
Perl version 5.10.0 documentation - perlxstut

Page 1http://perldoc.perl.org

NAME
perlXStut - Tutorial for writing XSUBs

DESCRIPTION
This tutorial will educate the reader on the steps involved in creating
 a Perl extension. The reader is
assumed to have access to perlguts, perlapi and perlxs.

This tutorial starts with very simple examples and becomes more complex,
 with each new example
adding new features. Certain concepts may not be
 completely explained until later in the tutorial in
order to slowly ease
 the reader into building extensions.

This tutorial was written from a Unix point of view. Where I know them
 to be otherwise different for
other platforms (e.g. Win32), I will list
 them. If you find something that was missed, please let me
know.

SPECIAL NOTES
make

This tutorial assumes that the make program that Perl is configured to
 use is called make. Instead of
running "make" in the examples that
 follow, you may have to substitute whatever make program Perl
has been
 configured to use. Running perl -V:make should tell you what it is.

Version caveat
When writing a Perl extension for general consumption, one should expect that
 the extension will be
used with versions of Perl different from the
 version available on your machine. Since you are reading
this document,
 the version of Perl on your machine is probably 5.005 or later, but the users
 of your
extension may have more ancient versions.

To understand what kinds of incompatibilities one may expect, and in the rare
 case that the version of
Perl on your machine is older than this document,
 see the section on "Troubleshooting these
Examples" for more information.

If your extension uses some features of Perl which are not available on older
 releases of Perl, your
users would appreciate an early meaningful warning.
 You would probably put this information into the
README file, but nowadays
 installation of extensions may be performed automatically, guided by
CPAN.pm
 module or other tools.

In MakeMaker-based installations, Makefile.PL provides the earliest
 opportunity to perform version
checks. One can put something like this
 in Makefile.PL for this purpose:

 eval { require 5.007 }
 or die <<EOD;
 ############
 ### This module uses frobnication framework which is not available
before
 ### version 5.007 of Perl. Upgrade your Perl before installing
Kara::Mba.
 ############
 EOD

Dynamic Loading versus Static Loading
It is commonly thought that if a system does not have the capability to
 dynamically load a library, you
cannot build XSUBs. This is incorrect.
 You can build them, but you must link the XSUBs subroutines
with the
 rest of Perl, creating a new executable. This situation is similar to
 Perl 4.

This tutorial can still be used on such a system. The XSUB build mechanism
 will check the system
and build a dynamically-loadable library if possible,
 or else a static library and then, optionally, a new
statically-linked
 executable with that static library linked in.

Perl version 5.10.0 documentation - perlxstut

Page 2http://perldoc.perl.org

Should you wish to build a statically-linked executable on a system which
 can dynamically load
libraries, you may, in all the following examples,
 where the command "make" with no arguments is
executed, run the command
 "make perl" instead.

If you have generated such a statically-linked executable by choice, then
 instead of saying "make
test", you should say "make test_static".
 On systems that cannot build dynamically-loadable
libraries at all, simply
 saying "make test" is sufficient.

TUTORIAL
Now let's go on with the show!

EXAMPLE 1
Our first extension will be very simple. When we call the routine in the
 extension, it will print out a
well-known message and return.

Run "h2xs -A -n Mytest". This creates a directory named Mytest,
 possibly under ext/ if that
directory exists in the current working
 directory. Several files will be created in the Mytest dir,
including
 MANIFEST, Makefile.PL, Mytest.pm, Mytest.xs, Mytest.t, and Changes.

The MANIFEST file contains the names of all the files just created in the
 Mytest directory.

The file Makefile.PL should look something like this:

 use ExtUtils::MakeMaker;
 # See lib/ExtUtils/MakeMaker.pm for details of how to influence
 # the contents of the Makefile that is written.
 WriteMakefile(
	 NAME => 'Mytest',
	 VERSION_FROM => 'Mytest.pm', # finds $VERSION
	 LIBS => [''], # e.g., '-lm'
	 DEFINE => '', # e.g., '-DHAVE_SOMETHING'
	 INC => '', # e.g., '-I/usr/include/other'
);

The file Mytest.pm should start with something like this:

 package Mytest;

 use 5.008008;
 use strict;
 use warnings;

 require Exporter;

 our @ISA = qw(Exporter);
 our %EXPORT_TAGS = ('all' => [qw(

)]);

 our @EXPORT_OK = (@{ $EXPORT_TAGS{'all'} });

 our @EXPORT = qw(

);

