
Perl version 5.10.0 documentation - perlsec

Page 1http://perldoc.perl.org

NAME
perlsec - Perl security

DESCRIPTION
Perl is designed to make it easy to program securely even when running
 with extra privileges, like
setuid or setgid programs. Unlike most
 command line shells, which are based on multiple substitution
passes on
 each line of the script, Perl uses a more conventional evaluation scheme
 with fewer hidden
snags. Additionally, because the language has more
 builtin functionality, it can rely less upon external
(and possibly
 untrustworthy) programs to accomplish its purposes.

Perl automatically enables a set of special security checks, called taint
 mode, when it detects its
program running with differing real and effective
 user or group IDs. The setuid bit in Unix permissions
is mode 04000, the
 setgid bit mode 02000; either or both may be set. You can also enable taint
 mode
explicitly by using the -T command line flag. This flag is strongly suggested for server programs and
any program run on behalf of
 someone else, such as a CGI script. Once taint mode is on, it's on for

the remainder of your script.

While in this mode, Perl takes special precautions called taint
 checks to prevent both obvious and
subtle traps. Some of these checks
 are reasonably simple, such as verifying that path directories
aren't
 writable by others; careful programmers have always used checks like
 these. Other checks,
however, are best supported by the language itself,
 and it is these checks especially that contribute to
making a set-id Perl
 program more secure than the corresponding C program.

You may not use data derived from outside your program to affect
 something else outside your
program--at least, not by accident. All
 command line arguments, environment variables, locale
information (see perllocale), results of certain system calls (readdir(), readlink(), the variable of
shmread(), the messages returned by msgrcv(), the password, gcos and shell fields returned by
the getpwxxx() calls), and all file input are marked as "tainted".
 Tainted data may not be used
directly or indirectly in any command
 that invokes a sub-shell, nor in any command that modifies files,

directories, or processes, with the following exceptions:

Arguments to print and syswrite are not checked for taintedness.

Symbolic methods

 $obj->$method(@args);

and symbolic sub references

 &{$foo}(@args);
 $foo->(@args);

are not checked for taintedness. This requires extra carefulness
 unless you want external data
to affect your control flow. Unless
 you carefully limit what these symbolic values are, people
are able
 to call functions outside your Perl code, such as POSIX::system,
 in which case they
are able to run arbitrary external code.

Hash keys are never tainted.

For efficiency reasons, Perl takes a conservative view of
 whether data is tainted. If an expression
contains tainted data,
 any subexpression may be considered tainted, even if the value
 of the
subexpression is not itself affected by the tainted data.

Because taintedness is associated with each scalar value, some
 elements of an array or hash can be
tainted and others not.
 The keys of a hash are never tainted.

For example:

 $arg = shift;		 # $arg is tainted
 $hid = $arg, 'bar';		 # $hid is also tainted

Perl version 5.10.0 documentation - perlsec

Page 2http://perldoc.perl.org

 $line = <>;			 # Tainted
 $line = <STDIN>;		 # Also tainted
 open FOO, "/home/me/bar" or die $!;
 $line = <FOO>;		 # Still tainted
 $path = $ENV{'PATH'};	 # Tainted, but see below
 $data = 'abc';		 # Not tainted

 system "echo $arg";		 # Insecure
 system "/bin/echo", $arg;	 # Considered insecure
				 # (Perl doesn't know about /bin/echo)
 system "echo $hid";		 # Insecure
 system "echo $data";	 # Insecure until PATH set

 $path = $ENV{'PATH'};	 # $path now tainted

 $ENV{'PATH'} = '/bin:/usr/bin';
 delete @ENV{'IFS', 'CDPATH', 'ENV', 'BASH_ENV'};

 $path = $ENV{'PATH'};	 # $path now NOT tainted
 system "echo $data";	 # Is secure now!

 open(FOO, "< $arg");	 # OK - read-only file
 open(FOO, "> $arg"); 	 # Not OK - trying to write

 open(FOO,"echo $arg|");	 # Not OK
 open(FOO,"-|")
	 or exec 'echo', $arg;	 # Also not OK

 $shout = `echo $arg`;	 # Insecure, $shout now tainted

 unlink $data, $arg;		 # Insecure
 umask $arg;			 # Insecure

 exec "echo $arg";		 # Insecure
 exec "echo", $arg;		 # Insecure
 exec "sh", '-c', $arg;	 # Very insecure!

 @files = <*.c>;		 # insecure (uses readdir() or similar)
 @files = glob('*.c');	 # insecure (uses readdir() or similar)

 # In Perl releases older than 5.6.0 the <*.c> and glob('*.c') would
 # have used an external program to do the filename expansion; but in
 # either case the result is tainted since the list of filenames comes
 # from outside of the program.

 $bad = ($arg, 23);		 # $bad will be tainted
 $arg, `true`;		 # Insecure (although it isn't really)

If you try to do something insecure, you will get a fatal error saying
 something like "Insecure
dependency" or "Insecure $ENV{PATH}".

The exception to the principle of "one tainted value taints the whole
 expression" is with the ternary

