
Perl version 5.10.0 documentation - perlintro

Page 1http://perldoc.perl.org

NAME
perlintro -- a brief introduction and overview of Perl

DESCRIPTION
This document is intended to give you a quick overview of the Perl
 programming language, along with
pointers to further documentation. It
 is intended as a "bootstrap" guide for those who are new to the

language, and provides just enough information for you to be able to
 read other peoples' Perl and
understand roughly what it's doing, or
 write your own simple scripts.

This introductory document does not aim to be complete. It does not
 even aim to be entirely accurate.
In some cases perfection has been
 sacrificed in the goal of getting the general idea across. You are
strongly advised to follow this introduction with more information
 from the full Perl manual, the table of
contents to which can be found
 in perltoc.

Throughout this document you'll see references to other parts of the
 Perl documentation. You can
read that documentation using the perldoc
 command or whatever method you're using to read this
document.

What is Perl?
Perl is a general-purpose programming language originally developed for
 text manipulation and now
used for a wide range of tasks including
 system administration, web development, network
programming, GUI
 development, and more.

The language is intended to be practical (easy to use, efficient,
 complete) rather than beautiful (tiny,
elegant, minimal). Its major
 features are that it's easy to use, supports both procedural and

object-oriented (OO) programming, has powerful built-in support for text
 processing, and has one of
the world's most impressive collections of
 third-party modules.

Different definitions of Perl are given in perl, perlfaq1 and
 no doubt other places. From this we can
determine that Perl is different
 things to different people, but that lots of people think it's at least
 worth
writing about.

Running Perl programs
To run a Perl program from the Unix command line:

 perl progname.pl

Alternatively, put this as the first line of your script:

 #!/usr/bin/env perl

... and run the script as /path/to/script.pl. Of course, it'll need
 to be executable first, so chmod
 755 script.pl (under Unix).

(This start line assumes you have the env program. You can also put
 directly the path to your perl
executable, like in #!/usr/bin/perl).

For more information, including instructions for other platforms such as
 Windows and Mac OS, read
perlrun.

Safety net
Perl by default is very forgiving. In order to make it more robust
 it is recommended to start every
program with the following lines:

 #!/usr/bin/perl
 use strict;
 use warnings;

Perl version 5.10.0 documentation - perlintro

Page 2http://perldoc.perl.org

The two additional lines request from perl to catch various common
 problems in your code. They
check different things so you need both. A
 potential problem caught by use strict; will cause your
code to stop
 immediately when it is encountered, while use warnings; will merely
 give a warning
(like the command-line switch -w) and let your code run.
 To read more about them check their
respective manual pages at strict
 and warnings.

Basic syntax overview
A Perl script or program consists of one or more statements. These
 statements are simply written in
the script in a straightforward
 fashion. There is no need to have a main() function or anything of
 that
kind.

Perl statements end in a semi-colon:

 print "Hello, world";

Comments start with a hash symbol and run to the end of the line

 # This is a comment

Whitespace is irrelevant:

 print
 "Hello, world"
 ;

... except inside quoted strings:

 # this would print with a linebreak in the middle
 print "Hello
 world";

Double quotes or single quotes may be used around literal strings:

 print "Hello, world";
 print 'Hello, world';

However, only double quotes "interpolate" variables and special
 characters such as newlines (\n):

 print "Hello, $name\n"; # works fine
 print 'Hello, $name\n'; # prints $name\n literally

Numbers don't need quotes around them:

 print 42;

You can use parentheses for functions' arguments or omit them
 according to your personal taste.
They are only required
 occasionally to clarify issues of precedence.

 print("Hello, world\n");
 print "Hello, world\n";

More detailed information about Perl syntax can be found in perlsyn.

Perl variable types
Perl has three main variable types: scalars, arrays, and hashes.

Scalars

