
Perl version 5.10.0 documentation - perlrequick

Page 1http://perldoc.perl.org

NAME
perlrequick - Perl regular expressions quick start

DESCRIPTION
This page covers the very basics of understanding, creating and
 using regular expressions ('regexes')
in Perl.

The Guide
Simple word matching

The simplest regex is simply a word, or more generally, a string of
 characters. A regex consisting of a
word matches any string that
 contains that word:

 "Hello World" =~ /World/; # matches

In this statement, World is a regex and the // enclosing /World/ tells perl to search a string for a
match. The operator =~ associates the string with the regex match and produces a true
 value if the
regex matched, or false if the regex did not match. In
 our case, World matches the second word in
"Hello World", so the
 expression is true. This idea has several variations.

Expressions like this are useful in conditionals:

 print "It matches\n" if "Hello World" =~ /World/;

The sense of the match can be reversed by using !~ operator:

 print "It doesn't match\n" if "Hello World" !~ /World/;

The literal string in the regex can be replaced by a variable:

 $greeting = "World";
 print "It matches\n" if "Hello World" =~ /$greeting/;

If you're matching against $_, the $_ =~ part can be omitted:

 $_ = "Hello World";
 print "It matches\n" if /World/;

Finally, the // default delimiters for a match can be changed to
 arbitrary delimiters by putting an 'm'
out front:

 "Hello World" =~ m!World!; # matches, delimited by '!'
 "Hello World" =~ m{World}; # matches, note the matching '{}'
 "/usr/bin/perl" =~ m"/perl"; # matches after '/usr/bin',
 # '/' becomes an ordinary char

Regexes must match a part of the string exactly in order for the
 statement to be true:

 "Hello World" =~ /world/; # doesn't match, case sensitive
 "Hello World" =~ /o W/; # matches, ' ' is an ordinary char
 "Hello World" =~ /World /; # doesn't match, no ' ' at end

perl will always match at the earliest possible point in the string:

 "Hello World" =~ /o/; # matches 'o' in 'Hello'
 "That hat is red" =~ /hat/; # matches 'hat' in 'That'

Perl version 5.10.0 documentation - perlrequick

Page 2http://perldoc.perl.org

Not all characters can be used 'as is' in a match. Some characters,
 called metacharacters, are
reserved for use in regex notation.
 The metacharacters are

 {}[]()^$.|*+?\

A metacharacter can be matched by putting a backslash before it:

 "2+2=4" =~ /2+2/; # doesn't match, + is a metacharacter
 "2+2=4" =~ /2\+2/; # matches, \+ is treated like an ordinary +
 'C:\WIN32' =~ /C:\\WIN/; # matches
 "/usr/bin/perl" =~ /\/usr\/bin\/perl/; # matches

In the last regex, the forward slash '/' is also backslashed,
 because it is used to delimit the regex.

Non-printable ASCII characters are represented by escape sequences.
 Common examples are \t
for a tab, \n for a newline, and \r
 for a carriage return. Arbitrary bytes are represented by octal

escape sequences, e.g., \033, or hexadecimal escape sequences,
 e.g., \x1B:

 "1000\t2000" =~ m(0\t2) # matches
 "cat" =~ /\143\x61\x74/ # matches, but a weird way to spell cat

Regexes are treated mostly as double quoted strings, so variable
 substitution works:

 $foo = 'house';
 'cathouse' =~ /cat$foo/; # matches
 'housecat' =~ /${foo}cat/; # matches

With all of the regexes above, if the regex matched anywhere in the
 string, it was considered a match.
To specify where it should
 match, we would use the anchor metacharacters ^ and $. The
 anchor ^
means match at the beginning of the string and the anchor $ means match at the end of the string, or
before a newline at the
 end of the string. Some examples:

 "housekeeper" =~ /keeper/; # matches
 "housekeeper" =~ /^keeper/; # doesn't match
 "housekeeper" =~ /keeper$/; # matches
 "housekeeper\n" =~ /keeper$/; # matches
 "housekeeper" =~ /^housekeeper$/; # matches

Using character classes
A character class allows a set of possible characters, rather than
 just a single character, to match at
a particular point in a regex.
 Character classes are denoted by brackets [...], with the set of

characters to be possibly matched inside. Here are some examples:

 /cat/; # matches 'cat'
 /[bcr]at/; # matches 'bat', 'cat', or 'rat'
 "abc" =~ /[cab]/; # matches 'a'

In the last statement, even though 'c' is the first character in
 the class, the earliest point at which the
regex can match is 'a'.

 /[yY][eE][sS]/; # match 'yes' in a case-insensitive way
 # 'yes', 'Yes', 'YES', etc.
 /yes/i; # also match 'yes' in a case-insensitive way

The last example shows a match with an 'i' modifier, which makes
 the match case-insensitive.

