouping we're now exiting, it is thrown away. This would happen when
matching against both ‘. 625", and, say, ‘.625000’. In the latter case, having elimi-
nated the state turns out not to matter, since the \d+ has the ‘.625000’ to match,
after which that regex is done. With ‘. 625" alone, the inability of \d+, to match has
the regex engine wanting to backtrack, but it can’t since that skip-me alternative
was thrown away. The lack of any state to backtrack to results in the overall match
attempt failing, and ‘. 625’ is left undisturbed as we wish.

The essence of atomic grouping

The section “The Essence of Greediness, Laziness, and Backtracking,” starting on
page 168, makes the important point that neither greediness nor laziness influence
which paths can be checked, but merely the order in which they are checked. If
no match is found, whether by a greedy or a lazy ordering, in the end, every
possible path will have been checked.

More About Greediness and Backtracking 171

Atomic grouping, on the other hand, is fundamentally different because it actually
eliminates possible paths. Eliminating states can have a number of different conse-
quences, depending on the situation:

e No Effect If a match is reached before one of the eliminated states would
have been called upon, there is no effect on the match. We saw this a moment
ago with the ‘.625000° example. A match was found before the eliminated
state would have come into play.

e Prohibit Match The elimination of states can mean that a match that would
have otherwise been possible now becomes impossible. We saw this with the
.625" example.

e Different Match In some cases, it's possible to get a different match due to
the elimination of states.

e Faster Failure It's possible for the elimination of states to do nothing more
than allow the regex engine, when no match is to be found, report that fact
more quickly. This is discussed right after the quiz.

Here’s a little quiz: what does the construct '(?>.#*?); do? What kind of things do
you expect it can match? € Turn the page to check your answer.

Some states may remain. When the engine exits atomic grouping during a
match, only states that had been created while inside the atomic grouping are
eliminated. States that might have been there before still remain after, so the entire
text matched by the atomic subexpression may be unmatched, as a whole, if
backtracking later reverts to one of those previous states.

Faster failures with atomic grouping. Consider ["\w+: applied to ‘Subject’. We
can see, just by looking at it, that it will fail because the text doesn’t have a colon
in it, but the regex engine won’t reach that conclusion until it actually goes
through the motions of checking.

So, by the time ' is first checked, the \w+ will have marched to the end of the
string. This results in a lot of states—one “skip me” state for each match of \w, by
the plus (except the first, since plus requires one match). When then checked at
the end of the string, ': fails, so the regex engine backtracks to the most recently
saved state:

‘ at ‘subject’ ‘ matching ™ \wH+) ‘

at which point the ;) fails again, this time trying to match ‘t’. This backtrack-test-
fail cycle happens all the way back to the oldest state:

‘ at ‘subject’

matching " \w+: ‘

After the attempt from the final state fails, overall failure can finally be announced.

172 Chapter 4: The Mechanics of Expression Processing

Quiz Answer

& Answer to the question on page 171.
What does '(?>. *?), match?

It can never match, anything. At best, it’s a fairly complex way to accomplish
nothing! /7, is the lazy '+, and governs a dot, so the first path it attempts is
the skip-the-dot path, saving the try-the-dot state for later, if required. But the
moment that state has been saved, it’s thrown away because matching exits
the atomic grouping, so the skip-the-dot path is the only one ever taken. If
something is always skipped, it’s as if it's not there at all.

All that backtracking is a lot of work that after just a glance we know to be unnec-
essary. If the colon can’t match after the last letter, it certainly can’t match one of
the letters the I+ is forced to give up!

So, knowing that none of the states left by \w+, once it's finished, could possibly
lead to a match, we can save the regex engine the trouble of checking them:
~(?>\w+) :; By adding the atomic grouping, we use our global knowledge of the
regex to enhance the local working of \w+, by having its saved states (which we
know to be useless) thrown away. If there is a match, the atomic grouping won'’t
have mattered, but if there’s not to be a match, having thrown away the useless
states lets the regex come to that conclusion more quickly. (An advanced imple-
mentation may be able to apply this optimization for you automatically e 251.)

As we'll see in the Chapter 6 (e 269), this technique shows a very valuable use of
atomic grouping, and I suspect it will become the most common use as well.

Possessive Quantifiers, ?+, x+, ++, and {m,n}+

Possessive quantifiers are much like greedy quantifiers, but they never give up a
partial amount of what they’ve been able to match. Once a plus, for example, fin-
ishes its run, it has created quite a few saved states, as we saw with the " \w+
example. A possessive plus simply throws those states away (or, more likely,
doesn’t bother creating them in the first place).

As you might guess, possessive quantifiers are closely related to atomic grouping.
Something possessive like \w++ appears to match in the same way as [(?2>\w+);
one is just a notational convenience for the other.” With possessive quantifiers,
™ (2>\w+) ;) can be rewritten as ["\w++:, and [(\.\d\d(?>[1-9]1?))\d+ can be
rewritten as [(\ .\d\d[1-9]?+) \d+,

t A smart implementation may be able to make the possessive version a bit more efficient than its
atomic-grouping counterpart (s= 250).

More About Greediness and Backtracking 173

Be sure to understand the difference between '(?>M) +, and [(?>M+),. The first one
throws away unused states created by M, which is not very useful since M doesn’t
create any states. The second one throws away unused states created by M+,
which certainly can be useful.

When phrased as a comparison between [(?>M) +, and [(?>M+), it’s perhaps clear
that the second one is the one comparable to M++, but when converting some-
thing more complex like '(\\"[[~"])*+ from possessive quantifiers to atomic
grouping, it’s tempting to just add ‘?>’ to the parentheses that are already there:
(®>\\" [[""]) *. The new expression might happen to achieve your goal, but be
clear that is not comparable to the original possessive-quantifier version; it's like
changing M++, to [(?>M) +. Rather, to be comparable, remove the possessive plus,
and then wrap what remains in atomic grouping: [(2> (\\" [[""]) *).

The Backtracking of Lookaround

It might not be apparent at first, but lookaround (introduced in Chapter 2 s 59) is
closely related to atomic grouping and possessive quantifiers. There are four types
of lookaround: positive and negative flavors of lookahead and lookbehind. They
simply test whether their subexpression can and can’t match starting at the current
location (lookahead), or ending at the current location (lookbehind).

Looking a bit deeper, how does lookaround work in our NFA world of saved states
and backtracking? As a subexpression within one of the lookaround constructs is
being tested, it’s as if it’s in its own little world. It saves states as needed, and
backtracks as necessary. If the entire subexpression is able to match successfully,
what happens? With positive lookaround, the construct, as a whole, is considered a
success, and with negative lookaround, it’s considered a failure. In either case,
since the only concern is whether there’s a match (and we just found out that, yes,
there’s a match), the “little world” of the match attempt, including any saved states
that might have been left over from that attempt, is thrown away.

What about when the subexpression within the lookaround can’t match? Since it’s
being applied in its “own little world,” only states created within the current look-
around construct are available. That is, if the regex finds that it needs to backtrack
further, beyond where the lookaround construct started, it's found that the current
subexpression can not match. For positive lookahead, this means failure, while for
negative lookahead, it means success. In either case, there are no saved states left
over (had there been, the subexpression match would not have finished), so
there’s no “little world” left to throw away.

So, we've seen that in all cases, once the lookaround construct has finished, there
are no saved states left over from its application. Any states that might have been
left over, such as in the case of successful positive lookahead, are thrown away.

174 Chapter 4: The Mechanics of Expression Processing

Well, where else have we seen states being thrown away? With atomic grouping
and possessive quantifiers, of course.

Mimicking atomic grouping with positive lookabead

It's perhaps mostly academic for flavors that support atomic grouping, but can be
quite useful for those that don’t: if you have positive lookahead, and if it supports
capturing parentheses within the lookahead (most flavors do, but Tcl’s lookahead,
for example, does not), you can mimic atomic grouping and possessive quanti-
fiers. [(?>regex); can be mimicked with (?=(regex))\1. For example, compare
~(2>\w+) 5 with 7 (2= (\w+)) \1:.

The lookahead version has \w+ greedily match as much as it can, capturing an
entire word. Because it’s within lookahead, the intermediate states are thrown
away when it’s finished (just as if, incidentally, it had been within atomic group-
ing). Unlike atomic grouping, the matched word is not included as part of the
match (that's the whole point of lookahead), but the word does remain captured.
That’s a key point because it means that when \1, is applied, it's actually being
applied to the very text that filled it, and it’s certain to succeed. This extra step of
applying '\ 1, is simply to move the regex past the matched word.

This technique is a bit less efficient than real atomic grouping because of the extra
time required to rematch the text via '\1. But, since states are thrown away, it fails
more quickly than a raw \w+:; when the ;) can’t match.

Is Alternation Greedy’?

How alternation works is an important point because it can work in fundamentally
different ways with different regex engines. When alternation is reached, any num-
ber of the alternatives might be able to match at that point, but which will? Put
another way, if more than one can match, which will? If it’s always the one that
matches the most text, one might say that alternation is greedy. If it's always the
shortest amount of text, one might say it’s lazy? Which (f either) is it?

Let’s look at the Traditional NFA engine used in Perl, PHP, Java, .NET languages,
and many others (e 145). When faced with alternation, each alternative is checked
in the left-to-right order given in the expression. With the example regex of
™ (Subject|Date) : -, when the 'Subject|Date, alternation is reached, the first
alternative, [Ssubject, is attempted. If it matches, the rest of the regex (the subse-
quent :) is given a chance. If it turns out that it can’t match, and if other alterna-
tives remain (in this case, Date)), the regex engine backtracks to try them. This is
Jjust another case of the regex engine backtracking to a point where untried options
are still available. This continues until an overall match is achieved, or until all
options (in this case, all alternatives) are exhausted.

More About Greediness and Backtracking 175

So, with that common Traditional NFA engine, what text is actually matched by
tour|to|tournament; when applied to the string ‘three-tournaments-won’? All
the alternatives are attempted (and fail) during attempts starting at each character
position until the transmission starts the attempt at ‘three-tournaments-won’.
This time, the first alternative, 'tour, matches. Since the alternation is the last thing
in the regex, the moment the 'tour; matches, the whole regex is done. The other
alternatives are not even tried again.

So, we see that alternation is neither greedy nor lazy, but ordered, at least for a
Traditional NFA. This is more powerful than greedy alternation because it allows
more control over just how a match is attempted — it allows the regex author to
express “try this, then that, and finally try that, until you get a match”

Not all flavors have ordered alternation. DFAs and POSIX NFAs do have greedy
alternation, always matching with the alternative that matches the most text
(‘tournament, in this case). But, if you’re using Perl, PHP, a .NET language,
java.util.regex, or any other system with a Traditional NFA engine (list s 145),
your alternation is ordered.

Taking Advantage of Ordered Alternation

Let's revisit the [(\.\d\d[1-9]?)\d* example from page 167. If we realize that
N\.\d\d[1-9]7?, in effect, says “allow either \.\d\d, or \.\d\d[1-9]" we can
rewrite the entire expression as (\.\d\d | \.\d\d[1-9])\d*. (There is no com-
pelling reason to make this change —it's merely a handy example.) Is this really
the same as the original? If alternation is truly greedy, then it is, but the two are
quite different with ordered alternation.

Let’s consider it as ordered for the moment. The first alternative is selected and
tested, and if it matches, control passes to the \dx that follows the alternation. If
there are digits remaining, the \dx matches them, including any initial non-zero
digit that was the root of the original example’s problem (if you'll recall the origi-
nal problem, that’s a digit we want to match only within the parentheses, not by
the \dx after the parentheses). Also, realize that if the first alternative can’t match,
the second alternative will certainly not be able to, as it begins with a copy of the
entire first alternative. If the first alternative doesn’t match, though, the regex
engine nevertheless expends the effort for the futile attempt of the second.

Interestingly, if we swap the alternatives and use '(\.\d\d[1-9] | \.\d\d) \dx,
we do effectively get a replica of the original greedy (\.\d\d[1-9]1?)\d=. The
alternation has meaning in this case because if the first alternative fails due to the
trailing '[1-91], the second alternative still stands a chance. It’s still ordered alterna-
tion, but now we've selected the order to result in a greedy-type match.

176 Chapter 4: The Mechanics of Expression Processing

When first distributing the 11-91? to two alternatives, in placing the shorter one
first, we fashioned a non-greedy ?; of sorts. It ends up being meaningless in this
particular example because there is nothing that could ever allow the second alter-
native to match if the first fails. I see this kind of faux-alternation often, and it is
invariably a mistake when used with a Traditional NFA. In one book T've read,
‘a* ((ab) x |bx), is used as an example in explaining something about Traditional
NFA regex parentheses. It's a pointless example because the first alternative,
(ab) *, can never fail, so any other alternatives are utterly meaningless. You
could add

la* ((ab) * |bx | .x |partridge-in-a -pear-tree| [a-2z]),

and it wouldn’t change the meaning a bit. The moral is that with ordered alterna-
tion, when more than one alternative can potentially match the same text, care
must be taken when selecting the order of the alternatives.

Ordered alternation pitfalls

Ordered alternation can be put to your advantage by allowing you to craft just the
match you want, but it can also lead to unexpected pitfalls for the unaware. Con-
sider matching a January date of the form ‘Jan 31’. We need something more
sophisticated than, say, [Jan-[0123] [0-9], as that allows “dates” such as ‘TJan-00’,
‘Jan-39’, and disallows, ‘Jan-7’.

One way to match the date part is to attack it in sections. To match from the first
through the ninth, using 0?[1-9] allows a leading zero. Adding [12][0-9]
allows for the tenth through the 29" and /3[01] rounds it out. Putting it all
together, we get'gJan- (0?[1-91 1 [12]1[0-9] | 3[01]),

Where do you think this matches in ‘Jan 31 is Dad’s birthday’? We want it to
match ‘Jan 31’, of course, but ordered alternation actually matches only ‘Jan 3’.
Surprised? During the match of the first alternative, 02 [1-9], the leading /07, fails,
but the alternative matches because the subsequent [1-9], has no trouble match-
ing the 3. Since that’s the end of the expression, the match is complete.

When the order of the alternatives is adjusted so that the alternative that can
potentially match a shorter amount of text is placed last, the problem goes away.
This works: 'Jan- ([12]1[0-9]1 13[01]1 10?[1-91).

Another approach is 'Jan-(31][123]10] [012]1?[1-9]),. Like the first solution,
this requires careful arrangement of the alternatives to avoid the problem. Yet, a
third approach is 'Jan-(0[1-9]11[12]1[0-9]1?3[01]?| [4-9]1), which works
properly regardless of the ordering. Comparing and contrasting these three expres-
sions can prove quite interesting (an exercise I'll leave for your free time, although
the sidebar on the facing page should be helpfuD).

NFA, DFA, and POSIX 177

A Few Ways to Slice and Dice a Date

A few approaches to the date-matching problem posed on page 176. The
calendar associated with each regex shows what can be matched by each
alternative color-coded within the regex.

10

20 EEEEEEEER

30|31

r31|[123]°| ! 10|11|12(13|14(15|16|17(18|19

20(21(22]|23(24|25|26(27|28(|29
(2] 2] OO [30/32

10(11(12(13(14(15|16|17|18|19
20|21(22|23(24|25(|26|27(28|29

Mor1-91 121 t0-917] ([4-91]

NFA, DFA, and POSIX
“The Longest-Leftmost”

Let me repeat what I've said before: when the transmission starts a DFA engine
from some particular point in the string, and there exists a match or matches to be
found at that position, the DFA finds the longest possible match, period. Since it's
the longest from among all possible matches that start equally furthest to the left,
it’s the “longest-leftmost” match.

