
Perl version 5.10.0 documentation - perlmodstyle

Page 1http://perldoc.perl.org

NAME
perlmodstyle - Perl module style guide

INTRODUCTION
This document attempts to describe the Perl Community's "best practice"
 for writing Perl modules. It 
extends the recommendations found in perlstyle , which should be considered required reading
 before
reading this document.

While this document is intended to be useful to all module authors, it is
 particularly aimed at authors 
who wish to publish their modules on CPAN.

The focus is on elements of style which are visible to the users of a module, rather than those parts 
which are only seen by the module's developers. However, many of the guidelines presented in this 
document
 can be extrapolated and applied successfully to a module's internals.

This document differs from perlnewmod in that it is a style guide
 rather than a tutorial on creating 
CPAN modules. It provides a
 checklist against which modules can be compared to determine whether
they conform to best practice, without necessarily describing in detail
 how to achieve this.

All the advice contained in this document has been gleaned from
 extensive conversations with 
experienced CPAN authors and users. Every
 piece of advice given here is the result of previous 
mistakes. This
 information is here to help you avoid the same mistakes and the extra
 work that would 
inevitably be required to fix them.

The first section of this document provides an itemized checklist; subsequent sections provide a more
detailed discussion of the items on the list. The final section, "Common Pitfalls", describes some of 
the most popular mistakes made by CPAN authors.

QUICK CHECKLIST
For more detail on each item in this checklist, see below.

Before you start
Don't re-invent the wheel

Patch, extend or subclass an existing module where possible

Do one thing and do it well

Choose an appropriate name

The API
API should be understandable by the average programmer

Simple methods for simple tasks

Separate functionality from output

Consistent naming of subroutines or methods

Use named parameters (a hash or hashref) when there are more than two
 parameters

Stability
Ensure your module works under use strict and -w

Stable modules should maintain backwards compatibility

Documentation
Write documentation in POD

Document purpose, scope and target applications



Perl version 5.10.0 documentation - perlmodstyle

Page 2http://perldoc.perl.org

Document each publically accessible method or subroutine, including params and return 
values

Give examples of use in your documentation

Provide a README file and perhaps also release notes, changelog, etc

Provide links to further information (URL, email)

Release considerations
Specify pre-requisites in Makefile.PL or Build.PL

Specify Perl version requirements with use

Include tests with your module

Choose a sensible and consistent version numbering scheme (X.YY is the common Perl 
module numbering scheme)

Increment the version number for every change, no matter how small

Package the module using "make dist"

Choose an appropriate license (GPL/Artistic is a good default)

BEFORE YOU START WRITING A MODULE
Try not to launch headlong into developing your module without spending
 some time thinking first. A 
little forethought may save you a vast
 amount of effort later on.

Has it been done before?
You may not even need to write the module. Check whether it's already been done in Perl, and avoid 
re-inventing the wheel unless you have a good reason.

Good places to look for pre-existing modules include
 http://search.cpan.org/ and asking on 
modules@perl.org

If an existing module almost does what you want, consider writing a
 patch, writing a subclass, or 
otherwise extending the existing module
 rather than rewriting it.

Do one thing and do it well
At the risk of stating the obvious, modules are intended to be modular.
 A Perl developer should be 
able to use modules to put together the
 building blocks of their application. However, it's important 
that the
 blocks are the right shape, and that the developer shouldn't have to use
 a big block when all 
they need is a small one.

Your module should have a clearly defined scope which is no longer than
 a single sentence. Can your
module be broken down into a family of
 related modules?

Bad example:

"FooBar.pm provides an implementation of the FOO protocol and the
 related BAR standard."

Good example:

"Foo.pm provides an implementation of the FOO protocol. Bar.pm
 implements the related BAR 
protocol."

This means that if a developer only needs a module for the BAR standard,
 they should not be forced 
to install libraries for FOO as well.


