

Introducing Regular Expressions

Michael Fitzgerald

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Introducing Regular Expressions
by Michael Fitzgerald

Copyright © 2012 Michael Fitzgerald. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Simon St. Laurent
Production Editor: Holly Bauer
Proofreader: Julie Van Keuren

Indexer: Lucie Haskins
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

July 2012: First Edition.

Revision History for the First Edition:
2012-07-10 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449392680 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Introducing Regular Expressions, the image of a fruit bat, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-39268-0

[LSI]

1341860829

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449392680

Table of Contents

Preface . vii

1. What Is a Regular Expression? . 1
Getting Started with Regexpal 2
Matching a North American Phone Number 2
Matching Digits with a Character Class 4
Using a Character Shorthand 5
Matching Any Character 5
Capturing Groups and Back References 6
Using Quantifiers 6
Quoting Literals 8
A Sample of Applications 9
What You Learned in Chapter 1 11
Technical Notes 11

2. Simple Pattern Matching . 13
Matching String Literals 15
Matching Digits 15
Matching Non-Digits 17
Matching Word and Non-Word Characters 18
Matching Whitespace 20
Matching Any Character, Once Again 22
Marking Up the Text 24

Using sed to Mark Up Text 24
Using Perl to Mark Up Text 25

What You Learned in Chapter 2 27
Technical Notes 27

3. Boundaries . 29
The Beginning and End of a Line 29
Word and Non-word Boundaries 31

iii

Other Anchors 33
Quoting a Group of Characters as Literals 34
Adding Tags 34

Adding Tags with sed 36
Adding Tags with Perl 37

What You Learned in Chapter 3 38
Technical Notes 38

4. Alternation, Groups, and Backreferences . 41
Alternation 41
Subpatterns 45
Capturing Groups and Backreferences 46

Named Groups 48
Non-Capturing Groups 49

Atomic Groups 50
What You Learned in Chapter 4 50
Technical Notes 51

5. Character Classes . 53
Negated Character Classes 55
Union and Difference 56
POSIX Character Classes 56
What You Learned in Chapter 5 59
Technical Notes 60

6. Matching Unicode and Other Characters . 61
Matching a Unicode Character 62

Using vim 63
Matching Characters with Octal Numbers 64
Matching Unicode Character Properties 65
Matching Control Characters 68
What You Learned in Chapter 6 70
Technical Notes 71

7. Quantifiers . 73
Greedy, Lazy, and Possessive 74
Matching with *, +, and ? 74
Matching a Specific Number of Times 75
Lazy Quantifiers 76
Possessive Quantifiers 77
What You Learned in Chapter 7 78
Technical Notes 79

iv | Table of Contents

8. Lookarounds . 81
Positive Lookaheads 81
Negative Lookaheads 84
Positive Lookbehinds 85
Negative Lookbehinds 85
What You Learned in Chapter 8 86
Technical Notes 86

9. Marking Up a Document with HTML . 87
Matching Tags 87
Transforming Plain Text with sed 88

Substitution with sed 89
Handling Roman Numerals with sed 90
Handling a Specific Paragraph with sed 91
Handling the Lines of the Poem with sed 91

Appending Tags 92
Using a Command File with sed 92

Transforming Plain Text with Perl 94
Handling Roman Numerals with Perl 95
Handling a Specific Paragraph with Perl 96
Handling the Lines of the Poem with Perl 96
Using a File of Commands with Perl 97

What You Learned in Chapter 9 98
Technical Notes 98

10. The End of the Beginning . 101
Learning More 102
Notable Tools, Implementations, and Libraries 103

Perl 103
PCRE 103
Ruby (Oniguruma) 104
Python 104
RE2 105

Matching a North American Phone Number 105
Matching an Email Address 105
What You Learned in Chapter 10 106

Appendix: Regular Expression Reference . 107

Regular Expression Glossary . 123

Index . 129

Table of Contents | v

Preface

This book shows you how to write regular expressions through examples. Its goal is to
make learning regular expressions as easy as possible. In fact, this book demonstrates
nearly every concept it presents by way of example so you can easily imitate and try
them yourself.

Regular expressions help you find patterns in text strings. More precisely, they are
specially encoded text strings that match patterns in sets of strings, most often strings
that are found in documents or files.

Regular expressions began to emerge when mathematician Stephen Kleene wrote his
book Introduction to Metamathematics (New York, Van Nostrand), first published in
1952, though the concepts had been around since the early 1940s. They became more
widely available to computer scientists with the advent of the Unix operating system—
the work of Brian Kernighan, Dennis Ritchie, Ken Thompson, and others at AT&T Bell
Labs—and its utilities, such as sed and grep, in the early 1970s.

The earliest appearance that I can find of regular expressions in a computer application
is in the QED editor. QED, short for Quick Editor, was written for the Berkeley Time-
sharing System, which ran on the Scientific Data Systems SDS 940. Documented in
1970, it was a rewrite by Ken Thompson of a previous editor on MIT’s Compatible
Time-Sharing System and yielded one of the earliest if not first practical implementa-
tions of regular expressions in computing. (Table A-1 in Appendix documents the regex
features of QED.)

I’ll use a variety of tools to demonstrate the examples. You will, I hope, find most of
them usable and useful; others won’t be usable because they are not readily available
on your Windows system. You can skip the ones that aren’t practical for you or that
aren’t appealing. But I recommend that anyone who is serious about a career in com-
puting learn about regular expressions in a Unix-based environment. I have worked in
that environment for 25 years and still learn new things every day.

“Those who don’t understand Unix are condemned to reinvent it, poorly.” —Henry
Spencer

vii

Some of the tools I’ll show you are available online via a web browser, which will be
the easiest for most readers to use. Others you’ll use from a command or a shell prompt,
and a few you’ll run on the desktop. The tools, if you don’t have them, will be easy to
download. The majority are free or won’t cost you much money.

This book also goes light on jargon. I’ll share with you what the correct terms are when
necessary, but in small doses. I use this approach because over the years, I’ve found
that jargon can often create barriers. In other words, I’ll try not to overwhelm you with
the dry language that describes regular expressions. That is because the basic philoso-
phy of this book is this: Doing useful things can come before knowing everything about
a given subject.

There are lots of different implementations of regular expressions. You will find regular
expressions used in Unix command-line tools like vi (vim), grep, and sed, among others.
You will find regular expressions in programming languages like Perl (of course), Java,
JavaScript, C# or Ruby, and many more, and you will find them in declarative lan-
guages like XSLT 2.0. You will also find them in applications like Notepad++, Oxygen,
or TextMate, among many others.

Most of these implementations have similarities and differences. I won’t cover all those
differences in this book, but I will touch on a good number of them. If I attempted to
document all the differences between all implementations, I’d have to be hospitalized.
I won’t get bogged down in these kinds of details in this book. You’re expecting an
introductory text, as advertised, and that is what you’ll get.

Who Should Read This Book
The audience for this book is people who haven't ever written a regular expression
before. If you are new to regular expressions or programming, this book is a good place
to start. In other words, I am writing for the reader who has heard of regular expressions
and is interested in them but who doesn’t really understand them yet. If that is you,
then this book is a good fit.

The order I’ll go in to cover the features of regex is from the simple to the complex. In
other words, we’ll go step by simple step.

Now, if you happen to already know something about regular expressions and how to
use them, or if you are an experienced programmer, this book may not be where you
want to start. This is a beginner’s book, for rank beginners who need some hand-
holding. If you have written some regular expressions before, and feel familiar with
them, you can start here if you want, but I’m planning to take it slower than you will
probably like.

viii | Preface

I recommend several books to read after this one. First, try Jeff Friedl’s Mastering Reg-
ular Expressions, Third Edition (see http://shop.oreilly.com/product/9781565922570
.do). Friedl’s book gives regular expressions a thorough going over, and I highly rec-
ommend it. I also recommend the Regular Expressions Cookbook (see http://shop.oreilly
.com/product/9780596520694.do) by Jan Goyvaerts and Steven Levithan. Jan Goy-
vaerts is the creator of RegexBuddy, a powerful desktop application (see http://www
.regexbuddy.com/). Steven Levithan created RegexPal, an online regular expression
processor that you’ll use in the first chapter of this book (see http://www.regexpal.com).

What You Need to Use This Book
To get the most out of this book, you’ll need access to tools available on Unix or Linux
operating systems, such as Darwin on the Mac, a variant of BSD (Berkeley Software
Distribution) on the Mac, or Cygwin on a Windows PC, which offers many GNU tools
in its distribution (see http://www.cygwin.com and http://www.gnu.org).

There will be plenty of examples for you to try out here. You can just read them if you
want, but to really learn, you’ll need to follow as many of them as you can, as the most
important kind of learning, I think, always comes from doing, not from standing on
the sidelines. You’ll be introduced to websites that will teach you what regular expres-
sions are by highlighting matched results, workhorse command line tools from the Unix
world, and desktop applications that analyze regular expressions or use them to per-
form text search.

You will find examples from this book on Github at https://github.com/michaeljames
fitzgerald/Introducing-Regular-Expressions. You will also find an archive of all the ex-
amples and test files in this book for download from http://examples.oreilly.com/
9781449392680/examples.zip. It would be best if you create a working directory or
folder on your computer and then download these files to that directory before you
dive into the book.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, and so
forth.

Constant width
Used for program listings, as well as within paragraphs, to refer to program ele-
ments such as expressions and command lines or any other programmatic
elements.

Preface | ix

http://shop.oreilly.com/product/9781565922570.do
http://shop.oreilly.com/product/9781565922570.do
http://shop.oreilly.com/product/9780596520694.do
http://shop.oreilly.com/product/9780596520694.do
http://www.regexbuddy.com/
http://www.regexbuddy.com/
http://www.regexpal.com
http://www.cygwin.com
http://www.gnu.org
https://github.com/michaeljamesfitzgerald/Introducing-Regular-Expressions
https://github.com/michaeljamesfitzgerald/Introducing-Regular-Expressions
http://examples.oreilly.com/9781449392680/examples.zip
http://examples.oreilly.com/9781449392680/examples.zip

This icon signifies a tip, suggestion, or a general note.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Introducing Regular Expressions by Mi-
chael Fitzgerald (O’Reilly). Copyright 2012 Michael Fitzgerald, 978-1-4493-9268-0.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact O’Reilly at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course
Technology, and dozens more. For more information about Safari Books Online, please
visit us online.

x | Preface

http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

This book has a web page listing errata, examples, and any additional information. You
can access this page at:

http://orei.ly/intro_regex

To comment or to ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about O'Reilly books, courses, conferences, and news, see its
website at http://www.oreilly.com.

Find O'Reilly on Facebook: http://facebook.com/oreilly

Follow O'Reilly on Twitter: http://twitter.com/oreillymedia

Watch O'Reilly on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Once again, I want to express appreciation to my editor at O’Reilly, Simon St. Laurent,
a very patient man without whom this book would never have seen the light of day.
Thank you to Seara Patterson Coburn and Roger Zauner for your helpful reviews. And,
as always, I want to recognize the love of my life, Cristi, who is my raison d’être.

Preface | xi

http://orei.ly/intro_regex
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

What Is a Regular Expression?

Regular expressions are specially encoded text strings used as patterns for matching
sets of strings. They began to emerge in the 1940s as a way to describe regular languages,
but they really began to show up in the programming world during the 1970s. The
first place I could find them showing up was in the QED text editor written by Ken
Thompson.

“A regular expression is a pattern which specifies a set of strings of characters; it is said
to match certain strings.” —Ken Thompson

Regular expressions later became an important part of the tool suite that emerged from
the Unix operating system—the ed, sed and vi (vim) editors, grep, AWK, among others.
But the ways in which regular expressions were implemented were not always so
regular.

This book takes an inductive approach; in other words, it moves from
the specific to the general. So rather than an example after a treatise,
you will often get the example first and then a short treatise following
that. It’s a learn-by-doing book.

Regular expressions have a reputation for being gnarly, but that all depends on how
you approach them. There is a natural progression from something as simple as this:

\d

a character shorthand that matches any digit from 0 to 9, to something a bit more
complicated, like:

^(\(\d{3}\)|^\d{3}[.-]?)?\d{3}[.-]?\d{4}$

which is where we’ll wind up at the end of this chapter: a fairly robust regular expression
that matches a 10-digit, North American telephone number, with or without paren-
theses around the area code, or with or without hyphens or dots (periods) to separate
the numbers. (The parentheses must be balanced, too; in other words, you can’t just
have one.)

1

Chapter 10 shows you a slightly more sophisticated regular expression
for a phone number, but the one above is sufficient for the purposes of
this chapter.

If you don’t get how that all works yet, don’t worry: I’ll explain the whole expression
a little at a time in this chapter. If you will just follow the examples (and those through-
out the book, for that matter), writing regular expressions will soon become second
nature to you. Ready to find out for yourself?

I at times represent Unicode characters in this book using their code point—a four-
digit, hexadecimal (base 16) number. These code points are shown in the form
U+0000. U+002E, for example, represents the code point for a full stop or period (.).

Getting Started with Regexpal
First let me introduce you to the Regexpal website at http://www.regexpal.com. Open
the site up in a browser, such as Google Chrome or Mozilla Firefox. You can see what
the site looks like in Figure 1-1.

You can see that there is a text area near the top, and a larger text area below that. The
top text box is for entering regular expressions, and the bottom one holds the subject
or target text. The target text is the text or set of strings that you want to match.

At the end of this chapter and each following chapter, you’ll find a
“Technical Notes” section. These notes provide additional information
about the technology discussed in the chapter and tell you where to get
more information about that technology. Placing these notes at the end
of the chapters helps keep the flow of the main text moving forward
rather than stopping to discuss each detail along the way.

Matching a North American Phone Number
Now we’ll match a North American phone number with a regular expression. Type the
phone number shown here into the lower section of Regexpal:

707-827-7019

Do you recognize it? It’s the number for O’Reilly Media.

Let’s match that number with a regular expression. There are lots of ways to do this,
but to start out, simply enter the number itself in the upper section, exactly as it is
written in the lower section (hold on now, don’t sigh):

707-827-7019

2 | Chapter 1: What Is a Regular Expression?

http://www.regexpal.com

What you should see is the phone number you entered in the lower box highlighted
from beginning to end in yellow. If that is what you see (as shown in Figure 1-2), then
you are in business.

When I mention colors in this book, in relation to something you might
see in an image or a screenshot, such as the highlighting in Regexpal,
those colors may appear online and in e-book versions of this book, but,
alas, not in print. So if you are reading this book on paper, then when I
mention a color, your world will be grayscale, with my apologies.

What you have done in this regular expression is use something called a string literal
to match a string in the target text. A string literal is a literal representation of a string.

Now delete the number in the upper box and replace it with just the number 7. Did
you see what happened? Now only the sevens are highlighted. The literal character
(number) 7 in the regular expression matches the four instances of the number 7 in the
text you are matching.

Figure 1-1. Regexpal in the Google Chrome browser

Matching a North American Phone Number | 3

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Matching Digits with a Character Class
What if you wanted to match all the numbers in the phone number, all at once? Or
match any number for that matter?

Try the following, exactly as shown, once again in the upper text box:

[0-9]

All the numbers (more precisely digits) in the lower section are highlighted, in alter-
nating yellow and blue. What the regular expression [0-9] is saying to the regex pro-
cessor is, “Match any digit you find in the range 0 through 9.”

The square brackets are not literally matched because they are treated specially as
metacharacters. A metacharacter has special meaning in regular expressions and is re-
served. A regular expression in the form [0-9] is called a character class, or sometimes
a character set.

Figure 1-2. Ten-digit phone number highlighted in Regexpal

4 | Chapter 1: What Is a Regular Expression?

You can limit the range of digits more precisely and get the same result using a more
specific list of digits to match, such as the following:

[012789]

This will match only those digits listed, that is, 0, 1, 2, 7, 8, and 9. Try it in the upper
box. Once again, every digit in the lower box will be highlighted in alternating colors.

To match any 10-digit, North American phone number, whose parts are separated by
hyphens, you could do the following:

[0-9][0-9][0-9]-[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]

This will work, but it’s bombastic. There is a better way with something called a
shorthand.

Using a Character Shorthand
Yet another way to match digits, which you saw at the beginning of the chapter, is with
\d which, by itself, will match all Arabic digits, just like [0-9]. Try that in the top section
and, as with the previous regular expressions, the digits below will be highlighted. This
kind of regular expression is called a character shorthand. (It is also called a character
escape, but this term can be a little misleading, so I avoid it. I’ll explain later.)

To match any digit in the phone number, you could also do this:

\d\d\d-\d\d\d-\d\d\d\d

Repeating the \d three and four times in sequence will exactly match three and four
digits in sequence. The hyphen in the above regular expression is entered as a literal
character and will be matched as such.

What about those hyphens? How do you match them? You can use a literal hyphen (-)
as already shown, or you could use an escaped uppercase D (\D), which matches any
character that is not a digit.

This sample uses \D in place of the literal hyphen.

\d\d\d\D\d\d\d\D\d\d\d\d

Once again, the entire phone number, including the hyphens, should be highlighted
this time.

Matching Any Character
You could also match those pesky hyphens with a dot (.):

\d\d\d.\d\d\d.\d\d\d\d

The dot or period essentially acts as a wildcard and will match any character (except,
in certain situations, a line ending). In the example above, the regular expression
matches the hyphen, but it could also match a percent sign (%):

Matching Any Character | 5

707%827%7019

Or a vertical bar (|):

707|827|7019

Or any other character.

As I mentioned, the dot character (officially, the full stop) will not nor-
mally match a new line character, such as a line feed (U+000A). How-
ever, there are ways to make it possible to match a newline with a dot,
which I will show you later. This is often called the dotall option.

Capturing Groups and Back References
You’ll now match just a portion of the phone number using what is known as a cap-
turing group. Then you’ll refer to the content of the group with a backreference. To
create a capturing group, enclose a \d in a pair of parentheses to place it in a group,
and then follow it with a \1 to backreference what was captured:

(\d)\d\1

The \1 refers back to what was captured in the group enclosed by parentheses. As a
result, this regular expression matches the prefix 707. Here is a breakdown of it:

• (\d) matches the first digit and captures it (the number 7)

• \d matches the next digit (the number 0) but does not capture it because it is not
enclosed in parentheses

• \1 references the captured digit (the number 7)

This will match only the area code. Don’t worry if you don’t fully understand this right
now. You’ll see plenty of examples of groups later in the book.

You could now match the whole phone number with one group and several
backreferences:

(\d)0\1\D\d\d\1\D\1\d\d\d

But that’s not quite as elegant as it could be. Let’s try something that works even better.

Using Quantifiers
Here is yet another way to match a phone number using a different syntax:

\d{3}-?\d{3}-?\d{4}

The numbers in the curly braces tell the regex processor exactly how many occurrences
of those digits you want it to look for. The braces with numbers are a kind of quanti-
fier. The braces themselves are considered metacharacters.

6 | Chapter 1: What Is a Regular Expression?

The question mark (?) is another kind of quantifier. It follows the hyphen in the regular
expression above and means that the hyphen is optional—that is, that there can be zero
or one occurrence of the hyphen (one or none). There are other quantifiers such as the
plus sign (+), which means “one or more,” or the asterisk (*) which means “zero or
more.”

Using quantifiers, you can make a regular expression even more concise:

(\d{3,4}[.-]?)+

The plus sign again means that the quantity can occur one or more times. This regular
expression will match either three or four digits, followed by an optional hyphen or
dot, grouped together by parentheses, one or more times (+).

Is your head spinning? I hope not. Here’s a character-by-character analysis of the regular
expression above:

• (open a capturing group

• \ start character shorthand (escape the following character)

• d end character shorthand (match any digit in the range 0 through 9 with \d)

• { open quantifier

• 3 minimum quantity to match

• , separate quantities

• 4 maximum quantity to match

• } close quantifier

• [open character class

• . dot or period (matches literal dot)

• - literal character to match hyphen

•] close character class

• ? zero or one quantifier

•) close capturing group

• + one or more quantifier

This all works, but it’s not quite right because it will also match other groups of 3 or 4
digits, whether in the form of a phone number or not. Yes, we learn from our mistakes
better than our successes.

So let’s improve it a little:

(\d{3}[.-]?){2}\d{4}

This will match two nonparenthesized sequences of three digits each, followed by an
optional hyphen, and then followed by exactly four digits.

Using Quantifiers | 7

Quoting Literals
Finally, here is a regular expression that allows literal parentheses to optionally wrap
the first sequence of three digits, and makes the area code optional as well:

^(\(\d{3}\)|^\d{3}[.-]?)?\d{3}[.-]?\d{4}$

To ensure that it is easy to decipher, I’ll look at this one character by character, too:

• ^ (caret) at the beginning of the regular expression, or following the vertical bar
(|), means that the phone number will be at the beginning of a line.

• (opens a capturing group.

• \(is a literal open parenthesis.

• \d matches a digit.

• {3} is a quantifier that, following \d, matches exactly three digits.

• \) matches a literal close parenthesis.

• | (the vertical bar) indicates alternation, that is, a given choice of alternatives. In
other words, this says “match an area code with parentheses or without them.”

• ^ matches the beginning of a line.

• \d matches a digit.

• {3} is a quantifier that matches exactly three digits.

• [.-]? matches an optional dot or hyphen.

•) close capturing group.

• ? make the group optional, that is, the prefix in the group is not required.

• \d matches a digit.

• {3} matches exactly three digits.

• [.-]? matches another optional dot or hyphen.

• \d matches a digit.

• {4} matches exactly four digits.

• $ matches the end of a line.

This final regular expression matches a 10-digit, North American telephone number,
with or without parentheses, hyphens, or dots. Try different forms of the number to
see what will match (and what won’t).

The capturing group in the above regular expression is not necessary.
The group is necessary, but the capturing part is not. There is a better
way to do this: a non-capturing group. When we revisit this regular
expression in the last chapter of the book, you’ll understand why.

8 | Chapter 1: What Is a Regular Expression?

A Sample of Applications
To conclude this chapter, I’ll show you the regular expression for a phone number in
several applications.

TextMate is an editor that is available only on the Mac and uses the same regular
expression library as the Ruby programming language. You can use regular expressions
through the Find (search) feature, as shown in Figure 1-3. Check the box next to Regular
expression.

Figure 1-3. Phone number regex in TextMate

Notepad++ is available on Windows and is a popular, free editor that uses the PCRE
regular expression library. You can access them through search and replace (Fig-
ure 1-4) by clicking the radio button next to Regular expression.

Oxygen is also a popular and powerful XML editor that uses Perl 5 regular expression
syntax. You can access regular expressions through the search and replace dialog, as
shown in Figure 1-5, or through its regular expression builder for XML Schema. To use
regular expressions with Find/Replace, check the box next to Regular expression.

A Sample of Applications | 9

Figure 1-5. Phone number regex in Oxygen

This is where the introduction ends. Congratulations. You’ve covered a lot of ground
in this chapter. In the next chapter, we’ll focus on simple pattern matching.

Figure 1-4. Phone number regex in Notepad++

10 | Chapter 1: What Is a Regular Expression?

What You Learned in Chapter 1
• What a regular expression is

• How to use Regexpal, a simple regular expression processor

• How to match string literals

• How to match digits with a character class

• How to match a digit with a character shorthand

• How to match a non-digit with a character shorthand

• How to use a capturing group and a backreference

• How to match an exact quantity of a set of strings

• How to match a character optionally (zero or one) or one or more times

• How to match strings at either the beginning or the end of a line

Technical Notes
• Regexpal (http://www.regexpal.com) is a web-based, JavaScript-powered regex im-

plementation. It’s not the most complete implementation, and it doesn’t do ev-
erything that regular expressions can do; however, it’s a clean, simple, and very
easy-to-use learning tool, and it provides plenty of features for you to get started.

• You can download the Chrome browser from https://www.google.com/chrome or
Firefox from http://www.mozilla.org/en-US/firefox/new/.

• Why are there so many ways of doing things with regular expressions? One reason
is because regular expressions have a wonderful quality called composability. A
language, whether a formal, programming or schema language, that has the quality
of composability (James Clark explains it well at http://www.thaiopensource.com/
relaxng/design.html#section:5) is one that lets you take its atomic parts and com-
position methods and then recombine them easily in different ways. Once you learn
the different parts of regular expressions, you will take off in your ability to match
strings of any kind.

• TextMate is available at http://www.macromates.com. For more information on
regular expressions in TextMate, see http://manual.macromates.com/en/regular_ex
pressions.

• For more information on Notepad, see http://notepad-plus-plus.org. For documen-
tation on using regular expressions with Notepad, see http://sourceforge.net/apps/
mediawiki/notepad-plus/index.php?title=Regular_Expressions.