Really, the longest

Issues of which match is longest aren’t confined to alternation. Consider how an
NFA matches the (horribly contrived) lone (self) ? (selfsufficient) ? against the
string oneselfsufficient. An NFA first matches ‘one; and then the greedy
(self)?, leaving (selfsufficient)? left to try against sufficient. It doesn’t
match, but that's OK since it is optional. So, the Traditional NFA returns
oneselfsufficient and discards the untried states. (A POSIX NFA is another story
that we’ll get to shortly.)

178 Chapter 4: The Mechanics of Expression Processing

On the other hand, a DFA finds the longer oneselfsufficient. An NFA would
also find that match if the initial [(self) ?) were to somehow go unmatched, as that
would leave '(selfsufficient) ?, then able to match. A Traditional NFA doesn’t
do that, but the DFA finds it nevertheless, since it’s the longest possible match
available to the current attempt. It can do this because it keeps track of all matches
simultaneously, and knows at all times about all possible matches.

I chose this silly example because it’s easy to talk about, but T want you to realize
that this issue is important in real life. For example, consider trying to match con-
tinuation lines. It's not uncommon for a data specification to allow one logical line
to extend across multiple real lines if the real lines end with a backslash before the
newline. As an example, consider the following:

SRC=array.c builtin.c eval.c field.c gawkmisc.c io.c main.c \
missing.c msg.c node.c re.c version.c

You might normally want to use "\w+=.* to match this kind of “var = value”
assignment line, but this regex doesn’t consider the continuation lines. (I'm assum-
ing for the example that the tool’s dot won’t match a newline.) To match continua-
tion lines, you might consider appending [(\\\n.=)x* to the regex, yielding
“\w+=.* (\\\n.*) *. Ostensibly, this says that any number of additional logical
lines are allowed so long as they each follow an escaped newline. This seems rea-
sonable, but it will never work with a traditional NFA. By the time the original I .
has reached the newline, it has already passed the backslash, and nothing in what
was added forces it to backtrack (s 152). Yet, a DFA finds the longer multiline
match if available, simply because it is, indeed, the longest.

If you have lazy quantifiers available, you might consider using them, such as with
“\w+=.%? (\\\n.=*?) . This allows the escaped newline part to be tested each
time before the first dot actually matches anything, so the thought is that the \\
then gets to match the backslash before the newline. Again, this won’t work. A
lazy quantifier actually ends up matching something optional only when forced to
do so, but in this case, everything after the /=, is optional, so there’s nothing to
force the lazy quantifiers to match anything. Our lazy example matches only
‘SRC=’, so it's certainly not the answer.

There are other approaches to solving this problem; we’ll continue with this exam-
ple in the next chapter (z= 180).

POSIX and the Longest-Leftmost Rule

The POSIX standard requires that if you have multiple possible matches that start at
the same position, the one matching the most text must be the one returned.

The POSIX standard document uses the phrase “longest of the leftmost” It doesn’t
say you have to use a DFA, so if you want to use an NFA when creating a POSIX

NFA, DFA, and POSIX 179

tool, what's a programmer to do? If you want to implement a POSIX NFA, you'd
have to find the full oneselfsufficient and all the continuation lines, despite
these results being “unnatural” to your NFA.

A Traditional NFA engine stops with the first match it finds, but what if it were to
continue to try options (states) that might remain? Each time it reached the end of
the regex, it would have another plausible match. By the time ail options are
exhausted, it could simply report the longest of the plausible matches it had
found. Thus, a POSIX NFA.

An NFA applied to the first example would, in matching /(self) ?, have saved an
option noting that it could pick up matching lone (self)? (selfsufficient)? at
oneselfsufficient. Even after finding the oneselfsufficient that a Tradi-
tional NFA stops at, a POSIX NFA continues to exhaustively check the remaining
options, eventually realizing that yes, there is a way to match the longer (and in
fact, longest) oneselfsufficient.

In Chapter 7, we’ll see a method to trick Perl into mimicking POSIX semantics, hav-
ing it report the longest match (s 335).

Speed and Efficiency

If efficiency is an issue with a Traditional NFA (and with backtracking, believe me,
it can be), it is doubly so with a POSIX NFA since there can be so much more back-
tracking. A POSIX NFA engine really does have to try every possible permutation of
the regex, every time. Examples in Chapter 6 show that poorly written regexes can
suffer extremely severe performance penalties.

DFA efficiency

The text-directed DFA is a really fantastic way around all the inefficiency of back-
tracking. It gets its matching speed by keeping track of all possible ongoing
matches at once. How does it achieve this magic?

The DFA engine spends extra time and memory when it first sees the regular
expression, before any match attempts are made, to analyze the regular expression
more thoroughly (and in a different way) from an NFA. Once it starts actually
attempting a match, it has an internal map describing “If T read such-and-such a
character now, it will be part of this-and-that possible match” As each character of
the string is checked, the engine simply follows the map.

Building that map can sometimes take a fair amount of time and memory, but
once it is done for any particular regular expression, the results can be applied to
an unlimited amount of text. It’s sort of like charging the batteries of your electric
car. First, your car sits in the garage for a while, plugged into the wall, but when
you actually use it, you get consistent, clean power.

180 Chapter 4: The Mechanics of Expression Processing

NFA: Theory Versus Reality

The true mathematical and computational meaning of “NFA” is different from
what is commonly called an “NFA regex engine” In theory, NFA and DFA
engines should match exactly the same text and have exactly the same fea-
tures. In practice, the desire for richer, more expressive regular expressions
has caused their semantics to diverge. An example is the support for
backreferences.

The design of a DFA engine precludes backreferences, but it’s a relatively
small task to add backreference support to a true (mathematically speaking) NFA
engine. In doing so, you create a more powerful tool, but you also make it
decidedly nonregular (mathematically speaking). What does this mean? At most,
that you should probably stop calling it an NFA, and start using the phrase
“nonregular expressions,” since that describes (mathematically speaking) the new
situation. No one has actually done this, so the name “NFA” has lingered,
even though the implementation is no longer (mathematically speaking) an NFA.

What does all this mean to you, as a user? Absolutely nothing. As a user, you
don’t care if it's regular, nonregular, unregular, irregular, or incontinent. So
long as you know what you can expect from it (something this chapter
shows you), you know all you need to care about.

For those wishing to learn more about the theory of regular expressions, the
classic computer-science text is chapter 3 of Aho, Sethi, and Ullman’s Com-
pilers— Principles, Techniques, and Tools (Addison-Wesley, 1986), commonly
called “The Dragon Book” due to the cover design. More specifically, this is
the “red dragon” The “green dragon” is its predecessor, Aho and Ullman’s
Principles of Compiler Design.

The work done when a regex is first seen (the once-per-regex overhead) is called
compiling the regex. The map-building is what a DFA does. An NFA also builds an
internal representation of the regex, but an NFA’s representation is like a mini pro-
gram that the engine then executes.

Summary: NFA and DFA in Comparison

Both DFA and NFA engines have their good and bad points.

DFA versus NFA: Differences in the pre-use compile

Before applying a regex to a search, both types of engines compile the regex to an
internal form suited to their respective match algorithms. An NFA compile is gener-
ally faster, and requires less memory. There’s no real difference between a Tradi-
tional and POSIX NFA compile.

NFA, DFA, and POSIX 181

DFA versus NFA: Differences in match speed

For simple literal-match tests in “normal” situations, both types match at about the
same rate. A DFA’s match speed is generally unrelated to the particular regex, but
an NFA’s is directly related.

A Traditional NFA must try every possible permutation of the regex before it can
conclude that there’s no match. This is why I spend an entire chapter (Chapter 6)
on techniques to write NFA expressions that match quickly. As we’ll see, an NFA
match can sometimes take forever. If it’s a Traditional NFA, it can at least stop if
and when it finds a match.

A POSIX NFA, on the other hand, must always try every possible permutation of the
regex to ensure that it has found the longest possible match, so it generally takes
the same (possibly very long) amount of time to complete a successful match as it
does to confirm a failure. Writing efficient expressions is doubly important for a
POSIX NFA.

In one sense, I speak a bit too strongly, since optimizations can often reduce the
work needed to return an answer. We've already seen that an optimized engine
doesn’t try I"-anchored regexes beyond the start of the string (s 149), and we’ll
see many more optimizations in Chapter 6.

The need for optimizations is less pressing with a DFA since its matching is so fast
to begin with, but for the most part, the extra work done during the DFA’s pre-use
compile affords better optimizations than most NFA engines take the trouble to do.

Modern DFA engines often try to reduce the time and memory used during the
compile by postponing some work until a match is attempted. Often, much of the
compile-time work goes unused because of the nature of the text actually
checked. A fair amount of time and memory can sometimes be saved by postpon-
ing the work until it’s actually needed during the match. (The technobabble term
for this is lazy evaluation.) 1t does, however, create cases where there can be a
relationship among the regex, the text being checked, and the match speed.

DFA versus NFA: Differences in what is maiched

A DFA (or anything POSIX) finds the longest leftmost match. A Traditional NFA
might also, or it might find something else. Any individual engine always treats the
same regex/text combination in the same way, so in that sense, it’s not “random,’
but other NFA engines may decide to do slightly different things. Virtually all Tradi-
tional NFA engines I've seen work exactly the way I've described here, but it’s not
something absolutely guaranteed by any standard.

182

Chapter 4: The Mechanics of Expression Processing

DEFA versus NFA: Differences in capabilities

An NFA engine can support many things that a DFA cannot. Among them are:

Capturing text matched by a parenthesized subexpression. Related features are
backreferences and after-match information saying where in the matched text
each parenthesized subexpression matched.

Lookaround, and other complex zero-width assertions' (s 133).

Non-greedy quantifiers and ordered alternation. A DFA could easily support a
guaranteed shortest overall match (although for whatever reason, this option
never seems to be made available to the user), but it cannot implement the
local laziness and ordered alternation that we've talked about.

Possessive quantifiers (e 142) and atomic grouping (e 139).

DFA Speed with NFA Capabilities: Regex Nirvana?

I've said several times that a DFA can’t provide capturing parentheses or
backreferences. This is quite true, but it certainly doesn’t preclude hybrid
approaches that mix technologies in an attempt to reach regex nirvana. The
sidebar on page 180 told how NFAs have diverged from the theoretical
straight and narrow in search of more power, and it’s only natural that the
same happens with DFAs. A DFA’s construction makes it more difficult, but
that doesn’t mean impossible.

GNU grep takes a simple but effective approach. It uses a DFA when possible,
reverting to an NFA when backreferences are used. GNU awk does something
similar—it uses GNU grep’s fast shortest-leftmost DFA engine for simple “does
it match” checks, and reverts to a different engine for checks where the
actual extent of the match must be known. Since that other engine is an NFA,
GNU awk can conveniently offer capturing parentheses, and it does via its
special gensub function.

Tcl's regex engine is a true hybrid, custom built by Henry Spencer (whom
you may remember having played an important part in the early develop-
ment and popularization of regular expressions s 83). The Tcl engine some-
times appears to be an NFA— it has lookaround, capturing parentheses, back-
references, and lazy quantifiers. Yet, it has true POSIX longest-leftmost match
(e 177), and doesn’t suffer from some of the NFA problems that we’ll see in
Chapter 6. It really seems quite wonderful.

t lex has trailing context, which is exactly the same thing as zero-width positive lookahead at the end
of the regex, but it can’t be generalized and put to use for embedded lookahead.

Summary 183

DFA versus NFA: Differences in ease of implementation

Although they have limitations, simple versions of DFA and NFA engines are easy
enough to understand and to implement. The desire for efficiency (both in time
and memory) and enhanced features drives the implementation to greater and
greater complexity.

With code length as a metric, consider that the NFA regex support in the Version 7
(January 1979) edition of ed was less than 350 lines of C code. (For that matter,
the entire source for grep was a scant 478 lines.) Henry Spencer’s 1986 freely avail-
able implementation of the Version 8 regex routines was almost 1,900 lines of C,
and Tom Lord’s 1992 POSIX NFA package rx (used in GNU sed, among other tools)
is a stunning 9,700 lines.

For DFA implementations, the Version 7 egrep regex engine was a bit over 400
lines long, while Henry Spencer’s 1992 full-featured POSIX DFA package is over
4,500 lines long.

To provide the best of both worlds, GNU egrep Version 2.4.2 utilizes two fully
functional engines (about 8,900 lines of code), and Tcl's hybrid DFA/NFA engine
(see the sidebar on the facing page) is about 9,500 lines of code.

Some implementations are simple, but that doesn’t necessarily mean they are short
on features. I once wanted to use regular expressions for some text processing in
Pascal. I hadn’t used Pascal since college, but it still didn’t take long to write a sim-
ple NFA regex engine. It didn’t have a lot of bells and whistles, and wasn’t built for
maximum speed, but the flavor was relatively full-featured and was quite useful.

Summary

If you understood everything in this chapter the first time you read it, you proba-
bly didn’t need to read it in the first place. It's heady stuff, to say the least. It took
me quite a while to understand it, and then longer still to understand it. 1T hope
this one concise presentation makes it easier for you. I've tried to keep the expla-
nation simple without falling into the trap of oversimplification (an unfortunately
all-too-common occurrence which hinders true understanding). This chapter has a
lot in it, so I've included a lot of page references in the following summary, for
when you’d like to quickly check back on something.

There are two underlying technologies commonly used to implement a regex
match engine, “regex-directed NFA” (s= 153) and “text-directed DFA” (s 155). The
abbreviations are spelled out on page 156.

184 Chapter 4: The Mechanics of Expression Processing

Combine the two technologies with the POSIX standard (e 178), and for practical
purposes, there are three types of engines:

e Traditional NFA (gas-guzzling, power-on-demand)

e POSIX NFA (gas-guzzling, standard-compliant)

. DFA (POSIX or not) (electric, steady-as-she-goes)

To get the most out of a utility, you need to understand which type of engine it
uses, and craft your regular expressions appropriately. The most common type is
the Traditional NFA, followed by the DFA. Table 4-1 (s 145) lists a few common
tools and their engine types, and the section “Testing the Engine Type” (= 146)
shows how you can test the type yourself.

One overriding rule regardless of engine type: matches starting sooner take prece-
dence over matches starting later. This is due to how the engine’s “transmission”
tests the regex at each point in the string (e 148).

For the match attempt starting at any given spot:

DFA Text-Directed Engines
Find the longest possible match, period. That's it. End of discussion (e 177).
Consistent, very fast (s 179), and boring to talk about.

NFA Regex-Directed Engines
Must “work through” a match. The soul of NFA matching is backtracking
(s 157, 162). The metacharacters control the match: the standard quantifiers
(star and friends) are greedy (s 151), while others may be lazy or possessive
(i 169). Alternation is ordered (i 174) in a traditional NFA, but greedy with a
POSIX NFA.

POSIX NFA Must find the longest match, period. But, it’s not boring, as you
must worry about efficiency (the subject of Chapter 6).

Traditional NFA Is the most expressive type of regex engine, since you can
use the regex-directed nature of the engine to craft exactly the match
you want.

Understanding the concepts and practices covered in this chapter is the foundation
for writing correct and efficient regular expressions, which just happens to be the
subject of the next two chapters.

Practical Regex Techniques

Now that we've covered the basic mechanics of writing regular expressions, I'd
like to put that understanding to work in handling situations more complex than
those in earlier chapters. Every regex strikes a balance between matching what
you want, but not matching what you don’t want. We've already seen plenty of
examples where greediness can be your friend if used skillfully, and how it can
lead to pitfalls if you’re not careful, and we’ll see plenty more in this chapter.

For an NFA engine, another part of the balance, discussed primarily in the next
chapter, is efficiency. A poorly designed regex—even one that would otherwise be
considered correct—can cripple an engine.

This chapter is comprised mostly of examples, as I lead you through my thought
processes in solving a number of problems. I encourage you to read through them
even if a particular example seems to offer nothing toward your immediate needs.

