
Perl version 5.10.0 documentation - perlipc

Page 1http://perldoc.perl.org

NAME
perlipc - Perl interprocess communication (signals, fifos, pipes, safe subprocesses, sockets, and
semaphores)

DESCRIPTION
The basic IPC facilities of Perl are built out of the good old Unix
 signals, named pipes, pipe opens, the
Berkeley socket routines, and SysV
 IPC calls. Each is used in slightly different situations.

Signals
Perl uses a simple signal handling model: the %SIG hash contains names
 or references of
user-installed signal handlers. These handlers will
 be called with an argument which is the name of
the signal that
 triggered it. A signal may be generated intentionally from a
 particular keyboard
sequence like control-C or control-Z, sent to you
 from another process, or triggered automatically by
the kernel when
 special events transpire, like a child process exiting, your process
 running out of
stack space, or hitting file size limit.

For example, to trap an interrupt signal, set up a handler like this:

 sub catch_zap {
	 my $signame = shift;
	 $shucks++;
	 die "Somebody sent me a SIG$signame";
 }
 $SIG{INT} = 'catch_zap'; # could fail in modules
 $SIG{INT} = \&catch_zap; # best strategy

Prior to Perl 5.7.3 it was necessary to do as little as you possibly
 could in your handler; notice how all
we do is set a global variable
 and then raise an exception. That's because on most systems,
 libraries
are not re-entrant; particularly, memory allocation and I/O
 routines are not. That meant that doing
nearly anything in your
 handler could in theory trigger a memory fault and subsequent core
 dump -
see Deferred Signals (Safe Signals) below.

The names of the signals are the ones listed out by kill -l on your
 system, or you can retrieve
them from the Config module. Set up an
 @signame list indexed by number to get the name and a
%signo table
 indexed by name to get the number:

 use Config;
 defined $Config{sig_name} || die "No sigs?";
 foreach $name (split(' ', $Config{sig_name})) {
	 $signo{$name} = $i;
	 $signame[$i] = $name;
	 $i++;
 }

So to check whether signal 17 and SIGALRM were the same, do just this:

 print "signal #17 = $signame[17]\n";
 if ($signo{ALRM}) {
	 print "SIGALRM is $signo{ALRM}\n";
 }

You may also choose to assign the strings 'IGNORE' or 'DEFAULT' as
 the handler, in which case
Perl will try to discard the signal or do the
 default thing.

On most Unix platforms, the CHLD (sometimes also known as CLD) signal
 has special behavior with
respect to a value of 'IGNORE'.
 Setting $SIG{CHLD} to 'IGNORE' on such a platform has the effect
of
 not creating zombie processes when the parent process fails to wait()
 on its child processes (i.e.

Perl version 5.10.0 documentation - perlipc

Page 2http://perldoc.perl.org

child processes are automatically reaped).
 Calling wait() with $SIG{CHLD} set to 'IGNORE'
usually returns -1 on such platforms.

Some signals can be neither trapped nor ignored, such as
 the KILL and STOP (but not the TSTP)
signals. One strategy for
 temporarily ignoring signals is to use a local() statement, which will be

automatically restored once your block is exited. (Remember that local()
 values are "inherited" by
functions called from within that block.)

 sub precious {
	 local $SIG{INT} = 'IGNORE';
	 &more_functions;
 }
 sub more_functions {
	 # interrupts still ignored, for now...
 }

Sending a signal to a negative process ID means that you send the signal
 to the entire Unix
process-group. This code sends a hang-up signal to all
 processes in the current process group (and
sets $SIG{HUP} to IGNORE so
 it doesn't kill itself):

 {
	 local $SIG{HUP} = 'IGNORE';
	 kill HUP => -$$;
	 # snazzy writing of: kill('HUP', -$$)
 }

Another interesting signal to send is signal number zero. This doesn't
 actually affect a child process,
but instead checks whether it's alive
 or has changed its UID.

 unless (kill 0 => $kid_pid) {
	 warn "something wicked happened to $kid_pid";
 }

When directed at a process whose UID is not identical to that
 of the sending process, signal number
zero may fail because
 you lack permission to send the signal, even though the process is alive.
 You
may be able to determine the cause of failure using %!.

 unless (kill 0 => $pid or $!{EPERM}) {
	 warn "$pid looks dead";
 }

You might also want to employ anonymous functions for simple signal
 handlers:

 $SIG{INT} = sub { die "\nOutta here!\n" };

But that will be problematic for the more complicated handlers that need
 to reinstall themselves.
Because Perl's signal mechanism is currently
 based on the signal(3) function from the C library, you
may sometimes be so
 unfortunate as to run on systems where that function is "broken", that
 is, it
behaves in the old unreliable SysV way rather than the newer, more
 reasonable BSD and POSIX
fashion. So you'll see defensive people writing
 signal handlers like this:

 sub REAPER {
	 $waitedpid = wait;
	 # loathe sysV: it makes us not only reinstate
	 # the handler, but place it after the wait
	 $SIG{CHLD} = \&REAPER;
 }

