
Perl version 5.10.0 documentation - perlport

Page 1http://perldoc.perl.org

NAME
perlport - Writing portable Perl

DESCRIPTION
Perl runs on numerous operating systems. While most of them share
 much in common, they also 
have their own unique features.

This document is meant to help you to find out what constitutes portable
 Perl code. That way once 
you make a decision to write portably,
 you know where the lines are drawn, and you can stay within 
them.

There is a tradeoff between taking full advantage of one particular
 type of computer and taking 
advantage of a full range of them.
 Naturally, as you broaden your range and become more diverse, 
the
 common factors drop, and you are left with an increasingly smaller
 area of common ground in 
which you can operate to accomplish a
 particular task. Thus, when you begin attacking a problem, it 
is
 important to consider under which part of the tradeoff curve you
 want to operate. Specifically, you 
must decide whether it is
 important that the task that you are coding have the full generality
 of being 
portable, or whether to just get the job done right now.
 This is the hardest choice to be made. The rest
is easy, because
 Perl provides many choices, whichever way you want to approach your
 problem.

Looking at it another way, writing portable code is usually about
 willfully limiting your available 
choices. Naturally, it takes
 discipline and sacrifice to do that. The product of portability
 and 
convenience may be a constant. You have been warned.

Be aware of two important points:

Not all Perl programs have to be portable

There is no reason you should not use Perl as a language to glue Unix
 tools together, or to 
prototype a Macintosh application, or to manage the
 Windows registry. If it makes no sense to 
aim for portability for one
 reason or another in a given program, then don't bother.

Nearly all of Perl already is portable

Don't be fooled into thinking that it is hard to create portable Perl
 code. It isn't. Perl tries its 
level-best to bridge the gaps between
 what's available on different platforms, and all the 
means available to
 use those features. Thus almost all Perl code runs on any machine
 without
modification. But there are some significant issues in
 writing portable code, and this document
is entirely about those issues.

Here's the general rule: When you approach a task commonly done
 using a whole range of platforms,
think about writing portable
 code. That way, you don't sacrifice much by way of the implementation

choices you can avail yourself of, and at the same time you can give
 your users lots of platform 
choices. On the other hand, when you have to
 take advantage of some unique feature of a particular 
platform, as is
 often the case with systems programming (whether for Unix, Windows, Mac OS, VMS, 
etc.), consider writing platform-specific code.

When the code will run on only two or three operating systems, you
 may need to consider only the 
differences of those particular systems.
 The important thing is to decide where the code will run and 
to be
 deliberate in your decision.

The material below is separated into three main sections: main issues of
 portability (ISSUES), 
platform-specific issues (PLATFORMS), and
 built-in perl functions that behave differently on various 
ports
 (FUNCTION IMPLEMENTATIONS).

This information should not be considered complete; it includes possibly
 transient information about 
idiosyncrasies of some of the ports, almost
 all of which are in a state of constant evolution. Thus, this 
material
 should be considered a perpetual work in progress
 (<IMG SRC="yellow_sign.gif" 
ALT="Under Construction">).