For instance, even if you don’'t work with HTML, I encourage you to absorb the
examples that deal with HTML. This is because writing a good regular expression is
more than a skill—it’s an art. One doesn’t teach or learn this art with lists or rules,
but rather, through experience, so I've written these examples to illustrate for you
some of the insight that experience has given me over the years.

You'll still need your own experience to internalize that insight, but spending time
with the examples in this chapter is a good first step.

185

186 Chapter 5: Practical Regex Techniques

Regex Balancing Act

Writing a good regex involves striking a balance among several concerns:
e Matching what you want, but only what you want
e Keeping the regex manageable and understandable

e For an NFA, being efficient (creating a regex that leads the engine quickly to a
match or a non-match, as the case may be)

These concerns are often context-dependent. If 'm working on the command line
and just want to grep something quickly, I probably don’t care if T match a bit
more than I need, and I won’t usually be too concerned to craft just the right
regex for it. T'll allow myself to be sloppy in the interest of time, since I can
quickly peruse the output for what I want. However, when I'm working on an
important program, it’s worth the time and effort to get it right: a complex regular
expression is OK if that's what it takes. There is a balance among all these issues.

Efficiency is context-dependent, even in a program. For example, with an NFA,
something long like "~ (display|geometry|cemap| - |quick24|random|raw) $,
to check command-line arguments is inefficient because of all that alternation, but
since it is only checking command-line arguments (something done perhaps a few
times at the start of the program) it wouldn’t matter if it took 100 times longer than
needed. It’s just not an important place to worry much about efficiency. Were it
used to check each line of a potentially large file, the inefficiency would penalize
you for the duration of the program.

A Few Short Examples

Continuing with Continuation Lines

With the continuation-line example from the previous chapter (e 178), we found
that "\w+=.x (\\ \n.*) » applied with a Traditional NFA doesn’t properly match
both lines of:

SRC=array.c builtin.c eval.c field.c gawkmisc.c io.c main.c \
missing.c msg.c node.c re.c version.c

The problem is that the first | .+ matches past the backslash, pulling it out from
under the "(\\\n. *) » that we want it to be matched by. Well, here’s the first les-
son of the chapter: if we don’t want to match past the backslash, we should say
that in the regex. We can do this by changing each dot to 'T*\n\\]. (Notice how
I've made sure to include \n in the negated class? You'll remember that one of the
assumptions of the original regex was that dot didn’t match a newline, and we
don’t want its replacement to match a newline either s 119.)

A Few Short Examples 187

Making that change, we get:
PAw+=["\n\\1* (\\\n["\n\\1*) *

This now works, properly matching continuation lines, but in solving one prob-
lem, we have perhaps introduced another: we've now disallowed backslashes
other than those at the end of lines. This is a problem if the data to which it will
be applied could possibly have other backslashes. We’ll assume it could, so we
need to accommodate the regex to handle them.

So far, our approaches have been along the lines of “match the line, then try to
match a continuation line if there” Let’s change that approach to one that I find
often works in general: concentrate on what is really allowed to match at any par-
ticular point. As we match the line, we want either normal (non-backslash, non-
newline) characters, or a backslash-anything combination. If we use \\ .| for the
backslash-anything combination, and apply it in a dot-matches-all mode, it also
can match the backslash-newline combination.

So, the expression becomes "\w+= (["\n\\] | \\ .)* in a dot-matches-all mode.
Due to the leading ", an enhanced line anchor match mode (e 112) may be use-
ful as well, depending on how this expression is used.

But, we're not quite done with this example yet—we’ll pick it up again in the next
chapter where we work on its efficiency (e 270).

Matching an IP Address

As another example that we’ll take much further, let’s match an 1P (Internet Proto-
col) address: four numbers separated by periods, such as 1.2.3.4. Often, the
numbers are padded to three digits, as in 001.002.003.004. If you want to check
a string for one of these, you could use [[0-91+\.[0-9]1%\.[0-9]%\.[0-9]«, but
that's so vague that it even matches ‘and then.?". Look at the regex: it
doesn’t even require any numbers —its only requirements are three periods (with
nothing but digits, if anything, between).

To fix this regex, we first change the star to a plus, since we know that each num-
ber must have at least one digit. To ensure that the entire string is only the IP
address, we wrap the regex with [~ $;. This gives us:

" [0-91+\.[0-91+\.[0-91+\.[0-9]+$

Using \d, instead of [[0-91], it becomes ["\d+\ .\d+\ .\d+\ .\d+$, which you may
find to be more easily readable,’ but it still matches things that aren’t IP addresses,

t Or maybe not— it depends on what you are used to. In a complex regex, I find \d more readable
than [0-91, but note that on some systems, the two might not be exactly the same. Systems that sup-
port Unicode, for example, may have their \d match non-ASCII digits as well (s 120).

188 Chapter 5: Practical Regex Techniques

like ‘1234.5678.9101112.131415". (IP addresses have each number in the range
of 0-255.) As a start, you can enforce that each number be three digits long, with
"\d\d\d\.\d\d\d\.\d\d\d\.\d\d\d$. but now we are too specific. We still
need to allow one- and two-digit numbers (as in 1.234.5.67). If the flavor sup-
ports {min,max}, you can use “\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$. If not,
you can always use \d\d?\d?, or \d (\d\d?) ?, for each part. These allow one to
three digits, each in a slightly different way.

Depending on your needs, you might be happy with some of the various degrees
of vagueness in the expressions so far. If you really want to be strict, you have to
worry that \d{1, 3} can match 999, which is above 255, and thus an invalid com-
ponent of an IP address.

Several approaches would ensure that only numbers from 0 to 255 appear. One
silly approach is 10111231253 [254255. Actually, this doesn’t allow the zero-
padding that is allowed, so you really need /00010001101 |001] -, whose length
becomes even more ridiculous. For a DFA engine, it is ridiculous only in that it’s so
long and verbose — it still matches just as fast as any regex describing the same
text. For an NFA, however, all the alternation kills efficiency.

A realistic approach concentrates on which digits are allowed in a number, and
where. If a number is only one or two digits long, there is no worry as to whether
the value is within range, so \d|\d\d, takes care of it. There’s also no worry about
the value for a three-digit number beginning with a 0 or 1, since such a number is
in the range 000-199 and is perfectly valid. This lets us add '[011\d\d, leaving us
with \dl\d\dl [01]1\d\d. You might recognize this as being similar to the time
example in Chapter 1 (e 28), and date example of the previous chapter (e 177).

Continuing with our regular expression, a three-digit number beginning with a 2 is
allowed if the number is 255 or less, so a second digit less than 5 means the num-
ber is valid. If the second digit is 5, the third must be less than 6. This can all be
expressed as 12[0-4]1\d|25[0-5],

This may seem confusing at first, but the approach should make sense upon
reflection. The result is \d1\d\d| [01]1\d\d|2[0-4]1\d|25[0-5]. Actually, we can
combine the first three alternatives to yield [01]12\d\d?|2[0-4]1\d|25[0-5],
Doing so is more efficient for an NFA, since any alternative that fails results in a
backtrack. Note that using \d\d?, in the first alternative, rather than \d?\d, allows
an NFA to fail just a bit more quickly when there is no digit at all. T'll leave the
analysis to you—walking through a simple test case with both should illustrate the
difference. We could do other things to make this part of the expression more effi-
cient, but I'll leave that for the next chapter.

A Few Short Examples 189

Now that we have a subexpression to match a single number from 0 through 255,
we can wrap it in parentheses and insert it in place of each \d{1, 3}, in the earlier
regex. This gives us (broken across lines to fit the width of the page):

" ([0112\d\d?12[0-4]1\dI25[0-5])\.([011?2\d\d?12[0-41\dI25[0-51)\.
([0112\d\d?12[0-4]1\d[25[0-5]1)\.([01]?\d\d?|2[0-4]\d|25[0-5])$,

Quite a mouthful! Was it worth the trouble? You have to decide for yourself based
upon your own needs. It matches only syntactically correct IP addresses, but it can
still match semantically incorrect ones, such as 0.0.0.0 (invalid because all the
digits are zero). With lookahead (s 133), you can disallow that specific case by
putting (2 10+\.0+\.0+\.0+$), after ", but at some point, you have to decide
when being too specific causes the cost/benefit ratio to suffer from diminishing
returns. Sometimes it’s better to take some of the work out of the regex. For exam-
ple, if you go back to "\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}% and wrap
each component in parentheses to stuff the numbers into the program’s version of
$1, $2, $3, and $4, you can then validate them by other programming constructs.

Know your context

It's important to realize that the two anchors, ") and '), are required to make this
regex work. Without them, it can match ip=72123.3.21.993, or for a Traditional
NFA, even ip=123.3.21.223.

In that second case, the expression does not even fully match the final 223 that
should have been allowed. Well, it is allowed, but there’s nothing (such as a sepa-
rating period, or the trailing anchor) to force that match. The final group’s first
alternative, '[01]?\d\d?, matched the first two digits, and without the trailing '$,
that’s the end of the regex. As with the date-matching problem in the previous
chapter (ke 176), we can arrange the order of the alternatives to achieve the
desired result. In this case, we would put the alternatives matching three digits
first, so any proper three-digit number is matched in full before the two-digit-okay
alternative is given a chance. (DFAs and POSIX NFAs don’t require the reordering,
of course, since they choose the longest match, regardless.)

Rearranged or not, that first mistaken match is still a problem. “Ah!” you might
think, “I can use word boundary anchors to solve this problem.” Unfortunately,
that’s probably not enough, since such a regex could still match 1.2.3.4.5.6. To
disallow embedded matches, you must ensure that the surrounding context has at
least no alphanumerics or periods. If you have lookaround, you can wrap the
regex in (?<![\w.1) - (?![\w.]), to disallow matches that follow just after (or
end just before) where [\w.] can match. If you don’t have lookaround, simply
wrapping it in [(~]) - (- | $), might be satisfactory for some situations.

190 Chapter 5: Practical Regex Techniques

Working with Filenames

Working with file and path names, like /usr/local/bin/perl on Unix, or per-
haps something like \Program Files\Yahoo!\Messenger on Windows, can pro-
vide many good regular-expression examples. Since “using” is more interesting
than “reading,” T'll sprinkle in a few examples coded in Perl, PHP (preg routines),
Java, and VB.NET. If you're not interested in these particular languages, feel free to
skip the code snippets—it’s the regex concepts used in them that are important.

Removing the leading path from a filename

As a first example, let’s remove the leading path from a filename, turning
/usr/local/bin/gce, for instance, into gcec. Stating problems in a way that
makes solutions amenable is half of the battle. In this case, we want to remove
anything up to (and including) the final slash (backslash for Windows pathnames).
If there is no slash, it's fine as is, and nothing needs to be done. I've said a num-
ber of times that [.« is often overused, but its greediness is desired here. With
~.x/, the " . consumes the whole line, but then backs off (that is, backtracks) to
the last slash to achieve the match.

Here’s code to do it in our four test languages, ensuring that a filename in the vari-
able £ has no leading path. First, for Unix filenames:

Language | Code Snippet

Perl | $f =~ s{".x/}{};

PHP | $f = preg_replace(’'{".x/}', '', $f);
java.util.regex | £ = f.replaceFirst("".x/", "");
VB.NET f = Regex.Replace(f, "".x/", "")

The regular expression (or string to be interpreted as a regular expression) is
underlined, and regex components are bold.

For comparison, here are versions for Windows filenames, which use a backward
slash rather than a forward slash, making the regex I*.\\. The need to double
the backward slash in the regex to match a single backward-slash character in the
target is a regular-expression issue, but as the middle two examples show, some
languages require additional string-related backslashes as well:

Language | Code Snippet

Perl | $f =~ s/".%\\//;

PHP | $f = preg_replace(’/".*\\\/’, '', $£f);
java.util.regex | £ = f.replaceFirst (" .*\\\\", "");
VB.NET f = Regex.Replace(f, "".*\\", "")

It's interesting to compare each language’s difference between the examples, par-
ticularly the quadruple backslashes needed in Java (z 101).

A Few Short Examples 191

Please keep in mind this key point: always consider what will happen when there
is no match. In this case, no match means no slash in the string, so no substitution
and the string is left unchanged. That’s just what we want, in this case.

For efficiency’s sake, it’s important to remember how an NFA-based regex engine
goes about its work. Let's consider what happens if we omit the leading caret
(something that’s easy to forget) and match against a string that doesn’t happen to
have a slash. As always, the regex engine starts the search at the beginning of the
string. The ! . | races to the end of the string, but must back off to find a match for
the slash or backslash. It eventually backs off everything that I'. «; had gobbled up,
yet there’s still no match. So, the regex engine decides that there is no possible
match when starting from the beginning of the string, but it's not done yet!

The transmission kicks in and retries the whole regex from the second character
position. In fact, it needs (in theory) to go through the whole scan-and-backtrack
routine for each possible starting position in the string. Filenames tend to be short,
so it’s probably not such a big deal in this case, but the principle applies to many
situations. Were the string long, there’s a potential for a lot of backtracking. (A DFA
has no such problem, of course.)

In practice, a reasonably optimized transmission realizes that almost any regex
starting with .+ that fails at the beginning of the string can never match when
started from anywhere else, so it can shift gears and attempt the regex only the
one time, at the start of the string (s 246). Still, it’s smarter to write that into our
regex in the first place, as we originally did.

Accessing the filename from a path

Another approach is to bypass the path and simply match the trailing filename part
without the path. The final filename is everything at the end that’s not a slash:
'1~/1+$%. This time, the anchor is not just an optimization; we really do need dollar
at the end. We can now do something like this, shown with Perl:

SWholePath =~ m{ (["/1%)$}; # Checkvariable $§WholePath with regex.
SFileName = $1; # Note text matched

You'll notice that I don’t check to see whether the regex actually matches, because
I know it matches every time. The only requirement of that expression is that the
string has an end to match dollar, and even an empty string has an end. Thus,
when T use $1 to reference the text matched within the parenthetical subexpres-
sion, I'm assured it will have some value (although that value will be empty when
the filename ends with a slash).

Another comment on efficiency: with an NFA, [["/]x$, is very inefficient. Carefully
run through how the NFA engine attempts the match and you see that it can
involve a lot of backtracking. Even the short sample ‘/usr/local/bin/perl’

192 Chapter 5: Practical Regex Techniques

backtracks over 40 times before finally matching. Consider the attempt that starts
at --local/--. Once I["/]1+ matches through to the second 1 and fails on the
slash, the ', is tried (and fails) for each 1, a, ¢, o, 1 saved state. If that’s not
enough, most of it is repeated with the attempt that starts at --1ocal/-, and then
again --local/ -, and so on.

It shouldn’t concern us too much with this particular example, as filenames tend to
be short. (And 40 backtracks is nothing — 40 million is when they really matter!)
Again, it’s important to be aware of the issues so the general lessons here can be
applied to your specific needs.

This is a good time to point out that even in a book about regular expressions,
regular expressions aren’t always The Best Answer. For example, most program-
ming languages provide non-regex routines for dealing with filenames. But, for the
sake of discussion, I'll forge ahead.

Both leading path and filename

The next logical step is to pick apart a full path into both its leading path and file-
name component. There are many ways to do this, depending on what we want.
Initially, you might want to use " (.)/ (.*)$ to fill $1 and $2 with the requisite
parts. It looks like a nicely balanced regular expression, but knowing how greedi-
ness works, we are guaranteed that the first I .) does what we want, never leaving
anything with a slash for $2. The only reason the first . x| leaves anything at all is
due to the backtracking done in trying to match the slash that follows. This leaves
only that “backtracked” part for the later I . . Thus, $1 is the full leading path and
$2 the trailing filename.

One thing to note: we are relying on the initial /(.)/, to ensure that the second
'(.*), does not capture any slash. We understand greediness, so this is OK. Still I
like to be specific when I can, so I'd rather use '[~/]* for the filename part. That
gives us " (.x) /(["/1%)$. Since it shows exactly what we want, it acts as docu-
mentation as well.

