Leon Sterling
Ehud Shapiro
with a foreword by David H. D. Warren

The Art of Prolog
Advanced Programming Techniques
Second Edition

The MIT Press
Cambridge, Massachusetts
London, England
Third printing, 1990
© 1986, 1994 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.

This book was composed and typeset by Paul C. Anagnostopoulos and Joe Snowden using Z/TEX. The typeface is Lucida Bright and Lucida New Math created by Charles Bigelow and Kris Holmes specifically for scientific and electronic publishing. The Lucida letterforms have the large x-heights and open interiors that aid legibility in modern printing technology, but also echo some of the rhythms and calligraphic details of lively Renaissance handwriting. Developed in the 1980s and 1990s, the extensive Lucida typeface family includes a wide variety of mathematical and technical symbols designed to harmonize with the text faces.

This book was printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data
Sterling, Leon
The art of Prolog : advanced programming techniques / Leon Sterling, Ehud Shapiro ; with a foreword by David H. D. Warren.
p. cm. — (MIT Press series in logic programming)
Includes bibliographical references and index.
ISBN 0-262-19318-8
1. Prolog (Computer program language) I. Shapiro, Ehud Y. II. Title. III. Series.
QA76.73.P76574 1994
005.13'3—dc20 93-49494
CIP
Contents

Figures xiii
Programs xvii
Series Foreword xxv
Foreword xxvii
Preface xxxi
Preface to First Edition xxxv

Introduction 1

1 Logic Programs 9

1 Basic Constructs 11
1.1 Facts 11
1.2 Queries 12
1.3 The Logical Variable, Substitutions, and Instances 13
1.4 Existential Queries 14
1.5 Universal Facts 15
1.6 Conjunctive Queries and Shared Variables 16
1.7 Rules 18
1.8 A Simple Abstract Interpreter 22
1.9 The Meaning of a Logic Program 25
1.10 Summary 27

2 Database Programming 29
2.1 Simple Databases 29
2.2 Structured Data and Data Abstraction 35
2.3 Recursive Rules 39
2.4 Logic Programs and the Relational Database Model 42
2.5 Background 44

3 Recursive Programming 45
3.1 Arithmetic 45
3.2 Lists 56
3.3 Composing Recursive Programs 65
3.4 Binary Trees 72
3.5 Manipulating Symbolic Expressions 78
3.6 Background 84

4 The Computation Model of Logic Programs 87
4.1 Unification 87
4.2 An Abstract Interpreter for Logic Programs 91
4.3 Background 98

5 Theory of Logic Programs 101
5.1 Semantics 101
5.2 Program Correctness 105
5.3 Complexity 108
5.4 Search Trees 110
5.5 Negation in Logic Programming 113
5.6 Background 115

6 Pure Prolog 119
6.1 The Execution Model of Prolog 119
6.2 Comparison to Conventional Programming Languages 124
6.3 Background 127

7 Programming in Pure Prolog 129
7.1 Rule Order 129
7.2 Termination 131
7.3 Goal Order 133
7.4 Redundant Solutions 136
7.5 Recursive Programming in Pure Prolog 139
7.6 Background 147

8 Arithmetic 149
8.1 System Predicates for Arithmetic 149
8.2 Arithmetic Logic Programs Revisited 152
8.3 Transforming Recursion into Iteration 154
8.4 Background 162

9 Structure Inspection 163
9.1 Type Predicates 163
9.2 Accessing Compound Terms 167
9.3 Background 174

10 Meta-Logical Predicates 175
10.1 Meta-Logical Type Predicates 176
10.2 Comparing Nonground Terms 180
10.3 Variables as Objects 182
10.4 The Meta-Variable Facility 185
10.5 Background 186
Contents

IV Applications 409

21 Game-Playing Programs 411
 21.1 Mastermind 411
 21.2 Nim 415
 21.3 Kalah 420
 21.4 Background 423

22 A Credit Evaluation Expert System 429
 22.1 Developing the System 429
 22.2 Background 438

23 An Equation Solver 439
 23.1 An Overview of Equation Solving 439
 23.2 Factorization 448
 23.3 Isolation 449
 23.4 Polynomial 452
 23.5 Homogenization 454
 23.6 Background 457

24 A Compiler 459
 24.1 Overview of the Compiler 459
 24.2 The Parser 466
 24.3 The Code Generator 470
 24.4 The Assembler 475
 24.5 Background 478

A Operators 479
References 483
Index 497

Figures

1.1 An abstract interpreter to answer ground queries with respect to logic programs 22
1.2 Tracing the interpreter 23
1.3 A simple proof tree 25
2.1 Defining inequality 31
2.2 A logical circuit 32
2.3 Still-life objects 34
2.4 A simple graph 41
3.1 Proof trees establishing completeness of programs 47
3.2 Equivalent forms of lists 57
3.3 Proof tree verifying a list 58
3.4 Proof tree for appending two lists 61
3.5 Proof trees for reversing a list 63
3.6 Comparing trees for isomorphism 74
3.7 A binary tree and a heap that preserves the tree's shape 77
4.1 A unification algorithm 90
4.2 An abstract interpreter for logic programs 93
4.3 Tracing the appending of two lists 94
4.4 Different traces of the same solution 95
4.5 Solving the Towers of Hanoi 97
4.6 A nonterminating computation 97
5.1 A nonterminating computation 107
5.2 Two search trees 111
5.3 Search tree with multiple success nodes 112
5.4 Search tree with an infinite branch 113
6.1 Tracing a simple Prolog computation 121
6.2 Multiple solutions for splitting a list 122
6.3 Tracing a quicksort computation 123
7.1 A nonterminating computation 132
7.2 Variant search trees 139
7.3 Tracing a reverse computation 146
8.1 Computing factorials iteratively 155
9.1 Basic system type predicates 164
9.2 Tracing the substitute predicate 171
11.1 The effect of cut 191
13.1 Template for a specification 243
14.1 A solution to the 4 queens problem 253
14.2 A map requiring four colors 255
14.3 Directed graphs 265
14.4 Initial and final states of a blocks world problem 267
14.5 A geometric analogy problem 271
14.6 Sample conversation with ELIZA 273
14.7 A story filled in by McSAM 276
14.8 Three analogy problems 279
15.1 Concatenating difference-lists 285
15.2 Tracing a computation using difference-lists 287
15.3 Unnormalized and normalized sums 292
16.1 Power of Prolog for various searching tasks 307
16.2 The problem of Lee routing for VLSI circuits 308
16.3 Input and output for keyword in context (KWIC) problem 312
16.4 Second-order predicates 315
17.1 A simple automaton 321

17.2 Tracing the meta-interpreter 325
17.3 Fragment of a table of builtin predicates 327
17.4 Explaining a computation 351
18.1 A context-free grammar for the language $a^*b^*c^*$ 371
20.1 The water jugs problem 393
20.2 A simple game tree 405
21.1 A starting position for Nim 415
21.2 Computing nim-sums 419
21.3 Board positions for Kalah 421
23.1 Test equations 440
23.2 Position of subterms in terms 449
24.1 A PL program for computing factorials 460
24.2 Target language instructions 460
24.3 Assembly code version of a factorial program 461
24.4 The stages of compilation 461
24.5 Output from parsing 470
24.6 The generated code 475
24.7 The compiled object code 477
Programs

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>A biblical family database</td>
<td>12</td>
</tr>
<tr>
<td>1.2</td>
<td>Biblical family relationships</td>
<td>23</td>
</tr>
<tr>
<td>2.1</td>
<td>Defining family relationships</td>
<td>31</td>
</tr>
<tr>
<td>2.2</td>
<td>A circuit for a logical and-gate</td>
<td>33</td>
</tr>
<tr>
<td>2.3</td>
<td>The circuit database with names</td>
<td>36</td>
</tr>
<tr>
<td>2.4</td>
<td>Course rules</td>
<td>37</td>
</tr>
<tr>
<td>2.5</td>
<td>The ancestor relationship</td>
<td>39</td>
</tr>
<tr>
<td>2.6</td>
<td>A directed graph</td>
<td>41</td>
</tr>
<tr>
<td>2.7</td>
<td>The transitive closure of the edge relation</td>
<td>41</td>
</tr>
<tr>
<td>3.1</td>
<td>Defining the natural numbers</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>The less than or equal relation</td>
<td>48</td>
</tr>
<tr>
<td>3.3</td>
<td>Addition</td>
<td>49</td>
</tr>
<tr>
<td>3.4</td>
<td>Multiplication as repeated addition</td>
<td>51</td>
</tr>
<tr>
<td>3.5</td>
<td>Exponentiation as repeated multiplication</td>
<td>51</td>
</tr>
<tr>
<td>3.6</td>
<td>Computing factorials</td>
<td>52</td>
</tr>
<tr>
<td>3.7</td>
<td>The minimum of two numbers</td>
<td>52</td>
</tr>
<tr>
<td>3.8a</td>
<td>A nonrecursive definition of modulus</td>
<td>53</td>
</tr>
<tr>
<td>3.8b</td>
<td>A recursive definition of modulus</td>
<td>53</td>
</tr>
<tr>
<td>3.9</td>
<td>Ackermann's function</td>
<td>54</td>
</tr>
<tr>
<td>3.10</td>
<td>The Euclidean algorithm</td>
<td>54</td>
</tr>
<tr>
<td>3.11</td>
<td>Defining a list</td>
<td>57</td>
</tr>
</tbody>
</table>
3.12 Membership of a list 58
3.13 Prefixes and suffixes of a list 59
3.14 Determining sublists of lists 60
3.15 Appending two lists 60
3.16 Reversing a list 62
3.17 Determining the length of a list 64
3.18 Deleting all occurrences of an element from a list 67
3.19 Selecting an element from a list 67
3.20 Permutation sort 69
3.21 Insertion sort 70
3.22 Quicksort 70
3.23 Defining binary trees 73
3.24 Testing tree membership 73
3.25 Determining when trees are isomorphic 74
3.26 Substituting for a term in a tree 75
3.27 Traversals of a binary tree 76
3.28 Adjusting a binary tree to satisfy the heap property 77
3.29 Recognizing polynomials 79
3.30 Derivative rules 80
3.31 Towers of Hanoi 82
3.32 Satisfiability of Boolean formulae 83
5.1 Yet another family example 102
7.1 Yet another family example 130
7.2 Merging ordered lists 138
7.3 Checking for list membership 139
7.4 Selecting the first occurrence of an element from a list 140
7.5 Nonmembership of a list 141
7.6 Testing for a subset 142
7.7 Testing for a subset 142
7.8 Translating word for word 143
7.9 Removing duplicates from a list 145

7.10 Reversing with no duplicates 146
8.1 Computing the greatest common divisor of two integers 152
8.2 Computing the factorial of a number 153
8.3 An iterative factorial 155
8.4 Another iterative factorial 156
8.5 Generating a range of integers 157
8.6a Summing a list of integers 157
8.6b Iterative version of summing a list of integers using an accumulator 157
8.7a Computing inner products of vectors 158
8.7b Computing inner products of vectors iteratively 158
8.8 Computing the area of polygons 159
8.9 Finding the maximum of a list of integers 160
8.10 Checking the length of a list 160
8.11 Finding the length of a list 161
8.12 Generating a list of integers in a given range 161
9.1a Flattening a list with double recursion 165
9.1b Flattening a list using a stack 166
9.2 Finding subterms of a term 168
9.3 A program for substituting in a term 170
9.4 Subterm defined using unify 172
9.5a Constructing a list corresponding to a term 173
9.5b Constructing a term corresponding to a list 174
10.1 Multiple uses for plus 176
10.2 A multipurpose length program 177
10.3 A more efficient version of grandparent 178
10.4 Testing if a term is ground 178
10.5 Unification algorithm 180
10.6 Unification with the occurs check 181
10.7 Occurs in 182
10.8 Numbering the variables in a term 185
Programs

10.9 Logical disjunction 186
11.1 Merging ordered lists 190
11.2 Merging with cuts 192
11.3 minimum with cuts 193
11.4 Recognizing polynomials 193
11.5 Interchange sort 195
11.6 Negation as failure 198
11.7 Testing if terms are variants 200
11.8 Implementing \(\neq \) 201
11.9a Deleting elements from a list 204
11.9b Deleting elements from a list 204
11.10 If-then-else statement 205
11.11a Determining welfare payments 207
11.11b Determining welfare payments 207
12.1 Writing a list of terms 216
12.2 Reading in a list of words 217
12.3 Towers of Hanoi using a memo-function 222
12.4 Basic interactive loop 223
12.5 A line editor 224
12.6 An interactive shell 226
12.7 Logging a session 228
12.8 Basic interactive repeat loop 230
12.9 Consulting a file 230
13.1 Finding the union of two lists 241
13.2 Finding the intersection of two lists 241
13.3 Finding the union and intersection of two lists 241
14.1 Finding parts of speech in a sentence 251
14.2 Naive generate-and-test program solving \(N \) queens 253
14.3 Placing one queen at a time 255
14.4 Map coloring 256
14.5 Test data for map coloring 257

Programs

14.6 A puzzle solver 259
14.7 A description of a puzzle 260
14.8 Connectivity in a finite DAG 265
14.9 Finding a path by depth-first search 266
14.10 Connectivity in a graph 266
14.11 A depth-first planner 268
14.12 Testing the depth-first planner 269
14.13 A program solving geometric analogies 272
14.14 Testing ANALOGY 273
14.15 ELIZA 275
14.16 McSAM 277
14.17 Testing McSAM 278
15.1 Concatenating difference-lists 285
15.2 Flattening a list of lists using difference-lists 286
15.3 Reverse with difference-lists 288
15.4 Quicksort using difference-lists 289
15.5 A solution to the Dutch flag problem 290
15.6 Dutch flag with difference-lists 291
15.7 Normalizing plus expressions 292
15.8 Dictionary lookup from a list of tuples 294
15.9 Dictionary lookup in a binary tree 295
15.10 Melting a term 296
15.11 A queue process 297
15.12 Flattening a list using a queue 298
16.1 Sample data 302
16.2 Applying set predicates 303
16.3 Implementing an all-solutions predicate using difference-lists, assert, and retract 304
16.4 Testing connectivity breadth-first in a DAG 306
16.5 Testing connectivity breadth-first in a graph 307
16.6 Lee routing 310
16.7 Producing a keyword in context (KWIC) index 313
16.8 Second-order predicates in Prolog 316
17.1 An interpreter for a nondeterministic finite automaton (N DFA) 320
17.2 An NDFA that accepts the language $(ab)^*$ 321
17.3 An interpreter for a nondeterministic pushdown automaton (NPDA) 322
17.4 An NPDA for palindromes over a finite alphabet 322
17.5 A meta-interpreter for pure Prolog 324
17.6 A meta-interpreter for pure Prolog in continuation style 326
17.7 A tracer for Prolog 328
17.8 A meta-interpreter for building a proof tree 329
17.9 A meta-interpreter for reasoning with uncertainty 330
17.10 Reasoning with uncertainty with threshold cutoff 331
17.11 A meta-interpreter detecting a stack overflow 333
17.12 A nonterminating insertion sort 334
17.13 An incorrect and incomplete insertion sort 335
17.14 Bottom-up diagnosis of a false solution 336
17.15 Top-down diagnosis of a false solution 338
17.16 Diagnosing missing solution 340
17.17 Oven placement rule-based system 342
17.18 A skeleton two-level rule interpreter 343
17.19 An interactive rule interpreter 345
17.20 A two-level rule interpreter carrying rules 347
17.21 A two-level rule interpreter with proof trees 348
17.22 Explaining a proof 350
17.23 An explanation shell 352
18.1 A program accepting palindromes 359
18.2 A meta-interpreter for determining a residue 361
18.3 A simple partial reduction system 362
18.4 Specializing an NPDA 363
18.5 Specializing a rule interpreter 364
18.6 Composing two enhancements of a skeleton 368
18.7 Testing program composition 370
18.8 A Prolog program parsing the language $a*b*c*$ 371
18.9 Translating grammar rules to Prolog clauses 372
18.1 A DCG interpreter that counts words 382
18.6 A DCG context-free grammar (DCG) interpreter 381
18.7 A DCG computing a parse tree 384
18.8 A DCG with subject/object number agreement 385
18.9 A DCG for recognizing numbers 387
20.1 A depth-first state-transition framework for problem solving 390
20.2 Solving the wolf, goat, and cabbage problem 392
20.3 Solving the water jug problem 394
20.4 Hill climbing framework for problem solving 397
20.5 Test data 398
20.6 Best-first framework for problem solving 399
20.7 Concise best-first framework for problem solving 400
20.8 Framework for playing games 402
20.9 Choosing the best move 403
20.10 Choosing the best move with the minimax algorithm 406
20.11 Choosing a move using minimax with alpha-beta pruning 407
21.1 Playing mastermind 413
21.2 A program for playing a winning game of Nim 417
21.3 A complete program for playing Kalah 424
22.1 A credit evaluation system 432
22.2 Test data for the credit evaluation system 437
23.1 A program for solving equations 442
24.1 A compiler from PL to machine language 462
24.2 Test data 465
Series Foreword

The logic programming approach to computing investigates the use of logic as a programming language and explores computational models based on controlled deduction.

The field of logic programming has seen a tremendous growth in the last several years, both in depth and in scope. This growth is reflected in the number of articles, journals, theses, books, workshops, and conferences devoted to the subject. The MIT Press series in logic programming was created to accommodate this development and to nurture it. It is dedicated to the publication of high-quality textbooks, monographs, collections, and proceedings in logic programming.

Ehud Shapiro
The Weizmann Institute of Science
Rehovot, Israel
Foreword

Programming in Prolog opens the mind to a new way of looking at computing. There is a change of perspective which every Prolog programmer experiences when first getting to know the language.

I shall never forget my first Prolog program. The time was early 1974. I had learned about the abstract idea of logic programming from Bob Kowalski at Edinburgh, although the name "logic programming" had not yet been coined. The main idea was that deduction could be viewed as a form of computation, and that a declarative statement of the form

\[P \text{ if } Q \text{ and } R \text{ and } S. \]

could also be interpreted procedurally as

To solve \(P \), solve \(Q \) and \(R \) and \(S \).

Now I had been invited to Marseilles. Here, Alain Colmerauer and his colleagues had devised the language Prolog based on the logic programming concept. Somehow, this realization of the concept seemed to me, at first sight, too simpleminded. However, Gerard Battani and Henri Meloni had implemented a Prolog interpreter in Fortran (their first major exercise in programming, incidentally). Why not give Prolog a try?

I sat at a clattering teletype connected down an ordinary telephone line to an IBM machine far away in Grenoble. I typed in some rules defining how plans could be constructed as sequences of actions. There was one important rule, modeled on the SRI planner Strips, which described how a plan could be elaborated by adding an action at the end. Another rule, necessary for completeness, described how to elaborate a plan by inserting an action in the middle of the plan. As an example for the planner to
work on, I typed in facts about some simple actions in a "blocks world" and an initial state of this world. I entered a description of a goal state to be achieved. Prolog spat back at me:

?meaning it couldn't find a solution. Could it be that a solution was not deducible from the axioms I had supplied? Ah, yes, I had forgotten to enter some crucial facts. I tried again. Prolog was quiet for a long time and then responded:

DEBORDEMENT DE PILE

Stack overflow! I had run into a loop. Now a loop was conceivable since the space of potential plans to be considered was infinite. However, I had taken advantage of Prolog's procedural semantics to organize the axioms so that shorter plans ought to be generated first. Could something else be wrong? After a lot of head scratching, I finally realized that I had misspelled the names of some variables. I corrected the mistakes, and tried again.

Lo and behold, Prolog responded almost instantly with a correct plan to achieve the goal state. Magic! Declaratively correct axioms had assured a correct result. Deduction was being harnessed before my very eyes to produce effective computation. Declarative programming was truly programming on a higher plane! I had dimly seen the advantages in theory. Now Prolog had made them vividly real in practice. Never had I experienced such ease in getting a complex program coded and running.

Of course, I had taken care to formulate the axioms and organize them in such a way that Prolog could use them effectively. I had a general idea of how the axioms would be used. Nevertheless it was a surprise to see how the axioms got used in practice on particular examples. It was a delightful experience over the next few days to explore how Prolog actually created these plans, to correct one or two more bugs in my facts and rules, and to further refine the program.

Since that time, Prolog systems have improved significantly in terms of debugging environments, speed, and general robustness. The techniques of using Prolog have been more fully explored and are now better understood. And logic programming has blossomed, not least because of its adoption by the Japanese as the central focus of the Fifth Generation project.

After more than a decade of growth of interest in Prolog, it is a great pleasure to see the appearance of this book. Hitherto, knowledge of how to use Prolog for serious programming has largely been communicated by word of mouth. This textbook sets down and explains for the first time in an accessible form the deeper principles and techniques of Prolog programming.

The book is excellent for not only conveying what Prolog is but also explaining how it should be used. The key to understanding how to use Prolog is to properly understand the relationship between Prolog and logic programming. This book takes great care to elucidate the relationship.

Above all, the book conveys the excitement of using Prolog—the thrill of declarative programming. As the authors put it, "Declarative programming clears the mind." Declarative programming enables one to concentrate on the essentials of a problem without getting bogged down in too much operational detail. Programming should be an intellectually rewarding activity. Prolog helps to make it so. Prolog is indeed, as the authors contend, a tool for thinking.

David H. D. Warren
Manchester, England, September 1986
Preface

Seven years have passed since the first edition of The Art of Prolog was published. In that time, the perception of Prolog has changed markedly. While not as widely used as the language C, Prolog is no longer regarded as an exotic language. An abundance of books on Prolog have appeared. Prolog is now accepted by many as interesting and useful for certain applications. Articles on Prolog regularly appear in popular magazines. Prolog and logic programming are part of most computer science and engineering programs, although perhaps in a minor role in an artificial intelligence or programming languages class. The first conference on Practical Applications of Prolog was held in London in April 1992. A standard for the language is likely to be in place in 1994. A future for Prolog among the programming languages of the world seems assured.

In preparing for a second edition, we had to address the question of how much to change. I decided to listen to a request not to make the new edition into a new book. This second edition is much like the first, although a number of changes are to be expected in a second edition. The typography of the book has been improved: Program code is now in a distinctive font rather than in italics. Figures such as proof trees and search trees are drawn more consistently. We have taken the opportunity to be more precise with language usage and to remove minor inconsistencies with hyphenation of words and similar details. All known typographical errors have been fixed. The background sections at the end of most chapters have been updated to take into account recent, important research results. The list of references has been expanded considerably. Extra, more advanced exercises, which have been used successfully in my Prolog classes, have been added.
Let us take an overview of the specific changes to each part in turn. Part IV, Applications, is unchanged apart from minor corrections and tidying. Part I, Logic Programs, is essentially unchanged. New programs have been added to Chapter 3 on tree manipulation, including heapifying a binary tree. Extra exercises are also present.

Part II, The Prolog Language, is primarily affected by the imminent of a Prolog standard. We have removed all references to Wisdom Prolog in the text in preparation for Standard Prolog. It has proved impossible to guarantee that this book is consistent with the standard. Reaching a standard has been a long, difficult process for the members of the committee. Certain predicates come into favor and then disappear, making it difficult for the authors of a text to know what to write. Furthermore, some of the proposed I/O predicates are not available in current Prologs, so it is impossible to run all the code! Most of the difficulties in reaching a Prolog standard agreeable to all interested parties have been with builtins or system predicates. This book raises some of the issues involved in adding builtins to Prolog but largely avoids the concerns by using pure Prolog as much as possible. We tend not to give detailed explanations of the controversial nonlogical behaviors of some of the system predicates, and we certainly do not use odd features in our code.

Part III, Advanced Programming Techniques, is the most altered in this second edition, which perhaps should be expected. A new chapter has been added on program transformation, and many of the other chapters have been reordered. The chapters on Interpreters and Logic Grammars have extensive additions.

Many people provided us feedback on the first edition, almost all of it very positive. I thank you all. Three people deserve special thanks for taking the trouble to provide long lists of suggestions for improvements and to point out embarrassingly long lists of typos in the first edition: Norbert Fuchs, Harald Sondergaard, and Stanley Selkow. The following deserve mention for pointing out mistakes and typos in the various printings of the first edition or making constructive comments about the book that led to improvements in later printings of the first edition and for this second edition. The list is long, my memory sometimes short, so please forgive me if I forget to mention anyone. Thanks to Hani Assiyan, Tim Boemker, Jim Brand, Bill Braun, Pu Chen, Yves Deville, George Ernst, Claudia Günther, Ann Halloran, Sundar Iyengar, Gary Kacmarcik, Mansoor Khan, Sundeep Kumar, Arun Lakhotia, Jeau-
Preface to First Edition

The origins of this book lie in graduate student courses aimed at teaching advanced Prolog programming. A wealth of techniques has emerged in the fifteen years since the inception of Prolog as a programming language. Our intention in this book has been to make accessible the programming techniques that kindled our own excitement, imagination, and involvement in this area.

The book fills a general need. Prolog, and more generally logic programming, has received wide publicity in recent years. Currently available books and accounts, however, typically describe only the basics. All but the simplest examples of the use of Prolog have remained essentially inaccessible to people outside the Prolog community.

We emphasize throughout the book the distinction between logic programming and Prolog programming. Logic programs can be understood and studied, using two abstract, machine-independent concepts: truth and logical deduction. One can ask whether an axiom in a program is true, under some interpretation of the program symbols; or whether a logical statement is a consequence of the program. These questions can be answered independently of any concrete execution mechanism.

On the contrary, Prolog is a programming language, borrowing its basic constructs from logic. Prolog programs have precise operational meaning: they are instructions for execution on a computer—a Prolog machine. Prolog programs in good style can almost always be read as logical statements, thus inheriting some of the abstract properties of logic programs. Most important, the result of a computation of such a Prolog program is a logical consequence of the axioms in it. Effective Prolog
programming requires an understanding of the theory of logic programming.

The book consists of four parts: logic programming, the Prolog language, advanced techniques, and applications. The first part is a self-contained introduction to logic programming. It consists of five chapters. The first chapter introduces the basic constructs of logic programs. Our account differs from other introductions to logic programming by explaining the basics in terms of logical deduction. Other accounts explain the basics from the background of resolution from which logic programming originated. We have found the former to be a more effective means of teaching the material, which students find intuitive and easy to understand.

The second and third chapters of Part I introduce the two basic styles of logic programming: database programming and recursive programming. The fourth chapter discusses the computation model of logic programming, introducing unification, while the fifth chapter presents some theoretical results without proofs. In developing this part to enable the clear explanation of advanced techniques, we have introduced new concepts and reorganized others, in particular, in the discussion of types and termination. Other issues such as complexity and correctness are concepts whose consequences have not yet been fully developed in the logic programming research community.

The second part is an introduction to Prolog. It consists of Chapters 6 through 13. Chapter 6 discusses the computation model of Prolog in contrast to logic programming, and gives a comparison between Prolog and conventional programming languages such as Pascal. Chapter 7 discusses the differences between composing Prolog programs and logic programs. Examples are given of basic programming techniques.

The next five chapters introduce system-provided predicates that are essential to make Prolog a practical programming language. We classify Prolog system predicates into four categories: those concerned with efficient arithmetic, structure inspection, meta-logical predicates that discuss the state of the computation, and extra-logical predicates that achieve side effects outside the computation model of logic programming. One chapter is devoted to the most notorious of Prolog extra-logical predicates, the cut. Basic techniques using these system predicates are explained. The final chapter of the section gives assorted pragmatic programming tips.

The main part of the book is Part III. We describe advanced Prolog programming techniques that have evolved in the Prolog programming community, illustrating each with small yet powerful example programs. The examples typify the applications for which the technique is useful. The six chapters cover nondeterministic programming, incomplete data structures, parsing with DCNs, second-order programming, search techniques, and the use of meta-interpreters.

The final part consists of four chapters that show how the material in the rest of the book can be combined to build application programs. A common request of Prolog newcomers is to see larger applications. They understand how to write elegant short programs but have difficulty in building a major program. The applications covered are game-playing programs, a prototype expert system for evaluating requests for credit, a symbolic equation solver, and a compiler.

During the development of the book, it has been necessary to reorganize the foundations and basic examples existing in the folklore of the logic programming community. Our structure constitutes a novel framework for the teaching of Prolog.

Material from this book has been used successfully for several courses on logic programming and Prolog: in Israel, the United States, and Scotland. The material more than suffices for a one-semester course to first-year graduate students or advanced undergraduates. There is considerable scope for instructors to individualize a course to suit a special area of interest.

A recommended division of the book for a 13-week course to senior undergraduates or first-year graduates is as follows: 4 weeks on logic programming, encouraging students to develop a declarative style of writing programs, 4 weeks on basic Prolog programming, 3 weeks on advanced techniques, and 2 weeks on applications. The advanced techniques should include some discussion of nondeterminism, incomplete data structures, basic second-order predicates, and basic meta-interpreters. Other sections can be covered instead of applications. Application areas that can be stressed are search techniques in artificial intelligence, building expert systems, writing compilers and parsers, symbol manipulation, and natural language processing.

There is considerable flexibility in the order of presentation. The material from Part I should be covered first. The material in Parts III and IV can be interspersed with the material in Part II to show the student how
larger Prolog programs using more advanced techniques are composed in the same style as smaller examples.

Our assessment of students has usually been 50 percent by homework assignments throughout the course, and 50 percent by project. Our experience has been that students are capable of a significant programming task for their project. Examples of projects are prototype expert systems, assemblers, game-playing programs, partial evaluators, and implementations of graph theory algorithms.

For the student who is studying the material on her own, we strongly advise reading through the more abstract material in Part I. A good Prolog programming style develops from thinking declaratively about the logic of a situation. The theory in Chapter 5, however, can be skipped until a later reading.

The exercises in the book range from very easy and well defined to difficult and open-ended. Most of them are suitable for homework exercises. Some of the more open-ended exercises were submitted as course projects.

The code in this book is essentially in Edinburgh Prolog. The course has been given where students used several different variants of Edinburgh Prolog, and no problems were encountered. All the examples run on Wisdom Prolog, which is discussed in the appendixes.

We acknowledge and thank the people who contributed directly to the book. We also thank, collectively and anonymously, all those who indirectly contributed by influencing our programming styles in Prolog. Improvements were suggested by Lawrence Byrd, Oded Maler, Jack Minker, Richard O'Keefe, Fernando Pereira, and several anonymous referees.

We appreciate the contribution of the students who sat through courses as material from the book was being debugged. The first author acknowledges students at the University of Edinburgh, the Weizmann Institute of Science, Tel Aviv University, and Case Western Reserve University. The second author taught courses at the Weizmann Institute and Hebrew University of Jerusalem, and in industry.

We are grateful to many people for assisting in the technical aspects of producing a book. We especially thank Sarah Fliegelmann, who produced the various drafts and camera-ready copy, above and beyond the call of duty. This book might not have appeared without her tremendous efforts. Aarind Bansal prepared the index and helped with the references. Yehuda Barbut drew most of the figures. Max Goldberg and Shmuel Safra prepared the appendix. The publishers, MIT Press, were helpful and supportive.

Finally, we acknowledge the support of family and friends, without which nothing would get done.

Leon Sterling
1986
Introduction

The inception of logic is tied with that of scientific thinking. Logic provides a precise language for the explicit expression of one's goals, knowledge, and assumptions. Logic provides the foundation for deducing consequences from premises; for studying the truth or falsity of statements given the truth or falsity of other statements; for establishing the consistency of one's claims; and for verifying the validity of one's arguments.

Computers are relatively new in our intellectual history. Similar to logic, they are the object of scientific study and a powerful tool for the advancement of scientific endeavor. Like logic, computers require a precise and explicit statement of one's goals and assumptions. Unlike logic, which has developed with the power of human thinking as the only external consideration, the development of computers has been governed from the start by severe technological and engineering constraints. Although computers were intended for use by humans, the difficulties in constructing them were so dominant that the language for expressing problems to the computer and instructing it how to solve them was designed from the perspective of the engineering of the computer alone.

Almost all modern computers are based on the early concepts of von Neumann and his colleagues, which emerged during the 1940s. The von Neumann machine is characterized by a large uniform store of memory cells and a processing unit with some local cells, called registers. The processing unit can load data from memory to registers, perform arithmetic or logical operations on registers, and store values of registers back into memory. A program for a von Neumann machine consists of
a sequence of instructions to perform such operations, and an additional set of control instructions, which can affect the next instruction to be executed, possibly depending on the content of some register.

As the problems of building computers were gradually understood and solved, the problems of using them mounted. The bottleneck ceased to be the inability of the computer to perform the human's instructions but rather the inability of the human to instruct, or program, the computer. A search for programming languages convenient for humans to use began. Starting from the language understood directly by the computer, the machine language, better notations and formalisms were developed. The main outcome of these efforts was languages that were easier for humans to express themselves in but that still mapped rather directly to the underlying machine language. Although increasingly abstract, the languages in the mainstream of development, starting from assembly language through Fortran, Algol, Pascal, and Ada, all carried the mark of the underlying machine—the von Neumann architecture.

To the uninitiated intelligent person who is not familiar with the engineering constraints that lead to its design, the von Neumann machine seems an arbitrary, even bizarre, device. Thinking in terms of its constrained set of operations is a nontrivial problem, which sometimes stretches the adaptiveness of the human mind to its limits.

These characteristic aspects of programming von Neumann computers led to a separation of work: there were those who thought how to solve the problem, and designed the methods for its solution, and there were the coders, who performed the mundane and tedious task of translating the instructions of the designers to instructions a computer can use.

Both logic and programming require the explicit expression of one's knowledge and methods in an acceptable formalism. The task of making one's knowledge explicit is tedious. However, formalizing one's knowledge in logic is often an intellectually rewarding activity and usually reflects back on or adds insight to the problem under consideration. In contrast, formalizing one's problem and method of solution using the von Neumann instruction set rarely has these beneficial effects.

We believe that programming can be, and should be, an intellectually rewarding activity; that a good programming language is a powerful conceptual tool—a tool for organizing, expressing, experimenting with, and even communicating one's thoughts; that treating programming as "coding," the last, mundane, intellectually trivial, time-consuming, and tedious phase of solving a problem using a computer system, is perhaps at the very root of what has been known as the "software crisis."

Rather, we think that programming can be, and should be, part of the problem-solving process itself; that thoughts should be organized as programs, so that consequences of a complex set of assumptions can be investigated by "running" the assumptions; that a conceptual solution to a problem should be developed hand-in-hand with a working program that demonstrates it and exposes its different aspects. Suggestions in this direction have been made under the title "rapid prototyping."

To achieve this goal in its fullest—to become true mates of the human thinking process—computers have still a long way to go. However, we find it both appropriate and gratifying from a historical perspective that logic, a companion to the human thinking process since the early days of human intellectual history, has been discovered as a suitable stepping-stone in this long journey.

Although logic has been used as a tool for designing computers and for reasoning about computers and computer programs since almost their beginning, the use of logic directly as a programming language, termed logic programming, is quite recent.

Logic programming, as well as its sister approach, functional programming, departs radically from the mainstream of computer languages. Rather then being derived, by a series of abstractions and reorganizations, from the von Neumann machine model and instruction set, it is derived from an abstract model, which has no direct relation to or dependence on to one machine model or another. It is based on the belief that instead of the human learning to think in terms of the operations of a computer that which some scientists and engineers at some point in history happened to find easy and cost-effective to build, the computer should perform instructions that are easy for humans to provide. In its ultimate and purest form logic programming suggests that even explicit instructions for operation not be given but rather that the knowledge about the problem and assumptions sufficient to solve it be stated explicitly, as logical axioms. Such a set of axioms constitutes an alternative to the conventional program. The program can be executed by providing it with a problem, formalized as a logical statement to be proved, called a goal statement. The execution is an attempt to solve the prob-
lem, that is, to prove the goal statement, given the assumptions in the
logic program.

A distinguishing aspect of the logic used in logic programming is that
a goal statement typically is existentially quantified; it states that there
exist some individuals with some property. An example of a goal state-
ment is, "there exists a list X such that sorting the list [3, 1, 2] gives X."
The mechanism used to prove the goal statement is constructive. If suc-
cessful, it provides the identity of the unknown individuals mentioned in
the goal statement, which constitutes the output of the computation. In
the preceding example, assuming that the logic program contains appro-
priate axioms defining the sort relation, the output of the computation
would be X = [1, 2, 3].

These ideas can be summarized in the following two metaphorical
equations:

\[
\text{program} = \text{set of axioms,}
\]
\[
\text{computation} = \text{constructive proof of a goal statement from the program.}
\]

The ideas behind these equations can be traced back as far as intuitions-
istic mathematics and proof theory of the early twentieth century. They
are related to Hilbert's program, to base the entire body of mathemati-
cal knowledge on logical foundations and to provide mechanical proofs
for its theories, starting from the axioms of logic and set theory alone.
It is interesting to note that the failure of this program, from which en-
sued the incompleteness and undecidability results of Gödel and Turing,
marks the beginning of the modern age of computers.

The first use of this approach in practical computing is a sequel to
Robinson's unification algorithm and resolution principle, published in
1965. Several hesitant attempts were made to use this principle as a basis
of a computation mechanism, but they did not gain any momentum.
The beginning of logic programming can be attributed to Kowalski and
Colmerauer. Kowalski formulated the procedural interpretation of Horn
clause logic. He showed that an axiom

\[A \text{ if } B_1 \text{ and } B_2 \text{ and } \ldots \text{ and } B_n \]

can be read and executed as a procedure of a recursive programming
language, where A is the procedure head and the \(B_i \) are its body. In
addition to the declarative reading of the clause, A is true if the \(B_i \) are
true, it can be read as follows: To solve (execute) A, solve (execute) \(B_1 \) and
\(B_2 \) and \(\ldots \) and \(B_n \). In this reading, the proof procedure of Horn clause
logic is the interpreter of the language, and the unification algorithm,
which is at the heart of the resolution proof procedure, performs the
basic data manipulation operations of variable assignment, parameter
passing, data selection, and data construction.

At the same time, in the early 1970s, Colmerauer and his group at
the University of Marseille's Aix developed a specialized theorem prover,
written in Fortran, which they used to implement natural language pro-
cessing systems. The theorem prover, called Prolog (for Programming
en Logique), embodied Kowalski's procedural interpretation. Later, van
Emden and Kowalski developed a formal semantics for the language of
logic programs, showing that its operational, model-theoretic, and fix-
point semantics are the same.

In spite of all the theoretical work and the exciting ideas, the logic pro-
gramming approach seemed unrealistic. At the time of its inception, re-
searchers in the United States began to recognize the failure of the "next-
generation AI languages," such as Micro-Planner and Conniver, which de-
veloped as a substitute for Lisp. The main claim against these languages
was that they were hopelessly inefficient, and very difficult to control.
Given their bitter experience with logic-based high-level languages, it is
no great surprise that U.S. artificial intelligence scientists, when hearing
about Prolog, thought that the Europeans were over-excited over what
they, the Americans, had already suggested, tried, and discovered not to
work.

In that atmosphere the Prolog-10 compiler was almost an imaginary
being. Developed in the mid to late 1970s by David H. D. Warren and
his colleagues, this efficient implementation of Prolog dispelled all the
myths about the impracticality of logic programming. That compiler, still
one of the finest implementations of Prolog around, delivered on pure
list-processing programs a performance comparable to the best Lisp sys-
tems available at the time. Furthermore, the compiler itself was written
almost entirely in Prolog, suggesting that classic programming tasks, not
just sophisticated AI applications, could benefit from the power of logic
programming.
Introduction

The impact of this implementation cannot be overemphasized. Without it, the accumulated experience that has led to this book would not have existed.

In spite of the promise of the ideas, and the practicality of their implementation, most of the Western computer science and AI research community was ignorant, openly hostile, or, at best, indifferent to logic programming. By 1980 the number of researchers actively engaged in logic programming were only a few dozen in the United States and about one hundred around the world.

No doubt, logic programming would have remained a fringe activity in computer science for quite a while longer had it not been for the announcement of the Japanese Fifth Generation Project, which took place in October 1981. Although the research program the Japanese presented was rather baggy, faithful to their tradition of achieving consensus at almost any cost, the important role of logic programming in the next generation of computer systems was made clear.

Since that time the Prolog language has undergone a rapid transition from adolescence to maturity. There are numerous commercially available Prolog implementations on most computers. A large number of Prolog programming books are directed to different audiences and emphasize different aspects of the language. And the language itself has more or less stabilized, having a de facto standard, the Edinburgh Prolog family.

The maturity of the language means that it is no longer a concept for scientists yet to shape and define but rather a given object, with vices and virtues. It is time to recognize that, on the one hand, Prolog falls short of the high goals of logic programming but, on the other hand, is a powerful, productive, and practical programming formalism. Given the standard life cycle of computer programming languages, the next few years will reveal whether these properties show their merit only in the classroom or prove useful also in the field, where people pay money to solve problems they care about.

What are the current active subjects of research in logic programming and Prolog? Answers to this question can be found in the regular scientific journals and conferences of the field, the Logic Programming Journal, the Journal of New Generation Computing, the International Conference on Logic Programming, and the IEEE Symposium on Logic Programming as well as in the general computer science journals and conferences.

Clearly, one of the dominant areas of interest is the relation between logic programming, Prolog, and parallelism. The promise of parallel computers, combined with the parallelism that seems to be available in the logic programming model, have led to numerous attempts, still ongoing, to execute Prolog in parallel and to devise novel concurrent programming languages based on the logic programming computation model. This, however, is a subject for another book.
I Logic Programs

A logic program is a set of axioms, or rules, defining relations between objects. A computation of a logic program is a deduction of consequences of the program. A program defines a set of consequences, which is its meaning. The art of logic programming is constructing concise and elegant programs that have the desired meaning.
1 Basic Constructs

The basic constructs of logic programming, terms and statements, are inherited from logic. There are three basic statements: facts, rules, and queries. There is a single data structure: the logical term.

1.1 Facts

The simplest kind of statement is called a fact. Facts are a means of stating that a relation holds between objects. An example is

\[\text{father(abraham,isaac)}. \]

This fact says that Abraham is the father of Isaac, or that the relation father holds between the individuals named abraham and isaac. Another name for a relation is a predicate. Names of individuals are known as atoms. Similarly, \(\text{plus}(2,3,5) \) expresses the relation that 2 plus 3 is 5. The familiar plus relation can be realized via a set of facts that defines the addition table. An initial segment of the table is

\[
\begin{align*}
\text{plus}(0,0) & : \text{plus}(0,1) : \text{plus}(0,2) : \text{plus}(0,3), \\
\text{plus}(1,0) & : \text{plus}(1,1) : \text{plus}(1,2) : \text{plus}(1,3).
\end{align*}
\]

A sufficiently large segment of this table, which happens to be also a legal logic program, will be assumed as the definition of the plus relation throughout this chapter.

The syntactic conventions used throughout the book are introduced as needed. The first is the case convention. It is significant that the names
Chapter 1

father(terach, abraham). male(terach).
father(terach, zachor). male(abraham).
father(terach, haran). male(zachor).
father(abraham, isaac). male(haran).
father(haran, lot). male(isaac).
father(haran, milchab). male(lot).
father(haran, yiscah). female(zachor).

mother(sarah, isaac). female(isaac).
mother(sarah, yiscah). female(yiscah).

Program 1.1 A biblical family database

of both predicates and atoms in facts begin with a lowercase letter rather than an uppercase letter.

A finite set of facts constitutes a program. This is the simplest form of logic program. A set of facts is also a description of a situation. This insight is the basis of database programming, to be discussed in the next chapter. An example database of family relationships from the Bible is given as Program 1.1. The predicates father, mother, male, and female express the obvious relationships.

1.2 Queries

The second form of statement in a logic program is a query. Queries are a means of retrieving information from a logic program. A query asks whether a certain relation holds between objects. For example, the query father(abraham, isaac)? asks whether the father relationship holds between abraham and isaac. Given the facts of Program 1.1, the answer to this query is yes.

Sytactically, queries and facts look the same, but they can be distinguished by the context. When there is a possibility of confusion, a terminating period will indicate a fact, while a terminating question mark will indicate a query. We call the entity without the period or question mark a goal. A fact P states that the goal P is true. A query P? asks whether the goal P is true. A simple query consists of a single goal.

Answering a query with respect to a program is determining whether the query is a logical consequence of the program. We define logical consequence incrementally through this chapter. Logical consequences are obtained by applying deduction rules. The simplest rule of deduction is identity: from A deduce A. A query is a logical consequence of an identical fact.

Operationally, answering simple queries using a program containing facts like Program 1.1 is straightforward. Search for a fact in the program that implies the query. If a fact identical to the query is found, the answer is yes.

The answer no is given if a fact identical to the query is not found, because the fact is not a logical consequence of the program. This answer does not reflect on the truth of the query; it merely says that we failed to prove the query from the program. Both the queries female(abraham)? and plus(1,1,2)? will be answered no with respect to Program 1.1.

1.3 The Logical Variable, Substitutions, and Instances

A logical variable stands for an unspecified individual and is used accordingly. Consider its use in queries. Suppose we want to know of whom abraham is the father. One way is to ask a series of queries, father(abraham, lot)?, father(abraham, milchab)?, father(abraham, yiscah)?, until an answer yes is given. A variable allows a better way of expressing the query as father(abraham, x), to which the answer is x = isaac. Used in this way, variables are a means of summarizing many queries. A query containing a variable asks whether there is a value for the variable that makes the query a logical consequence of the program, as explained later.

Variables in logic programs behave differently from variables in conventional programming languages. They stand for an unspecified but single entity rather than for a store location in memory.

Having introduced variables, we can define a term, the single data structure in logic programs. The definition is inductive. Constants and variables are terms. Also compound terms, or structures, are terms. A compound term comprises a functor (called the principal functor of the term) and a sequence of one or more arguments, which are terms. A functor is characterized by its name, which is an atom, and its arity, or number of arguments. Syntactically, compound terms have
Chapter 1

the form $f(t_1, t_2, \ldots , t_n)$, where the function has name f and is of arity n, and the t_i are the arguments. Examples of compound terms include $s(0)$, hot(milk), name(john, doe), $\text{list(a, list(b, nil))}$, foo(X), and $\text{tree(tree(nil, 3, nil), 5, R)}$.

Queries, goals, and more generally terms where variables do not occur are called ground. Where variables do occur, they are called nonground. For example, foo(a, b) is ground, whereas bar(X) is nonground.

Definition

A substitution is a finite set (possibly empty) of pairs of the form $X_i = t_i$, where X_i is a variable and t_i is a term, and $X_i \neq X_j$ for every $i \neq j$, and X_i does not occur in t_j, for any i and j.

An example of a substitution consisting of a single pair is $\{X=\text{isaac}\}$. Substitutions can be applied to terms. The result of applying a substitution θ to a term A, denoted by $A\theta$, is the term obtained by replacing every occurrence of X by t in A, for every pair $X = t$ in θ.

The result of applying $\{X=\text{isaac}\}$ to the term father(abraham, X) is the term father(abraham, isaac).

Definition

A is an instance of B if there is a substitution θ such that $A = B\theta$.

The goal father(abraham, isaac) is an instance of father(abraham, X) by this definition. Similarly, mother(sarah, isaac) is an instance of mother(X, Y) under the substitution $\{X=\text{sarah}, Y=\text{isaac}\}$.

1.4 Existential Queries

Logically speaking, variables in queries are existentially quantified, which means, intuitively, that the query father(abraham, X)? reads: "Does there exist an X such that abraham is the father of X?" More generally, a query $p(t_1, t_2, \ldots , t_n)$? which contains the variables X_1, X_2, \ldots , X_n reads: "Are there X_1, X_2, \ldots , X_n such that $p(t_1, t_2, \ldots , t_n)$?" For convenience, existential quantification is usually omitted.

The next deduction rule we introduce is generalization. An existential query P is a logical consequence of an instance of it, $P\theta$, for any substitution θ. The fact father(abraham, isaac) implies that there exists an X such that father(abraham, X) is true, namely, X=isaac.

1.5 Universal Facts

Variables are also useful in facts. Suppose that all the biblical characters like pomegranates. Instead of including in the program an appropriate fact for every individual,

likes(abraham, pomegranates).
likes(sarah, pomegranates).

...

a fact likes(X, pomegranates) can say it all. Used in this way, variables are a means of summarizing many facts. The fact times(0, X, 0) summarizes all the facts stating that 0 times some number is 0.

Variables in facts are implicitly universally quantified, which means, intuitively, that the fact likes(X, pomegranates) states that for all X, X likes pomegranates. In general, a fact $p(t_1, \ldots , t_n)$ reads that for all X_1, \ldots , X_n, where the X_i are variables occurring in the fact, $p(t_1, \ldots , t_n)$ is true. Logically, from a universally quantified fact one can deduce any instance of it. For example, from likes(X, pomegranates), deduce likes(abraham, pomegranates).
This is the third deduction rule, called instantiation. From a universally quantified statement P, deduce an instance of it, $P\theta$, for any substitution θ.

As for queries, two unspecified objects, denoted by variables, can be constrained to be the same by using the same variable name. The fact $\text{plus}(0, X, X)$ expresses that 0 is a left identity for addition. It reads that for all values of X, $0 + X = X$. A similar use occurs when translating the English statement "Everybody likes himself" to $\text{like}e(X, X)$.

Answering a ground query with a universally quantified fact is straightforward. Search for a fact for which the query is an instance. For example, the answer to $\text{plus}(0, 2, ?)$ is yes, based on the fact $\text{plus}(0, X, X)$. Answering a nonground query using a nonground fact involves a new definition: a common instance of two terms.

Definition

C is a common instance of A and B if it is an instance of A and an instance of B, in other words, if there are substitutions θ_1 and θ_2 such that $C = A\theta_1$ is syntactically identical to $B\theta_2$.

For example, the goals $\text{plus}(0, 3, Y)$ and $\text{plus}(0, X, X)$ have a common instance $\text{plus}(0, 3, 3)$. When the substitution $\{Y \leftarrow 3\}$ is applied to $\text{plus}(0, 3, Y)$ and the substitution $\{X \leftarrow 3\}$ is applied to $\text{plus}(0, X, X)$, both yield $\text{plus}(0, 3, 3)$.

In general, to answer a query using a fact, search for a common instance of the query and fact. The answer is the common instance, if one exists. Otherwise the answer is no.

Answering an existential query with a universal fact using a common instance involves two logical deductions. The instance is deduced from the fact by the rule of instantiation, and the query is deduced from the instance by the rule of generalization.

1.6 Conjunctive Queries and Shared Variables

An important extension to the queries discussed so far is conjunctive queries. Conjunctive queries are a conjunction of goals posed as a query, for example, $\text{father}(\text{terach}, X), \text{father}(X, Y)$? or in general, $Q_1 \land \ldots \land Q_n$?. Simple queries are a special case of conjunctive queries when there is a single goal. Logically, it asks whether a conjunction is deducible from the program. We use "\land" throughout to denote logical and. Do not confuse the comma that separates the arguments in a goal with commas used to separate goals, denoting conjunction.

In the simplest conjunctive queries all the goals are ground, for example, $\text{father}(\text{abraham}, \text{isaac}), \text{male}(\text{lot})$? The answer to this query using Program 1.1 is clearly yes because both goals in the query are facts in the program. In general, the query $Q_1 \land \ldots \land Q_n$?, where each Q_i is a ground goal, is answered yes with respect to a program P if each Q_i is implied by P. Hence ground conjunctive queries are not very interesting.

Conjunctive queries are interesting when there are one or more shared variables, variables that occur in different goals of the query. An example is the query $\text{father}(\text{haran}, X), \text{male}(X)$?. The scope of a variable in a conjunctive query, as in a simple query, is the whole conjunction. Thus the query $p(X), q(X)$? reads "is there an X such that both $p(X)$ and $q(X)$?"?

Shared variables are used as a means of constraining a simple query by restricting the range of a variable. We have already seen an example with the query $\text{plus}(X, X, 4)$?, where the solution of numbers adding up to 4 was restricted to the numbers being the same. Consider the query $\text{father}(\text{haran}, X), \text{male}(X)$?. Here solutions to the query father(haran, X)? are restricted to children that are male. Program 1.1 shows there is only one solution, $\{X \leftarrow \text{lot}\}$. Alternatively, this query can be viewed as restricting solutions to the query male(X)? to individuals who have Haran for a father.

A slightly different use of a shared variable can be seen in the query father$(\text{terach}, X), \text{father}(X, Y)$?. On the other hand, it restricts the sons of Terach to those who are themselves fathers. On the other hand, it considers individuals Y, whose fathers are sons of Terach. There are several solutions, for example, $\{X \leftarrow \text{abraham}, Y \leftarrow \text{isaac}\}$ and $\{X \leftarrow \text{haran}, Y \leftarrow \text{lot}\}$.

A conjunctive query is a logical consequence of a program P if all the goals in the conjunction are consequences of P, where shared variables are instantiated to the same values in different goals. A sufficient condition is that there be a ground instance of the query that is a consequence of P. This instance then deduces the conjunctions in the query via generalization.

The restriction to ground instances is unnecessary and will be lifted in Chapter 4 when we discuss the computation model of logic programs.
A rule for the grandfather relationship is
\[\text{grandfather}(X, Y) \leftarrow \text{father}(X, Z), \text{father}(Z, Y). \]

Rules can be viewed in two ways. First, they are a means of expressing new or complex queries in terms of simple queries. A query \(\text{son}(X, \text{haran}) \) to the program that contains the preceding rule for \(\text{son} \) is translated to the query \(\text{father}(\text{haran}, X), \text{male}(X) \) according to the rule, and solved as before. A new query about the \(\text{son} \) relationship has been built from simple queries involving \(\text{father} \) and \(\text{male} \) relationships.

Interpreting rules in this way is their procedure reading. The procedural reading for the \(\text{grandfather} \) rule is: "To answer a query is \(X \) the \(\text{grandfather} \) of \(Y \), answer the conjunctive query is \(X \) the \(\text{father} \) of \(Z \) and \(Z \) the \(\text{father} \) of \(Y \)."

The second view of rules comes from interpreting the rule as a logical axiom. The backward arrow \(\leftarrow \) is used to denote logical implication. The \(\text{son} \) rule reads: "\(X \) is a son of \(Y \) if \(Y \) is the father of \(X \) and \(X \) is male." In this view, rules are means of defining new or complex relationships using other, simpler relationships. The predicate \(\text{son} \) has been defined in terms of the predicates \(\text{father} \) and \(\text{male} \). The associated reading of the rule is known as the declarative reading. The declarative reading of the \(\text{grandfather} \) rule is: "For all \(X, Y, Z \), \(X \) is the \(\text{grandfather} \) of \(Y \) if \(X \) is the \(\text{father} \) of \(Z \) and \(Z \) is the \(\text{father} \) of \(Y \)."

Although formally all variables in a clause are universally quantified, we will sometimes refer to variables that occur in the body of the clause, but not in its head, as if they are existentially quantified inside the body. For example, the \(\text{grandfather} \) rule can be read: "For all \(X \) and \(Y, Z \), \(X \) is the \(\text{grandfather} \) of \(Y \) if there exists a \(Z \) such that \(X \) is the \(\text{father} \) of \(Z \) and \(Z \) is the \(\text{father} \) of \(Y \)." The formal justification of this verbal transformation will not be given, and we treat it just as a convenience. Whenever it is a source of confusion, the reader can resort back to the formal reading of a clause, in which all variables are universally quantified from the outside.

To incorporate rules into our framework of logical deduction, we need the law of modus ponens. Modus ponens states that if \(B \) and \(A \rightarrow B \) we can deduce \(A \).

Definition
The law of universal modus ponens states that from the rule
\[R = (A \leftarrow B_0, \ldots, B_n) \]
Basic Constructs

$B_i \theta$ is ground for $1 \leq i \leq n$. Then recursively solve each $B_i \theta$. This procedure can involve arbitrarily long chains of reasoning. It is difficult in general to guess the correct ground instance and to choose the right rule. We show in Chapter 4 how the guessing of an instance can be removed.

The rule given for son is correct but is an incomplete specification of the relationship. For example, we cannot conclude that Isaac is the son of Sarah. What is missing is that a child can be the son of a mother as well as the son of a father. A new rule expressing this relationship can be added, namely,

\[
\text{son}(X,Y) \leftarrow \text{mother}(Y,X), \text{male}(X).
\]

To define the relationship grandparent correctly would take four rules to include both cases of father and mother:

\[
\begin{align*}
\text{grandparent}(X,Y) & \leftarrow \text{father}(X,Z), \text{father}(Z,Y). \\
\text{grandparent}(X,Y) & \leftarrow \text{father}(X,Z), \text{mother}(Z,Y). \\
\text{grandparent}(X,Y) & \leftarrow \text{mother}(X,Z), \text{father}(Z,Y). \\
\text{grandparent}(X,Y) & \leftarrow \text{mother}(X,Z), \text{mother}(Z,Y).
\end{align*}
\]

There is a better, more compact, way of expressing these rules. We need to define the auxiliary relationship parent as being a father or a mother. Part of the art of logic programming is deciding on what intermediate predicates to define to achieve a complete, elegant axiomatization of a relationship. The rules defining parent are straightforward, capturing the definition of a parent being a father or a mother. Logic programs can incorporate alternative definitions, or more technically disjunction, by having alternative rules, as for parent:

\[
\begin{align*}
\text{parent}(X,Y) & \leftarrow \text{father}(X,Y). \\
\text{parent}(X,Y) & \leftarrow \text{mother}(X,Y).
\end{align*}
\]

Rules for son and grandparent are now, respectively,

\[
\begin{align*}
\text{son}(X,Y) & \leftarrow \text{parent}(Y,X), \text{male}(X). \\
\text{grandparent}(X,Y) & \leftarrow \text{parent}(X,Z), \text{parent}(Z,Y).
\end{align*}
\]

A collection of rules with the same predicate in the head, such as the pair of parent rules, is called a procedure. We shall see later that under the operational interpretation of these rules by Prolog, such a collection of rules is indeed the analogue of procedures or subroutines in conventional programming languages.
1.8 A Simple Abstract Interpreter

An operational procedure for answering queries has been informally described and progressively developed in the previous sections. In this section, the details are fleshed out into an abstract interpreter for logic programs. In keeping with the restriction of universal modus ponens to ground goals, the interpreter only answers ground queries.

The abstract interpreter performs yes/no computations. It takes as input a program and a goal, and answers yes if the goal is a logical consequence of the program and no otherwise. The interpreter is given in Figure 1.1. Note that the interpreter may fail to terminate if the goal is not deducible from the program, in which case no answer is given.

The current, usually conjunctive, goal at any stage of the computation is called the resolvent. A trace of the interpreter is the sequence of resolvents produced during the computation. Figure 1.2 is a trace of answering the query son(lot,haran)? with respect to Program 1.2, a subset of the facts of Program 1.1 together with rules defining son and daughter. For clarity, Figure 1.2 also explicitly states the choice of goal and clause made at each iteration of the abstract interpreter.

Each iteration of the while loop of the abstract interpreter corresponds to a single application of modus ponens. This is called a reduction.

Input: A ground goal G and a program P
Output: yes if G is a logical consequence of P, no otherwise
Algorithm: Initialize the resolvent to G.
 while the resolvent is not empty do
 choose a goal A from the resolvent
 choose a ground instance of a clause A’ ← Rn...R1 from P
 such that A and A’ are identical
 if no such goal and clause exist, exit the while loop
 replace A by Rn...R1 in the resolvent
 if the resolvent is empty, then output yes, else output no.

Figure 1.1 An abstract interpreter to answer ground queries with respect to logic programs

Input: son(lot,haran)? and Program 1.2
Resolvent is son(lot,haran)
Resolvent is not empty
choose son(lot,haran) (the only choice)
choose son(lot,haran) ← father(haran,lot), male(lot).
new resolvent is father(haran,lot), male(lot)
Resolvent is not empty
choose father(haran,lot)
choose father(haran,lot)
new resolvent is male(lot)
Resolvent is not empty
choose male(lot)
choose male(lot)
new resolvent is empty

Output: yes

Figure 1.2 Tracing the interpreter

father(abraham,isaac).
father(haran,lot).
father(haran,alice).
father(haran,yiscach).
son(x,y) ← father(y,x), male(x).
daughter(x,y) ← father(y,x), female(x).

Program 1.2 Biblical family relationships

Definition
A reduction of a goal G by a program P is the replacement of G by the body of an instance of a clause in P, whose head is identical to the chosen goal.

A reduction is the basic computational step in logic programming. The goal replaced in a reduction is reduced, and the new goals are derived. In this chapter, we restrict ourselves to ground reductions, where the goal and the instance of the clause are ground. Later, in Chapter 4, we consider more general reductions where unification is used to choose the instance of the clause and make the goal to be reduced and the head of the clause identical.
Chapter 1

The trace in Figure 1.2 contains three reductions. The first reduces the goal \texttt{son(lot, haran)} and produces two derived goals, \texttt{father(haran, lot)} and \texttt{male(lot)}. The second reduction is of \texttt{father(haran, lot)} and produces no derived goals. The third reduction also produces no derived goals in reducing \texttt{male(lot)}.

There are two unspecified choices in the interpreter in Figure 1.1. The first is the goal to reduce from the resolvent. The second choice is the clause (and an appropriate ground instance) to reduce the goal. These two choices have very different natures.

The selection of the goal to be reduced is arbitrary. In any given resolvent, all the goals must be reduced. It can be shown that the order of reductions is immaterial for answering the query.

In contrast, the choice of the clause and a suitable instance is critical. In general, there are several choices of a clause, and infinitely many ground instances. The choice is made nondeterministically. The concept of nondeterministic choice is used in the definition of many computation models, e.g., finite automata and Turing machines, and has proven to be a powerful theoretic concept. A nondeterministic choice is an unspecified choice from a number of alternatives, which is supposed to be made in a "clairvoyant" way. If only some of the alternatives lead to a successful computation, then one of them is chosen. Formally, the concept is defined as follows. A computation that contains nondeterministic choices succeeds if there is a sequence of choices that leads to success. Of course, no real machine can directly implement this definition. However, it can be approximated in a useful way, as done in Prolog. This is explained in Chapter 6.

The interpreter given in Figure 1.1 can be extended to answer non-ground existential queries by an initial additional step. Guess a ground instance of the query. This is identical to the step in the interpreter of guessing ground instances of the rules. It is difficult in general to guess the correct ground instance, since that means knowing the result of the computation before performing it.

A new concept is needed to lift the restriction to ground instances and remove the burden of guessing them. In Chapter 4, we show how the guess of ground instances can be eliminated, and we introduce the computational model of logic programs more fully. Until then it is assumed that the correct choices can be made.

Basic Constructs

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{proof_tree.png}
\caption{A simple proof tree}
\end{figure}

A trace of a query implicitly contains a proof that the query follows from the program. A more convenient representation of the proof is with a proof tree. A proof tree consists of nodes and edges that represent the goals reduced during the computation. The root of the proof tree for a simple query is the query itself. The nodes of the tree are goals that are reduced during the computation. There is a directed edge from a node to each node corresponding to a derived goal of the reduced goal. The proof tree for a conjunctive query is just the collection of proof trees for the individual goals in the conjunction. Figure 1.3 gives a proof tree for the program trace in Figure 1.2.

An important measure provided by proof trees is the number of nodes in the tree. It indicates how many reduction steps are performed in a computation. This measure is used as a basis of comparison between different programs in Chapter 3.

1.9 The Meaning of a Logic Program

How can we know if a logic program says what we wanted it to say? If it is correct, or incorrect? In order to answer such questions, we have to define what is the meaning of a logic program. Once defined, we can examine if the program means what we have intended it to mean.

Definition

The meaning of a logic program \(P \), \(M(P) \), is the set of ground goals deducible from \(P \).

From this definition it follows that the meaning of a logic program composed just of ground facts, such as Program 1.1, is the program itself. In other words, for simple programs, the program "means just what
it says. Consider Program 1.1 augmented with the two rules defining the parent relationship. What is its meaning? It contains, in addition to the facts about fathers and mothers, mentioned explicitly in the program, all goals of the form parent(X,Y) for every pair X and Y such that father(X,Y) or mother(X,Y) is in the program. This example shows that the meaning of a program contains explicitly whatever the program states implicitly.

Assuming that we define the intended meaning of a program also to be a set of ground goals, we can ask what is the relation between the actual and the intended meanings of a program. We can check whether everything the program says is correct, or whether the program says everything we wanted it to say.

Informally, we say that a program is correct with respect to some intended meaning M if the meaning of P, MP, is a subset of M. That is, a correct program does not say things that were not intended. A program is complete with respect to M if M is a subset of MP. That is, a complete program says everything that is intended. It follows that if a program P is correct and complete with respect to an intended meaning M if M = MP.

Throughout the book, when meaningful predicate and constant names are used, the intended meaning of the program is assumed to be the one intuitively implied by the choice of names.

For example, the program for the son relationship containing only the first axiom that uses father is incomplete with respect to the intuitively understood intended meaning of son, since it cannot deduce son(isaac,sarah). If we add to Program 1.1 the rule

\[\text{son}(X,Y) \rightarrow \text{mother}(X,Y), \text{male}(Y). \]

it would make the program incorrect with respect to the intended meaning, since it deduces son(sarah,isaac).

The notions of correctness and completeness of a logic program are studied further in Chapter 5.

Although the notion of truth is not defined fully here, we will say that a ground goal is true with respect to an intended meaning if it is a member of it, and false otherwise. We will say it is simply true if it is a member of the intended meaning implied by the names of the predicate and constant symbols appearing in the program.

1.10 Summary

We conclude this section with a summary of the constructs and concepts introduced, filling in the remaining necessary definitions.

The basic structure in logic programs is a term. A term is a constant, a variable, or a compound term. Constants denote particular individuals such as integers and atoms, while variables denote a single but unspecified individual. The symbol for an atom can be any sequence of characters, which is quoted if there is possibility of confusion with other symbols (such as variables or integers). Symbols for variables are distinguished by beginning with an uppercase letter.

A compound term comprises a functor (called the principal functor of the term) and a sequence of one or more terms called arguments. A functor is characterized by its name, which is an atom, and its arity or number of arguments. Constants are considered functors of arity 0. Syntactically, compound terms have the form \(f(t_1,t_2,\ldots,t_n) \) where the functor has name \(f \) and is of arity \(n \), and the \(t_i \) are the arguments. A functor \(f \) of arity \(n \) is denoted \(f^n \). Functors with the same name but different arities are distinct. Terms are ground if they contain no variables; otherwise they are nonground. Goals are atoms or compound terms, and are generally nonground.

A substitution is a finite set (possibly empty) of pairs of the form \(X = t \), where \(X \) is a variable and \(t \) is a term, with no variable on the left-hand side of a pair appearing on the right-hand side of another pair, and no two pairs having the same variable as left-hand side. For any substitution \(\theta = \{X_1 = t_1,X_2 = t_2,\ldots,X_n = t_n\} \) and term \(s \), the term \(s\theta \) denotes the result of simultaneously replacing in \(s \) each occurrence of the variable \(X_i \) by \(t_i \), \(1 \leq i \leq n \); the term \(s\theta \) is called an instance of \(s \). More will be said on this restriction on substitutions in the background to Chapter 4.

A logic program is a finite set of clauses. A clause or rule is a universally quantified logical sentence of the form

\[A \rightarrow B_1, B_2, \ldots, B_k. \quad k \geq 0, \]

where \(A \) and the \(B_i \) are goals. Such a sentence is read declaratively: "A is implied by the conjunction of the \(B_i \)," and is interpreted procedurally. "To answer query \(A \), answer the conjunctive query \(B_1, B_2, \ldots, B_k \)." A is called the clause's head and the conjunction of the \(B_i \) the clause's body. If \(k = 0 \),
the clause is known as a fact or unit clause and written A_n, meaning A is true under the declarative reading, and goal A is satisfied under the procedural interpretation. If $k = 1$, the clause is known as an iterative clause.

A query is a conjunction of the form

$$A_1 \land \ldots \land A_n$$

where the A_i are goals. Variables in a query are understood to be existentially quantified.

A computation of a logic program P finds an instance of a given query logically deducible from P. A goal G is deducible from a program P if there is an instance A of G where $A \equiv B_1 \ldots B_n \land n \geq 0$, is a ground instance of a clause in P, and the B_i are deducible from P. Deduction of a goal from an identical fact is a special case.

The meaning of a program P is inductively defined using logical deduction. The set of ground instances of facts in P are in the meaning. A ground goal G is in the meaning if there is a ground instance $G \equiv B_1 \ldots B_n$ of a rule in P such that $B_1 \ldots B_n$ are in the meaning. The meaning consists of the ground instances that are deducible from the program.

An intended meaning M of a program is also a set of ground unit goals. A program P is correct with respect to an intended meaning M if $M(P)$ is a subset of M. It is complete with respect to M if M is a subset of $M(P)$.

Clearly, it is correct and complete with respect to its intended meaning, which is the desired situation, if $M = M(P)$.

A ground goal is true with respect to an intended meaning if it is a member of M, and false otherwise.

Logical deduction is defined syntactically here, and hence also the meaning of logic programs. In Chapter 5, alternative ways of describing the meaning of logic programs are presented, and their equivalence with the current definition is discussed.

2 Database Programming

There are two basic styles of using logic programs: defining a logical database, and manipulating data structures. This chapter discusses database programming. A logical database contains a set of facts and rules. We show how a set of facts can define relations, as in relational databases. We show how rules can define complex relational queries, as in relational algebra. A logic program composed of a set of facts and rules of a rather restricted format can express the functionalities associated with relational databases.

2.1 Simple Databases

We begin by revising Program 1.1, the biblical database, and its augmentation with rules expressing family relationships. The database itself had four basic predicates, father/2, mother/2, male/1, and female/1. We adopt a convention from database theory and give for each relation a relation scheme that specifies the role that each position in the relation (or argument in the goal) is intended to represent. Relation schemes for the four predicates here are, respectively, father(Father,Child), mother(Mother,Child), male(Person), and female(Person). The mnemonic names are intended to speak for themselves.

Variables are given mnemonic names in rules, but usually X or Y when discussing queries. Multiword names are handled differently for variables and predicates. Each new word in a variable starts with an upper-case letter, for example, nieceOrNephew, while words are delimited by
underscores for predicate and function names, for example, schedule, conflict.

New relations are built from these basic relationships by defining suitable rules. Appropriate relation schemes for the relationships introduced in the previous chapter are son(Son,Parent), daughter(Daughter, Parent), parent(Parent,Child), and grandparent(Grandparent, Grandchild). From the logical viewpoint, it is unimportant which relationships are defined by facts and which by rules. For example, if the available database consisted of parent, male and female facts, the rules defining son and grandparent are still correct. New rules must be written for the relationships no longer defined by facts, namely, father and mother. Suitable rules are:

father(Dad,Child) — parent(Dad,Child), male(Dad).

mother(Mom,Child) — parent(Mom,Child), female(Mom).

Interesting rules can be obtained by making relationships explicit that are present in the database only implicitly. For example, since we know the father and mother of a child, we know which couples produced offspring, or to use a biblical term, procreated. This is not given explicitly in the database, but a simple rule can be written recovering the information. The relation scheme is procreated(Man,Woman).

procreated(Man,Woman) —
father(Man,Child), mother(Woman,Child).

This reads: “Man and Woman procreated if there is a Child such that Man is the father of Child and Woman is the mother of Child.”

Another example of information that can be recovered from the simple information present is sibling relationships — brothers and sisters. We give a rule for brother(Brother,Sibling).

brother(Brother,Sib) —
parent(Parent,Brother), parent(Parent,Sib), male(Brother).

This reads: “Brother is the brother of Sib if Parent is a parent of both Brother and Sib, and Brother is male.”

There is a problem with this definition of brother. The query brother(\(X,X\))? is satisfied for any male child \(X\), which is not our understanding of the brother relationship.

In order to preclude such cases from the meaning of the program,
Another relationship implicit in the family database is whether a woman is a mother. This is determined by using the mother/2 relationship. The new relation scheme is mother(Woman), defined by the rule:

\[
\text{mother}(\text{Woman}) \leftarrow \text{mother}(\text{Woman}, \text{Child}).
\]

This reads: "woman is a mother if she is the mother of some child." Note that we have used the same predicate name, mother, to describe two different mother relationships. The mother predicate takes a different number of arguments, i.e., has a different arity, in the two cases. In general, the same predicate name denotes a different relation when it has a different arity.

We change examples, lest the example of family relationships become incestuous, and consider describing simple logical circuits. A circuit can be viewed from two perspectives. The first is the toponomical layout of the physical components usually described in the circuit diagram. The second is the interaction of functional units. Both views are easily accommodated in a logic program. The circuit diagram is represented by a collection of facts, while rules describe the functional components.

Program 2.2 is a database giving a simplified view of the logical and-gate drawn in Figure 2.2. The facts are the connections of the particular resistors and transistors comprising the circuit. The relation scheme for resistors is resistor(End1, End2) and for transistors transistor(Gate, Source, Drain).

![Figure 2.2 A logical circuit](image)

Database Programming

- resistor(power, n1)
- resistor(power, n2)
- transistor(s2, ground, n1)
- transistor(s3, n4, n2)
- transistor(s5, ground, n4)
- inverter(Input, Output) :- Output is the inversion of Input.
 - inverter(Input, Output) :- transistor(Input, ground, Output)
 - resistor(power, Output).
- and_gate(Input1, Input2, Output) :-
 - Output is the logical and of Input1 and Input2.
 - transistor(Input1, X, Output),
 - transistor(Input2, ground, X),
 - resistor(power, Output).
- or_gate(Input1, Input2, Output) :-
 - Output is the logical or of Input1 and Input2.
 - and_gate(Input1, Input2, Output) :-
 - and_gate(Input1, Input2, X),
 - inverter(X, Output).

Program 2.2 A circuit for a logical and gate

The program demonstrates the style of commenting of logic programs we will follow throughout the book. Each interesting procedure is preceded by a relation scheme for the procedure, shown in italic font, and by English text defining the relation. We recommend this style of commenting, which emphasizes the declarative reading of programs, for Prolog programs as well.

Particular configurations of resistors and transistors fulfill roles captured via rules defining the functional components of the circuit. The circuit describes an and-gate, which takes two input signals and produces as output the logical and of these signals. One way of building an and-gate, and how this circuit is composed, is to connect a nand-gate with an inverter. Relation schemes for these three components are and_gate(Input1, Input2, Output), nand_gate(Input1, Input2, Output), and inverter(Input, Output).
To appreciate Program 2.2, let us read the inverter rule. This states that an inverter is built up from a transistor with the source connected to the ground, and a resistor with one end connected to the power source. The gate of the transistor is the input to the inverter, while the free end of the resistor must be connected to the drain of the transistor, which forms the output of the inverter. Sharing of variables is used to insist on the common connection.

Consider the query and_gate(\text{in1}, \text{in2}, \text{out})? to Program 2.2. It has the solution \{\text{in1}=3, \text{in2}=5, \text{out}=1\}. This solution confirms that the circuit described by the facts is an and-gate, and indicates the inputs and output.

2.1.1 Exercises for Section 2.1

(i) Modify the rule for brother on page 21 to give a rule for sister, the rule for uncle in Program 2.1 to give a rule for niece, and the rule for sibling in Program 2.1 so that it only recognizes full siblings, i.e., those that have the same mother and father.

(ii) Using a predicate married_couple(\text{Wife}, \text{Husband}), define the relationships mother_in_law, brother_in_law, and son_in_law.

(iii) Describe the layout of objects in Figure 2.3 with facts using the predicates left_of(\text{Object1}, \text{Object2}) and above(\text{Object1}, \text{Object2}) and below(\text{Object1}, \text{Object2}) in terms of left_of and above, respectively.

![Still-life objects](image.png)

Figure 2.3 Still-life objects
resistor(R, Node1, Node2) :-
 R is a resistor between Node1 and Node2.
resistor(R1, power, n1).
resistor(R2, power, n2).
transistor(T, Gate, Source, Drain) :-
 T is a transistor whose gate is Gate,
 source is Source, and drain is Drain.
transistor(T1, n0, ground, n1).
transistor(T2, n3, n4, n2).
transistor(T3, n5, ground, n4).
inverter(I, Input, Output) :-
 I is an inverter that inverts Input to Output.
inverter(I, inv(T, I), Input, Output) :-
 transistor(T, Input, ground, Output).
 resistor(R, power, Output).
and_gate(Nand, Input1, Input2, Output) :-
 Nand is a gate forming the logical nand,
 Output of Input1 and Input2.
and_gate(Nand, Input1, Input2, Output) :-
 transistor(T1, Input1, X, Output).
 transistor(T2, Input2, ground, X).
 resistor(R, power, Output).
and_gate(And, Input1, Input2, Output) :-
 And is a gate forming the logical and,
 Output of Input1 and Input2.
and_gate(And, Input1, Input2, Output) :-
 nand_gate(And, Input1, Input2, X).
 inverter(I, X, Output).

Program 2.3 The circuit database with names

course(complexity, time, location)

The first fact represents course as a relation between eight items — a course name, a day, a starting hour, a lecturer’s first name, a course’s name, a building, and a room. The second fact makes course a relation between four items — a name, a time, a lecturer, and a location with further qualification. The time is composed of a day, a starting time, and a finishing time; lecturers have a first name and a surname; and locations are specified by a building and a room. The second fact reflects more elegantly the relations that hold.

The four-argument version of course enables more concise rules to be written by abstracting the details that are irrelevant to the query. Program 2.4 contains examples. The occupied rule assumes a predicate less than or equal, represented as a binary infix operator ≤.

Rules not using the particular values of a structured argument need not "know" how the argument is structured. For example, the rules for duration and teaches represent time explicitly as time

Program 2.4 Course rules

lecturer(Lecturer, Course) :-
 course(Course, Time, Lecturer, Location).
duration(Course, Length) :-
 course(Course, time, Start, Finish), Lecturer, Location).
 plus(Start, Length, Finish).
teaches(Lecturer, Day) :-
 course(Course, time, Day, Finish), Lecturer, Location).
occupied(Room, Day, Time) :-
 course(Course, time, Day, Finish), Lecturer, Room),
 Start ≤ Time, Time ≤ Finish.
modularity. We can relate the discussion to conventional programming languages. Facts are the counterpart of tables, while structured data correspond to records with aggregate fields.

We believe that the appearance of a program is important, particularly when attempting difficult problems. A good structuring of data can make a difference when programming complex problems.

Some of the rules in Program 2.4 are recovering relations between two individuals, binary relations, from the single, more complicated one. All the course information could have been written in terms of binary relations as follows:

day(complexity,monday).
start_time(complexity,9).
finish_time(complexity,11).
lecturer(complexity,harel).
building(complexity,feinberg).
room(complexity,6).

Rules would then be expressed differently, reverting to the previous style of making implicit connections explicit. For example,

teaches(Lecturer,Day) ←
lecturer(Course,Lecturer), day(Course,Day).

2.2.1 Exercises for Section 2.2

(i) Add rules defining the relations location(Course, Building), busy(Lecturer,Time), and cannot_meet(Lecturer1, Lecturer2). Test with your own course facts.

(ii) Possibly using relations from Exercise (i), define the relation schedule_conflict(Time, Place, Course1, Course2).

(iii) Write a program to check if a student has met the requirements for a college degree. Facts will be used to represent the courses that the student has taken and the grades obtained, and rules will be used to enforce the college requirements.

(iv) Design a small database for an application of your own choice. Use a single predicate to express the information, and invent suitable rules.

2.3 Recursive Rules

The rules described so far define new relationships in terms of existing ones. An interesting extension is recursive definitions of relationships that define relationships in terms of themselves. One way of viewing recursive rules is as generalization of a set of nonrecursive rules.

Consider a series of rules defining ancestors — grandparents, great-grandparents, etc:

grandparent(Ancestor, Descendant) ←
parent(Ancestor, Person), parent(Person, Descendant).
greatgrandparent(Ancestor, Descendant) ←
parent(Ancestor, Person), grandparent(Person, Descendant).
greatgreatgrandparent(Ancestor, Descendant) ←
parent(Ancestor, Person), greatgrandparent(Person, Descendant).

A clear pattern can be seen, which can be expressed in a rule defining the relationship ancestor(Ancestor, Descendant):

ancestor(Ancestor, Descendant) ←
parent(Ancestor, Person), ancestor(Person, Descendant).

This rule is a generalization of the previous rules.

A logic program for ancestor also requires a nonrecursive rule, the choice of which affects the meaning of the program. If the fact ancestor(X,X) is used, defining the ancestor relationship to be reflexive, people will be considered to be their own ancestors. This is not the intuitive meaning of ancestor. Program 2.5 is a logic program defining the ancestor relationship, where parents are considered ancestors.

ancestor(Ancestor, Descendant) ←
Ancestor is an ancestor of Descendant.
ancestor(Ancestor, Descendant) ←
parent(Ancestor, Descendant).
ancestor(Ancestor, Descendant) ←
parent(Ancestor, Person), ancestor(Person, Descendant).

Program 2.5 The ancestor relationship
Chapter 2

The ancestor relationship is the transitive closure of the parent relationship. In general, finding the transitive closure of a relationship is easily done in a logic program by using a recursive rule.

Program 2.5 defining ancestor is an example of a linear recursive program. A program is linear recursive if there is only one recursive goal in the body of the recursive clause. The linearity can be easily seen from considering the complexity of proof trees solving ancestor queries. A proof tree establishing that two individuals are \(n \) generations apart given Program 2.5 and a collection of parent facts has \(2 \cdot n \) nodes.

There are many alternative ways of defining ancestors. The declarative content of the recursive rule in Program 2.5 is that Ancestor is an ancestor of Descendant if Ancestor is a parent of an ancestor of Descendant. Another way of expressing the recursion is by observing that Ancestor would be an ancestor of Descendant if Ancestor is an ancestor of a parent of Descendant. The relevant rule is

\[
\text{ancestor} \left(\text{Ancestor, Descendant} \right) \leftarrow \\
\text{ancestor} \left(\text{Ancestor, Person} \right), \text{parent} \left(\text{Person, Descendant} \right).
\]

Another version of defining ancestors is not linear recursive. A program identical in meaning to Program 2.5 but with two recursive goals in the recursive clause is

\[
\text{ancestor} \left(\text{Ancestor, Descendant} \right) \leftarrow \\
\text{parent} \left(\text{Ancestor, Descendant} \right), \\
\text{ancestor} \left(\text{Ancestor, Descendant} \right) \leftarrow \\
\text{ancestor} \left(\text{Ancestor, Person} \right), \text{ancestor} \left(\text{Person, Descendant} \right).
\]

Consider the problem of testing connectivity in a directed graph. A directed graph can be represented as a logic program by a collection of facts. A fact edge(Node1,Node2) is present in the program if there is an edge from Node1 to Node2 in the graph. Figure 2.4 shows a graph; Program 2.6 is its description as a logic program.

Two nodes are connected if there is a series of edges that can be traversed to get from the first node to the second. That is, the relation connected(Node1,Node2), which is true if Node1 and Node2 are connected, is the transitive closure of the edge relation. For example, a and e are connected in the graph in Figure 2.4, but b and f are not. Program 2.7 defines the relation. The meaning of the program is the set of goals con-

![Figure 2.4 A simple graph](https://via.placeholder.com/150)

Program 2.6 A directed graph

\[
\text{connected} \left(\text{Node1, Node2} \right) \leftarrow \\
\text{edge} \left(\text{Node1, Node2} \right).
\]

Program 2.7 The transitive closure of the edge relation

\[
\text{connected} \left(\text{Node1, Node2} \right) \leftarrow \\
\text{connected} \left(\text{Node1, Node3} \right), \\
\text{connected} \left(\text{Node3, Node2} \right).
\]

Exercises for Section 2.3

(i) A stack of blocks can be described by a collection of facts on (Block1,Block2), which is true if Block1 is on Block2. Define a predicate above(Block1,Block2) that is true if Block1 is above Block2 in the stack. (Hint: above is the transitive closure of on.)
2.4 Logic Programs and the Relational Database Model

Logic programs can be viewed as a powerful extension to the relational database model, the extra power coming from the ability to specify rules. Many of the concepts introduced have meaningful analogues in terms of databases. The converse is also true. The basic operations of the relational algebra are easily expressed within logic programming.

Procedures composed solely of facts correspond to relations, the arity of the relation being the arity of the procedure. Five basic operations define the relational algebra: union, set difference, Cartesian product, projection, and selection. We show how each is translated into a logic program.

The union operation creates a relation of arity n from two relations r and s, both of arity n. The new relation, denoted here $r_{\text{union}}.s$, is the union of r and s. It is defined directly as a logic program by two rules:

$$r_{\text{union}}.s(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n).$$
$$r_{\text{union}}.s(X_1, \ldots, X_n) \leftarrow s(X_1, \ldots, X_n).$$

Set difference involves negation. We assume a predicate not. Intuitively, a goal $not(G)$ is true with respect to a program P if G is not a logical consequence of P. Negation in logic programs is discussed in Chapter 5, where limitations of the intuitive definition are indicated. The definition is correct, however, if we deal only with ground facts, as is the case with relational databases.

The definition of $r_{\text{diff}}.s$ of arity n, where r and s are of arity n, is
Chapter 2

2.5 Background

Readers interested in pursuing the connection between logic programming and database theory are referred to the many papers that have been written on the subject. A good starting place is the review paper by Gallaire et al. (1984). There are earlier papers on logic and databases in Gallaire and Minker (1978). Another interesting book is about the implementation of a database query language in Prolog (IL, 1984). Our discussion of relational databases follows Ullman (1982). Another good account of relational databases can be found in Maier (1983).

In the seven years between the appearance of the first edition and the second edition of this book, the database community has accepted logic programs as extensions of relational databases. The term used for a database extended with logical rules is logic database or deductive database. There is now a wealth of material about logic databases. The rewritten version of Ullman’s text (1989) discusses logic databases and gives pointers to the important literature.

Perhaps the major difference between logic databases as taught from a database perspective and the view presented here is the way of evaluating queries. Here we implicitly assume that the interpreter from Figure 4.2 will be used, a top-down approach. The database community prefers a bottom-up evaluation mechanism. Various bottom-up strategies for answering a query with respect to a logic database are given in Ullman (1989).

In general, an n-ary relation can be replaced by n + 1 binary relations, as shown by Kowalski (1979a). If one of the arguments forms a key for the relation, as does the course name in the example in Section 2.2, n binary relations suffice.

The addition of an extra argument to each predicate in the circuit, as discussed at the beginning of Section 2.2, is an example of an enhancement of a logic program. The technique of developing programs by enhancement is of growing importance. More will be said about this in Chapter 13.

3 Recursive Programming

The programs of the previous chapter essentially retrieve information from, and manipulate, finite data structures. In general, mathematical power is gained by considering infinite or potentially infinite structures. Finite instances then follow as special cases. Logic programs harness this power by using recursive data types.

Logical terms can be classified into types. A type is a (possibly infinite) set of terms. Some types are conveniently defined by unary relations. A relation p/1 defines the type p to be the set of X’s such that p(X).

For example, the male/1 and female/1 predicates used previously define the male and female types.

More complex types can be defined by recursive logic programs. Such types are called recursive types. Types defined by unary recursive programs are called simple recursive types. A program defining a type is called a type definition.

In this chapter, we show logic programs defining relations over simple recursive types, such as integers, lists, and binary trees, and also programs over more complex types, such as polynomials.

3.1 Arithmetic

The simplest recursive data type, natural numbers, arises from the foundations of mathematics. Arithmetic is based on the natural numbers. This section gives logic programs for performing arithmetic.

