
Perl version 5.10.0 documentation - perlthrtut

Page 1http://perldoc.perl.org

NAME
perlthrtut - Tutorial on threads in Perl

DESCRIPTION
This tutorial describes the use of Perl interpreter threads (sometimes
 referred to as ithreads) that was 
first introduced in Perl 5.6.0. In this
 model, each thread runs in its own Perl interpreter, and any data 
sharing
 between threads must be explicit. The user-level interface for ithreads 
 uses the threads class.

NOTE: There was another older Perl threading flavor called the 5.005 model
 that used the Threads 
class. This old model was known to have problems, is
 deprecated, and was removed for release 5.10.
You are
 strongly encouraged to migrate any existing 5.005 threads code to the new
 model as soon as
possible.

You can see which (or neither) threading flavour you have by
 running perl -V and looking at the 
Platform section.
 If you have useithreads=define you have ithreads, if you
 have 
use5005threads=define you have 5.005 threads.
 If you have neither, you don't have any thread 
support built in.
 If you have both, you are in trouble.

The threads and threads::shared modules are included in the core Perl
 distribution. Additionally, they 
are maintained as a separate modules on
 CPAN, so you can check there for any updates.

What Is A Thread Anyway?
A thread is a flow of control through a program with a single
 execution point.

Sounds an awful lot like a process, doesn't it? Well, it should.
 Threads are one of the pieces of a 
process. Every process has at least
 one thread and, up until now, every process running Perl had 
only one
 thread. With 5.8, though, you can create extra threads. We're going
 to show you how, when, 
and why.

Threaded Program Models
There are three basic ways that you can structure a threaded
 program. Which model you choose 
depends on what you need your program
 to do. For many non-trivial threaded programs, you'll need 
to choose
 different models for different pieces of your program.

Boss/Worker
The boss/worker model usually has one boss thread and one or more worker threads. The boss 
thread gathers or generates tasks that need
 to be done, then parcels those tasks out to the 
appropriate worker
 thread.

This model is common in GUI and server programs, where a main thread
 waits for some event and 
then passes that event to the appropriate
 worker threads for processing. Once the event has been 
passed on, the
 boss thread goes back to waiting for another event.

The boss thread does relatively little work. While tasks aren't
 necessarily performed faster than with 
any other method, it tends to
 have the best user-response times.

Work Crew
In the work crew model, several threads are created that do
 essentially the same thing to different 
pieces of data. It closely
 mirrors classical parallel processing and vector processors, where a
 large 
array of processors do the exact same thing to many pieces of
 data.

This model is particularly useful if the system running the program
 will distribute multiple threads 
across different processors. It can
 also be useful in ray tracing or rendering engines, where the

individual threads can pass on interim results to give the user visual
 feedback.

Pipeline
The pipeline model divides up a task into a series of steps, and
 passes the results of one step on to 
the thread processing the
 next. Each thread does one thing to each piece of data and passes the