• Find out more about Oxygen at http://www.oxygenxml.com. For information on
using regex through find and replace, see http://www.oxygenxml.com/doc/ug-edi
tor/topics/find-replace-dialog.html. For information on using its regular expression
builder for XML Schema, see http://www.oxygenxml.com/doc/ug-editor/topics/
XML-schema-regexp-builder.html.

Technical Notes | 11

http://www.regexpal.com
https://www.google.com/chrome
http://www.mozilla.org/en-US/firefox/new/
http://www.thaiopensource.com/relaxng/design.html#section:5
http://www.thaiopensource.com/relaxng/design.html#section:5
http://www.macromates.com
http://manual.macromates.com/en/regular_expressions
http://manual.macromates.com/en/regular_expressions
http://notepad-plus-plus.org
http://sourceforge.net/apps/mediawiki/notepad-plus/index.php?title=Regular_Expressions
http://sourceforge.net/apps/mediawiki/notepad-plus/index.php?title=Regular_Expressions
http://www.oxygenxml.com
http://www.oxygenxml.com/doc/ug-editor/topics/find-replace-dialog.html
http://www.oxygenxml.com/doc/ug-editor/topics/find-replace-dialog.html
http://www.oxygenxml.com/doc/ug-editor/topics/XML-schema-regexp-builder.html
http://www.oxygenxml.com/doc/ug-editor/topics/XML-schema-regexp-builder.html

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

CHAPTER 2

Simple Pattern Matching

Regular expressions are all about matching and finding patterns in text, from simple
patterns to the very complex. This chapter takes you on a tour of some of the simpler
ways to match patterns using:

• String literals

• Digits

• Letters

• Characters of any kind

In the first chapter, we used Steven Levithan’s RegexPal to demonstrate regular ex-
pressions. In this chapter, we’ll use Grant Skinner’s RegExr site, found at http://gskinner
.com/regexr (see Figure 2-1).

Each page of this book will take you deeper into the regular expression
jungle. Feel free, however, to stop and smell the syntax. What I mean
is, start trying out new things as soon as you discover them. Try. Fail
fast. Get a grip. Move on. Nothing makes learning sink in like doing
something with it.

Before we go any further, I want to point out the helps that RegExr provides. Over on
the right side of RegExr, you’ll see three tabs. Take note of the Samples and Community
tabs. The Samples tab provides helps for a lot of regular expression syntax, and the
Community tab shows you a large number of contributed regular expressions that have
been rated. You’ll find a lot of good information in these tabs that may be useful to
you. In addition, pop-ups appear when you hover over the regular expression or target
text in RegExr, giving you helpful information. These resources are one of the reasons
why RegExr is among my favorite online regex checkers.

This chapter introduces you to our main text, “The Rime of the Ancient Mariner,” by
Samuel Taylor Coleridge, first published in Lyrical Ballads (London, J. & A. Arch,
1798). We’ll work with this poem in chapters that follow, starting with a plain-text

13

http://gskinner.com/regexr
http://gskinner.com/regexr

version of the original and winding up with a version marked up in HTML5. The text
for the whole poem is stored in a file called rime.txt; this chapter uses the file rime-
intro.txt that contains only the first few lines.

The following lines are from rime-intro.txt:

THE RIME OF THE ANCYENT MARINERE, IN SEVEN PARTS.

ARGUMENT.

How a Ship having passed the Line was driven by Storms to the cold
Country towards the South Pole; and how from thence she made her course
to the tropical Latitude of the Great Pacific Ocean; and of the strange
things that befell; and in what manner the Ancyent Marinere came back to
his own Country.

I.

1 It is an ancyent Marinere,
2 And he stoppeth one of three:
3 "By thy long grey beard and thy glittering eye
4 "Now wherefore stoppest me?

Copy and paste the lines shown here into the lower text box in RegExr. You’ll find the
file rime-intro.txt at Github at https://github.com/michaeljamesfitzgerald/Introducing
-Regular-Expressions. You’ll also find the same file in the download archive found at

Figure 2-1. Grant Skinner’s RegExr in Firefox

14 | Chapter 2: Simple Pattern Matching

https://github.com/michaeljamesfitzgerald/Introducing-Regular-Expressions
https://github.com/michaeljamesfitzgerald/Introducing-Regular-Expressions

http://examples.oreilly.com/9781449392680/examples.zip. You can also find the text
online at Project Gutenberg, but without the numbered lines (see http://www.gutenberg
.org/ebooks/9622).

Matching String Literals
The most outright, obvious feature of regular expressions is matching strings with one
or more literal characters, called string literals or just literals.

The way to match literal strings is with normal, literal characters. Sounds familiar,
doesn’t it? This is similar to the way you might do a search in a word processing program
or when submitting a keyword to a search engine. When you search for a string of text,
character for character, you are searching with a string literal.

If you want to match the word Ship, for example, which is a word (string of characters)
you’ll find early in the poem, just type the word Ship in the box at the top of Regexpal,
and then the word will be highlighted in the lower text box. (Be sure to capitalize the
word.)

Did light blue highlighting show up below? You should be able to see the highlighting
in the lower box. If you can’t see it, check what you typed again.

By default, string matching is case-sensitive in Regexpal. If you want to
match both lower- and uppercase, click the checkbox next to the words
Case insensitive at the top left of Regexpal. If you click this box, both
Ship and ship would match if either was present in the target text.

Matching Digits
In the top-left text box in RegExr, enter this character shorthand to match the digits:

\d

This matches all the Arabic digits in the text area below because the global checkbox
is selected. Uncheck that checkbox, and \d will match only the first occurrence of a
digit. (See Figure 2-2.)

Now in place of \d use a character class that matches the same thing. Enter the following
range of digits in the top text box of RegExr:

[0-9]

As you can see in Figure 2-3, though the syntax is different, using \d does the same
thing as [0-9].

Matching Digits | 15

http://examples.oreilly.com/9781449392680/examples.zip
http://www.gutenberg.org/ebooks/9622
http://www.gutenberg.org/ebooks/9622

You’ll learn more about character classes in Chapter 5.

The character class [0-9] is a range, meaning that it will match the range of digits 0
through 9. You could also match digits 0 through 9 by listing all the digits:

[0123456789]

If you want to match only the binary digits 0 and 1, you would use this character class:

[01]

Try [12] in RegExr and look at the result. With a character class, you can pick the exact
digits you want to match. The character shorthand for digits (\d) is shorter and simpler,
but it doesn’t have the power or flexibility of the character class. I use character classes
when I can’t use \d (it’s not always supported) and when I need to get very specific
about what digits I need to match; otherwise, I use \d because it’s a simpler, more
convenient syntax.

Figure 2-2. Matching all digits in RegExr with \d

16 | Chapter 2: Simple Pattern Matching

Matching Non-Digits
As is often the case with shorthands, you can flip-flop—that is, you can go the other
way. For example, if you want to match characters that are not digits, use this shorthand
with an uppercase D:

\D

Try this shorthand in RegExr now. An uppercase D, rather than a lowercase, matches
non-digit characters (check Figure 2-4). This shorthand is the same as the following
character class, a negated class (a negated class says in essence, “don’t match these” or
“match all but these”):

[^0-9]

which is the same as:

[^\d]

Figure 2-3. Matching all digits in RegExr with [0-9]

Matching Non-Digits | 17

Matching Word and Non-Word Characters
In RegExr, now swap \D with:

\w

This shorthand will match all word characters (if the global option is still checked). The
difference between \D and \w is that \D matches whitespace, punctuation, quotation
marks, hyphens, forward slashes, square brackets, and other similar characters, while
\w does not—it matches letters and numbers.

In English, \w matches essentially the same thing as the character class:

[a-zA-Z0-9]

You’ll learn how to match characters beyond the set of English letters
in Chapter 6.

Figure 2-4. Matching non-digits in RegExr with \D

18 | Chapter 2: Simple Pattern Matching

Now to match a non-word character, use an uppercase W:

\W

This shorthand matches whitespace, punctuation, and other kinds of characters that
aren’t used in words in this example. It is the same as using the following character class:

[^a-zA-Z0-9]

Character classes, granted, allow you more control over what you match, but some-
times you don’t want or need to type out all those characters. This is known as the
“fewest keystrokes win” principle. But sometimes you must type all that stuff out to
get precisely what you want. It is your choice.

Just for fun, in RegExr try both:

[^\w]

and

[^\W]

Do you see the differences in what they match?

Table 2-1 provides an extended list of character shorthands. Not all of these work in
every regex processor.

Table 2-1. Character shorthands

Character Shorthand Description

\a Alert

\b Word boundary

[\b] Backspace character

\B Non-word boundary

\c x Control character

\d Digit character

\D Non-digit character

\d xxx Decimal value for a character

\f Form feed character

\r Carriage return

\n Newline character

pass:[<literal>\o</literal>
<replaceable>\xxx</replaceable>]

Octal value for a character

\s Space character

\S Non-space character

\t Horizontal tab character

\v Vertical tab character

Matching Word and Non-Word Characters | 19

Character Shorthand Description

\w Word character

\W Non-word character

\0 Nul character

\ xxx Hexadecimal value for a character

\u xxxx Unicode value for a character

Matching Whitespace
To match whitespace, you can use this shorthand:

\s

Try this in RegExr and see what lights up (see Figure 2-5). The following character class
matches the same thing as \s:

[\t\n\r]

In other words, it matches:

• Spaces

• Tabs (\t)

• Line feeds (\n)

• Carriage returns (\r)

Spaces and tabs are highlighted in RegExr, but not line feeds or carriage
returns.

As you can imagine, \s has its compañero. To match a non-whitespace character, use:

\S

This matches everything except whitespace. It matches the character class:

[^ \t\n\r]

Or:

[^\s]

Test these out in RegExr to see what happens.

In addition to those characters matched by \s, there are other, less common whitespace
characters. Table 2-2 lists character shorthands for common whitespace characters and
a few that are more rare.

20 | Chapter 2: Simple Pattern Matching

Table 2-2. Character shorthands for whitespace characters

Character Shorthand Description

\f Form feed

\h Horizontal whitespace

\H Not horizontal whitespace

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab (whitespace)

\V Not vertical whitespace

If you try \h, \H, or \V in RegExr, you will see results, but not with \v.
Not all whitespace shorthands work with all regex processors.

Figure 2-5. Matching whitespace in RegExr with \s

Matching Whitespace | 21

Matching Any Character, Once Again
There is a way to match any character with regular expressions and that is with the dot,
also known as a period or a full stop (U+002E). The dot matches all characters but line
ending characters, except under certain circumstances.

In RegExr, turn off the global setting by clicking the checkbox next to it. Now any
regular expression will match on the first match it finds in the target.

Now to match a single character, any character, just enter a single dot in the top text
box of RegExr.

In Figure 2-6, you see that the dot matches the first character in the target, namely, the
letter T.

Figure 2-6. Matching a single character in RegExr with "."

If you wanted to match the entire phrase THE RIME, you could use eight dots:

........

But this isn’t very practical, so I don’t recommend using a series of dots like this often,
if ever. Instead of eight dots, use a quantifier:

22 | Chapter 2: Simple Pattern Matching

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

.{8}

and it would match the first two words and the space in between, but crudely so. To
see what I mean by crudely, click the checkbox next to global and see how useless this
really is. It matches sequences of eight characters, end on end, all but the last few
characters of the target.

Let’s try a different tack with word boundaries and starting and ending letters. Type
the following in the upper text box of RegExr to see a slight difference:

\bA.{5}T\b

This expression has a bit more specificity. (Try saying specificity three times, out loud.)
It matches the word ANCYENT, an archaic spelling of ancient. How?

• The shorthand \b matches a word boundary, without consuming any characters.

• The characters A and T also bound the sequence of characters.

• .{5} matches any five characters.

• Match another word boundary with \b.

This regular expression would actually match both ANCYENT or ANCIENT.

Now try it with a shorthand:

\b\w{7}\b

Finally, I’ll talk about matching zero or more characters:

.*

which is the same as:

[^\n]

or

[^\n\r]

Similar to this is the dot used with the one or more quantifier (+):

.+

Try these in RegExr and they will, either of them, match the first line (uncheck
global). The reason why is that, normally, the dot does not match newline characters,
such as a line feed (U+000A) or a carriage return (U+000D). Click the checkbox next
to dotall in RegExr, and then .* or .+ will match all the text in the lower box. (dotall
means a dot will match all characters, including newlines.)

The reason why it does this is because these quantifiers are greedy; in other words, they
match all the characters they can. But don’t worry about that quite yet. Chapter 7
explains quantifiers and greediness in more detail.

Matching Any Character, Once Again | 23

Marking Up the Text
“The Rime of the Ancient Mariner” is just plain text. What if you wanted to display it
on the Web? What if you wanted to mark it up as HTML5 using regular expressions,
rather than by hand? How would you do that?

In some of the following chapters, I'll show you ways to do this. I'll start out small in
this chapter and then add more and more markup as you go along.

In RegExr, click the Replace tab, check multiline, and then, in the first text box, enter:

(^T.*$)

Beginning at the top of the file, this will match the first line of the poem and then capture
that text in a group using parentheses. In the next box, enter:

<h1>$1</h1>

The replacement regex surrounds the captured group, represented by $1, in an h1 ele-
ment. You can see the result in the lowest text area. The $1 is a backreference, in Perl
style. In most implementations, including Perl, you use this style: \1; but RegExr sup-
ports only $1, $2, $3 and so forth. You’ll learn more about groups and backreferences
in Chapter 4.

Using sed to Mark Up Text
On a command line, you could also do this with sed. sed is a Unix streaming editor that
accepts regular expressions and allows you to transform text. It was first developed in
the early 1970s by Lee McMahon at Bell Labs. If you are on the Mac or have a Linux
box, you already have it.

Test out sed at a shell prompt (such as in a Terminal window on a Mac) with this line:

echo Hello | sed s/Hello/Goodbye/

This is what should have happened:

• The echo command prints the word Hello to standard output (which is usually just
your screen), but the vertical bar (|) pipes it to the sed command that follows.

• This pipe directs the output of echo to the input of sed.

• The s (substitute) command of sed then changes the word Hello to Goodbye, and
Goodbye is displayed on your screen.

If you don’t have sed on your platform already, at the end of this chapter you’ll find
some technical notes with some pointers to installation information. You’ll find dis-
cussed there two versions of sed: BSD and GNU.

Now try this: At a command or shell prompt, enter:

sed -n 's/^/<h1>/;s/$/<\/h1>/p;q' rime.txt

24 | Chapter 2: Simple Pattern Matching

And the output will be:

<h1>THE RIME OF THE ANCYENT MARINERE, IN SEVEN PARTS.</h1>

Here is what the regex did, broken down into parts:

• The line starts by invoking the sed program.

• The -n option suppresses sed’s default behavior of echoing each line of input to the
output. This is because you want to see only the line effected by the regex, that is,
line 1.

• s/^/<h1>/ places an h1 start-tag at the beginning (^) of the line.

• The semicolon (;) separates commands.

• s/$/<\/h1>/ places an h1 end-tag at the end ($) of the line.

• The p command prints the affected line (line 1). This is in contrast to -n, which
echoes every line, regardless.

• Lastly, the q command quits the program so that sed processes only the first line.

• All these operations are performed against the file rime.txt.

Another way of writing this line is with the -e option. The -e option appends the editing
commands, one after another. I prefer the method with semicolons, of course, because
it’s shorter.

sed -ne 's/^/<h1>/' -e 's/$/<\/h1>/p' -e 'q' rime.txt

You could also collect these commands in a file, as with h1.sed shown here (this file is
in the code repository mentioned earlier):

#!/usr/bin/sed

s/^/<h1>/
s/$/<\/h1>/
q

To run it, type:

sed -f h1.sed rime.txt

at a prompt in the same directory or folder as rime.txt.

Using Perl to Mark Up Text
Finally, I’ll show you how to do a similar process with Perl. Perl is a general purpose
programming language created by Larry Wall back in 1987. It’s known for its strong
support of regular expressions and its text processing capabilities.

Find out if Perl is already on your system by typing this at a command prompt, followed
by Return or Enter:

perl -v

Marking Up the Text | 25

This should return the version of Perl on your system or an error (see “Technical
Notes” on page 27).

To accomplish the same output as shown in the sed example, enter this line at a prompt:

perl -ne 'if ($. == 1) { s/^/<h1>/; s/$/<\/h1>/m; print; }' rime.txt

and, as with the sed example, you will get this result:

<h1>THE RIME OF THE ANCYENT MARINERE, IN SEVEN PARTS.</h1>

Here is what happened in the Perl command, broken down again into pieces:

• perl invokes the Perl program.

• The -n option loops through the input (the file rime.txt).

• The -e option allows you to submit program code on the command line, rather
than from a file (like sed).

• The if statement checks to see if you are on line 1. $. is a special variable in Perl
that matches the current line.

• The first substitute command s finds the beginning of the first line (^) and inserts
an h1 start-tag there.

• The second substitute command searches for the end of the line ($), and then inserts
an h1 end-tag.

• The m or multiline modifier or flag at the end of the substitute command indicates
that you are treating this line distinctly and separately; consequently, the $ matches
the end of line 1, not the end of the file.

• At last, it prints the result to standard output (the screen).

• All these operations are performed again the file rime.txt.

You could also hold all these commands in a program file, such as this file, h1.pl, found
in the example archive.

#!/usr/bin/perl -n

if ($. == 1) {
 s/^/<h1>/;
 s/$/<\/h1>/m;
 print;
}

And then, in the same directory as rime.txt, run the program like this:

perl h1.pl rime.txt

There are a lot of ways you can do things in Perl. I am not saying this is the most efficient
way to add these tags. It is simply one way. Chances are, by the time this book is in
print, I’ll think of other, more efficient ways to do things with Perl (and other tools). I
hope you will, too.

26 | Chapter 2: Simple Pattern Matching

In the next chapter, we’ll talk about boundaries and what are known as zero-width
assertions.

What You Learned in Chapter 2
• How to match string literals

• How to match digits and non-digits

• What the global mode is

• How character shorthands compare with character classes

• How to match word and non-word characters

• How to match whitespace

• How to match any character with the dot

• What the dotall mode is

• How to insert HTML markup to a line of text using RegExr, sed, and Perl

Technical Notes
• RegExr is found at http://www.gskinner.com/RegExr and also has a desktop version

(http://www.gskinner.com/RegExr/desktop/). RegExr was built in Flex 3 (http://
www.adobe.com/products/flex.html) and relies on the ActionScript regular expres-
sion engine (http://www.adobe.com/devnet/actionscript.html). Its regular expres-
sions are similar to those used by JavaScript (see https://developer.mozilla.org/en/
JavaScript/Reference/Global_Objects/RegExp).

• Git is a fast version control system (http://git-scm.com). GitHub is a web-based
repository for projects using Git (http://github.com). I suggest using the GitHub
repository for samples in this book only if you feel comfortable with Git or with
other modern version control systems, like Subversion or Mercurial.

• HTML5 (http://www.w3.org/TR/html5/) is the fifth major revision of the W3C’s
HTML, the markup language for publishing on the World Wide Web. It has been
in draft for several years and changes regularly, but it is widely accepted as the heir
apparent of HTML 4.01 and XHTML.

• sed is readily available on Unix/Linux systems, including the Mac (Darwin or BSD
version). It is also available on Windows through distributions like Cygwin (http:
//www.cygwin.com) or individually at http://gnuwin32.sourceforge.net/packages/
sed.htm (currently at version 4.2.1, see http://www.gnu.org/software/sed/manual/
sed.html).

• To use the Perl examples in this chapter, you may have to install Perl on your
system. It comes by default with Mac OS X Lion and often is on Linux systems. If
you are on Windows, you can get Perl by installing the appropriate Cygwin

Technical Notes | 27

http://www.gskinner.com/RegExr
http://www.gskinner.com/RegExr/desktop/
http://www.adobe.com/products/flex.html
http://www.adobe.com/products/flex.html
http://www.adobe.com/devnet/actionscript.html
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/RegExp
http://git-scm.com
http://github.com
http://www.w3.org/TR/html5/
http://www.cygwin.com
http://www.cygwin.com
http://gnuwin32.sourceforge.net/packages/sed.htm
http://gnuwin32.sourceforge.net/packages/sed.htm
http://www.gnu.org/software/sed/manual/sed.html
http://www.gnu.org/software/sed/manual/sed.html

packages (see http://www.cygwin.com) or by downloading the latest package from
the ActiveState website (go to http://www.activestate.com/activeperl/downloads).
For detailed information on installing Perl, visit http://learn.perl.org/installing/ or
http://www.perl.org/get.html.

To find out if you already have Perl, enter the command below at a shell prompt.
To do this, open a command or shell window on your system, such as a Terminal
window (under Applications/Utilities) on the Mac or a Windows command line
window (open Start, and then enter cmd in the text box at the bottom of the menu).
At the prompt, type:

perl -v

If Perl is alive and well on your system, then this command will return version
information for Perl. On my Mac running Lion, I’ve installed the latest version of
Perl (5.16.0 at the time of this writing) from source and compiled it (see http://www
.cpan.org/src/5.0/perl-5.16.0.tar.gz). I get the following information back when I
enter the command above:
This is perl 5, version 16, subversion 0 (v5.16.0) built for darwin-2level

Copyright 1987-2012, Larry Wall

Perl may be copied only under the terms of either the Artistic License or the
GNU General Public License, which may be found in the Perl 5 source kit.

Complete documentation for Perl, including FAQ lists, should be found on
this system using "man perl" or "perldoc perl". If you have access to the
Internet, point your browser at http://www.perl.org/, the Perl Home Page.

Both perl and perldoc are installed at /usr/local/bin when compiled and built
from source, which you can add to your path. For information on setting your path
variable, see http://java.com/en/download/help/path.xml.

28 | Chapter 2: Simple Pattern Matching

http://www.cygwin.com
http://www.activestate.com/activeperl/downloads
http://learn.perl.org/installing/
http://www.perl.org/get.html
http://www.cpan.org/src/5.0/perl-5.16.0.tar.gz
http://www.cpan.org/src/5.0/perl-5.16.0.tar.gz
http://java.com/en/download/help/path.xml

CHAPTER 3

Boundaries

This chapter focuses on assertions. Assertions mark boundaries, but they don’t con-
sume characters—that is, characters will not be returned in a result. They are also
known as zero-width assertions. A zero-width assertion doesn’t match a character, per
se, but rather a location in a string. Some of these, such as ̂ and $, are also called anchors.

The boundaries I'll talk about in this chapter are:

• The beginning and end of a line or string

• Word boundaries (two kinds)

• The beginning and end of a subject

• Boundaries that quote string literals

To start, I’ll use RegExr again, but this time, for variety, I’ll use the Safari browser
(however, you can use any browser you like). I’ll also use the same text I used last time:
the first 12 lines of rime.txt. Open the Safari browser with http://gskinner.com/regexr
and copy the first 12 lines of rime.txt from the code archive into the lower box.

The Beginning and End of a Line
As you have seen a number of times already, to match the beginning of a line or string,
use the caret or circumflex (U+005E):

^

Depending on the context, a ^ will match the beginning of a line or string, sometimes
a whole document. The context depends on your application and what options you
are using with that application.

To match the end of a line or string, as you know, use the dollar sign:

$

29

http://gskinner.com/regexr

In RegExr, make sure that multiline is checked. global is checked by default when you
open RegExr, but you can leave it checked or unchecked for this example. When
multiline is not checked, the entire target is considered one string.

In the upper text box, enter this regular expression:

^How.*Country\.$

This will match the entire line beginning with the word How. Notice that the period
or dot at the end is preceded by a backslash. This escapes the dot so that it is interpreted
as a literal. If it was not escaped, what would it match? Any character. If you want to
match a literal dot, you have to either escape it or put it in a character class (see
Chapter 5).

If you uncheck multiline, then what happens? The highlighting is turned off. With it
unchecked and dotall checked, enter:

^THE.*\?$

and you’ll see that it matches all the text.

The dotall option means that the dot will match newlines in addition to all other char-
acters. Uncheck dotall, and the expression matches nothing. However, the following:

^THE.*

Figure 3-1. RegExr in Safari

30 | Chapter 3: Boundaries

will match the first line. Click dotall again, and all text is matched again. The \?$ is not
required to match to the end of the text.

Word and Non-word Boundaries
You have already seen \b used several times. It marks a word boundary. Try:

\bTHE\b

and it will match both occurrences of THE in the first line (with global checked). Like,
^ or $, \b is a zero-width assertion. It may appear to match things like a space or the
beginning of a line, but in actuality, what it matches is a zero-width nothing. Did you
notice that the spaces around the second THE are not highlighted? That is because they
are not part of the match. Not the easiest thing to grasp, but you’ll get it by seeing what
it does and does not do.

