
support.sas.com/bookstore

Introduction to
Regular Expressions

in SAS®

K. Matthew Windham

The correct bibliographic citation for this manual is as follows: Windham, K. Matthew. 2014. Introduction to
Regular Expressions in SAS®. Cary, NC: SAS Institute Inc.

Introduction to Regular Expressions in SAS®

Copyright © 2014, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-61290-904-2 (Hardcopy)
ISBN 978-1-62959-498-9 (EPUB)
ISBN 978-1-62959-499-6 (MOBI)
ISBN 978-1-62959-500-9 (PDF)

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the
vendor at the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission
of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not
participate in or encourage electronic piracy of copyrighted materials. Your support of others’ rights is
appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial
computer software developed at private expense and is provided with RESTRICTED RIGHTS to the United
States Government. Use, duplication or disclosure of the Software by the United States Government is subject
to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR
227.7202-3(a) and DFAR 227.7202-4 and, to the extent required under U.S. federal law, the minimum restricted
rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice
under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The
Government's rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513-2414.

December 2014

SAS provides a complete selection of books and electronic products to help customers use SAS® software
to its fullest potential. For more information about our offerings, visit support.sas.com/bookstore or call
1-800-727-0025.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Contents

About This Book .. vii

About The Author .. xi

Acknowledgments .. xiii

Chapter 1: Introduction .. 1

1.1 Purpose of This Book .. 1
1.2 Layout of This Book ... 1
1.3 Defining Regular Expressions ... 2
1.4 Motivational Examples .. 3

1.4.1 Extract, Transform, and Load (ETL) .. 3
1.4.2 Data Manipulation .. 4
1.4.3 Data Enrichment ... 5

Chapter 2: Getting Started with Regular Expressions 9
2.1 Introduction .. 10

2.1.1 RegEx Test Code .. 11
2.2 Special Characters ... 13
2.3 Basic Metacharacters .. 15

2.3.1 Wildcard ... 15
2.3.2 Word ... 15
2.3.3 Non-word ... 16
2.3.4 Tab.. 16
2.3.5 Whitespace .. 17
2.3.6 Non-whitespace .. 17
2.3.7 Digit .. 17
2.3.8 Non-digit .. 18
2.3.9 Newline .. 18
2.3.10 Bell ... 19

iv

2.3.11 Control Character ... 20
2.3.12 Octal ... 20
2.3.13 Hexadecimal .. 21

2.4 Character Classes .. 21
2.4.1 List .. 21
2.4.2 Not List... 22
2.4.3 Range ... 22

2.5 Modifiers ... 23
2.5.1 Case Modifiers .. 23
2.5.2 Repetition Modifiers ... 25

2.6 Options .. 32
2.6.1 Ignore Case ... 32
2.6.2 Single Line ... 32
2.6.3 Multiline ... 33
2.6.4 Compile Once .. 33
2.6.5 Substitution Operator ... 34

2.7 Zero-width Metacharacters .. 34
2.7.1 Start of Line ... 35
2.7.2 End of Line ... 35
2.7.3 Word Boundary ... 35
2.7.4 Non-word Boundary ... 36
2.7.5 String Start .. 36

2.8 Summary ... 37

Chapter 3: Using Regular Expressions in SAS ... 39

3.1 Introduction .. 39
3.1.1 Capture Buffer... 39

3.2 Built-in SAS Functions ... 40
3.2.1 PRXPARSE .. 40
3.2.2 PRXMATCH ... 42
3.2.3 PRXCHANGE ... 43
3.2.4 PRXPOSN .. 46
3.2.5 PRXPAREN .. 47

v

3.3 Built-in SAS Call Routines ... 49
3.3.1 CALL PRXCHANGE .. 50
3.3.2 CALL PRXPOSN .. 54
3.3.3 CALL PRXSUBSTR ... 56
3.3.4 CALL PRXNEXT .. 57
3.3.5 CALL PRXDEBUG ... 59
3.3.6 CALL PRXFREE ... 62

3.4 Summary ... 63

Chapter 4: Applications of Regular Expressions in SAS 65
4.1 Introduction .. 65

4.1.1 Random PII Generator ... 66
4.2 Data Cleansing and Standardization .. 72
4.3 Information Extraction ... 77
4.4 Search and Replacement .. 80
4.5 Summary ... 83

4.5.1 Start Small ... 83
4.5.2 Think Big .. 83

Appendix A: Perl Version Notes .. 85

Appendix B: ASCII Code Lookup Tables .. 87

Non-Printing Characters ... 87
Printing Characters .. 89

Appendix C: POSIX Metacharacters .. 97

Index .. 101

vi

About This Book

Purpose
This book is intended for a wide audience of SAS users, from novice programmer to the very
advanced. As not much has previously been published on this topic, many different skill levels can
benefit from the content herein. However, the book has been written to ensure that novice
programmers can immediately implement every element discussed.

Is This Book for You?
Of course, it is! Do you wish you could process unstructured data sources? Would you like to more
effectively process semi-structured data sources? Do you want to one day leverage advanced text
mining concepts within your Base SAS code? Of course, you do! This book lays the foundation for all
of this and more, making it the ideal text for anyone wanting to enhance their programming prowess.

Prerequisites
Readers should be comfortable using and applying the SAS DATA step, basic PROCs (e.g., PROC
PRINT), DO loops, and conditional processing concepts. Readers should be familiar with SAS arrays
and the RETAIN statement.

Scope of This Book
This book covers all PRX functions and call routines.

This book does NOT cover advanced concepts requiring MACRO programming, PROC SQL, or
system automation.

About the Examples

Software Used to Develop the Book's Content
Base SAS (Microsoft Windows)

viii

Example Code and Data
You can access the example code and data for this book by linking to its author page
at http://support.sas.com/publishing/authors. Select the name of the author. Then, look for the cover
thumbnail of this book, and select Example Code and Data to display the SAS programs that are
included in this book.

For an alphabetical listing of all books for which example code and data is available,
see http://support.sas.com/bookcode. Select a title to display the book’s example code.

If you are unable to access the code through the website, e-mail saspress@sas.com.

Output and Graphics Used in This Book
All output used in this book was generated via the SAS log and PROC PRINT.

Additional Help
Although this book illustrates many analyses regularly performed in businesses across industries,
questions specific to your aims and issues may arise. To fully support you, SAS Institute and SAS
Press offer you the following help resources:

• About topics covered in this book, contact the author through SAS Press:

◦ Send questions by e-mail to saspress@sas.com; include the book title in your
correspondence.

◦ Submit feedback on the author’s page at http://support.sas.com/author_feedback.

• About topics in or beyond this book, post questions to the relevant SAS Support Communities
at https://communities.sas.com/welcome.

• SAS Institute maintains a comprehensive website with up-to-date information. One page that
is particularly useful to both the novice and the seasoned SAS user is its Knowledge Base.
Search for relevant notes in the “Samples and SAS Notes” section of the Knowledge Base
at http://support.sas.com/resources.

• Registered SAS users or their organizations can access SAS Customer Support
at http://support.sas.com. Here you can pose specific questions to SAS Customer Support:
Under Support, click Submit a Problem. You will need to provide an e-mail address to which
replies can be sent, identify your organization, and provide a customer site number or license
information. This information can be found in your SAS logs.

http://support.sas.com/publishing/authors
http://support.sas.com/bookcode
mailto:saspress@sas.com
mailto:saspress@sas.com
http://support.sas.com/author_feedback
https://communities.sas.com/welcome
http://support.sas.com/resources
http://support.sas.com

ix

Keep in Touch

We look forward to hearing from you. We invite questions, comments, and concerns. If you want to
contact us about a specific book, please include the book title in your correspondence to
saspress@sas.com.

To Contact the Author through SAS Press
By e-mail: saspress@sas.com

Via the Web: http://support.sas.com/author_feedback

SAS Books
For a complete list of books available through SAS, visit http://support.sas.com/bookstore.

Phone: 1-800-727-0025

E-mail: sasbook@sas.com

SAS Book Report
Receive up-to-date information about all new SAS publications via e-mail by subscribing to the SAS
Book Report monthly eNewsletter. Visit http://support.sas.com/sbr.

Publish with SAS
SAS is recruiting authors! Are you interested in writing a book? Visit http://support.sas.com/saspress
for more information.

mailto:saspress@sas.com
mailto:saspress@sas.com
http://support.sas.com/author_feedback
http://support.sas.com/bookstore
mailto:sasbook@sas.com
http://support.sas.com/sbr
http://support.sas.com/saspress

x

About The Author

K. Matthew Windham, CAP, is the director of analytics at NTELX Inc., an
analytics and technology solutions consulting firm located in the
Washington, DC area. His focus is on helping clients improve their daily
operations through the application of mathematical and statistical modeling,
data and text mining, and optimization. A longtime SAS user, Matt enjoys
leveraging the breadth of the SAS platform to create innovative, predictive
analytics solutions. During his career, Matt has led consulting teams in
mission-critical environments to provide rapid, high-impact results. He has
also architected and delivered analytics solutions across the federal
government, with a particular focus on the US Department of Defense and

the US Department of the Treasury. Matt is a Certified Analytics Professional (CAP) who received his
BS in Applied Mathematics from N.C. State University and his MS in Mathematics and Statistics from
Georgetown University.

Learn more about this author by visiting his author page at
http://support.sas.com/publishing/authors/windham.html. There you can download free book excerpts,
access example code and data, read the latest reviews, get updates, and more.

http://support.sas.com/publishing/authors/windham.html

xii

Acknowledgments
To my brilliant wife, Lori, thank you for always supporting and encouraging me in everything that
I do. I couldn’t have done this without you. To my friends and family, your advice and
encouragement has been treasured.

While I have many people in my professional career to whom I owe a great debt, one in particular
stands out. I would like to thank Nick Ferens for throwing me into the deep end of pool all those
years ago. You saw more in me than I could, and completely changed my career for the better.

Finally, I would like to thank the editorial team at SAS Press, with whom I have truly collaborated
in this endeavor: Shelley Sessoms, John West, Brenna Leath, Joan Keyser, Denise Jones, and
Stacey Hamilton. Your patience, insight, and hard work have made this a wonderful experience.

xiv

Chapter 1: Introduction

1.1 Purpose of This Book .. 1

1.2 Layout of This Book .. 1

1.3 Defining Regular Expressions ... 2

1.4 Motivational Examples .. 3
1.4.1 Extract, Transform, and Load (ETL) ... 3
1.4.2 Data Manipulation ... 4
1.4.3 Data Enrichment .. 5

1.1 Purpose of This Book
This book is meant for SAS programmers of virtually all skill levels. However, it is expected that you
have at least a basic knowledge of the SAS language, including the DATA step, and how to use SAS
PROCs.

This book provides all the tools you need to learn how to harness the power of regular expressions
within the SAS programming language. The information provided lays the foundation for fairly
advanced applications, which are discussed briefly as motivating examples later in this chapter. They are
not presented to intimidate or overwhelm, but instead to encourage you to work through the coming
pages with the anticipation of being able to rapidly implement what you are learning.

1.2 Layout of This Book
It is my goal in this book to provide immediately applicable information. Thus, each chapter is structured
to walk through every step from theory to application with the following flow: Syntax Example. In
addition to the information discussed in the coming chapters, a regular expression reference guide is
included in the appendix to help with more advanced applications outside the scope of this text.

Chapter 1
In addition to providing a roadmap for the remainder of the book, this chapter provides motivational
examples of how you can use this information in the real world.

Chapter 2
This chapter introduces the basic syntax and concepts for regular expressions. There is even some
basic SAS code for running the examples associated with each new concept.

2 Introduction to Regular Expressions in SAS

Chapter 3
This chapter is designed to walk through the details of implementing regular expressions within the
SAS language.

Chapter 4
In this final chapter, we work through a series of in-depth examples—case studies if you will—in
order to ‘put it all together.’ They don’t represent the limitations of what you can do by the end of
this book, but instead provide some baseline thinking for what is possible.

Appendixes
While not comprehensive, these serve as valuable, substantial references for regular expressions,
SAS documentation, and reference tables. I hope everyone can leverage the additional information
to enrich current and future regular expressions capabilities.

1.3 Defining Regular Expressions
Before going any further, we need to define regular expressions.

Taking the very formal definition might not provide the desired level of clarity:

Definition 1 (formal)
regular expressions: “Regular expressions consist of constants and operator symbols that denote
sets of strings and operations over these sets, respectively.”1

In the pursuit of clarity, we will operate with a slightly looser definition for regular expressions.
Since practical application is our primary aim, it doesn’t make sense to adhere to an overly esoteric
definition. So, for our purposes we will use the following:

Definition 2 (easier to understand—our definition)
regular expressions: character patterns used for automated searching and matching.

When programming in SAS, regular expressions are seen as strings of letters and special characters
that are recognized by certain built-in SAS functions for the purpose of searching and matching.
Combined with other built-in SAS functions and procedures, you can realize tremendous
capabilities, some of which we explore in the next section.

Note: SAS uses the same syntax for regular expressions as the Perl programming language2. Thus,
throughout SAS documentation, you find regular expressions repeatedly referred to as “Perl regular
expressions.” In this book, I choose the conventions present in the SAS documentation, unless the
Perl conventions are the most common to programmers. To learn more about how SAS views Perl,
visit this website:
http://support.sas.com/documentation/cdl/en/lefunctionsref/67239/HTML/default/viewer.htm#p0s9ila
gexmjl8n1u7e1t1jfnzlk.htm. To learn more about Perl programming, visit
http://perldoc.perl.org/perlre.html. In this book, however, I primarily dispense with the references to
Perl, as they can be confusing.

http://support.sas.com/documentation/cdl/en/lefunctionsref/67239/HTML/default/viewer.htm#p0s9ila
http://go.sas.com/67098.008

Chapter 1: Introduction 3

1.4 Motivational Examples
The information in this book is very useful for a wide array of applications. However, that will not
become obvious until after you read it. So, in order to visualize how you can use this information in your
work, I present some realistic examples.

As you are all probably familiar with, data is rarely provided to analysts in a form that is immediately
useful. It is frequently necessary to clean, transform, and enhance source data before it can be used—
especially textual data. The following examples are devoid of the coding details that are discussed later
in the book, but they do demonstrate these concepts at varying levels of sophistication. The primary goal
here is to simply help you to see the utility for this information, and to begin thinking about ways to
leverage it.

1.4.1 Extract, Transform, and Load (ETL)
ETL is a general set of processes for extracting data from its source, modifying it to fit your end needs,
and loading it into a target location that enables you to best use it (e.g., database, data store, data
warehouse). We’re going to begin with a fairly basic example to get us started. Suppose we already have
a SAS data set of customer addresses that contains some data quality issues. The method of recording the
data is unknown to us, but visual inspection has revealed numerous occurrences of duplicative records,
as in the table below. In this example, it is clearly the same individual with slightly different
representations of the address and encoding for gender. But how do we fix such problems automatically
for all of the records?

First Name Last Name DOB Gender Street City State Zip

Robert Smith 2/5/1967 M 123 Fourth Street Fairfax, VA 22030

Robert Smith 2/5/1967 Male 123 Fourth St. Fairfax va 22030

Using regular expressions, we can algorithmically standardize abbreviations, remove punctuation, and
do much more to ensure that each record is directly comparable. In this case, regular expressions enable
us to perform more effective record keeping, which ultimately impacts downstream analysis and
reporting.

We can easily leverage regular expressions to ensure that each record adheres to institutional standards.
We can make each occurrence of Gender either “M/F” or “Male/Female,” make every instance of the
Street variable use “Street” or “St.” in the address line, make each City variable include or exclude the
comma, and abbreviate State as either all caps or all lowercase.

This example is quite simple, but it reveals the power of applying some basic data standardization
techniques to data sets. By enforcing these standards across the entire data set, we are then able to
properly identify duplicative references within the data set. In addition to making our analysis and
reporting less error-prone, we can reduce data storage space and duplicative business activities
associated with each record (for example, fewer customer catalogs will be mailed out, thus saving

4 Introduction to Regular Expressions in SAS

money!). For a detailed example involving ETL and how to solve this common problem of data
standardization, see Section 4.2 in Chapter 4.

1.4.2 Data Manipulation
Suppose you have been given the task of creating a report on all Securities and Exchange Commission
(SEC) administrative proceedings for the past ten years. However, the source data is just a bunch of .xml
(XML) files, like that in Figure 1.13. To the untrained eye, this looks like a lot of gibberish; to the trained
eye, it looks like a lot of work.

Figure 1.1: Sample of 2009 SEC Administrative Proceedings XML File

However, with the proper use of regular expressions, creating this report becomes a fairly
straightforward task. Regular expressions provide a method for us to algorithmically recognize patterns
in the XML file, parse the data inside each tag, and generate a data set with the correct data columns.
The resulting data set would contain a row for every record, structured similarly to this data set (for files
with this transactional structure):

Example Data Set Structure

Release_Number Release_Date Respondents URL

34-61262 Dec 30, 2009 Stephen C.
Gingrich

http://www.sec.gov/litigation/admin/2009/34-
61262.pdf

… … … …

Note: Regular expressions cannot be used in isolation for this task due to the potential complexity of XML
files. Sound logic and other Base SAS functions are required in order to process XML files in
general. However, the point here is that regular expressions help us overcome some otherwise

http://go.sas.com/67098.001
http://go.sas.com/67098.001

Chapter 1: Introduction 5

significant challenges to processing the data. If you are unfamiliar with XML or other tag-based
languages (e.g., HTML), further reading on the topic is recommended. Though you don’t need to
know them at a deep level in order to process them effectively, it will save a lot of heartache to have
an appreciation for how they are structured. I use some tag-based languages as part of the advanced
examples in this book because they are so prevalent in practice.

1.4.3 Data Enrichment
Data enrichment is the process of using the data that we have to collect additional details or information
from other sources about our subject matter, thus enriching the value of that data. In addition to parsing
and structuring text, we can leverage the power of regular expressions in SAS to enrich data.

So, suppose we are going to do some economic impact analysis of the main SAS campus—located in
Cary, NC—on the surrounding communities. In order to do this properly, we need to perform statistical
analysis using geospatial information.

The address information is easily acquired from www.sas.com. However, it is useful, if not necessary, to
include additional geo-location information such as latitude and longitude for effective analysis and
reporting of geospatial statistics. The process of automating this is non-trivial, containing advanced
programming steps that are beyond the scope of this book. However, it is important for you to
understand that the techniques described in this book lead to just such sophisticated capabilities in the
future. To make these techniques more tangible, we will walk through the steps and their results.

1. Start by extracting the address information embedded in Figure 1.2, just as in the data manipulation
example, with regular expressions.

Figure 1.2: HTML Address Information

Example Data Set Structure

Location Address Line 1 Address Line 2 City State Zip Phone Fax

World
Headquarters

SAS Institute Inc. 100 SAS
Campus Drive

Cary NC 27513-2414 919-677-8000 919-677-4444

http://www.sas.com

6 Introduction to Regular Expressions in SAS

2. Submit the address for geocoding via a web service like Google or Yahoo for free processing of the
address into latitude and longitude. Type the following string into your browser to obtain the XML
output, which is also sampled in Figure 1.3.

http://maps.googleapis.com/maps/api/geocode/xml?address=100+SAS+Campus+Drive,+Cary,+NC
&sensor=false

Figure 1.3: XML Geocoding Results

3. Use regular expressions to parse the returned XML files for the desired information—latitude and
longitude in our case—and add them to the data set.
Note: We are skipping some of the details as to how our particular set of latitude and longitude

points are parsed. The tools needed to perform such work are covered later in the book. This
example is provided here primarily to spark your imagination about what is possible with
regular expressions.

Example Data Set Structure

Location … Latitude Longitude

World
Headquarters

… 35.8301733 -78.7664916

4. Verify your results by performing a reverse lookup of the latitude/longitude pair that we parsed out

of the results file using https://maps.google.com/. As you can see in Figure 1.4, the expected result
was achieved (SAS Campus Main Entrance in Cary, NC).

momccl
Sticky Note
Marked set by momccl

http://go.sas.com/67098.002
http://go.sas.com/67098.003
http://go.sas.com/67098.002

Chapter 1: Introduction 7

Figure 1.4: SAS Campus Using Google Maps

Now that we have an enriched data set that includes latitude and longitude, we can take the next steps for
carrying out the economic impact analysis.

Hopefully, the preceding examples have proven motivating, and you are now ready to discover the
power of regular expressions with SAS. And remember, the last example was quite advanced—some
sophisticated SAS programming capabilities were needed to achieve the result end-to-end. However, the
majority of the work leveraged regular expressions.

