
Perl version 5.10.0 documentation - perltoot

Page 1http://perldoc.perl.org

NAME
perltoot - Tom's object-oriented tutorial for perl

DESCRIPTION
Object-oriented programming is a big seller these days. Some managers
 would rather have objects 
than sliced bread. Why is that? What's so
 special about an object? Just what is an object anyway?

An object is nothing but a way of tucking away complex behaviours into
 a neat little easy-to-use 
bundle. (This is what professors call
 abstraction.) Smart people who have nothing to do but sit around
for
 weeks on end figuring out really hard problems make these nifty
 objects that even regular people 
can use. (This is what professors call
 software reuse.) Users (well, programmers) can play with this 
little
 bundle all they want, but they aren't to open it up and mess with the
 insides. Just like an 
expensive piece of hardware, the contract says
 that you void the warranty if you muck with the cover. 
So don't do that.

The heart of objects is the class, a protected little private namespace
 full of data and functions. A 
class is a set of related routines that
 addresses some problem area. You can think of it as a 
user-defined type.
 The Perl package mechanism, also used for more traditional modules,
 is used for 
class modules as well. Objects "live" in a class, meaning
 that they belong to some package.

More often than not, the class provides the user with little bundles.
 These bundles are objects. They 
know whose class they belong to,
 and how to behave. Users ask the class to do something, like "give

me an object." Or they can ask one of these objects to do something.
 Asking a class to do something 
for you is calling a class method.
 Asking an object to do something for you is calling an object method
.
 Asking either a class (usually) or an object (sometimes) to give you
 back an object is calling a 
constructor, which is just a
 kind of method.

That's all well and good, but how is an object different from any other
 Perl data type? Just what is an 
object really; that is, what's its
 fundamental type? The answer to the first question is easy. An object
 is
different from any other data type in Perl in one and only one way:
 you may dereference it using not 
merely string or numeric subscripts
 as with simple arrays and hashes, but with named subroutine 
calls.
 In a word, with methods.

The answer to the second question is that it's a reference, and not just
 any reference, mind you, but 
one whose referent has been bless()ed
 into a particular class (read: package). What kind of 
reference? Well,
 the answer to that one is a bit less concrete. That's because in Perl
 the designer of 
the class can employ any sort of reference they'd like
 as the underlying intrinsic data type. It could be 
a scalar, an array,
 or a hash reference. It could even be a code reference. But because
 of its inherent 
flexibility, an object is usually a hash reference.

Creating a Class
Before you create a class, you need to decide what to name it. That's
 because the class (package) 
name governs the name of the file used to
 house it, just as with regular modules. Then, that class 
(package)
 should provide one or more ways to generate objects. Finally, it should
 provide 
mechanisms to allow users of its objects to indirectly manipulate
 these objects from a distance.

For example, let's make a simple Person class module. It gets stored in
 the file Person.pm. If it were 
called a Happy::Person class, it would
 be stored in the file Happy/Person.pm, and its package would 
become
 Happy::Person instead of just Person. (On a personal computer not
 running Unix or Plan 9, 
but something like Mac OS or VMS, the directory
 separator may be different, but the principle is the 
same.) Do not assume
 any formal relationship between modules based on their directory names.
 This
is merely a grouping convenience, and has no effect on inheritance,
 variable accessibility, or anything
else.

For this module we aren't going to use Exporter, because we're
 a well-behaved class module that 
doesn't export anything at all.
 In order to manufacture objects, a class needs to have a constructor

method. A constructor gives you back not just a regular data type,
 but a brand-new object in that 
class. This magic is taken care of by
 the bless() function, whose sole purpose is to enable its referent 