You can also match non-word boundaries. A non-word boundary matches locations
that are not equivalent to a word boundary, like a letter or a number within a word or
string. To match a non-word boundary, give this a spin:

\Be\B

and watch what it matches (see Figure 3-2). You’ll see that it matches a lowercase e
when it is surrounded by other letters or non-word characters. Being a zero-width as-
sertion, it does not match the surrounding characters, but it recognizes when the literal
e is surrounded by non-word boundaries.

In some applications, another way for specifying a word boundary is with:

\<

for the beginning of a word, and with:

\>

for the end of the word. This is an older syntax, not available in most recent regex
applications. It is useful in some instances because, unlike \b, which matches any word
boundary, this syntax allows you to match either the beginning or ending of a word.

If you have vi or vim on your system, you can try this out with that editor. Just follow
these steps. They’re easy even if you have never used vim before. In a command or shell
window, change directories to where the poem is located and then open it with:

vim rime.txt

Then enter the following search command:

/\>

and press Enter or Return. The forward slash (/) is the way you begin a search in vim.
Watch the cursor and you’ll see that this search will find the ends of words. Press n to
repeat the search. Next enter:

Word and Non-word Boundaries | 31

/\<

followed by Enter or Return. This time the search will find the beginning of words. To
exit vim, just type ZZ.

This syntax also works with grep. Since the early 1970s, grep like sed has been a Unix
mainstay. (In the 1980s, I had a coworker who had a vanity license plate that said
GREP.) Try this command from a shell prompt:

grep -Eoc '\<(THE|The|the)\>' rime.txt

The -E option indicates that you want to use extended regular expressions (EREs) rather
than the basic regular expressions (BREs) which are used by grep by default. The -o
option means you want to show in the result only that part of the line that matches the
pattern, and the -c option means only return a count of the result. The pattern in single
quotes will match either THE, The, or the as whole words. That’s what the \< and \>
help you find.

This command will return:

259

which is the count of the words found.

Figure 3-2. Matching non-word boundaries with \B

32 | Chapter 3: Boundaries

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

On the other hand, if you don’t include the \< and \>, you get a different result. Do it
this way:

grep -Eoc '(THE|The|the)' rime.txt

and you will get a different number:

327

Why? Because the pattern will match only whole words, plus any sequence of characters
that contain the word. So that is one reason why the \< and \> can come in handy.

Other Anchors
Similar to the ̂ anchor is the following, a shorthand that matches the start of a subject:

\A

This is not available with all regex implementations, but you can get it with Perl and
PCRE (Perl Compatible Regular Expressions), for example. To match the end of a
subject, you can use \A’s companion.

\Z

Also, in some contexts:

\z

pcregrep is a version of grep for the PCRE library. (See “Technical
Notes” on page 38 to find out where to get it.) Once installed, to try this syntax with
pcregrep, you could do something like this:

pcregrep -c '\A\s*(THE|The|the)' rime.txt

which will return a count (-c) of 108 occurrences of the word the (in three cases) which
occur near the beginning of a line, preceded by whitespace (zero or more). Next enter
this command:

pcregrep -n '(MARINERE|Marinere)(.)?\Z' rime.txt

This matches either MARINERE or Marinere at the end of a line (subject) and is fol-
lowed by any optional character, which in this case is either a punctuation mark or the
letter S. (The parentheses around the dot are not essential.)

You’ll see this output:

1:THE RIME OF THE ANCYENT MARINERE,
10: It is an ancyent Marinere,
38: The bright-eyed Marinere.
63: The bright-eyed Marinere.
105: "God save thee, ancyent Marinere!
282: "I fear thee, ancyent Marinere!
702: He loves to talk with Marineres

Other Anchors | 33

The -n option with pcregrep gives you the line numbers at the beginning of each line
of output. The command line options of pcregrep are very similar to those of grep. To
see them, do:

pcre --help

Quoting a Group of Characters as Literals
You can use these sequences to quote a set of characters as literals:

\Q

and

\E

To show you how this works, enter the following metacharacters in the lower box of
RegExr:

.^$*+?|(){}[]\-

These 15 metacharacters are treated as special characters in regular expressions, used
for encoding a pattern. (The hyphen is treated specially, as signifying a range, inside of
the square brackets of a character class. Otherwise, it’s not special.)

If you try to match those characters in the upper text box of RegExr, nothing will
happen. Why? Because RegExr thinks (if it can think) that you are entering a regular
expression, not literal characters. Now try:

\Q$\E

and it will match $ because anything between \Q and \E is interpreted as a literal
character (see Figure 3-3). (Remember, you can precede a metacharacer with a \ to
make it literal.)

Adding Tags
In RegExr, uncheck global and check multiline, click the Replace tab, and then, in the
first text box (marked number 1 in Figure 3-4), enter:

^(.*)$

This will match and capture the first line of text. Then in the next box (marked number
2), enter this or something similar:

<!DOCTYPE html>\n<html lang="en">\n<head><title>Rime</title></head>\n<body>\n
 <h1>$1</h1>

As you enter the replacement text, you’ll notice that the subject text (shown in the box
marked number 3) is changed in the results text box (marked number 4), to include
the markup you’ve added (see Figure 3-4).

34 | Chapter 3: Boundaries

Figure 3-4. Adding markup with RegExr

Figure 3-3. Quoting metacharacters as literals

Adding Tags | 35

RegExr does well to demonstrate one way to do this, but it is limited in what it can do.
For example, it can’t save any results out to a file. We have to look beyond the browser
for that.

Adding Tags with sed
On a command line, you could also do something similar to what we just did in RegExr
with sed, which you saw in the last chapter. The insert (i) command in sed allows you
to insert text above or before a location in a document or a string. By the way, the
opposite of i in sed is a, which appends text below or after a location. We’ll use the
append command later.

The following command inserts the HTML5 doctype and several other tags, beginning
at line 1:

sed '1 i\
<!DOCTYPE html>\
<html lang="en">\
<head>\
<title>Rime</title>\
</head>\
<body>

s/^/<h1>/
s/$/<\/h1>/
q' rime.txt

The backslashes (\) at the end of the lines allow you to insert newlines into the stream
and not execute the command prematurely. The backslashes in front of the quotation
marks escape the quotes so that they are seen as literal characters, not part of the
command.

When you run this sed command correctly, this is what your output will look like:

<!DOCTYPE html>
<html lang="en">
<head>
<title>The Rime of the Ancyent Mariner (1798)</title>
</head>
<body>
<h1>THE RIME OF THE ANCYENT MARINERE, IN SEVEN PARTS.</h1>

These same sed commands are saved in the file top.sed in the example archive. You can
run this on the file using this command:

sed -f top.sed rime.txt

You should get the same output as you saw in the previous command. If you want to
save the output to a file, you can redirect the output to a file, like so:

sed -f top.sed rime.txt > temp

36 | Chapter 3: Boundaries

In addition to showing the result on the screen, this redirect part of the command
(> temp) will save the output to the file temp.

Adding Tags with Perl
Let’s try to accomplish this same thing with Perl. Without explaining everything that’s
going on, just try this:

perl -ne 'print "<!DOCTYPE html>\
<html lang=\"en\">\
<head><title>Rime</title></head>\
<body>\
" if $. == 1;
s/^/<h1>/;s/$/<\/h1>/m;print;exit;' rime.txt

Compare this with the sed command. How is it similar? How is it different? The sed
command is a little simpler, put Perl is a lot more powerful, in my opinion.

Here is how it works:

• The $. variable, which is tested with the if statement, represents the current line.
The if statement returns true, meaning it passes the test that the current line is line
1.

• When Perl finds line 1 with if, it prints the doctype and a few HTML tags. It is
necessary to escape the quote marks as in sed.

• The first substitution inserts an h1 start-tag at the beginning of the line, and the
second one inserts an h1 end-tag at the end of the line. The m at the end of the
second substitution means that it uses a multiline modifier. This is done so that
the command recognizes the end of the first line. Without m, the $ would match
to the end of the file.

• The print command prints the result of the substitutions.

• The exit command exits Perl immediately. Otherwise, because of -n option, it
would loop through every line of the file, which we don’t want for this script.

That was a lot of typing, so I put all that Perl code in a file and called it top.pl, also
found in the code archive.

#!/usr/bin/perl -n

if ($ == 1) {
print "<!DOCTYPE html>\
<html lang=\"en\">\
<head>\
<title>The Rime of the Ancyent Mariner (1798)</title>\
</head>\
<body>\
";
s/^/<h1>/;
s/$/<\/h1>/m;
print;

Adding Tags | 37

exit;
}

Run this with:

perl top.pl rime.txt

You get a similar output as in the previous command, though it is formed a little dif-
ferently. (You can redirect the output with >, as with sed.)

The next chapter covers alternation, groups, and backreferences, among other things.
See you over there.

What You Learned in Chapter 3
• How to use anchors at the beginning or end of a line with ^ or $

• How to use word boundaries and non-word boundaries

• How to match the beginning or end of a subject with \A and \Z (or \z)

• How to quote strings as literals with \Q and \E

• How to add tags to a document with RegExr, sed, and Perl

Technical Notes
• vi is a Unix editor developed in 1976 by Sun cofounder Bill Joy that uses regular

expressions. The vim editor is a replacement for vi, developed primarily by Bram
Moolenaar (see http://www.vim.org). An early paper on vi by Bill Joy and Mark
Horton is found here: http://docs.freebsd.org/44doc/usd/12.vi/paper.html. The first
time I used vi was in 1983, and I use it nearly every day. It lets me to do more things
more quickly than with any other text editor. And it is so powerful that I am always
discovering new features that I never knew about, even though I’ve been acquainted
with it for nearly 30 years.

• grep is a Unix command-line utility for searching and printing strings with regular
expressions. Invented by Ken Thompson in 1973, grep is said to have grown out
of the ed editor command g/re/p (global/regular expression/print). It was super-
seded but not retired by egrep (or grep -E), which uses extended regular expressions
(EREs) and has additional metacharacters such as |, +, ?, (, and). fgrep (grep -F)
searches files using literal strings; metacharacters like $, *, and | don’t have special
meaning. grep is available on Linux systems as well as the Mac OS X’s Darwin.
You can also get it as part of the Cygwin GNU distribution (http://www.cygwin
.com) or you can download it from http://gnuwin32.sourceforge.net/packages/grep
.htm.

38 | Chapter 3: Boundaries

http://www.vim.org
http://docs.freebsd.org/44doc/usd/12.vi/paper.html
http://www.cygwin.com
http://www.cygwin.com
http://gnuwin32.sourceforge.net/packages/grep.htm
http://gnuwin32.sourceforge.net/packages/grep.htm

• PCRE (http://www.pcre.org) or Perl Compatible Regular Expressions is a C library
of functions (8-bit and 16-bit) for regular expressions that are compatible with Perl
5, and include some features of other implementations. pcregrep is an 8-bit, grep-
like tool that enables you to use the features of the PCRE library on the command
line. You can get pcregrep for the Mac through Macports (http://www.macports
.org) by running the command sudo port install pcre. (Xcode is a prerequisite;
see https://developer.apple.com/technologies/tools/. Login required.)

Technical Notes | 39

http://www.pcre.org
http://www.macports.org
http://www.macports.org
https://developer.apple.com/technologies/tools/

CHAPTER 4

Alternation, Groups, and
Backreferences

You have already seen groups in action. Groups surround text with parentheses to help
perform some operation, such as the following:

• Performing alternation, a choice between two or more optional patterns

• Creating subpatterns

• Capturing a group to later reference with a backreference

• Applying an operation to a grouped pattern, such as a quantifer

• Using non-capturing groups

• Atomic grouping (advanced)

We’ll be using a few contrived examples, in addition to the text from “The Rime of the
Ancyent Mariner” again, in rime.txt. This time, I’ll use the desktop version of RegExr,
as well as other tools like sed. You can download the desktop version of RegExr from
http://www.regexr.com, for Windows, Mac, or Linux (it was written with Adobe AIR).
Click the Desktop Version link on the RegExr web page (lower-right corner) for more
information.

Alternation
Simply said, alternation gives you a choice of alternate patterns to match. For example,
let’s say you wanted to find out how many occurrences of the article the are in the “The
Rime of the Ancient Mariner.” The problem is, the word occurs as THE, The, and the
in the poem. You can use alternation to deal with this peculiarity.

Open the RegExr desktop application by double-clicking on its icon. It looks very much
like the online version but has the advantage of being local on your machine, so you
won’t suffer the network issues that sometimes occur when using web applications.

41

http://www.regexr.com

I’ve copied and pasted the entire poem in RegExr desktop for the next exercise. I’m
using it on a Mac running OS X Lion.

In the top text box, enter the pattern:

(the|The|THE)

and you’ll see all occurrences of the in the poem highlighted in the lower box (see
Figure 4-1). Use the scroll bar to view more of the result.

Figure 4-1. Using alternation in RegExr desktop version

We can make this group shorter by applying an option. Options let you specify the way
you would like to search for a pattern. For example, the option:

(?i)

makes your pattern case-insensitive, so instead of using the original pattern with alter-
nation, you can do this instead:

(?i)the

Try this in RegExr to see how it works. You can also specify case-insensitivity by
checking ignoreCase in RegExr, but both will work. This and other options or modifiers
are listed in Table 4-1.

42 | Chapter 4: Alternation, Groups, and Backreferences

Table 4-1. Options in regular expressions

Option Description Supported by

(?d) Unix lines Java

(?i) Case insensitive PCRE, Perl, Java

(?J) Allow duplicate names PCRE*

(?m) Multiline PCRE, Perl, Java

(?s) Single line (dotall) PCRE, Perl, Java

(?u) Unicode case Java

(?U) Default match lazy PCRE

(?x) Ignore whitespace, comments PCRE, Perl, Java

(?-…) Unset or turn off options PCRE
* See “Named Subpatterns” in http://www.pcre.org/pcre.txt.

Let’s now use alternation with grep. The options in Table 4-1, by the way, don’t work
with grep, so you are going to use the original alternation pattern. To count the number
of lines where the word the occurs, regardless of case, one or more times, use:

grep -Ec "(the|The|THE)" rime.txt

and get this answer:

327

This result does not tell the whole story. Stay tuned.

Here is an analysis of the grep command:

• The -E option means that you want to use extended regular expressions (EREs)
rather than basic regular expressions (BREs). This, for example, saves you from
having to escape the parentheses and the vertical bar, like \(THE\|The\|the\), as
you must with BREs.

• The -c option returns a count of the matched lines (not matched words).

• The parentheses group the choice or alternation of the, The, or THE.

• The vertical bar separates possible choices, which are evaluated left to right.

To get a count of actual words used, this approach will return each occurrence of the
word, one per line:

grep -Eo "(the|The|THE)" rime.txt | wc -l

This returns:

412

And here is a bit more analysis:

• The -o option means to show only that part of the line that matches the pattern,
though this is not apparent due to the pipe (|) to wc.

Alternation | 43

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.pcre.org/pcre.txt

• The vertical bar, in this context, pipes the output of the grep command to the input
of the wc command. wc is a word count command, and -l counts the number of
lines of the input.

Why the big difference between 327 and 412? Because -c gives you a count of matching
lines, but there can be more than one match on each line. If you use -o with wc -l, then
each occurrence of the various forms of the word will appear on a separate line and be
counted, giving the higher number.

To perform this same match with Perl, write your command this way:

perl -ne 'print if /(the|The|THE)/' rime.txt

Or better yet, you can do it with the (?i) option mentioned earlier, but without
alternation:

perl -ne 'print if /(?i)the/' rime.txt

Or even better yet, append the i modifier after the last pattern delimiter:

perl -ne 'print if /the/i' rime.txt

and you will get the same outcome. The simpler the better. For a list of additional
modifiers (also called flags), see Table 4-2. Also, compare options (similar but with a
different syntax) in Table 4-1.

Table 4-2. Perl modifiers (flags)*

Modifier Description

a Match \d, \s, \w, and POSIX in ASCII range only

c Keep current position after match fails

d Use default, native rules of the platform

g Global matching

i Case-insensitive matching

l Use current locale’s rules

m Multiline strings

p Preserve the matched string

s Treat strings as a single line

u Use Unicode rules when matching

x Ignore whitespace and comments
* See http://perldoc.perl.org/perlre.html#Modifiers.

44 | Chapter 4: Alternation, Groups, and Backreferences

http://perldoc.perl.org/perlre.html#Modifiers

Subpatterns
Most often, when you refer to subpatterns in regular expressions, you are referring to
a group or groups within groups. A subpattern is a pattern within a pattern. Often, a
condition in a subpattern is matchable when a preceding pattern is matched, but not
always. Subpatterns can be designed in a variety of ways, but we’re concerned primarily
with those defined within parentheses here.

In one sense, the pattern you saw earlier:

(the|The|THE)

has three subpatterns: the is the first subpattern, The is the second, and THE the third,
but matching the second subpattern, in this instance, is not dependent on matching
the first. (The leftmost pattern is matched first.)

Now here is one where the subpattern(s) depend on the previous pattern:

(t|T)h(e|eir)

In plain language, this will match the literal characters t or T followed by an h followed
by either an e or the letters eir. Accordingly, this pattern will match any of:

• the

• The

• their

• Their

In this case, the second subpattern (e|eir) is dependent on the first (tT).

Subpatterns don’t require parentheses. Here is an example of subpatterns done with
character classes:

\b[tT]h[ceinry]*\b

This pattern can match, in addition to the or The, words such as thee, thy and thence.
The two word boundaries (\b) mean the pattern will match whole words, not letters
embedded in other words.

Here is a complete analysis of this pattern:

• \b matches a beginning word boundary.

• [tT] is a character class that matches either an lowercase t or an uppercase T. We
can consider this the first subpattern.

• Then the pattern matches (or attempts to match) a lowercase h.

• The second or last subpattern is also expressed as a character class [ceinry] fol-
lowed by a quantifier * for zero or more.

• Finally, another word boundary \b ends the pattern.

Subpatterns | 45

One interesting aspect of the state of regular expressions is that termi-
nology, while usually close in meaning, can also range far. In defining
subpattern and other terms in this book, I’ve examined a variety of sour-
ces and have tried to bring them together under one roof. But I suspect
that there are some who would argue that a character class is not a
subpattern. My take is they can function as subpatterns, so I lump
them in.

Capturing Groups and Backreferences
When a pattern groups all or part of its content into a pair of parentheses, it captures
that content and stores it temporarily in memory. You can reuse that content if you
wish by using a backreference, in the form:

\1

or:

$1

where \1 or $1 reference the first captured group, \2 or $2 reference the second captured
group, and so on. sed will only accept the \1 form, but Perl accepts both.

Originally, sed supported backreferences in the range \1 through \9, but
that limitation does not appear to exist any longer.

You have already seen this in action, but I’ll demonstrate it here again. We’ll use it to
rearrange the wording of a line of the poem, with apologies to Samuel Taylor Coleridge.
In the top text box in RegExr, after clicking the Replace tab, enter this pattern:

(It is) (an ancyent Marinere)

Scroll the subject text (third text area) down until you can see the highlighted line, and
then in the second box, enter:

$2 $1

and you’ll see in the lowest box the line rearranged as:

an ancyent Marinere It is,

(See Figure 4-2.)

46 | Chapter 4: Alternation, Groups, and Backreferences

Figure 4-2. Referencing backreferences with $1 and $2

Here is how to accomplish the same result with sed:

sed -En 's/(It is) (an ancyent Marinere)/\2 \1/p' rime.txt

and the output will be:

an ancyent Marinere It is,

just as in RegExr. Let’s analyze the sed command to help you understand everything
that is going on:

• The -E option once again invokes EREs, so you don’t have to quote the parentheses,
for example.

• The -n option suppresses the default behavior of printing every line.

• The substitute command searches for a match for the text “It is an ancyent Mari-
nere,” capturing it into two groups.

• The substitute command also replaces the match by rearranging the captured text
in the output, with the backreference \2 first, then \1.

• The p at the end of the substitute command means you want to print the line.

Capturing Groups and Backreferences | 47

A similar command in Perl will do the same thing:

perl -ne 'print if s/(It is) (an ancyent Marinere)/\2 \1/' rime.txt

Notice that this uses the \1 style syntax. You can, of course, use the $1 syntax, too:

perl -ne 'print if s/(It is) (an ancyent Marinere)/$2 $1/' rime.txt

I like how Perl lets you print a selected line without jumping through hoops.

I’d like to point out something about the output:

an ancyent Marinere It is,

The capitalization got mixed up in the transformation. Perl can fix that with \u and
\l. Here’s how:

perl -ne 'print if s/(It is) (an ancyent Marinere)/\u$2 \l$1/' rime.txt

Now the result looks much better:

An ancyent Marinere it is,

And here is why:

• The \l syntax does not match anything, but it changes the character that follows
to lowercase.

• The \u syntax capitalizes the character that follows it.

• The \U directive (not shown) turns the text string that follows into all uppercase.

• The \L directive (not shown) turns the text string that follows into all lowercase.

These directives remain in effect until another is found (like \l or \E, the end of a
quoted string). Experiment with these to see how they work.

Named Groups
Named groups are captured groups with names. You can access those groups by name
later, rather than by integer. I’ll show you how here in Perl:

perl -ne 'print if s/(?<one>It is) (?<two>an ancyent Marinere)/\u$+{two}
 \l$+{one}/' rime.txt

Let’s look at it:

• Adding ?<one> and ?<two> inside the parentheses names the groups one and two,
respectively.

• $+{one} references the group named one, and $+{two}, the group named two.

You can also reuse named groups within the pattern where the group was named. I’ll
show you what I mean. Let’s say you were searching for a string that contained six
zeros all together:

000000

48 | Chapter 4: Alternation, Groups, and Backreferences

It’s a shallow example, but serves to show you how this works. So name a group of
three zeros with this pattern (the z is arbitrary):

(?<z>0{3})

You can then use the group again like this:

(?<z>0{3})\k<z>

Or this:

(?<z>0{3})\k'z'

Or this:

(?<z>0{3})\g{z}

Try this in RegExr for quick results. All these examples will work. Table 4-3 shows
many of the possibilities with named group syntax.

Table 4-3. Named group syntax

Syntax Description

(?<name>…) A named group

(?name…) Another named group

(?P<name>…) A named group in Python

\k<name> Reference by name in Perl

\k'name' Reference by name in Perl

\g{name} Reference by name in Perl

\k{name} Reference by name in .NET

(?P=name) Reference by name in Python

Non-Capturing Groups
There are also groups that are non-capturing groups—that is, they don’t store their
content in memory. Sometimes this is an advantage, especially if you never intend to
reference the group. Because it doesn’t store its content, it is possible it may yield better
performance, though performance issues are hardly perceptible when running the sim-
ple examples in this book.

Remember the first group discussed in this chapter? Here it is again:

(the|The|THE)

You don’t need to backreference anything, so you could write a non-capturing group
this way:

(?:the|The|THE)

Going back to the beginning of this chapter, you could add an option to make the
pattern case-insensitive, like this (though the option obviates the need for a group):

Non-Capturing Groups | 49

(?i)(?:the)

Or you could do it this way:

(?:(?i)the)

Or, better yet, the pièce de résistance:

(?i:the)

The option letter i can be inserted between the question mark and the colon.

Atomic Groups
Another kind of non-capturing group is the atomic group. If you are using a regex engine
that does backtracking, this group will turn backtracking off, not for the entire regular
expression but just for that part enclosed in the atomic group. The syntax looks like this:

(?>the)

When would you want to use atomic groups? One of the things that can really slow
regex processing is backtracking. The reason why is, as it tries all the possibilities, it
takes time and computing resources. Sometimes it can gobble up a lot of time. When
it gets really bad, it’s called catastrophic backtracking.

You can turn off backtracking altogether by using a non-backtracking engine like re2
(http://code.google.com/p/re2/) or by turning it off for parts of your regular expression
with atomic grouping.

My focus in this book is to introduce syntax. I talk very little about
performance tuning here. Atomic groups are mainly a performance con-
sideration in my view.

In Chapter 5, you’ll learn about character classes.

What You Learned in Chapter 4
• That alternation allows a choice between two or more patterns

• What options modifiers are and how to use them in a pattern

• Different kinds of subpatterns

• How to use capturing groups and backreferences

• How to use named groups and how to reference them

• How to use non-capturing groups.

• A little about atomic grouping.

50 | Chapter 4: Alternation, Groups, and Backreferences

http://code.google.com/p/re2/

Technical Notes
• The Adobe AIR runtime lets you use HTML, JavaScript, Flash, and ActionScript

to build web applications that run as standalone client applications without having
to use a browser. Find out more at http://www.adobe.com/products/air.html.