One big problem is that this regex requires at least one slash in the string, so if we
try it on something like file.txt, there’s no match, and thus no information. This
can be a feature if we deal with it properly:

if ($WholePath =~ m!"(.x)/(["/]1*)$!) {
Have a match -- $1 and $2 are valid
SLeadingPath = $1;
SFileName = $2;

} else {
No match, so there’s no /" in the filename
$LeadingPath = "."; # so "file.txt" looks like ". / file.txt" ("." is the current directory)

SFileName = $WholePath;

A Few Short Examples 193

Matching Balanced Sets of Parentheses

Matching balanced sets of parentheses, brackets, and the like presents a special
difficulty. Wanting to match balanced parentheses is quite common when parsing
many kinds of configuration files, programs, and such. Imagine, for example, that
you want to do some processing on all of a function’s arguments when parsing a
language like C. Function arguments are wrapped in parentheses following the
function name, and may themselves contain parentheses resulting from nested
function calls or math grouping. At first, ignoring that they may be nested, you
might be tempted to use \bfoo\ ([")1+\), but it won't work.

In hallowed C tradition, T use foo as the example function name. The marked part
of the expression is ostensibly meant to match the function’s arguments. With
examples such as foo (2, -4.0) and foo(somevar, -3.7), it works as expected.
Unfortunately, it also matches foo (bar (somevar), -3.7), which is not as we
want. This calls for something a bit “smarter” than I[~)] %,

To match the parenthesized expression part, you might consider the following reg-
ular expressions, among others:
1 \(.x\) literal parentheses with anything in between

2. \N([7)T*\) from an opening parenthesis to the next closing parenthesis

3. N[() 1%\) from an opening parenthesis to the next closing parenthesis, but
no other opening parentheses allowed in between

Figure 5-1 illustrates where these match against a sample line of code.

desired match

|

[1

val = foo(bar(this), 3.7) + 2 * (that - 1);
N

regex #2 would match

regex #1 would match

Figure 5-1: Match locations of our sample regexes

We see that regex #1 matches too much,’ and regex #2 matches too little. Regex #3
doesn’t even match successfully. In isolation, #3 would match ‘(this)’, but
because it must come immediately after the foo, it fails. So, none of these work.

t The use of .« should set off warning alarms. Always pay particular attention to decide whether dot
is really what you want to apply star to. Sometimes that is exactly what you need, but | . is often
used inappropriately.

194 Chapter 5: Practical Regex Techniques

The real problem is that on the vast majority of systems, you simply can’t match
arbitrarily nested constructs with regular expressions. For a long time, this was uni-
versally true, but now Perl, .NET, and PCRE/PHP all offer constructs that make it
possible. (See pages 328, 436, and 475, respectively.) But, even without these spe-
cial constructs, you can still build a regex to match things nested to a certain
depth, but not to an arbitrary level of nesting. Just one level of nesting requires
N OT*OI O T\ 2O T%) %))
so the thought of having to worry about further levels of nesting is frightening.
But, here’s a little Perl snippet that, given a $depth, creates a regex to match up to
that many levels of parentheses beyond the first. It uses Perl’s “string x count”
operator, which replicates string by count times:
$regex = \(’ . "(2:[70O1IN(" x $depth . "["()]*" . "\))*’ x $depth . "\)’;

I'll leave the analysis for your free time.

Watching Out for Unwanted Matches

It's easy to forget what happens if the text is not formed just as you expect. Let’s
say you are writing a filter to convert a text file to HTML, and you want to replace
a line of hyphens by <HR>, which represent a horizontal rule (a line across the
page). If you used a s/-*/<HR>/ search-and-replace command, it would replace
the sequences you wanted, but only when they’re at the beginning of the line.
Surprised? In fact, s/-*/<HR>/ adds <HR> to the beginning of every line, whether
they begin with a sequence of hyphens or not!

Remember, anything that isn’t required is always considered successful. The first
time /-« is attempted at the start of the string, it matches any hyphens that might
be there. However, if there aren’t any, it is still happy to successfully match noth-
ing. That's what star is all about.

Let’s look at a similar example I once saw in a book by a respected author, in
which he describes a regular expression to match a number, either integer or float-
ing-point. As his expression is constructed, such a number has an optional leading
minus sign, any number of digits, an optional decimal point, and any number of
digits that follow. His regex is =2 [0-9]1%\ .2 [0-9] x..

Indeed, this matches such examples as 1, -272.37, 129238843., .191919,
and even something like -.0. This is all good, and as expected.

However, how do you think it matches in a string like ‘this-has-no-number’,
‘nothing-here’, or even an empty string? Look at the regex closely — everything is
optional. If a number is there, and if it is at the beginning of the string, it is
matched, but nothing is required. This regex can match all three non-number

A Few Short Examples 195

examples, matching the nothingness at the beginning of the string each time. In
fact, it even matches nothingness at the beginning of an example like ‘num-123’,
since that nothingness matches earlier than the number would.

So, it’s important to say what you really mean. A floating-point number must have
at least one digit in it, or it’s not a number(!). To construct our regex, let’s first
assume there is at least one digit before the decimal point. (We’ll remove this
requirement later.) If so, we need to use plus for those digits: -2 [0-9] +,.

Writing the subexpression to match an optional decimal point (and subsequent
digits) hinges on the realization that any numbers after the decimal point are con-
tingent upon there being a decimal point in the first place. If we use something
naive like '\.?2[0-91*, the [0-9]« gets a chance to match regardless of the deci-
mal point’s presence.

The solution is, again, to say what we mean. A decimal point (and subsequent dig-
its, if any) is optional: [(\. [0-9] %) ?,. Here, the question mark no longer quantifies
(that is, governs or controls) only the decimal point, but instead the entire combi-
nation of the decimal point plus any following digits. Within that combination, the
decimal point is required; if it is not there, [[0-9] = is not even reached.

Putting this all together, we have -2 [0-91+(\.[0-9]«) 2. This still doesn’t allow
something like ‘.007’, since our regex requires at least one digit before the deci-
mal point. If we change that part to allow zero digits, we have to change the other
so it doesn’t, since we can't allow a/l digits to be optional (the problem we are try-
ing to correct in the first place).

The solution is to add an alternative that allows for the uncovered situation:
=2[0-9]1+(\.[0-91%)?1-2\.[0-9]+, This now also allows just a decimal point
followed by (this time not optional) digits. Details, details. Did you notice that I
allowed for the optional leading minus in the second alternative as well? That’s
easy to forget. Of course, you could instead bring the /-?, out of the alternation, as
inl=2([0-9]+(\.[0-91%)21\.[0-9]+),

Although this is an improvement on the original, it’s still more than happy to
match at 2003.04.12". Knowing the context in which a regex is intended to be
used is an important part of striking the balance between matching what you
want, and not matching what you don’t want. Our regex for floating-point num-
bers requires that it be constrained somehow by being part of a larger regex, such
as being wrapped by I*--$, or perhaps num\s*=\s* -$,

196 Chapter 5: Practical Regex Techniques

Matching Delimited Text

Matching a double-quoted string and matching an IP address are just two exam-

ples of a whole class of matching problem that often arises: the desire to match

text delimited (or perhaps separated) by some other text. Other examples include:
e Matching a C comment, which is surrounded by ‘/*" and ‘*/’.

e Matching an HTML tag, which is text wrapped by <>, such as <CODE>.

e Extracting items betweenn HTML tags, such as the ‘super exciting’ of the
HTML ‘a <I>super exciting</I> offer!’

e Matching a line in a .mailrc file. This file gives email aliases, where each line
is in the form of
alias shorthand full-address
such as ‘alias jeff jfriedl@regex.info’. (Here, the delimiters are the
whitespace between each item, as well as the ends of the line.)

e Matching a quoted string, but allowing it to contain quotes if they are escaped,
as in ‘a passport needs a "2\"x3\" likeness" of the holder.’

e Parsing CSV (comma-separated values) files.

In general, the requirements for such tasks can be phrased along the lines of:
1. Match the opening delimiter.

2. Match the main text
(which is really “match anything that is not the closing delimiter”).

3. Match the closing delimiter.

As 1 mentioned earlier, satisfying these requirements can become complicated
when the closing delimiter has more than one character, or when it may appear
within the main text.

Allowing escaped quotes in double-quoted strings

Let’s look at the 2\"x3\" example, where the closing delimiter is a quote, yet can
appear within the main part if escaped. It’s easy enough to match the opening and
closing quotes; the trick is to match the main text without overshooting the closing
quote.

Thinking carefully about which items are allowed in the main text, we know that
if a character is not a double quote, that is, if it matches [[~"]}, it’s certainly OK.
However, if it is a double quote, it is OK if preceded by a backslash. Translating
that literally, using lookbehind (s 133) for the “if preceded” part, it becomes
ML~ "1 1 (?2<=\\) ") »", which indeed properly matches our 2\"x3\" example.

A Few Short Examples 197

This is a perfect example to show how unintended matches can sneak into a
seemingly proper regex, because as much as it seems to be correct, it doesn’t
always work. We want it to match the marked part of this silly example:

Darth Symbol: "/-|-\\" or "["-"1"
but it actually matches:

Darth Symbol: "/-|-\\" or "["-"]"

This is because the final quote of the first string indeed has a backslash before it.
That backslash is itself escaped, so it doesn’t escape the quote that follows (which
means the quote that follows does end the string). Our lookbehind doesn’t recog-
nize that the preceding backslash has been itself escaped, and considering that
there may be any number of preceding ‘\\’ sequences, it’s a can of worms to try
to solve this with lookbehind. The real problem is that a backslash that escapes a
quote is not being recognized as an escaping backslash when we first process it,
so let’s try a different approach that tackles it from that angle.

Concentrating again at what kinds of things we want to match between the open-
ing and closing delimiter, we know that something escaped is OK (\\.)), as well
as anything else other than the closing quote ('[~"1)). This yields " (\\.] [""1) =",
Wonderful, we’ve solved the problem! Unfortunately, not yet. Unwanted matches
can still creep in, such as with this example for which we expect no match
because the closing quote has been forgotten:

"You need a 2\"x3\" photo.

Why does it match? Recall the lessons from “Greediness and Laziness Always
Favor a Match” (== 167). Even though our regex initially matches past that last
quote, as we want, it still backtracks after it finds that there is no ending quote, to:

at ©-2x\"3\"-.’ | matching (\\.|[""1)

From that point, the [~"] matches the backslash, leaving us at what the regex
can consider an ending quote.

An important lesson to take from this example is:

When backtracking can cause undesired matches in relation to alterna-
tion, it’s likely a sign that any success is just a happenstance due to the
ordering of the alternatives.

In fact, had our original regex had its alternatives reversed, it would match incor-
rectly in every string containing an escaped double quote. The problem is that one
alternative can match something that is supposed to be handled by the other.

So, how can we fix it? Well, just as in the continuation-lines example on page 186,
we must make sure that there’s no other way for that backslash to be matched,
which means changing T~"1, to [~\\"], . This recognizes that both a double

198 Chapter 5: Practical Regex Techniques

quote and a backslash are “special” in this context, and must be handled accord-
ingly. The result is '™ (\\. | [*\\"1) %", which works just fine. (Although this regex
now works, it can still be improved so that it is much more efficient for NFA
engines; we'll see this example quite a bit in the next chapter s 222.)

This example shows a particularly important moral:

Always consider the “odd” cases in which you don’t want a regex to
match, such as with “bad” data.

Our fix is the right one, but it's interesting to note that if you have possessive
quantifiers (e 142) or atomic grouping (e 139), this regex can be written as
NGy *+m and M (2> (\\. 1 [""]) %) " respectively. They don’t really fix the
problem so much as hide it, disallowing the engine from backtracking back to
where the problem could show itself. Either way, they get the job done well.

Understanding how possessive quantifiers and atomic grouping help in this situa-
tion is extremely valuable, but I would still go ahead and make the previous fix
anyway, as it is more descriptive to the reader. Actually, in this case, I would want
to use possessive quantifiers or atomic grouping as well—not to solve the previous
problem, but for efficiency, so that a failure fails more quickly.

Knowing Your Data and MakRing Assumptions

This is an opportune time to highlight a general point about constructing and
using regular expressions that I've briefly mentioned a few times. It is important to
be aware of the assumptions made about the kind of data with which, and situa-
tions in which, a regular expression will be used. Even something as simple as 'a,
assumes that the target data is in the same character encoding (e 105) as the
author intends. This is pretty much common sense, which is why I haven’t been
too picky about saying these things.

However, many assumptions that might seem obvious to one person are not nec-
essarily obvious to another. For example, the solution in the previous section
assumes that escaped newlines shouldn’t be matched, or that it will be applied in
a dot-matches-all mode (e 111). If we really want to ensure that dot can match a
newline, we should write that by using (?s: .), if supported by the flavor.

Another assumption made in the previous section is the type of data to which the
regex will be applied, as it makes no provisions for any other uses of double
quotes in the data. If you apply it to source code from almost any programming
language, for example, youll find that it breaks because there can be double
quotes within comments.

There is nothing wrong with making assumptions about your data, or how you
intend a regex to be used. The problems, if any, usually lie in overly optimistic

A Few Short Examples 199

assumptions and in misunderstandings between the author’s intentions and how
the regex is eventually used. Documenting the assumptions can help.

Stripping Leading and Trailing Whitespace

Removing leading and trailing whitespace from a line is not a challenging prob-
lem, but it’s one that seems to come up often. By far the best all-around solution is
the simple use of two substitutions:

s/ \s+//;
s/\s+$//;

As a measure of efficiency, these use '+ instead of '+, since there’s no benefit to
doing the substitution unless there is actually whitespace to remove.

For some reason, it seems to be popular to try to find a way to do it all in one
expression, so I'll offer a few methods for comparison. I don’t recommend them,
but it’s educational to understand why they work, and why they’re not desirable.
s/\s*(.*?)\s*$/$1/s
This used to be given as a great example of lazy quantifiers, but not any
more, because people now realize that it's so much slower than the simple
approach. (In Perl, it’s about 5% slower). The lack of speed is due to the need
to check N\s*$, before each application of the lazy-quantified dot. That
requires a lot of backtracking.

s/ " \s*((?:.%\8)?)\s*$/$1/s
This one looks more complex than the previous example, but its matching is
more straightforward, and is only twice as slow as the simple approach. After
the initial "\s* has bypassed any leading whitespace, the I . x; in the middle
matches all the way to the end of the text. The \g, that follows forces it to
backtrack to the last non-whitespace in the text, thereby leaving the trailing
whitespace matched by the final \s*$, outside of the capturing parentheses.

The question mark is needed so that this expression works properly on a line
that has only whitespace. Without it, it would fail to match, leaving the white-
space-filled line unchanged.

s/"\s+I\s+$//g
This is a commonly thought-up solution that, while not incorrect (none of
these are incorrect), it has top-level alternation that removes many optimiza-
tions (covered in the next chapter) that might otherwise be possible.

The /g modifier is required to allow each alternative to match, to remove
both leading and trailing whitespace. It seems a waste to use /g when we
know we intend at most two matches, and each with a different subexpres-
sion. This is about 4x slower than the simple approach.

200 Chapter 5: Practical Regex Techniques

I've mentioned the relative speeds as I tested them, but in practice, the actual rela-
tive speeds are dependent upon the tool and the data. For example, if the target
text is very, very long, but has relatively little whitespace on either end, the middle
approach can be somewhat faster than the simple approach. Still, in my programs,
I use the language’s equivalent of

s/ "\s+//;

s/\s+$//;
because it’s almost always fastest, and is certainly the easiest to understand.

HTMI-Related Examples

In Chapter 2, we saw an extended example that converted raw text to HTML
(= 67), including regular expressions to pluck out email addresses and http URLS
from the text. In this section, we’ll do a few other HTML-related tasks.