8 Introduction to Regular Expressions in SAS

1 Wikipedia, http://en.wikipedia.org/wiki/Regular_expression#Formal_definition
2 For more information on the version of Perl being used, refer to the artistic license statement on the SAS

support site here: http://support.sas.com/rnd/base/datastep/perl_regexp/regexp.compliance.html
3 This example file was obtained from data.gov here:

http://www.sec.gov/open/datasets/administrative_proceedings_2009.xml

http://go.sas.com/67098.004
http://support.sas.com/rnd/base/datastep/perl_regexp/regexp.compliance.html
http://go.sas.com/67098.005

Chapter 2: Getting Started with Regular
Expressions

2.1 Introduction .. 10
2.1.1 RegEx Test Code ... 11

2.2 Special Characters .. 13

2.3 Basic Metacharacters ... 15
2.3.1 Wildcard ... 15
2.3.2 Word ... 15
2.3.3 Non-word ... 16
2.3.4 Tab .. 16
2.3.5 Whitespace .. 17
2.3.6 Non-whitespace .. 17
2.3.7 Digit .. 17
2.3.8 Non-digit ... 18
2.3.9 Newline ... 18
2.3.10 Bell .. 19
2.3.11 Control Character .. 20
2.3.12 Octal ... 20
2.3.13 Hexadecimal .. 21

2.4 Character Classes ... 21
2.4.1 List .. 21
2.4.2 Not List ... 22
2.4.3 Range ... 22

2.5 Modifiers ... 23
2.5.1 Case Modifiers ... 23
2.5.2 Repetition Modifiers .. 25

2.6 Options ... 32
2.6.1 Ignore Case .. 32
2.6.2 Single Line .. 32
2.6.3 Multiline .. 33
2.6.4 Compile Once .. 33

10 Introduction to Regular Expressions in SAS

2.6.5 Substitution Operator .. 34

2.7 Zero-width Metacharacters ... 34
2.7.1 Start of Line .. 35
2.7.2 End of Line ... 35
2.7.3 Word Boundary .. 35
2.7.4 Non-word Boundary .. 36
2.7.5 String Start ... 36

2.8 Summary ... 37

2.1 Introduction
This chapter focuses entirely on developing your understanding of regular expressions (RegEx) before
getting into the details of using them in SAS. We will begin actually implementing RegEx with SAS in
Chapter 3. It is a natural inclination to jump right into the SAS code behind all of this. However, RegEx
patterns are fundamental to making the SAS coding elements useful. Without going through the RegEx
first, the forthcoming SAS functions and calls could be discussed only at a very theoretical level, which
is the opposite of what I am trying to accomplish in this book. Also, trying to learn too many different
elements of any process at the same time can simply be overwhelming.

To facilitate the mission of this book—practical application—without becoming overwhelmed by too
much information at one time (new functions, calls, and expressions), there is a very short bit of test
code to use with the RegEx examples throughout the chapter. I want to stress the point that obtaining a
thorough understanding of RegEx syntax is critical for harnessing the full power of this incredible
capability in SAS.

RegEx consist of letters, numbers, metacharacters, and special characters, which form patterns. In order
for SAS to properly interpret these patterns, all RegEx values must be encapsulated by delimiter pairs—I
use the forward slash, /, throughout the text. (Refer to the test code). They act as the container for our
patterns. So, all RegEx patterns that we create will look something like this: /pattern/.

For example, suppose we want to match the string of characters “Street” in an address. The pattern
would look like /Street/. But we are clearly interested in doing more with RegEx than just searching for
strings. So, the remainder of this chapter explores the various RegEx elements that we can insert into / /
to develop rich capabilities.

Metacharacter
Before going any farther, I should clarify some upcoming terminology. Metacharacter is a term
used quite frequently in this book, so I need to be clear as to what it actually means. A
metacharacter is a character or set of characters used by a programming language like SAS for
something other than its literal meaning. For example, \s represents a whitespace character in RegEx

Chapter 2: Getting Started with Regular Expressions 11

patterns, rather than just being a \ and the letter “s” collocated in the text. We begin our discussion
of specific metacharacters in Section 2.3.

All nonliteral RegEx elements are some kind of metacharacter. It is good to keep this distinction
clear, as I also make references to character when I want to discuss the actual string values or the
results of metacharacter use.

Special Character
A special character is one of a limited set of ASCII characters that affects the structure and
behavior of RegEx patterns. For example, opening and closing parentheses, (and), are used to
create logical groups of characters or metacharacters in RegEx patterns. These are discussed
thoroughly in Section 2.2.

RegEx Pattern Processing
At this juncture, it is also important to clarify how RegEx are processed by SAS. SAS reads each
pattern from left to right in sequential chunks, matching each element (character or metacharacter)
of the pattern in succession. If we want to match the string “hello”, SAS searches until the first
match of the letter “h” is found. Then, SAS determines whether the letter “e” immediately follows,
and so on until the entire string is found. Below is some pseudo code for this process, for which the
logic is true even after we begin replacing characters with metacharacters (it would simply look
more impressive).

Pseudo Code for Pattern Matching Process

START IF POS = “h” THEN POS+1 NEXT ELSE POS+1 GOTO START
IF POS = “e” THEN POS+1 NEXT ELSE POS+1 GOTO START
 IF POS = “l” THEN POS+1 NEXT ELSE POS+1 GOTO START
 IF POS = “l” THEN POS+1 NEXT ELSE POS+1 GOTO START
 IF POS = “o” THEN MATCH=TRUE GOTO END ELSE POS+1 GOTO START
END

In this pseudo code, we see the START tag is our initiation of the algorithm, and the END tag denotes
the termination of the algorithm. Meanwhile, the NEXT tag tells us when to skip to the next line of
pseudo code, and the GOTO tag tells us to jump to a specified line in the pseudo code. The POS tag
denotes the character position. We also have the usual IF, THEN, and ELSE logical tags in the code.

Again, this example demonstrates the search for “hello” in some text source. The algorithm initiates by
testing whether the first character position is an “h”. If it is not true, then the algorithm increments the
character position by one—and tests for “h” again. If the first position is an “h”, the character position is
incremented, and the code tests for the letter “e”. This continues until the word “hello” is found.

2.1.1 RegEx Test Code
The following code snippet enables you to quickly test new RegEx concepts as we go through the
chapter. As you learn new RegEx metacharacters, options, and so on, you can edit this code in an effort
to test the functionality. Also, more interesting data can be introduced by editing the datalines portion
of the code. However, because we haven’t yet discussed the details of how the pieces work, I discourage

12 Introduction to Regular Expressions in SAS

making edits outside the marked places in the code in order to avoid unforeseen errors arising at run
time.

To keep things simple, we are using the DATALINES statement to define our data source and print the
source string and the matched portion to the log. This should make it easier to follow what each new
metacharacter is doing as we go through the text. Notice that everything is contained in a single DATA
step, which does not generate a resulting data set (we are using _NULL_). The first line of our code is an
IF statement that tests for the first record of our data set. The RegEx pattern is created only if we have
encountered the first record in the data set, and is retained using the RETAIN statement. Afterward, the
pattern reference identifier is reused by our code due to the RETAIN statement. Next, we pull in the data
lines using the INPUT statement that assumes 50-character strings. Don’t worry about the details of the
CALL routine on the next line for now. We start writing SAS code in Chapter 3.

Essentially, the CALL routine inside the RegEx Testing Framework code shown below uses the
RegEx pattern to find only the first matching occurrence of our pattern on each line of the datalines
data. Finally, we use another IF statement to determine whether we found a pattern match. If we did, the
code prints the results to the SAS log.

/*RegEx Testing Framework*/
data _NULL_;
if _N_=1 then
do;
 retain pattern_ID;
 pattern="/METACHARACTERS AND CHARACTERS GO HERE/"; /*<--Edit the pattern
here.*/
 pattern_ID=prxparse(pattern);
end;
input some_data $50.;
call prxsubstr(pattern_ID, some_data, position, length);
if position ^= 0 then
 do;
 match=substr(some_data, position, length);
 put match:$QUOTE. "found in " some_data:$QUOTE.;
 end;
datalines;
Smith, BOB A.
ROBERT Allen Smith
Smithe, Cindy
103 Pennsylvania Ave. NW, Washington, DC 20216
508 First St. NW, Washington, DC 20001
650 1st St NE, Washington, DC 20002
3000 K Street NW, Washington, DC 20007
1560 Wilson Blvd, Arlington, VA 22209
1-800-123-4567
1(800) 789-1234
;
run;

Chapter 2: Getting Started with Regular Expressions 13

Note: I have provided a jumble of data in the datalines portion of the code above. However, feel free to
edit the data lines to thoroughly test each metacharacter as we go through this chapter.

Figure 2.1 shows an example of the SAS log output provided by the previous code. For this example, I
used merely the character string /Street/ for the pattern in order to create the output.

Figure 2.1: Example Output where, pattern=/Street/

The remaining information in this chapter provides a solid foundation for building robust, complex
patterns in the future. Each element discussed is an independently useful building block for sophisticated
text manipulation and analysis capabilities. Once we begin to combine these basic elements, we will
create some very powerful analytic tools.

2.2 Special Characters
In addition to / (the forward slash), the characters () | and \ (the backslash) are special and are thus
treated differently than the RegEx metacharacters to be discussed later. Since some of these special
characters are so fundamental to the structure of the RegEx pattern construction, we need to briefly
discuss them first.

()
The two parentheses create logical groups of pattern characters and metacharacters—the same way
they work in SAS code for logic operations. It is important to create logical groupings in order to
construct more sophisticated patterns. Nesting the parentheses is also possible.

|
The vertical bar represents a logical OR (much like in SAS). Again, the proper use of this element
creates more sophisticated patterns. We will explore some interesting ways to use this character,
starting with the example in Table 2.1. It is important to remember that the first item in an OR
condition always matches before moving to the next condition.

\
The backslash is a tricky one as it has a couple of uses. It is used as an integral component of many
other metacharacters (examples abound in Section 2.3). Think about it as an initiator that tells SAS,
“Hey, this is a metacharacter, not just some letter.” But that’s not all it does. Since the special
characters defined above also appear in text that we might want to process, the backslash also acts as
a blocker that tells SAS, “Hey, treat this special character as just a regular character.” By using \, we
can create patterns that include parentheses, vertical bars, backslashes, forward slashes, and more—
we simply add a \ in front of each occurrence of all the special characters that we want to treat as
characters. For example, if we want our pattern to include open and closed parentheses respectively,
the pattern would contain \(\).

14 Introduction to Regular Expressions in SAS

Since you haven’t learned any RegEx metacharacters yet, let’s revisit strings using some of these new
concepts. Notice that we can already start to match useful patterns with the characters and special
characters.

Table 2.1: Examples using (), |, and \

Usage Matches

/(C|c)at/ “Cat” “cat”

/cat|mouse/ “cat” “mouse”

/((S|s)treet)|((R|r)oad)/ “Street” “street” “Road” “road”

/\(This\)|\(That\) / “(This)” or “(That)”

Note: In Perl parlance, \ is known as an escape character. To avoid any unnecessary confusion, we will
dispense with this lingo and just refer to it as the backslash. However, be prepared to see that term
used quite a bit in the Perl literature and on community websites.

Now, there are some additional special characters that also need the backslash in front of them in order
to be matched as normal characters. They are: { } [] ^ $. * + and ?. All these characters are reserved and
are thus treated differently, because they each have a special purpose and meaning in the world of
RegEx. Since each one is defined and discussed at length in Sections 2.4 and 2.5, we will not discuss
them further here. For now, just remember that they can’t be used as part of pattern strings without the
backslash immediately preceding them. Table 2.2 shows a few examples of how to use them as normal
characters.

Table 2.2: Examples using { } [] ^ $. * +

Usage Matches

/\$1\.00 \+ \$0\.50 = \$1\.50/ “$1.00 + $0.50 = $1.50”

/2*3 = 6/ “2*3 = 6”

/\[2\]\^2/ “[2]^2”

/\{1,2,3,4,5\}/ “{1,2,3,4,5}”

Note: Notice that = and , match as characters (i.e., without a backslash) because they are not considered
special characters.

Chapter 2: Getting Started with Regular Expressions 15

2.3 Basic Metacharacters
As you write RegEx patterns in the future, you will find yourself using most of the metacharacters
discussed in this section frequently because they are fundamental elements of RegEx pattern creation.
Now, we can already build some useful patterns with the information discussed in Section 2.1. However,

the metacharacters in this section create the greatest return on time investment due to how flexible and
powerful they can make RegEx patterns.

Notice as we go through the examples how we can obtain some unexpected results. It is important to be
very strategic when using some of these RegEx metacharacters as you don’t always know what to expect
in the text that you are processing. Even when you know the source quite well, there are inevitably errors
or unknown changes that can wreck a poorly designed pattern. So, like any good analyst, you need to be
thinking a few steps ahead in order to maintain robust RegEx code.

Note: Unlike SAS, all RegEx metacharacters are case sensitive, as you will see shortly. If a letter is defined
here as lowercase or uppercase, then it MUST be used that way. Otherwise, your programs will do
something very different from what you expect. In other words, even though you can be lazy with
capitalization when writing SAS code (e.g., DATA vs. data), the same is not true here.

2.3.1 Wildcard
The wildcard metacharacter, which is a period (.), matches any single character value, except for a
newline character (\n). The ability to match virtually any single character will prove useful when you are
searching for the superset of associated character strings. You might also want to use it when you have
no idea what values might be in a particular character position. Table 2.3 provides examples.

Table 2.3: Examples using .

Usage Matches

/R.n/ “Ran” “Run” “R+n” “R n” “R(n” “Ron” …

/.un/ “Fun” “fun” “Run” “run” “bun” “(un” “-un” …

/Street./ “Street.” “Street,” “Streets” “Street+” “Street_”…

Note: The period matches anything except the newline character (\n)—including itself. This can be helpful,
but must be used wisely. Also note, only \n matches the newline character.

2.3.2 Word
The metacharacter \w matches any word character value, which includes alphanumeric and underscore
(_) values. It matches any single letter (regardless of case), number, or underscore for a single character
position. But do not be fooled by the underscore inclusion; \w does NOT match hyphens, dashes, spaces,
or punctuation marks. Table 2.4 provides examples.

16 Introduction to Regular Expressions in SAS

Table 2.4: Examples using \w

Usage Matches

/R\wn/ “Ran” “Run” “Ron” …

/\wun/ “Fun” “fun” “Run” “run” “Bun” “bun” “_un” …

/Street\w/ “Streets” “Street_”

Note: The \w wildcard should not have any unintentional spaces before or after it. Such spaces result in the
pattern trying to match those additional spaces in addition to the \w. (This goes for any RegEx
metacharacter.)

2.3.3 Non-word
The metacharacter \W matches a non-word character value (i.e., everything that \w doesn’t include,
except for the ever-elusive \n). The \W metacharacter is valuable when you are unsure what is in a
character cell but you know that you don’t want a word character (i.e., alphanumeric and _). Table 2.5
provides examples.

Table 2.5: Examples using \W

Usage Matches

/Washington\W/ “Washington.” “Washington,” “Washington;”…

/D\WC\W/ “D.C.” “D,C.” “D C.” “D C “ …

/Street\W/ “Street.” “Street,” “Street+” …

Note: You will continue to see lowercase and uppercase versions of these RegEx characters acting as near
opposites, with some exceptions. It might not be overly clever, but does help simplify matters.

2.3.4 Tab
The metacharacter \t matches only the tab character in a string. Unlike the RegEx characters to follow,
this metacharacter matches only the tab whitespace character. This is especially useful when the tab
holds some special significance, such as when you are processing tab-delimited text files. Table 2.6
provides examples.

Table 2.6: Examples using \t

Usage Matches

/SAS\t/ “SAS ”

/SAS\tInstitute\tInc/ “SAS Institute Inc”

/Street\t/ “Street ”

Chapter 2: Getting Started with Regular Expressions 17

Note: This metacharacter does not have an opposite (i.e., \T does not exist).

2.3.5 Whitespace
The metacharacter \s matches on a single whitespace character, which includes the space, tab, newline,
carriage return, and form feed characters. You must include this when you are matching on anything in
text that is separated by white space, and you are unsure of which will occur. Table 2.7 provides
examples.

Table 2.7: Examples using \s

Usage Matches

/SAS\s/ “SAS ” “SAS ”

/SAS\sInstitute\sInc/ “SAS Institute Inc” “SAS Institute Inc”

/Street\s/ “Street ” “Street “

Note: This form of the \s metacharacter matches only one whitespace character. We review how to find
multiple matches in Section 2.5.2 because that is frequently needed when you are matching text.

2.3.6 Non-whitespace
The metacharacter \S matches on a single non-whitespace character—the exact opposite of \s. This
metacharacter is often used to account for unexpected dashes, apostrophes, commas, and so on, that
might otherwise prevent a match. Table 2.8 provides examples.

Table 2.8: Examples using \S

Usage Matches

/Leonato\Ss/ “Leonato’s” “Leonatoas” “Leonato_s” …

/Washington\S/ “Washingtons” “Washington.” “Washington,” …

/Street\S/ “Street.” “Street,” “Streets” “Street+” “Street_”…

2.3.7 Digit
The metacharacter \d matches on a numerical digit character (i.e., 0–9). This RegEx metacharacter is
probably the most straightforward one as it has a very narrow focus. Just remember that a single
occurrence of \d is for only one character position in any text. In order to capture larger numbers (i.e.,
anything greater than 9), you have to build patterns with multiple occurrences of \d. Table 2.9 provides
examples, but we discuss more sophisticated methods for accomplishing this later in the chapter. (See
“Repetition Modifiers” in Section 2.4.2).

18 Introduction to Regular Expressions in SAS

Table 2.9: Examples using \d

Usage Matches

/\dst/ “1st” “9st” “4st” …

/10\d/ “101” “102” “103” …

/1-800-\d\d\d-\d\d\d\d/ “1-800-123-4567” “1-800-789-3456” …

Note: Just remember that even though your pattern might be correct, the data is not necessarily correct (4st
and 9st don’t make sense!).

2.3.8 Non-digit
The metacharacter \D matches on any single non-digit character. Again, this is the opposite of the
lowercase metacharacter \d. This metacharacter matches on every value that is not a number. Table 2.10
provides examples.

Table 2.10: Examples using \D

Usage Matches

/1\D800\D123\D4567/ “1-800-123-4567” “1.800.123.4567” …

/1560\DWilson\DBlvd/ “1560 Wilson Blvd” “1560_Wilson_Blvd” …

/19\D\D\DStreet/ “19th Street” “19th.Street” “19…Street” …

2.3.9 Newline
The metacharacter \n matches a newline character. It is quite useful for some patterns to know that you
have encountered a new line. For instance, you might be processing addresses in a text file, which often
contain different pieces of information on different lines. Table 2.11 provides examples.

Table 2.11: Examples using \n

Usage Matches

/103 Pennsylvania Ave\. NW,\nWashington, DC 20216/ “103 Pennsylvania Ave. NW,
Washington, DC 20216”

/<html tag>\n/ “<html tag>
” …

/v\ne\nr\nt\ni\nc\na\nl\nt\ne\nx\nt/ “v
e
r
t

brleat
Sticky Note
Marked set by brleat

Chapter 2: Getting Started with Regular Expressions 19

Usage Matches
i
c
a
l
t
e
x
t” …

Note: The test code does not enable us to actually try this metacharacter because it uses data lines, which is
a feature of SAS that intentionally ignores newline characters when typed (i.e., hitting the Enter key
just creates the start of a new data line in the SAS code window). For this reason, newline characters
are not present in data lines for you to read and match on. But have faith, for now, that this one works
as advertised. You will discover ways to process different text sources in the next chapter, enabling
you to process newline characters.

2.3.10 Bell
The metacharacter \a matches an alarm “bell” character. The alarm character falls into a class of non-
printing or invisible characters that are part of the ASCII character set. ASCII was developed long ago
when operating systems used non-printing characters fairly extensively. Today, however, these
characters are relatively uncommon, and most often occur only in files meant for computers to read
rather than humans—since they are not displayed. When encountered, these characters generate an alarm
tone, or “bell,” on a computer’s internal speaker. While they are often associated with errors, they can
also be used to alert users that the end of a file or process has been achieved (e.g., in a system log file).
You can use this metacharacter when you know to expect such a character in a source file. Table 2.12
provides examples.

Table 2.12: Examples using \a

Usage Matches

/\a END OF FILE/ “BEL END OF FILE”

/PROCESS COMPLETED
SUCCESSFULLY\a/

“PROCESS COMPLETED SUCCESSFULLY BEL” …

/\aERROR/ “BELERROR” …

Note: Since the alarm character is a non-printing ASCII character, I am representing its location in the
matching text with the BEL ASCII character. However, remember that such a code does not appear in
our text.

20 Introduction to Regular Expressions in SAS

2.3.11 Control Character
The metacharacter \cA-\cZ matches a control character for the letter that follows the \c. For example, \cF
matches control-F in the source. This is one of several examples where you might be processing less-
often-used file types (i.e., not a file meant for humans to read). Control characters, or non-printing
characters, were once used extensively by transactional computing and telecommunications systems.
These control characters, while not visible in most text editors, are still part of the ASCII character set,
and can still be used by older systems in these regimes. For our examples in Table 2.13, we stick with
the convention that is used for the alarm metacharacter above—the standard ASCII abbreviation is used
despite the fact that they are never actually seen in text.

Table 2.13: Examples using \cA-\cZ

Usage Matches

/\cP/ DEL the non-printing Data Link Escape ASCII control character ^P

/\cB/ STX the non-printing Start of Text ASCII control character ^B

/\cBhello\cC/ STXhelloETX the non-printing Start of Text ASCII control character ^B
followed by the character string “hello” and completed with the non-printing
End of Text ASCII control character ^C

2.3.12 Octal
The metacharacter \ddd matches an octal1 character of the form ddd. It is used to match on the octal code
for an ASCII character for which you are searching. It can be especially useful when you need to find
specific non-printing ASCII characters in a file. The default behavior by SAS is to return the ASCII
character associated with this octal code in the results. Table 2.14 provides examples.

Table 2.14: Examples using \ddd

Usage Matches Notes

/\s\041\s/ “ ! ” This octal code translates to the ! ASCII character.

/\110\105\114\114\117/ “HELLO” This series of octal codes translate to the “HELLO”
string of ASCII characters.