In fact, Prolog programs for performing arithmetic differ considerably from their logical counterparts, as we will see in later chapters. However, it is useful to spend time discussing the logic programs. There are
natural_number(X) :-
X is a natural number.
natural_number(0),
natural_number(s(0)) :- natural_number(X).

Program 3.1 Defining the natural numbers

two main reasons. First, operations of arithmetic are usually thought of functionally rather than relationally. Presenting examples for such a familiar area emphasizes the change in thinking necessary for composing logic programs. Second, it is more natural to discuss the underlying mathematical issues, such as correctness and completeness of programs.

The natural numbers are built from two constructs, the constant symbol 0 and the successor function s of arity 1. All the natural numbers are then recursively given as 0, s(0), s(s(0)), s(s(s(0))), We adopt the convention that n°(0) denotes the integer n, that is, n applications of the successor function to 0.

As in Chapter 2, we give a relation scheme for each predicate, together with the intended meaning of the predicate. Recall that a program P is correct with respect to an intended meaning M if the meaning of P is a subset of M. It is complete if M is a subset of the meaning of P. It is correct and complete if its meaning is identical to M. Proving correctness establishes that everything deducible from the program is intended. Proving completeness establishes that everything intended is deducible from the program. Two correctness and completeness proofs are given in this section.

The simple type definition of natural numbers is neatly encapsulated in the logic program, shown as Program 3.1. The relation scheme used is natural_number(X), with intended meaning that X is a natural number. The program consists of one unit clause and one iterative clause (a clause with a single goal in the body). Such a program is called minimal recursive.

Proposition Program 3.1 is correct and complete with respect to the set of goals natural_number(s(i)(0)), for i ≥ 0.

Proof (1) Completeness. Let n be a natural number. We show that the goal natural_number(s) is deducible from the program by giving an explicit proof tree. Either n is 0 or of the form s(i)(0). The proof tree for the goal natural_number(0) is trivial. The proof tree for the goal natural_number(s(i)(0)) contains n reductions, using the rule in Program 3.1, to reach the fact natural_number(0), as shown in the left half of Figure 3.1.

(2) Correctness. Suppose that natural_number(X) is deducible from Program 3.1, in n deductions. We prove that natural_number(X) is in the intended meaning of the program by induction on n. If n = 0, then the goal must have been proved using a unit clause, which implies that X = 0. If n > 0, then the goal must be of the form natural_number(s(X)), since it is deducible from the program, and further, natural_number(X) is deducible in n − 1 deductions. By the induction hypothesis, X is in the intended meaning of the program, i.e., X = s(i)(0) for some i ≥ 0.

The natural numbers have a natural order. Program 3.2 is a logic program defining the relation less than or equal to according to the order. We denote the relation with a binary infix symbol, or operator, ≤, according to mathematical usage. The goal 0 ≤ X has predicate symbol ≤ of arity 2, has arguments 0 and X, and is syntactically identical to s(i)(0) and s(i)(0).

natural_number(s(...(s(0))...))
Chapter 3

\[X \leq Y \quad \text{such that } X \text{ is less than or equal to } Y, \]
\[0 \leq X \quad \text{such that natural_number(X).} \]
\[s(X) \leq s(Y) \quad \text{such that } \leq Y. \]
\[\text{natural_number(X)} \quad \text{See Program 3.1.} \]

Program 3.2 The less than or equal relation

The relation scheme is \(N_1 \leq N_2 \). The intended meaning of Program 3.2 is all ground facts \(X \leq Y \), where \(X \) and \(Y \) are natural numbers and \(X \) is less than or equal to \(Y \). Exercise (ii) at the end of this section is to prove the correctness and completeness of Program 3.2.

The recursive definition of \(\leq \) is not computationally efficient. The proof tree establishing that a particular \(N \) is less than a particular \(M \) has \(M+2 \) nodes. We usually think of testing whether one number is less than another as a unit operation, independent of the size of the numbers. Indeed, Prolog does not define arithmetic according to the axioms presented in this section but uses the underlying arithmetic capabilities of the computer directly.

Addition is a basic operation defining a relation between two natural numbers and their sum. In Section 1.1, a table of the plus relation was assumed for all relevant natural numbers. A recursive program captures the relation elegantly and more compactly, and is given as Program 3.3. The intended meaning of Program 3.3 is the set of facts plus(X, Y, Z), where \(X, Y, \) and \(Z \) are natural numbers and \(X+Y=Z \).

Proposition

Programs 3.1 and 3.3 constitute a correct and complete axiomatization of addition with respect to the standard intended meaning of plus/3.

Proof (1) Completeness. Let \(X, Y, \) and \(Z \) be natural numbers such that \(X+Y=Z \). We give a proof tree for the goal plus(X, Y, Z). If \(X \) equals 0, then \(Y \) equals \(Z \). Since Program 3.1 is a complete axiomatization of the natural numbers, there is a proof tree for natural_number(Y), which is easily extended to a proof tree for plus(0, Y, Y). Otherwise, \(X \) equals \(s(n) \) for some \(n \). If \(Y \) equals \(s(n) \), then \(Z \) equals \(s(s(n)) \). The proof tree in the right half of Figure 3.3 establishes completeness.

Recursive Programming

\[\text{plus}(X, Y, Z) \quad \text{such that } \leq Y. \]
\[X, Y, \text{ and } Z \text{ are natural numbers such that } Z \text{ is the sum of } X \text{ and } Y. \]
\[\text{plus}(0, X, Y) \quad \text{natural_number(X).} \]
\[\text{plus}(s(X), Y, s(Z)) \quad \text{plus}(X, Y, Z). \]
\[\text{natural_number(X)} \quad \text{See Program 3.1.} \]

Program 3.3 Addition

(2) Correctness. Let \(\text{plus}(X, Y, Z) \) be in the meaning. A simple inductive argument on the size of \(X \), similar to the one used in the previous proposition, establishes that \(X\leq Y\).

Addition is usually considered to be a function of two arguments rather than a relation of arity 3. Generally, logic programs corresponding to functions of \(n \) arguments define relations of arity \(n+1 \). Computing the value for a function is achieved by posing a query with \(n \) arguments instantiated and the argument place corresponding to the value of the function uninstantiated. The solution to the query is the value of the function with the given arguments. To make the analogy clearer, we give a functional definition of addition corresponding to the logic program:

\[0*X = X, \]
\[s(X)+Y = s(X+Y). \]

One advantage that relational programs have over functional programs is the multiple uses that can be made of the program. For example, the query \(\text{plus}(s(0), s(0), s(s(0))) \) means checking whether \(1+1=2 \). (We feel free to use the more readable decimal notation when mentioning numbers.) As for \(s \), the program for \(\text{plus} \) is not efficient. The proof tree confirming that the sum of \(N \) and \(M \) is \(N+M \) has \(N+M+2 \) nodes.

Posing the query \(\text{plus}(s(s(0)), s(s(0)), X) \), an example of the standard use, calculates the sum of 1 and 1. However, the program can just as easily be used for subtraction by posing a query such as \(\text{plus}(s(s(0)), X, s(s(s(s(0))))) \). The computed value of \(X \) is the difference between 3 and 1, namely, 2. Similarly, asking a query with the first argument uninstantiated, and the second and third instantiated, also performs subtraction.

A more novel use exploits the possibility of a query having multiple solutions. Consider the query \(\text{plus}(X, Y, s(s(s(0)))) \). It reads: "Do there
exist numbers X and Y that add up to 3. In other words, find a partition of the number 3 into the sum of two numbers, X and Y. There are several solutions.

A query with multiple solutions becomes more interesting when the properties of the variables in the query are restricted. There are two forms of restriction: using extra conjuncts in the query, and instantiating variables in the query. We saw examples of this when querying a database. Exercise (ii) at the end of this section requires to define a predicate `even(X)`, which is true if X is an even number. Assuming such a predicate, the query `plus(X,Y,Z), even(X), even(Y)` gives a partition of Z into two even numbers. The second type of restriction is exemplified by the query `plus(a(even(X)), a(even(Y)), N)`, which insists that each of the numbers adding up to N is strictly greater than 1.

Almost all logic programs have multiple uses. Consider Program 3.2 for s, for example. The query `s(0) = s(a(0))`? checks whether 1 is less than or equal to 2. The query `$X = s(a(0))$` finds numbers X less than or equal to 2. The query `$X = Y$?` computes pairs of numbers less than or equal to each other.

Program 3.3 defining addition is not unique. For example, the logic program

```
plus(X,0,X) - natural_number(X).
plus(X,s(Y),s(Z)) - plus(X,Y,Z).
```

has precisely the same meaning as Program 3.3 for plus. Two programs are to be expected because of the symmetry between the first two arguments. A proof of correctness and completeness given for Program 3.3 applies to this program by reversing the roles of the symmetric arguments.

The meaning of the program for `plus` would not change even if it consisted of the two programs combined. This composite program is undesirable, however. There are several different proof trees for the same goal. It is important both for runtime efficiency and for textual conciseness that axiomatizations of logic programs be minimal.

We define a type `condition` to be a call to the predicate defining the type. For natural numbers, a `type condition` is any goal of the form `natural_number(X)`. In practice, both Programs 3.2 and 3.3 are simplified by omitting the body of the base rule, `natural_number(X).` Without this test, facts such as `0 <= a` and `plus(0,a,a)`, where `a` is an arbitrary constant, will be in the programs' meanings. Type conditions are necessary for correct programs. However, type conditions distract from the simplicity of the programs and affect the size of the proof trees. Hence in the following we might omit explicit type conditions from the example programs, Programs 3.4-3.7.

The basic programs shown are the building blocks for more complicated relations. A typical example is defining multiplication as repeated addition. Program 3.4 reflects this relation. The relation scheme is `times(X,Y,Z)`, meaning X times Y equals Z.

Exponentiation is defined as repeated multiplication. Program 3.5 for `exp(N,X,Y)` expresses the relation that $X^n = Y$. It is analogous to Program 3.4 for `times(X,Y,Z)`, with `exp` and `times` replacing `times` and `plus`, respectively. The base cases for exponentiation are $X^0 = 1$ for all positive values of X, and $0^a = 0$ for positive values of a.

A definition of the factorial function uses the definition of multiplication. Recall that $N! = N \cdot (N-1) \cdot \cdots \cdot 2 \cdot 1$. The predicate `factorial(N,F)` relates a number N to its factorial F. Program 3.6 is its axiomatization.
Chapter 3

factorial(N) =
F equals N factorial.
factorial(0, n(0)) = factorial(n(0), F1), times(n(0), F1, F).
times(F1, F) = See Program 3.4.

Program 3.6 Computing factorials

minimum(N1, N2, Min) =
The minimum of the natural numbers N1 and N2 is Min.
minimum(N1, N2, Max) = N1 ≤ N2.
minimum(N1, N2, Max) = N2 ≤ N1.
N1 ≤ N2 = See Program 3.2.

Program 3.7 The minimum of two numbers

Not all relations concerning natural numbers are defined recursively. Relations can also be defined in the style of programs in Chapter 2. An example is Program 3.7 determining the minimum of two numbers via the relation minimum(N1, N2, Min).

Composing a program to determine the remainder after integer division reveals an interesting phenomenon—different mathematical definitions of the same concept are translated into different logic programs. Programs 3.8a and 3.8b give two definitions of the relation mod(X, Y, Z), which is true if Z is the value of X modulo Y, or in other words, Z is the remainder of X divided by Y. The programs assume a relation < as specified in Exercise (i) at the end of this section.

Program 3.8a illustrates the direct translation of a mathematical definition, which is a logical statement, into a logic program. The program corresponds to an existential definition of the integer remainder: “Z is the value of X mod Y if Z is strictly less than Y, and there exists a number Q such that X = Q · Y + Z. In general, mathematical definitions are easily translated to logic programs.

We can relate Program 3.8a to constructive mathematics. Although seemingly an existential definition, it is also constructive, because of the constructive nature of <, plus, and times. The number Q, for example, proposed in the definition will be explicitly computed by times in any use of mod.

Recursive Programming

\[\text{mod}(X, Y, Z) = \]
Z is the remainder of the integer division of X by Y.
\[\text{mod}(X, Y, Z) = Z < Y \land \text{times}(Y, Q, Y) + \text{plus}(Y, Z, X). \]

Program 3.8a A nonrecursive definition of modulus

\[\text{mod}(X, Y, Z) = \]
Z is the remainder of the integer division of X by Y.
\[\text{mod}(X, Y, Z) = \text{plus}(X, Y, X), \text{mod}(X, Y, Z). \]

Program 3.8b A recursive definition of modulus

In contrast to Program 3.8a, Program 3.8b is defined recursively. It constitutes an algorithm for finding the integer remainder based on repeated subtraction. The first rule says that X mod Y is X if X is strictly less than Y. The second rule says that the value of X mod Y is the same as X - Y mod Y. The effect of any computation to determine the modulus is to repeatedly subtract Y from X until it becomes less than Y and hence is the correct value.

The mathematical function X mod Y is not defined when Y is zero. Neither Program 3.8a nor Program 3.8b has goal \(\text{mod}(X, Y, Z) \) in its meaning for any values of X or Z. The test of < guarantees that.

The computational model gives a way of distinguishing between the two programs for mod. Given a particular X, Y, and Z satisfying mod, we can compare the sizes of their proof trees. In general, proof trees produced with Program 3.8b will be smaller than those produced with Program 3.8a. In that sense Program 3.8b is more efficient. We defer more rigorous discussions of efficiency till the discussions on lists, where the insights gained will carry over to Prolog programs.

Another example of translating a mathematical definition directly into a logic program is writing a program that defines Ackermann's function. Ackermann’s function is the simplest example of a recursive function that is not primitive recursive. It is a function of two arguments, defined by three cases:

\[\text{ackermann}(0, N) = N + 1. \]
\[\text{ackermann}(M, 0) = \text{ackermann}(M - 1, 1). \]
\[\text{ackermann}(M, N) = \text{ackermann}(M - 1, \text{ackermann}(M, N - 1)). \]
Chapter 3

\[
\text{ackermann}(X,Y,A) \quad \text{--} \quad A \text{ is the value of Ackermann's function for the natural numbers } X \text{ and } Y.
\]
\[
\text{ackermann}(0,N,0) \quad \text{--} \quad \text{ackermann}(M,0,0) \quad \text{--} \quad \text{ackermann}(M,s(0),0).
\]
\[
\text{ackermann}(s(N),0,0) \quad \text{--} \quad \text{ackermann}(s(N),s(0),0).
\]
\[
\text{ackermann}(s(M),s(N),0) \quad \text{--} \quad \text{ackermann}(s(M),s(N),s(Va1),s(Va2),s(Va3),s(Va4),s(Va5),s(Va6)).
\]

Program 3.9 Ackermann's function

\[
\text{gcd}(X,Y,Z) \quad \text{--} \quad Z \text{ is the greatest common divisor of the natural numbers } X \text{ and } Y.
\]
\[
\text{gcd}(X,Y,Gcd) \quad \text{--} \quad \text{gcd}(X,Y,Z,Gcd) \quad \text{--} \quad \text{gcd}(X,Y,Gcd) \quad \text{--} \quad X > 0.
\]

Program 3.10 The Euclidean algorithm

Program 3.9 is a translation of the functional definition into a logic program. The predicate \text{ackermann}(M,N,A) denotes that \text{ackermann}(M,N). The third rule involves two calls to Ackermann's function, one to compute the value of the second argument. The functional definition of Ackermann's function is clearer than the relational one given in Program 3.9. In general, functional notation is more readable for pure functional definitions, such as Ackermann's function and the factorial function (Program 3.6). Expressing constraints can also be awkward with relational logic programs. For example, Program 3.8a says less directly that \(X = Q \cdot Y + Z\).

The final example in this section is the Euclidean algorithm for finding the greatest common divisor of two natural numbers, recast as a logic program. Like Program 3.8b, it is a recursive program not based on the recursive structure of numbers. The relation scheme is \text{gcd}(X,Y,Z), with intended meaning that \(Z\) is the greatest common divisor (or gcd) of two natural numbers \(X\) and \(Y\). It uses either of the two programs, 3.8a or 3.8b, for \text{gcd}.

The first rule in Program 3.10 is the logical essence of the Euclidean algorithm. The gcd of \(X\) and \(Y\) is the same as the gcd of \(Y\) and \(X \mod Y\). A proof that Program 3.10 is correct depends on the correctness of the above mathematical statement about greatest common divisors. The proof that the Euclidean algorithm is correct similarly rests on this result.

The second fact in Program 3.10 is the base fact. It must be specified that \(X\) is greater than 0 to preclude \(\text{gcd}(0,0,0,0)\) from being in the meaning. The \(\text{gcd}\) of 0 and 0 is not well defined.

3.1.1 Exercises for Section 3.1

(i) Modify Program 3.2 for \(<\) to axiomatize the relations \(<\), \(\leq\), and \(\geq\). Discuss multiple uses of these programs.

(ii) Prove that Program 3.2 is a correct and complete axiomatization of \(<\).

(iii) Prove that a proof tree for the query \(\text{gcd}(s(0),s(0),s(0)),s(0))\) using Program 3.2 has \(m + 2\) nodes.

(iv) Define predicates \(\text{even}(X)\) and \(\text{odd}(X)\) for determining if a natural number is even or odd. (Hint: Modify Program 3.1 for natural number.)

(v) Write a logic program defining the relation \(\text{fib}(N,F)\) to determine the \(N\)th Fibonacci number \(F\).

(vi) The predicate \(\text{times}\) can be used for computing exact quotients with queries such as \(\text{times}(s(s(0)),X,s(s(s(0)))))\) to find the result of \(4\) divided by \(2\). The query \(\text{times}(s(s(0)),X,s(s(0))))\) to find \(3/2\) has no solution. Many applications require the use of integer division that would calculate \(3/2\) to be \(1\). Write a program to compute integer quotients. (Hint: Use repeated subtraction.)

(vii) Modify Program 3.10 for finding the \(\text{gcd}\) of two integers so that it performs repeated subtraction directly rather than use the mod function. (Hint: The program repeatedly subtracts the smaller number from the larger number until the two numbers are equal.)

(viii) Rewrite the logic programs in Section 3.1 using a different representation of natural numbers, namely as a sum of 1's. For example, the modified version of Program 3.1 would be
natural_number(1).
natural_number(+X) = natural_number(X).

Note that + is used as a binary operator, and 0 is not defined to be
a natural number.

3.2 Lists

The basic structure for arithmetic is the unary successor functor. Al-
though complicated recursive functions such as Ackermann’s function
can be defined, the use of a unary recursive structure is limited. This sec-
tion discusses the binary structure, the list.

The first argument of a list holds an element, and the second argument
is recursively the rest of the list. Lists are sufficient for most computa-
tions — attested to by the success of the programming language Lisp,
which has lists as its basic compound data structure. Arbitrarily complex
structures can be represented with lists, though it is more convenient to
use different structures when appropriate.

For lists, as for numbers, a constant symbol is necessary to terminate
recursion. This “empty list,” referred to as nil, will be denoted here by
the symbol {} . We also need a functor of arity 2. Historically, the usual
functor for lists is "\cdot" (pronounced dot), which overloads the use of the
period. It is convenient to define a separate, special syntax. The term
\(\langle X \rangle \) is denoted \([X]\). Its components have special names: \(X \) is called
the head and \(Y \) is called the tail.

The term \([X]\) corresponds to a cons pair in Lisp. The corresponding
words for head and tail are, respectively, car and cdr.

Figure 3.2 illustrates the relation between lists written with different
syntaxes. The first column writes lists with the dot functor, and is the
way lists are considered as terms in logic programs. The second column
gives the square bracket equivalent of the dot syntax. The third column
is an improvement upon the syntax of the second column, essentially
hiding the recursive structure of lists. In this syntax, lists are written
as a sequence of elements enclosed in square brackets and separated
by commas. The empty list used to terminate the recursive structure is
suppressed. Note the use of “cons pair notation” in the third column
when the list has a variable tail.

Recursive Programming

<table>
<thead>
<tr>
<th>Formal object</th>
<th>Cons pair syntax</th>
<th>Element syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>(.(a, b))</td>
<td>([a, b])</td>
<td>(a)</td>
</tr>
<tr>
<td>(.(a, b, c))</td>
<td>([a, b, c])</td>
<td>(a, b, c)</td>
</tr>
<tr>
<td>(.aX)</td>
<td>([a])</td>
<td>(a)</td>
</tr>
<tr>
<td>(.(a, b, X))</td>
<td>([a, b, X])</td>
<td>(a, b X)</td>
</tr>
</tbody>
</table>

Figure 3.2 Equivalent forms of lists

\(\text{list}(X) \) = \
\(X \) is a list.
\(\text{list}([X]\)) \text{list}(X) \).

Program 3.11 Defining a list

Terms built with the dot functor are more general than lists. Program
3.11 defines a list precisely. Declaratively it reads: “A list is either the
empty list or a cons pair whose tail is a list.” The program is analogous
to Program 3.1 defining natural numbers, and is the simple type definition
of lists.

Figure 3.3 gives a proof tree for the goal \(\text{list}(\langle a, b, c \rangle) \). Implicit in the
proof tree are ground instances of rules in Program 3.11, for example,
\(\text{list}(\langle a, b, c \rangle) \rightarrow \text{list}(\langle b, c \rangle) \). We specify the particular instance here
explicitly, as instances of lists in cons pair notation can be confusing.\(\langle a, b, c \rangle \) is an instance of \(\text{list}(X) \) under the substitution \(X = [\langle a, b, c \rangle] \).

Because lists are richer data structures than numbers, a great variety
of interesting relations can be specified with them. Perhaps the most basic
operation with lists is determining whether a particular element is in
a list. The predicate expressing this relation is \(\text{member}(\text{Element}, \text{List}) \).

Program 3.12 is a recursive definition of \(\text{member}/2 \).

Declaratively, the reading of Program 3.12 is straightforward. \(X \) is an
element of a list if it is the head of the list by the first clause, or if it
is a member of the tail of the list by the second clause. The meaning
of the program is the set of all ground instances \(\text{member}(X, X) \), where
Recursive Programming

(prefix(Prefix, List) → Prefix is a prefix of List.

prefix([], Xa) → prefix(Xa, Xa).

prefix([Xa], [Xa Xa]) → prefix(Xa, Xa).

suffix(Suffix, List) → Suffix is a suffix of List.

suffix(Xa, Xa) → suffix(Xa, Xa).

suffix([Xa Xa], [Xa Xa Xa]) → suffix(Xa, Xa).

Program 3.13 Prefixes and suffixes of a list

Our next example is a predicate sublist(Sub, List) for determining whether Sub is a sublist of List. A sublist needs the elements to be consecutive: [b, c] is a sublist of [a, b, c, d], whereas [a, c] is not.

It is convenient to define two special cases of sublists to make the definition of sublist easier. It is good style when composing logic programs to define meaningful relations as auxiliary predicates. The two cases considered are initial sublists, or prefixes, of a list, and terminal sublists, or suffixes, of a list. The programs are interesting in their own right.

The predicate prefix(Prefix, List) is true if Prefix is an initial sublist of List, for example, prefix([a, b], [a, b, c]) is true. The companion predicate to prefix is suffix(Suffix, List), determining if Suffix is a terminal sublist of List. For example, suffix([b, c], [a, b, c]) is true. Both predicates are defined in Program 3.13. A type condition expressing that the variables in the base facts are lists should be added to the base fact in each predicate to give the correct meaning.

An arbitrary sublist can be specified in terms of prefixes and suffixes: namely, as a suffix of a prefix, or as a prefix of a suffix. Program 3.14a expresses the logical rule that Xs is a sublist of Ys if there exists Ps such that Ps is a prefix of Ys and Xs is a suffix of Ps. Program 3.14b is the dual definition of a sublist as a prefix of a suffix.

The predicate prefix can also be used as the basis of a recursive definition of sublist. This is given as Program 3.14c. The base rule reads that a prefix of a list is a sublist of a list. The recursive rule reads that the sublist of a tail of a list is a sublist of the list itself.

The predicate member can be viewed as a special case of sublist defined by the rule

member(X, Xs) → sublist([X], Xs).

X is an element of Xs. We omit the type condition in the first clause. Alternatively, it would be written

member(X, [X] Xs) → list(Xs).

This program has many interesting applications, to be revealed throughout the book. Its basic uses are checking whether an element is in a list with a query such as member(b, [a, b, c])?, finding an element of a list with a query such as member(X, [a, b, c])?, and finding a list containing an element with a query such as member(b, X) ?. This last query may seem strange, but there are programs that are based on this use of member.

We use the following conventions wherever possible when naming variables in programs involving lists. If X is used to denote the head of a list, then Xs will denote its tail. More generally, plural variable names will denote lists of elements, and singular names will denote individual elements. Numerical suffixes will denote variants of lists. Relation schemes will still contain mnemonic names.

Program 3.12 Membership of a list

member(Element, List) → Element is an element of the list List.

member(X, [X] Xs) → member(X, Xs).

member(X, [Y] Xs) → member(X, Xs).

Figure 3.3 Proof tree verifying a list

list([a, b, c])

list([b, c])

list([c])

list([])

list([X])
Chapter 3

sublist(Sub.List) --
Sub is a sublist of List.
 a: Suffix of a prefix
 sublist(Xs, Ys) = prefix(Ps, Ys), suffix(Xs, Ps).
 b: Prefix of a suffix
 sublist(Xs, Ys) = prefix(Xs, Os), suffix(Ss, Ys).
 c: Recursive definition of a sublist
 sublist(Xs, Ys) = prefix(Xs, Ys),
 sublist(Xs, Ys) = sublist(Xo, Yo).
 d: Prefix of a suffix, using append
 sublist(Xs, AnXs) =
 append(As, Xs, XnAs), append(Xs, AnXs).
 e: Suffix of a prefix, using append
 sublist(Xs, AnXs) =
 append(As, Xs, AnXs), append(As, XnAnX).

Program 3.14 Determining sublists of lists

append(Xs, Ys, XsYs) --
XsYs is the result of concatenating
the lists Xs and Ys.
append([], Ps, Ys),
append([Xs], Ys, [XsYs]) = append(Xs, Ys, Zs).

Program 3.15 Appending two lists

The basic operation with lists is concatenating two lists to give a third.
This defines a relation, append(Xs, Ys, Zs), between two lists Xs, Ys
and the result Zs of joining them together. The code for append, Pro-
gram 3.15, is identical in structure to the basic program for combining
two numbers, Program 3.3 for plus.

Figure 3.4 gives a proof tree for the goal append([a, b], [c, d], [a, b, c, d]).
The tree structure suggests that its size is linear in the size of the
first list. In general, if Xs is a list of n elements, the proof tree for
append(Xs, Ys, Zs) has n + 1 nodes.

There are multiple uses for append similar to the multiple uses for
plus. The basic use is to concatenate two lists by posing a query such

Recursive Programming

append([a, b, c, d], [a, b, c, d])

append([b, c, d], [b, c, d])

append([], [c, d], [c, d])

Figure 3.4 Proof tree for appending two lists

as append([a, b, c], [d, e], Xs) with answer Xs = [a, b, c, d, e]. A query
such as append(Xs, [c, d], [a, b, c, d]) finds the difference Xs = [a, b]
between the lists [c, d] and [a, b, c, d]. Unlike plus, append is not sym-
metric in its first two arguments, and thus there are two distinct versions
of finding the difference between two lists.
The analogous process to partitioning a number is splitting a list. The
query append(As, Bs, [a, b, c, d])?, for example, asks for lists As and Bs
such that appending Bs to As gives the list [a, b, c, d]. Queries about
splitting lists are more interesting by partially specifying the na-
ture of the split lists. The predicates member, sublist, prefix, and suf-
fix, introduced previously, can all be defined in terms of append by
viewing the process as splitting a list.
The most straightforward definitions are for prefix and suffix, which
just specify which of the two split pieces are of interest:

prefix(Xs, Ys) = append(Xs, As, Ys).
suffix(Xs, Ys) = append(As, Xs, Ys).

Sublist can be written using two append goals. There are two distinct
variants, given as Programs 3.14d and 3.14e. These two programs are
obtained from Programs 3.14a and 3.14b, respectively, where prefix and
suffix are replaced by append goals.
Member can be defined using append, as follows:

member(X, Ys) = append(As, [X|Xs], Ys).

This says that X is a member of Ys if Ys can be split into two lists where
X is the head of the second list.
reverse(List, Tail) →
 Tail is the result of reversing the list List.

a: Naive reverse
 reverse([], []). reverse([X|Xs], Zs) ← reverse(Xs, Ys), append(Ys, [X|Zs]).

b: Reverse-accumulate
 reverse(X, Ys) ← reverse([], []). reverse(Xs, Acc, Ys).
 reverse([X|Xs], Acc, Ys) ← reverse(Xs, Acc, Ys), reverse([X|Acc], Ys).

Program 3.16 Reversing a list

A similar rule can be written to express the relation adjacent(X, Y, Zs)
that two elements X and Y are adjacent in a list Zs:
adjacent(X, Y, Zs) ← append(Xs, [X, Y|Zs], Zs).

Another relation easily expressed through append is determining
the last element of a list. The desired pattern of the second argument to
append, a list with one element, is built into the rule:
last(X, Xs) ← append(Xs, [X|Xs]).

Repeated applications of append can be used to define a predicate
reverse(List, Tail). The intended meaning of reverse is that Tail is a
list containing the elements in the list List in reverse order to how they
appear in List. An example of a goal in the meaning of the program is
reverse([a, b, c], [c, b, a]). The naive version, given as Program 3.16a,
is the logical equivalent of the recursive formulation in any language;
recursively reverse the tail of the list, and then add the first element at
the back of the reversed tail.

There is an alternative way of defining reverse without calling append
directly. We define an auxiliary predicate reverse(Xs, Ys, Zs), which is
ture if Zs is the result of appending Ys to the elements of Xs reversed.
It is defined in Program 3.16b. The predicate reverse/3 is related to
reverse/2 by the first clause in Program 3.16b.

Program 3.16b is more efficient than Program 3.16a. Consider Fig-
ure 3.5, showing proof trees for the goal reverse([a, b, c], [c, b, a]) using
both programs. In general, the size of the proof tree of Program 3.16a

Figure 3.5 Proof trees for reversing a list
length([X,N]) ←
 The list X has N elements.
 length([[],0]).
 length([X|Xa],s(N)) ← length(X,N).

Program 3.17: Determining the length of a list

is quadratic in the number of elements in the list to be reversed, while
that of Program 3.16b is linear.

The insight in Program 3.16b is the use of a better data structure for
representing the sequence of elements, which we discuss in more detail
in Chapters 7 and 15.

The final program in this section, Program 3.17, expresses a relation
between numbers and lists, using the recursive structure of each.

The predicate length(X,N) is true if X is a list of length N, that is,
contains N elements, where N is a natural number. For example,
length([s(a),b],s(s(0)))) or length([a,b],s(s(0)))) or length([a,b],s(s(0))))

Let us consider the multiple uses of Program 3.17. The query length
([a,b],X) computes the length, 2, of a list [a,b]. In this way, length
is regarded as a function of a list, with the functional definition

length([]) = 0
length([X|X]) = s(length(X)).

The query length([a,b],s(s(0))))? checks whether the list [a,b] has
length 2. The query length([X,s(s(0)))? generates a list of length 2
with variables for elements.

3.2.1 Exercises for Section 3.2

(i) A variant of Program 3.14 for sublist is defined by the following three rules:

subsequence([X|X1], [X|Y1]?) ← subsequence(X1,Y1). subsequence(X, [Y|Y1]) ← subsequence(X,Y1). subsequence([], [Y1]).

Explain why this program has a different meaning from Program 3.14.

(ii) Write recursive programs for adjacent and last that have the same
meaning as the predicates defined in the text in terms of append.

(iii) Write a program for double(List,ListList), where every element
in List appears twice in ListList, e.g., double([1,2,3],[1,1,2,2,3,3]) is true.

(iv) Compute the size of the proof tree as a function of the size of
the input list for Programs 3.16a and 3.16b defining reverse.

(v) Define the relation sum(ListOfIntegers, Sum), which holds if Sum
is the sum of the ListOfIntegers.

(a) Using plus/3;
(b) Without using any auxiliary predicate.

(Hint: Three axioms are enough.)

3.3 Composing Recursive Programs

No explanation has been given so far about how the example logic pro-
grams have been composed. The composition of logic programs is a skill
that can be learned by apprenticeship or osmosis, and most definitely by
practice. For simple relations, the best axiomatizations have an aesthetic
elegance that look obviously correct when written down. Through solv-
ing the exercises, the reader may find, however, that there is a difference
between recognizing and constructing elegant logic programs.

This section gives more example programs involving lists. Their pre-
sentation, however, places more emphasis on how the programs might be
composed. Two principles are illustrated: how to blend procedural and
declarative thinking, and how to develop a program top-down.

We have shown the dual reading of clauses: declarative and procedural.
How do they interrelate when composing logic programs? Pragmatically,
one thinks procedurally when programming. However, one thinks declar-
atively when considering issues of truth and meaning. One way to blend
them in logic programming is to compose procedurally and then inter-
pret the result as a declarative statement. Construct a program with a
given use in mind; then consider if the alternative uses make declarative sense. We apply this to a program for deleting elements from a list.

The first, and most important, step is to specify the intended meaning of the relation. Clearly, three arguments are involved when deleting elements from a list: an element \(X \) to be deleted, a list \(L_1 \) that might have occurrences of \(X \), and a list \(L_2 \) with all occurrences of \(X \) deleted. An appropriate relation scheme is \(\text{delete}(L_1, X, L_2) \). The natural meaning is all ground instances where \(L_2 \) is the list \(L_1 \) with all occurrences of \(X \) removed.

When composing the program, it is easiest to think of one specific use. Consider the query \(\text{delete}(\{a, b, c, b\}, b, X) \), a typical example of finding the result of deleting an element from a list. The answer here is \(X = \{a, c\} \). The program will be recursive on the first argument. Let’s don our procedural thinking caps.

We begin with the recursive part. The usual form of the recursive argument for lists is \(X(Xs) \). There are two possibilities to consider, one where \(X \) is the element to be deleted, and one where it is not. In the first case, the result of recursively deleting \(X \) from \(Xs \) is the desired answer to the query. The appropriate rule is

\[
delete((X)(Xs), X, Ys) \rightarrow \text{delete}(Xs, X, Ys).\]

Switching hats, the declarative reading of this rule is: "The deletion of \(X \) from \(X(Xs) \) is \(Ys \) if the deletion of \(X \) from \(Xs \) is \(Ys \)." The condition that the head of the list and the element to be deleted are the same is specified by the shared variable in the head of the rule.

The second case where the element to be deleted is different from \(X \), the head of the list, is similar. The result required is a list whose head is \(X \) and whose tail is the result of recursively deleting the element. The rule is

\[
delete((X)(Xs), Z, (X)(Ys)) \rightarrow X + Z, \text{delete}(Xs, Z, Ys).\]

The rule’s declarative reading is: "The deletion of \(Z \) from \(X(Xs) \) is \(X(Ys) \) if \(Z \) is different from \(X \) and the deletion of \(Z \) from \(Xs \) is \(Ys \)." In contrast to the previous rule, the condition that the head of the list and the element to be deleted are different is made explicit in the body of the rule.

The base case is straightforward. No elements can be deleted from the empty list, and the required result is also the empty list. This gives the

\[
\text{fact delete([], X, []).} \quad \text{The complete program is collected together as Program 3.18.}
\]

Let us review the program we have written, and consider alternative formulations. Omitting the condition \(X \neq Z \) from the second rule in Program 3.18 gives a variant of delete. This variant has a less natural meaning, since any number of occurrences of an element may be deleted. For example, \(\text{delete}(\{a, b, c, b\}, b, \{a, c\}) \), \(\text{delete}(\{a, b, c, b\}, b, \{a, c, b\}) \), \(\text{delete}(\{a, b, c, b\}, b, \{a, c\}) \), and \(\text{delete}(\{a, b, c, b\}, b, \{a, b, \ c, b\}) \) are all in the meaning of the variant.

Both Program 3.18 and the variant include in their meaning instances where the element to be deleted does not appear in either list, for example, \(\text{delete}(\{a\}, b, \{a\}) \) is true. There are applications where this is not desired. Program 3.19 defines \(\text{select}(X, L_1, L_2) \), a relation that has a different approach to elements not appearing in the list. The meaning of \(\text{select}(X, L_1, L_2) \) is all ground instances where \(L_2 \) is the list \(L_1 \) where exactly one occurrence of \(X \) has been removed. The declarative reading of Program 3.19 is: "\(X \) is selected from \(X(Xs) \) to give \(Xs \) or \(X \) is selected from \(Y(Ys) \) to give \(Ys \)."

A major thrust in programming has been the emphasis on a top-down design methodology, together with stepwise refinement. Loosely, the
Chapter 3

One methodology is to state the general problem, break it down into subproblems, and then solve the pieces. A top-down programming style is one natural way for composing logic programs. Our description of programs throughout the book will be mostly top-down. The rest of this section describes the composition of two programs for sorting a list: permutation sort and quicksort. Their top-down development is stressed.

A logical specification of sorting a list is finding an ordered permutation of a list. This can be written down immediately as a logic program. The basic relation scheme is sort(Xs, Ys), where Ys is a list containing the elements in Xs sorted in ascending order:

\[
\text{sort}(Xs, Ys) \leftarrow \text{permutation}(Xs, Ys), \text{ordered}(Ys).
\]

The top-level goal of sorting has been decomposed. We must now define permutation and ordered.

Testing whether a list is ordered ascendingly can be expressed in the two clauses that follow. The fact says that a list with a single element is necessarily ordered. The rule says that a list is ordered if the first element is less than or equal to the second, and if the rest of the list, beginning from the second element, is ordered:

\[
\begin{align*}
\text{ordered}([X]). \\
\text{ordered}([X, Y|Ys]) & \leftarrow X \leq Y, \text{ordered}([Y|Ys]).
\end{align*}
\]

A program for permutation is more delicate. One view of the process of permuting a list is selecting an element nondeterministically to be the first element of the permuted list, then recursively permuting the rest of the list. We translate this view into a logic program for permutation, using Program 3.19 for select. The base fact says that the empty list is its own unique permutation:

\[
\begin{align*}
\text{permutation}(Xs, [Z|Zs]) & \leftarrow \text{select}(Z, Xs, Ys), \text{permutation}(Ys, Zs). \\
\text{permutation}([], []).
\end{align*}
\]

Another procedural view of generating permutations of lists is recursively permuting the tail of the list and inserting the head in an arbitrary position. This view also can be encoded immediately. The base part is identical to the previous version:

\[
\begin{align*}
\text{permutation}([X|Xs], Zs) & \leftarrow \text{permutation}(Xs, Ys), \text{insert}(X, Ys, Zs). \\
\text{permutation}([], []).
\end{align*}
\]

Recursive Programming

\[
\begin{align*}
\text{sort}(Xs, Ys) & \leftarrow \text{permutation}(Xs, Ys), \text{ordered}(Ys). \\
\text{permutation}(Xs, [Z|Zs]) & \leftarrow \text{select}(Z, Xs, Ys), \text{permutation}(Ys, Zs). \\
\text{permutation}([], []). \\
\text{ordered}([]). \\
\text{ordered}([X]). \\
\text{ordered}([X, Y|Ys]) & \leftarrow X \leq Y, \text{ordered}([Y|Ys]).
\end{align*}
\]

Program 3.20 Permutation sort

The predicate insert can be defined in terms of Program 3.19 for select:

\[
\begin{align*}
\text{insert}(X, Ys, Zs) & \leftarrow \text{select}(X, Zs, Ys). \\
\text{insert}(X, Zs, Ys) & \leftarrow \text{select}(X, Zs, Ys).
\end{align*}
\]

Both procedural versions of permutation have clear declarative readings.

The “naive” sorting program, which we call permutation sort, is collected together as Program 3.20. It is an example of the generate-and-test paradigm, discussed fully in Chapter 14. Note the addition of the extra base case for ordered so that the program behaves correctly for empty lists.

The problem of sorting lists is well studied. Permutation sort is not a good method for sorting lists in practice. Much better algorithms come from applying a “divide and conquer” strategy to the task of sorting. The insight is to sort a list by dividing it into two pieces, recursively sorting the pieces, and then joining the two pieces together to give the sorted list. The methods for dividing and joining the lists must be specified. There are two extreme positions. The first is to make the dividing hard, and the joining easy. This approach is taken by the quicksort algorithm. The second position is making the joining hard, but the dividing easy. This is the approach of merge sort, which is posed as Exercise (v) at the end of this section, and insertion sort, shown in Program 3.21.

In insertion sort, one element (typically the first) is removed from the list. The rest of the list is sorted recursively; then the element is inserted, preserving the orderedness of the list.

The insight in quicksort is to divide the list by choosing an arbitrary element in it, and then to split the list into the elements smaller than the
sort(Xs,Ys) :-
 The list Ys is an ordered permutation of the list Xs.
sort([X],[Y],Ye) :- sort(Xs,Zs), insert(X,Zs,Ys).
insert([X1|X],Y) :- X > Y, insert(X,Y,Z).
insert([X1|X],Y,Z) :- X =< Y, insert(X,Z,Y).

Program 3.21 Insertion sort

quicksort(Xs,Ys) :-
 The list Ys is an ordered permutation of the list Xs.
quicksort([X1|Xs],Ys) :-
 partition(Xs,X,bs);,
quicksort(littles,ls),
quicksort(biggs,bs),
append(ls,bs,Xs).quicksort([],Ys).

partition([X1|Xs],Y,bs) :- X > Y, partition(Xs,Y,ls,bs).
partition([X1|Xs],Y,ls,bs) :- X =< Y, partition(Xs,Y,ls,bs).

Program 3.22 Quicksort

chosen element and the elements larger than the chosen element. The
sorted list is composed of the smaller elements, followed by the chosen
element, and then the larger elements. The program we describe chooses
the first element of the list as the basis of partition.
Program 3.22 defines the quicksort algorithm. The recursive rule for
quicksort reads: "Ye is a sorted version of [X1|Xs] if Littles and Bigs
are a result of partitioning Xs according to X; Ls and Bs are the result of
sorting Littles and Bigs recursively; and Ys is the result of appending
[X1|Xs] to Ls."
Partitioning a list is straightforward, and is similar to the program for
deleting elements. There are two cases to consider: when the current
head of the list is smaller than the element being used for the partition-
ning, and when the head is larger than the partitioning element. The
declarative reading of the first partition clause is: "Partitioning a list
whose head is X and whose tail is Xs according to element Y gives the
lists [X,littles] and Bigs if Y is less than or equal to T, and partitioning
Xs according to T gives the lists Littles and Bigs." The second clause
for partition has a similar reading. The base case is that the empty list
is partitioned into two empty lists.

3.3.1 Exercises for Section 3.3

(i) Write a program for substitute(X,Y,1,2), where l2 is the
result of substituting Y for all occurrences of X in L1, e.g.,
substitute(a,X,[A,B,C],[X,B,C]) is true, whereas sub-
stitute(a,X,[A,B,C],[X,B,X]) is false.

(ii) What is the meaning of the variant of select:
 select(X,[X1|Xs]),
 select(X, Ys, [Y1|Ys]) :- X = Y,
 select(Xs,Ys, Zs).

(iii) Write a program for no_doubles(L1,L2), where L2 is the result of
 removing all duplicate elements from L1, e.g.,
o_doubles([a,b,c,b],[a,b,c]) is true. (Hint: Use member.)

(iv) Write programs for even_permutation(Xs,Ys) and odd_permu-
tation(Xs,Ys) that find Ys, the even and odd permutations, re-
spectively, of a list Xs. For example, even_permutation([1,2,3],[2,3,
1]) and odd_permutation([1,2,3],[2,1,3]) are true.

(v) Write a program for merge sort.

(vi) Write a logic program for kth_largest(Xs,K) that implements the
 linear algorithm for finding the kth largest element K of a list Xs.
The algorithm has the following steps:
Break the list into groups of five elements.
Efficiently find the median of each of the groups, which can be done
with a fixed number of comparisons.
Recursively find the median of the medians.
Partition the original list with respect to the median of medians.
Recursively find the kth largest element in the appropriate smaller list.
Chapter 3

Write a program for the relation better_poker_hand(Hand1, Hand2, Hand) that succeeds if Hand is the better poker hand between Hand1 and Hand2. For those unfamiliar with this card game, here are some rules of poker necessary for answering this exercise:

(a) The order of cards is 2, 3, 4, 5, 6, 7, 8, 9, 10, jack, queen, king, ace.
(b) Each hand consists of five cards.
(c) The rank of hands in ascending order is no pairs < one pair < two pairs < three of a kind < flush < straight < full house < four of a kind < straight flush.
(d) Where two cards have the same rank, the higher denomination wins, for example, a pair of kings beats a pair of 7's.

(Hints: (1) Represent a poker hand by a list of terms of the form card(Suit,Value). For example a hand consisting of the 2 of clubs, the 5 of spades, the queen of hearts, the queen of diamonds, and the 7 of spades would be represented by the list [card(clubs,2),card(spades,5),card(hearts,queen),card(diamonds,queen),card(spades,7)]. (2) It may be helpful to define relations such as has_flush(Hand), which is true if all the cards in Hand are of the same suit; has_full_house(Hand), which is true if Hand has three cards with the same value but in different suits, and the other two cards have the same different value; and has_straight(Hand), which is true if Hand has cards with consecutive values. (3) The number of cases to consider is reduced if the hand is first sorted.)

3.4 Binary Trees

We next consider binary trees, another recursive data type. These structures have an important place in many algorithms. Binary trees are represented by the ternary functor tree(Element, Left, Right), where Element is the element at the node, and Left and Right are the left and right subtrees respectively. The empty tree is represented by the atom void. For example, the tree

Recursive Programming

```prolog
a
/ \  
b c
```

would be represented as
tree(a,tree(b,void,void),tree(c,void,void)).

Logic programs manipulating binary trees are similar to those manipulating lists. As with natural numbers and lists, we start with the type definition of binary trees. It is given as Program 3.23. Note that the program is doubly recursive; that is, there are two goals in the body of the recursive rule with the same predicate as the head of the rule. This results from the doubly recursive nature of binary trees and will be seen also in the rest of the programs of this section.

Let us write some tree-processing programs. Our first example tests whether an element appears in a tree. The relation scheme is tree_member(Element,Tree). The relation is true if Element is one of the nodes in the tree. Program 3.24 contains the definition. The declarative reading of the program is: "X is a member of a tree if it is the element at the node (by the fact) or if it is a member of the left or right subtree (by the two recursive rules)."

The two branches of a binary tree are distinguishable, but for many applications the distinction is not relevant. Consequently, a useful concept

```prolog
binary_tree(Tree) :-
  Tree is a binary tree.
  binary_tree(void).
  binary_tree(tree(Element,Left,Right)) :-
    binary_tree(Left), binary_tree(Right).
```

Program 3.23 Defining binary trees

```prolog
tree_member(Element,Tree) :-
  Element is an element of the binary tree Tree.
  tree_member(I,tree(X,Left,Right)).
```

Program 3.24 Testing tree membership
is isomorphism, which defines when unordered trees are essentially the same. Two binary trees T_1 and T_2 are isomorphic if T_2 can be obtained by reordering the branches of the subtrees of T_1. Figure 3.6 shows three simple binary trees. The first two are isomorphic: the first and the third are not.

Isomorphism is an equivalence relation with a simple recursive definition. Two empty trees are isomorphic. Otherwise, two trees are isomorphic if they have identical elements at the node and either both the left subtrees or both the right subtrees are isomorphic; or the left subtree of one is isomorphic with the right subtree of the other and the two other subtrees are isomorphic.

Program 3.25 defines a predicate $\text{isotree}(\text{Tree}_1, \text{Tree}_2)$, which is true if Tree_1 and Tree_2 are isomorphic. The predicate is symmetric in its arguments.

Programs related to binary trees involve double recursion, one for each branch of the tree. The double recursion can be manifest in two ways. Programs can have two separate cases to consider, as in Program 3.24 for tree_member. In contrast, Program 3.12 testing membership of a list has only one recursive case. Alternatively, the body of the recursive clause has two recursive calls, as in each of the recursive rules for isotree in Program 3.25.
Chapter 3

preorder(Tree,Pre) –
Pre is a preorder traversal of the binary tree Tree.
preorder(tree(X,L,R),Xa) –
preorder(L,Lo), preorder(R,Ro), append([X][a],Lo, Ro).
preorder(void,[]).

inorder(Tree,In) –
In is an inorder traversal of the binary tree Tree.
inorder(tree(X,L,R),Xa) –
inorder(L,Lo), inorder(R,Ro), append([X][a][r][l],Lo, Ro).
inorder(void,[]).

postorder(Tree,Post) –
Post is a postorder traversal of the binary tree Tree.
postorder(tree(X,L,R),Xa) –
postorder(L,Lo),
postorder(R,Ro),
append([X][r][l],Lo, Ro).
postorder(void,[]).

Program 3.27 Traversals of a binary tree

the shape of the tree is preserved and the heap property is satisfied. An
example tree and its heapified equivalent are shown in Figure 3.7.

An algorithm for heapifying the elements of a binary tree so that the
heap property is satisfied is easily stated recursively. Heapify the left
and right subtrees so that they both satisfy the heap property and then
adjust the element at the root appropriately. Program 3.28 embodies this
algorithm. The relation heapify/2 lays out the doubly recursive pro-
gram structure, and adjust(X,HeapL,HeapR,Heap) produces the final
tree Heap satisfying the heap property from the root value X and the left
and right subtrees HeapL and HeapR satisfying the heap property.

There are three cases for adjust/4 depending on the values. If the root
value is larger than the root values of the left and right subtrees, then
the heap is tree(X,HeapL,HeapR). This is indicated in the first adjust
clause in Program 3.28. The second clause handles the case where the
root node in the left heap is larger than the root node and the root of the
right heap. In that case, the adjustment proceeds recursively on the left
heap. The third clause handles the symmetric case where the root node
of the right heap is the largest. The code is simplified by relegateing
the concern whether the subtree is empty to the predicate greater/2.

Recursive Programming

heapify(Tree,Heap) –
The elements of the complete binary tree Tree have been adjusted
to form the binary tree Heap, which has the same shape as Tree and
satisfies the heap property that the value of each parent node is
greater than or equal to the values of its children.

heapify(void,void).
heapify(tree(X,L,R),Heap) –
heapify(L,HeapL), heapify(R,HeapR), adjust(X,HeapL,HeapR,Heap).

adjust(X,HeapL,HeapR,tree(X,HeapL,HeapR)) –
greater(X,HeapL), greater(X,HeapR).
adjust(X,tree(X,L,R),HeapL,tree(X,HeapL,HeapR)) –
X < X1, greater(X1,HeapL), adjust(X,L,HeapL,Heap).
adjust(X,HeapL,tree(X,L,R),tree(X,HeapL,HeapR)) –
X < X1, greater(X1,HeapR), adjust(X,L,R,HeapR).

greater(X,void).
greater(X,tree(X,L,R)) – X ≥ X1.

Program 3.28 Adjusting a binary tree to satisfy the heap property

3.4.1 Exercises for Section 3.4

(i) Define a program for subtree(S,T), where S is a subtree of T.
(ii) Define the relation sun_tree(TreeOfIntegers,Sum), which holds if Sun is the sum of the integer elements in TreeOfIntegers.
(iii) Define the relation ordered(TreeOfIntegers), which holds if Tree is an ordered tree of integers, that is, for each node in the tree
the elements in the left subtree are smaller than the element in
the node, and the elements in the right subtree are larger than the element in the node. (Hint: Define two auxiliary relations, ordered_left(X,Tree) and ordered_right(X,Tree), which hold if both Tree is ordered and X is larger (respectively, smaller) than the largest (smallest) node of Tree.)

(iv) Define the relation tree_insert(X,Tree,Tree1), which holds if Tree1 is an ordered tree resulting from inserting X into the ordered tree Tree. If X already occurs in Tree, then Tree and Tree1 are identical. (Hint: Four axioms suffice.)

(v) Write a logic program for the relation path(X,Tree,Path), where Path is the path from the root of the tree Tree to X.

3.5 Manipulating Symbolic Expressions

The logic programs illustrated so far in this chapter have manipulated natural numbers, lists, and binary trees. The programming style is applicable more generally. This section gives four examples of recursive programming -- a program for defining polynomials, a program for symbolic differentiation, a program for solving the Towers of Hanoi problem, and a program for testing the satisfiability of Boolean formulae.

The first example is a program for recognizing polynomials in some term X. Polynomials are defined inductively. X itself is a polynomial in X, as is any constant. Sums, differences, and products of polynomials in X are polynomials in X. So too are polynomials raised to the power of a natural number, and the quotient of a polynomial by a constant. This follows from its being the sum of the polynomials, \(x^2 - 3x + 2 \). We give a declarative reading of two rules from the program.

A logic program for recognizing polynomials is obtained by expressing the preceding informal rules in the correct form. Program 3.29 defines the relation polynomial(Expr,X), which is true if Expr is a polynomial in X. We give a declarative reading of two rules from the program.

The fact polynomial(X,X) says that a term X is a polynomial in itself.

The rule

\[
\text{polynomial}(\text{Expression}, X) \leftarrow \\
\text{Expression} \text{ is a polynomial in } X.
\]

\[
\text{polynomial}((X), X) \leftarrow \\
\text{constant}(X).
\]

\[
\text{polynomial}(\text{Term}1 + \text{Term}2, X) \leftarrow \\
\text{polynomial}(\text{Term}1, X), \text{ polynomial}(\text{Term}2, X).
\]

\[
\text{polynomial}(\text{Term}1 - \text{Term}2, X) \leftarrow \\
\text{polynomial}(\text{Term}1, X), \text{ polynomial}(\text{Term}2, X).
\]

\[
\text{polynomial}(\text{Term}1 / \text{Term}2, X) \leftarrow \\
\text{polynomial}(\text{Term}1, X), \text{ polynomial}(\text{Term}2, X), \\
\text{natural_number}(2).
\]

Program 3.29 Recognizing polynomials

\[
\text{polynomial}(\text{Term}1 + \text{Term}2, X) \leftarrow \\
\text{polynomial}(\text{Term}1, X), \text{ polynomial}(\text{Term}2, X).
\]

\[
\text{polynomial}(\text{Term}1 - \text{Term}2, X) \leftarrow \\
\text{polynomial}(\text{Term}1, X), \text{ polynomial}(\text{Term}2, X).
\]

\[
\text{polynomial}(\text{Term}1 / \text{Term}2, X) \leftarrow \\
\text{polynomial}(\text{Term}1, X), \text{ polynomial}(\text{Term}2, X).
\]

\[
\text{polynomial}(\text{Term}1 \times X, X) \leftarrow \\
\text{natural_number}(2).
\]

says that the sum Term1 + Term2 is a polynomial in X if both Term1 and Term2 are polynomials in X. Other conventions used in Program 3.29 are the use of the unary predicate constant for recognizing constants, and the binary function \(+\) to denote exponentiation. The term X!Y denotes X^Y.

The next example is a program for taking derivatives. The relation scheme is derivative(Expr,X,DerivativeExpr). The intended meaning of derivative is that DifferentiatedExpr is the derivative of Expr with respect to X.

As for Program 3.29 for recognizing polynomials, a logic program for differentiation is just a collection of the relevant differentiation rules, written in the correct syntax. For example, the fact

\[
\text{derivative}(X, X, s(0)).
\]

expresses that the derivative of X with respect to itself is 1. The fact

\[
\text{derivative}(\sin(X), X, \cos(X)).
\]
Chapter 3

\texttt{derivative(Expression,X,\text{DifferentiatedExpression})} \rightarrow
\text{DifferentiatedExpression} \text{ is the derivative of Expression with respect to } X.

\begin{align*}
derivative{\sin(X)} & = \cos(X) \\
\derivative{\cos(X)} & = -\sin(X) \\
\derivative{\sec(X)} & = \sec(X)\tan(X) \\
\derivative{\csc(X)} & = -\csc(X)\cot(X) \\
\derivative{\cot(X)} & = -\csc^2(X) \\
\derivative{\log(X)} & = \frac{1}{X} \\
\derivative{\exp(X)} & = \exp(X) \\
\derivative{\sinh(X)} & = \cosh(X) \\
\derivative{\cosh(X)} & = \sinh(X) \\
\derivative{\sech(X)} & = -\tanh(X) \\
\derivative{\csch(X)} & = -\coth(X) \\
\derivative{\coth(X)} & = -\csch^2(X) \\
\derivative{\tanh(X)} & = \text{sech}^2(X) \\
\derivative{\text{arcsin}(X)} & = \frac{1}{\sqrt{1-X^2}} \\
\derivative{\text{arccos}(X)} & = -\frac{1}{\sqrt{1-X^2}} \\
\derivative{\text{arctan}(X)} & = \frac{1}{1+X^2} \\
\derivative{\text{arcsec}(X)} & = \frac{1}{X\sqrt{X^2-1}} \\
\derivative{\text{arccosec}(X)} & = -\frac{1}{X\sqrt{X^2-1}} \\
\derivative{\text{arccot}(X)} & = -\frac{1}{1+X^2} \\
\derivative{\text{arccsch}(X)} & = -\frac{1}{X\sqrt{X^2+1}} \\
\derivative{\text{arcsech}(X)} & = \frac{1}{X\sqrt{1-X^2}} \\
\derivative{\text{arccoth}(X)} & = \frac{1}{1-X^2}
\end{align*}

\textbf{Program 3.30} Derivative rules

reads: "The derivative of \(\sin(X)\) with respect to \(X\) is \(\cos(X)\)." Natural mathematical notation can be used. A representative sample of functions and their derivatives is given in Program 3.30.

Sums and products of terms are differentiated using the sum rule and product rule, respectively. The sum rule states that the derivative of a sum is the sum of derivatives. The appropriate clause is

\begin{align*}
\text{derivative}(F+G) & = \text{derivative}(F) + \text{derivative}(G) \\
\text{derivative}(F\times G) & = \text{derivative}(F)\times G + F\times \text{derivative}(G)
\end{align*}

The product rule is a little more complicated, but the logical clause is just the mathematical definition:

\begin{align*}
\text{derivative}(F\times G) & = F\times \text{derivative}(G) + G\times \text{derivative}(F)
\end{align*}

Program 3.30 also contains the reciprocal and quotient rules.

The chain rule is a little more delicate. It states that the derivative of \(f(g(x))\) with respect to \(x\) is the derivative of \(f(g(x))\) with respect to \(g(x)\) times the derivative of \(g(x)\) with respect to \(x\). As stated, it involves quan-

Recursive Programming

tification over functions, and is outside the scope of the logic programs we have presented.

Nonetheless, a version of the chain rule is possible for each particular function. For example, we give the rule for differentiating \(x^n\) and \(\sin(x)\):

\begin{align*}
\text{derivative}(x^n) & = nx^{n-1} \\
\text{derivative}(\sin(x)) & = \cos(x)
\end{align*}

The difficulty of expressing the chain rule for differentiation arises from our choice of representation of terms. Both Programs 3.29 and 3.30 use the "natural" representation from mathematics where terms represent themselves. A term such as \(\sin(x)\) is represented using a unary structure \(\text{sin}\). If a different representation were used, for example, \text{term}(\sin(X)) where the name of the structure is made accessible, then the problem with the chain rule disappears. The chain rule can then be formulated as

\begin{align*}
\text{derivative}(\text{term}(F,G)) & = \text{derivative}(F)\times \text{term}(\text{term}(G),\text{term}(D)) \\
\text{derivative}(\text{term}(F,G)) & = \text{derivative}(F)\times \text{term}(\text{term}(G),\text{term}(D))
\end{align*}

Note that all the rules in Program 3.30 would have to be reformulated in terms of this new representation and would appear less natural.

People take for granted the automatic simplification of expressions when differentiating expressions. Simplification is missing from Program 3.30. The answer to the query \text{derivative}(3x^2\times 2x) is \text{D}(3x^3) = 9x^2 + 6x. We would immediately simplify \text{D} to 3, but it is not specified in the logic program.

The next example is a solution to the Towers of Hanoi problem, a standard introductory example in the use of recursion. The problem is to move a tower of \(n\) disks from one peg to another with the help of an auxiliary peg. There are two rules. Only one disk can be moved at a time, and a larger disk can never be placed on top of a smaller disk.

There is a legend associated with the game. Somewhere hidden in the surroundings of Hanoi, an obscure Far Eastern village when the legend was first told, is a monastery. The monks there are performing a task assigned to them by God when the world was created — solving the preceding problem with three golden pegs and 64 golden disks. At the moment they complete their task, the world will collapse into dust. Since the optimal solution to the problem with \(n\) disks takes \(2^n - 1\) moves, we
Chapter 3

hanoi(N,A,B,C,Moves) --
Moves is a sequence of moves for solving the Towers of
Hanoi puzzle with N disks and three pegs, A, B, and C.

hanoi(0,A,B,C,[A to B]).

hanoi(e(N),A,B,C,Moves) --

hanoi(0,A,B,C,Moves).

hanoi(N,A,B,C,Moves).

append([N1],[A to B],[N2],Moves).

Program 3.31 Towers of Hanoi

need not lose any sleep over this possibility. The number 2^N is comfort-
ingly big.

The relation scheme for solving the problem is hanoi(N,A,B,C,
Moves). It is true if Moves is the sequence of moves for moving a tower
of N disks from peg A to peg B using peg C as the auxiliary peg. This is an
extension to usual solutions that do not calculate the sequence of moves
but rather perform them. The representation of the moves uses a binary
function to, written as an infix operator. The term X to Y denotes that
the top disk on peg X is moved to peg Y. The program for solving the
problem is given in Program 3.31.

The declarative reading of the heart of the solution, the recursive rule
in Program 3.31, is: "Moves is the sequence of moves of e(N) disks from
peg A to peg B using peg C as an auxiliary, if N>1 is the solution for
moving N disks from A to C using B, Na2 is the solution for moving 2 disks
from C to B using A, and Moves is the result of appending [A to B]/Na2
to Na1."

The recursion terminates with moving one disk. A slightly neater, but
less intuitive, base for the recursion is moving no disks. The appropriate
fact is

hanoi(0,A,B,C,[]).

The final example concerns Boolean formulae.

A Boolean formula is a term defined as follows: The constants true and
false are Boolean formulae; if X and Y are Boolean formulae, so are XvY,
XvY, and ~X, where v and ^ are binary infix operators for disjunction
and conjunction, respectively, and ~ is a unary prefix operator for nega-
tion.

Program 3.32 Satisfiability of Boolean formulae

Recursive Programming

satisfiable(Formula) --

There is a true instance of the Boolean formula Formula.

satisfiable(true).

satisfiable(XvY) -- satisfiable(X), satisfiable(Y).

satisfiable(XvY) -- satisfiable(X).

satisfiable(XvY) -- satisfiable(Y).

satisfiable(~X) -- invalid(X).

invalid(Formula) --

There is a false instance of the Boolean formula Formula.

invalid(false).

invalid(XvY) -- invalid(X), invalid(Y).

invalid(XvY) -- invalid(X).

invalid(XvY) -- invalid(Y).

invalid(~X) -- satisfiable(X).

Program 3.32 is a logic program for determining the truth or falsity of
a Boolean formula. Since it can be applied to Boolean formulae with
variables, it is actually more powerful than it seems. A Boolean formula
with variables is satisfiable if it has a true instance. It is invalid if it
has a false instance. These are the relations computed by the program.

A Boolean formula F is true if

F = 'true'.
F = XvY, and both X and Y are true.
F = XvY, and either X or Y (or both) are true.
F = X, and X is false.

A Boolean formula F is false if

F = 'false'.
F = XvY, and either X or Y (or both) are false.
F = XvY, and both X and Y are false.
F = ~X, and X is true.

Program 3.32 is a logic program for determining the truth or falsity of
a Boolean formula. Since it can be applied to Boolean formulae with
variables, it is actually more powerful than it seems. A Boolean formula
with variables is satisfiable if it has a true instance. It is invalid if it
has a false instance. These are the relations computed by the program.
3.5.1 Exercises for Section 3.5

(i) Write a program to recognize if an arithmetic sum is normalized, that is, has the form $A + B$, where A is a constant and B is a normalized sum.

(ii) Write a type definition for Boolean formulae.

(iii) Write a program for recognizing whether a logical formula is in conjunctive normal form, namely, is a conjunction of disjunctions of literals, where a literal is an atomic formula or its negation.

(iv) Write a program for the relation $\text{negation_inwards}(F1, F2)$, which is true if $F2$ is the logical formula resulting from moving all negation operators occurring in the formula $F1$ inside conjunctions and disjunctions.

(v) Write a program for converting a logical formula into conjunctive normal form, that is, a conjunction of disjunctions.

(vi) Consider the following representation of a bag, that is, a list of elements with multiplicities. The function symbol $\text{bag}(\text{Element}, \text{Multiplicity}, \text{RestOfBag})$ should be used. The atom void can be used as an empty bag. For example, the term $\text{bag}(a, 3, \text{bag}(b, 2, \text{void}))$ represents a list of three copies of an element a, and two copies of an element b. Write logic programs to

(a) Take the union of two bags;
(b) Take the intersection of two bags;
(c) Substitute for an element in a bag;
(d) Convert a list into a bag;
(e) Convert a binary tree into a bag.

3.6 Background

Many of the programs in this chapter have been floating around the logic programming community, and their origins have become obscure. For example, several appear in Clocksin and Mellish (1984) and in the uneven collection of short Prolog programs, How to Solve It in Prolog by Coelho et al. (1980).

The latter book has been updated as Coelho and Cotta (1988) and is a source for other simple examples. The exercise on describing poker hands is due to Ken Bowen.

The classic reference for binary trees is Knuth (1968) and for sorting Knuth (1973).

A discussion of the linear algorithm for the kth largest algorithms can be found in most textbooks on algorithms, for example, Horowitz and Sahni (1978). The discussion of the heap property is taken from Horowitz and Sahni (1978).

Many of the basic programs for arithmetic and list processing have a simple structure that allows many correctness theorems to be proved automatically, see, for example, Boyer and Moore (1979) and Sterling and Bundy (1982).

Ackermann's function is discussed by Peter (1967).
4 The Computation Model of Logic Programs

The computation model used in the first three chapters of the book has a severe restriction. All goals appearing in the proof trees are ground. All rule instances used to derive the goals in the proof trees are also ground. The abstract interpreter described assumes that the substitutions giving the desired ground instances can be guessed correctly. In fact, the correct substitutions can be computed rather than guessed.

This chapter presents a general computation model of logic programs. The first section presents a unification algorithm that removes the guesswork in determining instances of terms. The second section presents an appropriately modified abstract interpreter and gives example computations of logic programs.

The computation model of logic programming we present is especially well suited to sequential languages such as Prolog. Our model can be used to describe parallel logic programming languages. However, developers of these languages have often used other models, such as state transitions or dynamic tree creation and destruction (see Section 4.3).

4.1 Unification

The heart of our computation model of logic programs is unification. Unification is the basis of most work in automated deduction and of the use of logical inference in artificial intelligence.

Necessary terminology for describing the algorithm is repeated from Chapter 1, and new definitions are introduced as needed.
Recall that a term t is a common instance of two terms, t_1 and t_2, if there exist substitutions θ_1 and θ_2 such that t equals $t_1\theta_1$ and $t_2\theta_2$. A term s is more general than a term t if t is an instance of s but s is not an instance of t. A term s is an alphabetic variant of a term t if both s is an instance of t and t is an instance of s. Alphabetic variants are related by the renaming of variables that occur in the terms. For example, $\text{member}(X, \text{tree(left,X,right)})$ and $\text{member}(Y, \text{tree(left,Y,Z)})$ are alphabetic variants.

A unifier of two terms is a substitution making the terms identical. If two terms have a unifier, we say they unify. There is a close relation between unifiers and common instances. Any unifier determines a common instance, and conversely, any common instance determines a unifier.

For example, append([1,2,3],[3,4],List) and append([X|x],Y,[X|Za]) unify. A unifying substitution is $X=1, X=x=[2,3], Y=[3,4], \text{List}=[1|Za]$. Their common instance, determined by this unifying substitution, is append([1,2,3],[3,4],[1|Za]).

A most general unifier, or mgu, of two terms is a unifier such that the associated common instance is most general. It can be shown that if two terms unify, all mgu's are equivalent. Making that statement precise is beyond the scope of this book, but we give pointers in Section 4.3. We proceed by giving an algorithm that computes a most general unifier of two terms if one exists.

The algorithm for unification presented here is based on solving equations. The input for the algorithm is two terms, T_1 and T_2. The output of the algorithm is an mgu of the two terms if they unify, or failure if the terms do not unify. The algorithm uses a pushdown stack for storing the equations that need to be solved and a location, θ, for collecting the substitution comprising the output.

The location θ is initially empty, and the stack is initialized to contain the equation $T_1 = T_2$. The algorithm consists of a loop of popping an equation from the stack and processing it. The loop terminates when the stack becomes empty or if failure occurs in processing an invalid equation.

We consider the possible actions for dealing with a popped equation $S = T$. The simplest case is if S and T are identical constants or variables. This equation is correct, and nothing further needs to be done. The computation continues by popping the next equation from the stack.

The Computation Model of Logic Programs

If S is a variable, and T is a term not containing S, the following happens. The stack is searched for all occurrences of S, which are replaced by T. Similarly, all occurrences of S in θ are replaced by T. Then the substitution $S = T$ is added to θ. It is significant that S does not occur in T. The test embodied by the phrase "not containing" is known as the occurs check.

If T is a variable, and S is a term not containing T, i.e., T satisfies the occurs check with respect to S, the symmetric sequence of actions happens.

Equations are added to the stack if S and T are compound terms with the same principal functor and arity, $f(S_1,...,S_n)$ and $f(T_1,...,T_n)$. Say, for the terms to unify, each of the argument pairs must simultaneously unify. This is achieved by pushing the n equations, $S_i = T_i$ onto the stack.

In any other case, failure is reported, and the algorithm terminates. If the stack is emptied, the terms unify, and the unifier can be found in θ. The complete algorithm is given as Figure 4.1. The occurs check is embodied in the phrase "that does not occur in."
ever, most Prolog implementations omit the occurs check from the unification algorithm, for pragmatic reasons.

When implementing this unification algorithm for a particular logic programming language, the explicit substitution in both the equations on the stack and the unifier is avoided. Instead, logical variables and other terms are represented by memory cells with different values, and variable binding is implemented by assigning to the memory cell representing a logical variable a reference to the cell containing the representation of the term the variable is bound to. Therefore,

Substitute Y for X in stack and in θ.
Add X → Y to substitutions.

is replaced by

Make X a reference to Y.

4.1.1 Exercises for Section 4.1

(i) Use the algorithm in Figure 4.1 to compute an mgu of \(\text{append}([b] , [c,d]) \) and \(\text{append}([X|a] , Y , [X|a]) \).

(ii) Use the algorithm in Figure 4.1 to compute an mgu of \(\text{hanoi}(a|X) \), \(A,B,C,M6 \) and \(\text{hanoi}(a|a|00), a,b,c,M6 \).

4.2 An Abstract Interpreter for Logic Programs

We revise the abstract interpreter of Section 1.8 in the light of the unification algorithm. The result is our full computation model of logic programs. All the concepts introduced previously, such as goal reductions and computation traces, have their analogues in the full model.

A computation of a logic program can be described informally as follows. It starts from some initial (possibly conjunctive) query G and, if it terminates, has one of two results: success or failure. If a computation succeeds, the instance of G proved is conceived of as the output of the computation. A given query can have several successful computations, each resulting in a different output. In addition, it may have nonterminating computations, to which we associate no result.
Chapter 4

The computation progresses via goal reduction. At each stage, there is some resolvent, a conjunction of goals to be proved. A goal in the resolvent and clause in the logic program are chosen such that the clause’s head unifies with the goal. The computation proceeds with a new resolvent, obtained by replacing the chosen goal by the body of the chosen clause in the resolvent and then applying the most general unifier of the head of the clause and the goal. The computation terminates when the resolvent is empty. In this case, we say the goal is solved by the program.

To describe computations more formally, we introduce some useful concepts. A computation of a goal \(Q \in Q_0 \) by a program \(P \) is a (possibly infinite) sequence of triples \((Q_0,G,C)\). \(G \) is a (conjunctive) goal, \(G \) is a goal occurring in \(Q_i \) and \(C \) is a clause \(A \leftarrow B_1, \ldots, B_k \) in \(P \) renamed so that it contains new variable symbols not occurring in \(Q_i \). 0 ≤ j ≤ i. For all \(i > 0 \), \(Q_{i-1} \) is the result of replacing \(G \) by the body of \(C \) in \(Q_i \) and applying the substitution \(\theta \), the most general unifier of \(G \) and \(A \), the head of \(C \); or the constant true if \(G \) is the only goal in \(Q_i \) and the body of \(C \) is empty; or the constant fail if \(G \) and the head of \(C \) do not unify.

The goals \(B_1, \ldots, B_k \) are said to be derived from \(G \), and \(C \). A goal \(B_i \leftarrow \theta \), where \(\theta \) occurs in the body of clause \(C \), is said to be invoked by \(G \), and \(C \); \(G \) is the parent of any goal it invokes. Two goals with the same parent goal are sibling goals.

A trace of a computation of a logic program \((Q, G, C)\) is the sequence of pairs \((G, \theta)\), where \(\theta \) is the subset of the mgu \(\theta \) computed at the \(n \)th reduction, restricted to variables in \(C \).

We present an abstract interpreter for logic programs. It is an adaptation of the interpreter for ground goals (Figure 4.1). The restriction to using ground instances of clauses to effect reductions is lifted. Instead, the unification algorithm is applied to the chosen goal and head of the chosen clause to find the correct substitution to apply to the new resolvent.

Care needs to be taken with the variables in rules to avoid name clashes. Variables are local to a clause. Hence variables in different clauses that have the same name are, in fact, different. This is ensured by renaming the variables appearing in a clause each time the clause is chosen to effect a reduction. The new names must not include any of the variable names used previously in the computation.

The revised version of the interpreter is given as Figure 4.2. It solves a query \(G \) with respect to a program \(P \). The output of the interpreter is an instance of \(G \) if a proof of such an instance is found, or \(\emptyset \) if no failure has occurred during the computation. Note that the interpreter may also fail to terminate.

An instance of a query for which a proof is found is called a solution to the query.

The policy for adding and removing goals from the resolvent is called the scheduling policy of the interpreter. The abstract interpreter leaves the scheduling policy unspecified. Consider solving the query \(\text{append}(\text{a},\text{b}), \text{[c,d]}, \text{La}) \) by Program 3.15 for append using the abstract interpreter of Figure 4.2. The resolvent is initialized to be \(\text{append}(\text{a},\text{b}), \text{[c,d]}, \text{La}) \). It is chosen as the goal to reduce, being the only one. The rule chosen from the program is

\[
\text{append}([X],[Xa],[Ya],[X],[Za]) \rightarrow \text{append}(Xa,Ya,5a).
\]

The unifier of the goal and the head of the rule is \([X=\text{a}, Xa=\text{b}], Ya=[c,d], La=[a[Za]]\). A detailed calculation of this unifier appeared in the previous section. The new resolvent is the instance of append \((Xa,Ya,5a)\) under the unifier, namely, \(\text{append}([b],[c,d],2a)\). This goal is chosen in the next iteration of the loop. The same clause for append is chosen, but variables must be renamed to avoid a clash of variable names. The version chosen is

\[
\text{append}([X],[Xa1],[Ya1],[X],[Za1]) \rightarrow \text{append}(Xa1,Ya1,5a1).
\]
Chapter 4

append([a,b],[c,d],La) La=[a,b,c,d]
append([b],[c,d],Za) Za=[b,c,d]
append([], [c,d],Za1) Za1=[c,d] true

Output: La=[a,b,c,d]

Figure 4.3 Tracing the appending of two lists

The unifier of the head and goal is \([X]=b, Za1=[\], Ya=\{c,d\}. Za=[b,c,d]\). The new resolvent is append([\], [c,d], Za1). This time the fact append([\], Za2, Za2) is chosen; we again rename variables as necessary. The unifier this time is \([Za2=[c,d], Za1=[c,d]\). The new resolvent is empty and the computation terminates.

To compute the result of the computation, we apply the relevant part of the mgu's calculated during the computation. The first unification instantiated La to \([a,b,c,d]Za\). Za was instantiated to \([b,c,d]\) in the second unification, and Za1 further became \([c,d]\). Putting it together, La has the value \([a,b,c,d]\), or more simply, \([a,b,c,d]\).

The computation can be represented by a trace. The trace of the foregoing append computation is presented in Figure 4.3. To make the traces clearer, goals are indented according to the indentation of their parent. A goal has an indentation depth of \(d=1\) if its parent has indentation depth \(d\).

As another example, consider solving the query son(S,haran) by Program 4.2. It is reduced using the clause son(X,Y) = father(Y,X), male(X). A most general unifier is \([X=S,Y=\text{haran}]\). Applying the substitution gives the new resolvent father(haran,S), male(S). This is a conjunctive goal. There are two choices for the next goal to reduce. Choosing the goal father(haran,S) leads to the following computation. The goal unifies with the fact father(haran,lot) in the program, and the computation continues with \(S\) instantiated to lot. The new resolvent is male(lot), which is reduced by a fact in the program, and the computation terminates. This is illustrated in the left trace in Figure 4.4.

The other possibility for computing \(S\)-haran is choosing to reduce the goal male(S) before father(haran,0). This goal is reduced by the fact male(lot) with \(S\) instantiated to lot. The new resolvent is father(haran,lot), which is reduced to the empty goal by the corresponding fact. This is the right trace in Figure 4.4.

The Computation Model of Logic Programs

\begin{align*}
\text{son(S,haran)} &\quad \text{son}(S,\text{haran}) \\
\text{father(haran,S)} &\quad S=\text{lot} \\
\text{male(S)} &\quad S=\text{lot} \\
\text{male(lot)} &\quad S=\text{lot} \\
\text{father(haran,lot)} &\quad \text{true} \\
\text{false} &\quad \text{false}
\end{align*}

Figure 4.4 Different traces of the same solution

Solutions to a query obtained using the abstract interpreter may contain variables. Consider the query son(har,\{a,b\}) with respect to Program 3.12 for son(har). This can be interpreted as asking what list \(a\) has the element \(a\) as a member. One solution computed by the abstract interpreter is \([X]=[a,b]\), namely, a list with a as its head and an unspecified tail. Solutions that contain variables denote an infinity of solutions—all their ground instances.

There are two choices in the interpreter of Figure 4.2: choosing the goal to reduce, and choosing the clause to effect the reduction. These must be resolved in any realization of the computation model. The nature of the choices is fundamentally different.

The choice of goal to reduce is arbitrary; it does not matter which is chosen for the computation to succeed. If there is a successful computation by choosing a given goal, then there is a successful computation by choosing any other goal. The two traces in Figure 4.4 illustrate two successful computations, where the choice of goal to reduce at the second step of the computation differs.

The choice of the clause to effect the reduction is nondeterministic. Not every choice will lead to a successful computation. For example, in both traces in Figure 4.4, we could have gone wrong. If we had chosen to reduce the goal father(haran,S) with the fact father(haran,\{a,b\}), we would not have been able to reduce the invoked goal male(\{a,b\}). For the second computation, had we chosen to reduce male(S) with male(\{a\}), the invoked goal father(haran,\{a\}) could not have been reduced.

For some computations, for example, the computation illustrated in Figure 4.3, there is only one clause from the program that can reduce each goal. Such a computation is called deterministic. Deterministic computations mean that we do not have to exercise our nondeterministic imagination.

The alternative choices that can be made by the abstract interpreter when trying to prove a goal implicitly define a search tree, as described
more fully in Section 5.4. The interpreter "guesses" a successful path in this search tree, corresponding to a proof of the goal, if one exists. However, dumber interpreters, without guessing abilities, can also be built, with the same power as our abstract interpreter. One possibility is to search this tree breadth-first, that is, to explore all possible choices in parallel. This will guarantee that if there is a finite proof of the goal (i.e., a finite successful path in the search tree), it will be found.

Another possibility would be to explore the abstract search tree depth-first. In contrast to the breadth-first search strategy, the depth-first one does not guarantee finding a proof even if one exists, since the search tree may have infinite paths, corresponding to potentially infinite computations of the nondeterministic interpreter. A depth-first search of the tree might get lost in an infinite path, never finding a finite successful path, even if one exists.

In technical terms, the breadth-first search strategy defines a complete proof procedure for logic programs, whereas the depth-first one is incomplete. In spite of its incompleteness, depth-first search is the one incorporated in Prolog, for practical reasons, as explained in Chapter 6.

Let us give a trace of a longer computation, solving the Towers of Hanoi problem with three disks, using Program 3.31. It is a deterministic computation, given as Figure 4.5. The final append goal is given without unifications. It is straightforward to fill them in.

Computations such as that in Figure 4.5 can be compared to computations in more conventional languages. Unification can be seen to subsume many of the mechanisms of conventional languages: record allocation, assignment of and access to fields in records, parameter passing, and more. We defer the subject until the computation model for Prolog is introduced in Chapter 6.

A computation of G by P terminates if \(G_n \rightarrow \text{true} \) or fail for some \(n \geq 0 \). Such a computation is finite and of length \(n \). Successful computations correspond to terminating computations that end in true. Failing computations end in fail. All the traces given so far have been of successful computations.

Recurse programs admit the possibility of nonterminating computations. The query append([Xs], [c, d], [Ys]) with respect to append can be reduced arbitrarily many times using the rule for append. In the process, \(Xs \) becomes a list of arbitrary length. This corresponds to solutions of the query appending \([c, d] \) to an arbitrarily long list. The nonterminating computation is illustrated in Figure 4.6.

![Figure 4.5 Solving the Towers of Hanoi](image)

![Figure 4.6 A nonterminating computation](image)
All the traces presented so far have an important feature in common. If two goals \(G_i \) and \(G_j \) are invoked from the same parent, and \(G_i \) appears before \(G_j \) in the trace, then all goals invoked by \(G_i \) will appear before \(G_j \) in the trace. This scheduling policy makes traces easier to follow, by solving queries depth-first.

The scheduling policy has another important effect: instantiating variables before their values are needed for other parts of the computation. A good ordering can mean the difference between a computation being deterministic or not.

Consider the computation traced in Figure 4.5. The goal
\[
\text{hanoi}(s(a(s(0))),a,b,c,M_3)
\]
is reduced to the following conjunction
\[
\text{hanoi}(s(a(s(0))),a,c,b,M_3),
\text{hanoi}(s(a(s(0))),c,b,a,M_2),
\text{append}(M_1,[a\text{ to } b|M_2],M_3).
\]
If the append goal is now chosen, the append fact could be used incorrectly) to reduce the goal. By reducing the two \text{hanoi} goals first, and all the goals they invoke, the append goal has the correct values for \(M_1 \) and \(M_2 \).

4.2.1 Exercises for Section 4.2

(i) Trace the query \(\text{sort}([3,1,2],X) \)? using the permutation \((3,2,0) \), insertion \((3,2,1) \), and quicksort \((3,2,2) \) programs in turn.

(ii) Give a trace for the goal \(\text{derivative}(3+\sin(x)-4+\cos(x),x,D) \) using Program 3.30 for derivative.

(iii) Practice tracing your favorite computations.

4.3 Background

Unification plays a central role in automated deduction and in the use of logical inference in artificial intelligence. It was first described in the landmark paper of Robinson (1965). Algorithms for unification have been the subject of much investigation: see, for example, Martelli and Montanari (1982), Paterson and Wegman (1978), and Dwork et al. (1984). Typical textbook descriptions appear in Bundy (1983) and Nilsson (1980). The definition of unification presented here is nonstandard. Readers wishing to learn more about unifiers are referred to the definitive discussion on unification in Lassez, Maher, and Marriott (1988). This paper points out inconsistencies of the various definitions of unifiers that have been proposed in the literature, including the version in this book. Essentially, we have explained unifiers based on terms to avoid technical issues of composition of substitutions, which are not needed for our description of logic programming computations.

The computation model we have presented has a sequential bias and is influenced by the computation model for Prolog given in Chapter 6. Nonetheless, the model has potential for parallelism by selecting several goals or several rules at a time, and for elaborate control by selecting complicated computation rules. References for reading about different computation models for logic programming are given in Section 6.3.

Another bias of our computation model is the central place of unification. An exciting development within logic programming has been the realization that unification is just one instance of constraint solving. New computation models have been presented where the solution of equality constraints, i.e., unification, in the abstract interpreter of Figure 4.2 is replaced by solving other constraints. Good starting places to read about the new constraint-based models are Colmerauer (1990), Jaffar and Lassez (1987), and Lassez (1991).

A proof that the choice of goal to reduce from the resolvent is arbitrary can be found in Apt and van Emde Boas (1982) or in the text of Lloyd (1987). A method for replacing the runtime occurs check with compile-time analysis was suggested by Plaisted (1984).

Attempts have been made to make unification without the occurs check more than a necessary expedient for practical implementations of Prolog. In particular, Colmerauer (1982b) proposes a theoretical model for such unifications that incorporates computing with infinite terms.

A novel use of unification without the occurs check appears in Eggert and Chow (1983), where Escher-like drawings that gracefully tend to infinity are constructed.
A major underlying theme of this book, laid out in the introduction, is that logic programming is attractive as a basis for computation because of its basis in mathematical logic, which has a well-understood, well-developed theory. In this chapter, we sketch some of the growing theory of logic programming, which merges the theory inherited from mathematical logic with experience from computer science and engineering. Giving a complete account is way beyond the scope of this book. In this chapter, we present some results to direct the reader in important directions. The first section, on semantics, gives definitions and suggests why the model-theoretic and proof-theoretic semantics give the same result. The main issue in the second section, on program correctness, is termination. Complexity of logic programs is discussed in the third section. The most important section for the rest of the book is Section 4, which discusses search trees. Search trees are vital to understanding Prolog's behavior. Finally, we introduce negation in logic programming.

5.1 Semantics

Semantics assigns meanings to programs. Discussing semantics allows us to describe more formally the relation a program computes. Chapter 1 informally describes the meaning of a logic program P as the set of ground instances that are deducible from P via a finite number of applications of the rule of universal modus ponens. This section considers more formal approaches.
Chapter 5

parent(terach, abraham).
parent(abraham, isaac).
parent(isaac, jacob).
parent(jacob, benjamin).
ancestor(x, y) = parent(x, y).
ancestor(x, y) = parent(x, y), ancestor(y, z).

Program 5.1 Yet another family example

The operational semantics is a way of describing procedurally the meaning of a program. The operational meaning of a logic program P is the set of ground goals that are instances of queries solved by P using the abstract interpreter given in Figure 4.2. This is an alternative formulation of the previous semantics, which defined meaning in terms of logical deduction.

The declarative semantics of logic programs is based on the standard model-theoretic semantics of first-order logic. In order to define it, some new terminology is needed.

Definition

Let P be a logic program. The Herbrand universe of P, denoted $U(P)$, is the set of all ground terms that can be formed from the constants and function symbols appearing in P.

In this section, we use two running examples—yet another family database example, given as Program 5.1; and Program 5.1 defining the natural numbers, repeated here:

natural_number(0).
natural_number(s(X)) = natural_number(X).

