
Perl version 5.10.0 documentation - perlsub

Page 1http://perldoc.perl.org

NAME
perlsub - Perl subroutines

SYNOPSIS
To declare subroutines:

 sub NAME;			 # A "forward" declaration.
 sub NAME(PROTO);		 # ditto, but with prototypes
 sub NAME : ATTRS;		 # with attributes
 sub NAME(PROTO) : ATTRS;	 # with attributes and prototypes

 sub NAME BLOCK		 # A declaration and a definition.
 sub NAME(PROTO) BLOCK	 # ditto, but with prototypes
 sub NAME : ATTRS BLOCK	 # with attributes
 sub NAME(PROTO) : ATTRS BLOCK # with prototypes and attributes

To define an anonymous subroutine at runtime:

 $subref = sub BLOCK;		 # no proto
 $subref = sub (PROTO) BLOCK;	 # with proto
 $subref = sub : ATTRS BLOCK;	 # with attributes
 $subref = sub (PROTO) : ATTRS BLOCK; # with proto and attributes

To import subroutines:

 use MODULE qw(NAME1 NAME2 NAME3);

To call subroutines:

 NAME(LIST);	 # & is optional with parentheses.
 NAME LIST;	 # Parentheses optional if predeclared/imported.
 &NAME(LIST); # Circumvent prototypes.
 &NAME;	 # Makes current @_ visible to called subroutine.

DESCRIPTION
Like many languages, Perl provides for user-defined subroutines.
 These may be located anywhere in
the main program, loaded in from
 other files via the do, require, or use keywords, or
 generated on
the fly using eval or anonymous subroutines.
 You can even call a function indirectly using a variable
containing
 its name or a CODE reference.

The Perl model for function call and return values is simple: all
 functions are passed as parameters
one single flat list of scalars, and
 all functions likewise return to their caller one single flat list of

scalars. Any arrays or hashes in these call and return lists will
 collapse, losing their identities--but you
may always use
 pass-by-reference instead to avoid this. Both call and return lists may
 contain as
many or as few scalar elements as you'd like. (Often a
 function without an explicit return statement is
called a subroutine, but
 there's really no difference from Perl's perspective.)

Any arguments passed in show up in the array @_. Therefore, if
 you called a function with two
arguments, those would be stored in $_[0] and $_[1]. The array @_ is a local array, but its

elements are aliases for the actual scalar parameters. In particular,
 if an element $_[0] is updated,
the corresponding argument is
 updated (or an error occurs if it is not updatable). If an argument
 is an
array or hash element which did not exist when the function
 was called, that element is created only
when (and if) it is modified
 or a reference to it is taken. (Some earlier versions of Perl
 created the
element whether or not the element was assigned to.)
 Assigning to the whole array @_ removes that
aliasing, and does
 not update any arguments.

Perl version 5.10.0 documentation - perlsub

Page 2http://perldoc.perl.org

A return statement may be used to exit a subroutine, optionally
 specifying the returned value, which
will be evaluated in the
 appropriate context (list, scalar, or void) depending on the context of
 the
subroutine call. If you specify no return value, the subroutine
 returns an empty list in list context, the
undefined value in scalar
 context, or nothing in void context. If you return one or more
 aggregates
(arrays and hashes), these will be flattened together into
 one large indistinguishable list.

If no return is found and if the last statement is an expression, its
 value is returned. If the last
statement is a loop control structure
 like a foreach or a while, the returned value is unspecified.
The
 empty sub returns the empty list.

Perl does not have named formal parameters. In practice all you
 do is assign to a my() list of these.
Variables that aren't
 declared to be private are global variables. For gory details
 on creating private
variables, see Private Variables via my()
 and Temporary Values via local(). To create protected

environments for a set of functions in a separate package (and
 probably a separate file), see
"Packages" in perlmod.

Example:

 sub max {
	 my $max = shift(@_);
	 foreach $foo (@_) {
	 $max = $foo if $max < $foo;
	 }
	 return $max;
 }
 $bestday = max($mon,$tue,$wed,$thu,$fri);

Example:

 # get a line, combining continuation lines
 # that start with whitespace

 sub get_line {
	 $thisline = $lookahead; # global variables!
	 LINE: while (defined($lookahead = <STDIN>)) {
	 if ($lookahead =~ /^[\t]/) {
		 $thisline .= $lookahead;
	 }
	 else {
		 last LINE;
	 }
	 }
	 return $thisline;
 }

 $lookahead = <STDIN>;	 # get first line
 while (defined($line = get_line())) {
	 ...
 }

Assigning to a list of private variables to name your arguments:

 sub maybeset {
	 my($key, $value) = @_;
	 $Foo{$key} = $value unless $Foo{$key};
 }