/\s\007\011\s/ “ BELTAB ” These octal codes translate to the two non-printing
ASCII characters BEL and TAB. Refer to our
discussion of the alarm metacharacter in Section 2.3.10
regarding characters that are not displayed.

Note: You will discover how to search for ranges of these values in the next section (Section 2.4). Also note
that the largest ASCII value is decimal 127, octal 177, and hexadecimal 7F.

Chapter 2: Getting Started with Regular Expressions 21

2.3.13 Hexadecimal
The metacharacter \xdd matches a hexadecimal2 character of the form dd. The purpose of our
implementation here is again not about searching through raw hexadecimal files, etc. We are using this
to search for the hexadecimal code associated with the ASCII characters that we want in a source
(manipulation of raw hex data sources is a different book). Table 2.15 provides examples.

Table 2.15: Examples using \xdd

Usage Matches Notes

/\x2B/ “+” This hexadecimal code translates to the + ASCII
character.

/\x31\x2B\x31\x3D\x32/ “1+1=2” These hexadecimal codes translate to the 1+1=2
ASCII characters.

/\x30\x30\x20\x46\x46/ “00 FF” This is a reminder that we can match hexadecimal
numbers stored in ASCII, and that they are not the
same.

2.4 Character Classes
In addition to using the built-in RegEx characters to match patterns, users have the ability to create
custom character matching. This capability is derived via different uses of [and] (square braces). The
square braces essentially create a custom metacharacter, where the items contained between the opening
brace and closing brace are possible match values for a single character cell. In addition to putting a list
characters inside the braces, you can also include metacharacters. Each metacharacter discussed below
includes an example, which includes the use of a metacharacter, and they all have the same match
results. Just for fun, they are all identifying a hexadecimal number range present in the ASCII source file
(stored as ASCII characters in the source file, but representing the range of possible hexadecimal
values).

Note: Remember that some of the components discussed in this section are special characters that must be
escaped with \ in order to be matched in isolation. Specifically, these characters are: ^, [, and].

2.4.1 List
The metacharacter […] matches any one of the specific characters or metacharacters listed within the
braces. Being able to define an unordered list of things that you want to appear in a space is very
convenient, and can sometimes be more convenient than the metacharacters that identify broad classes of
character types. Table 2.16 provides examples.

22 Introduction to Regular Expressions in SAS

Table 2.16: Examples using […]

Usage Matches

/[abcABC]/ “a” “b” “c” “A” “B” “C”

/[0173]/ “0” “1” “3” “7”

/[CcBbRr]at/ “cat” “Cat” “bat” “Bat” “rat” “Rat”

/[\dABCDEF]/ “0” “1” “2” “3” “4” “5” “6” “7” “8” “9” “A” “B” “C” “D”
“E” “F”

2.4.2 Not List
The metacharacter [^…] matches one of anything not listed within the braces, except for the newline
character. Sometimes it is easier to write down what we don’t want rather than what we do. And for that
reason, we might want to use this metacharacter. We can quickly identify the unwanted items and define
them here. Table 2.17 provides examples.

Table 2.17: Examples using [^…]

Usage Matches

/[^abcABC]/ “d” “e” “f” …

/[^0173]/ “2” “4” “5” “6” “8” “9”

/[^Cc]at/ “fat” “Fat” “hat” “rat” “mat” “Hat” …

/[^\WGHIJKLMNOPQRSTUVWX
YZabcdefghijklmnopqrstuvwxyz_]/

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9” “A” “B”
“C” “D” “E” “F”

2.4.3 Range
The metacharacter […-…] matches anything that falls into a range of character values. In other words,
case matters for letters listed in the braces. RegEx, and by extension SAS, understands the inherent order
of letters and numbers. Therefore, we can define any range of numbers or letters to be matched by this
metacharacter. Table 2.18 provides examples.

Table 2.18: Examples using […-…]

Usage Matches

/[f-m]/ “f” “g” “h” “i” “j” “k” “l” “m”

/[1-9]/ “1” “2” “3” “4” “5” “6” “7” “8” “9”

/[a-cA-C]/ “a” “b” “c” “A” “B” “C”

/[\dA-F]/ “0” “1” “2” “3” “4” “5” “6” “7” “8” “9” “A” “B” “C” “D”
“E” “F”

Chapter 2: Getting Started with Regular Expressions 23

2.5 Modifiers
There are two significant things that you probably notice missing from the previous sections, which are
worth further discussion here. First, all of the applicable metacharacters thus far have ignored letter case.
In other words, \w, \S, \D, and . all match on a letter regardless of whether it is lowercase or uppercase.
However, there are situations in which the case of a letter becomes important, but the letter itself is not
known in advance.

Second, we can use a single match character as many times as we like, which creates additional
fuzziness for our matches. However, there is a downside to just typing them out: each occurrence must
exist in order to match the pattern. For instance, if the source text for the \D examples above contained
“19thStreet” with no spaces, we’d never find it by using \D three times. And since the primary goal of
the RegEx capability is to have automated text processing, we need a robust way to make this kind of
matching more flexible.

Over the next two subsections (2.5.1 and 2.5.2), we will work through ways to overcome these
limitations by using modifiers. There are two types of modifiers, case modifiers and repetition modifiers.
Combining them gives us significant robustness and flexibility in real-world RegEx implementations,
and should be considered as fundamental to real-world implementations as the metacharacters that we
have discussed thus far.

2.5.1 Case Modifiers
When performing matches on text, there is the obvious consideration of letter case (upper vs. lower).
Although I have already introduced a rudimentary way to handle this in situations where the letter is
known, there still must be a methodology for accounting for letter case when it is unknown. This section
discusses a variety of approaches to dealing with case matching. Depending on the situation, some
approaches are more convenient than others, while not necessarily being right or wrong.

Lowercase
The metacharacter \l matches when the next character in a pattern is lowercase. This metacharacter
applies only to characters (metacharacters, groups,and so on don’t work). In practice, it is more practical
to simply type the lowercase version of the desired character value, or provide a list of lowercase letters
to match. Table 2.19 provides examples.

Table 2.19: Examples using \l

Usage Matches

/\lStreet/ “street” …

/\s\lS\lA\lS\sInstitute/ “ sas Institute” …

/(\lS|\lF)leet/ “sleet” “fleet” …

24 Introduction to Regular Expressions in SAS

Uppercase
The metacharacter \u matches when the next letter in a pattern is uppercase. It functions exactly as the
lowercase version introduced above (\l), but also applies to uppercase. Table 2.20 provides examples.

Table 2.20: Examples using \u

Usage Matches

/\uinc./ “Inc.” …

/\ustreet|\ust\./ “Street” “St.” …

/\uave\.|\uavenue,/ “Ave.” “Avenue,”

Lowercase Range
The metacharacter \L…\E matches when all the characters between the \L and \E are lowercase. Strings
typed between \L and \E are forced to match on lowercase only, even when they are typed in as capital
letters. However, unlike the \l metacharacter, \L…\E can also contain character classes and repetition
modifiers. Table 2.21 provides examples.

Table 2.21: Examples using \L…\E

Usage Matches

/\L[a-z0-9][a-z0-9][a-z0-9]\E/ “sas” “abc” “123” …

/\LTHESE ARE
LOWERCASE\E/

“these are lowercase”

/\sR\L[a-z][a-z][a-z]\E\s/ “ Read ” “ Road ” “ Rode ” “ Ride ” “ Real ” …

Note: When applying case modifiers to non-alphabet characters, the modifier is ignored. It doesn’t apply to

those characters, so it doesn’t affect the match.

Uppercase Range
The metacharacter \U…\E creates a match when all the characters between the \U and \E are uppercase.
Again, this metacharacter functions the same way as the lowercase version discussed above, but applies
to uppercase. This metacharacter can be useful for identifying acronyms or other text where capital
letters are important. Table 2.22 provides examples.

Table 2.22: Examples using \U…\E

Usage Matches

/\U[a-z][a-z][a-z]\E/ “SAS” “CIA” …

/\U[a-z][a-z][a-z]\E\sInstitute\sInc\W/ “SAS Institute Inc.” …

/\s\Uallcaps\E\s/ “ ALLCAPS ”

Chapter 2: Getting Started with Regular Expressions 25

Note: Notice that other metacharacters are not allowed inside \L…\E or \U…\E metacharacters. In other
words, \w can’t be used to replace the character classes above.

Quote Range
The metacharacter \Q…\E matches all content inside the \Q and \E as character strings, disabling
everything including the backslash character. Metacharacters cannot be used inside \Q…\E. The
functionality provided by this metacharacter is great for searching within strings that contain a
significant number of reserved characters, such as XML, webserver logs, or HTML. Table 2.23 provides
examples.

Table 2.23: Examples using \Q…\E

Usage Matches

/\Q<html tag name>\E/ “<html tag name>”

/\Qf(x) + f(y) = z\E/ “f(x) + f(y) = z”

/\Q<!DOCTYPE HTML> <html lang="en-
US">\E/

“<!DOCTYPE HTML> <html lang="en-US">”

2.5.2 Repetition Modifiers
Repetition modifiers change the matching repetition behavior of the metacharacters and characters
immediately preceding them in a pattern. They can also modify the matching repetition of an entire
group—defined using () to surround the group of metacharacters and characters before the modifier. Just
keep in mind that repetition of the entire group means that it repeats back-to-back (e.g., “haha”), unless
we also modify the individual metacharacters.

Now, there are two types of repetition modifiers, greedy and lazy. Greedy repetition modifiers try to
match as many times as possible within the confines of their definition. Lazy modifiers attempt to find a
match as few times as possible. They have similar uses, which can make the difference between their
results subtle.

Introduction to Greedy Repetition Modifiers
Let’s start by discussing greedy modifiers because they are a little more intuitive to use. As we go
through the examples, it is important to keep in mind that greedy modifiers match as many times as
possible—constantly searching for the last possible time the match is still true. It is therefore easy to
create patterns that match differently from what you might expect.

There is a concept in RegEx known as backtracking, which is the root cause for potential issues with
greedy modifiers (hint: backtracking results in the need for lazy modifiers). As we discuss further when
we examine lazy repetition modifiers, a greedy modifier actually tries to maximize the matches of a
modified pattern chunk by searching until the match fails. Upon that failure, the system then backtracks
to the position where the modified chunk last matched. The processing time wasted with backtracking
for a single match is insignificant. However, as soon as we introduce a few additional factors, this
problem can waste tremendous computing cycles—multiple modified pattern chunks, numerous match

26 Introduction to Regular Expressions in SAS

iterations (think loops), and large data sources. It is important to be mindful of these factors when
designing patterns as they can have unintended consequences.

Greedy 0 or More
The modifier * requires the immediately preceding character or metacharacter to match 0 or more times.
It enables us to generate unlimited optional matches within text. For example, we might want to match
every occurrence of a word root, along with all of its prefixes and suffixes. By allowing the prefixes and
suffixes to be optional, we are able to achieve this goal. Table 2.24 provides examples.

Table 2.24: Examples using *

Usage Matches

/Sing\w*/ “Sing” “Sings” “Singing” “Singer” “Singers” …

/D\W*C\W*/ “DC” “D.C.” “D C “ “D….-!$%^ C.-)*&^%”…

/19\D*Street/ “19th Street” “19thStreet” “19Street” …

/Hello*/ “Hell” “Hello” “Hellooooooooooooo” …

Greedy 1 or More
The modifier + requires the immediately preceding character or metacharacter to match 1 or more times.
The plus sign modifier works similarly to the asterisk modifier, with the exception that it enforces a
match of the metacharacter or character at least 1 time. Table 2.25 provides examples.

Table 2.25: Examples using +

Usage Matches

/Ru\w+/ “Run” “Ruin” “Runt” “Runners” …

/\s\U[a-z]+\E\s/ Words with all letters capitalized, and surrounded by spaces.

/19\D+Street/ “19th Street” “19th.Street” “19…Street” …

/(ha)+/ “ha” “hahahahahahaha” …

Note: Pay special attention to the addition of the \s metacharacter in the second example in Table 2.24. If it
were not present, the pattern would also match only single capital letters at the beginning of words.
By adding \s, the pattern requires a whitespace character to immediately follow the one or more
capital letters, thus eliminating matches on single letters at the beginning of words.

Greedy 0 or 1 Time
The modifier ? creates a match of only 0 or 1 time. The question mark provides us the ability to make the
occurrence of a metacharacter optional without allowing it to match multiple times. This can be effective

Chapter 2: Getting Started with Regular Expressions 27

for matching word pairs that have inconsistent use of dashes or spaces (e.g., short-term vs. short term).
Table 2.26 provides examples.

Table 2.26: Examples using ?

Usage Matches

/1\D?800\D?123\D?4567/ “1-800-123-4567” “18001234567” …

/1560\sWilson\sBlvd\W?/ “1560 Wilson Blvd.” “1560 Wilson Blvd” …

/19th\s?Street/ “19th Street” “19thStreet” …

Greedy n Times
The modifier {n} creates a match of exactly n times. Being able to match on a metacharacter exactly n
number of times is the same as typing that metacharacter out that many times. However, from the
perspective of coding and maintaining the RegEx patterns, using the modifier is a much better approach.
It limits the opportunity for us to make typographical errors when initially creating the RegEx pattern,
and it improves readability when later editing and sharing the patterns. Table 2.27 provides examples.

Table 2.27: Examples using {n}

Usage Matches

/1-800-\d{3}-\d{4}/ “1-800-123-4567” “1.800.123.4567” …

/R\w{4}/ “Round” “Runts” “Ruins” …

/19\D{3}Street/ “19th Street” “19th.Street” “19…Street” …

/(\d{5}-\d{4})|(\d{5})/ “12345-6789” “12345” …

Greedy n or More
The modifier {n,} creates a match at least n times. By ensuring that we can match something at least n
times, we are able to create functionality very similar to the plus modifier. However, we are raising the
minimum number of times that the metacharacter must match. This is quite useful for certain
applications, but must be handled with caution. Also, like the + modifier, we can easily get very long
strings of unanticipated matches due to a single logical error in pattern construction. Table 2.28 provides
examples.

Table 2.28: Examples using {n,}

Usage Matches

/1-800-\d{1,}-\d{2,}/ “1-800-123-4567” “1-800-789-12” …

/\d{3,}-\d{2,}-\d{4,}/ “143-25-7689” “12345689-546545654-9820”…

/19\D{3,}Street/ “19th Street” “19th, Not My Street” …

28 Introduction to Regular Expressions in SAS

Note: Be mindful to not type a space after the comma inside the curly braces. It is easy to do out of habit,
but it will wreck our pattern!

Greedy n to m Times
The modifier {n,m} creates a match at least n, but not more than m times. Creating a match with a
specified range is quite useful for ensuring that data quality standards are being maintained. When
extracting semi-structured data elements such as ZIP codes, birthdates, and phone numbers, it is
important to maintain a certain level of flexibility while also ensuring that the source is within expected
tolerances. For instance, a two-digit year might be accepted in lieu of a four-digit year, but a four-digit
zip would be unacceptable. Table 2.29 provides examples.

Table 2.29: Examples using {n,m}

Usage Matches

/(1-)?8\d\d-\d{3,3}-\d{4,4}/ “1-800-123-4567” …

/\d{1,2}-\d{1,2}-\d{2,4}/ “10-20-1950” “8-30-52” “4-3-1979”…

/Was{1,7}/ “Washington” “Wash” “Waste” “Washing” …

Note: As you can see in the examples above, the {n,m} might not always be the best choice of modifier, but
these examples are meant to demonstrate the flexibility of implementation. For instance, the year in
the second example is allowed to be three digits with this usage. Using an OR clause with the {n}
modifier is a simple fix.

Introduction to Lazy Repetition Modifiers
Now that you are familiar with greedy modifiers, let’s begin examining the lazy ones. In terms of syntax,
they differ from the greedy modifiers only by the addition of a question mark (?). By adding the question
mark immediately after each of the greedy modifiers, we are able to subtly change their behavior—
sometimes in unexpected ways.

In general, lazy modifiers are used to both avoid overmatching and improve performance when
compared to the greedy modifiers. There are situations when matching with greedy modifiers would lead
to either grabbing too much information, or simply slowing down system performance. For instance,
processing semi-structured text files such as HTML or XML is a great example of when lazy modifiers
would come in handy.

Lazy 0 or More
The modifier *? creates a match 0 or more times, but as few times as necessary to create the match. In
some situations, it creates the same matches as does the greedy version. However, in other cases, the
results are very different. To make it clearer, Table 2.30 describes the details of a few examples.

Chapter 2: Getting Started with Regular Expressions 29

Table 2.30: Examples using *?

Usage Matches Notes

/Sing\w*?/ “Sing” This matches only the word “Sing” because the modifier is given
the option to match nothing. And since it is lazy, it will take that
option every time, regardless of whether a word character
immediately follows the “g” in “Sing”.

/Sing\w*?\s/ “Singing ” … Comparing this to the example above, you see that appending the
\s on the pattern creates additional matches. The \s forces the
pattern to continue searching for a match that includes white
space. This could be “Sing “ or many other combinations (similar
to the greedy outcomes).

/(ha)*?/ “” This example demonstrates why we need to be careful with lazy
modifiers. Even when “ha” exists, it is ignored, again because the
modifier has the option to do so. The greedy version of this would
match as many times as the word “ha” occurred back-to-back, with
a minimum of zero times.

Lazy 1 or More
The modifier +? creates a match 1 or more times, but as few times as necessary to create a match. Again,
if it is possible, this matches only once. Table 2.31 provides examples.

Table 2.31: Examples using +?

Usage Matches Notes

/Sing\w+?/ “Singi” This matches only “Sing” plus exactly one word character
following the “g”. Again, by giving the lazy modifier an option to
match the minimum, it will do so every time.

/Sing\w+?\s/ “Singing ” … Again, we see that appending the \s on the pattern creates
additional matches. The \s forces the pattern to continue searching
for a match that includes white space. This could be “Singi “ or
many other combinations (similar to the greedy outcomes).

/(ha)+?/ “ha” This example is less of a cautionary tale than for *?. But it might
still provide undesirable results. Even when “ha” exists numerous
times back-to-back, it matches only the first time, unless an
additional match element follows it. Again, this is because the
modifier has the option to match only once. The greedy version of
this would match as many times as the word “ha” occurred back-
to-back, with a minimum of once.

30 Introduction to Regular Expressions in SAS

Lazy 0 or 1 Times
The modifier ?? creates a match 0 or 1 times, but as few times as necessary to create a match. Unless
forced, this modifier will match 0 times. Table 2.32 provides examples.

Table 2.32: Examples using ??

Usage Matches Notes

/Sing\w??/ “Sing” This matches only the word “Sing” because the modifier is given
the option to match nothing. And since it is lazy, it will take that
option every time, regardless of whether a word character
immediately follows the “g” in “Sing”. The reasoning is the same
as with the *? modifier.

/Sing\w??\s/ “Sings ” … Again, just as with the *? modifier, we see that appending the \s on
the pattern creates additional matches. The \s forces the pattern to
continue searching for a match that includes white space. This
could be “Sings “ or a few other combinations (similar to the
greedy outcomes).

/(ha)??/ “” This example demonstrates why we need to be careful with lazy
modifiers. Even when “ha” exists, it is ignored, again because the
modifier has the option to do so. The greedy version of this would
match as many times as the word “ha” occurred back-to-back.

Lazy n Times
The modifier {n}? creates a match exactly n times. This modifier functions exactly as the greedy
version, making the ? unnecessary. Using this modifier results in no performance enhancement or
change in functionality, which makes it a completely unnecessary addition to the Perl language. It has
been included here for the sake of completeness. Table 2.33 shows that the same examples reveal the
same results.

Table 2.33: Examples using “{n}?”

Usage Matches

/1-800-\d{3}?-\d{4}?/ “1-800-123-4567” “1.800.123.4567” …

/R\w{4}?/ “Round” “Runts” “Ruins” …

/19\D{3}?Street/ “19th Street” “19th.Street” “19…Street” …

/(\d{5}?-\d{4}?)|(\d{5}?)/ “12345-6789” “12345” …

Chapter 2: Getting Started with Regular Expressions 31

Lazy n or More
The modifier {n,}? creates a match, at least n times and as few times as necessary to create a match. This
functions just like the *? or +? modifiers, except that the minimum number of matches is arbitrary.
Again, we see similar behavior resulting from the laziness of the modifier. Table 2.34 provides
examples.

Table 2.34: Examples using {n,}?

Usage Matches Notes

/Sing\w{3,}?/ “Singing” … This usage matches exactly n=3 times. Again, by giving the lazy
modifier an option to match the minimum, it will do so every time.

/0{3,}?\s/ “0000 ” … Now that you have the hang of these modifiers, this example
should be a little more interesting. Appending \s on the pattern still
forces it to match each 0 until the white space is encountered. The
pattern is “anchored” to the first occurrence of a 0, thus capturing
more than the minimum.

/(ha){4,}?/ “hahahaha” Without surrounding information in the pattern, this matches only
the minimum number of times. By having nothing else to force
additional matching, the lazy modifier just stops after the
minimum of n=4.

Lazy n to m Times
The modifier {n,m}? creates a match at least n times, but no more than m times—as few times in that
range as necessary to create the match. It functions like many of the other lazy modifiers discussed thus
far, but it sets a cap on how many times it can match in addition to having an arbitrary minimum. Table
2.35 provides examples.

Table 2.35: Examples using {n,m}?

Usage Matches Notes

/Read\w{1,3}?/ “Ready” … This usage matches the word metacharacter only one time. Again,
by giving the lazy modifier an option to match the minimum, it
will do so every time.