Matching an HTML Tag

It's common to see <[">]+> used to match an HTML tag. It usually works fine,
such as in this snippet of Perl that strips tags:
shtml =~ s/<[">1+>//g;

However, it matches improperly if the tag has >’ within it, as with this perfectly
valid HTML: <input name=dir value=">">. Although it's not common or recom-
mended, HTML allows a raw ‘<’ and ‘>’ to appear within a quoted tag attribute.
Our simple <[~>]1+> doesn’t allow for that, so, we must make it smarter.

Allowed within the ‘<-->’ are quoted sequences, and “other stuff” characters that
may appear unquoted. This includes everything except >’ and quotes. HTML
allows both single- and double-quoted strings. It doesn’t allow embedded quotes
to be escaped, which allows us to use simple regexes ["[~"]1x" and ["["’]*"| toO
match them.

Putting these together with the “other stuff” regex [[~’ ">], we get:
{<(n [’\u]*n I ’ [’\:]*1 I [Alll>])*>

That may be a bit confusing, so how about the same thing shown with comments
in a free-spacing mode:

< # Opening <"

(# Any amount of . . .
LM # double-quoted string,
| # or. ..

LT T # single-quoted string,
| # or. ..
[7r">] # "other stuff”
) * #
> # Closing ">"

HTMIL-Related Examples 201

The overall approach is quite elegant, as it treats each quoted part as a unit, and
clearly indicates what is allowed at any point in the match. Nothing can be
matched by more than one part of the regex, so there’s no ambiguity, and hence
no worry about unintended matches “sneaking in,” as with some earlier examples.

Notice that 'x; rather than + is used within the quotes of the first two alternatives?
A quoted string may be empty (e.g., ‘alt="""), so [is used within each pair of
quotes to reflect that. But don’t use x| or '+, in the third alternative, as the T~ ">],
is already directly subject to a quantifier via the wrapping /() . Adding another
quantifier, yielding an effective [(["~’ ">]1+) », could cause a very rude surprise that
I don’t expect you to understand at this point; it’s discussed in great detail in the
next chapter (= 220).

One thought about efficiency when used with an NFA engine: since we don’t use
the text captured by the parentheses, we can change them to non-capturing paren-
theses (i 137). And since there is indeed no ambiguity among the alternatives, if it
turns out that the final > can’t match when it’s tried, there’s no benefit going back
and trying the remaining alternatives. Where one of the alternatives matched
before, no other alternative can match now from the same spot. So, it's OK to
throw away any saved states, and doing so affords a faster failure when no match
can be had. This can be done by using /(?>), atomic grouping instead of the
non-capturing parentheses (or a possessive star to quantify whichever parentheses
are used).

Matching an HTML Link

Let’s say that now we want to match sets of URL and link text from a document,
such as pulling the marked items from:

0'Reilly Media

Because the contents of an <aA> tag can be fairly complex, I would approach this
task in two parts. The first is to pluck out the “guts” of the <a> tag, along with the
link text, and then pluck the URL itself from those <a> guts.

A simplistic approach to the first part is a case-insensitive, dot-matches-all applica-
tion of '<a\b([">]+)>(.*?), which features the lazy star quantifier. This puts
the <a> guts into $1 and the link text into $2. Of course, as earlier, instead of
1~>1+ I should use what we developed in the previous section. Having said that,
I'll continue with this simpler version, for the sake of keeping that part of the
regex shorter and cleaner for the discussion.

Once we have the <A> guts in a string, we can inspect them with a separate regex.
In them, the URL is the value for the href=value attribute. HTML allows spaces on
either side of the equal sign, and the value can be quoted or not, as described in

202 Chapter 5: Practical Regex Techniques

the previous section. A solution is shown as part of this Perl snippet to report on
links in the variable $Html:

Note: the regex in the while(...) is overly simplistic— see text for discussion
while ($Html ="~ m{<a\b([">]+)>(.%?)}ig)
{
my $Guts = $1; # Save resulls from the match above, to their own . . .
my S$Link $2; # ...named variables, for clarity below.

if ($Guts =" m{

\b HREF # "bref" attribute
\s* = \s* # "="may have whitespace on either side
(?: # Valueis . . .

L)

double-quoted string,
or...

single-quoted string,
or. ..

"other stuff"

|

O RSN

|
([7r">\sl+)

H H o H o H

)
Ixi)
{
my $Url = $+; # Gives the bighest-numbered actually-filled $1, $2, etc.
print "$Url with link text: $Link\n";
}
}

Some notes about this:

e This time, I added parentheses to each value-matching alternative, to capture
the exact value matched.

e Because I'm using some of the parentheses to capture, I've used non-captur-
ing parentheses where I don’t need to capture, both for clarity and efficiency.

e This time, the “other stuff” component excludes whitespace in addition to
quotes and ‘>’, as whitespace separates “attribute=value” pairs.

e This time, I do use '+ in the “other stuff” alternative, as it’s needed to capture
the whole href value. Does this cause the same “rude surprise” as if we used
+ in the “other stuff” alternative on page 200? No, because there’s no outer
quantifier that directly influences the class being repeated. Again, this is cov-
ered in detail in the next chapter.

Depending on the text, the actual URL may end up in $1, $2, or $3. The others
will be empty or undefined. Perl happens to support a special variable $+ which is
the value of the highest-numbered $1, $2, etc. that actually captured text. In this
case, that’s exactly what we want as our URL.

Using $+ is convenient in Perl, but other languages offer other ways to isolate the
captured URL. Normal programming constructs can always be used to inspect the
captured groups, using the one that has a value. If supported, named capturing
(1= 138) is perfect for this, as shown in the VB.NET example on page 204. (It's
good that .NET offers named capture, because its $+ is broken s 424.)

HTMI-Related Examples 203

Examining an HTTP URL

Now that we've got a URL, let’s see if it’s an HTTP URL, and if so, pluck it apart into
its hostname and path components. Since we know we have something intended
to be a URL, our task is made much simpler than if we had to identify a URL from
among random text. That much more difficult task is investigated a bit later in this
chapter.

So, given a URL, we merely need to be able to recognize the parts. The hostname
is everything after "http:// but before the next slash (f there is another slash),
and the path is everything else: "http:// (["/1+) (/.%)?$

Actually, a URL may have an optional port number between the hostname and the

path, with a leading colon: "http:// (["/:1+) (: (\@+))?(/.x)?$

Here’s a Perl snippet to report about a URL:

if (Surl =" m{"http://([7/:1+) (: (\d+))?2(/.*)?$}1)
{

my Shost = $1;
my $port = $3 || 80; # Use $3 ifit exists; otherwise default to 8O
my S$path = $4 || "/"; # Use $4 if it exists; otherwise default to "/".

print "Host: Shost\n";
print "Port: S$port\n";
print "Path: $path\n";

} else {
print "Not an HTTP URL\n";

Validating a Hostname

In the previous example, we used [/ :1+ to match a hostname. Yet, in Chapter 2
(1= 76), we used the more complex [-a-z]+(\.[-a-z]+)*\. (com|edu| |info),
Why the difference in complexity for finding ostensibly the same thing?

Well, even though both are used to “match a hostname,” they’re used quite differ-
ently. It's one thing to pluck out something from a known quantity (e.g., from
something you know to be a URL), but it’s quite another to accurately and unam-
biguously pluck out that same type of something from among random text.

Specifically, in the previous example, we made the assumption that what comes
after the ‘http://’ is a hostname, so the use of [/ :1+ merely to fetch it is rea-
sonable. But in the Chapter 2 example, we use a regex to find a hostname in ran-
dom text, so it must be much more specific.

Now, for a third angle on matching a hostname, we can consider validating host-
names with regular expressions. In this case, we want to check whether a string is
a well-formed, syntactically correct hostname. Officially, a hostname is made up of
dot-separated parts, where each part can have ASCII letters, digits, and hyphens,
but a part can’t begin or end with a hyphen. Thus, one part can be matched with

204 Chapter 5: Practical Regex Techniques

Link Checker in VB.NET

This Program reports on links within the HTML in the variable Htm1:
Imports System.Text.RegularExpressions

' Set up the regular expressions we’ll use in the loop

Dim A_Regex as Regex = New Regex (
"<a\b(?<guts>[">]+)>(?<Link>.*?)",
RegexOptions.IgnoreCase)

Dim GutsRegex as Regex = New Regex(_

"\b HREF (?# 'href’ attribute)" & _
"\sx* = \sx* (?# ‘=’ with optional whitespace)" & _
"(?: (?# Value is)" &
noomm(R<url>[T] w) (?2# double-quoted string,)" & _
N (2# or ...)" &
"or(P<url>[T]x) (?# single-quoted string,)" & _
" | (?# or ...)" &
"o (?<url>[""">\s]+) (?# ‘other stuff’)" &
") (2# >

RegexOptions.IgnoreCase OR RegexOptions.IgnorePatternWhitespace)

' Now check the "Html’ Variable . . .
Dim CheckA as Match = A_Regex.Match (Html)

! For each match within . . .
While CheckA.Success
' We maltched an <a> tag, so now check for the URL.
Dim UrlCheck as Match = _
GutsRegex.Match (CheckA.Groups ("guts") .Value)
If UrlCheck.Success
' We've got a match, so have a URL/link pair
Console.WriteLine ("Url " & UrlCheck.Groups ("url") .Value & _
" WITH LINK " & CheckA.Groups("Link") .Value)
End If
CheckA = CheckA.NextMatch
End While

A few things to notice:

e VB.NET programs using regular expressions require that first Imports
line to tell the compiler what object libraries to use.

e I've used [(?#), style comments because it's inconvenient to get a new-
line into a VB.NET string, and normal ‘#’ comments carry on until the
next newline or the end of the string (which means that the first one
would make the entire rest of the regex a comment). To use normal #
comments, add &chr (10) at the end of each line (xs 420).

e Each double quote in the regex requires ‘" "’ in the literal string (s 103).

e Named capturing is used in both expressions, allowing the more descrip-
tive Groups ("url") instead of Groups (1), Groups (2), etc.

HTMI-Related Examples 205

a case-insensitive application of [a-z0-9]1 | [a-z0-9] [-a-z0-9]*[a-z0-9]. The
final suffix part (‘com’, ‘edw’, ‘uk’, etc.) has a limited set of possibilities, mentioned
in passing in the Chapter 2 example. Using that here, we’re left with the following
regex to match a syntactically valid hostname:

(?1) # apply this regex in a case-insensitive manner.

One or more dot-separated parts . . .

(?: [a-z0-9]\. | [a-z0-9][-a-z0-9]*[a-z0-9]1\.)+

Followed by the final suffix part . . .

(?: com|edu|gov|int|mil|net|org|biz|info|name|museum|coop|aero| [a-z][a-z])

Something matching this regex isn’t necessarily valid quite yet, as there’s a length
limitation: individual parts may be no longer than 63 characters. That means that
the [-a-z0-9] «, in there should be [-a-z0-91{0,61}.

There’s one final change, just to be official. Officially, a name consisting of only
one of the suffixes (e.g., ‘com’, ‘edu’, etc.) is also syntactically valid. Current prac-
tice seems to be that these “names” don’t actually have a computer answer to
them, but that doesn’t always seem to be the case for the two-letter country suf-
fixes. For example, Anguilla’s top-level domain ‘ai’ has a web server: btip://ai/
shows a page. A few others like this that I've seen include cc, co, dk, mm, ph, tj,
tv, and tw.

So, if you wish to allow for these special cases, change the central [(?:)+ to
(?:-)*. These changes leave us with:

(?1) # apply this regex in a case-insensitive manner.

Zero or more dot-separated parts . . .

(?: [a-z0-9]\. | [a-z0-9][-a-z0-9]1{0,61}[a-z0-9]\.)=

Followed by the final suffix part . . .

(?: com|edul|gov]|int|mil|net|org|biz|info|name|museum|coop|aero]| [a-z][a-2z])

This now works fine to validate a string containing a hostname. Since this is the
most specific of the three hostname-related regexes we've developed, you might
think that if you remove the anchors, it could be better than the regex we came
up with earlier for plucking out hostnames from random text. That's not the case.
This regex matches any two-letter word, which is why the less-specific regex from
Chapter 2 is better in practice. But, it still might not be good enough for some pur-
poses, as the next section shows.

206 Chapter 5: Practical Regex Techniques

Plucking Out a URL in the Real World

Working for Yahoo! Finance for many years, I wrote programs to process incoming
financial news and data feeds. News articles were usually provided in raw text,
and my programs converted them to HTML for a pleasing presentation. (If you've
read financial news at htp./finance.yahoo.com in the last 10 years, you've had a
chance to see how I did.)

It was often a daunting task due to the random “formatting” (or lack thereof) of
the data we received, and because it's much more difficult to recognize things like
hostnames and URLs in raw text than it is to validate them once you've got them.
The previous section alluded to this; in this section, I'll show you the code T actu-
ally used at Yahoo! to solve the issues we faced.

The code looks for several types of URLs to pluck from the text—mailto, http,
https, and ftp URLs. If we find ‘http://’ in the text, it’s clear that’s the start of a
URL, so we can use something simple like http://[-\wl+(\.\w[-\w]*)+ to
match up through the hostname part. We're using the knowledge of the text (raw
English text provided as ASCID to realize that it's probably OK to use -\w, instead
of [-a-z0-91. "\wj also matches an underscore, and in some systems also matches
the whole of Unicode letters, but we know that neither of these really matter to us
in this particular situation.

However, often, a URL is given without the http:// or mailto: prefix, such as:

visit us at www.oreilly.com or mail to orders@oreilly.com.

In this case, we need to be much more careful. What I used at Yahoo! is quite sim-
ilar to the regex from the previous section, but it differs in a few ways:

(?1: [a-20-9] (?:[-a-2z0-91%[a-20-91)? \.)+ # subdomains
Now ending .com, etc. For these, we require lowercase

(?-1i: com\b

| edu\b

| biz\b

| org\b

| gov\b

| in(?:t|fo)\b # .intor.info

| mil\b

| net\b

| name\b

| museum\b

| coop\b

| aero\b

| [a-z] [a-z]\b # two-letter country codes

)

In this regex, [(?i:), and (?-1:-), are used to explicitly enable and disable case-
insensitivity for specific parts of the regex (== 135). We want to match a URL like
‘www.OReilly.com’, but not a stock symbol like ‘NT.TO" (the stock symbol for

HTMI-Related Examples 207

Nortel Networks on the Toronto Stock Exchange — remember, we're processing
financial news and data, which has a lot of stock symbols). Officially, the ending
part of a URL (e.g., ‘.com’) may be upper case, but we simply won’t recognize
those. That's the balance we've struck among matching what we want (pretty
much every URL we're likely to see), not matching what we don’t want (stock sym-
bols), and simplicity. I suppose we could move the '(?-i:-), to wrap only the
country codes part, but in practice, we just don’t get uppercased URLs, so we've
left this as it is.

Here’s a framework for finding URLs in raw text, into which we can insert the
subexpression to match a hostname:

\b
Match the leading part (proto.//bostname, or just bhostname)
(

fip://, btip://, or bttps:// leading part

(ftplhttps?) : // [-\wl+ (N A\w[-\w]=*)+

or, try to find a bostname with our more specific sub-expression
full-hostname-regex

)

Allow an optional port number
(: \d+)

The rest of the URL is optional, and begins with / . . .
(

/ path-part
)?

I haven’t talked yet about the path part of the regex, which comes after the host-
name (e.g., the underlined part of http://www.oreilly.com/catalog/regex/).

The path part turns out to be the most difficult text to match properly, as it
requires some guessing to do a good job. As discussed in Chapter 2, what often
comes after a URL in the text is also allowed as part of a URL. For example, with

Read his comments at http://www.oreilly.com/ask_tim/index.html. He ...

we can look and realize that the period after ‘index.html’ is English punctuation
and should not be considered part of the URL, yet the period within ‘index.html’
is part of the URL.