The Herbrand universe of Program 5.1 is the set of all constants appearing in the program, namely, $\{$terach, abraham, isaac, jacob, benjamin$\}$. If there are no function symbols, the Herbrand universe is finite. In Program 3.1, there is one constant symbol, 0, and one unary function symbol, s. The Herbrand universe of Program 3.1 is $\{0, s(0), s(s(0)), \ldots\}$. If no constants appear in a program, one is arbitrarily chosen.

Definition

The Herbrand base, denoted $B(P)$, is the set of all ground goals that can be formed from the predicates in P and the terms in the Herbrand universe.

There are two predicates, parent/2 and ancestor/2, in Program 5.1. The Herbrand base of Program 5.1 consists of 25 goals for each predicate, where each constant appears as each argument:

$\{$parent(terach, terach), parent(terach, abraham),
parent(terach, isaac), parent(terach, jacob),
parent(terach, benjamin), parent(abraham, terach),
parent(abraham, isaac), parent(abraham, jacob),
parenabraham, benjamin), parent(isaac, terach),
parent(isaac, isaac), parent(isaac, jacob),
parent(isaac, benjamin), parent(jacob, terach),
parent(jacob, abraham), parent(jacob, isaac),
parent(jacob, jacob), parent(jacob, benjamin),
parent(benjamin, terach), parent(benjamin, abraham),
parent(benjamin, isaac), parent(benjamin, jacob),
parent(benjamin, benjamin), ancestor(terach, terach),
ancestor(terach, abraham), ancestor(terach, isaac),
ancestor(terach, jacob), ancestor(terach, benjamin),
ancestor(terach, isaac), ancestor(abraham, terach),
ancestor(abraham, abraham), ancestor(abraham, isaac),
ancestor(abraham, jacob), ancestor(isaac, terach),
ancestor(isaac, abraham), ancestor(isaac, isaac),
ancestor(isaac, jacob), ancestor(isaac, benjamin),
ancestor(jacob, terach), ancestor(jacob, abraham),
ancestor(jacob, isaac), ancestor(jacob, jacob),
ancestor(jacob, benjamin), ancestor(benjamin, terach),
ancestor(benjamin, abraham), ancestor(benjamin, isaac),
ancestor(benjamin, jacob), ancestor(benjamin, benjamin)$\}$. The Herbrand base is infinite if the Herbrand universe is. For Program 3.1, there is one predicate, natural_number. The Herbrand base equals $\{$natural_number(0), natural_number(s(0)), \ldots$\}$.

Definition

An interpretation for a logic program is a subset of the Herbrand base. An interpretation assigns truth and falsity to the elements of the Herbrand base. A goal in the Herbrand base is true with respect to an interpretation if it is a member of it, false otherwise.
Definition
An interpretation I is a model for a logic program if for each ground instance of a clause in the program $A \leftarrow B_1, \ldots, B_n$, A is in I if B_1, \ldots, B_n are in I.

Intuitively, models are interpretations that respect the declarative reading of the clauses of a program.

For Program 3.1, natural_number(0) must be in every model, and natural_number(s(X)) is in the model if natural_number(X) is in any model of Program 3.1 thus includes the whole Herbrand base.

For Program 5.1, the facts parent(terach, abraham), parent(abraham, issac), parent(issac, jacob), and parent(jacob, benjamin) must be in every model. A ground instance of the goal ancestor(X, Y) is in the model if the corresponding instance of parent(X, Y) is, by the first clause. So, for example, ancestor(terach, abraham) is in every model. By the second clause, ancestor(X, Z) is in the model if parent(X, Y) and ancestor(Y, Z) are.

It is easy to see that the intersection of two models for a logic program P is again a model. This property allows the definition of the intersection of all models.

Definition
The model obtained as the intersection of all models is known as the minimal model and denoted $M(P)$. The minimal model is the declarative meaning of a logic program.

The declarative meaning of the program for natural_number, its minimal model, is the complete Herbrand base $\text{natural_number}(0), \text{natural_number}(s(0)), \text{natural_number}(s(s(0))), \ldots$.

The declarative meaning of Program 5.1 is $\text{parent}(\text{terach}, \text{abraham}), \text{parent}(\text{abraham}, \text{issac}), \text{parent}(\text{issac}, \text{jacob}), \text{parent}(\text{jacob}, \text{benjamin}), \text{ancestor}(\text{terach}, \text{abraham}), \text{ancestor}(\text{abraham}, \text{issac}), \text{ancestor}(\text{issac}, \text{jacob}), \text{ancestor}(\text{jacob}, \text{benjamin}), \text{ancestor}(\text{terach}, \text{issac}), \text{ancestor}(\text{issac}, \text{jacob}), \text{ancestor}(\text{terach}, \text{abraham}), \text{ancestor}(\text{abraham}, \text{issac}), \text{ancestor}(\text{issac}, \text{jacob}), \text{ancestor}(\text{jacob}, \text{benjamin}), \text{ancestor}(\text{terach}, \text{issac}), \text{ancestor}(\text{issac}, \text{jacob}), \text{ancestor}(\text{terach}, \text{abraham}), \text{ancestor}(\text{abraham}, \text{issac}), \text{ancestor}(\text{issac}, \text{jacob}), \text{ancestor}(\text{jacob}, \text{benjamin}), \text{ancestor}(\text{terach}, \text{issac}), \text{ancestor}(\text{issac}, \text{jacob}), \text{ancestor}(\text{terach}, \text{abraham}), \text{ancestor}(\text{abraham}, \text{issac}), \text{ancestor}(\text{issac}, \text{jacob}), \text{ancestor}(\text{jacob}, \text{benjamin}), \text{ancestor}(\text{terach}, \text{issac}), \text{ancestor}(\text{issac}, \text{jacob}), \text{ancestor}(\text{terach}, \text{abraham}), \text{ancestor}(\text{abraham}, \text{issac}), \text{ancestor}(\text{issac}, \text{jacob}), \text{ancestor}(\text{jacob}, \text{benjamin}), \text{ancestor}(\text{terach}, \text{issac}), \text{ancestor}(\text{issac}, \text{jacob}), \text{ancestor}(\text{terach}, \text{abraham}), \text{ancestor}(\text{abraham}, \text{issac}), \text{ancestor}(\text{issac}, \text{jacob}), \text{ancestor}(\text{jacob}, \text{benjamin}), \text{ancestor}(\text{terach}, \text{issac}), \text{ancestor}(\text{issac}, \text{jacob}), \text{ancestor}(\text{terach}, \text{abraham}), \text{ancestor}(\text{abraham}, \text{issac}), \text{ancestor}(\text{issac}, \text{jacob}), \text{ancestor}(\text{jacob}, \text{benjamin})$.

Let us consider the declarative meaning of append, defined as Program 3.15 and repeated here:
append([X|Xs], Ys, [X|Zs]) ← append(Xs, Ys, Zs),
append([], Ys, Ys).

5.2 Program Correctness

Every logic program has a well-defined meaning, as discussed in Section 5.1. This meaning is neither correct nor incorrect.
The meaning of the program, however, may or may not be what was intended by the programmer. Discussions of correctness must therefore take into consideration the intended meaning of the program. Our previous discussion of proving correctness and completeness similarly was with respect to an intended meaning of a program.

We recall the definitions from Chapter 1. An **intended meaning** of a program P is a set of ground goals. We use intended meanings to denote the set of goals intended by the programmer for the program to compute. A program P is **correct** with respect to an intended meaning M if $M(P)$ is contained in M. A program P is **complete** with respect to an intended meaning if M is contained in $M(P)$. A program is thus correct and complete with respect to an intended meaning if the two meanings coincide exactly.

Another important aspect of a logic program is whether it terminates.

Definition

A domain is a set of goals, not necessarily ground, closed under the instance relation. That is, if A is in D and A' is an instance of A, then A' is in D as well.

Definition

A **termination domain** of a program P is a domain D such that every computation of P on every goal in D terminates.

Usually, a useful program should have a termination domain that includes its intended meaning. However, since the computation model of logic programs is liberal in the order in which goals in the resolvent can be reduced, most interesting logic programs will not have interesting termination domains. This situation will improve when we switch to Prolog. The restrictive model of Prolog allows the programmer to compose nontrivial programs that terminate over useful domains.

Consider Program 3.1 defining the natural numbers. This program is terminating over its Herbrand base. However, the program is nonterminating over the domain $\{\text{natural_number}(X)\}$. This is caused by the possibility of the nonterminating computation depicted in the trace in Figure 5.1.

For any logic program, it is useful to find domains over which it is terminating. This is usually difficult for recursive logic programs. We need to describe recursive data types in a way that allows us to discuss termination.

Recall

Recall that a type, introduced in Chapter 3, is a set of terms.

Definition

A type is **complete** if the set is closed under the instance relation. With every complete type T we can associate an **incomplete type** T^I, which is the set of terms that have instances in T and instances not in T.

We illustrate the use of these definitions to find termination domains for the recursive programs using recursive data types in Chapter 3. Specific instances of the definitions of complete and incomplete types are given for natural numbers and lists. A (complete) natural number is either the constant 0, or a term of the form $s^i(X)$. An incomplete natural number is either a variable, X, or a term of the form $s^i(X)$, where X is a variable. Program 3.2 for s is terminating for the domain consisting of goals where the first and/or second argument is a complete natural number.

Definition

A list is **complete** if every instance satisfies the definition given in Program 3.11. A list is **incomplete** if there are instances that satisfy this definition and instances that do not.

For example, the list $\{a, b, c\}$ is complete (proved in Figure 3.3), while the variable X is incomplete. Two more interesting examples: $\{a, X, c\}$ is a complete list, although not ground, whereas $\{a, b, Xa\}$ is incomplete.

A termination domain for append is the set of goals where the first and/or the third argument is a complete list. We discuss domains for other list-processing programs in Section 7.2, on termination of Prolog programs.
5.2.1 Exercises for Section 5.2

(i) Give a domain over which Program 3.3 for plus is terminating.

(ii) Define complete and incomplete binary trees by analogy with the definitions for complete and incomplete lists.

5.3 Complexity

We have analyzed informally the complexity of several logic programs, for example, s and plus (Programs 3.2 and 3.3) in the section on arithmetic, and append and the two versions of reverse in the section on lists (Programs 3.15 and 3.16). In this section, we briefly describe more formal complexity measures.

The multiple uses of logic programs slightly change the nature of complexity measures. Instead of looking at a particular use and specifying complexity in terms of the sizes of the inputs, we look at goals in the meaning and see how they were derived. A natural measure of the complexity of a logic program is the length of the proofs it generates for goals in its meaning.

Definition

The size of a term is the number of symbols in its textual representation.

Constants and variables, consisting of a single symbol, have size 1. The size of a compound term is 1 more than the sum of the sizes of its arguments. For example, the list (a, b) has size 3, $\{a, b\}$ has size 5, and the goal append (a, b, c, d, a) has size 12. In general, a list of n elements has size $2 \cdot n + 1$.

Definition

A program P is of length complexity $L(n)$ if for any goal G in the meaning of P of size n, there is a proof of G with respect to P of length less than or equal to $L(n)$.

Length complexity is related to the usual complexity measures in computer science. For sequential realizations of the computation model, it corresponds to time complexity. Program 3.15 for append has linear length complexity. This is demonstrated in Exercise (i) at the end of this section.

The applicability of this measure to Prolog programs, as opposed to logic programs, depends on using a unification algorithm without an occurs check. Consider the runtime of the straightforward program for appending two lists. Appending two lists, as shown in Figure 4.3, involves several unifications of append goals with the head of the append rule append (X, Y, Z). At least three unifications, matching variables against (possibly incomplete) lists, will be necessary. If the occurs check must be performed for each, the argument lists must be searched. This is directly proportional to the size of the input goal. However, if the occurs check is omitted, the unification time will be bounded by a constant. The overall complexity of append becomes quadratic in the size of the input lists with the occurs check, but only linear without it.

We introduce other useful measures related to proofs. Let R be a proof. We define the depth of R to be the deepest invocation of a goal in the associated reduction. The goal-size of R is the maximum size of any goal reduced.

Definition

A logic program P is of goal-size complexity $G(n)$ if for any goal A in the meaning of P of size n, there is a proof of A with respect to P of goal-size less than or equal to $G(n)$.

Definition

A logic program P is of depth complexity $D(n)$ if for any goal A in the meaning of P of size n, there is a proof of A with respect to P of depth less than or equal to $D(n)$.

Goal-size complexity relates to space. Depth-complexity relates to space of what needs to be remembered for sequential realizations, and to space and time complexity for parallel realizations.

5.3.1 Exercises for Section 5.3

(i) Show that the size of a goal in the meaning of append joining a list of length n to one of length m to give a list of length $n + m$ is $4 \cdot n + 4 \cdot m + 4$. Show that a proof tree has $m + 1$ nodes. Hence
show that append has linear complexity. Would the complexity be altered if the type condition were added?

(ii) Show that Program 3.3 for plus has linear complexity.

(iii) Discuss the complexity of other logic programs.

5.4 Search Trees

Computations of logic programs given so far resolve the issue of non-determinism by always making the correct choice. For example, the complexity measures, based on proof trees, assume that the correct clause can be chosen from the program to effect the reduction. Another way of computationally modeling non-determinism is by developing all possible reductions in parallel. In this section, we discuss search trees, a formalism for considering all possible computation paths.

Definition

A search tree of a goal G with respect to a program P is defined as follows. The root of the tree is G. Nodes of the tree are (possibly conjunctive) goals with one goal selected. There is an edge leading from a node N for each clause in the program whose head unifies with the selected goal. Each branch in the tree from the root is a computation of G by P. Leaves of the tree are success nodes, where the empty goal has been reached, or failure nodes, where the selected goal at the node cannot be further reduced. Success nodes correspond to solutions of the root of the tree.

There are in general many search trees for a given goal with respect to a program. Figure 5.2 shows two search trees for the query $\text{son}(S, \text{hara})$ with respect to Program 1.2. The two possibilities correspond to the two choices of goal to reduce from the resolvent $\text{father}(\text{hara}, S), \text{male}(S)$. The trees are quite distinct, but both have a single success branch corresponding to the solution of the query S-let. The respective success branches are given as traces in Figure 4.4.

We adopt some conventions when drawing search trees. The leftmost goal of a node is always the selected one. This implies that the goals in derived goals may be permuted so that the new goal to be selected for

![Figure 5.2 Two search trees](image)

reduction is the first goal. The edges are labeled with substitutions that are applied to the variables in the leftmost goal. These substitutions are computed as part of the unification algorithm.

Search trees correspond closely to traces for deterministic computations. The traces for the append query and hanqi query given, respectively, in Figures 4.3 and 4.5 can be easily made into search trees. This is Exercise (i) at the end of this section.

Search trees contain multiple success nodes if the query has multiple solutions. Figure 5.3 contains the search tree for the query append(A, B, [a, b, c]) with respect to Program 3.15 for append, asking to split the list $[a, b, c]$ into two. The solutions for A and B are found by collecting the labels of the edges in the branch leading to the success node. For example, in the figure, following the leftmost branch gives the solution $[A=[a, b, c], B=[]].$

The number of success nodes is the same for any search tree of a given goal with respect to a program.

Search trees can have infinite branches, which correspond to nonterminating computations. Consider the goal append(X, [c, d], Y) with respect to the standard program for append. The search tree is given in Figure 5.4. The infinite branch is the nonterminating computation given in Figure 4.6.
5.5 Negation in Logic Programming

Logic programs are collections of rules and facts describing what is true. Untrue facts are not expressed explicitly; they are omitted. When writing rules, it is often natural to include negative conditions. For example, defining a bachelor as an unmarried male could be written as

\[
\text{bachelor}(X) \rightarrow \text{male}(X), \text{not married}(X).
\]

if negation were allowed. In this section, we describe an extension to the logic programming computation model that allows a limited form of negation.

Researchers have investigated other extensions to logic programming to allow disjunction, and indeed, arbitrary first-order formulae. Discussing them is beyond the scope of this book. The most useful of the extensions is definitely negation.

We define a relation \(\text{not} \ G \) and give a semantics. The essence of logic programming is that there is an efficient procedural semantics. There is a natural way to adapt the procedural semantics to negation, namely by negation as failure. A goal \(G \) fails, \(\text{not} \ G \) succeeds, if \(G \) cannot be derived by the procedural semantics.
The relation not \(G \) is only a partial form of negation from first-order logic. The relation not uses the negation as failure rule. A goal not \(G \) will be assumed to be a consequence of a program \(P \) if \(G \) is not a consequence of \(P \).

Negation as failure can be characterized in terms of search trees.

Definition

A search tree of a goal \(G \) with respect to a program \(P \) is **finely failed** if it has no success nodes or infinite branches. The finite failure set of a logic program \(P \) is the set of goals \(G \) such that \(G \) has a finely failed search tree with respect to \(P \).

- A goal not \(G \) is implied by a program \(P \) by the "negation as failure" rule if \(G \) is in the finite failure set of \(P \).
- Let us see a simple example. Consider the program consisting of two facts:

\[
\text{likes(abraham,pomegranates).} \\
\text{likes(ineac,pomegranates).}
\]

The goal not \text{likes(sarah,pomegranates)} follows from the program by negation as failure. The search tree for the goal \text{likes(sarah,pomegranates)} has a single failure node.

Using negation as failure allows easy definition of many relations. For example, a declarative definition of the relation \text{disjoint(Xs,Ys)} that two lists \(Xs \) and \(Ys \) have no elements in common is possible as follows:

\[
\text{disjoint}(Xs,Ys) \leftarrow \text{not}(\text{member}(X,Xs), \text{member}(X,Ys)).
\]

This reads: "\(X \) is disjoint from \(Y \) if there is no element \(X \) that is a member of both \(Xs \) and \(Ys \)."

An intuitive understanding of negation as failure is fine for the programs in this book using negation. There are semantic problems, however, especially when integrated with other issues such as completeness and termination. Pointers to the literature are given in Section 5.6, and Prolog's implementation of negation as failure is discussed in Chapter 11.

5.6 Background

The classic paper on the semantics of logic programs is of van Emde Boas and Kowalski (1976). Important extensions were given by Apt and van Emde Boas (1982). In particular, they showed that the choice of goal to reduce from the resolvent is arbitrary by showing that the number of success nodes is an invariant for the search trees. Textbook accounts of the theory of logic programming discussing the equivalence between the declarative and procedural semantics can be found in Apt (1990), Deville (1990), and Lloyd (1987).

In Shapiro (1984), complexity measures for logic programs are compared with the complexity of computations of alternating Turing machines. It is shown that goal-size is linearly related to alternating space, the product of length and goal-size is linearly related to alternating tree-size, and the product of depth and goal-size is linearly related to alternating time.

The classic name for search trees in the literature is SLD trees. The name SLD was coined by research in automatic theorem proving, which preceded the birth of logic programming. SLD resolution is a particular refinement of the resolution principle introduced in Robinson (1965). Computations of logic programs can be interpreted as a series of resolution steps, and in fact, SLD resolution steps, and are still commonly described thus in the literature. The acronym SLD stands for Selecting a literal, using a Linear strategy, restricted to Definite clauses.

The first proof of the correctness and completeness of SLD resolution, albeit under the name 1USH-resolution, was given by Hill (1974).

The subject of negation has received a large amount of attention and interest since the inception of logic programming. The fundamental work on the semantics of negation as failure is by Clark (1978). Clark's results, establishing soundness, were extended by Jaffar et al. (1983), who proved the completeness of the rule.

The concept of negation as failure is a restricted version of the closed world assumption as discussed in the database world. For more information see Reiter (1978). There has been extensive research on characterizing negation in logic programming that has not stabilized at this time. The reader should look up the latest logic programming conference proceedings to find current thinking. A good place to start reading to understand the issue is Kunen (1989).
In order to implement a practical programming language based on the computation model of logic programming, three issues need attention. The first concerns resolving the choices remaining in the abstract interpreter for logic programs, defined in Chapter 4. The second concerns enhancing the expressiveness of the pure computation model of logic programs by adding meta-logical and extra-logical facilities. Finally, access to some of the capabilities of the underlying computer, such as fast arithmetic and input/output, must be provided. This part discusses how Prolog, the most developed language based on logic programming, handles each of these issues.
Pure Prolog

A pure Prolog program is a logic program, in which an order is defined both for clauses in the program and for goals in the body of the clause. The abstract interpreter for logic programs is specialized to take advantage of this ordering information. This chapter discusses the execution model of Prolog programs in contrast to logic programs, and compares Prolog to more conventional languages.

The relation between logic programming and Prolog is reminiscent of the relation between the lambda-calculus and Lisp. Both are concrete realizations of abstract computation models. Logic programs that execute with Prolog’s execution mechanism are referred to as pure Prolog. Pure Prolog is an approximate realization of the logic programming computation model on a sequential machine. It is certainly not the only possible such realization. However, it is a realization with excellent practical choices, which balance preserving the properties of the abstract model with catering for efficient implementation.

6.1 The Execution Model of Prolog

Two major decisions must be taken to convert the abstract interpreter for logic programs into a form suitable for a concrete programming language. First, the arbitrary choice of which goal in the resolvent to reduce, namely, the scheduling policy, must be specified. Second, the nondeterministic choice of the clause from the program to effect the reduction must be implemented.
Several logic programming languages exist, reflecting different choices. Prolog and its extensions (Prolog-II, IC-Prolog, and MU-Prolog, for example) are based on sequential execution. Other languages, such as PARLOG, Concurrent Prolog, GHC, Aurora-Prolog, and Andorra-Prolog, are based on parallel execution. The treatment of nondeterminism distinguishes between sequential and parallel languages. The distinction between Prolog and its extensions is in the choice of goal to reduce.

Prolog's execution mechanism is obtained from the abstract interpreter by choosing the leftmost goal instead of an arbitrary one and replacing the nondeterministic choice of a clause by sequential search for a unifiable clause and backtracking.

In other words, Prolog adopts a stack scheduling policy. It maintains the resolvent as a stack: pops the top goal for reduction, and pushes the derived goals onto the resolvent stack.

In addition to the stack policy, Prolog simulates the nondeterministic choice of reducing clause by sequential search and backtracking. When attempting to reduce a goal, the first clause whose head unifies with the goal is chosen. If no unifiable clause is found for the popped goal, the computation is unwound to the last choice made, and the next unifiable clause is chosen.

A computation of a goal G with respect to a Prolog program P is the generation of all solutions of G with respect to P. In terms of logic programming concepts, a Prolog computation of a goal G is a complete depth-first traversal of the particular search tree of G obtained by always choosing the leftmost goal.

Many different Prolog implementations exist with differing syntax and programming facilities. Recently, there has been an attempt to reach a Prolog standard based on the Edinburgh dialect of Prolog. At the time of writing, the standard has not been finalized. However a complete draft exists, which we essentially follow. We refer to the Prolog described in that document as Standard Prolog. The syntax of logic programs that we have been using fits within Standard Prolog except that we use some characters not available on a standard keyboard. We give the standard equivalent of our special characters. Thus - should be used instead of -- in Prolog programs to separate the head of a clause from its body.

All the programs in this book run (possibly with minor changes) in all Edinburgh-compatible Prolog.

A trace of a Prolog computation is an extension of the trace of a computation of a logic program under the abstract interpreter as described in Section 4.2. We revise the computations of Chapters 4 and 5, indicating the similarities and differences. Consider the query $\text{son}(X, \text{baran})$ with respect to Program 1.2, biblical family relationships, repeated at the top of Figure 6.1. The computation is given in the bulk of Figure 6.1. It corresponds to a depth-first traversal of the first of the search trees in Figure 5.2. It is an extension of the first trace in Figure 4.4, since the whole search tree is searched.

The notation previously used for traces must be extended to handle failure and backtracking. An f after a goal denotes that a goal fails, that is there is no clause whose head unifies with the goal. The next goal after a failed goal is where the computation continues on backtracking. It already appears as a previous goal in the trace at the same depth of indentation and can be identified by the variable names. We adopt the Edinburgh Prolog convention that a ".", typed after a solution denotes a continuation of the computation to search for more solutions. Unifications are indicated as previously.

Trace facilities and answers provided by particular Prolog implementations vary from our description. For example, some Prolog implementations always give all solutions, while others wait for a user response after each solution.
The trace of `append([a,b],[c,d],La)`? giving the answer `La=[a,b,c,d]` is precisely the trace given in Figure 4.3. Figure 4.5, giving the trace for solving the Towers of Hanoi with three disks, is also a trace of the hanoi program considered as a Prolog program solving the query `hanoi(s(s(s(0)))),a,b,c,Ma)`. The trace of a deterministic computation is the same when considered as a logic program or a Prolog program, provided the order of goals is preserved.

The next example is answering the query `append(Xs, Ye, [a,b,c])` with respect to Program 3.15 for append. There are several solutions of the query. The search tree for this goal was given as Figure 5.3. Figure 6.2 gives the Prolog trace.

Tracing computations is a good way to gain understanding of the execution model of Prolog. We give a slightly larger example, sorting a list with the quicksort program (Program 3.22, reproduced at the top of Figure 6.3). Computations using quicksort are essentially deterministic and show the algorithmic behavior of a Prolog program. Figure 6.3 gives a trace of the query `quicksort([2,1,3],Ye)`.

The trace of `quicksort([2,1,3],Ye)`:
- `partition([2],[1,3],Ye)`.
- `quicksort([2],Ye)`.
- `partition([1,3],Ye)`.
- `quicksort([1],Ye)`.
- `partition([3],Ye)`.
- `quicksort([3],Ye)`.
- `append([1,3],Ye)`.

Figure 6.2 Multiple solutions for splitting a list

The trace of `append([a,b],[c,d],La)`? giving the answer `La=[a,b,c,d]` is precisely the trace given in Figure 4.3. Figure 4.5, giving the trace for solving the Towers of Hanoi with three disks, is also a trace of the hanoi program considered as a Prolog program solving the query `hanoi(s(s(s(0)))),a,b,c,Ma)`.

Figure 6.3 Tracing a quicksort computation
are assumed to be unit operations, and the standard program for append
is used.
We introduce a distinction between shallow and deep backtracking.
Shallow backtracking occurs when the unification of a goal and a clause
fails, and an alternative clause is tried. Deep backtracking occurs when
the unification of the last clause of a procedure with a goal fails, and
control returns to another goal in the computation tree.
It is sometimes convenient to include, for the purpose of this definition,
test predicates that occur first in the body of the clause as part of
unification, and to classify the backtracking that occurs as a result of
their failure as shallow. An example in Figure 6.3 is the choice of a new
clause for the goal partition([3], [2], [1], [8]).

6.1.1 Exercises for Section 6.1

(i) Trace the execution of daughter(X, haman)? with respect to Pro-
gram 1.2.
(ii) Trace the execution of sorts([3,1,2],Xs)? with respect to Pro-
gram 3.21.
(iii) Trace the execution of sorts([3,1,2],Xs)? with respect to Pro-
gram 3.20.

6.2 Comparison to Conventional Programming Languages

A programming language is characterized by its control and data ma-
nipulation mechanisms. Prolog, as a general-purpose programming lan-
guage, can be discussed in these terms, as are conventional languages.
In this section, we compare the control flow and data manipulation of
Prolog to that of Algol-like languages.
The control in Prolog programs is like that in conventional procedural
languages as long as the computation progresses forward. Goal invoca-
tion corresponds to procedure invocation, and the ordering of goals in
the body of clauses corresponds to sequencing of statements. Specifi-
cally, the clause A - B1, ..., Bn can be viewed as the definition of a pro-
cedure A as follows:

procedure A
 call B1,
 call B2,
 ...
 call Bn,
end.

Recursive goal invocation in Prolog is similar in behavior and imple-
mentation to that of conventional recursive languages. The differences
show when backtracking occurs. In a conventional language, if a compu-
tation cannot proceed (e.g., all branches of a case statement are false),
a runtime error occurs. In Prolog, the computation is simply undone to the
last choice made, and a different computation path is attempted.
The data structures manipulated by logic programs, terms, correspond
to general record structures in conventional programming languages.
The handling of data structures is very flexible in Prolog. Like Lisp, Prolog
is a declaration-free, typeless language.
The major differences between Prolog and conventional languages in
the use of data structures arise from the nature of logical variables. Log-
ical variables refer to individuals rather than to memory locations. Con-
sequently, having once been specified to refer to a particular individual,
a variable cannot be made to refer to another individual. In other words,
logic programming does not support destructive assignment where the
contents of an initialized variable can change.
Data manipulation in logic programs is achieved entirely via the unifi-
cation algorithm. Unification subsumes:
• Single assignment
• Parameter passing
• Record allocation
• Read/write-once field-access in records

We discuss the trace of the quicksort program in Figure 6.3, point-
ing out the various uses of unification. The unification of the initial
goal quicksort([2,1,3],Xs) with the head of the procedure definition
quicksort([X|Xs],Xs) illustrates several features. The unification of
[2,1,3] with the term [X|Xs] achieves record access to the list and also
selection of its two fields, the head and tail.
The unification of \(1,3\) with \(X\) achieves parameter passing to the partition procedure, because of the sharing of the variables. This gives the first argument of partition. Similarly, the unification of \(2\) with \(X\) passes the value of the second parameter to partition.

Record creation can be seen with the unification of the goal partition\((1,3)\), \(2\), \(X\), \(A\)\) with the head of the partition procedure partition\((X\langle X\rangle, 2\langle X\rangle, \langle X\rangle, \langle A\rangle\rangle\). As a result, \(X\) is instantiated to \(\langle X\rangle\). Specifically, \(X\) is made into a list and its head is assigned the value \(1\), namely, record creation and field assignment via unification.

The recursive algorithm embodied by the quicksort program can be easily coded in a conventional programming language using linked lists and pointer manipulation. As discussed, unification is achieving the effect of the necessary pointer manipulations. Indeed, the manipulation of logical variables via unification can be viewed as an abstraction of low-level manipulation of pointers to complex data structures.

These analogies may provide hints on how to implement Prolog efficiently on a von Neumann machine. Indeed, the basic idea of compilation of Prolog is to translate special cases of unification to conventional memory manipulation operations, as specified previously.

Conventional languages typically incorporate error-handling or exception-handling mechanisms of various degrees of sophistication. Pure Prolog does not have an error or exception mechanism built into its definition. The pure Prolog counterparts of nonfatal errors in conventional programs, e.g., a missing case in a case statement, or dividing by zero, cause failure in pure Prolog.

Full Prolog, introduced in the following chapters, includes system predicates, such as arithmetic and I/O, which may cause errors. Current Prolog implementations do not have sophisticated error-handling mechanisms. Typically, on an error condition, a system predicate prints an error message and either fails or aborts the computation.

This brief discussion of Prolog's different way of manipulating data does not help with the more interesting question: How does programming in Prolog compare with programming in conventional programming languages? That is the major underlying topic of the rest of this book.

6.3 Background

The origins of Prolog are shrouded in mystery. All that is known is that the two founders, Robert Kowalski, then at Edinburgh, and Alain Colmerauer at Marseilles worked on similar ideas during the early 1970s, and even worked together one summer. The results were the formulation of the logic programming philosophy and computation model by Kowalski (1974), and the design and implementation of the first logic programming language Prolog, by Colmerauer and his colleagues (1973). Three recent articles giving many more details about the beginnings of Prolog and logic programming are Cohen (1988), Kowalski (1988), and Colmerauer and Roussel (1993).

A major force behind the realization that logic can be the basis of a practical programming language has been the development of efficient implementation techniques, as pioneered by Warren (1977). Warren's compiler identified special cases of unification and translated them into efficient sequences of 'conventional memory operations. Good accounts of techniques for Prolog implementation, both interpretation and compilation, can be found in Maier and Warren (1988) and Att-Kaci (1991).

Variations of Prolog with extra control features, such as IC-Prolog (Clark and McCabe, 1979), have been developed but have proved too costly in runtime overhead to be seriously considered as alternatives to Prolog. We will refer to particular interesting variations that have been proposed in the appropriate sections.

Another breed of logic programming languages, which indirectly emerged from IC-Prolog, was concurrent logic languages. The first was the Relational Language (Clark and Gregory, 1981), followed by Concurrent Prolog (Shapiro, 1983b), PARLOG (Clark and Gregory, 1984), GHC (Ueda, 1983), and a few other proposals.

References for the variations mentioned in the text are, for Prolog II (van Canehein, 1982), IC-Prolog (Clark et al., 1982), and MU-Prolog (Naish, 1986). Aurora-Prolog is described in Dycz et al. (1987), while a starting place for reading about AKI, a language emerging from Andorra-Prolog in Janssen and Hardt (1991).

The syntax of Prolog stems from the clausal form of logic due to Kowalski (1974). The original Marseilles interpreter used the terminology of positive and negative literals from resolution theory. The clause \(A \leftarrow B_1, \ldots, B_n\) was written \(+A \leftarrow -B_1, \ldots, -B_n\).
Chapter 6

David H. D. Warren adapted Marseilles Prolog for the DEC 10 at the University of Edinburgh, with help from Fernando Pereira. Their decisions have been very influential. Many systems adopted most of the conventions of Prolog-10 (Warren et al., 1979), which has become known more generically as Edinburgh Prolog. Its essential features are described in the widespread primer on Prolog (Clocksin and Mellish, 1984). This book follows the description of Standard Prolog existing as Scoen (1991).

A paper by Cohen (1983) delves further into the relation between Prolog and conventional languages.

7 Programming in Pure Prolog

A major aim of logic programming is to enable the programmer to program at a higher level. Ideally one should write axioms that define the desired relations, maintaining ignorance of the way they are going to be used by the execution mechanism. Current logic programming languages, Prolog in particular, are still far away from allowing this ideal of declarative programming. The specific, well-defined choices of how their execution mechanisms approximate the abstract interpreter cannot be ignored. Effective logic programming requires knowing and utilizing these choices.

This chapter discusses the consequences of Prolog's execution model for the logic programmer. New aspects of the programming task are introduced. Not only must programmers come up with a correct and complete axiomatization of a relation but they must also consider its execution according to the model.

7.1 Rule Order

Two syntactic issues, irrelevant for logic programs, are important to consider when composing Prolog programs. The rule order, or clause order, of clauses in each procedure must be decided. Also the goal order of goals in the bodies of each clause must be determined. The consequences of these decisions can be immense. There can be orders of magnitude of difference in efficiency in the performance of Prolog programs. In extreme though quite common cases, correct logic programs will fail to give solutions because of nontermination.
parent(terach, abraham).
parent(abraham, isaac).
parent(isaac, jacob).
parent(jacob, benjamin).
ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(Y, X).}

Program 7.1 Yet another family example

The rule order determines the order in which solutions are found.

Changing the order of rules in a procedure permutes the branches in any search tree for a goal using that procedure. The search tree is traversed depth-first. So permuting the branches causes a different order of traversal of the search tree, and a different order of finding solutions. The effect is clearly seen when using facts to answer an existential query. With our biblical database and a query such as father(X, Y)?, changing the order of facts will change the order of solutions found by Prolog. Deciding how to order facts is not very important.

The order of solutions of queries solved by recursive programs is also determined by the clause order. Consider Program 5.1, a simple biblical database together with a program for the relationship ancestor, repeated here as Program 7.1.

For the query ancestor(terach, X) with respect to Program 7.1, the solutions will be given in the order, X = abraham, X = isaac, X = jacob, and X = benjamin. If the rules defining ancestor are swapped, the solutions will appear in a different order, namely, X = benjamin, X = jacob, X = isaac, and X = abraham.

The different order of ancestor clauses changes the order of searching the implicit family tree. In one order, Prolog outputs solutions as it goes along. With the other order, Prolog travels to the end of the family tree and gives solutions on the way back. The desired order of solutions is determined by the application, and the rule order of ancestor is chosen accordingly.

Changing the order of clauses for the member predicate (Program 3.12) also changes the order of search. As written, the program searches the list until the desired element is found. If the order of the clauses is reversed, the program always searches to the end of the list. The order of solutions will also be affected, for example, responding to the query member(X, [1, 2, 3])? In the standard order, the order of solutions is intuitive: X = 1, X = 2, X = 3. With the rules swapped, the order is X = 3, X = 2, X = 1. The order of Program 3.12 is more intuitive and hence preferable.

When the search tree for a given goal has an infinite branch, the order of clauses can determine if any solutions are given at all. Consider the query append([X, Y], [c, d], Z)? with respect to append. As can be seen from the search tree in Figure 5.4, no solutions would be given. If, however, the append fact appeared before the append rule, an infinite number of pairs X, Y satisfying the query would be given.

There is no consensus as to how to order the clauses of a Prolog procedure. Clearly, the standard dictated in more conventional languages, of testing for the termination condition before proceeding with the iteration or recursion is not mandatory in Prolog. This is demonstrated in Program 3.15 for append as well as in other programs in this book. The reason is that the recursive or iterative clause tests its applicability by unification. This test is done explicitly and independently of the other clauses in the procedure.

Clause order is more important for general Prolog programs than it is for pure Prolog programs. Other control features, notably the cut to be discussed in Chapter 11, depend significantly on the clause order. When such constructs are used, clauses lose their independence and modularity, and clause order becomes significant.

In this chapter, for the most part, the convention that the recursive clauses precede the base clauses is adopted.

7.1.1 Exercises for Section 7.1

(i) Verify the order of solutions for the query ancestor(abraham, X)? with respect to Program 7.1, and its variant with different rule order for ancestor, claimed in the text.

(ii) What is the order of solutions for the query ancestor(X, benjamin)? with respect to Program 7.1? What if the rule order for ancestor were swapped?

7.2 Termination

Prolog's depth-first traversal of search trees has a serious problem. If the search tree of a goal with respect to a program contains an infinite
branch, the computation will not terminate. Prolog may fail to find a solution to a goal, even though the goal has a finite computation. Nontermination arises with recursive rules. Consider adding a relationship married(Male, Female) to our database of family relationships. A sample fact from the biblical situation is married(abraham, sarah). A user querying the married relationship should not care whether males or females are first, as the relationship is commutative. The "obvious" way of overcoming the commutativity is adding a recursive rule married(X, Y) :- married(Y, X). If this is added to the program, no computation involving married would ever terminate. For example, the trace of the query married(abraham, sarah)? is given in Figure 7.1.

Recursive rules that have the recursive goal as the first goal in the body are known as left recursive rules. The problematic married axiom is an example. Left recursive rules are inherently troublesome in Prolog. They cause nonterminating computations if called with inappropriate arguments.

The best solution to the problem of left recursion is avoidance. The married relationship used a left recursive rule to express commutativity. Commutative relationships are best handled differently, by defining a new predicate that has a clause for each permutation of the arguments of the relationship. For the relationship married, a new predicate, are_married(Person1, Person2), say, would be defined using two rules:

are_married(X, Y) :- married(X, Y).
are_married(X, Y) :- married(Y, X).

Unfortunately, it is not generally possible to remove all occurrences of left recursion. All the elegant minimal recursive logic programs shown in Chapter 3 are left recursive, and can cause nontermination. However, the appropriate analysis, using the concepts of domains and complete structures introduced in Section 5.2, can determine which queries will terminate with respect to recursive programs.

Let us consider an example, Program 3.15 for appending two lists. The program for append is everywhere terminating for the set of goals whose first and/or last argument is a complete list. Any append query whose first argument is a complete list will terminate. Similarly, all queries where the third argument is a complete list will terminate. The program will also terminate if the first and/or third argument is a ground term that is not a list. The behavior of append is best summed up by considering the queries that do not terminate, namely, when both the first and third arguments are incomplete lists that are unifiable.

The condition for when a query to Program 3.12 for number terminates is also stated in terms of incomplete lists. A query does not terminate if the second argument is an incomplete list. If the second argument of a query to number is a complete list, the query terminates.

Another guaranteed means of generating nonterminating computations, easy to overlook, is circular definitions. Consider the pair of rules

parent(X, Y) :- child(Y, X).
child(X, Y) :- parent(Y, X).

Any computation involving parent or child, for example, parent(haran, lot), will not terminate. The search tree necessarily contains an infinite branch, because of the circularity.

7.2.1 Exercises for Section 7.2
(i) Discuss the termination behavior of both programs in Program 3.13 determining prefixes and suffixes of lists.
(ii) Discuss the termination of Program 3.14c for sublist.

7.3 Goal Order

Goal order is more significant than clause order. It is the principal means of specifying sequential flow of control in Prolog programs. The programs for sorting lists, e.g., Program 3.22 for quicksort, exploit goal order to indicate the sequence of steps in the sorting algorithms.
We first discuss goal order from the perspective of database programming. The order of goals can affect the order of solutions. Consider the query \texttt{daughter(X, haran)\?} with respect to a variant of Program 1.2, where the order of the facts \texttt{female(milcah) and female(yiscah)} is interchanged. The two solutions are given in the order \texttt{X=milcah, X=yiscah}. If the goal order of the daughter rule were changed to be \texttt{daughter(X, Y) \leftarrow female(X), father(Y, X)}, the order of the solutions to the query, given the same database, would be \texttt{X=yiscah, X=milcah}.

The reason that the order of goals in the body of a clause affects the order of solutions to a query is different from the reason that the order of rules in a procedure affects the solution order. Changing rule order does not change the search tree that must be traversed for a given query. The tree is just traversed in a different order. Changing goal order changes the search tree.

\textit{Goal order determines the search tree.}

Goal order affects the amount of searching the program does in solving a query by determining which search tree is traversed. Consider the two search trees for the query \texttt{son(X, haran)\?}, given in Figure 5.2. They represent two different ways of finding a solution. In the first case, solutions are found by searching for children of haran and checking if they are male. The second case corresponds to the rule for son being written with the order of the goals in its body swapped, namely, \texttt{son(X, Y) \leftarrow male(X), parent(Y, X)}. Now the query is solved by searching through all the males in the program and checking if they are children of haran. If there were many \texttt{male} facts in the program, more search would be involved. For other queries, for example, \texttt{son(sarah, X)\?}, the reverse order has advantages. Since \texttt{sarah} is not male, the query would fail more quickly.

The optimal goal order of Prolog programs varies with different uses. Consider the definition of grandparent. There are two possible rules:

\texttt{grandparent(X, Z) \leftarrow parent(X, Y), parent(Y, Z).}
\texttt{grandparent(X, Z) \leftarrow parent(Y, Z), parent(X, Y).}

If you wish to find someone’s grandson with the grandfather relationship with a query such as \texttt{grandparent(X, isaac)\?}, the second rule finds the solution more directly. If efficiency is important, then it is advisable to have two distinct relationships, grandparent and grandchild, to be used appropriately at the user’s discretion.

In contrast to rule order, goal order can determine whether computations terminate. Consider the recursive rule for ancestor:

\texttt{ancestor(X, Y) \leftarrow parent(X, Z), ancestor(Z, Y).}

If the goals in the body are swapped, the ancestor program becomes left recursive, and all Prolog computations with ancestor are nonterminating.

The goal order is also important in the recursive clause of the quicksort algorithm in Program 3.22:

\texttt{quicksort([X|Xs], Ye) \leftarrow partition(Xs, X, Littles, Bigs), quicksort(Littles, La), quicksort(Bigs, Bs), append(La, [X|Bs], Ye).}

The list should be partitioned into its two smaller pieces before recursively sorting the pieces. If, for example, the order of the partition goal and the recursive sorting goal is swapped, no computations terminate.

We next consider Program 3.16a for reversing a list:

\texttt{reverse([], Ye) \leftarrow reverse([X|Xs], Zs) \leftarrow reverse(Xs, Ye), append(Ys, [X], Zs).}

The goal order is significant. As written, the program terminates with goals where the first argument is a complete list. Goals where the first argument is an incomplete list give nonterminating computations. If the goals in the recursive rule are swapped, the determining factor of the termination of \texttt{reverse} goals is the second argument. Calls to \texttt{reverse} with the second argument a complete list terminate. They do not terminate if the second argument is an incomplete list.

A subtler example comes from the definition of the predicate sublist in terms of two append goals, specifying the sublist as a suffix of a prefix, as given in Program 3.14e. Consider the query \texttt{sublist([2,3],[1,2,3,4])\?} with respect to the program. The query is reduced to \texttt{append(AsXs, Bs, [1,2,3,4]), append(As, [2,3], AsXs)\?}.

Programming in Pure Prolog

a query such as grandparent(X, isaac)\?, the second rule finds the solution more directly. If efficiency is important, then it is advisable to have two distinct relationships, grandparent and grandchild, to be used appropriately at the user's discretion. In contrast to rule order, goal order can determine whether computations terminate. Consider the recursive rule for ancestor: ancestor(X, Y) \leftarrow parent(X, Z), ancestor(Z, Y). If the goals in the body are swapped, the ancestor program becomes left recursive, and all Prolog computations with ancestor are nonterminating. The goal order is also important in the recursive clause of the quicksort algorithm in Program 3.22: quicksort([X|Xs], Ye) \leftarrow partition(Xs, X, Littles, Bigs), quicksort(Littles, La), quicksort(Bigs, Bs), append(La, [X|Bs], Ye). The list should be partitioned into its two smaller pieces before recursively sorting the pieces. If, for example, the order of the partition goal and the recursive sorting goal is swapped, no computations terminate. We next consider Program 3.16a for reversing a list: reverse([], Ye) \leftarrow reverse([X|Xs], Zs) \leftarrow reverse(Xs, Ye), append(Ys, [X], Zs). The goal order is significant. As written, the program terminates with goals where the first argument is a complete list. Goals where the first argument is an incomplete list give nonterminating computations. If the goals in the recursive rule are swapped, the determining factor of the termination of reverse goals is the second argument. Calls to reverse with the second argument a complete list terminate. They do not terminate if the second argument is an incomplete list. A subtler example comes from the definition of the predicate sublist in terms of two append goals, specifying the sublist as a suffix of a prefix, as given in Program 3.14e. Consider the query sublist([2,3],[1,2,3,4])\? with respect to the program. The query is reduced to append(AsXs, Bs, [1,2,3,4]), append(As, [2,3], AsXs)\?.

Programming in Pure Prolog

a query such as grandparent(X, isaac)\?, the second rule finds the solution more directly. If efficiency is important, then it is advisable to have two distinct relationships, grandparent and grandchild, to be used appropriately at the user's discretion. In contrast to rule order, goal order can determine whether computations terminate. Consider the recursive rule for ancestor: ancestor(X, Y) \leftarrow parent(X, Z), ancestor(Z, Y). If the goals in the body are swapped, the ancestor program becomes left recursive, and all Prolog computations with ancestor are nonterminating. The goal order is also important in the recursive clause of the quicksort algorithm in Program 3.22: quicksort([X|Xs], Ye) \leftarrow partition(Xs, X, Littles, Bigs), quicksort(Littles, La), quicksort(Bigs, Bs), append(La, [X|Bs], Ye). The list should be partitioned into its two smaller pieces before recursively sorting the pieces. If, for example, the order of the partition goal and the recursive sorting goal is swapped, no computations terminate. We next consider Program 3.16a for reversing a list: reverse([], Ye) \leftarrow reverse([X|Xs], Zs) \leftarrow reverse(Xs, Ye), append(Ys, [X], Zs). The goal order is significant. As written, the program terminates with goals where the first argument is a complete list. Goals where the first argument is an incomplete list give nonterminating computations. If the goals in the recursive rule are swapped, the determining factor of the termination of reverse goals is the second argument. Calls to reverse with the second argument a complete list terminate. They do not terminate if the second argument is an incomplete list. A subtler example comes from the definition of the predicate sublist in terms of two append goals, specifying the sublist as a suffix of a prefix, as given in Program 3.14e. Consider the query sublist([2,3],[1,2,3,4])\? with respect to the program. The query is reduced to append(AsXs, Bs, [1,2,3,4]), append(As, [2,3], AsXs)\?.
This has a finite search tree, and the initial query succeeds. If Program 3.14e had its goals reversed, the initial query would be reduced to \texttt{append}(Xs,[2,3],Xs), \texttt{append}(Ys,Xs,Ys,[1,2,3,4]). This leads to a nonterminating computation because of the first goal, as illustrated in Figure 5.4.

A useful heuristic for goal order can be given for recursive programs with tests such as arithmetic comparisons, or determining whether two constants are different. The heuristic is to place the tests as early as possible. An example comes in the program for \texttt{partition}, which is part of Program 3.22. The first recursive rule is

\[
\text{partition}((Xs),Y,[[Xs],[Ys]],Be) \rightarrow X \leq Y, \text{ partition}(Xs,Y,[[Ys],[Xs]],Be).
\]

The test \(X \leq Y \) should go before the recursive call. This leads to a smaller search tree.

In Prolog programming (in contrast, perhaps, to life in general) our goal is to fail as quickly as possible. Failing early prunes the search tree and brings us to the right solution sooner.

7.3.1 Exercises for Section 7.3

(i) Consider the goal order for Program 3.14e defining a sublist of a list as a suffix of a prefix. Why is the order of the append goals in Program 3.14e preferable? (Hint: Consider the query \texttt{sub-list}([a,b,c],X).)

(ii) Discuss the clause order, goal order, and termination behavior for \texttt{substitute}, posed as Exercise 3.30.

7.4 Redundant Solutions

An important issue when composing Prolog programs, irrelevant for logic programs, is the redundancy of solutions to queries. The meaning of a logic program is the set of ground goals deducible from it. No distinction is made between whether a goal in the meaning could be deduced uniquely from the program, or whether it could be deduced in several distinct ways. This distinction is important for Prolog when considering the efficiency of searching for solutions. Each possible de-

\section*{Programming in Pure Prolog}

duction means an extra branch in the search tree. The bigger the search tree, the longer a computation will take. It is desirable in general to keep the size of the search tree as small as possible.

Having a redundant program may cause, in an extreme case, exponential increase in runtime, in the event of backtracking. If a conjunction of \(n \) goals is solved, and each goal has one redundant solution, then in the event of backtracking, the conjunction may generate \(2^n \) solutions, thus possibly changing a polynomial-time program (or even a linear one) to be exponential.

One way for redundancy to occur in Prolog programs is by covering the same case with several rules. Consider the following two clauses defining the relation \texttt{minimum}.

\[
\begin{align*}
\text{minimum}(X,Y,X) & \rightarrow X \leq Y, \\
\text{minimum}(X,Y,Y) & \rightarrow Y \leq X.
\end{align*}
\]

The query \texttt{minimum}(2,2,Y)? with respect to these two clauses has a unique solution \(Y=2 \), which is given twice; one is redundant.

Careful specification of the cases can avoid the problem. The second clause can be changed to

\[
\text{minimum}(X,Y,Y) \rightarrow Y < X.
\]

Now only the first rule covers the case when the two numbers have equal values.

Similar care is necessary with the definition of \texttt{partition} as part of Program 3.22 for quicksort. The programmer must ensure that only one of the recursive clauses for \texttt{partition} covers the case when the number being compared is the same as the number being used to split the list.

Another way redundancy appears in programs is by having too many special cases. Some of these can be motivated by efficiency. An extra fact can be added to Program 3.15 for \texttt{append}, namely, \texttt{append}([x],Xs,Zs), to save recursive computations when the second argument is an empty list. In order to remove redundancy, each of the other clauses for \texttt{append} would have to cover only lists with at least one element as their second argument.

We illustrate these points when composing Program 7.2 for the relation \texttt{merge}([Xs,Ys,Zs]), which is true if \(Xs \) and \(Ys \) are lists of integers sorted in ascending order and \(Zs \) is the ordered list resulting from merging them.
merge([Xs,Ys],Zs) :-
 Zs is an ordered list of integers obtained from
 merging the ordered lists of integers Xs and Ys.

merge([X|[Xs]],Ys,[X|[Ys]]) :-
 X < Y, merge(Xs,Ys,[Y|[Zs]]) .
merge([X|[Xs]],[Y|[Ys]],Zs) :-
 X =:= Y, merge(Xs,Ys,Zs).
merge([X|[Xs]],[Y|[Ys]],[Y|[Zs]]) :-
 X > Y, merge([X|[Xs]],[Y|[Ys]],[Y|[Zs]]).
merge([],[],[]).

Program 7.2 Merging ordered lists

There are three separate recursive clauses. They cover the three possible cases: when the head of the first list is less than, equal to, or greater than the head of the second list. We discuss the predicates <, =:=, and > in Chapter 8. Two cases are needed when the elements in either list have been exhausted. Note that we have been careful that the goal `merge([],[[],[]])` is covered by only one fact, the bottom one. Redundant computations occur when using `member` to find whether a particular element occurs in a particular list, and there are multiple occurrences of the particular element being checked for in the list. For example, the search tree for the query `member(a,[a,b,a,c])` would have two success nodes.

The redundancy of previous programs was removed by a careful consideration of the logic. In this case, the `member` program is correct. If we want a different behavior, the solution is to modify the modified version of `member`.

Program 7.3 defines the relation `member_check(X,Xs)` which checks whether an element `X` is a member of a list `Xs`. The program is a variant of Program 3.12 for `member` that adds a test to the recursive clause. It has the same meaning but, as a Prolog program, it behaves differently. Figure 7.2 shows the difference between the search trees for the identical query to the two programs. The left tree is for the goal `member(a,[a,b,a,c])` with respect to Program 3.12. Note there are two success nodes. The right tree is for the goal `member_check(a,[a,b,a,c])` with respect to Program 7.3. It has only one success node.

Figure 7.2 Variant search trees

We restrict use of Program 7.3 to queries where both arguments are ground. This is because of the way `+` is implemented in Prolog, discussed in Section 11.3.

7.5 Recursive Programming in Pure Prolog

Lists are a very useful data structure for many applications written in Prolog. In this section, we revise several logic programs of Sections 3.2 and 3.3 concerned with list processing. The chosen clause and goal orders are explained, and their termination behavior presented. The section also discusses some new examples. Their properties are analyzed, and a reconstruction offered of how they are composed.
select_first(X,Xs,Ys) :- Ys is the list obtained by removing the first occurrence of X from the list Xs.

select_first(X,[X|Xs],Xs).
select_first(X,[Y|Ys],Ys) :- X ≠ Y, select_first(X,Ys,Ys).

Program 7.4 Selecting the first occurrence of an element from a list

Program 3.12 and 3.15 for member and append, respectively, are correct Prolog programs as written. They are both minimal recursive programs, so there is no issue of goal order. They are in their preferred clause order, the reasons for which have been discussed earlier in this chapter. The termination of the programs was discussed in Section 7.2.

Program 3.19 for select is analogous to the program for member:

select(X,[X|Xs],Xs).
select(X,[Y|Ys],[Y|Zs]) :- select(X,Ys,Zs).

The analysis of select is similar to the analysis of member. There is no issue of goal order because the program is minimal recursive. The clause order is chosen to reflect the intuitive order of solutions to queries such as select(X, [a,b,c], Xs) whose answers are [[b,c]], [X=b,Xs=[a,c]], or [[a,b],Xs=[c,a]]. The first solution is the result of choosing the first element, and so forth. The program terminates unless both the second and third arguments are incomplete lists.

A variant of select is obtained by adding the test X ≠ Y in the recursive clause. As before, we assume that ≠ is only defined for ground arguments. The variant is given as Program 7.4 defining the relation select_first(X,Xs,Ys). Programs 3.12 and 7.3 defining member and member_check have the same meaning. Program 7.4, in contrast, has a different meaning from Program 3.19. The goal select([a,b],Xs,[a,b,c]) is in the meaning of select, whereas select_first([a,b],Xs,[a,b,c]) is not in the meaning of select_first.

The next program considered is Program 3.20 for permutation. The order of clauses, analogously to the clause order for append, reflects the more likely mode of use:

permutation(Xs,[Y|Ys]) :- select(X,Xs,Ys), permutation(Xs,Ys).

permutation([],[]).

The goal order and the termination behavior of permutation are closely related. Computations of permutation goals where the first argument is a complete list will terminate. The query calls select with its second argument a complete list, which terminates generating a complete list as its third argument. Thus there is a complete list for the recursive permutation goal. If the first argument is an incomplete list, the permutation query will not terminate, because it calls a select goal that will not terminate. If the order of the goals in the recursive rule for permutation is swapped, the second argument of a permutation query becomes the significant one for determining termination. If it is an incomplete list, the computation will not terminate, otherwise it will.

A useful predicate using ≠ is nonmember(X,Ys) which is true if X is not a member of a list Ys. Declaratively the definition is straightforward: An element is a nonmember of a list if it is not the head and is a nonmember of the tail. The base case is that any element is a nonmember of the empty list. This program is given as Program 7.5.

Because of the use of ≠, nonmember is restricted to ground instances. This is sensible intuitively. There are arbitrarily many elements that are not elements of a given list, and also arbitrarily many lists not containing a given element. Thus the behavior of Program 7.5 with respect to these queries is largely irrelevant.

The clause order of nonmember follows the convention of the recursive clause preceding the fact. The goal order uses the heuristic of putting the test before the recursive goal.

We reconstruct the composition of two programs concerned with the subset relation. Program 7.6 defines a relation based on Program 3.12 for member, and Program 7.7 defines a relation based on Program 3.19 for select. Both consider the occurrences of the elements of one list in a second list.
members(Xs,Ys) :-
 Each element of the list Xs is a member of the list Ys.
members([X],Ys) :- member(X,Ys), members(Xs,Ys).
members([X,Y],_) :- member(X,Y), member(Y,X).

Program 7.6 Testing for a subset

selects(Xs,Ys) :-
 The list Xs is a subset of the list Ys.
selects([X|Xs],Ys) :- selects(Xs,Ys), select(X,Ys,Xs).
selects([X,Y],Ys) :- member(X,Ys).
selects([X,Y],_) :- require 3.19.

Program 7.7 Testing for a subset

Program 7.6 defining members(Xs,Ys) ignores the multiplicity of elements in the lists. For example, members([b,b],[a,b,c]) is in the meaning of the program. There are two occurrences of b in the first list, but only one in the second.

Program 7.6 is also restrictive with respect to termination. If either the first or the second argument of a members query is an incomplete list, the program will not terminate. The second argument must be a complete list because of the call to member, while the first argument must also be complete, since that is providing the recursive control. The query members(Xs,[1,2,3])? asking for subsets of a given set does not terminate. Since multiple copies of elements are allowed in Xs, there are an infinite number of solutions, and hence the query should not terminate.

Both these limitations are avoided by Program 7.7. The revised relation is selects(Xs,Ys). Goals in the meaning of Program 7.7 have at most as many copies of an element in the first list as appear in the second. Related to this property, Program 7.7 terminates whenever the second argument is a complete list. A query such as selects(Xs,[a,b,c]) has as solution all the subsets of a given set.

We now consider a different example: translating a list of English words, word for word, into a list of French words. The relation is translate(Words,Words), where Words is a list of English words and Words the corresponding list of French words. Program 7.8 performs the trans-
list [X|xs]. The head X is instantiated by the call to the procedure, often in unification with the head of the clause. The tail xs is progressively instantiated while solving the recursive call. The structure becomes fully instantiated with the solution of the base case and the termination of the computation.

Consider appending the list [c,d] to the list [a,b], as illustrated in Figure 4.3. The output Ls=[a,b,c,d] is constructed in stages, as Ls=[a|zs2], zs2=[b|zs1], and finally zs1=[c,d], when the base fact of append is used. Each recursive call partially instantiates the originally incomplete list. Note that the recursive calls to append do not have access to the list being computed. This is a top-down construction of recursive structures and is typical of programming in Prolog.

The top-down construction of recursive data structures has one limitation. Pieces of the global data structure cannot be referred to deeper in the computation. This is illustrated in a program for the relation no_doubles([Xs],Xs), which is true if Xs is a list of all the elements appearing in the list Xs with all duplicates removed.

Consider trying to compose no_doubles top-down. The head of the recursive clause will be

no_doubles([X|xs],...) --

where we need to fill in the blank. The blank is filled by calling no_doubles recursively on Xs with output Ys and integrating Ys with X. If X has not appeared in the output so far, then it should be added, and the blank will be [Y|zs]. If X has appeared, then it should not be added and the blank is Ys. This cannot be easily said. There is no way of knowing what the output is so far.

A program for no_doubles can be composed by thinking differently about the problem. Instead of determining whether an element has already appeared in the output, we can determine whether it will appear. Each element X is checked to see if it appears again in the tail of the list Xs. If X appears, then the result is Ys, the output of the recursive call to no_doubles. If X does not appear, then it is added to the recursive result. This version of no_doubles is given as Program 7.9. It uses Program 7.5 for nonmember.

A problem with Program 7.9 is that the list without duplicates may not have the elements in the desired order. For example, no_doubles([a,b,c,b],xs) has the solution Xs=[a,c,b], where the solution Xs=[a,b,c]

no_doubles([X|Ys],Ys) --

Ys is the list obtained by removing duplicate elements from the list Xs.

no_doubles([X|Ys],Ya) --

member(X,Xs), no_doubles(Xs,Ys).

no_doubles([X|Ys],Ys) --

nonmember(X,Xs), no_doubles(Xs,Ys).

no_doubles([],[]).

nonmember(X,Xs) -- See Program 7.5.

Program 7.9 Removing duplicates from a list

may be preferred. This latter result is possible if the program is rewritten. Each element is deleted from the remainder of the list as it is found. In terms of Program 7.9, this is done by replacing the two recursive calls by a rule

no_doubles([X|Ys],Xs) --

delete(X,Xs,Xs1), no_doubles(Xs1,Ys).

The new program builds the output top-down. However, it is inefficient for large lists, as will be discussed in Chapter 13. Briefly, each call to delete rebuilds the whole structure of the list.

The alternative to building structures top-down is building them bottom-up. A sample example of bottom-up construction of data structures is Program 3.16b for reversing a list:

reverse(Xs,Ys) -- reverse(Xs,[],Ys).

reverse([X|Ys],Ys) -- reverse(Xs,[X|Ys],Ys).

reverse([X|Ys],Ys) -- reverse(Xs,[]|Ys),Ys).

reverse([X|Ys],Ys) -- reverse([X|Ys],Ys).

An extra argument is added to reverse/2 and used to accumulate the values of the reversed list as the computation proceeds. This procedure for reverse builds the output list bottom-up rather than top-down. In the trace in Figure 7.3 solving the goal reverse([a,b,c],xs), the successive values of the middle argument of the calls to reverse/3 [], [a], [b,a], and [c,b,a] represent the structure being built.

A bottom-up construction of structures allows access to the partial results of the structure during the computation. Consider a relation nd_reverse(Xs,Ys) combining the effects of no_doubles and reverse. The
reverse([a,b,c],Xs)
reverse([a,b,c],[]),Xs
reverse([b,c],Xs),
reverse([c],[a],Xs)
reverse([c],[b,a],Xs)
reverse([],[b,a],Xs)
reverse([],[c,b,a],Xs)
Xs = [c,b,a]

Figure 7.3 Tracing a reverse computation

nd_reverse(Xs,Ys) :-
Ys is the reversal of the list obtained by
removing duplicate elements from the list Xs.
nd_reverse(Xs,Ys) :- nd_reverse(Xs,[I],Ta).
nd_reverse([IX],[X],Reva,Ya).
nd_reverse([X],[X],[Reva,Ya]).
nd_reverse([I],[I],Ta,Ya).
nonmember(X,Reva),nd_reverse(Xs,[X|Reva],Ya).
nd_reverse([],[I],Ta,Ya).
nonmember(X, [I]) :- See Program 7.5.

Program 7.10 Reversing with no duplicates

meaning of nd_reverse is that Ys is a list of elements in Xs in reverse order and with duplicates removed. Analogously to reverse, nd_reverse calls nd_reverse/3 with an extra argument that builds the result bottom-up. This argument is checked to see whether a particular element appears, rather than checking the tail of the list as in Program 7.9 for no_duplicates. The program is given as Program 7.10.

We emphasize the characteristics of bottom-up construction illustrated here. One argument behaves as an accumulator of the final data structure. It is augmented in the recursive call, so that the more complex version is in the body of the clause rather than in its head. This contrasts with top-down construction, where the more complex version of the data structure being built is in the head of the clause. Another argument is used solely for returning the output, namely, the final value of the accumulator. It is instantiated with the satisfaction of the base fact. The argument is explicitly carried unchanged in the recursive call.

The technique of adding an accumulator to a program can be generalized. It is used in Chapter 8 discussing Prolog programs for arithmetic.

Accumulators can also be viewed as a special case of incomplete data structures, as is discussed in Chapter 15.

7.5.1 Exercise for Section 7.5

(i) Write Program 7.9 for no_duplicates, building the structure bottom-up.

7.6 Background

Prolog was envisaged as a first approximation to logic programming, which would be superseded by further research. Its control has always been acknowledged as being limited and naive. An oft-cited slogan, credited to Kowalski (1979b), is "Algorithm = Logic + Control." The particular control provided in pure Prolog was intended as just one solution on the path to declarative programming and intelligent control. Time has shown otherwise. The control of Prolog has proven adequate for a large range of applications, and the language has not only endured but has blossomed.

Nonetheless, logic programming researchers have investigated other forms of control. For example, LOGLISP (Robinson and Sibert, 1982) has breadth-first traversal of the search tree, and IC-Prolog (Clark and McCabe, 1979) has co-routining. MU-Prolog (Naish, 1986) allows suspension to provide a correct implementation of negation and to prevent the computation from searching infinite branches in certain cases. Wait declarations are generated (Naish, 1983b) that are related to the conditions on termination of Prolog programs given in Section 7.2.

A methodology for systematically constructing simple Prolog programs is given in Deville (1990). Essential to Deville's methods are specifications, a subject touched upon in Section 13.3.

Analysis of Prolog programs, and logic programs more generally, has become a hot topic of research. Most analyses are based on some form of abstract interpretation, a topic beyond the scope of this book. The initial work in Prolog can be found in Mellish (1985), and a view of leading research groups can be found in a special issue of the Journal of Logic Programming (1993).

Extensive work has also appeared recently on analyzing termination of Prolog programs. A starting place for this topic is Plümer (1990).
8 Arithmetic

The logic programs for performing arithmetic presented in Section 3.1 are very elegant, but they are not practical. Any reasonable computer provides very efficient arithmetic operations directly in hardware, and practical logic programming languages cannot afford to ignore this feature. Computations such as addition take unit time on most computers independent of the size of the addends (as long as they are smaller than some large constant). The recursive logic program for plus (Program 3.3) takes time proportional to the first of the numbers being added. This could be improved by switching to binary or decimal notation but still won't compete with direct execution by dedicated hardware.

Every Prolog implementation reserves some predicate names for system-related procedures. Queries to these predicates, called system predicates, are handled by special code in the implementation in contrast to calls to predicates defined by pure Prolog programs. A Prolog implementor should build system predicates that complement pure Prolog naturally and elegantly. Other names for system predicates are evaluable predicates, _builtin_ predicates, or _bips_, the latter two being referred to in the draft for Standard Prolog.

8.1 System Predicates for Arithmetic

The role of the system predicates for arithmetic introduced in Prolog is to provide an interface to the underlying arithmetic capabilities of the computer in a straightforward way. The price paid for this efficiency is
that some of the machine-oriented arithmetic operations are not as general as their logical counterparts. The interface provided is an arithmetic evaluator, which uses the underlying arithmetic facilities of the computer. Standard Prolog has a system predicate `is(Value, Expression)` for arithmetic evaluation. Goals with the predicate `is` are usually written in binary infix form, taking advantage of the operator facility of Prolog, about which we now digress.

Operators are used in order to make programs more readable. People are very flexible and learn to adjust to strange surroundings—they can become accustomed to reading Lisp and Fortran programs, for example. We believe nonetheless that syntax is important; the power of a good notation is well known from mathematics. An integral part of a good syntax for Prolog is the ability to specify and use operators.

Operators, for example `#` and `<`, have already been used in earlier chapters. Standard Prolog provides several operators, which we introduce as they arise. Programmers can also define their own operators using the built-in predicate `op/3`. An explanation of the mechanism for operator declarations, together with a list of pre-defined operators and their precedences is given in Appendix B.

Queries using the arithmetic evaluator provided by Prolog have the form `Value is Expression?`. Queries to the evaluator are interpreted as follows. The arithmetic expression `Expression` is evaluated and the result is unified with `Value`. Once arithmetic evaluation succeeds, the query succeeds or fails depending on whether unification succeeds or fails.

Here are some examples of simple addition, illustrating the use and behavior of the evaluator. The query `(X is 3+5)` has the solution `X=8`. This is the standard use of the evaluator; instantiating a variable to the value of an arithmetic expression. The query `(8 is 3+5)` succeeds. Having both arguments to `is` instantiated allows checking the value of an arithmetic expression. `(3+5 is 3+5)` fails because the left-hand argument, `3+5`, does not unify with `8`, the result of evaluating the expression. Standard Prolog specializes a range of arithmetic operations that should be supported by Prolog for both integers and reals represented as floating-point numbers. In particular, the evaluator provides for addition, subtraction, multiplication, and division (`+`, `-`, `*`, `/`) with their usual mathematical precedences. In this book, we restrict ourselves to integer arithmetic.

What happens if the term to be evaluated is not a valid arithmetic expression? An expression can be invalid for one of two reasons, which should be treated differently, at least conceptually. A term such as `3*X` for a constant `X` cannot be evaluated. In contrast, a term `3+Y` for a variable `Y` may or may not be evaluable, depending on the value of `Y`.

The semantics of any logic program is completely defined, and, in this sense, logic programs cannot have runtime "errors." For example, the goal `X is 3+Y` has solutions `X=3, Y=0`. However, when interfacing logic programs to a computer, the limitations of the machine must be taken into account. A runtime error occurs when the machine cannot determine the result of the computation because of insufficient information, that is, uninstantiated variables. This is distinct from goals that simply fail.

Extensions to Prolog and other logic languages handle such "errors" by suspending until the values of the concerned variables are known. The execution model of Prolog as introduced does not permit suspension. Instead of simply failing, we say an error condition occurs.

The query `(X is 3+X)` fails because the right-hand argument cannot be evaluated as an arithmetic expression. The query `(X is 3+Y)` is an example of a query that would succeed if `Y` were instantiated to an arithmetic expression. Here an error condition should be reported.

A common misconception of beginning Prolog programmers is to regard `is` as taking the place of assignment as in conventional programming languages. It is tempting to write a goal such as `X is N+1`. This is meaningless. The goal fails if `N` is instantiated, or causes an error if `N` is a variable.

Further system predicates for arithmetic are the comparison operators. Instead of the logically defined `<`, `<=` (written `=<`), `>`, `>=` (written `=>`), Prolog directly calls the underlying arithmetic operations. We describe the behavior of `<`; the others are virtually identical. To answer the query `(A < B)?` and `A` and `B` are evaluated as arithmetic expressions. The two resultant numbers are compared, and the goal succeeds if the result of evaluating `A` is less than the result of evaluating `B`. Again, if `A` or `B` is not an arithmetic expression, the goal will fail, and an error condition should result if `A` or `B` are not ground.

Here are some simple examples. The query `(1 < 2)` succeeds, as does the query `(3-2 < 2*3+1)`? On the other hand, `(2 < 1)`? fails, and `(3 < 1)`? generates an error when `B` is a variable.
Tests for equality and inequality of values of arithmetic expressions are implemented via the built-in predicates =:= and ==/=, which evaluate both of their arguments and compare the resulting values.

8.2 Arithmetic Logic Programs Revisited

Performing arithmetic via evaluation rather than logic demands a reconsideration of the logic programs for arithmetic presented in Section 3.1. Calculations can certainly be done more efficiently. For example, finding the minimum of two numbers can use the underlying arithmetic comparison. The program syntactically need not change from Program 3.7. Similarly, the greatest common divisor of two integers can be computed efficiently using the usual Euclidean algorithm, given as Program 8.1. Note that the explicit condition \(J > 0 \) is necessary to avoid multiple solutions when \(J \) equals 0 and errors from calling \(\text{gcd} \) with a zero argument.

Two features of logic programs for arithmetic are missing from their Prolog counterparts. First, multiple uses of programs are restricted. Suppose we wanted a predicate \(\text{plus}(X,Y,Z) \) that performed as before, built using \(+ \). The obvious definition is

\[
\text{plus}(X,Y,Z) \leftarrow Z = X+Y.
\]

This works correctly if \(X \) and \(Y \) are instantiated to integers. However, we cannot use the same program for subtraction with a goal such as \(\text{plus}(3,X,8) \), which raises an error condition. Meta-logical tests are needed if the same program is to be used for both addition and subtraction. We defer this until meta-logical predicates are introduced in Chapter 10.

Programs effectively become specialized for a single use, and it is tricky to understand what happens when the program is used differently.

\[
\text{greatest_common_divisor}(X,Y,Z) \leftarrow
\]

\[
Z \text{ is the greatest common divisor of the integers } X \text{ and } Y.
\]

\[
\text{greatest_common_divisor}(1,0,1).
\]

\[
\text{greatest_common_divisor}(1,1,1).
\]

\[
\text{greatest_common_divisor}(J,1,J).
\]

\[
J > 0, \text{ and } J \mod J = 1 \text{ mod } J, \text{ greatest_common_divisor}(J,\text{gcd}).
\]

Program 8.1 Computing the greatest common divisor of two integers

Program 3.7 for minimum, for example, can be used reliably only for finding the minimum of two integers.

The other feature missing from Prolog programs for arithmetic is the recursive structure of numbers. In logic programs, the structure is used to determine which rule applies, and to guarantee termination of computations. Program 8.2 is a Prolog program for computing factorials closely corresponding to Program 3.6. The recursive rule is more clumsy than before. The first argument in the recursive call of factorial must be calculated explicitly rather than emerging as a result of unification. Furthermore, the explicit condition determining the applicability of the recursive rule, \(\text{num}(N) \), must be given. This is to prevent nonterminating computations with goals such as \(\text{factorial}(-1,N) \) or even \(\text{factorial}(0,F) \). Previously, in the logic program, unification with the recursive structure prevented nonterminating computations.

Program 8.2 corresponds to the standard recursive definition of the factorial function. Unlike Program 3.6, the program can be used only to calculate the factorial of a given number. A factorial query where the first argument is a variable will cause an error condition.

We must modify the concept of correctness of a Prolog program to accommodate behavior with respect to arithmetic tests. Other system predicates that generate runtime "errors" are handled similarly. A Prolog program is totally correct over a domain \(D \) of goals if for all goals in \(D \) the computation terminates, does not produce a runtime error, and has the correct meaning. Program 8.2 is totally correct over the domain of goals where the first argument is an integer.

8.2.1 Exercises for Section 8.2

(i) The \(N \)th triangular number is the sum of the numbers up to and including \(N \). Write a program for the relation \(\text{triangle}(N,T) \), where \(T \) is the \(N \)th triangular number. (Hint: Adapt Program 8.2.)
8.3 Transforming Recursion into Iteration

In Prolog there are no iterative constructs as such, and a more general concept, namely recursion, is used to specify both recursive and iterative algorithms. The main advantage of iteration over recursion is efficiency, mostly space efficiency. In the implementation of recursion, a data structure (called a stack frame) has to be maintained for every recursive call that has not terminated yet. A recursive computation involving n recursive procedure calls would require, therefore, space linear in n. On the other hand, an iterative program typically uses only a constant amount of memory, independent of the number of iterations.

Nevertheless, there is a restricted class of recursive programs that corresponds quite closely to conventional iterative programs. Under some conditions, explained further in Section 11.2 on tail recursion optimization, such Prolog programs can be implemented with almost the same efficiency as iterative programs in conventional languages. For this reason, it is preferable to express a relation using an iterative program, if possible. In this section, we show how recursive programs can be made iterative using accumulators.

Recall that a pure Prolog clause is iterative if it has one recursive call in the body. We extend this notion to full Prolog, and allow zero or more calls to Prolog system predicates before the recursive call. A Prolog procedure is iterative if it contains only unit clauses and iterative clauses.

Most simple arithmetic calculations can be implemented by iterative programs.

Factorials can be computed, for example, in a loop where the numbers up to the desired factorial are multiplied together. A procedure in a

\[\text{factorial}(N) = \begin{cases} 1 & \text{if } N = 1; \\ \text{factorial}(N-1) & \text{if } N > 1. \end{cases}\]

Pascal-like language using a while loop is given in Figure 8.1. Its iterative behavior can be encoded directly in Prolog with an iterative program.

Program 8.3 An iterative factorial

\[\text{factorial}(N,F) \rightarrow F \text{ is the integer } N \text{ factorial.} \]

\[\text{factorial}(0,F) \rightarrow F.\]

\[\text{factorial}(N,F) \rightarrow \text{factorial}(N-1,F). \]

\[\text{factorial}(1,N,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,F) \rightarrow I < N, \text{ then } I \times \text{factorial}(N-1,F). \]

\[\text{factorial}(N,N,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]

\[\text{factorial}(N,N,M,F) \rightarrow \text{factorial}(0,N,F). \]

\[\text{factorial}(N,M,F) \rightarrow N < M, \text{ then } N \times \text{factorial}(N,M-1,F). \]
factorial(N,F) :-
 F is the integer N factorial.
factorial(0,F) :- factorial(1,F).
factorial(N,F) :-
 N > 0, T1 is T*N, N1 is N-1, factorial(N1,T1,F), factorial(0,F,F).

Program 8.4 Another iterative factorial

The third argument of \texttt{factorial/4} is used as an accumulator of the running value of the product. It is initialized to 1 in the call to \texttt{factorial/4} by \texttt{factorial/2}. The handling of both accumulators in Program 8.3 is a typical programming technique in Prolog. It is closely related to the use of accumulators in Programs 3.16b and 7.10 for collecting elements in a list.

Accumulators are logical variables rather than locations in memory. The value is passed between iterations, not an address. Since logical variables are "write-once," the updated value, a new logical variable, is passed each time. Stylisically, we use variable names with the suffix 1, for example, T1 and N1, to indicate updated values.

The computation terminates when the counter 1 equals 0. The rule for \texttt{factorial/4} in Program 8.3 no longer applies, and the fact succeeds. With this successful reduction, the value of the factorial is returned. This happens as a result of the unification with the accumulator in the base clause. Note that the logical variable representing the solution, the final argument of \texttt{factorial/4}, had to be carried throughout the whole computation to be set on the final call of \texttt{factorial}. This passing of values in arguments is characteristic of Prolog programs and might seem strange to the newcomer.

Program 8.3 exactly mirrors the \texttt{while} loop for factorial given in Figure 8.1. Another iterative version of \texttt{factorial} can be written by counting down from \texttt{N} to 0, rather than up from 0 to \texttt{N}. The basic program structure remains the same and is given as Program 8.4. There is an initialization call that sets the value of the accumulator, and recursive and base clauses implementing the \texttt{while} loop.

Program 8.4 is marginally more efficient than Program 8.3. In general, the fewer arguments a procedure has, the more readable it becomes, and the faster it runs.

Arithmetic

between(I,J,K) :-
 K is an integer between the integers \texttt{I} and \texttt{J} inclusive.
between(I,J,I) :- I \leq J.
between(I,J,K) :- I < J, J is I+1, between(I,J,K).

Program 8.5 Generating a range of integers

\texttt{sumlist}(Is,Sum) :-
 \texttt{Sum} is the sum of the list of integers \texttt{Is}.
\texttt{sumlist}([],Sum) -\texttt{ }- \texttt{sumlist}(Is,Is,Sum), \texttt{Sum} is \texttt{I}+\texttt{IsSum}.
\texttt{sumlist}([I],Sum) -\texttt{ }- \texttt{sumlist}([I],[I],Sum).
\texttt{sumlist}([I|Is],Temp,Sum) :-
 Temp is Temp+I, \texttt{sumlist}(Is,Temp,Sum).
\texttt{sumlist}([],Sum,Sum).

Program 8.6a Summing a list of integers

\texttt{sumlist}(Is,Sum) :-
 \texttt{Sum} is the sum of the list of integers \texttt{Is}.
\texttt{sumlist}(Is,Sum) -\texttt{ }- \texttt{sumlist}(Is,0,Sum).
\texttt{sumlist}([I|Is],Temp,Sum) -\texttt{ }- \texttt{Temp} is Temp+I, \texttt{sumlist}(Is,Temp,Sum).
\texttt{sumlist}([],Sum,Sum).

Program 8.6b Iterative version of summing a list of integers using an accumulator

A useful iterative predicate is \texttt{between(I,J,K)}, which is true if \texttt{K} is an integer between \texttt{I} and \texttt{J} inclusive. It can be used to generate nondeterministically integer values within a range (see Program 8.5). This is useful in generate-and-test programs, explained in Section 14.1, and in failure-driven loops, explained in Section 12.5.

Iterative programs can be written for calculations over lists of integers as well. Consider the relation \texttt{sumlist(IntegerList,Sum)}, where \texttt{Sum} is the sum of the integers in the list \texttt{IntegerList}. We present two programs for the relation. Program 8.6a is a recursive formulation. To sum a list of integers, sum the tail, and then add the head. Program 8.6b uses an accumulator to compute the progressive sum precisely as Program 8.3 for \texttt{factorial} uses an accumulator to compute a progressive product. An auxiliary predicate, \texttt{sumlist/3}, is introduced with an extra argument for the accumulator, whose starting value, \texttt{O}, is set in the initial call to
inner_product(Xs, Ys, Value) :-
 Value is the inner product of the vectors
 represented by the lists of integers Xs and Ys.
inner_product([X1], [Y1], IP) :-
 inner_product(Xs, Ys, IP1), IP is X1*Y1+IP1.
inner_product([1], [3, 0]).

Program 8.7a Computing inner products of vectors

inner_product(Xs, Ys, Value) :-
 Value is the inner product of the vectors
 represented by the lists of integers Xs and Ys.
inner_product(Xs, Ys, IP) :-
 inner_product(Xs, Ys, 0, IP).
inner_product([X1], [Y1], Temp, IP) :-
 Temp is X1*Y1, inner_product(Xs, Ys, Temp, IP).
inner_product([1], [1, IP], 0).

Program 8.7b Computing inner products of vectors iteratively

sumlist/3. The sum is passed out in the final call by unification with the base fact. The only difference between Program 8.6b and the iterative versions of factorial is that the recursive structure of the list rather than a counter is used to control the iteration. Let us consider another example. The inner product of two vectors Xs, Ys is the sum X1 * Y1 + ... + Xn * Yn. If we represent vectors as lists, it is straightforward to write a program for the relation inner_product(Xs, Ys, IP), where IP is the inner product of Xs and Ys. Programs 8.7a and 8.7b are recursive and iterative versions, respectively. The iterative version of inner_product bears the same relation to the recursive inner_product that Program 8.6b for sumlist bears to Program 8.6a.

Both Programs 8.7a and 8.7b are correct for goals inner_product(Xs, Ys, Z), where Xs and Ys are lists of integers of the same length. There is a built-in check that the vectors are of the same length. The programs fail if Xs and Ys are of different lengths.

The similarity of the relations between Programs 8.6a and 8.6b, and Programs 8.7a and 8.7b, suggests that one may be automatically transformed to the other. The transformation of recursive programs to equiv-

area(Area) :-
 area([X1,Y1], 0).
 area([X1,Y1], [X2,Y2], Area) :-
 area([X2,Y2], [Y1,Area], Area),
 Area is X1*Y2+X2*Y1/2 = Area.

Program 8.8 Computing the area of polygons

alent iterative programs is an interesting research question. Certainly it can be done for the simple examples shown here.

The sophistication of a Prolog program depends on the underlying logical relation it axiomatizes. Here is a very elegant example of a simple Prolog program solving a complicated problem.

Consider the following problem: Given a closed planar polygon chain \(P_1, P_2, \ldots, P_n \), compute the area of the enclosed polygon and the orientation of the chain. The area is computed by the line integral

\[
\int_{x_0}^{x_n} \frac{y_{n-1}}{x_{n-1}} - \frac{y_0}{x_0} \, dx
\]

where the integral is over the polygon chain.

The solution is given in Program 8.8, which defines the relation area(Area). Chain is given as a list of tuples, for example, \([4,6,4,2,0,8,4,6]\). The magnitude of Area is the area of the polygon bounded by the chain. The sign of Area is positive if the orientation of the polygon is counterclockwise, and negative if it is clockwise.

The query area([4,6,4,2,0,8,4,6], Area)? has the solution Area = -8. The polygon gains opposite orientation by reversing the order of the tuples. The solution of the query area([4,6,0,8,4,2,4,6], Area)? is Area = 8.

The program shown is not iterative. Converting it to iterative is the subject of Exercise (vi) at the end of the section.

An iterative program can be written to find the maximum of a list of integers. The relation scheme is maxlist(Xs, Max), and the program is given as Program 8.9. An auxiliary predicate maxlist(Xs, X, Max) is used for the relation that Max is the maximum of X and the elements in the list Xs. The second argument of maxlist/3 is initialized to be the first
maxlist(Xs,N) =
N is the maximum of the list of integers Xs.
maxlist([],N) = maxlist(Xs,Xs).
maxlist([X|Xs],Y,N) = maximum(X,Y), maxlist(Xs,Y,N).
maxlist([],M,M).
maximum(X,Y,Y) - X ≤ Y.
maximum(X,Y,X) - X > Y.

Program 8.9 Finding the maximum of a list of integers

length(Xs,N) =
Xs is a list of length N.
length([],N) - N > 0, N1 is N-1, length(Xs,N1).
length([],0).

Program 8.10 Checking the length of a list

element of the list. Note that the maximum of an empty list is not defined
by this program.
The standard recursive program for finding the maximum of a list of
integers constitutes a slightly different algorithm. The recursive formula-
ation finds the maximum of the tail of the list and compares it to the head
of the list to find the maximum element. In contrast, Program 8.9 keeps
track of the running maximum as the list is traversed.

Program 3.17 for finding the length of a list is interesting, affording
several ways of translating a logic program into Prolog, each of which has
its separate features. One possibility is Program 8.10, which is iterative.
Queries length(Xs,N)? are handled correctly if N is a natural number,
testing if the length of a list is N, generating a list of N uninstantiated
elements, or failing. The program is unsuitable, however, for finding
the length of a list with a call such as length([1,2,3],N)? This query
generates an error.
The length of a list can be found using Program 8.11. This program
cannot be used, however, to generate a list of N elements. In contrast to
Program 8.10, the computation does not terminate if the first argument
is an incomplete list. Different programs for length are needed for the
different uses.

Arithmetic

length(Xs,N) =
N is the length of the list Xs.
length([],N) = length(Xs,N1), N is N1+1.
length([],0).

Program 8.11 Finding the length of a list

range(M,N,Xs) =
Xs is the list of integers between M and N inclusive.
rangep(M,N,[M|Xs]) - M < N, M1 is M+1, range(M,N,Xs).
rangep(M,N,[M]).

Program 8.12 Generating a list of integers in a given range

Similar considerations about the intended use of a program occur
when trying to define the relation range(M,N,Xs), where Xs is the list
of integers between M and N inclusive. Program 8.12 has a specific use:
generating a list of numbers in a desired range. The program is totally
correct over all goals range(M,N,Xs) where M and N are instantiated.
The program cannot be used, however, to find the upper and lower limits
of a range of integers, because of the test \(N < N \). Removing this test
would allow the program to answer a query range(M,N,[1,2,3]), but
then it would not terminate for the intended use, solving queries such as
range(1,3,Xs)?

8.3.1 Exercises for Section 8.3

(i) Write an iterative version for triangle(N,T), posed as Exercise 8.2(i).
(ii) Write an iterative version for powe(X,Y,N), posed as Exercise 8.2(ii).
(iii) Rewrite Program 8.5 so that the successive integers are generated
 in descending order.
(iv) Write an iterative program for the relation timeslist(Integer-List,Product)
 computing the product of a list of integers, analogous to Program 8.0b for
 sumlist.
(v) Rewrite Program 8.8 for finding the area enclosed by a polygon so that it is iterative.