/0{2,5}?\s/ “0000 ” … Again, the pattern is “anchored” to the first occurrence of a 0, thus
capturing the minimum if it exists, up to the maximum.

/\sha(ha){0,6}?/ “ ha” By not having anything after the “anchor” point for the pattern to
match on, there is nothing to force additional matching. The lazy
modifier just stops after the minimum of n=0.

32 Introduction to Regular Expressions in SAS

2.6 Options
Options affect the behavior of the entire RegEx pattern with which they are associated. These behavioral
changes provide benefits ranging from making RegEx creation more convenient, to providing new or
enhanced functionality.

Options occur after the closing slash character, but there is one item of significance that occurs before
the first slash character that we will also discuss—it is not actually an option but this is best place to go
over it. And we are not going to cover all of the options for the same reason we haven’t covered
absolutely all of the metacharacters thus far—this is an introductory text.

2.6.1 Ignore Case
The option //i ignores letter case for the entire pattern, even character strings. This is a great option to
use when we know exactly what words we are searching for, but we don’t want the letter case to be an
issue. Table 2.36 provides examples.

Table 2.36: Examples using //i

Usage Matches

/1600 Pennsylvania Avenue/i “1600 pennsylvania avenue” “1600 PENNSYLVANIA
AVENUE” …

/STREET/i “street” “Street” “STREET” …

/CAPS don’t MaTtEr/i “caps don’t matter” “CaPs DoN’t MATTER” …

2.6.2 Single Line
The option //s forces the dot character (.) to match everything, including the newline character, when it
occurs in the pattern. This can be very helpful to ensure that we don’t miss anything for a particular
character position. Table 2.37 provides examples.

Table 2.37: Examples using //s

Usage Matches

/43rd and Times Square.New York, NY 10036/s “43rd and Times Square
New York, NY 10036” …

/Bob Smith.\d{3}-\d{3}-\d{4}/s “Bob Smith
123-456-7891” …

Chapter 2: Getting Started with Regular Expressions 33

2.6.3 Multiline
The option //m causes ^ and $ to match on more than just the string start and end respectively. Instead,
they match on every newline encountered because the various lines of information are treated as one
continuous line. This enhanced functionality really applies to two metacharacters that we haven’t
covered yet (we’ll discuss them in Section 2.7), so if you need to, feel free to peek ahead and come back
to this one. Table 2.38 provides examples.

Table 2.38: Examples using //m

Usage Matches

/^\w+/m Words at the beginning of a string and words following a
newline character.

/\w+?\s$/m Words immediately before a space and the string end, and
before a space and newline character.

2.6.4 Compile Once
The option //o is known as the compile once option. By having the “o” immediately following the
closing slash, SAS knows to compile that RegEx only once. This option creates a very nice
simplification to SAS code, which I demonstrate by showing updated test code below (see Section 2.1.1
for the original code). Notice how the IF block is removed, and only the two lines that do not include the
RETAIN statement remain. These changes are possible due to the compilation happening the first time
through the DATA step. Every subsequent loop through reuses the previously compiled expression, if it
exists.

Updated Test Code
/*RegEx Testing Framework*/
data _NULL_;
*if _N_=1 then
*do;
* retain pattern_ID;
* pattern="/Run/"; /*<--Edit the pattern here.*/
* pattern_ID=prxparse(pattern);
*end;
pattern="/Run/o"; /*<--Edit the pattern here.*/
pattern_ID=prxparse(pattern);
input some_data $50.;
call prxsubstr(pattern_ID, some_data, position, length);
if position ^= 0 then
 do;
 match=substr(some_data, position, length);
 put match:$QUOTE. "found in " some_data:$QUOTE.;
 end;
datalines;
Smith, BOB A.

34 Introduction to Regular Expressions in SAS

ROBERT Allen Smith
Smithe, Cindy
103 Pennsylvania Ave. NW, Washington, DC 20216
508 First St. NW, Washington, DC 20001
650 1st St NE, Washington, DC 20002
3000 K Street NW, Washington, DC 20007
1560 Wilson Blvd, Arlington, VA 22209
1-800-123-4567
1(800) 789-1234
;
run;

2.6.5 Substitution Operator
While the substitution operator s// is not technically an option, it belongs here if only because it truly
stands apart from the other items discussed in this section. Although the substitution operation is similar
in appearance to the other options, it fundamentally changes the RegEx activity from a matching
operation to a match-and-replace operation. Placing “s” in front of the surrounding slashes (//) signifies
that the pattern is being used to replace the text being matched and insert the accompanying replacement
text. This operator is another peek at additional functionality that is explored in the next chapter with
SAS functions. Once a pattern is matched, we can then do a variety of things with that information. A
great analogy for how this works in practice is the find-and-replace functionality provided by many word
processing applications—except this is much more powerful. Also, notice that there is a third slash in the
examples below (in the middle of the patterns). That additional slash denotes where the matching portion
of the RegEx ends and the replacement portion begins. And notice something important in the last
example: everything is a string literal. That’s right, all the characters that occur between the second and
third slash are treated as just characters. Table 2.39 provides some examples, but we cover this in detail
in the next chapter, where we also discuss how to insert more than just character strings.

Table 2.39: Examples using s//

Usage Matches Replaces with

s/Stop/Go/ “Stop” “Go”

s/Sing/Read/ “Sing” “Read”

s/1\s?\(800\)\s?-\s?/1-800-/ “1 (800) - ” … “1-800-”

Note: This is a more advanced function that our test code is not set up to handle. You’ll just need to accept it
as true until we use it with some SAS code in the next chapter.

2.7 Zero-width Metacharacters
Zero-width characters, often called positional characters, are not matched in isolation because they do
not have a width. They are used as an additional piece of information for making a proper pattern match.

Chapter 2: Getting Started with Regular Expressions 35

There are numerous examples for how these zero-width characters can be used. For instance, perhaps
you want to match a particular word, but only if it occurs at the beginning of a line.

2.7.1 Start of Line
The metacharacter ^ matches the beginning of a line or string. Depending on the text that we are
processing, we might know a priori that a new line signifies something specific. For example, we might
be looking for the beginning of a new paragraph, which could be denoted by a new line in combination
with a capital letter and no preceding white space. Or we might need to be prepared to match an address
that includes a new line for the city, state, and zip. Table 2.40 provides examples.

Table 2.40: Example using ^

Usage Matches

/^Washington, DC 20007/ “
Washington, DC 20007”

/^\w+\b/ The first word in a string.

Note: This metacharacter is often used as the logical NOT symbol, including within the character class
metacharacters discussed in Section 2.3 and in SAS code. So be careful not to get confused in its
usage when shifting between contexts.

2.7.2 End of Line
The metacharacter $ matches the end of a line or string. There are numerous situations in which this
might become relevant, similar to the reasons for the ^ metacharacter. Table 2.41 provides examples.

Table 2.41: Example using $

Usage Matches

/3000 K Street NW,$/ “3000 K Street NW,
”

/\$\d+?\.\d{2}\s*?$/ “$150.52
”

2.7.3 Word Boundary
The metacharacter \b matches a word boundary. The \b RegEx assertion metacharacter is zero-width
because it actually represents the invisible gap between two characters, with a \w character on one side
and \W on the other. Therefore, when you use this metacharacter, you won’t generate matches that
contain the associated non-word character. Table 2.42 provides examples.

36 Introduction to Regular Expressions in SAS

Table 2.42: Example using \b

Usage Matches

/Street\b/ “Street” from the substrings, “Street,” “Street ” …
But does NOT match from the substring “Streets” etc.

/\b8\d{2}\b/ “800” “888” … from the substrings “(800)” “-888-“ …
But does NOT match from the substrings “18002” …

/\b\U[a-z]+\E\b/ Words in all caps. Without the second \b, the output would
also include single capitalized letters from the front of a
word.

2.7.4 Non-word Boundary
The metacharacter \B matches a non-word boundary (i.e., anywhere \b does not match). This is
especially useful for matching root words or substrings without including the surrounding pieces of
information. Table 2.43 provides examples.

Table 2.43: Examples using \B

Usage Matches

/read\B/ “read” from the substrings, “reads” “reading” “reader” …
But does NOT match from the substring “read”

/\Bun\b/ “un” from the substrings, “fun ” “rerun.” “gun,” …
But does NOT match from the substring “un”

/\b[a-zA-Z]{3,}\b/ Any word longer than three letters.

2.7.5 String Start
The metacharacter \A matches the beginning of a string. Similar to the word boundary metacharacter
(\b), \A occurs between two character cells. It also denotes when a string value occurs to its right with
nothing to its left. In the context of data lines (as in our test code for this chapter), that situation occurs at
the beginning of each line.

However, suppose we had a more complex task such as stitching together multiple strings of extracted
text (stored in SAS variables). In this context, \A could be a key to determining in what order to place or
sort them. However, for our test code, the \A matches only on the beginning of each data line, since each
line is identified as the beginning of the string. So, this is another one that you have to approach with a
little bit of faith until we start doing some more interesting tasks in the next chapter. Table 2.44 provides
examples.

Chapter 2: Getting Started with Regular Expressions 37

Table 2.44: Examples using \A

Usage Matches

/\A\w*?\s/ The first word of a line. In the case of our test code, it
matches:
“ROBERT ” from line 2;
“103 ” from line 4;
“508 ” from line 5;
“650 ” from line 6;
“3000 ” from line 7;
and “1560 ” from line 8.

2.8 Summary
We have explored a variety of interesting new concepts in this chapter, and I’ve been doing my utmost
to make them tangible along the way. Hopefully, you are now ready to tackle the challenge of
implementing these concepts in SAS code in the coming chapters. Following are some takeaways you
should keep in mind for the coming pages and beyond.

Flexibility
It should have become clear through reading this chapter that there are many ways to accomplish the
same task, making few of them truly right or wrong. You have to decide the most efficient and effective
approach for accomplishing your goals to determine what is best for a given situation.

Scratching the Surface
We have only begun to scratch the surface of what RegEx can do. The information you have learned
thus far is a solid foundation upon which you can develop sophisticated functionality.

Start Small
As we have explored a variety of RegEx capabilities throughout this chapter, it is easy to become
overwhelmed with attempting to do too much at once. As with anything, it is best to start small by
experimenting with simple patterns and iteratively evolve them. And remember that leveraging just a
few of the elements we have covered can have a tremendous impact on the processing and analysis of
textual information.

38 Introduction to Regular Expressions in SAS

1 Octal is a number system that uses base-8 instead of base-10. This system has only numbers 0–7 represented.

Some old microcontrollers and microprocessors used this encoding, but it is extremely rare today.
2 Hexadecimal is a number system that uses base-16 instead of base-10. The possible values go from “0” to “F”

in a single character position (where A=10, B=11, …, F=15).

Chapter 3: Using Regular Expressions in SAS

3.1 Introduction .. 39
3.1.1 Capture Buffer ... 39

3.2 Built-in SAS Functions .. 40
3.2.1 PRXPARSE ... 40
3.2.2 PRXMATCH .. 42
3.2.3 PRXCHANGE .. 43
3.2.4 PRXPOSN ... 46
3.2.5 PRXPAREN ... 47

3.3 Built-in SAS Call Routines ... 49
3.3.1 CALL PRXCHANGE ... 50
3.3.2 CALL PRXPOSN ... 54
3.3.3 CALL PRXSUBSTR .. 56
3.3.4 CALL PRXNEXT ... 57
3.3.5 CALL PRXDEBUG .. 59
3.3.6 CALL PRXFREE ... 62

3.4 Summary ... 63

3.1 Introduction
This chapter is focused on developing your understanding of built-in SAS functions and call routines,
and on starting to do some real SAS coding. Here, you will learn the mechanics of how to implement the
wonderful RegEx metacharacters introduced in Chapter 2. Each function or call routine introduced has
associated examples to ensure that their use is clear. We also briefly discuss how each is useful.

3.1.1 Capture Buffer
Now, before we go any farther, we have to address a concept called the capture buffer. The capture
buffer is a more advanced technique that I have avoided delving into thus far, but it must be understood
so that you can use some functions (required for PRXPAREN and PRXPOSN, but optional for
PRXCHANGE). As you should recall from Chapter 2, parentheses create logical groupings within a
RegEx, but they also do something more interesting. For every set of parentheses used in a particular
RegEx pattern, a slot in a memory buffer is created. This slot in memory is then referenceable just like

40 Introduction to Regular Expressions in SAS

any variable (a more experienced programmer can think of it like a pointer buffer). Each slot is created
in sequential order of parentheses pair occurrence and is referenced accordingly using the $ sign.

For example, the RegEx s/(The) (cat) (is) (fat)/$4 $3 $1 $2/ creates the output “fat is The cat”. Now,
imagine applying that same ability to unknown data elements instead of just to string literals. This could
become a very powerful capability for standardizing or restructuring data to meet specific needs.

3.2 Built-in SAS Functions
In this section, we cover the SAS functions for performing RegEx operations. SAS functions for RegEx
have the same usage limitations as other built-in functions. (See SAS documentation.) Also just like all
other functions, they can only take arguments and return output in assignment statements and
expressions.

Note: Each RegEx function has PRX at the beginning, which represents Perl-Regular-eXpressions.

3.2.1 PRXPARSE

Description
This function takes a RegEx pattern as input and provides a numerical RegEx pattern identifier as
output. The unique pattern identifier is used by other functions and call routines to reference the pattern.
This function should look familiar since we used it in our example code in Chapter 2.

Syntax
RegEx_ID = PRXPARSE (RegEx)

RegEx: The pattern to be parsed (input argument, required)

RegEx_ID: Unique numerical RegEx identifier returned by PRXPARSE (output, required)

Now, it is important to understand at this point that PRXPARSE compiles the RegEx in order to create
the identifier for SAS to later reference and use. And this is what makes the RegEx //o option so
important when using PRXPARSE in code. The //o option forces SAS to compile the RegEx code once,
creating the RegEx identifier the first time only. When a particular RegEx is intended to be reused on
every loop through the DATA step, we want to leverage this functionality in order to avoid recompiling
the RegEx pattern every time it is encountered in code (i.e., on each iteration of a DATA step). If the
pattern is not definitely going to be used every time through the DATA step (e.g., it’s not defined inside
an IF statement), then we might not want to waste memory maintaining it. In other words, we might not
always want to use the //o option—the decision is about tradeoffs. When you’re dealing with very few of
these patterns or with a small amount of data, the tradeoffs don’t really apply. But when we scale up to a
system using hundreds of patterns, or tens of millions of records, the tradeoffs (speed at the expense of
memory usage) become very important.

Chapter 3: Using Regular Expressions in SAS 41

Example 3.1: Defining Patterns with PRXPARSE
Let’s revisit the last bit of example code from Chapter 2 since it is already familiar. The RegEx below is
defined as /Smith/o, meaning that we are looking for any occurrence of the string literal “Smith” within
the data lines provided. This RegEx is the argument for PRXPARSE, which creates a pattern identifier
that is assigned to the variable pattern_ID. This variable is then passed to the call routine PRXSUBSTR,
which is discussed in the next section. Because you are familiar with the overall function of this code by
now, this need not be a distraction.

The output of this RegEx is presented in Output 3.1. As we expected, the code found every occurrence
of “Smith” regardless of what was surrounding it—including other letters.

/*RegEx Testing Framework*/
data _NULL_;
pattern = "/Smith/o"; /*<--Edit the pattern here.*/
pattern_ID = PRXPARSE(pattern);
input some_data $50.;
call prxsubstr(pattern_ID, some_data, position, length);
if position ^= 0 then
 do;
 match = substr(some_data, position, length);
 put match:$QUOTE. "found in " some_data:$QUOTE.;
 end;
datalines;
Smith, BOB A.
ROBERT Allen Smith
Smithe, Cindy
103 Pennsylvania Ave. NW, Washington, DC 20216
508 First St. NW, Washington, DC 20001
650 1st St NE, Washington, DC 20002
3000 K Street NW, Washington, DC 20007
1560 Wilson Blvd, Arlington, VA 22209
1-800-123-4567
1(800) 789-1234
;
run;

Output 3.1: Log Output of Pattern /Smith/o

42 Introduction to Regular Expressions in SAS

3.2.2 PRXMATCH

Description
PRXMATCH returns the numerical position of the first character in the matched RegEx pattern.
Additionally, it can be used in IF statements to test for a pattern match without a variable assignment,
just like many other familiar SAS functions. The first argument to PRXMATCH is either the RegEx or
RegEx_ID. The second is the source text variable or string literal.

Syntax
Position = PRXMATCH(RegEx_ID or RegEx, Source_Text)

RegEx_ID: Unique RegEx identifier returned by PRXPARSE (input argument, required if RegEx not
used)

RegEx: The pattern to be matched (input argument, required if RegEx_ID not used)

Source_Text: The text variable or literal to be operated upon (input argument, required)

Position: Numerical position variable assignment (output, required)

As we discussed with the PRXPARSE function, RegEx patterns are compiled by SAS for use by other
functions. Therefore, in addition to using the actual RegEx, PRXMATCH is able to leverage the
previously compiled RegEx via the RegEx_ID argument in lieu of the RegEx itself. This allows us to
compile the RegEx once via the PRXPARSE function (using the //o option), minimizing the associated
computing cycles. Such small savings in computing cycles can prove significant when processing large
volumes of text.

The two different methods for leveraging RegEx patterns create significant flexibility in how
PRXMATCH can be used in practice. By not needing to compile the RegEx in advance, PRXMATCH
allows us to embed RegEx patterns throughout our code without the extra memory allocation required to
maintain them for each loop through the DATA step. This is very useful when you are using
PRXMATCH in a dynamic way, such as inside nested IF statements where the RegEx is used only when
certain conditions are true. Depending on the implementation, there are implications for speed as well as
for memory usage.

Example 3.2: Finding Strings in Source Text with PRXMATCH
Let’s try a simple example to see how this function is used in practice. Suppose we want to find a string
such as “Street” in a source text. The code below demonstrates how we print the position of each
occurrence to the log. Obviously, we need to do more than just print the position in practice (such as by
extracting or manipulating the matched text), but this demonstrates the basic functionality of
PRXMATCH.

Chapter 3: Using Regular Expressions in SAS 43

The PRXMATCH function is implemented in this code with the RegEx as the first argument and the
datalines reference address as the second argument. The result is assigned to the variable Position.
The value of Position is then written to the log using the PUT statement.

Count the character positions in the data lines. At what position do we encounter the “S” in “Street” on
the lines in which they occur? Comparing the results to Output 3.2, we see that PRXMATCH is
returning the position of “S” (i.e., the position for the first character in the pattern match).

data _NULL_;
input address $50.;
position = PRXMATCH('/Street/o', address);
if position ^= 0 then
 do;
 put position=;
 end;
datalines;
103 Pennsylvania Ave NW, Washington, DC 20216
508 First Street NW, Washington, DC 20001
650 1st St NE, Washington, DC 20002
3000 K Street NW, Washington, DC 20007
;
run;

Output 3.2: Log Printout for Positions of “Street”

3.2.3 PRXCHANGE

Description
This function searches for the pattern—provided in the first argument by either RegEx_ID or RegEx—
within the source text that is provided in the third argument. The pattern is matched the number of times
given in the second argument, Num_Times. Upon finding each match, the function then returns the
changed text as required by the RegEx. If no match is found, PRXCHANGE returns the original text
unchanged.

Syntax
Output_String = PRXCHANGE(RegEx_ID or RegEx, Num_Times, Input_String)

RegEx_ID: Unique RegEx identifier returned by PRXPARSE (input argument, required if RegEx not
used)

RegEx: The pattern to be matched (input argument, required if RegEx_ID not used)

44 Introduction to Regular Expressions in SAS

Num_Times: Number of times the change is to be applied (input argument, required). -1 forces the
function to make the changes as many times as the pattern occurs in the source text.

Input_String: Input text variable (input argument, required)

Output_String: Output text variable assignment (output, required)

Just like the PRXMATCH function, PRXCHANGE is able to use the actual RegEx pattern or the
RegEx_ID, providing significant flexibility. The preferred use again depends on the desired application.

This function is very useful for data standardization, as you will see in more advanced examples in the
next chapter. We will work through two examples below to demonstrate some more basic functionality
of the PRXCHANGE function, as well as to demonstrate how to leverage the capture buffer concept
introduced earlier.

Example 3.3: Standardizing Data
Data standardization is a relatively simple, yet powerful, capability provided by RegEx in SAS.
PRXCHANGE enables us to scrub our data source to ensure that each occurrence of a word or phrase is
exactly the same (or removed entirely). See Output 3.3 for the results. Data scrubbing becomes
especially important when you are attempting to perform advanced applications such as text mining.

For instance, before doing any analysis of our data, we want to know that each occurrence of the word
“street” is exactly the same. If each occurrence were not identical, we might perform a word frequency
count on a document with invalid results because “street,” “Street,” “St.,” and so on would all be
counted separately. Depending on the eventual use of this information, such problems could prove
disastrous.

data _NULL_;
input address $50.;
text = PRXCHANGE('s/\s+([sS]t(reet)?|st\.)\s+/ St. /o',-1,address);
put text;

datalines;
103 Pennsylvania Ave NW, Washington, DC 20216
508 First St NW, Washington, DC 20001
650 1st St NE, Washington, DC 20002
3000 K Street NW, Washington, DC 20007
;
run;

Output 3.3: Log with Updated Data

Chapter 3: Using Regular Expressions in SAS 45

Note: There are often a number of ways to achieve the same outcome. Understanding the context of an
application will help you determine the best RegEx pattern to use.

