
Perl version 5.10.0 documentation - perlunifaq

Page 1http://perldoc.perl.org

NAME
perlunifaq - Perl Unicode FAQ

Q and A
This is a list of questions and answers about Unicode in Perl, intended to be
 read after perlunitut.

perlunitut isn't really a Unicode tutorial, is it?
No, and this isn't really a Unicode FAQ.

Perl has an abstracted interface for all supported character encodings, so they
 is actually a generic
Encode tutorial and Encode FAQ. But many people
 think that Unicode is special and magical, and I
didn't want to disappoint
 them, so I decided to call the document a Unicode tutorial.

What character encodings does Perl support?
To find out which character encodings your Perl supports, run:

 perl -MEncode -le "print for Encode->encodings(':all')"

Which version of perl should I use?
Well, if you can, upgrade to the most recent, but certainly 5.8.1 or newer.
 The tutorial and FAQ are
based on the status quo as of 5.8.8.

You should also check your modules, and upgrade them if necessary. For example,
 HTML::Entities
requires version >= 1.32 to function correctly, even though the
 changelog is silent about this.

What about binary data, like images?
Well, apart from a bare binmode $fh, you shouldn't treat them specially.
 (The binmode is needed
because otherwise Perl may convert line endings on Win32
 systems.)

Be careful, though, to never combine text strings with binary strings. If you
 need text in a binary
stream, encode your text strings first using the
 appropriate encoding, then join them with binary
strings. See also: "What if I
 don't encode?".

When should I decode or encode?
Whenever you're communicating text with anything that is external to your perl
 process, like a
database, a text file, a socket, or another program. Even if
 the thing you're communicating with is also
written in Perl.

What if I don't decode?
Whenever your encoded, binary string is used together with a text string, Perl
 will assume that your
binary string was encoded with ISO-8859-1, also known as
 latin-1. If it wasn't latin-1, then your data is
unpleasantly converted. For
 example, if it was UTF-8, the individual bytes of multibyte characters are
seen
 as separate characters, and then again converted to UTF-8. Such double encoding
 can be
compared to double HTML encoding (&gt;), or double URI encoding
 (%253E).

This silent implicit decoding is known as "upgrading". That may sound
 positive, but it's best to avoid it.

What if I don't encode?
Your text string will be sent using the bytes in Perl's internal format. In
 some cases, Perl will warn you
that you're doing something wrong, with a
 friendly warning:

 Wide character in print at example.pl line 2.

Because the internal format is often UTF-8, these bugs are hard to spot,
 because UTF-8 is usually the
encoding you wanted! But don't be lazy, and don't
 use the fact that Perl's internal format is UTF-8 to
your advantage. Encode
 explicitly to avoid weird bugs, and to show to maintenance programmers that
you
 thought this through.

