
Perl version 5.10.0 documentation - perltie

Page 1http://perldoc.perl.org

NAME
perltie - how to hide an object class in a simple variable

SYNOPSIS
 tie VARIABLE, CLASSNAME, LIST

 $object = tied VARIABLE

 untie VARIABLE

DESCRIPTION
Prior to release 5.0 of Perl, a programmer could use dbmopen()
 to connect an on-disk database in the
standard Unix dbm(3x)
 format magically to a %HASH in their program. However, their Perl was either

built with one particular dbm library or another, but not both, and
 you couldn't extend this mechanism
to other packages or types of variables.

Now you can.

The tie() function binds a variable to a class (package) that will provide
 the implementation for access
methods for that variable. Once this magic
 has been performed, accessing a tied variable
automatically triggers
 method calls in the proper class. The complexity of the class is
 hidden behind
magic methods calls. The method names are in ALL CAPS,
 which is a convention that Perl uses to
indicate that they're called
 implicitly rather than explicitly--just like the BEGIN() and END()
 functions.

In the tie() call, VARIABLE is the name of the variable to be
 enchanted. CLASSNAME is the name of a
class implementing objects of
 the correct type. Any additional arguments in the LIST are passed to

the appropriate constructor method for that class--meaning TIESCALAR(),
 TIEARRAY(), TIEHASH(),
or TIEHANDLE(). (Typically these are arguments
 such as might be passed to the dbminit() function of
C.) The object
 returned by the "new" method is also returned by the tie() function,
 which would be
useful if you wanted to access other methods in CLASSNAME. (You don't actually have to return a
reference to a right
 "type" (e.g., HASH or CLASSNAME) so long as it's a properly blessed
 object.) You
can also retrieve a reference to the underlying object
 using the tied() function.

Unlike dbmopen(), the tie() function will not use or require a module
 for you--you need to do that
explicitly yourself.

Tying Scalars
A class implementing a tied scalar should define the following methods:
 TIESCALAR, FETCH,
STORE, and possibly UNTIE and/or DESTROY.

Let's look at each in turn, using as an example a tie class for
 scalars that allows the user to do
something like:

 tie $his_speed, 'Nice', getppid();
 tie $my_speed, 'Nice', $$;

And now whenever either of those variables is accessed, its current
 system priority is retrieved and
returned. If those variables are set,
 then the process's priority is changed!

We'll use Jarkko Hietaniemi <jhi@iki.fi>'s BSD::Resource class (not
 included) to access the
PRIO_PROCESS, PRIO_MIN, and PRIO_MAX constants
 from your system, as well as the
getpriority() and setpriority() system
 calls. Here's the preamble of the class.

 package Nice;
 use Carp;
 use BSD::Resource;
 use strict;

Perl version 5.10.0 documentation - perltie

Page 2http://perldoc.perl.org

 $Nice::DEBUG = 0 unless defined $Nice::DEBUG;

TIESCALAR classname, LIST

This is the constructor for the class. That means it is
 expected to return a blessed reference to
a new scalar
 (probably anonymous) that it's creating. For example:

 sub TIESCALAR {
 my $class = shift;
 my $pid = shift || $$; # 0 means me

 if ($pid !~ /^\d+$/) {
 carp "Nice::Tie::Scalar got non-numeric pid $pid" if $^W;
 return undef;
 }

 unless (kill 0, $pid) { # EPERM or ERSCH, no doubt
 carp "Nice::Tie::Scalar got bad pid $pid: $!" if $^W;
 return undef;
 }

 return bless \$pid, $class;
 }

This tie class has chosen to return an error rather than raising an
 exception if its constructor
should fail. While this is how dbmopen() works,
 other classes may well not wish to be so
forgiving. It checks the global
 variable $^W to see whether to emit a bit of noise anyway.

FETCH this

This method will be triggered every time the tied variable is accessed
 (read). It takes no
arguments beyond its self reference, which is the
 object representing the scalar we're dealing
with. Because in this case
 we're using just a SCALAR ref for the tied scalar object, a simple
$$self
 allows the method to get at the real value stored there. In our example
 below, that real
value is the process ID to which we've tied our variable.

 sub FETCH {
 my $self = shift;
 confess "wrong type" unless ref $self;
 croak "usage error" if @_;
 my $nicety;
 local($!) = 0;
 $nicety = getpriority(PRIO_PROCESS, $$self);
 if ($!) { croak "getpriority failed: $!" }
 return $nicety;
 }

This time we've decided to blow up (raise an exception) if the renice
 fails--there's no place for
us to return an error otherwise, and it's
 probably the right thing to do.

STORE this, value

This method will be triggered every time the tied variable is set
 (assigned). Beyond its self
reference, it also expects one (and only one)
 argument--the new value the user is trying to
assign. Don't worry about
 returning a value from STORE -- the semantic of assignment
returning the
 assigned value is implemented with FETCH.

 sub STORE {
 my $self = shift;
 confess "wrong type" unless ref $self;