Example 3.4: Using the Capture Buffer
Revisiting Example 3.3, suppose we now want to also make the addresses available to a system that
accepts only comma separated values (CSV) files. This is a great opportunity to use the capture buffer.
With only a couple of minor code changes, we can now process the data lines to be CSV ready.

The new line of code uses PRXCHANGE with a more complex RegEx that chunks the address into the
street, city, state, and ZIP code components. And we see that the new line takes the previous output
variable Text as the input argument, instead of address. Doing this allows us to make changes to the
already changed text. If we were to use address, we would merely update the original data lines rather
than building on the prior step.

In reviewing the parentheses elements in the new RegEx, we can see how the four address components
are identified. On that same line, each of the four elements is placed via the buffer reference, with a
comma and space immediately following. Reviewing Output 3.4, we see that the code produces the
expected outcome.

data _NULL_;
input address $50.;
text = PRXCHANGE('s/\s+(Street|street|St|st|st\.)\s+/ St. /o',-1,address);
text2 = PRXCHANGE('s/(.+?),*?\s+?(\w+?),*?\s+?(\w+?)\s+?(\d+?)/$1, $2, $3,
$4/o',-1,text);
put text2;

datalines;
103 Pennsylvania Ave NW, Washington, DC 20216
508 First St NW, Washington, DC 20001
650 1st St NE, Washington, DC 20002
3000 K Street NW, Washington, DC 20007
;
run;

Output 3.4: Corrected Data in the Log

So, what else could we do to the text? A number of things remain to be performed in order to make these
addresses ready for advanced applications. For instance, “Ave” and “1st” should also be standardized.
Building on the example code above is the fastest way to explore the options and become more
comfortable with some of these concepts.

46 Introduction to Regular Expressions in SAS

3.2.4 PRXPOSN

Description
PRXPOSN returns the matched information from specified capture buffers. This RegEx function
requires the RXSUBSTR, PRXMATCH, PRXNEXT, or PRXCHANGE functions to be running before
being used so that the capture buffer can be referenced. Also, RegEx_ID is required rather than the
actual RegEx. Otherwise, PRXPOSN will not work—necessitating the use of PRXPARSE. The N input
argument is numeric and refers to the capture buffer (without $).

Syntax
Text = PRXPOSN(RegEx_ID, N, Source_Text)

RegEx_ID: Unique RegEx identifier returned by PRXPARSE (input argument, required)

N: Integer value of the capture buffer (input argument, required)

Source_Text: The text variable or literal to be operated upon (input argument, required)

Text: Character variable assignment of captured text (output, required)

When we know the exact number of existing capture buffer elements (i.e., N is known), then we can use
PRXPOSN without an issue. However, what happens when the number of elements is different from
what we expect? If there are values in the capture buffer but we make a reference that is larger than those
available (maybe there are three, but we make a reference to number 5), then a missing value is returned.
However, if we reference capture buffer position 0 (N=0), then the entire pattern match is returned
regardless of the buffer length.

The next function, PRXPAREN, is very helpful in creating robust code when you are using the capture
buffers in conjunction with PRXPOSN. It is also important to write robust RegEx patterns to ensure that
you prevent issues from popping up.

Example 3.5: Extracting Data with Capture Buffers
In order to make both the capture buffer concept and this new function more clear, we’re going to walk
through a concrete example. Suppose we want to process addresses for which the structure is well
known and store various pieces in a SAS data set for later use. Since we know the layout of the address,
the capture buffer arrangement and the application of PRXPOSN are both very straightforward.

First, we create the RegEx_ID variable Text by using the PRXPARSE function. Then, we perform a
logical test using the PRXMATCH function in the IF statement. Notice that this is an implicit test of a
match existing (no equal sign is used). If a match of the RegEx exists within the identified text source,
then we assign the various capture buffer values to variables by using PRXPOSN (city, state, and zip).

Output 3.5 displays the values of extract, the data set created in our DATA step. As expected, we
extracted the city, state, and ZIP code from each datalines entry. Later, we’re going to build on this

Chapter 3: Using Regular Expressions in SAS 47

code to create a more sophisticated address extractor that includes the street information as well as the
ability to include 9-digit zips.

data extract;
input address $50.;
text = PRXPARSE('/\s+(\w+),\s+(\w+)\s+(\d+)/o');
 if PRXMATCH(text, address) then
 do;
 city = PRXPOSN(text, 1, address);
 state = PRXPOSN(text, 2, address);
 zip = PRXPOSN(text, 3, address);
 output;
 end;
keep city state zip;
datalines;
103 Pennsylvania Ave NW, Washington, DC 20216
508 First St NW, Washington, DC 20001
650 1st St NE, Washington, DC 20002
3000 K Street NW, Washington, DC 20007
3000 K Street NW, Washington, DC, 20007
;
run;
proc print data=extract;
run;

Output 3.5: PROC PRINT Results

3.2.5 PRXPAREN

Description
This function returns the numerical reference value of the largest capture buffer that contains data. It is
therefore implicitly required that PRXSUBSTR, PRXMATCH, PRXNEXT, or PRXCHANGE be run
prior to this function being used—just like with PRXPOSN. However, the only input argument is the

48 Introduction to Regular Expressions in SAS

RegEx_ID. Simply providing the RegEx is not an option, so this function must be used in conjunction
with the PRXPARSE function.

Syntax
Paren=PRXPAREN(RegEx_ID)

RegEx_ID: Unique RegEx identifier returned by PRXPARSE (input argument, required)

Paren: Numerical reference value of the largest capture buffer (output, required)

Note: Since this function requires a RegEx_ID in lieu of the actual RegEx, it is implied that all precedents
are then forced to use RegEx_ID instead of the RegEx as well—otherwise, PRXPAREN cannot be
used.

What are we really trying to achieve with this function? Since it provides the length of the capture buffer
by telling us the largest buffer position to contain text, we know exactly how many possible buffer
values we can access. Because we know this, we can avoid errors when referencing them in code. It is
worth noting that effective RegEx coding avoids many potential problems. However, it is always best
practice to create fail-safe measures. Additionally, we can use this function to identify which of several
options has been triggered inside the source text.

Example 3.6: Identifying Capture Buffers
Ideally, whenever we want to use the PRXPOSN function, the data that we expect to be available in the
source is available. However, we know that in reality, that is not always the case. So, we have to write
code that can account for a reasonable amount of variability in any data that we might need to process.
We are going to explore an advanced example in the next chapter (see Section 4.2) that leverages the
basic concepts outlined by this example.

Now, suppose we have a pattern with multiple possible matches embedded in it. How do we know which
option allowed the pattern to create a match? In the code below, we see that it is possible to use
PRXPAREN to answer this question. We have a simple pattern with three possible matches: “Dog”,
“Rat”, and “Cat”. Each is encapsulated by parentheses to create a capture buffer location. However,
notice that the entire group is inside yet another set of parentheses. While unnecessary for practical
purposes, this was done to demonstrate how capture buffers are numbered. Also note that this is not the
most efficient way to write such code. We have sacrificed efficiency here in order to clarify how the
buffers work. Notice in our output that “Dog” has a capture buffer of 2 despite being the first item in the
OR list. Why? Because the outer set of parentheses is encountered first by SAS, thus creating a capture
buffer element at position 1.

Chapter 3: Using Regular Expressions in SAS 49

If we were to use PRXPOSN under each IF statement with position 1 in our argument list, we would see
that each of the three cases below would be provided as output (i.e., when “Dog” is true, “Dog” would
be in buffer 1 as well as in buffer 2, and so on). See Output 3.6 for the results.

data _null_;
 RegEx_ID=prxparse('/\b((Dog)|(Rat)|(Cat))\b/o');

 position=prxmatch(RegEx_ID, 'The Cat in the Hat');
 if position then paren=prxparen(RegEx_ID);
 put 'I matched capture buffer ' paren;

 position=prxmatch(RegEx_ID, 'The Rat in the Hat');
 if position then paren=prxparen(RegEx_ID);
 put 'I matched capture buffer ' paren;

 position=prxmatch(RegEx_ID, 'The Dog on the Roof');
 if position then paren=prxparen(RegEx_ID);
 put 'I matched capture buffer ' paren;
run;

As I have indicated, our goal here is to identify which particular capture buffer is used. This allows us to
build more sophisticated functionality in the future, such as conditional information capture or
standardization.

Output 3.6: Log Output

3.3 Built-in SAS Call Routines
In this section, you learn about the PRX call routines available in SAS for performing many of the same
RegEx tasks as the functions previously discussed, as well as some new ones. However, just like with all
other call routines, PRX call routines cannot be used in expressions or assignment statements. The way
they are implemented, and their ultimate functionality, is slightly different when compared to the
functions. These differences are explored more thoroughly in the associated examples.

50 Introduction to Regular Expressions in SAS

3.3.1 CALL PRXCHANGE

Description
This call routine performs the match-and-replace operation similar to that of the PRXCHANGE
function. However, unlike the function version, the call routine must receive a RegEx identifier, without
the option of using the associated RegEx instead. Also, there are some additional routine arguments not
available in the function (result_length and truncation_value). The only required arguments are:
RegEx_ID, Num_Times, and Input_string. All remaining arguments are optional.

Syntax
CALL PRXCHANGE(RegEx_ID, Num_Times, Input_string, Output_string,
result_length, trunc_value, num_changes)

RegEx_ID: Unique RegEx identifier returned by PRXPARSE (input argument, required)

Num_Times: Number of times the change is to be applied (input argument, required)

Input_string: Input text variable (input argument, required)

Output_string: Output text variable (input argument, optional). Default is Input_string.

result_length: Length of the characters put into Output_string (returned value, optional)

Trunc_value: Binary integer (0 or 1 only) value (returned value, optional). 1 means that the inserted text
is longer than the text replaced. 0 means that the inserted text is either the same length or shorter than
the text being replaced.

num_changes: The number of times the changes were made (returned value, optional)

Using the call routine in lieu of the function can often be cleaner from a coding perspective, especially
when managing large programs. But there is a more practical reason for using this call routine instead
of the function: accessing the additional functionality provided by the optional arguments. Since we
have the ability to write changes directly back to the original variable, we can avoid creating new
variables unnecessarily. This is especially useful when applying multiple data standardization filters to
source text.

Note: Writing changes back to the existing variable makes them irreversible in the event of a mistake. So,
while our ultimate use of this functionality requires the overwriting approach for sound memory
management, creating new variables or data sets is ideal when you are still learning. It allows you to
experiment and make mistakes without fear of making permanent changes to source data.

Chapter 3: Using Regular Expressions in SAS 51

Example 3.7: Transforming Data
Let's look at basic usage for making changes to our source text. This is a simple example of how to use
the call routine. Notice how compact this makes our code while maintaining functionality. Output 3.7
demonstrates that we have the anticipated functionality (replacing various forms of ”street” with “St.”).

data _NULL_;
input address $50.;
mypattern = PRXPARSE('s/\s+(Street|street|St|st|st\.)\s+/ St. /o');
CALL PRXCHANGE(mypattern,-1,address);
put address;

datalines;
103 Pennsylvania Ave NW, Washington, DC 20216
508 First St NW, Washington, DC 20001
650 1st St NE, Washington DC 20002
3000 K Street NW, Washington, DC 20007
;
run;

Output 3.7: Results in the SAS Log

Now that we’ve looked at a basic implementation of CALL PRXCHANGE, let’s explore the optional
arguments.

Example 3.8: Redacting Sensitive Data
In this example, we focus on developing your understanding of the optional elements in CALL
PRXCHANGE. As a change of pace, we’re going to develop a basic way to redact sensitive information.
This is a frequent need, especially in the medical field, for protecting Personally Identifiable Information
(PII)1. Now, we’re not going to eliminate all PII from the provided data because we are just
demonstrating the functionality of CALL PRXCHANGE. However, this process is done more rigorously
in the next chapter and on a larger scale.

52 Introduction to Regular Expressions in SAS

In the code below, we start by creating a data set to pass into the DATA step, called example. This data
set contains name, address, and phone number information in various configurations. In the DATA step,
we create a RegEx_ID using PRXPARSE, and then use CALL PRXCHANGE to execute the changes
prescribed by the RegEx. Notice that one RegEx_ID is commented out. The RegEx in that line behaves
very differently from the initial RegEx_ID definition, which allows us to demonstrate the trunc_val and
num_changes options. We use this commented RegEx_ID to create Output 3.8.2. After the DATA step,
we perform a PROC PRINT to create the output shown in both Output 3.8.1 and Output 3.8.2.

data example;
 input text $80.;
 datalines;
Ken can be reached at (801)443-9876
103 Pennsylvania Ave NW, Washington, DC 20216
JP's address is:
650 1st St NE, Washington DC 20002
Carla's information is: (910)998-8762
3000 K Street NW, Washington, DC 20007
Eric can be reached at: (321) 456-7890
508 First St NW, Washington, DC 20001
;
run;

data changed;
 set example;

 *RegEx_ID = PRXPARSE('s/\d+/***NUMBER REMOVED***/o');
 RegEx_ID = PRXPARSE('s/\([1-9]\d\d\)\s?[1-9]\d\d-
\d\d\d\d/*REDACTED*/o');
 Call PRXCHANGE(RegEx_ID, -1, text, text, length, trunc_val,
num_changes);
 put text=;
run;

proc print data=changed;
run;

Simple Insert Results
As we can see in the results below, the phone numbers have been redacted in the original text by using
the value *REDACTED*. The rest of the data set shows our optional variable values. Length is the total
length of the string written to Text (we just wrote back to the old string this time). trunc_val is 0 for
every row because the inserted value is no longer than the original phone numbers. In fact, lines 1, 5, and
7 shrink because the inserted content is shorter. And finally, num_changes records the number of times
the phone numbers were redacted on each line (multiple phone numbers per line would have resulted in
that number occurring in this column).

Chapter 3: Using Regular Expressions in SAS 53

Output 3.8.1: SAS PROC PRINT Results

More Advanced Insert Results
The commented RegEx_ID definition creates very different output for Output 3.8.2—a longer
replacement value that occurs for every group of numbers (***NUMBER REMOVED*** is inserted).
The variables are all the same as in Output 3.8.1, but notice how the values change. For instance,
trunc_val now equals 1 every time a redaction occurred, and num_changes is frequently greater than 1.
Also, notice something else very important about this output: some lines of text are actually truncated!

Remember, the trunc_val variable being set to 1 does not mean that data loss is certainly going to occur.
Instead, it means that it could occur. Think of this as a warning flag telling us, “Hey, keep a look out for
a problem.” And a problem is what we would indeed have for some of these lines of text. The insertion
of longer text pushes all following text to the right (beyond the 80-character length defined for the
variable Text). Now, when there is a significant amount of white space to the right of our text, this
doesn’t result in an issue. However, when there is valuable information to the right of our inserted text,
we will likely have data loss. Regardless how small the loss of data, the integrity of our entire data set is
compromised if we do not design code that avoids this problem. We discuss this concept a bit more in
the next chapter.

54 Introduction to Regular Expressions in SAS

Output 3.8.2: SAS PROC PRINT Results

3.3.2 CALL PRXPOSN

Description
This call routine takes the RegEx_ID provided by PRXPARSE and the numerical capture buffer position
N as inputs. It produces the matching Position and Length as outputs.

Syntax
CALL PRXPOSN(RegEx_ID, N, Position, Length)

RegEx_ID: Unique RegEx identifier returned by PRXPARSE (input argument, required)

N: Integer value of the capture buffer (input argument, required)

Position: Integer value of the character position for the first character in the matched pattern (returned
value, required)

Length: Integer value for the length of the matched pattern (returned value, optional)

This call routine takes in the RegEx_ID (RegEx is not allowed!) and capture buffer, and returns the exact
locations where it occurs in the most recent match. The match results from PRXMATCH,
PRXCHANGE, PRXSUBSTR, or CALL PRXNEXT (discussed in Section 3.3.4) must exist in order for
CALL PRXPOSN to work properly. We then must use the SUBSTR function to extract the identified
text.

Chapter 3: Using Regular Expressions in SAS 55

Example 3.9: Context-specific Algorithm Development
Sometimes it’s useful to condition code behavior on specific words occurring in text. In this example,
you’ll see how the functionality of CALL PRXPOSN can be used in combination with PRXPAREN,
PRXMATCH, PRXPARSE, and SUBSTR to do just that.

First, we create the RegEx_ID by using PRXPARSE, which is then passed to PRXMATCH. If a result
from PRXMATCH exists (i.e., a pattern match is found), then we determine which of the capture buffers
in the pattern is matched via PRXPAREN. The output of PRXPAREN is used as input to the CALL
PRXPOSN routine to create the Position and Length outputs. SUBSTR is then used to extract the
specified text. We then print a message, depending on the buffer position. See the results in Output 3.9.

data _null_;
input text $50.;
 RegEx_ID=prxparse('/((Dog)|(Rat)|(Cat))/o');

 if prxmatch(RegEx_ID, text) then do;
 paren=prxparen(RegEx_ID);
 CALL PRXPOSN(RegEx_ID, paren, position, length);
 buffer = substr(text, position, length);
 put 'I matched capture buffer ' paren 'with ' buffer;
 end;

if paren=2 then put 'I love dogs!';
else put 'I cannot stand a ' buffer'!';

datalines;
The Cat in the Hat
The Rat in the Hat
The Dog on the Roof
;
run;

Output 3.9: Log Output of Code Behavior

I added the additional commentary about cats, rats, and dogs to show a second way to perform
conditioning on the parsed text. Obviously, you could perform more interesting things, and it should be
fun to experiment with in the future. We use this concept in the next chapter to build out some
interesting functionality.

56 Introduction to Regular Expressions in SAS

3.3.3 CALL PRXSUBSTR

Description
This call routine takes RegEx_ID and Source_Text as inputs, and returns Position and Length as outputs.
Using the actual RegEx is not an option.

Syntax
CALL PRXSUBSTR(RegEx_ID, Source_Text, Position, Length)

RegEx_ID: Unique RegEx identifier returned by PRXPARSE (input argument, required)

Source_Text: The text to be operated upon (input argument, required)

Position: Integer value of the character position for the first character in the matched pattern (returned
value, required)

Length: Integer value for the length of the matched pattern (returned value, optional)

This call routine is used extensively in Information Extraction applications like those discussed in
Chapter 4. Since only the position and length of matches are identified by CALL PRXSUBTR, it must
be used in conjunction with a function like SUBSTR in order to extract the actual text.

Example 3.10: Information Extraction
In this example, we revisit the now-familiar example code from Chapter 2. It is a great example of how
you can leverage the CALL PRXSUBSTR in many applications.

The code below creates a RegEx pattern to search for all occurrences of “Smith” in our source text. It
then generates a RegEx_ID using PRXPARSE. The code then uses CALL PRXSUBSTR to search
through source text with the provided pattern and return the position and length of matching text. As you
know by now, this could have been a much more complex pattern, but the simplicity here helps to
highlight the functionality that we are focused on learning. After the call routine, the code checks to see
whether the position variable (Position) is 0, which is the default value indicating that it did not find a
match. If a position does exist, the code proceeds to use SUBSTR to capture text from the source using
the position and length obtained by CALL PRXSUBSTR. Results are then output to the log. See Output
3.10.

data _NULL_;
pattern = "/Smith/o"; /*<--Edit the pattern here.*/
pattern_ID = PRXPARSE(pattern);
input some_data $50.;
CALL PRXSUBSTR(pattern_ID, some_data, position, length);
if position ^= 0 then
 do;
 match = substr(some_data, position, length);
 put match:$QUOTE. "found in " some_data:$QUOTE.;

Chapter 3: Using Regular Expressions in SAS 57

 end;
datalines;
Smith, BOB A.
ROBERT Allen Smith
Smithe, Cindy
103 Pennsylvania Ave. NW, Washington, DC 20216
508 First St. NW, Washington, DC 20001
650 1st St NE, Washington, DC 20002
3000 K Street NW, Washington, DC 20007
1560 Wilson Blvd, Arlington, VA 22209
1-800-123-4567
1(800) 789-1234
;
run;

As we expected, the output shows the various occurrences of “Smith” from within the provided data
lines. This example brings us full circle with the above code, pulling all of the pieces together.

Output 3.10: Log Results for “Smith”

3.3.4 CALL PRXNEXT

Description
This routine searches through Source_Text, between the Start and Stop positions, for the pattern
associated with RegEx_ID. It returns the Position and Length of the location.

Syntax
CALL PRXNEXT(RegEx_ID, Start, Stop, Source_Text, Position, Length)

RegEx_ID: Unique RegEx identifier returned by PRXPARSE (input argument, required)

Start: Numerical constant, variable, or expression containing the starting character position to begin the
search (input argument, required)

Stop: Numerical constant, variable, or expression containing the last character position to use in the
search. If the value is -1, the stop position becomes the last non-blank character position in the source.
(input argument, required)

Source_Text: The text to be operated upon (input argument, required)

Position: Integer value of the character position for the first character in the matched pattern (returned
value, required)

58 Introduction to Regular Expressions in SAS

Length: Integer value for the length of the matched pattern (returned value, required)

This call routine can be used for two applications:

1. searching for a pattern within a defined range

2. searching for a pattern iteratively throughout text, including multiple occurrences per line

The first application of CALL PRXNEXT is a straightforward implementation of the routine’s
parameters. However, the second usage is less apparent from its definition. Therefore, we focus on that
usage of the routine in our example.