Although it's easy for us humans to differentiate between the two, it's quite diffi-
cult for a program, so we’'ve got to come up with some heuristics that get the job
done as best we can. The approach taken with the Chapter 2 example is to use
negative lookbehind to ensure that a URL can’t end with sentence-ending punctua-
tion characters. What I used at Yahoo! Finance was originally written before nega-
tive lookbehind was available, and so is more complex than the Chapter 2
approach, but in the end it has the same effect. It's shown in the listing on the
next page.

208 Chapter 5: Practical Regex Techniques

Regex to pluck a URL from financial news

\b
Match the leading part (proto://bostname, or just hostname)
(

[fips/, bttp.//, or bttps.// leading part

(ftplhttps?) : //[-\w]+ (\ . \w[-\w] %) +

or, try to find a bostname with our more specific sub-expression
?i: [a-20-9] (?:[-a-z0-91x[a-z0-9]1)? \.)+ # subdomains
Now ending .com, etc. For these, require lowercase
?-i: com\b
edu\b
biz\b
gov\b
in(?:t|fo)\b # .intor.info
mil\b
net\b
org\b
[a-z] [a-2z]\b # two-letter country codes

?

#
(
#
(
|
|
|
|
|
|
|
|

)

Allow an optional port number
(: \d+)2

The rest of the URL is optional, and begins with / . . .
(

The rest are beuristics for what seems to work well
1,27 <> (O NN {3\ s\X7F-\XFF] *

—~ = FH

?:
[.0,21+ [0, 2" <> (ONINT{}\s\xTF-\XFF]+

*

)?

The approach taken for the path part is different in a number of respects, and the
comparison with the Chapter 2 example on page 75 should be interesting. In par-
ticular, the Java version of this regex in the sidebar below provides some insight as
to how it was built.

In practice, I doubt I'd actually write out a full monster like this, but instead T'd
build up a “library” of regular expressions and use them as needed. A simple
example of this is shown with the use of $HostnameRegex on page 76, and also
in the sidebar below.

Extended Examples

The next few examples illustrate some important techniques about regular expres-
sions. The discussions are longer, and show more of the thought processes and
mistaken paths that eventually lead to a working conclusion.

Extended Examples

209

// Now convert string we’ve built up into a real regex object
Pattern UrlRegex
// Now ready to apply to raw text to find urls . . .

= Pattern.compile (Url);

Building Up a Regex Through Variables in Java

String SubDomain = "(?i:[a-z0-9]]|[a-20-9][-a-20-9]*[a-20-9])";
String TopDomains = " (?x-1i:com\\b \n" +
" |edu\\b \n" +
" |biz\\b \n" +
" lin(?:t|fo)\\b \n" +
" Imil\\b \n" +
" |net\\b \n" +
" [org\\b \n" +
" | la~z][a-z]\\b \n" + // country codes
") \n";
String Hostname = " (?:" + SubDomain + "\\.)+" + TopDomains;
String NOT_IN = "N <> ONNINNT NS\ \XTF-\\XFF";
String NOT_END = "!.,?";
String ANYWHERE = "["" + NOT_IN + NOT_END + "]1";
String EMBEDDED = "[" + NOT_END + "]";
String UrlPath = "/"+ANYWHERE + " ("+EMBEDDED+"+"+ANYWHERE+"+)x";
String Url =
"(?x: \n"+
" \\b \n"+
" ## match the hostname part \n"+
" \n"+
" (?: ftp | http s?): // [-\\wl+(\\.\\w[-\\w]*)+ \n"+
" | \n"+
" " + Hostname + " \n"+
") \n"+
" # allow optional port \n"+
"o(?: :\\d+)? \n"+
" \n"+
" # rest of url is optional, and begins with / \n"+
" + UrlbPath + ")? \n"+

Keeping in Sync with Your Data

Let’s look at a lengthy example that might seem a bit contrived, but which illus-
trates some excellent points on why it’s important to keep in sync with what
you’re trying to match (and provides some methods to do so).

Let’s say that your data is a series of five-digit US postal codes (ZIP codes) that are
run together, and that you need to retrieve all that begin with, say, 44. Here is a
sample line of data, with the codes we want to retrieve in bold:

03824531449411615213441829503544272752010217443235

210 Chapter 5: Practical Regex Techniques

As a starting point, consider that \d\d\d\d\d, can be used repeatedly to match all
the ZIP codes. In Perl, this is as simple as @zips = m/\d\d\d\d\d/g; to create a
list with one ZIP code per element. (To keep these examples less cluttered, they
assume the text to be matched is in Perl’s default target variable $_ w=79.) With
other languages, it’s usually a simple matter to call the regex “find” method in a
loop. I'd like to concentrate on the regular expression rather than that mechanics
particular to each language, so will continue to use Perl to show the examples.

Back to \d\d\d\d\d. Here’s a point whose importance will soon become appar-
ent: the regex never fails until the entire list has been parsed—there are absolutely
no bump-and-retries by the transmission. (I'm assuming we’ll have only proper
data, an assumption that is very situation specific.)

So, it should be apparent that changing \d\d\d\d\d, to 44\d\d\d in an attempt
to find only ZIP codes starting with 44 is silly — once a match attempt fails, the
transmission bumps along one character, thus putting the match for the 44, out of
sync with the start of each ZIP code. Using 44\d\d\d, incorrectly finds a match at
©..5314494116---.

You could, of course, put a caret or \a, at the head of the regex, but they allow a
target ZIP code to match only if it’s the first in the string. We need to keep the
regex engine in sync manually by writing our regex to pass over undesired ZIP
codes as needed. The key here is that it must pass over full ZIP codes, not single
characters as with the automatic bump-along.

Keeping the maich in sync with expectations

The following are a few ways to pass over undesired ZIP codes. Inserting them
before what we want ((44\d\d\d))) achieves the desired effect. Non-capturing
'(?:), parentheses are used to match undesired ZIP codes, effectively allowing us
to pass them over on the way toward matching a desired ZIP code within the $1
capturing parentheses:
(2:[741\d\d\a\dl\d["41\d\da\qd) =
This brute-force method actively skips ZIP codes that start with something
other than 44. (Well, it'’s probably better to use [1235-9], instead of [~4],
but as I said earlier, I am assuming properly formatted data.) By the way,
we can’t use (?:["4]1["4]1\d\d\d) *, as it does not match (and thus does
not pass over) undesired ZIP codes like 43210.

(?:(?144)\d\d\d\d\ad) *
This method skips ZIP codes that do not start with 44. This might sound vir-
tually identical to the previous one, but when rendered into a regular
expression looks quite different. Compare the two descriptions and related
expressions. In this case, a desired ZIP code (beginning with 44) causes the
negative-lookahead I(?144), to fail, thus causing the skipping to stop.

Extended Examples 211

(2:\d\d\d\d\d) *?

This method uses a lazy quantifier to skip ZIP codes only when needed. We
use it before a subexpression matching what we do want, so that if that
subexpression fails, this one matches a ZIP. It’s the laziness of (-) 2, that
allows this to happen. Because of the lazy quantifier, [(?:\d\d\d\d\d), is
not even attempted until whatever follows has failed. The star assures that it
is repeatedly attempted until whatever follows finally does match, thus
effectively skipping only what we want to skip.

Combining this last method with '(44\d\d\d), gives us
@zips = m/(2:\d\d\d\d\d) 2 (44\d\d\d) /g;

and picks out the desired ‘44xxx’ codes, actively skipping undesired ones that
intervene. (In this “@array = m/ - /g” situation, Perl fills the array with what’s
matched by capturing parentheses during each match attempt e 311.) This regex
can work repeatedly on the string because we know each match always leaves the
“current match position” at the start of the next ZIP code, thereby priming the next
match to start at the beginning of a ZIP code as the regex expects.

Maintaining sync after a non-maich as well

Have we really ensured that the regex is always applied only at the start of a ZIP
code? No/ We have manually skipped intervening undesired ZIP codes, but once
there are no more desired ones, the regex finally fails. As always, the bump-along-
and-retry happens, thereby starting the match from a position within a ZIP code —
something our approach relies on never happening.

Let’s look at our sample data again:
03824531449411615213441829503544272752010217443235

Here, the matched codes are bold (the third of which is undesired), the codes we
actively skipped are underlined, and characters skipped via bump-along-and-retry
are marked. After the match of 44272, no more target codes are able to be
matched, so the subsequent attempt fails. Does the whole match attempt end? Of
course not. The transmission bumps along to apply the regex at the next character,
putting us out of sync with the real ZIP codes. After the fourth such bump-along,
the regex skips 10217 as it matches 44323, reporting it falsely as a desired code.

Any of our three expressions work smoothly so long as they are applied at the
start of a ZIP code, but the transmission’s bump-along defeats them. This can be
solved by ensuring that the transmission doesn’t bump along, or that a bump-
along doesn’t cause problems.

One way to ensure that the transmission doesn’t bump along, at least for the first
two methods, is to make [(44\d\d\d), greedily optional by appending 2. This
plays off the knowledge that the prepended /(?:(2!44)\d\d\d\d\d)*; or

212 Chapter 5: Practical Regex Techniques

(?:["4]1\d\d\d\d|\d["4]1\d\d\d) * -, finish only when at a desired code, or
when there are no more codes (which is why it can’t be used for the third, non-
greedy method.) Thus, [(44\d\d\d) ?; matches the desired ZIP code if it'’s there, but
doesn’t force a backtrack if it’s not.

There are some problems with this solution. One is that because we can now have
a regex match even when we don’t have a target ZIP code, the handling code must
be a bit more complex. However, to its benefit, it is fast, since it doesn’t involve
much backtracking, nor any bump-alongs by the transmission.

Maintaining sync with \G

A more general approach is to simply prepend \G (s 130) to any of the three
methods’ expressions. Because we crafted each to explicitly end on a ZIP code
boundary, we’re assured that any subsequent match that has had no intervening
bump-along begins on that same ZIP boundary. And if there has been a bump-
along, the leading \gG fails immediately, because with most flavors, it's successful
only when there’s been no intervening bump-along. (This is not true for Ruby and
other flavors whose \G, means “start of the current match” instead of “end of the
previous match” s 131.)

So, using the second expression, we end up with
@zips = m/\G(?:(?144)\d\d\d\d\d) » (44\d\d\d) /g;
without the need for any special after-match checking.

This example in perspective

I'll be the first to admit that this example is contrived, but nevertheless, it shows a
number of valuable lessons about how to keep a regex in sync with the data. Still,
were I really to need to do this in real life, T would probably not try to solve it
completely with regular expressions. I would simply use \d\d\d\d\d, to grab
each ZIP code, then discard it if it doesn’t begin with ‘44’. In Perl, this looks like:

@zips = (); # Ensure the array is empty

while (m/(\d\d\d\d\d)/g) {
$zip = $1;
if (substr($zip, 0, 2) eqg "44") {
push @zips, $zip;
}
}

Also, see the sidebar on page 132 for a particularly interesting use of \@, although
one available at the time of this writing only in Perl.

Extended Examples 213

Parsing CSV Files

Parsing a CSV (Comma Separated Values) file can be a bit tricky, as it seems every
program producing a CSV file has its own CSV format. We'll first look at how to
parse the kind of CSV file that Microsoft Excel generates, and then look at some
other format permutations.” Luckily, the Microsoft format is one of the simplest.
The values, separated by commas, are either “raw” (just sitting there between the
commas), or within double quotes (and within the double quotes, a double quote
itself is represented by a pair of double quotes in a row).

Here’s an example:
Ten Thousand, 10000, 2710 ,,"10,000","It’s ""10 Grand"", baby", 10K

This row represents seven fields:

Ten-Thousand

10000

2710

an empty field

10,000
It’s-"10-Grand", -baby
10K

So, to parse out the fields from a line, we need an expression to cover each of two
field types. The non-quoted ones are easy —they contain anything except commas
and quotes, so they are matched by ["", 1+ .

A double-quoted field can contain commas, spaces, and in fact anything except a
double quote. It can also contain the two quotes in a row that represent one quote
in the final value. So, a double-quoted field is matched by any number of [[~" 1| "™
between /", which gives us " (?: [""]|"") «". (Actually, for efficiency, I can use
atomic grouping, '(?>), instead of '(?:), but I'll leave that discussion until the
next chapter; s 259.)

Putting this all together results in [[~", 1+ " (2:[""]1|"")*" to match a single
field. That might be getting a bit hard to read, so T'll rewrite it in a free-spacing
mode (= 111):

Either some non-quote/non-comma text . . .
(o, 1+
#...0r. ..
|
... adouble-quoted field (inside, paired double quotes are allowed)
" # field’s opening quote
(e [°"1 1 ")x
" # field’s closing quote

+ The final code for processing the Microsoft style CSV files is presented in Chapter 6 (& 271) after the
efficiency issues discussed in that chapter are taken into consideration.

214 Chapter 5: Practical Regex Techniques

Now, to use this in practice, we can apply it repeatedly to a string containing a
CSV row, but if we want to actually do anything productive with the results of the
match, we should know which alternative matched. If it's the double-quoted field,
we need to remove the outer quotes and replace internal paired double quotes
with one double quote to yield the original data.

I can think of two approaches to this. One is to just look at the text matched and
see whether the first character is a double quote. If so, we know that we must
strip the first and last characters (the double quotes) and replace any internal ‘"’
by ‘»’. That's simple enough, but it’s even simpler if we are clever with capturing
parentheses. If we put capturing parentheses around each of the subexpressions
that match actual field data, we can inspect them after the match to see which
group has a value:

Either some non-quote/non-comma text . . .
[1+)
#...0r. ..
|
. .. a double-quoted field (inside, paired double quotes are allowed)
" # field’s opening quote
((e [7"] | "))
" # field’s closing quote

Now, if we see that the first group captured, we can just use the value as is. If the
second group captured, we merely need to replace any ‘" "’ with ‘"’ and we can
use the value.

I'll show the example now in Perl, and a bit later (after we flush out some bugs) in
Java and VB.NET (it’s also shown in PHP in Chapter 10w 480). Here’s the snippet in
Perl, assuming our line is in $line and has already had any newline removed
from the end (we don’t want the newline to be part of the last field!):

while ($line =" m{
Either some non-quote/non-comma text . . .
(G R
#...0r. ..
|
... a double-quoted field (" allowed inside)
" # field’s opening quote
((e [°"1 | ")+)
" # field’s closing quote
rgx)

if (defined $1) {
sfield = $1;

} else {
$field = $2;
sfield =~ s/""/"/g;

}
print "[$fieldl"; # printthe field, for debugging
Can work with $field now . . .

Extended Examples 215

Applying this against our test data, the output is:
[Ten-Thousand] [10000] [-2710-][10,000] [It’s-"10-Grand", -baby] [10K]

This looks mostly good, but unfortunately doesn’t give us anything for that empty
fourth field. If the program’s “work with $field” is to save the field value to an
array, once we're all done, we’d want access to the fifth element of the array to
yield the fifth field (“10,000”). That won’t work if we don'’t fill an element of the
array with an empty value for each empty field.

¢

The first idea that might come to mind for matching an empty field is to change
[*", 1+ tol["", 1%. Well, that may seem obvious, but does it really work?

Let’s test it. Here'’s the output:
[Ten-Thousand] [1[100001[1[-2710-1[1[]1[1[10,000]1[]1[]1[It’s-"10-Grand", ...

Oops, we somehow got a bunch of extra fields! Well, in retrospect, we shouldn’t
be surprised. By using (--) »; to match a field, we don’t actually require anything
to match. That works to our advantage when we have an empty field, but consider
after having matched the first field, the next application of the regex starts at
‘Ten-Thousand, 10000--". If nothing in the regex can match that raw comma (as is
the case), yet an empty match is considered successful, the empty match will
indeed be successful at that point. In fact, it could be successful an infinite num-
ber of times at that point if the regex engine doesn’t realize, as modern ones do,
that it’s in such a situation and force a bump-along so that two zero-width matches
don’t happen in a row (e 131). That's why there’s one empty match between each
valid match, and one more empty match before each quoted field (and although
not shown, there’s an empty match at the end).