(vi) Write a program to find the minimum of a list of integers.

(vii) Rewrite Program 8.11 for finding the length of a list so that it is iterative. (Hint: Use a counter, as in Program 8.3.)

(viii) Rewrite Program 8.12 so that the range of integers is built bottom-up rather than top-down.

8.4 Background

The examples given in this chapter are small and do not especially exploit Prolog's features. Algorithms that are fundamentally recursive are more interesting in Prolog. A good example of such a program is the Fast Fourier Transform, for which efficient versions have been written in Prolog. A good place for reading about Huffman encoding trees for Exercise 8.21 is Abelson and Sussman (1985). A program for transforming recursive programs to iterative ones, which handles the examples in the text, is described in Bloch (1984).

Program 8.8, computing the area of a polygon, was shown to us by Martin Nilsson.

9 Structure Inspection

Standard Prolog has several predicates related to the structure of terms. These predicates are used to recognize the different types of terms, to decompose terms into their functor and arguments, and to create new terms. This chapter discusses the use of predicates related to term structure.

9.1 Type Predicates

Type predicates are unary relations that distinguish between the different types of terms. System predicates exist that test whether a given term is a structure or a constant, and further, whether a constant is an atom, an integer or floating-point. Figure 9.1 gives the four basic type predicates in Standard Prolog, together with their intended meanings.

Each of the basic predicates in Figure 9.1 can be regarded as an infinite table of facts. The predicate integer/1 would consist of a table of integers:

integer(0). integer(1). integer(-1). ...

The predicate atom/1 would consist of a table of atoms in the program:

atom(foo). atom(bar). ...

The predicate compound/1 would consist of a table of the function symbols in the program with variable arguments, etc.

compound(father(X,Y)). compound(son(X,Y)). ...
integer(X) — X is an integer.
atomic(X) — X is an atom.
real(X) — X is a floating-point number.
compound(X) — X is a compound term.

Figure 9.1 Basic system type predicates

Other type predicates can be built from the basic type predicates. For example, that a number is either an integer or floating-point can be represented by two clauses:

number(X) ← integer(X).
number(X) ← real(X).

Standard Prolog includes a predicate number/1 effectively defined in this way. It also includes a predicate atomic(X), which is true if X is an atom or a number. In this book, we prefer to call the predicate constant/1. To run under Standard Prolog, the following clause may be necessary:

constant(X) ← atomic(X).

To illustrate the use of type predicates, the query integer(3)? would succeed, but the query atomic(3)? would fail. One might expect that a call to a type predicate with a variable argument, such as integer(X), would generate different integers on backtracking. This is not practical for implementation, however, and we would prefer that such a call report an error condition. In fact, Standard Prolog specifies that the call integer(X)? should fail.

The only terms not covered by the predicates in Figure 9.1 are variables. Prolog does provide system predicates relating to variables. The use of such predicates, however, is conceptually very different from the use of structure inspection predicates described in this chapter. Metalogical predicates (their technical name) are the subject of Chapter 10.

We give an example of the use of a type predicate as part of a program for flattening a list of lists. The relation flatten([Xs, Ys]) is true if Ys is the list of elements occurring in the list of lists Xs. The elements of Xs can themselves be lists or elements, so elements can be arbitrarily deeply nested. An example of a goal in the meaning of flatten is flatten([[[a,b,c,d],e],[a,b,c,d,e]]).

Program 9.1a Flattening a list with double recursion

The simplest program for flattening uses double recursion. To flatten an arbitrary list [[Xs]], where X can itself be a list, flatten the head of the list X, flatten the tail of the list Xs, and concatenate the results:

flatten([[Xs]], Ys) ←
flatten(X, Ys1), flatten(Xs, Ys2), append(Ys1, Ys2, Ys).

What are the base cases? The empty list is flattened to itself. A type predicate is necessary for the remaining case. The result of flattening a constant is a list containing the constant:

flatten(X, [X]) ← constant(X), X≠[].

The condition constant(X) is necessary to prevent the rule being used when X is a list. The complete program for flatten is given as Program 9.1a.

Program 9.1a, although very clear declaratively, is not the most efficient way of flattening a list. In the worst case, which is a left-linear tree, the program would require a number of reductions whose order is quadratic in the number of elements in the flattened list.

A program for flatten that constructs the flattened list top-down is a little more involved than the doubly recursive version. It uses an auxiliary predicate flatten(Xs, Stack, Ys), where Ys is a flattened list containing the elements in Xs and a stack Stack to keep track of what needs to be flattened. The stack is represented as a list.

The call of flatten/3 by flatten/2 initializes the stack to the empty list. We discuss the cases covered by flatten/3. The general case is flattening a list [X Xs], where X is itself a list. In this case Xs is pushed onto the stack, and X is recursively flattened. The predicate list(X) is used to recognize a list. It is defined by the fact list([X Xs]):
Chapter 9

166

flatten(Xs, Ys) :-
 Ys is a list of the elements of Xs.
flatten(Xs, Ys) :- flatten(Xs, [1], Ys).
flatten([X|Xs], S, Ys) :-
 list(X), flatten(Xs, S, Ys).
flatten([X|Xs], S, [X|Ys]) :-
 constant(X, Xf[], S, flatten(Xs, S, Ys).
flatten([], Xs, [X|Ys]) :-
 flatten(Xs, S, Ys).
flatten([1|[|]], S, [1|]).
list([X|Xs]).

Program 9.1b Flattening a list using a stack

flatten([X|Xs], S, Ys) :- list(X), flatten(Xs, [X|S], Ys).

When the head of the list is a constant other then the empty list, it is added to the output, and the tail of the list is flattened recursively:

flatten([X|Xs], S, [X|Ys]) :-
 constant(X, Xf[], S, flatten(Xs, S, Ys)).

When the end of the list is reached, there are two possibilities, depending on the state of the stack. If the stack is nonempty, the top element is popped, and the flattening continues:

flatten([1|[|]], Xs, [Y|S], Ys) :- flatten(Xs, S, Ys).

If the stack is empty, the computation terminates:

flatten([1|[|]], []).

The complete program is given as Program 9.1b.

A general technique of using a stack is demonstrated in Program 9.1b. The stack is managed by unification. Items are pushed onto the stack by recursive calls to a consed list. Items are popped by unifying with the head of the list and recursive calls to the tail. Another application of stacks appears in Programs 17.3 and 17.4 simulating pushdown automata.

Note that the stack parameter is an example of an accumulator.

The reader can verify that the revised program requires a number of reductions linear in the size of the flattened list.

9.1.1 Exercise for Section 9.1

(1) Rewrite Program 9.1a for flatten(Xs, Ys) to use an accumulator instead of the call to append, keeping it doubly recursive.

9.2 Accessing Compound Terms

Recognizing a term as compound is one aspect of structure inspection. Another aspect is providing access to the functor name, arity, and arguments of a compound term. One system predicate for delving into compound terms is functor(Term, F, Arity). This predicate is true if Term is a term whose principal functor has name F and arity Arity. For example, functor(father(haran, lot), father, 2) succeeds.

The functor predicate can be defined, analogously to the type predicates, by a table of facts of the form functor(t(Xi, ..., Xn), f, N) for each functor f of arity N; for example, functor(father(X, Y), father, 2), functor(father(X, Y), son, 2), Standard Prolog considers constants to be functors of arity 0, with the appropriate extension to the functor table.

Calls to functor can fail for various reasons. A goal such as functor(father(X, Y), son, 2) does not unify with an appropriate fact in the table. Also, there are type restrictions on the arguments of functor goals. For example, the third argument of functor, the arity of the term, cannot be an atom or a compound term. If these restrictions are violated, the goal fails. A distinction can be made between calls that fail and calls that should give an error because there are infinitely many solutions, such as functor(X, Y, 2)?

The predicate functor is commonly used in two ways, term decomposition and creation. The first use finds the functor name and arity of a given term. For example, the query functor(father(haran, lot), X, Y) has the solution [X=father, Y=2]. The second use builds a term with a particular functor name and arity. A sample query is functor(father, X, 2)? with solution T=father(X, Y).

The companion system predicate to functor is arg(N, Term, Arg), which accesses the arguments of a term rather than the functor name.
subterm(Sub, Term) :-
 Sub is a subterm of the ground term Term.

subterm(Term, Term).

subterm(Sub, Term) :-
 compound(Term), functor(Term, F, N), subterm(N, Sub, Term).

subterm(0, Sub, Term) :-
 N > 1, M is N - 1, subterm(M, Sub, Term).

subterm(Sub, 0, Term) :-
 arg(N, Term, Arg), subterm(Sub, Arg).

Program 9.2 Finding subterms of a term

The goal arg(N, Term, Arg) is true if Arg is the Nth argument of Term. For example, arg(1, father(haran, lot), haran) is true.

Like functor/3, arg/3 is commonly used in two ways. The term decomposition use finds a particular argument of a compound term. A query exemplifying this use is arg(2, father(haran, lot), X) with solution X = lot. The term creation use instantiates a variable argument of a term. For example, the query arg(1, father(X, lot), haran) succeeds, instantiating X to haran.

The predicate arg is also defined as if there is an infinite table of facts. A fragment of the table is

arg(1, father(X, Y), X).
arg(2, father(X, Y), Y).
arg(1, son(X, Y), X).

Calls to arg fail if the goal does not unify with the appropriate fact in the table, for example, arg(1, father(haran, lot), abraham). They also fail if the type restrictions are violated, for example, if the first argument is an atom. An error is reported with a goal such as arg(1, X, Y).

Let us consider an example of using functor and arg to inspect terms. Program 9.2 axiomatizes a relation subterm(T1, T2), which is true if T1 is a subterm of T2. For reasons that will become apparent later, we restrict T1 and T2 to be ground.

The first clause of Program 9.2 defining subterm/2 states that any term is a subterm of itself. The second clause states that Sub is a subterm of a compound term Term if it is a subterm of one of the arguments. The number of arguments, i.e., the arity of the principal functor of the term,
substitute(Old, New, OldTerm, NewTerm) :-
 NewTerm is the result of replacing all occurrences of Old in OldTerm by New.

substitute(Old, New, OldTerm, NewTerm) :-
 constant(Term), Term ≠ Old.

substitute(Old, New, Term1, Term2) :-
 compound(Term),
 functor(Term, F, N),
 functor(Term1, F, N),
 substitute(N, Old, New, Term1).

substitute(N, Old, New, Term, Term) :-
 N > 0,
 arg(N, Term, Arg),
 substitute(Old, New, Arg, Arg),
 arg(N, Term1, Arg),
 N1 is N - 1,
 substitute(N1, Old, New, Term, Term1).

substitute(0, Old, New, Term, Term).

Program 9.3 A program for substituting in a term

The interesting points lurking in the code. A trace of the query substitute(cat, dog, owns(jane, cat), X) is given in Figure 9.2.

The query fails to unify with the fact in Program 9.3. The second rule is also not applicable because owns(jane, cat) is not a constant.

The third substitute rule is applicable to the query. The second call of functor is interesting. Name and arity have been instantiated to owns and 2, respectively, in the previous call of functor, so this call builds a term that serves as the answer template to be filled in as the computation progresses. This explicit term building has been achieved by implicit unification in previous Prolog programs. The call to substitute/5 successively instantiates the arguments of Term1. In our example, the second argument of owns(X1, X2) is instantiated to dog, and then X1 is instantiated to jane.

The two calls to arg serve different tasks in substitute/5. The first call selects an argument, while the second call of arg instantiates an argument.

Substitution in a term is typically done by destructive assignment in conventional languages. Destructive assignment is not possible directly in Prolog. Program 9.3 typifies how Prolog handles changing data structures. The new term is recursively built as the old term is being traversed, by logically relating the corresponding subterms of the terms.

Note that the order of the second arg goal and the recursive call to substitute/5 can be swapped. The modified clause for substitute/5 is logically equivalent to the previous one and gives the same result in the context of Program 9.3. Procedurally, however, they are radically different.

Another system predicate for structure inspection is a binary operator \(\ldots \), called, for historical reasons, unify. The goal \(\text{Term} = \text{List} \) succeeds if List is a list whose head is the functor name of the term Term and whose tail is the list of arguments of Term. For example, the query \(\text{father(haran, lot) = \ldots [father, haran, lot]} \) succeeds.
Chapter 9

Structure Inspection

Term \(\equiv \) List \(\equiv \) List is a list containing the functor of Term followed by the arguments of Term.

Term \(\equiv \) (F_Args) \(\equiv \) functor(Term,F,N), args(0,N,Term,Arg).

args(1,N,Term,Arg[Args]) \(\equiv \)
- \(\equiv \) Arg[0], Arg[1] is 1st, Arg[11], Term, Arg.
- \(\equiv \) Arg[1], N, Term, (.)

Program 9.5a Constructing a list corresponding to a term

tive of \(F \) with respect to its argument is recursively calculated, as is the derivative of \(G.X \). These are combined to give the solution.

`Univ` can be defined in terms of `functor` and `arg`. Two different definitions are necessary, however, to cover both building lists from terms and building terms from lists. One definition does not suffice, because of errors caused by uninstantiated variables. Other system predicates are similarly precluded from flexible use.

Program 9.5a behaves correctly for building a list from a term. The `functor` `F` is found by the call to `functor`, and the arguments are recursively found by the predicate `args`. The first argument of `args` is a counter that counts up, so that the arguments will appear in order in the final list. If Program 9.5a is called with `Term` uninstantiated, an error will be generated because of an incorrect call of `functor`.

Program 9.5b behaves correctly for constructing a term from a list. The length of the list is used to determine the number of arguments. The term template is built by the call to `functor`, and a different variant of `args` is used to fill in the arguments. Program 9.5b results in an error if it used to build a list, because of the goal `length(Args,N)` being called with uninstantiated arguments.

9.2.1 Exercises for Section 9.2

(i) Define a predicate `occurrences(Sub,Term,N)`, true if `B` is the number of occurrences of subterm \(\text{Sub} \) in \(\text{Term} \). Assume that \(\text{Term} \) is ground.

(ii) Define a predicate `position(Subterm,Term,Position)`, where Position is a list of argument positions identifying `Subterm` within `Term`. For example, the position of \(X \) in \(2 \cdot \sin(x) \) is \([2,1] \), since

Program 9.4 Subterm defined using `univ`

Like `functor` and `arg`, `univ` has two uses. Either it builds a term given a list, for example, \((X \equiv [\text{father,haran,lot}]) \) with solution \(X=\text{father}(\text{haran},\text{lot}) \), or it builds a list given a term, for example, \((X \equiv \text{father}(\text{haran},\text{lot}) \equiv Xa) \), with solution \(X=\text{father}(\text{haran},\text{lot}) \).

In general, programs written using `functor` and `arg` can also be written with `univ`. Program 9.4 is an alternative definition of `subterm`, equivalent to Program 9.2. As in Program 9.2, an auxiliary predicate investigates the arguments; here it is `subterm_list`. `Univ` is used to access the list of arguments, `Arg`s, of which `subterm` are recursively found by `subterm_list`.

Programs using `univ` to inspect structures are usually simpler. However, programs written with `functor` and `arg` are in general more efficient than those using `univ`, since they avoid building intermediate structures.

A neat use of `univ` is formulating the chain rule for symbolic differentiation. The chain rule states that \(d/dx(f(g(x))) = d/dx(g(x)) \times d/dx(f(g(x))) \). In Section 3.5, we noted that this rule could not be expressed as a single clause of a logic program as part of Program 3.30. A Prolog rule encapsulating the chain rule is

\[
\text{derivative}(F,G,X,DF,DD) = \begin{cases}
F,G,X & \equiv [F,G,Y], \\
\text{derivative}(F,G,X,DF,G), \\
\text{derivative}(G,X,DD,DD)
\end{cases}
\]

The function \(F,G,X \) is split up by `univ` into its function \(F \) and argument \(G,X \), checking that \(F \) is a function of arity 1 at the same time. The deriva-
Chapter 9

Term = List
The functor of Term is the first element of the list List, and its arguments are the rest of List's elements.

Term = \([F|\text{Args}] \)

length(Args, X), functor(Term,F,X), args(Args,Term,1).

args([Arg|Args], Term, X) =

arg([0,Term,Arg], X) is X+1, args(Args,Term,N1).

args([] ,Term, X).

length(Xs, N) = See Program 8.11.

Program 9.5b Constructing a term corresponding to a list

sin(X) is the second argument of the binary operator "*", and X is the first argument of sin(X). (Hint: Add an extra argument for Program 9.2 for substem, and build the position list top-down.)

(iii) Rewrite Program 9.5a so that it counts down. (Hint: Use an accumulator.)

(iv) Define functor and arg in terms of univ. How can the programs be used?

(v) Rewrite Program 9.3 for substitute so that it uses univ.

9.3 Background

Prolog does not distinguish between object-level and meta-level type predicates. We have taken a different approach, by defining the type test predicates to work only on instantiated terms and by treating the meta-logical test predicates (e.g., var/1, discussed in Section 10.1) separately. The predicates for accessing and constructing terms, functor, arg, and =...= origin from the Edinburgh family. The origin of =...= is in the old Prolog-10 syntax for lists, which used the operator ... instead of the current | in lists, e.g., [a,b,c|Xs] instead of [a,b,c,Xs]. The ... on the right-hand side suggested or reminded that the right-hand side of the equality is a list.

Several of the examples in this section were adapted from O'Keefe (1983).

Exercises 9.2(i) and 9.2(ii) are used in the equation solver in Chapter 23.

10 Meta-Logical Predicates

A useful extension to the expressive power of logic programs is provided by the meta-logical predicates. These predicates are outside the scope of first-order logic, because they query the state of the proof, treat variables (rather than the terms they denote) as objects of the language, and allow the conversion of data structures to goals.

Meta-logical predicates allow us to overcome two difficulties involving the use of variables encountered in previous chapters. The first difficulty is the behavior of variables in system predicates. For example, evaluating an arithmetic expression with variables gives an error. So does calling type predicates with variable arguments. A consequence of this behavior is to restrict Prolog programs to have a single use in contrast to the multiple uses of the equivalent logic programs.

The second difficulty is the accidental instantiation of variables during structure inspection. Variables need to be considered as specific objects rather than standing for an arbitrary unspecified term. In Chapter 9 we handled the difficulty by restricting inspection to ground terms only.

This chapter has four sections, each for a different class of meta-logical predicates. The first section discusses type predicates that determine whether a term is a variable. The second section discusses term comparison. The next sections describe predicates enabling variables to be manipulated as objects. Finally, a facility is described for converting data into executable goals.
10.1 Meta-Logical Type Predicates

The basic meta-logical type predicate is \texttt{var(Term)}, which tests whether a given term is at present an uninstantiated variable. Its behavior is similar to the type predicates discussed in Section 9.1. The query \texttt{var(Term)} succeeds if \texttt{Term} is a variable and fails if \texttt{Term} is not a variable. For example, \texttt{var(X)} succeeds, whereas both \texttt{var(a)} and \texttt{var([X|Xs])} fail.

The predicate \texttt{var} is an extension to pure Prolog programs. A table cannot be used to give all the variable names. A fact \texttt{var(X)} means that all instances of \texttt{X} are variables rather than that the letter \texttt{X} denotes a variable. Being able to refer to a variable name is outside the scope of first-order logic in general or pure Prolog in particular.

The predicate \texttt{nonvar(Term)} has the opposite behavior to \texttt{var}. The query \texttt{nonvar(Term)} succeeds if \texttt{Term} is not a variable and fails if \texttt{Term} is a variable.

The meta-logical type predicates can be used to restore some flexibility to programs using system predicates and also to control goal order. We demonstrate this by revising some programs from earlier chapters.

Consider the relation \texttt{plus(X,Y,Z)}. Program 10.1 is a version of \texttt{plus} that can be used for subtraction as well as addition. The idea is to check which arguments are instantiated before calling the arithmetic evaluator. For example, the second rule says that if the first and third arguments, \texttt{X} and \texttt{Z}, are not variables, the second argument, \texttt{Y}, can be determined as their difference. Note that if the arguments are not integers, the evaluation will fail, the desired behavior.

The behavior of Program 10.1 resembles that of Program 3.3, the logic program for \texttt{plus}. Further, it does not generate any errors. Nonetheless, it does not have the full flexibility of the recursive logic program: it cannot be used to partition a number into two smaller numbers, for example.

\begin{verbatim}
plus(X, Y, Z) :-
The sum of the numbers X and Y is Z.
plus(X, Y, Z) :- nonvar(X), nonvar(Y), Z is X+Y.
plus(X, Y, Z) :- nonvar(X), nonvar(Z), Y is Z-X.
plus(X, Y, Z) :- nonvar(Y), nonvar(Z), X is Z-Y.
\end{verbatim}

Program 10.1 Multiple uses for \texttt{plus}

Example. To partition a number involves generating numbers, for which a different program is needed. This is posed as Exercise (ii) at the end of this section.

Meta-logical goals placed initially in the body of a clause to decide which clause in a procedure should be used are called \textit{meta-logical tests}. Program 10.1 for \texttt{plus} is controlled by meta-logical tests. These tests refer to the current state of the computation. Knowledge of the operational semantics of Prolog is required to understand them.

Standard Prolog in fact endows the type predicates with a meta-logical ability. For example, if \texttt{X} is a variable the goal \texttt{integer(X)} fails, rather than giving an error. This enables the rules from Program 10.1 to be written using the system predicate \texttt{integer} rather than \texttt{nonvar}, for example, \texttt{plus(X,Y,Z) :- integer(X), integer(Y), Z is X+Y}.

We feel it is preferable to separate type checking, which is a perfectly legitimate first-order operation, from meta-logical tests, which are a much stronger tool.

Another relation that can have multiple uses restored is \texttt{length(Xs,N)} determining the length \texttt{N} of a list \texttt{Xs}. Separate Prolog programs (8.10 and 8.11) are needed to find the length of a given list and to generate an arbitrary list of a given length, despite the fact that one logic program (3.17) performs both functions. Program 10.2 uses meta-logical tests to define a single \texttt{length} relation. The program has an added virtue over Programs 8.10 and 8.11. It avoids the non-terminating behavior present in both, when both arguments are uninstantiated.

Meta-logical tests can also be used to make the best choice of the goal order of clauses in a program. Section 7.3 discusses the definition of \texttt{grandparent}:
grandparent(X,Z) :-
X is the grandparent of Z.

grandparent(X,Z) :- nonvar(X), parent(X,Y), parent(Y,Z).
grandparent(X,Z) :- nonvar(Z), parent(Y,Z), parent(X,Y).

Program 10.3 A more efficient version of grandparent

ground(Term) :-
Term is a ground term.

ground(Term) :-
nonvar(Term), constant(Term).

ground(Term) :-
nonvar(Term),
compound(Term),
functor(Term,F,N),
ground(N,Term).

ground(0,Term) :-
N > 0,
arg(0,Term,Arg),
ground(Arg),
N is N-1,
ground(N1,Term).

ground(0,Term).

Program 10.4 Testing if a term is ground

grandparent(X,Z) :- parent(X,Y), parent(Y,Z).

The optimum goal order changes depending on whether you are searching for the grandchildren of a given grandparent or the grandparent of a given grandchild. Program 10.3 is a version of grandparent that will search more efficiently.

The basic meta-logical type predicates can be used to define more involved meta-logical procedures. Consider a relation ground(Term), which is true if Term is ground. Program 10.4 gives a definition.

The program is in the style of the programs for structure inspection given in Section 9.2, in particular Program 9.3 for substitute. The two clauses for ground/1 are straightforward. In both cases, a meta-logical test is used to ensure that no error is generated. The first clause says that constant terms are ground. The second clause deals with structures.

Meta-Logical Predicates

It calls an auxiliary predicate ground/2, which iteratively checks that all the arguments of the structure are ground.

We look at a more elaborate example of using meta-logical type predicates; writing a unification algorithm. The necessity of Prolog to support unification for matching goals with clause heads means that explicit unification is readily available. Prolog’s underlying unification can be used to give a trivial definition

\[
\text{unify}(X, X) .
\]

which is the definition of the system predicate =/2, namely, \(X=X\).

Note that this definition depends on Prolog’s underlying mechanism for unification, and hence does not enforce the occurs check.

A more explicit definition of Prolog’s unification is possible using meta-logical type predicates. Although more cumbersome and less efficient, this definition is useful as a basis for more elaborate unification algorithms. One example is unification with the occurs check, described in Section 10.2. Another example is unification in other logic programming languages that can be embedded in Prolog, such as read-only unification of Concurrent Prolog.

Program 10.5 is an explicit definition of unification. The relation unify(Term1,Term2) is true if Term1 unifies with Term2. The clauses of unify outline the possible cases. The first clause of the program says that two variables unify. The next clause is an encapsulation of the rule for unification that if \(X\) is a variable, then \(X\) unifies with \(Y\).

The other case bearing discussion in Program 10.5 is unifying two compound terms, as given in the predicate term, unify(Term1,Term2). This predicate checks that the two terms \(X\) and \(Y\) have the same principal functor and arity, and then checks that all the arguments unify, using unify, in a way similar to the structure inspection programs shown before.

10.1.1 Exercises for Section 10.1

(i) Write a version of Program 8.12 for range that can be used in multiple ways.
(ii) Write a version of Program 10.1 for plus that partitions a number as well as performing addition and subtraction. (Hint: Use between to generate numbers.)
10.2 Comparing Nonground Terms

Consider the problem of extending the explicit unification program, Program 10.5, to handle the occurs check. Recall that the occurs check is part of the formal definition of unification, which requires that a variable not be unified with a term containing this variable. In order to implement it in Prolog, we need to check whether two variables are identical (not just unifiable, as any two variables are). This is a meta-logical test.

Standard Prolog provides a system predicate, \texttt{==/2}, for this purpose. The query \texttt{X \texttt{==/2} Y} succeeds if \texttt{X} and \texttt{Y} are identical constants, identical variables, or both structures whose principal functors have the same name and arity, and recursively \texttt{X \texttt{==/2} Y} succeeds for all corresponding arguments \texttt{X}_1 and \texttt{Y}_1 of \texttt{X} and \texttt{Y}. The goal fails otherwise. For example, \texttt{X \texttt{==/2} Y} succeeds unless \texttt{X} and \texttt{Y} are identical terms.
occurs_in(Sub,Term) :-
 Sub is a subterm of the (possibly nonground) term Term.

a: Using ==
 occurs_in(X,Term) :-
 subterm(Sub,Term), X =:= Sub.

b: Using freeze
 occurs_in(X,Term) :-
 freeze(X,X), freeze(Term,Term), subterm(X,Term).
 subterm(X,Term) -> See Program 9.2.

Program 10.7 Occurs in

The predicate == allows a definition of occurs_in based on
Program 9.2 for subterm. All the subterms of the given term are generated
on backtracking and tested to see if they are identical to the variable.
The code is given in Program 10.7a.

As defined, subterm works properly only for ground terms. However,
by adding meta-logical type tests, as in the definition of not_occurs_in
in Program 10.6, this problem is easily rectified.

10.3 Variables as Objects

The delicate handling of variables needed to define occurs_in in Sec-
tion 10.2 highlights a deficiency in the expressive power of Prolog. Vari-
ables are not easily manipulated. When trying to inspect, create, and
reason about terms, variables can be unwittingly instantiated.

A similar concern occurs with Program 9.3 for substitute. Consider
the goal substitute(a,b,X,Y), substituting a for b in a variable X to
give Y. There are two plausible behaviors for substitute in this case.
Logically there is a solution when X is a and Y is b. This is the solution
actually given by Program 9.3, achieved by unification with the base fact
substitute(Old,New,Old,New).

In practice, another behavior is usually preferred. The two terms X and
a should be considered different, and Y should be instantiated to X. The
other base case from Program 9.3,

substitute(Old,New,Term,Term) :- constant(Term), Term #\= Old.

covers this behavior. However, the goal would fail because a variable is
not a constant.

We can prevent the first (logical) solution by using a meta-logical test
to ensure that the term being substituted in is ground. The unification
implicit in the head of the clause is then only performed if the test
succeeds, and so must be made explicit. The base fact becomes the rule
substitute(Old,New,Term,New) :- ground(Term), Old = Term.

Treating a variable as different from a constant is handled by a special
rule, again relying on a meta-logical test:

substitute(Old,New,Var,Var) :- var(Var).

Adding the two preceding clauses to Program 9.3 for substitute and
adding other meta-logical tests allows the program to handle nonground
terms. However, the resultant program is inelegant. It is a mixture of
procedural and declarative styles, and it demands of the reader an under-
standing of Prolog's control flow. To make a medical analogy, the symp-
toms have been treated (undesirable instantiation of variables), but not
the disease (inability to refer to variables as objects). Additional meta-
logical primitives are necessary to cure the problem.

The difficulty of mixing object-level and meta-level manipulation of
terms stems from a theoretical problem. Strictly speaking, meta-level
programs should view object-level variables as constants and be able to
refer to them by name.

We suggest two system predicates, freeze(Term,Frozen) and melt
(Frozen,THawed), to allow explicit manipulation of variables. Freezing a
term Term makes a copy of the term, Frozen, where all the uninstantiated
variables in the term become unique constants. A frozen term looks like,
and can be manipulated as, a ground term.

Frozen variables are regarded as ground atoms during unification. Two
frozen variables unify if and only if they are identical. Similarly, if a
term and an uninstantiated variable are unified, they become an
identical frozen term. The behavior of frozen variables in system predi-
cates is the behavior of the constants. For example, arithmetic evaluation
involving a frozen variable will fail.

The predicate freeze is meta-logical in a similar sense to var. It en-
ables the state of a term during the computation to be manipulated di-
rectly.
The predicate freeze allows an alternative definition of occurs_in from the one given in Section 10.2. The idea is to freeze the term so that variables become ground objects. This makes Program 9.2 for subterm, which works correctly for ground terms, applicable. The definition is given as Program 10.7b.

Freezing gives the ability to tell whether two terms are identical. Two frozen terms, X and Y, unify if and only if their unfrozen versions are identical, that is, \(X = Y \). This property is essential to the correct behavior of Program 10.7b.

The difference between a frozen term and a ground term is that the frozen term can be “melted back” into a nonground term. The companion predicate to freeze is melt(Frozen,Thawed). The goal melt(X,Y) produces a copy \(Y \) of the term \(X \) where frozen variables become regular Prolog variables. Any instantiations to the variables in \(X \) during the time when \(X \) has been frozen are taken into account when melting \(Y \).

The combination of freeze and melt allows us to write a variant of substitute, non_ground_substitute, where variables are not accidentally instantiated. The procedural view of non_ground_substitute is as follows. The term is frozen before substitution; the substitution is performed on the frozen term using the version of substitute, which works correctly on ground terms; and then the new term is melted:

\[
\text{non_ground_substitute}(X, Y, \text{Old}, \text{New}) = \begin{cases}
\text{freeze}(ext{Old}, \text{Old}1), \text{substitute}(\text{X}, \text{Y}, \text{Old}1, \text{Old}2), \\
\text{melt}(ext{Old}2, \text{New}).
\end{cases}
\]

The frozen term can also be used as a template for making copies. The system predicate \(\text{melt}_\text{new}(\text{Frozen}, \text{Term}) \) makes a copy \(\text{Term} \) of the term \(\text{Frozen} \), where frozen variables are replaced by new variables.

One use of \(\text{melt}_\text{new} \) is to copy a term. The predicate copy(\(\text{Term} \), Copy) produces a new copy of a term. It can be defined in a single rule:

\[
\text{copy(Term, Copy)} = \text{freeze(Term, Frozen)}, \text{melt}_\text{new}(\text{Frozen}, \text{Copy}).
\]

Standard Prolog provides the predicate copy_term(\(\text{Term1} \), \(\text{Term2} \)) for copying terms. It is true if and only if \(\text{Term2} \) unifies with a term \(T \) that is a copy of \(\text{Term1} \) except that all the variables of \(\text{Term1} \) have been replaced by fresh variables.

Unfortunately, the predicates freeze/2, melt/2, and melt_new/2 as described here are not present in existing Prolog implementations. They will be useful nonetheless in expressing and explaining the behavior of extra-logical predicates, discussed in Chapter 12.

A useful approximation to freeze is the predicate numbervars(\(\text{Term}, N1, N2 \)), which is provided in many Edinburgh Prolog libraries. A call to the predicate is true if the variables appearing in \(\text{Term} \) can be numbered from \(N1 \) to \(N2 \). The effect of the call is to replace each variable in the term by a term of the form `\$VAR\(N \)` where \(N \) lies between \(N1 \) and \(N2 \).

For example, the goal numbervars(append([X|Xs], Ys, [Z|Zs], \(N \)), \(N \)) succeeds with the substitution \(\{ X\leftarrow \$VAR(1) \}, Xs\leftarrow \$VAR(2) \}, Ys\leftarrow \$VAR\((3) \}, Z\leftarrow \$VAR\((4) \}, Zs\leftarrow \$VAR\((5) \} \). Code implementing numbervars is given as Program 10.8. It is in the same style as the structure inspection utilities given in Chapter 9.

10.4 The Meta-Variable Facility

A feature of Prolog is the equivalence of programs and data — both can be represented as logical terms. In order for this to be exploited, programs need to be treated as data, and data must be transformed into programs. In this section, we mention a facility that allows a term to be...
converted into a goal. The predicate call(X) calls the goal X for Prolog to solve.

In practice, most Prolog implementations relax the restriction we have imposed on logic programs, that the goals in the body of a clause must be non-variable terms. The meta-variable facility allows a variable to appear as a goal in a conjunctive goal or in the body of the clause. During the computation, by the time it is called, the variable must be instantiated to a term. It will then be treated as usual. If the variable is not instantiated when it comes to be called, an error is reported. The meta-variable facility is a syntactic convenience for the system predicate call.

The meta-variable facility greatly facilitates meta-programming, in particular the construction of meta-interpreters and shells. Two important examples to be discussed in later chapters are Program 12.6, a simple shell, and Program 17.5, a meta-interpreter. It is also essential for defining negation (Program 11.6) and allowing the definition of higher-order predicates to be described in Section 16.3.

We give an example of using the meta-variable facility with a definition of logical disjunction, denoted by the binary infix operator \(\lor \). The goal \(X ; Y \) is true if \(X \) or \(Y \) is true. The definition is given as Program 10.9.

10.5 Background

An excellent discussion of meta-logical system predicates in DEC-10 Prolog, and how they are used, can be found in O’Keefe (1983).

The unification procedure for Concurrent Prolog, written in Prolog, is in Shapiro (1983b).

The difficulty in correctly manipulating object-level variables in Prolog at the meta-level has been raised by several people. The discussion first extensive discussion is in Nakashima et al. (1984), where the predicates freeze, melt, and melt_new are introduced. The name freeze was a little
11 Cuts and Negation

Prolog provides a single system predicate, called cut, for affecting the procedural behavior of programs. Its main function is to reduce the search space of Prolog computations by dynamically pruning the search tree. The cut can be used to prevent Prolog from following fruitless computation paths that the programmer knows could not produce solutions.

The cut can also be used, inadvertently or purposefully, to prune computation paths that do contain solutions. By doing so, a weak form of negation can be effected.

The use of cut is controversial. Many of its uses can only be interpreted procedurally, in contrast to the declarative style of programming we encourage. Used sparingly, however, it can improve the efficiency of programs without compromising their clarity.

11.1 Green Cuts: Expressing Determinism

Consider the program `merge(Xs, Ys, Zs)` (Program 11.1), which merges two sorted lists of numbers Xs and Ys into the combined sorted list Zs.

Merging two lists of sorted numbers is a deterministic operation. Only one of the five `merge` clauses applies for each nontrivial goal in a given computation. To be more specific, when comparing two numbers X and Y, for example, only one of the three tests `X < Y`, `X = Y`, and `X > Y` can be true. Once a test succeeds, there is no possibility that any other test will succeed.
merge(Xs, Ys, Zs) :-
Zs is an ordered list of integers obtained from merging
the ordered lists of integers Xs and Ys.
merge([X1|Xs], [Y1|Ys], [X12|Zs]) :- X < Y, merge(Xs, [Y1|Ys], Zs).
merge([X1|Xs], [Y1|Ys], [X|Zs]) :- X < Y, merge([X1|Xs], Ys, Zs).
merge(Xs, [1|Ys], Zs).
merge([], Ys, Ys).

Program 11.1 Merging ordered lists

The cut, denoted !, can be used to express the mutually exclusive nature of the tests. It is placed after the arithmetic tests. For example, the first merge clause is written
merge([X1|Xs], [Y|Ys], [X12|Zs]) :- X < Y, !, merge(Xs, [Y|Ys], Zs).

Operationally, the cut is handled as follows.
The goal succeeds and commits Prolog to all the choices made since the parent goal was unified with the head of the clause the cut occurs in.

Although this definition is complete and precise, its ramifications and implications are not always intuitively clear or apparent.

Misunderstandings concerning the effects of a cut are a major source for bugs for experienced and inexperienced Prolog programmers alike. The misunderstandings fall into two categories: assuming that the cut prunes computation paths it does not, and assuming that it does not prune solutions where it actually does.

The following implications may help clarify the foregoing terse definition:

First, a cut prunes all clauses below it. A goal p unified with a clause containing a cut that succeeded would not be able to produce solutions using clauses that occur below that clause.

Second, a cut prunes all alternative solutions to the conjunction of goals that appear to its left in the clause. For example, for a conjunctive goal followed by a cut, this will prune solutions at most one hour.

On the other hand, the cut does not affect the goals to its right in the clause. They can produce more than one solution in the event of backtracking. However, once this conjunction fails, the search proceeds from the last alternative prior to the choice of the clause containing the cut.

Let us consider a fragment of the search tree of the query merge([1,3,5],[2,3],Xs)? with respect to Program 11.2, a version of merge with cuts added. The fragment is given as Figure 11.1. The query is first reduced to the conjunctive query !<2,!,merge([3,5],[2,3],Xs)?; the goal 1<2 is successfully solved, reaching the node marked (a) in the search tree. The effect of executing the cut is to prune the branches marked (a) and (b).

Continuing discussion of Program 11.2, the placement of the cuts in the three recursive clauses of merge is after the test.1 The two base cases of merge are also deterministic. The correct clause is chosen by unification, and thus a cut is placed at the first goal (and in fact the only goal) in the body of the rule. Note that the cuts eliminate the redundant solution to the goal merge([1],[1],Xs). Previously, this was accomplished more awkwardly, by specifying that Xs (or Ys) had at least one element.

1. The cut after the third merge clause is unnecessary in any practical sense. Procedurally, it will not cause any reduction of search. But it makes the program more symmetric, and like the old joke says about chicken soup, it doesn't hurt.
merge(Xs, Ys, Zs) ←
Zs is an ordered list of integers obtained from merging
the ordered lists of integers Xs and Ys.
merge([X1,X2],[Y1,Y2],[Z1,Z2]) ←
X < Y, 1. merge(Xs,Ys,Ys).
merge([X1,X2],[Y1,Y2],[X1,X2]) ←
X≥Y, 1. merge(Xs,Ys,Zs).
merge([X1,X2],[Y1,Y2],[Y1,Y2]) ←
X > Y, 1. merge(Zs,Ys,Zs).
merge([X1,X2], [Y1,Y2], [X1,X2]) ←
X > Y, 1. merge([X1,X2], [Y1,Y2], [X1,X2]).
merge([], [Y1,Y2], [Y1,Y2]) ←.

Program 11.2 Merging with cuts

We restate the effect of a cut in a general clause C = A → B₁, ..., Bₖ, !Bₖ₊₁, ..., Bₙ in a procedure defining A. If the current goal G unifies with the head of C and B₁, ..., Bₖ further succeed, the cut has the following effect. The program is committed to the choice of C for reducing G; any alternative clauses for A that might unify with G are ignored. Further, should Bₖ fail for i > k + 1, backtracking goes back only as far as the !. Other choices remaining in the computation of Bᵢ, i ≤ k, are pruned from the search tree. If backtracking actually reaches the cut, then the cut fails, and the search proceeds from the last choice made before the choice of C to reduce G.

The cuts used in the merge program express that merge is deterministic. That is, only one of the clauses can be used successfully for proving an applicable goal. The cut commits the computation to a single clause, once the computation has progressed enough to determine that this is the only clause to be used.

The information conveyed by the cut prunes the search tree, and hence shortens the path traversed by Prolog, which reduces the computation time. In practice, using cuts in a program is even more important for saving space. Intuitively, knowing that a computation is deterministic means that less information needs to be kept for use in the event of backtracking. This can be exploited by Prolog implementations with tail recursion optimization, discussed in Section 11.2.

Let us consider some other examples. Cuts can be added to the program for computing the minimum of two numbers (Program 3.7) in precisely the same way as for merge. Once an arithmetic test succeeds, there

minimum(X,Y,Min) ←
Min is the minimum of the numbers X and Y.
minimum(X,Y,M) ← X≤Y, !. minimum(X,Y,M) ← X > Y, !.

Program 11.3 minimum with cuts

polynomial(Term,X) ←
Term is a polynomial in X.
polynomial(X,X) ← !.
polynomial(Term,X) ← constant(Term), !.
polynomial(Term1+Term2,X) ←
!., polynomial(Term1,X), polynomial(Term2,X).
polynomial(Term1-Term2,X) ←
!., polynomial(Term1,X), polynomial(Term2,X).
polynomial(Term1*Term2,X) ←
!., polynomial(Term1,X), polynomial(Term2,X).
polynomial(Term1/Term2,X) ←
!., polynomial(Term1,X), polynomial(Term2,X).
polynomial(Term,N,X) ←
!., integer(N), N ≥ 0, polynomial(Term,X).

Program 11.4 Recognizing polynomials

is no possibility for the other test succeeding. Program 11.3 is the appropriately modified version of minimum.

A more substantial example where cuts can be added to indicate that a program is deterministic is provided by Program 3.29. The program defines the relation polynomial(Term,X) for recognizing if Term is a polynomial in X. A typical rule is

polynomial(Term1+Term2,X) ←
polynomial(Term1,X), polynomial(Term2,X).

Once the term being tested has been recognized as a sum (by unifying with the head of the rule), it is known that none of the other polynomial rules will be applicable. Program 11.4 gives the complete polynomial program with cuts added. The result is a deterministic program that has a mixture of cuts after conditions and cuts after unification.
When discussing the Prolog programs for arithmetic, which use the underlying arithmetic capabilities of the computer rather than a recursive logic program, we argued that the increased efficiency is often achieved at the price of flexibility. The logic programs lost their multiple uses when expressed as Prolog programs. Prolog programs with cuts also have less flexibility than their cut-free equivalents. This is not a problem if the intended use of a program is one-way to begin with, as is often the case.

The examples so far have demonstrated pruning useless alternatives for the parent goal. We give an example where cuts greatly aid efficiency by removing redundant computations of sibling goals. Consider the recursive clause of an interchange sort program:

\[
\text{sort}(Xs, Ys) \leftarrow \\
\text{append}(As, [X, Y|Bs], Xs), \\
\text{X} > \text{Y}, \\
\text{append}(As, [Y, X|Bs], Xs1), \\
\text{sort}(Xs1, Ys).
\]

The program searches for a pair of adjacent elements that are out of order, swaps them, and continues until the list is ordered. The base clause is

\[
\text{sort}(Xs, Xs) \leftarrow \text{ordered}(Xs).
\]

Consider a goal \(\text{sort}([3,2,1], Xs)\). This is sorted by swapping 3 and 2, then 3 and 1, and finally 2 and 1 to produce the ordered list \([1,2,3]\). It could also be sorted by first swapping 2 and 1, then swapping 3 and 1, and finally swapping 3 and 2, to arrive at the same solution. We know there is only one sorted list. Consequently there is no point in searching for another alternative once an interchange is made. This can be indicated by placing the cut after the test \(X > Y\). This is the earliest it is known that an interchange is necessary. The interchange sort program with cut is given as Program 11.5.

The addition of cuts to the programs described in this section does not alter their declarative meaning; all solutions to a given query are found. Conversely, removing the cuts should similarly not affect the meaning of the program. Unfortunately, this is not always the case. A distinction has been made in the literature between green cuts and red cuts. Green cuts have been considered in this section. The addition and removal of green cuts from a program do not affect the program’s meaning. Green cuts

\[
\text{cuts and negation}
\]

\[
\text{sort}(Xs, Ys) \leftarrow \\
\text{Ys is an ordered permutation of the list of integers Xs.}
\text{sort}(Xs, Ys) \leftarrow \\
\text{append}(As, [X, Y|Bs], Xs), \\
X > Y, \\
\text{!}, \\
\text{append}(As, [Y, X|Bs], Xs1), \\
\text{sort}(Xs1, Ys).
\text{sort}(Xs, Xs) \leftarrow \\
\text{ordered}(Xs), \\
\text{!}.
\text{ordered}(Xs) \leftarrow \text{See Program 3.20.}
\text{Program 11.5 Interchange sort}
\]

prune only computation paths that do not lead to new solutions. Cuts that are not green are red.

The cut interacts with system predicates such as call and !, introduced in Chapter 10, and with predicates such as not, introduced later in this chapter. The question is what scope should cut have, that is, which choice points should be affected. Since such tricky uses of cut are not presented or advocated in this book, we defer discussion of the scope of cut until Chapter 17 on interpreters.

\[
\text{Exercises for Section 11.1}
\]

(i) Add cuts to the partition program from quicksort, Program 3.22.
(ii) Add cuts to the differentiation program, Program 3.30.
(iii) Add cuts to the insertion sort program, Program 3.21.

\[
\text{11.2 Tail Recursion Optimization}
\]

As noted in Section 8.3, the main difference from a performance point of view between recursion and iteration is that recursion requires, in general, space linear in the number of recursive calls to execute, whereas
iteration can be executed in constant space, independent of the number of iterations performed.

Recursive programs defined free of side effects might be considered more elegant and pleasing than their iterative counterparts defined in terms of iteration and local variables. However, an order of magnitude in space complexity seems an unacceptable price for such aesthetic pleasures. Fortunately, there is a class of recursive programs, precisely those that can be translated directly into iterative ones, that can be executed in constant space.

The implementation technique that achieves this space saving is called tail recursion optimization, or more precisely, last call optimization. Intuitively, the idea of tail recursion optimization is to execute a recursive program as if it were an iterative one.

Consider the reduction of a goal A using the clause

\[A' \rightarrow B_1 B_2 \ldots B_n. \]

with most general unifier \(\theta \). The optimization is potentially applicable to the last call in the body of a clause, \(B_n \); it reuses the area allocated for the parent goal \(A \) for the new goal \(A' \).

The key precondition for this optimization to apply is that there be no choice points left from the time the parent goal \(A \) reduced to this clause to the time the last goal \(B_n \) is reduced. In other words, \(A \) has no alternative clauses for reduction left, and there are no choice points left in the computation of goals to the left of \(B_n \); namely, the computation of the conjunctive goal \((B_1 B_2 \ldots B_{n-1})^\theta \) was deterministic.

Most implementations of tail recursion optimization can recognize to a limited extent at runtime whether this condition occurs, by comparing backtracking-related information associated with the goals \(B_n \) and \(A \). Another implementation technique, clause indexing, also interacts closely with tail recursion optimization and enhances the ability of the implementation to detect that this precondition occurs. Indexing performs some analysis of the goal, to detect which clauses are applicable for reduction, before actually attempting to do the unifications. Typically, indexing is done on the type and value of the first argument of the goal.

Consider the append program:

\[
\text{append}(X_1 X_2, Y_1, Z_1) \rightarrow \text{append}(X_1, Y_2, Z_2).
\]

This cut and negation

If it is used to append two complete lists, then by the time the recursive append goal is executed, the preconditions for tail recursion optimization hold. No other clause is applicable to the parent goal \(A \); if the first argument unifies with \(X_1 \), it certainly won’t unify with \([] \), since we assumed that the first argument is a complete list. There are no other goals in the body besides append, so the second precondition holds vacuously.

However, for the implementation to know that the optimization applies, it needs to know that the second clause, although not tried yet, is not applicable. Here indexing comes into play. By analyzing the first argument of append, it is possible to know that the second clause would fail even before trying it, and to apply the optimization in the recursive call to append.

Not all implementations provide indexing, and not all cases of determinism can be detected by the indexing mechanisms available. Therefore it is in the interest of the programmer to help an implementation that supports tail recursion optimization to recognize that the preconditions for applying it hold.

There is a slodgehammer technique for doing so: Add a cut before the last goal of a clause, in which tail recursion optimization should always apply, as in

\[A_1 \rightarrow B_1 B_2 \ldots B_n. \]

This cut prunes both alternative clauses left for the parent goal \(A \), and any alternatives left for the computation of \((B_1 B_2 \ldots B_n)^\theta \).

In general, it is not possible to answer if such a cut is green or red, and the programmer’s judgment should be applied.

It should be noted that the effect of tail recursion optimization is enhanced greatly when accompanied with a good garbage collector. Stated negatively, the optimization is not very significant without garbage collection. The reason is that most tail recursive programs generate some data structures on each iteration. Most of these structures are temporary and can be reclaimed (see, for instance, the editor in Program 12.5). Together with a garbage collector, such programs can run, in principle, forever. Without it, although the stack space they consume would remain constant, the space allocated to the uncollected temporary data structures would overflow.
11.3 Negation

The cut can be used to implement a version of negation as failure. Program 11.6 defines a predicate not(\text{Goal}), which succeeds if \text{Goal} fails. As well as using cut, the program uses the meta-variable facility described in Chapter 10, and a system predicate fail that always fails.

Standard Prolog provides a predicate fail_if(\text{Goal}), which has the same behavior as not/1. Other Prologs provide the same predicate under the name \text{not1}. The rationale for not calling the system predicate not is that the predicate does not implement true logical negation, and it is misleading to label it as such. We believe that the user easily learns how the predicate differs from true negation, as we will explain, and programmers are helped rather than misled by the name.

Let us consider the behavior of Program 11.6 in answering the query not G? The first rule applies, and G is called using the meta-variable facility. If G succeeds, the cut is encountered. The computation is then committed to the first rule, and not G fails. If the call to G fails, then the second rule of Program 11.6 is used, which succeeds. Thus not G fails if G succeeds and succeeds if G fails.

The rule order is essential for Program 11.6 to behave as intended. This introduces a new, not entirely desirable, dimension to Prolog programs. Previously, changing the rule order only changed the order of solutions. Now the meaning of the program can change. Procedures where the rule order is critical in this sense must be considered as a single unit rather than as a collection of individual clauses.

The termination of a goal not G depends on the termination of G. If G terminates, so does not G. If G does not terminate, then not G may or may not terminate depending on whether a success node is found in the search tree before an infinite branch. Consider the following nonterminating program:

```
not X ←
    X is not provable.
not X ← X, 1, fail.
not X.
```

Program 11.6 Negation as failure
variants(Term1,Term2) ←
 Term1 and Term2 are variants.
variants(Term1,Term2) ←
 verify((numbervars(Term1,0,N),
 numbervars(Term2,0,N),
 Term1==Term2)).
verify(Goal) ←
 Goal has a true instance. Verifying this is not done
 constructively, so variables are not instantiated in the process.
verify(Goal) ← not(not Goal).
numbervars(Term,0,N) ← See Program 10.8.

Program 11.7 Testing if terms are variants

This can be done either by a static analysis of the program or by a run-
time check, using the predicate ground defined in Program 10.4.
The predicate not is very useful. It allows us to define interesting con-
cepts. For example, consider a predicate disjoiint(Xs,Xs), true if two
lists Xs and Ys have no elements in common. It can be defined as
disjoint(Xs,Ys) ← not (member(Z,Xs), member(Z,Ys)).
Many other examples of using not will appear in the programs through-
out this book.
An interesting property of not(Goal) is that it never instantiates the
arguments in Goal. This is because of the explicit failure after the call
to Goal succeeds, which undoes any bindings made. This property can
be exploited to define a procedure verify(Goal), given as part of Pro-
gram 11.7, which determines whether a goal is true without affecting
the current state of the variable bindings. Double negation provides the
means.
We note in passing that negation as implemented in Prolog shares a
feature with negation in natural language. A doubly negated statement is
not the same as the equivalent affirmative statement.
The program for verify can be used in conjunction with Program 10.8
for numbervars to define a notion of equality intermediate between uni-
fiability provided by ==/2 and syntactic equality provided by ===/2. The
predicate variants(X,Y) defined in Program 11.7 is true if two terms
X and Y are variants. Recall from Chapter 4 that two terms are variants

Cuts and Negation

X + Y ←
X and Y are not unifiable.
X + X ← fail.
X + Y ←

Program 11.8 Implementing #

if they are instances of each other. This can be achieved with the follow-
ing trick, implemented in Program 11.7. Instantiate the variables using
numbervars, test whether the terms unify, and undo the instantiation.
The three forms of comparison ==/2, variant/2, and ===/2 are pro-
gressively stronger, with unifiability being the weakest and most general.
Identical terms are variants, and variant terms are unifiable. The distinc-
tion between the different comparisons vanishes for ground terms; for
ground terms all three comparisions return the same results.
The conjunction of cut and fail used in the first clause of not in Pro-
gram 11.6 is known as the cut-fail combination. The cut-fail combination
is a technique that can be used more generally. It allows early failure. A
clause with a cut-fail combination says that the search need not (and will
not) proceed.
Some cuts in a cut-fail combination are green cuts. That is, the program
has the same meaning if the clause containing the cut-fail combination
is removed. For example, consider Program 10.4 defining the predicate
ground. An extra clause can be added, which can reduce the search with-
out affecting the meaning:
ground(Term) ← var(Term), !, fail.

The use of cut in Program 11.6 implementing not is not green, but red.
The program does not behave as intended if the cut is removed.
The cut-fail combination is used to implement other system predi-
cates involving negation. For example, the predicate # (written as \# in
Standard Prolog) can be simply implemented via unification and cut-fail,
rather than via an infinite table, with Program 11.8. This program is also
only guaranteed to work correctly for ground goals.
With ingenuity, and a good understanding of unification and the ex-
ecution mechanism of Prolog, interesting definitions can be found for
many meta-logical predicates. A sense of the necessary contortions can
be found in the program for same_var(X, Y), which succeeds if X and Y are the same variable and otherwise fails:
same_var(foo, Y) ← var(Y), 1, fail.
same_var(X, X) ← var(X), var(Y).

The argument for its correctness follows: "If the arguments to same_var are the same variable, binding X to foo will bind the second argument as well, so the first clause will fail, and the second clause will succeed. If either of the arguments is not a variable, both clauses will fail. If the arguments are different variables, the first clause will fail, but the cut stops the second clause from being considered."

Exercises for Section 11.3

(i) Define the system predicate \(\text{\texttt{\textbackslash}} \text{-- using -- and the cut-fail combination.} \)

(ii) Define nonvar using var and the cut-fail combination.

11.4 Red Cuts: Omitting Explicit Conditions

Prolog's sequential choice of rules and its behavior in executing cut are the key features necessary to compose the program for not. The programmer can take into account that Prolog will only execute a part of the procedure if certain conditions hold. This suggests a new, and misguided, style of programming in Prolog, where the explicit conditions governing the use of a rule are omitted.

The prototypical (bad) example in the literature is a modified version of Program 11.3 for minimum. The comparison in the second clause of the program can be discarded to give the program

\[
\text{minimum}(X, Y, X) ← X \leq Y, !.
\]

\[
\text{minimum}(X, Y, Y).
\]

The reasoning offered to justify the program is as follows: "If \(X \) is less than or equal to \(Y \), then the minimum is \(X \). Otherwise the minimum is \(Y \), and another comparison between \(X \) and \(Y \) is unnecessary." Such a comparison is performed, however, by Program 11.3.

There is a severe flaw with this reasoning. The modified program has a different meaning from the standard program for minimum. It succeeds on the goal \(\text{minimum}(2, 5, 5) \). The modified program is a false logic program.

The incorrect minimum goal implied by the modified program can be avoided. It is necessary to make explicit the unification between the first and third arguments, which is implicit in the first rule. The modified rule is

\[
\text{minimum}(X, Y, Z) ← X \leq Y, 1, Z = X.
\]

This technique of using the cut to commit to a clause after part of the unification has been done is quite general. But for \(\text{minimum} \) the resultant code is contrived. It is far better to simply write the correct logic program, adding cuts if efficiency is important, as done in Program 11.3.

Using cut with the operational behavior of Prolog in mind is problematic. It allows the writing of Prolog programs that are false when read as logic programs, that is, have false conclusions but behave correctly because Prolog is unable to prove the false conclusions. For example, if \(\text{minimum} \) goals are of the form \(\text{minimum}(X, Y, Z) \), where \(X \) and \(Y \) are instantiated, but \(Z \) is not, the modified program behaves correctly.

The only effect of the green cuts presented in Section 11.1 is to prune from the search tree branches that are known to be useless. Cuts whose presence in a program changes the meaning of that program are called red cuts. The removal of a red cut from a program changes its meaning, i.e., the set of goals it can prove.

A standard Prolog programming technique using red cuts is the omission of explicit conditions. Knowledge of the behavior of Prolog, specifically the order in which rules are used in a program, is relied on to omit conditions that could be inferred to be true. This is sometimes essential in practical Prolog programming, since explicit conditions, especially negative ones, are cumbersome to specify and inefficient to run. But making such omissions is error-prone.

Omitting an explicit condition is possible if the failure of the previous clauses implies the condition. For example, the failure of the comparison \(X \leq Y \) in the minimum code implies that \(X \) is greater than \(Y \). Thus the test \(X > Y \) can be omitted. In general, the explicit condition is effectively the negation of the previous conditions. By using red cuts to omit conditions, negation is being expressed implicitly.
Chapter 11

delete(X, X, Ys) :-
 Ys is the result of deleting all occurrences of X from the list Xs.
delete([X|Xs], X, Ys) :- 1, delete(Xs, X, Ys).
delete([X|Xs], Z, [Y|Ys]) :- X ≠ Z, 1, delete(Xs, Z, Ys).
delete([], X, Y).
Program 11.9a Deleting elements from a list

delete(X, X, Ys) :-
 Ys is the result of deleting all occurrences of X from the list Xs.
delete([X|Xs], X, Ys) :- 1, delete(Xs, X, Ys).
delete([X|Xs], Z, [Y|Ys]) :- X ≠ Z, 1, delete(Xs, Z, Ys).
delete([], X, Y).
Program 11.9b Deleting elements from a list

Consider Program 11.5 for interchange sort. The first (recursive) rule
applies whenever there is an adjacent pair of elements in the list that
are out of order. When the second sort rule is used, there are no such
pairs and the list must be sorted. Thus the condition ordered(Xs) can
be omitted, leaving the second rule as the fact sort(Xs, Xs). As with
minimum, this is an incorrect logical statement.

Once the ordered condition is removed from the program, the cut
changes from green to red. Removing the cut from the variant without
the ordered condition leaves a program that gives false solutions.

Let us consider another example of omitting an explicit condition. Con-
sider Program 3.18 for deleting elements in a list. The two recursive
clauses cover distinct cases, corresponding to whether or not the head
of the list is the element to be deleted. The distinct nature of the cases
can be indicated with cuts, as shown in Program 11.9a.

By reasoning that the failure of the first clause implies that the head
of the list is not the same as the element to be deleted, the explicit
inequality test can be omitted from the second clause. The modified
program is given as Program 11.9b. The cuts in Program 11.9a are green
in comparison to the red cut in the first clause of Program 11.9b.

In general, omitting simple tests as in Program 11.9b is inadvisable.
The efficiency gain by their omission is minimal compared to the loss of
readability and modifiability of the code.

Cuts and Negation

if_then_else(P,Q,R) :-
 Either P and Q, or not P and R.
if_then_else(P, Q, X) :- P, 1, Q.
if_then_else(P, Q, R) :- R.
Program 11.10 If-then-else statement

Let us investigate the use of cut to express the if_then_else control
structure. Program 11.10 defines the relation if_then_else(P,Q,R).
Declaratively, the relation is true if P and Q are true, or not P and R are
true. Operationally, we prove P and, if successful, prove Q, else prove R.

The utility of a red cut to implement this solution is self-evident. The
alternative to using a cut is to make explicit the condition under which R
is run. The second clause would read

if_then_else(P, Q, R) :- not P, R.

This could be expensive computationally. The goal P will have to be com-
puted a second time in the determination of not.

We have seen so far two kinds of red cuts. One kind is built into the
program, as in the definitions of not and +. A second kind was a green
cut that became red when conditions in the programs were removed.
However, there is a third kind of red cut. A cut that is introduced into
a program as a green cut that just improves efficiency can turn out to be
a red cut that changes the program's meaning.

For example, consider trying to write an efficient version of member
that does not succeed several times when there are multiple copies of
an element in a list. Taking a procedural view, one might use a cut to
avoid backtracking once an element is found to be a member of a list.
The corresponding code is

member(X, [X|Xs]) :- 1.
member(X, [Y|Ys]) :- member(X, Ys).

Adding the cut indeed changes the behavior of the program. However,
it is now not an efficient variant of member, since, for example, the
query member(X,[1,2,3]) gives only one solution, X=1. It is a variant
of member_check, given as Program 7.3, with the explicit condition X ≠
Y omitted, and hence the cut is red.
Exercises for Section 11.4

(i) Discuss where cuts could be placed in Program 9.3 for substitute. Consider whether a cut-fail combination would be useful, and whether explicit conditions can be omitted.

(ii) Analyze the relation between Program 3.19 for select and the program obtained by adding a single cut:

select(X, X(Xa)..., Xa) = 1.
select(X, Y(Yb)..., Y(2a)) = select(X, Yb, Za).

(Hint: Consider variants of select.)

11.5 Default Rules

Logic programs with red cuts essentially consist of a series of special cases and a default rule. For example, Program 11.6 for not had a special case when the goal G succeeded and a default fact not G used otherwise. The second rule for if_then_else in Program 11.10 is

if_then_else(P, Q, R) = R.

It is used by default if P fails.

Using cuts to achieve default behavior is in the logic programming folklore. We argue, using a simple example, that often it is better to compose an alternative logical formulation than to use cuts for default behavior.

Program 11.11a is a naive program for determining social welfare payments. The relation pension(Person, Pension) determines which pension, Pension, a person, Person, is entitled to. The first pension rule says that a person is entitled to an invalid’s pension if he is an invalid.

The second rule states that people over the age of 65 are entitled to an old age pension if they have contributed to a suitable pension scheme long enough, that is, they must be paid_up. People who are not paid up are still entitled to supplementary benefit if they are over 65.

Consider extending Program 11.11a to include the rule that people receive nothing if they do not qualify for one of the pensions. The procedural “solution” is to add cuts after each of the three rules, and an extra default fact.
entitled to nothing as the default rule is really a new concept and should be presented as such.

11.6 Cuts for Efficiency

Earlier in this chapter, we claimed that the efficiency of some Prolog programs could be improved through sparing use of the cut. This section explores the claim. Two issues are addressed. The first is the meaning of efficiency in the context of Prolog. The second is appropriate uses of cut.

Efficiency relates to utilization of resources. The resources used by computations are space and time. To understand Prolog's use of space and time, we need to consider Prolog implementation technology.

The two major areas of memory manipulated during a Prolog computation are the stack and the heap. The stack is called the local stack in many Edinburgh Prolog implementations, is used to govern control flow. The heap, called the global stack in many Edinburgh Prolog implementations, is used to construct data structures that are needed throughout the computation.

Let us relate stack management to the computation model of Prolog. Each time a goal is chosen for reduction, a stack frame is placed on the stack. Pointers are used to specify subsequent flow of control once the goal succeeds or fails. The pointers depend on whether other clauses can be used to reduce the chosen goal. Handling the stack frame is simplified considerably if it is known that only one clause is applicable. Technically, a choice point needs to be put on the stack if more than one clause is applicable.

Experience has shown that avoiding placing choice points on the stack has a large impact on efficiency. Indeed, Prolog implementation technology has advanced to the stage that deterministic code, i.e., without choice points, can be made to run almost as efficiently as conventional languages.

Cuts are one way that Prolog implementations know that only one clause is applicable. Another way is by the effective use of indexing. Whether a cut is needed to tell a particular Prolog implementation that only one clause is applicable depends on the particular indexing scheme.

In this book, we often use the first argument to differentiate between clauses. Indexing on the first argument is the most common among Prolog implementations. For effective use, consult your Prolog manual.

Efficient use of space is determined primarily by controlling the growth of the stack. Already we have discussed the advantages of iterative code and last call optimization. Too many frames placed on the stack can cause computations to abort. In practice this is a major concern. Running out of stack space is a common symptom of an infinite loop or running a highly recursive program. For example, Program 3.9 implementing Ackermann's function, when adapted for Prolog arithmetic, quickly exhausts an implementation's capacity.

Time complexity is approximated by number of reductions. Thus efficient use of time can be determined by analyzing the number of reductions a program makes. In Part I, we analyzed different logic programs by the size of proof trees. In Prolog, size of search tree is a better measure, but it becomes difficult to incorporate Prolog's nondeterminism.

Probably the most important approach to improving time performance is better algorithms. Although Prolog is a declarative language, the notion of an algorithm applies equally well to Prolog as to other languages. Examples of good and bad algorithms for the same problem, together with their Prolog implementations, have been given in previous chapters. Linear reverse using accumulators (Program 3.16b) is clearly more efficient than naive reverse (Program 3.16a). Quicksort (Program 3.22) is better than permutation sort (Program 3.20).

Besides coming up with better algorithms, several things can be done to influence the performance of Prolog programs. One is to choose a better implementation. An efficient implementation is characterized by its raw speed, its indexing capabilities, support for tail recursion optimization, and garbage collection. The speed of logic programming languages is usually measured in LIPS, or logical inferences per second. A logical inference corresponds to a reduction in a computation. Most Prolog implementations claim a LIPS rating. The standard benchmark, by no means ideal, is to time Program 3.16a, naive reverse, reversing a list. There are 496 reductions for a list of 30 elements.

Once the implementation is fixed, the programs themselves can be tuned by:

- Good goal ordering, where the rule is "fail as early as possible"
• Exploitation of the indexing facility, by ordering arguments appropriately
• Elimination of nondeterminism using explicit conditions and cuts

Let us elaborate on the third item and discuss guidelines for using cut. As discussed, Prolog implementations will perform more efficiently if they know a predicate is deterministic. The appropriate sparing use of cut is primarily for saying that predicates are deterministic, not for controlling backtracking.

The two basic principles for using a cut are
• Make cuts as local as possible.
• Place a cut as soon as it is known that the correct clause has been chosen.

Let us illustrate the principles with the quicksort program, Program 3.22. The recursive clause is as follows

```prolog
quicksort([], []).
```

```prolog
quicksort([X|Xs], Ys) ->
    partition(Xs, X, Littles, Bigs),
    quicksort(Littles, Ls),
    quicksort(Bigs, Bs),
    append(Ls, [X|Bs], Ys).
```

We know there is only one solution for the partition of the list. Rather than place a cut in the clause for quicksort, the partition predicate should be made deterministic. This is in accordance with the first principle.

One of the partition clauses is

```prolog
partition([], Y, []).
```

```prolog
partition([X|Xs], Y, Ls) ->
    X < Y, partition(Xs, Y, Ls).
```

If the clause succeeds, no other will be applicable. But the cut should be placed before the recursive call to partition rather than after, according to the second principle.

Where and whether to place cuts can depend on the Prolog implementation being used. Cuts are needed only if Prolog does not know the determinism of a predicate. If, for example, indexing can determine that only one predicate is applicable, no cuts are needed. In a system without indexing, cuts would be needed for the same program.

Having discussed appropriate use of cuts, we stress that adding cuts to a program should typically be done after the program runs correctly.

A common misconception is that a program can be fixed from giving extraneous answers and behaving incorrectly by adding cuts. This is not so. Prolog code should be debugged as declaratively as possible, a topic we discuss in Chapter 13. Only when the logic is correct should efficiency be addressed.

The final factor that we consider in evaluating the efficiency of Prolog programs is the creation of intermediate data structures, which primarily affects use of the heap. Minimizing the number of data structures being generated is a subject that has not received much attention in the Prolog literature. We analyze two versions of the predicate `sublist(Xs, Ys)` to illustrate the type of reasoning possible.

The two versions of `sublist` that we consider involve Program 3.13 for calculating prefixes and suffixes of lists. We must also specify the comparison with respect to a particular use. The one chosen for the analysis is whether a given list is a sublist of a second given list. The first clause that follows denotes a sublist as a prefix of a suffix, and the second clause defines a sublist as a suffix of a prefix:

```prolog
sublist(Xs, As, Xs, Bs) ->
    suffix(Xs, As, Xs, Bs),
    prefix(Xs, Xs, Bs).
```

```prolog
sublist(Xs, As, Xs, Bs) ->
    prefix(As, Xs, Xs, Bs),
    suffix(Xs, As, Xs).
```

Although both programs have the same meaning, there is a difference in the performance of the two programs. If the two arguments to `sublist` are complete lists, the first clause simply goes down the second list, returning a suffix, then goes down the first list, checking if the suffix is a prefix of the first list. This execution does not generate any new intermediate data structures. On the other hand, the second clause creates a new list, which is a prefix of the second list, then checks if this list is a suffix of the first list. If the check fails, backtracking occurs, and a new prefix of the first list is created.

Even though, on the average, the number of reductions performed by the two clauses is the same, they are different in their efficiency. The first clause does not generate new structures (does not cons, in Lisp jargon). The second clause does. When analyzing Lisp programs, it is common to examine the consing performance in great detail, and whether a program comes or not is an important efficiency consideration. We feel that the issue is important for Prolog programs, but perhaps the state of the art of studying the performance of large Prolog programs has not matured enough to dictate such analyses.
11.7 Background

The cut was introduced in Marseilles Prolog (Colmerauer et al., 1973) and was perhaps one of the most influential design decisions in Prolog. Colmerauer experimented with several other constructs, which corresponded to special cases of the cut, before coming up with its full definition.

The terminology green cuts and red cuts was introduced by van Emden (1982), in order to try to distinguish between legitimate and illegitimate uses of cuts. Alternative control structures, which are more structured then the cut, are constantly being proposed, but the cut still remains the workhorse of the Prolog programmer. Some of the extensions are if-then-else constructs (O'Keefe, 1985) and notations for declaring that a relation is functional, or deterministic, as well as "weak-cuts," "snips," remote-cuts (Chikayama, 1984), and not itself, which, as currently implemented, can be viewed as a structured application of the cut.

The controversial nature of cut has not been emphasized in this book. A good starting place to read about some of cut's problems, and the variation in its implementation, is Moss (1986). Many of the difficulties arise from the scope of the cut, and how cuts interact with the system predicates for control such as conjunction, disjunction, and the metavariable facility. For example, two versions of call have been suggested, one that blocks the cut and one that does not. Further discussion of cut can be found in O'Keefe (1990), including an exposition on when cut should be used.

Some Prologs provide if_then_else(P,Q,R) under the syntax P → Q; R and an abridged if-then form P → Q. Whether to include if-then-else in Standard Prolog has been a controversial issue. The trade-off is convenience for some programming tasks versus thorny semantic anomalies. This issue has been raised several times on the USENET newsgroup comp.lang.prolog. Relevant comments were collected in the May 1991 issue of the Newsletter of the Association for Logic Programming, Volume 4, No. 2.

The cut is also the ancestor of the commit operator of concurrent logic languages, which was first introduced by Clark and Gregory (1981) in their Relational Language. The commit cleans up one of the major drawbacks of the cut, which is destroying the modularity of clauses.

Cuts and Negation

The cut is asymmetric, because it eliminates alternative clauses below the clause in which it appears, but not above. Hence a cut in one clause affects the meaning of other clauses. The commit, on the other hand, is symmetric and therefore cannot implement negation as failure; it does not destroy the modularity of clauses.

Most current compilers and implementation technology are based on the WAM (Warren Abstract Machine), published as a somewhat cryptic technical report (Warren, 1983). Readers seriously interested in program efficiency need to understand the WAM. The best places to start reading about the WAM are Maier and Warren (1988) and Alt-Kaci (1991). References to negation in logic programming can be found in Section 5.6. Implementations of a sound negation as failure rule in dialects of Prolog can be found in Prolog-II (van Cuntgem, 1982) and M/Prolog (Naish, 1985a).

The program for same_var and its argument for correctness are due to O'Keefe (1983).

Program 11.1b for pension is a variant of an example due to Sam Steel for a Prolog course at the University of Edinburgh — hence the Scottish flavor. Needless to say, this is not intended as, nor is it an accurate expression, of the Scottish or British social welfare system.
12 Extra-Logical Predicates

There is a class of predicates in Prolog that lie outside the logic programming model, and are called extra-logical predicates. These predicates achieve a side effect in the course of being satisfied as a logical goal. There are basically three types of extra-logical system predicates: predicates concerned with I/O, predicates for accessing and manipulating the program, and predicates for interfacing with the underlying operating system. Prolog I/O and program manipulation predicates are discussed in this chapter. The interface to the operating system is too system-dependent to be discussed in this book.

12.1 Input/Output

A very important class of predicates that produces side effects is that concerned with I/O. Any practical programming language must have a mechanism for both input and output. The execution model of Prolog, however, precludes the expression of I/O within the pure component of the language.

The basic predicate for input is read(X). This goal reads a term from the current input stream, usually from the terminal. The term that has been read is unified with X, and read succeeds or fails depending on the result of unification.

The basic predicate for output is write(X). This goal writes the term X on the current output stream, as defined by the underlying operating system, usually to the terminal. Neither read nor write give alternative solutions on backtracking.
writeIn([X|Xs]) :- write(X), writeIn(Xs).
writeIn([]) :- nl.

Program 12.1 Writing a list of terms

The normal use of read is with a variable argument X, which acquires the value of the first term in the current input stream. The instantiation of X to something outside the program lies outside the logical model, since each time the procedure is called, read(X) succeeds with a (possibly) different value for X. Read attempts to parse the next term on the input stream. If it fails, it prints an error message on the terminal.

There is an asymmetry between the extra-logical nature of read and write. If all calls to write were replaced with the goal true, which always succeeded once, the semantics of the program would be unaffected. That is not true for read.

Early Prolog implementations did not concentrate on input and output facilities, providing the basic predicates read and write, or their equivalents, and little else. More recent Prolog implementations have a wider range of formatted I/O options, some of which have been adopted in Standard Prolog. In this book, the emphasis is not on I/O, and so we restrict ourselves to basic predicates and some simple utilities described in the rest of this section. For more elaborate I/O, consult your particular Prolog manual.

A useful utility is a predicate writeIn(Xs), analogous to the Pascal command, which writes the list of terms Xs as a line of output on the current output stream. It is defined in Program 12.1. The predicate writeIn uses the built-in predicate nl, which causes the next output character to be on a new line. As an example of its use, executing the conjunctive goal (X=3, writeIn(['The value of X is ', X])) produces the output

The value of X is 3.

Note the use of the quoted atom 'The value of X is '. Both read and write operate at the term level. A lower level for I/O is the character level. Edinburgh Prolog assumed that characters were represented by ASCII codes. Standard Prolog takes a broader perspective to support such character sets as Kanji. The basic output predicate is put_char(Char), which outputs the character Char on the current output stream. Standard Prolog allows you to specify the output stream, but we do not give examples here. The basic input predicate at the character level is get_char(Char), which reads a character C from the current input stream and then unifies C with Char.

Program 12.2 defines read_word_list(Words), a utility predicate for reading in a list of words, Words, from the current input, terminated by an end-of-words character, for example a period. Specific definitions of the predicates word_char/1, fill_char/1, and end_of_words_char/1 need to be added. It can be used to allow freer form input. In Program 12.2, words can be separated by arbitrarily many fill characters.
Chapter 12

The predicate `read_word_list` reads a character, `FirstChar`, and calls `read_words(FirstChar, Words)`. This predicate does one of three actions, depending on what `FirstChar` is. If `FirstChar` is a word character, then the next word is found. Word characters in Standard Prolog are uppercase and lowercase letters, underscores, and digits. The second action is to ignore filling characters, and so the next character is read, and the program continues recursively. Finally, if the character denoting the end of the words is reached, the program terminates and returns the list of words.

It is important that the program must always read a character ahead and then test what it should do. If the character is useful, for example, a word character, it must be passed down to be part of the word. Otherwise characters can get lost when backtracking. Consider the following read and process loop:

```prolog
process([]) ->
    get_char(C), end_of_words_char(C).
process([W|Words]) ->
    get_char(C), word_char(C), get_word(C,W), process(Words).
```

If the first character in a word is not an `end_of_words_char`, the first clause will fail, and the second clause will cause the reading of the next character.

Returning to Program 12.2, the predicate `read_word(Char,Word,NextChar)` reads a word `Word` given the current character `Char` and returns the next character after the word, `NextChar`. The list of characters composing the word is found by `word_chars/3` (with the same arguments as `read_word`). The word is created from the list of characters using the system predicate `atom_list/2`. In `word_chars` there is the same property of looking ahead one character, so that no character is lost.

Predicates such as `fill_char/1` and `word_char/1` exemplify data abstraction in Prolog.

Exercise for Section 12.1

(i) Extend Program 12.2 to handle a wider range of inputs, for example, numbers.

12.2 Program Access and Manipulation

So far programs have been assumed to be resident in computer memory, without discussion of how they are represented or how they got there. Many applications depend on accessing the clauses in the program. Furthermore, if programs are to be modified at runtime, there must be a way of adding (and deleting) clauses.

The first Prologs, implemented as simple interpreted systems, classified predicates as built-in and static or user-defined and dynamic. The subsequent development of compilers and libraries require a more sophisticated classification.

Each user-defined predicate is either `dynamic` or `static`. The procedure of a dynamic predicate can be altered, whereas the procedure of a static predicate cannot. Built-in predicates are assumed to be static. The system predicates introduced in this section apply only to dynamic predicates and will probably cause error messages if applied to static predicates.

In this book, we assume all predicates are dynamic unless otherwise specified. In many Prologs, declarations are needed to make a predicate dynamic.

The system predicate for accessing a program is `clause(Handle,Body)`. The `goal clause(Handle,Body)` must be called with `Handle` instantiated. The program is searched for the first clause whose head unifies with `Handle`. The head and body of this clause are then unified with `Handle` and `Body`. On backtracking, the goal succeeds once for each unifiable clause in the procedure. Note that clauses in the program cannot be accessed via their body.

Facts have the atom `true` as their body. Conjunctive goals are represented using the binary functor `.`. The actual representations can be easily abstracted away, however.

Consider Program 3.12 for `member`:

```
member(X,[X|Xs]).
member(X,[Y|Ys]) :- member(X,Ys).
```

The `goal clause(member(X,Ys),Body)` has two solutions: `[Ys=X,Xs]`, `Body=TRUE` and `[Ys=[Y|Ys],Body=member(X,Ys)]`. Note that a fresh copy of the variables appearing in the clause is made each time a unification is performed. In terms of the meta-logical primitives `freeze` and
neat, the clause is stored in frozen form in the program. Each call to clause causes a new melt of the frozen clause. This is the logical counterpart of the classic notion of reentrant code.

System predicates are provided both to add clauses to the program and to remove clauses. The basic predicate for adding clauses is assertz(Clause), which adds Clause as the last clause of the corresponding procedure. For example, assertz(father(haram, loc)) adds the father fact to the program. When describing rules an extra level of brackets is needed for technical reasons concerning the precedence of terms. For example, assertz((parent(X, Y) = father(X,Y))) is the correct syntax.

There is a variant of assertz, asserta, that adds the clause at the beginning of a procedure. If Clause is uninstantiated (or if Clause has the form H = B with H uninstantiated), an error condition occurs.

The predicate retract(C) removes from the program the first clause in the program unifying with C. Note that to retract a clause such as a = b, c, d, you need to specify retract((a = c)). A call to retract may only mark a clause for removal, rather than physically removing it, and the actual removal would occur only when Prolog's top-level query is solved. This is for implementation reasons, but may lead to anomalous behavior in some Prologs.

Asserting a clause freezes the terms appearing in the clause. retracting the same clause melts a new copy of the terms. In many Prologs this is exploited to be the easiest way of copying a term. Standard Prolog, however, provides a built-in predicate copy_term/2 for this purpose.

The predicates assert and retract introduce to Prolog the possibility of programming with side effects. Code depending on side effects for its successful execution is hard to read, hard to debug, and hard to reason about formally. Hence these predicates are somewhat controversial, and using them is sometimes a result of intellectual laziness or incompetence. They should be used as little as possible when programming. Many of the programs to be given in this book can be written using assert and retract, but the results are less clean and less efficient. Further, as Prolog compiler technology advances, the inefficiency in using assert and retract will become more apparent.

It is possible, however, to give logical justification for some limited uses of assert and retract. Asserting a clause is justified, for exam-

12.3 Memo-Functions

Memo-functions save the results of subcomputations to be used later in a computation. Remembering partial results is impossible within pure Prolog, so memo-functions are implemented using side effects to the program. Programming in this way can be considered bottom-up programming.

The prototypical memo-function is lemma(Goal). Operationally, it attempts to prove the goal Goal , and, if successful, stores the result of the proof as a lemma. It is implemented as

\[\text{lemma}(P) \leftarrow P, \text{asserta}(P \leftarrow 1). \]

The next time the goal P is attempted, the new solution will be used, and there will be no unnecessary recomputation. The cut is present to prevent the more general program being used. Its use is justified only if P does not have multiple solutions.

Using lemmas is demonstrated with Program 12.3 for solving the Towers of Hanoi problem. The performance of Program 3.31 in solving the problem is dramatically improved. It is well known that the solution of the Towers of Hanoi with N disks requires \(2^N - 1\) moves. For example, ten disks require 1,023 moves, or in terms of Program 3.31, 1,023 calls of hanoi1(1,A,B,C,X). The overall number of general calls of hanoi1/5 is significantly more.

The solution to the Towers of Hanoi repeatedly solves subproblems moving the identical number of disks. A memo-function can be used to recall the moves made in solving each subproblem of moving a smaller
Chapter 12

hanoi(N,A,B,C,Moves) =
 Moves is the sequence of moves required to move N disks
 from peg A to peg B using peg C as an intermediary
 according to the rules of the Towers of Hanoi puzzle.

hanoi(1,A,B,C,Moves) =
 N > 1,
 S1 is N-1,
 Leama(hanoi(S1,A,C,B,Moves1)),
 hanoi(S1,C,B,A,Moves2),
 append(Moves1,\{A to B\},Moves2),
 leama(P) = P, anscortal(P = 1).

Testing

Test_hanoi(N,Pegs,Moves) =
 hanoi(N,A,B,C,Moves), Pegs = [A,B,C].

Program 12.3 Towers of Hanoi using a memo-function

number of disks. Later attempts to solve the subproblem can use the
computed sequence of moves rather than recomputing them.

The idea is seen with the recursive clause of hanoi in Program 12.3.
The first call to solve hanoi with N - 1 disks is remembered, and can be
used by the second call to hanoi with N - 1 disks.

The program is tested with the predicate Test_hanoi(N,Pegs,Moves).
N is the number of disks, Pegs is a list of the three peg names, and
Moves is the list of moves that must be made. Note that in order to take
advantage of the memo-functions, a general problem is solved first. Only
when the solution is complete, and all memo-functions have recorded
their results, are the peg names instantiated.

Exercise for Section 12.3

1) Two players take turns to say a number between 1 and 3 inclusive.
 A sum is kept of the numbers, and the player who brings the sum
to 20 wins. Write a program to play the game to win, using memo-
functions.

12.4 Interactive Programs

A common form of a program requiring side effects is an interactive loop.
A command is read from the terminal, responded to, and the next com-
mand read. Interactive loops are implemented typically by while loops in
conventional languages, Program 12.4 gives the basic skeleton of such
programs, where a command is read, then echoed by being written on
the screen.

The read/echo loop is invoked by the goal echo. The heart of the pro-
gram is the relation echo(X), where X is the term to be echoed. The pro-
gram assumes a user-defined predicate last_input/I, which succeeds if
the argument satisfies the termination condition for input. If the termi-
nation condition is satisfied by the input, the loop terminates; otherwise
the term is written and a new term is read.

Note that the testing of the term is separate from its reading. This
is necessary to avoid losing a term terms cannot be reread. The same
phenomenon occurred in Program 12.2 for processing characters. The
character was read and then separately processed.

Program 12.4 is iterative and deterministic. It can be run efficiently
on a system with tail recursion optimization, always using the same small
amount of space.

We give two examples of programs using the basic cycle of reading a
term, and then processing it. The first is a line editor. The second
interactive program is a shell for Prolog commands, which is essentially
a top-level interpreter for Prolog in Prolog.

The first decision in writing a simple line editor in Prolog is how to
represent the file. Each line in the file must be accessible, together with
the cursor position, that is the current position within the file. We use a
structure file(\{Before,After\}, where Before is a list of lines before the
cursor, and After is a list of lines after the cursor. The position is

echo ~ read(X), echo(X).
echo(X) ~ last_input(X), 1.
echo(X) ~ write(X), nl, read(Y), 1, echo(Y).

Program 12.4 Basic interactive loop
after the command has been applied. The editing continues by calling edit/1 on File1. The third edit/2 clause handles the case when no command is applicable, indicated by the failure of apply. In this case, an appropriate message is printed on the screen and the editing continues. The editing session is terminated by the command exit, which is separately tested for by edit/2.

Let us look at a couple of apply clauses, to give the flavor of how commands are specified. Particularly simple are commands for moving the cursor. The clause

apply(up, file([X,Xn], Yn), file(Xn, [X,Yn])).

says that we move the cursor up by moving the line immediately above the cursor to be immediately below the cursor. The command fails if the cursor is at the top of the file. The command for moving the cursor downward, also shown in Program 12.5, is analogous to moving the cursor up.

Moving the cursor up N lines rather than a single line involves using an auxiliary predicate up/6 to change the cursor position in the file. Issues of robustness surface in its definition. Note that apply tests that the argument to up is sensible, i.e., a positive number of lines, before up is invoked. The predicate up itself handles the case when the number of lines to be moved up is greater than the number of lines in the file. The command succeeds with the cursor placed at the top of the file. Extending the editor program to move a cursor down N lines is posed as an exercise at the end of this section.

Other commands given in Program 12.5 insert and delete lines. The command for insert, insert(Line), contains an argument, namely the line to be inserted. The command for delete is straightforward. It fails if the cursor is at the bottom of the screen. Also in the editor are commands for printing the line above the cursor, print, and for printing the whole file, print(*).

The editor commands are mutually exclusive. Only one apply clause is applicable for any command. As soon as an apply goal succeeds, there are no other possible alternatives. Prolog implementations that support indexing would find the correct clause immediately and leave no choice points. Imposing determinism via exploitation of indexing is a little different than adding explicit cuts, as described in Section 11.1, where the cuts would have been applied directly to the apply facts themselves. The difference between the two approaches is merely cosmetic. Note that a
Chapter 12

shell
shell_prompt, read(Goal), shell(Goal).
shell(exit) = 1.
shell(Goal) =
 ground(Goal), !, shell_solve_ground(Goal), shell.
shell(Goal) =
 shell_solve(Goal), shell.
shell_solve(Goal) =
 Goal, write(Goal), nl, fail.
shell_solve(Goal) =
 write(No (more) solutions?), nl.
shell_solve_ground(Goal) =
 Goal, !, write(Yes?), nl.
shell_solve_ground(Goal) =
 write(No?), nl.
shell_prompt = write('Next command?').

Program 12.6 An interactive shell

cut is still needed in the second edit clause to indicate that successful execution of a command and reporting of an error message are mutually exclusive.

