
Perl version 5.10.0 documentation - perlre

Page 1http://perldoc.perl.org

NAME
perlre - Perl regular expressions

DESCRIPTION
This page describes the syntax of regular expressions in Perl.

If you haven't used regular expressions before, a quick-start
introduction is available in perlrequick,
and a longer tutorial
introduction is available in perlretut.

For reference on how regular expressions are used in matching
operations, plus various examples of
the same, see discussions of m// , s/// , qr// and ?? in "Regexp Quote-Like Operators" in perlop.

Modifiers
Matching operations can have various modifiers. Modifiers
that relate to the interpretation of the
regular expression inside
are listed below. Modifiers that alter the way a regular expression
is used by
Perl are detailed in "Regexp Quote-Like Operators" in perlop and "Gory details of parsing quoted
constructs" in perlop.

m

Treat string as multiple lines. That is, change "^" and "$" from matching
the start or end of the
string to matching the start or end of any
line anywhere within the string.

s

Treat string as single line. That is, change "." to match any character
whatsoever, even a
newline, which normally it would not match.

Used together, as /ms, they let the "." match any character whatsoever,
while still allowing "^"
and "$" to match, respectively, just after
and just before newlines within the string.

i

Do case-insensitive pattern matching.

If use locale is in effect, the case map is taken from the current
locale. See perllocale.

x

Extend your pattern's legibility by permitting whitespace and comments.

p

Preserve the string matched such that ${^PREMATCH}, {$^MATCH}, and
${^POSTMATCH}
are available for use after matching.

g and c

Global matching, and keep the Current position after failed matching.
Unlike i, m, s and x,
these two flags affect the way the regex is used
rather than the regex itself. See "Using
regular expressions in Perl" in perlretut for further explanation
of the g and c modifiers.

These are usually written as "the /x modifier", even though the delimiter
in question might not really
be a slash. Any of these
modifiers may also be embedded within the regular expression itself using

the (?...) construct. See below.

The /x modifier itself needs a little more explanation. It tells
the regular expression parser to ignore
whitespace that is neither
backslashed nor within a character class. You can use this to break up
your
regular expression into (slightly) more readable parts. The #
character is also treated as a
metacharacter introducing a comment,
just as in ordinary Perl code. This also means that if you want
real
whitespace or # characters in the pattern (outside a character
class, where they are unaffected
by /x), then you'll either have to
escape them (using backslashes or \Q...\E) or encode them using
octal
or hex escapes. Taken together, these features go a long way towards
making Perl's regular
expressions more readable. Note that you have to
be careful not to include the pattern delimiter in the

