
Perl version 5.10.0 documentation - perlref

Page 1http://perldoc.perl.org

NAME
perlref - Perl references and nested data structures

NOTE
This is complete documentation about all aspects of references.
 For a shorter, tutorial introduction to
just the essential features,
 see perlreftut.

DESCRIPTION
Before release 5 of Perl it was difficult to represent complex data
 structures, because all references
had to be symbolic--and even then
 it was difficult to refer to a variable instead of a symbol table entry.
Perl now not only makes it easier to use symbolic references to variables,
 but also lets you have
"hard" references to any piece of data or code.
 Any scalar may hold a hard reference. Because arrays
and hashes contain
 scalars, you can now easily build arrays of arrays, arrays of hashes,
 hashes of
arrays, arrays of hashes of functions, and so on.

Hard references are smart--they keep track of reference counts for you,
 automatically freeing the
thing referred to when its reference count goes
 to zero. (Reference counts for values in self-referential
or
 cyclic data structures may not go to zero without a little help; see "Two-Phased Garbage
Collection" in perlobj for a detailed explanation.)
 If that thing happens to be an object, the object is
destructed. See perlobj for more about objects. (In a sense, everything in Perl is an
 object, but we
usually reserve the word for references to objects that
 have been officially "blessed" into a class
package.)

Symbolic references are names of variables or other objects, just as a
 symbolic link in a Unix
filesystem contains merely the name of a file.
 The *glob notation is something of a symbolic
reference. (Symbolic
 references are sometimes called "soft references", but please don't call
 them
that; references are confusing enough without useless synonyms.)

In contrast, hard references are more like hard links in a Unix file
 system: They are used to access an
underlying object without concern for
 what its (other) name is. When the word "reference" is used
without an
 adjective, as in the following paragraph, it is usually talking about a
 hard reference.

References are easy to use in Perl. There is just one overriding
 principle: Perl does no implicit
referencing or dereferencing. When a
 scalar is holding a reference, it always behaves as a simple
scalar. It
 doesn't magically start being an array or hash or subroutine; you have to
 tell it explicitly to do
so, by dereferencing it.

Making References
References can be created in several ways.

1. By using the backslash operator on a variable, subroutine, or value.
 (This works much like the
& (address-of) operator in C.) This typically creates another reference to a variable, because

there's already a reference to the variable in the symbol table. But
 the symbol table reference
might go away, and you'll still have the
 reference that the backslash returned. Here are some
examples:

 $scalarref = \$foo;
 $arrayref = \@ARGV;
 $hashref = \%ENV;
 $coderef = \&handler;
 $globref = *foo;

It isn't possible to create a true reference to an IO handle (filehandle
 or dirhandle) using the
backslash operator. The most you can get is a
 reference to a typeglob, which is actually a
complete symbol table entry.
 But see the explanation of the *foo{THING} syntax below.
However,
 you can still use type globs and globrefs as though they were IO handles.

2. A reference to an anonymous array can be created using square
 brackets:

