
Perl version 5.10.0 documentation - perlunicode

Page 1http://perldoc.perl.org

NAME
perlunicode - Unicode support in Perl

DESCRIPTION
Important Caveats

Unicode support is an extensive requirement. While Perl does not
implement the Unicode standard or
the accompanying technical reports
from cover to cover, Perl does support many Unicode features.

People who want to learn to use Unicode in Perl, should probably read the Perl Unicode tutorial
before reading this reference
document.

Input and Output Layers

Perl knows when a filehandle uses Perl's internal Unicode encodings
(UTF-8, or UTF-EBCDIC
if in EBCDIC) if the filehandle is opened with
the ":utf8" layer. Other encodings can be
converted to Perl's
encoding on input or from Perl's encoding on output by use of the

":encoding(...)" layer. See open.

To indicate that Perl source itself is in UTF-8, use use utf8; .

Regular Expressions

The regular expression compiler produces polymorphic opcodes. That is,
the pattern adapts to
the data and automatically switches to the Unicode
character scheme when presented with
data that is internally encoded in
UTF-8 -- or instead uses a traditional byte scheme when
presented with
byte data.

use utf8 still needed to enable UTF-8/UTF-EBCDIC in scripts

As a compatibility measure, the use utf8 pragma must be explicitly
included to enable
recognition of UTF-8 in the Perl scripts themselves
(in string or regular expression literals, or
in identifier names) on
ASCII-based machines or to recognize UTF-EBCDIC on
EBCDIC-based
machines. These are the only times when an explicit use utf8
 is
needed. See utf8.

BOM-marked scripts and UTF-16 scripts autodetected

If a Perl script begins marked with the Unicode BOM (UTF-16LE, UTF16-BE,
or UTF-8), or if
the script looks like non-BOM-marked UTF-16 of either
endianness, Perl will correctly read in
the script as Unicode.
(BOMless UTF-8 cannot be effectively recognized or differentiated from

ISO 8859-1 or other eight-bit encodings.)

use encoding needed to upgrade non-Latin-1 byte strings

By default, there is a fundamental asymmetry in Perl's Unicode model:
implicit upgrading from
byte strings to Unicode strings assumes that
they were encoded in ISO 8859-1 (Latin-1), but
Unicode strings are
downgraded with UTF-8 encoding. This happens because the first 256

codepoints in Unicode happens to agree with Latin-1.

See Byte and Character Semantics for more details.

Byte and Character Semantics
Beginning with version 5.6, Perl uses logically-wide characters to
represent strings internally.

In future, Perl-level operations will be expected to work with
characters rather than bytes.

However, as an interim compatibility measure, Perl aims to
provide a safe migration path from byte
semantics to character
semantics for programs. For operations where Perl can unambiguously
decide
that the input data are characters, Perl switches to
character semantics. For operations where this
determination cannot
be made without additional information from the user, Perl decides in
favor of
compatibility and chooses to use byte semantics.

This behavior preserves compatibility with earlier versions of Perl,
which allowed byte semantics in

