
Perl version 5.10.0 documentation - perlreapi

Page 1http://perldoc.perl.org

NAME
perlreapi - perl regular expression plugin interface

DESCRIPTION
As of Perl 5.9.5 there is a new interface for plugging and using other
 regular expression engines than
the default one.

Each engine is supposed to provide access to a constant structure of the
 following format:

 typedef struct regexp_engine {
 REGEXP* (*comp) (pTHX_ const SV * const pattern, const U32 flags);
 I32 (*exec) (pTHX_ REGEXP * const rx, char* stringarg, char*
strend,
 char* strbeg, I32 minend, SV* screamer,
 void* data, U32 flags);
 char* (*intuit) (pTHX_ REGEXP * const rx, SV *sv, char *strpos,
 char *strend, U32 flags,
 struct re_scream_pos_data_s *data);
 SV* (*checkstr) (pTHX_ REGEXP * const rx);
 void (*free) (pTHX_ REGEXP * const rx);
 void (*numbered_buff_FETCH) (pTHX_ REGEXP * const rx, const I32
paren,
 SV * const sv);
 void (*numbered_buff_STORE) (pTHX_ REGEXP * const rx, const I32
paren,
 SV const * const value);
 I32 (*numbered_buff_LENGTH) (pTHX_ REGEXP * const rx, const SV
* const sv,
 const I32 paren);
 SV* (*named_buff) (pTHX_ REGEXP * const rx, SV * const key,
 SV * const value, U32 flags);
 SV* (*named_buff_iter) (pTHX_ REGEXP * const rx, const SV *
const lastkey,
 const U32 flags);
 SV* (*qr_package)(pTHX_ REGEXP * const rx);
 #ifdef USE_ITHREADS
 void* (*dupe) (pTHX_ REGEXP * const rx, CLONE_PARAMS *param);
 #endif

When a regexp is compiled, its engine field is then set to point at
 the appropriate structure, so that
when it needs to be used Perl can find
 the right routines to do so.

In order to install a new regexp handler, $^H{regcomp} is set
 to an integer which (when casted
appropriately) resolves to one of these
 structures. When compiling, the comp method is executed,
and the
 resulting regexp structure's engine field is expected to point back at
 the same structure.

The pTHX_ symbol in the definition is a macro used by perl under threading
 to provide an extra
argument to the routine holding a pointer back to
 the interpreter that is executing the regexp. So
under threading all
 routines get an extra argument.

Callbacks
comp

 REGEXP* comp(pTHX_ const SV * const pattern, const U32 flags);

Compile the pattern stored in pattern using the given flags and
 return a pointer to a prepared
REGEXP structure that can perform
 the match. See The REGEXP structure below for an explanation

Perl version 5.10.0 documentation - perlreapi

Page 2http://perldoc.perl.org

of
 the individual fields in the REGEXP struct.

The pattern parameter is the scalar that was used as the
 pattern. previous versions of perl would
pass two char* indicating
 the start and end of the stringified pattern, the following snippet can
 be
used to get the old parameters:

 STRLEN plen;
 char* exp = SvPV(pattern, plen);
 char* xend = exp + plen;

Since any scalar can be passed as a pattern it's possible to implement
 an engine that does something
with an array ("ook" =~ [qw/ eek
 hlagh /]) or with the non-stringified form of a compiled
regular
 expression ("ook" =~ qr/eek/). perl's own engine will always
 stringify everything using the
snippet above but that doesn't mean
 other engines have to.

The flags parameter is a bitfield which indicates which of the msixp flags the regex was compiled
with. It also contains
 additional info such as whether use locale is in effect.

The eogc flags are stripped out before being passed to the comp
 routine. The regex engine does not
need to know whether any of these
 are set as those flags should only affect what perl does with the

pattern and its match variables, not how it gets compiled and
 executed.

By the time the comp callback is called, some of these flags have
 already had effect (noted below
where applicable). However most of
 their effect occurs after the comp callback has run in routines that
read the rx->extflags field which it populates.

In general the flags should be preserved in rx->extflags after
 compilation, although the regex
engine might want to add or delete
 some of them to invoke or disable some special behavior in perl.
The
 flags along with any special behavior they cause are documented below:

The pattern modifiers:

/m - RXf_PMf_MULTILINE

If this is in rx->extflags it will be passed to Perl_fbm_instr by pp_split which will
treat the subject string
 as a multi-line string.

/s - RXf_PMf_SINGLELINE

/i - RXf_PMf_FOLD

/x - RXf_PMf_EXTENDED

If present on a regex # comments will be handled differently by the
 tokenizer in some cases.

TODO: Document those cases.

/p - RXf_PMf_KEEPCOPY

Additional flags:

RXf_PMf_LOCALE

Set if use locale is in effect. If present in rx->extflags split will use the locale
dependent definition of whitespace under
 when RXf_SKIPWHITE or RXf_WHITE are in effect.
Under ASCII whitespace
 is defined as per isSPACE, and by the internal
 macros
is_utf8_space under UTF-8 and isSPACE_LC under use
 locale.

RXf_UTF8

Set if the pattern is SvUTF8(), set by Perl_pmruntime.

A regex engine may want to set or disable this flag during
 compilation. The perl engine for
instance may upgrade non-UTF-8
 strings to UTF-8 if the pattern includes constructs such as
\x{...}
 that can only match Unicode values.