A possible extension to the editor is to allow each command to handle its own error message. For example, suppose you wanted a more helpful message than "Command not applicable" when trying to move up when at the top of the file. This would be handled by extending the apply clause for moving up in the file.

We shift from editors to shells. A shell accepts commands from a terminal and executes them. We illustrate with an example of a shell for answering Prolog goals. This is presented as Program 12.6.

The shell is invoked by shell. The code is similar to the editor. The shell gives a prompt, using shell_prompt, then reads a goal and tries to solve it using shell(Goal). A distinction is made between solving goals, where a yes/no answer is given, and solving nonground goals, where the answer is the appropriately instantiated goal. These two cases are handled by shell_solve_ground and shell_solve, respectively. The shell is terminated by the goal exit.

Extra-Logical Predicates

Both shell_solve_ground and shell_solve use the meta-variable facility to call the goal to be solved. The success or failure of the goal determines the output message. These predicates are the simplest examples of meta-interpreters, a subject discussed in Chapter 17.

The shell_solve procedure shows an interesting solve-write-fail combination, which is useful to elicit all solutions to a goal by forced backtracking. Since we do not wish the shell to fail, an alternative clause is provided, which succeeds when all solutions to the goal are exhausted. It is interesting to note that it is not possible to collect all solutions to goals in a straightforward way without using some sort of side effect. This is explained further in Chapter 16 on second-order programming.

The shell can be used as a basis for a logging facility to keep a record of a session with Prolog. Such a facility is given as Program 12.7. This new shell is invoked by log, which calls the basic interactive predicate shell(Flag) with Flag initialized to log. The flag takes one of two values, log or nolog, and indicates whether the output is currently being logged.

The logging facility is an extension of Program 12.6. The principal predicates take an extra argument, which indicates the current state of logging. Two extra commands are added, log and nolog, to turn logging on and off.

The flag is used by the predicates concerned with I/O. Each message written on the screen must also be written in the logging file. Also, each goal read is inserted in the log to increase the log's readability. Thus calls to read in Program 12.6 are replaced by a call to shell_read, and calls to write replaced by calls to shell_write.

The definition of shell_write specifies what must be done:

shell_write(X,nolog) = write(X).
shell_write(X,log) = write(X), file_write(X, 'prolog.log').

If the flag is currently nolog, the output is written normally to the screen. If the flag is log, an extra copy is written to the file prolog.log. The predicate file_write(X,File) writes the line X to file File.

The remaining two predicates in Program 12.7, file_write/2 and close_logging_file, involve interacting with the underlying file system. Appropriate commands from Standard Prolog are given, and the reader is referred to a Prolog manual for more information.
log = shell(log).
shell(Flag) =
 shell(prompt, shell_read(Goal, Flag), shell(Goal, Flag)).
shell(exit, Flag) =
 !, close(logging_file).
shell(nolog, Flag) =
 !, shell(Flag).
shell(log, Flag) =
 !, shell(log).
shell(Goal, Flag) =
 ground(Goal), !, shell_solve_ground(Goal, Flag), shell(Flag).
shell(Goal, Flag) =
 shell_solve(Goal, Flag), shell(Flag).
shell_solve(Goal, Flag) =
 Goal, shell_write(Goal, Flag), nl, fail.
shell_write(Goal, Flag) =
 shell_write('No (more) solutions', Flag), nl.
shell_solve_ground(Goal, Flag) =
 Goal, !, shell_write('Yes', Flag), nl.
shell_solve_ground(Goal, Flag) =
 shell_write('No', Flag), nl.
shell_prompt = write('Next command? ').
shell_read(X, log) = read(X).
 file_write('Next command? ', X, 'prolog.log').
shell_read(X, nolog) = read(X).
shell_write(X, nolog) = write(X).
shell_write(X, log) = write(X), file_write(X, 'prolog.log').
file_write(X, File) = write_term(File, Term, []).
close(logging_file) = close('prolog.log').

Program 12.7 Logging a session

Extra-Logical Predicates

Exercises for Section 12.4

(i) Extend Program 12.5, the editor, to handle the following commands:
 (a) Move the cursor down N lines,
 (b) Delete N lines,
 (c) Move to a line containing a given term,
 (d) Replace one term by another,
 (e) Any command of your choice.

(ii) Modify the logging facility, Program 12.7, so that the user can specify the destination file of the logged output.

12.5 Failure-Driven Loops

The interactive programs in the previous section were all based on tail recursive loops. There is an alternative way of writing loops in Prolog that are analogous to repeat loops in conventional languages. These loops are driven by failure and are called failure-driven loops. These loops are useful only when used in conjunction with extra-logical predicates that cause side effects. Their behavior can be understood only from an operational point of view.

A simple example of a failure-driven loop is a query Goal, write(Goal), nl, fail?, which causes all solutions to a goal to be written on the screen. Such a loop is used in the shells of Programs 12.6 and 12.7. A failure-driven loop can be used to define the system predicate tab(N) for printing N blanks on the screen. It uses Program 8.5 for between:

tab(N) = between(1,N,1), put_char(' '), fail.

Each of the interactive programs in the previous section can be rewritten using a failure-driven loop. The new version of the basic interactive loop is given as Program 12.8. It is based on a nonterminating system
Chapter 12

echo - repeat, read(X), echo(X), !.
echo(X) - last_input(X), !.
echo(X) - write(X), nl, fail.
repeat.
repeat - repeat.

Program 12.8 Basic interactive repeat loop

consult(File) :-
The clauses of the program in the file File are read and asserted.
consult(File) - open(File,read,DD), consult_loop(DD), close(DD).
consult_loop(DD) - repeat, read(Clause), process(Clause,DD), !.
process(Clause,DD) - at_end_of_stream(DD).
process(Clause,DD) - assertz(Clause), fail.

Program 12.9 Consulting a file

predicate repeat, which can be defined by the minimal recursive procedure in Program 12.8. Unlike the Program 12.4 goal, the goal echo(X) fails unless the termination condition is satisfied. The failure causes backtracking to the repeat goal, which succeeds, and the next term is read and echoed. The cut in the definition of echo ensures that the repeat loop is not reentered later.

Failure-driven loops that use repeat are called repeat loops and are the analogue of repeat loops from conventional languages. Repeat loops are useful in Prolog for interacting with the outside system to repeatedly read and/or write. Repeat loops require a predicate that is guaranteed to fail, causing the iteration to continue, unless the loop should be terminated. The goal echo(X) in Program 12.8 serves that function, only succeeding when the last input is reached. A useful heuristic for building repeat loops is that there should be a cut in the body of the clause with the repeat goal, which prevents a nonterminating computation were the loop to be reentered via backtracking.

We use a repeat loop to define the system predicate consult(File) for reading in a file of clauses and asserting them. Program 12.9 contains its definition. The system predicates open/3 and close/1 are used for opening and closing an input file, respectively.

Extra-Logical Predicates

Tail recursive loops are preferable to repeat loops because the latter have no logical meaning. In practice, repeat loops are often necessary to run large computations, especially on Prolog implementations without tail recursion optimization or garbage collection. Explicit failure typically initiates some implementation-dependent reclamation of space.

Exercise for Section 12.5

(i) Write your own version of the builtin predicate abolish(F,N) that retracts all the clauses for the procedure F of arity N.

12.6 Background

I/O has never really blended well with the rest of the language of Prolog. Its standard implementation, with side effects, relies solely on the procedural semantics of Prolog and has no connection to the underlying logic programming model. For example, if an output is issued on a failing branch of a computation, it is not undone upon backtracking. If an input term is read, it is lost on backtracking, as the input stream is not backtrackable.

Concurrent logic languages attempt to remedy the problem and to integrate I/O better with the logic programming model by identifying the I/O streams of devices with the logical streams in the language (Shapiro, 1986). Perpetual recursive processes can produce or consume incrementally those potentially unbounded streams.

Self-modifying programs are a bygone concept in computer science. Modern programming languages preclude this ability, and good assembly language practice also avoids such programming tricks. It is ironic that a programming language attempting to open a new era in computer programming opens the front door to such arcane techniques, using the predicates assert and retract.

These program manipulation predicates of Prolog were devised initially as a low-level mechanism for loading and reloading programs, implemented in DEC-10 Prolog by the consult and reconsult predicates. However, like any other feature of a language, they ended up being used for tasks that, we believe, were not intended by their original designers.
Reluctantly, we must acknowledge that assert and retract are part of Prolog, and clarify the anomalies. Attempts have been made in this direction. Inconsistencies between different Prolog implementations are discussed in Moss (1986). The best way of handling retracts seems to be the logical update view presented in Lindholm and O'Keefe (1987).

The discussion of static and dynamic predicates comes from the Standard Prolog draft (Scowen, 1991).

The program for the Towers of Hanoi was shown to us by Shmuel Safra. Memo-functions in the context of artificial intelligence were proposed by Donald Michie (1968).

The line editor is originally due to Warren (1982b).

13 Program Development

Software engineering considerations are as relevant for programming in logic programming languages as in procedural languages. Prolog is no different from any other language in its need for a methodology to build and maintain large programs. A good programming style is important, as is a good program development methodology. This chapter discusses programming style and layout and program development, and introduces a method called stepwise enhancement for systematic construction of Prolog programs.

13.1 Programming Style and Layout

One basic concern in composing the programs in this book has been to make them as declarative as possible to increase program clarity and readability. A program must be considered as a whole. Its readability is determined by its physical layout and by the choice of names appearing in it. This section discusses the guidelines we use when composing programs.

An important influence in making programs easy to read is the naming of the various objects in the program. The choice of all predicate names, variable names, constants, and structures appearing in the program affect readability. The aim is to emphasize the declarative reading of the program.

We choose predicate names to be a word (or several words) that names relations between objects in the program rather than describing what the
program is doing. Coining a good declarative name for a procedure does not come easily.

The activity of programming is procedural. It is often easier to name procedurally than declaratively (and programs with procedural names usually run faster :-). Once the program works, however, we often revise the predicate names to be declarative. Composing a program is a cyclic activity in which names are constantly being reworked to reflect our improved understanding of our creation, and to enhance readability by us and others.

Mnemonic variable names also have an effect on program readability. A name can be a meaningful word (or words) or a standard variable form such as X for lists.

Variables that appear only once in a clause can be handled separately. They are in effect anonymous, and from an implementation viewpoint need not be named. Standard Prolog supports a special syntactic convention, a single underscore, for referring to anonymous variables. Using this convention, Program 3.12 for member would be written

\[
\text{member}(X, [X|_]).
\]

\[
\text{member}(X, [Y|YS]) \leftarrow \text{member}(X, Y).
\]

The advantage of the convention is to highlight the significant variables for unification. The disadvantage is related; the reading of clauses becomes procedural rather than declarative.

We use different syntactic conventions for separating multiple words in variable names and predicate functors. For variables, composite words are run together, each new word starting with a capital letter. Multiple words in predicate names are linked with underscores. Syntactic conventions are a matter of taste, but it is preferable to have a consistent style.

The layout of individual clauses also has an effect on how easily programs can be understood. We have found the most helpful style to be

\[
\text{foo}((\text{Arguments})) \leftarrow
\]

\[
\text{bar}_1((\text{Arguments})),
\]

\[
\text{bar}_2((\text{Arguments})),
\]

\[
\ldots
\]

\[
\text{bar}_n((\text{Arguments})).
\]

The heads of all clauses are aligned, the goals in the body of a clause are indented and occupy a separate line each. A blank line is inserted between procedures, but there is no space between individual clauses of a procedure.

Layout in a book and the typography used are not entirely consistent with actual programs. If all the goals in the body of a clause are short, then have them on one line. Occasionally we have tables of facts with more than one fact per line.

A program can be self-documenting if sufficient care is taken with these two factors and the program is sufficiently simple. Given the natural aversion of programmers to comments and documentation, this is very desirable.

In practice, code is rarely self-documenting and comments are needed. One important part of the documentation is the relation scheme, which can be presented before the clauses defining that relation, augmented with further explanations if necessary. The explanations used in this book define the relation a procedure computes. It is not always easy to come up with a precise, declarative, natural language description of a relation computed by a logic program. However, the inability to do so usually indicates that the programmer does not fully understand the creation, even if the creation actually works. Hence we encourage the use of the declarative documentation conventions adopted in this book. They are a good means of communicating to others what a program defines as well as a discipline of thought, enabling programmers to think about and reflect on their own creations.

13.2 Reflections on Program Development

Since programming in pure Prolog is as close to writing specifications as any practical programming language has gotten, one might hope that pure Prolog programs would be bug-free. This, of course, is not the case. Even when axiomatizing one's concepts and algorithms, a wide spectrum of bugs, quite similar to ones found in conventional languages, can be encountered.

Stating it differently, for any formalism there are sufficiently complex problems for which there are no self-evidently correct formulations
of solutions. The difference between low-level and high-level languages, then, is only the threshold after which simple examination of the program is insufficient to determine its correctness.

There are two schools of thought on what to do on such an occasion. The "verification" school suggests that such complex programs be verified by proving that they behave correctly with respect to an abstract specification. It is not clear how to apply this approach to logic programs, since the distance between the abstract specification and the program is much smaller than in other languages. If the Prolog axiomatization is not self-evident, there is very little hope that the specification, no matter in what language it is written, would be.

One might suggest using full first-order logic as a specification formalism for Prolog. It is the authors' experience that very rarely is a specification in full first-order logic shorter, simpler, or more readable than the simplest Prolog program defining the relation.

Given this situation, there are weaker alternatives. One is to prove that one Prolog program, perhaps more efficient though more complex, is equivalent to a simpler Prolog program, which, though less efficient, could serve as a specification for the first. Another is to prove that a program satisfies some constraint, such as a "loop invariant," which, though not guaranteeing the program's correctness, increases our confidence in it.

In some sense, Prolog programs are executable specifications. The alternative to staring at them, trying to convince ourselves that they are correct, is to execute them, and see if they behave in the way we want. This is the standard testing and debugging activity, carried out in program development in any other programming language. All the classical methods, approaches, and common wisdom concerning program testing and debugging apply equally well to Prolog.

What is the difference, then, between program development in conventional, even symbolic languages and Prolog?

One answer is that although Prolog programming is "just" programming, there is some improvement in ease of expression and speed of debugging compared to other lower-level formalisms — we hope the reader has already had a glimpse of it.

Another answer is that declarative programming clears your mind. Said less dramatically, programming one's ideas in general, and programming in a declarative and high-level language in particular, clarifies one's thoughts and concepts. For experienced Prolog programmers, Prolog is not just a formalism for coding a computer, but also a formalism in which ideas can be expressed and evaluated — a tool for thinking.

A third answer is that the properties of the high-level formalism of logic may eventually lead to practical program development tools that are an order of magnitude more powerful than the tools used today. Examples of such tools are automatic program transformers, partial-evaluators, type inference programs, and algorithmic debuggers. The latter are addressed in Section 17.3, where program diagnosis algorithms and their implementation in Prolog are described.

Unfortunately, practical Prolog programming environments incorporating these novel ideas are not yet widely available. In the meantime, a simple tracer, such as explained in Section 17.2, is most of what one can expect. Nevertheless, large and sophisticated Prolog programs can be developed even using the current Prolog environments, perhaps with greater ease than in other available languages.

The current tools and systems do not dictate or support a specific program development methodology. However, as with other symbolic programming languages, rapid prototyping is perhaps the most natural development strategy. In this strategy, one has an evolving, usable prototype of the system in most stages of the development. Development proceeds by either rewriting the prototype program or extending it. Another alternative, or complementary, approach to program development is "think top-down, implement bottom-up." Although the design of a system should be top-down and goal-driven, its implementation proceeds best if done bottom-up. In bottom-up programming each piece of code written can be debugged immediately. Global decisions, such as representation, can be tested in practice on small sections of the system, and cleaned up and made more robust before most of the programming has been done. Also, experience with one subsystem may lead to changes in the design of other subsystems.

The size of the chunks of code that should be written and debugged as a whole varies and grows as the experience of the programmer grows. Experienced Prolog programmers can write programs consisting of several pages of code, knowing that what is left after writing is done is mostly simple and mundane debugging. Less experienced programmers might find it hard to grasp the functionality and interaction of more than a few procedures at a time.
We would like to conclude this section with a few moralistic statements. For every programming language, no matter how clean, elegant, and high-level, one can find programmers who will use it to write dirty, contorted, and unreadable programs. Prolog is no exception. However, we feel that for most problems that have an elegant solution, there is an elegant expression of that solution in Prolog. It is a goal of this book to convey both this belief and the tools to realize it in concrete cases, by showing that aesthetics and practicality are not necessarily opposed or conflicting goals. Put even more strongly, elegance is not optional.

13.3 Systematizing Program Construction

The pedagogic style of this book is to present well-constructed programs illustrating the important Prolog programming techniques. The examples are explained in sufficient detail so that readers can apply the techniques to construct similar programs to meet their own programming needs. Implicitly, we are saying that Prolog programming is a skill that can be learned by observing good examples and abstracting the principles.

Learning by apprenticeship, observing other programs, is not the only way. As experience with programming in Prolog accumulates, more systematic methods of teaching Prolog programming are emerging. The emergence of systematic methods is analogous to the emergence of structured programming and stepwise refinement in the early 1970s after sufficient experience had accumulated in writing programs in the computer languages of the 1950s and 1960s.

In this section, we sketch a method to develop Prolog programs. The reader is invited to reconstruct for herself how this method could be applied to develop the programs in Parts III and IV of this book. Underlying the method is a desire to provide more structure to Prolog programs so that software components can be reused and large applications can be routinely maintained and extended.

Central to the method is identifying the essential flow of control of a program. A program embodying a control flow is called a skeleton. Extra goals and arguments can be attached to a skeleton. The extra goals and arguments are entwined around the central flow of control and perform additional computations. The program containing the extra arguments and goals is called an enhancement of the skeleton. Building an enhancement from a skeleton will be called applying a technique. For example, consider Program 8.6a for summing a list of numbers, reproduced here:

\[
\text{sunlist}([X|Xs], \text{Sum}) \rightarrow \text{sunlist}(Xs, Xs\text{Sum}), \text{Sum is } X+Xs\text{Sum.}
\]

\[
\text{sunlist}([], 0).
\]

The control flow embodied in the sunlist program is traversing the list of numbers. The skeleton is obtained by dropping the second argument completely, restricting to a predicate with one argument, and removing goals that only pertain to the second argument. This gives the following program, which should be identifiable as Program 3.11 defining a list.

\[
\text{list}(X|Xs) \rightarrow \text{list}(Xs).
\]

\[
\text{list}([], 1).
\]

The extra argument of the sunlist program calculates the sum of the numbers in the list. This form of calculation is very common and appears in several of the examples in Chapter 8.

Another enhancement of the List program is Program 8.11 calculating the length of a list. There is a clear similarity between the programs for length and sunlist. Both use a similar technique for calculating a number, in one case the sum of the numbers in the list, in the second the length of the list.

\[
\text{length}(X|Xs), N \rightarrow \text{length}(Xs, N), N \text{ is } N+1.
\]

\[
\text{length}([], 0).
\]

Multiple techniques can be applied to a skeleton. For example, we can apply both summing elements and counting elements in one pass to get the program sum_length:

\[
\text{sun_length}(X|Xs), \text{Sum}, N \rightarrow \text{sunlist}(Xs, Xs\text{Sum}, N), \text{Sum is } X+Xs\text{Sum, N is } N+1.
\]

\[
\text{sun_length}([], 0, 0).
\]

Intuitively, it is straightforward to create the sum_length program from the programs for sunlist and length. The arguments are taken directly and combined to give a new program. We call this operation composition. In Chapter 18, a program for composition is presented.
Another example of a technique is adding a pair of arguments as an accumulator and a final result. The technique is informally described in Section 7.5. Applying the appropriate version of the technique to the list skeleton can generate Program 8.6b for stallist or the iterative version of length, which is the solution to Exercise 8.3(b).

Identifying control flows of programs may seem contradictory to the ideal of declarative programming espoused in the previous section. However, at some level programming is a procedural activity, and describing well-written chunks of code is fine. It is our belief that recognizing patterns of programs makes it easier for people to develop good style. Declarativeness is preserved by ensuring wherever possible that each enhancement produced be given a declarative reading.

The programming method called stepwise enhancement consists of three steps:

1. Identify the skeleton program constituting the control flow.
2. Create enhancements using standard programming techniques.
3. Compose the separate enhancements to give the final program.

We illustrate stepwise enhancement for a simple example — calculating the union and intersection of two lists of elements. For simplicity we assume that there are no duplicate elements in the two lists and that we do not care about the order of elements in the answer.

A skeleton for this program follows. The appropriate control flow is to traverse the first list, checking whether each element is a member or not of the second list. There will be two cases:

\[\text{skel}(\text{[list]}, \text{Ye}) \rightarrow \text{member}(\text{X}, \text{Ye}), \text{skel}(\text{Xe}, \text{Ye}) \]
\[\text{skel}(\text{[list]}, \text{Ye}) \rightarrow \text{nomember}(\text{X}, \text{Ye}), \text{skel}(\text{Xe}, \text{Ye}) \]

To calculate the union, we need a third argument, which can be built top-down in the style discussed in Section 7.5. We consider each clause in turn. When an element in the first list is a member of the second list, it is not included in the union. When an element in the first list is not a member of the second list, it is included in the union. When the first list is empty, the union is the second list. The enhancement for union is given as Program 13.1.

Program Development

\[\text{union}(\text{Xe}, \text{Ye}, \text{Us}) \rightarrow \]
\[\text{Us is the union of the elements in Xs and Ys.} \]
\[\text{union}(\text{[list]}, \text{Ye}, \text{[list]}) \rightarrow \text{member}(\text{X}, \text{Ye}), \text{union}(\text{Xe}, \text{Ye}, \text{Us}).} \]
\[\text{union}(\text{[list]}, \text{Ye}, \text{[list]}) \rightarrow \text{nomember}(\text{X}, \text{Ye}), \text{union}(\text{Xe}, \text{Ye}, \text{Us}).} \]
\[\text{union}(\text{[], Ye}, \text{[]}).} \]

Program 13.1 Finding the union of two lists

\[\text{intersect}(\text{Xe}, \text{Ye}, \text{Is}) \rightarrow \]
\[\text{Is is the intersection of the elements in Xs and Ys.} \]
\[\text{intersect}(\text{[list]}, \text{Ye}, \text{[list]}) \rightarrow \text{member}(\text{X}, \text{Ye}), \text{intersect}(\text{Xe}, \text{Ye}, \text{Is}).} \]
\[\text{intersect}(\text{[list]}, \text{Ye}, \text{[list]}) \rightarrow \text{nomember}(\text{X}, \text{Ye}), \text{intersect}(\text{Xe}, \text{Ye}, \text{Is}).} \]
\[\text{intersect}(\text{[], Ye}, \text{[]}).} \]

Program 13.2 Finding the intersection of two lists

\[\text{union intersect}(\text{Xe}, \text{Ye}, \text{[list]}) \rightarrow \]
\[\text{Us and Is are the union and intersection, respectively, of the elements in Xs and Ys.} \]
\[\text{union intersect}(\text{[list]}, \text{Ye}, \text{[list]}) \rightarrow \text{member}(\text{X}, \text{Ye}), \text{union intersect}(\text{Xe}, \text{Ye}, \text{Us}, \text{Is}).} \]
\[\text{union intersect}(\text{[list]}, \text{Ye}, \text{[list]}) \rightarrow \text{nomember}(\text{X}, \text{Ye}), \text{union intersect}(\text{Xe}, \text{Ye}, \text{Us}, \text{Is}).} \]
\[\text{union intersect}(\text{[], Ye}, \text{[]}).} \]

Program 13.3 Finding the union and intersection of two lists

The intersection, given as Program 13.2, is determined with a similar technique. We again consider each clause in turn. When an element in the first list is a member of the second list, it is included in the intersection. When an element in the first list is not a member of the second list, it is not included in the intersection. When the first list is empty, so is the intersection.

Calculating both the union and the intersection can be determined in a single traversal of the first list by composing the two enhancements. This program is given as Program 13.3.

Developing a program is typically straightforward once the skeleton has been decided. Knowing what skeleton to use is less straightforward...
and is learned by experience. Experience is necessary for any design task. By splitting up the program development into three steps, however, the design process is simplified and given structure.

A motivation behind giving programs structure, as is done by stepwise enhancement, is to facilitate program maintenance. It is easy to extend a program by adding new techniques to a skeleton, and it is possible to improve programs by changing skeletons while maintaining techniques. Further, the structure makes it easy to explain a program.

Skeletons and techniques can be considered as constituting reusable software components. This will be illustrated in Chapter 17, where the same skeleton meta-interpreter is useful both for program debugging and for expert system shells.

Having raised software engineering issues such as maintainability and reusability, we conclude this chapter by examining two other issues that must be addressed if Prolog is to be routinely used for large software projects. The place of specifications should be clarified, and modules are necessary if code is to be developed in pieces.

It is clear from the previous section that we do not advocate using first-order logic as a specification language. Still, it is necessary to have a specification, that is, a document explaining the behavior of a program sufficiently so that the program can be used without the code having to be read. We believe that a specification should be the primary form of documentation and be given for each procedure in a program.

A suggested form for a specification is given in Figure 13.1. It consists of a procedure declaration, effectively giving the name and arity of the predicate; a series of type declarations about the arguments; a relation scheme; and other important information such as modes of use of the predicate and multiplicities of solutions in each mode of use. We discuss each component in turn.

Types are emerging as important in Prolog programs. An untyped language facilitates rapid prototyping and interactive development, but for more systematic projects, imposing types is probably worthwhile.

The relation scheme is a precise statement in English that explains the relation computed by the program. All the programs in this book have a relation scheme. It should be stressed that relation schemes must be precise statements. We believe that proving properties of programs will proceed in the way of mathematics, where proofs are given by precise statements in an informal language.

Program Development

\[p(T_1, T_2, \ldots, T_n) \]

Types:
\[T_1: \text{type 1} \]
\[T_2: \text{type 2} \]
\[\vdots \]
\[T_n: \text{type n} \]

Relation scheme:

Modes of use:

Multiplicities of solution:

Figure 13.1 Template for a specification

Prolog programs inherit from logic programs the possibility of being multi-use. In practice, multi-use is rare. A specification should state which uses are guaranteed to be correct. This is the purpose of the modes of use component in Figure 13.1. Modes of use are specified by the instantiation state of arguments before and after calls to the predicate.

For example, the most common mode of use of Program 3.15 for append(Xa, Ys, Za) for concatenating two lists Xa and Ys to produce a list Za is as follows. Za and Ys are instantiated at the time of call, whereas Xa is not, and all three arguments are instantiated after the goal succeeds. Calling append/3 with all three arguments instantiated is a different mode of use. A common convention, taken from DEC-10 Prolog is to use + for an instantiated argument, − for an uninstantiated argument, and ? for either. The modes for the preceding use of append are append(+, +, −) before the call and append(+, +, +) after the call.

More precise statements can be made by combining modes with types. The mode of use of the current example becomes the following: before the call the first two arguments are complete lists and the third a variable; after the call all three arguments are complete lists.

Multiplicities are the number of solutions of the predicate, and should be specified for each mode of use of the program. It is useful to give both the minimum and maximum number of solutions of a predicate. The multiplicities can be used to reason about properties of the program.

Modules are primarily needed to allow several people to work on a project. Several programmers should be able to develop separate components of a large system without worrying about undesirable interactions.
Chapter 13

such as conflict of predicate names. What is needed is a mechanism for
specifying what is local to a module and which predicates are imported
and exported.

Current Prolog systems provide primitive facilities for handling mod-
ules. The current systems are either atom-based or predicate-based, de-
pending on what is made local to the module. Directives are provided for
specifying imports and exports. Experience is growing in using existing
module facilities, which will be translated into standards for modules
that will ultimately be incorporated into Standard Prolog. The current
draft on modules in Standard Prolog is in too much flux to describe here.
The user needing modules should consult the relevant Prolog manual.

Exercises for Section 13.3

(i) Enhance Program 13.3 to build the list of elements contained in the
first list but not in the second list.

(ii) Write a program to solve the following problem. Given a binary tree
T with positive integers as values, build a tree that has the same
structure as T but with every node replaced by the maximum value
in the tree. It can be accomplished with one traversal of the tree.
(Hint: Use Program 1.23 as a skeleton.)

(iii) Write a program to calculate the mean and mode of an ordered list
of numbers in one pass of the list.

13.4 Background

Commenting on Prolog programming style has become more prevalent in
recent Prolog textbooks. There are useful discussions in both Ross (1989)
and O’Keefe (1990). The latter book also introduces program schemas,
which have parallels with skeletons and techniques.
Stepwise enhancement has emerged from ongoing work at Case West-
ern Reserve University, first in the COMPOSERS group and more recently
in the ProSE group. Examples of decomposing Prolog programs into
skeletons and techniques are given in Sterling and Kirschenbaum (1993)

Program Development

Underlying theory is given in Power and Sterling (1990) and Kirschen-
baum, Sterling, and Jain (1993). An application of structuring Prolog
programs using skeletons and techniques to the inductive inference of
Prolog programs can be found in Kirschenbaum and Sterling (1991).

Automatic incorporation of techniques into skeletons via partial evalua-
tion has been described in Lakhota (1989).

The discussion on specifications for Prolog programs is strongly influ-
enced by Deville (1990).
Exercise 13.3(iii) was suggested by Gilles Kahn. The example is orig-
inally due to Bird. Exercise 13.3(iii) emerged through interaction with
Marc Kirschenbaum. Solutions to both exercises are given in Deville, Ster-
III Advanced Prolog Programming Techniques

The expressive power and high-level nature of logic programming can be exploited to write programs that are not easily expressed in conventional programming languages. Different problem-solving paradigms can be supported, and alternative data construction and access mechanisms can be used.

The simple Prolog programs of the previous part are examples of the use of basic programming techniques, reinterpreted in the context of logic programming. This part collects more advanced techniques that have evolved in the logic programming community and exploit the special features of logic programs. We show how they can be used to advantage.

Leonardo Da Vinci. Study of a Woman's Hands folded over her Breast. Silverpoint on pink prepared paper, heightened with white. About 1478. Windsor Castle, Royal Library.
14 Nondeterministic Programming

One feature of the logic programming computation model lacking in conventional programming models is nondeterminism. Nondeterminism is a technical concept used to define, in a concise way, abstract computation models. However, in addition to being a powerful theoretical concept, nondeterminism is also useful for defining and implementing algorithms. This chapter shows how, by thinking nondeterministically, one can construct concise and efficient programs.

Intuitively, a nondeterministic machine can choose its next operation correctly when faced with several alternatives. True nondeterministic machines cannot be realized but can be simulated or approximated. In particular, the Prolog interpreter approximates the nondeterministic behavior of the abstract interpreter of logic programs by sequential search and backtracking, as explained in Chapter 6. However, the fact that nondeterminism is only simulated without being "really present" can be abstracted away in many cases in favor of nondeterministic thinking in much the same way as pointer manipulation details involved in unification can be abstracted away in favor of symbolic thinking.

14.1 Generate-and-Test

Generate-and-test is a common technique in algorithm design and programming. Here is how generate-and-test works for problem solving. One process or routine generates candidate solutions to the problem, and another process or routine tests the candidates, trying to find one or all candidates that actually solve the problem.
It is easy to write logic programs that, under the execution model of Prolog, implement the generate-and-test technique. Such programs typically have a conjunction of two goals, in which one acts as the generator and the other tests whether the solution is acceptable, as in the following clause:

\[\text{find}(X) \leftarrow \text{generate}(X), \text{test}(X). \]

This Prolog program would actually behave like a conventional, procedural, generate-and-test program. When called with \(\text{find}(X) \), \text{generate}(X) succeeds, returning some \(X \), with which \text{test}(X) is called. If the test goal fails, execution backtracks to \text{generate}(X), which generates the next element. This continues iteratively until the tester successfully finds a solution with the generator having exhausted all alternative solutions.

The programmer, however, need not be concerned with the generate-and-test cycle and can view this technique more abstractly, as an instance of nondeterministic programming. In this nondeterministic program the generator guesses correctly an element in the domain of possible solutions, and the tester simply verifies that the guess of the generator is correct.

A good example of a program with multiple solutions and commonly used as a generator is Program 3.12 for \text{member}. The query \(\text{member}(X, [a, b, c]) ? \) will yield the solutions \(X=a, X=b, \) and \(X=c \) successively as required. Thus \text{member} can be used to nondeterministically choose the correct element of a list in a generate-and-test program.

Program 14.1 is a simple example of generate-and-test using \text{member} as a generator. The program identifies parts of speech of a sentence. We assume that a sentence is represented as a list of words and that there is a database of facts giving the parts of speech of particular words. Each part of speech is a unary predicate whose argument is a word, for example, \text{noun(man)} indicates that man is a noun. The relation \text{verb(Sentence, Word)} is true if Word is a verb in sentence \text{Sentence}. The analogous meanings are intended for \text{noun/2} and \text{article/2}. The query \(\text{verb}(\text{[a, man, loves, a, woman], V}) ? \) finds the verb \text{V-loves} in the sentence using generate-and-test. Words in the sentence are generated by \text{member} and tested to see if they are verbs.

Program 14.1 Finding parts of speech in a sentence

Another simple example is testing whether two lists have an element in common. Consider the predicate \text{intersect(Xs, Ys)}, which is true if \(Xs \) and \(Ys \) have an element in common:

\[\text{intersect}(Xs, Ys) \leftarrow \text{member}(X, Xs), \text{member}(X, Ys). \]

The first member goal in the body of the clause generates members of the first list, which are then tested to see whether they are in the second list by the second member goal. Thinking nondeterministically, the first goal guesses an \(X \) in \(Xs \), and the second verifies that the guess is a member of \(Ys \).

Note that when executed as a Prolog program, this clause effectively implements two nested loops. The outer loop iterates over the elements of the first list, and the inner loop checks whether the chosen element is a member of the second list. Hence this nondeterministic logic program achieves, under the execution model of Prolog, a behavior very similar to the standard solution one would compose for this problem in Fortran, Pascal, or LISP.

The definition of \text{member} in terms of \text{append},

\[\text{member}(X, Xs) \leftarrow \text{append}(As, \text{[X|Bs]}, Xs). \]

is itself essentially a generate-and-test program. The two stages, however, are amalgamated by the use of unification. The append goal generates splits of the list, and immediately a test is made whether the first element of the second list is \(X \).

Typically, generate-and-test programs are easier to construct than programs that compute the solution directly, but they are also less efficient.
A standard technique for optimizing generate-and-test programs is to "push" the tester inside the generator as deeply as possible. Ultimately, the tester is completely intertwined with the generator, and only correct solutions are generated.

Let us consider optimizing generate-and-test programs by pushing the tester into the generator. Program 3.20 for permutation sort is another example of a generate-and-test program. The top level is as follows:

\[
\text{sort}(Xs, Ye) \rightarrow \text{permutation}(Xs, Ye, \text{ordered}(Ye)).
\]

Abstractly, this program guesses nondeterministically the correct permutation via permutation(Xs, Ye), and ordered checks that the permutation is actually ordered.

Operationally, the behavior is as follows. A query involving sort is reduced to a query involving permutation and ordered. A failure-driven loop ensues. A permutation of the list is generated by permutation and tested by ordered. If the permuted list is not ordered, the execution backtracks to the permutation goal, which generates another permutation to be tested. Eventually an ordered permutation is generated and the computation terminates.

Permutation sort is a highly inefficient sorting algorithm, requiring time super-exponential in the size of the list to be sorted. Pushing the tester into the generator, however, leads to a reasonable algorithm. The generator for permutation sort, permutation, selects an arbitrary element and recursively permutes the rest of the list. The tester, ordered, verifies that the first two elements of the permutation are in order, then recursively checks the rest. If we view the combined recursive permutation and ordered goals as a recursive sorting process, we have the basis for insertion sort, Program 3.21. To sort a list, sort the tail of the list and insert the head of the list into its correct place in the order. The arbitrary selection of an element has been replaced by choosing the first element.

Another example of the advantage of intertwining generating and testing can be seen with programs solving the N queens problem.

The N queens problem requires the placement of N pieces on an N-by-N rectangular board so that no two pieces are on the same line horizontal, vertical, or diagonal. The original formulation called for 8 queens to be placed on a chessboard, and the criterion of not being on the same line corresponds to two queens not attacking each other under the rules of chess. Hence the problem’s name.

Figure 14.1 A solution to the 4 queens problem

\[
\begin{array}{ccc}
& Q & \\
Q & & Q \\
Q & & Q \\
& Q & \\
\end{array}
\]

\text{queens}(N, \text{Queens}) \rightarrow

Is a placement that solves the N queens problem, represented as a permutation of the list of numbers [1, 2, ..., N].

\text{queens}(8, \text{Qs}) \rightarrow

\text{range}(1, 8), \text{permutation}(Xs, Qs), \text{safe}(Qs).

\text{safe}(Qs) \rightarrow

The placement Qs is safe.

\text{safe}([Qs]) \rightarrow \text{safe}(Qs), \text{not attack}(Q, Qs).

\text{attack}(X, Xs) \rightarrow \text{attack}(X, 1, Xs).

\text{attack}(X, Xs, \{ Y | Xs \}) \rightarrow \text{X is Y+1; attack}(X, 1, [Y, Xs]).

\text{permutation}(Xs, Ye) \rightarrow \text{See Program 3.20}.

\text{range}(N, N, Xs) \rightarrow \text{See Program 8.12}.

Program 14.2 Naive generate-and-test program solving N queens

The program has been well studied in the recreational mathematics literature. There is no solution for N = 2 and N = 3, and a unique solution up to reflection for N = 4, shown in Figure 14.1. There are 88 solutions for N = 8, or 92, depending on strictness with symmetries.

Program 14.2 is a simplistic program solving the N queens problem. The relation \text{queens}(N, Qs) is true if Qs is a solution to the N queens problem. Solutions are specified as a permutation of the list of the numbers 1 to N. The first element of the list is the row number to place the queen in the first column, the second element indicates the row number to place the queen in the second column, etc. Figure 14.1 indicates the solution [2,4,1,3] to the 4 queens problem. This specification of solutions, and
the program generating them, has implicitly incorporated the observation that any solution to the N queens problem will have a queen on each row and a queen on each column.

The program behaves as follows. The predicate range creates a list \(N \) of the numbers from 1 to \(N \). Then a generate-and-test cycle begins. The permutation predicate generates a permutation \(Q_p \) of \(Q_s \), which is tested to see whether it is a solution to the problem with the predicate safe\((Q_p) \). This predicate is true if \(Q_p \) is a correct placement of the queens. Since two queens are not placed on the same row or column, the predicate need only check whether two queens attack each other along a diagonal. Safe is defined recursively. A list of queens is safe if the queens represented by the tail of the list are safe and the queen represented by the head of the list does not attack any of the other queens. The definition of attack\((Q_p, Q_s) \) uses a neat encapsulation of the interaction of diagonals. A queen is on the same diagonal as a second queen \(N \) columns away if the second queen’s row number is \(N \) units greater than, or \(N \) units less than, the first queen’s row number. This is expressed by the first clause of attack\((3) \) in Program 14.2. The meaning of attack\((Q_p, Q_s) \) is that queen \(Q \) attacks some queen in \(Q_s \). The diagonals are tested iteratively until the end of the board is reached.

Program 14.2 cannot recognize when solutions are symmetric. The program gives two solutions to the query \(\text{queens} (4, Q_s) \), namely \(Q_s = [2, 4, 1, 3] \) and \(Q_s = [3, 1, 4, 2] \).

Although it is a well-written logic program, Program 14.2 behaves inefficiently. Many permutations are generated that have no chance of being solutions. As with permutation sort, we improve the program by pushing the test, in this case safe, into the generator.

Instead of testing the complete permutation, that is, placing all the queens, each queen can be checked as it is being placed. Program 14.3 computes solutions to the \(N \) queens problem by placing the queens one at a time. It also proceeds by generating and testing, in contrast to insertion sort, which became a deterministic algorithm by the transformation. The generator in the program is select and the tester is attack, or more precisely its negation.

The positions of the previously placed queens are necessary to test whether a new queen is safe. Therefore the final solution is built upward using an accumulator. This is an application of the basic technique described in Section 7.5. A consequence of using an accumulator is that the queens are placed on the right-hand edge of the board. The two solutions to the query \(\text{queens} (4, Q_s) \) are given in the opposite order to the solutions given by Program 14.2.

The next problem is to color a planar map such that no two adjoining regions have the same color. A famous conjecture, an open question for a hundred years, was proved in 1976, showing that four colors are sufficient to color any planar map. Figure 14.2 gives a simple map requiring four colors to be colored correctly. This can be proved by enumeration of the possibilities. Hence four colors are both necessary and sufficient.

Program 14.4, which solves the map-coloring problem, uses the generate-and-test programming technique extensively. The program implements the following nondeterministic iterative algorithm:

For each region of the map,
choose a color,
choose (or verify) colors for the neighboring regions from the remaining colors.
color_map(Map, Colors) :-
 Map is colored with Colors so that no two neighbors have the same
 color. The map is represented as an adjacency-list of regions
 region(Name, Color, Neighbors), where Name is the name of the
 region, Color is its color, and Neighbors are the colors of its
 neighbors.

color_map([Region|Regions], Colors) :-
 color_region(Region, Colors),
 color_map(Regions, Colors).

color_map([], Colors).

color_region(Region, Colors) :-
 Region and its neighbors are colored using Colors so that the
 region's color is different from the color of any of its neighbors.

color_region(region(Name, Color, Neighbors), Colors) :-
 select(Color, Colors, Colors1),
 members(Neighbors, Colors1).

select(X, Xs, Ys) :- See Program 3.19.
members(Xs, Ye) :- See Program 7.6.

Program 14.4 Map coloring

A data structure is needed to support the algorithm. The map is repres-
ented as a list of regions. Each region has a name, a color, and a list of
colors of the adjoining regions. The map in Figure 14.2, for example, is
represented as

[region(G, A, [B, C, D]), region(b, E, [A, C, F]),
 region(c, C, [A, B, D, E, F]), region(d, D, [A, C, F]),
 region(e, E, [B, C, F]), region(f, F, [C, D, E])].

The sharing of variables is used to ensure that the same region is not
colored with two different colors by different iterations of the algorithm.
The top-level relation is color_map(Map, Colors), where Map is repres-
tented as before, and Colors is a list of colors used to color the map.
Our colors are red, yellow, blue, and white. The heart of the algorithm is
the definition of color_region(Region, Colors):

color_region(region(Name, Color, Neighbors), Colors) :-
 select(Color, Colors, Colors1),
 members(Neighbors, Colors1).

Nondeterministic Programming

Test data

test_color(Name, Map) :-
 map(Name, Map),
 colors(Name, Colors),
 color_map(Map, Colors).

map(test, [region(a, A, [B, C, D]), region(b, B, [A, C, E]),
 region(c, C, [A, B, D, E, F]), region(d, D, [A, C, F]),
 region(e, E, [B, C, F]), region(f, F, [C, D, E])]),

map(europe, [region(portugal, P, [E]), region(east, [F, P]),
 region(france, [E, I, S, B, W, L]), region(belgium, [B, S, N, W, L]),
 region(bolland, [B, W]), region(west, [A, S, B, W, L]),
 region(germany, [L, F, B, W]), region(italy, [T, D, A, I]),
 region(switzerland, [D, F, I, A, W]), region(austria, [A, I, W])]),

colors([X, yellow, blue, white]).

Program 14.5 Test data for map coloring

Both the select and members goals can act as generators or testers,
depending on whether their arguments are instantiated.

Overall, the effect of the program is to instantiate a data structure, the
map. The calls to select and members can be viewed as specifying local
constraints. The predicates either generate by instantiating arguments
in the structure or test whether instantiated values satisfy local constraints.
Program 14.5 tests the map coloring solution.

Instantiating a data structure designed especially for a problem is a
particularly effective means of implementing generate-and-test solutions.
Unification and failure to unify control the building of the final solution
structure, avoiding creation of unnecessary intermediate data structures.
Since unification is supported well by Prolog implementations, solutions
are found quickly. Exercise 14.11(iv) assigns the task of designing a data
structure that can be instantiated to solve the N queens problem. The
resulting program solves the N queens problem much more quickly than
Program 14.3.

Our final example is solving a logic puzzle. The behavior of the pro-
gram is similar to the map-coloring program. The logic puzzle consists
of some facts about some small number of objects that have various
attributes. The minimum number of facts is given about the objects and
attributes, to yield a unique way of assigning attributes to objects.
Here is an example that we use to describe the technique of solving logic puzzles.

Three friends came first, second, and third in a programming competition. Each of the three has a different first name, likes a different sport, and has a different nationality.

Michael likes basketball and did better than the American. Simon, the Israeli, did better than the tennis player. The cricket player came first.

Who is the Australian? What sport does Richard play?

Logic puzzles such as this one are elegantly solved by instantiating the values of a suitable data structure and extracting the solution values. Each clue is translated into a fact about the data structure. This can be done before the exact form of the data structure is determined using data abstraction. Let us analyze the first clue: “Michael likes basketball and did better than the American.” Two distinct people are referred to. One is named Michael, whose sport is basketball, and the other is American. Further, Michael did better than the American. If we assume the structure to be instantiated is Friends, then the clue is expressed as the conjunction of goals

did_better(Man1,Man2,Friends), first_name(Man1,michael),
sport(Man1,basketball), nationality(Man2,american),

Similarly, the second clue can be translated to the conditions

did_better(Man1,Man2,Friends), first_name(Man1,simon),
nationality(Man1,israeli), sport(Man2,tennis),

and the third clue to the conditions

first(Friends,Man), sport(Man,cricket).

A framework for solving puzzles is given as Program 14.6. The relation computed is solve_puzzle(Puzzle,Solution), where Solution is the solution to Puzzle. The puzzle is represented by the structure puzzle(Clues,Queries,Solution), where the data structure being instantiated is incorporated into the clues and queries, and the values to be extracted are given by Solution.

The code for solve_puzzle is trivial. All it does is successively solve each clue and query, which are expressed as Prolog goals and are executed with the meta-variable facility.

The clues and queries for our example puzzle are given in Program 14.7. We describe the structure assumed by the clues to solve the puzzle.
that the order of the goals in the queries can significantly affect running time. It is best to worry about this once the problem formulation is correct. Determining appropriate goal order is a skill easily learned by experience.

Another tip concerns negative clues, such as “John is not the tailor.” These clues are best regarded as specifying two separate individuals, John and the tailor, rather than as setting up a negative condition about one individual. The predicate select can be used instead of member to guarantee that individuals are different.

Exercises for Section 14.1

(i) Write a program to compute the integer square root of a natural number N defined to be the number I such that $I^2 \leq N$, but $(I + 1)^2 > N$. Use the predicate between/2, Program 8.5, to generate successive natural numbers on backtracking.

(ii) Write a program to solve the stable marriage problem (Sedgewick, 1983), stated as follows:

Suppose there are N men and N women who want to get married. Each man has a list of all the women in his preferred order, and each woman has a list of all the men in her preferred order. The problem is to find a set of marriages that is stable.

A pair of marriages is unstable if there are a man and woman who prefer each other to their spouses. For example, consider the pair of marriages where David is married to Paula, and Jeremy is married to Judy. If David prefers Judy to Paula, and Judy prefers David to Jeremy, the pair of marriages is unstable. This pair would also be unstable if Jeremy preferred Paula to Judy, and Paula preferred Jeremy to David. A set of marriages is stable if there is no pair of unstable marriages.

Your program should have as input lists of preferences, and produce as output a stable set of marriages. It is a theorem from graph theory that this is always possible. Test the program on the following five men and five women with their associated preferences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Chana tamar</th>
<th>Zvia ruth sarah</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hinyamin</td>
<td>Zvia chana ruth sarah tamar</td>
<td></td>
</tr>
<tr>
<td>David</td>
<td>Zvia ruth chana sarah tamar</td>
<td></td>
</tr>
<tr>
<td>Elazar</td>
<td>Tamar ruth chana zvia sarah</td>
<td></td>
</tr>
</tbody>
</table>
(vii) Write a program to test whether a graph is planar using the algorithm of Hopcroft and Tarjan (Deo, 1974; Even, 1979).

14.2 Don’t-Care and Don’t-Know Nondeterminism

Two forms of nondeterminism are distinguished in the logic programming literature. They differ in the nature of the choice that must be made among alternatives. For don’t-care nondeterminism, the choice can be made arbitrarily. In terms of the logic programming computation model, any goal reduction will lead to a solution, and it does not matter which particular solution is found. For don’t-know nondeterminism, the choice matters but the correct one is not known at the time the choice is made.

Most examples of don’t-care nondeterminism are not relevant for the Prolog programmer. A prototypical example is the code for minimum. Program 3.17 is the standard, incorporating a limited amount of don’t-care nondeterminism, namely, when X and Y are the same:

(e) The green house is immediately to the right (your right) of the ivory house.
(f) The Winston smoker owns snails.
(g) Kools are smoked in the yellow house.
(h) Milk is drunk in the middle house.
(i) The Norwegian lives in the first house on the left.
(j) The man who smokes Chesterfields lives in the house next to the man with the fox.
(k) Kools are smoked in the house next to the house where the horse is kept.
(l) The Lucky Strike smoker drinks orange juice.
(m) The Japanese smokes Parliament.
(n) The Norwegian lives next to the blue house.

Who owns the Zebra? Who drinks water?
minimum(X,Y,Z) ← X ≤ Y, minimum(Y,X,Z) ← Y ≤ X.

In Section 7.4, we termed this redundancy and advised against its use. On the other hand, programs exhibiting don't-know nondeterminism are common. Consider the program for testing whether two binary trees are isomorphic (Program 3.25, reproduced here). Each clause is independently correct, but given two isomorphic binary trees, we don't know which of the two recursive clauses should be used to prove the isomorphism. Operationally, only when the computation terminates successfully do we know the correct choice:

isotree(void, void).
isotree(tree(X, L1, R1), tree(Y, L2, R2)) ←
isotree(L1, L2), isotree(R1, R2).
isotree(tree(X, L1, R1), tree(Y, L2, R2)) ←
isotree(L1, R2), isotree(L2, R1).

Composing Prolog programs exhibiting either form of nondeterminism can be indistinguishable from composing deterministic programs. Each clause is written independently. Whether inputs match only one clause or several is irrelevant to the programmer. Indeed this is seen from the multiple uses that can be made of Prolog programs. With arguments instantiated in one way, the program is deterministic; with another pattern of instantiation, the program is nondeterministic. For example, append/3 is deterministic if called with its first two arguments instantiated, while it is generally nondeterministic if called with the third argument instantiated and the first two arguments uninstantiated.

The behavior of Prolog programs seemingly having don't-know nondeterminism such as isotree is known. A given logic program and a query determine a search tree, as discussed in Chapter 5, which is searched depth-first by Prolog. Writing a program possessing don't-know nondeterminism is really specifying a depth-first search algorithm for solving the problem.

We consider this viewpoint in a little more detail with a particular example: finding whether two nodes in a graph are connected. Figure 14.3 contains two graphs that will be used to test our ideas. The left-hand one is a tree, while the right-hand one is not, containing a cycle. Trees, or more generally, directed acyclic graphs (DAGs), behave better than graphs with cycles, as we will see in our example programs.

Figure 14.3 Directed graphs

connected(X, Y) ←
Node X is connected to node Y,
given an edge/2 relation describing a DAG.
connected(X, Y), connected(Y, X) ← edge(X, X), connected(X, Y).

Data
edge(a, b), edge(a, c), edge(a, d), edge(a, e), edge(d, j),
edge(c, f), edge(c, g), edge(f, h), edge(e, x), edge(f, i),
edge(x, y), edge(y, z), edge(y, a), edge(x, y).

Program 14.8 Connectivity in a finite DAG

Our first program is a small modification of a logic program of Section 2.3. Program 14.8 defines the relation connected(X, Y), which is true if two nodes in a graph, X and Y, are connected. Edges are directed; the fact edge(X, Y) states that a directed edge exists from X to Y. Decleratively the program is a concise, recursive specification of what it means for nodes in a graph to be connected. Interpreted operationally as a Prolog program, it is the implementation of an algorithm to find whether two nodes are connected using depth-first search.

The solutions to the query connected(a, X)? using the data from the left-hand graph in Figure 14.3 gives as values for X = a, b, c, f, h, i, g, d, j, e, x. Their order constitutes a depth-first traversal of the tree.

Program 14.9 is an extension of this sample program that finds a path between two nodes. The predicate path(X, Y, Path) is true if Path is
Chapter 14

path(X, Y, Path).
Path is a path between two nodes X and Y in the DAG defined by the relation edge/2.

path(X, X, []).
path(X, Y, [X|Pl]) ← edge(X, X), path(X, Y, Pl).

Program 14.9 Finding a path by depth-first search

connected(X, Y) ←
Node X is connected to node Y in the graph defined by edge/2.
connected(X, Y) ← connected(X, Y, []).
connected(X, X, Visited).
connected(X, Y, Visited) ←
edge(X, X), not member(Y, Visited), connected(X, Y, [Y|Visited]).

Program 14.10 Connectivity in a graph

a path from the node X to the node Y in a graph. Both endpoints are included in the path. The path is built downward, which fits well with the recursive specification of the connected relation. The ease of computing the path is a direct consequence of the depth-first traversal. Extending a breadth-first traversal to find the path is much more difficult: Sections 16.2 and 20.1 show how it can be done.

Depth-first search, dfs, correctly traverses any finite tree or DAG (directed acyclic graph). There is a problem, however, with traversing a graph with cycles. The computation can become lost in an infinite loop around one of the cycles. For example, the query connected(x, Node)\^?, referring to the right-hand graph of Figure 14.3 gives solutions Node=x, Node=x repeated without reaching u or v.

The problem is overcome by modifying connected. An extra argument is added that accumulates the nodes visited so far. A test is made to avoid visiting the same node twice. This is shown in Program 14.10.

Program 14.10 successfully traverses a finite directed graph depth-first. The pure Prolog program needed for searching finite DAGs must be extended by negation in order to work correctly. Adding an accumulator of paths visited to avoid entering loops effectively breaks the cycles in the graph by preventing traversal of an edge that would complete a cycle.

Figure 14.4 Initial and final states of a blocks world problem

The program is not guaranteed to reach every node of an infinite graph. To do so, breadth-first search is necessary. This is discussed further in Section 16.2.

This section is completed with a program for building simple plans in the blocks world. The program is written nondeterministically, essentially performing a depth-first search. It combines the two extensions mentioned before — keeping an accumulator of what has been traversed, and computing a path.

The problem is to form a plan in the blocks world, that is, to specify a sequence of actions for restacking blocks to achieve a particular configuration. Figure 14.4 gives the initial state and the desired final state of a blocks world problem. There are three blocks, a, b, and c, and three places, p, q, and r. The actions allowed are moving a block from the top of a block to a place and moving a block from one block to another. For an action to succeed, the top of the moved block must be clear, and also the place or block to which it is being moved must be clear.

The top-level procedure of Program 14.11 solving the problem is transact(State1, State2, Plan). A plan of actions, Plan, is produced that transforms State1 into State2 when executed.

States are represented by a list of relations of the form on(X, Y), where X is a block and Y is a block or place. They represent the facts that are true in the state. For example, the initial and final states in Figure 14.4 are, respectively, [on(a, b), on(b, p), on(c, r)] and [on(a, b), on(b, c), on(c, r)]. The state descriptions are ordered in the sense that the on relation for a precedes that of b, which precedes the on relation for c. The state descriptions allow easy testing of whether a block or place X is clear in a given state by checking that there is no relation of the form on(A, X). The predicates clear/2 and on/3 in Program 14.11 take advantage of this representation.
transform(State1,State2,Plan) ←
transform(State1,State2,Plan) ←
transform(State1,State2,State1), Plan).
transform(State,State,Visited, []) →
transform(State1,State2,Visited, [Action|Actions]) ←
legal_action(Action,State),
update(Action,State,State),
not member(State,Visited),
transform(State,State,State,Visited,Actions).

legal_action(on(Place,X,State) ←
on(Block,Y,State), clear(Block,State),
place(Place), clear(Place,State).
legal_action(on(Block1,Y,Block2,State) ←
on(Block1,Y,State), clear(Block1,State),
Block1 ≠ Block2, clear(Block2,State).

clear(X,State) ← not member(on(X,Y),State).
on(X,Y,State) ← member(on(X,Y),State).
update(to_block(X,Y,State,State1) ←
substitute(on(X,Y),on(X,Z),State,State1).
update(to_place(X,Y,State,State1) ←
substitute(on(Y,X),on(X,Z),State,State1).

substitute(X,Y,Xs,Ys) ← Exercise 3.30).

Program 14.11 A depth-first planner

The nondeterministic algorithm used by the planner is given by the recursive clause of transform/4 in the program:

While the desired state is not reached,
find a legal action,
update the current state,
check that it has not been visited before.

There are two possible actions, moving to a block and moving to a place.
For each, the conditions for which it is legal must be specified, and a method given for updating the state as a result of performing the action.

Program 14.11 successfully solves the simple problem given as Program 14.12. The first plan it produces is horrendous, however:

[to_place(a,b,q),to_block(a,q,c),to_place(b,p,q),to_place(a,c,p),
to_block(a,p,b),to_place(c,r,p),to_place(a,h,r),to_block(a,r,c),
to_place(b,q,r),to_place(a,c,q),to_block(a,q,b),to_place(c,p,q),
to_place(a,b,p),to_block(a,p,c),to_place(b,r,p),to_place(a,c,r),
to_block(b,p,a),to_place(c,q,p),to_place(b,a,c),to_place(a,r,q),
to_block(b,c,a),to_place(c,p,r),to_block(b,a,c),to_place(a,q,p),
to_block(a,p,b)].

Block a is first moved to q, then to c. After that, block b is moved to q.
Block a is moved to p and b, and after 20 more random moves, the final configuration is reached.

It is easy to incorporate a little more intelligence by first trying to achieve one of the goal states. The predicate legal_action can be replaced by a predicate choose_action(Action,State,State).

A simple definition suffices to produce intelligent behavior in our example problem:

choose_action(Action,State,State) ←
suggest(Action,State), legal_action(Action,State).

choose_action(Action,State,State) ←
legal_action(Action,State).

suggest(to_place(X,Y,Z,State) ←
member(on(X,Z),State), place(Z).
suggest(to_block(X,Y,Z,State) ←
member(on(X,Z),State), block(Z).

The first plan now produced is [to_place(a,b,q),to_block(b,p,c),
to_block(a,b,q)].

Testing and data
test_plan(Name,Plan) ←
initial_state(Name,1), final_state(Name,F), transform(F,Plan).
initial_state(test,[on(a,b),on(b,p),on(c,r)])
final_state(test,[on(a,b),on(b,c),on(c,r)])
block(a). block(b). block(c).
place(p). place(q). place(r).

Program 14.12 Testing the depth-first planner
Exercises for Section 14.2

(i) Apply Program 14.11 to solve another simple blocks world problem.

(ii) Modify Program 14.11 to solve the following planning problem.

Consider a simplified computer consisting of a single accumulator and a large number of general purpose registers. There are four instructions: load, store, add and subtract. From the initial state where the accumulator is empty, register1 contains the value c1, register2 contains c2, register3 contains c3 and register4 contains c4, achieve a final state where the accumulator contains

(a) \((c1 - c2) + (c3 - c4)\)
(b) \((c1 - c2) + (c1 - c2)\)
(c) \(c1\), and register1 contains \(c1 + (c2 - c3)\), and register2 contains \(c2 - c3\).

14.3 Artificial Intelligence Classics: ANALOGY, ELIZA, and McSAM

"The best way to learn a subject is to teach it" is a cliche commonly repeated to new teachers. An appropriate analogue for new programmers is that the best way to understand a program is to rewrite or extend it. In this spirit, we present logical reconstructions of three AI programs. Each is clear, understandable, and easily extended. The exercises at the end of the section encourage the reader to add new facts and rules to the programs.

The three programs chosen are the ANALOGY program of Evans for solving geometric analogy questions from intelligence tests; the ELIZA program of Weizenbaum, which simulates or rather parodies conversation; and McSAM, a microversion of SAM, a program for "understanding" stories from the Yale language group. Each logical reconstruction is expressed very simply. The nondeterminism of Prolog allows the programmer to ignore the issues of search.

Consider the task of solving the geometric analogy problems typically used in intelligence tests. Several diagrams are presented in a prototypical problem. Diagrams A, B, and C are singled out from a list of possible answers and the following question is posed: "A is to B as C is to which one of the 'answer' diagrams?" Figure 14.5 gives a simple problem of this type.

Here is an intuitive algorithm for solving the problem, where terms such as find, apply, and operation are left unspecified:

Find an operation that relates A to B.
Apply the operation to C to give a diagram X.
Find X, or its nearest equivalent, among the answers.

In the problem in Figure 14.5, the positions of the square and triangle are swapped (with appropriate scaling) between diagrams A and B. The "obvious" answer is to swap the square and the circle in diagram C. The resultant diagram appears as no. 2 in the possible answers.

Program 14.13 is a simple program for solving analogy problems. The basic relation is analogy(Pair1,Pair2,Answers), where each Pair is of the form X is_to Y. To parse the program, is_to must be declared as an infix operator. The two elements in Pair1 bear the same relation as the two elements in Pair2, and the second element in Pair2 appears in Answers. The definition of analogy implements the intuitive algorithm:

\[
\text{analogy}(A \text{ is_to } B, C \text{ is_to } X, \text{Answers}) \Leftarrow \text{match}(A, B, \text{Operation}), \\
\text{match}(C, X, \text{Operation}), \text{member}(X, \text{Answers}).
\]
analogy(Pair1,Pair2,Answers) :-
 analogy(A is_to B,C is_to X,Answers),
 match(A,B,Operation),
 match(C,X,Operation),
 number(1,Answers),
 match(inside(Figure1,Figure2),inside(Figure2,Figure1),invert),
 match(above(Figure1,Figure2),above(Figure2,Figure1),invert).

Program 14.13 A program solving geometric analogies

A fundamental decision is how the figures in the problem should be represented. In Program 14.13, figures are represented as Prolog terms. Diagram A in Figure 14.5 is a square inside a triangle and is represented as the term inside(square,triangle).

The relation between two diagrams is found by the predicate match(A,B,Operation). This relation is true if Operation matches A and B. The operation invert is used to solve our example problem. The behavior of invert is to swap its arguments.

The predicate match is used in two distinct ways in this program. The first time it produces an operation matching two given diagrams. The second time it produces a second diagram given an operation and a diagram. These details are, however, irrelevant from the nondeterministic viewpoint. Finding the answer is implemented simply, checking whether a given diagram appears in the list of answers. Note that the second match goal and the number goal can be swapped. The behavior then becomes guessing an answer using number as a generator, and verifying that the guess has the same relation to diagram C as A does to B. Program 14.14 tests the analogy program.

Exercise 14.30 poses three additional problems to be solved by analogy, which can be expressed within the framework of Program 14.13. The representation of pictures by terms, and the description of operations becomes increasingly ad hoc. Indeed, much of the "intelligence" of the program is embedded in the representation. The original ANALOGY program did not assume as much knowledge. It took a line drawing and tried to recognize the objects. Triangles, squares, and so on, were not assumed to be the primitives.
the output generated from the response. A typical stimulus/response pair is

I am (statement) How long have you been (statement)?

Using this pair, the response of the program to the input statement "I am unhappy" will be the question "How long have you been unhappy?" The (statement) can be viewed as a slot to be filled.

Program 14.15 is a simple version of ELIZA. It implements the following algorithm:

Read the input.
While the input is not bye, choose a stimulus/response pair, match the input to the stimulus, generate the reply from the response and the above match, output the response, read the next input.

The stimulus/response pairs are represented as facts of the form pattern(Stimulus,Response), where both Stimulus and Response are lists of words and slots. Slots in the patterns are represented by integers. The predicate match(Pattern,Table,Words) is used for both the second and third steps of the algorithm. It expresses a relation between a pattern Pattern, a list of words Words, and a table Table, where the table records how the slots in the pattern are filled. A central part of the match procedure is played by a nondeterministic use of append to break up a list of words. The table is represented by an incomplete data structure, discussed in more detail in Chapter 15. The missing procedure lookup/3 is given in Section 15.3. The reply is generated by reply(Words), which is a modified version of Program 12.1 for writeln that leaves spaces between words.

The final program presented in this section is Micro SAM or McSAM. It is a simplified version of the SAM (Script Applier Mechanism) program developed in the natural language group at Yale University. The aim of McSAM is to "understand" stories. Given a story, it finds a relevant script and matches the individual events of the story against the patterns in the script. In the process, events in the script not explicitly mentioned in the story are filled in.
Input: John went to Leones, ate a hamburger, and left.

Output: John went to Leones. He was shown from the door to a seat. A waiter brought John a hamburger, which John ate by mouth. The waiter brought John a check, and John left Leones for another place.

Figure 14.7 A story filled in by McSAM

Both the story and the script are represented in terms of Schank’s theory of conceptual dependency. For example, consider the input story in Figure 14.7, which is used as an example in our version of McSAM. The English version

"John went to Leones, ate a hamburger, and left"

is represented in the program as a list of lists:

```
[ [ptrans, john, john, X1, leones],
  [ingest, X2, hamburger, X3],
  [ptrans, Actor, Actor, X4, X5] ].
```

The first element in each list, ptrans and ingest, for example, is a term from conceptual dependency theory. The representation of the story as a list of lists is chosen as a tribute to the original Lisp version.

Programming McSAM in Prolog is a triviality, as demonstrated by Program 14.16. The top-level relation is mcsam(Story, Script), which expands a Story into its "understood" equivalent according to a relevant Script. The script is found by the predicate find(Story, Script, Defaults). The story is searched for a nonvariable argument that triggers the name of a script. In our example of John visiting Leones, the atom leones triggers the restaurant script, indicated by the fact trigger(leones, restaurant) in Program 14.17.

The matching of the story to the script is done by match(Story, Story), which associates lines in the story with lines in the script. Remaining slots in the script are filled in by name_defaults(Defaults). The "output" is

```
[ptrans, john, john, place1, leones]
[ptrans, john, john, door, seat]
[ptrans, john, waiter, hamburger]
```

Program 14.16 McSAM

```
mcsam(Story, Script) :-
  Script describes Story.
  mcsam(Story, Script) :-
    find(Story, Script, Defaults),
    match(Story, Script),
    name_defaults(Defaults).
find(Story, Script, Defaults) :-
  filler(Slot, Story),
  trigger(Slot, Name),
  script(Name, Script, Defaults),
  match(Script, Story) :-
    Story is a subsequence of Script.
match(Story, [I]).
match([Line|Script], [Line|Story]) :- match(Script, Story).
match([Line|Script], Story) :- match(Script, Story).
filler(Slot, Story) :-
  Slot is a word in Story.
filler(Slot, Story) :-
  member((Action|Arg), Story),
  member(Slot, Arg).
name_defaults(Defaults) :-
  Unifies default pairs in Defaults.
name_defaults(Defaults),
  name_defaults([X,Y])*L]) :- name_defaults(L).
name_defaults([[X1,Y2]], [Y1, Y2]) :- Y1 ≠ Y2, name_defaults(L).
```

Its translation to English is given in Figure 14.7.

The work done on the original McSAM was all in the searching and pattern matching. This is accomplished in Prolog by nondeterministic programming and unification.
Testing and data

test, mcsam(Name, UnderstoodStory) :-
 story(Name, Story), mcsam(Story, UnderstoodStory).

story(test, [[ptrans, john, john, x1, leoness],
 [ingest, x2, hamburger, x3],
 [ptrans, Actor, Actor, x4, x5]]).

script(restaurant,
 [[ptrans, Actor, Actor, EarlierPlace, Restaurant1],
 [ptrans, Actor, Actor, Door, Seat1],
 [strans, Actor, Waiter, Food],
 [ingest, Actor, Food, [mouth, Actor]],
 [atrans, Actor, Money, Actor, Waiter],
 [ptrans, Actor, Actor, Restaurant, Coke]],
 [[Actor, custome2], [EarlierPlace, placel],
 [Restaurant, restaurant], [Door, door],
 [Seat, seat], [Food, meal], [Waiter, waiter],
 [Money, check], [Coke, place2]]).

trigger(leoness, restaurant).

Program 14.17 Testing McSAM

Exercises for Section 14.3

(i) Extend ANALOGY, Program 14.13, to solve the three problems in Figure 14.8.

(ii) Extend ELIZA, Program 14.15, by adding new stimulus/response patterns.

(iii) If the seventh statement in Figure 14.6 is changed to be "I like teasing my father," ELIZA responds with "Does any one else in your family like teasing my father." Modify Program 14.15 to "fix" this behavior, changing references such as I, my, to you, your, etc.

(iv) Rewrite McSAM to use structures.

(v) Reconstruct another AI classic. A good candidate is the general problem solver GPS.

Figure 14.8 Three analogy problems
14.4 Background

Applying Prolog to generate-and-test problems has been very common. Many researchers have discussed the behavior of Prolog in solving the N queens problem and map coloring. A good discussion of how Prolog handles the N queens problem can be found in Eclerk (1983). The N queens program given in Exercise 14.12(i), the fastest of which we are aware, is due to Thomas Freewirth. A classification of generate-and-test programs in Prolog is given in Bansal and Sterling (1989).

Several researchers have used Prolog’s behavior on generate-and-test problems as a reason to investigate alternative control of logic programs. Suggestions for improvement include co-routing, incorporated in IC-Prolog (Clark and McCabe, 1979) and intelligent backtracking (Bruynooghe and Percira, 1984). Neither have been widely adopted into Prolog.

Other examples of solving puzzles by instantiating structures are given in a book by Evan Tick (1991) comparing Prolog program performance with concurrent logic programming languages.

The zebra puzzle, Exercise 14.11(iv) did the rounds on the Prolog Digest in the early 1980s. It was used as an unofficial benchmark to test both the speed of Prolog implementations and the ability of Prolog programmers to write clear code. The description of clues given in Program 14.7 was influenced by one of the solutions. The framework of Program 14.6 was tested extensively by Steven Kaminski in a course project at Case Western Reserve University. He took the first 20 puzzles of an available puzzle book and solved them using the framework. Although very much a Prolog novice, he was able to use Prolog fairly easily to find solutions. His experience highlighted some interesting points, namely, how to handle negative information and the undesirability of too many choice points with redundant calls to select and assert.

The definitive discussion of don’t-care and don’t-know nondeterminism in logic programming appears in Kowalski (1979a).

Program 14.11 for planning is a variant of an example from Kowalski (1979a). The original planning program in Prolog was WARPPlan (Warren, 1970), reproduced in Coelho et al. (1980), Exercise 14.20(i) was adapted from descriptions of WARPPlan’s abilities in Coelho and Cotta (1988).

ANALOGY constituted the Ph.D. thesis of Thomas Evans at MIT in the mid-1960s. A good description of the program appears in Semantic Information Processing (Minsky, 1968). Evans’s program tackled many aspects of the problem that are made trivial by our choice of representation, for example, identifying that there are triangles, squares, and circles in the diagrams. Our version, Program 14.13, emerged from a discussion group of Leon Sterling with a group of epistemics students at the University of Edinburgh.

ELIZA was originally presented in Weizenbaum (1966). Its performance led people to believe that a limited form of the Turing test had been passed. Weizenbaum, its author, was horrified by people’s reactions to the program and to AI more generally, and he wrote an impassioned plea against taking the program too seriously (Weizenbaum, 1976). Our version, Program 14.15, is a slight variant of a teaching program attributed to Alan Bundy, Richard O’Keefe, and Henry Thompson, which was used for AI courses at the University of Edinburgh.

MCAS is a version of the SAM program, which was tailored for teaching AI programming (Schank and Riesbeck, 1981). Our version, Program 14.16, is due to Ernie Davis and Ehud Shapiro. More information about conceptual dependency can be found in Schank and Abelson (1977).

A rational reconstruction of GPS, suggested in Exercise 14.3(i), was shown to us by George Ernst.
15 Incomplete Data Structures

The programs presented so far have been discussed in terms of relations between complete data structures. Powerful programming techniques emerge from extending the discussion to incomplete data structures, as demonstrated in this chapter.

The first section discusses difference-lists, an alternative data structure to lists for representing a sequence of elements. They can be used to simplify and increase the efficiency of list-processing programs. In some respects, difference-lists generalize the concept of accumulators. Data structures built from the difference of incomplete structures other than lists are discussed in the second section. The third section shows how tables and dictionaries, represented as incomplete structures, can be built incrementally during a computation. The final section discusses queues, an application of difference-lists.

15.1 Difference-Lists

Consider the sequence of elements 1,2,3. It can be represented as the difference between pairs of lists. It is the difference between the lists \([1,2,3,4,5]\) and \([4,5]\), the difference between the lists \([1,2,3,8]\) and \([8]\), and the difference between \([1,2,3]\) and \([\]\). Each of these cases is an instance of the difference between two incomplete lists \([1,2,3]\) and \(X\).

We denote the difference between two lists as a structure \(A\triangle B\), which is called a difference-list. \(A\) is the head of the difference-list and \(B\) is the
tail. In this example, \([1,2,3] \ldots Xs\) is the most general difference-list representing the sequence \(1,2,3\), where \([1,2,3] \ldots Xs\) is the head of the difference-list and \(Xs\) the tail.

Logical expressions are unified, not evaluated. Consequently the binary functor used to denote difference-lists can be arbitrary. Of course, the user must be consistent in using the same functor in any one program. Another common choice of functor besides \(\backslash\) is \(-\). The functor for difference-lists can also be omitted entirely, the head and the tail of the difference-list becoming separate arguments in a predicate. While this last choice has advantages from a perspective of efficiency, we use the functor \(\backslash\) throughout for clarity.

Lists and difference-lists are closely related. Both are used to represent sequences of elements. Any list \(L\) can be trivially represented as a difference-list \(L[__]\). The empty list is represented by any difference-list whose head and tail are identical, the most general form being \(A[A]\).

Difference-lists are an established logic programming technique. The use of difference-lists rather than lists can lead to more concise and efficient programs. The improvement occurs because of the combining property of difference-lists. Two incomplete difference-lists can be concatenated to give a third difference-list in constant time. In contrast, lists are concatenated using the standard append program in time linear in the length of the first list.

Consider Figure 15.1. The difference-list \(Xs[Zs]\) is the result of appending the difference-list \(Ys[Zs]\) to the difference-list \(Xs[Ys]\). This can be expressed as a single fact. Program 15.1 defines a predicate \(append_dl(Ax, Ba, Ca)\), which is true if the difference-list \(Ca\) is the result of appending the difference-list \(Ba\) to the difference-list \(Ax\). We use the suffix \(_dl\) to denote a variant of a predicate that uses difference-lists.

A necessary and sufficient condition characterizing when two difference-lists \(Ax[_Ba]\) and \(Xa[_Ys]\) can be concatenated using Program 15.1 is that \(Ba\) be unifiable with \(Xa\). In that case, the two difference-lists are compatible. If the tail of a difference-list is unifiable, it is compatible with any difference-list. Furthermore, in such a case Program 15.1 would concatenate it in constant time. For example, the result of the query \(append_dl([a, b, c] Xs) \ldots Xs[1,2][Ys][Ys]?\) is \(Xs[1,2]\), \(Ys[a, b, c, 1,2][__] \ldots\).

Difference-lists are the logic programming counterpart of Lisp's \(rplacd\), which is also used to concatenate lists in constant time and save copying.

Figure 15.1 Concatenating difference-lists

\[
\begin{align*}
Xs[Ys] & \downarrow \\
Ys[Zs] & \\
\end{align*}
\]

Program 15.1 Concatenating difference-lists

\[
\begin{align*}
append_dl(Ax, Ba, Ca) & \leftarrow \\
& \text{The difference-list} \ C & \text{is the result of appending} \ B & \text{to} \ A, \\
& \text{where} \ A & \text{and} \ B & \text{are compatible difference-lists.}
\end{align*}
\]

\[
\begin{align*}
append_dl(Xa[_Ye], Ys[Zs], Xa[_Za]) & \\
\end{align*}
\]

\[
\begin{align*}
& \text{allocating new list-cells. There is a difference between the two: the former are free of side effects and can be discussed in terms of the abstract computation model, whereas} \ rplacd & \text{is a destructive operation, which can be described only by reference to the machine representation of S-expressions.}
\end{align*}
\]

A good example of a program that can be improved by using difference-lists is Program 9.1a for flattening a list. It uses double recursion to flatten separately the head and tail of a list of lists, then concatenates the results. We adapt that program to compute the relation \(flatten_dl(Xs, Ys)\), where \(Ys\) is a difference-list representing the elements that appear in a list of lists \(Xs\) in correct order. The direct translation of Program 9.1a to use difference-lists follows:

\[
\begin{align*}
flatten_dl([X][Xa], Ys[Za]) & \leftarrow \\
flatten_dl(X, Ax[Ba], flatten_dl(Xa, Cx[_Dx]), append_dl(Ax[_Ba], Ca[_Dx], Ys[Za]), flatten_dl(X, [X][Xa], Xs) & \leftarrow \\
\text{constant}(X), Xs[__] & \leftarrow \\
flatten_dl([__], Xs[Xs]) & \\
\end{align*}
\]
Chapter 15

flatten(Xs, Xs) :-
 Ys is a flattened list containing the elements in Xs.
 flatten(Xs, Ys) :- flatten_dd(Xs, Ys).

flatten_dd([X1|Xs], Ys) :-
 Ys = [X1|Ys].
flatten_dd([X1,X2|Xs], Ys) :-
 Ys = [X1,X2|Ys].
flatten_dd([X1|Xs], Ys) :-
 constant(Xs), X1.
 Ys = [X1|Ys].

Program 15.2 Flattening a list of lists using difference-lists

The doubly recursive clause can be simplified by unfolding the append_dd goal with respect to its definition in Program 15.1. Unfolding is discussed in more detail in Chapter 18 on program transformation. The result is

flatten_dd([X1|Xs1], Ys1) :-
 flatten_dd(Xs1, Ys), flatten_dd(Xs, Ys).

The program for flatten_dd can be used to implement flatten by expressing the connection between the desired flattened list and the difference-list computed by flatten_dd as follows:

flatten(Xs, Ys) :- flatten_dd(Xs, Ys).

Collecting the program and renaming variables yields Program 15.2.

Declaratively Program 15.2 is straightforward. The explicit call to append is made unnecessary by flattening the original list of lists into a difference-list rather than a list. The resultant program is more efficient, because the size of its proof tree is linear in the number of elements in the list of lists rather than quadratic.

The operational behavior of programs using difference-lists, such as Program 15.2, is harder to understand. The flattened list seems to be built by magic.

Let us investigate the program in action. Figure 15.2 is a trace of the query flatten([[a],[b,[c]]],Xs) with respect to Program 15.2.

The trace shows that the output, Xs, is built top-down (in the terminology of Section 7.5). The tail of the difference-list acts like a pointer to the end of the incomplete structure. The pointer gets set by unification. By using these "pointers" no intermediate structures are built, in contrast to Program 9.1a.

Incomplete Data Structures

flatten([], [], []).
flatten([X|Xs], [Y|Ys]) :-
 constant(Xs), X \= Y.
 flatten(Xs, Ys).
flatten([X|Xs], [Y|Ys]) :-
 constant(Xs), X \= Y.
 flatten(Xs, Ys).

Figure 15.2 Tracing a computation using difference-lists

The discrepancy between clear declarative understanding and difficult procedural understanding stems from the power of the logical variable. We can specify logical relations implicitly and leave their enforcement to Prolog. Here the concatenation of the difference-lists has been expressed implicitly, and it is mysterious when it happens in the program.

Building structures with difference-lists is closely related to building structures with accumulators. Loosely, difference-lists build structures top-down, while accumulators build structures bottom-up. Exercise 9.10 asked for a doubly recursive version of flatten that avoided the call to append by using accumulators. A solution is the following program:

flatten(Xs, Ys) :- flatten(Xs, []).
reverse(X₀,Y₀) ← Y₀ is the reversal of the list X₀.
reverse(X₀,Y₀) ← reverse₁₈(X₀,Y₀\{\}).
reverse₁₈(X₀,Y₀\{\}) ← reverse₁₈(X₀,Y₀\{\}).
reverse₁₈(X₀) ← reverse₁₈(X₀).

Program 15.3 Reverse with difference-lists

The similarity of this program to Program 15.2 is striking. There are only two differences between the programs. The first difference is syntactic. The difference-list is represented as two arguments, but in order, the tail preceding the head. The second difference is the goal order in the recursive clause of flatten. The net effect is that the flattened list is built bottom-up from its tail rather than top-down from its head.

We give another example of the similarity between difference-lists and accumulators. Program 15.3 is a translation of naive reverse (Program 3.16a) where lists have been replaced by difference-lists, and the append operation has been unfolded away.

When are difference-lists the appropriate data structure for Prolog programs? Programs with explicit calls to append can usually gain in efficiency by using difference-lists rather than lists. A typical example is a doubly recursive program where the final result is obtained by appending the outputs of the two recursive calls. More generally, a program that independently builds different sections of a list to be later combined is a good candidate for using difference-lists.

The logic program for quicksort, Program 3.22, is an example of a doubly recursive program where the final result, a sorted list, is obtained from concatenating two sorted subtlists. It can be made more efficient by using difference-lists. All the append operations involved in combining partial results can be performed implicitly, as shown in Program 15.4.

The call of quicksort₁₈ by quicksort is an initializing call, as for flatten in Program 15.2. The recursive clause is the quicksort algorithm interpreted for difference-lists where the final result is pieced together implicitly rather than explicitly. The base clause of quicksort₁₈ states that the result of sorting an empty list is the empty difference-list. Note the use of unification to place the partitioning element X₀ after the smaller

Incomplete Data Structures

quicksort(List,SortedList) ← SortedList is an ordered permutation of List.
quicksort₁₈(X₀,Y₀) ← quicksort₁₈(X₀,Y₀\{}\).
quicksort₁₈(X₀\{\},Y₀\{\}) ← partition₁₈(X₀\{\},Littles,\{\}₈,\{\}₈,\{\}₈).
quicksort₁₈(Littles,\{\}₈,\{\}₈,\{\}₈).
quicksort₁₈(\{\}₈,\{\}₈,\{\}₈) ← See Program 3.22.

Program 15.4 Quick sort using difference-lists

elements Y₀ and before the bigger elements Y₁ in the call quicksort₁₈(X₀\{\}{\}₈,Y₀\{\}{\}₈,\{\}₈,\{\}₈) ← partition₁₈(X₀\{\},Littles,\{\}₈,\{\}₈,\{\}₈).
quicksort₁₈(Littles,\{\}₈,\{\}₈,\{\}₈) ← partition₁₈(X₀\{\},Littles,\{\}₈,\{\}₈,\{\}₈).
quicksort₁₈(Littles,\{\}₈,\{\}₈,\{\}₈) ← See Program 3.22.

Program 15.4 Quick sort using difference-lists

An outstanding example of using difference-lists to advantage is a solution to a simplified version of Dijkstra's Dutch flag problem. The problem reads: "Given a list of elements colored red, white, or blue, reorder the list so that all the red elements appear first, then all the white elements, followed by the blue elements. This reordering should preserve the original relative order of elements of the same color." For example, the list [red₁₈,white₂₈,blue₃₈,red₄₈,white₅₈] should be reordered to [red₁₈,red₄₈,white₂₈,white₅₈,blue₃₈].

Program 15.5 is a simple-minded solution to the problem that collects the elements in three separate lists, then concatenates the lists. The basic relation is dutch(X₀,Y₀), where X₀ is the original list of colored elements and Y₀ is the reordered list separated into colors.

The heart of the program is the procedure distribute, which constructs three lists, one for each color. The lists are built top-down. The two calls to append can be removed by having distribute build three distinct difference-lists instead of three lists. Program 15.6 is an appropriately modified version of the program.

The implicit concatenation of the difference-lists is done in the initializing call to distribute₁₈ by dutch. The complete list is finally

“assembled” from its parts with the satisfaction of the base clause of

The Dutch flag example demonstrates a program that builds parts of
the solution independently and pieces them together at the end. It is a
more complex use of difference-lists than the earlier examples.

Although it makes the program easier to read, the use of an explicit
constructor such as \l for difference-lists incurs noticeable overhead
in time and space. Using two separate arguments to represent the
difference-list is more efficient. When important, this efficiency can be
 gained by straightforward manual or automatic transformation.

Exercises for Section 15.1

(i) Rewrite Program 15.2 so that the final list of elements is in the
 reverse order to how they appear in the list of lists.

(ii) Rewrite Programs 3.27 for preorder(Tree, List), inorder(Tree,
 List) and postorder(Tree, List), which collect the elements oc-
Figure 15.3: Unnormalized and normalized sums

converted to the one on the right. Such a procedure is useful for doing algebraic simplification, facilitating writing programs to test whether two expressions are equivalent.

We introduce a difference-sum as a variant of a difference-list. A difference-sum is represented as a structure $E1 \leftrightarrow E2$, where $E1$ and $E2$ are incomplete normalized sums. It is assumed that \leftrightarrow is defined as a binary infix operator. It is convenient to use 0 to indicate an empty sum.

Program 15.7 is a program for normalizing sums. The relation scheme is normalize(Exp, Norm), where Norm is an expression equivalent to Exp that is bracketed to the right and preserves the order of the constants appearing in Exp.

This program is similar in structure to Program 15.2 for flattening lists using difference-lists. There is an initialization stage, where the difference-structure is set up, typically calling a predicate with the same name but different arity or different argument pattern. The base case passes out the tail of the incomplete structure, and the goals in the body of the recursive clause pass the tail of the first incomplete structure to be the head of the second.

The program builds the normalized sum top-down. By analogy with the programs using difference-lists, the program can be easily modified to build the structure bottom-up, which is Exercise (ii) at the end of this section.

The declarative reading of these programs is straightforward. Operationally the programs can be understood in terms of building a structure incrementally, where the "hole" for further results is referred to explicitly. This is entirely analogous to difference-lists.

Exercises for Section 15.2

(i) Define the predicate $\text{normalized_sum(Expr)}$, which is true if Expr is a normalized sum.

(ii) Rewrite Program 15.7 so that

(a) The normalized sum is built bottom-up;
(b) The order of the elements is reversed.

(iii) Enhance Program 15.7 so that numbers appearing in the addends are added together and returned as the first component of the normalized sum. For example, $(3 + x) + 2 + (y + 4)$ should be normalized to $9 + (x + y)$.

(iv) Write a program to normalize products using difference-products, defined analogously to difference-sums.

15.3 Dictionaries

A different use of incomplete data structures enables the implementation of dictionaries. Consider the task of creating, using, and maintaining a set of values indexed under keys. There are two main operations we would like to perform: looking up a value stored under a certain key, and entering a new key and its associated value. These operations must ensure consistency — for example, the same key should not appear twice
lookup(Key, Dictionary, Value) ←
 Dictionary contains Value indexed under Key.
 Dictionary is represented as an incomplete
 list of pairs of the form (Key, Value).
lookup(Key, ([Key, Value] | Dict1, Value), Value) ←
 Key ∈ Key1, lookup(Key, Dict, Value).

Program 15.8 Dictionary lookup from a list of tuples

with two different values. It is possible to perform both operations, looking up values of keys, and entering new keys, with a single simple procedure by exploiting incomplete data structures.

