
Perl version 5.10.0 documentation - perlvms

Page 1http://perldoc.perl.org

NAME
perlvms - VMS-specific documentation for Perl

DESCRIPTION
Gathered below are notes describing details of Perl 5's behavior on VMS. They are a supplement to
the regular Perl 5 documentation, so we have focussed on the ways in which Perl 5 functions
differently under VMS than it does under Unix, and on the interactions between Perl and the rest of
the operating system. We haven't tried to duplicate complete descriptions of Perl features from the
main Perl documentation, which can be found in the [.pod] subdirectory of the Perl distribution.

We hope these notes will save you from confusion and lost sleep when writing Perl scripts on VMS. If
you find we've missed something you think should appear here, please don't hesitate to drop a line to
vmsperl@perl.org.

Installation
Directions for building and installing Perl 5 can be found in the file README.vms in the main source
directory of the Perl distribution..

Organization of Perl Images
Core Images

During the installation process, three Perl images are produced. Miniperl.Exe is an executable image
which contains all of
the basic functionality of Perl, but cannot take advantage of
Perl extensions. It is
used to generate several files needed
to build the complete Perl and various extensions. Once you've
finished installing Perl, you can delete this image.

Most of the complete Perl resides in the shareable image PerlShr.Exe, which provides a core to which
the Perl executable
image and all Perl extensions are linked. You should place this
image in
Sys$Share, or define the logical name PerlShr to
translate to the full file specification of this image. It
should
be world readable. (Remember that if a user has execute only access
to PerlShr, VMS will
treat it as if it were a privileged shareable
image, and will therefore require all downstream shareable
images to be
INSTALLed, etc.)

Finally, Perl.Exe is an executable image containing the main
entry point for Perl, as well as some
initialization code. It
should be placed in a public directory, and made world executable.
In order to run
Perl with command line arguments, you should
define a foreign command to invoke this image.

Perl Extensions

Perl extensions are packages which provide both XS and Perl code
to add new functionality to perl.
(XS is a meta-language which
simplifies writing C code which interacts with Perl, see perlxs for more
details.) The Perl code for an
extension is treated like any other library module - it's
made available in
your script through the appropriate use or require statement, and usually defines a Perl
package
containing the extension.

The portion of the extension provided by the XS code may be
connected to the rest of Perl in either of
two ways. In the static configuration, the object code for the extension is
linked directly into
PerlShr.Exe, and is initialized whenever
Perl is invoked. In the dynamic configuration, the extension's
machine code is placed into a separate shareable image, which is
mapped by Perl's DynaLoader
when the extension is use d or require d in your script. This allows you to maintain the
extension as
a separate entity, at the cost of keeping track of the
additional shareable image. Most extensions can
be set up as either
static or dynamic.

The source code for an extension usually resides in its own
directory. At least three files are generally
provided: Extshortname.xs (where Extshortname is the portion of
the extension's name following the
last ::), containing
the XS code, Extshortname.pm, the Perl library module
for the extension, and
Makefile.PL, a Perl script which uses
the MakeMaker library modules supplied with Perl to generate
a
Descrip.MMS file for the extension.