• Python (http://www.python.org) is an easy-to-understand, high-level programming
language. It has a regular expression implementation (see http://docs.python.org/
library/re.html).

• .NET (http://www.microsoft.com/net) is a programming framework for the Win-
dows platform. It, too, has a regular expression implementation (see http://msdn
.microsoft.com/en-us/library/hs600312.aspx).

• More advanced explanations of atomic grouping are available at http://www.regu
lar-expressions.info/atomic.html and http://stackoverflow.com/questions/6488944/
atomic-group-and-non-capturing-group.

Technical Notes | 51

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.adobe.com/products/air.html
http://www.python.org
http://docs.python.org/library/re.html
http://docs.python.org/library/re.html
http://www.microsoft.com/net
http://msdn.microsoft.com/en-us/library/hs600312.aspx
http://msdn.microsoft.com/en-us/library/hs600312.aspx
http://www.regular-expressions.info/atomic.html
http://www.regular-expressions.info/atomic.html
http://stackoverflow.com/questions/6488944/atomic-group-and-non-capturing-group
http://stackoverflow.com/questions/6488944/atomic-group-and-non-capturing-group

CHAPTER 5

Character Classes

I’ll now talk more about character classes or what are sometimes called bracketed ex-
pressions. Character classes help you match specific characters, or sequences of specific
characters. They can be just as broad or far-reaching as character shorthands—for
example, the character shorthand \d will match the same characters as:

0-9

But you can use character classes to be even more specific than that. In this way, they
are more versatile than shorthands.

Try these examples in whatever regex processor you prefer. I’ll use Rubular in Opera
and Reggy on the desktop.

To do this testing, enter this string in the subject or target area of the web page:

! " # $ % & ' () * + , - . /
0 1 2 3 4 5 6 7 8 9
: ; < = > ? @
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
[\] ^ _ `
a b c d e f g h i j k l m n o p q r s t u v w x y z
{ | } ~

You don’t have to type all that in. You’ll find this text stored in the file ascii-
graphic.txt in the code archive that comes with this book.

To start out, use a character class to match a set of English characters—in this case,
the English vowels:

[aeiou]

The lowercase vowels should be highlighted in the lower text area (see Figure 5-1).
How would you highlight the uppercase vowels? How would you highlight or match
both?

With character classes, you can also match a range of characters:

[a-z]

53

This matches the lowercase letters a through z. Try matching a smaller range of those
characters, something like a through f:

[a-f]

Of course, you can also specify a range of digits:

[0-9]

Or an even smaller range such as 3, 4, 5, and 6:

[3-6]

Now expand your horizon. If you wanted to match even numbers in the range 10
through 19, you could combine two character classes side by side, like this:

\b[1][24680]\b

Or you could push things further and look for even numbers in the range 0 through 99
with this (yes, as we learned in high school, zero by itself is even):

\b[24680]\b|\b[1-9][24680]\b

If you want to create a character class that matches hexadecimal digits, how would
you do it? Here is a hint:

[a-fA-F0-9]

You can also use shorthands inside of a character class. For example, to match white-
space and word characters, you could create a character class like this:

Figure 5-1. Character class with Rubular in the Opera browser

54 | Chapter 5: Character Classes

[\w\s]

Which is the same as:

[_a-zA-Z \t\n\r]

but easier to type.

Negated Character Classes
You have already seen syntax a number of times, so I’ll be brief. A negated character
class matches characters that do not match the content of the class. For example, if you
didn’t want to match vowels, you could write (try it in your browser, then see Fig-
ure 5-2):

[^aeiou]

In essence, the caret (^) at the beginning of the class means “No, I don’t want these
characters.” (The caret must appear at the beginning.)

Figure 5-2. Negated character class with Regexpal in Opera

Negated Character Classes | 55

Union and Difference
Character classes can act like sets. In fact, one other name for a character class is a
character set. This functionality is not supported by all implementations. But Java sup-
ports it.

I’ll now show you a Mac desktop application called Reggy (see “Technical
Notes” on page 60). Under Preferences (Figure 5-3), I changed the Regular Expression
Syntax to Java, and in Font (under Format), I changed the point size to 24 points for
readability.

Figure 5-3. Reggy preferences

If you wanted a union of two character sets, you could do it like this:

[0-3[6-9]]

The regex would match 0 through 3 or 6 through 9. Figure 5-4 shows you how this
looks in Reggy.

To match a difference (in essence, subtraction):

[a-z&&[^m-r]]

which matches all the letters from a to z, except m through r (see Figure 5-5).

POSIX Character Classes
POSIX or Portable Operating System Interface is a family of standards maintained by
IEEE. It includes a regular expression standard, (ISO/IEC/IEEE 9945:2009), which
provides a set of named character classes that have the form:

56 | Chapter 5: Character Classes

[[:xxxx:]]

where xxxx is a name, such as digit or word.

To match alphanumeric characters (letters and digits), try:

[[:alnum:]]

Figure 5-6 shows the alphanumeric class in Rubular.

An alternative for this is simply the shorthand \w. Which is easier to type, the POSIX
character class or the shorthand? You know where I’m going: The least amount of
typing wins. I admit I don’t use POSIX classes very often. But they’re still worth know-
ing about.

For alphabetic characters in either upper- or lowercase, use:

[[:alpha:]]

If you want to match characters in the ASCII range, choose:

[[:ascii:]]

Of course, there are negated POSIX character classes as well, in the form:

[[:^xxxx:]]

Figure 5-4. Union of two character sets in Reggy

POSIX Character Classes | 57

So if you wanted to match non-alphabetic characters, you could use:

[[:^alpha:]]

To match space and tab characters, do:

[[:space:]]

Or to match all whitespace characters, there’s:

[[:blank:]]

There are a number of these POSIX character classes, which are shown in Table 5-1.

Table 5-1. POSIX character classes

Character Class Description

[[:alnum:]] Alphanumeric characters (letters and digits)

[[:alpha:]] Alphabetic characters (letters)

[[:ascii:]] ASCII characters (all 128)

[[:blank:]] Blank characters

[[:ctrl:]] Control characters

Figure 5-5. Difference of two characters sets in Reggy

58 | Chapter 5: Character Classes

Character Class Description

[[:digit:]] Digits

[[:graph:]] Graphic characters

[[:lower:]] Lowercase letters

[[:print:]] Printable characters

[[:punct:]] Punctuation characters

[[:space:]] Whitespace characters

[[:upper:]] Uppercase letters

[[:word:]] Word characters

[[:xdigit:]] Hexadecimal digits

The next chapter is dedicated to matching Unicode and other characters.

What You Learned in Chapter 5
• How to create a character class or set with a bracketed expression

• How to create one or more ranges within a character class

• How to match even numbers in the range 0 through 99

Figure 5-6. POSIX alphanumeric character class in Reggy

What You Learned in Chapter 5 | 59

• How to match a hexadecimal number

• How to use character shorthands within a character class

• How to negate a character class

• How to perform union, and difference with character classes

• What POSIX character classes are

Technical Notes
• The Mac desktop application Reggy can be downloaded for free at http://www

.reggyapp.com. Reggy shows you what it has matched by changing the color of the
matched text. The default is blue, but you can change this color in Preferences
under the Reggy menu. Under Preferences, choose Java under Regular Expression
Syntax.

• The Opera Next browser, currently in beta, can be downloaded from http://www
.opera.com/browser/next/.

• Rubular is an online Ruby regular expression editor created by Michael Lovitt that
supports both versions 1.8.7 and 1.9.2 of Ruby (see http://www.rubular.com).

• Read more about even numbers, of which zero is one, at http://mathworld.wolfram
.com/EvenNumber.html.

• The Java (1.6) implementation of regular expressions is documented at http://docs
.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html.

• You can find out more about IEEE and its family of POSIX standards at http://www
.ieee.org.

60 | Chapter 5: Character Classes

http://www.reggyapp.com
http://www.reggyapp.com
http://www.opera.com/browser/next/
http://www.opera.com/browser/next/
http://www.rubular.com
http://mathworld.wolfram.com/EvenNumber.html
http://mathworld.wolfram.com/EvenNumber.html
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://www.ieee.org
http://www.ieee.org

CHAPTER 6

Matching Unicode and Other
Characters

You will have occasion to match characters or ranges of characters that are outside the
scope of ASCII. ASCII, or the American Standard Code for Information Interchange,
defines an English character set—the letters A through Z in upper- and lowercase, plus
control and other characters. It’s been around for a long time: The 128-character Latin-
based set was standardized in 1968. That was back before there was such a thing as a
personal computer, before VisiCalc, before the mouse, before the Web, but I still look
up ASCII charts online regularly.

I remember when I started my career many years ago, I worked with an engineer who
kept an ASCII code chart in his wallet. Just in case. The ASCII Code Chart: Don’t leave
home without it.

So I won’t gainsay the importance of ASCII, but now it is dated, especially in light of
the Unicode standard (http://www.unicode.org), which currently represents over
100,000 characters. Unicode, however, does not leave ASCII in the dust; it incorporates
ASCII into its Basic Latin code table (see http://www.unicode.org/charts/PDF/U0000
.pdf).

In this chapter, you will step out of the province of ASCII into the not-so-new world
of Unicode.

The first text is voltaire.txt from the code archive, a quote from Voltaire (1694–1778),
the French Enlightenment philosopher.

Qu’est-ce que la tolérance? c’est l’apanage de l’humanité. Nous sommes tous pétris de
faiblesses et d’erreurs; pardonnons-nous réciproquement nos sottises, c’est la première
loi de la nature.

Here is an English translation:

What is tolerance? It is the consequence of humanity. We are all formed of frailty and
error; let us pardon reciprocally each other’s folly—that is the first law of nature.

61

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.unicode.org
http://www.unicode.org/charts/PDF/U0000.pdf
http://www.unicode.org/charts/PDF/U0000.pdf

Matching a Unicode Character
There are a variety of ways you can specify a Unicode character, also known as a code
point. (For the purposes of this book, a Unicode character is one that is outside of the
range of ASCII, though that is not strictly accurate.)

Start out by placing the Voltaire quote in Regexpal (http://www.regexpal.com), and then
entering this regular expression:

\u00e9

The \u is followed by a hexadecimal value 00e9 (this is case insensitive—that is, 00E9
works, too). The value 00e9 is equivalent to the decimal value 233, well out of the ASCII
range (0–127).

Notice that the letter é (small letter e with an acute accent) is highlighted in Regexpal
(see Figure 6-1). That’s because é is the code point U+00E9 in Unicode, which was
matched by \u00e9.

Figure 6-1. Matching U+00E9 in Regexpal

Regexpal uses the JavaScript implementation of regular expressions. JavaScript also
allows you to use this syntax:

62 | Chapter 6: Matching Unicode and Other Characters

http://www.regexpal.com

\xe9

Try this in Regexpal and see how it matches the same character as \u00e9.

Let’s try it with a different regex engine. Open http://regexhero.net/tester/ in a browser.
Regex Hero is written in .NET and has a little different syntax. Drop the contents of
the file basho.txt into the text area labeled Target String. This contains a famous haiku
written by the Japanese poet Matsuo Basho (who, coincidentally, died just one week
before Voltaire was born).

Here is the poem in Japanese:

古池
蛙飛び込む
水の音
 —芭蕉 (1644–1694)

And here is a translation in English:

At the ancient pond
a frog plunges into
the sound of water.
 —Basho (1644–1694)

To match part of the Japanese text, in the text area marked Regular Expression, type
the following:

\u6c60

This is the code point for the Japanese (Chinese) character for pond. It will be high-
lighted below (see Figure 6-2).

While you are here, try matching the em dash (—) with:

\u2014

Or the en dash (–) with:

\u2013

Now look at these characters in an editor.

Using vim
If you have vim on your system, you can open basho.txt with it, as shown:

vim basho.txt

Now, starting with a slash (\), enter a search with this line:

/\%u6c60

followed by Enter or Return. The cursor moves to the beginning of the match, as you
can see in Figure 6-3. Table 6-1 shows you your options. You can use x or X following
the \% to match values in the range 0–255 (0–FF), u to match up to four hexadecimal
numbers in the range 256–65,535 (100–FFFF), or U to match up to eight characters in

Matching a Unicode Character | 63

http://regexhero.net/tester/

the range 65,536–2,147,483,647 (10000–7FFFFFFF). That takes in a lot of code—a lot
more than currently exist in Unicode.

Table 6-1. Matching Unicode in Vim

First Character Maximum Characters Maximum Value

x or X 2 255 (FF)

u 4 65,535 (FFFF)

U 8 2,147,483,647 (7FFFFFFF)

Matching Characters with Octal Numbers
You can also match characters using an octal (base 8) number, which uses the digits 0
to 7. In regex, this is done with three digits, preceded by a slash (\).

For example, the following octal number:

Figure 6-2. Matching U+6c60 in Regex Hero

64 | Chapter 6: Matching Unicode and Other Characters

\351

is the same as:

\u00e9

Experiment with it in Regexpal with the Voltaire text. \351 matches é, with a little less
typing.

Matching Unicode Character Properties
In some implementations, such as Perl, you can match on Unicode character properties.
The properties include characteristics like whether the character is a letter, number, or
punctuation mark.

I’ll now introduce you to ack, a command-line tool written in Perl that acts a lot like
grep (see http://betterthangrep.com). It won’t come on your system; you have to down-
load and install it yourself (see “Technical Notes” on page 71).

We’ll use ack on an excerpt from Friederich Schiller’s “An die Freude,” composed in
1785 (German, if you can’t tell):

An die Freude.

Figure 6-3. Matching U+6c60 in Vim

Matching Unicode Character Properties | 65

http://betterthangrep.com

Freude, schöner Götterfunken,
Tochter aus Elisium,
Wir betreten feuertrunken
Himmlische, dein Heiligthum.
Deine Zauber binden wieder,
was der Mode Schwerd getheilt;
Bettler werden Fürstenbrüder,
wo dein sanfter Flügel weilt.

Seid umschlungen, Millionen!
Diesen Kuß der ganzen Welt!
Brüder, überm Sternenzelt
muß ein lieber Vater wohnen.

There are a few interesting characters in this excerpt, beyond ASCII’s small realm. We’ll
look at the text of this poem through properties. (If you would like a translation of this
poem fragment, you can drop it into Google Translate.

Using ack on a command line, you can specify that you want to see all the characters
whose property is Letter (L):

ack '\pL' schiller.txt

This will show you all the letters highlighted. For lowercase letters, use Ll, surrounded
by braces:

ack '\p{Ll}' schiller.txt

You must add the braces. For uppercase, it’s Lu:

ack '\p{Lu}' schiller.txt

To specify characters that do not match a property, we use uppercase P:

ack '\PL' schiller.txt

This highlights characters that are not letters.

The following finds those that are not lowercase letters:

ack '\P{Ll}' schiller.txt

And this highlights the ones that are not uppercase:

ack '\P{Lu}' schiller.txt

You can also do this in yet another browser-based regex tester, http://regex.larsolavtor
vik.com. Figure 6-4 shows the Schiller text with its lowercase letters highlighted using
the lowercase property (\p{Ll}).

Table 6-2 lists character property names for use with \p{property} or \P{property} (see
pcresyntax(3) at http://www.pcre.org/pcre.txt). You can also match human languages
with properties; see Table A-8.

66 | Chapter 6: Matching Unicode and Other Characters

http://translate.google.com
http://regex.larsolavtorvik.com
http://regex.larsolavtorvik.com
http://www.pcre.org/pcre.txt

Table 6-2. Character properties

Property Description

C Other

Cc Control

Cf Format

Cn Unassigned

Co Private use

Cs Surrogate

L Letter

Ll Lowercase letter

Lm Modifier letter

Lo Other letter

Lt Title case letter

Lu Uppercase letter

L& Ll, Lu, or Lt

M Mark

Figure 6-4. Characters with the lowercase letter property

Matching Unicode Character Properties | 67

Property Description

Mc Spacing mark

Me Enclosing mark

Mn Non-spacing mark

N Number

Nd Decimal number

Nl Letter number

No Other number

P Punctuation

Pc Connector punctuation

Pd Dash punctuation

Pe Close punctuation

Pf Final punctuation

Pi Initial punctuation

Po Other punctuation

Ps Open punctuation

S Symbol

Sc Currency symbol

Sk Modifier symbol

Sm Mathematical symbol

So Other symbol

Z Separator

Zl Line separator

Zp Paragraph separator

Zs Space separator

Matching Control Characters
How do you match control characters? It’s not all that common that you will search
for control characters in text, but it’s a good thing to know. In the example repository
or archive, you’ll find the file ascii.txt, which is a 128-line file that contains all the ASCII
characters in it, each on separate line (hence the 128 lines). When you perform a search
on the file, it will usually return a single line if it finds a match. This file is good for
testing and general fun.

68 | Chapter 6: Matching Unicode and Other Characters

If you search for strings or control characters in ascii.txt with grep or
ack, they may interpret the file as a binary file. If so, when you run a
script on it, either tool may simply report “Binary file ascii.txt matches”
when it finds a match. That’s all.

In regular expressions, you can specify a control character like this:

\cx

where x is the control character you want to match.

Let’s say, for example, you wanted to find a null character in a file. You can use Perl to
do that with the following command:

perl -n -e 'print if /\c@/' ascii.txt

Provided that you’ve got Perl on your system and it’s running properly, you will get
this result:

0. Null

The reason why is that there is a null character on that line, even though you can’t see
the character in the result.

If you open ascii.txt with an editor other than vim, it will likely remove
the control characters from the file, so I suggest you don’t do it.

You can also use \0 to find a null character. Try this, too:

perl -n -e 'print if /\0/' ascii.txt

Pressing on, you can find the bell (BEL) character using:

perl -n -e 'print if /\cG/' ascii.txt

It will return the line:

7. Bell

Or you can use the shorthand:

perl -n -e 'print if /\a/' ascii.txt

To find the escape character, use:

perl -n -e 'print if /\c[/' ascii.txt

which gives you:

27. Escape

Or do it with a shorthand:

perl -n -e 'print if /\e/' ascii.txt

Matching Control Characters | 69

How about a backspace character? Try:

perl -n -e 'print if /\cH/' ascii.txt

which spits back:

8. Backspace

You can also find a backspace using a bracketed expression:

perl -n -e 'print if /[\b]/' ascii.txt

Without the brackets, how would \b be interpreted? That’s right, as a word boundary,
as you learned in Chapter 2. The brackets change the way the \b is understood by the
processor. In this case, Perl sees it as a backspace character.

Table 6-3 lists the ways we matched characters in this chapter.

Table 6-3. Matching Unicode and other characters

Code Description

\uxxxx Unicode (four places)

\xxx Unicode (two places)

\x{xxxx} Unicode (four places)

\x{xx} Unicode (two places)

\000 Octal (base 8)

\cx Control character

\0 Null

\a Bell

\e Escape

[\b] Backspace

That wraps things up for this chapter. In the next, you’ll learn more about quantifiers.

What You Learned in Chapter 6
• How to match any Unicode character with \uxxxx or \xxx

• How to match any Unicode character inside of vim using \%xxx, \%Xxx, \%uxxxx, or
\%Uxxxx

• How to match characters in the range 0–255 using octal format with \000

• How to use Unicode character properties with \p{x}

• How to match control characters with \e or \cH

• More on how to use Perl on the command line (more Perl one-liners)

70 | Chapter 6: Matching Unicode and Other Characters

Technical Notes
• I entered control characters in ascii.txt using vim (http://www.vim.org). In vim, you

can use Ctrl+V followed by the appropriate control sequence for the character,
such as Ctrl+C for the end-of-text character. I also used Ctrl+V followed by x and
the two-digit hexadecimal code for the character. You can also use digraphs to
enter control codes; in vim enter :digraph to see the possible codes. To enter a
digraph, use Ctrl+K while in Insert mode, followed by a two-character digraph (for
example, NU for null).

• RegexHero (http://regexhero.net/tester) is a .NET regex implementation in a
browser written by Steve Wortham. This one is for pay, but you can test it out for
free, and if you like it, the prices are reasonable (you can buy it at a standard or a
professional level).

• vim (http://www.vim.org) is an evolution of the vi editor that was created by Bill
Joy in 1976. The vim editor was developed primarily by Bram Moolenaar. It seems
archaic to the uninitiated, but as I’ve mentioned, it is incredibly powerful.

• The ack tool (http://betterthangrep.com) is written in Perl. It acts like grep and has
many of its command line options, but it outperforms grep in many ways. For
example, it uses Perl regular expressions instead of basic regular expressions like
grep (without -E). For installation instructions, see http://betterthangrep.com/in
stall/. I used the specific instructions under “Install the ack executable.” I didn’t
use curl but just downloaded ack with the link provided and then copied the script
into /usr/bin on both my Mac and a PC running Cygwin (http://www.cygwin.com)
in Windows 7.

Technical Notes | 71

http://www.vim.org
http://regexhero.net/tester
http://www.vim.org
http://betterthangrep.com
http://betterthangrep.com/install/
http://betterthangrep.com/install/
http://www.cygwin.com

CHAPTER 7

Quantifiers

You have already seen some quantifiers at work earlier in this book, but here I’ll talk
about them in more detail.

For our example this time, we’ll use a Mac desktop application called Reggy (Fig-
ure 7-1), as we did in Chapter 5. Uncheck Match All at the bottom to start.

If you are not on a Mac, you can try these examples in one of the applications you’ve
seen earlier in the book. Paste the right triangle of digits from the triangle.txt. The file
is in the archive of examples.

Figure 7-1. Reggy application

73

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Greedy, Lazy, and Possessive
I’m not talking about your teenager here. I’m talking about quantifiers. These adjectives
may not sound like good character qualities, but they are interesting features of quan-
tifiers that you need to understand if you want to use regular expressions with skill.

Quantifiers are, by themselves, greedy. A greedy quantifier first tries to match the whole
string. It grabs as much as it can, the whole input, trying to make a match. If the first
attempt to match the whole string goes awry, it backs up one character and tries again.
This is called backtracking. It keeps backing up one character at a time until it finds a
match or runs out of characters to try. It also keeps track of what it is doing, so it puts
the most load on resources compared with the next two approaches. It takes a mouth-
ful, then spits back a little at a time, chewing on what it just ate. You get the idea.

A lazy (sometimes called reluctant) quantifier takes a different tack. It starts at the
beginning of the target, trying to find a match. It looks at the string one character at a
time, trying to find what it is looking for. At last, it will attempt to match the whole
string. To get a quantifier to be lazy, you have to append a question mark (?) to the
regular quantifier. It chews one nibble at a time.

A possessive quantifier grabs the whole target and then tries to find a match, but it
makes only one attempt. It does not do any backtracking. A possessive quantifier ap-
pends a plus sign (+) to the regular quantifier. It doesn’t chew; it just swallows, then
wonders what it just ate. I’ll demonstrate each of these in the pages that follow.

Matching with *, +, and ?
If you have the triangle of digits in Reggy, you can now begin testing. First we’ll use the
Kleene star, named for the man credited as the inventor of regular expressions, Stephen
Kleene. If you use the star or asterisk following a dot like this:

.*

it would match, being greedy, all the characters (digits) in the subject text. As you know
from earlier reading, .* matches any character zero or more times. All the digits in the
lower box should be highlighted by changing color. Of the Kleene star, an early manual
said:

A regular expression followed by “*” [Kleene star] is a regular expression which matches
any number (including zero) of adjacent occurrences of the text matched by the regular
expression.

Now try:

9*

and the row of nines near the bottom should be highlighted. Now:

9.*

74 | Chapter 7: Quantifiers

lights up the row of nines and the row of zeros below it. Because Multiline is checked
(at the bottom of the application window), the dot will match the newline character
between the rows; normally, it would not.

To match one or more 9s, try:

9+

How is that different? You can’t really tell because there are nine 9s in the subject
text. The main difference is that + is looking for at least one 9, but * is looking for zero
or more.

To match zero or one time (optional), use:

9?

This will match the first occurrence of 9 only. That 9 is considered optional, so because
it does exist in the subject text, it is matched and highlighted. If you do this:

99?

then both the first and second 9 are matched.

Table 7-1 lists the basic quantifiers and some of the possibilities that they have. These
quantifiers are by default greedy, meaning that they match as many characters as they
possibly can on the first attempt.

Table 7-1. Basic quantifiers

Syntax Description

? Zero or one (optional)

+ One or more

* Zero or more

Matching a Specific Number of Times
When you use braces or squiggly brackets, you can match a pattern a specific number
of times in a range. Unmodified, these are greedy quantifiers. For example:

7{1}

will match the first occurrence of 7. If you wanted to match one or more occurrences
of the number 7, all you have to do is add a comma:

7{1,}

You’ve probably realized that both:

7+

and

7{1,}

Matching a Specific Number of Times | 75

are essentially the same thing, and that:

7*

and

7{0,}

are likewise the same. In addition:

7?

is the same as:

7{0,1}

To find a range of matches, that is, to match m to n times:

7{3,5}

This will match three, four, or five occurrences of 7.

