
Perl version 5.10.0 documentation - perltooc

Page 1http://perldoc.perl.org

NAME
perltooc - Tom's OO Tutorial for Class Data in Perl

DESCRIPTION
When designing an object class, you are sometimes faced with the situation
 of wanting common state
shared by all objects of that class.
 Such class attributes act somewhat like global variables for the
entire
 class, but unlike program-wide globals, class attributes have meaning only to
 the class itself.

Here are a few examples where class attributes might come in handy:

to keep a count of the objects you've created, or how many are
 still extant.

to extract the name or file descriptor for a logfile used by a debugging
 method.

to access collective data, like the total amount of cash dispensed by
 all ATMs in a network in a
given day.

to access the last object created by a class, or the most accessed object,
 or to retrieve a list of
all objects.

Unlike a true global, class attributes should not be accessed directly.
 Instead, their state should be
inspected, and perhaps altered, only
 through the mediated access of class methods. These class
attributes
 accessor methods are similar in spirit and function to accessors used
 to manipulate the
state of instance attributes on an object. They provide a
 clear firewall between interface and
implementation.

You should allow access to class attributes through either the class
 name or any object of that class.
If we assume that $an_object is of
 type Some_Class, and the &Some_Class::population_count
method accesses
 class attributes, then these two invocations should both be possible,
 and almost
certainly equivalent.

 Some_Class->population_count()
 $an_object->population_count()

The question is, where do you store the state which that method accesses?
 Unlike more restrictive
languages like C++, where these are called
 static data members, Perl provides no syntactic
mechanism to declare
 class attributes, any more than it provides a syntactic mechanism to
 declare
instance attributes. Perl provides the developer with a broad
 set of powerful but flexible features that
can be uniquely crafted to
 the particular demands of the situation.

A class in Perl is typically implemented in a module. A module consists
 of two complementary feature
sets: a package for interfacing with the
 outside world, and a lexical file scope for privacy. Either of
these
 two mechanisms can be used to implement class attributes. That means you
 get to decide
whether to put your class attributes in package variables
 or to put them in lexical variables.

And those aren't the only decisions to make. If you choose to use package
 variables, you can make
your class attribute accessor methods either ignorant
 of inheritance or sensitive to it. If you choose
lexical variables,
 you can elect to permit access to them from anywhere in the entire file
 scope, or you
can limit direct data access exclusively to the methods
 implementing those attributes.

Class Data in a Can
One of the easiest ways to solve a hard problem is to let someone else
 do it for you! In this case,
Class::Data::Inheritable (available on a
 CPAN near you) offers a canned solution to the class data
problem
 using closures. So before you wade into this document, consider
 having a look at that
module.

Class Data as Package Variables
Because a class in Perl is really just a package, using package variables
 to hold class attributes is the
most natural choice. This makes it simple
 for each class to have its own class attributes. Let's say you