Distrusting the bump-along

The problem here stems from us having relied on the transmission’s bump-along
to get us past the separating commas. To solve it, we need to take that control into
our own hands. Two approaches come to mind:
1. We could try to match the commas ourselves. If we take this approach, we
must be sure to match a comma as part of matching a regular field, using it to
“pace ourselves” through the string.

2. We could check to be sure that each match start is consistent with locations
that we know can start a field. A field starts either at the beginning of the
line, or after a comma.

Perhaps even better, we can combine the two. Starting with the first approach
(matching the commas ourselves), we can simply require a comma before each
field except the first. Alternatively, we can require a comma after each field except
the last. We can do this by prepending [~ |, or appending [$ 1, to our regex, with
appropriate parentheses to control the scope.

216 Chapter 5: Practical Regex Techniques

Let’s try prepending " |, which gives us:

(2:71,)

(?:
Either some non-quote/non-comma text....
", 1+0)

or

a double-quoted field (inside, paired double quotes are allowed)
" # field’s opening quote
((2 7" | ")=)
" # field’s closing quote
)

This really sounds like it should work, but plugging it into our test program, the
result is disappointing:
[Ten Thousand] [10000] [-2710-]1[1[1[000][][-baby] [10K]

Remember, we're expecting:
[Ten Thousand] [10000] [-2710-]1[]1[10,000] [It’s-"10-Grand", -baby] [10K]

Why didn’t this one work? It seems that the double-quoted fields didn’t come out
right, so the problem must be with the part that matches a double-quoted field,
right? No, the problem is before that. Perhaps the moral from page 176 can help:
when more than one alternative can potentially match from the same point, care
must be taken when selecting the order of the alternatives. Since the first alternative,
[~", 1%, requires nothing to be successful, the second alternative never gets a
chance to match unless forced by something that must match later in the regex.
Our regex doesn’t have anything after these alternatives, so as it’s written, the sec-
ond alternative is never even reached. Doh!

Wow, you've really got to keep your wits about you. OK, let’s swap the alterna-
tives and try again:
(2:71,)
(?: # Now, match either a double-quoted field (inside, paired double quotes are allowed) . . .
" # (double-quoted field’s opening quote)
((22 [7"] | "))
" # (double-quoted field’s closing quote)

... or, some VlOn*qMOlC"/VlOﬂ*COWH’ﬂﬂ text . . .
()
)
Now, it works! Well, at least for our test data. Could it fail with other data? This
section is named “Distrusting the bump-along,” and while nothing takes the place
of some thought backed up with good testing, we can use \G, to ensure that each
match begins exactly at the point that the previous match ended. We believe that
should be true already because of how we’ve constructed and apply our regex. If
we start out the regex with \G, we disallow any match after the engine’s transmis-
sion is forced to bump along. We hope it will never matter, but doing so may

Extended Examples

217

make an error more apparent. Had we done this with our previously-failing regex
that had given us

[Ten Thousand] [10000] [-2710-]1[1[]1[000][][-baby] [10K]
we would have gotten

[Ten -Thousand] [10000] [-2710-1[11[]
instead. This perhaps would have made the error more apparent, had we missed it
the first time.

{

CSV Processing in Java

Here’s the CSV example with Sun’s java.util.regex. This is designed to be
clear and simple—a more efficient version is given in Chapter 8 (s 401).

import java.util.regex.x*;

String regex = // Putsa doublequoted field into group(1), an unquoted field into group(2)

\\G(?:71],) \n"+
(?: \n"+
Either a double-quoted field . . . \n"+

\" # field’s opening quote \n"+

((22 [ON"T++ | \"\") x+) \n"+

\" # field’s closing quote \n"+

[# ...or... \n"+
some non-quote/non-comma text . . . \n"+

C L7\, 1%) \n"+

) \n";

// Create a matcher, using the regex above, with dummy text for the time being.
Matcher mMain = Pattern.compile(regex,

// Create a matcher for " ", with dummy text for the time being
Matcher mQuote = Pattern.compile("\"\"").matcher("");

/ /1 Above is the preparation; the code below is executed on a per-line basis
mMain.reset (line); // Usethisline of CSV text in the processing below

while (mMain.find())

String field;
if (mMain.start(2) >= 0)

field = mMain.group(2); // Thefield is unquoted, so we can use it as is

else

// The field is quoted, so we must replace paired doublequotes with one double quote
field = mQuote.reset (mMain.group(l)).replaceAll("\"");

/1 We can now work with field . . .
System.out.println("Field [" + field + "1");

Pattern.COMMENTS) .matcher ("") ;

218 Chapter 5: Practical Regex Techniques

Anotber approach. The beginning of this section noted two approaches to
ensuring we stay properly aligned with the fields. The other is to be sure that a
match begins only where a field is allowed. On the surface, this is similar to
prepending I~ | ,, except using lookbehind as with [(?<="1,),

Unfortunately, as the section in Chapter 3 explains (s 133), even if lookbehind is
supported, variable-length lookbehind sometimes isn’t, so this approach may not
work. If the variable length is the issue, we could replace I(?<="1,); with
(?:" (?<=,)), but this seems overly complex considering that we already have
the first approach working. Also, it reverts to relying on the transmission’s bump-
along to bypass the commas, so if we've made a mistake elsewhere, it could allow
a match to begin at a location like “--*10,000". All in all, it just seems safer to
use the first approach.

However, we can use a twist on this approach—requiring a match to end before a
comma (or before the end of the line). Adding '(?=$1,), to the end of our regex
adds yet another assurance that it won’t match where we don’t want it to. In prac-
tice, would I do add this? Well, frankly, 1 feel pretty comfortable with what we
came up with before, so I'd probably not add it in this exact situation, but it’s a
good technique to have on hand when you need it.

One change jfor the sake of efficiency

Although T don’t concentrate on efficiency until the next chapter, I'd like to make
one efficiency-related change now, for systems that support atomic grouping
(e= 139). If supported, I'd change the part that matches the values of double-
quoted fields from (?: [""]1 | "")% to (2> [""]1+ | ""). The VB.NET example in
the sidebar on the facing page shows this.

If possessive quantifiers (e 142) are supported, as they are with Sun’s Java regex
package, they can be used instead. The sidebar with the Java CSV code shows this.

The reasoning behind these changes is discussed in the next chapter, and eventu-
ally we end up with a particularly efficient version, shown on page 271.

Other CSV formalts

Microsoft’s CSV format is popular because it's Microsoft's CSV format, but it's not
necessarily what other programs use. Here are some twists I've seen:

e Using another character, such as ;’ or a tab, as the separator (which makes
one wonder why the format is still called “comma-separated values”).

e Allowing spaces after the separators, but not counting them as part of the
value.

Extended Examples 219

e Using backslashes to escape quotes (e.g., using ‘\ "’ rather than ‘"’ to include
a quote within the value). This usually means that a backslash is allowed (and
ignored) before any character.

These changes are easily accommodated. Do the first by replacing each comma in
the regex with the desired separator; the second by adding \sx* after the first sep-
arator, e.g., starting out with '(?: ~ |, \s*),.

For the third, we can use what we developed earlier (zs 198), replacing [~"1+ | ""
with T*\\"1+[\\.. Of course, we'd also have to change the subsequent
s/""/"/g to the more general s/\\(.)/$1/g, or our target language’s equivalent.

CSV Processing in VB.NET

Imports System.Text.RegularExpressions

Dim FieldRegex as Regex = New Regex(_

"(?:70,) " &
(2 "e
" (?# Either a doublequoted field ...) " &
" n (?# field’s opening quote) " &
" ((2> [""r]+ | o)k) " & _
" "m (?# field’s closing quote) " &
" (?# ... or ...) " &
" " & _
" (?# ... some non-quote/non-comma text ...) " &
" (o, 1) & _
")", RegexOptions.IgnorePatternWhitespace)
Dim QuotesRegex as Regex = New Regex (""" "" ") A string with two double quotes

Dim FieldMatch as Match = FieldRegex.Match (Line)
While FieldMatch.Success
Dim Field as String
If FieldMatch.Groups (1) .Success
Field = QuotesRegex.Replace(FieldMatch.Groups(l) .Value, """")

Else

Field = FieldMatch.Groups (2) .Value
End If
Console.WriteLine("[" & Field & "]")

’ Can now work with 'Field’.

FieldMatch = FieldMatch.NextMatch
End While

Crafting an Efficient Expression

With the regex-directed nature of an NFA engine, as is found in Perl, Java pack-
ages, the .NET languages, Python, and PHP (just to name a few; see the table on
page 145 for more), subtle changes in an expression can have major effects on
what or how it matches. Issues that don’t matter with a DFA engine become
paramount. The fine control an NFA engine affords allows you to really craft an
expression, although it can sometimes be a source of confusion to the unaware.
This chapter helps you learn this art.

At stake are both correctness and efficiency: matching just what you want and no
more, and doing it quickly. Chapters 4 and 5 examined correctness; here we’ll
look at the efficiency-related issues of NFA engines, and how to make them work
to our advantage. (DFA-related issues are mentioned when appropriate, but this
chapter is primarily concerned with NFA-based engines.) In a nutshell, the key is to
understand the full implications of backtracking, and to learn techniques to avoid
it where possible. Armed with the detailed understanding of the processing
mechanics, not only will you maximize the speed of matches, you will also be
able to write more complex expressions with confidence.

In This Chapter To arm you well, this chapter first illustrates just how important
these issues can be, then prepares you for some of the more advanced techniques
presented later by reviewing the basic backtracking described in the previous
chapters with a strong emphasis on efficiency and backtracking’s global ramifica-
tions. Then we’ll look at some of the common internal optimizations that can have
a fairly substantial impact on efficiency, and on how expressions are best written
for implementations that employ them. Finally, T bring it all together with some
killer techniques to construct lightning-fast NFA regexes.

221

222 Chapter 6: Crafting an Efficient Expression

Tests and Backtracks

The examples we’ll see here illustrate common situations you might meet when
using regular expressions. When examining a particular example’s efficiency, I'll
sometimes report the number of individual tests that the regex engine does during
the course of a match. For example, in matching marty, against smarty, there are
six individual tests — the initial attempt of m against s (which fails), then the
matching of 'm against m, la; against a, and so on. I also often report the number of
backtracks (zero in this example, although the implicit backtrack by the regex
engine’s transmission to retry the regex at the second character position could be
counted as one).

I use these exact numbers not because the precision is important, but rather to be
more concrete than words such as “lots” “few, “many,” “better,” “not too much,
and so forth. T don’t want to imply that using regular expressions with an NFA is an
exercise in counting tests or backtracks; I just want to acquaint you with the rela-

tive qualities of the examples.

Another important thing to realize is that these “precise” numbers probably differ
from tool to tool. It’s the basic relative performance of the examples that I hope
will stay with you. One important variation among tools is the optimizations they
might employ. A smart enough implementation completely bypasses the applica-
tion of a particular regex if it can decide beforehand that the target string cannot
possibly match (in cases, for instance, when the string lacks a particular character
that the engine knows beforehand must be there for any match to be successful). I
discuss these important optimizations in this chapter, but the overall lessons are
generally more important than the specific special cases.

Traditional NFA versus POSIX NFA

It's important to keep in mind the target tool’s engine type, Traditional NFA or
POSIX NFA, when analyzing efficiency. As we’ll see in the next section, some con-
cerns matter to one but not the other. Sometimes a change that has no effect on
one has a great effect on the other. Again, understanding the basics allows you to
judge each situation as it arises.

A Sobering Example

Let’s start with an example that really shows how important a concern backtrack-
ing and efficiency can be. On page 198, we came up with " (\\. | ["\\"])*" to
match a quoted string, with internal quotes allowed if escaped. This regex works,
but if it's used with an NFA engine, the alternation applied at each character is very
inefficient. With every “normal” (non-escape, non-quote) character in the string,
the engine has to test \\., fail, and backtrack to finally match with [[~\\"1. If
used where efficiency matters, we would certainly like to be able to speed this
regex up a bit.

A Sobering Example 223

A Simple Change — Placing Your Best Foot Forward

Since the average double-quoted string has more normal characters than escaped
ones, one simple change is to swap the order of the alternatives, putting [~\\"]
first and "\ ., second. By placing T"\\"], first, alternation backtracking need be
done only when there actually is an escaped item in the string (and once for when
the star fails, of course, since all alternatives must fail for the alternation as a
whole to stop). Figure 6-1 illustrates this difference visually. The reduction of
arrows in the bottom half represents the increased number of times when the first
alternative matches. That means less backtracking.

Regular Expression Literal String
(NN | [A®\\])*" "2N\#"x3\" likeness"
P A AR
T (LASNNT [NNL) *my é’“zm\"x3\" 1ik<.=:ness"‘§
P! f fo

- Positions at which an alternation-backtrack occurs

Figure 6-1: Effects of alternative order (Traditional NFA)

In evaluating this change, consider:
¢ Does this change benefit a Traditional NFA, POSIX NFA, or both?

e Does this change offer the most benefit when the text matches, when the
match fails, or at all times?

+¢ Consider these questions and flip the page to check your answers. Make sure
that you have a good grasp of the answers (and reasons) before continuing on to
the next section.

Efficiency Versus Correctness

The most important question to ask when making any change for efficiency’s sake
is whether the change affects the correctness of a match. Reordering alternatives,
as we did earlier, is OK only if the ordering is not relevant to the success of a
match. Consider ™ (\\.|[""1)*", which is an earlier (s 197) but flawed version
of the regex in the previous section. It’s missing the backslash in the negated char-
acter class, and so can match data that should not be matched. If the regex is only
ever applied to valid data that should be matched, you'd never know of the prob-
lem. Thinking that the regex is good and reordering alternatives now to gain more

224 Chapter 6: Crafting an Efficient Expression

Effects of a Simple Change

¢ Answers to the questions on page 223.

Effect for which type of engine? The change has virtually no effect whatso-
ever for a POSIX NFA engine. Since it must eventually try every permutation
of the regex anyway, the order in which the alternatives are tried is irrele-
vant. For a Traditional NFA, however, ordering the alternatives in such a way
that quickly leads to a match is a benefit because the engine stops once the
first match is found.

Effect during which kind of result? The change results in a faster match only
when there is a match. An NFA can fail only after trying all possible permuta-
tions of the match (and again, the POSIX NFA tries them all anyway). So if
indeed it ends up failing, every permutation must have been attempted, so
the order does not matter.

The following table shows the number of tests (“tests”) and backtracks (“b.t”)
for several cases (smaller numbers are better):

Traditional NFA POSIX NFA

TN TITNNT) "CEONN"TINNG)+ either
Sample string tests b.t. tests b.t. tests b.t.
"2\"x3\" likeness" 32 14 22 4 48 30
"makudonarudo" 28 14 16 2 40 26
"very..99 more chars..1long" 218 109 111 2 325 216
"No \"match\" here 124 86 124 86 124 86

As you can see, the POSIX NFA results are the same with both expressions,
while the Traditional NFA’s performance increases (backtracks decrease) with
the new expression. Indeed, in a non-match situation (the last example in
the table), since both engine types must evaluate all possible permutations,
all results are the same.

efficiency, we’d be in real trouble. Swapping the alternatives so that [~"], is first
actually ensures that it matches incorrectly every time the target has an escaped
quote:

"You need a 2\"3\" photo."

So, be sure that you're comfortable with the correctness of a match before you
worry too much about efficiency.

A Sobering Example 225

Advancing Further— Localizing the Greediness

Figure 6-1 makes it clear that in either expression, the star must iterate (or cycle, if
you like) for each normal character, entering and leaving the alternation (and the
parentheses) over and over. These actions involve overhead, which means extra
work —extra work that we’d like to eliminate if possible.