Example 3.11: Pattern Matching Multiple Times per Line
Being able to identify a pattern any number of times in a particular line of text is valuable for many
practical applications. For example, performing word frequency counts clearly requires this ability in
order for accurate counts to be obtained.

The code below shows how to use CALL PRXNEXT to identify multiple occurrences of our pattern on
each row from the data-lines source. The pattern is defined to match on any string that is three word
characters (\w) in length and that ends with “un”. The Start and Stop variables are initialized to character
positions 1 and Length(some_data) respectively. These variables must be provided with initial values for
the routine’s first use. However, subsequent calls automatically reset the start position to the character
position immediately following the most recent successful match. This is a fact that we take advantage
of with the DO WHILE loop below. If we were to eliminate the loop portion of code, we would merely
be searching for the pattern in a defined range (use the above application #1), but having the loop allows
us to achieve the desired functionality (use the above application #2). See the results in Output 3.11.

data _NULL_;
input some_data $50.;

pattern = "/\wun/o";
pattern_ID = PRXPARSE(pattern);
start = 1;
stop = length(some_data);

CALL PRXNEXT(pattern_ID, start, stop, some_data, position, length);
 do while (position > 0);
 found = substr(some_data, position, length);
 put "Line:" _N_ found= position= length=;

 CALL PRXNEXT(pattern_ID, start, stop, some_data, position, length);
 end;

Chapter 3: Using Regular Expressions in SAS 59

datalines;
Running Runners who run.
Runners who think running is fun.
"Fun Runs" are not-so-fun runs for me.
Let's run at the next reunion.
;
run;

Log Output of Pattern Match Results
Output 3.11 contains the literal string that was found, its position, and its length. As we should expect by
now, the pattern that is created ignores the surrounding text—which makes the example slightly more
interesting. Review the output (count the character locations in the data lines), and notice that we did
indeed achieve the desire results.

Output 3.11: Log Output of Pattern Match Results

3.3.5 CALL PRXDEBUG

Description
This routine is used to perform debugging of all PRX functions and call routines, and accepts only one
input.

Syntax
CALL PRXDEBUG (ON-OFF)

ON-OFF: Numerical constant, variable, or expression. If it equals 0, then debugging is turned off, but
any positive value turns it on. (input argument, required)

60 Introduction to Regular Expressions in SAS

This routine prints step-by-step output to the log, enabling a low-level understanding of any PRX
program. However, be prepared—this routine can create voluminous output. It is best to use it in a
targeted way at first in order to understand how a specific function or routine is working (or not
working). If we were to use this routine for an entire program, we should be ready to read very large
amounts of procedural output, which is an inefficient approach to diagnosing issues. It is best to perform
gross-level diagnostics using PUT statements and dummy variables, thus narrowing the focus to a
specific code segment before using CALL PRXDEBUG. In practice, this is the fastest approach to
identifying the source of logical errors.

Example 3.12: Debugging the PRXPARSE Function
In keeping with our goal of using the CALL PRXDEBUG in a targeted way to debug code, we are going
to apply it only to the PRXPARSE function in the code below. Notice that we have to turn it on and off
at different points in the code in order to identify the segment to which we want our debug output
limited. See the results in Output 3.12.

data _null_;
input text $50.;

CALL PRXDEBUG(1);
 RegEx_ID=prxparse('/((Dog)|(Rat)|(Cat))/o');
CALL PRXDEBUG(0);
 if prxmatch(RegEx_ID, text) then do;
 paren=prxparen(RegEx_ID);
 CALL PRXPOSN(RegEx_ID, paren, position, length);
 buffer = substr(text, position, length);
 put 'I matched capture buffer ' paren 'with ' buffer;
 end;

 if paren=2 then put 'I love dogs!';
 else put 'I cannot stand a ' buffer'!';

datalines;
The Cat in the Hat
The Rat in the Hat
The Dog on the Roof
;
run;

Debugging Information Printed to the Log
Reviewing the output in Output 3.12, we see that the debugging information for just a single PRX
function can be quite large, thus reinforcing my earlier point about limiting the scope of CALL
PRXDEBUG.

Chapter 3: Using Regular Expressions in SAS 61

The first line denotes compilation of a RegEx within the PRXPARSE function. The next line shows us
the compiled RegEx size and starting location for the lines that follow. Specifically, the size of 26 refers
to the 26 lines of compiled RegEx code (numbers on the left with a trailing semi-colon), and first
refers to the first line of code execution. The numbers in parentheses to the right of each line correspond
to labels for the compiled RegEx (these labels work much like our pseudo code labels in Chapter 2).

Lines 1 through 26 are the compiled steps within our RegEx, and they become easy to follow once we
understand what each represents. For instance, the various OPEN and CLOSE statements correspond to
our opening and closing parentheses; BRANCH corresponds to the OR tests between the inner three
parenthesis pairs; and EXACT is for the string literal match of the associated word. END obviously
means the end of the subroutine.

The remaining output is just the rest of our code running as normal. Should our code be malfunctioning,
we would not likely see such normal output when using CALL PRXDEBUG.

Output 3.12: Debugging Information Printed to the Log

❶ The compilation process begins for the quoted RegEx contained by PRXPARSE.

❷ Notice that each OPEN and CLOSE pair have the same number (OPEN1 and CLOSE1). These
numbers correspond to the numerical value of the capture buffer that was formed by that set of
parentheses.

➌ Each line ends with a number enclosed in parentheses, denoting the next line to jump to from that
line. However, the END tag shows a jump to 0, which takes us out of the subroutine.

➍ The minlen field defines the minimum length for the match to be 3. This information is used by
subsequent functions and routines when using this compiled pattern.

62 Introduction to Regular Expressions in SAS

Moving the placement of our debug routine call should prove to yield some interesting, and potentially
rather long, output. Doing so is the best way to become more familiar with the low-level operations SAS
is performing behind the scenes of our PRX code.

Significant amounts of information can be provided by the PRXDEBUG output, but a much deeper
study of debug output is outside the scope of this text. For more information about debug output and its
meaning, visit the SAS Support website2.

3.3.6 CALL PRXFREE

Description
This call routine releases memory resources associated with a RegEx, using its unique RegEx_ID.
Subsequent references to this identifier return a missing value.

Syntax
CALL PRXFREE(RegEx_ID)

RegEx_ID: Unique RegEx identifier returned by PRXPARSE (input argument, required)

This routine is used to free up memory for a specified RegEx_ID and becomes very important for
managing the memory of large programs. Remember, there is much more happening behind the scenes
of the RegEx_ID construction, despite merely having a numerical identifier. (See CALL PRXDEBUG.)
It can’t be stressed enough that memory management can be a significant problem for large programs if
not handled properly. Although SAS still handles memory cleanup to avoid memory leaks when a
session ends, it is possible to run into memory limitations within a single session. Think very
strategically about which RegEx_IDs—or any other variables for that matter—are necessary for each
chunk of code.

Example 3.13: Releasing Memory with CALL PRXFREE
In order to demonstrate the functionality of CALL PRXFREE, we are revisiting a new version of the
example code for PRXCHANGE. However, instead of printing output as in the original example, we are
going to concern ourselves only with the results related to CALL PRXFREE. (See Output 3.13.)

As we can see in the code below, the PUT statement is used to print the values of Street_RXID and
AddParse_RXID to the log for each run through the DATA step (creating four writes to the log).
However, using the IF statement, we run the CALL PRXFREE routine on the last record to release the
memory associated with both RegEx_IDs. Then, we print the results to the log. This creates a fifth write
to the log, but the values are missing this time because our routine was successful at releasing the
memory allocated for them—making them unrecoverable.

Chapter 3: Using Regular Expressions in SAS 63

data sample;
input address $50.;
datalines;
103 Pennsylvania Ave NW, Washington, DC 20216
508 First St NW, Washington, DC 20001
650 1st St NE, Washington DC 20002
3000 K Street NW, Washington, DC 20007
;
run;

data _null_;
set sample end=last;
Street_RXID = PRXPARSE('s/\s+?(S|s)\w+?\s+/ St. /o');
AddParse_RXID = PRXPARSE('s/(.+?),*?\s+?(\w+?),*?\s+?(\w+?)\s+?(\d+?)/$1,
$2, $3, $4/o');
text = PRXCHANGE(Street_RXID,-1,address);
text2 = PRXCHANGE(AddParse_RXID,-1,text);
put Street_RXID AddParse_RXID;

if last then do;
 CALL PRXFREE(Street_RXID);
 CALL PRXFREE(AddParse_RXID);
 put Street_RXID AddParse_RXID;
 end;
run;

Output 3.13: Log Printout

The missing values displayed for each of the RegEx_ID variables demonstrate that the CALL PRXFREE
routine released all memory associated with both.

3.4 Summary
In this chapter, we have explored the PRX suite of functions and call routines available in SAS for
implementing RegEx patterns. They collectively provide tremendous capability, enabling the advanced
applications that we begin to explore in the next chapter.

64 Introduction to Regular Expressions in SAS

As we have seen throughout the chapter, PRX functions and call routines cannot replace well-written
RegEx patterns, despite providing incredible functionality. Attempting to leverage functions and call
routines with poorly written RegEx patterns is like trying to drive a sports car with no fuel.

Also, while the PRX functions and call routines represent flexible, powerful capabilities to be leveraged
for a wide variety of applications—basic and advanced—they often cannot stand alone. It is important to
leverage them in conjunction with other elements of SAS to develop robust code; a fact that we have
merely had a glimpse of in this chapter. For instance, some very advanced RegEx applications benefit
from the use of MACRO programming techniques (beyond the anticipated skill level of this book).

Now, at this point, we are done. You have all the basic tools in place to make truly useful, robust SAS
programs that leverage regular expressions. However, as promised from the outset, we are going to
really pull everything together via a series of advanced, case-study-style examples in the next chapter.

1 National Institutes of Standards and Technology (NIST) special publication 800-122, April 2010, Guide to

Protecting the Confidentiality of Personally Identifiable Information (PII),
http://csrc.nist.gov/publications/nistpubs/800-122/sp800-122.pdf

2 SAS Support, debug information: https://support.sas.com/rnd/base/datastep/perl_regexp/regexp.debug.html

http://go.sas.com/67098.006
https://support.sas.com/rnd/base/datastep/perl_regexp/regexp.debug.html

Chapter 4: Applications of Regular Expressions in
SAS

4.1 Introduction .. 65
4.1.1 Random PII Generator .. 66

4.2 Data Cleansing and Standardization ... 72

4.3 Information Extraction .. 77

4.4 Search and Replacement .. 80

4.5 Summary ... 83
4.5.1 Start Small .. 83
4.5.2 Think Big .. 83

4.1 Introduction
In this chapter, we explore some real-world applications of RegEx with SAS, demonstrating a wide
variety of scenarios in which we can implement what you have learned thus far. The general categories
that these examples have been placed under do not to imply that we are limited in what we can do (see
Chapter 1), nor do they imply a lack of overlap between some of the examples.

Now, in order to execute some of the applications to follow, we need a good source of addresses, phone
numbers, names, birthdates, and Social Security numbers. Obviously, these sources are hard to come by
for experimentation (that is a lot of personal information!). Therefore, for the sake of practice, I created
some code to randomly generate these more sensitive data items. The code for these random Personally
Identifiable Information (PII) elements is presented below and is not repeated for the applicable
applications. Access to real data sources is always preferable when developing robust code, but the
following random generator does a fair job of inserting some commonly occurring variability into these
elements. Feel free to experiment with it to obtain a different number of records or greater variability.

While all of the examples in this chapter are realistic, there is still room for improvement. However, we
can do only so much in this book. So, at the end of each section, I assign you some homework—
suggested assignments for how to improve the code already provided. These items should prove
especially interesting for the advanced programmers among us.

66 Introduction to Regular Expressions in SAS

4.1.1 Random PII Generator
The following code was developed to provide a set number of randomly generated elements for the
purposes of the following examples. This process is an effort to replicate the kind of data we all see on a
regular basis, PII, without encountering the usual privacy issues associated with it. As we will see in the
code, every effort was made to make these elements feel real. However, it is worth noting that more
advanced techniques (and more efficient techniques) were not employed because of the introductory
nature of this text. If you’re interested, use this code as a baseline to develop a more sophisticated and
efficient random PII generator. Doing so is a great way to support both learning and real-world
development work.

Note: All occurrences of PII shown in the coming pages were generated in a random fashion. Any
resemblance to actual PII is completely coincidental.

A static snapshot of randomly generated data is used below, and it is not guaranteed to be replicated. But
the parameters for any data set created by this code will be the same for any data set. Also, the code uses
a few different methods for creating the various data elements. I want to demonstrate the variety of
methods available to us for doing any task in SAS.

Much of this code is unavoidably long due to the steps taken to create names, addresses, and other
information. Unlike the example code in the previous chapter, all code going forward is more heavily
commented and diagrammed to ensure that you fully understand every element.

/*First, we create datasets for First and Last names*/
data FirstNames; ❶
input Firstname $20.;
/*Common First Names (male and female) in the United States*/
datalines;
JAMES
JOHN
ROBERT
MICHAEL
WILLIAM
DAVID
RICHARD
CHARLES
JOSEPH
THOMAS
CHRISTOPHER
DANIEL
PAUL
MARK
DONALD
GEORGE
KENNETH
STEVEN
EDWARD
BRIAN

Chapter 4: Applications of Regular Expressions in SAS 67

RONALD
ANTHONY
KEVIN
JASON
MATTHEW
MARY
PATRICIA
LINDA
BARBARA
ELIZABETH
JENNIFER
MARIA
SUSAN
MARGARET
DOROTHY
LISA
NANCY
KAREN
BETTY
HELEN
SANDRA
DONNA
CAROL
RUTH
SHARON
MICHELLE
LAURA
SARAH
KIMBERLY
DEBORAH
;
run;

data surnames;
input Surname $20.;
/*Common Last Names in the United States*/
datalines;
SMITH
JOHNSON
WILLIAMS
JONES
BROWN
DAVIS
MILLER
WILSON
MOORE
TAYLOR
ANDERSON
THOMAS
JACKSON
WHITE

68 Introduction to Regular Expressions in SAS

HARRIS
MARTIN
THOMPSON
GARCIA
MARTINEZ
ROBINSON
CLARK
RODRIGUEZ
LEWIS
LEE
WALKER
;
run;

/*Next, we take a simple random sample of a fixed number of names*/
proc surveyselect data=firstnames method=srs n=25 ❷
 out=firstnamesSRS;
run;
proc surveyselect data=surnames method=srs n=25
 out=surnamesSRS;
run;

/*We must create an index value to perform match-merge on later*/
data firstnamesSRS;
set firstnamesSRS;
 Num=_N_;
run;
data surnamesSRS;
set surnamesSRS;
 Num=_N_;
run;

data PII_Numbers;
n = 25; /*Determines the number of records we will create.*/

/*Arrays used for random day creation below*/➌
array x x1-x12 (1:12);
array d d1-d28 (1:28);
array a a1-a30 (1:30);
array y y1-y31 (1:31);
array z z1-z20 (1974:1994);
seed=1234567890123; /*Random Number Seed Value*/

Chapter 4: Applications of Regular Expressions in SAS 69

do i= 1 to n; /*Master Loop for PhoneNumber, Date of Birth, and SSN*/
 Num=i; /*Num is used as a unique index value for dataset merging
later*/
 /*First, we randomly create the number segments*/➍
 CountryCode = Strip(INT(10*rand('UNIFORM')));
 AreaCode =
Compress(INT(10*rand('UNIFORM'))||INT(10*rand('UNIFORM'))||INT(10*rand('UN
IFORM')));
 NextThree =
Compress(INT(10*rand('UNIFORM'))||INT(10*rand('UNIFORM'))||INT(10*rand('UN
IFORM')));
 LastFour =
Compress(INT(10*rand('UNIFORM'))||INT(10*rand('UNIFORM'))||INT(10*rand('UN
IFORM'))||INT(10*rand('UNIFORM')));

 /*Next, we randomly create common separator types*/
 separator = rand('UNIFORM'); ➎
 if separator >= .66 then do;
 PhoneNumber = Compress(CountryCode||'-'||AreaCode||'-
'||NextThree||'-'||LastFour);
 end;
 else if separator >=.33 AND separator <.66 then do;
 PhoneNumber = Compress(CountryCode||'
'||'('||AreaCode||')'||NextThree||'-'||LastFour);
 end;
 else if separator <.33 then do;
 PhoneNumber =
Compress('+'||CountryCode||'.'||AreaCode||'.'||NextThree||'.'||LastFour);
 end;

 /*Social Security Number*/ ➏
 SSN=Compress(INT(10*rand('UNIFORM'))||INT(10*rand('UNIFORM'))||INT(
10*rand('UNIFORM'))||'-'||
 INT(10*rand('UNIFORM'))||INT(10*rand('UNIFORM'))||'-'||

 INT(10*rand('UNIFORM'))||INT(10*rand('UNIFORM'))||INT(10*rand('UNIF
ORM'))||INT(10*rand('UNIFORM')));

 /*Date Of Birth*/
 call ranperk(seed, 1, of x1-x12); ➐
 month=x1;
 if x1=2 then do;
 call ranperk(seed, 1, of d1-d28);
 day=d1;
 end;
 else if x1 in (4,6,9,11) then do;
 call ranperk(seed, 1, of a1-a30);
 day=a1;
 end;
 else if (x1=1|x1=3|x1=5|x1=7|x1=8|x1=10|x1=12) then do;

70 Introduction to Regular Expressions in SAS

 call ranperk(seed, 1, of y1-y31);
 day=y1;
 end;
 call ranperk(seed, 1, of z1-z20);
 year=z1;
 DOB=compress(month||'/'||day||'/'||year);

 output; /*OUTPUT must be made explicit within a DO LOOP*/
end; /*The DATA step only runs once because there is no data.*/

keep Num SSN DOB PhoneNumber; /*The only elements we need for the next
step*/
run;

/*Now we extract the addresses from a file using RegEx*/
data Addresses;
infile 'F:\Introduction to Regular Expressions with
SAS\Chapter_4_Example_Source\addresses.txt' length=linelen lrecl=500 pad;
varlen=linelen-0;

input source_text $varying500. varlen; ➑
pattern = "/^(\d+?)\t(.+)/o";
pattern_ID = prxparse(pattern);
position = PRXMATCH(pattern_ID, source_text);

if PRXMATCH(pattern_ID, source_text) then do;
 Num = PRXPOSN(pattern_ID, 1, source_text) * 1;
 Address = PRXPOSN(pattern_ID, 2, source_text);
end;

keep Num Address;
run;

proc print data=addresses;
run;

/*Now, we create the PII dataset with match-merge*/ ➒
data PII;
merge firstnamesSRS surnamesSRS PII_Numbers addresses;
by num;
drop num;
run;

proc print data=PII;
run;

Chapter 4: Applications of Regular Expressions in SAS 71

❶ We start with an easy way to create pseudo random names, by just creating name data sets using data
lines. It is not elegant or short, but it gets the job done for our purposes.

❷ Here we are sampling the name data sets, using simple random sampling and a sample size of n=25.
The sample size is completely arbitrary and chosen to match the number of other random values
created later in the code.

➌ The arrays are created to ensure that legitimate date values can be created for our arbitrary range of
years. To avoid any complications, we are ignoring leap years (no Feb 29th in the set of
possibilities) and are using an arbitrary set of 4-digit years. The seed value is an arbitrary number.

➍ Now, we construct the phone number by using the RAND function (UNIFORM option) to generate
the individual digits. The INT function takes the integer portion of a value, so multiplying the
random value between 0 and 1 by 10 and applying the INT function yields a single digit between 0
and 9. This method ensures that zero values are not dropped (a leading zero would otherwise not be
held). Other methods can achieve the same outcome, but this is a straightforward implementation
without the need for arrays. The COMPRESS function is used to remove all spaces between the
connected values. However, removing this function is an easy way to make the data messier.

➎ After creating the individual chunks of a phone number, we randomly assign different separator
types in an effort to demonstrate the various representations that might be expected in practice.

➏ Next, we create Social Security numbers (SSNs) by applying the same techniques as with the phone
numbers immediately above. However, we are not randomizing the separator. It is less often an
issue, but you could do it as an extracurricular exercise.

➐ We now build the date of birth (DOB) using the arrays discussed in ➌ and the RANPERK function.
This function creates random permutations of the provided arrays and provides k values from the
results. Other methods could have been employed, but this is a simple approach to create random
date elements within a specific range (i.e., valid dates).

➑ The DATA step for addresses uses some familiar RegEx functionality to extract addresses from a
text file, along with the Num value that allows us to perform a match-merge in the next step.

➒ This final DATA step creates a single data set, PII, from the above elements.

Output 4.1 displays the final data set created by our code, Rand_PII_Generator.sas. As expected, it
contains 25 pseudo-random PII elements to support some of our upcoming examples.

72 Introduction to Regular Expressions in SAS

Output 4.1: Rand_PII_Generator.sas Sample Output

4.2 Data Cleansing and Standardization
As data sets go, the randomly generated data set that we are going to work with is fairly clean. The
simple fact is we can’t explore all of the ways that data can be dirty in the real world (this book would
never end!). However, using some realistic data, we can test our ability to develop RegEx code to
process and clean some common problems in such data sources. This exercise will prepare you to go out
in the real world and tackle virtually anything you encounter because you will have all the necessary
tools in your toolbox.

So, let’s start by reviewing the data elements we need in order to clean and standardize, and what things
we need to check for in such sources.

Chapter 4: Applications of Regular Expressions in SAS 73

Firstname
The person’s first name. This piece of data should contain character values only.