Consider a linear sequence of key-value pairs. Let us see the advantages of using an incomplete data structure for its representation. Program 15.8 defines the relation lookup(Key, Dictionary, Value) which is true if the entry under Key in the dictionary Dictionary has value Value. The dictionary is represented as an incomplete list of pairs of the form (Key, Value).

Let us consider an example where the dictionary is used to remember phone extensions keyed under the names of people. Suppose that Dict is initially instantiated to [(arnold, 8881), (barry, 4513), (cathy, 5950)] | X). The query lookup(arnold, Dict, N)? has as answer N=8881 and is used for finding Arnold's phone number. The query lookup(barry, Dict, 4513)? succeeds, checking that Barry's phone number is 4513.

The entry of new keys and values is demonstrated by the query lookup(david, Dict, N)?. Syntactically this appears to check David's phone number. Its effect is different. The query succeeds, instantiating Dict to [(arnold, 8881), (barry, 4513), (cathy, 5950), (david, 1199)] | X1). Thus lookup has entered a new value.

What happens if we check Cathy's number with the query lookup (cathy, Dict, N)?, where the number is incorrect? Rather than entering a second entry for Cathy, the query fails because of the test Key ≠ Key1.

The lookup procedure given in Program 15.8 completes Program 14.15, the simplified ELIZA. Note that when the program begins, the dictionary is empty, indicated by its being a variable. The dictionary is built up during the matching against the stimulus half of a stimulus-response pair. The constructed dictionary is used to produce the correct response. Note that entries are placed in the dictionary without their values being known: a striking example of the power of logical variables. Once an integer is detected, it is put in the dictionary, and its value is determined later.

Searching linear lists is not very efficient for a large number of key-value pairs. Ordered binary trees allow more efficient retrieval of information than linear lists. The insight that an incomplete structure can be used to allow entry of new keys as well as to look up values carries over to binary trees.

The binary trees of Section 3.4 are modified to be a four-place structure dict(Key, Value, Left, Right), where Left and Right are, respectively, the left and right subdictionaries, and Key and Value are as before. The functor dict is used to suggest a dictionary.

Looking up in the dictionary tree has a very elegant definition, similar in spirit to Program 15.8. It performs recursion on binary trees rather than on lists, and relies on unification to instantiate variables to dictionary structures. Program 15.9 gives the procedure lookup(Key, Dictionary, Value), which as before both looks up the value corresponding to a given key and enters new values.

At each stage, the key is compared with the key of the current node. If it is less, the left branch is recursively checked; if it is greater, the right branch is taken. If the key is non-numeric, the predicates < and > must be generalized. The cut is necessary in Program 15.9, in contrast to
15.4 Queues

An interesting application of difference-lists is to implement queues. A queue is a first-in, first-out store of information. The head of the difference-list represents the beginning of the queue, the tail represents the end of the queue, and the members of the difference-list are the elements in the queue. A queue is empty if the difference-list is empty, that is, if its head and tail are identical.

Maintaining a queue is different from maintaining a dictionary. We consider the relation queue(S), where a queue processes a stream of commands, represented as a list S. There are two basic operations on a queue—enqueueing an element and dequeuing an element—represented, respectively, by the structures enqueue(X) and dequeue(X), where X is the element concerned.

Program 15.11 implements the operations abstractly. The predicate queue(S) calls queue(S,Q), where Q is initialized to an empty queue. queue/2 is an interpreter for the stream of enqueue and dequeue commands, responding to each command and updating the state of the queue accordingly. Enqueueing an element exploits the incompleteness of the tail of the queue, instantiating it to a new element and a new tail, which is passed as the updated tail of the queue. Clearly, the calls to enqueue and dequeue can be unfolded, resulting in a more concise and efficient, but perhaps less readable, program.

Program 15.10 Melting a term

Program 15.8, because of the nonlogical nature of comparison operators, which will give errors if keys are not instantiated.

Given a number of pairs of keys and values, the dictionary they determine is not unique. The shape of the dictionary depends on the order in which queries are posed to the dictionary.

The dictionary can be used to melt a term that has been frozen using Program 10.8 for numbervars. The code is given as Program 15.10. Each melted variable is entered into the dictionary, so that the correct shared variables will be assigned.
Program 15.12 Flattening a list using a queue

The program terminates when the stream of commands is exhausted. It can be extended to insist that the queue be empty at the end of the commands by changing the base fact to

```
queue([],Q) → empty(Q).
```

A queue is empty if both its head and tail can be instantiated to the empty list, expressed by the fact `empty([],[]).` Logically, the clause `empty(Xa\Xa)` would also be sufficient; however, because of the lack of the occurs check in Prolog, discussed in Chapter 4, it may succeed erroneously on a nonempty queue, creating a cyclic data structure.

We demonstrate the use of queues in Program 15.12 for flattening a list. Although the example is somewhat contrived, it shows how queues can be used. The program does not preserve the order of the elements in the original list.

The basic relation is `flattened_q(La,Q,Xs)`, where `La` is the list of lists to be flattened, `Q` is the queue of lists waiting to be flattened, and `Xs` is the list of elements in `La`. The initial call of `flattened_q/3` by `flattened/2` initializes an empty queue. The basic operation is enqueuing the tail of the list and recursively flattening the head of the list:

```
flattened_q([X|Xs],Q,YS) ← enqueue(Xs,Q,Q1), flattened_q(X,Q1,YS).
```

The explicit call to enqueue can be omitted and incorporated via unification as follows:

```
flattened_q([X|Xs],Qh\[Xs|Qs],YS) ← flattened_q(X,Qh\Qr,YS).
```

If the element being flattened is a constant, it is added to the output structure being built top-down, and an element is dequeued by unifying with the head of the difference-list to be flattened in the recursive call:

```
flattened_q(X,Qh\Qr\X,YS) ← constant(X), X\[ ], flattened_q(Qh\Qr\Qs,YS).
```

When the empty list is being flattened, either the top element is dequeued

```
flattened_q([],Q,YS) ← non_empty(Q), dequeue(X,Q,Q1), flattened_q(X,Q1,YS).
```

or the queue is empty, and the computation terminates:

```
flattened_q([],[],[]).
```

A previous version of Program 15.12 incorrectly expressed the case when the list was empty, and the top element was dequeued as

```
flattened_q([ ],Qh]\Qr,YS) ← flattened_q(Qh]\Qr,YS).
```

This led to a nonterminating computation, since an empty queue `Qh]\Qr` unified with `Qh]\Qr` and so the base case was never reached.

Let us reconsider Program 15.11 operationally. Under the expected use of a queue, enqueue(X) messages are sent with X determined and dequeue(X) with X undetermined. As long as more elements are enqueued than dequeued, the queue behaves as expected, with the difference between the head of the queue and the tail of the queue being the elements in the queue. However, if the number of dequeue messages received exceeds that of enqueue messages, an interesting thing happens — the content of the queue becomes negative. The head runs ahead of the tail, resulting in a queue containing a negative sequence of undetermined elements, one for each successive dequeue message.

It is interesting to observe that this behavior is consistent with the associativity of appending of difference-lists. If a queue `Qh\[X1,X2,X3|Qr]` that contains minus three undetermined elements has the queue `[a,b,c,d,e|Xs]\Xs` that contains five elements appended to it, then the result
15.5 Background

Difference-lists have been in the logic programming folklore since its inception. The first description of them in the literature is given by Clark and Tarjan (1977).

The automatic transformation of simple programs without difference-lists to programs with difference-lists, for example, reverse and flatten, can be found in Bloch (1984).

Section 15.1 implicitly contains an algorithm for converting from a program with explicit calls to append to an equivalent, more efficient program that uses difference-lists to concatenate the elements and which is much more efficient. Care is needed in application of the algorithm. There are excellent discussions of a correct algorithm and the dangers of using difference-lists without the occurs check in Søndergaard (1990) and Marriott and Søndergaard (1993).

There is an interesting discussion of the Dutch flag problem in O'Keefe (1990).

Automatic removal of a functor denoting difference-lists is described in Gallagher and Bruynooghe (1990).

Maintaining dictionaries and queues can be given a theoretical basis as a perpetual process, as described by Warren (1982) and Lloyd (1987).

Queues are particularly important in concurrent logic programming languages, since their input need not be a list of requests but a stream, which is generated incrementally by the processes requesting the services of the queue.

16 Second-Order Programming

Chapters 14 and 15 demonstrate Prolog programming techniques based directly on logic programming. This chapter, in contrast, shows programming techniques that are missing from the basic logic programming model but can nonetheless be incorporated into Prolog by relying on language features outside of first-order logic. These techniques are called second-order, since they talk about sets and their properties rather than about individuals.

The first section introduces predicates that produce sets as solutions. Computing with predicates that produce sets is particularly powerful when combined with programming techniques presented in earlier chapters. The second section gives some applications. The third section looks at lambda expressions and predicate variables, which allow functions and relations to be treated as “first-class” data objects.

16.1 All-Solutions Predicates

Solving a Prolog query with a program entails finding an instance of the query that is implied by the program. What is involved in finding all instances of a query that are implied by a program? Declaratively, such a query lies outside the logic programming model presented in Chapter 1. It is a second-order question, since it asks for the set of elements with a certain property. Operationally, it is also outside the pure Prolog computation model. In pure Prolog, all information about a certain branch of the computation is lost on backtracking. This prevents
a simple way of using pure Prolog to find the set of all solutions to a query, or even to find how many solutions there are to a given query.

This section discusses predicates that return all instances of a query. We call such predicates all-solutions predicates. Experience has shown that all-solutions predicates are very useful for programming. A basic all-solutions predicate is findall(Term, Goal, Bag). The predicate is true if and only if Bag unifies with the list of values to which a variable X not occurring in Term or Goal would be bound by successive resatisfaction of call(Goal, X=Term) after systematic replacement of all variables in X by new variables.

Procedurally, findall(Term, Goal, Bag) creates an empty list L, renames Goal to a goal G, and executes G. If G succeeds, a copy of Term is appended to L, and G is reexecuted. For each successful reexecution, a copy of Term is appended to the list. Eventually, when G fails, Bag is unified with L. The success or failure of findall depends on the success or failure of the unification.

We demonstrate the use of all-solutions predicates using part of the biblical database of Program 1.1, repeated here as Program 16.1.

Consider the task of finding all the children of a particular father. It is natural to envisage a predicate children(X,Kids), where Kids is a list of children of X. It is immediate to define using findall, namely,

children(X,Kids) = findall(Kid,father(X,Kid),Kids).

The query children(terach,Xs) with respect to Program 16.1 produces the answer Xs = [abraham,nachor,haran].

The query findall(F,father(F,K),Fa) with respect to Program 16.1 produces the answer F = [terach,haran,terach,haran,terach,haran,abraham]. It would be useful to conceive of this query as asking

who is a father and to receive as solution [terach,haran,abraham]. This answer can be obtained by removing duplicate solutions.

Another interpretation can be made of the query findall(F,father(F,K),Fa). Instead of having a single solution, all fathers, there could be a solution for each child X. Thus one solution would be X=abraham, Fa = [terach]; another would be X=lot, Fa = [haran]; and so on.

Standard Prolog provides two predicates that distinguish between these two interpretations. The predicate bagof(Term,Goal,Bag) is like findall except that alternative solutions are found for the variables in Goal. The predicate setof(Term,Goal,Bag) is a refinement of bagof where the solutions in Bag are sorted corresponding to a standard order of terms and duplicates removed. If we want to emphasize that the solution should be conceived of as a set, we refer to all-solutions predicates as set predicates.

Another all-solutions predicate checks whether all solutions to a query satisfy a certain condition. Program 16.2 defines a predicate for_all(Goal,Condition), which succeeds when Condition is true for all values of Goal. It uses the meta-variable facility.

The query for_all(father(X,C),male(C)) succeeds when fathers have only male children. It produces two answers: X=terach and X=abraham.

A simpler, more efficient, but less general version of for_all can be written directly using a combination of nondeterminism and negation by failure. The definition is

for_all(Goal,Condition) = not (Goal, not Condition).

It successfully answers a query such as for_all(father(terach,X), male(X)) but fails to give a solution to the query for_all(father(X, C),male(C)).
find_all_l(X,Goal,Instances) :-
 Instances is the multiset of instances of X for which Goal is true. The multiplicity of an element is the number of different ways Goal can be proved with it as an instance of X.

find_all_l(X,Goal,In) :-
 asserta('instance('mark'), Goal),
 asserta('instance(X'), fail).
find_all_l(X,Goal,In,Ya) :-
 retract('instance(X)'), reeq(X,X,Ya), !.

reap(X,Ya) :-
 X \= 'mark', retract('instance(X)'), !.
 reeq(X,X,Ya).
 reeq('mark',X,Y).

Program 16.3 Implementing an all-solutions predicate using difference-lists, assert, and retract.

We conclude this section by showing how to implement a simple variant of findall. The discussion serves a dual purpose. It illustrates the style of implementation for all-solutions predicates and gives a utility that will be used in the next section. The predicate find_all_l(X,Goal,Instances) is true if Instances is the bag (multiset) of instances of X represented as a difference-list, where Goal is true.

The definition of find_all_l is given as Program 16.3. The program can only be understood operationally. There are two stages to the procedure, as specified by the two clauses for find_all_l. The explicit failure in the first clause guarantees that the second will be executed. The first stage finds all solutions to Goal using a failure-driven loop, asserting the associated X as it proceeds. The second stage retrieves the solutions.

Asserting 'mark' is essential for nested all-solutions predicates to work correctly; lest one set should "steal" solutions produced by the other all-solutions predicate.

Exercise for Section 16.1

(i) Define the predicate intersect(Xa,Ya,Za) using an all-solutions predicate to compute the intersection Za of two lists Xa and Ya.

16.2 Applications of Set Predicates

Set predicates are a significant addition to Prolog. Clean solutions are obtained to many problems by using set predicates, especially when other programming techniques, discussed in previous chapters, are incorporated. This section presents three example programs: traversing a graph breadth-first, using the Lee algorithm for finding routes in VLSI circuits, and producing a keyword in context (KWIC) index.

Section 14.2 presents three programs, 14.8, 14.9, and 14.10, for traversing a graph depth-first. We discuss here the equivalent programs for traversing a graph breadth-first.

The basic relation is connected(X,Y), which is true if X and Y are connected. Program 16.4 defines the relation. Breadth-first search is implemented by keeping a queue of nodes waiting to be expanded. The connected clause accordingly calls connected_bfs(Queue,Y), which is true if Y is in the connected component of the graph represented by the nodes in the Queue.

Each call to connected_bfs removes the current node from the head of the queue, finds the edges connected to it, and adds them to the tail of the queue. The queue is represented as a difference-list, and the all-solutions predicate find_all_l is used. The program fails when the queue is empty. Because difference-lists are an incomplete data structure, the test that the queue is empty must be made explicitly. Otherwise the program would not terminate.

Consider the edge clauses in Program 16.4, representing the left-hand graph in Figure 14.3. Using them, the query connected(a,X)? gives the values a, b, c, d, e, f, g, j, k, h, i for X on backtracking, which is a breadth-first traversal of the graph.

Like Program 14.8, Program 16.4 correctly traverses a finite tree or a directed acyclic graph (DAG). If there are cycles in the graph, the program will not terminate. Program 16.5 is an improvement over Program 16.4 in which a list of the nodes visited in the graph is kept. Instead of adding all the successor nodes at the end of the queue, each is checked to see if
connected(X,Y) :-
 Node X is connected to node Y in the DAG defined by edge/2 facts.
connected(X,Y) ⇔ enqueue(X,[X],Q1), connected_bfs(Q1,Y).
connected_bfs(Q,Y) :-
 empty(Q), fail.
connected_bfs(Q,Y) :-
 dequeue(Q,Q1,Q2), connected_bfs(Q1,Y).
 enqueue_edges(Q1,edge(X,Y),Q2), connected_bfs(Q2,Y).
 enqueue_edges(Q,edge(X,Y),Q1),
 find_all_d1(Y,edge(X,Y),Q1), fail.
 empty(Q).
 enqueue/3, dequeue/3 → See Program 15.11.
find_all_d1(Term,Goal,DList) → See Program 16.3.

Data
edge(a,b), edge(a,c), edge(a,d), edge(b,c). edge(f,i).
edge(c,f), edge(c,g), edge(f,h), edge(e,k), edge(d,j).
edge(x,y), edge(y,x), edge(x,a, edge(a,y).

Program 16.4 Testing connectivity breadth-first in a DAG

it has been visited before. This is performed by the predicate filter in Program 16.5.
Program 16.5 in fact is more powerful than its depth-first equivalent, Program 14.10. Not only will it correctly traverse any finite graph but it will also correctly traverse infinite graphs in which every vertex has finite degree as well. It is useful to summarize what extensions to pure Prolog have been necessary to increase the performance in searching graphs. Pure Prolog correctly searches finite trees and DAGs. Adding negation allows correct searching of finite graphs with cycles, while set predicates are necessary for infinite graphs. This is shown in Figure 16.1.
Calculating the path between two nodes is a little more awkward than for depth-first search. It is necessary to keep with each node in the queue a list of the nodes linking it to the original node. The technique is demonstrated in Program 20.6.
The next example combines the power of nondeterministic programming with the use of second-order programming. It is a program for calculating a minimal cost route between two points in a circuit using the Lee algorithm.

Program 16.5 Testing connectivity breadth-first in a graph

(1) Finite trees and DAGs
Pure Prolog
(2) Finite graphs
Pure Prolog + negation
(3) Infinite graphs
Pure Prolog + second order + negation

Figure 16.1 Power of Prolog for various searching tasks
operator. Paths are calculated by the program as a list of points from B to A, including both endpoints. In Figure 16.2 the route calculated is [5-5, 5-4, 5-3-5, 2-3, 2-2-1-2-1, 1-1], and is marked by the heavy solid line.

The top-level relation computed by the program is $\text{LeeRoute}(A, B, \text{Obstacles}, \text{Path})$, where Path is a route (of minimal distance) from point A to point B in the circuit. Obstacles are the obstacles in the grid. The program has two stages. First, successive waves of neighboring grid points are generated, starting from the initial point, until the final point is reached. Second, the path is extracted from the accumulated waves.

Let us examine the various components of Program 16.6, the overall program for Lee routing.

Waves are defined inductively. The initial wave is the list [A]. Successive waves are sets of points that neighbor a point in the previous wave and that do not already appear in previous waves. They are illustrated by the lighter solid lines in Figure 16.2.

Wave generation is performed by waves(B, WavesSoFar, Obstacles, Waves). The predicate waves/4 is true if Waves is a list of waves to the destination B avoiding the obstacles represented by Obstacles and WavesSoFar is an accumulator containing the waves generated so far in traveling from the source. The predicate terminates when the destination is in the current wave. The recursive clause calls next_wave/4, which finds all the appropriate grid points constituting the next wave using the all-solutions predicate findall.

Obstacles are assumed to be rectangular blocks. They are represented by the term obstacle(L, R), where L is the coordinates of the lower left-hand corner and R the coordinates of the upper right-hand corner. Exercise (i) at the end of this section requires modifying the program to handle other obstacles.

The predicate path(A, B, Waves, Path) finds the path Path back from B to A through the Waves generated in the process. Path is built downward, which means the order of the points is from B to A. This order can be changed by using an accumulator in path.

Program 16.6 produces no output while computing the Lee route. In practice, the user may like to see the computation in progress. This can be easily done by adding appropriate write statements to the procedures next_wave and path.
Second-Order Programming

path(Source, Destination, Waves, Path) ← Path is a minimal length path from Source to Destination that does not cross Obstacles.

leeroute(A, B, Obstacles, Path) ← waves(B, [[A], []], [Obstacles], [Waves], path(A, B, Waves, Path).

waves(Destination, WavesSoFar, Obstacles, Waves) ← Waves is a list of waves including WavesSoFar (except, perhaps, its last wave) that leads to Destination without crossing Obstacles.

waves(B, [Wave|Waves], [Obstacles], [Waves]) ← member(B, Waves), 1.

waves(B, [Wave|LastWave|LastWaves], [Obstacles], [Waves]) ← next_wave(Wave, LastWave, Obstacles, NextWave),

waves(B, [NextWave, Wave|LastWave|LastWaves], [Obstacles], [Waves]).

next_wave(Wave, LastWave, Obstacles, NextWave) ← NextWave is the set of admissible points from Wave, that is, excluding points from LastWave, Wave and points under Obstacles.

next_wave(Wave, LastWave, [Obstacles], [NextWave]) ← findall(X, admissible(X, Wave, LastWave, [Obstacles], [NextWave]),

admissible(X, Wave, LastWave, Obstacles) ←

adjacent(X, Wave, Obstacles),

not member(X, LastWave),

not member(X, Wave).

adjacent(X, Wave, [Obstacles]) ← member(X|Wave),

neighbor(X, X),

not obstructed(X, Obstacles).

neighbor(X|Wave, X|NextWave) ← next_to(X, X|NextWave).

next_to(X|Wave, X|NextWave) ← next_to(X|Wave, X|NextWave).

next_to(X, X|NextWave) ← X > 0, X | NextWave < X.

obstructed(Point, Obstacles) ← member(Point, Obstacles), obstructed(Point, Obstacles),

obstructs(X-Y, obstacle(X-Y, X-Y2|NextWave) ← Y ≤ X, Y ≤ T2.

obstructs(X-Y, obstacle(X-Y, X-Y2|X-Y|NextWave) ← X ≤ X, X < T2.

Problems 16.6 (Continued)

Our final example in this section concerns the keyword in context (KWC) problem. Again, a simple Prolog program, combining nondeterministic and second-order programming, suffices to solve a complex task.

Finding keywords in context involves searching text for all occurrences of a set of keywords, extracting the contexts in which they appear. We consider here the following variant of the general problem: "Given a list of titles, produce a sorted list of all occurrences of a set of keywords in the titles, together with their context."

Sample input to a program is given in Figure 16.3 together with the expected output. The context is described as a rotation of the title with the end of the title indicated by −. In the example, the keywords are algorithmic, debugging, logic, problem, program, programming, prolog, and solving, all the nontrivial words.

The relation we want to compute is kwic(Titles, KwicTitles) where Titles is the list of titles whose keywords are to be extracted, and KwicTitles is the sorted list of keywords in their contexts. Both the input and output titles are assumed to be given as lists of words. A more general program, as a preliminary step, would convert free-form input into lists of words and produce prettier output.

The program is presented in stages. The basis is a nondeterministic specification of a rotation of a list of words. It has an elegant definition in terms of append.
Input: programming in prolog
logic for problem solving
logic programming
algorithmic program debugging

Output: algorithmic program debugging
debugging — algorithmic program,
logic for problem solving
logic programming
problem solving — logic for,
program debugging — algorithmic,
programming in prolog
programming — logic,
prolog — programming in,
solving — logic for problem

Figure 16.3 Input and output for keyword in context (KWIC) problem

rotate(Xs,Ys) — append(As, [Bs | Xs], Xs), append([Bs, As | Ys], Xs).

Declaratively, Ys is a rotation of Xs if Xs is composed of As followed by Bs, and Ys is Bs followed by As.

The next stage of development involves identifying single words as potential keywords. This is done by isolating the word in the first call to append. Note that the new rule is an instance of the previous one:

rotate(Xs,Ys) —
append(As, [Key | Bs], Xs), append([Key | Bs], As, Ys).

This definition also improves the previous attempt by removing the duplicate solution when one of the split lists is empty and the other is the entire list.

The next improvement involves examining a potential keyword more closely. Suppose each keyword Word is identified by a fact of the form keyword(Word). The solutions to the rotate procedure can be filtered so that only words identified as keywords are accepted. The appropriate version is

rotate_and_filter(Xs,Ys) — append(As, [Key | Bs], Xs),
keyword(Key), append([Key | Bs], As, Ys).

Second-Order Programming

kwic(Titles,KWTitles) =
KWTitles is a KWIC index of the list of titles Titles.

kwic(Titles,KWtitles) =
etof(Ys, Xs | member(Xs, Titles),
rotate_and_filter(Xs, Ys)), KWTitles.

rotate_and_filter(Xs,Ys) =
Ys is a rotation of the list Xs such that the first word of Ys is significant and
is inserted after the last word of Xs.

rotate_and_filter(Xs,Ys) —
append(As, [Key | Bs], Xs),
ot insignificant(Key),
append([Key | Bs], ["" | 1As], Ys).

Vocabulary of insignificant words

insignificant(as). insignificant(the).
insignificant(in). insignificant(for).

Testing and data

test_kwic(Books,Kwic) =
titles(Books,Titles), kwic(Titles,Kwic).

titles(lp,[logic_for_problem_solving],
[logic_programming],
[algorithmic_program_debugging],
[programming_in_prolog]).

Program 16.7 Producing a keyword in context (KWIC) index

Operationally rotate_and_filter considers all keys, filtering out the unwanted alternatives. The goal order is important here to maximize program efficiency.

In Program 16.7, the final version, a complementary view to recognizing keywords is taken. Any word Word is a keyword unless otherwise specified by a fact of the form insignificant(Word). Further the procedure is augmented to insert the end-of-title mark —, providing the context information. This is done by adding the extra symbol in the second append call. Incorporating this discussion yields the clause for rotate_and_filter in Program 16.7.

Finally, a set predicate is used to get all the solutions. Quantification is necessary over all the possible titles. Advantage is derived from the
behavior of setof in sorting the answers. The complete program is given as Program 16.7, and is an elegant example of the expressive power of Prolog. The test predicate is test_kwic/2.

Exercises for Section 16.2

(i) Modify Program 16.6 to handle other obstacles than rectangles.
(ii) Adapt Program 16.7 for KWIC so that it extracts keywords from lines of text.
(iii) Modify rotation of a list so that it uses difference-lists.
(iv) Write a program to find a minimal spanning tree for a graph.
(v) Write a program to find the maximum flow in a network design using the Ford-Fulkerson algorithm.

16.3 Other Second-Order Predicates

First-order logic allows quantification over individuals. Second-order logic further allows quantification over predicates. Incorporating this extension into logic programming entails using rules with goals whose predicate names are variables. Predicate names become "first-class" data objects to be manipulated and modified.

A simple example of a second-order relation is the determination of whether all members of a list have a certain property. For simplicity the property is assumed to be described as a unary predicate. Let us define has_property(Xs, P), which is true if each element of Xs has some property P. Extending Prolog syntax to allow variable predicate names enables us to define has_property as in Figure 16.4. Because has_property allows variable properties, it is a second-order predicate. An example of its use is testing whether a list of people Xs is all male with a query has_property(Xs, male).

Another second-order predicate is map_list(Xs, P, Ys). Ys is the map of the list Xs under the predicate P. That is, for each element X of Xs there is a corresponding element Y of Ys such that P(X, Y) is true. The

has_property([X|Xs], P) :- P(X), has_property(Xs, P).
has_property([], P) :- P(X).
map_list([X|Xs], P, [Y|Ys]) :- P(X, Y), map_list(Xs, P, Ys).
map_list([], P, []).

Figure 16.4 Second-order predicates

order of the elements in Xs is preserved in Ys. We can use map_list to rewrite some of the programs of earlier chapters. For example, Program 7.8 mapping English to French words can be expressed as map_list(Words, dict, Note). Like has_property, map_list is easily defined using a variable predicate name. The definition is given in Figure 16.4.

Operationally, allowing variable predicate names implies dynamic construction of goals while answering a query. The relation to be computed is not fixed statically when the query is posed but is determined dynamically during the computation.

Some Prologs allow the programmer to use variables for predicate names, and allow the syntax of Figure 16.4. It is unnecessary to complicate the syntax however. The tools already exist for implementing second-order predicates. One basic relation is necessary, which we call apply; it constructs the goal with a variable functor. The predicate apply is defined by a set of clauses, one for each functor name and arity. For example, for functor foo of arity n, the clause is

apply(foo, X1, ..., Xn) :- foo(X1, ..., Xn).

The two predicates in Figure 16.4 are transformed into Standard Prolog in Program 16.8. Sample definitions of apply clauses are given for the examples mentioned in the text.

The predicate apply performs structure inspection. The whole collection of apply clauses can be generalized by using the structure inspection primitive, univ. The general predicate apply(P, Xs) applies predicate P to a list of arguments Xs:

apply(P, Xs) :- Goal =.. [P|Xs], Goal.

We can generalize the function to be applied from a predicate name, i.e., an atom, to a term parameterized by variables. An example is substituting for a value in a list. The relation substitute/4 from Program 9.3
Chapter 16

Second-Order Programming

Although possible both theoretically and pragmatically, the use of lambda expressions and second-order constructs such as has_property and map_list is not as widespread in Prolog as in functional programming languages such as Lisp. We conjecture that this is a combination of cultural bias and the availability of a host of alternative programming techniques. It is possible that the ongoing work on extending the logic programming model with higher-order constructs and integrating it with functional programming will change the picture.

In the meantime, all-solutions predicates seem to be the main and most useful higher-order construct in Prolog.

Exercise for Section 16.3

(i) Write a program performing beta reduction for lambda expressions.

16.4 Background

Set predicates are a powerful extension to Prolog. They can be used inefficiently) to implement negation as failure and meta-logical type predicates (Kahn, 1984). If a goal G has no solutions, which is determined by a predicate such as findall, then not G is true. The predicate var(X) is implemented by testing whether the goal X=1;X=2 has two solutions. Further discussion of such behavior of set predicates and a survey of different implementations of set predicates can be found in Naish (1985a).

Further description of the Lee algorithm and the general routing problem for VLSI circuits can be found in textbooks on VLSI, for example, Breuer and Carter (1983). A neat graphic version of Program 16.6 has been written by Dave Broderick.
Recent logic programming research has focused somewhat more on higher-order logic programming. Approaches of note are Lambda-Prolog (Miller and Nadathur, 1986) and HiLog (Chen et al., 1989).

KWIC was posed as a benchmark for high-level programming languages by Perls, and was used to compare several languages. We find the Prolog implementation of it perhaps the most elegant of all.

Our description of lambda expressions is modeled after Warren (1982a). Predicates such as apply and map_list were part of the utilities package at the University of Edinburgh. They were fashionable for a while but fell out of favor because they were not compiled efficiently, and no source-to-source transformation tools were available.

17 Interpreters

Meta-programs treat other programs as data. They analyze, transform, and interpret other programs. The writing of meta-programs, or meta-programming, is particularly easy in Prolog because of the equivalence of programs and data; both are Prolog terms. We have already presented some examples of meta-programs, namely, the editor of Program 12.5 and the shell process of Program 12.6. This chapter covers interpreters, an important and useful class of meta-programs, and Chapter 18 discusses program transformation.

17.1 Interpreters for Finite State Machines

The sharp distinction between programs and data present in most computer languages is lacking in Prolog. The equivalence of programs and data greatly facilitates the writing of interpreters. We demonstrate the facility in this section by considering the basic computation models of computer science. Interpreters for the various classes of automata are very easily written in Prolog.

It is interesting to observe that the interpreters presented in this section are a good application of nondeterministic programming. The programs that are presented illustrate typical examples of don’t-know nondeterminism. The same interpreter can execute both deterministic and nondeterministic automata because of the nondeterminism of Prolog.

Definition

A (nondeterministic) finite automaton, abbreviated N DFA, is a 5-tuple $(Q, \Sigma, \delta, I, F)$, where Q is a set of states, Σ is a set of symbols, δ is a
accept(Xs) → The string represented by the list Xs is accepted by
the N DFA defined by initial, delta, and final.
accept(εs) → initial, accept(εs).
accept(εs, q0) → δ(q0, q1), accept(εs, q1).
accept(ε, q0) → final(q0).

Program 17.1 An interpreter for a nondeterministic finite automaton
(N DFA)

mapping from \(Q \times \Sigma \) to \(Q \), \(I \) is an initial state, and \(F \) is a set of final
states. If the mapping is a function, then an N DFA is deterministic.

A finite automaton can be specified as a Prolog program by three
collections of facts. The predicate initial/1 is true if \(q \) is the initial state.
The predicate final/1 is true if \(q \) is a final state. The most interesting is
\(\delta \) which is true if the N DFA changes from state \(q \) to state
\(q' \) on receipt of symbol \(X \). Note that both the set of states and the set of
symbols can be defined implicitly as the constants that appear in the
\(\text{initial} \), \(\text{final} \), and \(\delta \) predicates.

An N DFA accepts a string of symbols from the alphabet \(\Sigma^* \). If \(\delta \),
the N DFA ends up in one of the final states. An interpreter for an N DFA must
determine whether it accepts given strings of symbols. Program 17.1 is
an interpreter. The predicate accept(Xs) is true if the N DFA defined
by the collection of initial, final, and \(\delta \) facts accepts the string
represented as the list of symbols \(Xs \).

Figure 17.1 shows a deterministic automaton that accepts the language
\((ab)^* \). There are two states, \(q0 \) and \(q1 \). If in state \(q0 \), an \(a \) is received, the
automaton moves to state \(q1 \). The automaton moves back from \(q1 \) to \(q0 \)
if a \(b \) is received. The initial state is \(q0 \), and \(q0 \) is also the single final
state.

To use the interpreter, a specific automaton must be given. Program
17.2 is the realization in Prolog of the automaton in Figure 17.1. The
combination of Programs 17.1 and 17.2 correctly accepts strings of
alternating \(a \)'s and \(b \)'s.

If an arc from \(q0 \) to itself labeled \(a \) is added to the automaton in
Figure 17.1, we get a new automaton that recognizes the language \((ab)^* \).
accept(\(X\)) —
The string represented by the list \(X\) is accepted by
the NPDA defined by initial/1, delta/5, and final/1.
accept(\(X\)) — initial(\(Q\)), accept(\(X\), \(Q\), \(1\)).
accept(\(X\)\(X\)) — delta(\(Q\), \(X\), \(S\), \(Q\), \(1\)), accept(\(X\), \(Q\), \(1\)).
accept(\(X\)) — final(\(Q\)).

Program 17.3 An interpreter for a nondeterministic pushdown automaton (NPDA)

initial(\(q_0\)), final(\(q_1\)).
delta(\(q_0, X, S, q_0, [X[5]]\)).
delta(\(q_0, X, S, q_1, [X[5]]\)).
delta(\(q_0, X, S, q_1, S\)).
delta(\(q_1, X, [X[5]], q_1, S\)).

Program 17.4 An NPDA for palindromes over a finite alphabet

accepts the string represented as the list of symbols \(X\). The interpreter
is very similar to the interpreter of an NFA given as Program 17.1. The
only change is the explicit manipulation of the stack by the delta predic-
cate.

A particular example of an NPDA is given as Program 17.4. This au-
tomaton accepts palindromes over a finite alphabet. A palindrome is a
nonempty string that reads the same backwards as forwards. Example pal-
dromes are noon, madam, and gneqeg. Again, the automaton is
specified by initial, final, and delta facts, and the sets of symbols
being defined implicitly. The automaton has two states: \(q_0\), the initial
state when symbols are pushed onto the stack, and \(q_1\), a final state when
symbols are popped off the stack and compared with the symbols in the
input stream. When to stop pushing and start popping is decided non-
deterministically. There are two delta facts that change the state from \(q_0\)
to \(q_1\) to allow for palindromes of both odd and even lengths.

Programs 17.1 and 17.2 can be combined into a single program for
recognizing the language \(a(b)^*\). Similarly, Programs 17.3 and 17.4 can be
combined into a single program for recognizing palindromes. A program
that can achieve this combination is given in Chapter 18.

It is straightforward to build an interpreter for a Turing machine writ-
ten in a similar style to the interpreters in Programs 17.1 and 17.3. This
is posed as Exercise (iii) at the end of this section. Building an interpreter
for Turing machines shows that Prolog has the power of all other known
computation models.

Exercises for Section 17.1
(i) Define an NFA that accepts the language \(a(b)^*c\).
(ii) Define an NPDA that accepts the language \(a(b)^*b^*\).
(iii) Write an interpreter for a Turing machine.

17.2 Meta-Interpreters

We turn now to a class of especially useful interpreters. A meta-inter-
preter for a language is an interpreter for the language written in the
language itself. Being able to write a meta-interpreter easily is a very pow-
erful feature of a programming language. It gives access to the computa-
tion process of the language and enables the building of an integrated
programming environment. The examples in the rest of this chapter
demonstrate the potential of meta-interpreters and the ease with which
they can be written. In this section, we also examine issues in writing
meta-interpreters.

Throughout the remainder of this chapter, the predicate \texttt{solve} is used
for a meta-interpreter. A suitable relation scheme is as follows. The rela-
tion \texttt{solve(Goal)} is true if \texttt{Goal} is true with respect to the program
being interpreted.

The simplest meta-interpreter that can be written in Prolog exploits the
meta-variable facility. It is defined by a single clause:

\[
solve(A) \rightarrow A.
\]

This trivial interpreter is only useful as part of a larger program. For
example, a version of the trivial interpreter forms the basis for the in-
teractive shell given as Program 12.6 and the logging facility given as
Program 12.7. In general, as we suggest here and see in more detail in
solve(Goal) :-
 Goal is true given the pure Prolog program defined by clause/2.

solve(true) :-
 solve(A, B).

solve(A) :-
 clause(A, B), solve(B).

Program 17.5 A meta-interpreter for pure Prolog

Sections 17.3 and 17.4, meta-interpreters are useful and important because of the easily constructed enhancements.

The best known and most widely used meta-interpreter models the computation model of logic programs as goal reduction. The three clauses of Program 17.5 interpret pure Prolog programs. This meta-interpreter, called vanilla, together with its enhancements, is the basis of the rest of this section and Section 17.3.

The interpreter in Program 17.5 can be given a declarative reading. The solve fact states that the empty goal, represented by the constant true, is true. The first solve rule states that a conjunction (A, B) is true if A is true and B is true. The second solve rule states that a goal A is true if there is a clause A ← B in the interpreted program such that B is true.

We also give a procedural reading of the three clauses in Program 17.5. The solve fact states that the empty goal, represented in Prolog by the atom true, is solved. The next clause concerns conjunctional goals. It reads: "To solve a conjunction (A, B), solve A and solve B." The general case of goal reduction is covered by the final clause. To solve a goal, choose a clause from the program whose head unifies with the goal, and recursively solve the body of the clause.

The procedural reading of Prolog clauses is necessary to demonstrate that the meta-interpreter of Program 17.5 indeed reflects Prolog's choices of implementing the abstract computation model of logic programming. The two choices are the selection of the leftmost goal as the goal to reduce, and sequential search and backtracking for the nondeterministic choice of the clause to use to reduce the goal. The goal order of the body of the solve clause handling conjunctions guarantees that the leftmost goal in the conjunction is solved first. Sequential search and backtracking comes from Prolog's behavior in satisfying the clause goal.

The hard work of the interpreter is borne by the third clause of Program 17.5. The call to clause performs the unification with the heads

Figure 17.2 Tracing the meta-interpreter

of the clauses appearing in the program. It is also responsible for giving different solutions on backtracking. Backtracking also occurs in the conjunctive rule reverting from B to A.

Tracing the meta-interpreter of Program 17.5 solving a goal is instructive. The trace of answering the query solve(member(X, [a, b, c])) with respect to Program 3.12 for member is given in Figure 17.2.

The vanilla meta-interpreter inherits Prolog's representation of clauses using the system predicate clause. Alternative representations of clauses are certainly possible, and indeed have been used by alternative Prologs. Lists are one possible representation. The clause A ← B₁, B₂, ..., Bₙ can be represented by the clause rule(A, [B₁, ..., Bₙ]).
Chapter 17

solve(Goal) :-
 Goal is true given the pure Prolog program defined by clause/2.
solve(Goal) :- solve(Goal, []).
solve([], []).
solve([], [Goal]) :- solve(Goal).
solve([Goal], [Goals]) :- append(Goals, [Goal]), solve(A,Goals).
solve(A,Goals) :- rule(A,B), solve(B,Goals).

Program 17.6 A meta-interpreter for pure Prolog in continuation style

this representation, the empty list represents the empty goal and list construction represents conjunction. This representation is used in Program 17.6.

A different representation imposes a different form on the meta-interpreter, as illustrated in Program 17.6. Unlike Program 17.5, this version of the vanilla meta-interpreter makes explicit the remaining goals in the resolvent. Enhancements can be written to exploit the fact that the resolvent is accessible during the computation, for example, allowing a more sophisticated computation rule. The behavior of Program 17.6 can be considered as being in continuation style promoted by languages such as Scheme.

Differences in meta-interpreters can be characterized in terms of their granularity, that is the chunks of the computation that are made accessible to the programmer. The granularity of the trivial one-clause meta-interpreter is too coarse. Consequently there is little scope for applying the meta-interpreter. It is possible, though not as easy, to write a meta-interpreter that models unification and backtracking. The granularity of such a meta-interpreter is very fine. Working at this fine level is usually not worthwhile. The efficiency loss is too great to warrant the extra applications. The meta-interpreter in Program 17.5, at the clause reduction level, has the granularity most suited for the widest range of applications.

The vanilla meta-interpreter must be extended to handle language features outside pure Prolog. Builtin predicates are not defined by clauses in the program and need different treatment. The easiest way to incorporate builtin predicates is to use the meta-variable facility to call them directly. A table of builtin predicates is necessary. In this chapter, we assume a table of facts of the form builtin(Predicate) for each builtin predicate. Figure 17.3 gives part of that table. A table of builtin predicates is provided in some Prologs by another name but is not present in Standard Prolog.

The clause solve(A) = builtin(A), A can be added to the meta-interpreter in Program 17.5 to correctly handle builtin predicates. The resulting program handles four disjoint cases, one per clause, for solving goals: the empty goal, conjunctive goals, builtin goals, and user-defined goals. For compatibility with a number of Prolog systems, the meta-interpreters in the rest of this section contain cuts to indicate that the clauses are mutually exclusive.

The extra solve clause makes the behavior of the builtin predicates invisible to the meta-interpreter. User-defined predicates that one wants to make invisible can be handled similarly with a single clause. Conversely, there are occasions when builtin predicates for negation and second-order programming should be made visible.

The vanilla meta-interpreter needs to be extended to handle cuts correctly. A naive incorporation of cuts treats them as a builtin predicate, effectively adding a clause solve() = 1. This clause does not achieve the correct behavior of cut. The cut in the clause commits to the current solve clause rather than pruning the search tree.

To achieve correct behavior of cut in a meta-interpreter, one needs to understand scope, that is to which clause the cut commits. The scope of cut, as described in Chapter 11, is the clause in which the cut is a goal in the body. The scope of cut when it is contained within a meta-logical builtin predicate such as conjunction and disjunction is less distinct and varies in different Prologs. If a cut is part of a disjunction, should execution of the cut commit to the current disjunct or to the clause in which the disjunction is embedded? Handling cut correctly in a meta-interpreter is tricky and usually relies on technical details of the scope of cut in a particular implementation of Prolog. Incorporating cuts within
solve_trace(Goal) :- Goal is true given the Prolog program defined by clause/2.
The program traces the proof by side effects.
solve_trace(Goal) :- solve_trace(Goal, 0).
solve_trace(true, Depth) :- !.
solve_trace((A, B), Depth) :- !, solve_trace(A, Depth), solve_trace(B, Depth).
solve_trace(A, Depth) :-
 builtin(A, 1, A, display(A, Depth), nl).
solve_trace(A, Depth) :-
 clause(A, B), display(A, Depth), nl, Depth1 is Depth + 1.
solve_trace(B, Depth1).
display(A, Depth) :-
 Spacing is 3*Depth, put_spaces(Spacing), write(A).
put_spaces(N) :-
 between(1, N, I), put_char(' ', I), fail.
put_spaces(0).
between(1, N, 1) :- See Program 8.5.

Program 17.7 A tracer for Prolog

Meta-interpreters has been widely studied, and references to solutions are given in Section 17.5.

We apply meta-interpreters to develop a simple tracer. Program 17.7 handles success branches of computations and does not display failure nodes in the search tree. It is capable of generating the traces presented in Chapter 6.

The basic predicate is solve_trace(Goal, Depth), where Goal is solved at some depth. The starting depth is assumed to be 0. The first solve_trace/2 clause in Program 17.7 states that the empty goal is solved at any depth. The second clause indicates that each goal in a conjunction is solved at the same depth. The third clause handles builtins. The final solve_trace/2 clause matches the goal with the head of a program clause, displays the goal, increments the depth, and solves the body of the program clause at the new depth.

The predicate display(Goal, Depth) is an interface for printing the traced goal. The second argument, Depth, controls the amount of indentation of the first argument. Goal Level of indentation correlates with depth in the proof tree.

Interpreters

solve(Goal, Tree) :-
 Tree is a proof tree for Goal given the program defined by clause/2.
solve(true, true) :- !.
solve((A, B), (ProofA, ProofB)) :-
 !, solve(A, ProofA), solve(B, ProofB).
solve(A, (builtins)) :- builtins(A, 1, A).
solve(A, (A, Proof)) :- clause(A, B), solve(B, Proof).

Program 17.8 A meta-interpreter for building a proof tree

There is subtlety in the goal order of the clause

solve_trace(A, Depth) :-
 clause(A, B), display(A, Depth), nl, Depth1 is Depth + 1,
solve_trace(B, Depth1).

The display goal is between calls to clause and solve_trace, ensuring that the goal is displayed each time Prolog backtracks to choose another clause. If the clause and display goals are swapped, only the initial call of the goal is displayed.

Using Program 17.7 for the query solve_trace(append(Xs, Ys, [a, b, c])) with Program 3.15 for append generates a trace like the one presented in Section 6.1. The output messages and semicolons for alternative solutions are provided by the underlying Prolog. There is only one difference from the trace in Figure 6.2. The unifications are already performed. Separating out unifications requires explicit representation of unification and is considerably harder.

A simple application of meta-interpreters constructs a proof tree while solving a goal. The proof tree is built top-down. A proof tree is essential for the applications of debugging and explanation in the next two sections.

The basic relation is solve(Goal, Tree), where Tree is a proof tree for the goal Goal. Proof trees are represented by the structure Goal -- Proof. Program 17.8 implements solve/2 and is a straightforward enhancement of the vanilla meta-interpreter. We leave as an exercise for the reader giving a declarative reading of the program.

Here is an example of using Program 17.8 with Program 1.2. The query solve(son(lot, haram), Proof)? has the solution
solve(\text{Goal}, \text{Certainty}) \rightarrow
\begin{align*}
\text{Certainty} \text{ is our confidence that } \text{Goal} \text{ is true.} \\
n &= \text{solve(true, t) \rightarrow t.} \\
n &= \text{solve(A,B,C) \rightarrow} \\
& \quad \text{1, solve(A,C1), solve(B,C2), minimum(C1,C2,C).} \\
n &= \text{solve(A,1) \rightarrow \text{builtin(A)}, \text{t}, A.} \\
n &= \text{solve(A,C) \rightarrow \text{clause}_{\text{cf}}(A,B,C1), \text{solve}(B,C2), \text{C is C1 \times C2.}} \\
n &= \text{minimum}(X,Y,Z) \rightarrow \text{See Program 11.3.} \\
\end{align*}

\textbf{Program 17.9} A meta-interpreter for reasoning with uncertainty

\text{Proof} = (\text{son}(\text{lot}, \text{haram}) \rightarrow \\
((\text{father}(\text{haran}, \text{lot}) \rightarrow \text{true}), \\
(\text{male}(\text{lot}) \rightarrow \text{true})).)

The query solve(\text{son}(X, \text{haram}), \text{Proof})? has the solution \text{X=lot} and the same value for \text{Proof}.

Our next enhancement of the vanilla meta-interpreter incorporates a mechanism for uncertainty reasoning. Associated with each clause is a \textit{certainty factor}, which is a positive real number less than or equal to 1.

A basic program with certainties is a set of ordered pairs \((\text{Clause}, \text{Factor})\), where \text{Clause} is a clause and \text{Factor} is a certainty factor.

The simple meta-interpreter in Program 17.9 implements the uncertainty reasoning mechanism. The program is a straightforward enhancement of the vanilla meta-interpreter. The top-level relation is solve(\text{Goal}, \text{Certainty}), which is true when \text{Goal} is satisfied with certainty \text{Certainty}.

The meta-interpreter computes the combination of certainty factors in a conjunction as the minimum of the certainty factors of the conjuncts. Other combining strategies could be accommodated just as easily. Program 17.9 assumes that clauses with certainty factors are represented using a predicate \text{clause}_{\text{cf}}(A,B,C,F).

Program 17.9 can be enhanced to prune computations that do not meet a desired certainty threshold. An extra argument constituting the value of the cutoff threshold needs to be added. The enhanced program is given as Program 17.10. The new relation is solve(\text{Goal}, \text{Certainty}, \text{Threshold}).

The threshold is used in the fourth clause in Program 17.10. The certainty of any goal must exceed the current threshold. If the threshold is exceeded, the computation continues. The new threshold is the quotient of the previous threshold by the certainty of the clause.

\textbf{Exercises for Section 17.2}

(i) Write a meta-interpreter to count the number of times a procedure is called in a successful computation.

(ii) Write a meta-interpreter to find the maximum depth reached in a computation.

(iii) Extend Program 17.6 to give a tracer and build a proof tree.

(iv) Extend Program 17.7 for solve_trace/2 to print out failed goals.

(v) Modify Program 17.8 to use a different representation for a proof tree.

\textbf{17.3 Enhanced Meta-Interpreters for Debugging}

Debugging is an essential aspect of programming, even in Prolog. The promise of high-level programming languages is not so much in the prospect for writing bug-free programs but in the power of the computerized tools for supporting the process of program development. For reasons of bootstrapping and elegance, these tools are best implemented.
in the language itself. Such tools are programs for manipulating, analyzing, and simulating other programs, or in other words, meta-programs.

This section shows meta-programs for supporting the debugging process of pure Prolog programs. The reason for restricting ourselves to the pure part is clear: the difficulties in handling the impure parts of the language.

To debug a program, we must assume that the programmer has some intended behavior of the program in mind, and an intended domain of application on which the program should exhibit this behavior. Given those, debugging consists of finding discrepancies between the program's actual behavior and the behavior the programmer intended. Recall the definitions of an intended meaning and a domain from Section 5.2. An intended meaning M of a pure Prolog program is the set of ground goals on which the program should succeed. The intended domain D of a program is a domain on which the program should terminate. We require the intended meaning of a program to be a subset of the intended domain.

We say that A_i is a solution to a goal A if the program returns on a goal A its instance A_i. We say that a solution A is true in an intended meaning M if every instance of A is in M. Otherwise it is false in M.

A pure Prolog program can exhibit only three types of bugs, given an intended meaning and an intended domain. When invoked on a goal A in the intended domain, the program may do one of three things:

1. Fail to terminate
2. Return some false solution $A \theta$
3. Fail to return some true solution $A \theta$

We describe algorithms for supporting the detection and identification of each of these three types of bugs.

In general, it is not possible to detect if a Prolog program is non-terminating: the question is undecidable. Second best is to assign some a priori bound on the running time or depth of recursion of the program, and abort the computation if the bound is exceeded. It is desirable to save part of the computation to support the analysis of the reasons for nontermination. The enhanced meta-interpreter shown in Program 17.11 achieves this. It is invoked with a call solve(A,D,Overflow), where A is an initial goal, and D an upper bound on the depth of recursion. The call succeeds if a solution is found without exceeding the predefined depth of recursion, with $Overflow$ instantiated to $no_overflow$. The call also succeeds if the depth of recursion is exceeded, but in this case $Overflow$ contains the stack of goals, i.e., the branch of the computation tree, which exceeded the depth-bound D.

Note that as soon as a stack overflow is detected, the computation returns, without completing the proof. This is achieved by $solve$, $conjunction$ and $return_overflow$.

For example, consider Program 17.12 for insertion sort. When called with the goal $solve(isort([2,2],Xs),6,Overflow)$, the solution returned is:
isort(Xs, Ys) :-
Ys is an ordered permutation of Xs. Nontermination program.

\text{isort}([1, 1, 1], [1, 1, 1]).
isort(Xs, Ys) :- isort(Xs, Zs), insert(Zs, Ys).
isort([], []).
insert(X, Ys, Ys) :- X < Y.
insert(X, Ys, [Y|Zs]) :- X > Y, insert(Y, X, Zs).
insert(X, [X], []).

\text{Program 17.12} A nonterminating insertion sort

\[Xs = [2, 2, 2, 2, 2, 2]. \]
\[\text{Overflow} = \text{overflow}([\]
\quad \text{isort([2, 2], [2, 2, 2, 2, 2, 2]),}
\quad \text{insert(2, [2], [2, 2, 2, 2, 2, 2]),}
\quad \text{insert(2, [2], [2, 2, 2, 2, 2]),}
\quad \text{insert(2, [2], [2, 2, 2]),}
\quad \text{insert(2, [2], [2, 2]),}
\quad \text{insert(2, [2], [2, 2])}). \]

The overflowed stack can be further analyzed, upon return, to diagnose
the reason for nontermination. This can be caused, for example, by a
loop, i.e., by a sequence of goals \(G_1, G_2, \ldots, G_n \), on the stack, where \(G_1 \)
and \(G_n \) are called with the same input, or by a sequence of goals that calls
each goal with increasingly larger inputs. The first situation occurs in the
preceding example. It is clearly a bug that should be fixed in the program.
The second situation is not necessarily a bug, and knowing whether the
program should be fixed or whether a larger machine should be bought
in order to execute it requires further program-dependent information.

The second type of bug is returning a false solution. A program can
return a false solution only if it has a false clause. A clause \(C \) is false
with respect to an intended meaning \(M \) if it has an instance whose body
is true in \(M \) and whose head is false in \(M \). Such an instance is called a
counterexample to \(C \).

Consider, for example, Program 17.13 for insertion sort. On the goal
isort([3, 2, 1], Xs) it returns the solution isort([3, 2, 1], [3, 2, 1])
which is clearly false.

\text{Interpreters}

isort(Xs, Ys) :-
Ruby insertion sort.
isort([X|Ys], Ys) :- isort(Xs, Zs), insert(Zs, Ys),
isort([], []).
isort([X|Ys], Ys) :- X > Y.
isort([X|Ys], [Y|Zs]) :- X > Y, insert(X, Ys, Zs).
isort([X|Ys], []).

\text{Program 17.13} An incorrect and incomplete insertion sort

The false clause in the program is

\[\text{insert}(X, [Y|Ys], [X, Y|Ys]) \Rightarrow X \neq Y. \]

and a counterexample to it is

\[\text{insert}(2, [1], [2, 1]). \]

Given a ground proof tree corresponding to a false solution, one can
find a false instance of a clause as follows: Traverse the proof tree in
postorder. Check whether each node in the proof tree is true. If a false
node is found, the clause whose head is the false node and whose body
is the conjunction of its sons is a counterexample to a clause in the
program. That clause is false and should be removed or modified.

The correctness of this algorithm follows from a simple inductive
proof. The algorithm is embedded in an enhanced meta-interpreter,
shown as Program 17.14.

The algorithm and its implementation assume an oracle that can an-
swer queries concerning the intended meaning of the program. The
oracle is some entity external to the diagnosis algorithm. It can be the
programmer, who can respond to queries concerning the intended mean-
ing of the program, or another program that has been shown to have the
same meaning as the intended meaning of the program under de-
bugging. The second situation may occur in developing a new version of
a program while using the older version as an oracle. It can also occur
when developing an efficient program (e.g., quicksort), given an ineffi-
cient executable specification of it (i.e., permutation sort), and using the
specification as an oracle.
false_solution(A, Clause) :-
 if A is a provable false instance, then Clause is a false clause in the program. Bottom-up algorithm.
false_solution(A, Clause) :-
 solve(A, Proof),
 false_clause(Proof, Clause).
solve(Goal, Proof) :- see Program 17.8.
false_clause(true, ok).
fraction(A, B, Clause) :-
 false_clause(A, Clause),
 check_conjunction(Clause, A, B, Clause).
fraction(A, B, Clause) :-
 false_clause(B, Clause),
 check_conjunction(Clause, A, B, Clause).
check_conjunction(Clause, A, B, Clause) :-
 check_clauses(Clause, A, B, Clause).
check_clauses(Clause, A, B) :-
 check_clause(Clause, A, Clauses),
 check_clause(Clause, B, Clauses).
check_clause(Clause, A) :-
 query_goal(A, Answer),
 check_answer(Answer, A, Clauses).
check_answer(true, A, B, Clauses) :-
 check_clause(Clause, A, Clauses).
check_clause(Clause, A, B, Clauses) :-
 query_goal(A, Answer),
 not builtin(Answer),
 writeln('Is the goal ', Goal, ', true?'),
 read(Answer).

Program 17.14 Bottom-up diagnosis of a false solution

Agents

When invoked with the goal false_solution(isort([3,2,1],X),C)
the algorithm exhibits the following interactive behavior:
false_solution(isort([3,2,1],X),C)?
Is the goal isort([] , []) true?
true.
Is the goal insert(1,[],[1]) true?
true.
Is the goal isort([1],[1]) true?
true.
Is the goal insert(2,[1],[2,1]) true?
false.
X = [3,2,1],
C = insert(2,[1],[2,1]) = 2 > 1.

This returns a counterexample to the false clause.
The proof tree returned by solve/2 is not guaranteed to be ground,
but in contrast to the assumption of the algorithm. However, a ground proof
tree can be generated by either instantiating variables left in the proof
tree to arbitrary constants before activating the algorithm, or by request-
ing the oracle to instantiate the queried goal when it contains variables.
Different instances might imply different answers. Since the goal of this
algorithm is to find a counterexample as soon as possible, the oracle
should instantiate the goal to a false instance if it can.
One of the main concerns with diagnosis algorithms is improving their
query complexity, i.e., reducing the number of queries they require to
diagnose the bug. Given that the human programmer may have to answer
the queries, this desire is understandable. The query complexity of the
preceding diagnosis algorithm is linear in the size of the proof tree.
There is a better strategy, whose query complexity is linear in the depth
of the proof tree, not its size. In contrast to the previous algorithm,
which is bottom-up, the second algorithm traverses the proof tree top-
down. At each node it tries to find a false son. The algorithm recurses
with any false son found. If there is no false son, then the current node
constitutes a counterexample, as the goal at the node is false, and all its
sons are true.
The implementation of the algorithm is shown in Program 17.15. Note
the use of cut to implement implicit negation in the first clause of false-
goal/2 and the use of query_goal/2 as a test predicate.
false_solution(A, Clause) ←
If A is a provable false instance, then Clause
is a false clause in the program. Top-down algorithm.

false_solution(A, Clause) ←
solve(A, Proof),
false_goal(Proof, Clause).
solve_goal(Proof) ← See Program 17.8.

false_goal((A & B), Clause) ←
false_conjunction(B, Clause), 1.
false_goal((A & B), (A & B)) ←
extract_body(B, B1).
false_conjunction((A & B), Clause) ←
query_goal(A, false), 1,
false_goal((A & B), Clause).
false_conjunction((A & B), Clause) ←
query_goal(A, false), 1,
false_goal((A & B), Clause).
false_conjunction((A & A), Clause) ←
false_conjunction(A, Clause).
extract_body(Tree, Body) ← See Program 17.14.

Program 17.15 Top-down diagnosis of a false solution

Compare the behavior of the bottom-up algorithm with the following trace of the interactive behavior of Program 17.15:

false_solution(insert([3,2,1], X), C)?
Is the goal insert([2,1],[2,1]) true? false.
Is the goal insert([1,1],[1,1]) true? true.
Is the goal insert([2,1],[2,1]) true? false.
X = [3,2,1],
C = insert([2,1],[2,1]) = 2 ≥ 1.

There is a diagnosis algorithm for false solutions with an even better query complexity, called divide-and-query. The algorithm progresses by splitting the proof tree into two approximately equal parts and querying

the node at the splitting point. If the node is false, the algorithm is applied recursively to the subtree rooted by this node. If the node is true, its subtree is removed from the tree and replaced by true, and a new middle point is computed. The algorithm can be shown to require a number of queries logarithmic in the size of the proof tree. In case of close-to-linear proof trees, this constitutes an exponential improvement over both the top-down and the bottom-up diagnosis algorithms.

The third possible type of bug is a missing solution. Diagnosing a missing solution is more difficult than fixing the previous bugs. We say that a clause covers a goal A with respect to an intended meaning M if it has an instance whose head is an instance of A and whose body is in M.

For example, consider the goal insert([2,1,3], X). It is covered by the clause

insert([X,Y], [X,Y]) ← X ≥ Y.

of Program 17.13 with respect to the intended meaning M of the program, since in the following instance of the clause

insert([2,1,3],[1,2,3]) ← 2 ≥ 1.

the head is an instance of A and the body is in M.

It can be shown that if a program P has a missing solution with respect to an intended meaning M, then there is a goal A in M that is not covered by any clause in P. The proof of this claim is beyond the scope of the book. It is embedded in the diagnosis algorithm that follows.

Diagnosing a missing solution imposes a heavier burden on the oracle. Not only does it have to know whether a goal has a solution but it must also provide a solution, if it exists. Using such an oracle, an uncovered goal can be found as follows.

The algorithm is given a missing solution, i.e., a goal in the intended meaning M of the program P, for which P fails. The algorithm starts with the initial missing solution. For every clause that unifies with it, it checks, using the oracle, if the body of the clause has an instance in M. If there is no such clause, the goal is uncovered, and the algorithm terminates. Otherwise the algorithm finds a goal in the body that fails. At least one of them should fail, or else the program would have solved the body, and hence the goal, in contrast to our assumption. The algorithm is applied recursively to this goal.
missing_solution(A,Goal) :-
 if A is a nonprovable true ground goal, then Goal is a true ground goal that is uncovered by the program.
missing_solution((A,B),Goal) == 1,
 (not A, missing_solution(A,Goal);
4, missing_solution(B,Goal)).
missing_solution(A,Goal) :-
 clause(A,B),
 query_clause(A->B), 1,
 missing_solution(B,Goal).
missing_solution(A,A) :-
 not system(A).
query_clause(Clause) :-
 writeln(['Enter a true ground instance of ',Clause,
 'if there is such, or 'no otherwise']),
 read(answer),
 check_answer(answer,Clause).
check_answer(no,Clause) == 1, fail.
check_answer(Clause,Clause) == 1.
check_answer(answer,Clause) :-
 write('Illegal answer!'),
 1, query_clause(Clause).

Program 17.16 Diagnosing missing solution

An implementation of this algorithm is shown in Program 17.16. The program attempts to trace the failing path of the computation and to find a true goal which is uncovered. Following is a session with the program:
missing_solution(isort([2,1,3],[1,2,3],C)?
Enter a true ground instance of
(isort([2,1,3],[1,2,3]) ->
 isort([1,3],Xs),insert(2,Xs,[1,2,3]))
if there is such, or 'no' otherwise
(isort([2,1,3],[1,2,3]) ->
 isort([1,3],[1,3]),insert(2,[1,3],[1,2,3]))
if there is such, or 'no' otherwise

17.4 An Explanation Shell for Rule-Based Systems

The final section of this chapter presents an application of interpreters to rule-based systems. An explanation shell is built that is capable of explaining why goals succeed and fail and that allows interaction with the user during a computation. The shell is developed with the methodology of stepwise enhancement introduced in Section 13.3.

The skeleton interpreter in this section is written in the same style as the vanilla meta-interpreter and has the same granularity. It differs in two important respects. First, it interprets a rule language rather than Prolog clauses. Second, the interpreter has two levels to allow explanation of failed goals.

Before describing the interpreter, we give an example of a toy rule-based system written in the rule language. Program 17.17 contains some rules for placing a dish on the correct rack in an oven for baking. Facts have the form fact(Goal). For example, the first fact in Program 17.17 states that dish1 is of type bread.

Rules have the form rule(Head,Body,Bake), where Head is a goal, Body is (possibly) a conjunction of goals, and Bake is the name of the rule. Individual goals in the body are placed inside a unary postfix function is_true, for reasons to be explained shortly. Conjunctions in the body are denoted by the binary infix operator & which differs from Prolog syntax. Operator declarations for & and is_true are given in Program 17.17. To paraphrase a sample rule, rule place1 in Program 17.17 states:
Rule base for a simple expert system for placing dishes in an oven. The predicates used in the rules are

place_in_oven(Dish_Rack) →
 Dish should be placed in the oven at level Rack for baking.

pastry(Dish) → Dish is a pastry.

main_meal(Dish) → Dish is a main meal.

slow_cooker(Dish) → Dish is a slow cooker.

type(Dish, Type) → Dish is best described as Type.

type(Dish, Size) → The size of Dish is Size.

The rules have the form rule(Head, Body, Name).

:: op(40, sty, #).
:: op(30, rf, is_true).

rule(place_in_oven(Dish,top),
 pastry(Dish) is_true & size(Dish,small) is_true,place).

rule(place_in_oven(Dish,middle),
 pastry(Dish) is_true & size(Dish,big) is_true,place2).

rule(place_in_oven(Dish,bottom), slow_cooker(Dish) is_true,place3).

rule(paste(Dish), type(Dish,case) is_true, pastry1).

rule(paste(Dish), type(Dish,bread) is_true, pastry2).

rule(main_meal(Dish), type(Dish,meat) is_true, main_meal).

rule(slow_cooker(Dish), type(Dish,milk_pudding) is_true, slow_cooker).

fact(type(Dish,bread)).

fact(size(Dish,big)).

Program 17.17 Oven placement rule-based system

"A dish should be placed on the top rack of the oven if it is a pastry and its size is small."

Why use a separate rule language when the syntax is so close to Prolog?

The first rule, place1, could be written as follows.

place_in_oven(Dish, top) → pastry(Dish), size(Dish, small).

There are two main reasons for the rule language. The first is pedagogical. The rule interpreter is nearer, avoiding complicated details associated with Prolog’s impurities such as the behavior of built-in predicates when called by clause. Avoiding Prolog’s impurities also makes it easier to partially evaluate the interpreter, as described in Chapter 18.

Interpreters

monitor(Goal) →
 Succeeds if a result of yes is returned from solving Goal
 at the solve level, or when the end of the computation is reached.

monitor(Goal) ← solve(Goal, Result), filter(Result).

filter(yes).
% filter(no) → fail.

solve(Goal, Result) ←
 Given a set of rules of the form rule(A,B,Name), Goal has
 Result yes if it follows from the rules and no if it does not.

solve(A, yes) ← fact(A).

solve(A, Result) ← rule(A, B, Name), solve_body(B, Result).

solve(A, no).

solve_body(A, Result) ←
 solve(A, Result1), solve_and(Result2, B, Result).

solve_body(A, Result) ← solve(A, Result).

solve_and(no, A, no).

solve_and(yes, B, Result) ← solve(B, Result).

Program 17.18 A skeleton two-level rule interpreter

The second reason is to show by example that the best way to develop a rule-based application in Prolog is to design a rule language on top of Prolog. Although the rule language is largely syntactic sugar, experience has shown that users of a rule-based system are happier working in a customized rule language than in Prolog. Rule languages are straightforward to provide on top of Prolog.

We now start our presentation of the explanation shell. According to the method of stepwise enhancement, the skeleton constituting the basic control flow of the final program is presented first. Program 17.18 contains the skeleton of the rule interpreter. The principal requirement that shaped the skeleton is the desire to handle both successful and failed computations in one interpreter.

The rule interpreter presented in Program 17.18 has two levels. The top level, or monitor level, consists of the predicates monitor and filter. The bottom level, or solve level, consists of the predicates solve, solve_body, and solve_and. Two levels are needed to correctly handle failed computations.
Let us consider the bottom level first. The three predicates constitute an interpreter at the same level of granularity as the uniaxial meta-interpreter. There is one major difference. There is a result variable that says whether a goal succeeds or fails. A goal that succeeds, with the result variable indicating failure, instead of failing gives rise to a different control flow, compensated for by the top level.

The predicate \texttt{solve} is a single goal. There are three cases. The result is \texttt{yes} if the goal is a fact in the rule base. The result is \texttt{no} if no fact or head of a rule matches the goal. If there is a rule that matches the goal, the result will be returned by the predicate \texttt{solve_body}. The order of the second clause is significant because we only want to report \texttt{no} for an individual goal if there is no suitable fact or rule. Effectively, \texttt{solve} succeeds for each branch of the search tree, the result being \texttt{yes} for successful branches and \texttt{no} for failed branches.

\texttt{solve_body} has two clauses handling conjunctive goals and goals of the form \texttt{A is_true}. The function \texttt{is_true} is a wrapper that allows unification to distinguish between the two cases. A Prolog implementation with indexing would produce efficient code. The clause handling conjunctions calls a predicate \texttt{and} which uses the result of solving the first conjunct to decide whether to continue. The code for \texttt{solve} and \texttt{results in behavior similar to the behavior of solve_conjunction in Program 17.11.}

The monitor level is essentially a generate-and-test program. The solve level generates a branch of the search tree, and the test procedure \texttt{filter} accepts successful branches of the search tree, indicated by the result being \texttt{yes}. Failed branches, i.e., ones with result \texttt{no}, are rejected. Note that the second clause for \texttt{filter} could simply be omitted. We leave it in the program, albeit commented out, to make clear the later enhancement step for adding a proof tree.

The first enhancement of the rule interpreter makes it interactive. The interactive interpreter is given as Program 17.19. The user is given the opportunity to supply information at runtime for designated predicates. The designated predicates are given as a table of \texttt{askable} facts. For example, a fact \texttt{askable(type(Dish,Type))} appearing in the table would indicate that the user could ask the type of the dish.

Interaction with the user is achieved by adding a new clause to the solve level:
displaying a query and accepting a response. Experience with users of rule-based systems shows that it is essential not to ask the same question twice. Users get very irritated telling the computer information they feel it should know. Thus answers to queries are recorded using assert. Program 17.19 contains appropriate code. Only the solve level is given. The monitor level would be identical to Program 17.18.

Program 17.19 queries the user. The interaction can be extended to allow the user also to query the program. The user may want to know why a particular question is being asked. A facility for giving a why explanation is common in rule-based systems, the answer being the rule containing the queried goal in its body. In order to give this why explanation, we need to extend the rule interpreter to carry the rules that have been used so far.

Program 17.20 is an enhancement of Program 17.18 that carries the list of rules that have been used in solving the query. All the predicates carry the rules as an extra argument. The rule list is initialized to be empty in the first monitor clause. The rule list is updated in the second solve clause when a new rule is invoked.

We now describe how the list of rules can be used to provide a why explanation. A new respond clause needs to be added to Program 17.19. The appropriate behavior is to display the rule, then prompt the user again for the answer to the query.

```
respond(why,A,[Rule [Rules]]) -- display_rule(Rule),
    ask(A,Answer), respond(Answer,A,[Rules]).

Repeated responses of why can be handled by giving the rule that invoked the current rule. The correct behavior is achieved by having the recursive respond goal use the rest of the rules. Finally, when there are no more rules to display, an appropriate response must be given. A suitable respond clause is:

respond(why,A,[ ]) --
    writeln(['No more explanation possible!']),
    ask(A,Answer), respond(Answer,A,[ ]).
```

Now let us consider generating explanations of goals that have succeeded or failed. The explanations will be based on the proof tree for successful goals and the search tree for failed goals. Note that a search

```
monitor(Goal):--
    Succeeds if a result of yes is returned from solving Goal
    at the solve level, or when the end of the computation is reached.

monitor(Goal) -- solve(Goal,Result,[ ]), filter(Result),
    monitor(Goal).
filter(yes):
    % filter(no) -- fail.

solve(Goal,Result,Rules) --
    Given a set of rules of the form rule(A,B,Name), Goal has
    Result yes if it follows from the rules and no if it does not.
    Rules is the current list of rules that have been used.
    solve(A,yes,Rules) -- fact(A).
    solve(A,Result,Rules) --
        rule(A,B,Name), RulesB = [Name|Rules],
        solve_body(B,Result,RulesB),
        solve(RulesB).
    solve_body(A,Result,Rules) --
        solve_body(A,in_true,Result,Rules),
        solve_body(A,in_false,Result, Rules).
    solve_body(A,in_true,Result,Rules) --
        solve(A,Result,Rules).
    solve_body(A,in_false,Result,Rules) --
        solve_and(no,A,in_false,Result,Rules).
    solve_and(no,A,in_false,Result,Rules) -- solve(B,Result, Rules).

Program 17.20 A two-level rule interpreter carrying rules
```

tree is a sequence of branches. Each branch is either a proof tree or a failure branch that is like a proof tree. Program 17.18 can be enhanced to incorporate both cases. The enhanced program is given as Program 17.21. The solve level returns a branch of the search tree, and the monitor level keeps track of the failure branches since the last proof tree. The relation between the predicate solve/3 in Program 17.21 and solve/2 in Program 17.18 is analogous to the relation between Programs 17.8 and 17.5.

Four predicates are added to the monitor level to record and remove branches of the search tree. The fact 'search tree'(Proof) records the current sequence of branches of the search tree since the last success. The predicate set_search_tree, called by the top-level monitor goal, initializes the sequence of branches to the empty list. Similarly,
monitor (Goal, Proof).

Succeeds if a result of yes is returned from solving Goal at the solve level, in which case Proof is a proof tree representing the successful computation, or when the end of the computation is reached, in which case Proof is a list of failure branches since the last success.

monitor (Goal, Proof).

set_search_tree, solve (Goal, Result, Proof),
filter (Result, Proof).

monitor (Goal, Proof).

collect_proof (P), reverse (P, [1, P]),
Proof = failed (Goal, P).

filter (yes, Proof) = reset_search_tree.
filter (no, Proof) = store_proof (Proof), fail.

solve (Goal, Result, Proof).

Given a set of rules of the form rule (A, B, Name), Goal has Result yes if it follows from the rules and no if it does not.
Proof is a proof tree if the result is yes and a failure branch of the search tree if the result is no.

:- op (40, xfy, because).
:- op (30, xfy, with).

solve (A, yes, Tree) = fact (A), Tree = fact (A).

solve (A, result, Tree) =
rule (A, B, Name),
solve_body (B, Result, Proof),
Tree = A because B with Proof.

solve (A, no, Tree) =
not fact (A), not rule (A, B, Name),
Tree = no_match (A).

solve_body (A, Person, Proof) =
solve_body (A, Result, Proof1),
solve_and (Result, B, Result, Proof2),
Proof = Proof1 & Proof2.
solve_body (A is, true, Result, Proof) = solve (A, Result, Proof).
solve_and (no, A, no, unsearched).
solve_and (yes, B, Result, Tree) = solve (B, Result, Tree).

Program 17.21 A two-level rule interpreter with proof trees

Interpreters

The following predicates use side effects to record and remove branches of the search tree.

collect_proof (Proof) = retract (‘search tree’ (Proof)).
store_proof (Proof) =
retract (‘search tree’ (Tree)),
assert (‘search tree’ (Proof [Tree])).
set_search_tree = assert (‘search tree’ ([]).)
reset_search_tree =
retract (‘search tree’ (Proof)),
assert (‘search tree’ ([]).)
reverse (Xs, Ys) = See Program 3.16.

Program 17.21 (Continued)

reset_search_tree initializes the search tree but first removes the current set of branches. It is invoked by filter when a successful computation is detected. The predicate store_proof updates the search tree, while collect_proof removes the search tree. The failure branches are reordered in the second clause for monitor/2.

Having generated an explanation, we now consider how to print it. The proof tree is a recursive data structure that must be traversed to be explained. Traversing a recursive data structure is a straightforward exercise. Appropriate code is given in Program 17.22, and a trace of a computation given in Figure 17.4.

The explanation shell is obtained by combining the enhancements of Programs 17.19, 17.20, and 17.21. The final program is given as Program 17.23. Understanding the program is greatly facilitated by viewing it as a sum of the three components.

Exercises for Section 17.4

(i) Add the ability to explain askable goals to the proof explainer in Program 17.22.
(ii) Add the ability to execute Prolog built-in predicates to the explanation shell.
(iii) Write a two-level meta-interpreter to find the maximum depth reached in any computation of a goal.
Chapter 17

explain(Goal) – Explains how the goal Goal was proved.

explain(Goal) ← monitor(Goal, Proof), interpret(Proof).

monitor(Goal, Proof) – See Program 17.21.

interpret(Proof & ProofB) ←
interpret(ProofA), interpret(ProofB).
interpret(failed(A, Branches)) ←
nl, writeln(A, ' has failed with the following failure branches: '),
interpret(Branches).
interpret([Fail] & Fail) ←
interpret(Fail), nl, write(' NEW BRANCH: ', nl, interpret(Fail)).
interpret([]) .
interpret(fact(A)) ←
nl, writeln(A, ' is a fact in the database. ').
interpret(A because B with Proof) ←
nl, writeln(A, ' is proved using the rule B. '),
display_rule(rule(A, B), interpret(Proof)).
interpret(no_match(A)) ←
nl, writeln(A, ' has no matching fact or rule in the rule base. ').
interpret(unsearched) ←
nl, writeln(' The rest of the conjunct is unsearched. ').
display_rule(rule(A, B)) ←
write(' IF '), write_conjunction(B), writeln(' THEN A. ').
write_conjunction(A & B) ←
write_conjunction(A), write(' AND '),
write_conjunction(B).
write_conjunction(A is true) ← write(A).
writein(Is) – See Program 12.1.

Program 17.22 Explaining a proof

Interpreters

place_in_oven(dish, middle) is proved using the rule
IF pastry(dish) AND size(dish, big)
THEN place_in_oven(dish, middle).

pastry(dish) is proved using the rule
IF type(dish, bread)
THEN pastry(dish).
type(dish, bread) is a fact in the database.

size(dish, big) is a fact in the database.
X = middle ;
place_in_oven(dish, X) has failed with the following failure branches:
place_in_oven(dish, middle) is proved using the rule
IF main_meal(dish)
THEN place_in_oven(dish, middle).

main_meal(dish) is proved using the rule
IF type(dish, meat)
THEN main_meal(dish).
type(dish, meat) has no matching fact or rule in the rule base.

NEW BRANCH

place_in_oven(dish, low) is proved using the rule
IF slow_cooker(dish)
THEN place_in_oven(dish, low).

slow_cooker(dish) is proved using the rule
IF type(dish, milk_pudding)
THEN slow_cooker(dish).
type(dish, milk_pudding) has no matching fact or rule in the rule base.

Figure 17.4 Explaining a computation
monitor(Goal,Proof) {
 succeeds if a result of yes is returned from solving Goal at the
solve level, in which case Proof is a proof tree representing the
successful computation, or when the end of the computation is reached,
in which case Proof is a list of failure branches since the last success.
}

monitor(Goal,Proof) {
 set_search_tree, solve(Goal,Result,[],Proof),
 filter(Result,Proof).
}

monitor(Goal,Proof) {
 collect_proof(P), reverse(P,[],P1),
 Proof = failed(Goal,P1).
}

filter(yes,Proof) = reset_search_tree.
filter(no,Proof) = store_proof(Proof), fail.

solve(Goal,Result,Rules,Proof) {
 Given a set of rules of the form A:B,Name. Goal has
 Result yes if it follows from the rules and no if it does not.
 Rules is the current list of rules that have been used.
 Proof is a proof tree if the result is yes and a failure branch
 of the search tree if the result is no.
}

:= op(40,xfy,because).
:= op(30,xfy,with).

solve(A,none,Rules,Tree) {
 fact(A), Tree = fact(A).
}

solve(A,Result,Rules,Tree) {
 rule(A,B,Name) = [Name,Rules],
 solve_body(B,Result,Rules,B,Proof),
 Tree = A because B with Proof.
}

solve(A,Result,Rules,Tree) {
 asamble(A), solve_asamble(A,Result,Rules), Tree = user(A).
}

solve(A,none,Rules,Tree) {
 not fact(A), not rule(A,B,Name), Tree = no_match(A).
}

solve_body(ABS,Result,Rules,Proof) {
 solve_body(ABS,Result,Rules,Proof),
 solve_and(Result,B,Result,Rules,ProofB),
 Proof = ProofA & ProofB.
}

solve_body(A is true,Result,Rules,Proof) {
 solve(Result,Rules,Proof).
}

solve_and(as,yes,Rules,unsearched) {
 solve(as,yes,Rules,Tree) {
 solve(Rules,Tree).
 }
}

Program 17.23 An explanation shell
17.5 Background

Our notation for automata follows Hopcroft and Ullman (1979).

There is considerable confusion in the literature about the term meta-interpreter—whether it differs from the term meta-level interpreter, for example. The lack of clarity extends further to the topic of meta-programming. A good discussion of meta-programming can be found in Yalcınkalp (1991).

One dimension of the discussion is whether the interpreter is capable of interpreting itself. An interpreter with that capability is also called meta-circular or self-applicable. An important early discussion of meta-circular interpreters can be found in Steele and Sussman (1978). That paper claims that the ability of a language to specify itself is a fundamental criterion for language design.

The vanilla meta-interpreter is rooted in Prolog folklore. A version was in the suite of programs attached to the first Prolog interpreter developed by Colmerauer and colleagues, and was given in the early collection of Prolog programs (Coelho et al., 1980). Subsequently, meta-interpreters, and more generally meta-programs, have been written to affect the control flow of Prolog programs. References are Gallaire and Lassere (1982), Pereira (1982), and Dinchas and Le Pape (1984). Using enhanced meta-interpreters for handling uncertainties is described by Shapiro (1983c).

There have been several papers on handling cuts in meta-interpreters. A variant of the vanilla meta-interpreter handling cuts correctly is described in Coelho et al. (1980) and attributed to Luís Pereira. One easy method to treat cuts is via ancestor cut, which is only present in a few Prologs like Waterloo Prolog on the IBM and Wisdom Prolog, described in the first edition of this book. There is a good discussion of meta-interpreters in general, and cuts in particular, in O’Keefe (1990).

Shapiro suggested that enhanced meta-interpreters should be the basis of a programming environment. The argument, along with the debugging algorithms of Section 17.3, can be found in Shapiro (1983a). Shapiro’s debugging work has been extended by Dershowitz and Lee (1987) and Drabent et al. (1989).

Prolog is a natural language for building rule-based systems. The basic statements are rules, and the Prolog interpreter can be viewed as a backward chaining inference engine. Early advocates of Prolog for expert systems were Clark and McCabe (1982), who discussed how explanation facilities and uncertainty can be added to simple expert systems expressed as Prolog clauses by adding extra arguments to the predicates. Incorporating interaction with the user in Prolog was proposed by Sergot (1983). An explanation facility incorporating Sergot’s query_the_user was part of the APES expert system shell, described in Hammond (1984).

Using meta-interpreters as a basis for explanation facilities was proposed by Sterling (1984). Incorporating failure in a meta-interpreter has been discussed by several researchers, including Hammond (1984), Sterling and Lake (1986), and Bruffaerts and Henin (1989). The first description of an integrated meta-interpreter for both success and failure is in Yalcınkalp and Sterling (1989). The rule interpreter given in Section 17.4 is an adaptation of the last paper. The layered approach can be used to explain cuts clearly, as in Sterling and Yalcınkalp (1989), and also for uncertainty reasoning, as in Yalcınkalp and Sterling (1991) and more completely in Yalcınkalp (1991).
18 Program Transformation

As stated in the introduction to Chapter 17, meta-programming, or the writing of programs that treat other programs as data, is particularly easy in Prolog. This chapter gives examples of programs that transform and manipulate Prolog programs. The first section looks at fold/unfold, the operation that underlies most applications of program transformation for Prolog programs. The transformations given in Chapter 15 for using difference-lists to avoid explicit concatenation of lists can be understood as unfold operations, for example. The second section describes a simple system for controlled unfolding and folding, which is especially good for removing layers of interpretation. The final section gives two examples of source-to-source transformation by code walking.

18.1 Unfold/Fold Transformations

Logic programming arose from research on resolution theorem proving. The basic step in the logic programming computation model, goal reduction, corresponds to a single resolution between a query and a program clause. Unfold/fold operations correspond to resolution between two Horn clauses. Loosely, unfolding corresponds to replacing a goal in the body of a clause by its definition, while folding corresponds to recognizing that goal(s) in the body of a clause are an instance of a definition. These two operations, being so similar, are often discussed together.

We demonstrate unfolding and folding with a running example in the first part of this chapter. The example is specializing the interpreter for nondeterministic pushdown automata (Program 17.3) for the particular
pushdown automaton for recognizing palindromes (Program 17.4). In general, specializing interpreters is a good application for unfold/fold operations.

Definition
Unfolding a goal B_i in a clause $A \leftarrow B_1, \ldots, B_n$ with respect to a clause $B \leftarrow C_1, \ldots, C_m$ where B and B_i unify with $mgu B$, produces a clause $A \leftarrow B_1, \ldots, B_i, C_1, \ldots, C_m, B_{i+1}, \ldots, B_n$.

As an example of unfolding, we specialize the clause accept(Xs) \leftarrow initial(Q), accept$(Xs, Q, [\{} \}$) to a particular initial state by unfolding the initial(Q) goal with respect to a particular initial fact. Specifically, unfolding with respect to the fact initial(push) produces the clause accept(Xs) \leftarrow accept$(Xs, \text{push}, [\{} \}$. (Note that in our running example we use the states push and pop for q_0 and q_1 respectively, from the NPDA of Program 17.4.)

The effect of the unfolding is to instantiate the initial state for the NPDA to push. In general, the effect of unfolding is to propagate variable bindings to the right, as in this example, and also to the left, to goals in the body of the clause and possibly also to the head.

There may be several clauses whose heads unify with a given goal in the body of a clause. We extend the definition of unfolding accordingly.

Definition
Unfolding a goal B_i in a clause $A \leftarrow B_1, \ldots, B_n$ with respect to a procedure defining B_i is to unfold the goal with respect to each clause in the procedure whose head unifies with B_i.

Unfolding the delta/S goal in the clause accept(Xs, Q, S) \leftarrow delta$(Q, X, S, Q1, S1)$, accept$(Xs, Q1, S1)$ with respect to the following procedure for delta adapted from Program 17.4

\begin{align*}
\text{delta}(\text{push}, X, S, \text{push}, [\{Xs]\}) & \rightarrow \text{delta}(\text{push}, X, S, \text{pop}, [\{Xs]\}), \\
\text{delta}(\text{push}, X, S, \text{pop}, S) & \rightarrow \text{delta}(\text{pop}, X, [\{Xs]\}, \text{pop}, S),
\end{align*}

produces four clauses, one for each fact.

accept$(Xs, \text{push}, S) \rightarrow$ accept$(Xs, \text{push}, [\{Xs]\})$, accept$(Xs, \text{push}, S)$ \rightarrow accept$(Xs, \text{pop}, [\{Xs]\})$, accept$(Xs, \text{push}, S)$ \rightarrow accept(Xs, pop, S), accept(Xs, pop, S) \rightarrow accept(Xs, pop, S).
p(3) ← var(3), clearly always fails, in contrast with the original clause. Unfolding for Prolog can be performed correctly by not propagating bindings leftward, and replacing the unfolded goal by the unifier. For this example, the result would be p(X) ← var(X), X=3. This will not be an issue in the examples we consider.

Exercise for Section 18.1

(i) Specialize the interpreter of Program 17.1 to the N DFA of Program 17.2, or any other N DFA, by unfold/fold operations.

18.2 Partial Reduction

In this section we develop a simple system for controlled unfold/fold operations according to prescribed user declarations. Systems for controlled unfolding are known in the logic programming literature as partial evaluators. This name reveals the influence of functional programming, where the basic computation model is evaluation. We prefer to refer to the system in terms of the computation model of logic programming, goal reduction. We thus, nonstandardly, say our system is doing partial reduction, and call it a *partial reducer*.

