
Perl version 5.10.0 documentation - perlretut

Page 1http://perldoc.perl.org

NAME
perlretut - Perl regular expressions tutorial

DESCRIPTION
This page provides a basic tutorial on understanding, creating and
 using regular expressions in Perl.
It serves as a complement to the
 reference page on regular expressions perlre. Regular expressions

are an integral part of the m//, s///, qr// and split
 operators and so this tutorial also overlaps
with "Regexp Quote-Like Operators" in perlop and "split" in perlfunc.

Perl is widely renowned for excellence in text processing, and regular
 expressions are one of the big
factors behind this fame. Perl regular
 expressions display an efficiency and flexibility unknown in most
other computer languages. Mastering even the basics of regular
 expressions will allow you to
manipulate text with surprising ease.

What is a regular expression? A regular expression is simply a string
 that describes a pattern.
Patterns are in common use these days;
 examples are the patterns typed into a search engine to find
web pages
 and the patterns used to list files in a directory, e.g., ls *.txt
 or dir *.*. In Perl, the
patterns described by regular expressions
 are used to search strings, extract desired parts of strings,
and to
 do search and replace operations.

Regular expressions have the undeserved reputation of being abstract
 and difficult to understand.
Regular expressions are constructed using
 simple concepts like conditionals and loops and are no
more difficult
 to understand than the corresponding if conditionals and while
 loops in the Perl
language itself. In fact, the main challenge in
 learning regular expressions is just getting used to the
terse
 notation used to express these concepts.

This tutorial flattens the learning curve by discussing regular
 expression concepts, along with their
notation, one at a time and with
 many examples. The first part of the tutorial will progress from the

simplest word searches to the basic regular expression concepts. If
 you master the first part, you will
have all the tools needed to solve
 about 98% of your needs. The second part of the tutorial is for
those
 comfortable with the basics and hungry for more power tools. It
 discusses the more advanced
regular expression operators and
 introduces the latest cutting edge innovations in 5.6.0.

A note: to save time, 'regular expression' is often abbreviated as
 regexp or regex. Regexp is a more
natural abbreviation than regex, but
 is harder to pronounce. The Perl pod documentation is evenly
split on
 regexp vs regex; in Perl, there is more than one way to abbreviate it.
 We'll use regexp in this
tutorial.

Part 1: The basics
Simple word matching

The simplest regexp is simply a word, or more generally, a string of
 characters. A regexp consisting of
a word matches any string that
 contains that word:

 "Hello World" =~ /World/; # matches

What is this Perl statement all about? "Hello World" is a simple
 double quoted string. World is
the regular expression and the // enclosing /World/ tells Perl to search a string for a match.
 The
operator =~ associates the string with the regexp match and
 produces a true value if the regexp
matched, or false if the regexp
 did not match. In our case, World matches the second word in
"Hello World", so the expression is true. Expressions like this
 are useful in conditionals:

 if ("Hello World" =~ /World/) {
 print "It matches\n";
 }
 else {
 print "It doesn't match\n";
 }

Perl version 5.10.0 documentation - perlretut

Page 2http://perldoc.perl.org

There are useful variations on this theme. The sense of the match can
 be reversed by using the !~
operator:

 if ("Hello World" !~ /World/) {
 print "It doesn't match\n";
 }
 else {
 print "It matches\n";
 }

The literal string in the regexp can be replaced by a variable:

 $greeting = "World";
 if ("Hello World" =~ /$greeting/) {
 print "It matches\n";
 }
 else {
 print "It doesn't match\n";
 }

If you're matching against the special default variable $_, the $_ =~ part can be omitted:

 $_ = "Hello World";
 if (/World/) {
 print "It matches\n";
 }
 else {
 print "It doesn't match\n";
 }

And finally, the // default delimiters for a match can be changed
 to arbitrary delimiters by putting an
'm' out front:

 "Hello World" =~ m!World!; # matches, delimited by '!'
 "Hello World" =~ m{World}; # matches, note the matching '{}'
 "/usr/bin/perl" =~ m"/perl"; # matches after '/usr/bin',
 # '/' becomes an ordinary char

/World/, m!World!, and m{World} all represent the
 same thing. When, e.g., the quote (") is used
as a delimiter, the forward
 slash '/' becomes an ordinary character and can be used in this regexp

without trouble.

Let's consider how different regexps would match "Hello World":

 "Hello World" =~ /world/; # doesn't match
 "Hello World" =~ /o W/; # matches
 "Hello World" =~ /oW/; # doesn't match
 "Hello World" =~ /World /; # doesn't match

The first regexp world doesn't match because regexps are
 case-sensitive. The second regexp
matches because the substring 'o W' occurs in the string "Hello World". The space
 character ' '
is treated like any other character in a regexp and is
 needed to match in this case. The lack of a
space character is the
 reason the third regexp 'oW' doesn't match. The fourth regexp 'World '
doesn't match because there is a space at the end of the
 regexp, but not at the end of the string. The
lesson here is that
 regexps must match a part of the string exactly in order for the
 statement to be
true.