Surname
The person’s last name. This piece of data should contain character values only.

PhoneNumber
The person’s phone number. Phone numbers in different countries are written very differently, so
we must be prepared to properly parse a variety of formats—especially since it is so easy for a
business contact to be from or located in a different country.

SSN
The person’s Social Security number. We should see only segments of numbers separated by dashes
or spaces, and we need to enforce this formatting.

DOB
The person’s date of birth. This can be represented in a few ways, but we primarily see the classic 8-
digit format in the US. European dates represent the day before the month. This is where context is
very important, because it is difficult to detect this format unless the obvious value thresholds are
crossed.

Address
The person’s address. This data has the most natural variability and is the most interesting to parse.
We primarily need to be concerned with abbreviations, punctuation, and ZIP code lengths.

Now, as I hinted at in the last chapter, data cleansing and standardization is accomplished by creating
what amount to filters. These filters are a series of RegEx functions and routines applied in succession so
as to yield incremental changes as each one is applied. Implemented in the correct order, we can clean up
some very messy data for later use. Fortunately for us, the data set created by the PII generator is
relatively tame. But only a few things need to change in order for it to become scary data. Regardless,
there are a few things that we must fix in order to make use of the entire data set in its current state. For
example, when we look at observation 16 from the data set (Output 4.2), we see a few issues with the
address.

Output 4.2: PII Observation 16

In addition to having decimals immediately following the abbreviations for street and avenue, we see
that the & symbol is used. Both these issues will become problematic when we attempt to parse the
address into street, city, state, and zip.

Developing what needs to be fixed in any data set often can’t be done blindly. There are basic things that
we can apply to any data source, such as trimming excess spaces, and so on. However, it is advisable to
pull samples of data in order to understand its quality issues before you develop RegEx patterns for
cleaning.

74 Introduction to Regular Expressions in SAS

In the code below, I created a series of cleansing and standardization steps using PRXPARSE,
PRXMATCH, CALL PRXCHANGE, and PRXPOSN. Notice how clean our code is by using CALL
PRXCHANGE in lieu of the function version.

data CleanPII;
set PII;

ChangeAND = PRXPARSE('s/\x26/and/o'); ❶
ChangeSTR = PRXPARSE('s/\s(St\.|St)/ Street/o');
ChangeAVE = PRXPARSE('s/\s(Ave\.|Ave)/ Avenue/o');
ChangeRD = PRXPARSE('s/\s(Rd\.|Rd)/ Road/o');
ChangeDASH = PRXPARSE('s/\s*(\.|\(|\))\s*/-/o');
ChangePLUS = PRXPARSE('s/\+//o');
ChangeSPAC = PRXPARSE('s/ //o');

/*Cleaning Address*/ ❷
CALL PRXCHANGE(ChangeAND,-1,address);
CALL PRXCHANGE(ChangeSTR,-1,address);
CALL PRXCHANGE(ChangeAVE,-1,address);
CALL PRXCHANGE(ChangeRD ,-1,address);

/*Cleaning Phone Number*/
CALL PRXCHANGE(ChangeDASH,-1,PhoneNumber);
CALL PRXCHANGE(ChangePLUS,-1,PhoneNumber);
CALL PRXCHANGE(ChangeSPAC,-1,PhoneNumber);

/*Cleaning SSN*/
CALL PRXCHANGE(ChangeDASH,-1,SSN);
CALL PRXCHANGE(ChangeSPAC,-1,SSN);

/*Cleaning DOB*/
CALL PRXCHANGE(ChangeSPAC,-1,DOB);

drop ChangeAND ChangeSTR ChangeAVE ChangeRD ChangeDASH ChangePLUS
ChangeSPAC;
run;

data FinalPII;
set CleanPII;

Chapter 4: Applications of Regular Expressions in SAS 75

/*Parsing the address into its discrete parts*/
Addr_Pattern =
PRXPARSE('/^(\w+(\s\w+)*\s\w+),\s+(\w+\s*\w+),\s+(\w+)\s+((\d{5}\s*?-
\s*?\d{4})|\d{5})/o');
 if PRXMATCH(Addr_Pattern, address) then ➌
 do;
 Street = PRXPOSN(Addr_Pattern, 1, address);
 City = PRXPOSN(Addr_Pattern, 3, address);
 State = PRXPOSN(Addr_Pattern, 4, address);
 Zip = PRXPOSN(Addr_Pattern, 5, address);
 end;
drop Addr_Pattern address;
run;

proc print data=finalpii;
run;

❶ First, we create a series of replacement RegEx pattern identifiers using PRXPARSE. We maintain
the “change” naming convention to denote that each identifier represents a RegEx pattern for
changing the source.

❷ Here we apply specific RegEx_ID’s by using the CALL PRXCHANGE routine to clean each of the
variables in different ways.

➌ Finally, we parse the original address data field into its constituent parts: street, city, state, and zip.
The PRXPOSN function grabs each piece of the address by identifying the associated capture
buffer. Notice that we have to skip buffer location 2 because the second bracket set is used for
logical separation inside the first bracket set (which creates buffer location 1). Referencing buffer
location 2 would provide only a subset of the street information we need.

As we can see in Output 4.3, our resulting data set now has clean, standardized data in each field. Such
data makes future analysis and manipulation much easier and more accurate. This exercise should serve
as a nice warm-up for many other such applications.

76 Introduction to Regular Expressions in SAS

Output 4.3: Cleaned and Standardized PII Data Set

Homework

1. Include more standard abbreviations than the few we currently have (e.g., Parkway, Court, and so
on).

2. Standardize two-digit years in the date field.

3. Create a method of handling state abbreviations with decimals.

4. Use CALL PRXFREE to clean up the RegEx_IDs used in the code.

5. Enhance the data set with a Census tract lookup using the address fields.

6. Enhance the RegEx to handle multiple spaces between words, spaces before commas, and
punctuation in unexpected places.

Chapter 4: Applications of Regular Expressions in SAS 77

4.3 Information Extraction
Parsing large volumes of text to generate structured data sets is a common, valuable use of RegEx
capabilities. For example, we might want to collect information from a technology blog or website that
contains valuable customer feedback about our product. Such information could not easily or cheaply be
gathered by hand for the sake of further analysis. Due to the wide variety of possible sources from which
we might need to extract information, as well as the wide array of end goals for the information, there
are a number of approaches to accomplishing this task. Given the proliferation of tag-based languages
such as HTML and XML, we need to be prepared to effectively extract information from them.

Now, due to the semi-structured nature of tag-based languages, they are certainly easier to process than
one might anticipate. All such languages have paired opening and closing tags for defining various
pieces of information. We can leverage this fact to properly dissect them and extract the information we
need.

With more sophisticated techniques at our disposal (like using the SAS macro facility), we could
actually “learn” the embedded data elements and extract the data associated with the discovered
variables. However, emphasis on these techniques is beyond the scope of this book. Therefore, we need
to know the various tags that we are looking for in the XML or HTML source in advance. We will use
this approach to process the XML file in our example.

Going back to the SEC administrative proceedings example from Chapter 1, let’s parse and extract the
information from the associated sample file1.

Figure 4.1: SEC XML Sample

78 Introduction to Regular Expressions in SAS

The primary concern is to effectively extract information from within the known XML tags that contain
data, namely: url, release_number, release_date, and respondents. As you can see in the figure
above, there are some other XML tags in the document, but they aren’t relevant to the task at hand. For
instance, root and administrative_proceeding don’t contain data independent of the previously
mentioned tags. They merely serve administrative functions in the context of XML for properly
organizing the information for consumption by a system that reads XML directly.

data SECFilings;
infile 'F:\Introduction to Regular Expressions with
SAS\Chapter_4_Example_Source\administrative_proceedings_2009.xml'
length=linelen lrecl=500 pad;
varlen=linelen-0;
input source_text $varying500. varlen; ❶
format ReleaseNumber $20. ReleaseDate $20. Respondents $500. URL $500.;
start = 1;
stop = varlen;
Pattern_ID = PRXPARSE('/\<(\w+)\>(.+?)\<\/(\w+)\>/o'); ❷
CALL PRXNEXT(pattern_ID, start, stop, source_text, position, length); ➌
 DO WHILE (position > 0);
 tag = PRXPOSN(pattern_ID,1,source_text);
 if tag='url' then URL = PRXPOSN(pattern_ID,2,source_text);
 else if tag='release_number' then ReleaseNumber =
PRXPOSN(pattern_ID,2,source_text);
 else if tag='release_date' then ReleaseDate =
PRXPOSN(pattern_ID,2,source_text);
 else if tag='respondents' then do;
 Respondents = PRXPOSN(pattern_ID,2,source_text); ➍
 put releasenumber releasedate respondents url;
 output;
 end;
 retain URL ReleaseNumber ReleaseDate Respondents; ➎
 CALL PRXNEXT(pattern_ID, start, stop, source_text, position,
length);
 end;
keep ReleaseNumber ReleaseDate Respondents URL;
run;
proc print data=secfilings;
run;

❶ We begin by bringing data in from our XML file source via the INFILE statement, using the length,
LRECL, and pad options. (See the SAS documentation for additional information about these
options.) Next, using the INPUT statement, the data at positions 1-varlen in the Program Data
Vector (PDV) are assigned to source_text. Because we set LRECL=500, we cannot capture more
than 500 bytes at one time, but we can capture less. For this reason, we use the format $varying500.

❷ Using the PRXPARSE function, we create a RegEx pattern identifier, Pattern_ID. This RegEx
matches on a pattern that starts with an opening XML tag, contains any number and variety of
characters in the middle, and ends with a closing XML tag.

Chapter 4: Applications of Regular Expressions in SAS 79

➌ Just like our example in Chapter 3, we make an initial call the CALL PRXNEXT routine to set the
initial values of our outputs prior to the DO WHILE loop.

➍ Since we are trying to build a single record to contain all four data elements, we have to condition
the OUTPUT statement on the last one of these elements that occurs in the XML—which happens
to be respondents.

➎ The RETAIN statement must be used in order to keep all of the variable values between each
occurrence of the OUTPUT statement. Otherwise, the DO loop will dump their values between each
iteration.

Output 4.4: Sample of Extracted Data

As we can see in Output 4.4, the code effectively captured the four elements out of our XML source.
This approach is generalizable to many other hierarchical file types such as HTML and should be
interesting to explore.

Homework

1. Rearrange the ReleaseDate field to look like a different standard SAS date format.

2. Create a variable named Count that provides the number of Respondents on each row. This will be
both fun and tricky.

80 Introduction to Regular Expressions in SAS

3. Enhance the current RegEx pattern to force a match of a closing tag with the same name. There are
two occurrences in the existing output where a formatting tag called SUB is embedded in the
Respondents field. Our existing code stops on the closing tag for SUB instead of on the closing tag
for respondents. The fix for this is not difficult, but requires more code than you might
anticipate.

4.4 Search and Replacement
The specific needs for search and replace functionality can vary greatly, but nowhere is this capability
more necessary than for PII redaction. Redacting PII is a frequent concern in the public sector, where
information sharing between government agencies or periodic public information release is often
mandated. We revisit the data from our cleansing and standardization example here since it includes the
kinds of information we would likely want to redact. However, in an effort to make this more realistic,
the example data set that we used in Section 4.2 has been exported to a text file. We want to know how
to perform this task on any data source, from the highly structured to the completely unstructured. We
have already worked with structured data sources for this technique, so exploring unstructured data
sources is a natural next step.

Now, before we get into how to perform the redaction, it is worth showing how the TXT file was
created. Despite knowing how it is created in advance, we want to behave as though we have no
knowledge of its construction in order to ensure that we are creating reasonably robust code.

You can see in the code snippet below that we simply take the resulting data set from Section 4.2,
FinalPII, as input via the SET statement. Next, we use the FILE statement to create the TXT file
reference. Once the FILE statement is used, the following PUT statement automatically writes the
identified variables to it.

data _NULL_;
set finalpii;
file 'F:\Introduction to Regular Expressions with
SAS\Chapter_4_Example_Source\FinallPII_Output.txt';
put surname firstname ssn dob phonenumber street city state zip;
run;

Output 4.5 shows the output provided by this code. As we can see, the structure is largely removed,
though not entirely gone. This allows us to more closely approximate what you might encounter in the
real world (which could be PII stored in a Microsoft Word file).

Chapter 4: Applications of Regular Expressions in SAS 81

Output 4.5: PII Raw Text

Now that we have an unstructured data source to work with, we can create the code to redact all sensitive
data elements. The challenge of doing this effectively is that we can’t depend on the structure of
surrounding text to inform the redaction decisions of our code. For this reason, it is important that our
code takes great care to ensure that we properly detect the individual elements before redacting them.

Below is the code that performs our redaction of the PII elements SSN, DOB, PhoneNumber, Street,
City, and Zip. Now, many organizations are allowed to publish small amounts of information that
individuals authorize in advance, such as city or phone number. However, we’re focusing on how to
redact all of them, because keeping a select few is easy. In addition to performing the redaction steps, we
also output the redacted text to a new TXT file. Again, this is an effort to support a realistic use of these
techniques. For instance, many organizations keep donor or member information in text files that are
updated by administrative staff. There are valid reasons for sharing portions of that information either
internally or with select external entities, but doing so must be undertaken with great care. Thus, it is
useful for such files to be automatically scrubbed prior to being given a final review and then shared
with others.

Note: While the following code is more realistic than what we developed in Chapter 3, it still needs to be
improved for robust, real-world applications. The homework for this chapter has some suggestions,
but there is always room for additional refinement.

data _NULL_;
infile 'F:\Introduction to Regular Expressions with
SAS\Chapter_4_Example_Source\FinallPII_Output.txt' length=linelen
lrecl=500 pad;
varlen=linelen-0;
input source_text $varying500. varlen;
Redact_SSN = PRXPARSE('s/\d{3}\s*-\s*\d{2}\s*-\s*\d{4}/REDACTED/o'); ❶

82 Introduction to Regular Expressions in SAS

Redact_Phone = PRXPARSE('s/(\d\s*-)?\s*\d{3}\s*-\s*\d{3}\s*-
\s*\d{4}/REDACTED/o');
Redact_DOB = PRXPARSE('s/\d{1,2}\s*\/\s*\d{1,2}\s*\/\s*\d{4}/REDACTED/o');
Redact_Addr =
PRXPARSE('s/\s+(\w+(\s\w+)*\s\w+)\s+(\w+\s*\w+)\s+(\w+)\s+((\d{5}\s*?-
\s*?\d{4})|\d{5})/ REDACTED, $4 REDACTED/o');
CALL PRXCHANGE(Redact_Addr,-1,source_text); ❷
CALL PRXCHANGE(Redact_SSN,-1,source_text);
CALL PRXCHANGE(Redact_Phone,-1,source_text);
CALL PRXCHANGE(Redact_DOB,-1,source_text);

file 'F:\Introduction to Regular Expressions with
SAS\Chapter_4_Example_Source\RedactedPII_Output.txt';
put source_text; ➌
run;

❶ We create four different RegEx_ID’s associated with the different PII elements that we want to
redact from our source file—SSN, PhoneNumber, DOB, Street, City, and Zip.

❷ We use the CALL PRXCHANGE routine to apply the four different redaction patterns in sequence.

➌ Using the FILE statement, we create an output TXT file for writing our resulting text changes to.
Since we overwrote the original text using the CALL PRXCHANGE routine (i.e., changes were
inserted back into source_text), we need to output only the original variable, source_text, with the
PUT statement.

Figure 4.2: Redacted PII Data

Chapter 4: Applications of Regular Expressions in SAS 83

As we can see in the resulting file of redacted output (Figure 4.2), only the individual’s name and state
are left. The redacting clearly worked, but in this context the resulting information might not be the most
readable. How can we achieve the same goal while making the output easier to read? It’s simple. Instead
of inserting REDACTED we can insert “” (i.e., nothing), which effectively deletes the text. Try it out
and see what happens.

Homework

1. Update the RegEx patterns to allow City to be shown (tricky with two-word names like New
York).

2. Incorporate the results of Section 4.2, Homework item 5 so that the Census tract can be displayed.

3. Use the random PII generator in Section 4.1 to incorporate an entirely new field to then display this
output in.

4. Make this code more robust by incorporating zero-width metacharacter concepts such as word
boundaries (\b) to ensure that word edges are identified properly.

4.5 Summary
In this chapter, we finally put it all together with a series of examples that touch on multiple ways
regular expressions can be used in SAS. Hopefully, they were each motivating, educational, and
useful—and actually helped the prior chapters all make more sense.

We worked through three long-form examples—“Data Cleansing and Standardization”, “Information
Extraction”, and “Search and Replacement”—that address commonly needed capabilities that should be
generalizable to many contexts. These include, but are not limited to: law enforcement, retail, E-
commerce, healthcare, finance, and defense.

At this point, you have all the tools and experience that you need in order to apply this information to
highly complex problems in the real world. But before you do, here are some reminders.

4.5.1 Start Small
It can’t be overstated how beneficial it is to start with a simple task and build from there. By
implementing RegEx capabilities on merely a small segment of a much larger problem, you are able to
more carefully build each element—ultimately ensuring more rapid progress on the overall problem with
less rework. This approach also enables the beginner to develop capabilities without becoming
overwhelmed, which is always important for maintaining momentum on development projects.

4.5.2 Think Big
Though you might be solving a small portion of a larger problem, you always have to think about the big
picture. Always take the time to understand the context surrounding any development effort; the
secondary and tertiary effects of your work can never be fully anticipated. Also, thinking about the
various aspects of any project can help you to anticipate the needs of your RegEx patterns.

84 Introduction to Regular Expressions in SAS

1 The file was downloaded manually from the SEC website, in XML format. The original website source can be

found here: http://www.sec.gov/litigation/admin/adminarchive/adminarc2009.shtml

http://go.sas.com/67098.007

Appendix A: Perl Version Notes
This appendix contains notes about the limitations of the Perl version that is used by SAS 9.41. It is
intended for the Perl experts out there who are wondering about some of the missing pieces within SAS.
The information below was taken directly from the SAS website and is provided here because it is
somewhat difficult information to find but is potentially very useful to the advanced reader of this book.

“The PRX functions use a modified version of Perl 5.6.1 to perform regular expression compilation and
matching. Perl is compiled into a library for use with SAS. This library is shipped with SAS® 9. The
modified and original Perl 5.6.1 files are freely available in a ZIP file from the Technical Support Web
site. The ZIP file is provided to comply with the Perl Artistic License and is not required in order to use
the PRX functions. Each of the modified files has a comment block at the top of the file describing how
and when the file was changed. The executables were given nonstandard Perl names. The standard
version of Perl can be obtained from the Perl Web site.

Only Perl regular expressions are accessible from the PRX functions. Other parts of the Perl language
are not accessible. The modified version of Perl [RegEx] does not support the following items:”2

 All Perl variables, except for the capture buffer variables $1 - $n

 Metacharacters \G, \pP, \PP, and \X

 RegEx options /c and /g, and /e with substitutions

 Named characters (i.e., \N{name})

 Executing Perl code within a regular expression, which includes the syntax (?{code}), (??{code}),
and (?p{code})

 Unicode pattern matching

 Pattern delimiters other than the backslash. For example: ?PATTERN?, !PATTERN!, etc.

 Perl code comments between a pattern and replacement text. For example: s{regexp} #perl
comment {replacement text}

 Using matching backslashes with m/\\\\/ instead of m/\\/ to match a backslash

1 The available Perl RegEx functionality has not changed since SAS 9.1. These notes are current as of the writing
of this book. For the most up-to-date information regarding versioning, please visit the SAS documentation
website at: http://support.sas.com/documentation/
2http://support.sas.com/documentation/cdl/en/lefunctionsref/67239/HTML/default/viewer.htm#p0tw80fkqqpow5
n1f7xwvd6bsonq.htm

http://support.sas.com/documentation/

86 Introduction to Regular Expressions in SAS

Appendix B: ASCII Code Lookup Tables

Non-Printing Characters

Binary Hex Dec Oct
ASCII
Abbr.

Crtl Character
(Command Prompt

Display) Description

0000 0000 00 0 000 NUL ^@ Null Character

0000 0001 01 1 001 SOH ^A Start of Header

0000 0010 02 2 002 STX ^B Start of Text

0000 0011 03 3 003 ETX ^C End of Text

0000 0100 04 4 004 EOT ^D End of Transmission

0000 0101 05 5 005 ENQ ^E Enquiry

0000 0110 06 6 006 ACK ^F Acknowledgment

0000 0111 07 7 007 BEL ^G Bell

0000 1000 08 8 010 BS ^H Backspace

0000 1001 09 9 011 HT ^I Horizontal Tab

0000 1010 0A 10 012 LF ^J Line Feed

88 Introduction to Regular Expressions in SAS

Binary Hex Dec Oct
ASCII
Abbr.

Crtl Character
(Command Prompt

Display) Description

0000 1011 0B 11 013 VT ^K Vertical Tab

0000 1100 0C 12 014 FF ^L Form Feed

0000 1101 0D 13 015 CR ^M Carriage Return

0000 1110 0E 14 016 SO ^N Shift Out

0000 1111 0F 15 017 SI ^O Shift In

0001 0000 10 16 020 DLE ^P Data Link Escape

0001 0001 11 17 021 DC1 ^Q Device Control 1
(oft. XON)

0001 0010 12 18 022 DC2 ^R Device Control 2

0001 0011 13 19 023 DC3 ^S Device Control 3
(oft. XOFF)

0001 0100 14 20 024 DC4 ^T Device Control 4

0001 0101 15 21 025 NAK ^U Negative
Acknowledgment

0001 0110 16 22 026 SYN ^V Synchronous Idle

0001 0111 17 23 027 ETB ^W End of Transmission
Block

0001 1000 18 24 030 CAN ^X Cancel

0001 1001 19 25 031 EM ^Y End of Medium

Appendix B: ASCII Code Lookup Tables 89

Binary Hex Dec Oct
ASCII
Abbr.

