
Perl version 5.10.0 documentation - perlsyn

Page 1http://perldoc.perl.org

NAME
perlsyn - Perl syntax

DESCRIPTION
A Perl program consists of a sequence of declarations and statements
 which run from the top to the
bottom. Loops, subroutines and other
 control structures allow you to jump around within the code.

Perl is a free-form language, you can format and indent it however
 you like. Whitespace mostly
serves to separate tokens, unlike
 languages like Python where it is an important part of the syntax.

Many of Perl's syntactic elements are optional. Rather than
 requiring you to put parentheses around
every function call and
 declare every variable, you can often leave such explicit elements off
 and Perl
will figure out what you meant. This is known as Do What I
 Mean, abbreviated DWIM. It allows
programmers to be lazy and to
 code in a style with which they are comfortable.

Perl borrows syntax and concepts from many languages: awk, sed, C,
 Bourne Shell, Smalltalk, Lisp
and even English. Other
 languages have borrowed syntax from Perl, particularly its regular

expression extensions. So if you have programmed in another language
 you will see familiar pieces in
Perl. They often work the same, but
 see perltrap for information about how they differ.

Declarations
The only things you need to declare in Perl are report formats and
 subroutines (and sometimes not
even subroutines). A variable holds
 the undefined value (undef) until it has been assigned a defined

value, which is anything other than undef. When used as a number, undef is treated as 0; when
used as a string, it is treated as
 the empty string, ""; and when used as a reference that isn't being

assigned to, it is treated as an error. If you enable warnings,
 you'll be notified of an uninitialized value
whenever you treat undef as a string or a number. Well, usually. Boolean contexts,
 such as:

 my $a;
 if ($a) {}

are exempt from warnings (because they care about truth rather than
 definedness). Operators such
as ++, --, +=, -=, and .=, that operate on undefined left values such as:

 my $a;
 $a++;

are also always exempt from such warnings.

A declaration can be put anywhere a statement can, but has no effect on
 the execution of the primary
sequence of statements--declarations all
 take effect at compile time. Typically all the declarations are
put at
 the beginning or the end of the script. However, if you're using
 lexically-scoped private variables
created with my(), you'll
 have to make sure
 your format or subroutine definition is within the same
block scope
 as the my if you expect to be able to access those private variables.

Declaring a subroutine allows a subroutine name to be used as if it were a
 list operator from that point
forward in the program. You can declare a
 subroutine without defining it by saying sub name, thus:

 sub myname;
 $me = myname $0 		 or die "can't get myname";

Note that myname() functions as a list operator, not as a unary operator;
 so be careful to use or
instead of || in this case. However, if
 you were to declare the subroutine as sub myname ($), then
myname would function as a unary operator, so either or or || would work.

Subroutines declarations can also be loaded up with the require statement
 or both loaded and
imported into your namespace with a use statement.
 See perlmod for details on this.

