
Perl version 5.10.0 documentation - perlop

Page 1http://perldoc.perl.org

NAME
perlop - Perl operators and precedence

DESCRIPTION
Operator Precedence and Associativity

Operator precedence and associativity work in Perl more or less like
 they do in mathematics.

Operator precedence means some operators are evaluated before
 others. For example, in 2 + 4 *
5, the multiplication has higher
 precedence so 4 * 5 is evaluated first yielding 2 + 20 ==
 22 and
not 6 * 5 == 30.

Operator associativity defines what happens if a sequence of the
 same operators is used one after
another: whether the evaluator will
 evaluate the left operations first or the right. For example, in 8
 -
4 - 2, subtraction is left associative so Perl evaluates the
 expression left to right. 8 - 4 is
evaluated first making the
 expression 4 - 2 == 2 and not 8 - 2 == 6.

Perl operators have the following associativity and precedence,
 listed from highest precedence to
lowest. Operators borrowed from
 C keep the same precedence relationship with each other, even
where
 C's precedence is slightly screwy. (This makes learning Perl easier
 for C folks.) With very few
exceptions, these all operate on scalar
 values only, not array values.

 left	 terms and list operators (leftward)
 left	 ->
 nonassoc	 ++ --
 right	 **
 right	 ! ~ \ and unary + and -
 left	 =~ !~
 left	 * / % x
 left	 + - .
 left	 << >>
 nonassoc	 named unary operators
 nonassoc	 < > <= >= lt gt le ge
 nonassoc	 == != <=> eq ne cmp ~~
 left	 &
 left	 | ^
 left	 &&
 left	 || //
 nonassoc	
 right	 ?:
 right	 = += -= *= etc.
 left	 , =>
 nonassoc	 list operators (rightward)
 right	 not
 left	 and
 left	 or xor

In the following sections, these operators are covered in precedence order.

Many operators can be overloaded for objects. See overload.

Terms and List Operators (Leftward)
A TERM has the highest precedence in Perl. They include variables,
 quote and quote-like operators,
any expression in parentheses,
 and any function whose arguments are parenthesized. Actually, there

aren't really functions in this sense, just list operators and unary
 operators behaving as functions
because you put parentheses around
 the arguments. These are all documented in perlfunc.

If any list operator (print(), etc.) or any unary operator (chdir(), etc.)
 is followed by a left parenthesis as

Perl version 5.10.0 documentation - perlop

Page 2http://perldoc.perl.org

the next token, the operator and
 arguments within parentheses are taken to be of highest
precedence,
 just like a normal function call.

In the absence of parentheses, the precedence of list operators such as print, sort, or chmod is
either very high or very low depending on
 whether you are looking at the left side or the right side of
the operator.
 For example, in

 @ary = (1, 3, sort 4, 2);
 print @ary;		 # prints 1324

the commas on the right of the sort are evaluated before the sort,
 but the commas on the left are
evaluated after. In other words,
 list operators tend to gobble up all arguments that follow, and
 then act
like a simple TERM with regard to the preceding expression.
 Be careful with parentheses:

 # These evaluate exit before doing the print:
 print($foo, exit);	 # Obviously not what you want.
 print $foo, exit;	 # Nor is this.

 # These do the print before evaluating exit:
 (print $foo), exit;	 # This is what you want.
 print($foo), exit;	 # Or this.
 print ($foo), exit;	 # Or even this.

Also note that

 print ($foo & 255) + 1, "\n";

probably doesn't do what you expect at first glance. The parentheses
 enclose the argument list for
print which is evaluated (printing
 the result of $foo & 255). Then one is added to the return value

of print (usually 1). The result is something like this:

 1 + 1, "\n"; # Obviously not what you meant.

To do what you meant properly, you must write:

 print(($foo & 255) + 1, "\n");

See Named Unary Operators for more discussion of this.

Also parsed as terms are the do {} and eval {} constructs, as
 well as subroutine and method
calls, and the anonymous
 constructors [] and {}.

See also Quote and Quote-like Operators toward the end of this section,
 as well as I/O Operators.

The Arrow Operator
"->" is an infix dereference operator, just as it is in C
 and C++. If the right side is either a [...],
{...}, or a (...) subscript, then the left side must be either a hard or
 symbolic reference to an
array, a hash, or a subroutine respectively.
 (Or technically speaking, a location capable of holding a
hard
 reference, if it's an array or hash reference being used for
 assignment.) See perlreftut and perlref
.

Otherwise, the right side is a method name or a simple scalar
 variable containing either the method
name or a subroutine reference,
 and the left side must be either an object (a blessed reference)
 or a
class name (that is, a package name). See perlobj.

