
Perl version 5.10.0 documentation - perlopentut

Page 1http://perldoc.perl.org

NAME
perlopentut - tutorial on opening things in Perl

DESCRIPTION
Perl has two simple, built-in ways to open files: the shell way for
 convenience, and the C way for
precision. The shell way also has 2- and
 3-argument forms, which have different semantics for
handling the filename.
 The choice is yours.

Open à la shell
Perl's open function was designed to mimic the way command-line
 redirection in the shell works.
Here are some basic examples
 from the shell:

 $ myprogram file1 file2 file3
 $ myprogram < inputfile
 $ myprogram > outputfile
 $ myprogram >> outputfile
 $ myprogram | otherprogram
 $ otherprogram | myprogram

And here are some more advanced examples:

 $ otherprogram | myprogram f1 - f2
 $ otherprogram 2>&1 | myprogram -
 $ myprogram <&3
 $ myprogram >&4

Programmers accustomed to constructs like those above can take comfort
 in learning that Perl
directly supports these familiar constructs using
 virtually the same syntax as the shell.

Simple Opens
The open function takes two arguments: the first is a filehandle,
 and the second is a single string
comprising both what to open and how
 to open it. open returns true when it works, and when it fails,

returns a false value and sets the special variable $! to reflect
 the system error. If the filehandle was
previously opened, it will
 be implicitly closed first.

For example:

 open(INFO, "datafile") || die("can't open datafile: $!");
 open(INFO, "< datafile") || die("can't open datafile: $!");
 open(RESULTS,"> runstats") || die("can't open runstats: $!");
 open(LOG, ">> logfile ") || die("can't open logfile: $!");

If you prefer the low-punctuation version, you could write that this way:

 open INFO, "< datafile" or die "can't open datafile: $!";
 open RESULTS,"> runstats" or die "can't open runstats: $!";
 open LOG, ">> logfile " or die "can't open logfile: $!";

A few things to notice. First, the leading less-than is optional.
 If omitted, Perl assumes that you want
to open the file for reading.

Note also that the first example uses the || logical operator, and the
 second uses or, which has
lower precedence. Using || in the latter
 examples would effectively mean

 open INFO, ("< datafile" || die "can't open datafile: $!");

Perl version 5.10.0 documentation - perlopentut

Page 2http://perldoc.perl.org

which is definitely not what you want.

The other important thing to notice is that, just as in the shell,
 any whitespace before or after the
filename is ignored. This is good,
 because you wouldn't want these to do different things:

 open INFO, "<datafile"
 open INFO, "< datafile"
 open INFO, "< datafile"

Ignoring surrounding whitespace also helps for when you read a filename
 in from a different file, and
forget to trim it before opening:

 $filename = <INFO>; # oops, \n still there
 open(EXTRA, "< $filename") || die "can't open $filename: $!";

This is not a bug, but a feature. Because open mimics the shell in
 its style of using redirection arrows
to specify how to open the file, it
 also does so with respect to extra whitespace around the filename
itself
 as well. For accessing files with naughty names, see Dispelling the Dweomer.

There is also a 3-argument version of open, which lets you put the
 special redirection characters into
their own argument:

 open(INFO, ">", $datafile) || die "Can't create $datafile: $!";

In this case, the filename to open is the actual string in $datafile,
 so you don't have to worry about
$datafile containing characters
 that might influence the open mode, or whitespace at the
beginning of
 the filename that would be absorbed in the 2-argument version. Also,
 any reduction of
unnecessary string interpolation is a good thing.

Indirect Filehandles
open's first argument can be a reference to a filehandle. As of
 perl 5.6.0, if the argument is
uninitialized, Perl will automatically
 create a filehandle and put a reference to it in the first argument,

like so:

 open(my $in, $infile) or die "Couldn't read $infile: $!";
 while (<$in>) {
	 # do something with $_
 }
 close $in;

Indirect filehandles make namespace management easier. Since filehandles
 are global to the current
package, two subroutines trying to open INFILE will clash. With two functions opening indirect
filehandles
 like my $infile, there's no clash and no need to worry about future
 conflicts.

Another convenient behavior is that an indirect filehandle automatically
 closes when it goes out of
scope or when you undefine it:

 sub firstline {
	 open(my $in, shift) && return scalar <$in>;
	 # no close() required
 }

Pipe Opens
In C, when you want to open a file using the standard I/O library,
 you use the fopen function, but
when opening a pipe, you use the popen function. But in the shell, you just use a different redirection

character. That's also the case for Perl. The open call remains the same--just its argument differs.

