
Perl version 5.10.0 documentation - perliol

Page 1http://perldoc.perl.org

NAME
perliol - C API for Perl's implementation of IO in Layers.

SYNOPSIS
 /* Defining a layer ... */
 #include <perliol.h>

DESCRIPTION
This document describes the behavior and implementation of the PerlIO
 abstraction described in
perlapio when USE_PERLIO is defined (and USE_SFIO is not).

History and Background
The PerlIO abstraction was introduced in perl5.003_02 but languished as
 just an abstraction until
perl5.7.0. However during that time a number
 of perl extensions switched to using it, so the API is
mostly fixed to
 maintain (source) compatibility.

The aim of the implementation is to provide the PerlIO API in a flexible
 and platform neutral manner. It
is also a trial of an "Object Oriented
 C, with vtables" approach which may be applied to Perl 6.

Basic Structure
PerlIO is a stack of layers.

The low levels of the stack work with the low-level operating system
 calls (file descriptors in C) getting
bytes in and out, the higher
 layers of the stack buffer, filter, and otherwise manipulate the I/O,
 and
return characters (or bytes) to Perl. Terms above and below
 are used to refer to the relative
positioning of the stack layers.

A layer contains a "vtable", the table of I/O operations (at C level
 a table of function pointers), and
status flags. The functions in the
 vtable implement operations like "open", "read", and "write".

When I/O, for example "read", is requested, the request goes from Perl
 first down the stack using
"read" functions of each layer, then at the
 bottom the input is requested from the operating system
services, then
 the result is returned up the stack, finally being interpreted as Perl
 data.

The requests do not necessarily go always all the way down to the
 operating system: that's where
PerlIO buffering comes into play.

When you do an open() and specify extra PerlIO layers to be deployed,
 the layers you specify are
"pushed" on top of the already existing
 default stack. One way to see it is that "operating system is
 on
the left" and "Perl is on the right".

What exact layers are in this default stack depends on a lot of
 things: your operating system, Perl
version, Perl compile time
 configuration, and Perl runtime configuration. See PerlIO, "PERLIO" in
perlrun, and open for more information.

binmode() operates similarly to open(): by default the specified
 layers are pushed on top of the
existing stack.

However, note that even as the specified layers are "pushed on top"
 for open() and binmode(), this
doesn't mean that the effects are
 limited to the "top": PerlIO layers can be very 'active' and inspect

and affect layers also deeper in the stack. As an example there
 is a layer called "raw" which
repeatedly "pops" layers until
 it reaches the first layer that has declared itself capable of
 handling
binary data. The "pushed" layers are processed in left-to-right
 order.

sysopen() operates (unsurprisingly) at a lower level in the stack than
 open(). For example in UNIX or
UNIX-like systems sysopen() operates
 directly at the level of file descriptors: in the terms of PerlIO

layers, it uses only the "unix" layer, which is a rather thin wrapper
 on top of the UNIX file descriptors.

Perl version 5.10.0 documentation - perliol

Page 2http://perldoc.perl.org

Layers vs Disciplines
Initial discussion of the ability to modify IO streams behaviour used
 the term "discipline" for the
entities which were added. This came (I
 believe) from the use of the term in "sfio", which in turn
borrowed it
 from "line disciplines" on Unix terminals. However, this document (and
 the C code) uses
the term "layer".

This is, I hope, a natural term given the implementation, and should
 avoid connotations that are
inherent in earlier uses of "discipline"
 for things which are rather different.

Data Structures
The basic data structure is a PerlIOl:

	 typedef struct _PerlIO PerlIOl;
	 typedef struct _PerlIO_funcs PerlIO_funcs;
	 typedef PerlIOl *PerlIO;

	 struct _PerlIO
	 {
	 PerlIOl *	 next; /* Lower layer */
	 PerlIO_funcs *	 tab; /* Functions for this layer */
	 IV		 flags; /* Various flags for state */
	 };

A PerlIOl * is a pointer to the struct, and the application
 level PerlIO * is a pointer to a PerlIOl
 * - i.e. a pointer
 to a pointer to the struct. This allows the application level PerlIO *
 to remain
constant while the actual PerlIOl * underneath
 changes. (Compare perl's SV * which remains
constant while its sv_any field changes as the scalar's type changes.) An IO stream is
 then in
general represented as a pointer to this linked-list of
 "layers".

It should be noted that because of the double indirection in a PerlIO *,
 a &(perlio->next) "is" a
PerlIO *, and so to some degree
 at least one layer can use the "standard" API on the next layer
down.

A "layer" is composed of two parts:

1. The functions and attributes of the "layer class".

2. The per-instance data for a particular handle.

Functions and Attributes
The functions and attributes are accessed via the "tab" (for table)
 member of PerlIOl. The functions
(methods of the layer "class") are
 fixed, and are defined by the PerlIO_funcs type. They are
broadly the
 same as the public PerlIO_xxxxx functions:

 struct _PerlIO_funcs
 {
 Size_t		 fsize;
 char *		 name;
 Size_t		 size;
 IV		 kind;
 IV		 (*Pushed)(pTHX_ PerlIO *f,const char *mode,SV *arg, PerlIO_funcs
*tab);
 IV		 (*Popped)(pTHX_ PerlIO *f);
 PerlIO *	 (*Open)(pTHX_ PerlIO_funcs *tab,
 			 AV *layers, IV n,
 			 const char *mode,
 			 int fd, int imode, int perm,

