
Perl version 5.10.0 documentation - perlmod

Page 1http://perldoc.perl.org

NAME
perlmod - Perl modules (packages and symbol tables)

DESCRIPTION
Packages

Perl provides a mechanism for alternative namespaces to protect
packages from stomping on each
other's variables. In fact, there's
really no such thing as a global variable in Perl. The package

statement declares the compilation unit as being in the given
namespace. The scope of the package
declaration is from the
declaration itself through the end of the enclosing block, eval ,
or file,
whichever comes first (the same scope as the my() and
local() operators). Unqualified dynamic
identifiers will be in
this namespace, except for those few identifiers that if unqualified,
default to the
main package instead of the current one as described
below. A package statement affects only
dynamic variables--including
those you've used local() on--but not lexical variables created
with my().
Typically it would be the first declaration in a file
included by the do, require , or use operators. You
can
switch into a package in more than one place; it merely influences
which symbol table is used by
the compiler for the rest of that
block. You can refer to variables and filehandles in other packages
by
prefixing the identifier with the package name and a double
colon: $Package::Variable . If the
package name is null, the main package is assumed. That is, $::sail is equivalent to
$main::sail .

The old package delimiter was a single quote, but double colon is now the
preferred delimiter, in part
because it's more readable to humans, and
in part because it's more readable to emacs macros. It
also makes C++
programmers feel like they know what's going on--as opposed to using the
single
quote as separator, which was there to make Ada programmers feel
like they knew what was going
on. Because the old-fashioned syntax is still
supported for backwards compatibility, if you try to use a
string like "This is $owner's house" , you'll be accessing $owner::s ; that is,
the $s variable in
package owner , which is probably not what you meant.
Use braces to disambiguate, as in "This is
 ${owner}'s house" .

Packages may themselves contain package separators, as in $OUTER::INNER::var . This implies
nothing about the order of
name lookups, however. There are no relative packages: all symbols
are
either local to the current package, or must be fully qualified
from the outer package name down. For
instance, there is nowhere
within package OUTER that $INNER::var refers to
$OUTER::INNER::var . INNER refers to a totally
separate global package.

Only identifiers starting with letters (or underscore) are stored
in a package's symbol table. All other
symbols are kept in package main , including all punctuation variables, like $_. In addition,
when
unqualified, the identifiers STDIN, STDOUT, STDERR, ARGV,
ARGVOUT, ENV, INC, and SIG are
forced to be in package main ,
even when used for other purposes than their built-in ones. If you
have
a package called m, s, or y, then you can't use the
qualified form of an identifier because it would be
instead interpreted
as a pattern match, a substitution, or a transliteration.

Variables beginning with underscore used to be forced into package
main, but we decided it was
more useful for package writers to be able
to use leading underscore to indicate private variables and
method names.
However, variables and functions named with a single _, such as
$_ and sub _, are
still forced into the package main . See also "Technical Note on the Syntax of Variable Names" in
perlvar.

eval ed strings are compiled in the package in which the eval() was
compiled. (Assignments to
$SIG{} , however, assume the signal
handler specified is in the main package. Qualify the signal
handler
name if you wish to have a signal handler in a package.) For an
example, examine perldb.pl
in the Perl library. It initially switches
to the DB package so that the debugger doesn't interfere with
variables
in the program you are trying to debug. At various points, however, it
temporarily switches
back to the main package to evaluate various
expressions in the context of the main package (or
wherever you came
from). See perldebug.

The special symbol __PACKAGE__ contains the current package, but cannot
(easily) be used to