So to review, the squiggly bracket or range syntax is the most flexible and precise
quantifier. Table 7-2 summarizes these features.

Table 7-2. Summary of range syntax

Syntax Description

{n} Match n times exactly

{n,} Match n or more times

{m,n} Match m to n times

{0,1} Same as ? (zero or one)

{1,0} Same as + (one or more)

{0,} Same as * (zero or more)

Lazy Quantifiers
Now let’s set aside greediness and get lazy. The easiest way for you to understand this
is by seeing it in action. In Reggy (making sure Match All is unchecked), try to match
zero or one 5 using a single question mark (?):

5?

The first 5 is highlighted. Add an additional ? to make the quantifier lazy:

5??

Now it doesn’t appear to match anything. The reason why is that the pattern is being
lazy, that is, it’s not even forced to match that first 5. By nature, the lazy match matches
as few characters as it can get away with. It’s a slacker.

Try this zero or more times:

5*?

76 | Chapter 7: Quantifiers

and it won’t match anything either, because you gave it the option to match a minimum
of zero times, and that’s what it does.

Try it again matching one or more times, à la lazy:

5+?

And there you go. Lazy just got off the couch and matched one 5. That’s all it had to
do to keep its day job.

Things get a bit more interesting as you apply m,n matching. Try this:

5{2,5}?

Only two 5s are matched, not all five of them, as a greedy match would.

Table 7-3 lists the lazy quantifiers. When is lazy matching useful? You can use lazy
matching when you want to match the bare minimum of characters, not the maximum
possible.

Table 7-3. Lazy quantifiers

Syntax Description

?? Lazy zero or one (optional)

+? Lazy one or more

*? Lazy zero or more

{n}? Lazy n

{n,}? Lazy n or more

{m,n}? Lazy m,n

Possessive Quantifiers
A possessive match is like a greedy match, it grabs as much as it can get away with. But
unlike a greedy match: It does not backtrack. It does not give up anything it finds. It is
selfish. That is why it is called possessive. Arms folded firmly, it doesn’t give up any
ground. But the good thing about possessive quantifiers is that they are faster, because
they don’t do any backtracking, and they also fail in a hurry.

The truth is, you can hardly tell the difference between greedy, lazy, and
possessive matches with the examples in this book. But as you gain more
experience, and performance tuning becomes important, you’ll want to
be aware of these differences.

To make sense of this, first we’ll try matching the zeroes with a leading zero, then with
a trailing zero. In Reggy, make sure Match All is checked, and enter this expression with
a leading zero:

Possessive Quantifiers | 77

0.*+

What happened? All the zeroes are highlighted. There was a match. The possessive
match appears to do the same thing as a greedy match, with one subtle difference: There
is no backtracking. You can now prove it. Enter this with a trailing zero:

.*+0

No match. The reason why is there was no backtracking. It gobbled up the entire input
and never looked back. It wasted its inheritance with riotous living. It can’t find the
trailing zero. It doesn’t know where to look. If you remove the plus sign, it would find
all the zeroes as it goes back to a greedy match.

.*0

You might want to use a possessive quantifier when you are aware of what is in your
text, you know where you will find matches. You don’t care if it grabs with gusto. A
possessive match can help you match with improved performance. Table 7-4 shows
the possessive quantifiers.

Table 7-4. Possessive quantifiers

Syntax Description

?+ Possessive zero or one (optional)

++ Possessive one or more

*+ Possessive zero or more

{n}+ Possessive n

{n,}+ Possessive n or more

{m,n}+ Possessive m,n

You’ll be introduced to lookarounds in the next chapter.

What You Learned in Chapter 7
• The differences between greedy, lazy, and possessive matching

• How to match one or more (+)

• How to match optionally (zero or one, ?)

• How to match zero or one (*)

• How to use {m,n} quantifiers

• How to use greedy, lazy (reluctant), and possessive quantifiers.

78 | Chapter 7: Quantifiers

Technical Notes
The quote comes from Dennis Ritchie and Ken Thompson, QED Text Editor (Murray
Hill, NJ, Bell Labs, 1970) p. 3 (see http://cm.bell-labs.com/cm/cs/who/dmr/qedman.pdf).

Technical Notes | 79

http://cm.bell-labs.com/cm/cs/who/dmr/qedman.pdf

CHAPTER 8

Lookarounds

Lookarounds are non-capturing groups that match patterns based on what they find
either in front of or behind a pattern. Lookarounds are also considered zero-width
assertions.

Lookarounds include:

• Positive lookaheads

• Negative lookaheads

• Positive lookbehinds

• Negative lookbehinds

In this chapter, I’ll show you how each of these works. We’ll start out using RegExr on
the desktop and then move on to Perl and ack (grep doesn’t know about lookarounds).
Our text is still Coleridge’s well-worn poem.

Positive Lookaheads
Suppose you want to find every occurrence of the word ancyent that is followed by
marinere (I use the archaic spellings because that is what is found in the file). To do
this, we could use a positive lookahead.

First let’s try it in RegExr desktop. The following case-insentitive pattern goes in the
text box at the top:

(?i)ancyent (?=marinere)

You can also specify case-insensitivity with RegExr by simply checking
the box next to ignoreCase, but both methods work.

81

Because you use the case-insensitive option (?i), you don’t need to worry about what
case you use in your pattern. You are looking for every line that has the word ancyent
followed hard by marinere. The results will be highlighted in the text area below the
pattern area (see Figure 8-1); however, only the first part of the pattern will be high-
lighted (ancyent), not the lookahead pattern (Marinere).

Figure 8-1. Positive lookahead in RegExr

Let’s now use Perl to do a positive lookahead. You can form the command like so:

perl -ne 'print if /(?i)ancyent (?=marinere)/' rime.txt

and the output should look like this:

THE RIME OF THE ANCYENT MARINERE, IN SEVEN PARTS.
How a Ship having passed the Line was driven by Storms to the cold Country towards
the South Pole; and how from thence she made her course to the tropical Latitude of
the Great Pacific Ocean; and of the strange things that befell; and in what manner the
Ancyent Marinere came back to his own Country.
 It is an ancyent Marinere,
 "God save thee, ancyent Marinere!
 "I fear thee, ancyent Marinere!

There are five lines in the poem where the word ancyent shows up right before the word
marinere. What if we just wanted to check if the word following ancyent started with
the letter m, either in upper- or lowercase? We could do it this way:

perl -ne 'print if /(?i)ancyent (?=m)/' rime.txt

82 | Chapter 8: Lookarounds

In addition to Marinere, you would get man and Man:

And thus spake on that ancyent man,
And thus spake on that ancyent Man,

ack also can do lookarounds as it is written in Perl. The command-line interface for
ack is very similar to grep.

Try this:

ack '(?i)ancyent (?=ma)' rime.txt

and you’ll see highlighted results, as shown in Figure 8-2.

Figure 8-2. Positive lookahead with ack in Terminal

With ack, you can specify case-insensitivity with the command-line option -i, rather
than with the embedded option (?i):

ack -i 'ancyent (?=ma)' rime.txt

I’ll throw something in here for good measure. If you want to add line numbers to
ack’s output, you can do several things. You can add the -H option:

ack -Hi 'ancyent (?=ma)' rime.txt

Positive Lookaheads | 83

Or you could add this code with the --output option:

ack -i --output '$.:$_' 'ancyent (?=ma)' rime.txt

This is a bit of a hack, and turns off highlighting, but it works.

Negative Lookaheads
The flip side of a positive lookahead is a negative lookahead. This means that as you
try to match a pattern, you won’t find a given lookahead pattern. A negative lookahead
is formed like this:

(?i)ancyent (?!marinere)

Only one character changed: The equals sign (=) in the positive lookahead became an
exclamation point (!) in the negative lookahead. Figure 8-3 shows you this negative
lookahead in Opera.

Figure 8-3. Negative lookahead with RegExr in Opera

In Perl, we could do a negative lookahead this way:

perl -ne 'print if /(?i)ancyent (?!marinere)/' rime.txt

and this is what we would get back:

And thus spake on that ancyent man,
And thus spake on that ancyent Man,

84 | Chapter 8: Lookarounds

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

In ack, the same results could be produced with:

ack -i 'ancyent (?!marinere)' rime.txt

Positive Lookbehinds
A positive lookbehind looks to the left, in the opposite direction as a lookahead. The
syntax is:

(?i)(?<=ancyent) marinere

The positive lookbehind throws in a less-than sign (<), reminding you which direction
lookbehind is. Try this in RegExr and see what the difference is. Instead of ancyent
being highlighted, marinere is. Why? Because the positive lookbehind is a condition of
the match and is not included or consumed in the match results.

Do it like so in Perl:

perl -ne 'print if /(?i)(?<=ancyent) marinere/' rime.txt

And like this with ack:

ack -i '(?<=ancyent) marinere' rime.txt

Negative Lookbehinds
Finally, there is the negative lookbehind. And how do you think this one works?

It is looking to see if a pattern does not show up behind in the left-to-right stream of
text. Again, it adds a less-than sign (<), reminding you which direction lookbehind is.

Do this in RegExr and see the results.

(?1)(?<!ancyent) marinere

Scroll down to see what you got.

Then try it in Perl:

perl -ne 'print if /(?i)(?<!ancyent) marinere/' rime.txt

What you should see is this, with no sign of ancyent anywhere:

 The Marinere hath his will.
 The bright-eyed Marinere.
 The bright-eyed Marinere.
 The Marineres gave it biscuit-worms,
 Came to the Marinere's hollo!
 Came to the Marinere's hollo!
 The Marineres all 'gan work the ropes,
 The Marineres all return'd to work
 The Marineres all 'gan pull the ropes,
 "When the Marinere's trance is abated."
 He loves to talk with Marineres
 The Marinere, whose eye is bright,

Negative Lookbehinds | 85

And, lastly, do it this way in ack:

ack -i '(?<!ancyent) marinere' rime.txt

That wraps up our brief introduction to for lookaheads and lookbehinds, a powerful
feature of modern regular expressions.

In the next chapter, you’ll see a full example of how to mark up a document with
HTML5 using sed and Perl.

What You Learned in Chapter 8
• How to do positive and negative lookaheads

• How to do both positive and negative lookbehinds

Technical Notes
See also pages 59 through 66 of Mastering Regular Expressions, Third Edition.

86 | Chapter 8: Lookarounds

http://shop.oreilly.com/product/9780596528126.do

CHAPTER 9

Marking Up a Document with HTML

This chapter will take you step by step through the process of marking up plain-text
documents with HTML5 using regular expressions, concluding what we started early
in the book.

Now, if it were me, I’d use AsciiDoc to do this work. But for our purposes here, we’ll
pretend that there is no such thing as AsciiDoc (what a shame). We’ll plod along using
a few tools we have at hand—namely, sed and Perl—and our own ingenuity.

For our text we’ll still use Coleridge’s poem in rime.txt.

The scripts in this chapter work well with rime.txt because you under-
stand the structure of that file. These scripts will give you less predictable
results when used on arbitrary text files; however, they give you a start-
ing point for handling text structures in more complex files.

Matching Tags
Before we start adding markup to the poem, let’s talk about how to match either HTML
or XML tags. There are a variety of ways to match a tag, either start-tags (e.g., <html>)
or end-tags (e.g., </html>), but I have found the one that follows to be reliable. It will
match start-tags, with or without attributes:

<[_a-zA-Z][^>]*>

Here is what it does:

• The first character is a left angle bracket (<).

• Elements can begin with an underscore character (_) in XML or a letter in the ASCII
range, in either upper- or lowercase (see “Technical Notes” on page 98).

• Following the start character, the name can be followed by zero or more characters,
any character other than a right angle bracket (>).

• The expression ends with a right angle bracket.

87

Try this with grep. Match it against a sample DITA file in the archive, lorem.dita:

grep -Eo '<[_a-zA-Z][^>]*>' lorem.dita

yields this answer:

<topic id="lorem">
<title>
<body>
<p>
<p>

<p>
<p>

To match both start- and end-tags, simply add a forward slash followed by a question
mark. The question mark makes the forward slash optional:

</?[_a-zA-Z][^>]*>

I’m sticking with start-tags only here. To refine the output, I often pipe in a few other
tools to make it prettier:

grep -Eo '<[_a-zA-Z][^>]*>' lorem.dita | sort | uniq | sed 's/^<//;s/ id=\".*\"//;s/>
 $//'

This gives you a list of sorted XML tag names:

body
li
p
p
title
topic
ul

I’ll take this a step further in the next and final chapter. The following sections will take
you through some of the steps you have learned before, but with a few new twists.

Transforming Plain Text with sed
Let’s add some markup to the top of the text in rime.txt. We can do this with the insert
command (i\). In the directory where the rime.txt file is located, enter the following at
a shell prompt:

88 | Chapter 9: Marking Up a Document with HTML

sed '1 i\
<!DOCTYPE html>\
<html lang="en">\
<head>\
<title>The Rime of the Ancyent Marinere (1798)</title>\
<meta charset="utf-8"/>\
</head>\
<body>\

q' rime.txt

After you press Enter or Return, your output should look like the following, with the
tags at the top:

<!DOCTYPE html>
<html lang="en">
<head>
<title>The Rime of the Ancyent Marinere (1798)</title>
<meta charset="utf-8"/>
</head>
<body>
THE RIME OF THE ANCYENT MARINERE, IN SEVEN PARTS.

The command you just entered did not actually change the file—it only produced an
output to your screen. I’ll show you how to write your changes to a file later.

Substitution with sed
In the next example, sed finds the first line of the file and captures the entire line in a
capturing group using escaped parentheses \(and \). sed needs to escape the paren-
theses used to capture a group unless you use the -E option (more on this in a moment).
The beginning of the line is demarcated with ^, and the end of the line with a $. The
backreference \1 pulls the captured text into the content of the title element, indented
with one space.

Run the command that follows:

sed '1s/^\(.*\)$/ <title>\1<\/title>/;q' rime.txt

The resulting line looks like this:

<title>THE RIME OF THE ANCYENT MARINERE, IN SEVEN PARTS.</title>

Now try it this way:

sed -E '1s/^(.*)$/<!DOCTYPE html>\
<html lang="en">\
<head>\
 <title>\1<\/title>\
<\/head>\
<body>\
<h1>\1<\/h1>\
/;q' rime.txt

Transforming Plain Text with sed | 89

Let’s talk about it:

• The -E options tells sed to use extended regular expressions or EREs (so you don’t
have to escape the parentheses, etc.).

• Using a substitute (s) command, grab line 1 in a capturing group (^(.*)$) so you
can reuse the text with \1.

• Create HTML tags and escape newlines with \.

• Insert the captured text in the title and h1 tags using \1.

• Quit at this point (q) to stop printing the rest of the poem to the screen.

The correct result is:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>THE RIME OF THE ANCYENT MARINERE, IN SEVEN PARTS.</title>
</head>
<body>
<h1>THE RIME OF THE ANCYENT MARINERE, IN SEVEN PARTS.</h1>

Handling Roman Numerals with sed
The poem is divided into seven sections, with each section introduced with a Roman
numeral. There is also an “ARGUMENT” heading. The following line will use sed to
capture that heading and those Roman numerals and surround them in h2 tags:

sed -En 's/^(ARGUMENT\.|I{0,3}V?I{0,2}\.)$/<h2>\1<\/h2>/p' rime.txt

and here is what you’ll see:

<h2>ARGUMENT\.</h2>
<h2>I.</h2
<h2>II.</h2
<h2>III.</h2
<h2>IV.</h2
<h2>V.</h2
<h2>VI.</h2
<h2>VII.</h2

Following is a description of this previous sed command:

• The -E option gives you extended regular expressions, and the -n option suppresses
the printing of each line, which is sed’s default behavior.

• The substitute (s) command captures the heading and the seven uppercase
Roman numerals, each on separate lines and followed by a period, in the range I
through VII.

• The s command then takes each line of captured text and nestles it in an h2 element.

• The p flag at the end of the substitution prints the result to the screen.

90 | Chapter 9: Marking Up a Document with HTML

Handling a Specific Paragraph with sed
Next, this line finds a paragraph on line 5:

sed -En '5s/^([A-Z].*)$/<p>\1<\/p>/p' rime.txt

and places that paragraph in a p tag:

<p>How a Ship having passed the Line was driven by Storms to the cold Country towards
 the South Pole; and how from thence she made her course to the tropical Latitude
 of the Great Pacific Ocean; and of the strange things that befell; and in what
 manner the Ancyent Marinere came back to his own Country.</p>

I know this looks like we are moving inchmeal at the moment, but hang on and I’ll
bring it all together in a page or two.

Handling the Lines of the Poem with sed
Next we’ll mark up the lines of the poem with:

sed -E '9s/^[]*(.*)/ <p>\1<br\/>/;10,832s/^([]{5,7}.*)/\1<br\/>/;
 833s/^(.*)/\1<\/p>/' rime.txt

These sed substitutions depend on line numbers to get their little jobs done. This
wouldn’t work with a generalized case, but it works quite well when you know exactly
what you are dealing with.

• On line 9, the first line of verse, the s command grabs the line and, after prepending
a few spaces, it inserts a p start-tag and appends a br (break) tag at the end of the line.

• Between lines 10 and 832, every line that begins with between 5 to 7 spaces gets a
br appended to it.

• On line 833, the last line of the poem, instead of a br, the s appends a p end-tag.

A sample of the resulting markup is here:

<p>It is an ancyent Marinere,

 And he stoppeth one of three:

 "By thy long grey beard and thy glittering eye

 "Now wherefore stoppest me?

 "The Bridegroom's doors are open'd wide

 "And I am next of kin;

 "The Guests are met, the Feast is set,--

 "May'st hear the merry din.--

You should also replace the blank lines with a br, to keep the verses separated:

sed -E 's/^$/<br\/>/' rime.txt

See what you just did:

 He prayeth best who loveth best,
 All things both great and small:
 For the dear God, who loveth us,
 He made and loveth all.

Transforming Plain Text with sed | 91

 The Marinere, whose eye is bright,
 Whose beard with age is hoar,
 Is gone; and now the wedding-guest
 Turn'd from the bridegroom's door.

 He went, like one that hath been stunn'd
 And is of sense forlorn:
 A sadder and a wiser man
 He rose the morrow morn.

I have found that I can play with this kind of thing endlessly, getting the tags and space
just right. I encourage you to do so yourself.

Appending Tags
Now we’ll append some tags to the end of the poem. With the append command
(a\), the $ finds the end (the last line) of the file, and appends (a\) the body and html
end-tags after the last line:

sed '$ a\
<\/body>\
<\/html>\
' rime.txt

Here’s how the end of the file will look now:

 He went, like one that hath been stunn'd
 And is of sense forlorn:
 A sadder and a wiser man
 He rose the morrow morn.
</body>
</html>

Enough sed.

What if you wanted to do all of these changes at the same time? You know what to
do. You’ve already done it. You just have to put all these commands in a file and use
the -f option with sed.

Using a Command File with sed
This example shows the file html.sed, which collects all the previous sed commands
into one file, plus a command or two more. We’ll use this file of commands to transform
rime.txt to HTML using sed. The numbered callouts in the example will guide you
through what is happening in the sed script.

92 | Chapter 9: Marking Up a Document with HTML

#!/usr/bin/sed

1s/^(.*)$/<!DOCTYPE html>\
<html lang="en">\
<head>\
 <title>\1<\/title>\
<\/head>\
<body>\
<h1>\1<\/h1>\
/

s/^(ARGUMENT|I{0,3}V?I{0,2})\.$/<h2>\1<\/h2>/
5s/^([A-Z].*)$/<p>\1<\/p>/
9s/^[]*(.*)/ <p>\1<br\/>/
10,832s/^([]{5,7}.*)/\1<br\/>/
833s/^(.*)/\1<\/p>/
13,$s/^$/<br\/>/
$ a\
<\/body>\
<\/html>\

The first line is called the shebang line, a hint to the shell of where the executable
(sed) is located.

At line 1, substitute (s) the line with the tags that follow. The backslash (\) indicates
that the text you want to add continues on the next line so a newline is inserted.
Insert the title of the poem from line 1 with \1, as the content of title and h1 elements.

Surround headings and Roman numerals with h2 tags.

On line 5, enclose the introductory paragraph in a p element.

On line 9, prepend a p start-tag and add a br at the end of the line.

Between line 9 and 832, add a br at the end of each line that begins with a certain
number of spaces.

At the end of the poem, append a p end-tag.

After line 13, replace each blank line with a break (br).

Appends a few tags at the end ($) of the document.

To apply this command file to rime.txt, enter this line, followed by Enter or Return:

sed -E -f html.sed rime.txt

To redirect the output to a file:

sed -E -f html.sed rime.txt > rime.html

Open rime.html in a browser to see what you have created (see Figure 9-1).

Appending Tags | 93

Figure 9-1. rime.html in Firefox

Transforming Plain Text with Perl
I’ll now show you how to mark up a file with HTML using Perl. First, like with sed, I’ll
give you a series of one-liners; then I’ll show those same commands in a file.

This book introduces you to only the rudiments of the Perl language,
and how to get started using it. It is not a Perl tutorial or manual, but I
hope to pique your interest in Perl and show you a few possibilities. A
good place to get started with Perl is at the Learning Perl website found
at http://learn.perl.org/, which also includes instructions on how to in-
stall it.

If the current line ($.) is line 1, assign the whole line ($_) to the $title variable and print
$title.

perl -ne 'if ($. == 1) {chomp($title = $_); print "<h1>" . $title . "</h1>" . "\n";};'
 rime.txt

If all goes well, the result should be:

<h1>THE RIME OF THE ANCYENT MARINERE, IN SEVEN PARTS.</h1>

94 | Chapter 9: Marking Up a Document with HTML

http://learn.perl.org/

Here is an explanation for the Perl command :

• Test if you are on line 1 with $.

• Chomp the line ($_) and assign the string to the $title variable. When you chomp
the line with the chomp function, it removes the trailing newline from the string.

• Print $title in an h1 element, followed by a newline (\n).

For more information on Perl’s built-in variables, such as $., enter the
command perldoc -v $. at a prompt (perldoc normally is installed
when you install Perl). If this doesn’t work, see “Technical
Notes” on page 98.

To prepend some markup to the top of the file, including that h1 tag, use this:

perl -ne 'if ($. == 1) {chomp($title = $_)};
print "<!DOCTYPE html>\
<html xmlns=\"http://www.w3.org/1999/xhtml\">\
 <head>\
 <title>$title</title>\
 <meta charset=\"utf-8\"/>\
 </head>\
<body>\
<h1>$title</h1>\n" if $. == 1; exit' rime.txt

and you’ll get the following output:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>THE RIME OF THE ANCYENT MARINERE, IN SEVEN PARTS.</title>
 <meta charset="utf-8"/>
 </head>
<body>
<h1>THE RIME OF THE ANCYENT MARINERE, IN SEVEN PARTS.</h1>

The print function prints the tags that follow, and each line (except the last), is followed
by a \, which enters a newline into the output. The $title variable is expanded within
the title and h1 elements.

Handling Roman Numerals with Perl
To tag up the heading and those Roman numeral section breaks, use:

perl -ne 'print if s/^(ARGUMENT\.|I{0,3}V?I{0,2}\.)$/<h2>\1<\/h2>/;' rime.txt

This is the output:

<h2>ARGUMENT.</h2>
<h2>I.</h2>
<h2>II.</h2>
<h2>III.</h2>
<h2>IV.</h2>

Transforming Plain Text with Perl | 95

<h2>V.</h2>
<h2>VI.</h2>
<h2>VII.</h2>

The substitute (s) command captures the ARGUMENT heading and those seven up-
percase Roman numerals, each on separate lines and followed by a period, in the range
I through VII. Then it encloses the captured text in an h2 tag.

Handling a Specific Paragraph with Perl
Use this code to enclose the introductory paragraph in a p element, if the line number
is equal to 5:

perl -ne 'if ($. == 5) {s/^([A-Z].*)$/<p>$1<\/p>/;print;}' rime.txt

You should see this:

<p>How a Ship having passed the Line was driven by Storms to the cold Country towards
 the South Pole; and how from thence she made her course to the tropical Latitude
 of the Great Pacific Ocean; and of the strange things that befell; and in what
 manner the Ancyent Marinere came back to his own Country.</p>

Handling the Lines of the Poem with Perl
The following command places a p start-tag at the beginning of the first line of the
poem, and a br tag after the end of that line:

perl -ne 'if ($. == 9) {s/^[]*(.*)/ <p>$1<br\/>/;print;}' rime.txt

It gives you:

<p>It is an ancyent Marinere,

Next, between lines 10 and 832, this bit of Perl puts a br at the end of each line of the
poem:

perl -ne 'if (10..832) { s/^([]{5,7}.*)/$1<br\/>/; print;}' rime.txt

A sample of what you will see:

Farewell, farewell! but this I tell

 To thee, thou wedding-guest!

