
Perl version 5.10.0 documentation - perlnewmod

Page 1http://perldoc.perl.org

NAME
perlnewmod - preparing a new module for distribution

DESCRIPTION
This document gives you some suggestions about how to go about writing
Perl modules, preparing
them for distribution, and making them available
via CPAN.

One of the things that makes Perl really powerful is the fact that Perl
hackers tend to want to share
the solutions to problems they've faced,
so you and I don't have to battle with the same problem
again.

The main way they do this is by abstracting the solution into a Perl
module. If you don't know what
one of these is, the rest of this
document isn't going to be much use to you. You're also missing out
on
an awful lot of useful code; consider having a look at perlmod, perlmodlib and perlmodinstall
before coming back here.

When you've found that there isn't a module available for what you're
trying to do, and you've had to
write the code yourself, consider
packaging up the solution into a module and uploading it to CPAN so
that
others can benefit.

Warning
We're going to primarily concentrate on Perl-only modules here, rather
than XS modules. XS modules
serve a rather different purpose, and
you should consider different things before distributing them -
the
popularity of the library you are gluing, the portability to other
operating systems, and so on.
However, the notes on preparing the Perl
side of the module and packaging and distributing it will
apply equally
well to an XS module as a pure-Perl one.

What should I make into a module?
You should make a module out of any code that you think is going to be
useful to others. Anything
that's likely to fill a hole in the communal
library and which someone else can slot directly into their
program. Any
part of your code which you can isolate and extract and plug into
something else is a
likely candidate.

Let's take an example. Suppose you're reading in data from a local
format into a hash-of-hashes in
Perl, turning that into a tree, walking
the tree and then piping each node to an Acme Transmogrifier
Server.

Now, quite a few people have the Acme Transmogrifier, and you've had to
write something to talk the
protocol from scratch - you'd almost
certainly want to make that into a module. The level at which you
pitch
it is up to you: you might want protocol-level modules analogous to Net::SMTP which then talk to
higher level modules analogous
to Mail::Send. The choice is yours, but you do want to get
a module
out for that server protocol.

Nobody else on the planet is going to talk your local data format, so we
can ignore that. But what
about the thing in the middle? Building tree
structures from Perl variables and then traversing them is
a nice,
general problem, and if nobody's already written a module that does
that, you might want to
modularise that code too.

So hopefully you've now got a few ideas about what's good to modularise.
Let's now see how it's
done.

Step-by-step: Preparing the ground
Before we even start scraping out the code, there are a few things we'll
want to do in advance.

Look around

Dig into a bunch of modules to see how they're written. I'd suggest
starting with Text::Tabs,
since it's in the standard
library and is nice and simple, and then looking at something a little

more complex like File::Copy. For object oriented
code, WWW::Mechanize or the Email::*