Considerable research on applying partial reduction has shown that partial reduction is especially useful for removing levels of interpretation. The sequence of unfold/fold operations given in Section 18.1 typify what is possible. The general N PDA interpreter was specialized to a specific N PDA, removing interpreter overhead. The resulting program, Program 18.1, only recognizes palindromes but does so far more efficiently than the combination of Programs 17.3 and 17.4.

Let us see how to build a system that can apply the unfold and fold operations that were needed to produce the *palindrome* program. The main idea is to recursively perform unfold/fold until no more "progress" can be achieved. A relation that replaces a goal by its equivalent under these operations is needed. The resulting equivalent goal is known as a residue. Let us call our basic relation *produce*(Goal, Residue), with intended meaning that Residue is a residue arising from partially reducing Goal by applying unfold and fold operations.

Program Transformation

```
produce( Goal, Residue ) ←
  Partially reduce Goal to leave the residue Residue.
produce( true, true ) ← !.
produce( ![A, B], ![PA, PB] ) ← 1, produce(A, PA), produce(B, PB).
produce( ![A, B], should_fold( A, B ) ) ← !.
produce( ![A, Residue], should_unfold( A ) ) ← !, clause( A, B ), produce( B, Residue).
produce( ![A], ![ ] ) !.
```

Program 18.2 A meta-interpreter for determining a residue

Program 18.2 contains code for produce. There are three possibilities for handling a single goal. It can be folded, unfolded, or left alone. The question immediately arises how to decide between the three possibilities. The easiest for a system is to rely on the user. Program 18.2 assumes that the user gives should_fold(Goal, PaddedGoal) declarations that say which goals should be folded and to what they should be folded, and also should_unfold(Goal) declarations that say which goals should be unfolded. Unification against the program clauses determines to what they should be unfolded. Goals not covered by either declaration are left alone. The remaining clauses in Program 18.2 handle the empty goal, true, and conjunctive goals, which are treated recursively in the obvious way.

Observe that Program 18.2 is essentially a meta-interpreter at the granularity level of vanilla (Program 17.5). The meta-interpreter is enhanced to return the handle. Handling builtins is assigned to the exercises.

The query `produce(![x, q], accept(x, q, [[]]) , Residue)` assuming appropriate should_fold and should_unfold declarations (to be given shortly) has as solution `Residue = ![true, palindrome(x, push, [[]])]`. It would be preferable to remove the superfluous call to true. This can be done by modifying the clause handling conjunctive goals to be more careful in computing the conjunctive resolvent. A suitable modification is

```
produce( ![A, B], Residue ) ←
  1, produce(A, PA), produce(B, PB), combine( PA, PB, Residue).
```

The code for combine, removing superfluous empty goals, is given in Program 18.3.
process (Program, RedProgram) →
 Partially reduce each of the clauses in Program to produce RedProgram.

process (Prog, NewProg) →
 findall (PCI, (member (CL, Prog), produce (CI, PCI)), NewProg).

test (Name, Program) →
 program (Name, Clauses), process (Clauses, Program).

produce (Goal, Residue) →
 Partially reduce Goal to leave the residue Residue.

produce (A → B), (PA ↔ PB) →
 1, produce (B, PB), produce (A, PA).

produce (true, true, true) → 1.

produce (A, B), Residue →
 1, produce (A, PA), produce (B, PB), combine (PA, PB, Residue).

produce (A, B) → should_fold (A, B), 1.

produce (A, Residue) →
 should_unfold (A), 1, clause (A, B), produce (B, Residue).

produce (A, A).

combine (true, B, B) → 1.

combine (A, true, A) → 1.

combine (A, B, A, B).

Program 18.3 A simple partial reduction system

To extend Program 18.2 into a partial reducer, clauses must be handled as well as goals. We saw a need in the previous section to partially reduce the head and body of a clause. The only question is in which order. Typically, we will want to fold the head and unfold the body. Since unfolding propagates bindings, unfolding first will allow more specific folding. Thus our proposed rule for handling clauses is

produce (A → B), (PA ↔ PB) →
 1, produce (B, PB), produce (A, PA).

This goal order is advantageous for the example of the rule interpreter to be presented later in this section.

To partially reduce a program, we need to partially reduce each of its clauses. For each clause, there may be several possibilities because of nondeterminism. For example, the recursive accept/3 clause led to four rules because of the four possible ways of unfolding the delta goal. The
Rule interpreter for counting reductions

\[
\text{solve}(A, 1) \rightarrow \text{fact}(A).
\]
\[
\text{solve}(A, N) \rightarrow \text{rule}(A, B, N, A), \text{solve} _ \text{body}(B, N, B), N \text{ is } N+1.
\]
\[
\text{solve} _ \text{body}(A, N, A), \text{solve} _ \text{body}(B, N, B), N \text{ is } N+1.
\]
\[
\text{solve} _ \text{body}(A, \text{true}, N) \rightarrow \text{solve}(A, N).
\]

Sample rule base

\[
\text{rule}(\text{oven}(\text{Dish}, \text{top}), \text{pastry}(\text{Dish}) \text{ is true} & \text{size}(\text{Dish}, \text{small}) \text{ is true, placed}).
\]
\[
\text{rule}(\text{oven}(\text{Dish}, \text{middle}), \text{pastry}(\text{Dish}) \text{ is true} & \text{size}(\text{Dish}, \text{big}) \text{ is true, placed}2).
\]
\[
\text{rule}(\text{oven}(\text{Dish}, \text{middle}), \text{main_meal}(\text{Dish}) \text{ is true, placed3}).
\]
\[
\text{rule}(\text{oven}(\text{Dish}, \text{bottom}), \text{slow_cooker}(\text{Dish}) \text{ is true, placed4}).
\]
\[
\text{rule}(\text{pastry}(\text{Dish}), \text{type}(\text{Dish}, \text{cake}) \text{ is true, pastry1}).
\]
\[
\text{rule}(\text{pastry}(\text{Dish}), \text{type}(\text{Dish}, \text{bread}) \text{ is true, pastry2}).
\]
\[
\text{rule}(\text{main_meal}(\text{Dish}), \text{type}(\text{Dish}, \text{soy}) \text{ is true, main_meal}).
\]
\[
\text{rule}(\text{slow_cooker}(\text{Dish}), \text{type}(\text{Dish}, \text{milk_pudding}) \text{ is true, slow_cooker}).
\]

\[
\text{should_fold}(\text{solve}(\text{oven}(\text{D}, \text{P}), \text{B}), \text{oven}(\text{D}, \text{P}), \text{B}).
\]
\[
\text{should_fold}(\text{solve}(\text{pastry}(\text{D}, \text{N}), \text{pastry}(\text{D}, \text{N})).
\]
\[
\text{should_fold}(\text{solve}(\text{main_meal}(\text{D}, \text{N}), \text{main_meal}(\text{D}, \text{N})).
\]
\[
\text{should_fold}(\text{solve}(\text{slow_cooker}(\text{D}, \text{B}), \text{slow_cooker}(\text{D}, \text{B})).
\]
\[
\text{should_fold}(\text{solve}(\text{size}(\text{D}, \text{P}, \text{N}), \text{type}(\text{D}, \text{P}, \text{N})).
\]
\[
\text{should_fold}(\text{solve}(\text{size}(\text{D}, \text{P}, \text{N}), \text{size}(\text{D}, \text{P}, \text{N})).
\]
\[
\text{should_unfold}(\text{solve} _ \text{body}(\text{G}, \text{N})).
\]
\[
\text{should_unfold}(\text{rule}(A, B, N, A)).
\]

Program 18.5 Specializing a rule interpreter

where a dish should be placed in the oven. The rules are repeated in Program 18.5 for convenience.

The effect of partial reduction in this case will be to "compile" the
rules into Prolog clauses where the arithmetic calculations are done.
The resulting Prolog clauses can in turn be compiled, in contrast to the
combination of interpreter plus rules. Rule place1 will be transformed to

\[
\text{oven}(\text{Dish}, \text{top}, N) \rightarrow
\text{pastry}(\text{Dish}, \text{N1}), \text{size}(\text{Dish}, \text{small}, \text{N2}), \text{N3 is N1+N2, N is N3+1}).
\]

The idea is to unfold the calls to rule so that each rule can be handled,
and also to unfold the component of the interpreter that handles syn-
tactic structure, specifically solve_body. What gets folded are the indi-
vidual calls to solve, such as solve(oven(D, P), N), which gets replaced
by a predicate oven(D, P, N). The necessary declarations are given in Pro-
gram 18.5. Program 18.3 applied to Program 18.5 produces the desired
effect.

Specifying what goals should be folded and unfolded is in general
straightforward in cases similar to what we have shown. Nevertheless,
making such declarations is a burden on the programmer. In many cases,
the declarations can be derived automatically. Discussing how is beyond
the scope of the chapter.

How useful partial reduction is for general Prolog programs is an open
issue. As indicated, care must be taken when handling Prolog's impuri-
ties not to change the meaning of the program. Further, interaction with
Prolog implementations can actually mean that programs that have been
partially reduced can perform worse than the original program. It will be
interesting to see how much partial reduction will be applied for Prolog
compilation.

Exercises for Section 18.2

(i) Extend Program 18.3 to handle builtins.

(ii) Apply Program 18.3 to the two-level rule interpreter with rules
given as Program 17.20.
18.3 Code Walking

The examples of meta-programming given so far in Chapters 17 and 18 are dynamic in the sense that they "execute" Prolog programs by performing reductions. Prolog is also a useful language for writing static meta-programs that perform syntactic transformations of Prolog programs. In this section, we give two nontrivial examples in which programs are explicitly manipulated syntactically.

The first example of explicit program manipulation is program composition. In Section 13.3, stepwise enhancement for systematic construction of Prolog programs was introduced. The third and final step in the method is composition of separate enhancements of a common skeleton. We now present a program to achieve composition that is capable of composing Programs 13.1 and 13.2 to produce Program 13.3.

The running example we use to illustrate the program is a variant of the example in Chapter 13. The skeleton is the same, namely,

```
skel([X|Xs], Ys) -> member(X, Ys), skel(Xs, Ys).
skel([X|Xs], Ys) -> nonmember(X, Ys), skel(Xs, Ys).
skel([], Ys).
```

The union program, Program 13.1, is also the same, namely,

```
union([X|Xs], Ys, Us) -> member(X, Ys), union(Xs, Ys, Us).
union([X|Xs], Ys, [X|Us]) -> nonmember(X, Ys), union(Xs, Ys, Us).
union([], Ys, Ys).
```

The second program to be composed is different and represents when added goals are present. The relation to be used is common(Xs, Ys, N), which counts the number of common elements N in two lists Xs and Ys. The code is

```
common([X|Xs], Ys, N) ->
  member(X, Ys), common(Xs, Ys, N), N is N+1.
common([X|Xs], Ys, N) -> nonmember(X, Ys), common(Xs, Ys, N).
common([], Ys, 0).
```

The program for composition makes some key assumptions that can be justified by theory underlying stepwise enhancement. Describing the theory is beyond the scope of this book. The most important assumption is that there is a one-to-one correspondence between the clauses of the two programs being composed, and one-to-one correspondences between the clauses of each of the programs and the common skeleton.

Programs are represented as lists of clauses. The first clause in the first program corresponds to the first clause in the second program and to the first clause in the skeleton. Our assumption implies that the lists of clauses of programs being composed have the same length. The three programs have been written with corresponding clauses in the same order. (That the lists of clauses do have the same length is not checked explicitly.)

In order to perform composition, a composition specification is needed. It states how the arguments of the final program relate to the two extensions. The relation that we will assume is composition_specification(Program1, Program2, Skeleton, FinalProgram). An example of the specification for our running example is composition_specification(union(Xs, Ys, Us), common(Xs, Ys, N), skel(Xs, Ys), uc(Xs, Ys, Us, N)). The composition specification is given as part of Program 18.6.

The program for composition is given as Program 18.6. The top-level relation is compose/4, which composes the first two programs assumed to be enhancements of the third argument to produce the composite program, which is the fourth argument.

The program proceeds clause by clause in the top loop of Program 18.6, where compose_clause/4 does the clause composition. The arguments correspond exactly to the arguments for compose. To compose two clauses, we have to compose the heads and the bodies. Composition of the heads of clauses happens through unification with the composition specification. The predicate compose_bodies/4 is used to compose the bodies. Note that the order of arguments has been changed so that we systematically traverse the skeleton. Each goal in the skeleton must be represented in each of the enhancements so that it can be used as a reference to align the goals in each of the enhancements.

The essence of compose_bodies is to traverse the body of the skeleton goal by goal and construct the appropriate output goal as we proceed. In order to produce tidy output and avoid superfluous empty goals, a difference-structure is used to build the output body. The first clause for compose_bodies covers the case when the body of the skeleton is nonempty. The predicates first and rest, which access the body of the skeleton, are a good example of data abstraction.
compose\(\text{Program1,Program2,Skeleton,FinalProgram}\) ← FinalProgram is the result of composing Program1 and Program2, which are both enhancements of Skeleton.

compose\(\{\text{C11,C1a}, \text{C12,C1b}\}, \text{C1skeleton,C1skeleton,C1, C1e}\) ← compose_clause\(\text{C11,C12,C1skeleton,C11,C1e}\),
composes\(\text{C1a}, \text{C1skeleton,C1b}\).
composes\(\text{f,1,1,1,1,1}\).

compose_clause\(\text{A1-B1}, \text{A2-B2}\), \text{ASkeleton-BSkeleton}, \text{A-B}) ← composition_specification\(\text{A1,A2,ASkeleton,A}\),
composes_bodies\(\text{BSkeleton,B1,B2,Btrue}\).

compose_bodies\(\text{SkelBody,Body1,Body2,BodyRest}\) ← first\(\text{SkelBody,Body}\), 1,
align\(\text{G,Body1,Body1,Body1,Btrue}\),
align\(\text{G,Body2,Body2,Body2,Btrue}\),
compose_goal\(\text{G,Body1,Goal}\),
rest\(\text{SkelBody,Body}\),
composes_bodies\(\text{G,RestBody1,RestBody2,RestBodyRest}\).

compose_bodies\(\text{true,Body1,Body2,BodyRest}\) ← rest_goals\(\text{Body1,Btrue}\), rest_goals\(\text{Body2,Btrue}\).
align\(\text{Goal,Body1,Body1,Body1,Btrue}\).
align\(\text{Goal,Body2,Body2,Body2,Btrue}\).

first\(\text{G,Ge,Body}\),
first\(\text{G,Body}\),
first\(\text{G,Body}\),
rest\(\text{G,Ge,Body}\).
rest\(\text{G,Body}\),
rest\(\text{G,Body}\),
rest\(\text{G,Body}\),
rest\(\text{G,Body}\),
rest\(\text{G,Body}\).
rest\(\text{G,Body}\).
rest\(\text{G,Body}\).
rest\(\text{G,Body}\).

compose_goal\(\text{Goal,Body}\) ← 1,
compose_goal\(\text{A1,A2,A}\) ← 1,
composition_specification\(\text{A1,A2,ASkeleton,A}\),

rest_goals\(\text{true,BodyRest}\) ← 1,
rest_goals\(\text{Body1,BodyRest}\) ← first\(\text{Body1,Body,Body1}\),
rest_goals\(\text{Body1,BodyRest}\).

Program 18.6 Composing two enhancements of a skeleton

An important assumption made by Program 18.6 concerns finding the goals in the bodies of the program that correspond to the goals in the skeleton. The assumption made, embedded in the predicate correspond, is that a mapping will be given from goals in the enhancement to goals in the skeleton. In our running example, the predicates member and non-member map onto themselves, while both union and common map onto skeleton. This information, provided by the predicate map/2, is needed to correctly align goals from the skeleton with goals of the program being composed. The code for align as presented allows for additional goals to be present between goals in the skeleton. The only extra goal in our running example is the arithmetic calculation in common, which is after the goals corresponding to the skeleton goals.

The second clause for compose_bodies covers the case when the body is empty, either from dealing with a fact or because the skeleton has been traversed. In this case, any additional goals need to be included in the result. This is the function of rest_goals.

Program 18.7 contains a testing clause for Program 18.6, along with the specific data for our running example. As with Program 18.4, variables in the programs being composed must be named differently. Automatic generation of composition specifications for more complicated examples is possible.

The second example of explicit manipulation of programs is the conversion of context-free grammar rules to equivalent Prolog clauses. Context-free grammars are defined over a language of symbols, divided into nonterminal symbols and terminal symbols. A context-free grammar is a set of rules of the form

\[
\text{<head>} \rightarrow \text{<body>}
\]

where \text{<head>} is a nonterminal symbol and \text{<body>} is a sequence of one or more items separated by commas. Each item can be a terminal or nonterminal symbol. Associated with each grammar is a starting symbol and a language that is the set of sequences of terminal symbols obtained by repeated (non-deterministic) application of the grammar rules starting from the starting symbol. For compatibility with Chapter 19, nonterminal symbols are denoted as Prolog atoms, terminal symbols are enclosed within lists, and \text{[]} denotes the empty operation.

The language abbc* can be defined by the following context-free grammar consisting of four rules:
Chapter 18

Program Composition

test_compose(X, Prog) :-
 program(X, Prog1), program2(X, Prog2),
 skeleton(X, Skeleton), compose(Prog1, Prog2, Skeleton, Prog).

program(test, [
 (union([X1],X1), Y1, Z1),
 - member(X1, X1)), union(X1, Y1, Z1)),
 (union([X2],X2), Y2, [X2],[x2]),
 - nonmember(X2, Y2), union(X2, Y2, Z2)),
 (union([X3],X3), Y3, Z3) = true))
.

program(test, [
 (member(X1, X1), common(X1, X1, X1), X1 is X1+1),
 (common([X2],[x2],X2), common(X2, X2, X2)),
 (nonmember([X3],[x3],[x3]) = true))
.

skeleton(test, [
 (skel([X1], X1), Y1),
 - member(X1, X1), skel(X1, X1)),
 (skel([X2],X2), Y2),
 - nonmember(X2, Y2), skel(X2, Y2)),
 (skel([X3],X3), Y3) = true))
.

composition_specification(union(Xs,Ys,Us), common(Xs,Ys,N),
 skel(Xs,Ys), sco(Xs,Ys,Zs)).

map(union(Xs,Ys,Us), common(Xs,Ys,N),
 skel(Xs,Ys), sco(Xs,Ys,Zs)).

Program 18.7 Testing program composition

s = [a], b.
b = [b], c.
[] = c.

Another example of a context-free grammar is given in Figure 18.1. This grammar recognizes the language a*b*c*.

A context-free grammar can be immediately written as a Prolog program. Each nonterminal symbol becomes a unary predicate whose argument is the sentence or phrase it identifies. The naive choice for representing each phrase is as a list of terminal symbols. The first grammar rule in Figure 18.1 becomes

s(Xs) :- s(Xs), b(Xs),
c(Cs), append(Bs,Cs,BsCs), append(As,BsCs,Xs).

Program Transformation

s = a, b, c.
a = [a], b.
a = [].
b = [b], c.
[] = c.

Figure 18.1 A context-free grammar for the language a*b*c*

s(A\nXs) :- s(A\nBs), b(Bs\nCs), c(Cs\nXs).
s(A\nXs) :- connect([Xs],Xs\nX1), a(X1\nYs).
s(A\nXs) :- connect([],Xs\nYs).
b(B\nXs) :- connect([B\nXs],Xs\nX1), b(X1\nYs).
b(B\nXs) :- connect([],Xs\nYs).
c(X\nXs) :- connect([c\nXs],Xs\nX1), c(X1\nYs).
c(X\nXs) :- connect([],Xs\nYs).
connect([],Xs\nXs) :- connect([],Xs\nYs).

Program 18.8 A Prolog program parsing the language a*b*c**

Completing the grammar of Figure 18.1 in the style of the previous rule leads to a correct program for parsing, albeit an inefficient one. The calls to append suggest, correctly, that a difference-list might be a more appropriate structure for representing the sequence of terminals in the context of parsing. Program 18.8 is a translation of Figure 18.1 to a Prolog program where difference-lists represent the phrases. The basic relation scheme is X(Xs), which is true if Xs is a sequence of symbols accepted by the grammar.

The predicate connect(Xs,Ws) is true if the list Xs represents the same sequence of elements as Ws. The predicate is used to make explicit the translation of terminal symbols to Prolog programs.

As a parsing program, Program 18.8 is a top-down, left-to-right recursive parser that backtracks when it needs an alternative solution. Although easy to construct, backtracking parsers are in general inefficient. However, the efficiency of the underlying Prolog implementation in general more than compensates.
Chapter 18

Program Transformation

the same functor is created. If the goal is a list of terminal symbols, the appropriate connect goal is created. When executed, the connect goal connects the two difference-lists. Code for connect is in Program 18.8.

Program 18.9 can be extended for automatic translation of definite clause grammar rules. Definite clause grammars are the subject of Chapter 19. Most versions of Edinburgh Prolog provide such a translator.

Exercise for Section 18.3

(i) Apply Program 18.6 to one of the exercises posed at the end of Section 13.3.

18.4 Background

Often research in logic programming has followed in the steps of related research in functional programming. This is true for unfold/fold and partial evaluation. Burstall and Darlington (1977) wrote the seminal paper on unfold/fold in the functional programming literature. Their work was adapted for logic programming by Tamaki and Sato (1984).

The term partial evaluation may have been used first in a paper by Lombardi and Raphael (1964), where a simple partial evaluator for Lisp was described. A seminal paper introducing partial evaluation to computer science is due to Futamura in 1971, who noted the possibility of compiling away levels of interpretation. Komorowski described the first partial evaluator for pure Prolog in his thesis in 1981. He has since preferred the term partial deduction. Gallagher in 1983 was the first to advocate using partial evaluation in Prolog for removing interpretation overhead (Gallagher, 1986). Venken (1984) was the first to list some of the problems of extending partial evaluation to full Prolog. The paper that sparked the most interest in partial evaluation in Prolog is due to Takeuchi and Furukawa (1986). They discussed using partial evaluation for removing runtime overhead and showed an order of magnitude speedup. Sterling and Beer (1989) particularize the work for expert systems. Their paper introduces the issue of pushing down meta-arguments, which is subsumed in this chapter by should_fold declarations. Specific Prolog partial evaluation systems to read for more details are ProMIX.
Chapter 18

(Lakhotia and Sterling, 1990) and Mixtus (Sahlin, 1991). An interesting application of partial evaluation is given by Smith (1991), where efficient string-matching programs were developed.

Composition was first discussed in the context of Prolog meta-interpreters in Sterling and Beer (1989) and an informal algorithm was given in Sterling and Lakhotia (1988). A theory is found in Kirschbaum, Sterling, and Jain (1993).

19 Logic Grammars

A very important application area of Prolog is parsing. In fact, Prolog originated from attempts to use logic to express grammar rules and to formalize the process of parsing. In this chapter, we present the most common logic grammar formalism, definite clause grammars. We show how grammar rules can be considered as a language on top of Prolog, and we apply grammar rules to parse simple English sentences. In Chapter 24, definite clause grammars are used as the parsing component of a simple compiler for a Pascal-like language.

19.1 Definite Clause Grammars

Definite clause grammars arise from adding features of Prolog to context-free grammars. In Section 18.3, we briefly sketched how context-free grammars could be immediately converted to Prolog programs, which parsed the language specified by the context-free grammar. By adding the ability of Prolog to exploit the power of unification and the ability to call built-in predicates, a very powerful parsing formalism is indeed achieved, as we now show.

Consider the context-free grammar for recognizing the language $a^*b^*c^*$, presented in Figure 18.1, with equivalent Prolog program Program 18.8. The Prolog program can be easily enhanced to count the number of symbols that appear in any recognized sequence of a's, b's, and c's. An argument would be added to each predicate constituting the number of symbols found. Arithmetic would be performed to add numbers together. The first clause would become
The extra argument counting the number of a’s, b’s, and c’s can be added to the grammar rule just as easily, yielding

\[s(N) \rightarrow a(\mathbf{N}A), \mathbf{b}(\mathbf{N}E), \mathbf{c}(\mathbf{N}C), \mathbf{N} \in \mathbf{N}A+\mathbf{N}B+\mathbf{N}C. \]

Adding arguments to nonterminal symbols of context-free grammars, and the ability to call (arbitrary) Prolog predicates, increases their utility and expressive power. Grammars in this new class are called definite clause grammars, or DCGs. Definite clause grammars are a generalization of context-free grammars that are executable, augmented by the language features of Prolog.

Program 18.9, translating context-free grammars into Prolog programs, can be extended to translate DCGs into Prolog. The extension is posed as Exercise (i) at the end of this section. Throughout this chapter we write DCGs in grammar rule notation, being aware that they can be viewed as Prolog programs. Many Edinburgh Prolog implementations provide support for grammar rules. The operator used for \(\rightarrow \) is \(\rightarrow \rightarrow \). Grammar rules are expanded automatically into Prolog clauses with two extra arguments added as the last two arguments of the predicate to represent as a difference-list the sequence of tokens or words recognized by the predicate. Braces are used to delimit goals to be called by Prolog directly, which should not have extra arguments added during translation. Grammar rules are not part of Standard Prolog but will probably be incorporated in the future.

Program 19.1 gives a DCG that recognizes the language \(a^+b^+c^+ \) and also counts the number of letters in the recognized sequence. The enhancement of Figure 18.1 is immediate. To query Program 19.1, consideration must be taken of the two extra arguments that will be added. For example, a suitable query is \(s(\mathbf{N}, [a,a,b,b,c,c]) \).

Counting the symbols could, of course, be accomplished by traversing the difference-list of words. However, counting is a simple enhancement to understand, which effectively displays the essence of definite clause grammars. Section 19.3 presents a wider variety of enhancements.

Our next example is a striking one of the increase in expressive power possible using extra arguments and unification. Consider recognizing the language \(a^+b^+c^+ \), which is not possible with a context-free grammar.

However, there is a straightforward modification to the grammar given as Program 19.1. All that is necessary is to change the first rule and make the number of a’s, b’s, and c’s the same. The modified program is given as Program 19.2.

In Program 19.2, unification has added context sensitivity and increased the expressive power of DCGs over context-free grammars. DCGs should be regarded as Prolog programs. Indeed, parsing with DCGs is a perfect illustration of Prolog programming using nondeterministic programming and difference-lists. The top-down, left-to-right computation model of Prolog yields a top-down, left-to-right parser.

Definite clause grammars can be used to express general programs. For example, a version of Program 3.15 for append with its last two arguments swapped can be written as follows.

append([], L) \rightarrow L.
append([X | Xn], L) \rightarrow [X], append(Xn).

Using DCGs for tasks other than parsing is an acquired programming taste.
The grammar for the declarative part of a Pascal program:

\[
\text{declarative_part} \rightarrow \text{const_declaration}, \text{type_declaration}, \text{var_declaration}, \text{procedure_declaration}.
\]

Constant declarations

\[
\text{const_declaration} \rightarrow [\].
\]

\[
\text{const_declaration} \rightarrow [\text{const}], \text{const_definition}, [;], \text{const_definitions}.
\]

\[
\text{const_definitions} \rightarrow [\].
\]

\[
\text{const_definitions} \rightarrow \text{const_definition}, [;], \text{const_definitions}.
\]

\[
\text{const_definition} \rightarrow \text{identifier}, [\text{=}, \text{constant}].
\]

\[
\text{identifier} \rightarrow \text{X}, [\text{atom}(\text{X})].
\]

\[
\text{constant} \rightarrow \text{X}, [\text{constant}(\text{X})].
\]

Type declarations

\[
\text{type_declaration} \rightarrow [\].
\]

\[
\text{type_declaration} \rightarrow [\text{type}], \text{type_definition}, [;], \text{type_definitions}.
\]

\[
\text{type_definitions} \rightarrow [\].
\]

\[
\text{type_definitions} \rightarrow \text{type_definition}, [;], \text{type_definitions}.
\]

\[
\text{type_definition} \rightarrow \text{identifier}, [\text{=}, \text{type}].
\]

\[
\text{type} \rightarrow \text{'}\text{INTEGER}'\text{'}.
\]

\[
\text{type} \rightarrow \text{'}\text{REAL}'\text{'}.
\]

\[
\text{type} \rightarrow \text{'}\text{BOOLEAN}'\text{'}.
\]

\[
\text{type} \rightarrow \text{'}\text{CHAR}'\text{'}.
\]

Variable declarations

\[
\text{var_declaration} \rightarrow [\].
\]

\[
\text{var_declaration} \rightarrow [\text{var}], \text{var_definition}, [;], \text{var_definitions}.
\]

\[
\text{var_definitions} \rightarrow [\].
\]

\[
\text{var_definitions} \rightarrow \text{var_definition}, [;], \text{var_definitions}.
\]

\[
\text{var_definition} \rightarrow \text{identifiers}, [\text{=}, \text{type}].
\]

\[
\text{identifiers} \rightarrow \text{identifier}.
\]

\[
\text{identifiers} \rightarrow \text{identifier}, [;], \text{identifiers}.
\]

Program 19.3 Parsing the declarative part of a Pascal block

Logics Grammar

\[
\text{procedure_declaration} \rightarrow [\].
\]

\[
\text{procedure_declaration} \rightarrow \text{procedure_heading}, [;], \text{block}.
\]

\[
\text{procedure_heading} \rightarrow [\text{procedure}], \text{identifier}, \text{formal_parameter_part}.
\]

\[
\text{formal_parameter_part} \rightarrow [\].
\]

\[
\text{formal_parameter_part} \rightarrow [][\text{formal_parameter_section}, []].
\]

\[
\text{formal_parameter_section} \rightarrow \text{formal_parameters}.
\]

\[
\text{formal_parameter_section} \rightarrow \text{formal_parameters}, [;], \text{formal_parameter_section}.
\]

\[
\text{formal_parameters} \rightarrow \text{value_parameters}.
\]

\[
\text{formal_parameters} \rightarrow \text{variable_parameters}.
\]

\[
\text{value_parameters} \rightarrow \text{var_definition}.
\]

\[
\text{variable_parameters} \rightarrow [\text{var}], \text{var_definition}.
\]

Program 19.3 (Continued)

We conclude this section with a more substantial example. A DCG is given for parsing the declarative part of a block in a Pascal program. The code does not in fact cover all of Pascal — it is not complete in its definition of types or constants, for example. Extensions to the grammar are posed in the exercises at the end of this section. Parsing the statement part of a Pascal program is illustrated in Chapter 24.

The grammar for the declarative part of a Pascal block is given as Program 19.3. Each grammar rule corresponds closely to the syntax diagram for the corresponding Pascal statement. For example, the syntax diagram for constant declarations is as follows:

\[
\text{constant declaration} \rightarrow \text{constant definition} \rightarrow \text{constant} \rightarrow \text{constant} \rightarrow \text{...}.
\]

The second grammar rule for constant declaration in Program 19.3 says exactly the same. A constant declaration is the reserved word const followed by a constant definition, handled by the nonterminal symbol const_definition; followed by a semicolon; followed by the rest of the constant definition, handled by the nonterminal symbol const_definitions. The first rule for const_declaration effectively states that the constant declaration is optional. A constant definition is
an identifier followed by =, followed by a constant. The definition for const_definitions is recursive, being either empty or another constant definition; followed by a semicolon; followed by the rest of the constant definition. The remainder of Program 19.3 is similarly easy to understand. It clearly shows the style of writing grammars in Prolog.

Exercises for Section 19.1

(i) Extend Program 18.9 so that it translates definite clause grammars to Prolog as well as context-free grammars.

(ii) Add to Program 19.3 the ability to correctly handle label declarations and function declarations.

(iii) Enhance Program 19.3 to return the list of variables declared in the declarative part.

(iv) Write a program to parse the language of your choice in the style of Program 19.3.

19.2 A Grammar Interpreter

Grammar rules are viewed in the previous section as syntactic sugar for Prolog clauses. This view is supported by Prolog systems with automatic grammar rule translation. There is a second way of viewing grammar rules, namely as a rule language.

This section takes the second view and considers grammar rules as an embedded language on top of Prolog. We consider applying the interpreter techniques of Chapter 17 to grammar rules.

Program 19.4 is an interpreter for grammar rules. The basic relation is parse(Symbol, Tokens), which is true if a sequence of grammar rules can be applied to Symbol to reach Tokens. The tokens are represented as a difference-list.

The granularity of the DCG interpreter is at the clause reduction level, the same as for the vanilla meta-interpreter, Program 17.5, and the expert system rule interpreter, Program 17.18. Indeed, the code in Program 19.4 is similar to those interpreters. There are four cases, handled by the

Logic Grammars

parse(Start, Tokens) —
- The sequence of tokens Tokens represented as a difference-list can be reached by applying the grammar rules defined by --/2, starting from Start.

parse(A, Tokens) —
- nonterminal(A, A -> B, parse(B, Tokens).
- parse(A, Tokens) = parse(A, Tokens \ Tokens).
- parse(A, Tokens) \ Tokens = parse(A, Tokens) \ Tokens.

parse(A, Tokens) — nonterminal(A, connect(A, Tokens).
- parse(A, Tokens) = parse(A, Tokens) \ Tokens.

Program 19.4 A definite clause grammar (DCG) interpreter

four clauses for parse in Program 19.4. The first rule handles the basic operation of reducing a nonterminal symbol, and the second rule handles conjunctions of symbols. The third rule handles terminal symbols, and the fourth rule covers the ability to handle Prolog predicates by calling them directly using the meta-variable facility.

Observe that the last argument in parse/2, the DCG interpreter, is a difference-list. This difference-list can be handled implicitly using grammar rule notation. In other words, Program 19.4 could itself be written as a DCG. This task is posed as Exercise 19.20.

Recall that the interpreters of Chapter 17 were enhanced. Similarly, the DCG interpreter, Program 19.4, can be enhanced. Program 19.5 gives a simple enhancement that counts the number of tokens used in parsing. As mentioned before, this particular enhancement could be accomplished directly, but it illustrates how an interpreter can be enhanced.

Comparing Programs 19.1 and 19.5 raises an important issue. Is it better to enhance a grammar by modifying the rules, as in Program 19.1, or to add the extra functionality at the level of the interpreter? The second approach is more modular, but suffers from a lack of efficiency.

Exercises for Section 19.2

(i) Write Program 19.4 as a DCG.
parse(Start, Tokens, N) ←
 The sequence of tokens Tokens, represented as a difference-list,
 can be reached by applying the grammar rules defined by -/2,
 starting from Start, and N tokens are found.

parse(A, Tokens, N) ←
 nonterminal(A), A → B, parse(B, Tokens, N).
parse(A, Tokens\{Token\}, N) ←
 parse(A, Tokens\{Token\}, N), parse(B, Tokens\{Token\}, N),
 N is N+1.
parse(A, Tokens, N) ←
 terminals(A), connect(A, Tokens), length(A, N).
parse([A], Tokens, 0) ← A.
terminals(Tokens) ← See Program 18.9.
connect(A, Tokens) ← See Program 18.8.
length(Tokens, N) ← See Program 8.11.

Program 19.5 A DCG interpreter that counts words

(iii) Use the partial reducer, Program 18.3, to specialize the interpreter
 of Program 19.4 to a particular grammar. For example, Figure 18.1
 should be transformed to Program 19.1.

(iii) Enhance Program 19.4 to build a parse tree.

19.3 Application to Natural Language Understanding

An important application area of logic programming has been understand-
ing natural languages. Indeed, the origins of Prolog lie within this
application. In this section, it is shown how Prolog, through definite
clause grammars, can be applied to natural language processing.

A simple context-free grammar for a small subset of English is given
in Program 19.6. The nonterminal symbols are grammatical categories,
parts of speech and phrases, and the terminal symbols are English words
that can be thought of as the vocabulary. The first rule in Program 19.6
says that a sentence is a noun phrase followed by a verb phrase. The last
rule says that surprise is a noun. A sample sentence recognized by the
grammar is: “The decorated pieplate contains a surprise.”

Logic Grammars

Grammar Rules
sentence ← noun_phrase, verb_phrase.
noun_phrase ← determiner, noun_phrase2.
noun_phrase ← noun_phrase2.
noun_phrase2 ← adjective, noun_phrase2.
noun_phrase2 ← noun.
verb_phrase ← verb.
verb_phrase ← verb, noun_phrase.

Vocabulary
determiner ← the, a.
adjective ← decorated.
determiner ← is.
noun ← pieplate.
verb ← contains.
noun ← surprise.

Program 19.6 A DCG context-free grammar

Using the terminology of stepwise enhancement introduced in Chap-
ter 13, we can view a grammar as a skeleton. We proceed to show how
useful grammatical features can be added by enhancement. The next
two programs are enhancements of Program 19.6. The enhancements,
although simple, typify how DCGs can be used for natural language ap-
lications. Both programs exploit the power of the logical variable.

The first enhancement is constructing a parse tree for the sentence as
it is being parsed. The program is given as Program 19.7. Arguments rep-
resenting (subparts of) the parse tree must be added to Program 19.6.
The enhancement is similar to adding structured arguments to logic pro-
grams, as discussed in Section 2.2. The program builds the parse tree
top-down, exploiting the power of the logic variable.

The rules in Program 19.7 can be given a declarative reading. For example,
consider the rule

sentence(sentence(NP, VP)) ← noun_phrase(NP), verb_phrase(VP).

This states that the parse tree built in recognizing the sentence is a struc-
ture sentence(NP, VP), where NP is the structure built while recognizing
the noun phrase and VP is the structure built while recognizing the verb
phrase.
The next enhancement concerns subject/object number agreement. Suppose we wanted our grammar also to parse the sentence "The decorated pieplates contain a surprise." A simplistic way of handling plural forms of nouns and verbs, sufficient for the purposes of this book, is to treat different forms as separate words. We augment the vocabulary by adding the facts:

noun(noun[pieplates]) -> [pieplates].
verb(verb[contains]) -> [contains].

The new program would parse "The decorated pieplates contain a surprise" but unfortunately would also parse "The decorated pieplates contain a surprise." There is no insistence that noun and verb must both be singular, or both be plural.

Number agreement can be enforced by adding an argument to the parts of speech that must be the same. The argument indicates whether the part of speech is singular or plural. Consider the grammar rule:

sentence(sentence(NP,VP)) -> noun_phrase(NP), verb_phrase(VP,Num).

The rule insists that both the noun phrase, which is the subject of the sentence, and the verb phrase, which is the object of the sentence, have the same number, singular or plural. The agreement is indicated by the sharing of the variable Num. Expressing subject/object number agreement is context-dependent information, which is clearly beyond the scope of context-free grammars.

Program 19.8 is an extension of Program 19.7 that handles number agreement correctly. Noun phrases and verb phrases must have the same number, singular or plural. Similarly, the determiners and nouns in a noun phrase must agree in number. The vocabulary is extended to indicate which words are singular and which plural. Where number is unimportant, for example, with adjectives, it can be ignored, and no extra argument is given. The determiner the can be either singular or plural. This is handled by leaving the argument indicating number uninstantiated.
The next example of a DCG uses another Prolog feature, the ability to refer to arbitrary Prolog goals in the body of a rule. Program 19.9 is a grammar for recognizing numbers written in English up to, but not including, 1,000. The value of the number recognized is calculated using the arithmetic facilities of Prolog.

The basic relation is number(N), where N is the numerical value of the number being recognized. According to the grammar specified by the program, a number is a zero or a number B of at most three digits, the relation xxx(B). Similarly xx(N) represents a number B of at most two digits, and the predicates rest_xxx and rest_xx denote the rest of a number of three or two digits, respectively, after the leading digit has been removed. The predicates digit, teen, and tena recognize, respectively, single digits, the numbers 10 to 19 inclusive, and the multiples of ten from 20 to 90 inclusive.

A sample rule from the grammar is

\[
xxx(N) \leftarrow
\text{digit}(D), \ [\text{hundred}], \ \text{rest}_\text{xxx}(N1), \ [N \text{ is } D+100+N1].
\]

This says that a three-digit number N must first be a digit with value D, followed by the word hundred followed by the rest of the number, which will have value N1. The value for the whole number N is obtained by multiplying D by 100 and adding N1.

DCGs inherit another feature from logic programming, the ability to be used backward. Program 19.9 can be used to generate the written representation of a given number up to, but not including, 1,000. In technical terms, the grammar generates as well as accepts. The behavior in so doing is classic generate-and-test. All the legal numbers of the grammar are generated one by one and tested to see whether they have the correct value, until the actual number posed is reached. This feature is a curiosity rather than an efficient means of writing numbers.

The generative feature of DCGs is not generally useful. Many grammars have recursive rules. For example, the rule in Program 19.6 defining a noun_phrase2 as an adjective followed by a noun_phrase2 is recursive. Using recursively defined grammars for generation results in a nonterminating computation. In the grammar of Program 19.7, noun phrases with arbitrarily many adjectives are produced before the verb phrase is considered.
Exercises for Section 19.3

(i) Write a simple grammar for French that illustrates gender agreement.

(ii) Extend and modify Program 19.9 for parsing numbers so that it covers all numbers less than 1 million. Don’t forget to include things like “thirty-five hundred” and to not include “thirty hundred.”

19.4 Background

Prolog was connected to parsing right from its very beginning. As mentioned before, the Prolog language grew out of Colmerauer’s interest in parsing, and his experience with developing Q-systems (Colmerauer, 1973). The implementors of Edinburgh Prolog were also keen on natural language processing and wrote one of the more detailed accounts of definite clause grammars (Pereira and Warren, 1980). This paper gives a good discussion of the advantages of DCGs as a parsing formalism in comparison with augmented transition networks (ATNs).

The examples of using DCGs for parsing languages in Section 19.1 were adapted from notes from a tutorial on natural language analysis given by Lynette Hirschman at the Symposium on Logic Programming in San Francisco in 1987. The DCG interpreter of Section 19.2 is adapted from Pereira and Shieber (1987).

Even though the control structure of Prolog matches directly that of recursive-descent, top-down parsers, other parsing algorithms can also be implemented in it quite easily. For example, Matsumoto et al. (1986) describes a bottom-up parser in Prolog.

For further reading on logic grammars, refer to Pereira and Shieber (1987) and Abramson and Dahl (1989).

20 Search Techniques

In this chapter, we show programs encapsulating classic AI search techniques. The first section discusses state-transition frameworks for solving problems formulated in terms of a state-space graph. The second discusses the minimax algorithm with alpha-beta pruning for searching game trees.

20.1 Searching State-Space Graphs

State-space graphs are used to represent problems. Nodes of the graph are states of the problem. An edge exists between nodes if there is a transition rule, also called a move, transforming one state into the next. Solving the problem means finding a path from a given initial state to a desired solution state by applying a sequence of transition rules.

Program 20.1 is a framework for solving problems by searching their state-space graphs, using depth-first search as described in Section 14.2.

No commitment has been made to the representation of states. The moves are specified by a binary predicate move(State,Move), where Move is a move applicable to State. The predicate update(State,Move, State) finds the state State reached by applying the move Move to state State. It is often easier to combine the move and update procedures. We keep them separate here to make knowledge more explicit and to retain flexibility and modularity, possibly at the expense of performance.

The validity of possible moves is checked by the predicate legal(State), which checks if the problem state State satisfies the constraints of the problem. The program keeps a history of the states visited
solve_dfs(State, History, Moves) :-
 clear_goal(Moves),
 move(State, Move),
 update(State, Move, State),
 legal(State),
 not member(State, History),
 solve_dfs(State, [State], Moves).

Testing the framework

test_dfs(Problem, Moves) :-
 initial_state(Problem, State),
 solve_dfs(State, [State], Moves).

Program 20.1 A depth-first state-transition framework for problem solving

to prevent looping. Checking that looping does not occur is done by see-
ing if the new state appears in the history of states. The sequence of
moves leading from the initial state to the final state is built increment-
ally in the third argument of solve_dfs/3.

To solve a problem using the framework, the programmer must decide
how states are to be represented, and axiomatize the move, update, and
legal procedures. A suitable representation has profound effect on the
success of this framework.

Let us use the framework to solve the wolf, goat, and cabbage problem.
We state the problem informally. A farmer has a wolf, goat, and cabbage
on the left side of a river. The farmer has a boat that can carry at most
one of the three, and he must transport this trio to the right bank. The
problem is that he dare not leave the wolf with the goat (wolves love
to eat goats) or the goat with the cabbage (goats love to eat cabbages).
He takes all his jobs very seriously and does not want to disturb the
ecological balance by losing a passenger.

States are represented by a triple, wgc(B, L, R), where B is the po-
sition of the boat (left or right), L is the list of occupants of the
left bank, and R the list of occupants of the right bank. The ini-
tial and final states are wgc(left, [wolf, goat, cabbage], []),
and wgc(right, [], [wolf, goat, cabbage]), respectively. In fact, it is not
strictly necessary to note the occupants of both the left and right banks.

The occupants of the left bank can be deduced from the occupants of
the right bank, and vice versa. But having both makes specifying moves
clearer.

It is convenient for checking for loops to keep the lists of occupants
sorted. Thus wolf will always be listed before goat, both of whom will be
before cabbage if they are on the same bank.

Moves transport an occupant to the opposite bank and can thus be
specified by the particular occupant who is the Cargo. The case when
nothing is taken is specified by the cargo alone. The nondeterministic
behavior of member allows a concise description of all the possible moves
in three clauses as shown in Program 20.2: moving something from the
left bank, moving something from the right bank, or the farmer’s rowing
either direction by himself.

For each of these moves, the updating procedure must be specified,
namely, changing the position of the boat (by update_boat/2) and up-
dating the banks (by update_banks). Using the predicate select allows
a compact description of the updating process. The insert procedure
is necessary to keep the occupant list sorted, facilitating the check if a
state has been visited before. It contains all the possible cases of adding
an occupant to a bank.

Finally, the test for legality must be specified. The constraints are sim-
ple. The wolf and goat cannot be on the same bank without the farmer,
nor can the goat and cabbage.

Program 20.2, together with Program 20.1, solves the wolf, goat, and
cabbage problem. The clarity of the program speaks for itself.

We use the state-transition framework for solving another classic
search problem from recreational mathematics—the water jugs prob-
lem. There are two jugs of capacity 8 and 5 liters with no markings,
and the problem is to measure out exactly 4 liters from a vat containing
20 liters (or some other large number). The possible operations are fill-
ning up a jug from the vat, emptying a jug into the vat, and transffering
the contents of one jug to another until either the pouring jug is emptied
completely, or the other jug is filled to capacity. The problem is depicted
in Figure 20.1.

The problem can be generalized to N jugs of capacity C1, . . . , CN. The
problem is to measure a volume V, different from all the Ci but less
than the largest. There is a solution if V is a multiple of the greatest
common divisor of the Ci. Our particular example is solvable because 4
is a multiple of the greatest common divisor of 8 and 5.
States for the wolf, goat and cabbage problem are a structure
\[wcg(\text{Boat,Left,Right}), \]
where Boat is the bank on which the boat currently is. Left is the list of occupants on the left bank of the river, and Right is the list of occupants on the right bank.

initial_state(wcg(\text{left, [wolf, goat, cabbage]}, [])).

final_state(wcg(\text{right, [1, [wolf, goat, cabbage]]}).

move(wcg(left,L,R),Cargo) \implies \text{member}(Cargo,L).

move(wcg(right,L,R),Cargo) \implies \text{member}(Cargo,R).

move(wcg(B,L,R),\text{close}).

update(wcg(B,L,R),Cargo,wcg(B1,L1,R1)) \implies
update_boat(B,B1), update_banks(Cargo,B,L,B1,L1,R1).

update_boats(left,right).

update_boats(right,left).

update_banks(Cargo,alone,L,R,L1,R1) \implies
select(Cargo,L1), insert(Cargo,R,R1).

update_banks(Cargo,right,L,R,L1,R1) \implies
select(Cargo,R1), insert(Cargo,L1).

insert(X,Y1,Y2) \implies
precedes(X,Y).

insert(X,Y1,Y2) \implies
precedes(Y2,Y1), insert(X,Y2,Z).

insert(X1,X2) \implies
precedes(wolf,X).

precedes(wolf,X).

precedes(wolf,X).

legal(wcg(left,L,R)) \implies \text{not illegal}(R).

legal(wcg(right,L,R)) \implies \text{not illegal}(L).

illegal(Bank) \implies \text{member}(\text{wolf},Bank), \text{member}(\text{goat},Bank), \text{member}(\text{cabbage},Bank).

illegal(Bank) \implies \text{member}(\text{wolf},Bank), \text{member}(\text{goat},Bank).

select(X,X1,X2) \implies \text{See Program 3.19}.

Program 20.2 Solving the wolf, goat, and cabbage problem

Search Techniques

Figure 20.1 The water jugs problem

The particular problem we solve is for two jugs of arbitrary capacity, but the approach is immediately generalizable to any number of jugs. The program assumes two facts in the database, capacity(1,1), for 1 equals 1 and 2. The natural representation of the state is a structure jug(V1,V2), where V1 and V2 represent the volumes of liquid currently in the two jugs. The initial state is jug(0,0) and the desired final state either jug(0,X) or jug(X,0), where X is the desired volume. In fact, the only final state that needs to be specified is that the desired volume be in the larger jug. The volume can be transferred from the smaller volume, if it fits, by emptying the larger jug and pouring the contents of the smaller jug into the larger one.

Data for solving the jugs problem in conjunction with Program 20.1 are given in Program 20.3. There are six moves: filling each jug, emptying each jug, and transferring the contents of one jug to another. A sample fact for filling the first jug is move(jug(V1,V2),fill(1)). The jugs' state is given explicitly to allow the data to coexist with other problem-solving data such as in Program 20.2. The emptying moves are optimized to prevent emptying an already empty jug. The updating procedure associated with the first four moves is simple, while the transferring operation has two cases. If the total volume in the jugs is less than the capacity of the jug being filled, the pouring jug will be emptied and the other jug will have the entire volume. Otherwise the other jug will be filled to capacity and the difference between the total liquid volume and the capacity of the filled jug will be left in the pouring jug. This is achieved by the predicate adjust/4. Note that the test for legality is trivial because all reachable states are legal.

Most interesting problems have too large a search space to be searched exhaustively by a program like 20.1. One possibility for improvement is
Search Techniques

to put more knowledge into the moves allowed. Solutions to the jug problem can be found by filling one of the jugs whenever possible, emptying the other whenever possible, and otherwise transferring the contents of the jug being filled to the jug being emptied. Thus instead of six moves only three need be specified, and the search will be more direct, because only one move will be applicable to any given state. This may not give an optimal solution if the wrong jug to be constantly filled is chosen.

Developing this point further, the three moves can be coalesced into a higher-level move, fill and transfer. This tactic fills one jug and transfers all its contents to the other jug, emptying the other jug as necessary. The code for transferring from the bigger to the smaller jug is

move(jugs(V1,V2),fill_and_transfer(1)).

Using this program, we need only three fill and transfer operations to solve the problem in Figure 20.1.

Adding such domain knowledge means changing the problem description entirely and constitutes programming, although at a different level.

Another possibility for improvement of the search performance, investigated by early research in AI, is heuristic guidance. A general framework, based on a more explicit choice of the next state to search in the state-space graph, is used. The choice depends on numeric scores assigned to positions. The score, computed by an evaluation function, is a measure of the goodness of the position. Depth-first search can be considered a special case of searching using an evaluation function whose value is the distance of the current state to the initial state, while breadth-first search uses an evaluation function which is the inverse of that distance.

We show two search techniques that use an evaluation function explicitly: hill climbing and best-first search. In the following, the predicate value(State,Value) is an evaluation function. The techniques are described abstractly.
Hill climbing is a generalization of depth-first search where the successor position with the highest score is chosen rather than the leftmost one chosen by Prolog. The problem-solving framework of Program 20.1 is easily adapted. The hill climbing move generates all the states that can be reached from the current state in a single move, and then orders them in decreasing order with respect to the values computed by the evaluation function. The predicate `evaluate_and_order` (<moves>, <state>, <Mv>) determines the relation that Mv is an ordered list of move-value tuples corresponding to the list of moves moves from a state state. The overall program is given as Program 20.4.

To demonstrate the behavior of the program we use the example tree of Program 14.8 augmented with a value for each move. This is given as Program 20.5. Program 20.4, combined with Program 20.5 and appropriate definitions of update and legal, searches the tree in the order a, d, j. The program is easily tested on the wolf, goat, and cabbage problem using as the evaluation function the number of occupants on the right bank.

Program 20.4 contains a repeated computation. The state reached by `move` is calculated in order to reach a value for the move and then recalculated by `update`. This recalculation can be avoided by adding an extra argument to `move` and keeping the state along with the move and the value as the moves are ordered. Another possibility if there will be many calculations of the same move is using a memo-function. What is the most efficient method depends on the particular problem. For problems where the update procedure is simple, the program as presented will be best.

Hill climbing is a good technique when there is only one hill and the evaluation function is a good indication of progress. Essentially, it takes a local look at the state-space graph, making the decision on where next to search on the basis of the current state alone.

An alternative search method, called best-first search, takes a global look at the complete state-space. The best state from all those currently unsearched is chosen.

Program 20.6 for best-first search is a generalization of breadth-first search given in Section 16.2. A frontier is kept as for breadth-first search, which is updated as the search progresses. At each stage, the next best available move is made. We make the code as similar as possible to Program 20.4 for hill climbing to allow comparison.
initial_state(tree, a). value(a,0). final_state(b).
novel(a,b). value(b,1). move(c,a). value(c,6). move(g,a). value(g,6).
novel(a,c). value(c,6). move(d,a). value(d,7). move(j,a). value(j,9).
novel(a,d). value(d,7). move(e,a). value(e,11). move(x,a). value(x,11).
novel(a,x). value(x,11). move(f,a). value(f,6). move(h,a). value(h,3).
novel(c,f). value(f,6). move(f,l). value(f,12).

Program 20.5 Test data

At each stage of the search, there is a set of moves to consider rather than a single one. The plural predicate names, for example, updates and legal, indicate this. Thus legal((States,States)) filters a set of successor states, checking which ones are allowed by the constraints of the problem. One disadvantage of breadth-first search (and hence best-first search) is that the path to take is not as conveniently calculated. Each state must store explicitly with it the path used to reach it. This is reflected in the code.

Program 20.6 tested on the data of Program 20.5 searches the tree in the same order as for hill climbing.

Program 20.6 makes each step of the process explicit. In practice, it may be more efficient to combine some of the steps. When filtering the generated states, for example, we can test that a state is new and also legal at the same time. This saves generating intermediate data structures. Program 20.7 illustrates the idea by combining all the checks into one procedure, update_frontier.

Exercises for Section 20.1

(i) Redo the water jugs program based on the two fill-and-transfer operations.

(ii) Write a program to solve the missionaries and cannibals problem:

Three missionaries and three cannibals are standing on the left bank of a river. There is a small boat to ferry them across with enough room for only one or two people. They wish to cross the river. If ever there are more missionaries than cannibals on a particular bank of the river, the missionaries will convert the cannibals. Find a series of ferryings to transport safely all the missionaries and cannibals across the river without exposing any of the cannibals to conversion.

solve_best(Frontier, History, Moves) --
Moves is a sequence of moves to reach a desired final state from the initial state, where Frontier contains the current states under consideration, and History contains the states visited previously.

solve_best((State, State, Path, Value) Frontier, History, Moves) --
final_state(State), reverse_path(Path, Moves),

solve_best((State, State, Path, Value) Frontier, History, FinalPath)--
findall(M, move(State, M, Moves),
updates(Moves, Path, State, States),
legals(States, States),
news(States, History, States),
evaluated(States, States),
inserts(Values, Frontier, Frontier),
solve_best(Frontier, (State, History, FinalPath)).

updates(Moves, Path, State, States) --
States is the list of possible states accessible from the current State, according to the list of possible Moves, where Path is a path from the initial node to State.

updates([M|Ms], Path, S, ([S1, [M|Path]]|S1)) -- update(S, M, S1), updates(Ms, Path, S, S1).
updates([], Path, State, []).

legals(States, States) ==
States is a subset of the list of States that are legal.

legals((S,P) [States], (S,P) [States]) ==
legal(S), legals(States, States).

legals((S,P) [States], States) ==
not legal(S), legals(States, States).

news(States, History, States) ==
States is the list of states in States but not in History.

news((S,P) [States], History, States) ==
member(S, History), news(States, History, States).

news((S,P) [States], History, (S,P) [States]) ==
not member(S, History), news(States, History, States).

news([], History, []).

evaluates(States, Values) --
Values is the list of tuples of States augmented by their value.

evaluates((S,P) [States], (S,P,X) [Values]) ==
value(S, V), evaluates(States, Values).

evaluates([], []).

Program 20.6 Best-first framework for problem solving
search techniques

(iii) Write a program to solve the five jealous husbands problem (Dudeney, 1917):

During a certain flood five married couples found themselves surrounded by water and had to escape from their unpleasant position in a boat that could only hold three persons at a time. Every husband was so jealous that he would not allow his wife to be in the boat or on either bank with another man (or with other men) unless he himself was present. Find a way of getting these five men and their wives across to safety.

(iv) Compose a general problem-solving framework built around breadth-first search analogous to Program 20.1, based on programs in Section 16.2.

(v) Express the 8-queens puzzle within the framework. Find an evaluation function.

20.2 Searching Game Trees

What happens when we play a game? Starting the game means setting up the chess pieces, dealing out the cards, or setting out the matches, for example. Once it is decided who plays first, the players take turns making a move. After each move the game position is updated accordingly.

We develop the vague specification in the previous paragraph into a simple framework for playing games. The top-level statement is

\(\text{play(Game)} \) --
\(\text{initialize(Game,Position,Player)}, \)
\(\text{display_game(Position,Player)}, \)
\(\text{play(Position,Player,Result)}. \)

The predicate \(\text{initialize(Game,Position,Player)} \) determines the initial game position \(\text{Position} \) for \(\text{Game} \), and \(\text{Player} \), the player to start.

A game is a sequence of turns, where each turn consists of a player choosing a move, the move being executed, and the next player being determined. The neatest way of expressing this is as a tail recursive procedure, \(\text{play} \), with three arguments: a game position, a player to move, and the final result. It is convenient to separate the choice of the move by \(\text{choose}_\text{move}/3 \) from its execution by \(\text{move}/3 \). The remaining

Program 20.6 (Continued)

solve_best(Frontier,History,Moves) --
Moves is a sequence of moves to reach a desired final state from the initial state. \text{Frontier} contains the current states under consideration. \text{History} contains the states visited previously.

\(\text{solve_best}(\text{state}(State,Path,Value}/3\text{Frontier}),\text{History,Moves}) --
\text{final},\text{state}(\text{state}),\text{reverse}(\text{Path},[\text{Path}],\text{Movel})\).
\(\text{solve_best}(\text{state}(State,Path,Value}/3\text{Frontier}),\text{History,FinalPath}) --
\text{final}\text{M},\text{move}(\text{state},\text{M},\text{Movel}),
\text{update_frontier}(\text{moves},\text{state},\text{Path,History,Frontier,Frontier}),
\text{solve_best}(\text{Frontier},\text{state}History,\text{FinalPath}).

update_frontier([N,State,Path,History,F,F]) --
update(\text{State},\text{N,State}),
legal(\text{State}),
value(\text{State,Value}),
not\text{member}(\text{State,History}),
i\text{nter}((\text{State,Path},Value,F,F,P0),
update_frontier(\text{N},\text{State,Path,History,P0,F}),
update_frontier([N,\text{state},\text{Frontier}]), -- \text{See Program 20.6}.

Program 20.7 Concise best-first framework for problem solving
play(Game) --
 Play game with name Game.
play(Game) --
 initialize(Game,Position,Player),
 display_game(Position,Player),
 play(Position,Player,Result),
play(Position,Player,Result) --
 game_over(Position,Player,Result), 1, announce(Result),
play(Position,Player,Result) --
 choose_move(Position,Player,Move),
 move(Move,Position,Position1),
 display_game(Position1,Player),
 next_player(Player,Player1),
 !, play(Position1,Player1,Result).

Program 20.8 Framework for playing games

predicates in the clause for play/3 display the state of the game and determine the next player:

play(Position,Player,Result) --
 choose_move(Position,Player,Move),
 move(Move,Position,Position1),
 display_game(Position1,Player),
 next_player(Player,Player1),
 !, play(Position1,Player1,Result).

Program 20.8 provides a logical framework for game-playing programs. Using it for writing a program for a particular game focuses attention on the important issues for game playing: what data structures should be used to represent the game position, and how strategies for the game should be expressed. We demonstrate the process in Chapter 21 by writing programs to play Nim and Kalah.

The problem-solving frameworks of Section 20.1 are readily adapted to playing games. Given a particular game state, the problem is to find a path of moves to a winning position.

A game tree is similar to a state-space graph. It is the tree obtained by identifying states with nodes and edges with players' moves. We do not, however, identify nodes on the tree, obtained by different sequences of moves, even if they repeat the same state. In a game tree, each layer is called a ply.

Search Techniques

evaluate_and_choose(Move,Position,Record,BestMove) --
 Chooses the BestMove from the set of Moves from the current Position, Record records the current best move.
evaluate_and_choose(Move|Moves,Position,Record,|BestMove) --
 move(Move,Position,Position1),
 value(Position1,Value),
 update(Move,Value,Record,Record1),
 evaluate_and_choose(Moves,Position,Record1,|BestMove),
 evaluate_and_choose([] ,Position,Move,Value).
update(Move,Value, (Move1,Value1), (Move,Value)) --
 Value = Value1.
update(Move,Value, (Move1,Value1), (Move,Value)) --
 Value > Value1.

Program 20.9 Choosing the best move

Most game trees are far too large to be searched exhaustively. This section discusses the techniques that have been developed to cope with the large search space for two-person games. In particular, we concentrate on the minimax algorithm augmented by alpha-beta pruning. This strategy is used as the basis of a program we present for playing Kalah in Chapter 21.

We describe the basic approach of searching game trees using evaluation functions. Again, in this section value(Position,Value) denotes an evaluation function computing the Value of Position, the current state of the game. Here is a simple algorithm for choosing the next move:

Find all possible game states that can be reached in one move. Compute the values of the states using the evaluation function. Choose the move that leads to the position with the highest score.

This algorithm is encoded as Program 20.9. It assumes a predicate move(Move,Position,Position1) that applies a Move to the current Position to reach Position1. The interface to the game framework of Program 20.8 is provided by the clause

choose_move(Position,computer,Move) --
 findAll(M,move(Position,M),Moves),
 evaluate_and_choose(Moves,Position,(nil,,-1000),Move).

The predicate move(Position,Move) is true if Move is a possible move from the current position.
The basic relation is evaluate_and_choose(Moves, Position, Record, BestMove) which chooses the best move BestMove in the possible Moves from a given Position. For each of the possible moves, the corresponding position is determined, its value is calculated, and the move with the highest value is chosen. Record is a record of the current best move so far. In Program 20.9, it is represented as a tuple (Move, Value). The structure of Record has been partially abstracted in the procedure update. How much data abstraction to use is a matter of style and a trade-off among readability, conciseness, and performance.

Looking ahead one move, the approach of Program 20.9, would be sufficient if the evaluation function were perfect, that is, if the score reflected which positions led to a win and which to a loss. Games become interesting when a perfect evaluation function is not known. Choosing a move on the basis of looking ahead one move is generally not a good strategy. It is better to look several moves ahead and to infer from what is found the best move to make.

The minimax algorithm is the standard method for determining the value of a position based on searching the game tree several ply ahead.

The algorithm assumes that, when confronted with several choices, the opponent would make the best choice for her, i.e., the worst choice for me. My goal then is to make the move that maximizes for me the value of the position after the opponent has made her best move, i.e., that minimizes the value for her. Hence the name minimax. This reasoning proceeds several ply ahead, depending on the resources that can be allocated to the search. At the last ply the evaluation function is used.

Assuming a reasonable evaluation function, the algorithm will produce better results the more ply are searched. It will produce the best move if the entire tree is searched.

The minimax algorithm is justified by a zero-sum assumption, which says, informally, that what is good for me must be bad for my opponent, and vice versa.

Figure 20.2 depicts a simple game tree of depth 2 ply. The player has two moves in the current position, and the opponent has two replies. The values of the leaf nodes are the values for the player. The opponent wants to minimize the score, so will choose the minimum values, making the positions be worth +1 and -1 at one level higher in the tree. The player wants to maximize the value and will choose the node with value +1.

Program 20.10 encodes the minimax algorithm. The basic relation is minimax(D, Position, MaxMin, Move, Value), which is true if Move is the move with the highest Value from Position obtained by searching D ply in the game tree. MaxMin is a flag that indicates if we are maximizing or minimizing. It is 1 for maximizing and -1 for minimizing, the particular values being chosen for ease of manipulation by simple arithmetic operations. A generalization of Program 20.9 is used to choose from the set of moves. Two extra arguments must be added to evaluate_and_choose: the number of ply D and the flag MaxMin. The last argument is generalized to return a record including both a move and a value rather than just a move. The minimax procedure does the bookkeeping, changing the number of moves being looked ahead and also the minimax flag. The initial record is (nil, -1000), where nil represents an arbitrary move and -1000 is a score intended to be less than any possible score of the evaluation function.

The observation about efficiency that was made about combining the move generation and update procedures in the context of searching state-space graphs has an analogue when searching game trees. Whether it is better to compute the set of positions rather than the set of moves (with the corresponding change in algorithm) will depend on the particular application.

The minimax algorithm can be improved by keeping track of the results of the search so far, using a technique known as alpha-beta pruning. The idea is to keep for each node the estimated minimum value found so far, the alpha value, along with the estimated maximum value, beta. If, on evaluating a node, beta is exceeded, no more search on that branch is necessary. In good cases, more than half the positions in the game tree need not be evaluated.
evaluate_and_choose(Moves, Position, Depth, Flag, Record, BestMove) -- Choose the BestMove from the set of Moves from the current Position using the minimax algorithm searching Depth ply ahead. Flag indicates if we are currently minimizing or maximizing. Record records the current best move.
evaluate_and_choose(Moves, Position, D, MaxMin, Record, Best) -- move(Move, Position, Position),
minmax(D, Position, MaxMin, MoveX, Value),
update(Move, Value, Record, Record),
evaluate_and_choose(Moves, Position, D, MaxMin, Record, Record),
minmax(D, Position, MaxMin, Move, Value) --
value(Position, V), Value is T = MaxMin.
minmax(D, Position, MaxMin, Move, Value) --
D > 0, findall(M, move(Position, M), Moves),
D1 is D - 1,
MaxMin is -MaxMin,
evaluate_and_choose(Moves, Position, D1, MaxMax, (all, -1000),
(Move, Value)),
update(Move, Value, Record, Record)) -- See Program 20.9.

Program 20.10 Choosing the best move with the minimax algorithm

Program 20.11 is a modified version of Program 20.10 that incorporates alpha-beta pruning. The new relation scheme is alpha_beta(Depth, Position, Alpha, Beta, Move, Value), which extends minimax by replacing the minimax flag with alpha and beta. The same relation holds with respect to evaluate_and_choose.

Unlike the one in Program 20.10, the version of evaluate_and_choose in Program 20.11 does not need to search all possibilities. This is achieved by introducing a predicate cutoff, which either stops searching the current branch or continues the search, updating the value of alpha and the current best move as appropriate.

For example, the last node in the game tree in Figure 20.2 does not need to be searched. Once a move with value -1 is found, which is less than the value of +1 the player is guaranteed, no other nodes can contribute to the final score.

The program can be generalized by replacing the base case of alpha_beta by a test of whether the position is terminal. This is necessary in chess programs, for example, for handling incomplete piece exchanges.

20.3 Background

Search techniques for both planning and game playing are discussed in AI textbooks. For further details of search strategies or the minimax algorithm and its extension to alpha-beta pruning, see, for example, Nilsson (1971) or Winston (1977).

Walter Wilson originally showed us the alpha-beta algorithm in Prolog.
Prolog has been used for a wide range of applications: expert systems, natural language understanding, symbolic algebra, compiler writing, building embedded languages, and architectural design, to name a few. In this part, we give a flavor of writing application programs in Prolog.

The first chapter looks at programs for playing three games: mastermind, Nim, and Kalah. The next chapter presents an expert system for evaluating requests for credit. The third chapter presents a program for solving symbolic equations, and the final chapter looks at a compiler for a Pascal-like language.

The emphasis in presentation in these chapters is on writing clear programs. Knowledge embedded in the programs is made explicit. Minor efficiency gains are ignored if they obscure the declarative reading of the program.
Learning how to play a game is fun. As well as understanding the rules of the game, we must constantly learn new strategies and tactics until the game is mastered. Writing a program to play games is also fun, and a good vehicle for showing how to use Prolog for writing nontrivial programs.

21.1 Mastermind

Our first program guesses the secret code in the game of mastermind. It is a good example of what can be programmed in Prolog easily with just a little thought.

The version of mastermind we describe is what we played as kids. It is a variant on the commercial version and needs less hardware (only pencil and paper). Player A chooses a sequence of distinct decimal digits as a secret code—usually four digits for beginners and five for advanced players. Player B makes guesses and queries player A for the number of bulls (number of digits that appear in identical positions in the guess and in the code) and cows (number of digits that appear in both the guess and the code, but in different positions).

There is a very simple algorithm for playing the game: impose some order on the set of legal guesses; then iterate, making the next guess that is consistent with all the information you have so far until you find the secret code.
Rather than defining the notion of consistency formally, we appeal to the reader's intuition: A guess is consistent with a set of answers to queries if the answers to the queries would have remained the same if the guess were the secret code.

The algorithm performs quite well compared with experienced players: an average of four to six guesses for a code with four digits with an observed maximum of eight guesses. However, it is not an easy strategy for humans to apply, because of the amount of bookkeeping needed. On the other hand, the control structure of Prolog—nondeterministic choice, simulated by backtracking—is ideal for implementing the algorithm.

We describe the program top-down. The entire program is given as Program 21.1. The top-level procedure for playing the game is

```prolog
masternind(Code) -->
cleanup, guess(Code), check(Code), announce.
```

The heart of the top level is a generate-and-test loop. The guessing procedure `guess(Code)`, which acts as a generator, uses the procedure `selects(Xs,Ys)` (Program 7.7) to select nondeterministically a list `Xs` of elements from a list `Ys`. According to the rules of the game, `Xs` is constrained to contain four distinct elements, while `Ys` is the list of the ten decimal digits:

```prolog
guess(Code) -->
  Code = [X1,X2,X3,X4],
  selects(Code,[1,2,3,4,5,6,7,8,9,0]).
```

The procedure `check(Guess)` tests the proposed code `Guess`. It first verifies that `Guess` is consistent with all (i.e., not inconsistent with any) of the answers to queries already made; then it asks the user for the number of bulls and cows in `Guess`. The `ask(Guess)` procedure also controls the generate-and-test loop, succeeding only when the number of bulls is four, indicating the correct code is found:

```prolog
check(Guess) -->
  not inconsistent(Guess), ask(Guess).
```

Ask stores previous answers to queries in the relation query(X,B,C), where `X` is the guess, `B` is the number of bulls in it, and `C` the number of cows. A guess is inconsistent with a previous query if the number of bulls and cows do not match:

```prolog
ask(Guess) -->
  repeat,
  writeln('How many bulls and cows in ',Guess,'?'),
  read(Bulls,Cows),
  sensibel(Bulls,Cows),
  assert(query(Guess,Bulls,Cows)),
  Bulls +:= 4,
  sensibel(Bulls,Cows) +
  integer(Bulls), integer(Cows), Bulls+Cows < 4.
```

Bookkeeping

```prolog
cleanup -->
  abolish(query,3).
announce -->
  size_of(QUERY(2,1,3),H),
  writeln('Found the answer after ',H,' queries').
```

Program 21.1 Playing masternind
inconsistent(Guess) ← query(Old,Bulls,Cows),
not bulls_and_cows_match(Old,Guess,Bulls,Cows).

The bulls match between a previous guess OldGuess and a conjectured guess Guess if the number of digits in the same position in the two guesses equals the number of Bulls in OldGuess. It is computed by the predicate exact_matches(OldGuess,Guess,Bulls). The cows match if the number of common digits without respect to order corresponds to the sum of Bulls and Cows; it is computed by the procedure bulls_and_cows_match. It is easy to count the number of matching digits and common digits in two queries, using an all-solutions predicate size_of/3.

The ask(Guess) procedure is a memo-function that records the answer to the query. It performs some limited consistency checks on the input with the procedure sensible/2 and succeeds only if four bulls are indicated. The expected syntax for the user’s reply is a tuple (Bulls,Cows).

The remaining (top-level) predicates are for bookkeeping. The first, cleanup, removes unwanted information from previous games. The predicate announce tells how many guesses were needed, which is determined using size_of/3.

A more efficient implementation of the exact_matches and common_members procedures can be obtained by writing iterative versions:

```
exact_matches(Xs,YS,N) ← exact_matches(Xs,YS,0,N).
exact_matches([],YS,N) ← N >= 0.
exact_matches([X|Xs],YS,N) ← X is Xs, exact_matches(Xs,YS,K,N).
exact_matches([X|Xs],YS,N) ← X is Y, exact_matches(Xs,YS,K,N).
exact_matches([],[],N,N).
common_members(Xs,YS,N) ← common_members(Xs,YS,0,N).
common_members([],YS,N) ← N >= 0.
common_members([X|Xs],YS,N) ← member(X,YS), K is K+1, common_members(Xs,YS,K,N).
common_members([X|Xs],YS,N) ← common_members(Xs,YS,K,N).
common_members([],YS,N).
```

Using the more efficient versions of exact_matches and common_members saves about 10%-30% of the execution time.

21.2 Nim

We turn our attention now from mastermind to Nim, also a game for two players. There are several piles of matches, and the players take turns removing some of the matches (up to all) in a pile. The winner is the player who takes the last match. Figure 21.1 gives a common starting position, with piles of 1, 3, 5 and 7 matches.

To implement the Nim-playing program, we use the game-playing framework of Program 20.8.

The first decision is the representation of the game position and the moves. A natural choice for positions is a list of integers where elements of the list correspond to piles of matches. A move is a tuple (N,M) for taking M matches from pile N. Writing the procedure move(Move,Position,Position), where Position is updated to Position by Move, is straightforward. The recursive rule counts down match piles until the desired pile is reached. The remaining piles of matches representing the new game position are computed routinely:

```
move(K,M,[N|M|S],[N|M|S]) ← K > 1, K1 is K-1, move([K1,M|S|N],N).
```

There are two possibilities for updating the specified pile of matches, the base case of the procedure. If all the matches are taken, the pile is removed from the list. Otherwise the new number of matches in the pile is computed and checked to be legal:

```
move([1,M],N|M|S), N.
move([1,M],N|M|S), M1 is N-M.
```

The mechanics of turns for two-person games is specified by two facts.

Figure 21.1 A starting position for Nim
The initial piles of matches and who moves first must be decided by the two players. Assuming the computer moves second, the game of Figure 21.1 is specified as

\[\text{initialize}(\text{nim}, [1, 3, 5], \text{opponent}). \]

The game is over when the last match is taken. This corresponds to the game position being the empty list. The person having to move next is the loser, and the output messages of announce are formulated accordingly. The details are in Program 21.2.

It remains to specify how to choose the moves. The opponent's moves are accepted from the keyboard; how much flexibility is allowed in input is the responsibility of the programmer:

\[
\text{choose} \text{move}(\text{Position, opponent, Move}) = \\
\text{write}(\text{"Please make move"}), \text{read}(\text{Move}), \text{legal}(\text{Move, Position}).
\]

Choosing a move for the computer requires a strategy. A simple strategy to implement is taking all of the first pile of matches. It is recommended only for use against extremely poor players:

\[
\text{choose} \text{move}(\text{X}[N], \text{computer}, (1, N)).
\]

A winning strategy is known for Nim. It involves dividing game states, or positions, into two classes, safe and unsafe. To determine if a position is safe or unsafe, the binary representation of the number of matches in each pile is computed. The nim-sum of these binary numbers is then calculated as follows. Each column is summed independently modulo 2. If the total in each column is zero, the position is safe. Otherwise the position is unsafe.

Figure 21.2 illustrates the process for the four piles of matches in Figure 21.1. The binary representations of 1, 3, 5, and 7 are 1, 11, 101, and 111 respectively. Calculating the nim-sum: there are four 1's in the units column, two 1's in the 2's column and two 1's in the 4's column; an even number of 1's in each. The nim-sum is zero, making the position [1,3,5,7] safe. On the other hand the position [2,6] is unsafe. The binary representations are 10 and 110. Summing them gives one 1 in the 4's column and two 1's in the 2's column. The single 1 in the 4's column makes the position unsafe.

Game-Playing Programs

\[
\text{play}(\text{Game}) \rightarrow \text{See Program 20.8.}
\]

Filling in the game-playing framework

\[
\text{initialize}(\text{nim}, [1, 3, 5], \text{opponent}), \text{display game}(\text{Position, X}) \rightarrow \text{write}(\text{Position}), \text{nl.}
\]

\[
\text{game over}([], \text{Player, Player}), \text{announce}(\text{computer}) \rightarrow \text{write}(\text{"You won! Congratulations."}), \text{nl.}
\]

\[
\text{announce}(\text{opponent}) \rightarrow \text{write}(\text{"I won."}), \text{nl.}
\]

Choosing moves

\[
\text{choose} \text{move}(\text{Position, opponent, Move}) = \\
\text{write}(\text{"Please make move"}), \text{read}(\text{Move}), \text{legal}(\text{Move, Position}).
\]

\[
\text{legal}(\text{K, Position}) \rightarrow \text{nth} \text{member}(\text{K, Position, M, N \leq M}).
\]

\[
\text{nth} \text{member}(1, [X][K][X], X).
\]

\[
\text{nth} \text{member}(\text{K}, [X][K][X], \text{N}) \rightarrow \text{N \geq 1, Xi in XS, nth} \text{member}(\text{Xi, X, Y}).
\]

\[
\text{choose} \text{move}(\text{Position, computer, Move}) = \\
\text{evaluate}(\text{Position, Safety, Sum}), \text{decide} \text{move}(\text{Position, Safety, Sum}).
\]

\[
\text{evaluate}(\text{Position, Safety, Sum}) = \\
\text{nim} \text{sum}(\text{Position, [Sum], SafetySum, SafetySum}).
\]

\[
\text{safe} \text{move}(\text{Position, Sum}) = \\
\text{choose} \text{move}(\text{Position, Sum}).
\]

\[
\text{move}(\text{Position, Position}) = \\
\text{Position1} \text{ is the result of executing the move}
\]

\[
\text{move} \text{ from the current } \text{Position}.
\]

\[
\text{move}(\text{K, [N][N], [N][N]}) = \\
\text{K \geq 1, Xi in X, move}(\text{K, M, X, N}).
\]

\[
\text{move}(1, 1, [X][N], [N][N]) = \\
\text{N \geq N, Xi in XS}.
\]

\[
\text{next} \text{player}(\text{computer, opponent}). \text{next} \text{player}(\text{opponent, computer}).
\]

Program 21.2 A program for playing a winning game of Nim
nim_sum(Position, SoFar, Sum) :-
 Sum is the nim-sum of the current Position, and SoFar is an accumulated value.
nim_sum([N|Ns], [B|Bs], Sum) :-
 binary(N, Ds), nim_add(Ds, Bs, Bs1), nim_sum(Ns, Bs1, Sum).
nim_sum([], Sum, Sum).
nim_add([], [], []).
nim_add([B|Bs], [C|Cs], [D|Ds]) :-
 D is Bs+C mod 2, nim_add(Bs, Cs, Ds).

binary([1,1], [1,1]).
binary([0,0], [0,0]).

decimal([D|Ds], N) :-
 D is N mod 2, N1 is N/2, binary([N1, D]).

decimal([1,1,1,1], [1,1,1,1]).

decimal([0,0,0,0], [0,0,0,0]).

A1 is A+B+C, T1 is T+2, decimal([B, A1, T1], N).

zero([]).
zero([D|Ds]) = zero(Ds).

safe_move(Position, NimSum, Move) :-
 Move is a move from the current Position with the value NimSum that leaves a safe position.
safe_move(Position, NimSum, Move) :-
 safe_move(Position, NimSum, Move).

safe_move([Pile|Piles], NimSum, K, [K|Ks]) :-
 binary(Pile, Bs), can_zero(Bs, NimSum, Ds, 0), decimal(Ds, N).

safe_move([Pile|Piles], NimSum, K, Move) :-
 K1 is K+1, safe_move(Piles, NimSum, K1, Move).

can_zero([], NimSum, [1,0]) = zero(NimSum).

can_zero([B|Bs], [N|NimSum], [C|Cs], C) =
 can_zero(Bs, NimSum, Bs, C).

can_zero([B|Bs], [N|NimSum], [D|Ds], C) :-
 D is 1-B+C, C1 is 1-B, can_zero(Bs, NimSum, Ds, C1).

Program 21.2 (Continued)
The binary form of a number is represented here as a list of digits. To overcome the difficulty of adding lists of unequal length, the least significant digits are earliest in the list. Thus 2 (in binary 10) is represented as [0,1], while 6 is represented as [0,1,1]. The two numbers can then be added from least significant digit to most significant digit, as is usual for addition. This is done by nim_add/3 and is slightly simpler than regular addition, since no carry needs to be propagated. The code for both binary and nim_add appears in Program 21.2.

The nim-sum Sun is used by the predicate safe_move(3s, Sun, Move) to find a winning move Move from the position described by 3s. The piles of matches are checked in turn by safe_move/4 to see if there is a number of matches that can be taken from the pile to leave a safe position. The interesting clause is:

\[
\text{safe.move([Pile|Piles], NimSum, K, M)} \leftarrow \\
\text{binary(Pile, Bs), can.zero(Bs, NimSum, Da, 0), decimal(Da, M).}
\]

The heart of the program is can.zero(Bs, NimSum, Da, Carry). This relation is true if replacing the binary number Bs by the binary number Da makes NimSum zero. The number Da is computed digit by digit. Each digit is determined by the corresponding digit of Bs, NimSum, and a carry digit Carry initially set to 0. The number is converted to its decimal equivalent by decimal/2 in order to get the correct move.

Program 21.2 is a complete program for playing Nim interactively incorporating the winning strategy. As well as being a program for playing the game, it is also an automatization of what constitutes a winning strategy.

21.3 Kalah

We now present a program for playing the game of Kalah that uses alpha-beta pruning. Kalah fits well into the paradigm of game trees for two reasons. First, the game has a simple, reasonably reliable evaluation function, and second, its game tree is tractable, which is not true for games such as chess and go. It has been claimed that some Kalah programs are unbeatable by human players. Certainly, the one presented here beats us.

Kalah is played on a board with two rows of six holes facing each other. Each player owns a row of six holes, plus a kalah to the right of the holes.

In the initial state there are six stones in each hole and the two kalahs are empty. This is pictured in the top half of Figure 21.3.

A player begins his move by picking up all the stones in one of his holes. Proceeding counterclockwise around the board, he puts one of the picked-up stones in each hole and in his own kalah, skipping the opponent's kalah, until no stones remain to be distributed. There are three possible outcomes. If the last stone lands on the kalah, the player has another move. If the last stone lands on an empty hole owned by the player, and the opponent's hole directly across the board contains at least one stone, the player takes all the stones in the hole plus his last landed stone and puts them all in his kalah. Otherwise the player's turn ends, and his opponent moves.

The bottom kalah board in Figure 21.3 represents the following move from the top board by the owner of the top holes. He took the stones in the rightmost hole and distributed them, the last one ending in the kalah, allowing another move. The stones in the fourth hole from the right were then distributed.

If all the holes of a player become empty (even if it is not his turn to play), the stones remaining in the holes of the opponent are put in the opponent's kalah and the game ends. The winner of the game is the first player to get more than half the stones in his kalah.
The difficulty for programming the game in Prolog is finding an efficient data structure to represent the board, to facilitate the calculation of moves. We use a four-argument structure board(Holes,Kalah,OppHoles,OppKalah), where Holes is a list of the numbers of stones in your six holes, Kalah is the number of stones in your kalah, and OppHoles and OppKalah are, respectively, the lists of the numbers of stones in the opponent's holes and the number of stones in his kalah. Lists were chosen rather than six-place structures to facilitate the writing of recursive programs for distributing the stones in the holes.

A move consists of choosing a hole and distributing the stones therein. A move is specified as a list of integers with values between 1 and 6 inclusive, where the numbers refer to the holes. Hole 1 is furthest from the player's kalah, while hole 6 is closest. A list is necessary rather than a single integer because a move may continue. The move depicted in Figure 21.3 is [1, 4].

The code gives all moves on backtracking. The predicate stones_in_hole(M,Board,N) returns the number of stones N in hole N of the Board if N is greater than 0, failing if there are no stones in the hole. The predicate extend_move(M,Board,N,Ms) returns the continuation of the move Ms. The second clause for move handles the special case when all the player's holes become empty during a move.

Testing whether the move continues is nontrivial, since it may involve all the procedures for making a move. If the last stone is not placed in the kalah, which can be determined by simple arithmetic, the move will end, and there is no need to distribute all the stones. Otherwise the stones are distributed, and the move continues recursively.

The basic predicate for making a move is distribute_stones(Stones, N,Board,Board1), which computes the relation that Board1 is obtained from Board by distributing the number of stones in Stones starting from hole number N. There are two stages to the distribution, putting the stones in the player's holes, distribute_my_holes, and putting the stones in the opponent's holes, distribute_opponent's holes.

The simpler case is distributing the stones in the opponent's holes. The holes are updated by distribute, and the distribution of stones continues recursively if there is an excess of stones. A check is made to see if the player's board has become empty during the course of the move, and if so, the opponent's stones are added to his kalah.

Distributing the player's stones must take into account two possibilities, distributing from any particular hole, and continuing the distribu-

21.4 Background

The mastermind program, slightly modified, originally appeared in SIGART (Shapiro, 1983d) in response to a program for playing mastermind in Pascal. The SIGART article provoked several reactions, both of theoretical improvements to algorithms for playing mastermind and practical improvements to the program. Most interesting was an analysis and discussion by Powers (1984) of how a Prolog program could be rewritten to good benefit using the mastermind code as a case study. Eventually, speedup by a factor of 50 was achieved.

A proof of the correctness of the algorithm for playing Nim can be found in any textbook discussing games on graphs, for example, Berge (1962).

Kalah was an early AI target for game-playing programs (Slagle and Dixon, 1969).
Play framework

choose_move(Position, computer, Move) -
lookahead(4, Depth).

alpha_beta(4, Depth, Position, -40, 40, Move, Value),

nl, write(Move), nl.

choose_move(Position, opponent, Move) -

nl, writeln('I have made move '), read(Move), legal(Move).

alpha_beta(4, Depth, Position, Alpha, Beta, Move, Value) -
See Program 20.11.

move(Board, [M][M]) -

number([0, 1, 2, 3, 4, 5, 6]),
stones_in_hole(M, Board, N),
extend_move(M, N, Board, [M]).

move(Board, [0, 0, 0, 0, 0, 0, 0, X, Y, [L]].),

stones_in_hole(M, Board, [X, Y, [L], Stones]) -

nth_member(M, N, Stones),

Stones > 0.

extend_move(Stones, M, Board, []).

Stones <= 7 and 13,!

extend_move(Stones, M, Board, []).

Stones >= 7 and 13,!

distribute_stones(Stones, M, Board, Board1),

move(Board, [M]).

Executing a move

move(D[H][S], Board, FinalBoard) -

stones_in_hole(S, Board, Stones),

distribute_stones(N, Board, Board1),

move(S, Board, FinalBoard).

move([], Board, Board). -

distribute_stones(Stones, Hole, Board, Board1) -

Board1 is the result of distributing the number of stones

Stones from Hole from the current Board.