He prayeth well who loveth well

 Both man and bird and beast.

Add a p end-tag to the end of the last line of the poem.

perl -ne 'if ($. == 833) {s/^(.*)/$1<\/p>/; print;}' rime.txt

It shows:

He rose the morrow morn.</p>

Replace blank lines at the end of each line with a br tag:

perl -ne 'if (9..eof) {s/^$/<br\/>/; print;}' rime.txt

96 | Chapter 9: Marking Up a Document with HTML

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

to yield this:

 He prayeth best who loveth best,
 All things both great and small:
 For the dear God, who loveth us,
 He made and loveth all.

 The Marinere, whose eye is bright,
 Whose beard with age is hoar,
 Is gone; and now the wedding-guest
 Turn'd from the bridegroom's door.

And finally, when the end of the file is discovered, print a couple of end-tags:

perl -ne 'if (eof) {print "</body>\n</html>\n"};' rime.txt

All this code works together more easily when it’s in a file. You’ll see that next.

Using a File of Commands with Perl
The following lists html.pl which transforms rime.txt to HTML using Perl. The num-
bered callouts in the example guide you through what is happening in the script.

#!/usr/bin/perl -p

if ($. == 1) {
 chomp($title = $_);
}
print "<!DOCTYPE html>\
<html xmlns=\"http://www.w3.org/1999/xhtml\">\
 <head>\
 <title>$title</title>\
 <meta charset=\"utf-8\"/>\
 </head>\
<body>\
<h1>$title</h1>\n" if $. == 1;
s/^(ARGUMENT|I{0,3}V?I{0,2})\.$/<h2>$1<\/h2>/;
if ($. == 5) {
 s/^([A-Z].*)$/<p>$1<\/p>/;
}
if ($. == 9) {
 s/^[]*(.*)/ <p>$1<br\/>/;
}
if (10..832) {
 s/^([]{5,7}.*)/$1<br\/>/;
}
if (9..eof) {
 s/^$/<br\/>/;
}
if ($. == 833) {
 s/^(.*)$/$1<\/p>\n <\/body>\n<\/html>\n/;
}

Transforming Plain Text with Perl | 97

This is called the shebang directive, which gives a hint to the shell of where the
program you are running is located.

If the current line ($.) is line 1, then assign the whole line ($_) to the $title variable,
chomping off (with chomp) the last character in the string (a newline) in the process.

Print a doctype and several HTML tags at the top of the document at line 1, and
reuse the value of the $title variable in several places.

Give the ARGUMENT heading and the Roman numerals h2 tags.

Surround the introductory paragraph with p tags.

Prepend a p start-tag to the beginning of the first line of verse, and append a br to
that line.

Append a br tag to the end of each line of verse, except the last line.

Replace each blank line, after line 9, with a br tag.

Append p, body, and html end-tags to the last line.

To run this, simply do the following:

perl html.pl rime.txt

You can also redirect the output with a > to save your output to a file. In the next and
final chapter, I’ll conclude our regex tutorial.

What You Learned in Chapter 9
• How to use sed on the command line

• How to prepend (insert), substitute, and append text (tags) with sed

• How to use Perl to do the same

Technical Notes
• AsciiDoc (http://www.methods.co.nz/asciidoc/) by Stuart Rackham is a text format

that can be converted, using a Python processor, into HTML, PDF, ePUB, DocBook
and man pages. The syntax for the text files is similar to Wiki or Markdown and
much quicker than hand-coding HTML or XML tags.

• The underscore applies to XML tag names only, not HTML. In addition, XML tags
can of course have a much wider range of characters in their names than what is
represented in the ASCII set. For more information on characters used in XML
names, see http://www.w3.org/TR/REC-xml/#sec-common-syn.

98 | Chapter 9: Marking Up a Document with HTML

http://www.methods.co.nz/asciidoc/
http://www.w3.org/TR/REC-xml/#sec-common-syn

• If the command perldoc doesn’t work, you have some alternatives. First, you can
easily read about Perl online at http://perldoc.perl.org. (To learn more about $.,
for example, go to http://perldoc.perl.org/perlvar.html#Variables-related-to-filehan
dles.) If you are on a Mac, try perldoc5.12. If you installed Perl from ActiveState,
you will find it at /usr/local/ActivePerl-5.XX/bin. Both perl and perldoc are in-
stalled at /usr/local/bin when compiled and built from source. You can add /usr/
local/bin to your path so perl and perldoc will run. For information on setting
your path variable, see http://java.com/en/download/help/path.xml.

Technical Notes | 99

http://perldoc.perl.org
http://perldoc.perl.org/perlvar.html#Variables-related-to-filehandles
http://perldoc.perl.org/perlvar.html#Variables-related-to-filehandles
http://java.com/en/download/help/path.xml

CHAPTER 10

The End of the Beginning

“Unix was not designed to stop you from doing stupid things, because that would also
stop you from doing clever things.” —Doug Gwyn

Congratulations for making it this far. You’re not a regular expression novice anymore.
You have been introduced to the most commonly used regular expression syntax. And
it will open a lot of possibilities up to you in your work as a programmer.

Learning regular expressions has saved me a lot of time. Let me give you an example.

I use a lot of XSLT at work, and often I have to analyze the tags that exist in a group of
XML files.

I showed you part of this in the last chapter, but here is a long one-liner that takes a list
of tag names from lorem.dita and converts it into a simple XSLT stylesheet:

grep -Eo '<[_a-zA-Z][^>]*>' lorem.dita | sort | uniq | sed '1 i\
<xml:stylsheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">\

; s/^</\
<xsl:template match="/;s/ id=\".*\"//;s/>$/">\
 <xsl:apply-templates\/>\
<\/xsl:template>/;$ a\
\
</xsl:stylesheet>\
'

I know this script may appear a bit acrobatic, but after you work with this stuff for a
long time, you start thinking like this. I am not even going to explain what I’ve done
here, because I am sure you can figure it out on your own now.

Here is what the output looks like:

<xml:stylsheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="body">
 <xsl:apply-templates/>
</xsl:template>

<xsl:template match="li">

101

 <xsl:apply-templates/>
</xsl:template>

<xsl:template match="p">
 <xsl:apply-templates/>
</xsl:template>

<xsl:template match="title">
 <xsl:apply-templates/>
</xsl:template>

<xsl:template match="topic">
 <xsl:apply-templates/>
</xsl:template>

<xsl:template match="ul">
 <xsl:apply-templates/>
</xsl:template>

</xsl:stylesheet>

That’s only a start. Of course, this simple stylesheet will need a lot of editing before it
can do anything useful, but this is the kind of thing that can save you a lot of keystrokes.

I’ll admit, it would be easier if I put these sed commands in a file. As a matter of fact, I
did. You’ll find xslt.sed in the sample archive. This is the file:

#!/usr/bin/sed

1 i\
<xml:stylsheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">\

s/^</\
<xsl:template match="/;s/ id=\".*\"//;s/>$/">\
 <xsl:apply-templates\/>\
<\/xsl:template>/;$ a\
\
</xsl:stylesheet>\

And here is how to run it:

grep -Eo '<[_a-zA-Z][^>]*>' lorem.dita | sort | uniq | sed -f xslt.sed

Learning More
Even though you have a good strong grip on regex now, there is still lots to learn. I have
a couple of suggestions of where to go next.

I pass these recommendations along out of experience and observation, not from any
sense of obligation or to be “salesy.” I won’t get any kickbacks for mentioning them. I
talk about them because these resources will actually benefit you.

102 | Chapter 10: The End of the Beginning

Jeffrey E. F. Friedl’s Mastering Regular Expressions, Third Edition is the source many
programmers look to for a definitive treatment of the regular expression. Both expan-
sive and well-written, if you are going to do any significant work with regex, you need
to have this book on your shelf or in your e-reader. Period.

Jan Goyvaerts and Steven Levithan’s Regular Expressions Cookbook is another great
piece of work, especially if you are comparing different implementations. I’d get this
one, too.

The Regular Expression Pocket Reference: Regular Expressions for Perl, Ruby, PHP,
Python, C, Java and .NET by Tony Stubblebine is a 128-page guide which, though it is
several years old, still remains popular.

Andrew Watt’s book Beginning Regular Expressions (Wrox, 2005) is highly rated. I
have found Bruce Barnett’s online sed tutorial particularly useful (see http://www.gry
moire.com/Unix/Sed.html). He demonstrates a number of sed’s less understood fea-
tures, features I have not explained here.

Notable Tools, Implementations, and Libraries
I’ve mentioned a number of tools, implementations, and libraries in this book. I’ll recap
those here and mention several others.

Perl
Perl is a popular, general-purpose programming language. A lot of people prefer
Perl for text processing with regular expressions over other languages. You likely al-
ready have it, but for information on how to install Perl on your system, go to http://
www.perl.org/get.html. Read about Perl’s regular expressions at http://perldoc.perl.org/
perlre.html. Don’t get me wrong. There are plenty of other languages that do a great
job with regex, but it pays to have Perl in your toolbox. To learn more, I’d get a copy
of the latest edition of Learning Perl, by Randal Schwartz, brian d foy, and Tom Phoe-
nix, also published by O’Reilly.

PCRE
Perl Compatible Regular Expressions or PCRE (see http://www.pcre.org) is a regular
expression library written in C (both 8-bit and 16-bit). This library mainly consists of
functions that may be called within any C framework or from any other language that
can use C libraries. It is compatible with Perl 5 regular expressions, as its name suggests,
and includes some features from other regex implementations. The Notepad++ editor
uses the PCRE library.

pcregrep is an 8-bit, grep-like tool that enables you to use the features of the PCRE
library on the command line. You used it in Chapter 3. See http://www.pcre.org for

Notable Tools, Implementations, and Libraries | 103

http://shop.oreilly.com/product/9780596528126.do
http://shop.oreilly.com/product/0636920023630.do
http://shop.oreilly.com/product/9780596514273.do
http://shop.oreilly.com/product/9780596514273.do
http://www.grymoire.com/Unix/Sed.html
http://www.grymoire.com/Unix/Sed.html
http://www.perl.org/get.html
http://www.perl.org/get.html
http://perldoc.perl.org/perlre.html
http://perldoc.perl.org/perlre.html
http://shop.oreilly.com/product/0636920018452.do
http://www.pcre.org
http://www.pcre.org

download information (from ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/).
You can get pcregrep for the Mac through Macports (http://www.macports.org) by run-
ning the command sudo port install pcre (Xcode is a prerequisite; see https://devel
oper.apple.com/technologies/tools/, where a login is required). To install it on the Win-
dows platform (binaries), go to http://gnuwin32.sourceforge.net/packages/pcre.htm.

Ruby (Oniguruma)
Oniguruma is a regular expression library that is standard with Ruby 1.9; see http://
oniguruma.rubyforge.org/. It is written in C and was written specifically to support
Ruby. You can try out Ruby’s regular expression using Rubular, an online app that
supports both 1.8.7 and 1.9.2 (see http://www.rubular.com and Figure 10-1). TextMate,
by the way, uses the Oniguruma library.

Figure 10-1. Phone number regex in Rubular

Python
Python is a general-purpose programming language that supports regular expressions
(see http://www.python.org). It was first created by Guido van Rossum in 1991. You
can read about Python 3’s regular expression syntax here: http://docs.python.org/py3k/
library/re.html?highlight=regular%20expressions.

104 | Chapter 10: The End of the Beginning

ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/
http://www.macports.org
https://developer.apple.com/technologies/tools/
https://developer.apple.com/technologies/tools/
http://gnuwin32.sourceforge.net/packages/pcre.htm
http://oniguruma.rubyforge.org/
http://oniguruma.rubyforge.org/
http://www.rubular.com
http://www.python.org
http://docs.python.org/py3k/library/re.html?highlight=regular%20expressions
http://docs.python.org/py3k/library/re.html?highlight=regular%20expressions

RE2
RE2 is a non-backtracking C++ regular expression library (see http://code.google.com/
p/re2). While RE2 is quite fast, it does not do backtracking or backreferences. It is
available as a CPAN package for Perl and can fall back on Perl’s native library if back-
references are needed. For instructions on making API calls, see http://code.google.com/
p/re2/wiki/CplusplusAPI. For an interesting discussion on RE2, see “Regular Expression
Matching in the Wild” at http://swtch.com/~rsc/regexp/regexp3.html.

Matching a North American Phone Number
You remember the North American phone number example from the first chapter?
You’ve come a long way since then.

Here is a more robust regular expression for matching phone numbers than the one we
used there. It is adapted from Goyvaerts and Levithan’s example on page 235 of their
Regular Expressions Cookbook (first edition).

^\(?(?:\d{3})\)?[-.]?(?:\d{3})[-.]?(?:\d{4})$

Play with it with the tool of your choice (see it in Reggy in Figure 10-2). By now, you
should be able to pick this regex apart with hardly any hand-holding. I’m proud of you
for that. But I’ll go over it for good measure.

• ^ is the zero-width assertion for the beginning of a line or subject.

• \(? is a literal left parenthesis, but it is optional (?).

• (?:\d{3}) is a non-capturing group matching three consecutive digits.

• \)? is an optional right parenthesis.

• [-.]? allows for an optional hyphen or period (dot).

• (?:\d{3}) is another non-capturing group matching three more consecutive digits.

• [-.]? allows for an optional hyphen or dot again.

• (?:\d{4}) is yet another non-capturing group matching exactly four consecutive
digits.

• $ matches the end of a line or subject.

This expression could be even more refined, but I leave that to you because you can
now do it on your own.

Matching an Email Address
Lastly, I’ll throw one more regular expression at you, an email address:

^([\w-.!#$%&'*+-/=?^_`{|}~]+)@((?:\w+\.)+)(?:[a-zA-Z]{2,4})$

Matching an Email Address | 105

http://code.google.com/p/re2
http://code.google.com/p/re2
http://code.google.com/p/re2/wiki/CplusplusAPI
http://code.google.com/p/re2/wiki/CplusplusAPI
http://swtch.com/~rsc/regexp/regexp3.html

This is an adaptation of one provided by Grant Skinner with RegExr. I’d like to chal-
lenge you to do your best to explain what each character means in the context of a
regular expression, and to see if you can improve on it. I am sure you can.

Thank you for your time. I’ve enjoyed spending it with you. You should now have a
good grasp of the fundamental concepts of regular expressions. You are no longer a
member of the beginners’ club. I hope you’ve made friends with regular expressions
and learned something worthwhile along the way.

What You Learned in Chapter 10
• How to extract a list of XML elements from a document and convert the list into

an XSLT stylesheet.

• Where to find additional resources for learning about regular expressions.

• What are some notable regex tools, implementations, and libraries.

• A slightly, more robust pattern for matching a North American phone number.

Figure 10-2. Phone number regex in Reggy

106 | Chapter 10: The End of the Beginning

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

APPENDIX

Regular Expression Reference

This appendix is a reference for regular expressions.

Regular Expressions in QED
QED (short for Quick Editor) was originally written for the Berkeley Time-Sharing
System, which ran on the Scientific Data Systems SDS 940. A rewrite of the original
QED editor by Ken Thompson for MIT’s Compatible Time-Sharing System yielded
one of the earliest (if not the first) practical implementation of regular expressions in
computing. Table A-1, taken from pages 3 and 4 of a 1970 Bell Labs memo, outlines
the regex features in QED. It amazes me that most of this syntax has remained in use
to this day, over 40 years later.

Table A-1. QED regular expressions

Feature Description

literal “a) An ordinary character [literal] is a regular expression which matches that char-
acter.”

^ “b) ^ is a regular expression which matches the null character at the beginning of a
line.”

$ “c) $ is a regular expression which matches the null character before the character
<nl> [newline] (usually at the end of a line).”

. “d) . is a regular expression which matches any character except <nl> [newline].”

[<string>] “e) “[<string>]” is a regular expression which matches any of the characters in the
<string> and no others.”

[^<string>] “f) “[^<string>] is a regular expression which matches any character but <nl>
[newline] and the characters of the <string>.”

* “g) A regular expression followed by “*” is a regular expression which matches any
number (including zero) of adjacent occurrences of the text matched by the regular
expression.”

107

Feature Description

“h) Two adjacent regular expressions form a regular expression which matches ad-
jacent occurrences of the text matched by the regular expressions.”

| “i) Two regular expressions separated by “|” form a regular expression which matches
the text matched by either of the regular expressions.”

() “j) A regular expression in parentheses is a regular expression which matches the
same text as the original regular expression. Parentheses are used to alter the order
of evaluation implied by g), h), and i): a(b|c)d will match abd or acd, while ab|cd
matches ab or cd.”

{ } “k) If “<regexp>” is a regular expression, “{<regexp>}x” is a regular expression,
where x is any character. This regular expression matches the same things as <re-
gexp>; it has certain side effects as explained under the Substitute command.” [The
Substitute command was formed (.,.)S/<regexp>/<string>/ (see page 13 of the
memo), similar to the way it is still used in programs like sed and Perl.]

\E “l) If <rexname> is the name of a regular expression named by the E command
(below), then “\E<rexname>” is a regular expression which matches the same things
as the regular expression specified in the E command. More discussion is presented
under the E command.” [The \E command allowed you to name a regular expression
and repeat its use by name.]

“m) The null regular expression standing alone is equivalent to the last regular
expression encountered. Initially the null regular expression is undefined; it also
becomes undefined after an erroneous regular expression and after use of the E
command.”

“n) Nothing else is a regular expression.”

“o) No regular expression will match text spread across more than one line.”

Metacharacters
There are 14 metacharacters used in regular expressions, each with special meaning,
as described in Table A-2. If you want to use one of these characters as a literal, you
must precede it with a backslash to escape it. For example, you would escape the dollar
sign like this \$, or a backslash like this \\.

Table A-2. Metacharacters in regular expressions

Metacharacter Name Code Point Purpose

. Full Stop U+002E Match any character

\ Backslash U+005C Escape a character

| Vertical Bar U+007C Alternation (or)

^ Circumflex U+005E Beginning of a line anchor

$ Dollar Sign U+0024 End of a line anchor

? Question Mark U+003F Zero or one quantifier

108 | Appendix: Regular Expression Reference

Metacharacter Name Code Point Purpose

* Asterisk U+002A Zero or more quantifier

+ Plus Sign U+002B One or more quantifier

[Left Square Bracket U+005B Open character class

] Right Square Bracket U+005D Close character class

{ Left Curly Brace U+007B Open quantifier or block

} Right Curly Brace 007D Close quantifier or block

(Left Parenthesis U+0028 Open group

) Right Parenthesis U+0029 Close group

Character Shorthands
Table A-3 lists character shorthands used in regular expressions.

Table A-3. Character shorthands

Character Shorthand Description

\a Alert

\b Word boundary

[\b] Backspace character

\B Non-word boundary

\cx Control character

\d Digit character

\D Non-digit character

\dxxx Decimal value for a character

\f Form feed character

\r Carriage return

\n Newline character

\oxxx Octal value for a character

\s Space character

\S Non-space character

\t Horizontal tab character

\v Vertical tab character

\w Word character

\W Non-word character

\0 Null character

\xxx Hexadecimal value for a character

\uxxxx Unicode value for a character

Character Shorthands | 109

Whitespace
Table A-4 is a list of character shorthands for whitespace.

Table A-4. Whitespace characters

Character Shorthand Description

\f Form feed

\h Horizontal whitespace

\H Not horizontal whitespace

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical whitespace

\V Not vertical whitespace

Unicode Whitespace Characters
Whitespace characters in Unicode are listed in Table A-5.

Table A-5. Whitespace characters in Unicode

Abbreviation or Nickname Name Unicode Code Point Regex

HT Horizontal tab U+0009 \u0009 or \t

LF Line feed U+000A \u000A or \n

VT Vertical tab U+000B \u000B or \v

FF Form feed U+000C \u000C or \f

CR Carriage return U+000D \u000d or \r

SP Space U+0020 \u0020 or \s*

NEL Next line U+0085 \u0085

NBSP No-break space U+00A0 \u00A0

— Ogham space mark U+1680 \u1680

MVS Mongolian vowel separator U+180E \u180E

BOM Byte order mark U+FEFF \ufeff

NQSP En quad U+2000 \u2000

MQSP, Mutton Quad Em quad U+2001 \u2001

ENSP, Nut En space U+2002 \u2002

EMSP, Mutton Em space U+2003 \u2003

3MSP, Thick space Three-per-em space U+2004 \u2004

4MSP, Mid space Four-per-em space U+2005 \u2005

110 | Appendix: Regular Expression Reference

Abbreviation or Nickname Name Unicode Code Point Regex

6/MSP Six-per-em space U+2006 \u2006

FSP Figure space U+2007 \u2007

PSP Punctuation space U+2008 \u2008

THSP Thin space U+2009 \u2009

HSP Hair space U+200A \u200A

ZWSP Zero width space U+200B \u200B

LSEP Line separator U+2028 \u2028

PSEP Paragraph separator U+2029 \u2029

NNBSP Narrow no-break space U+202F \u202F

MMSP Medium mathematical
space

U+205F \u205f

IDSP Ideographic space U+3000 \u3000
* Also matches other whitespace.

Control Characters
Table A-6 shows a way to match control characters in regular expressions.

Table A-6. Matching control characters

Control Character Unicode Value Abbreviation Name

c@* U+0000 NUL Null

\cA U+0001 SOH Start of heading

\cB U+0002 STX Start of text

\cC U+0003 ETX End of text

\cD U+0004 EOT End of transmission

\cE U+0005 ENQ Enquiry

\cF U+0006 ACK Acknowledge

\cG U+0007 BEL Bell

\cH U+0008 BS Backspace

\cI U+0009 HT Character tabulation or hor-
izontal tab

\cJ U+000A LF Line feed (newline, end of
line)

\cK U+000B VT Line tabulation or vertical
tab

\cL U+000C FF Form feed

\cM U+000D CR Carriage return

Control Characters | 111

Control Character Unicode Value Abbreviation Name

\cN U+000E SO Shift out

\cO U+000F SI Shift in

\cP U+0010 DLE Data link escape

\cQ U+0011 DC1 Device control one

\cR U+0012 DC2 Device control two

\cS U+0013 DC3 Device control three

\cT U+0014 DC4 Device control four

\cU U+0015 NAK Negative acknowledge

\cV U+0016 SYN Synchronous idle

\cW U+0017 ETB End of Transmission block

\cX U+0018 CAN Cancel

\cY U+0019 EM End of medium

\cZ U+001A SUB Substitute

\c[U+001B ESC Escape

\c\ U+001C FS Information separator four

\c] U+001D GS Information separator three

\c^ U+001E RS Information separator two

\c_ U+001F US Information separator one
* Can use upper- or lowercase. For example, \cA or \ca are equivalent; however, Java implementations require uppercase.\cA or \ca are

equivalent; however, Java implementations require uppercase.

Character Properties
Table A-7 lists character property names for use with \p{property} or \P{property}.

Table A-7. Character properties*

Property Description

C Other

Cc Control

Cf Format

Cn Unassigned

Co Private use

Cs Surrogate

L Letter

Ll Lowercase letter

Lm Modifier letter

112 | Appendix: Regular Expression Reference

Property Description

Lo Other letter

Lt Title case letter

Lu Uppercase letter

L& Ll, Lu, or Lt

M Mark

Mc Spacing mark

Me Enclosing mark

Mn Non-spacing mark

N Number

Nd Decimal number

Nl Letter number

No Other number

P Punctuation

Pc Connector punctuation

Pd Dash punctuation

Pe Close punctuation

Pf Final punctuation

Pi Initial punctuation

Po Other punctuation

Ps Open punctuation

S Symbol

Sc Currency symbol

Sk Modifier symbol

Sm Mathematical symbol

So Other symbol

Z Separator

Zl Line separator

Zp Paragraph separator

Zs Space separator
* See pcresyntax(3) at http://www.pcre.org/pcre.txt.

Character Properties | 113

http://www.pcre.org/pcre.txt

Script Names for Character Properties
Table A-8 shows the language script names for use with /p{property} or /P{property}.

