
Perl version 5.10.0 documentation - perlothrtut

Page 1http://perldoc.perl.org

NAME
perlothrtut - old tutorial on threads in Perl

DESCRIPTION
WARNING:
This tutorial describes the old-style thread model that was introduced in
release 5.005. 
This model is deprecated, and has been removed
for version 5.10. The interfaces described here 
were considered
experimental, and are likely to be buggy.

For information about the new interpreter threads ("ithreads") model, see
the perlthrtut tutorial, and 
the threads and threads::shared
modules.

You are strongly encouraged to migrate any existing threads code to the
new model as soon as 
possible.

What Is A Thread Anyway?
A thread is a flow of control through a program with a single
execution point.

Sounds an awful lot like a process, doesn't it? Well, it should.
Threads are one of the pieces of a 
process. Every process has at least
one thread and, up until now, every process running Perl had 
only one
thread. With 5.005, though, you can create extra threads. We're going
to show you how, 
when, and why.

Threaded Program Models
There are three basic ways that you can structure a threaded
program. Which model you choose 
depends on what you need your program
to do. For many non-trivial threaded programs you'll need to
choose
different models for different pieces of your program.

Boss/Worker
The boss/worker model usually has one `boss' thread and one or more
`worker' threads. The boss 
thread gathers or generates tasks that need
to be done, then parcels those tasks out to the 
appropriate worker
thread.

This model is common in GUI and server programs, where a main thread
waits for some event and 
then passes that event to the appropriate
worker threads for processing. Once the event has been 
passed on, the
boss thread goes back to waiting for another event.

The boss thread does relatively little work. While tasks aren't
necessarily performed faster than with 
any other method, it tends to
have the best user-response times.

Work Crew
In the work crew model, several threads are created that do
essentially the same thing to different 
pieces of data. It closely
mirrors classical parallel processing and vector processors, where a
large 
array of processors do the exact same thing to many pieces of
data.

This model is particularly useful if the system running the program
will distribute multiple threads 
across different processors. It can
also be useful in ray tracing or rendering engines, where the

individual threads can pass on interim results to give the user visual
feedback.

Pipeline
The pipeline model divides up a task into a series of steps, and
passes the results of one step on to 
the thread processing the
next. Each thread does one thing to each piece of data and passes the

results to the next thread in line.

This model makes the most sense if you have multiple processors so two
or more threads will be 
executing in parallel, though it can often
make sense in other contexts as well. It tends to keep the 
individual
tasks small and simple, as well as allowing some parts of the pipeline
to block (on I/O or 
system calls, for example) while other parts keep
going. If you're running different parts of the pipeline
on different
processors you may also take advantage of the caches on each
processor.