It consists of two stages: distributing the stones in the player's

holes, distribute_my_holes, and distributing the stones

in the opponent's holes, distribute_your_holes.

Program 21.3 A complete program for playing Kalah

Game-Playing Programs

distribute_stones(Stones, Hole, Board, FinalBoard) -
distribute_my_holes(Stones, Hole, Board, Board1, Stones1),
distribute_your_holes(Stones1, Board, FinalBoard).

distribute_my_holes(Stones, X, board([M], [K], [Y], [L]),

board([M], [K], [Y], [L], Stones1)) -

Stones > 7-M,!

pick_up_and_distribute(5, Stones, Hole, Stones1).

K1 = K+1, Stones1 is Stones-K-7.
distribute_my_holes(Stones, X, board([M], [K], [Y], [L], Board, 0) -
Stones > 7-K,
pick_up_and_distribute(5, Stones, Hole, [M]).

check_capture(5, Stones, Hole, [K], [Y], [L], Pieces),

update_stones(Pieces, N, Stones, 0, K1),

check_if_finished(board([M], [K], [Y], [L], Board, [M]).

check_capture(5, Stones, Hole, [K], [Y], [L], Pieces) -
FinishingHole is K+5Stones,

nth_member(FinishingHole, 0, 1),

OppositeHole is 7-FinishingHole,

nth_member(OppositeHole, 0, 7),

Y > 0,!

k_substitute(OppositeHole, [K], [Y], [L], Pieces)

is Y+1.

check_capture(7-M and 5, Stones, Hole, [K], [Y], [L], - 1)

check_if_finished(board([M], [K], [Y], [L], Board([M], [K], [Y], [L]),

zer0(Hole), 1, sumlist([Y], [Y], Sum),

L is L+Y-Sum),

check_if_finished(board([M], [K], [Y], [L], board([K], [Y], [L]),

zer0(T), 1, sumlist([Hole], [Hole]),

K is K+Hole)

check_if_finished(board, Board) -

1.

update_stones(0, Stones, K, K1)

Stones < 7-K,!

update_stones(0, Stones, K, K1) -
Stones := 7-K, K1 is K+1,

update_stones(Pieces, Stones, K, K1) -

Pieces > 0, K1 is K+Pieces,

distribute_your_holes(0, Board, Board),

distribute_your_holes(Stones, board([K], [Y], [L], board([K], [Y], [L]),

1 <= Stones, Stones <= 6,

non_zero([Hole], 1),

distribute(Stones, [Y], [L]).

Program 21.3 (Continued)
Chapter 21

distribute_your_holes(Stones,board,Hs,K,Ye,L,Board) ←
Stones > 6, !, !
distribute(6, Ye, Ya), !.
Stones is Stones-6,
distribute_your_holes(Stones,board,Hs,K,Ye,L,Board)
distribute_your_holes(Stones,board,Hs,K,Ye,L,board(Hs,K,Hs,L1)) ←
zero(Hs), !, suclist(Ye,YaSum), L1 is Stones+YaSum+L.

Lower-level stone distribution
pick_up_and_distribute(0,N,Hs,H1) ←
1, distribute(N, Hs, H1), !, !,
distribute(N, Hs, H1), !.
pick_up_and_distribute(1,N,Hs,H1) ←
K > 1, 1, K in K-1, pick_up_and_distribute(K1,N,Hs,H1), !,
distribute(0,Hs,H1) ←
1, !,
distribute(Hs,H1,Hs,H1) ←
K > 0, 1, K in K-1, H1 is H+1, distribute(H1,Hs,H1), !,
distribute(K,[X],[]) ←
N evaluation function
value(board(H,K,Y,L)) value(N) ← Value is K-L.

Testing for the end of the game
game_over(board(0,N,N,Y,N),Player,draw) ←
pieces(N), N ← 6+K, !
game_over(board(H,K,Y,L),Player,Player) ←
pieces(0), N > 6+K, !
game_over(board(H,K,Y,L),Player,Opponent) ←
pieces(L > 6+K, next_player(Player,Opponent), !)
announce(Opponent) ← writeln("You won! Congratulations.")
announce(Player) ← writeln("I won!")
announce(draw) ← writeln("The game is a draw")

Miscellaneous game utilities
nth_member(K,[X|_],X) ←
K > 1, 1, K in K-1, nth_member(K1,Xs,X).
nth_member(1,[X|_],X).
n_substitute(1,[X|K],Y,[Y|X]) ←
1, nth_member(1,[X|Ks],K).
n_substitute(0,[X|Ks],Y,[X|IS]) ←
N > 1, 1, K is N-1, n_substitute(K1,Xs,Y,X).

Program 21.3 (Continued)
When the first edition of this book was published, there was a surge of activity in the application of artificial intelligence to industry. Of particular interest were expert systems—programs designed to perform tasks previously allocated to highly paid human experts. One important feature of expert systems is the explicit representation of knowledge.

This entire book is relevant for programming expert systems. The example programs typify code that might be written. For instance, the equation-solving program of Chapter 23 can be, and has been, viewed as an expert system. The knowledge of expert systems is often expressed as rules. Prolog whose basic statements are rules is thus a natural language for implementing expert systems.

22.1 Developing the System

This chapter presents an account of developing a prototype expert system. The example comes from the world of banking: evaluating requests for credit from small business ventures. We give a fictionalized account of the development of a simple expert system for evaluating client requests for credit from a bank. The account is from the point of view of Prolog programmers, or knowledge engineers, commissioned by the bank to write the system. It begins after the most difficult stage of building an expert system, extracting the expert knowledge, has been under way for some time. In accordance with received wisdom, the programmers have been consulting with a single bank expert, Chas E. Manhattan. Chas has
told us that three factors are of the utmost importance in considering a request for credit from a client (a small business venture).

The most important factor is the collateral that can be offered by the client in case the venture folds. The various types of collateral are divided into categories. Currency deposits, whether local or foreign, are first-class collateral. Stocks are examples of second-class collateral, and the collateral provided by mortgages and the like is illiquid.

Also very important is the client's financial record. Experience in the bank has shown that the two most important factors are the client's net worth per assets and the current gross profits on sales. The client's short-term debt per annual sales should be considered in evaluating the record, and slightly less significant is last year's sales growth. For knowledge engineers with some understanding of banking, no further explanation of such concepts is necessary. In general, a knowledge engineer must understand the domain sufficiently to be able to communicate with the domain expert.

The remaining factor to be considered is the expected yield to the bank. This is a problem that the bank has been working on for a while. Programs exist to give the yield of a particular client profile. The knowledge engineer can thus assume that the information will be available in the desired form.

Chas uses qualitative terms in speaking about these three factors: "The client had an excellent financial rating, or a good form of collateral. His venture would provide a reasonable yield," and so on. Even concepts that could be determined quantitatively are discussed in qualitative terms. The financial world is too complicated to be expressed only with the numbers and ratios constantly being calculated. In order to make judgments, experts in the financial domain tend to think in qualitative terms with which they are more comfortable. To echo expert reasoning and to be able to interact with Chas further, qualitative reasoning must be modeled.

On talking to Chas, it became clear that a significant amount of the expert knowledge he described could be naturally expressed as a mixture of procedures and rules. On being pressed a little in the second and third interviews, Chas gave rules for determining ratings for collateral and financial records. These involved considerable calculations, and in fact, Chas admitted that to save himself work in the long term, he did a quick initial screening to see if the client was at all suitable.
Chapter 22

Credit Evaluation

credit(Client, Answer) --
 Answer is the reply to a request by Client for credit.

credit(Client, Answer) --
 ok_profile(Client),
collateral_rating(Client, CollateralRating),
financial_rating(Client, FinancialRating),
bank_yield(Client, Yield),
evaluate(profile(CollateralRating, FinancialRating, Yield), Answer).

The collateral rating module

collateral_rating(Client, Rating) --
 Rating is a qualitative description assessing the collateral offered by Client to cover the request for credit.

collateral_rating(Client, Rating) --
collateral_profile(Client, FirstClass, SecondClass, Illiquid),
collateral_evaluation(FirstClass, SecondClass, Illiquid, Rating).
collateral_profile(Client, FirstClass, SecondClass, Illiquid) --
 respected_credit(Client, Credit),
collateral_percent(first_class, Client, Credit, FirstClass),
collateral_percent(second_class, Client, Credit, SecondClass),
collateral_percent(illiquid, Client, Credit, Illiquid).
collateral_percent(Type, Client, Total, Value) --
 find_alpha_i(Collateral(Collateral, Type),
 amount(Client, Collateral, Type),
 sum_cost(i, Collateral, Type, Value),
 Value in $100/Total.

Evaluation rules

collateral_evaluation(FirstClass, SecondClass, Illiquid, excellent) --
 FirstClass ≥ 100.
collateral_evaluation(FirstClass, SecondClass, Illiquid, excellent) --
 FirstClass > 70, FirstClass + SecondClass ≥ 100.
collateral_evaluation(FirstClass, SecondClass, Illiquid, good) --
 FirstClass + SecondClass > 60,
 FirstClass + SecondClass < 70,
 FirstClass + SecondClass + Illiquid ≥ 100.

Bank data - classification of collateral

collateral(local, currency, deposits, first_class),
collateral(foreign, currency, deposits, first_class),
collateral(negotiate, instruments, second_class),
collateral(mortgages, illiquid).

Program 22.1 A credit evaluation system

A Credit Evaluation Expert System

Financial rating

financial_rating(Client, Rating) --
 Rating is a qualitative description assessing the financial record offered by Client to support the request for credit.

financial_rating(Client, Rating) --
 financial_factors(factors),
 score(factors, Client, 0, Score),
 calibrate(Score, Rating).

Financial evaluation rules

calibrate(Score, bad) -- Score < -500,
calibrate(Score, medium) -- -500 < Score, Score < 150,
calibrate(Score, good) -- 150 ≤ Score, Score < 1000,
calibrate(Score, excellent) -- Score ≥ 1000.

Bank data - weighting factors

financial_factors([net_worth_per_asset, 6],
 [last_year_sales_growth, 1],
 [gross_profit, on_sales, 5],
 [short_term_debt_per_annual_sales, 2]).
score([[Factor, Weight],[Factors, Client, Acc, Score]) --
 value(Factors, Client, Value),
 Acc is Acc + Weight * Value,
 score(Factors, Client, Acc, Score).
score([[1, Client, Score, Score]).

Final evaluation

evaluate(Profile, Outcome) --
 Outcome is the reply to the client's Profile.
evaluate(Profile, Answer) --
 rule(Conditions, Answer), verify(Conditions, Profile),
 verify((conditions(Type, Tests, Rating)), Profile) --
 scale(Type, Scale),
 select_value(Type, Profile, Fact),
 compare(Test, Scale, Fact, Rating),
 verify(Conditions, Profile),
 verify([1], Profile).

compare('=', Scale, Rating, Rating),
compare('>', Scale, Rating, Rating2) --
 precedes(Scale, Rating, Rating2),
compare('≥', Scale, Rating, Rating2) --
 precedes(Scale, Rating, Rating2) ; Rating1 = Rating2.

Program 22.1 (Continued)
A Credit Evaluation Expert System

expert, Chas Manhattan, rather than a universal truth. Within the bank there is no consensus about the subject. Some people tend to be conservative and some are prepared to take considered risks.

Programming the code for determining the collateral and financial ratings proceeded easily. The knowledge provided by the expert was more or less directly translated into the program. The module for the overall evaluation of the client, however, was more challenging.

The major difficulty was formulating the relevant expert knowledge. Our expert was less forthcoming with general rules for overall evaluation than for rating the financial record, for example. He happily discussed the profiles of particular clients, and the outcome of their credit requests and loans, but was reluctant to generalize. He preferred to react to suggestions rather than volunteer rules.

This forced a close reevaluation of the exact problem we were solving. There were three possible answers the system could give: approve the request for credit, refuse the request, or ask for advice. There were three factors to be considered. Each factor had a qualitative value that was one of a small set of possibilities. For example, the financial rating could be bad, medium, good, or excellent. Further, the possible values were ranked on an ordinal scale.

Our system clearly faced an instance of a general problem: Find an outcome from some ordinal scale based on the qualitative results of several ordinal scales. Rules to solve the problem were thus to give a conclusion based on the outcome of the factors. We pressed Chas with this formulation, and he rewarded us with several rules. Here is a typical one: "If the client’s collateral rating is excellent (or better), her financial rating good (or better), and her yield at least reasonable, then grant the credit request."

An immediate translation of the rule is

evaluate(profile(excellent, good, reasonable), give_credit).

But this misses many cases covered by the rule, for example, when the client’s profile is (excellent, good, excellent). All the cases for a given rule can be listed. It seemed more sensible, however, to build a more general tool to evaluate rules expressed in terms of qualitative values from ordinal scales.

little help from the knowledge engineer. Allowing people to think in domain concepts also facilitates debugging and assists in using a domain-independent explanation facility as discussed in Section 17.4. Second, the apparent naiveté of the evaluation rules is deceptive. A lot of knowledge and experience are hidden behind these simple numbers. Choosing poor values for these numbers may mean suffering severe losses.

The financial evaluation module evaluates the financial stability of the client. It uses items taken mainly from the balance and profit/loss sheets. The financial rating is also qualitative. A weighted sum of financial factors is calculated by score and used by calibrate to determine the qualitative class.

It should be noted that the modules giving the collateral rating and the financial rating both reflect the point of view and style of a particular
Chapter 22

A Credit Evaluation Expert System

Client Data

bank.yield(client1, excellent).
requested.credit(client1, 50000).
amount(local_currency.deposits, client1, 80000).
amount(foreign_currency.deposits, client1, 20000).
amount(bank.guarantees, client1, 30000).
amount(negotiate.instruments, client1, 50000).
amount(stocks, client1, 90000).
amount(mortgage.client1, 125000).
amount(documents, client1, 14000).
value(net.worth.per.assets, client1, 40).
value(last.year.sales.growth, client1, 20).
value(gross.profits.on.sales, client1, 46).
value(short_term.debt.per.annual.sales, client1, 9).
ok_profile(client1).

Program 22.2 Test data for the credit evaluation system

The interpreter for the rules is written nondeterministically. The procedure is: "Find a rule and verify that its conditions apply," as defined by evaluate. The predicate verify(Conditions, Profile) checks that the relation between the corresponding symbols in the rule and the ones that are associated with the Profile of the client is as specified by Conditions. For each Type that can appear, a scale is necessary to give the order of values the scale can take. Examples of scale facts in the bank database are scale(collateral, [excellent, good, moderate]) and scale(finance, [excellent, good, medium, bad]). The predicate select.value() returns the appropriate symbol of the factor under the ordinality test that is performed by compare. It is an access predicate, and consequently the only predicate dependent on the choice of data structure for the profile.

At this stage, the prototype program is tested. Some data from real clients are necessary, and the answer the system gives on these individuals is tested against what the corresponding bank official would say. The data for client1 is given in Program 22.2. The reply to the query credit(client1, X) is X = give.credit.

Our prototype expert system is a composite of styles and methods — not just a backward chaining system. Heuristic rules of thumb are used
to determine the collateral rating; an algorithm, albeit a simple one, is used to determine the financial rating; and there is a rule language, with an interpreter, for expressing outcomes in terms of values from discrete ordinal scales. The rule interpreter proceeds forward from conditions to conclusion rather than backward as in Prolog. Expert systems must become such composites in order to exploit the different forms of knowledge already extant.

The development of the prototype was not the only activity of the knowledge engineers. Various other features of the expert system were developed in parallel. An explanation facility was built as an extension of Program 17.22. A simulator for rules based on ordinal scales was built to settle the argument among the knowledge engineers as to whether a reasonable collection of rules would be sufficient to cover the range of outcomes in the general case.

Finally, a consistency checker for the rules was built. The following meta-rule is an obvious consistency principle: "If all of client A's factors are better than or equal to client B's, then the outcome of client A must be better than or equal to that of client B."

22.2 Background

More details on the credit evaluation system can be found in Ben-David and Sterling (1986).

23 An Equation Solver

A very natural area for Prolog applications is symbolic manipulation. For example, a Prolog program for symbolic differentiation, a typical symbol manipulation task, is just the rules of differentiation in different syntax, as shown in Program 3.30.

In this chapter, we present a program for solving symbolic equations. It is a simplification of PRESS (Prolog Equation Solving System), developed in the mathematical reasoning group of the Department of Artificial Intelligence at the University of Edinburgh. PRESS performs at the level of a mathematics student in her final year of high school.

The first section gives an overview of equation solving with some example solutions. The remaining four sections cover the four major equation-solving methods implemented in the equation solver.

23.1 An Overview of Equation Solving

The task of equation solving can be described syntactically. Given an equation Lhs = Rhs in an unknown \(X \), transform the equation into an equivalent equation \(X = \text{Rhs1} \), where \(\text{Rhs1} \) does not contain \(X \). This final equation is the solution. Two equations are equivalent if one is transformed into the other by a finite number of applications of the axioms and rules of algebra.

Successful mathematics students do not solve equations by blindly applying axioms of algebra. Instead they learn, develop, and use various methods and strategies. Our equation solver, modeling this behavior, is accordingly a collection of methods to be applied to an equation to be
(i) \(\cos(x) \cdot (1 - 2 \cdot \sin(x)) = 0 \)
(ii) \(x^2 - 3 \cdot x + 2 = 0 \)
(iii) \(2^x - 5 \cdot 2^{x^{-1}} + 16 = 0 \)

Figure 23.1 Test equations

solved. Each method transforms the equation by applying identities of algebra expressed as rewrite rules. The methods can and do take widely different forms. They can be a collection of rules for solving the class of equations to which the method is applicable, or algorithms implementing a decision procedure.

Abstractly, a method has two parts: a condition testing whether the method is applicable, and the application of the method itself.

The type of equations our program can handle are indicated by the three examples in Figure 23.1. They consist of algebraic functions of the unknown, that is, \(+, -, \times, /, \), and exponentiation to an integer power, and also trigonometric and exponential functions. The unknown is \(x \) in all three equations.

We briefly show how each equation is solved.

The first step in solving equation (i) in Figure 23.1 is factorization. The problem to be solved is reduced to solving \(\cos(x) = 0 \) and \(1 - 2 \cdot \sin(x) = 0 \). A solution to either of these equations is a solution to the original equation.

Both the equations \(\cos(x) = 0 \) and \(1 - 2 \cdot \sin(x) = 0 \) are solved by making \(x \) the subject of the equation. This is possible because \(x \) occurs once in each equation.

The solution to \(\cos(x) = 0 \) is \(\arccos(0) \). The solution of \(1 - 2 \cdot \sin(x) = 0 \) takes the following steps:

1. \(2 \cdot \sin(x) = 0 \)
2. \(\sin(x) = 1 \)
3. \(x = \arcsin(1/2) \).

An Equation Solver

until the single occurrence of the unknown is isolated on the left-hand side of the equation. Isolation solves \(1 - 2 \cdot \sin(x) = 0 \) by producing the preceding sequence of equations.

Equation (ii) in Figure 23.1, \(x^2 - 3 \cdot x + 2 = 0 \), is a quadratic equation in \(x \). We all learn in high school a formula for solving quadratic equations.

The discriminant, \(b^2 - 4 \cdot a \cdot c \), is calculated, in this case \((-3)^2 - 4 \cdot 1 \cdot 2 \), which equals 1, and two solutions are given: \(x = (-(-3) + \sqrt{1})/2 \), which equals 2, and \(x = (-(-3) - \sqrt{1})/2 \), which equals 1.

The key to solving equation (iii) in Figure 23.1 is to realize that the equation is really a quadratic equation in \(2^x \). The equation \(2^x - 5 \cdot 2^{x^{-1}} + 16 = 0 \) can be rewritten as \((2^x)^2 - 5 \cdot 2 \cdot 2^x + 16 = 0 \). This can be solved for \(2^x \), giving two solutions of the form \(2^x = \text{Rhs} \), where Rhs is free of \(x \). Each of these equations are solved for \(x \) to give solutions to equation (iii).

PRESS was tested on equations taken from British A-level examinations in mathematics. It seems that examiners liked posing questions such as equation (iii), which involved the student’s manipulating logarithmic, exponential, or other transcendental functions into forms where they could be solved as polynomials. A method called homogenization evolved to solve equations of these types.

The aim of homogenization is to transform the equation into a polynomial in some term containing the unknown. (We simplify the more general homogenization of PRESS for didactic purposes.) The method consists of four steps, which we illustrate for equation (iii). The equation is first parsed and all maximal nonpolynomial terms containing the unknown are collected with duplicates removed. This set is called the offencers set. In the example, it is \(\{2^x, 2^{x^{-1}}\} \). The second step is finding a term, known as the reduced term. The result of homogenization is a polynomial equation in the reduced term. The reduced term in our example is \(2^x \). The third step of homogenization is finding rewrite rules that express each of the elements of the offencers set as a polynomial in the reduced term. Finding such a set guarantees that homogenization will succeed. In our example the rewrite rules are \(2^x = (2^x)^2 \) and \(2^{x^{-1}} = 2^{-2^x} \). Finally, the rewrite rules are applied to produce the polynomial equation.

We complete this section with a brief overview of the equation solver. The basic predicate is solve equation. The relation is true if solve equation is a solution to equation in the unknown X. The complete code appears as Program 23.1.
solve_equation(Equation,Unknown,Solution) ←
 Solution is a solution to the equation Equation
 in the unknown Unknown.
solve_equation(A*B*X,X,Solution) ←
 !,
factorize(A*B,X,Factors\[\],
 remove_duplicates(Factors,Factors),
 solve_factors(Factors,X,Solution).
solve_equation(Equation,X,Solution) ←
 single_occurrence(X,Equation),
 !,
 position(X,Equation,[Position]),
 maneuver_sides(Side,Equation,Equational),
 isolate(Position,Equation,Solution).
solve_equation(Lhs=Rhs,X,Solution) ←
 polynomial(Lhs,X),
 polynomial(Rhs,X),
 !,
polynomial_normal_form(Lhs-Rhs,X,PolyForm),
 solve_polynomial_equation(PolyForm,X,Solution).
solve_equation(Equation,X,Solution) ←
 homogenize(Equation,Equational,X),
 !,
 solve_equation(Equational,X,Solution),
 solve_equation(Solution,X,Solution).

The factorization method
factorize(Expression,Subterm,Factors) ←
 Factors is a difference-list consisting of the factors of
 the multiplicative term Expression that contain the Subterm.
 factorize(A*B,X,Factors\[\],\],
 factorize(B,X,Factors\[\],\],
 factorize(C,X,Factors\[\],\],
 factorize(C,X,Factors\[\],\]),
 factorize(C,X,Factors\[\],\]
 solve_factors(Factors,Unknown,Solution) ←
 Solution is a solution to the equation Factor = 0 in the
 Unknown for some Factor in the list of Factors.
 solve_factors(Factor,Factors,X,Solution) ←
 solve_equation(Factor=0,X,Solution).
 solve_factors(Factor,Factors,X,Solution) ←
 solve_factors(Factor,Factors,X,Solution).

Program 23.1: A program for solving equations

The isolation method

moveover_sides(l.Lhs = Rhs,Lhs = Rhs) ← 1.
moveover_sides(Rhs,Lhs = Rhs,Lhs = Lhs) ← 1.
solve_equation([Position],Equation,IsolatedEquation) ←
 isolate(Position,Equation,IsolatedEquation),
 isolate(Position,Equation,IsolatedEquation).

Axioms for isolation

isolate(1,Lhs = Rhs,Lhs = -Rhs). % Unary sizes
isolate(1,Term1+Term2 = Rhs,Term1 = Rhs-Term2). % Addition
isolate(1,Term1+Term2 = Rhs,Term1 = Rhs-Term2). % Addition
isolate(1,Term1-Term2 = Rhs,Term1 = Rhs-Term2). % Subtraction
isolate(1,Term1-Term2 = Rhs,Term1 = Term1-Rhs). % Subtraction
isolate(1,Term1-Term2 = Rhs,Term1 = Term1-Term2) ←
 Multiplication
 Term2 ≠ 0.
isolate(1,Term1+Term2 = Rhs,Term1 = Term1) ←
 Multiplication
 Term1 ≠ 0.
isolate(1,Term1+Term2 = Rhs,Term1 = (Term1)). % Equality
isolate(1,Term1+Term2 = Rhs,Term1 = (Term1)). % Equality

The polynomial method

polynomial(Term,X) ← See Program 11-4.
polynomial_normal_form(Expression,Term,PolyNormalForm) ←
 PolyNormalForm is the polynomial normal form of
 Expression, which is a Polynomial in Term.
polynomial_normal_form(Polynomial,Expression,Term,PolyNormalForm) ←
 polynomial_normal_form(Polynomial,X,NormalForm),
 remove_sums(Term,Polynomial,NormalForm),
 remove_sums(Term,Polynomial,Polynomial,NormalForm),
 polynomial_form(Term,X,Polynomial,NormalForm),
 add_polynomials(Polynomial,Polynomial,Polynomial,Polynomial,Polynomial).
An Equation Solver

multiply_polynomials(Poly1, Poly2, Poly) --
Poly is the product of Poly1 and Poly2, where Poly1, Poly2, and Poly are all in polynomial form.

multiply_polynomials(((C,N) |Poly1), Poly2, Poly) --
multiply_single(Poly2, (C,N) |Poly2), multiply_polynomials(Poly1, Poly2, Poly2), add_polynomials(Poly3, Poly4, Poly), multiply_polynomials([], P, []).**

binomial(Poly1, Poly1).

Polynomial equation solver

solve_polynomial_equation(Equation, Unknown, Solution) --
Solution is a solution to the polynomial Equation in the unknown Unknown.

solve_polynomial_equation(Equation_1, X, X = -B/4A) --
linear(PolyEquation), 1, pad(PolyEquation, (A,1), (B,0))).

solve_polynomial_equation(Polynomial1, Equation, Solution) --
quadratic(PolyEquation), 1, pad(PolyEquation, (A,2), (B,1)), discriminant(A,B,C,Discriminant, Solution), root(X,A,B,C,Discriminant, Solution).

discriminant(A, B, C, D) -- D is B+B-BAC.

root(X,A,B,C,X = --B/2A).

root(X,A,B,C,1, X = -B-sqrt(D)/2A) = D > 0.

root(X,A,B,C,2, X = +B-sqrt(D)/2A) = D > 0.

pad([[C,N] |Poly2], [C,N] |Poly1) -- 1, pad(Poly1).

pad(Poly1, (C,N) |Poly1) -- 1.

pad(Poly1, (C,N) |Poly1).

pad(J,1).

linear((Coeff,1) |Poly1).

quadratic((Coeff,2) |Poly2).

The homogenization method

homogenize(Equation, X, Equation, XI) --
The Equation in X is transformed to the polynomial Equation1 in XI where XI contains X.

homogenize(Equation, X, Equation, XI) --
offenders(Equation, X, Offenders), reduced_term(Offenders, Type, XI), rewrite(Offenders, Type, XI, Substitutions), substitute(Equation, Substitutions, Equation1).

Program 23.1 (Continued)
offenders(Equation,Unknown,Offenders) :-
 Offenders is the set of offenders of the Equation in the Unknown.
offenders(Equation,Offenders) :-
 parse(Equation,Offenders,[]),
 remove_duplicates(Offenders,Offenders),
 multiple(Offenders).
reduced_term(X,Offenders,Type,X) :-
 classify(Offenders,X,Type),
 candidate(Type,Offenders,X,X).
Heuristics for exponential equations
classify(Offenders,A,exponential) :-
 exponential(Offenders,[A|Diffs,X]),
 free_of(X,A),
 subterm(X,B),
 exponential(Offenders,Diffs,X),
 base(Offenders,A),
 polynomial_exponents(Offenders,X).
base([A|Diffs],A) :-
 base(Offenders,A).
base([A|Diffs],A) :-
 polynomial_exponents([A|Diffs],X),
 polynomial(Offenders,B,X),
 polynomial_exponents(Offenders,X).
Parsing the equation and making substitutions
parse(Expression,Term,Offenders) :-
 Expression is traversed to produce the set of Offenders in Term,
 that is, the nonalgebraic subterms of Expression containing Term.
parse(A+B,A,L,L2) :-
 parse(A,X,L,L3),
 parse(B,X,L3,L2).
parse(A*B,A,L,L2) :-
 1, parse(A,X,L,L3),
 parse(B,X,L3,L2).
parse(A-B,A,L,L2) :-
 1, parse(A,X,L,L3),
 parse(B,X,L3,L2).
parse(A^B,A,L,L2) :-
 1, parse(A,X,L,L3),
 parse(A,X,L3,L2).
parse(A/B,A,L,L2) :-
 integer(B),
 parse(A,L,L).
parse(A,A,L,L2) :-
 free_of(A,A),
Program 23.1 (Continued)

An Equation Solver
substitute(Expression,Substitutions,Expression) :-
 The list of Substitutions is applied to Expression to produce Expression.
substitute(A+B,Subs,NewB) :-
 1, substitute(A,Subs,NewA),
 substitute(B,Subs,NewB).
substitute(A*B,Subs,NewB) :-
 1, substitute(A,Subs,NewA),
 substitute(B,Subs,NewB).
substitute(A-B,Subs,NewB) :-
 1, substitute(A,Subs,NewA),
 substitute(B,Subs,NewB).
substitute(A^B,Subs,NewB) :-
 1, substitute(A,Subs,NewA),
 substitute(B,Subs,NewB).
substitute(A/B,Subs,NewB) :-
 integer(B),
 substitute(A,Subs,NewA).
substitute(A,A,Subs) :-
 member(A,A,Subs),
 substitute(A,A,A).
Finding homogenization rewrite rules
rewrite(Offset,Type,X1,Offset*Term Rewritten) :-
 homogenize_axiom(Offset,Term),
 rewrite(Offset,Type,X1,Rewritten).
rewrite([],Type,X1,Rewritten) :-
 homogenization axioms
homogenize_axiom(exponential,A^(+X),A^X,A^X+X),
homogenize_axiom(exponential,A^(-X),A^X,A^X/X),
homogenize_axiom(exponential,A^(+X)+A^X,A^X,A^X+X).
Utilities
subterm(Sub,Term) :- See Program 9.2.
position(Term,Term,[]) :- 1.
position(Sub,Term,Path) :-
 compound(Term),
 functor(Term,F,N),
 position(N,Sub,Term,Path),
 position(N,Sub,Term,[]).
N > 1, N1 is N-1, position(N1,Sub,Term,Path).
free_of(Subterm,Term) :- occurrence(Subterm,Term,0).
single occurrence(Subterm,Term) :- occurrence(Subterm,Term,1).
occurrence(Term,Term,1) :- 1.
occurrence(Subterm,Term) :-
 compound(Term),
 functor(Term,F,N),
 occurrence(N,Sub,Term,0),
 occurrence(Subterm,Term,0) :- Term + Sub.
Program 23.1 (Continued)
occurrence(M, Sub, Term, N₁, N₂) :-
 N > 0, \'\', arg(N₁, Term, Arg), occurrence(Sub, Arg, N), N₃ is N₁ + N₂.
occurrence(0, Sub, Term, N₁, N₂).
remove_duplicates(\{X₁, Y₁\}) :- no_doubles(\{X₁, Y₁\}).
no_doubles(\{X₁, Y₁\}) :- see Program 7.9.
multiple(\{X₁, X₂\}, \{X₃\}).

Testing and data

test_press(X, Y) :- equation(X, E, 0), solve_equation(E, X, Y).
equation(1, cos(X) \times (1 - 2 \times \sin(X)), 0, X).
equation(2, \sin(3 \times X), 0, X).
equation(3, 2 \times (X + 4 \times (X - 1) + 160), 0, X).

Program 23.1 (Continued)

Program 23.1 has four clauses for solve_equation, one for each of the four methods needed to solve the equations in Figure 23.1. More generally, there is a clause for each equation-solving method. The full PRESS system has several more methods.

Our equation solver ignores several features that might be expected. There is no simplification of expressions, no rational arithmetic, no record of the last equation solved, no help facility, and so forth. PRESS does contain many of these facilities as discussed briefly in Section 23.6.

23.2 Factorization

Factorization is the first method attempted by the equation solver. Note that the test whether factorization is applicable is trivial, being unification with the equation A × B = 0. If the test succeeds, the simpler equations are recursively solved. The top-level clause implementing factorization is

solve_equation(A × B=0, X, Solution) :-
factorize(A × B, X, Factors\{ \},
remove_duplicates(Factors, Factors₁),
solve_factors(Factors₁, X, Solution).

The top-level clause in Program 23.1 has a cut as the first goal in the body. This is a green cut: none of the other methods depend on the success or failure of factorization. In general, we omit green cuts from clauses we describe in the text.

23.3 Isolation

A useful concept to locate and manipulate the single occurrence of the unknown is its position. The position of a subterm in a term is a list of argument numbers specifying where it appears. Consider the equation \(\cos(x) = 0 \). The term \(\cos(x) \) containing \(x \) is the first argument of the equation, and \(x \) is the first (and only) argument of \(\cos(x) \). The position of \(x \) in \(\cos(x) = 0 \) is therefore \([1,1]\). This is indicated in the diagram in Figure 23.2. The figure also shows the position of \(x \) in \(1 - 2 \cdot \sin(x) = 0 \) which is \([1,2,2,1]\).

The clause defining the method of isolation is

\[
\text{solve_equation}(\text{Equation}, X, \text{Solution}) :-
\text{single_occurrence}(X, \text{Equation}),
position(X, \text{Equation}, [\text{Side} | \text{Position}]),
manner_side(side, Equation, Equation₁),
isolate(\text{Position}, \text{Equation₁}, \text{Solution}).
\]

Figure 23.2 Position of subterms in terms
The condition characterizing when isolation is applicable is that there
be a single occurrence of the unknown \(x \) in the equation, checked by
\texttt{single_occurrence}. The method calculates the position of \(x \) with the
predicate \texttt{position}. The isolation of \(x \) then proceeds in two stages. First, \texttt{maneuver_sides}
esures that \(x \) appears on the left-hand side of the
equation, and second, \texttt{isolate} makes it the subject of the formula.

It is useful to define \texttt{single_occurrence} in terms of the more general
predicate \texttt{occurrence}\((\text{Subterm}, \text{Term})\), which counts the number of
\texttt{times} that \texttt{Subterm} occurs in the term \texttt{Term}. Both \texttt{occurrence}
and \texttt{position} are typical structure inspection predicates. Both are posed as
exercises at the end of Section 9.2. Code for them appears in the utilities
section of Program 23.1.

The predicate \texttt{maneuver_sides}\((K, \text{Equation}, \text{Equation})\) consists of
\texttt{two facts}:

\begin{verbatim}
maneuver_sides(1, Lhs = Rhs, Lhs = Rhs).
maneuver_sides(2, Lhs = Rhs, Rhs = Lhs).
\end{verbatim}

Its effect is to ensure that the unknown appears on the left-hand side of
\texttt{Equation}. The first argument \(K \), the head of the position list, indicates
the side of the equation in which the unknown appears. A 1 means the
left-hand side, and the equation is left intact. A 2 means the right-hand
side, and so the sides of the equation are swapped.

The transformation of the equation is done by \texttt{isolate/3}. It repeatedly
applies rewrite rules until the position list is exhausted:

\begin{verbatim}
isolate([], \text{Equation}, \text{Equation}),
 isolate\((\text{Position}, \text{Equation}, \text{IsolatedEquation}) \)
 isolate(\text{Position}, \text{Equation}, \text{IsolatedEquation}),
 isolate([\text{Equation}, \text{Equation}]).
\end{verbatim}

The rewrite rules, or isolation axioms, are specified by the predicate
\texttt{isolate}(\text{X, Equation, Equation}). Let us consider an example used in
solving \(1 - 2 \cdot \sin(x) = 0 \). An equivalence transformation on equations
is adding the same quantity to both sides of an equation. We show its
translation into an \texttt{isolate} axiom for manipulating equations of the form
\(u - v = w \). Note that rules need only simplify the left-hand side of equa-
tions, since the unknown is guaranteed to be on that side.

Two rules are necessary to cover the two cases whether the first or
second argument of \(u - v \) contains the unknown. The term \(u - v = w \)
of the equation-solving task. Writing an expression simplifier is nontrivial, however. It is undecidable whether two expressions are equivalent in general. Some simple identities of algebra can be easily incorporated, for example, rewriting $0 + u$ to u. Choosing between other preferred forms, e.g., $(1 + x)^3$ and $1 + 3 \cdot x + 3 \cdot x^2 + x^3$, depends on context.

23.4 Polynomial

Polynomial equations are solved by a polynomial equation solver, applying various polynomial methods. Both sides of the equation are checked as to whether they are polynomials in the unknown. If the checks are successful, the equation is converted to a polynomial normal form by \texttt{polynomial_normal_form}, and the polynomial equation solver \texttt{solve_polynomial_equation} is invoked:

\begin{verbatim}
solve_equation(Lhs=Rhs,X,Solution) ->
 polynomial(Lhs,X),
 polynomial(Rhs,X),
 polynomial_normal_form(lhs-rhs,X,PolyForm),
 solve_polynomial_equation(PolyForm,X,Solution).
\end{verbatim}

The polynomial normal form is a list of tuples of the form (A,N), where A is the coefficient of X^N, which is necessarily nonzero. The tuples are sorted into strictly decreasing order of N; for each degree there is at most one tuple. For example, the list $[(1,2),(-3,1),(2,0)]$ is the normal form for $x^2 - 3 \cdot x + 2$. The leading term of the polynomial is the head of the list. The classic algorithms for handling polynomials are applicable to equations in normal form. Reduction to polynomial normal form occurs in two stages:

\begin{verbatim}
polynomial_normal_form(Polynomial,X,NormalForm) ->
 polynomial_form(Polynomial,X,PolyForm),
 remove_zero_terms(PolyForm,NormalForm).
\end{verbatim}

The predicate \texttt{polynomial_form(X,Polynomial,PolyForm)} decomposes the polynomial. \texttt{PolyForm} is a sorted list of coefficient-degree tuples, where tuples with zero coefficients may occur.

It is convenient for many of the polynomial methods to assume that all the terms in the polynomial form have nonzero coefficients. Therefore the final step of polynomial_normal_form is removing those terms whose coefficients are zero. This is achieved by a simple recursive procedure \texttt{remove_zero_terms}.

The code for \texttt{polynomial_form} directly echoes the code for polynomial. For each clause used in the parsing process, there is a corresponding clause giving the resultant polynomial. For example, the polynomial form of a term x^n is $[(1, n)]$, which is expressed in the clause \texttt{polynomial_form(X\^N,X,[(1,N)])}.

The recursive clauses for \texttt{polynomial_form} manipulate the polynomials in order to preserve the polynomial form. Consider the clause

\begin{verbatim}
polynomial_form(Poly1+Poly2,X,PolyForm) ->
 polynomial_form(Poly1,X,Poly1Form),
 polynomial_form(Poly2,X,Poly2Form),
 add_polynomials(Poly1Form,Poly2Form,PolyForm).
\end{verbatim}

The procedure \texttt{add_polynomials} contains an algorithm for adding polynomials in normal form. The code is a straightforward list of the possibilities that can arise:

\begin{verbatim}
add_polynomials([],Poly,Poly).
add_polynomials([Poly,],Poly,Poly).
add_polynomials([(A1,N1)|Poly1],[(A2,N2)|Poly2],[(A3,N3)|Poly]) ->
 A3 > N3, add_polynomials(Poly1,[(A2,N2)|Poly2],Poly2).
add_polynomials([(A1,N1)|Poly1],[(A2,N2)|Poly2],[(A3,N3)|Poly]) ->
 A1 > N1, add_polynomials(Poly1,[(A1,N1)|Poly2],Poly2).
add_polynomials([(A1,N1)|Poly1],[(A2,N2)|Poly2],[(A3,N3)|Poly]) ->
 Ni < Nj, add_polynomials([(A1,N1)|Poly1],[(A2,N2)|Poly2],[(A3,N3)|Poly]) ->
\end{verbatim}

Similarly, the procedures \texttt{subtract_polynomials}, \texttt{multiply_polynomials}, and \texttt{binomial} are algorithms for subtracting, multiplying, and binomially expanding polynomials in normal form to produce results in normal form. The subsidiary predicate \texttt{multiply_single_Poly1_Monomial_Poly2} multiplies a polynomial by a monomial (CN) to produce a new polynomial.

Once the polynomial is in normal form, the polynomial equation solver is invoked. The structure of the polynomial solver follows the structure of the overall equation solver. The solver is a collection of methods that
are tried in order to see which is applicable and can be used to solve the equation. The predicate `solve_polynomial_equation` is the analogous relation to `solve_equation`.

The second equation in Figure 23.1 is quadratic and can be solved with the standard formula. The equation solver mirrors the human method. The polynomial is identified as being suitable for the quadratic method by checking (with `quadratic`) if the leading term in the polynomial is of second degree. Since zero terms have been removed in putting the polynomial into its normal form, `pad` puts them back if necessary. The next two steps are familiar: calculating the discriminant, and returning the roots according to the value of the discriminant. Again multiple solutions are indicated by having multiple possibilities:

```prolog
solve_polynomial_equation(Poly,X,Solution) :-
quadratic(Poly),
pad(Poly,[(A,2),(B,1),(C,0)]),
discriminant(A,B,C,Disciminant),
root(X,A,B,C,Disciminant,Solution).

discriminant(A,B,C,D) :- D is (B*B - 4*A*C).
root(X,A,B,C,D,X= -B/(2*A)).
root(X,A,B,C,D,X= (-B+sqrt(D))/(2*A)) :- D > 0.
root(X,A,B,C,D,X= (-B-sqrt(D))/(2*A)) :- D > 0.
```

Other clauses for `solve_polynomial_equation` constitute separate methods for solving different polynomial equations. Linear equations are solved with a simple formula. In `PRESS`, cubic equations are handled by guessing a root and then factoring, reducing the equation to a quadratic. Other tricks recognize obvious factors, or that quartic equations missing a cubic and a linear term are really disguised quadratics.

23.5 Homogenization

The top-level clause for homogenization reflects the transformation of the original equation into a new equation in a new unknown, which is recursively solved; its solution is obtained for the original unknown:

```prolog
solve_equation(Equation,X,Solution) :-
    homogenize(Equation,X,Equation1,X1),
    solve_equation(Equation1,X1,Solution1),
    solve_equation(Solution1,X,Solution).
```

The code for `homogenize/4` implements the four stages of homogenization, described in Section 23.1. The offenders set is calculated by `offenders/3`, which checks that there are multiple offenders. If there is only a single offender, homogenization will not be useful:

```prolog
homogenize(Equation,X,Equation1,X1) :-
    offenders(Equation,X,Offenders),
    reduced_term(X,Offenders,Type,X1),
    rewrite(Offenders,Type,X1,Substitutions),
    substitute(Equation,Substitutions,Equation1).
```

The predicate `reduced_term/4` finds a `reduced term`, that is, a candidate for the new unknown. In order to structure the search for the reduced term, the equation is classified into a type. This type is used in the next stage to find rewrite rules expressing each element of the offenders set as an appropriate function of the reduced term. The type of the example equation is exponential. `PRESS` encodes a lot of heuristic knowledge about finding a suitable reduced term. The heuristics depend on the type of the terms appearing in the offenders set. To aid the structuring (and retrieval) of knowledge, finding a reduced term proceeds in two stages — classifying the type of the offenders set, and finding a reduced term of that type:

```prolog
reduced_term(X,Offenders,Type,X1) :-
    classify(Offenders,Type),
    candidate(Type,Offenders,X,X1).
```

We look at the set of rules appropriate to our particular equation. The offenders set is of exponential type because all the elements in the offenders set have the form A^x, where A does not contain the unknown but x does. Standard recursive procedures check that this is true.

The heuristic used to select the reduced term in this example is that if all the bases are the same, A, and each exponent is a polynomial in the unknown, X, then a suitable reduced term is A^x:
candidate(exponential, Offenders, X, A\(X\)) ←
base(Offenders, A), polynomial_exponents(Offenders, X).

The straightforward code for base and polynomial_exponents is in the complete program. The heuristics in PRESS are better developed than the ones shown here. For example, the greatest common divisor of all the leading terms of the polynomials is calculated and used to choose the reduced term.

The next step is checking whether each member of the offenders set can be rewritten in terms of the reduced term candidate. This involves finding an appropriate rule. The collection of clauses for homogenize_axiom constitute the possibly applicable rewrite rules. In other words, relevant rules must be specified in advance. The applicable rules in this case are

\[
\text{homogenize_axiom(exponential, A}'(X+X), A}'(X), (A}'(X)'(X)'\).
\text{homogenize_axiom(exponential, A}'(X+X), A}'(X), A}'(X)'(X)'\).
\]

Substituting the term in the equation echoes the parsing process used by Offenders as each part of the equation is checked to see whether it is the appropriate term to rewrite.

Exercises for Chapter 23

(i) Add isolation axioms to Program 23.1 to handle quotients on the left-hand side of the equation. Solve the equation \(x/2 = 5\).

(ii) Add to the polynomial equation solver the ability to solve disguised linear and disguised quadratic equations. Solve the equations \(2 \cdot x^3 - 8 = x^4\), and \(x^4 - 3 \cdot x^3 + 6 = 0\).

(iii) The equation \(\cos(2 \cdot x) - \sin(x) = 0\) can be solved as a quadratic equation in \(\sin(x)\) by applying the rewrite rule \(\cos(2 \cdot x) = 1 - 2 \cdot \sin^2(x)\). Add clauses to Program 23.1 to solve this equation. You will need to add rules for identifying terms of type trigonometric, heuristics for finding trigonometric reduced terms, and appropriate homogenization axioms.

(iv) Rewrite the predicate free_of(Term, X) so that it fails as soon as it finds an occurrence of X in Term.

(v) Modify Program 23.1 so that it solves simple simultaneous equations.

23.6 Background

Symbolic manipulation was an early application area for Prolog. Early examples are programs for symbolic integration (Bergman and Kanoui, 1973) and for proving theorems in geometry (Welsham, 1976).

The PRESS program, from which Program 23.1 is adapted, owes a debt to many people. The original version was written by Bob Welsham. Many of the researchers in the mathematical reasoning group working with Alan Bundy at the University of Edinburgh subsequently tinkered with the code. Published descriptions of the program appear in Bundy and Welsham (1981), Sterling et al. (1982), and Silver (1980). The last reference has a detailed discussion of homogenization.

PRESS includes various modules, not discussed in this chapter, that are interesting in their own right: for example, a package for interval arithmetic (Bundy, 1984), an infinite precision rational arithmetic package developed by Richard O’Keefe, and an expression simplifier based on difference-structures as described in Section 15.2, developed by Lawrence Byrd. The successful integration of all these modules is strong evidence for the practicality of Prolog for large programming projects.

The development of PRESS showed up classic points of software engineering. For example, at one stage the program was being tuned prior to publishing some statistics. Profiling was done on the program, which showed that the predicate most commonly called was free_of. Rewriting it as suggested in Exercise 23.1(v) resulted in a speedup of 35 percent in the performance of PRESS.

Program 23.1 is a considerably cleaned-up version of PRESS. Tidying the code enabled further research. Program 23.1 was easily translated to other logic programming languages, Concurrent Prolog and FCP (Sterling and Codish, 1986). Making the conditions when methods were used more explicit enabled the writing of a program to learn new equation-solving methods from examples (Silver, 1986).
24 A Compiler

Our final application is a compiler. The program is presented top-down. The first section outlines the scope of the compiler and gives its definition. The next three sections describe the three major components: the parser, the code generator, and the assembler.

24.1 Overview of the Compiler

The source language for the compiler is PL, a simplified version of Pascal designed solely for the purposes of this chapter. It contains an assignment statement, an if-then-else statement, a while statement, and simple I/O statements. The language is best illustrated with an example. Figure 24.1 contains a program for computing factorials written in PL. A formal definition of the syntax of the language is implicit in the parser in Program 24.1.

The target language is a machine language typical for a one-accumulator computer. Its instructions are given in Figure 24.2. Each instruction has one (explicit) operand, which can be one of four things: an integer constant, the address of a storage location, the address of a program instruction, or a value to be ignored. Most of the instructions also have a second implicit operand, which is either the accumulator or its contents. In addition, there is a pseudoinstruction block that reserves a number of storage locations as specified by its integer operand.

The scope of the compiler is clear from its behavior on our example. Figure 24.3 is the translation of the PL program in Figure 24.1 into ma-
program factorial;
begin
 read value;
 count := 1;
 result := 1;
 while count < value do
 begin
 count := count + 1;
 result := result * count;
 end;
 write result;
end

Figure 24.1 A PL program for computing factorials

<table>
<thead>
<tr>
<th>Arithmetic</th>
<th>Literals</th>
<th>Memory</th>
<th>Control</th>
<th>I/O, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>addc</td>
<td>add</td>
<td>jump</td>
<td>eq</td>
<td>read</td>
</tr>
<tr>
<td>subc</td>
<td>sub</td>
<td>jumplt</td>
<td>halt</td>
<td></td>
</tr>
<tr>
<td>mulec</td>
<td>mul</td>
<td>jumpg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>divc</td>
<td>div</td>
<td>jumple</td>
<td></td>
<td></td>
</tr>
<tr>
<td>loadc</td>
<td>load</td>
<td>jumpg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>store</td>
<td></td>
<td>jump</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 24.2 Target language instructions

The compiler produces the columns labeled Instruction and Operand.

The task of compiling can be broken down into the five stages given in Figure 24.4. The first stage transforms a source text into a list of tokens. The list of tokens is parsed in the second stage, syntax analysis, to give a source structure. The third and fourth stages transform the source structure into relocatable code and assemble the relocatable code into absolute object code, respectively. The final stage outputs the object program.

Our compiler implements the middle three stages. Both the first stage of lexical analysis and the final output stage are relatively uninteresting and are not considered here. The top level of the code handles syntax analysis, code generation, and assembly.

Figure 24.3 Assembly code version of a factorial program

Figure 24.4 The stages of compilation

The basic predicate compile(Tokens, ObjectCode) relates a list of tokens to the ObjectCode of the program the tokens represent. The compiler compiles correctly any legal PL program but does not handle errors; that is outside the scope of this chapter. The list of tokens is assumed to be input from some previous stage of lexical analysis. The parser performing the syntax analysis, implemented by the predicate parse, produces from the Tokens an internal parse tree Structure.
A compiler

Program 24.1 A compiler from PL to machine language
single_instruction(Op, number(C), D, instr(OpCode, C)) ←
single_instruction(Op, name(X), D, instr(OpCode, A)) ←
memory_operation(Op, OpCode), lookup(X, D, A).
single_operation(Op, E, D, Code, Code/Instruction)) ←
commutative(Op), single_instruction(Op, E, D, Code).
single_operation(Op, E, D, Code, Code/Instruction)) ←
not commutative(Op),
lookup(`store', E, D, Address),
encode_expression(D, E, Load),
op_code(E, OpCode).

literal_operation(`+', add). memory_operation(`+', add).
literal_operation(`-', sub). memory_operation(`-', sub).
literal_operation(`*', mul). memory_operation(`*', mul).
literal_operation(`/', div). memory_operation(`/', div).

not commutative(`+'). not commutative(`*').
encode_expression(compare(Op, E1, E2), Label, D,
(Code, instr(OpCode, Label)) ←
encode_expression(literal(`+', E1, E2), D, Code).

comparison_opcode(`+', jump). comparison_opcode(`=', jump).
comparison_opcode(`>', jump). comparison_opcode(`>=', jump).
comparison_opcode(`<', jump). comparison_opcode(`<=', jump).
lookup(Name, Dictionary, Address) ← See Program 13.0.

The assembler
assemble(Code, Dictionary, TidyCode) ←
TidyCode is the result of assembling Code removing
no_ops and labels, and filling in the Dictionary.
assemble(Code, Dictionary, TidyCode) ←
tidy_and_count(Code; 1, N, TidyCode\(\langle\text{instr(halt,0):block(l)}\),
N1 is N+1,
allocate(Dictionary, N1, N2),
1 is N2-N1.
tidy_and_count(Code1; Code2, M, N, TCode)\(\langle\text{TCode}\),
tidy_and_count(Code1, M, N, TCode)\(\langle\text{rest}\),
tidy_and_count(Code2, M, N, Rest\(\langle\text{TCode}\),
tidy_and_count(instr(X, Y), N, N, (instr(X, Y); Code)\(\langle\text{Code}\),
N1 is N+1,
tidy_and_count(label(N), N, N, Code\(\langle\text{Code}\),
tidy_and_count(no_op, N, N, Code)\(\langle\text{Code}\).

Program 24.1 (Continued)

allocate(void, N, N).
allocate(dict(Name, N1, Before, After, N0, N) ←
allocate(Before, N0, N1),
N2 is N1+1,
allocate(After, N2, N).

Program 24.1 (Continued)
test_compiler(Y, Y) ←
program(X, P, compile(P, Y).
program_test1\(\langle\text{program.test1, ';', begin.write, '
', 'y', ',', 'z', ',', '2', endend,}
program_test2\(\langle\text{program.test2, ';', begin.if, a, ', b, then, max, ':=', a, else, max, ':=', b, end}

program_factorial,\(\langle\text{program.factorial, ';',}
, begin
, read.value, ', y',)
, count, ',', '1', ', 1',)
, result, ',', '1',)
, while.count, ',', 'value, do
, begin
, count, ',', '1', ', count, ',', '1', ', 1',
, result, ',', 'result, ',', 'count
, end',
, write.result
, end).

Program 24.2 Test data
The structure is used by the code generator encode to produce relocatable code Data. A dictionary associating variable locations to memory addresses and keeping track of labels is needed to generate the code. This is the second argument of encode. Finally, the relocatable code is assembled into object code by assemble with the aid of the constructed Dictionary. The testing data and instructions for the program are given as Program 24.2. The program factorial is the PL program of Figure 24.1 translated into a list of tokens. The two small programs consist of a single statement each, and test features of the language not covered by the factorial example. The program test1 tests compilation of a nontrivial arithmetic expression, and test2 checks the if-then-else statement.
24.2 The Parser

The parser proper is written as a definite clause grammar, as described in Chapter 19. The predicate `parse` as given in Program 24.1 is just an interface to the DCG, whose top-level predicate is `pl_program`. The DCG has a single argument, the structure corresponding to the statements, as described later. A variant of Program 18.9 is assumed to translate the DCG into Prolog clauses. The convention of that program is that the last argument of the predicates defined by the DCG is a difference-list:

```prolog
parse(Source, Structure) :-
    pl_program(Structure, Source \ []).
```

The first statement of any PL program must be a program statement. A program statement consists of the word `program` followed by the name of the program. We call words that must appear for rules of the grammar to apply `standard identifiers`, the word `program` being an example. The name of the program is an identifier in the language. What constitutes identifiers, and more generally constants, is discussed in the context of arithmetic expressions. The program name is followed by a semicolon, another standard identifier, and then the program proper begins. The body of a PL program consists of statements or, more precisely, a single statement that may itself consist of several statements. All this is summed up in the top-level grammar rule:

```prolog
pl_program(S) :-
    [program], identifier(X), [';'], statement(S).
```

The structure returned as the output of the parsing is the statement constituting the body of the program. For the purpose of code generation, the top-level program statement has no significance and is ignored in the structure built.

The first statement we describe is a compound statement. Its syntax is the standard identifier `begin` followed by the first statement, S, say, in the compound statement, and then the remaining statements Sa. The structure returned for a compound statement is (S; Sa), where ; is used as a two-place infix functor. Note that S, Sa, or both may be compound statements or contain them. The semicolon is chosen as functor to echo its use in PL for denoting sequencing of statements:

```prolog
statement((S;Sa)) :-
    [begin], statement(S), rest_statements(Sa).
```

Statements in PL are delimited by semicolons. The rest of the statements are accordingly defined as a semicolon followed by a nonempty statement, and recursively the remaining statements:

```prolog
rest_statements((S;Sa)) :-
    [';'], statement(S), rest_statements(Sa).
```

The end of a sequence of statements is indicated by the standard identifier `end`. The atom `void` is used to mark the end of a statement in the internal structure. The base case of `rest_statements` is therefore

```prolog
rest_statements(void) :-
end.
```

The above definition of statements precludes the possibility of empty statements. Programs and compound statements in PL cannot be empty.

The next statement to discuss is the assignment statement. It has a simple syntax: definition — a left-hand side, followed by the standard identifier `is`, followed by the right-hand side. The left-hand side is restricted to being a PL identifier, and the right-hand side is any arithmetic expression whose definition is to be given:

```prolog
statement(assign(X,E)) :-
    identifier(X), [':='], expression(E).
```

The structure returned by the successful recognition of an assignment statement has the form `assign(X,E)`. The (Prolog) variable `E` represents the structure of the arithmetic expression, and `X` is the name of the (PL) variable to be assigned the value of the expression. It is implicitly assumed that `X` will be a PL identifier.

For simplicity of both code and explanation, we restrict ourselves to a subclass of arithmetic expressions. Two rules define the subclass. An expression is either a constant or a constant followed by an arithmetic operator and recursively an arithmetic expression. Examples of expressions in the subclass are \(x, 3, 2 - t \) and \(x + y - z / 2 \), the expression in the first test case in Program 24.2:

```prolog
expression(X) :-
    pl_constant(X).
expression(expr(Op,X,Y)) :-
    pl_constant(X), arithmetic_op(Op, Y).
```
This subclass of expressions does not respect the standard precedence of arithmetic operators. The expression \(x \cdot 2 + y \) is parsed as \(x \cdot (2 + y) \). On the other hand, the expression \(x + y - z/2 \) is interpreted unambiguously as \(x + (y - (z/2)) \).

For this example, we restrict ourselves to two types of constants in PL: identifiers and integers. The specification of pl_constant duly consists of two rules. Which of the two is found is reflected in the structure returned. For identifiers \(X \), the structure name(X) is returned, whereas number(X) is returned for the integer \(X \):

\[
\text{pl_constant(name}(X) \rightarrow \text{identifier}(X), \\
\text{plconstant}(\text{number}(X) \rightarrow \text{pl_integer}(X)).
\]

For simplicity we assume that PL integers and PL identifiers are Prolog integers and atoms, respectively. This allows the use of Prolog system predicates to identify the PL identifiers and integers. Recall that the curly braces notation of DCGs is used to specify Prolog goals:

\[
\text{identifier}(X) \rightarrow \{X\}, \{\text{atom}(X)\}, \\
\text{pl_integer}(X) \rightarrow \{X\}, \{\text{integer}(X)\}.
\]

In fact, all grammar rules that use PL identifiers and constants could be modified to call the Prolog predicates directly if greater efficiency is needed.

A list of arithmetic operators is necessary to complete the definition of arithmetic expressions. The form of the statement for addition, represented by \(+\), follows. The grammar rules for subtraction, multiplication, and division are analogous, and appear in the full parser in Program 24.1:

\[
\text{arithmetic_op}(\text{'+')} \rightarrow ['+'].
\]

The next statement to be discussed is the conditional statement, or if-then-else. The syntax for conditionals is the standard identifier if followed by a test (to be defined). After the test, the standard identifier then is necessary, followed by a statement constituting the then part, the standard identifier else and a statement constituting the else part, in that order. The structure built by the parser is if(T,S1,S2), where T is the test, T is the then part, and S2 is the else part:

\[
\text{statement(if}(T,S1,S2)) \rightarrow \\
\{\text{if}\}, \text{test}(T), \{\text{then}\}, \text{statement}(S1), \\
\{\text{else}\}, \text{statement}(S2).
\]

Tests are defined to be an expression followed by a comparison operator and another expression. The structure returned has the form compare(Op,X,Y), where Op is the comparison operator, and X and Y are the left-hand and right-hand expressions in the test, respectively:

\[
\text{test(compare}(Op,X,Y)) \rightarrow \\
\text{expression}(X), \text{comparison_op}(Op), \text{expression}(Y).
\]

The definition of comparison operators using the predicate comparison_op is analogous to the use of arithmetic_op to define arithmetic operators. Program 24.1 contains definitions for \(<, >, <, >, =\), and \(\leq\).

While statements consist of a test and the action to take if the test is true. The structure returned is while(T,S), where T is the test and S is the action. The syntax is defined by the following rule:

\[
\text{statement}while(T,S) \rightarrow \\
\{\text{while}\}, \text{test}(T), \{\text{do}\}, \text{statement}(S).
\]

I/O is handled in PL with a simple read statement and a simple write statement. The input statement consists of the standard identifier read followed by a PL identifier; it returns the structure read(X), where X is the identifier. Write statements are similar:

\[
\text{statement(read}(X)) \rightarrow \{\text{read}\}, \text{identifier}(X). \\
\text{statement(write}(X) \rightarrow \{\text{write}\}, \text{expression}(X).
\]

Collecting the various pieces of the DCG just described gives a parser for the language. Note that ignoring the arguments in the DCG gives a formal BNF grammar for PL.

Let us consider the behavior of the parser on the test data in Program 24.2. The parsed structures produced for the two single statement programs have the form (structure;void, where (structure) represents the parsed statement. The write statement is translated to

\[
\text{write(expr}(+, \text{name}(x), \text{expr}(-, \text{name}(y), \text{expr}(/, \text{name}(z), \\
\text{number}(2))))),
\]

and the if-then-else statement is translated to

\[
\text{if(compare}(>, \text{name}(a), \text{name}(b)), \text{assign}(\text{max}, \text{name}(a)), \\
\text{assign}(\text{max}, \text{name}(b))).
\]

The factorial program is parsed into a sequence of five statements followed by void. The output after parsing for all three test programs is
Chapter 24

Program test1:
 write(expr(*.name(x), expr(-.name(y),
 expr(/.name(a), number(2)))))), void

Program test2:
 if(compare(0,.name(a),.name(b)), assign(max,.name(a)),
 assign(min,.name(b)))); void

Program test3:
 read(value); assign(count,.name(1)); assign(result,.name(1));
 while(compare(1,.name(count), .name(value)),
 assign(count, expr(+.name(count), number(1)));
 assign(result, expr(+.name(result), .name(count)))); void;
 write(.name(result)); void

Figure 24.5 Output from parsing

given in Figure 24.5. This is the input for the second stage of compilation, code generation.

24.3 The Code Generator

The structure produced by the parser for the general PL assignment statement has the form assign(Name,Expression), where Expression is the expression to be evaluated and assigned to the PL variable Name. The corresponding compiled form calculates the expression followed by a store instruction whose argument is the address corresponding to Name. The representation of individual instructions in the compiled code is the structure instr(X,Y), where X is the instruction and Y is the operand. The appropriate translation of the assign structure is therefore (Code; instr(store, Address)), where Code is the compiled form of the expression, which, after execution, leaves the value of the expression in the accumulator. It is generated by the predicate encode_expression(Expression,D,ExpressionCode). Encoding the assignment statement is performed by the clause

 encode(assign(name, expression), D, (code; instr(store, Address)))
 -- lookup(name, D, address), encode_expression(expression, D, code).

This clause is a good example of Prolog code that is easily understood declaratively but hides complicated procedural bookkeeping. Logically, relations have been specified between Name and Address, and between Expression and Code. From the programmer’s point of view it is irrelevant when the final structure is constructed, and in fact the order of the two goals in the body of this clause can be swapped without changing the behavior of the overall program. Furthermore, the lookup goal, in relating Name with Address, could be making a new entry or retrieving a previous one, where the final instantiation of the address happens in the assembly stage. None of this bookkeeping needs explicit mention by the programmer. It goes on correctly in the background.

There are several cases to be considered for compiling the expression. Constants are loaded directly; the appropriate machine instruction is load C, where C is the constant. Similarly identifiers are compiled into the instruction load A, where A is the address of the identifier. The two corresponding clauses of encode_expression are

 encode_expression(number(C), D, instr(loadc, C)).
 encode_expression(name(X), D, instr(load, Address))
 -- lookup(X, D, Address).
The general expression is the structure `expr(Op, E1, E2)`, where `Op` is the operator, `E1` is a PL constant, and `E2` is an expression. The form of the compiled code depends on `E2`. If it is a PL constant, then the final code consists of two statements: an appropriate load instruction determined recursively by `encode_expression` and the single instruction corresponding to `Op`. Again, it does not matter in which order the two instructions are determined. The clause of `encode_expression` is

```
encode_expression(expr(Op, E1, E2), D, (Load; Instruction)) =
   single_instruction(Op, E2, D, Instruction),
   encode_expression(E1, D, Load).
```

The nature of the single instruction depends on the operator and whether the PL constant is a number or an identifier. Numbers refer to literal operations, and identifiers refer to memory operations:

```
single_instruction(Op, number(C), D, instr(Opcode, C)) =
   literal_operation(Op, Opcode).

single_instruction(Op, name(X), D, instr(Opcode, A)) =
   memory_operation(Op, Opcode), lookup(X, D, A).
```

A separate table of facts is needed for each sort of operation. The respective form of the facts is illustrated for `+`:

```
literal_operation(+, addc). memory_operation(+, add).
```

A separate calculation is necessary when the second expression is not a constant and cannot be encoded in a single instruction. The form of the compiled code is determined from the compiled code for calculating `E2`, and the single operation is determined by `Op` and `E1`:

```
encode_expression(expr(Op, E1, E2), D, Code) =
   not single_instruction(Op, E2, D, Instruction),
   single_operation(Op, E1, D, Code, Code),
   encode_expression(E2, D, Code).
```

In general, the result of calculating `E2` must be stored in some temporary location, called `$temp` in the following code. The sequence of instructions is then the code for `E2`, a store instruction, a load instruction for `E1`, and the appropriate memory operation addressing the stored contents. The predicates shown previously are used to construct the final form of the code:

```
single_operation(Op, E, D, Code, (Code; instr(store, Address); Load; instr(OpCode, Address))) =
   not commutative(Op),
   lookup("$temp", D, Address),
   encode_expression(D, Load),
   op_code(E, Op, OpCode).
```

An optimization is possible if the operation is commutative, e.g., addition or multiplication, which circumvents the need for a temporary variable. In this case, the memory or literal operation can be performed on `E1`, assuming that the result of computing `E2` is in the accumulator:

```
single_operation(Op, E, D, Code, (Code; Instruction)) =
   commutative(Op), single_instruction(Op, E, D, Instruction).
```

The next statement is the conditional if-then-else parsed into the structure `if(Test, Then, Else)`. To compile the structure, we have to introduce labels to which instructions can jump. For the conditional we need two labels marking the beginning and end of the else part respectively. The labels have the form `label(E)`, where `E` is the address of the instruction. The value of `E` is filled in during the assembling stage, when the label statement itself is removed. The schematic of the code is given by the third argument of the following `encode_clause`:

```
encode(if(Test, Then, Else), E, (TestCode; ThenCode; instr(jump, L2); label(L1); ElseCode; label(L2))) =
   encode_test(Test, L1, D, TestCode),
   encode(Then, D, ThenCode),
   encode(Else, D, ElseCode).
```
In order to compare two arithmetic expressions, we subtract the second from the first and make the jump operation appropriate to the particular comparison operator. For example, if the test is whether two expressions are equal, we circumvent the code if the result of subtracting the two is not equal to zero. Thus comparisonOpcode("=", jump) is a fact. Note that the label that is the second argument of encode_test is the address of the code following the test.

```
encode_test(compare(OpCodes,E1,E2),Label,D,
  (Code; instr(OpCodes,Label)))  =
  comparisonopcode(OpCodes, Opcode),
  encode_expression(Expr="#",E1,E2),D,Code).
```

The next statement to consider is the while statement. The statement is parsed into the structure while(Test,Statements). A label is necessary before the test, then the test code is given as for the if-then-else statement, then the body of code corresponding to Statements and a jump to reperform the test. A label is necessary after the jump for instruction for when the test fails.

```
encode(while(Test,Do),D,
  (label(L1);
  TestCode;
  DoCode;
  instr(jump, L1);
  label(L2))
  =
  encode_test(Test,L2,D,TestCode),
  encode(Do,D,DoCode).
```

The I/O statements are straightforward. The parsed structure for input, read(X), is compiled into a single read instruction, and the table is used to get the correct address:

```
encode(read(X),D,instr(read,Address)) =
  lookup(X,D,Address).
```

The output statement is translated into encoding an expression and then a write instruction:

```
encode(write(E),D,(Code; instr(write,0))) =
  encode_expression(E,D,Code).
```
assemble(Code,Dictionary,TidyCode) :-
 tidy_and_count(Code,1,0,TidyWord)
 block(L)),
N₁ is N₁ + 1,
allocate(Dictionary,N₁,N₂),
L is N₂ - N₁, !.

The predicate tidy_and_count(Code, M, N, TidyWord) tidies the code into TidyCode, where the correct addresses of labels have been filled in and the null operations have been removed. Procedurally, executing tidy_and_count constitutes a second pass over the code. M is the address of the beginning of the code, and N is 1 more than the address of the end of the original code. Thus the number of actual instructions in Code is N₁ - M. TidyWord is represented as a difference-structure based on .

The recursive clause of tidy_and_count demonstrates both standard difference-structure technique and updating of numeric values:

 tidy_and_count((Code₁,Code₂), M, N, TidyWord) :-
 tidy_and_count(Code₁, M, M₁, TidyWord₁),
 tidy_and_count(Code₂, M₁, N, TidyWord₂).

Three types of primitives occur in the code: instructions, labels, and no_ops. Instructions are handled routinely. The address counter is incremented by 1, and the instruction is inserted into a difference-structure:

 tidy_and_count(instr(X,Y), N, M₁, (instr(X,Y); Code); Code) :-
N₁ is N₁ + 1.

Both labels and no_ops are removed without updating the current address or adding an instruction to the tidied code:

tidy_and_count(label(X), N, M, Code),
tidy_and_count(no_op, N, M, Code).

Declaratively, the clauses are identical. Procedurally, the unification of the label number with the current address causes a major effect in the program. Every reference to the label address is filled in. This program is another illustration of the power of the logical variable.

The predicate allocate(Dictionary, M, N) has primarily a procedural interpretation. During the code generation as the dictionary is constructed, storage locations are associated with each of the PL variables in the program, plus any temporary variables needed for computing expressions. The effect of allocate is to assign actual memory locations for the variables and to fill in the references to them in the program.

The variables are found by traversing the Dictionary. M is the address of the memory location for the first variable, and N is 1 more than the address of the last. The order of variables is alphabetic, corresponding to their order in the dictionary. The code also completes the dictionary as a data structure.

allocate(void, M, N),
allocate(dict(Name, N₁, Before, After), N₀, N) :-
allocate(Before, N₀, N₁),
N₂ is N₁ + 1,
allocate(After, N₂, N).

Because the dictionary is an incomplete data structure, the predicate allocate can succeed many times. The variables at the end of the tree match both the fact and the recursive clause. For the compiler, the easiest way to stop multiple solutions is to add a cut to the clause for assemble/3, which commits to the first (and minimal) assignment of memory locations for variables.

The compiled versions of the test programs given in Program 24.2 appear in Figure 24.7.
Exercises for Chapter 24

(i) Extend the compiler so that it handles repeat loops. The syntax is
 repeat (statement) until (test). Extensions to both the parser and
 the compiler need to be made. Test the program on the following:

    ```
    program repeat;
    begin
      i := 1;
      repeat
        i begin
        i write(i);
        i i := i+1
      i end
      until i = 11
    end.
    ```

(ii) Extend the definition of arithmetic expressions to allow arbitrary
 ones. In the encoder, you will have to cater for the possibility of
 needing several temporary variables.

24.5 Background

The compiler described is based on a delightful paper by Warren (1980).

A Operators

An operator is defined by its name, specifier, and priority. The name is
usually an atom. The priority is an integer between 1 and 1200 inclusive.
The specifier is a mnemonic that defines two things, class and associativity.
There are three classes of operators: prefix, infix, and postfix. Associativity,
which determines how to associate terms containing multiple
operators, can be one of three possibilities: left-associative, right-
associative, and non-associative.

There are seven possible operator types, which are given in Table A.1.
A left-associative prefix operator is not possible, nor is a right-associative
postfix operator. An operator specifier yfy does not make sense as it
would lead to ambiguity. Consequently Standard Prolog does not allow
such a specifier.

To explain the associativity, consider a term a :: b :: c. If the
infix operator :: was left-associative, the term would be read as (a :: b) :: c.
If the operator :: was right-associative, the term would be read as a :: (b :: c).
If the operator :: was non-associative, the term would be illegal.

If uncertain about priorities when using operators, terms can always be
bracketed. If you prefer not to bracket terms, you must take into account
the associativity of the operator(s) involved and the priorities of terms.
For example, the following three rules apply.

1. An operand with the same priority as a non-associative operator
 must be bracketed to avoid a syntax error by the Prolog reader.
2. An operator with the same (or smaller) priority as a right-associative
 operator that follows that operator need not be bracketed.
3. An operator with smaller priority than a left-associative operator
 that precedes that operator need not be bracketed.
The system of operator declarations in Prolog is straightforward and can be used effectively for applications. The reader should be aware, however, that there are some subtle semantic anomalies in how operators are defined and handled. The anomalies, best discovered by trial and error, should not cause problems and can be "programmed around."

Standard Prolog specifies some predefined operators. The priorities and specifiers of the operators which have been used in the text are given in Table A.2.

New operators are added with the directive:

\[- \text{op}(X, Y, Z).\]

where \(X\) is the priority, \(Y\) is the operator specifier, and \(Z\) is the operator name. These were used in Chapter 17 when defining a new rule language.
References

References

Byrd, L., Understanding the Control Flow of Prolog Programs, in (Tarnlund, 1980).

Clark, K. L. McCabe, F. G., and Gregory, S., IC-Prolog Language Features, in (Clark and Tarnlund, 1982).

References

Colmerauer, A., Prolog And Infinite Trees, in (Clark and Tarnlund, 1982b), pp. 231-251.

References

Hill, R., LUSH-Resolution and Its Completeness, DCL Memo 78, Department of Artificial Intelligence, University of Edinburgh, Scotland, 1974.

Kowalski, R., Logic For Problem Solving, North-Holland, Amsterdam, 1979a.

References

References

Sedgewick, R., Algorithms, Addison-Wesley, Reading, Massachusetts, 1983.

Shapiro, E., Playing Mastermind Logically, SIGART Newsletter 85, pp. 28–29, 1983d.

References

References

<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract interpretation, 147</td>
</tr>
<tr>
<td>Abstract interpreter, 22-24, 91-96, 119-123</td>
</tr>
<tr>
<td>Accumulator, 146-147, 155-157, 166, 240, 254, 266, 287-288, 309</td>
</tr>
<tr>
<td>bottom-up construction of lists, 145-146</td>
</tr>
<tr>
<td>definition, 155</td>
</tr>
<tr>
<td>generalization to difference-list, 287-298</td>
</tr>
<tr>
<td>Abramson, Harvey, 388</td>
</tr>
<tr>
<td>Ackermann's function, 53-55, 85</td>
</tr>
<tr>
<td>All-Kaci, Hassaan, 127, 213</td>
</tr>
<tr>
<td>All-solutions predicates, 302-304</td>
</tr>
<tr>
<td>Alpha-beta pruning, 405-407</td>
</tr>
<tr>
<td>Alphabetic variant, 88, 200</td>
</tr>
<tr>
<td>Alternating Turing machine, 115</td>
</tr>
<tr>
<td>ANALOGY, 270, 272, 281</td>
</tr>
<tr>
<td>Ancestor cut, 354</td>
</tr>
<tr>
<td>Anonymous variable, 234</td>
</tr>
<tr>
<td>APES expert system shell, 355</td>
</tr>
<tr>
<td>append, 60-62, 93-94, 104-105, 109, 122, 131, 133, 140, 196-197, 288, 311</td>
</tr>
<tr>
<td>Appending, See Concatenation</td>
</tr>
<tr>
<td>Apt, Krzysztof, 99, 1056</td>
</tr>
<tr>
<td>arg, 167-168, 173, 174</td>
</tr>
<tr>
<td>Argument, 13, 27, 171</td>
</tr>
<tr>
<td>Arithmetic</td>
</tr>
<tr>
<td>logic programs for, 45-55</td>
</tr>
<tr>
<td>Prolog programs for, 150-161</td>
</tr>
<tr>
<td>Arithmetic evaluation, 150-151</td>
</tr>
<tr>
<td>Arithmetic expression, 151, 467</td>
</tr>
<tr>
<td>Arity, 13, 27, 32</td>
</tr>
<tr>
<td>Askable goals for expert systems, 344-346</td>
</tr>
<tr>
<td>Assembler, 473-477</td>
</tr>
<tr>
<td>assert, 220-221, 231-232, 304</td>
</tr>
<tr>
<td>Assignment, 125, 170</td>
</tr>
<tr>
<td>Atom, 11, 27, 164</td>
</tr>
<tr>
<td>atom, 163-164</td>
</tr>
<tr>
<td>atomic, 164</td>
</tr>
<tr>
<td>Automata, 319-323</td>
</tr>
<tr>
<td>Backtracking, 120-122, 125, 190, 192, 218, 231, 249-250, 280, 324</td>
</tr>
<tr>
<td>deep, 124</td>
</tr>
<tr>
<td>intelligent, 280</td>
</tr>
<tr>
<td>shallow, 124</td>
</tr>
<tr>
<td>bagot, 303, 317</td>
</tr>
<tr>
<td>Bansal, Arvind, 280</td>
</tr>
<tr>
<td>Barklund, Jonas, 187</td>
</tr>
<tr>
<td>Beer, Randall, 373</td>
</tr>
<tr>
<td>Benchmark, 209</td>
</tr>
<tr>
<td>Ben-David, Arie, 438</td>
</tr>
<tr>
<td>Berge, Claude, 423</td>
</tr>
<tr>
<td>Bergman, Marc, 457</td>
</tr>
<tr>
<td>Best-first search, 396-400</td>
</tr>
<tr>
<td>Binary predicate, 38, 44</td>
</tr>
<tr>
<td>Binary tree, 72-77, 85, 295</td>
</tr>
</tbody>
</table>
Database, deductive, 44
tactical, 29
relational, 42-44
Davis, Ernie, 281
DCG, See Definite clause grammar
Debugging, enhanced meta-interpreter for, 331-340
Declarative reading, 19, 57, 65-66, 324
Declarative semantics, 104
Deductive database, 44
Deep backtracking, 124
Default rule, 206-208
Definit clause grammar, 375-388, 466
generative feature, 386
relationship with context-free grammar, 376, 377
Denotational semantics, 103
Depth-bounded meta-interpreter, 332-333
Depth-complexity, 109
Depth-first graph traversal, 266
Depth-first search, 112, 120, 130, 264-266, 385, 396
Depth-first traversal of search tree, 112
Derivative, 79-81, 172
dershowitz, Nachum, 354
Destructive assignment, 123, 170
Deterministic computation, 95, 110-112
Deville, Yves, 115, 147, 244, 245
Dictionary, 293-296, 300, 470, 477
Difference-list, 283-285, 299-300, 304, 305, 371, 373
compatibility of, 284
concatenation, 284-285
head, 283
tail, 284
Difference-structure, 291-293, 457, 476
Difference-sum, 291
Differentiation, 79-81, 172
dinchas, Melniet, 354
Directed acyclic graph, 264, 303-306
Directed graph, 40-41, 204
Disjunction, 21, 186
Disjunctive goal, 186
Disjunctive relationship, 42
Diz, Terry, 127
Divide-and-conquer, 69
Divide-and-query, 338
Domain, 106, 113, 332
intended, 332
termination, 106
Don't-care nondeterminism, 263, 280
Don't know nondeterminism, 263-264, 280
Double recursion, 73-74, 165, 287
Drabent, W., 354
Dudeney, H., 401
Dutch flag problem, 289-290
Dwork, Cynthia, 99
Dynamic predicate, 232
Editor, 223-226
Edinburgh Prolog, 120, 127, 208
Eggert, Paul, 99
Elcock, E., 280
Eliza, 273-275, 281
Empty difference-list, 284
Empty list, 56
empty queue, 298
Empty tree, 72
Enhancement, 239-241, 326
Equation solving, 439-457
definition, 440
factorization, 440, 448-449
homogenization, 441, 454-456
isolation, 440-441, 449-452
overview, 439-441
polynomial, 452-454
quadratic, 441
simplification, 451-452
Ernst, George, 281
Error condition, 126, 151, 164
Error handling, 126, 151
Error runtime, 151, 153
Euclidean algorithm, 54, 152
Evaluable predicate. See Built-in predicates
Evaluation of arithmetic expression, 159-151
Evaluation function, 395, 403
Evaluation, partial, 360-365
Exception handling, 126, 151
Execution mechanism, 120
Execution model of Prolog, 119-122
Existential quantification, 20
Existential query, 14-15
Expert system for credit evaluation, 429-438
enhanced interpreters for, 341-353
Evans, Thomas, 281
Explanation shell for expert systems, 341-353
Extra-logical predicate, 215-231
for I/O, 215-219
for program access and manipulation, 219-221
types of, 215
Fact, 11-12, 15-16, 27
Factorial, 51-52, 155-156
Factorization, 440, 448-449
Failure-driven loops, 229-231, 423
Failure node, 110
False solution, 334-339
FCP, 457
false, 302, 317
finite failure, 113-114
Fixpoint of a logic program, 105
Fixpoint semantics, 105
Flattening a list, 164-166, 285-288, 298-299
Fold/Unfold, 357-360, 373
Freezing terms, 183-185
Frühwirth, Thom, 280
Function algebraic, 440
relationship to relation, 49
Functional programming, 3
Functor, 4, 13-14, 167
functor, 167-174
Furukawa, Koichi, 373
Futamura, Y., 373
Gallagher, John, 300, 373
Gallaire, Herve, 44, 354
Game playing framework, 402
Game tree, 402-403
Garbage collection, 197, 231, 423
Generalization, 14
Generate-and-test, 69, 249-262, 280
in game playing, 412
optimization, 252
Generator, 250, 252, 254
get_char, 217-218
GHC, 120, 127
Goal conjunctive, 22, 92
computation of, 92, 120
definition, 12
derived, 23, 92
disjunctive, 186
dynamic construction of, 315
ground, 25-26
invocation, 92, 128
parent, 92
reduction, 22, 92, 95-96
selection, 24
sibling, 92
size, 108
Goal order, 95, 129, 133, 136, 178, 209, 324
and left recursion, 136
and nonterminating computation, 135-136
comparison with clause order, 135
effect on termination, 135
effect on trace, 95
Term (cont.)
copying, 183, 184
definition, 13
finding subterm, 168-169
identity, 180
reading, 215
size, 108
substitution, 169-171
unification. See Unification
writing, 215
Takeuchi, Akazaku, 373
Tamaki, H., 373
Tarnlund, Sten-Ake, 300
Techniques, 239-242, 244-245
tester, 250, 252, 254
Thawing terms, 184,
Thompson, Henry, 281
Tich, Evan, 280
time complexity, 108, 209
top-down construction of structures, 144-145, 237, 286-288, 293, 383
top-down development, 65-67
top-down evaluation, 44
towers of Hanoi, 81-82, 97-98, 221-222
trace, 22-23, 92, 96-98, 120-123, 328, 287
as meta-program, 328
of meta-interpreter, 325
of Prolog computation, 120-123
transformation, of recursion to iteration, 154-159
transitive closure of relation, 40-41
tree
binary, 72-77, 85, 295
empty, 72
game, 404-403
isomorphism of, 74, 264
parse, 383
search, 96, 110-112, 130-131, 191
traversal, 75, 335
turing machine, 115, 323
type, 45, 242
complete, 107
condition, 50-51, 58
definition, 45
incomplete, 107
meta-logical predicate, 176
predicate, 163-164, 176
recursive, 45
Ueda, Kazunori, 127
Unary relation, type of a term, 163-164
uncertainty reasoning, 330-331, 354-355
unfolding, 286, 288, 357-360, 373
unification, 87-91, 98-99, 109, 125-126, 127, 143, 179-180, 251, 286
algorithm, 88-90, 179-180
including occurs check, 179-180
unifier, 88
union in relational algebra, 42
unit clause, 18, 28
univ, 171-173
universal modus ponens, 19, 101
universal quantification, 15, 18-19
universally quantified fact, 15-16
van Emden, Maarten, 99, 115, 212
vanilla meta-interpreter, 324
var, 176, 317
variable
anonymous, 234
binding, 91
definition, 13
difference in Prolog, 13
development testing, 180-182
logical, 13, 91, 126, 156, 287, 383, 376
memonics, 29
as object, 182-185
predicate names, 315
renaming, 88, 92
scope, 17
shared, 15, 17, 43, 126, 256
size, 108
type, 126
type checking, 256
van Cachenem, Michel, 127, 213
venken, Raf, 373
verification, 236
WAM, 213
warren abstract machine, 213
Warren, David Scott, 127, 213
weak cut, 212
weste, Berend, 127, 128, 191
wilber, Bob, 457
why explanation, 346
wilson, Walter, 407
winograd, Terry, 388
write, 215
yalçınkaya, Ümit, 354, 355
zebra puzzle, 262-263, 280
zero-sum game, 404
Logic Programming
Ehud Shapiro, editor
Koichiro Furukawa, Jean-Louis Lassez, Fernando Pereira, and
David H. D. Warren, associate editors

The Art of Prolog: Advanced Programming Techniques, Leon Sterling and
Ehud Shapiro, 1986
Logic Programming: Proceedings of the Fourth International Conference (vol-
umes 1 and 2), edited by Jean-Louis Lassez, 1987
Concurrent Prolog: Collected Papers (volumes 1 and 2), edited by Ehud
Shapiro, 1987
Logic Programming: Proceedings of the Fifth International Conference and
Symposium (volumes 1 and 2), edited by Robert A. Kowalski and Kenneth A.
Bowen, 1988

Constraint Satisfaction in Logic Programming, Pascal Van Hentenryck, 1989
Logic-Based Knowledge Representation, edited by Peter Jackson, Han Re-
ichgelt, and Frank van Harmelen, 1989
Logic Programming: Proceedings of the Sixth International Conference, edited
by Giorgio Levi and Maurizio Martelli, 1989

Meta-Programming in Logic Programming, edited by Harvey Abramson and
M. H. Rogers, 1989
Logic Programming: Proceedings of the North American Conference 1989 (vol-
umes 1 and 2), edited by Ewing L. Lusk and Ross A. Overbeek, 1989
Logic Programming: Proceedings of the 1990 North American Conference,
edited by Saumya Debray and Manuel Hermenegildo, 1990
Logic Programming: Proceedings of the Seventh International Conference,
edited by David H. D. Warren and Peter Szeredi, 1990

The Practice of Prolog, edited by Leon S. Sterling, 1990

Eco-Logic: Logic-Based Approaches to Ecological Modelling, David Robertson,
Alan Bundy, Robert Muetzelfeldt, Mandy Haggith, and Michael Uschold, 1991

Parallel Logic Programming, Evan Tick, 1991

Foundations of Disjunctive Logic Programming, Jorge Lobo, Jack Minker, and Arco Rajasekar, 1992

Types in Logic Programming, edited by Frank Pfenning, 1992

Concurrent Constraint Programming, Vijay A. Saraswat, 1993

Constraint Logic Programming: Selected Research, edited by Frédéric Benhamou and Alain Colmerauer, 1993

A Grammatical View of Logic Programming, Pierre Deransart and Jan Maluszynski, 1993

The Gödel Programming Language, Patricia Hill and John Lloyd, 1994