Table A-8. Script names*

Arabic (Arab) Glagolitic (Glag) Lepcha (Lepc) Samaritan (Samr)

Armenian (Armn) Gothic (Goth) Limbu (Limb) Saurashtra (Saur)

Avestan (Avst) Greek (Grek) Linear B (Linb) Shavian (Shaw)

Balinese (Bali) Gujarati (Gujr) Lisu (Lisu) Sinhala (Sinh)

Bamum (Bamu) Gurmukhi (Guru) Lycian (Lyci) Sundanese (Sund)

Bengali (Beng) Han (Hani) Lydian (Lydi) Syloti Nagri (Sylo)

Bopomofo (Bopo) Hangul (Hang) Malayalam (Mlym) Syriac (Syrc)

Braille (Brai) Hanunoo (Hano) Meetei Mayek (Mtei) Tagalog (Tglg)

Buginese (Bugi) Hebrew (Hebr) Mongolian (Mong) Tagbanwa (Tagb)

Buhid (Buhd) Hiragana (Hira) Myanmar (Mymr) Tai Le (Tale)

Canadian Aboriginal (Cans) Hrkt: Katakana or Hiragana) New Tai Lue (Talu) Tai Tham (Lana)

Carian (Cari) Imperial Aramaic (Armi) Nko (Nkoo) Tai Viet (Tavt)

Cham (None) Inherited (Zinh/Qaai) Ogham (Ogam) Tamil (Taml)

Cherokee (Cher) Inscriptional Pahlavi (Phli) Ol Chiki (Olck) Telugu (Telu)

Common (Zyyy) Inscriptional Parthian (Prti) Old Italic (Ital) Thaana (Thaa)

Coptic (Copt/Qaac) Javanese (Java) Old Persian (Xpeo) Thai (None)

Cuneiform (Xsux) Kaithi (Kthi) Old South Arabian (Sarb) Tibetan (Tibt)

Cypriot (Cprt) Kannada (Knda) Old Turkic (Orkh) Tifinagh (Tfng)

Cyrillic (Cyrl) Katakana (Kana) Oriya (Orya) Ugaritic (Ugar)

Deseret (Dsrt) Kayah Li (Kali) Osmanya (Osma) Unknown (Zzzz)

Devanagari (Deva) Kharoshthi (Khar) Phags Pa (Phag) Vai (Vaii)

Egyptian Hieroglyphs (Egyp) Khmer (Khmr) Phoenician (Phnx) Yi (Yiii)

Ethiopic (Ethi) Lao (Laoo) Rejang (Rjng)

Georgian (Geor) Latin (Latn) Runic (Runr)
* See pcresyntax(3) at http://www.pcre.org/pcre.txt or http://ruby.runpaint.org/regexps#properties.

114 | Appendix: Regular Expression Reference

http://www.pcre.org/pcre.txt
http://ruby.runpaint.org/regexps#properties

POSIX Character Classes
Table A-9 shows a list of POSIX character classes.

Table A-9. POSIX character classes

Character Class Description

[[:alnum:]] Alphanumeric characters (letters and digits)

[[:alpha:]] Alphabetic characters (letters)

[[:ascii:]] ASCII characters (all 128)

[[:blank:]] Blank characters

[[:ctrl:]] Control characters

[[:digit:]] Digits

[[:graph:]] Graphic characters

[[:lower:]] Lowercase letters

[[:print:]] Printable characters

[[:punct:]] Punctuation characters

[[:space:]] Whitespace characters

[[:upper:]] Uppercase letters

[[:word:]] Word characters

[[:xdigit:]] Hexadecimal digits

Options/Modifiers
Tables A-10 and A-11 list options and modifiers.

Table A-10. Options in regular expressions

Option Description Supported by

(?d) Unix lines Java

(?i) Case insensitive PCRE, Perl, Java

(?J) Allow duplicate names PCRE*

(?m) Multiline PCRE, Perl, Java

(?s) Single line (dotall) PCRE, Perl, Java

(?u) Unicode case Java

(?U) Default match lazy PCRE

(?x) Ignore whitespace, comments PCRE, Perl, Java

(?-…) Unset or turn off options PCRE
* See “Named Subpatterns” in http://www.pcre.org/pcre.txt.http://www.pcre.org/pcre.txt.

Options/Modifiers | 115

http://www.pcre.org/pcre.txt
http://www.pcre.org/pcre.txt

Table A-11. Perl modifiers (flags)*

Modifier Description

a Match \d, \s, \w and POSIX in ASCII range only

c Keep current position after match fails

d Use default, native rules of the platform

g Global matching

i Case-insensitive matching

l Use current locale’s rules

m Multiline strings

p Preserve the matched string

s Treat strings as a single line

u Use Unicode rules when matching

x Ignore whitespace and comments
* See http://perldoc.perl.org/perlre.html#Modifiers.

ASCII Code Chart with Regex
Table A-12 is an ASCII code chart with regex cross-references.

Table A-12. ASCII code chart

Binary Oct Dec Hex Char Kybd Regex Name

00000000 0 0 0 NUL ^@ \c@ Null character

00000001 1 1 1 SOH ^A \cA Start of header

00000010 2 2 2 STX ^B \cB Start of text

00000011 3 3 3 ETX ^C \cC End of text

00000100 4 4 4 EOT ^D \cD End of
transmission

00000101 5 5 5 ENQ ^E \cE Enquiry

00000110 6 6 6 ACK ^F \cF Acknowl-
edgment

00000111 7 7 7 BEL ^G \a, \cG Bell

00001000 10 8 8 BS ^H [\b], \cH Backspace

00001001 11 9 9 HT ^I \t, \cI Horizontal
tab

00001010 12 10 0A LF ^J \n, \cJ Line feed

00001011 13 11 0B VT ^K \v, \cK Vertical tab

00001100 14 12 0C FF ^L \f, \cL Form feed

116 | Appendix: Regular Expression Reference

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://perldoc.perl.org/perlre.html#Modifiers

Binary Oct Dec Hex Char Kybd Regex Name

00001101 15 13 0D CR ^M \r, \cM Carriage
return

00001110 16 14 0E SO ^N \cN Shift out

00001111 17 15 0F SI ^O \cO Shift in

00010000 20 16 10 DLE ^P \cP Data link
escape

00010001 21 17 11 DC1 ^Q \cQ Device
control 1
(XON)

00010010 22 18 12 DC2 ^R \cR Device
control 2

00010011 23 19 13 DC3 ^S \cS Device
control 3
(XOFF)

00010100 24 20 14 DC4 ^T \cT Device
control 4

00010101 25 21 15 NAK ^U \cU Negative
acknowl-
edgement

00010110 26 22 16 SYN ^V \cV Synchro-
nous idle

00010111 27 23 17 ETB ^W \cW End of
transmis-
sion block

00011000 30 24 18 CAN ^X \cX Cancel

00011001 31 25 19 EM ^Y \cY End of
medium

00011010 32 26 1A SUB ^Z \cZ Substitute

00011011 33 27 1B ESC ^[\e, \c[Escape

00011100 34 28 1C FS ^| \c| File
separator

00011101 35 29 1D GS ^] \c] Group
separator

00011110 36 30 1E RS ^^ \c^ Record
separator

00011111 37 31 1F US ^_ \c_ Unit
Separator

00100000 40 32 20 SP SP \s, [] Space

00100001 41 33 21 ! ! ! Exclama-
tion mark

ASCII Code Chart with Regex | 117

Binary Oct Dec Hex Char Kybd Regex Name

00100010 42 34 22 " " " Quotation
mark

00100011 43 35 23 # # # Number
sign

00100100 44 36 24 $ $ \$ Dollar sign

00100101 45 37 25 % % % Percent
sign

00100110 46 38 26 & & & Ampersand

00100111 47 39 27 ' ' ' Apostrophe

00101000 50 40 28 (((, \(Left paren-
thesis

00101001 51 41 29))), \) Right pa-
renthesis

00101010 52 42 2A * * * Asterisk

00101011 53 43 2B + + + Plus sign

00101100 54 44 2C " " " Comma

00101101 55 45 2D - - - Hyphen-
minus

00101110 56 46 2E . . \., [.] Full stop

00101111 57 47 2F / / / Solidus

00110000 60 48 30 0 0 \d, [0] Digit zero

00110001 61 49 31 1 1 \d, [1] Digit one

00110010 62 50 32 2 2 \d, [2] Digit two

00110011 63 51 33 3 3 \d, [3] Digit three

00110100 64 52 34 4 4 \d, [4] Digit four

00110101 65 53 35 5 5 \d, [5] Digit five

00110110 66 54 36 6 6 \d, [6] Digit six

00110111 67 55 37 7 7 \d, [7] Digit seven

00111000 70 56 38 8 8 \d, [8] Digit eight

00111001 71 57 39 9 9 \d, [9] Digit nine

00111010 72 58 3A : : : Colon

00111011 73 59 3B ; ; ; Semicolon

00111100 74 60 3C < < < Less-than
sign

00111101 75 61 3D = = = Equals sign

00111110 76 62 3E > > > Greater-
than sign

118 | Appendix: Regular Expression Reference

Binary Oct Dec Hex Char Kybd Regex Name

00111111 77 63 3F ? ? ? Question
mark

01000000 100 64 40 @ @ @ Commercial
at

01000001 101 65 41 A A \w, [A] Latin capi-
tal letter A

01000010 102 66 42 B B \w, [B] Latin capi-
tal letter B

01000011 103 67 43 C C \w, [C] Latin capi-
tal letter C

01000100 104 68 44 D D \w, [D] Latin capi-
tal letter D

01000101 105 69 45 E E \w, [E] Latin capi-
tal letter E

01000110 106 70 46 F F \w, [F] Latin capi-
tal letter F

01000111 107 71 47 G G \w, [G] Latin capi-
tal letter G

01001000 110 72 48 H H \w, [H] Latin capi-
tal letter H

01001001 111 73 49 I I \w, [I] Latin capi-
tal letter I

01001010 112 74 4A J J \w, [J] Latin capi-
tal letter J

01001011 113 75 4B K K \w, [K] Latin capi-
tal letter K

01001100 114 76 4C L L \w, [L] Latin capi-
tal letter L

01001101 115 77 4D M M \w, [M] Latin capi-
tal letter M

01001110 116 78 4E N N \w, [N] Latin capi-
tal letter N

01001111 117 79 4F O O \w, [O] Latin capi-
tal letter O

01010000 120 80 50 P P \w, [P] Latin capi-
tal letter P

01010001 121 81 51 Q Q \w, [Q] Latin capi-
tal letter Q

01010010 122 82 52 R R \w, [R] Latin capi-
tal letter R

ASCII Code Chart with Regex | 119

Binary Oct Dec Hex Char Kybd Regex Name

01010011 123 83 53 S S \w, [S] Latin capi-
tal letter S

01010100 124 84 54 T T \w, [T] Latin capi-
tal letter T

01010101 125 85 55 U U \w, [U] Latin capi-
tal letter U

01010110 126 86 56 V V \w, [V] Latin capi-
tal letter V

01010111 127 87 57 W W \w, [W] Latin capi-
tal letter W

01011000 130 88 58 X X \w, [X] Latin capi-
tal letter X

01011001 131 89 59 Y Y \w, [Y] Latin capi-
tal letter Y

01011010 132 90 5A Z Z \w, [Z] Latin capi-
tal letter Z

01011011 133 91 5B [[\[Left square
bracket

01011100 134 92 5C \ \ \ Reverse
solidus

01011101 135 93 5D]] \] Right
square
bracket

01011110 136 94 5E ^ ^ ^, [^] Circumflex
accent

01011111 137 95 5F _ _ _, [_] Low line

00100000 140 96 60 ` ` \` Grave
accent

01100001 141 97 61 a a \w, [a] Latin small
letter A

01100010 142 98 62 b b \w, [b] Latin small
letter B

01100011 143 99 63 c c \w, [c] Latin small
letter C

01100100 144 100 64 d d \w, [d] Latin small
letter D

01100101 145 101 65 e e \w, [e] Latin small
letter E

01100110 146 102 66 f f \w, [f] Latin small
letter F

120 | Appendix: Regular Expression Reference

Binary Oct Dec Hex Char Kybd Regex Name

01100111 147 103 67 g g \w, [g] Latin small
letter G

01101000 150 104 68 h h \w, [h] Latin small
letter H

01101001 151 105 69 i i \w, [i] Latin small
letter I

01101010 152 106 6A j j \w, [j] Latin small
letter J

01101011 153 107 6B k k \w, [k] Latin small
letter K

01101100 154 108 6C l l \w, [l] Latin small
letter L

01101101 155 109 6D m m \w, [m] Latin small
letter M

01101110 156 110 6E n n \w, [n] Latin small
letter N

01101111 157 111 6F o o \w, [o] Latin small
letter O

01110000 160 112 70 p p \w, [p] Latin small
letter P

01110001 161 113 71 q q \w, [q] Latin small
letter Q

01110010 162 114 72 r r \w, [r] Latin small
letter R

01110011 163 115 73 s s \w, [s] Latin small
letter S

01110100 164 116 74 t t \w, [t] Latin small
letter T

01110101 165 117 75 u u \w, [u] Latin small
letter U

01110110 166 118 76 v v \w, [v] Latin small
letter V

01110111 167 119 77 w w \w, [w] Latin small
letter W

01111000 170 120 78 x x \w, [x] Latin small
letter X

01111001 171 121 79 y y \w, [y] Latin small
letter Y

01111010 172 122 7A z z \w, [z] Latin small
letter Z

ASCII Code Chart with Regex | 121

Binary Oct Dec Hex Char Kybd Regex Name

01111011 173 123 7B { { { Left curly
brace

01111100 174 124 7C | | | Vertical line
(Bar)

01111101 175 125 7D } } } Right curly
brace

01111110 176 126 7E ~ ~ \~ Tilde

01111111 177 127 7F DEL ^? \c? Delete

Technical Notes
You can find Ken Thompson and Dennis Ritchie’s QED memo-cum manual at http://
cm.bell-labs.com/cm/cs/who/dmr/qedman.pdf.

122 | Appendix: Regular Expression Reference

http://cm.bell-labs.com/cm/cs/who/dmr/qedman.pdf
http://cm.bell-labs.com/cm/cs/who/dmr/qedman.pdf

Regular Expression Glossary

anchor
Specifies a location in a line or string. For
example, the caret or circumflex character
(^) signifies the beginning of a line or string
of characters, and the dollar sign character
($), the end of a line or string.

alternation
Separating a list of regular expressions with
a vertical bar (|) character, indicating or. In
other words, match any of the regular ex-
pressions separated by one or more | char-
acters. In some applications, such as grep or
sed that use basic regular expressions
(BREs), the | is preceded by a backslash, as
in \|. See also basic regular expressions.

ASCII
American Standard Code for Information
Interchange. A 128-character encoding
scheme for English (Latin) characters devel-
oped in the 1960s. See also Unicode.

assertions
See zero-width assertions.

atom
See metacharacter.

atomic group
A grouping that turns off backtracking when
a regular expression inside (?>…) fails to
match. See also backtracking, groups.

backreference
Refers to a previous regular expression cap-
tured with parentheses using a reference in
the form of \1, \2, and so forth.

backtracking
Stepping back, character by character,
through an attempted match to find a suc-
cessful match. Used with a greedy match,
but not a lazy or possessive match. Cata-
strophic backtracking occurs when a regex
processor makes perhaps thousands of at-
tempts to make a match and consumes a
vast amount (read most) of the computing
resources available. One way to avoid cata-
strophic backtracking is with atomic group-
ing. See also atomic group, greedy match, lazy
match, possessive match.

basic regular expressions
An early implementation of regular expres-
sions that is less advanced and considered
obsolete by most. Also called BREs. BREs
required you to escape certain characters in
order for them to function as metacharac-
ters, such as braces (\{ and }\). See also ex-
tended regular expressions.

bound
See quantifier.

bracketed expression
A regular expression given in square brack-
ets; for example, [a-f], that is, the range of
lowercase letters a through f. See also character
class.

branch
A concatenation of pieces in a regular ex-
pression in POSIX.1 terminology. See also
POSIX.

123

BREs
See basic regular expressions.

capturing group
See groups.

catastrophic backtracking
See backtracking.

character class
Usually, a set of characters enclosed in
square brackets; for example, [a-bA-B0-9] is
a character class for all upper- and lowercase
characters plus digits in the ASCII or Low
Basic Latin character set.

character escape
A character preceded by a backward slash.
Examples are \t (horizontal tab), \v (vertical
tab), and \f (form feed).

character set
See character class.

code point
See Unicode.

composability
“A schema language (or indeed a program-
ming language) provides a number of
atomic objects and a number of methods of
composition. The methods of composition
can be used to combine atomic objects into
compound objects which can in turn be
composed into further compound objects.
The composability of the language is the de-
gree to which the various methods of com-
position can be applied uniformly to all the
various objects of the language, both atomic
and compound…Composability improves
ease of learning and ease of use. Composa-
bility also tends to improve the ratio be-
tween complexity and power: for a given
amount of complexity, a more composable
language will be more powerful than a less
composable one.” From James Clark, “The
Design of RELAX NG,” http://www.thaio
pensource.com/relaxng/design.html#sec
tion:5.

ed
The Unix line editor created by Ken Thomp-
son in 1971, which implemented regular ex-
pressions. It was a precursor to sed and vi.

EREs
See extended regular expressions.

extended regular expressions
Extended regular expressions or EREs
added additional functionality to basic reg-
ular expressions or BREs, such as alterna-
tion (\|) and quantifiers such as ? and +,
which work with egrep (extended grep).
These new features were delineated in IEEE
POSIX standard 1003.2-1992. You can use
the -E option with grep (same as using
egrep), which means that you want to use
extended regular expressions rather than
basic regular expressions. See also alternation,
basic regular expressions, grep.

flag
See modifier.

greedy match
A greedy match consumes as much of a tar-
get string as possible, and then backtracks
through the string to attempt to find a
match. See backtracking, lazy match, possessive
match.

grep
A Unix command-line utility for searching
strings with regular expressions. Invented
by Ken Thompson in 1973, grep is said to
have grown out of the ed editor command
g/re/p (global/regular expression/print).
Superseded but not retired by egrep (or
grep -E—which has additional metacharac-
ters such as |, +, ?, (, and)—grep uses basic
regular expressions, whereas grep -E or
egrep use extended regular expressions.
fgrep (grep -F) searches files using literal
strings and metacharacters like $, *, and |
don’t have special meaning. See also basic reg-
ular expressions, extended regular expressions.

groups
Groups combine regular expression atoms
within a pair of parentheses, (). In some

BREs

124 | Regular Expression Glossary

http://www.thaiopensource.com/relaxng/design.html#section:5
http://www.thaiopensource.com/relaxng/design.html#section:5
http://www.thaiopensource.com/relaxng/design.html#section:5

applications, such as grep or sed (without _-
E_), you must precede the parenthesis with
a backslash, as in \) or \(. There are cap-
turing groups and non-capturing groups. A
capturing group stores the captured group
in memory so that it can be reused while a
non-capturing group does not. Atomic
groups do not backtrack. See also atomic group.

hexadecimal
A base 16 numbering system represented by
the digits 0–9 and the letters A–F or a–f. For
example, the base 10 number 15 is repre-
sented as F in hexadecimal, and 16 is 10.

hold buffer
See hold space.

hold space
Used by sed to store one or more lines for
further processing. Also called the hold
buffer. See also pattern space, sed.

lazy match
A lazy match consumes a subject string one
character at a time, attempting to find a
match. It does not backtrack. See also back-
tracking, greedy match, possessive match.

literal
See string literal.

lookaround
See lookahead, lookbehind.

lookahead
A regular expression that matches only if
another specified regular expression follows
the first. A positive lookahead uses the syn-
tax regex(?=regex). A negative lookahead
means that the regular expression is not fol-
lowed by a regular expression that follows
the first. Uses the syntax regex(?!regex).

lookbehind
A regular expression that matches only if
another specified regular expression pre-
cedes the first. A positive lookbehind uses
the syntax regex(?<=regex). A negative
lookbehind means that the regular expres-
sion is not followed by a regular expression

that precedes the first. Uses the syntax
regex(?<!regex).

matching
A regular expression may match a given pat-
tern in text and then, depending on the ap-
plication, trigger a result.

metacharacter
A character that has a special meaning in
regular expressions. These characters are
(the commas in this list are separators) ., \,
\|, *, +, ?, ~, $, [,], (,), {, }. Metacharacters
are also called atoms.

modifier
A character placed after a match or substi-
tution pattern that modifies the matching
process. For example, the i modifier makes
the match case-insensitive. Also called a
flag.

negation
Indicates that a regular expression does not
match a given pattern. Given inside charac-
ter classes with a leading caret character, as
in [^2-7], which would match other digits
besides 2, 3, 4, 5, 6 and 7—that is, 0, 1, 8, 9.

negative lookahead
See lookahead.

negative lookbehind
See lookbehind.

non-capturing group
A group within parentheses that is not cap-
tured (that is, stored in memory for future
use). The syntax for a non-capturing group
is (?:pattern). See also groups.

octal characters
A character may be represented with an oc-
tal notation in regular expressions. In regu-
lar expressions, a character given in octal
form is specified as passthrough:[\oxx]
\o_xx_ where the x represents a number in
the range 1–9, using one to two places. For
example, \o represents the character é, the
Latin small letter e with an acute accent.

occurrence constraint
See quantifier.

occurrence constraint

Regular Expression Glossary | 125

options
Allows you to turn on and off options that
modify the match. For example, the (?i)
option indicates that the match will be case-
insensitive. Similar to modifiers, but they
use a different syntax. See also modifier.

pattern space
The sed program normally processes as in-
put one line at a time. As each line is pro-
cessed, it is placed in what is called pattern
space, to which patterns may be applied.
This is also called the work buffer. See also
hold space, sed.

Perl
A general-purpose programming language
created by Larry Wall in 1987, Perl is known
for its strong support of regular expressions
and its text processing capabilities. See http:
//www.perl.org.

piece
A portion of a regular expression, usually
concatenated, in POSIX.1 terminology. See
also POSIX.

positive lookahead
See lookahead.

positive lookbehind
See lookbehind.

POSIX
Portable Operating System Interface for
Unix. A family of Unix-related standards
by the Institute of Electrical and Electronics
Engineers (IEEE). The most recent POSIX
standard for regular expressions is POSIX.
1-2008 (see http://standards.ieee.org/
findstds/standard/1003.1-2008.html).

possessive match
A possessive match consumes an entire sub-
ject string in one fell swoop, attempting to
find a match. It does not backtrack. See
also backtracking, greedy match, lazy match.

quantifier
Defines the number of times a regular ex-
pression may occur in an attempted match.
An integer or pair of integers separated by a

comma, surrounded by braces, is one form;
for example, {3} indicates that the expres-
sion may occur exactly three times (with
older tools that use basic regular expres-
sions, you must escape the braces, as in
\{3\}).