Once while working on a similar expression, I realized that I could optimize it by
taking into account that since ["\\"]; matches the “normal” (non-quote, non-
backslash) case, using '[*\\ "1+, instead allows one iteration of ()= to read as
many normal characters as there are in a row. For strings without any escapes, this
would be the entire string. This allows a match with almost no backtracking, and
also reduces the star iteration to a bare minimum. I was very pleased with myself
for making this discovery.

We'll look at this example in more depth later in this chapter, but a quick look at
some statistics clearly shows the benefit. Figure 6-2 looks at this example for a Tra-
ditional NFA. In comparison to the original " (\\. | ["\\"])=*" (the top of the
upper pair of Figure 6-2), alternation-related backtracks and star iterations are both
reduced. The lower pair in Figure 6-2 illustrates that performance is enhanced
even further when this change is combined with our previous reordering.

Regular Expression Literal String
M (NN LA"\\I)*7", ("2N\#"x3\" likeness"
s
l-'l(\\. [AII\\]+)*IIJ Il2\llx3\ll 1ikeness“‘
Pt f f
I'l-([An\\] |\\.)*llJ "2\"83\" likeness“‘
Pt f

I-ll([AIl\\]_'_l\\.)*llJ ""2\"83\'.'" likeness"‘
Pt !

- Positions at which an alternation-backtrack occurs

Figure 6-2: Effects of an added plus (Traditional NFA)

The big gain with the addition of plus is the resulting reduction in the number of
alternation backtracks, and, in turn, the number of iterations by the star. The star
quantifies a parenthesized subexpression, and each iteration entails some amount

226 Chapter 6: Crafting an Efficient Expression

of overhead as the parentheses are entered and exited, because the engine needs
to keep tabs on what text is matched by the enclosed subexpression. (This is dis-
cussed in depth later in this chapter.)

Table 6-1 is similar to the one in the answer block on page 224, but with different
expressions and has information about the number of iterations required by star.
In each case, the number of individual tests and backtracks increases ever so
slightly, but the number of cycles is drastically reduced. This is big savings.

Table 6-1: Match Efficiency for a Traditional NFA

CCEONN"TINN)+ TCEONN"THINN L) =
Sample String tests b.t. «-cycles | tests b.t. x-cycles
"makudonarudo" 16 2 13 17 3 2
"2\"x3\" likeness" 22 4 15 25 7 6
"very..99 more chars..long" 111 2 108 112 3 2

Reality Check

Yes, I was quite pleased with myself for this discovery. However, as wonderful as
this “enhancement” might seem, it is really a disaster waiting to happen. You’ll
notice that when extolling its virtues, I didn’t give statistics for a POSIX NFA engine.
If T had, you might have been surprised to find the "very- -long" example
requires over three bundred thousand million billion trillion backtracks (for the
record, the actual count would be 324,518,553,658,426,726,783,156,020,576,256, or
about 325 nonillion). Putting it mildly, that is a LOT of work. This would take well
over 50 quintillion years, take or leave a few hundred trillion millennia.’

Quite surprising indeed! So, why does this happen? Briefly, it’s because something
in the regex is subject to both an immediate plus and an enclosing star, with noth-
ing to differentiate which is in control of any particular target character. The result-
ing nondeterminism is the killer. The next section explains a bit more.

“Exponential” matches

Before adding the plus, [“\\ "], was subject to only the star, and the number of
possible ways for the effective '(["\\"1) % to divvy up the line was limited. It
matched one character, then another, and so forth, until each character in the tar-
get text had been matched at most one time. It may not have matched everything
in the target, but at worst, the number of characters matched was directly propor-
tional to the length of the target string. The possible amount of work rose in step
with the length of the target string.

1 The reported time is an estimation based on other benchmarks; I did not actually run the test that long.

A Sobering Example 227

With the new regex’s effective [([*\\"1+) %, the number of ways that the plus and
star might divvy up the string explodes exponentially. If the target string is
makudonarudo, should it be considered 12 iterations of the star, where each inter-
Or perhaps one iteration of the star, where the internal '[*\\ "]+ matches every-
thing (‘makudonarudo’)? Or, perhaps 3 iterations of the star, where the internal
I"\\"1+ matches 5, 3, and 4 characters respectively (‘makudonarudo’). Or per-
haps 2, 2, 5, and 3 characters respectively (‘makudonarudo’). Or, perhaps...

Well, you get the idea — there are a lot of possibilities (4,096 in this 12-character
example). For each extra character in the string, the number of possible combina-
tions doubles, and the POSIX NFA must try them all before returning its answer.
That's why these are called “exponential matches.” Another appealing phrase I've
heard for these types of matches is super-linear.

However called, it means backtracking, and lots of it!" Twelve characters’ 4,096
combinations doesn’t take long, but 20 characters’ million-plus combinations take
more than a few seconds. By 30 characters, the billion-plus combinations take
hours, and by 40, it's well over a year. Obviously, this is not good.

“Ah;” you might think, “but a POSIX NFA is not all that common. I know my tool
uses a Traditional NFA, so I'm OK” Well, the major difference between a POSIX and
Traditional NFA is that the latter stops at the first full match. If there is no full
match to be had, even a Traditional NFA must test every possible combination
before it finds that out. Even in the short "No-\"match\" -here example from the
previous answer block, 8,192 combinations must be tested before the failure can
be reported.

When the regex engine crunches away on one of these neverending matches, the
tool just seems to “lock up.” The first time 1 experienced this, I thought I'd discov-
ered a bug in the tool, but now that I understand it, this kind of expression is part
of my regular-expression benchmark suite, used to indicate the type of engine a
tool implements:

¢ If one of these regexes is fast even with a non-match, it’s likely a DFA.

e If it’s fast only when there’s a match, it’s a Traditional NFA.

e If it’s slow all the time, it’'s a POSIX NFA.
I used “likely” in the first bullet point because NFAs with advanced optimizations
can detect and avoid these exponentially-painful neverending matches. (More on

this later in this chapter e 250.) Also, we'll see a number of ways to augment or
rewrite this expression such that it’s fast for both matches and failures alike.

t For readers into such things, the number of backtracks done on a string of length 7 is 2*!. The num-
ber of individual tests is 21+ 27

228 Chapter 6: Crafting an Efficient Expression

As the previous list indicates, at least in the absence of certain advanced optimiza-
tions, the relative performance of a regex like this can tell you about the type of
regex engine. That's why a form of this regex is used in the “Testing the Engine
Type” section in Chapter 4 (i 146).

Certainly, not every little change has the disastrous effects we've seen with this
example, but unless you know the work going on behind an expression, you will
simply never know until you run into the problem. Toward that end, this chapter
looks at the efficiency concerns and ramifications of a variety of examples. As with
most things, a firm grasp of the underlying basic concepts is essential to an under-
standing of more advanced ideas, so before looking at ways to get around expo-
nential matches, I'd like to review backtracking in explicit detail.

A Global View of Backtracking

On a local level, backtracking is simply the return to attempt an untried option.
That's simple enough to understand, but the global implications of backtracking
are not as easily grasped. In this section, we’ll take an explicit look at the details
of backtracking, both during a match and during a non-match, and we’ll try to
make some sense out of the patterns we see emerge.

Let’s start by looking closely at some examples from the previous chapters. From
page 165, if we apply . +" to
The name "McDonald’s" is said "makudonarudo" in Japanese

we can visualize the matching action as shown in Figure 6-3.

The regex is attempted starting at each string position in turn, but because the
initial quote fails immediately, nothing interesting happens until the attempt start-
ing at the location marked A. At this point, the rest of the expression is attempted,
but the transmission (s 148) knows that if the attempt turns out to be a dead end,
the full regex can still be tried at the next position.

The I'. »; then matches to the end of the string, where the dot is unable to match
the nothingness at the end of the string and so the star finally stops. None of the
46 characters matched by I.« is required, so while matching them, the engine
accumulated 46 more situations to where it can backtrack if it turns out that it
matched too much. Now that I'. x, has stopped, the engine backtracks to the last of
those saved states, the “try [* . +" at ---anese” state.

This means that we try to match the closing quote at the end of the string. Well, a
quote can match nothingness no better than dot, so this fails too. The engine
backtracks again, this time trying to match the closing quote at ---Japanese, which
also fails.

A Global View of Backtracking 229

Match of [w Jxm T » attempt-but-fail
backtrack-and-attempt, but fail
——— successful match of regex component

The name "McDonald’s" is said "makudonarudo" in Japanese

---------------------- »A »>B ..,

Jeceeccececccccccccnces * POSIX NFA Dﬂly

Figure 6-3: Successful match of 1" . "

The remembered states accumulated while matching from A to B are tried in
reverse (latest first) order as we move from B to C. After trying only about a dozen
of them, the state that represents “try " .«" at --arudo"-in-Japa--” is reached,
point C. This can match, bringing us to D and an overall match:

»

The name "McDonald’s" is said "makudonarudo" in Japanese

If this is a Traditional NFA, the remaining unused states are simply discarded and
the successful match is reported.

More Work for a POSIX NFA

For POSIX NFA, the match noted earlier is remembered as “the longest match we’ve
seen so far but all remaining states must still be explored to see whether they
could come up with a longer match. We know this won’t happen in this case, but
the regex engine must find that out for itself.

So, the states are tried and immediately discarded except for the remaining two sit-
uations where there is a quote in the string available to match the final quote.
Thus, the sequences D-E-F and F-G-H are similar to B-C-D, except the matches at
F and H are discarded as being shorter than a previously found match at D

By I, the only remaining backtrack is the “bump along and retry” one. However,
since the attempt starting at A was able to find a match (three in fact), the POSIX
NFA engine is finally done and the match at D is reported.

230 Chapter 6: Crafting an Efficient Expression

Work Required During a Non-Match

We still need to look at what happens when there is no match. Let’s look at
™« 1, We know this won’t match our example text, but it comes close on a num-
ber of occasions throughout the match attempt. As we’ll see, that results in much
more work.

Figure 6-4 illustrates this work. The A-l sequence looks similar to that in Figure
6-3. One difference is that this time it does not match at point D (because the end-
ing exclamation point can’t match). Another difference is that the entire sequence
in Figure 6-4 applies to both Traditional and POSIX NFA engines: finding no match,
the Traditional NFA must try as many possibilities as the POSIX NFA— all of them.

(34
Match of: [o N % attempt-but-fail
J backtrack-and-attempt, but fail
——» successful match of regex component
The name "McDonald’s" is said "makudonarudo" in Japanese
---------------------- »A =
[eecocecccccscicicicanes
D ..
Sub.aﬁempt E eecccccccccccccccccnnces
>F-.
[CEEETRRRRTRTRTITIITY
BH-.
Jecoececocecocecanaes
LR — >J >K -
L ecccccccecccceccccaccnet
Sub-attempt >M-.
N eecccccccccccacncncanannes 3
0-.
-2 [EXTEERRTTRITTIRY
pO——] »R-.,
Sub-attempt § erreeseestasiniiiiiiis d
>T
(115 R R e L P
>V > W
Sub-attempt X Ceoosvoseococantantane
e > Y

Figure 6-4: Failing attempt to match!" . x " 1|

Since there is no match from the overall attempt starting at A and ending at |, the
transmission bumps along to retry the match. Attempts eventually starting at points
J, Q, and V look promising, but fail similarly to the attempt at A. Finally at Y, there
are no more positions for the transmission to try from, so the overall attempt fails.
As Figure 6-4 shows, it took a fair amount of work to find this out.

A Global View of Backtracking 231

Being More Specific

As a comparison, let's replace the dot with [*"]. As discussed in the previous
chapter, this gives less surprising results because it is more specific, and the end
result is that with it, the new regex is more efficient to boot. With ["[~#]1 "1 the
[~"1% can’t get past the closing quote, eliminating much matching and subse-
quent backtracking.

Figure 6-5 shows the failing attempt (compare to Figure 6-4). As you can see,
much less backtracking is needed. If the different results suit your needs, the
reduced backtracking is a welcome side effect.

Match of: [n [An]*m]) T > attempt-but-fail
A RN backtrack-and-attempt, but fail
——» successful match of regex component

The name "McDonald’s" is said "makudonarudo" in Japanese

G
Sub-attempt C, H
Jecococecececocnancer
[— > —» N
Sub-attempt 0--
Perereccccsccnncnss
— »Q s
Sub-attempt T -
[Weoooeoosoccccccsssnccces e
e y\— W

Sub-attempt I s

Figure 6-5: Failing attempt to match!" [~ "] %" 1|

Alternation Can Be Expensive

Alternation can be a leading cause of backtracking. As a simple example, let’s use
our makudonarudo test string to compare how u|viw|x|y|z and [uvwxyz] gO
about matching. A character class is usually a simple test," so Tuvwxyz] suffers
only the bump-along backtracks (34 of them) until we match at:

The name "McDonald’s" is said "makudonarudo" in Japanese

t Some implementations are not as efficient as others, but it's safe to assume that a class is always
faster than the equivalent alternation.

232 Chapter 6: Crafting an Efficient Expression

With u|vlwlx|ylz, however, six backtracks are required at each starting position,
eventually totaling 204 before we achieve the same match. Obviously, not every
alternation is replaceable, and even when it is, it's not necessarily as easily as with
this example. In some situations, however, certain techniques that we’ll look at
later can greatly reduce the amount of alternation-related backtracking required for
a match.

Understanding backtracking is perhaps the most important facet of NFA efficiency,
but it’s still only part of the equation. A regex engine’s optimizations can greatly
improve efficiency. Later in this chapter, we’ll look in detail at what a regex engine
needs to do, and how it can optimize its performance.

Benchmarking

Because this chapter talks a lot about speed and efficiency, and I often mention
benchmarks I've done, I'd like to mention a few principles of benchmarking. I'll
also show simple ways to benchmark in a few languages.

Basic benchmarking is simply timing how long it takes to do some work. To do
the timing, get the system time, do the work, get the system time again, and report
the difference between the times as the time it took to do the work. As an exam-
ple, let's compare " (alblcldlelflg)+$ with "[a-g]l+$. We'll first look at
benchmarking in Perl, but will see it in other languages in a bit. Here’s a simple
(but as we’ll see, somewhat lacking) Perl script:

use Time::HiRes ’time’; # So time(gives a bigh-resolution value.

SStartTime = time();

"abababdedfg" =~ m/" (alblcldlelflg)+$/;

SEndTime = time();

printf ("Alternation takes %.3f seconds.\n", $EndTime - $StartTime) ;

$sStartTime = time();

"abababdedfg" =~ m/"[a-g]+$/;

SEndTime = time();

printf ("Character class takes %.3f seconds.\n", $EndTime - $StartTime);

It looks (and is) simple, but there are some important points to keep in mind
while constructing a test for benchmarking:

e Time only “interesting” work. Time as much of the “work” as possible, but as

little “non-work” as possible. If there is some initialization or other setup that

must be done, do it before the starting time is taken. If there’s cleanup, do it
after the ending time is taken.

e Do “enough” work. Often, the time it takes to do what you want to test is
very short, and a computer’s clock doesn’t have enough granularity to give
meaning to the timing.

Benchmarking

233

When I run the simple Perl test on my system, I get

Alternation takes 0.000 seconds.

Character class takes 0.000 seconds.
which really doesn’t tell me anything other than both are faster than the short-
est time that can be measured. So, if something is fast, do it twice, or 10 times,
or even 10,000,000 times—whatever is required to make “enough” work. What
is “enough” depends on the granularity of the system clock, but most systems
now have clocks accurate down to 1/100" of a second, and in such cases, tim-
ing even half a second of work may be sufficient for meaningful results.

Do the “right” work. Doing a very fast operation ten million times involves
the overhead of ten million updates of a counter variable in the block being
timed. If possible, it’s best to increase the amount of real work being done in
a way that doesn’t increase the overbead work. In our Perl