
Perl version 5.10.0 documentation - perltrap

Page 1http://perldoc.perl.org

NAME
perltrap - Perl traps for the unwary

DESCRIPTION
The biggest trap of all is forgetting to use warnings or use the -w
 switch; see perllexwarn and
perlrun. The second biggest trap is not
 making your entire program runnable under use strict.
The third biggest
 trap is not reading the list of changes in this version of Perl; see perldelta.

Awk Traps
Accustomed awk users should take special note of the following:

A Perl program executes only once, not once for each input line. You can
 do an implicit loop
with -n or -p.

The English module, loaded via

 use English;

allows you to refer to special variables (like $/) with names (like
 $RS), as though they were in
awk; see perlvar for details.

Semicolons are required after all simple statements in Perl (except
 at the end of a block).
Newline is not a statement delimiter.

Curly brackets are required on ifs and whiles.

Variables begin with "$", "@" or "%" in Perl.

Arrays index from 0. Likewise string positions in substr() and
 index().

You have to decide whether your array has numeric or string indices.

Hash values do not spring into existence upon mere reference.

You have to decide whether you want to use string or numeric
 comparisons.

Reading an input line does not split it for you. You get to split it
 to an array yourself. And the
split() operator has different
 arguments than awk's.

The current input line is normally in $_, not $0. It generally does
 not have the newline stripped.
($0 is the name of the program
 executed.) See perlvar.

$<digit> does not refer to fields--it refers to substrings matched
 by the last match pattern.

The print() statement does not add field and record separators unless
 you set $, and $\. You
can set $OFS and $ORS if you're using
 the English module.

You must open your files before you print to them.

The range operator is "..", not comma. The comma operator works as in
 C.

The match operator is "=~", not "~". ("~" is the one's complement
 operator, as in C.)

The exponentiation operator is "**", not "^". "^" is the XOR
 operator, as in C. (You know, one
could get the feeling that awk is
 basically incompatible with C.)

The concatenation operator is ".", not the null string. (Using the
 null string would render /pat/
 /pat/ unparsable, because the third slash
 would be interpreted as a division operator--the
tokenizer is in fact
 slightly context sensitive for operators like "/", "?", and ">".
 And in fact, "."
itself can be the beginning of a number.)

The next, exit, and continue keywords work differently.

