
Perl version 5.10.0 documentation - perlreftut

Page 1http://perldoc.perl.org

NAME
perlreftut - Mark's very short tutorial about references

DESCRIPTION
One of the most important new features in Perl 5 was the capability to
 manage complicated data
structures like multidimensional arrays and
 nested hashes. To enable these, Perl 5 introduced a
feature called
 `references', and using references is the key to managing complicated,
 structured data
in Perl. Unfortunately, there's a lot of funny syntax
 to learn, and the main manual page can be hard to
follow. The manual
 is quite complete, and sometimes people find that a problem, because
 it can be
hard to tell what is important and what isn't.

Fortunately, you only need to know 10% of what's in the main page to get
 90% of the benefit. This
page will show you that 10%.

Who Needs Complicated Data Structures?
One problem that came up all the time in Perl 4 was how to represent a
 hash whose values were lists.
Perl 4 had hashes, of course, but the
 values had to be scalars; they couldn't be lists.

Why would you want a hash of lists? Let's take a simple example: You
 have a file of city and country
names, like this:

	 Chicago, USA
	 Frankfurt, Germany
	 Berlin, Germany
	 Washington, USA
	 Helsinki, Finland
	 New York, USA

and you want to produce an output like this, with each country mentioned
 once, and then an
alphabetical list of the cities in that country:

	 Finland: Helsinki.
	 Germany: Berlin, Frankfurt.
	 USA: Chicago, New York, Washington.

The natural way to do this is to have a hash whose keys are country
 names. Associated with each
country name key is a list of the cities in
 that country. Each time you read a line of input, split it into a
country
 and a city, look up the list of cities already known to be in that
 country, and append the new
city to the list. When you're done reading
 the input, iterate over the hash as usual, sorting each list of
cities
 before you print it out.

If hash values can't be lists, you lose. In Perl 4, hash values can't
 be lists; they can only be strings.
You lose. You'd probably have to
 combine all the cities into a single string somehow, and then when

time came to write the output, you'd have to break the string into a
 list, sort the list, and turn it back
into a string. This is messy
 and error-prone. And it's frustrating, because Perl already has
 perfectly
good lists that would solve the problem if only you could
 use them.

The Solution
By the time Perl 5 rolled around, we were already stuck with this
 design: Hash values must be
scalars. The solution to this is
 references.

A reference is a scalar value that refers to an entire array or an
 entire hash (or to just about anything
else). Names are one kind of
 reference that you're already familiar with. Think of the President
 of the
United States: a messy, inconvenient bag of blood and bones.
 But to talk about him, or to represent
him in a computer program, all
 you need is the easy, convenient scalar string "George Bush".

References in Perl are like names for arrays and hashes. They're
 Perl's private, internal names, so

Perl version 5.10.0 documentation - perlreftut

Page 2http://perldoc.perl.org

you can be sure they're
 unambiguous. Unlike "George Bush", a reference only refers to one
 thing,
and you always know what it refers to. If you have a reference
 to an array, you can recover the entire
array from it. If you have a
 reference to a hash, you can recover the entire hash. But the
 reference is
still an easy, compact scalar value.

You can't have a hash whose values are arrays; hash values can only be
 scalars. We're stuck with
that. But a single reference can refer to
 an entire array, and references are scalars, so you can have a
hash of
 references to arrays, and it'll act a lot like a hash of arrays, and
 it'll be just as useful as a hash
of arrays.

We'll come back to this city-country problem later, after we've seen
 some syntax for managing
references.

Syntax
There are just two ways to make a reference, and just two ways to use
 it once you have it.

Making References
Make Rule 1

If you put a \ in front of a variable, you get a
 reference to that variable.

 $aref = \@array; # $aref now holds a reference to @array
 $href = \%hash; # $href now holds a reference to %hash
 $sref = \$scalar; # $sref now holds a reference to $scalar

Once the reference is stored in a variable like $aref or $href, you
 can copy it or store it just the same
as any other scalar value:

 $xy = $aref; # $xy now holds a reference to @array
 $p[3] = $href; # $p[3] now holds a reference to %hash
 $z = $p[3]; # $z now holds a reference to %hash

These examples show how to make references to variables with names.
 Sometimes you want to
make an array or a hash that doesn't have a
 name. This is analogous to the way you like to be able to
use the
 string "\n" or the number 80 without having to store it in a named
 variable first.

Make Rule 2

[ITEMS] makes a new, anonymous array, and returns a reference to
 that array. { ITEMS }
makes a new, anonymous hash, and returns a
 reference to that hash.

 $aref = [1, "foo", undef, 13];
 # $aref now holds a reference to an array

 $href = { APR => 4, AUG => 8 };
 # $href now holds a reference to a hash

The references you get from rule 2 are the same kind of
 references that you get from rule 1:

	 # This:
	 $aref = [1, 2, 3];

	 # Does the same as this:
	 @array = (1, 2, 3);
	 $aref = \@array;

The first line is an abbreviation for the following two lines, except
 that it doesn't create the superfluous