Crtl Character
(Command Prompt

Display) Description

0001 1010 1A 26 032 SUB ^Z Substitute

0001 1011 1B 27 033 ESC ^[Escape

0001 1100 1C 28 034 FS ^\ File Separator

0001 1101 1D 29 035 GS ^] Group Separator

0001 1110 1E 30 036 RS ^^[j] Record Separator

0001 1111 1F 31 037 US ^_ Unit Separator

0111 1111 7F 127 177 DEL ^? Delete

Printing Characters

Binary Hex Dec Oct Display Character

0010 0000 20 32 040

0010 0001 21 33 041 !

0010 0010 22 34 042 "

0010 0011 23 35 043 #

0010 0100 24 36 044 $

90 Introduction to Regular Expressions in SAS

Binary Hex Dec Oct Display Character

0010 0101 25 37 045 %

0010 0110 26 38 046 &

0010 0111 27 39 047 '

0010 1000 28 40 050 (

0010 1001 29 41 051)

0010 1010 2A 42 052 *

0010 1011 2B 43 053 +

0010 1100 2C 44 054 ,

0010 1101 2D 45 055 -

0010 1110 2E 46 056 .

0010 1111 2F 47 057 /

0011 0000 30 48 060 0

0011 0001 31 49 061 1

0011 0010 32 50 062 2

0011 0011 33 51 063 3

0011 0100 34 52 064 4

Appendix B: ASCII Code Lookup Tables 91

Binary Hex Dec Oct Display Character

0011 0101 35 53 065 5

0011 0110 36 54 066 6

0011 0111 37 55 067 7

0011 1000 38 56 070 8

0011 1001 39 57 071 9

0011 1010 3A 58 072 :

0011 1011 3B 59 073 ;

0011 1100 3C 60 074 <

0011 1101 3D 61 075 =

0011 1110 3E 62 076 >

0011 1111 3F 63 077 ?

0100 0000 40 64 100 @

0100 0001 41 65 101 A

0100 0010 42 66 102 B

0100 0011 43 67 103 C

0100 0100 44 68 104 D

92 Introduction to Regular Expressions in SAS

Binary Hex Dec Oct Display Character

0100 0101 45 69 105 E

0100 0110 46 70 106 F

0100 0111 47 71 107 G

0100 1000 48 72 110 H

0100 1001 49 73 111 I

0100 1010 4A 74 112 J

0100 1011 4B 75 113 K

0100 1100 4C 76 114 L

0100 1101 4D 77 115 M

0100 1110 4E 78 116 N

0100 1111 4F 79 117 O

0101 0000 50 80 120 P

0101 0001 51 81 121 Q

0101 0010 52 82 122 R

0101 0011 53 83 123 S

0101 0100 54 84 124 T

Appendix B: ASCII Code Lookup Tables 93

Binary Hex Dec Oct Display Character

0101 0101 55 85 125 U

0101 0110 56 86 126 V

0101 0111 57 87 127 W

0101 1000 58 88 130 X

0101 1001 59 89 131 Y

0101 1010 5A 90 132 Z

0101 1011 5B 91 133 [

0101 1100 5C 92 134 \

0101 1101 5D 93 135]

0101 1110 5E 94 136 ^

0101 1111 5F 95 137 _

0110 0000 60 96 140 `

0110 0001 61 97 141 a

0110 0010 62 98 142 b

0110 0011 63 99 143 c

0110 0100 64 100 144 d

94 Introduction to Regular Expressions in SAS

Binary Hex Dec Oct Display Character

0110 0101 65 101 145 e

0110 0110 66 102 146 f

0110 0111 67 103 147 g

0110 1000 68 104 150 h

0110 1001 69 105 151 i

0110 1010 6A 106 152 j

0110 1011 6B 107 153 k

0110 1100 6C 108 154 l

0110 1101 6D 109 155 m

0110 1110 6E 110 156 n

0110 1111 6F 111 157 o

0111 0000 70 112 160 p

0111 0001 71 113 161 q

0111 0010 72 114 162 r

0111 0011 73 115 163 s

0111 0100 74 116 164 t

Appendix B: ASCII Code Lookup Tables 95

Binary Hex Dec Oct Display Character

0111 0101 75 117 165 u

0111 0110 76 118 166 v

0111 0111 77 119 167 w

0111 1000 78 120 170 x

0111 1001 79 121 171 y

0111 1010 7A 122 172 z

0111 1011 7B 123 173 {

0111 1100 7C 124 174 |

0111 1101 7D 125 175 }

0111 1110 7E 126 176 ~

96 Introduction to Regular Expressions in SAS

Appendix C: POSIX Metacharacters
Throughout the book, we discussed metacharacters of all types that adhere to Perl standards (de facto
standard across the industry) for implementation since they are what SAS uses. And they are all that you
need when you’re running within the SAS environment. However, if you ever need to push the RegEx
processing to a system outside of SAS, there is no guarantee that they will always work because not all
systems use Perl syntax (mostly older systems don’t).

Note: When you are attempting this more advanced application, know the parameters of the system you are
using. You might not need to change the RegEx coding.

The exact applications of the metacharacters described in this appendix are outside the scope of this text
but are provided here for the advanced reader who is interested in them. For example, although we have
not covered it, POSIX metacharacters might be needed when you are performing in-database fuzzy
matching with PROC SQL.

[[:alpha:]]
This metacharacter matches any alphabetic character and is equivalent to [a-zA-Z].

[[:^alpha:]]
This metacharacter matches any non-alphabetic character and is equivalent to [^a-zA-Z].

[[:alnum:]]
This metacharacter matches any alphanumeric character and is equivalent to [a-zA-Z0-9].

[[:^alnum:]]
This metacharacter matches any non-alphanumeric character and is equivalent to [^a-zA-Z0-9].

[[:ascii:]]
This metacharacter matches any ASCII character and is equivalent to [\0-\177] (i.e., it does not
match UNICODE).

[[:^ascii:]]
This metacharacter matches any non-ASCII character and is equivalent to [^\0-\177] (i.e., it matches
UNICODE).

[[:blank:]]
This metacharacter matches any blank character.

[[:^blank:]]
This metacharacter matches any non-blank character.

98 Introduction to Regular Expressions in SAS

[[:cntrl:]]
This metacharacter matches any control character.

[[:^cntrl:]]
This metacharacter matches any non-control character.

[[:digit:]]
This metacharacter matches any digit character and is equivalent to \d or [0-9].

[[:^digit:]]
This metacharacter matches any non-digit character and is equivalent to \D and [^0-9].

[[:graph:]]
This metacharacter matches any visible character and is equivalent to [[:alnum:][:punct:]]. In other
words, if you can see it when printed on a piece of paper, then it is matched by this metacharacter.

[[:^graph:]]
This metacharacter matches any non-printing character and is equivalent to [^[:alnum:][:punct:]]. If
you can’t see it printed on a piece of paper, then it is matched by this metacharacter.

[[:lower:]]
This metacharacter matches any lowercase alphabetic character and is equivalent to [a-z].

[[:^lower:]]
This metacharacter matches anything except a lowercase alphabetic character and is equivalent to
[^a-z].

[[:print:]]
This metacharacter prints a string of characters—any characters encountered.

[[:^print:]]
This metacharacter does not print any characters.

[[:punct:]]
This metacharacter matches any visible punctuation or symbol character.

[[:^punct:]]
This metacharacter matches anything except visible punctuation or symbol characters.

[[:space:]]
This metacharacter matches any space character and is equivalent to \s.

[[:^space:]]
This metacharacter matches anything except a space character and is equivalent to \S.

[[:upper:]]
This metacharacter matches any uppercase alphabetic characters and is equivalent to [A-Z].

Appendix C: POSIX Metacharacters 99

[[:^upper:]]
This metacharacter matches all non-uppercase alphabetic characters and is equivalent to [^A-Z].

[[:word:]]
This metacharacter matches any word character encountered and is equivalent to \w.

[[:^word:]]
This metacharacter matches any non-word characters and is equivalent to \W.

[[:xdigit:]]
This metacharacter matches any hexadecimal character.

[[:^xdigit:]]
This metacharacter does not match a hexadecimal character.

100 Introduction to Regular Expressions in SAS

Index

A

ASCII
about 19
code lookup tables 87–95

B

backslash (\) 13
backtracking 25–26
bell (\a) metacharacters 19
built-in call routines 49–63
built-in functions 40–49

C

CALL PRXCHANGE 50–54, 74–75, 81
CALL PRXDEBUG 59–62
CALL PRXFREE 62–63
CALL PRXNET 57–59
CALL PRXNEXT 79
CALL PRXPOSN 54–55
CALL PRXSUBSTR 56–57
CALL routine 12
capture buffers

about 39–40
extracting data with 46–47
identifying 48–49
using 45

case modifiers 23–25
case sensitivity, of metacharacters 15
character classes 21–22
cleansing data 72–76
CLOSE statement 61
compile once (//o) option 33–34
COMPRESS function 71
context-specific algorithm development 55
control (\cA-\cZ) metacharacters 20

D

data
cleansing 72–76
extracting with capture buffers 46–47
redacting sensitive 51–52
standardizing 44–45, 72–76
transforming 51

data enrichment 5–7
data manipulation 4–5
DATALINES statement 12
debugging

information printed to log 60–62
PRXPARSE function 60

digit (\d) metacharacters 17–18
DO WHILE loop 58, 79
dot character (.) 32

E

ELSE tag 11
end of line ($) metacharacter 35
END tag 11, 61
escape character 14
examples

data enrichment 5–7
data manipulation 4–5
Extract, Transform, and Load (ETL) 3–4

Extract, Transform, and Load (ETL) 3–4
extracting

data with capture buffers 46–47
information 56–57, 77–80

F

FILE statement 80, 81
forward slash (/) 13
functions, 40–49

See also specific functions
fuzzy matching 97

102 Index

G

GOTO tag 11
greedy 0 or 1 time (?) modifier 26–27
greedy 0 or more (*) modifier 26
greedy 1 or more (+) modifier 26
greedy n or more ({n,}) modifier 27–28
greedy n times ({n}) modifier 27
greedy n to m times ({n,m}) modifier 28
greedy repetition modifiers 25–26

H

hexadecimal (\xdd) metacharacters 21
hexadecimal number system 38
HTML 77

I

IF statement 11, 42, 46–47, 49
ignore case (//i) option 32
INFILE statement 78
information

debugging 60–62
extracting 56–57, 77–80

INPUT statement 12, 78
INT function 71

L

lazy 0 or 1 times (??) modifier 30
lazy 0 or more (*?) modifier 28–29
lazy 1 or more (+?) modifier 29
lazy n or more ({n,}?) modifier 31
lazy n times ({m}?) modifier 30
lazy n to m times ({n,m}?) modifier 31
lazy repetition modifiers 28–31
list ([...]) metacharacter 21–22
lowercase (\l) metacharacter 23
lowercase range (\L...\E) metacharacter 24

M

memory, releasing with CALL PRXFREE 62–63
metacharacters

about 10–11, 15
bell (\a) 19

case sensitivity of 15
control (\cA-\cZ) 20
digit (\d) 17–18
end of line ($) 35
hexadecimal (\xdd) 21
list ([...]) 21–22
lowercase (\l) 23
lowercase range (\L...\E) 24
newline (\n) 18–19
non-digit (\D) 18
non-whitespace (\S) 17
non-word (\W) 16
non-word boundary (\B) 36
not list ([^...]) 22
octal (\ddd) 20
POSIX 97–99
quote range (\Q...\E) 25
range ([...-...]) 22
start of line (^) 35
string start (\A) 36–37
tab (\t) 16–17
uppercase (\u) 24
uppercase range (\U...\E) 24–25
whitespace (\s) 10–11, 17, 26
word (\w) 15–16
word boundary (\b) 35–36
zero-width 34–37

modifiers
case 23–25
greedy repetition 25–26
lazy repetition 28–31
repetition 25–31

multiline (//m) option 33

N

newline (\n) metacharacter 15, 18–19
non-digit (\D) metacharacter 18
non-printing characters, ASCII codes for 87–89
non-whitespace (\S) metacharacters 17
non-word boundary (\B) metacharacter 36
non-word (\W) metacharacters 16
not list ([^...]) metacharacter 22

Index 103

O
octal (\ddd) metacharacters 20
octal number system 38n1
OPEN statement 61
options 32–34
OUTPUT statement 79

P

parentheses (()) 13
pattern processing 11
patterns

defining with PRXPARSE function 41
matching multiple times per line 58–59

period (.) 15
Perl

about 2
escape character 14
version notes 85

Personally Identifiable Information (PII) 51, 65
POSIX metacharacters 97–99
PRINT procedure 47, 53, 54
printing characters, ASCII codes for 89–95
PRX (Perl-Regular-eXpressions) 40
PRXCHANGE function 39–40, 43–45
PRXMATCH function 42–43, 74–75
PRXPAREN function 39–40, 47–49
PRXPARSE function 40–41, 60, 74–75, 78
PRXPOSN function 39–40, 46–47, 74–75
PUT statement 80

Q

question mark (?) 28
quote range (\Q...\E) metacharacter 25

R

RAND function 71
random PII generator 66–72
range ([...-...]) metacharacter 22
RANPERK function 71
redacting sensitive data 51–52
regular expressions (RegEx)

about 2, 10–11
applications of 65–84

character classes 21–22
metacharacters 15–21
modifiers 23–25
options 32–34
special characters 13–14
test code 11–13
using in SAS 39–64
zero-width metacharacters 34–37

repetition modifiers 25–31
replacement and search 80–83
results, inserting 52–54
RETAIN statement 12, 33–34, 79

S

SAS
built-in call routines 49–63
built-in functions 40–49
CALL PRXCHANGE 50–54
CALL PRXDEBUG 59–62
CALL PRXFREE 62–63
CALL PRXNET 57–59
CALL PRXPOSN 54–55
CALL PRXSUBSTR 56–57
capture buffer 39–40
PRXCHANGE function 43–45
PRXMATCH function 42–43
PRXPAREN function 47–49
PRXPARSE function 40–41
PRXPOSN function 46–47
using regular expressions in 39–64
website 5

search and replacement 80–83
SET statement 80
single line (//s) option 32
slashes (//) 34
source text, finding strings in with PRXMATCH

function 42–43
special characters 11, 13–14
SQL procedure 97
square brackets ([]) 21
standardizing data 44–45, 72–76
start of line (^) metacharacter 35
START tag 11

104 Index

string start (\A) metacharacter 36–37
strings, finding in source text with PRXMATCH

function 42–43
substitution (s//) operator 34

T

tab (\t) metacharacters 16–17
test code, for regular expressions (RegEx) 11–13
THEN tag 11
transforming data 51

U

uppercase (\u) metacharacter 24
uppercase range (\U...\E) metacharacter 24–25

V

vertical bar (|) 13

W

whitespace (\s) metacharacters 10–11, 17, 26
wildcard metacharacter 15
word boundary (\b) metacharacter 35–36
word (\w) metacharacters 15–16

X

XML 77

Z

zero-width metacharacters 34–37

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand
and product names are trademarks of their respective companies. © 2013 SAS Institute Inc. All rights reserved. S107969US.0413

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore
for additional books and resources.

Gain Greater Insight into Your
SAS® Software with SAS Books.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR18308

	Contents
	About This Book
	Purpose
	Is This Book for You?
	Prerequisites
	Scope of This Book
	About the Examples
	Software Used to Develop the Book's Content
	Example Code and Data
	Output and Graphics Used in This Book

	Additional Resources
	Keep in Touch
	To Contact the Author through SAS Press
	SAS Books
	SAS Book Report
	Publish with SAS

	About The Author
	Acknowledgments
	Chapter 1: Introduction
	1.1 Purpose of This Book
	1.2 Layout of This Book
	1.3 Defining Regular Expressions
	1.4 Motivational Examples
	Extract, Transform, and Load (ETL)
	Data Manipulation
	Data Enrichment

	Chapter 2: Getting Started with Regular Expressions
	2.1 Introduction
	2.1.1 RegEx Test Code

	2.2 Special Characters
	2.3 Basic Metacharacters
	2.3.1 Wildcard
	2.3.2 Word
	2.3.3 Non-word
	2.3.4 Tab
	2.3.5 Whitespace
	2.3.6 Non-whitespace
	2.3.7 Digit
	2.3.8 Non-digit
	2.3.9 Newline
	2.3.10 Bell
	2.3.11 Control Character
	2.3.12 Octal
	2.3.13 Hexadecimal

	2.4 Character Classes
	2.4.1 List
	2.4.2 Not List
	2.4.3 Range

	2.5 Modifiers
	2.5.1 Case Modifiers
	2.5.2 Repetition Modifiers

	2.6 Options
	2.6.1 Ignore Case
	2.6.2 Single Line
	2.6.3 Multiline
	2.6.4 Compile Once
	2.6.5 Substitution Operator

	2.7 Zero-width Metacharacters
	2.7.1 Start of Line
	2.7.2 End of Line
	2.7.3 Word Boundary
	2.7.4 Non-word Boundary
	2.7.5 String Start

	2.8 Summary

	Chapter 3: Using Regular Expressions in SAS
	3.1 Introduction
	3.1.1 Capture Buffer

	3.2 Built-in SAS Functions
	3.2.1 PRXPARSE
	3.2.2 PRXMATCH
	3.2.3 PRXCHANGE
	3.2.4 PRXPOSN
	3.2.5 PRXPAREN

	3.3 Built-in SAS Call Routines
	3.3.1 CALL PRXCHANGE
	3.3.2 CALL PRXPOSN
	3.3.3 CALL PRXSUBSTR
	3.3.4 CALL PRXNEXT
	3.3.5 CALL PRXDEBUG
	3.3.6 CALL PRXFREE

	3.4 Summary

	Chapter 4: Applications of Regular Expressions in SAS
	4.1 Introduction
	4.1.1 Random PII Generator

	4.2 Data Cleansing and Standardization
	4.3 Information Extraction
	4.4 Search and Replacement
	4.5 Summary
	4.5.1 Start Small
	4.5.2 Think Big

	Appendix A: Perl Version Notes
	Appendix B: ASCII Code Lookup Tables
	Non-Printing Characters
	Printing Characters

	Appendix C: POSIX Metacharacters
	Index
	Additional Resources

 HistoryItem_V1
 TrimAndShift

 Range: From page 4 to page 118; only even numbered pages
 Trim: none
 Shift: move left by 20.88 points
 Normalise (advanced option): 'original'

 32

 D:20131025170822
 666.0000
 smallPDF
 Blank
 540.0000

 Tall
 1
 0
 No
 771
 369
 Fixed
 Left
 20.8800
 0.0000

 Even
 4
 SubDoc
 118

 CurrentAVDoc

 None
 9.0000
 Right

 QITE_QuiteImposing3
 Quite Imposing 3.0c
 Quite Imposing 3
 1

 117
 120
 117
 58

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 4 to page 118; only even numbered pages
 Trim: none
 Shift: move right by 0.72 points
 Normalise (advanced option): 'original'

 32

 D:20131025170822
 666.0000
 smallPDF
 Blank
 540.0000

 Tall
 1
 0
 No
 771
 369
 Fixed
 Right
 0.7200
 0.0000

 Even
 4
 SubDoc
 118

 CurrentAVDoc

 None
 9.0000
 Right

 QITE_QuiteImposing3
 Quite Imposing 3.0c
 Quite Imposing 3
 1

 114
 120
 117
 58

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 4 to page 118; only even numbered pages
 Trim: none
 Shift: move right by 0.72 points
 Normalise (advanced option): 'original'

 32

 D:20131025170822
 666.0000
 smallPDF
 Blank
 540.0000

 Tall
 1
 0
 No
 771
 369
 Fixed
 Right
 0.7200
 0.0000

 Even
 4
 SubDoc
 118

 CurrentAVDoc

 None
 9.0000
 Right

 QITE_QuiteImposing3
 Quite Imposing 3.0c
 Quite Imposing 3
 1

 19
 120
 117
 58

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 4 to page 118; only even numbered pages
 Trim: none
 Shift: move right by 0.72 points
 Normalise (advanced option): 'original'

 32

 D:20131025170822
 666.0000
 smallPDF
 Blank
 540.0000

 Tall
 1
 0
 No
 771
 369
 Fixed
 Right
 0.7200
 0.0000

 Even
 4
 SubDoc
 118

 CurrentAVDoc

 None
 9.0000
 Right

 QITE_QuiteImposing3
 Quite Imposing 3.0c
 Quite Imposing 3
 1

 23
 120
 117
 58

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 4 to page 118; only even numbered pages
 Trim: none
 Shift: move right by 0.72 points
 Normalise (advanced option): 'original'

 32

 D:20131025170822
 666.0000
 smallPDF
 Blank
 540.0000

 Tall
 1
 0
 No
 771
 369

 Fixed
 Right
 0.7200
 0.0000

 Even
 4
 SubDoc
 118

 CurrentAVDoc

 None
 9.0000
 Right

 QITE_QuiteImposing3
 Quite Imposing 3.0c
 Quite Imposing 3
 1

 23
 120
 117
 58

 1

 HistoryList_V1
 qi2base