Other quantifiers include ? (zero or one
times), + (one or more), and * (zero or more).
A quantifier is also called a bound or a modi-
fier. By themselves, quantifiers are greedy.
There are also lazy quantifiers (e.g., {3}?)
and possessive quantifiers (e.g., {3}+). See
also basic regular expressions, greedy match, lazy
match, possessive match.

regular expression
A specially encoded string of characters
that, when used within an application or
utility, may match other strings or sets of
strings. First described in the early 1950s by
the mathematician Stephen Kleene (1909–
1994) in his work with formal language
theory in his book Introduction to Metama-
thematics, published in 1952. Began to gain
momentum in computer science with the
work of Ken Thompson, et al. on the QED
editor (under the General Electric Time
Sharing System [GE-TSS] on a GE-635 com-
puter) and, later, other tools under AT&T
Bell Labs’ Unix operating system in the early
1970s.

sed
A Unix streaming editor that accepts regular
expressions and transforms text. It was de-
veloped in the early 1970s by Lee McMahon
at Bell Labs. An example of sed: sed -n 's/
this/that/g\' file.ext > new.ext. Use sed
-E to indicate that you want to use extended
regular expressions. See also extended regular
expressions.

string literal
A string of characters interpreted literally—
for example, the literal string “It is an an-
cyent Marinere” as opposed to something
like “[Ii]t[]is[].*nere.”

options

126 | Regular Expression Glossary

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.perl.org
http://www.perl.org
http://standards.ieee.org/findstds/standard/1003.1-2008.html
http://standards.ieee.org/findstds/standard/1003.1-2008.html

Unicode
Unicode is a system for encoding characters
for writing systems of the world. Each char-
acter in Unicode is assigned a numeric code
point. There are over 100,000 characters
represented in Unicode. In regular expres-
sions, a Unicode character can be specified
as \uxxxx or \x{xxxx}, where x represents a
hexadecimal number in the range 0–9, A–F
(or a–f), using one to four places. For exam-
ple, \u00E9 represents the character é, the
Latin small letter e with an acute accent. See
also http://www.unicode.org.

vi
A Unix editor that was first developed in
1976 by Bill Joy and that uses regular ex-
pressions. The vim editor is an improved re-
placement for vi, developed primarily by
Bram Moolenaar (see http://www.vim.org).
I currently use six or seven different editors
during a regular work day, but the one I use
most often is vim. In fact, if I were ship-
wrecked on a desert island, and could have
only one text editor, I would choose _vim. No
question.

vim
See vi.

work buffer
See pattern space.

zero-width assertions
Boundaries that do not consume any char-
acters in a match. ^ and $, which match the
beginning and end of a line, respectively, are
examples.

zero-width assertions

Regular Expression Glossary | 127

http://www.unicode.org
http://www.vim.org

Index

Symbols
$ (dollar sign)

matching end of line with, 107
as metacharacter, 108
usage examples, 8, 29

() (parentheses)
as metacharacters, 109
QED regex feature, 108
subpatterns and, 45
usage examples, 6, 8, 41

* (asterisk)
as metacharacter, 109
QED regex feature, 107
as quantifier, 7, 23, 45, 74, 126

+ (plus sign)
as metacharacter, 109
as quantifier, 7, 75, 126

- (hyphen) metacharacter, 34
. (dot) character

described, 22
matching any character, 5
as metacharacter, 108
QED regex feature, 107

/ (forward slash), 31, 88
\0 (Null) character shorthand, 20, 109
; (semicolon), 25
<> (angle brackets), 87
? (question mark)

matching tags, 88
as metacharacter, 108
as quantifier, 7, 75, 126
usage examples, 8

[] (square brackets)
as metacharacters, 109

usage examples, 8, 53
\ (backslash) metacharacter

described, 108
escaping metacharacters, 30, 108
inserting newlines, 36
usage example, 8

^ (caret)
matching beginning or end of lines, 29–31
as metacharacter, 108
negated character classes, 55
QED regex feature, 107
usage example, 8

_ (underscore), 87, 98
{} (curly braces)

as metacharacters, 6, 109
QED regex feature, 108
usage example, 8, 75

| (vertical bar)
as metacharacter, 108
QED regex feature, 108
usage example, 8

A
a (append) command (sed), 92
\a (alert) character shorthand, 19, 109
\A (start of subject) character shorthand, 33
a modifier (Perl), 44, 116
ack tool, 65, 71
Adobe AIR runtime, 51
alert (\a) character shorthand, 19, 109
[[:alnum:]] POSIX character class, 58, 115
[[:alpha:]] POSIX character class, 58, 115
alternation

described, 8, 41, 123
with grep, 43

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

129

with Perl, 44
with RegExr, 41

American Standard Code for Information
Interchange (ASCII)

described, 123
regex cross-references, 116–122

“An die Freude” (Schiller), 65
anchors, 29, 123
angle brackets (<>), 87
append (a) command (sed), 92
ASCII (American Standard Code for

Information Interchange)
described, 123
regex cross-references, 116–122

[[:ascii:]] POSIX character class, 58, 115
Asciidoc text format, 98
assertions

as boundaries, 29
described, 29
zero-width, 29, 127

asterisk (*)
as metacharacter, 109
QED regex feature, 107
as quantifier, 7, 23, 45, 74, 126

atom (see metacharacters)
atomic groups, 50, 51, 123

B
[\b] (backspace) character shorthand, 19, 109
\b (word boundary) character shorthand, 19,

31–33, 109
\B (non-word boundary) character shorthand,

19, 31, 109
backreferences, capturing groups and, 6, 46–

49
backslash (\) metacharacter

described, 108
escaping metacharacters, 30, 108
inserting newlines, 36
usage example, 8

backspace [\b] character shorthand, 19, 109
backtracking

catastrophic, 50, 123
described, 74, 123
greedy match and, 74–76, 123
lazy match and, 74, 76, 123
possessive match and, 74, 77, 123
turning off, 50

Barnett, Bruce, 103

Basho (poet), 63
basic regular expressions (BREs)

described, 123
grep and, 32, 43

Berkeley Time-Sharing System (BTSS), vii, 107
[[:blank:]] POSIX character class, 58, 115
bound (see quantifiers)
boundaries

adding tags, 34–38
assertions as, 29
matching beginning and end of lines, 29–

31
matching start and end of subject, 33
non-word, 31
quoting groups of characters as literals, 34
word, 19, 31–33, 109

bracketed expressions, 53, 123
(see also character classes)

branches, 123
BREs (basic regular expressions)

described, 123
grep and, 32, 43

BTSS (Berkeley Time-Sharing System), vii, 107

C
\c xx (control) character shorthand, 19, 69,

109
c modifier (Perl), 44, 116
capturing groups

backreferences and, 6, 46–49
described, 6, 125
named groups, 48

caret (^)
matching beginning or end of lines, 29–31
as metacharacter, 108
negated character classes, 55
QED regex feature, 107
usage example, 8

carriage return (\r) character shorthand, 19,
109

case sensitivity
in Regexpal, 15
in RegExr, 42, 81
in regular expressions, 43

catastrophic backtracking, 50, 123
character classes

creating, 54
described, 4, 53–55, 124
difference of, 56

130 | Index

fewest keystrokes win principle and, 19
matching digits with, 4
matching range of characters, 53
matching range of digits, 54
negated, 55, 125
POSIX, 56–59, 115
union of, 56

character escape
described, 5, 124
metacharacters and, 30, 108

character properties
described, 66, 112
matching, 65–68
script names for, 114

character sets (see character classes)
character shorthand

character class and, 54
described, 1, 5, 19, 109
matching digits with, 5
quoting group of characters as literals, 34
start and end of subject, 33
for whitespace, 20, 110

characters
matching any, 5, 22–23
matching range of, 53, 61
quoting groups of characters as literals, 34

Chrome browser, 11
circumflex (see caret (^))
Clark, James, 11, 124
code points (see Unicode)
Coleridge, Samuel Taylor, 13
command files

using with Perl, 26, 37, 97
using with sed, 25, 36, 92, 102

composability, 11, 124
control characters

additional information, 71
character shorthand, 19, 69, 109
matching, 68
in regular expressions, 111

[[:ctrl:]] POSIX character class, 58, 115
curly braces {}

as metacharacters, 6, 109
QED regex feature, 108
usage example, 8, 75

D
\d (digit) character shorthand

described, 19, 109

matching digits, 1, 15–16
usage example, 5, 8

\d xxx (decimal value) character shorthand, 19,
109

\D (non-digit) character shorthand
described, 19, 109
matching non-digits, 17
usage example, 5

d modifier (Perl), 44, 116
decimal value (\d xxx) character shorthand, 19,

109
difference of character sets, 56
[[:digit:]] POSIX character class, 59, 115
digits

capturing groups and backreferences, 6
character shorthand, 1, 5, 8, 15–16, 19,

109
matching any characters, 5
matching range of, 54
matching with character classes, 4
matching with character shorthand, 5
matching with shorthand, 15–16
quoting literals, 8–10

documents, marking up with HTML (see
marking up documents with
HTML5)

dollar sign ($)
matching end of line with, 107
as metacharacter, 108
usage examples, 8, 29

dot (.) character
described, 22
matching any character, 5
as metacharacter, 108
QED regex feature, 107

dotall option, 6, 23, 30

E
\E (quoting literal characters) character

shorthand, 34
E command-line option, 108
echo command, 24
ed editor, 124
egrep utility, 38, 124
email address example, 105
EREs (extended regular expressions)

described, 124
grep -E option for, 32, 43

Index | 131

F
\f (form feed) character shorthand, 19, 109
fewest keystrokes win principle, 19
fgrep utility, 38, 124
flags (see modifiers (flags))
form feed (\f) character shorthand, 19, 109
forward slash (/), 31, 88
Friedl, Jeff, ix, 103
full stop (see dot character)

G
g modifier (Perl), 44, 116
GE-TSS (General Electric Time Sharing

System), 126
Git version control system, 27
Goyvaerts, Jan, ix, 103, 105
[[:graph:]] POSIX character class, 59, 115
greedy match, 74–76, 124
grep utility

alternation with, 43
BREs and, 32, 43
-c option, 32, 43
described, 38, 124
-E option, 32, 43
-o option, 32, 43
search syntax, 32

groups and grouping
atomic, 50, 51, 123
capturing, 6, 46–49, 125
described, 124
lookarounds, 81–86
named, 48
non-capturing, 49, 125
quoting groups of characters as literals, 34
subpatterns, 45

Gwyn, Doug, 101

H
\h (horizontal) whitespace character, 21, 110
\H (non-horizontal) whitespace character, 21,

110
hexadecimal numbering system

character shorthand, 20, 109
described, 125
matching character classes, 54
matching Unicode characters, 62

hold space, 125
horizontal (\h) whitespace character, 21, 110

horizontal tab (\t) character shorthand, 19,
109

Horton, Mark, 38
HTML5

additional information, 27
marking up documents with, 87–99
marking up text as, 24

hyphen (-) metacharacter, 34

I
i (insert) command (sed), 36, 88
i modifier (Perl), 44, 116
IEEE (Institute of Electrical and Electronics

Engineers), 56, 60, 126
insert (i) command (sed), 36, 88

J
Java programming language, 56, 60
Joy, Bill, 38, 71, 127

K
Kernighan, Brian, vii
Kleene star, 74
Kleene, Stephen, vii, 74, 126

L
l modifier (Perl), 44, 116
lazy match, 74, 76, 125
Levithan, Steven, ix, 103, 105
lines, matching beginning and end of, 29–31
literals (see string literals)
lookaheads

described, 125
negative, 84, 125
positive, 81–84, 125

lookarounds (see lookaheads; lookbehinds)
lookbehinds

described, 125
negative, 85, 125
positive, 85, 125

[[:lower:]] POSIX character class, 59, 115

M
m modifier (Perl), 44, 116
marking up documents with HTML5

adding tags with Perl, 37–38
adding tags with sed, 36–37

132 | Index

appending tags, 92–93
described, 87
marking up with Perl, 25–27
marking up with sed, 24–25
matching tags, 87
transforming plain text with Perl, 94–98
transforming plain text with sed, 88–92

marking up text
using Perl, 25–27
using sed, 24

McMahon, Lee, 24, 126
metacharacters

described, 4, 34, 125
escaping, 108
in regular expressions, 108

modifiers (flags)
described, 125
in regular expressions, 42, 44, 116

Moolenaar, Bram, 38, 71, 127

N
\n (newline) character shorthand, 19, 109
named groups, 48
negated character classes, 55, 125
negative lookaheads, 84, 125
negative lookbehinds, 85, 125
.NET programming framework, 51
newlines

character shorthand, 19, 109
inserting, 36
matching with dotall option, 6, 30

non-capturing groups
described, 49, 125
lookarounds, 81–86

non-digit (\D) character shorthand
described, 19, 109
matching non-digits, 17
usage example, 5

non-horizontal (\H) whitespace character, 21,
110

non-space (\S) character shorthand, 19, 109
non-vertical (\V) whitespace character, 21,

110
non-word (\W) character shorthand

described, 20, 109
matching, 18–20

non-word boundary (\B) character shorthand,
19, 31, 109

Notepad++ editor, 9, 11

null (\0) character shorthand, 20, 109
numbers (see digits)

O
\o (octal value) character shorthand, 19, 109
occurrence constraints (see quantifiers)
octal characters

character shorthand, 19, 109
described, 125
matching Unicode with, 64

Oniguruma library (Ruby), 104
Opera Next browser, 60
options

described, 126
in regular expressions, 42, 115

Oxygen XML editor, 9, 11

P
p modifier (Perl), 44, 116
parentheses ()

as metacharacters, 109
QED regex feature, 108
subpatterns and, 45
usage examples, 6, 8, 41

pattern matching
described, 13–15, 125
marking up text, 24–27
matching any character, 22–23
matching digits, 15–16
matching non-digits, 17
matching non-word characters, 18–20
matching string literals, 15
matching whitespace, 20
matching word characters, 18–20
subpatterns and, 45

pattern space, 126
PCRE (Perl Compatible Regular Expressions),

33, 39, 103
pcregrep utility

-c option, 33
described, 33, 39, 103
-n option, 34

period (see dot character)
Perl Compatible Regular Expressions (PCRE),

33, 39, 103
Perl programming language

accessing named groups, 48
adding tags, 37

Index | 133

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

additional information, 27
alternation and, 44
command files and, 26, 37, 97
described, 25, 103, 126
handling Roman numerals, 95
marking up text, 25–27
modifiers in regular expressions, 44, 116
start and end of subjects, 33
transforming plain text with, 94–98

perldoc command, 99
phone numbers

capturing groups and backreferences, 6
matching any characters, 5
matching digits with character classes, 4
matching in regular expressions, 2–3, 2–3,

105
matching with character classes, 4
matching with character shorthand, 5
quoting literals, 8–10

piece (regular expressions), 126
plain text (see strings and string literals)
plus sign (+)

as metacharacter, 109
as quantifier, 7, 75, 126

Portable Operating System Interface for Unix
(POSIX), 56, 126

positive lookaheads, 81–84, 125
positive lookbehinds, 85, 125
POSIX (Portable Operating System Interface for

Unix), 56, 126
POSIX character classes, 56–59, 115
POSIX.1-2008 standard, 126
possessive match, 74, 77, 126
[[:print:]] POSIX character class, 59, 115
Project Gutenberg, 15
[[:punct:]] POSIX character class, 59, 115
Python programming language, 51, 104

Q
q (quit) command (sed), 25
\Q (quoting literal characters) character

shorthand, 34
QED editor

additional information, 122
Ken Thompson and, 1, 79, 107, 122, 126
regular expressions in, 107–108

quantifiers
described, 6, 74, 126
greedy match and, 74–76, 124

lazy match and, 74, 76, 125
matching specific number of times, 75
matching with *, +, and ?, 74
possessive match and, 74, 77, 126
usage examples, 6, 8

question mark (?)
matching tags, 88
as metacharacter, 108
as quantifier, 7, 75, 126
usage examples, 8

quit (q) command (sed), 25
quoting literals

quoting groups of characters as, 34
usage example, 8–10

R
\r (carriage return) character shorthand, 19,

109
Rackham, Stuart, 98
range of characters, matching, 53, 61
range of digits, matching, 54
Re2 library, 105
Regex Hero, 63, 71
RegexBuddy application, ix
Regexpal regex processor

additional information, 11
described, ix, 2
matching phone numbers, 2–3
matching Unicode characters, 62
negated character classes and, 55
string matching in, 15

RegExr regex processor
adding tags, 34
additional information, 27
alternation with, 41
backreference support, 46
case-insensitivity, 42, 81
Community tab, 13
described, 13
downloading, 41
marking up text, 24
matching any characters, 22–23
matching beginning and end of lines, 29–

31
matching digits, 15–16
matching non-digits, 17
matching non-word characters, 18–20
matching whitespace, 20
matching word characters, 18–20

134 | Index

metacharacters and, 34
named groups, 49
Replace tab, 24
Samples tab, 13

Reggy application, 60, 73
regular expressions

additional information, 102–106
ASCII code chart, 116–122
capturing groups and backreferences, 6, 46–

49
character shorthand in, 19, 109
control characters in, 111
described, vii, 1, 126
marking up text, 24
matching any character, 5, 22–23
matching digits, 15–16
matching digits with character classes, 4
matching email addresses, 105
matching non-digits, 17
matching non-word characters, 18–20
matching phone numbers, 2–3, 105
matching string literals, 15
matching whitespace, 20
matching with character classes, 53–60
matching with character shorthand, 5
matching word characters, 18–20
metacharacters in, 34, 108
modifiers in, 42, 116
options in, 42, 115
pieces of, 126
in QED editor, 107–108
quantifiers in, 6
quoting literals in, 8–10
subpatterns and, 45

reluctant (lazy) quantifiers, 74
“The Rime of the Ancient Mariner” (Coleridge),

13
Ritchie, Dennis, vii, 79, 122
Roman numerals

handling with Perl, 95
handling with sed, 90

Rubular Ruby regex processor, 60, 104

S
s (substitute) command

with Perl, 26, 48, 96
with sed, 24, 47, 89, 93

\s (space) character shorthand, 19, 109
\S (non-space) character shorthand, 19, 109

s modifier (Perl), 44, 116
Schiller, Friedrich, 65
script names for character properties, 114
search command (vim), 31
sed editor

a (append) command, 92
adding tags with, 36–37
additional information, 27
backreference support, 46, 47
command files and, 25, 36, 92, 102
described, 24, 126
-E option, 47
handling Roman numerals, 90
i (insert) command, 36, 88
marking up text, 24
-n option, 47
q (quit) command, 25
s (substitute) command, 24, 47, 89, 93
transforming plain text with, 88–92

semicolon (;), 25
shebang directive, 98
Skinner, Grant, 13
space character (\s) character shorthand, 19,

109
[[:space:]] POSIX character class, 59, 115
special characters in regular expressions (see

metacharacters)
Spencer, Henry, viii
square brackets []

as metacharacters, 109
usage examples, 8, 53

strings and string literals
described, 3, 126
matching, 15
matching beginning and end of lines, 29–

31
matching phone numbers, 3
quoting, 8–10, 34
transforming with Perl, 94–98
transforming with sed, 88–92

Stubblebine, Tony, 103
subpatterns, 45
substitute (s) command

with Perl, 26, 48, 96
with sed, 24, 47, 89, 93

T
\t (horizontal tab) character shorthand, 19,

109

Index | 135

tab characters
horizontal tab shorthand, 19, 109
vertical tab shorthand, 19, 109

tags
adding with Perl, 37
adding with sed, 36–37
appending, 92–93
described, 34
matching, 87

text (see strings and string literals)
TextMate editor, 9, 11
Thompson, Ken

ed editor and, 124
grep and, 38, 124
QED editor and, 1, 79, 107, 122, 126
regular expressions and, vii

U
\u (Unicode) character shorthand, 20, 62, 109
u modifier (Perl), 44, 116
underscore (_), 87, 98
Unicode

character shorthand, 20, 62, 109
code point assignments, 2, 127
described, 61, 127
matching character properties, 65–68
matching characters, 62–65
whitespace characters in, 110

union of character sets, 56
[[:upper:]] POSIX character class, 59, 115

V
\v (vertical tab) character shorthand, 19, 109
\v (vertical) whitespace character, 21, 110
\V (non-vertical) whitespace character, 21,

110
van Rossum, Guido, 104
vertical (\v) whitespace character, 21, 110
vertical bar (|)

as metacharacter, 108
QED regex feature, 108
usage example, 8

vertical tab (\v) character shorthand, 19, 109
vi editor, 38, 127
vim editor

additional information, 71
described, 127
matching Unicode characters, 63

search command in, 31
Voltaire (philosopher), 61

W
\w (word) character shorthand

described, 20, 109
matching, 18–20

\W (non-word) character shorthand
described, 20, 109
matching, 18–20

Wall, Larry, 25, 126
Watt, Andrew, 103
wc command, 44
whitespace

character shorthand for, 20, 110
matching with RegExr, 20
in Unicode, 110

wildcards, matching any character, 5
word (\w) character shorthand

described, 20, 109
matching, 18–20

word boundary (\b) character shorthand, 19,
31–33, 109

[[:word:]] POSIX character class, 59, 115
work buffer, 127
Wortham, Steve, 71

X
x modifier (Perl), 44, 116
[[:xdigit:]] POSIX character class, 59, 115
XML tags, 87, 98
XSLT stylesheet, 101

Z
\Z (end of subject) character shorthand, 33
zero-width assertions, 29, 127

136 | Index

About the Author
Michael Fitzgerald, a programmer and consultant, has written 10 technical books for
O’Reilly and John Wiley & Sons, as well as several articles for the O’Reilly Network.
He was a member of the original committee that created the RELAX NG schema lan-
guage for XML.

Colophon
The animal on the cover of Introducing Regular Expressions is a fruit bat.

Members of the suborder Megachiroptera and family Pteropodidae are known as fruit
bats, flying foxes, old world fruit bats, or megabats. Despite the latter nickname, mem-
bers of the Pteropodidae family vary greatly in size—the smallest measure six centi-
meters, while others weigh in at two pounds, with wingspans up to approximately five
feet long.

True to their name, fruit bats are frugivorous, or nectavorious, meaning they eat fruit
or lick nectar from flowers. Some use their teeth to bite through fruit skin and actually
eat the fruit, while others lick juices from crushed fruit. Because many of them dine on
flower nectar, fruit bats are excellent pollinators and seed-spreaders—in fact, the World
Bat Sanctuary estimates that approximately 95% of all new rainforest growth can be
attributed to fruit bats’ distribution of seeds. This relationship between the bats and
plants is a form of mutualism—the way organisms of different species interact biolog-
ically for a mutual fitness benefit—known as chiropterophily.

Fruit bats can be found all over the world, though they prefer warm, tropical climates,
due in part to the availability of fruit and flowers. While they’re excellent flyers, fruit
bats are known for their clumsy landings; they often crash land into trees or try to grab
limbs with their feet in order to stop themselves. This perpetuates the misconception
that they’re blind, when in fact, fruit bats are said to have the best vision of all the bat
species, most of which rely on echolocation to get around. Fruit bats use vision—along
with their advanced senses of smell—to locate food and navigate.

The cover image is from Cassell’s Natural History. The cover font is Adobe ITC Gara-
mond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	Table of Contents
	Preface
	Who Should Read This Book
	What You Need to Use This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. What Is a Regular Expression?
	Getting Started with Regexpal
	Matching a North American Phone Number
	Matching Digits with a Character Class
	Using a Character Shorthand
	Matching Any Character
	Capturing Groups and Back References
	Using Quantifiers
	Quoting Literals
	A Sample of Applications
	What You Learned in Chapter 1
	Technical Notes

	Chapter 2. Simple Pattern Matching
	Matching String Literals
	Matching Digits
	Matching Non-Digits
	Matching Word and Non-Word Characters
	Matching Whitespace
	Matching Any Character, Once Again
	Marking Up the Text
	Using sed to Mark Up Text
	Using Perl to Mark Up Text

	What You Learned in Chapter 2
	Technical Notes

	Chapter 3. Boundaries
	The Beginning and End of a Line
	Word and Non-word Boundaries
	Other Anchors
	Quoting a Group of Characters as Literals
	Adding Tags
	Adding Tags with sed
	Adding Tags with Perl

	What You Learned in Chapter 3
	Technical Notes

	Chapter 4. Alternation, Groups, and Backreferences
	Alternation
	Subpatterns
	Capturing Groups and Backreferences
	Named Groups

	Non-Capturing Groups
	Atomic Groups

	What You Learned in Chapter 4
	Technical Notes

	Chapter 5. Character Classes
	Negated Character Classes
	Union and Difference
	POSIX Character Classes
	What You Learned in Chapter 5
	Technical Notes

	Chapter 6. Matching Unicode and Other Characters
	Matching a Unicode Character
	Using vim

	Matching Characters with Octal Numbers
	Matching Unicode Character Properties
	Matching Control Characters
	What You Learned in Chapter 6
	Technical Notes

	Chapter 7. Quantifiers
	Greedy, Lazy, and Possessive
	Matching with *, +, and ?
	Matching a Specific Number of Times
	Lazy Quantifiers
	Possessive Quantifiers
	What You Learned in Chapter 7
	Technical Notes

	Chapter 8. Lookarounds
	Positive Lookaheads
	Negative Lookaheads
	Positive Lookbehinds
	Negative Lookbehinds
	What You Learned in Chapter 8
	Technical Notes

	Chapter 9. Marking Up a Document with HTML
	Matching Tags
	Transforming Plain Text with sed
	Substitution with sed
	Handling Roman Numerals with sed
	Handling a Specific Paragraph with sed
	Handling the Lines of the Poem with sed

	Appending Tags
	Using a Command File with sed

	Transforming Plain Text with Perl
	Handling Roman Numerals with Perl
	Handling a Specific Paragraph with Perl
	Handling the Lines of the Poem with Perl
	Using a File of Commands with Perl

	What You Learned in Chapter 9
	Technical Notes

	Chapter 10. The End of the Beginning
	Learning More
	Notable Tools, Implementations, and Libraries
	Perl
	PCRE
	Ruby (Oniguruma)
	Python
	RE2

	Matching a North American Phone Number
	Matching an Email Address
	What You Learned in Chapter 10

	Appendix. Regular Expression Reference
	Regular Expressions in QED
	Metacharacters
	Character Shorthands
	Whitespace
	Unicode Whitespace Characters
	Control Characters
	Character Properties
	Script Names for Character Properties
	POSIX Character Classes
	Options/Modifiers
	ASCII Code Chart with Regex
	Technical Notes

	Regular Expression Glossary
	Index

