
Perl version 5.10.0 documentation - perlreguts

Page 1http://perldoc.perl.org

NAME
perlreguts - Description of the Perl regular expression engine.

DESCRIPTION
This document is an attempt to shine some light on the guts of the regex
 engine and how it works.
The regex engine represents a significant chunk
 of the perl codebase, but is relatively poorly
understood. This document
 is a meagre attempt at addressing this situation. It is derived from the

author's experience, comments in the source code, other papers on the
 regex engine, feedback on
the perl5-porters mail list, and no doubt other
 places as well.

NOTICE! It should be clearly understood that the behavior and
 structures discussed in this represents
the state of the engine as the
 author understood it at the time of writing. It is NOT an API
 definition, it
is purely an internals guide for those who want to hack
 the regex engine, or understand how the regex
engine works. Readers of
 this document are expected to understand perl's regex syntax and its

usage in detail. If you want to learn about the basics of Perl's
 regular expressions, see perlre. And if
you want to replace the
 regex engine with your own see see perlreapi.

OVERVIEW
A quick note on terms

There is some debate as to whether to say "regexp" or "regex". In this
 document we will use the term
"regex" unless there is a special reason
 not to, in which case we will explain why.

When speaking about regexes we need to distinguish between their source
 code form and their
internal form. In this document we will use the term
 "pattern" when we speak of their textual, source
code form, and the term
 "program" when we speak of their internal representation. These
 correspond
to the terms S-regex and B-regex that Mark Jason
 Dominus employs in his paper on "Rx" ([1] in
REFERENCES).

What is a regular expression engine?
A regular expression engine is a program that takes a set of constraints
 specified in a mini-language,
and then applies those constraints to a
 target string, and determines whether or not the string satisfies
the
 constraints. See perlre for a full definition of the language.

In less grandiose terms, the first part of the job is to turn a pattern into
 something the computer can
efficiently use to find the matching point in
 the string, and the second part is performing the search
itself.

To do this we need to produce a program by parsing the text. We then
 need to execute the program
to find the point in the string that
 matches. And we need to do the whole thing efficiently.

Structure of a Regexp Program
High Level

Although it is a bit confusing and some people object to the terminology, it
 is worth taking a look at a
comment that has
 been in regexp.h for years:

This is essentially a linear encoding of a nondeterministic
 finite-state machine (aka syntax charts or
"railroad normal form" in
 parsing technology).

The term "railroad normal form" is a bit esoteric, with "syntax
 diagram/charts", or "railroad
diagram/charts" being more common terms.
 Nevertheless it provides a useful mental image of a
regex program: each
 node can be thought of as a unit of track, with a single entry and in
 most cases a
single exit point (there are pieces of track that fork, but
 statistically not many), and the whole forms a
layout with a
 single entry and single exit point. The matching process can be thought
 of as a car that
moves along the track, with the particular route through
 the system being determined by the character
read at each possible
 connector point. A car can fall off the track at any point but it may
 only proceed
as long as it matches the track.

Perl version 5.10.0 documentation - perlreguts

Page 2http://perldoc.perl.org

Thus the pattern /foo(?:\w+|\d+|\s+)bar/ can be thought of as the
 following chart:

 [start]
 |
 <foo>
 |
 +-----+-----+
 | | |
 <\w+> <\d+> <\s+>
 | | |
 +-----+-----+
 |
 <bar>
 |
 [end]

The truth of the matter is that perl's regular expressions these days are
 much more complex than this
kind of structure, but visualising it this way
 can help when trying to get your bearings, and it matches
the
 current implementation pretty closely.

To be more precise, we will say that a regex program is an encoding
 of a graph. Each node in the
graph corresponds to part of
 the original regex pattern, such as a literal string or a branch,
 and has a
pointer to the nodes representing the next component
 to be matched. Since "node" and "opcode"
already have other meanings in the
 perl source, we will call the nodes in a regex program "regops".

The program is represented by an array of regnode structures, one or
 more of which represent a
single regop of the program. Struct regnode is the smallest struct needed, and has a field structure
which is
 shared with all the other larger structures.

The "next" pointers of all regops except BRANCH implement concatenation;
 a "next" pointer with a
BRANCH on both ends of it is connecting two
 alternatives. [Here we have one of the subtle syntax
dependencies: an
 individual BRANCH (as opposed to a collection of them) is never
 concatenated with
anything because of operator precedence.]

The operand of some types of regop is a literal string; for others,
 it is a regop leading into a
sub-program. In particular, the operand
 of a BRANCH node is the first regop of the branch.

NOTE: As the railroad metaphor suggests, this is not a tree
 structure: the tail of the branch connects
to the thing following the
 set of BRANCHes. It is a like a single line of railway track that
 splits as it goes
into a station or railway yard and rejoins as it comes
 out the other side.

Regops

The base structure of a regop is defined in regexp.h as follows:

 struct regnode {
 U8 flags; /* Various purposes, sometimes overridden */
 U8 type; /* Opcode value as specified by regnodes.h */
 U16 next_off; /* Offset in size regnode */
 };

Other larger regnode -like structures are defined in regcomp.h. They
 are almost like subclasses in
that they have the same fields as regnode , with possibly additional fields following in
 the structure,
and in some cases the specific meaning (and name)
 of some of base fields are overridden. The
following is a more
 complete description.

regnode_1

regnode_2

