
Perl version 5.10.0 documentation - perlrun

Page 1http://perldoc.perl.org

NAME
perlrun - how to execute the Perl interpreter

SYNOPSIS
perl [-sTtuUWX] [-hv] [-V[:configvar]] [-cw] [-d[t][:debugger]] [-D[number/list]] [-pna] [-F
pattern] [-l[octal]] [-0[octal/hexadecimal]] [-Idir] [-m[-]module] [-M[-]'module...'] [-f] [-C [
number/list]] [-P] [-S] [-x[dir]] [-i[extension]] [-eE 'command'] [--] [programfile] [argument]...

DESCRIPTION
The normal way to run a Perl program is by making it directly
 executable, or else by passing the name
of the source file as an
 argument on the command line. (An interactive Perl environment
 is also
possible--see perldebug for details on how to do that.)
 Upon startup, Perl looks for your program in
one of the following
 places:

1. Specified line by line via -e or -E switches on the command line.

2. Contained in the file specified by the first filename on the command line.
 (Note that systems
supporting the #! notation invoke interpreters this
 way. See Location of Perl.)

3. Passed in implicitly via standard input. This works only if there are
 no filename arguments--to
pass arguments to a STDIN-read program you
 must explicitly specify a "-" for the program
name.

With methods 2 and 3, Perl starts parsing the input file from the
 beginning, unless you've specified a
-x switch, in which case it
 scans for the first line starting with #! and containing the word
 "perl", and
starts there instead. This is useful for running a program
 embedded in a larger message. (In this case
you would indicate the end
 of the program using the __END__ token.)

The #! line is always examined for switches as the line is being
 parsed. Thus, if you're on a machine
that allows only one argument
 with the #! line, or worse, doesn't even recognize the #! line, you
 still
can get consistent switch behavior regardless of how Perl was
 invoked, even if -x was used to find the
beginning of the program.

Because historically some operating systems silently chopped off
 kernel interpretation of the #! line
after 32 characters, some
 switches may be passed in on the command line, and some may not;
 you
could even get a "-" without its letter, if you're not careful.
 You probably want to make sure that all
your switches fall either
 before or after that 32-character boundary. Most switches don't
 actually care
if they're processed redundantly, but getting a "-"
 instead of a complete switch could cause Perl to try
to execute
 standard input instead of your program. And a partial -I switch
 could also cause odd
results.

Some switches do care if they are processed twice, for instance
 combinations of -l and -0. Either put
all the switches after
 the 32-character boundary (if applicable), or replace the use of -0digits by
BEGIN{ $/ = "\0digits"; }.

Parsing of the #! switches starts wherever "perl" is mentioned in the line.
 The sequences "-*" and "- "
are specifically ignored so that you could,
 if you were so inclined, say

 #!/bin/sh -- # -*- perl -*- -p
 eval 'exec perl -wS $0 ${1+"$@"}'
 if $running_under_some_shell;

to let Perl see the -p switch.

A similar trick involves the env program, if you have it.

 #!/usr/bin/env perl

The examples above use a relative path to the perl interpreter,
 getting whatever version is first in the

