
Perl version 5.10.0 documentation - perllexwarn

Page 1http://perldoc.perl.org

NAME
perllexwarn - Perl Lexical Warnings

DESCRIPTION
The use warnings pragma enables to control precisely what warnings are
 to be enabled in which
parts of a Perl program. It's a more flexible
 alternative for both the command line flag -w and the
equivalent Perl
 variable, $^W.

This pragma works just like the strict pragma.
 This means that the scope of the warning pragma is
limited to the
 enclosing block. It also means that the pragma setting will not
 leak across files (via use,
require or do). This allows
 authors to independently define the degree of warning checks that will

be applied to their module.

By default, optional warnings are disabled, so any legacy code that
 doesn't attempt to control the
warnings will work unchanged.

All warnings are enabled in a block by either of these:

 use warnings;
 use warnings 'all';

Similarly all warnings are disabled in a block by either of these:

 no warnings;
 no warnings 'all';

For example, consider the code below:

 use warnings;
 my @a;
 {
 no warnings;
	 my $b = @a[0];
 }
 my $c = @a[0];

The code in the enclosing block has warnings enabled, but the inner
 block has them disabled. In this
case that means the assignment to the
 scalar $c will trip the "Scalar value @a[0] better
written as $a[0]"
 warning, but the assignment to the scalar $b will not.

Default Warnings and Optional Warnings
Before the introduction of lexical warnings, Perl had two classes of
 warnings: mandatory and optional.

As its name suggests, if your code tripped a mandatory warning, you
 would get a warning whether
you wanted it or not.
 For example, the code below would always produce an "isn't numeric"

warning about the "2:".

 my $a = "2:" + 3;

With the introduction of lexical warnings, mandatory warnings now become default warnings. The
difference is that although the previously
 mandatory warnings are still enabled by default, they can
then be
 subsequently enabled or disabled with the lexical warning pragma. For
 example, in the code
below, an "isn't numeric" warning will only
 be reported for the $a variable.

 my $a = "2:" + 3;
 no warnings;
 my $b = "2:" + 3;

Perl version 5.10.0 documentation - perllexwarn

Page 2http://perldoc.perl.org

Note that neither the -w flag or the $^W can be used to
 disable/enable default warnings. They are still
mandatory in this case.

What's wrong with -w and $^W
Although very useful, the big problem with using -w on the command
 line to enable warnings is that it
is all or nothing. Take the typical
 scenario when you are writing a Perl program. Parts of the code you

will write yourself, but it's very likely that you will make use of
 pre-written Perl modules. If you use the
-w flag in this case, you
 end up enabling warnings in pieces of code that you haven't written.

Similarly, using $^W to either disable or enable blocks of code is
 fundamentally flawed. For a start,
say you want to disable warnings in
 a block of code. You might expect this to be enough to do the
trick:

 {
 local ($^W) = 0;
	 my $a =+ 2;
	 my $b; chop $b;
 }

When this code is run with the -w flag, a warning will be produced
 for the $a line -- "Reversed +=
operator".

The problem is that Perl has both compile-time and run-time warnings. To
 disable compile-time
warnings you need to rewrite the code like this:

 {
 BEGIN { $^W = 0 }
	 my $a =+ 2;
	 my $b; chop $b;
 }

The other big problem with $^W is the way you can inadvertently
 change the warning setting in
unexpected places in your code. For example,
 when the code below is run (without the -w flag), the
second call
 to doit will trip a "Use of uninitialized value" warning, whereas
 the first will
not.

 sub doit
 {
 my $b; chop $b;
 }

 doit();

 {
 local ($^W) = 1;
 doit()
 }

This is a side-effect of $^W being dynamically scoped.

Lexical warnings get around these limitations by allowing finer control
 over where warnings can or
can't be tripped.

Controlling Warnings from the Command Line
There are three Command Line flags that can be used to control when
 warnings are (or aren't)
produced:

